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Abstract

With the proliferation of edge devices such as mobile phones, consumer robots, drones,
wearables, and IoT devices, the generation of data at the edge of the internet network has
been increasing exponentially. Machine Learning (ML) models, particularly Deep Neural
Networks (DNNs), have the ability to process this data with remarkable accuracy. However,
state-of-the-art ML models require substantial computational resources that edge devices
typically lack, necessitating a shift to powerful servers in the cloud as hosts for these mod-
els. Running these models at the edge is desirable due to benefits such as low-latency
results and adherence to data privacy constraints, but is limited by the available compu-
tational power and energy consumption of edge devices. Moreover, lightweight models
designed for edge devices often exhibit a significant drop in accuracy. Continuous learning
offers a potential solution by improving the accuracy of lightweight models by dynami-
cally adapting them to specific scenes or narrow distributions of inputs, which is especially
relevant since in practice, these models do not need to generalize to every possible sample
from the distribution.

In this thesis, two key methods are introduced to tackle the challenges in continuous
learning systems for edge devices: Model Streaming and Model Reuse. Model Stream-
ing offloads the adaptation process to remote machines with greater computational ca-
pacity and updates only a critical subset of model parameters that significantly influence
the lightweight model’s performance, reducing the bandwidth needed for model updates.
Model Reuse uses an efficient DNN model to dynamically select a suitable lightweight
model from a library of historical models designed for similar input distributions, boosting
the scalability, responsiveness, and accuracy of continuous learning systems. These meth-
ods are applied to practical systems, including MMNet for adaptive neural signal detection
in 5G cellular communication systems, AMS for real-time video inference on edge de-
vices, SRVC for efficient video compression, and RECL for responsive, resource-efficient
continuous learning for video analytics.

We show how continuous learning can significantly improve lightweight machine learn-
ing inference on edge devices. The proposed techniques effectively address the unique
challenges posed by resource-constrained edge environments. Practical applications pre-
sented in the thesis, such as MMNet, AMS, SRVC, and RECL, demonstrate the real-world
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effectiveness of these methods. These innovations in continuous learning have the poten-
tial to reshape the landscape of edge computing by offering more accurate and adaptable
inference capabilities, enabling efficient use of computational resources, reduced latency,
and better energy efficiency.

Thesis Supervisor: Mohammad Alizadeh
Title: Associate Professor of Computer Science
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Chapter 1

Introduction

1.1 Motivation

Devices at the edge of the internet network, such as mobile phones, consumer robots,

drones, wearables, and various Internet of Things (IoT) devices, continuously generate

an immense volume of data. Machine Learning (ML), with its ability to process this data

with remarkable accuracy, has reshaped data inference, enhancing existing applications and

paving the way for new ones.

From voice assistants to autonomous driving, these applications rely on data inference

using Deep Neural Networks (DNNs) at their core. DNN models have continually pushed

the boundaries of accuracy for fundamental tasks across various signal modalities, such as

image detection [7], natural language processing [8], speech recognition [9], Lidar percep-

tion [10], and wireless detection [11].

However, achieving this accuracy often comes at a substantial computational cost.

State-of-the-art ML models have been consistently growing in size faster than Moore’s

law for several years now, necessitating a shift from desktop computer stations to powerful

servers in the cloud as hosts for these models. For example, language models like GPT-

3 [12] have few hundred billions of parameters these days, making them computationally

expensive (if not infeasible) to run on any device at the edge.

Concurrently, there is an escalating demand to run these ML models at the edge, close

to their data sources. This proximity ensures real-time, low-latency results while adhering

to data privacy constraints [13–16]. Moreover, offloading the inference to powerful re-

mote machines, such as those in the cloud [17–19], may require high network bandwidth,

especially for video and Lidar data, and is vulnerable to network outages, a common char-

acteristic of wireless connections [20].
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Nonetheless, edge devices offer substantially less computational power than cloud ac-

celerators. Figure 1-1 illustrates the number of images that can be processed using a typi-

cal vision model across devices ranging from running in the cloud to the edge. The figure

clearly depicts a substantial gap in processing throughput and power across these devices.

This discrepancy becomes increasingly problematic when attempting to achieve state-of-

the-art accuracy on edge devices. For instance, large semantic segmentation and object

detection models can take several seconds to process on mobile phones [21, 22]. Even

compact accelerators like Coral Edge TPU [23] and NVIDIA Jetson [24], commonly used

in small drones and robots [25–27], are unable to run these models in real-time, processing

30 frames per second without batching multiple frames. Another crucial factor to consider

is energy consumption, particularly for many edge devices that run on batteries. For exam-

ple, an iPhone 14 Pro operating at full processing speed as in Figure 1-1 will exhaust its

battery in approximately an hour.

On the other hand, lightweight neural network models crafted for efficient execution on

edge devices often exhibit a considerable drop in accuracy when compared to state-of-the-

art models. This gap is exemplified by the performance of various object detection models

in relation to their inference latency on the COCO dataset, as portrayed in Figure 1-2. The

accuracy metric (mean Average Precision) of the best model is almost double what can be

accomplished in real-time on the edge devices. This drop in accuracy of lightweight ML

inference at the edge provides a strong motivation for exploring and developing continuous

learning methods for lightweight inference at the edge.

Continuous learning aims to improve the accuracy of lightweight models by dynam-

ically adapting them to each specific scene or narrow distribution of inputs. A critical

observation is that the main constraint of such lightweight models is their lack of general-

ization to wide data distributions. However, in practice, it is not necessary for these models

to generalize to every possible sample from the distribution. Consider two examples de-

picted in Figure 1-3: a Roomba camera running at home and a Dash camera driving on city

streets. For inference on the camera data in each of these scenarios, our model only needs

to perform well on images captured within some specific home or some specific city. In

fact, it is sufficient for the model to perform well in a particular room at home or a specific

neighborhood in the city at any given time. The core idea behind the continuous learning

framework is to enhance the accuracy of such lightweight models by dynamically adapting

them to each specific scene or narrow distribution of inputs. This highlights the potential

of continuous learning, where lightweight models can be continuously adapted to specific

scenes or narrow input distributions, leading to improved accuracy.

However, accomplishing continuous adaptation demands thoughtful consideration of
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Figure 1-1: Processing throughput of a standard vision model (ResNet50) across a range
of devices, spanning from cloud servers to edge devices, highlighting the gap in compute
power between the cloud and the edge.

system resource requirements for practical implementations. In this thesis, we put forth

techniques that enable new design points in the ML inference systems space, aiming to

render continuous adaptations beneficial across a diverse range of applications.

1.2 Primary Contributions

Running continuous learning on edge devices without careful optimization can lead to in-

creased latency, reduced responsiveness, and even system failures due to excessive compu-

tational and memory overhead. The limited processing capabilities of edge devices often

make it challenging to meet the computational requirements of continuous learning algo-

rithms. Additionally, these devices usually operate under strict energy constraints, further

limiting the amount of computation that can be performed on the device.

In this thesis, we present new methods and system designs that effectively tackle these

challenges, paving the way for practical implementation of continuous learning. We intro-

duce the concept of continuous learning tailored specifically for resource-constrained edge

environments. This represents a novel system design approach with important implications

for achieving lightweight and accurate machine learning (ML) inference at the edge.

25



Figure 1-2: Object detection accuracy vs. inference time for various deep models. Accu-
racy decreases when the compute footprint is reduced.

(a) Dash Camera

(b) Roomba Camera

Figure 1-3: Two example video camera samples in real-world. Cameras usually capture
samples from a specific scene at each point in time.

1.2.1 Methods

We introduce two key methods in this thesis to tackle the challenges in continuous learning

systems, facilitating their application in diverse scenarios:

• Model Streaming: To mitigate the substantial computational and memory overhead

caused by dynamic model updates on edge devices, we introduce Model Stream-

ing. This approach offloads the adaptation process to remote machines with greater

computational capacity. Model Streaming updates only a critical subset of model

parameters that significantly influence the lightweight model’s performance. This

strategy reduces the bandwidth needed for model updates, enhancing the operational

efficiency of continuous learning systems.

• Model Reuse: Capitalizing on the spatio-temporal localities among different data
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streams at various times, we introduce Model Reuse. This method uses an efficient

DNN model to dynamically select a suitable lightweight model from a library of

historical models designed for similar input distributions. Model Reuse boosts the

scalability, responsiveness, and accuracy of continuous learning systems.

1.2.2 Systems & Designs

This thesis introduces several continuous learning systems and designs, demonstrating the

real-world applicability of our methods:

MMNet: Adaptive Neural Signal Detection for Massive MIMO. MMNet [1] is a con-

tinuous learning system tailored for 5G cellular communication systems. It addresses the

challenge of signal detection in Massive Multiple-Input Multiple-Output (MIMO) environ-

ments, where a base station with many antennas serves multiple single-antenna devices

simultaneously. Existing symbol detection algorithms either perform poorly or are imprac-

tical to deploy in this setting due to their computational complexity. MMNet overcomes

these hurdles by using a lightweight signal detector that exploits temporal and spectral

(frequency) locality in real-world channels. By continually adapting the signal detection

model to these channel characteristics, MMNet outperforms existing detection approaches

on realistic channels, offering a scalable and efficient solution for next-generation cellular

systems.

AMS: Real-Time Video Inference on Edge Devices via Adaptive Model Streaming.
AMS [2] embodies a practical application of the Model Streaming method for real-time

video inference on edge devices. This system continuously adapts a lightweight model on

the edge device to improve its performance on live video feeds. The adaptation process is

offloaded to remote servers that have superior computational resources. AMS incorporates

several practical techniques to minimize communication costs, including adaptive sampling

of training frames, fractional model updates, and strategies to avoid overfitting. This results

in a significant reduction in bandwidth usage and improved accuracy, allowing for real-

time, low-latency video inference at the edge, which is crucial for many applications such

as surveillance and navigation.

SRVC: Efficient Video Compression via Content-Adaptive Super-Resolution. SRVC [3]

leverages Model Streaming for efficient video compression, presenting a unique take on

continuous learning in the realm of video coding. The system combines a conventional

codec with a lightweight, content-adaptive super-resolution model to enhance video qual-

ity. SRVC encodes videos into two streams: a content stream, generated by compressing a

low-resolution version of the video, and a model stream, which contains periodic updates to
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the super-resolution model. Upon decoding, SRVC uses the super-resolution model to up-

sample the low-resolution frames, reconstructing high-quality video in real-time. SRVC’s

decoder outperforms existing learning-based compression schemes in terms of speed and

image quality, demonstrating the effectiveness of continuous learning for video compres-

sion.

RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics. RECL

integrates the Model Reuse method into a video analytics framework, demonstrating the

benefits of combining model retraining with model reuse. This system is designed to be

responsive and resource-efficient, making it suitable for large-scale deployments across

multiple edge devices. To achieve this, RECL maintains a library of previously trained

models, or a "model zoo," and uses a DNN to select the most suitable model for a given

input distribution. By reusing models in this way, RECL can respond quickly to changes

in the scene while minimizing the computational cost of retraining. Furthermore, RECL

dynamically optimizes GPU allocation between model retraining, model selection, and up-

dates to the model zoo, ensuring efficient resource utilization. As the model zoo grows

richer over time, RECL’s performance and scalability continue to improve.

1.3 Key Takeaways

There are three key takeaways from this thesis. First, continuous learning methods offer

a practical approach to improve lightweight machine learning inference at the edge. By

dynamically adapting models to specific scenes or narrow input distributions, continuous

learning can enhance accuracy without requiring models to generalize to every possible

sample from the distribution. Second, the proposed techniques of Model Streaming and

Model Reuse effectively address the main challenges of implementing continuous learning

in resource-constrained edge environments. Model Streaming optimizes the adaptation

process by offloading computational tasks to remote machines, reducing overhead on edge

devices. Model Reuse leverages spatio-temporal localities to select suitable lightweight

models, improving scalability and responsiveness.

Third, the practical applications showcased in this thesis demonstrate the effectiveness

of the proposed methods in real-world scenarios from wireless signal detection to video

analytics. These applications highlight the potential of continuous learning for enhancing

inference performance at the edge.

Moving forward, the findings of this thesis suggest that continuous learning and the op-

timization techniques presented can have broader implications for edge computing. They

can influence the design and deployment of edge applications, enabling more efficient use
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of computational resources, improved latency, and enhanced energy efficiency. Further-

more, continuous learning methods can shape the development of new edge computing

applications by providing accurate and adaptable inference capabilities close to the data

source.
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Chapter 2

Background

Current machine learning inference heavily relies on robust cloud-based servers, which are

characterized by significant computational and storage capabilities. However, cloud-based

inference can experience latency and increased network congestion due to data commu-

nication with the cloud. To mitigate these issues and adhere to data privacy preferences,

edge computing has emerged as a promising alternative, bringing computation and data

storage closer to the source of data generation. However, edge devices are often more

resource-constrained than conventional cloud servers. This necessitates the development

of streamlined ML methods designed specifically for edge implementation. In this chapter,

we will explore various strategies for performing ML inference at the edge, with a primary

focus on reducing resource requirements.

2.1 Reducing the Compute Overhead at the Edge

Leveraging ML at the edge is a growing concern in various areas of research. The goal

is to offer advanced ML insights in resource-limited environments, which often lack the

necessary computational power or network connectivity for persistently running state-of-

the-art ML models.

2.1.1 Crafting Lightweight Models

To run ML models efficiently at the edge, system-wide optimizations are employed. Op-

timizations have been proposed at various layers of the system stack. In practice, several

such optimizations are often performed jointly to further enhance performance.

DNN architectures are usually tailored to each specific class of edge devices for max-

imum efficiency. The key insight behind this approach is that the performance (latency)
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of the same operator can vary across different devices, necessitating a customized network

architecture to achieve the ideal balance between accuracy and efficiency. Prior work has

shown the promise of such customization both through manual [28] and automated meth-

ods [29, 30].

A well-know example of manually tailored model design is in MobileNetV2 [28]. This

model is developed for mobile devices, and it employs specialized convolutional layers,

specifically the inverted residuals with linear bottlenecks, that are notably appropriate for

mobile applications. This design considerably reduces memory usage during inference by

preventing the generation of large intermediate tensors in their entirety. As a result, the

requirement for main memory access is decreased, a benefit for many embedded hardware

designs that provide only limited amounts of high-speed, software-controlled cache mem-

ory.

More generally, neural architecture search methods are formulated to automatically

explore and ascertain the optimal architecture for a neural network for a given device [29,

30]. Recent studies incorporate these methods to automatically traverse the design space,

often introducing innovative algorithms (e.g., reinforcement learning) that guide the search

process. This process involves sampling possible architectures within the limitations of the

hardware’s capabilities and constraints and iteratively identifying the most efficient one.

Computational efficiency of ML models can be further improved by model compres-

sion techniques such as quantization and pruning. These strategies aim to decrease the

model size in memory and number of computational operations while maintaining a high

level of predictive accuracy. Specifically, quantization reduces the numerical precision of

the model’s parameters, and pruning eliminates unnecessary weights or neurons from a

neural network, effectively reducing model complexity [31–33]. As evidenced in recent

studies [34], both model quantization and weight pruning serve as effective approaches in

lessening the computational footprint of models, with only a marginal impact on accuracy.

There are task-specific optimizations available to reduce the overhead of ML applica-

tions. For instance, in video analytics, optical flow methods help amortize inference costs

by forgoing inference for specific frames and focusing on a select subset, with motion in-

formation bridging the gaps [35–37]. In the context of large language models, caching the

key and value matrices for intermediary tokens within the self-attention layers can notably

enhance performance [38].
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2.1.2 Offloading Computations

An alternative solution to resource limitations at the edge is to expand the total available

computational resources by leveraging the network. Various proposals suggest offloading

all or part of the computation to a remote machine [17–19, 39–41]. This approach al-

lows access to greater computational resources, resulting in improved model performance.

Moreover, the cloud’s ability for resource pooling significantly enhances resource utiliza-

tion. However, such methods typically require significant network bandwidth, add to la-

tency, and are vulnerable to network disruptions [18, 42]. To offset these drawbacks, some

proposals advocate the use of on-premise edge computing servers [43–45] that place the

remote machine closer to the edge devices. While this approach does alleviate some of the

challenges, it introduces significant additional costs related to infrastructure provision and

maintenance.

2.2 Model Adaptation at the Edge

In most real-world deployments of ML at the edge, we are presented with a plethora of data

sources, each exhibiting its own unique characteristics. This diversity, while being a boon

for model training, also introduces the challenge of encountering data that the model has

never been exposed to before, often termed as unseen or out-of-distribution data. Such sce-

narios can arise due to a myriad of reasons: changing environmental conditions, evolving

user behaviors, introduction of new devices, or even just the sheer unpredictability of the

real world.

In traditional, centralized ML models, regular updates and retraining can address this

by frequently ingesting new data. However, the edge setting is intrinsically different. Here,

models are deployed on devices with constrained resources, often operating in environ-

ments with limited connectivity. This makes regular model updates more challenging, and

sometimes, even unfeasible. Furthermore, the immediacy of decision-making at the edge

demands rapid adaptation to maintain model accuracy and utility.

Consequently, in the edge setting, there’s a heightened importance of building inference

systems that are not just performant out-of-the-box but are also capable of learning and

adapting over time. This could mean incorporating mechanisms like online learning, few-

shot learning, or transfer learning to allow models to adapt to new data patterns without the

need for complete retraining. In essence, the dynamic nature of data at the edge necessitates

a paradigm shift in how we approach, design, and maintain ML inference systems, ensuring

they remain relevant and effective throughout their deployment lifecycle.
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(a) Random images as input streams

(b) Video cameras as input streams

(c) MIMO channels as input streams

Figure 2-1: Input data sources display various types of localities over time and across
streams, depending on their nature. The data distribution in each segment is mapped to a
scalar combination ratio and is represented by a weighted sum of yellow and dark blue at
the respective ratios. Variations in color represent discrepancies in data distribution.

2.2.1 Continuous Learning

In order to harness the full potential of ML at the edge, models must not only be lightweight

but also capable of adapting to changing data distributions. This introduces the concept of

continuous learning—wherein an ML model refines its predictions over time, specializing

for each local distribution.

Framework

Sensors typically generate data in sequences, also known as streams. These data streams

usually exhibit a correlation structure. In this context, temporal locality pertains to the

correlation of data points within a single stream over time, while spatial locality relates

to the correlation across different streams. Figure 2-1 demonstrates the color-coded map-

ping of the sensory data samples into scalar space for three real-world streams. In this

figure, differences in slot colors indicate discrepancies between their data distributions. Al-

though most machine learning models are primarily designed and evaluated for random
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Figure 2-2: Typical components in a continuous learning system.

data streams assuming independent and identically distributed (i.i.d.) samples drawn from

the overall data distribution like in Figure 2-1a, many real-world streams inherently display

more accentuated locality structures. Examples include video cameras (Figure 2-1b) that

exhibit temporal locality over time, and MIMO channels (Figure 2-1c) that illustrate both

temporal locality and spatial locality across streams of adjacent frequency channels.

Central to a continuous learning system is a data streamer, which periodically sends new

data samples to an adaptation service. The adaptation service then fine-tunes a lightweight

model based on the recent queries and uses this updated model for future queries.

The core idea in continuous learning is to leverage such temporal localities to boost the

accuracy of the lightweight models by specializing them for each specific local distribution

in time. Figure 2-2 can be used to illustrate the high-level components of a continuous

learning system. It includes a data streamer that periodically sends new samples from the

query stream for the adaptation process. The adaptation service uses the recent queries

to fine-tune (a copy of) the inference lightweight model for the current queries, and uses

the updated lightweight model for inference on future queries from the data streamer. The

adaptation process is central to continuous learning, dynamically specializing a lightweight

model designed for low computational complexity and fast inference, based on the current

queries.

Adaptation Techniques

Our work is related to online learning [46] algorithms for minimizing dynamic or track-

ing regret [47–49]. Dynamic regret compares the performance of an online learner to a

sequence of optimal solutions. In our case, the goal is to track the performance of the best
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lightweight model at each point in a video. Several theoretical works have studied online

gradient descent algorithms in this setting with different assumptions about the loss func-

tions [50, 51]. Other work has focused on the “experts” setting [52–54], where the learner

maintains multiple models and uses the best of them at each time. Our approach is based on

online gradient descent because tracking multiple models per video at a server is expensive.

Online Knowledge Distillation. Knowledge distillation is a technique where a smaller

model (student) is trained using knowledge gleaned from a larger, pre-trained model (teacher).

Online knowledge distillation extends this concept; as new data becomes available, the stu-

dent model is continually updated, enhancing its predictive capacity and effectively mim-

icking the teacher model’s performance for the specific locality in time.

Inverse Learning. Inverse learning is another model adaptation approach where a model

is trained to solve an inverse problem by learning the mapping from outputs back to inputs.

This strategy is particularly useful when direct inference from input to output is complex

or non-deterministic.

Unsupervised Domain Adaptation. Domain adaptation methods [55, 56] aim to address

the discrepancies between training and test data distributions. In a common approach, an

unsupervised algorithm fine-tunes the model using the entire test dataset. However, the

accuracy attained through this adaptation method is typically lower than that achieved by

supervised methods.

The subsequent chapters will delve deeper into these concepts, discussing the method-

ologies used for continuous learning and knowledge distillation, their implementation, and

their performance. We will also explore the application of these methodologies in different

scenarios, examining the associated benefits and challenges.

2.2.2 Interplay between Data Locality and Updates Timing

Optimizing a model’s accuracy requires a balance between adapting it to current data and

avoiding overfitting, which can lower the model’s performance when data changes. This

balancing act hinges on the rate of data change and the model’s capacity. For instance, a

smaller model might benefit from frequent updates even if it risks overfitting. We demon-

strate in this section that smaller models, indeed, gain more from continuous retraining.

To delve into these nuances, let’s refer to the adaptation process in the continuous learn-

ing framework from §2.2.1. We have two parameters to tweak:

1. 𝑇𝑢𝑝𝑑𝑎𝑡𝑒: the model update interval. The model retrains every 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 seconds.

2. 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛: the training horizon. Each update trains the model using frames from the
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previous 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 seconds of video.

There’s an interrelation between these parameters. If 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 is small, the model might

overfit, necessitating more frequent updates (a smaller 𝑇𝑢𝑝𝑑𝑎𝑡𝑒). However, with a larger

𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛, models could better generalize, allowing for less frequent updates. Yet, an overly

large 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 can be detrimental; a model might struggle to generalize across diverse

frames, leading to decreased accuracy.

Figure 2-3 exemplifies this dynamic for the task of video semantic segmentation. We

look at two model variations: (𝑖) DeeplabV3 with a MobileNetV2 backbone; (𝑖𝑖) A con-

densed version of the above with half the channels in each convolutional layer.

Selecting 50 uniformly spaced points over a driving scene video from Los Angeles,

we train both models on frames from interval [𝑡 − 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛, 𝑡), then test them on frames in

[𝑡, 𝑡+ 𝑇𝑢𝑝𝑑𝑎𝑡𝑒) (setting 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 at 16 seconds).

Figure 2-3a plots the average accuracy of both models against different 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 values.

The smaller model reaches its best accuracy around 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 ≈ 256 seconds, then declines

with a larger 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 due to limited model capacity. The standard model follows a similar

trend, but its accuracy drop is more gradual for bigger 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 values.

Lastly, Figure 2-3b displays how different training horizons influence the necessary

model update frequency for retaining high accuracy. Using the same video, we chart ac-

curacy against the model update interval (𝑇𝑢𝑝𝑑𝑎𝑡𝑒) for default model trainings at 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 =

16, 64, 256 seconds. Predictably, more regular updates boost accuracy across the board.

However, the accuracy for models with a short training horizon (𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = 16 seconds)

falls off significantly with longer 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 intervals.

2.2.3 Other Adaptation Frameworks

Lifelong Learning. The goal of lifelong learning [57] is to accumulate knowledge over

time [58]. Hence the main challenge is to improve the model based on new data over

time, while not forgetting data observed in the past [59, 60]. However, lightweight models

often do not have enough capacity to perform well on broad distribution of data and, as

we discuss later in this chapter, some forgetting will be helpful if we have the systems

support for continuous adaptation. However, as lightweight models have limited capacity,

in continuous we aim to track the best model at each point in time, and these models are

allowed not to have the same performance on the old data.

Federated Learning. Another body of work on improving edge models over time is fed-

erated learning [61], in which the training mainly happens on the edge devices and device

updates are aggregated at a server. The server then broadcasts the aggregated model back
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Figure 2-3: Impact of training horizon and model update interval on the mean-intersection-
over-union (mIoU) accuracy for semantic segmentation.

to all devices. Such updates happen at a time scale of hours to days [62], and they aim to

learn better generalizable models that incorporate data from all edge devices. In contrast,

the trainings in our framework takes place at a time scale of a couple of seconds and in-

tends to improve the accuracy of an individual edge device’s model for its particular data

distribution at the time.

Meta Learning. Meta learning [63–65] algorithms aim to learn models that can be adapted

to any target task in a set of tasks, given only few samples (shots) from that task. Meta

learning is not a natural framework for continual model specialization for a wide range of

signals. First, as data streams have temporal coherence, there is little benefit in handling

an arbitrary order of task arrival. Indeed, it is more natural to adapt the latest model over

time instead of always training from a meta-learned initial model.1 Second, training such a

meta model usually requires two nested optimization steps [63], which would significantly

increase the adaptation compute overhead. Finally, most meta learning work considers a

finite set of tasks but this notion is not well-suited to video.

2.3 Challenges of Continuous Learning at the Edge

Continuous learning on edge devices introduces several computational challenges that need

to be addressed to achieve efficient and effective model adaptation. These challenges in-

clude memory and compute overhead, teacher model constraints, and frequent retraining

1An exception is sudden changes in the data stream that we discuss in chapter 6.
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requirements.

Continuous learning often relies on gradient descent algorithms, which can be com-

putationally and memory-intensive. This poses a challenge for edge devices with limited

computational capabilities and memory resources. Executing resource-intensive processes

on edge devices may lead to performance degradation, increased energy consumption, and

limitations in the size of models that can be accommodated. Therefore, it is crucial to

develop techniques that optimize memory usage and computational efficiency during con-

tinuous learning on edge devices.

In online knowledge distillation methods, the teacher model, which provides guidance

to the student model, may be too large to fit on edge devices. The constraints imposed by

the limited resources of edge devices necessitate careful resource management and efficient

utilization of available computational resources. It is essential to develop strategies that

enable effective knowledge transfer from the teacher model to the student model while

considering the resource limitations of edge devices.

In scenarios where data distributions change frequently, such as in video streams, fre-

quent retraining is necessary to adapt the model to the evolving environment. However,

performing frequent retraining on edge devices can impose a significant computational

cost, further highlighting the need for efficient computational strategies. The challenge lies

in finding a balance between the frequency of model updates and the associated compu-

tational overhead. Techniques that enable adaptive and efficient retraining strategies are

required to maintain model accuracy while minimizing the computational burden on edge

devices.
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Chapter 3

MMNet: Adaptive Neural Signal
Detection for Massive MIMO

3.1 Overview

The fifth generation of cellular communication systems (5G) promises an order of magni-

tude higher spectral efficiency (measured in bits/s/Hz) than legacy standards such as Long

Term Evolution (LTE) [66]. One of the key enablers of this better efficiency is Massive

Multiple-Input Multiple-Output (MIMO) [67], in which a base station (BS) equipped with

a very large number of antennas (around 64–256) simultaneously serves multiple single-

antenna user equipments (UEs) on the same time-frequency resource.

Legacy systems already use MIMO [68], but this is the first time it will be deployed on

such a large scale, creating significant challenges for signal detection. The goal of signal

detection is to infer the transmitted signal vector x from the vector y = Hx + n received

at the BS antennas, where H is the channel matrix and n is Gaussian noise. Traditional

MIMO signal detection schemes with strong performance [69–72] are feasible only for

small systems and have prohibitive complexity for massive MIMO deployments. Thus,

there is a need for low-complexity signal detection schemes that can both perform well and

scale to large system dimensions.

In recent work, researchers have proposed several learning approaches for MIMO sig-

nal detection. Samuel et al. [11, 73] achieved impressive results with a deep neural net-

work architecture called DetNet, e.g., matching the performance of a semidefinite relax-

ation (SDR) baseline for i.i.d. Gaussian channel matrices while running 30× faster. He et

al. [74] introduced OAMPNet, a model inspired by the Orthogonal AMP algorithm [75],

and demonstrated strong performance on both i.i.d. Gaussian and small-sized correlated
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channel matrices based on the Kronecker model [76]. DetNet and OAMPNet are both

trained offline: they try to learn a single detector during training for a family of channel

matrices (e.g., i.i.d. Gaussian channels).

In this chapter we show that neither approach is effective in practice. We conduct

extensive experiments using a dataset of channel realizations from the 3GPP 3D MIMO

channel [77], as implemented in the QuaDRiGa channel simulator [78]. Our results show

that DetNet’s training is unstable for realistic channels, while OAMPNet suffers a large

performance gap (4–7dB at symbol error rate of 10−3) compared to the optimal Maximum-

Likelihood detector on these channels. Both models (as well as several classical baselines)

perform well in simpler settings used for evaluation in prior work (e.g., i.i.d. Gaussian

channels, low-order modulation schemes). Our results demonstrate the difficulty of learn-

ing a single detector that generalizes across a wide range of realistic channel matrices (esp.

poorly-conditioned channels that are difficult to invert).

Motivated by these findings, we revisit MIMO detection from an online learning per-

spective. We ask: Can a receiver optimize its detector for every realization of the channel

matrix? Intuitively, such an approach could perform better than using a fixed detector for

a wide variety of channel matrices. However, conventional wisdom suggests that train-

ing a MIMO detector online is impossible because of the stringent performance require-

ments [11].

Our design, MMNet, overcomes this challenge with two key ideas. First, it uses a neural

network architecture that strikes a balance between flexibility and complexity. Prior neural

network architectures for MIMO detection are poorly suited to online training. DetNet is

a large model with 1-10 million parameters depending on the system size and modulation

scheme, making it prohibitively expensive to train online. OAMPNet, on the other hand, is

very restrictive, adding only 2 trainable parameters per iteration to the OAMP algorithm.

Since the OAMP algorithm requires strong assumptions about channel matrices (unitarily-

invariant channels [75]), OAMPNet, even with online training, performs poorly on channels

that deviate from the assumptions.

MMNet’s neural network is based on iterative soft-thresholding algorithms, a popular

class of solutions to “linear-inverse” problems [79–81] like MIMO detection. These algo-

rithms repeatedly refine an estimate of the signal by alternating between a linear detector

and a non-linear denoising step. By preserving the core components of these algorithms in

MIMO detection, such as a simple denoiser that is optimal for uncorrelated Gaussian noise,

MMNet avoids the pitfalls of overly general neural network architectures like DetNet. At

the same time, unlike OAMPNet, MMNet provides adequate flexibility in the architecture

through trainable parameters that can be optimized for each channel realization.
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MMNet’s second key idea is an online training algorithm that exploits the locality of

channel matrices at a receiver in both the frequency and time domains. By leveraging

spectral and temporal locality, MMNet accelerates training by more than two orders of

magnitude compared to naively retraining the neural network from scratch for each channel

realization.

Taken together, these ideas enable MMNet to achieve performance within ∼2dB of the

optimal Maximum-Likelihood detector with 10-15× less computational complexity than

the second-best scheme, OAMPNet. On random i.i.d. Gaussian channels, an even simpler

version of MMNet (MMNet-iid) with 100× less complexity than OAMPNet and DetNet

achieves near-optimal performance without any retraining.

We empirically analyze the dynamics of errors across different layers of MMNet and

OAMPNet to understand how MMNet achieves higher detection accuracy. Our analysis

reveals that MMNet “shapes” the distribution of noise at the input of the denoisers to en-

sure they operate effectively. In particular, as signals propagate through the MMNet neural

network, the noise distribution at the input of the denoiser stages approaches a Gaussian

distribution, create precisely the conditions in which the denoisers can attenuate noise max-

imally.

The rest of this chapter is organized as follows. Section 3.2 provides background on

classical and learning-based detection schemes, and introduces a general iterative frame-

work that can express many of these algorithms. Section 3.4 introduces the MMNet design

in addition to a simple variant for i.i.d. channels. Section 3.5 shows performance results

of detection algorithms on i.i.d. Gaussian and 3GPP MIMO channels for different modu-

lations. Section 3.6 discusses the error dynamics of MMNet and empirically studies why

it performs better than OAMPNet. Section 3.7 introduces MMNet’s online training algo-

rithm. The code to reproduce our results is available at https://github.com/mehrdadkhani/MMNet.

3.2 Background

3.2.1 Notation

We will use lowercase symbols for scalars, bold lowercase symbols for column vectors and

bold uppercase symbols to denote matrices. Symbols {𝜃,𝜃,Θ} are used to represent the

parameters of trainable models. The transpose and pseudo-inverse of matrix 𝐴 are denoted

by 𝐴𝐻 and 𝐴+ = (𝐴𝐻𝐴)−1𝐴𝐻 respectively. I𝑛 stands for identity matrix of size 𝑛.
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linear

(A𝑡,b𝑡, y−Hx̂𝑡)

denoiser
x̂𝑡 z𝑡 x̂𝑡+1

Figure 3-1: A block of an iterative detector in our general framework. Each block contains
a linear transformation followed by a denoising stage.

3.2.2 The MIMO Signal Detection Problem

We consider a communication channel from 𝑁𝑡 single-antenna transmitters to a receiver

equipped with 𝑁𝑟 antennas. The received vector y ∈ C𝑁𝑟 is given as

y = Hx + n, (3.1)

where H ∈ C𝑁𝑟×𝑁𝑡 is the channel matrix, n ∼ 𝒞𝒩 (0, 𝜎2I𝑁𝑟) is complex Gaussian noise,

and x ∈ 𝒳𝑁𝑡 is the vector of transmitted symbols. 𝒳 denotes the finite set of constellation

points. We assume that each transmitter chooses a symbol from 𝒳 uniformly at random,

and all transmitters use the same constellation set. Further, as is standard practice, we

assume that the constellation set 𝒳 is given by a quadrature amplitude modulation (QAM)

scheme [82]. All constellations are normalized to unit average power (e.g., the QAM4

constellation is {± 1√
2
± 𝑗 1√

2
}).

The channel matrix H is assumed to be known at the receiver. The goal of the receiver

is to compute the maximum likelihood (ML) estimate x̂ of x:

x̂ = arg min
x∈𝒳𝑁𝑡

||y−Hx||2. (3.2)

The optimization problem in eq. (3.2) is NP-hard due to the finite-alphabet constraint

x ∈ 𝒳𝑁𝑡 [83]. Therefore, over the last three decades, researchers have proposed a variety

of detectors with differing levels of complexity. We refer the interested reader to [70, 71]

for a comprehensive overview of MIMO detection schemes.

3.2.3 An iterative framework for MIMO detection

We focus on a class of iterative estimation algorithms for solving eq. (3.2) shown in Fig-

ure 3-1. Each iteration of these algorithms comprises the following two steps:

General Iteration:
z𝑡 = x̂𝑡 + A𝑡(y−Hx̂𝑡) + b𝑡

x̂𝑡+1 = 𝜂𝑡 (z𝑡) .
(3.3)
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The first step takes as input x̂𝑡, a current estimate of x, and the residual error y−Hx̂𝑡, and

applies a linear transformation to obtain an intermediate signal z𝑡. In the second step, a

non-linear “denoiser” is applied to z𝑡 to produce x̂𝑡+1, a new estimate of x that is used as

the input for the next iteration. Together, the linear and denoising steps aim to improve the

quality of the estimate x̂𝑡 from one iteration to the next. In this chapter we use the terms

iteration, layer, and block interchangeably to refer to one complete iteration (the linear step

followed by the non-linear denoiser). All algorithms discussed assume x̂0 = 0.

The denoiser is a non-linear function 𝜂𝑡 : C𝑁𝑡 → C𝑁𝑡 in general, however, most algo-

rithms apply the same denoising function 𝛽𝑡 : C → C to each element of z𝑡. A natural

choice for the denoising function is the minimizer of E[‖x̂− x‖2|z𝑡], which is given by:

𝜂𝑡(z𝑡) = E[x|z𝑡]. (3.4)

Optimal denoiser for Gaussian noise: Several existing MIMO detection schemes assume

that the noise at the input of the denoiser z𝑡 − x has an i.i.d. Gaussian distribution with di-

agonal covariance matrix 𝜎2
𝑡 I𝑁𝑡 . In this case, the optimal element-wise denoising function

derived from eq. (3.4) has the form

𝛽𝑡(𝑧;𝜎
2
𝑡 ) =

1

𝑍

∑︁
𝑥𝑖∈𝒳

𝑥𝑖 exp

(︂
−‖𝑧 − 𝑥𝑖‖2

𝜎2
𝑡

)︂
, (3.5)

where 𝑍 =
∑︀

𝑥𝑗∈𝒳 exp
(︁
−‖𝑧−𝑥𝑗‖2

𝜎2
𝑡

)︁
. The standard deviation of input noise at the denoisers,

𝜎𝑡, generally varies from iteration to iteration, and depends on the linear steps in each

iteration. Different algorithms use different methods to estimate 𝜎𝑡. In the rest of this

chapter, 𝜂𝑡(·;𝜎𝑡) refers to a denoiser which applies eq. (3.5) to each element of its input

vector.

3.3 Related Work

In this section we briefly describe several algorithms for MIMO detection. We begin with

traditional, non-learning approaches (§3.3.1) and then discuss recent deep learning pro-

posals (§3.3.2). We show how many of these algorithms can be expressed in the iterative

framework discussed above.
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3.3.1 Classical MIMO detection algorithms

Linear

The simplest method to approximately solve eq. (3.2) is to relax the constraint of x ∈ 𝒳𝑁𝑡

to x ∈ C𝑁𝑡 and then round the relaxed solution to the closest point on the constellation:

Linear:
z = arg min

x∈C𝑁𝑡

‖y−Hx‖2 = H+y

x̂ = arg min
x∈𝒳𝑁𝑡

‖x− z‖2.
(3.6)

Rounding each component of z to the closest point in the constellation set x̂ leads to the

well-known zero-forcing (ZF) detector, which is equivalent to a single step of eq. (3.3) with

initial condition of x̂0 = 0, A0 = H+, b0 = 0, and a hard-decision denoiser with respect to

the points in the constellation. Other widely-used single-step linear detectors include the

matched filter and the minimum mean square error (MMSE) detectors [67] with A0 = H𝐻

and A0 = (H𝐻H + 𝜎2I𝑁𝑡)
−1H𝐻 , respectively. Linear detectors are attractive for practical

implementation because of their low complexity, but they perform substantially worse than

the optimal detector.

We can also perform the optimization in eq. (3.6) in multiple iterations using gradient

descent. The gradient of the objective function in the first equation of eq. (3.6) with respect

to x is −2H𝐻(y − Hx). Hence, if we set A𝑡 to 2𝛼H𝐻 and b𝑡 = 0, the linear step of

eq. (3.3) is equivalent to minimizing ||y − Hx||2 using gradient descent with step size 𝛼.

This is followed by a projection onto the constellation set in the denoising step. If we had

a compact convex constellation set, this projected gradient descent procedure is guaranteed

to converge to the global optimum. Discrete constellation sets, however, are not compact

convex. Nonetheless, solving the linear least squares problem in eq. (3.6) iteratively may

be desirable to avoid the cost of computing the pseudo-inverse of the channel matrix.

Approximate Message Passing (AMP)

MIMO detection can, in principle, be solved through belief propagation (BP) if we consider

a bipartite graph representation of the model in eq. (3.1) [84]. BP on this graph requires

𝒪(𝑁𝑟𝑁𝑡) update messages in each iteration, which would be prohibitive for large system

dimensions. In the large system limit, Jeon et al. [81] introduce approximate message

passing (AMP) as a lower complexity inference algorithm for solving eq. (3.2) for i.i.d.

Gaussian channels. AMP reduces the number of messages in each iteration to𝒪(𝑁𝑟+𝑁𝑡).
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The algorithm performs the following sequence of updates:

AMP:

z𝑡 = x̂𝑡 + H𝐻(y−Hx̂𝑡) + b𝑡

b𝑡 = 𝛼𝑡

(︀
H𝐻(y−Hx̂𝑡−1) + b𝑡−1

)︀
x̂𝑡+1 = 𝜂𝑡 (z𝑡;𝜎𝑡) .

(3.7)

To express AMP in our iterative framework, use A𝑡 = H𝐻 as the linear operator. The

vector b𝑡 is known as the Onsager term. The scalar sequences 𝜎𝑡 and 𝛼𝑡 are computed

analytically given the SNR and system parameters (constellation, number of transmitters

and receivers); see [85] for details. The denoising function 𝜂𝑡(·;𝜎𝑡) applies the optimal

denoiser for Gaussian noise in eq. (3.5) to each element of the vector z𝑡. Jeon et al. [81]

prove that AMP is asymptotically optimal for large i.i.d. Gaussian channel matrices.

Orthogonal AMP (OAMP) [75] is another scheme proposed to relax the i.i.d. Gaussian

channel assumption in the original AMP algorithm. OAMP assumes unitarily-invariant

channel matrices [86] and operates as follows:

OAMP:
z𝑡 = x̂𝑡 + 𝛾𝑡H𝐻

(︀
𝑣2𝑡 HH𝐻 + 𝜎2I

)︀−1
(y−Hx̂𝑡)

x̂𝑡+1 = 𝜂𝑡
(︀
z𝑡;𝜎2

𝑡

)︀ (3.8)

where 𝛾𝑡 = 𝑁𝑡/trace
(︁
𝑣2𝑡 H𝐻

(︀
𝑣2𝑡 HH𝐻 + 𝜎2I

)︀−1 H
)︁

is a normalizing factor and 𝑣2𝑡 is pro-

portional to the average noise power at the denoiser output at iteration 𝑡 and can be com-

puted given the SNR and system dimensions [75]. Notice that OAMP requires a matrix

inverse operation in each iteration, making it more expensive computationally than AMP.

Other techniques

Several detection schemes relax the lattice constraint (x ∈ 𝒳𝑁𝑡) in eq. (3.2). For example,

Semi-Definite Relaxation (SDR) [72] formulates the problem as a semi-definite program.

Sphere decoding [69] conducts a search over solutions x̂ such that ||y − Hx̂||2 ≤ 𝑟. In-

creasing 𝑟 covers a larger set of possible solutions, but this comes at the cost of increased

complexity, approaching that of brute-force search. There is a large body of work on im-

provements to this idea which can be found in [70, 71]. While these approaches can per-

form well, their computational complexity is prohibitive for Massive MIMO systems with

currently available hardware.

Another class of detector applies several stages of linear detection followed by interfer-

ence subtraction from the observation y. The V-BLAST scheme [87] does this by detecting

the strongest symbols, which are then successively removed from y. The drawbacks of this
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approach are error propagation of early symbol decisions and high complexity due to the

𝑁𝑡 required stages, as well as the necessary reordering of transmitters after each step. Par-

allel interference cancellation (PIC) has been proposed to circumvent these problems. PIC

jointly detects all transmitted symbols and then attempts to create an interference-free chan-

nel for each transmitter through the cancellation of all other transmitted symbols [88, 89].

A large system approximation of this approach was recently developed in [90] based on

[91]. However, it is currently limited to binary phase shift keying (BPSK) modulation and

leads to unsatisfactory performance for realistic system dimensions.

In summary, most existing techniques are too complex to be implemented at the scale

required by next-generation Massive MIMO systems. On the other hand, light-weight tech-

niques like AMP cannot handle correlated channel matrices. These limitations have moti-

vated a number of learning-based proposals for MIMO detection, which we discuss next.

3.3.2 Learning-based MIMO detection schemes

DetNet

Inspired by iterative projected gradient descent optimization, Samuel et al. [11, 73] pro-

pose DetNet, a deep neural network architecture for MIMO detection. This architecture

performs very well in case of i.i.d. complex Gaussian channel matrices and achieves the

performance of state-of-the-art algorithms for lower-order modulation schemes, such as

BPSK and QAM4. However, it is far more complex. The neural network is described by

the following equations:

DetNet:

q𝑡 = x̂𝑡−1 − 𝜃
(1)
𝑡 H𝐻y + 𝜃

(2)
𝑡 H𝐻Hx̂𝑡−1

u𝑡 =
[︁
Θ

(3)
𝑡 q𝑡 +Θ

(4)
𝑡 v𝑡−1 + 𝜃

(5)
𝑡

]︁
+

v𝑡 = Θ
(6)
𝑡 u𝑡 + 𝜃

(7)
𝑡

x̂𝑡 = Θ
(8)
𝑡 u𝑡 + 𝜃

(9)
𝑡

(3.9)

where [𝑥]+ = max(𝑥, 0), which is also known as ReLU activation function [92], is applied

element-wise [11].

Although DetNet’s performance is promising, it has two main limitations. First, its

heuristic nature makes it difficult to reason about how the neural network works, and how

to extend its architecture, for example, to support spatially correlated channel matrices.

Second, DetNet’s architecture does not incorporate known properties of iterative meth-

ods and is thus unnecessarily complex. For example, similar to other iterative schemes,
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DetNet’s neural network can be viewed to be performing a linear transformation followed

by a non-linear projection in each iteration. DetNet’s linear step computes 𝑞𝑡, and the non-

linear projection computes x̂𝑡 from 𝑞𝑡.1 However, unlike other iterative schemes that use the

simple non-linear denoiser in eq. (3.5), DetNet’s non-linear projection is a fully-connected

2-layer neural network that operates on an 𝑁𝑡-dimensional input vector. In fact, DetNet

uses parameter matrices Θ(3)
𝑡 and Θ

(4)
𝑡 to map the input of the projection to an even larger

space before mapping it back to a 𝑁𝑡-dimensional vector.2.

OAMPNet

He et al. [74] designed a learning-based iterative scheme based on the OAMP algorithm.

OAMPNet adds two tuning parameters per iteration to the OAMP algorithm, as follows:

OAMPNet:
z𝑡 = x̂𝑡 + 𝜃

(1)
𝑡 H𝐻

(︀
𝑣2𝑡 HH𝐻 + 𝜎2I

)︀−1
(y−Hx̂𝑡)

x̂𝑡+1 = 𝜂𝑡
(︀
z𝑡;𝜎2

𝑡

)︀
.

(3.10)

In the above equations, OAMPNet uses the second trainable parameter , 𝜃(2)𝑡 , in order

to balance the estimate of denoisers input noise variance 𝜎2
𝑡 . OAMPNet uses the same

denoisers used by AMP.

OAMPNet shows very good performance in the case of i.i.d. Gaussian channels, but it

does not generalize to realistic channels with spatial correlations, as our experiments in sec-

tion 3.5 show. The reason is that OAMPNet bases its architecture on OAMP, which requires

a strict assumption about the system: unitarily-invariant channel matrices. Therefore, its

performance degrades on realistic channel matrices that do not conform to this assumption.

Further, like OAMP, OAMPNet must compute a matrix pseudo-inverse in each iteration

and, therefore, its complexity is still quite high compared to schemes like AMP.

3.4 MMNet Design

MMNet is a neural-network-based signal detection scheme inspired by the iterative frame-

work described in Section 3.2.3. Unlike prior approaches that use a single model for all

channel matrices, MMNet is designed to be trained online for each realization of H. In

this approach, the receiver continually adapts its parameters as it observes new channel

matrices. We demonstrate that online training is feasible in practice with a suitable neural

1The role of v𝑡 in DetNet is unclear, and is not explained in [11].
2In the specific networks evaluated in [11], the u𝑡 vector has up to 6𝑁𝑡 dimensions depending on the

constellation.
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network architecture by exploiting the fact that realistic channels exhibit locality in both the

frequency and time domains. We introduce the neural network architecture in this section

and discuss the training algorithm in Section 3.7.

The main idea behind MMNet’s architecture is to strike a balance between flexibility

and complexity in the linear and denoising components of each layer of the neural net-

work. In the following, we present two different neural network architectures for (1) i.i.d.

Gaussian and (2) arbitrary channels.

i.i.d. Gaussian channels: In the i.i.d. Gaussian case, the model is extremely simple:

MMNet-iid:
z𝑡 = x̂𝑡 + 𝜃

(1)
𝑡 H𝐻(y−Hx̂𝑡)

x̂𝑡+1 = 𝜂𝑡
(︀
z𝑡;𝜎2

𝑡

)︀
.

(3.11)

Here, the denoiser is the optimal denoiser for Gaussian noise given in (3.5). MMNet-iid as-

sumes the same distribution of noise at the input of the denoiser for all transmitted symbols

and estimates its variance 𝜎2
𝑡 according to

𝜎2
𝑡 =

𝜃
(2)
𝑡

𝑁𝑡

(︂
‖I− A𝑡H‖2𝐹
‖H‖2𝐹

[︀
‖y−Hx̂𝑡‖22 −𝑁𝑟𝜎

2
]︀
+

+
‖A𝑡‖2𝐹
‖H‖2𝐹

𝜎2

)︂
,

(3.12)

where A𝑡 = 𝜃
(1)
𝑡 H𝐻 . The intuition behind (3.12) is that the noise at the input of the denoiser

at step 𝑡 is comprised of two parts: (i) the residual error caused by deviation of x̂𝑡 from the

true value of x, and (ii) the contribution of the channel noise n. The first component is

amplified by the linear transformation (I − A𝑡H), and the second component is amplified

by A𝑡. See [75, 81] for further details on this method for estimating noise variance.

This model has only two parameters per layer: 𝜃
(1)
𝑡 and 𝜃

(2)
𝑡 . We discuss this model

merely to illustrate that, for the i.i.d. Gaussian channel matrix case (which most prior

work focused on for evaluation), a simple model that adds a small amount of flexibility to

existing algorithms like AMP can perform very well. In fact, our results will show that, in

this case, we do not even need to train the parameters of the model online for each channel

realization; training offline over randomly sampled i.i.d. Gaussian channel suffices.

Arbitrary channels: The MMNet neural network for arbitrary channel matrices is as fol-

lows:

MMNet:
z𝑡 = x̂𝑡 +Θ

(1)
𝑡 (y−Hx̂𝑡)

x̂𝑡+1 = 𝜂𝑡
(︀
z𝑡;𝜎2

𝑡

)︀ (3.13)
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where A𝑡 = Θ
(1)
𝑡 is an 𝑁𝑡 × 𝑁𝑟 complex-valued trainable matrix. In order to enable

the model to handle cases in which different transmitted symbols have different levels of

noise, we estimate the noise variance at the input of the denoiser corresponding to each

transmitted signal as:

𝜎2
𝑡 =

𝜃
(2)
𝑡

𝑁𝑡

(︂
‖I− A𝑡H‖2𝐹
‖H‖2𝐹

[︀
‖y−Hx̂𝑡‖22 −𝑁𝑟𝜎

2
]︀
+

+
‖A𝑡‖2𝐹
‖H‖2𝐹

𝜎2

)︂
,

(3.14)

where the parameter vector 𝜃(2)
𝑡 of size 𝑁𝑡×1 scales the noise variance by different amounts

for each symbol.

MMNet concatenates 𝑇 layers of the above form. We use the average L2-loss over all

𝑇 layers in order to train the model, which is given by

𝐿 =
1

𝑇

𝑇∑︁
𝑡=1

‖x̂𝑡 − x‖22. (3.15)

MMNet’s architecture provides many more degrees of freedom than the highly-constrained

OAMPNet, but it is also much simpler than DetNet. In particular, MMNet uses a flexible

linear transformation (which does not need to be linear in H) to construct the intermediate

signal 𝑧𝑡, but it applies the standard optimal denoiser for Gaussian noise in (3.5). Further,

unlike OAMPNet, MMNet does not require any matrix inverse operations.

3.5 Experiments

In this section, we evaluate and compare the performance of MMNet with state-of-the-

art schemes for both i.i.d. Gaussian and realistic channel matrices. These are our main

findings:

1. On i.i.d. Gaussian channels, most schemes perform very well. MMSE, SDR, V-

BLAST and DetNet are 1–3dB worse than the Maximum-Likelihood solution. AMP

performance degrades for higher-order modulations in high SNRs. MMNet-iid and

OAMPNet are both very close to Maximum-Likelihood in all experiment on these

channels. MMNet-iid, however, has two orders of magnitude lower complexity than

other learning-based schemes, OAMPNet and DetNet.

2. On realistic, spatially-correlated channel matrices, the performance of all existing
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learning-based approaches degrades significantly. MMNet consistently achieves the

smallest gap with Maximum-Likelihood. MMSE has a 8–10dB gap with Maximum-

Likelihood on 64 × 16 channels. OAMPNet reduces this gap to 5dB, and MMNet

closes the gap further to less than 2.2dB. DetNet and AMP perform poorly on realistic

channels; with QAM4, for example, AMP achieves an SER of only 0.36 at 7dB while

MMSE can bring down the SER to 0.033 in the same setting. The best SER that we

achieve in this setting with DetNet before running into stability problems is 0.045,

which is worse than MMSE. Finally, MMNet’s performance is robust and degrades

more gracefully to channel estimation errors than OAMPNet and MMSE

3.5.1 Methodology

We first briefly discuss the details of detection schemes used for comparison. Since some

of these schemes (including MMNet) require training, we then discuss the process of gen-

erating data and training/testing on this data.

Compared Schemes

In our experiments, we compare the following schemes on QAM modulation:

• MMSE: Linear decoder that applies the SNR-regularized channel’s pseudo inverse

and rounds the output to the closest point on the constellation.

• SDR: Semidefinite programming using a rank-1 relaxation interior point method [93].

• V-BLAST: Multi-stage interference cancellation BLAST algorithm using Zero-Forcing

as the detection stage introduced in [89].

• AMP: AMP algorithm for MIMO detection from Jeon et al. [81]. AMP runs 50

iterations of the updates described in (3.7). We verified that adding more iterations

does not improve the results.

• DetNet: The deep learning approach introduced in [11]. The DetNet paper describes

instantiations of the architecture for BPSK, QAM4 and QAM16; these neural net-

works have, on the order of 1–10M, trainable parameters depending on the size of

the system and constellation set.

• OAMPNet: The OAMP-based architecture [74] implemented in 10 layers with 2

trainable parameters per layer and an inverse matrix computation at each layer.
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• MMNet-iid: The simple mode described in (3.11). This scheme has only 2 scalar

parameters per layer and does not require any matrix inversions. We implement this

neural network with 10 layers.

• MMNet: Our design described in (3.13). It has 10 layers, and the total number of

trainable parameters is 2𝑁𝑡(𝑁𝑟 + 1) per layer, independent of constellation size. In

the systems evaluated, this results in 20K-41K trainable parameters.

• Maximum-Likelihood: The optimal solver for (3.2) using a highly-optimized Mixed

Integer Programming package Gurobi [94].

Dataset

Training and test data are generated through the model described in (3.1). In this model,

there are three sources of randomness: the signal x, the channel noise n and the channel

matrix H. Each transmitted signal x is generated randomly and uniformly over the corre-

sponding constellation set. All transmitters are assumed to use the same modulation. The

channel noise n is sampled from a zero-mean i.i.d. normal distribution with a variance that

is set according to the operating SNR, defined as SNR(dB) = 10 log (E[‖Hx‖22]/E[‖n‖22]).
For every training batch, the SNR(dB) is chosen uniformly at random in the desired op-

erating SNR interval. This interval depends on the modulation scheme. For each modu-

lation in each experiment, the SNR regime is chosen such that the best scheme other than

Maximum-Likelihood can achieve a SER of 10−3–10−2.

The channel matrices H are either sampled from an i.i.d. Gaussian distribution (i.e.,

each column of H is a complex-normal 𝒞𝒩 (0, (1/𝑁𝑟)I𝑁𝑟)), or they are generated via the

realistic channel simulation described below.

We study two system size ratios (𝑁𝑡/𝑁𝑟) of 0.25 and 0.5, with the total number of re-

ceivers fixed at 𝑁𝑟 = 64. These are typical values for 4G/5G base stations in urban cellular

deployments. For the case of realistic channels, we generate a dataset of channel realiza-

tions from the 3GPP 3D MIMO channel model [77], as implemented in the QuaDRiGa

channel simulator [78].3 We consider a base station (BS) equipped with a rectangular pla-

nar array consisting of 32 dual-polarized antennas installed at a height of 25m. The BS is

assumed to cover a 120∘-cell sector of radius 500m within which 𝑁𝑡 ∈ {16, 32} single-

antenna users are dropped randomly. A guard distance of 10m from the BS is kept. Each

user is then assumed to move along a linear trajectory with a speed of 1m/s. Channels are

sampled every 𝜆/4m at a center frequency of 2.53GHz to obtain sequences of length 100.

3The simulation results were generated using QuaDRiGa Version 2.0.0-664.
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Each channel realization is then converted to the frequency domain assuming a bandwidth

of 20MHz and using 1024 sub-carriers from which only every fourth is kept, resulting in

𝐹 = 256 effective sub-carriers. We gather a total of 40 user drops, resulting in 40 × 256

length 100 sequences of channel matrices (i.e., 1M channel matrices in total). Since the

path loss can vary dramatically between different users, we assume perfect power con-

trol, which normalizes the average received power across antennas and sub-carriers to one.

Denote H[𝑓, 𝑘] as the 𝑘th column of H on sub-carrier 𝑓 . Our normalization ensures that

1

𝑁𝑟𝑁𝑡𝐹

𝑁𝑡∑︁
𝑘=1

𝐹∑︁
𝑓=1

‖H[𝑓, 𝑘]‖2 = 1.

Training

MMNet, DetNet, and OAMPNet require training and were implemented in TensorFlow [95].

We have converted eq. (3.2) to its equivalent real-valued representation for TensorFlow im-

plementations (cf. [96, Sec. II]). DetNet and OAMPNet are both trained as described in the

corresponding publications (i.e., batch size of 5K samples). We trained each of the latter

two algorithms for 50K iterations.

To train MMNet, we use the Adam optimizer [97] with a learning rate of 10−3. Each

training batch has a size of 500 samples. We train MMNet for 1K iterations on each real-

ization of H in the naive implementation. In Section 3.7.2, we exploit frequency and time

domain correlations to reduce the training requirement to 9 iterations per channel matrix.

In spatially correlated channels, we perform an additional 5K iterations of training with

a batch size of 5K samples for each realization of H on the pre-trained OAMPNet model,

in order to have a fair comparison against MMNet’s online training. However, as we found

that this extra training does not meaningfully improve the performance of OAMPNet, we do

not count this re-training overhead in the complexity of OAMPNet algorithm in section 3.7.

For i.i.d. Gaussian channels, MMNet-iid is not trained per channel realization H. In-

stead, we use 10K iterations with a batch size of 500 samples to train a single MMNet-iid

neural network, which we then test on new channel samples.

3.5.2 Results

We compare different schemes along two axes: performance and complexity. In this sec-

tion, we focus on performance, leaving a comparison of complexity to Section 3.7. We

use the SNR required to achieve an SER of 10−3 as the primary performance metric. In

practice, most error correcting schemes operate around an SER of 10−3–10−2, so this is the
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Figure 3-2: SER vs. SNR of different schemes for three modulations (QAM4, QAM16 and
QAM64) and two system sizes (32 and 16 transmitters, 64 receivers) with i.i.d. Gaussian
channels.

relevant regime for MIMO detection.

i.i.d. Gaussian channels

Figure 3-2 shows the SER vs. SNR of the state-of-the-art MIMO schemes on i.i.d. channels

for two system sizes: 32 and 16 transmitters (Figure 3-2a and Figure 3-2b, respectively),

and 64 receivers.

We make the following observations:

1. The SNR required to achieve a certain SER increases by 2–3dB as we double the

number of transmitters (notice the different range of x-axes). The reason is that there

is higher interference with more transmitters.
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2. There is a 2–3dB performance gap between Maximum-Likelihood and MMSE across

all modulations for 𝑁𝑡 = 32. However, this gap decreases to 1dB for 𝑁𝑡 = 16,

because of the lower interference in this case.

3. Multiple schemes perform similarly to Maximum-Likelihood, especially at lower-

order modulations like QAM4. As we move to QAM64, the performance of several

schemes degrades compared to Maximum-Likelihood.

4. SDR performs better than MMSE, but its gap with Maximum-Likelihood increases

with modulation order.

5. V-BLAST achieves almost the optimal performance across all modulations when we

have 16 transmit antennas. However, its performance is sensitive to system size and

degrades when we increase the number of transmitters to 32.

6. AMP is near-optimal in many cases (recall that, theoretically, AMP is asymptoti-

cally optimal for i.i.d. Gaussian channels as the system size increases). However,

it suffers from robustness issues at higher SNR levels, especially with higher-order

modulations like QAM64.

7. DetNet has a good performance on QAM4, but its gap with Maximum-Likelihood

increases as we move to QAM16 and QAM64. With QAM64, DetNet performs even

worse than MMSE for 𝑁𝑡 = 16.

8. OAMPNet and the simple MMNet-iid approach are both very close to Maximum-

Likelihood across different modulations over a wide range of SNRs, even though

these models have only two parameters per layer.

In summary, these results show that for i.i.d. Gaussian channel matrices, adding just a

small amount of flexibility via tuning parameters to existing iterative schemes like AMP

can result in equivalent or improved performance over much more complex deep learning

models like DetNet. Further, these models even outperform classical algorithms like SDR.

Realistic channels

Figure 3-3 shows the results for the realistic channels derived using the 3GPP 3D MIMO

channel model. We consider only MMSE (as a baseline), OAMPNet, MMNet and Maximum-

Likelihood. As shown in the i.i.d. Gaussian case, schemes like SDR, V-BLAST and DetNet
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Figure 3-3: SER vs. SNR of different schemes for three modulations (QAM4, QAM16 and
QAM64) and two system sizes (32 and 16 transmitters, 64 receivers) with 3GPP MIMO
channels.

do not perform as well as the OAMPNet baseline.4 Also, AMP is not designed for corre-

lated channels and is known to perform poorly on them (see discussion in section 3.6).

We make the following observations:

1. There is a much larger gap with Maximum-Likelihood for all detection schemes on

these channels compared to the i.i.d. case.

2. To achieve comparable SER, we require 4–7dB increase in SNR relative to the i.i.d.

case in Figure 3-2. Also, doubling the number of transmitters from 16 to 32 incurs

about a 5dB penalty in SNR for each scheme in this case (compare with 2–3dB in

i.i.d. case.)

4We tried to train DetNet for realistic channels and ran into significant difficulty with stability and con-
vergence in training.
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Figure 3-4: SNR requirement gap with Maximum-Likelihood at SER of 10−3. The total
bar height shows the 90th-percentile gap (over different channels) while the hatched section
depicts the average.

3. MMSE exhibits a relatively flat SER vs. SNR curve. For example, it requires 4dB

SNR increase on QAM16 to go from an SER of 20% to 10% on 64×32 channels.

4. OAMPNet’s performance improves faster than MMSE as the SNR increases. Com-

pared to MMSE, OAMPNet can achieve a similar SER at 2–3dB lower SNR.

5. MMNet outperforms MMSE and OAMNet schemes for both system sizes and in all

modulations.

In Figure 3-4, we plot the performance gap with Maximum-Likelihood for these three

detection schemes. For this purpose, we measure the difference in the minimum SNR level

that is required to have SER of 10−3. In this figure, we also show the 90th-percentile of the

SNR gap for different channels. We observe that MMNet reduce the SNR requirement by

up to 5dB and 8dB, respectively, over OAMPNet and MMSE for realistic channels.

Robustness to channel estimation errors

In order to evaluate MMNet’s robustness against channel estimation errors [98], we con-

sider a least-squares channel estimator which is equivalent to adding complex Gaussian

noise to the channel matrix, i.e., : Ĥ𝑖𝑗 = H𝑖𝑗 + 𝛿𝑖𝑗 , where 𝛿𝑖𝑗 ∼ 𝒞𝒩 (0, 𝜎2
𝑐 ). We provide

Ĥ to the signal detector instead of H. Figure 3-5 compares the impact of imperfect chan-

nel estimation on 3GPP MIMO channels for QAM16 modulation at different values of 𝜎𝑐.

Here we have 32 transmit and 64 receive antennas operating at 23dB SNR. We observe that

MMNet is able to achieve the same SER as OAMPNet at 10dB higher channel estimation

error at a fixed SNR
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Figure 3-5: SER for QAM16 versus channel estimation MSE.

3.6 Why MMNet works

In this section, we examine why MMNet performs better than the best previous learning-

based scheme, OAMPNet. By analyzing the dynamics of the error (x̂𝑡 − x), we find that

MMNet’s denoisers are significantly more effective than those in OAMPNet. We show

that this occurs because the linear stages learned by MMNet create favorable conditions

for the denoisers. Specifically, we find that the distribution of noise at the input of MM-

Net’s denoisers is nearly Gaussian, whereas the noise distribution for OAMPNet is far from

Gaussian. Since the denoisers in both architectures are optimized for Gaussian noise, they

perform much better in MMNet.

3.6.1 Error dynamics

Define the error at the outputs of the linear and denoiser stages at iteration 𝑡 as e𝑙𝑖𝑛𝑡 = z𝑡−x
and e𝑑𝑒𝑛𝑡 = x̂𝑡+1 − x, respectively. For algorithms such as MMNet and OAMPNet with

b𝑡 = 0, we can rewrite the update equations of (3.3) in terms of these two errors in the

form:

e𝑙𝑖𝑛𝑡 = (I− A𝑡H)e𝑑𝑒𝑛𝑡−1 + A𝑡n (3.16a)

e𝑑𝑒𝑛𝑡 = 𝜂𝑡(x + e𝑙𝑖𝑛𝑡 )− x. (3.16b)

Equation (3.16a) includes two terms, corresponding to two sources of error that contribute

to e𝑙𝑖𝑛𝑡 : (1) the error in the output signal from the previous iteration, and (2) the channel

noise. Different choices of A𝑡 impact these two terms differently. For example, if we set A𝑡

to H+ (the pseudo-inverse of the channel matrix), we are only left with the term H+n in e𝑙𝑖𝑛𝑡 ,

thus eliminating the first error term entirely. However, this comes at a price: we are left with

Gaussian noise with covariance matrix 𝜎2H+H+𝐻 . This presents two potential problems:
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Figure 3-6: Noise power after the linear and denoiser stages at different layers of OAMP-
Net and MMNet. The OAMPNet denoisers become ineffective after the third layer on
3GPP MIMO channels.

(i) if H is ill-conditioned, it might amplify the channel noise (e.g., inversely proportional to

the smallest singular value of H in some directions); (ii) the resulting noise, e𝑙𝑖𝑛𝑡 , may have

correlated elements, and therefore applying an element-wise denoising function to it as per

Equation (3.16b) may be suboptimal.

Another naive option is to eliminate the channel noise term entirely by setting A𝑡 to

zero. This would effectively remove the linear stages from the architecture, reducing it to

a cascade of denoising stages. However, applying a (well-chosen) denoiser multiple times

in a cascade should be no better than applying it once.

It is also instructive to consider the error dynamics in the special case of i.i.d. channels.

In this case, if we set A𝑡 = H𝐻 , the factor I − A𝑡H asymptotically goes to zero as we

increase 𝑁𝑟 [85], and the auto-covariance of A𝑡n, 𝜎2H𝐻H, is approximately equal to 𝜎2I𝑁𝑡 .

This means that the linear stage does not amplify the channel noise or make it correlated.

On the other hand, the error from the previous iteration, e𝑑𝑒𝑛𝑡−1, is attenuated significantly via

I − A𝑡H. These calculations explain why AMP has great performance on i.i.d. Gaussian

channels. However, in case of correlated channels, neither I − A𝑡H is close to zero, nor is

A𝑡n uncorrelated, and therefore AMP does not perform well on realistic channels.

3.6.2 Analysis

Based on the above discussion of the error dynamics, we identify two desirable properties

for picking A𝑡:

1. Noise reduction property: A𝑡 must reduce the magnitude of e𝑙𝑖𝑛𝑡 . This requires strik-

ing a balance between the two terms in (3.16a), because attenuating one term may

amplify the other and vice-versa.
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Figure 3-7: Fraction of transmitters that have Gaussian error distribution after the linear
block for each layer with significance level of 5%. MMNet produces Gaussian distributed
errors at the output of linear blocks, while OAMPNet fails to achieve the Gaussian property.

2. Uncorrelated Gaussian noise property: A𝑡 must “shape” the distribution of e𝑙𝑖𝑛𝑡 to

make it suitable for the subsequent denoising stage. In particular, the denoisers in

most iterative schemes (e.g., MMNet and OMAPNet) are specifically designed for

uncorrelated Gaussian noise. Thus, ideally, the linear stage should avoid outputting

correlated or non-Gaussian noise.

Figure 3-6 shows the average noise power at the output of the linear and denoiser stages

across different layers, for both OAMPNet and MMNet on 64×16 3GPP MIMO channels.

We observe that for OAMPNet, the average noise power after the linear stage (before the

denoiser) and after the denoiser is the same from the third layer (𝑡 = 2) onwards. In other

words, in OAMPNet, the denoisers are unable to reduce the noise in their input signal after

a few layers. However, with MMNet, the noise power is significantly lower at the output

of the denoisers compared to their input at all layers.

We hypothesize that the reason OAMPNet’s denoisers become ineffective is that the

noise distribution for OAMPNet is not Gaussian, whereas MMNet is able to provide near-

Gaussian noise to its denoisers. We evaluate how close the noise distribution is to Gaussian

for both schemes using the Anderson test [99]. In order to measure this score, we generate

10,000 samples of x and y per channel realization H. We run each sample through both

MMNet and OAMPNet, and we calculate the Anderson score for the noise distribution at

the output of the linear stages, for each transmitter and channel matrix. If this score is

below a threshold of 0.786, it indicates that the noise comes from a Gaussian distribution

with a significance of 5%, i.e. the probability of false rejection of a Gaussian distribution is

less than 5%. In Figure 3-7, we plot the average fraction of transmitters that have Gaussian

distributed noise at the output of the linear stage according to this test. Since in both

schemes we start with x̂0 = 0, the output of the linear stage at layer 𝑡 = 0 is A0n, which is

Gaussian. Thus, the fraction of transmitters with Gaussian noise is 1 in layer 𝑡 = 0 for both
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schemes. However, both schemes deviate from Gaussian noise in layer 𝑡 = 1, while at the

same time sharply reducing the total noise power as seen in Figure 3-6. However, the noise

for fewer transmitters in MMNet deviate from a Gaussian distribution. Unlike OAMPNet,

in which the noise for 95% of the transmitters is not Gaussian at layer 𝑡 = 1, for MMNet

nearly 40% of the transmitters exhibit Gaussian noise. On the other hand, MMNet reduces

the noise power slightly less than OAMPNet in layer 𝑡 = 1.

In subsequent layers, the noise distribution for MMNet becomes increasingly Gaussian,

with nearly 90% of transmitter passing the Anderson test by layer 𝑡 = 9. By contrast, most

transmitters in OAMPNet continue to exhibit non-Gaussian noise in subsequent layers,

though the fraction of transmitter with Gaussian noise marginally increases.

Next, we measure the effect of input noise power on the distribution of noise at the

output of the linear stages in both schemes. In other words, we are interested to know how

‖e𝑑𝑒𝑛𝑡−1‖ impacts the Gaussian distribution property of e𝑙𝑖𝑛𝑡 . For this purpose, we choose the

median of Anderson scores as a measure of the linear stage’s ability to maintain the Gaus-

sian property at its output. In Figure 3-8, we show the 2D histogram of this median score

for different values of ‖e𝑑𝑒𝑛𝑡−1‖. For reference, we also plot three thresholds corresponding to

1%, 5% and 15% significance for the normality test as dashed horizontal lines. To be Nor-

mally distributed with 1%, 5%, or 15% confidence, the Anderson scores must fall below

the respective line.

We notice that the median score in both schemes increases with the norm of the error

from the previous iteration. In other words, the linear stages that have a higher input noise

power produce outputs that deviate more significantly from a Gaussian. However, MMNet

is 100× better in terms of the median Andersen score for large values of ‖e𝑑𝑒𝑛𝑡−1‖. This figure

also suggests that OAMPNet’s inability to achieve the Gaussian property is not limited to

the first couple of layers, in which it aggressively reduces the noise power. The later linear

stages, for which ‖e𝑑𝑒𝑛𝑡−1‖ is fairly small, are also not very good at achieving the Gaussian

property.

3.6.3 Impact of channel condition number

Finally, we evaluate the impact of the channel condition number on MMNet and OAMPNet.

A channel’s condition number is defined as the ratio of its largest singular value to the

smallest. It is well-known that symbol detection is difficult for channel matrices with higher

condition number.

In Figure 3-9a, we show a scatterplot depicting the fraction of transmitters with the

Gaussian noise property at output of the linear stage in layer 𝑡 = 4 vs. channel condition

62



10−3 10−2 10−1
10−1

100

101

102

‖e𝑑𝑒𝑛𝑡−1‖

m
ed

ia
n(

A
nd

er
so

n
Sc

or
e(

e𝑙
𝑖𝑛 𝑡

))
0 5 10 15

count in bin

(a) OAMPNet

10−3 10−2 10−1
10−1

100

101

102

‖e𝑑𝑒𝑛𝑡−1‖
m

ed
ia

n(
A

nd
er

so
n

Sc
or

e(
e𝑙
𝑖𝑛 𝑡

))

0 10 20 30 40

count in bin

(b) MMNet

Figure 3-8: Median of Anderson score for the noise at the output of linear stage vs. the
power of noise at the input of the stage. MMNet achieves the Gaussian property much
more effectively for all noise power levels. Dashed horizontal lines show the thresholds for
1%, 5% and 15 significance level.
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Figure 3-9: Effect of channel condition number on performance in the 3GPP MIMO
dataset. (a) MMNet is more robust in maintaining the Gaussian noise property for channels
with large condition number. (b) SER is directly affected by the condition number.

number for the 3GPP MIMO dataset. We show the behavior at layer 𝑡 = 4 as an example of

what occurs in the first few iterations of the detection process. We see that, for OAMPNet,

the fraction of transmitters satisfying the Gaussian noise property decreases sharply for

channels with higher condition number. By contrast, MMNet maintains the Gaussian noise

63



property for a much broader range of channels. The consequence of the failure to achieve

the Gaussian property on SER is shown in Figure 3-9b. Although the performance of all

schemes degrades as the channel condition number increases, MMNet is able to achieve an

SER of less than 10−3 for a wider range of channel conditions.

3.7 Online Training Algorithm

Training deep learning models is a computationally intensive task, often requiring hours

or even days for large models. The computation overhead depends on two factors: (i) the

total number of required training samples, and (ii) the size of the model. For example, to

train a model like DetNet with about 1M parameters, we need 50K iterations with a batch

size of 5K samples, i.e., 250M training samples. If we assume each parameter of the model

shows up in at least one floating-point operation per training sample, we require a minimum

of 2.5 × 1014 floating-point operations for the entire training process. This computational

complexity makes training such a large model online for each realization of H impossible.5

In comparison, MMNet has only∼40K parameters, and training it from scratch requires

about 1000 iterations with batch size of 500. Further, we show that by taking advantage

of locality of the channels observed at a receiver, we can further reduce training cost to

9 iterations (with batch size 500) on average per channel realization. All in all, training

MMNet has six orders of magnitude lower computational overhead than DetNet, making

online training for each realization of H practical.

In this section, we first discuss the temporal and spectral locality of realistic channels.

Then, we show how we can exploit these localities to accelerate online training.

3.7.1 Channel locality

The channel matrices measured at a base station exhibit two forms of locality:

• Temporal: Channel matrices change gradually over time as user devices move within

a cell or the multipath environment changes. The samples of H at nearby points in

time are thus correlated.

• Spectral: The base station needs to recover signals from several frequency subcar-

riers (1024 in our 3GPP MIMO model). The channels for subcarriers in nearby

5Of course, DetNet was specifically designed for offline training, where computational complexity is less
of a concern.
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Figure 3-10: Correlation of channel samples across time and frequency dimensions. The
correlation decays relatively quickly in the time dimension, but the channel matrices show
strong locality across sub-carriers in frequency dimension.

frequencies are also strongly correlated. The frequency affects the phase of the mul-

tipath signal components incident on receiver antennas. For a path of length 𝑙, the

phase difference for two subcarriers ∆𝑓 apart in frequency is ∆𝜑 = 2𝜋𝑙Δ𝑓
𝑐

. Therefore

the received signal and the channels for adjacent subcarriers will be similar at each

receiver antenna.

Both forms of locality reduce the complexity of training for each channel realization,

because (i) the cost of channel-specific computations can be amortized across multiple

correlated channel realizations across time and frequency, (ii) the trained model for one

channel realization can serve as strong initialization for training for adjacent channel real-

izations in the time-frequency plane.

Figure 3-10 shows both forms of locality by plotting the correlation among the 3GPP

MIMO channel samples across time and frequency (subcarriers). To compute these correla-

tions, we take the average of the inner-product of each channel matrix with its neighboring

channel matrices separated in time or frequency by different number of steps. A shift of

one step in the time domain corresponds to two channel matrices at the same subcarrier

frequency that are 118ms apart in time. A shift of 1 step in the frequency domain corre-

sponds to two channel matrices at adjacent subcarriers (78.1KHz apart) at the same time.

We normalize the inner-product by the norm of the matrices, such that the correlation of

a channel matrix with itself is 1. As the figure show, we observe a stronger locality in the

frequency domain than in the time domain in the 3GPP MIMO channels.

3.7.2 Training algorithm and results

In this section, we show how channel locality can help reduce the total number of operations

MMNet needs to decode each received signal y at the BS. The computational complexity
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Algorithm 1 MMNet online training

1: ℳ← Construct MMNet with parameters 𝜗 = {Θ(1)
𝑡 ,𝜃

(2)
𝑡 }𝑇𝑡=1

2: 𝜗← Initialize model parameters randomly
3: for 𝑛 ∈ {1, 2, ...} {𝑛 keeps the time step} do
4: for 𝑓 ∈ {1, 2, ..., 𝐹} do
5: H[𝑓 ]←Measured channel at time step 𝑛 and frequency 𝑓
6: #TrainIterations← Set to Φ if 𝑓 ̸= 1 and Ψ otherwise
7: for it∈ {1, 2, ...,#TrainIterations} do
8: D← Generate random (x, y) batch on H[𝑓 ] using eq. (3.1)
9: 𝐿← Find the loss in eq. (3.15) forℳ over the samples in D

10: 𝜗← Compute the model updates using∇𝜗𝐿
11: end for
12: ℳ𝑛[𝑓 ]←ℳ.copy( ) {Store the parameters 𝜗}
13: end for
14: end for

of MMNet is mostly dominated by the cost of online training for each new realization of

the channel H. This cost in turn depends on the channel coherence time. In the case of a

quasi-static channel, as expected for instance in fixed-wireless access or backhaul solutions

such as 5G home wireless (see Section 7.6.2 in [67]), the channel between the transmitter

and receiver does not change for extended periods of time. In such cases, MMNet does not

require frequent retraining and can reuse the same model until the communication channel

changes significantly. However, MMNet can also operate at reasonable computation cost

when the channel is changing fairly frequently. For example, our 3GPP MIMO channel

samples were generated assuming all devices constantly move at a speed of 1 m/s, and

after about 500ms, the channel correlation is less than 0.5. However, even in this scenario,

we require only 9 training iterations on average per channel realization, as explained next.

To see how, note that a receiver at a BS must simultaneously decode signals from dif-

ferent subcarriers. Since channels exhibit strong correlations across sub-carriers (Figure 3-

10), training the MMNet detector on H for one subcarrier produces a detector that will

achieve very similar performance on adjacent subcarriers. The performance of this detec-

tor will however decay for more distant subcarriers in the frequency domain.

Based on this observation, we propose the online training scheme in Algorithm 1. We

start from a random initialization of the MMNet neural network model ℳ. We define

𝑛 as an index for time intervals in which we can assume that channels do not change

substantially. For each interval 𝑛, we measure a channel matrix H[𝑓 ] for each subcarrier

frequency 𝑓 . The basic idea in the algorithm is to train the model for Ψ iterations (with

a batch size of 500) for the first subcarrier (𝑓 = 1), then retrain the model using only Φ

additional training iterations per subcarrier for all subsequent subcarriers. Typical values
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Figure 3-11: SER vs. Φ using Algorithm 1 with Ψ = 103 for training MMNet on QAM16
modulation. MMNet requires only 9 overall iterations of batch size 500 per channel real-
ization to train to a reasonable performance with (Ψ,Φ) = (103, 8).

for the hyperparameters Ψ and Φ are respectively 1000 and 3–10 in our experiments. For

each channel matrix H[𝑓 ], we generate (x, y) training data pairs using eq. (3.1). Once the

model has trained for subcarrier 𝑓 , we save a copy of the model asℳ𝑛[𝑓 ] for detecting all

signals received in time interval 𝑛 on that subcarrier. We repeat the entire training algorithm

in each time interval. In Figure 3-11, we show the result of our online training method

on 3GPP MIMO channels for the QAM16 modulation with 16 transmit and 64 receive

antennas at 18dB SNR. In this experiment, we set Ψ = 1000 and compare MMNet with

other schemes on a range of Φ values. We see that while MMSE and OAMPNet achieve

a SER of 0.03 and 0.009 respectively, MMNet can bring the SER down to 0.0007 (below

the 10−3 threshold). With this approach, MMNet performs 9.19K iterations of training

with batch size 500 in order to learn a detector for all 1024 subcarriers in total at each

time interval 𝑛. Therefore the cost of online training is less than 9 iterations on average

per channel realization, yet MMNet delivers better performance than other schemes, like

OAMPNet and MMSE.

3.7.3 Computational complexity

One iteration of training MMNet on a batch of size of 𝑏 has a complexity of 𝒪(𝑏𝑁2
𝑟 ), as

detection takes 𝒪(𝑁2
𝑟 ) in MMNet. To put this in perspective, a light-weight algorithm like

AMP has a complexity of 𝒪(𝑁2
𝑟 ) dominated by the multiplication of the channel matrix

and residual vectors. The MMSE scheme has a higher complexity of 𝒪(𝑁3
𝑟 ) because it

needs to invert a matrix. OAMPNet similarly requires a matrix inversion, resulting in a

complexity of 𝒪(𝑁3
𝑟 ).

Moving beyond 𝒪(·) analysis, Figure 3-12 shows the average number of multiplica-

tion operations required per signal detection on 3GPP MIMO channels for learning-based

algorithms in addition to two classic baselines, MMSE and AMP. For these numbers, all al-
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Figure 3-12: Number of multiplication operations per signal detection for different algo-
rithms on QAM16 with 𝑁𝑟 = 64 receive antennas in 3GPP MIMO model. Detection with
MMNet, including its online training process, requires fewer multiplication operations than
detection with pre-trained DetNet and OAMPNet models.

gorithms reuse computations whenever feasible. In particular, in every channel coherence

interval in the 3GPP MIMO model, each algorithm receives ∼100 signals to detect [67,

Definition 2.2 on page 220]. MMSE calculates the required channel matrix inverse only

once for all 100 received signals in the coherence interval. This reduces computation com-

plexity for MMSE by a factor of 100×, resulting in 5–7× fewer multiplications than AMP,

which cannot reuse computation but has modest complexity. MMNet reuses the weights

it trains (with 9 iterations of batch size 500 on average) for all 100 received signals in a

coherence interval. MMNet, with its online training and detection operations combined,

places after AMP with 2–5× fewer multiplications than pre-trained DetNet. However, as

we have seen, neither AMP nor DetNet extend to realistic, spatially correlated channels.

OAMPNet’s computational complexity is higher than the other models, because it has to

calculate a new matrix inverse in each layer for every received signal, as 𝑣2𝑡 in eq. (3.10)

depends on x̂𝑡.

Consequently, the cost of MMNet with its online training algorithm is 10–15× less

than OAMPNet depending on the system size. MMNet has 41× higher computational

complexity than a light-weight iterative approach like AMP, which only works for i.i.d.

Gaussian channels.

3.8 Conclusion

This chapter proposed a deep learning architecture for Massive MIMO detection, and an

online training algorithm to optimize it for every realization of the channel matrix at a base

station. MMNet outperforms state-of-the-art detection algorithms on realistic channels

with spatial correlation. We designed MMNet as an iterative algorithm and showed that a

carefully chosen degree of flexibility in the model, in addition to leveraging the channel’s
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spectral and temporal correlation, can enable online training at a less or equal computation

complexity than other deep-learning based schemes. MMNet is 4–8dB better overall than

the classic MMSE detector and it requires 2.5dB lower SNR at the same SER, relative to

the second-best detection scheme, OAMPNet, at 10–15× less computational complexity.

Many extensions of MMNet are possible to support, for example, a varying number of

transmitters with possibly different modulation schemes.

From a hardware perspective, implementing MMNet has its own challenges and re-

quires an in-depth study. For example, the sequential online training algorithm introduced

in this chapter incurs latency, which may be traded off with parallel training of multiple

sub-carriers at the cost of more training iterations and hence increased complexity. The

optimal trade-off depends on the channel coherence time.

Our results show that evaluations based on simple channel models such as i.i.d. Gaus-

sian channels can lead to misleading conclusions for MIMO detection performance. Future

work should therefore evaluate on realistic channel models, from either simulation, ray-

tracing, or measurements. We have released the simulated 3GPP MIMO channel dataset

used in this work in hope that it will serve as a useful benchmark for the community.
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Chapter 4

AMS: Real-Time Video Inference on
Edge Devices via Adaptive Model
Streaming

4.1 Overview

Real-time video inference is a core component for many applications, such as augmented

reality, drone-based sensing, robotic vision, and autonomous driving. These applications

use Deep Neural Networks (DNNs) for inference tasks like object detection [7], semantic

segmentation [100], and pose estimation [101]. However, state-of-the-art DNN models are

too expensive to run on low-powered edge devices (e.g., mobile phones, drones, consumer

robots [21, 22]), and cannot run in real-time even on accelerators such as Coral Edge TPU

and NVIDIA Jetson [25–27].

A promising approach to improve inference efficiency is to specialize a lightweight

model for a specific video and task. The basic idea is to use distillation [102] to transfer

knowledge from a large “teacher” model to a small “student” model. For example, No-

scope [103] trains a student model to detect a few object classes on specific videos offline.

Just-In-Time [104] extends the idea to live, dynamic videos by training the student model

online, specializing it to video frames as they arrive. These approaches provide signifi-

cant speedups for scenarios that perform inference on powerful machines (e.g., server-class

GPUs), but they are impractical for on-device inference at the edge. The offline approach

isn’t desirable since videos can vary significantly from device to device (e.g., different lo-

cations, lighting conditions, etc.), and over time for the same device (e.g., a drone flying

over different areas). On the other hand, training the student model online on edge devices
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Figure 4-1: Semantic segmentation results on real-world outdoor videos: rows from top
to bottom represent No Customization, One-Time, Remote+Tracking, Just-In-Time, and
AMS. Uplink and downlink bandwidth usage are reported below each variant. AMS pro-
vides better accuracy with limited bandwidth and reduces artifacts (e.g., see the car/person
detected in error by the no/one-time customized models and remote tracking in the second
column).
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is computationally infeasible.

In this chapter we propose Adaptive Model Streaming (AMS), a new approach to real-

time video inference on edge devices that offloads knowledge distillation to a remote server

communicating with the edge device over the network. AMS continually adapts a small

student model running on the edge device to boost its accuracy for the specific video in real

time. The edge device periodically sends sample video frames to the remote server, which

uses them to fine-tune (a copy of) the edge device’s model to mimic a large teacher model,

and sends (or “streams”) the updated student model back to the edge device.

Performing knowledge distillation over the network introduces a new challenge: com-

munication overhead. Prior techniques such as Just-In-Time aggressively overfit the stu-

dent model to the most recent frames, and therefore must frequently update the model to

sustain high accuracy. We show, instead, that training the student model over a suitably

chosen horizon of recent frames — not too small to overfit narrowly, but not too large to

surpass the generalization capacity of the model — can achieve high accuracy with an order

of magnitude fewer model updates compared to Just-In-Time training.

Even then, a naïve implementation of over-the-network model training would require

significant bandwidth. For example, sending a (small) semantic segmentation model such

as DeeplabV3 with MobileNetV2 [28] backbone with ∼2 million (float16) parameters ev-

ery 10 seconds would require over 3 Mbps of bandwidth. We present techniques to reduce

both downlink (server to edge) and uplink (edge to server) bandwidth usage for AMS. For

the downlink, we develop a coordinate-descent [105, 106] algorithm to train and send a

small fraction of the model parameters in each update. Our method identifies the subset

of parameters with the most impact on model accuracy, and is compatible with optimizers

like Adam [97] that maintain a state (e.g., gradient moments) across training iterations. For

the uplink, we present algorithms that dynamically adjust the frame sampling rate at the

edge device based on how quickly scenes change in the video. Taken together, these tech-

niques reduce downlink and uplink bandwidth to only 181–225 Kbps and 57–296 Kbps

respectively (across different videos) for a challenging semantic segmentation task. To put

AMS’s bandwidth requirement in perspective, it is less than the YouTube recommended

bitrate range of 300–700 Kbps to live stream video at the lowest (240p) resolution [107].

We evaluate our approach for real-time semantic segmentation using a lightweight

model (DeeplabV3 with MobileNetV2 [28] backbone). This model runs at 30 frames-per-

second with 40 ms camera-to-label latency on a Samsung Galaxy S10+ phone (with Adreno

640 GPU). Our experiments use four datasets with long (10 minutes+) videos spanning a

variety of scenarios (e.g., city driving, outdoor scenes, and sporting events). Our results

show:
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1. Compared to pretraining the same lightweight model without video-specific customiza-

tion, AMS provides a 0.4–17.8% boost (8.3% on average) in mIoU, computed relative

to the labels from a state-of-the-art DeeplabV3 with Xception65 [108] backbone model.

It also improves mIoU by 4.3% on average (up to 39.1%) compared to customizing the

model once using the first 60 seconds of each video.

2. Compared to a remote inference baseline accompanied by on-device optical flow track-

ing [36, 109], AMS provides an average improvement of 5.8% (up to 24.4%) in mIoU.

3. AMS requires 15.7× less downlink bandwidth on average (up to 44.5×) to achieve sim-

ilar accuracy compared to Just-In-Time [104] (with similar reductions in uplink band-

width).

Figure 4-1 shows three visual examples comparing the accuracy of AMS with these

baseline approaches.

Our code and video datasets are available online at https://github.com/modelstreaming/ams.

4.2 Related Work

We described prior work on knowledge distillation for video in §4.1. Here, we discuss

other related work.

On-device inference. Small, mobile-friendly models have been designed both manu-

ally [28] and using neural architecture search [29, 30]. Model quantization and weight

pruning [31–34] have further been shown to reduce the computational footprint of such

models with a small loss in accuracy. Specific to video, some techniques amortize the

inference cost by using optical flow methods to skip inference for some frames [35–37].

Despite this progress, there remains a large gap in the performance of lightweight models

and state-of-the-art solutions [110, 111]. AMS is complementary to on-device optimization

techniques and would also benefit from them.

Remote inference. Several proposals offload all or part of the computation to a remote

machine [17–19, 39–41], but these schemes generally require high network bandwidth,

incur high latency, and are susceptible to network outages [18, 42]. Proposals like edge

computing [43–45] that place the remote machine close to the edge devices lessen these

barriers, but do not eliminate them and incur additional infrastructure and maintenance

costs. AMS requires much less bandwidth than remote inference, and is less affected by

network delay or outages since it performs inference locally on the device.

Online learning. Our work is also related to online learning [46] algorithms for minimizing

dynamic or tracking regret [47–49]. Dynamic regret compares the performance of an online

learner to a sequence of optimal solutions. In our case, the goal is to track the performance
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Figure 4-2: AMS system overview.

of the best lightweight model at each point in a video. Several theoretical works have

studied online gradient descent algorithms in this setting with different assumptions about

the loss functions [50, 51]. Other work has focused on the “experts” setting [52–54], where

the learner maintains multiple models and uses the best of them at each time. Our approach

is based on online gradient descent because tracking multiple models per video at a server

is expensive.

Other paradigms for model adaptation include lifelong/continual learning [57], meta-

learning [63, 64], federated learning [61], and unsupervised domain adaptation [55, 56].

Our here work is only tangentially related to these efforts, and for further details, please

refer to their discussion in section 2.2.

4.3 Adaptive Model Streaming (AMS)

Figure 4-2 provides an overview of AMS. Each edge device buffers sampled video frames

for 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 seconds, then compresses and sends the buffered frames to the remote server.

The server uses these frames to train a copy of the edge device’s model using supervised

knowledge distillation [102], and sends the model changes to the edge device. For con-

creteness, we describe our design for semantic segmentation, but the approach is general

and can be adapted to other tasks.

Server. Algorithm 2 shows the server procedure for serving a single edge device (we

discuss multiple edge devices in Appendix C). The AMS algorithm at the server runs it-

eratively on each new batch of frames received from the edge device. It consists of two

phases: inference and training.

Inference phase: To train, the server first needs to label the incoming video frames.

It obtains these labels using a state-of-the-art segmentation model (like DeeplabV3 [100]
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Algorithm 2 Adaptive Model Streaming Server
1: Initialize the student model with pre-trained parameters w0

2: Send w0 and the student model architecture for the edge
3: ℬ ← Initialize a time-stamped buffer to store (sample frame, teacher prediction) tuples
4: for 𝑛 ∈ {1, 2, ...} do
5: ℛ𝑛 ← Set of new sample frames from the edge device
6: for x ∈ ℛ𝑛 do
7: ỹ← Use the teacher model to infer the label of x
8: Add (x, ỹ) to ℬ with time stamp of receiving x
9: end for

10: ℐ𝑛 ← Select a subset of model parameter indices
11: for k ∈ {1, 2, ...,𝐾} do
12: S𝑘 ← Uniformly sample a mini-batch of data points from ℬ over the last 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 seconds
13: Candidate updates← Calculate Adam optimizer updates w.r.t the empirical loss on S𝑘

14: Apply candidate updates to model parameters indexed by ℐ𝑛
15: end for
16: w̃𝑛 ← New value of model parameters which are indexed by ℐ𝑛
17: Send (w̃𝑛, ℐ𝑛) for the edge device
18: Wait for 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 seconds
19: end for
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with Xception65 [108] backbone), which serves as the “teacher” for supervised knowl-

edge distillation. The server runs the teacher on new frames, and adds the frames, their

timestamps, and labels to a training data buffer ℬ.

Training phase: The server trains the student model to minimize the loss over the sam-

ple frames in its buffer from the last 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 seconds of video. To reduce bandwidth usage,

the server selects a small subset (e.g., 5%) of parameters for each model update, and trains

them for 𝐾 iterations on randomly-sampled mini-batches of frames. We discuss how the

server chooses the parameters to train in §4.3.1.

The server also dynamically adapts the frame sampling rate used by the edge device

based on the video characteristics (how fast scenes changes) as described in §4.3.2.

Edge device. The edge device deploys the new models as soon as they arrive to perform

local inference. To switch models without disrupting inference, the edge device maintains

an inactive copy of the running model in memory and applies the model update to that copy.

Once ready, it swaps the active and inactive models. The edge device also samples frames

at the rate specified by the server and sends them to the server every 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 seconds.

4.3.1 Reducing Downlink Bandwidth

The downlink (server-to-edge) bandwidth depends on (i) how frequently we update the

student model, (ii) the cost of each model update. We discuss each in turn.
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Figure 4-3: Adaptive frame sampling for a driving video. The sampling rate decreases
every time the car slows down for the red traffic light and increases as soon as the light
turns green.

How Frequently to Train?

The training frequency required depends crucially on the training horizon (𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛) for

each model update. Prior work, Just-In-Time [104], trains the student model whenever it

detects the accuracy has dropped below a threshold, and it trains only on the most recent

frame (until the accuracy exceeds the threshold). This approach tends to overfit on recent

frames, and therefore requires frequent retraining to maintain the desired accuracy. While

this is possible when training and inference occur on the same machine, it is impractical

for AMS (§4.4).

Although lightweight models (e.g., those customized for mobile devices) have less ca-

pacity than large models, they can still generalize to some extent (e.g., over video frames

captured in the same street, a specific room in a home, etc.). Therefore, rather than overfit-

ting narrowly to one or a few frames, AMS uses a training horizon of several minutes. This

reduces the required model update frequency, and helps mitigate sharp drops in accuracy

when the model lags behind during scene changes (see Figure 4-5).

For semantic segmentation using DeeplabV3 with MobileNetV2 [28] backbone as the

student model, we find that 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = 4 minutes and 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 = 10 seconds work well

across a wide variety of videos (§4.4). However, the optimal values of these parameters

can depend on both the model capacity and the video. For example, a lower-capacity

student model might benefit from a shorter 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 and 𝑇𝑢𝑝𝑑𝑎𝑡𝑒, and a stationary video with

little scene change could use a longer 𝑇𝑢𝑝𝑑𝑎𝑡𝑒. Appendix B describes a simple technique to

dynamically adapt 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 to minimize bandwidth consumption (especially for stationary

videos).
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Which Parameters to Update?

Naïvely sending the entire student model to the edge device can consume significant band-

width. For example, sending DeeplabV3 with MobileNetV2 backbone, which has 2 million

(float16) parameters, every 10 seconds would require 3.2 Mbps of downlink bandwidth. To

reduce bandwidth, we employ coordinate descent [105, 106], in which we train a small sub-

set (e.g., 5%) of parameters, ℐ𝑛, in each training phase 𝑛 and send only those parameters

to the edge device.

To select ℐ𝑛, we use the model gradients to identify the parameters (coordinates) that

provide the largest improvement in the loss function when updated. A standard way to do

this, called the Gauss-Southwell selection rule [112], is to update the parameters with the

largest gradient magnitude. We could compute the gradient for the entire model but only

update the coordinates with the largest gradient values, leaving the rest of the parameters

unmodified. This method works well for simple stateless optimizers like stochastic gradient

descent (SGD), but optimizers like Adam [97] that maintain some internal state across

training iterations require a more nuanced approach.

Adam keeps track of moving averages of the first and second moments of the gradient

across training iterations. It uses this state to adjust the learning rate for each parameter

dynamically based on the magnitude of “noise” observed in the gradients [97]. Adam’s

internal state updates in each iteration depend on the point in the parameter space visited in

that iteration. Therefore, to ensure the internal state is correct, we cannot simply compute

Adam’s updates for 𝐾 iterations, and then choose to keep only the coordinates with the

largest change at the end. We must know beforehand which coordinates we intend to

update, so that we can update Adam’s internal state consistently with the actual sequence

of points visited throughout training.

Our approach to coordinate descent for the Adam optimizer computes the subset of

parameters that will be updated at the start of each training phase, based on the coordinates

that changed the most in the previous training phase. This subset is then fixed for the 𝐾

iterations of Adam in that training phase.

The pseudo code in Algorithm 3 describes the procedure in the 𝑛𝑡ℎ training phase.

Each training phase includes 𝐾 iterations with randomly-sampled mini-batches of data

points from the last 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 seconds of video. In iteration 𝑘, we update the first and second

moments of the optimizer (m𝑛,𝑘 and v𝑛,𝑘) using the typical Adam rules (Lines 7–10). We

then calculate the Adam updates for all model parameters u𝑛,𝑘 (Lines 11–12). However, we

only apply the updates for parameters determined by the binary mask b𝑛 (Line 13). Here,

b𝑛 is a vector of the same size as the model parameters, with ones at indices that are in ℐ𝑛
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Algorithm 3 Gradient-Guided Method for Adam Optimizer
1: ℐ𝑛 ← Indices of 𝛾 fraction with largest absolute values in u𝑛−1 {Entering 𝑛𝑡ℎ Training Phase}
2: b𝑛 ← binary mask of model parameters; 1 iff indexed by ℐ𝑛
3: w𝑛,0 ← w𝑛−1 {Use the latest model parameters as the next starting point}
4: m𝑛,0 ←m𝑛−1,𝐾 {Initialize the first moment estimate to its latest value}
5: v𝑛,0 ← v𝑛−1,𝐾 {Initialize the second moment estimate to its latest value}
6: for k ∈ {1, 2, ...,𝐾} do
7: S𝑘 ← Uniformly sample a mini-batch of data points from ℬ over the last 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 seconds
8: g𝑛,𝑘 ← ∇wℒ̃(S𝑘;w𝑛,𝑘−1) {Get the gradient of all model parameters w.r.t. loss on 𝒮𝑘}
9: m𝑛,𝑘 ← 𝛽1 ·m𝑛,𝑘−1 + (1− 𝛽1) · g𝑛,𝑘 {Update first moment estimate}

10: v𝑛,𝑘 ← 𝛽2 · v𝑛,𝑘−1 + (1− 𝛽2) · g2
𝑛,𝑘 {Update second moment estimate}

11: 𝑖← 𝑖+ 1 {Increment Adam’s global step count}

12: u𝑛,𝑘 ← 𝛼 ·
√

1−𝛽𝑖
2

1−𝛽𝑖
1
· m𝑛,𝑘√

v𝑛,𝑘+𝜖
{Calculate the Adam updates for all model parameters}

13: w𝑛,𝑘 ← w𝑛,𝑘−1 − u𝑛,𝑘 * b𝑛 {Update the parameters indexed by ℐ𝑛 (* is elem.-wise mul.)}
14: end for
15: u𝑛 ← u𝑛,𝐾

16: w𝑛 ← w𝑛,𝐾

and zeros otherwise. We select the ℐ𝑛 to index the 𝛾 fraction of parameters with the largest

absolute value in the vector u𝑛−1 (Line 1). We update u𝑛 at the end of each training phase

to reflect the latest Adam update for all parameters (Line 15). In the first training phase, ℐ𝑛
is selected uniformly at random.

At the end of each training phase, the server sends the updated parameters w𝑛 and their

indices ℐ𝑛. For the indices, it sends a bit-vector identifying the location of the parameters.

As the bit-vector is sparse, it can be compressed and we use gzip [113] in our implementa-

tion to carry this out. All in all, using gradient-guided coordinate descent to send 5% of the

parameters in each model update reduces downlink bandwidth by 13.3× with negligible

loss in performance compared to updating the complete model (§4.4.2).

4.3.2 Reducing Uplink Bandwidth

AMS adjusts the frame sampling rate at edge devices dynamically based on the extent and

speed of scene change in a video. This helps reduce uplink (edge-to-server) bandwidth and

server load for stationary or slowly-changing videos.

To obtain a robust signal for scene change, we define a metric, 𝜑-score, that tracks the

rate of change in the labels associated with video frames. Compared to raw pixels, labels

typically take values in a much smaller space (e.g., a few object classes), and therefore

provide a more robust signal for measuring change. The server computes the 𝜑-score using

the teacher model’s labels. Consider a sequence of frames {I𝑘}𝑛𝑘=0, and denote the teacher’s

output on these frames by {𝒯 (I𝑘)}𝑛𝑘=0. For every frame I𝑘, we define 𝜑𝑘 using the same

loss function that defines the task, but computed using 𝒯 (I𝑘) and 𝒯 (I𝑘−1) respectively to
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be the prediction and ground-truth labels. In other words, we set 𝜑𝑘 to be the loss (error) of

the teacher model’s prediction on 𝐼𝑘 with respect to the label 𝒯 (I𝑘−1). Hence, the smaller

the 𝜑𝑘 score, the more alike are the labels for I𝑘 and I𝑘−1, i.e., stationary scenes tend to

achieve lower scores.

The server measures the average 𝜑-score over recent frames, and periodically (e.g.,

every 𝛿𝑡 = 10 sec) updates the sampling rate at the edge device to try to maintain the

𝜑-score near a target value 𝜑𝑡𝑎𝑟𝑔𝑒𝑡:

𝑟𝑡+1 =
[︁
𝑟𝑡 + 𝜂𝑟 ·

(︀
𝜑𝑡 − 𝜑𝑡𝑎𝑟𝑔𝑒𝑡

)︀]︁𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛

, (4.1)

where 𝜂𝑟 is a step size parameter, and the notation [·]𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

means the sampling rate is limited

to the range [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥]. We use 𝑟𝑚𝑖𝑛 = 0.1 fps (frames-per-second) and 𝑟𝑚𝑎𝑥 = 1 fps in

our implementation.

Figure 4-3 shows an example of adaptive sampling rate for a driving video. Notice how

the sampling rate decreases when the car stops behind a red traffic light, and then increases

once the light turns green and the car starts moving.

Compression. The edge device does not send sampled frames immediately. Instead it

buffers samples corresponding to one model update interval (𝑇𝑢𝑝𝑑𝑎𝑡𝑒, which the server com-

municates to the edge), and it runs H.264 [114] video encoding on this buffer to compress

it before transmission. The time taken at the edge device to fill the compression buffer

and transmit a new batch of samples is hidden from the server by overlapping it with the

training phase of the previous step. Performance isn’t overly sensitive to the latency of

delivering training data. As a result, it is possible to operate H.264 in a slow mode, achiev-

ing significant compression. Compressing the buffered samples in our experiments took at

most 1 second.

4.4 Evaluation

4.4.1 Methodology

Datasets. We evaluate AMS on the task of semantic segmentation using four video datasets:

Cityscapes [115] driving sequence in Frankfurt (1 video, 46 mins long)1, LVS [104] (28

videos, 8 hours in total), A2D2 [116] (3 videos, 36 mins in total), and Outdoor Scenes

(7 videos, 1.5 hours in total), which we collected from Youtube to cover a range of scene

1This video sequence is not labeled and was the only long video sequence available from Cityscapes (upon
request).
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variability, including fixed cameras and moving cameras at walking, running, and driving

speeds (see Appendix A for details and samples from Outdoor Scenes videos).

Metric. To evaluate the accuracy of different schemes, we compare the inferred labels on

the edge device with labels extracted for the same video frames using the teacher model.

For Cityscapes, A2D2, and Outdoor Scenes datasets we use DeeplabV3 [100] model with

Xception65 [108] backbone (2048×1024 input resolution) trained on the Cityscapes dataset [115]

as the teacher model. For LVS, we follow Mullapudi et al. [104] in using Mask R-

CNN [117] trained on the MS-COCO dataset [118] as the teacher model. Labeling each

frame using the teacher models takes 200–300ms on a V100 GPU. We report the mean

Intersection-over-Union (mIoU) metric relative to the labels produced by this reference

model. The metric computes the Intersection-over-Union (defined as the number of true

positives divided by the sum of true positives, false negatives and false positives) for each

class, and takes a mean over the classes. We manually select a subset of most common

output classes in each of these videos as summarized in table A.1 in appendix A.

Dataset Metric No Custom. One-Time Remote+Tracking Just-In-Time AMS

Outdoor Scenes mIoU (%) 63.68 69.73 69.05 73.14 74.26
Up/Down BW (Kbps) 0/0 63.1/91.4 1949/54.6 2735/3109 189/205

A2D2 [116] mIoU (%) 62.05 50.78 63.25 69.23 69.31
Up/Down BW (Kbps) 0/0 56.9/100 1927/40.5 2487/2872 158/203

Cityscapes [115] mIoU (%) 73.08 63.90 66.53 75.75 75.66
Up/Down BW (Kbps) 0/0 8.2/49.2 1667/50.8 2920/3294 164/226

LVS [104] mIoU (%) 59.32 64.88 61.52 65.70 67.38
Up/Down BW (Kbps) 0/0 48.1/77.4 1865/21.6 2456/3264 165/207

Table 4.1: Comparison of mIoU (in percent), Uplink and Downlink bandwidth (in Kbps)
for different methods across 4 video datasets.

Schemes. On the edge device, we use the DeeplabV3 with MobileNetV2 [28] backbone at

a 512×256 input resolution, which runs smoothly in real-time at 30 frame-per-second (fps)

on a Samsung Galaxy S10+ phone’s Adreno 640 GPU with less than 40 ms camera-to-label

latency. We use a single NVIDIA Tesla V100 GPU at the server for all schemes.

We compare the following schemes:

• No Customization: We run a pre-trained model on the edge device without video-

specific customization. For the LVS dataset, we use a checkpoint pre-trained on PASCAL

VOC 2012 dataset [119]. For the rest of the datasets we used a checkpoint pre-trained

for Cityscapes [115].

• One-Time: We fine-tune the entire model on the first 60 seconds of the video at the server

and send it to the edge. This adaptation happens only once for every video. Comparing

this scheme with AMS will show the benefit of continuous adaptation.
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• Remote+Tracking: We use the teacher model at a remote server to infer the labels

on sample frames (one frame every second), which are then sent to the device. The

device locally interpolates the labels to 30 frames-per-second using optical flow track-

ing [36, 109]. For tracking, we use the OpenCV implementation of Farneback optical

flow estimation [120] with 5 iterations, Gaussian filters of size 64, 3 pyramid levels, and

a polynomial degree of 5 at 1024×512 resolution. Although it takes 700 ms to compute

the flows for each frame in our tests on a Linux CPU machine, we assumed an optimized

implementation with edge hardware support can run in real-time [121] in favor of this

approach. We set the sampling rate to 1 fps, which matches the the maximum sampling

rate for AMS. Note that, unlike AMS, this approach cannot apply the “buffer compres-

sion” method (see §4.3.2) as the buffering latency would make the labels stale. To avoid

accuracy loss, we send the samples at full quality with this scheme; this requires about 2

Mbps of uplink bandwidth.2

• Just-In-Time: We deploy the online distillation algorithm proposed by [104] at the

sever. This scheme trains the student model on the most recent sample frame until

its training accuracy meets a threshold. Using the default parameters, it increases the

sampling/training frequency (up to one model update every 266 ms) if it cannot meet

the threshold accuracy within a maximum number of training iterations. Mullapudi et

al. [104] also propose a specific lightweight model, JITNet. However, their Just-In-Time

adaptation algorithm is general and can be used with any model. We evaluated Just-

In-Time training with both our default student model (DeeplabV3 with MobileNetV2

backbone) and the JITNet architecture, and found they achieve similar performance in

terms of both accuracy (less than 2% difference in mIoU) and number of model up-

dates.3 Hence, we report the results of this approach for the same model as AMS for a

more straightforward comparison. Similar to AMS, we use the gradient-guided strategy

(§4.3.1) for this scheme to adapt 5% of the model parameters in each update, which

actually achieves a slightly better overall performance (e.g., 1.2% mIoU increase on

Outdoor Scenes dataset) than updating the entire model. We also tried using ASR for

Just-In-Time. While adding ASR reduced the uplink bandwidth requirement by a fac-

tor of 2, it was still 7× larger than AMS’s uplink bandwidth and dropped the mIoU

by 1.74% as Just-In-Time overfits very aggressively. Thus we use Just-In-Time with

its original sampling strategy for a more fair comparison. The accuracy threshold is a

controllable hyper-parameter that determines the frequency of model updates. A higher

2For reference, sending one frame per second with a good JPEG quality (quality index of 75) at this
resolution requires ∼700 Kbps of bandwidth.

3Our implementation of the JITNet model on Samsung Galaxy S10+ mobile CPU runs 2× slower at the
same input resolution compared to DeeplabV3 with MobileNetV2 backbone.
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Description No Cust. One-Time Rem.+Trac. JIT AMS
Interview 71.91 87.40 89.98 86.47 87.75
Dance recording 72.80 84.26 86.41 84.40 83.88
Street comedian 54.49 65.06 58.81 69.79 72.03
Walking in Paris 69.94 67.63 69.59 75.22 75.87
Walking in NYC 49.05 54.96 54.49 56.54 59.74
Driving in LA 66.26 66.30 66.48 70.95 71.01
Running 61.32 62.51 57.57 68.64 69.55

Table 4.2: Impact of the scene variations pace on mIoU (in percent) for different methods
across the videos in Outdoor Scenes dataset.

threshold achieves better accuracy at the cost of higher downlink bandwidth for sending

model updates. We set the accuracy threshold to achieve roughly the same accuracy as

AMS on each video, allowing us to compare their bandwidth usage at the same accuracy.

Using Just-In-Time’s default threshold (75%) improves overall accuracy by 1.0% at the

cost of 3.3× higher bandwidth. Following [104], we use the Momentum Optimizer [122]

with a momentum of 0.9.

• AMS: We use Algorithm 2 at the server with 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = 240 sec, and 𝐾 = 20 iterations.

We set the ASR parameters 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 to 0.1 and 1 frames-per-seconds respectively,

with 𝛿𝑡 = 10 sec. Unless otherwise stated, 5% of the model parameters are selected using

the gradient-guided strategy. In the uplink, we compress and send the buffer of sampled

frames described in §4.3.2 using H.264 in the two-pass mode at medium preset speed

and a target bitrate of 200 Kbps. We used AMS with the same set of hyper-parameters

for all 39 videos across the four datasets. For training, we use Adam optimizer [97] with

a learning rate of 0.001 (𝛽1 = 0.9, 𝛽2 = 0.999).

4.4.2 Results

Comparison to baselines. Table 4.1 summarizes the results across the four datasets. We

report the mIoU, uplink and downlink bandwidth, averaged over the videos in each dataset.

We also report per-video results for the Outdoor Scenes dataset in Table 4.2. The main

takeaways are:

1. Adapting the edge model provides significant mIoU gains. AMS achieves 0.4–17.8%

(8.3% on average) better mIoU score than No Customization.

2. One-Time is sometimes better and sometimes worse than No Customization. Recall that

One-Time specializes the model based on the first minute of a video. When the first

minute is representative of the entire video, One-Time can improve accuracy. However,

on videos that vary significantly over time (e.g., driving scenes in A2D2 and Cityscapes),

customizing the model for the first minute can backfire. By contrast, AMS consis-
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tently improves accuracy (up to 39.1% for some videos, 4.3% on average compared to

One-Time) since it continually adapts the model to video dynamics. Continuous training

may overfit the model when the scene does not change for a long time, which is why

One-Time marginally outperforms it in the Dance recording video. We discuss a simple

mechanism for adaptation of the training rate in Appendix B.

3. Remote+Tracking performs better on static videos since optical flow tracking works bet-

ter in these cases. However, it struggles on more dynamic videos and performs worse

than AMS (up to 24.4% on certain videos, 5.8% on average). For example, note that

in table 4.2, Remote+Tracking performs no better than No Customization (which does

not use the network) on the Driving in LA, Walking in Paris, and Running videos.

Remote+Tracking requires much less bandwidth in the downlink compared to Just-In-

Time and AMS as it downloads labels rather than model updates. However, in the uplink

it requires about 2Mbps of bandwidth since it cannot buffer and compress frames to en-

sure it receives labels with low latency (unlike AMS).

4. Just-In-Time achieves the closest overall mIoU score to AMS, but it requires 4.4–44.5×
more downlink bandwidth (15.7× on average), and 5.2–37.1× more uplink bandwidth

(16.8× on average) across all videos. Across all videos, AMS requires only 181–225

Kbps downlink bandwidth and 57–296 Kbps uplink bandwidth.

Impact of AMS and Just-In-Time parameters. Both AMS and Just-In-Time have pa-

rameters that affect their accuracy and model-update frequency. To compare these schemes

more comprehensively, we sweep these parameters and measure the mIoU and downlink

bandwidth they achieve at each operating point. For Just-In-Time, we vary the target ac-

curacy threshold in the interval 55–85 percent, and for AMS, we vary 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 between 10

to 40 seconds. Figure 4-4 shows the results for 3 datasets (Cityscapes, A2D2, and Out-

door Scenes).4 Comparing the data points of the same color (same dataset) for the two
4We omit the LVS dataset from these results to reduce cost of running the experiments in the cloud.
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Fraction

Strategy 20% 10% 5% 1%

Last Layers -5.98 -6.58 -8.98 -10.99
First Layers -2.63 -5.54 -8.37 -15.45
First&Last Layers -1.0 -2.29 -3.54 -7.30
Random Selection -0.21 -0.70 -2.90 -5.29
Gradient-Guided +0.13 -0.13 -0.73 -2.87

BW (Kbps) 715 384 205 46
Full model BW (Kbps) 3302

Table 4.3: Average difference in mIoU relative to full-model training (in percent) for dif-
ferent coordinate descent strategies on the Outdoor Scenes dataset.
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Figure 4-5: CDF of mIoU gain relative to No Customization across all frames for different
schemes.

schemes, we observe that Just-In-Time requires about 10× more bandwidth to achieve the

same accuracy as AMS. Note that we apply our gradient-guided parameter selection to

Just-In-Time; without this, it would have required 150× more bandwidth than AMS. AMS

is less sensitive to limited bandwidth than Just-In-Time (notice the difference in slope of

mIoU vs. bandwidth for the two schemes). As discussed in §4.3.1, the reason is that AMS

trains the student model over a longer time horizon (as opposed to a single recent frame).

Thus it generalizes better and can tolerate fewer model updates more gracefully.

Impact of the gradient-guided method. Table 4.3 compares the gradient-guided method

descibed in §4.3.1 with other approaches for selecting a subset of parameters (coordinates)

in the training phase on the Outdoor Scene dataset. The First, Last, and First&Last methods

select the parameters from the initial layers, final layers, and split equally from both, respec-

tively. Random samples parameters uniformly from the entire network. Gradient-guided

performs best, followed by Random. Random is notably worse than gradient-guided when

training a very small fraction (1%) of model parameters. The methods that update only the
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on Outdoor Scenes dataset.

first or last model layers are substantially worse than the other approaches.

Overall, Table 4.3 shows that AMS’s gradient-guided method is very effective. Sending

only 5% of the model parameters results in only 0.73% loss of accuracy on average (on the

Outdoor Scenes dataset), but it reduces the downlink bandwidth requirement from 3.3 Mbps

for full-model updates to 205 Kbps. Moreover, in a similar experiment, gradient-guided

outperforms using SGD with the Gauss-Southwell selection rule at all fractions of model

updates, with their gap reaching 1.94% in mIoU for a 5% fraction.

Robustness to scene changes. Does AMS consistently improve accuracy across all frames

or are the benefits limited to certain segments of video with stationary scenes? Figure 4-

5 plots the cumulative distribution of mIoU improvement relative to No Customization

across all frames (more than 1 million frames across the four datasets) for all schemes.

AMS consistently outperforms the other schemes. Surprisingly, Just-In-Time has worse

accuracy than AMS, despite updating its model much more frequently. AMS achieves

better mIoU than No Customization in 93% of frames, while Just-In-Time and One-Time

customization are only better 82% and 67% of the time. This shows that AMS’s training

strategy, which avoids overfitting to a few recent frames, is more robust and handles scene

variations better.

Multiple edge devices. Figure 4-6 show the accuracy degradation (w.r.t. single edge

device) when multiple edge device share a single GPU at the server in round-robin manner.

By giving more GPU time to videos with more scene variation, AMS scales to supporting

up to 9 edge device on a single V100 GPU at the server with less than 1% loss in mIoU

(see Appendix B for more details).

Uplink sampling rate. Figure 4-7 shows the distribution of ASR’s average sampling rate

across different videos in four datasets. Notice that we set the ASR’s maximum sampling

rate (see §4.3.2), 𝑟𝑚𝑎𝑥, to 1 fps as our results show sampling faster than 1 frame-per-second

provides negligible improvement in accuracy along increasing bandwidth usage and server

inference overhead. We use 𝑟𝑚𝑖𝑛 = 0.1 fps.
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Figure 4-7: Cumulative distribution of average ASR sampling rate across all videos.

4.5 Conclusion

We presented AMS, an approach for improving the performance of real-time video infer-

ence on low-powered edge devices that uses a remote server to continually train and stream

model updates to the edge device. Our design centers on reducing communication over-

head: avoiding excessive overfitting, updating a small fraction of model parameters, and

adaptively sampling training frames at edge devices. AMS makes over-the-network model

adaptation possible with a few 100 Kbps of uplink and downlink bandwidth, levels easily

sustainable on today’s (wireless) networks. Our results showed that AMS improves ac-

curacy of semantic segmentation using a mobile-friendly model by 0.4–17.8% compared

to a pretrained (uncustomized) model across a variety of videos, and requires 15.4× less

bandwidth to achieve similar accuracy to recent online distillation methods.
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Chapter 5

SRVC: Efficient Video Compression via
Content-Adaptive Super-Resolution

5.1 Overview

Recent years have seen a sharp increase in video traffic. It is predicted that by 2022, video

will account for more than 80% of all Internet traffic [123, 124]. Video delivery is so

bandwidth-intensive that during surge periods such as the initial months of the pandemic,

Netflix and Youtube were forced to throttle video quality to reduce overheads [125, 126].

Further, while mobile devices support 1080p resolutions these days, cellular networks are

still plagued by low bandwidth and frequent fluctuations in most parts of the world. Hence

efficient video compression to reduce bandwidth consumption without compromising on

quality is more critical than ever.

While the demand for video content has increased over the years, the techniques used

to compress and transmit video have largely remained the same. Ideas such as applying

Discrete Cosine Transforms (DCTs) to video blocks and computing motion vectors [114,

127] , which were developed decades ago, are still in use today. Even the latest H.265

codec improves upon these same ideas by incorporating variable block sizes [128]. Recent

efforts [6, 129, 130] to improve video compression have turned to deep learning to capture

the complex relationships between the components of a video compression pipeline. These

approaches have had moderate success at outperforming current codecs, but they are much

less compute- and power-efficient.

We present SRVC, a new approach particularly useful for cellular networks and low

bitrate-scenarios, that combines existing compression algorithms with a lightweight, content-

adaptive super-resolution (SR) neural network that significantly boosts performance with
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Original H.265 1080p (slow) H.264 1080p (slow)

SRVC 
(ours)

Deep Video Comp. 
(DVC)

H.265 480p +
One-shot Custom.

H.265 480p +
Generic SR

H.265 480p + 
Bicubic Upsampling

Figure 5-1: Comparing different video compression schemes at a 200 Kbps bitrate (except
for DVC) on the 1560th frame of Sita Sings the Blues video in Xiph [5] dataset. DVC [6]
is encoding at its lowest available bitrate that requires 4.97 Mbps in this example.

low computation cost. SRVC compresses the input video into two bitstreams: a content

stream and a model stream, each with a separate bitrate that can be controlled indepen-

dently of the other stream. The content stream relies on a standard codec such as H.265 to

transmit low-resolution frames at a low bitrate. The model stream encodes a time-varying

SR neural network, which the decoder uses to boost the quality of decompressed frames

derived from the content stream. SRVC uses the model stream to specialize the SR network

for short segments of video dynamically (e.g., every few seconds). This makes it possible

to use a small SR model, consisting of just a few convolutional and upsampling layers.

Applying SR to improve the quality of low-bitrate compressed video isn’t new. AV1 [131],

for instance, has a mode (typically used in low-bitrate settings) that encodes frames at low

resolution and applies an upsampler at the decoder. While AV1 relies on standard bicu-

bic [132] or bilinear [133] interpolation for upsampling, recent proposals have shown that

learned SR models can significantly improve the quality of these techniques [134, 135].

However, these approaches rely on generic SR neural networks [136–138]) that are

designed to generalize across a wide range of input images. These models are large (e.g.,

10s of millions of parameters) and can typically reconstruct only a few frames per second

even on high-end GPUs [139]. But in many usecases, generalization isn’t necessary. In

particular, we often have access to the video being compressed ahead of time (e.g, for on-

demand video). Our goal is to dramatically reduce the complexity of the SR model in such

applications by specializing it (in a sense, overfitting it) to short segments of video.

90



To make this idea work, we must ensure that the overhead of the model stream is low.

Even with our small SR model (with 2.22M parameters), updating the entire model every

few seconds would consume a high bitrate, undoing any compression benefit from lowering

the resolution of the content stream. SRVC tackles this challenge by carefully selecting a

small fraction (e.g., 1%) of parameters to update for each segment of the video, using

a “gradient-guided” coordinate-descent [105] strategy that identifies parameters that have

the most impact on model quality. Our primary finding is that a SR neural network adapted

in this manner over the course of a video can provide such a boost to quality, that including

a model stream along with the compressed video is more efficient than allocating the entire

bitstream to content.

In summary, we make the following contributions:

• We propose a novel dual-stream approach to video streaming that combines a time-

varying SR model with compressed low-resolution video produced by a standard codec.

We develop a coordinate descent method to update only a fraction of model parameters

for each few-second segment of video with low overhead.

• We propose a lightweight model with spatially-adaptive kernels, designed specifically

for content-specific SR. Our model runs in real-time, taking only 11 ms (90 fps) to gen-

erate a 1080p frame on an NVIDIA V100 GPU. In comparison, DVC [6] takes 100s of

milliseconds at the same resolution.

• We show that, in low bitrate regimes, to achieve the same PSNR, SRVC requires only

20% of the bitrate as H.265 in its slow encoding mode 1, and 3% of DVC’s bits-per-pixel.

SRVC’s quality improvement extends across all frames in the video.

Figure 5-1 shows visual examples comparing the SRVC with these baseline approaches

at competitive or higher bitrates. Our datasets and code are available at https://github.

com/AdaptiveVC/SRVC.git

5.2 Related Work

Standard codecs. Prior work has widely studied video encoder/decoders (codecs) such as

H.264/H.265 [140, 141], VP8/VP9 [142, 143], and AV1 [131]. These codecs rely on hand-

designed algorithms that exploit the temporal and spatial redundancies in video pixels, but

cannot adapt to specific videos. Existing codecs are particularly effective when used in
1To the authors’ knowledge, this is the first learning-based scheme that compares to H.265 in its slow

mode
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Figure 5-2: SRVC encodes video into two bitstreams.Content stream encodes downsam-
pled low-resolution video with the existing codec. Model stream encodes periodic up-
dates to a lightweight super-resolution neural network customized for short segments of
the video.

slow mode for offline compression. Nevertheless, SRVC’s combination of a low-resolution

H.265 stream with a content-adaptive SR model outperforms H.265 at high resolution,

even in its slow mode. Some codecs like AV1 provide the option to encode at low reso-

lution and upsample using bicubic interpolation [132]. But, as we show in §5.4, SRVC’s

learned model provides a much larger improvement in video quality compared to bicubic

interpolation.

Super resolution. Recent work on single-image SR [137, 138] and video SR [134, 135,

144, 145] has produced a variety of CNN-based methods that outperform classic interpola-

tion methods such as bilinear [133] and bicubic [132]. Accelerating these SR models has

been of interest particularly due to their high computational complexity at higher resolu-

tions [146]. Our design adopts the idea of subpixel convolution [147], keeping the spatial

dimension of all layers identical to the low-resolution input until the final layer. Fusing the

information from several video frames has been shown to further improve single-image SR

models [148]. However, to isolate the effects of using a content-adaptive SR model, we

focus on single-image SR in this work.

Learned video compression. End-to-end video compression techniques [6, 129, 130, 149,

150] follow a compression pipeline similar to standard codecs but replace some of the core

components with DNN-based alternatives, e.g., flow estimators [151] for motion compen-

sation and auto-encoders [152] for residue compression. However, running these models

in real time is challenging. For example, even though the model in [130] is explicitly de-

signed for low-latency video compression, it decodes only 10 frames-per-second (fps) for

640×480 resolution on an NVIDIA Tesla V100 [130]. In contrast, H.264 and H.265 pro-

cess a few hundred frames a second at the same resolution. Moreover, existing learned

video compression schemes are designed to generalize and not targeted to specific videos.

Few approaches have proposed overfitting [153] and updating only specific layers [154] of
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the SR model, yet do not go as far as presenting a holistic solution and an extensive eval-

uation. In this work, we show that augmenting existing codecs with content-adaptive SR

achieves better quality and compression than end-to-end learned compression schemes.

Lightweight models. Lightweight models intended for phones and compute-constrained

devices have been designed manually [28] and using neural architecture search techniques [29,

30]. Model quantization and weight pruning [31–34] have helped reduce the computa-

tion footprint of models with a small loss in accuracy. Despite the promise of these opti-

mizations, the accuracy of these lightweight models falls short of state-of-the-art solutions.

SRVC is complementary to such optimization techniques and would benefit from them.

5.3 Methods

Figure 5-2 shows an overview of SRVC’s compression pipeline. SRVC compresses video

into two bitstreams:

1. Content stream: The encoder downsamples the input video frames by a factor of 𝑘

in each dimension (e.g., 𝑘=4) to generate low-resolution (LR) frames using area-based

downsampling. It then encodes the LR frames using an off-the-shelf video codec to

generate the content bitstream (our implementation uses H.265 [128]). The decoder

decompresses the content stream using the same codec to reconstruct the LR frames.

Since video codecs are not lossless, the LR frames at the decoder will not exactly match

the LR frames at the encoder.

2. Model stream: A second bitstream encodes the SR model that the decoder uses to

upsample the each decoded LR frame. We partition the input video into 𝑁 fixed-length

segments, each 𝜏 seconds long (e.g., 𝜏 = 5). For each segment 𝑡 ∈ {0, ..., 𝑁 − 1},
we adapt the SR model to the frames in that segment during encoding. Specifically, the

encoder trains the SR model to map the LR decompressed frames within a segment to

high-resolution frames. Let Θ𝑡 denote the SR model parameters obtained for segment

𝑡. The model adaptation is sequential: the training procedure for segment 𝑡 initializes

the model parameters to Θ𝑡−1. The model stream encodes the sequence Θ𝑡 for 𝑡 ∈
{0, ..., 𝑁 − 1}. It starts with the full model Θ0, and then encodes the changes in the

parameters for each subsequent model update, i.e., Δ𝑡 = Θ𝑡 − Θ𝑡−1. The decoder

updates the parameters every 𝜏 seconds, using the last model parameters Θ𝑡−1 to find

Θ𝑡 = Θ𝑡−1 +Δ𝑡.

The model stream adds overhead to the compressed bitstream. To reduce this overhead,

we develop a small model that is well-suited to content-specific SR (§5.3.1), and design
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an algorithm that significantly reduces the overhead of model adaptation by training only

a small fraction of the model parameters that have the highest impact on the SR quality in

each segment (§5.3.2).

5.3.1 Lightweight SR Model Architecture

Existing SR models typically use large and deep neural networks (e.g., typical EDSR has

43M parameters across more than 64 layers [139]), making them difficult to use in a real-

time video decoder. Moreover, adapting a large DNN model to specific video content and

transmitting it to the decoder would incur high overhead.

We propose a new lightweight architecture that keeps the model small and shallow, and

yet, is very effective at content-based adaptation (§5.4.2). Our model is inspired by classical

algorithms like bicubic upsampling [155], which typically use only one convolutional layer

and a fixed kernel for upsampling the entire image. It uses this basic architecture but

replaces the fixed kernel with spatially-adaptive kernels that are customized for different

regions of the input frame. Our model partitions each frame into patches, and uses a shallow

CNN operating on the patches to generate different (spatially-adaptive) kernels for each

patch (Fig. 5-3).

More formally, the model first partitions an input frame into equal-sized patches of

𝑃×𝑃 pixels (e.g. 𝑃 = 5 pixels) using a common space-to-batch operation. For each patch,

a patch-specific block (Adaptive Conv Block in Fig. 5-3) computes a 3×3 convolution

kernel with 3 input and 𝐹 output channels (27𝐹 parameters) using a two-layer CNN, and

applies this kernel (pink box) to the patch. The forward pass of the adaptive conv block

with input patch x ∈ R𝑃×𝑃×3 and output features y ∈ R𝑃×𝑃×𝐹 is summarized as follows:

w = 𝑓(x),

y = 𝜎(w * x).

We use a two-layer CNN to model 𝑓(·) in our architecture. We finally reassemble the

feature patches (batch-to-space) and compute the output using another two-layer CNN fol-

lowed by a pixel shuffler (depth-to-space) [147] that brings the content to the higher reso-

lution. All convolutions have a kernel height and width of 3, except for the first layer of the

regular block that uses kernel size of 5.

94



Co
nv
2D

Co
nv
2D

Co
nv
2D

Re
LU Conv	Kernel

Adaptive	Conv	Block	

Po
ol
in
g

Sp
ac
e-
to
-B
at
ch

Ad
ap
tiv
e	
Co

nv

Ba
tc
h-
to
-S
pa
ce

Re
gu
la
r	C

on
v

Pi
xe
lS
hu

ffl
er
	x
4

Space-to-Batch	(Extract	Image	Patches)

Batch	dimension
Co

nv
2D

Co
nv
2D

Re
LU

Regular	Conv	Block	

Figure 5-3: SRVC lightweight SR model architecture.

5.3.2 Model Adaptation and Encoding

Training algorithm. We use the L2-loss between the SR model’s output and the corre-

sponding high-resolution frame (input to the encoder), over all the frames in each segment

to train the model for that segment. Formally, we define the loss as

𝐿(Θ𝑡) =
1

𝑛|𝐹𝑡|

𝑛∑︁
𝑖=1

|𝐹𝑡|∑︁
𝑗=1

||𝑌𝑖𝑗 −𝑋𝑖𝑗||2

where |𝐹𝑡| is the number of frames in the 𝑡𝑡ℎ segment, each with 𝑛 pixels, and 𝑌𝑖𝑗 and 𝑋𝑖𝑗

denote the value of the 𝑖𝑡ℎ pixel in the 𝑗𝑡ℎ frame of the decoded high-resolution output frame

and the original high-resolution input frame respectively. During the training, we randomly

crop the samples at half of their size in each dimension. We use Adam optimizer [97] with

learning rate of 0.0001, and first and second momentum decay rates of 0.9 and 0.999.

To reduce the model stream bitrate, we update only a fraction of the model parameters

across video segments. Our approach is to update only those parameters that have the most

impact on the model’s accuracy. Specifically, we update the model parameters with the

largest gradient magnitude for each new segment as follows. First, we save a copy of the

model at the beginning of a new segment and perform one iteration of training over all the

frames in the new segment. We then choose the fraction 𝜂 of the parameters with the largest

magnitude of change in this iteration, and reset the model parameters to the starting saved

copy. We apply the Adam updates for only the selected paramaters and discard the updates
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for the rest of the model (keeping those parameters fixed).

Encoding the model stream. To further compress the model stream, we only transmit

changes to the model parameters at each update. We encode the model updates into a

bitstream by recording the indices and associated change in values of the model parameters

(Fig. 5-2). SRVC’s model encoding is lossless: the encoder and decoder both update the

same subset of parameters during each update. To update a fraction 𝜂 of the parameters for

a model with 𝑀 float16 parameters, we need an average bitrate of at most (16+log(𝑀))×
𝜂𝑀/𝜏 to express the deltas and the indices every 𝜏 seconds. For example, with model size

𝑀 = 2.22 million parameters (𝐹=32, see Table 5.2), 𝜏 = 10 seconds, and 𝜂 = 0.01, we

only require 82 Kbits/sec to encode the model stream required to generate 1080p video. To

put this number into perspective, Netflix recommends a bandwidth of 5 Mbits/sec at 1080p

resolution [156]. The model stream can be compressed further using lossy compression

techniques or by dynamically varying 𝜂 or the model update frequency based on scene

changes.

Training the SR model for 1080p resolution and encoding the updates into the model

stream takes about 12 minutes for each minute worth of video with our un-optimized im-

plementation. However, given the small compute overhead of our lightweight model, we

shared a V100 GPU between five simultaneous model training (encoding) processes with-

out any significant slow down to any process. Hence, the overall throughput of the en-

coding on V100 GPU is about 2.5 minutes of training per minute of content. We consider

this duration feasible for offline compression scenarios where videos are available to con-

tent providers well ahead of viewing time. We believe that there is significant room to

accelerate the encoding process too with standard techniques (e.g., training on sampled

frames rather than all frames) and further engineering. We leave an exploration of these

opportunities to future work.

5.4 Experiments

5.4.1 Setup

Dataset. Video datasets like JCT-VC [157], UVG [158] and MCL-JCV [159], consisting of

only a few hundred frames (∼10 sec) per video, are too short to evaluate SRVC’s content-

adaptive SR. Hence, we train and test the efficacy of SRVC on a custom dataset consisting

of 28 downloadable videos from Vimeo (short films) and 4 full-sequence videos from the

Xiph Dataset [5]. We trim all videos to 10 minutes and resize them to 1080p resolution

in RAW format from their original 4K resolution and MPEG-4 format using area-based
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Figure 5-4: Tradeoff between video quality and bits-per-pixel for different approaches on
three long videos from the Xiph dataset. SRVC with content-adaptive streaming reduces
the bitrate consumption to 16% of current codecs and ∼2% of end-to-end compression
schemes like DVC. Though comparable in video quality to SRVC, the generic SR approach
does not run in real-time.

interpolation [160]. We use the resulting 1080p frames as our high-resolution source frames

in our pipeline. We re-encode each video’s raw frames at different qualities or Constant

Rate Factors (CRFs) on H.264/H.265 to control the bitrate. We also use area-interpolation

to downsample the video to 480p and encode the low-resolution (LR) video using H.265

at different CRFs to achieve different degrees of compression. The SR model in SRVC is

then trained to learn the mapping from each LR video at a particular CRF to the original

1080p video at its best quality.

Baselines. We compare the following approaches. The first four only use a content stream

while the next three use both a content stream and a model stream. The last approach is an

end-to-end neural compression scheme.

• 1080p H.264/H.265: We use ffmpeg and the libx264/libx265 codec to re-encode each of

the 1080p videos at different CRFs using the slow preset.

• 480p H.265 + Bicubic upsampling: We use ffmpeg and the libx265 codec to downsam-

ple the 1080p original video to LR 480p at different CRFs using area-interpolation and

the slow preset. This approach’s bitrate comes only from its content stream: the down-

sampled 480p frames encoded using H.265. We use bicubic interpolation to upsample

the 480p videos back to 1080p. This isolates the bitrate reduction from just encoding at

lower resolutions.

• 480p H.265 + Generic SR: Instead of Bicubic upsampling, we use a more sophisticated

DNN-based super-resolution model (EDSR [139] with 16 residual blocks) to upsample

the 480p frames to 1080p. The upsampling takes about 50ms for each frame (about 5×
worse than SRVC). We use a pre-trained checkpoint that has been trained on a generic

corpus of images [161]. Since we expect all devices to be able to pre-fetch such a model,
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this approach only has a content stream at 480p encoded using H.265. Thus, its bits-per-

pixel value is identical to the Bicubic case.

• 480p H.265 + One-shot Customization: We evaluate a version of SRVC that uses a

lightweight SR model (§5.3.1) without the model adaptation procedure. For this, we

train our SR model exactly once (one-shot) using the entire 1080p video and encode it in

the model stream right at the beginning before any LR content. The content stream for

this approach comprises of the 480p H.265 video while the model stream consists of a

single initial model customized to the entire video duration. The overhead of the model

is amortized over the entire video and added to the content bitrate when computing the

total bits-per-pixel value.

• 480p H.265 + SRVC: We evaluate SRVC which uses the same initial SR model as One-

shot Customization but is periodically adapted to the most recent 5 second segment of the

video. To train this model, we use random crops (half the frame size in each dimension)

from each reference frame within a video segment. The content stream for SRVC relies

on standard H.265. The model stream, on the other hand, is updated every 5 seconds and

is computed using our gradient-guided strategy, which only encodes the change to those

parameters that have the largest gradients in each video segment (§5.3.2). To compute the

total bits-per-pixel, we add the model stream’s bitrate (computed as described in §5.3.2)

to the content stream’s bitrate. We also add the overhead of sending the initial model in

full to the model stream’s bitrate.

• DVC: An official checkpoint [162] of Deep Video Compression [6], an end-to-end neu-

ral network based compression algorithm. To evaluate DVC, we compute the PSNR

and SSIM metrics, and use Lu et al.’s[6] estimator to measure their required bits-per-

pixel for every frame at four different bitrate-distortion trade-off operating points (𝜆 ∈
{256, 512, 1024, 2048}).

Model and training procedure. Our model uses 32 output feature channels in the adaptive

convolution block, resulting in 2.22 million parameters. However, only 1% of them are

updated by the model stream and that too, only every 5 seconds. We vary the number of

output feature channels, the fraction of model parameters updated, and the update interval

to understand its impact on SRVC’s performance.

Metrics and color space. We compute the average Peak Signal-To-Noise Ratio (PSNR)

and Structural Similarity Index Measure (SSIM) across all frames at the output of the de-

coder (after upsampling). We report PSNR based on the mean square error across all pixels

in the video (over all frames) where the pixel-wise error itself is computed on the RGB
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Figure 5-5: Tradeoff between video quality and bits-per-pixel for different approaches on
28 videos from Vimeo. To achieve 30dB PSNR, SRVC requires 10% and 25% of the bits-
per-pixel required by H.264 and H.265 in their slow modes.

space. SSIM is computed as the average SSIM between the decoded frames and their

corresponding high-resolution original counterparts. However, since variations in frame

quality over the course of a video can have significant impact on users’ experience, we also

show a CDF of both PSNR and SSIM across all frames in the video.

We compute the content bitrate for the all approaches relying on H.264/5 at both 1080p

and 480p using ffmpeg. For approaches that stream a model in addition to video frames,

we compute the model stream bitrate based on the total number of model parameters, the

fraction of them that are streamed in each update interval, and the frequency of updates

(§5.3.2). The content and model stream bitrates are combined to compute a single bits-per-

pixel metric. Note that the bits-per-pixel range in our evaluations is an order-of-magnitude

lower than results reported in prior work [6, 129] because our approach is designed for low-

bitrate scenarios and we compare to the slow mode in H.264/5 which is more efficient than

the “fast” and “medium” modes We plot PSNR and SSIM metrics at different bits-per-pixel

to compare different schemes. Since SRVC runs inference on decoded frames as they are

rendered to users, its SR model needs to run in real-time. To evaluate its feasibility, we also

compare SRVC’s speed in frames per second to other learning-based approaches.

5.4.2 Results

Compression performance. Fig. 5-1 shows a visual comparison of the different schemes

for similar bits-per-pixel values. For DVC in this figure, we show the results for the lowest

bitrate model available that ends up using 4.97 Mbps, which is significantly larger than the

200 Kbps bitrate of other schemes in this example. To compare the compression provided

by different approaches across a wide range of bits-per-pixel values, we analyze the PSNR

and SSIM achieved by different methods on three long Xiph [5] videos in Fig. 5-4. Tab. 5.1

summarizes the BD-Rate and BD-PSNR [163] metrics for the same experiment. Note that
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Method BD-PSNR (dB) BD-Rate (%)

DVC -10.04 598.76
H.264 1080p (slow) -1.38 45.5
H.265 1080p (slow) 0 0
H.265 480p (slow) + Bicubic +0.67 -55.81
H.265 480p (slow) + Generic SR +2.61 -75.31
SRVC (Ours) +3.41 -80.09

Table 5.1: BD-PSNR and BD-Rate of different approaches on Xiph dataset relative to
H.265 1080p (slow).

the bits-per-pixel metric captures both the contribution of the content and the model for

those approaches that use a model stream for SR. We do not report the bitrate distortion

metrics for One-shot customization as its PSNR hardly overlaps with H.265.

As seen in Fig. 5-4, SRVC achieves PSNR comparable to today’s H.265 standard (in

slow mode) with far less bits-per-pixel. For instance, to achieve a PSNR of 30 dB, SRVC

requires only 0.005 bits-per-pixel while H.265 and H.264 codecs, even in their slowest

settings, require more than 0.03 bits-per-pixel. In BD-Rate and BD-PSNR terms (Tab. 5.1),

SRVC on average achieves a 3.41dB improvement relative to H.265 slow preset at 1080p at

the same bitrate, or requires only 20% of the bitrate to achieve the same PSNR. However,

One-shot Customization’s performs poorer than a simple bicubic interpolation. This is

because SRVC’s custom SR model is not large enough to generalize to the entire video,

but has enough parameters to learn a small segment. It is worth noting that to achieve the

same PSNR, SRVC requires only 3% of the bits-per-pixel required by DVC [6], the end-

to-end neural compression scheme. SRVC’s SSIM is comparable but 0.01-0.02 better than

current codecs for the same level of bits-per-pixel, particularly at higher bitrates. SRVC

also outperforms a generic SR approach (EDSR) by 0.8dB and 4.8% respectively on BD-

Rate and BD-PSNR metrics.

Fig. 5-4 suggests that a 480p stream augmented with a generic SR model performs just

as well as SRVC in terms of its PSNR and SSIM for a given bits-per-pixel level. However,

typical SR models are too slow to perform inference on a single frame (about 5× slower in

this case), making them unfit for real-time video delivery. To evaluate the performance of

viable schemes on real-world video, we evaluate the bits-per-pixel vs. video quality trade-

off on 28 videos publicly available on Vimeo. As Fig. 5-5 suggests, SRVC outperforms all

other approaches on the PSNR achieved for a given bits-per-pixel value. In particular, to

achieve 30dB PSNR, SRVC requires 25% and 10% of the bits-per-pixel required by H.265

and H.264 respectively.

A key takeaway from Tab. 5.1, and Figures. 5-4 and 5-5 is that for a given bitrate
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Figure 5-6: CDF of PSNR and SSIM improvements with SRVC across all video frames at
a bits-per-pixel of 0.002. The quality enhancement from SRVC is not limited to only those
frames that follow a model update.

budget, SRVC achieves better quality than standard codecs. This suggests that beyond a

baseline bitrate for the content, it is better to allocate bits to streaming a SR model than to

dedicate more bits to the content. We describe this trade-off between model and content

bitrates in more detail in Fig. 5-7.

Robustness of quality improvements. To see if SRVC’s improvements come from just

producing a few high-quality frames right after the model is updated, we plot a CDF of the

PSNR and SSIM values across all frames of the Meridian video in Fig. 5-6. We compare

schemes at a bits-per-pixel value of ∼0.002. Since DVC [6] has a much higher bits-per-

pixel and EDSR [139] performs poorly on this video, we exclude both approaches 2. Firstly,

we notice that both One-shot Customization and SRVC perform better than other schemes.

Further, this improvement occurs over all of the frames in that no frame is worse off with

SRVC than it is with the defacto codec. In fact, over 50% of the frames experience a 2–3

dB improvement in PSNR and a 0.05–0.0075 improvement in SSIM with both versions of

SRVC.

Impact of number of Output Feature Channels. Since SRVC downsamples frames at

the encoder and then streams a model to the receiving client who resolves the decoded

frames, it is important that SRVC performs inference fast enough to run at the framerate of

the video on an edge-device with limited processing power. Viewers need at least 30 fps

for good quality. Consequently, the inference time on a single frame cannot afford to be

longer than 33ms. In fact, the Meridian [164] video has a frame rate of 60 fps, so running

low-latency inference is even more critical.

2Figures. 5-4, 5-5 and 5-6 cover different videos, and thus, their results cannot be directly compared.
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#Feature Channels (F) 8 16 32 64 128

PSNR(dB) 38.49 38.69 39.87 39.89 39.90
SSIM 0.942 0.944 0.946 0.947 0.949
Inference Time (ms) 7 9 11 17 25
Num. of Parameters 0.59M 1.14M 2.22M 4.39M 8.72M

Table 5.2: Impact of number of output feature channels in SRVC’s adaptive convolutional
block on inference time and quality metrics for a video snippet on an NVIDIA V100 GPU.

Figure 5-7: Impact of varying bits-per-pixel for the content stream for a fixed model bitrate
and vice-versa. Increasing the bits-per-pixel for the low-resolution H.265 content stream
improves PSNR, especially at low bitrates. At higher content bitrates, increasing the model
bitrate by transmitting more model parameters further improves PSNR.

To evaluate the practicality of SRVC’s lightweight model, we evaluate the end-to-end

inference time per frame on an NVIDIA V100 GPU as we vary the number of the output

feature channels in the adaptive convolution block (𝐹 ) in Tab. 5.2. While increasing 𝐹

improves the PSNR and SSIM values due to better reconstruction of the fine details, it

comes at a cost. With 𝐹 = 64 and 𝐹 = 128, the inference times of 17 ms and 25 ms

respectively causing the frame rate to drop below the input 60 fps. Further, the number of

parameters increases to nearly 10𝑀 , a steep number for the model to stream periodically.

Hence, we design SRVC’s model to use 32 output feature channels, ensuring it takes only

11 ms to run inference on a single frame. In comparison, the EDSR generic SR model is

about 5× slower to perform inference on a single frame. Even the end-to-end neural video

compression approach DVC [6] takes over hundreds of milliseconds to infer a single frame

at 1080p.

Trade-off between model bitrate and content bitrate in SRVC. The presence of dedi-

cated model and content streams in SRVC implies that the bitrate for each stream can be

controlled independent of the other, to achieve different compression levels. Fig. 5-7 shows
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Update Interval (s) 5 10 15 20 ∞

PSNR(dB) 37.25 36.52 36.57 36.45 35.32
SSIM 0.92 0.91 0.91 0.91 0.91
Bits-per-pixel 0.006 0.003 0.002 0.0015 0

Table 5.3: Impact of SRVC’s model update interval on the bits-per-pixel consumed by
model updates and the associated gains in video quality. We find that an update interval of
5 seconds strikes a good trade-off between bits-per-pixel and quality.

the impact of altering the content bitrate for a fixed model bitrate and vice-versa, when en-

coding the Meridian video using SRVC. The content bits-per-pixel is varied by changing

the quality (CRF) of the 480p H.265 stream. In contrast, the contribution from the model

bits-per-pixel is controlled by the fraction of model parameters transmitted during each

update.

As anticipated, for a fixed amount of model bits-per-pixel (updating 1% of the model

parameters), PSNR improves as the content bitrate is increased. This is because as the

quality of the underlying low-resolution H.265 frames improves, it becomes easier for the

model to resolve them to their 1080p counterparts. Increasing the content bitrate from the

lowest quality level of CRF 35 (with 0.0014 bits-per-pixel) to CRF 20 (with 0.003 bits-per-

pixel) improves PSNR from 31 dB to 36 dB. However, increasing the bits-per-pixel for the

content beyond that yields diminishing returns on PSNR (also illustrated in Fig. 5-5). At

higher quality levels, Fig. 5-7 suggest that modest increases in the bits-per-pixel allocated

to the model result in large improvements to the PSNR. For instance, adapting 10% of

the model parameters consumes 0.006 bits-per-pixel, 6x more bits-per-pixel than adapting

0.5% of the model parameters, but results in a PSNR improvement of 1dB from 36.31 dB

to 37.32 dB.

Impact of SRVC’s update interval. SRVC can also control the bits-per-pixel consumed

by the model stream by varying the interval over which updates to the SR model are per-

formed. Frequent updates increase the model bitrate, but ensure better reconstruction since

the model is trained on frames very similar to the current frame. An extreme scenario is an

update interval of∞ that corresponds to the One-shot Customization. Tab. 5.3 captures the

impact of varying the update interval on the average quality of decoded frames from the

Meridian video. We find that an update interval of 5 seconds achieves good performance

without compromising much on bits-per-pixel. The fact that the PSNR does not degrade

significantly for modest increases to the update interval suggests further optimizations atop

SRVC that only update the model after a drastic scene change.
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5.5 Conclusion

In this work, we present SRVC, an approach that augments existing video codecs with

a lightweight and content-adaptive super-resolution model. SRVC achieves video quality

comparable to modern codecs with better compression. Our design is a first step towards

leveraging super-resolution as a video compression technique. Future work includes further

optimizations to identify the pareto frontier for the model vs. content bitrate trade-off,

more sophisticated techniques to detect scene changes and optimize update intervals, and

the design of more effective lightweight super-resolution neural network architectures.
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Chapter 6

RECL: Responsive Resource-Efficient
Continuous Learning for Video
Analytics

6.1 Overview

Video analytics with deep neural networks (DNNs) is a promising technology adopted in

a wide range of applications such as enterprise security, retail, traffic management, and

transportation [165, 166]. Across these applications, it is often imperative to run analytics

tasks directly on edge devices (e.g., using on-premises edge servers [167, 168]) to ensure

that the system can deliver real-time results with low latency and in compliance with data

privacy constraints [13–16]. However, the edge has limited compute resources, which can-

not match the unrelenting growth of video analytics workloads, DNN models, and video

streams [169, 170]. Even for applications that can be deployed in resourceful environments

such as public clouds, the cost of running video analytics remains exorbitant despite recent

advancements in DNN resource efficiency [171–173]. For example, a high-end NVIDIA

V100 GPU can only support two video streams running the state-of-the-art YOLOv5-L

model [173] at 30 FPS, which translates to a steep cost of $1,100/month/stream on public

clouds [174].

One common approach to reducing the resource requirements for video analytics is to

use specialized and compressed DNNs [175–178]. However, owing to their inherent limits

on the number of object appearances and scenes they can learn in their condensed struc-

tures, such specialized DNNs require continuous retraining to cope with dynamic scenes

(data drifts) in order to maintain high inference accuracy. Recent work in the computer
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vision and systems communities [2, 179, 180] has shown the effectiveness of this approach

for edge video analytics, delivering both high resource efficiency and accuracy in results.

Though promising, continuous retraining and deploying specialized DNNs has two fun-

damental limitations. First, continuous retraining consumes the vast majority of compute

resources in these video analytics systems (70%–90% in our study) [2, 180], making model

retraining the key bottleneck in scaling video analytics to more video streams with limited

compute resources. Our study (Fig. 6-2) shows that accuracy drops sharply (by 40% in ob-

ject detection) as 4× more cameras share the GPU cycles to retrain their models (§6.2.2).

Second, it takes time to retrain specialized DNNs, and abrupt video scene changes in-

evitably lead to drastic accuracy drops until the retraining is completed (see Fig. 6-3 for an

example). Hence, it is fundamentally challenging to uphold the accuracy lower tail during

the retraining.

Our goal in this work is to address the above two fundamental limitations so that video

analytics are scalable with more consistent accuracy. As retraining specialized DNNs re-

quires resources and takes time, we aim to minimize the necessity of retraining by judi-

ciously reusing historical specialized DNNs that are trained with past video segments. The

intuition behind our approach is that video streams typically exhibit spatio-temporal corre-

lations (e.g., a car drives back on the same street or another car has been on the same street

before) [181]. Thus, it is likely that the current video segment bears some resemblance

to historical video segments, and the corresponding historical specialized DNNs can be

reused for the current scene. Indeed, our study in §6.2 shows that an idealized model

reusing scheme can consistently deliver high accuracy (35% mAP) with limited compute

resources. In comparison, existing continuous retraining systems (e.g., [2]) cannot keep

up with the compute demand of more cameras, with their accuracy dropping to a low 24%

mAP.

Technical challenges: Harnessing the potential of model reuse for video analytics faces

two challenges. First, we need to quickly and accurately find the specialized DNN that

works well for the current video segment so that we can reuse the DNN in real-time. This

is difficult because it is unclear how to compare the similarity of high-dimensional and

unstructured data such as video segments [182], and comparing the current video segment

with all the historical video segments is not practically feasible. Second, we need to keep

the cost of enabling model reuse much lower than the cost of model retraining. This is

challenging as the cost of seeking through historical models grows with the size of history,

while model retraining only requires fixed expenditure for each video segment. Recent

video analytics solutions that reuse historical models (e.g., ODIN [182]) cannot address

these challenges because they are not designed for resource efficiency.
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Solution: We present RECL, a new video analytics solution that leverages histori-

cal specialized DNNs to improve scalability, responsiveness, and accuracy consistency in

a resource-constrained environment. RECL is the first end-to-end system that integrates

model reusing with model retraining for resource-efficient video analytics, entailing three

main ideas:

• We design a fast and robust model selection procedure to quickly select a suitable

model from the model zoo, a large collection of historical specialized models (§6.3.1).

Our model selector is inspired by sparse gating networks in the mixture of experts (MoEs)

approach [183–185], and we make it resource-efficient by decoupling the training of the

gating network from the training of underlying experts. This allows RECL to select a

model based on the characteristic of video analytic tasks and video scenes (e.g., detecting

cars on a sunny day), which is superior to existing solutions that only consider the similarity

of video frames (e.g., rainy or sunny days) [182].

• RECL shares the model zoo across different edge devices to enable more model

reusing and dynamically adds new experts to the model zoo with a lightweight process

to update the model selector (§6.3.3).

• RECL shares GPU resources across the retraining jobs using an iterative training

scheduler that dynamically prioritizes retraining jobs that progress faster (§6.3.2). As a

result, it spends little retraining resources on expert models that are already a good match

with the current video segments.

We implement and evaluate RECL on two computer vision tasks: object detection and

object classification. We compare RECL against three state-of-the-art video analytics sys-

tems (Ekya [180], AMS [2], and ODIN [182]) over a total of 71 hours of driving videos.

Given the same compute resource, our evaluation shows that RECL improves the object

detection mAP and image classification accuracy over the state-of-the-art solutions by up

to 9.0% and 7.4%, respectively. To put these accuracy gains in perspective, the state-of-the-

art mAP score for the object detection task on the PASCAL dataset has only improved by

less than 8 percent in the past 6 years [186]. Moreover, the baseline systems need at least

3.2× more compute resources to match RECL’s accuracy. Our ablation study shows that

RECL’s superior performance mostly comes from effective integration of model reuse in

our design. Compared to Ekya as a prior continuous training approach, RECL achieves the

same accuracy up to 91 seconds faster on average. We also show that the compute overhead

of RECL declines gracefully over time as more expert models are learned and added to the

model zoo.
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6.2 Background and Motivation

We first introduce the background of continuous retraining and deploying specialized DNNs

for video analytics (§6.2.1). We then discuss the fundamental limitations of this approach

and how reusing historical specialized DNNs can address these limitations effectively (§6.2.2).

6.2.1 Continuous Retraining for Video Analytics

State-of-the-art generic DNNs are often too expensive to run for video analytics all the

time in resource-constrained environments such as a mobile edge computing (MEC) net-

work [187]. A common approach is to deploy specialized and compressed DNNs (or “ex-

pert” models) that are trained using the knowledge of the generic and expensive DNNs

(or the “teacher” model). The idea is to use knowledge distillation [102] to transfer the

knowledge from a large teacher model to a small expert model for a specific video segment

or video stream. On a matching video segment, an expert model can save compute re-

sources by orders of magnitude while achieving similar model accuracy as the large teacher

model [175, 176, 188]. This approach has been widely adopted in modern systems such as

Microsoft’s Rocket [177] and Google’s Learn2Compress [178].

As an expert model only recognizes a limited set of object appearances and video

scenes, a static expert model cannot achieve high accuracy on dynamic live videos where

objects and scenes inevitably change over time (e.g., different locations, lighting condi-

tions, object classes, etc.) [180]. A promising approach to employing expert models on

dynamic live videos is to continuously retrain the expert model with the most recent video

frames. Recent work [2, 179, 180, 189] has established that continuous retraining and

deploying small expert models can simultaneously achieve high accuracy and resource ef-

ficiency on dynamic video content. Furthermore, continuous retraining has shown superior

performance compared to running the large teacher model on a subset of frames and inter-

polating the labels (e.g., using optical flow tracking methods) [2].

Figure 6-1 can be used to illustrate the high-level components of a video analytics

system that continuously retrains and deploys expert models. They include: (𝑖) camera

service: periodically sends new sample video frames to the adaptation service; (𝑖𝑖) adapta-

tion service: uses the recently sampled frames to fine-tune (a copy of) the camera’s expert

model to mimic a larger teacher model for the current scene, and sends (or “streams”) the

updated expert model to the inference service; and (𝑖𝑖𝑖) inference service: uses the received

lightweight expert model for real-time inference on video frames from the camera service.

This chapter focuses on the adaptation service. As retraining an expert model takes
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Figure 6-1: Overview of a video analytics system utilizing continuous learning. A typical
adaptation module continuously retrains expert models or selects them from an existing
collection of models trained in the past.
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Figure 6-2: Object detection accuracy (mAP) of different designs under different numbers
of cameras. Model reuse has the potential to significantly improve the accuracy in resource-
constrained regimes (4, 6, and 8 cameras), and when combining model reuse and model
retraining, performance could be greatly improved.

significant compute resources and time (§6.1), the adaptation service becomes a key bot-

tleneck in resource efficiency and accuracy consistency. We observe that these systems [2,

180] need to spend 70%–90% of the overall compute resource on retraining their expert

models. This is because model training is much more expensive than model inference. Be-

sides, knowledge distillation needs to run the large teacher model to generate data labels on

the sampled frames. In order to address this fundamental challenge, we need an effective

approach to minimize the necessity of invoking expert retraining.

6.2.2 The Case of Reusing Historical Expert Models

It is well known that a video deployment usually exhibits temporally and spatially recurrent

patterns [181, 182, 190]. Similar video scenes reoccur on the same camera at a similar

time of day (e.g., morning or night), weather (e.g., sunny or raining), and location (e.g.,

a drone revisits the same street). More importantly, a video scene from one camera can

also appear on other cameras, especially those in the same geographical vicinity, such as a
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self-driving car visiting a place that other cars in the same fleet have seen. These temporal

and spatial correlations imply that some expert models trained on video scenes in the past

could perform reasonably well on the current video scene, and we can potentially leverage

these historical expert models to minimize the necessity of retraining.

To empirically show the potential of reusing historical expert models, we use a total

of 71 hours of driving videos collected from YouTube (more details in §6.5.1). The large

teacher model is a state-of-the-art object detector DNN, YOLOX-X (282 GFLOPs), and

the expert model is a much smaller variant YOLOX-Nano (1 GFLOPs) [173]. Similar

to existing continuous retraining solutions, we train one expert model for each 30-second

video segment. We create a model zoo using all the expert models trained on the first 30

hours of the videos ("training data"), and we use the remaining 41 hours of the videos ("test

data") to report the object detection accuracy.

We evaluate four designs:

1. No Adaptation: trains a single expert model based on all training data and deploys this

expert on the test data.

2. Continuous Retraining: periodically retrains an expert model for each camera us-

ing the most recent video segments. This serves as a reference point of recent model-

retraining systems, such as AMS [2] and Ekya [180].

3. Ideal Model Reuse: deploys the best expert model from a given model zoo created

based on video segments in the first 30 hours (ignoring the model-selection overhead).

This can be seen as a strictly better version of ODIN [182], recent model reusing base-

line.

4. Ideal Reuse with Retraining: combines 2 & 3 (retraining the reused model selected by

3.) This shows how much an ideal model reusing scheme can improve in a continuous

retraining framework.

All designs are given the same amount of GPU resources to continuously retrain expert

models, while No Adaptation (Design 1) and Ideal Model Reuse (Design 3) do not use this

resource for retraining.

Benefits in resource efficiency: Figure 6-2 shows the mean Average Precision (mAP)

score on the test data while varying the number of cameras. The observations are two-fold.

First, model reuse is a promising direction in minimizing retraining. The benefits of

model reuse become more evident when the compute resource is not enough to retrain the

expert models for more cameras (4, 6, and 8 cameras). Even when the compute resource is

enough for model retraining (2 cameras), Ideal Model Reuse can still achieve a similar mAP

as Continuous Retraining. This observation is encouraging because reusing history models
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Figure 6-3: Example of a scene change when a car camera enters a tunnel and how fast
Ideal Model Reuse and Continuous Retraining respond: Model updates arrive every 30
seconds. At t=60 sec, both schemes can access sample frames from the tunnel scene. Ideal
Model Reuse switches to a good model for the new scene immediately at 𝑡 = 60 sec,
whereas Continuous Retraining takes about 80 sec to retrain the model till the accuracy
bounces back.

does not require the resources (not shown here) to retrain any new expert models, and at

the same time, the best expert model in the past already achieves comparable accuracy with

the expert models trained on the most recent video data.

Second, model reuse has a promising synergy with continuous retraining—Ideal Reuse

with Retraining achieves the highest mAP across the board. This is because the reused

model provides a strong starting point for retraining, which reduces the compute resource

needed by retraining (i.e., faster convergence) and improves the inference accuracy of the

resultant expert models.

Benefits in accuracy consistency: Another key benefit of model reuse is that we do not

need to wait for an expert model to finish retraining. This is particularly important when

a camera has experienced a sudden scene change and is in urgent need of a new model.

For example, when a car drives into a tunnel, we can select and change the expert model

quickly without the latency of training a new expert (Fig. 6-3 shows a concrete example).

We demonstrate this benefit with the CDF of mAP across all video segments for the 8

camera setting (Figure 6-4). As the figure shows, Ideal Model Reuse has a much better
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Figure 6-4: Ideal Reuse improves both average and tail accuracy (mAP) across video
segments.

tail mAP than Continuous Retraining. For instance, at the 1st percentile, Ideal Model

Reuse retains 24% mAP while Continuous Retraining drops to an unacceptable 7% mAP.

Figure 6-3 illustrates a concrete example. As the car drives into the tunnel (𝑡 = 40𝑠),

Ideal Model Reuse switches to a matching expert much faster (𝑡 = 60𝑠) than Continuous

Retraining (𝑡 = 120𝑠), which leads to a much more moderate drop in model accuracy.

Challenges of model reuse: Several technical challenges need to be addressed to fully

realize the benefits of model reuse. Ideal Model Reuse assumes that it always selects the

best expert model with no compute cost or delay in searching through all experts in the

model zoo, which is not practical. Recent model reuse solutions in the database community

(e.g., ODIN [182]) cannot address these challenges either, because they are not designed

for resource efficiency, when sharing the compute resource among the functions of model

selection and model retraining for many edge devices. To unleash the potential of model

reuse in practice, we need a mechanism to find the best expert model quickly and accurately.

We also need to rein in the cost and latency of model selection, so that it does not grow

indefinitely with the number of videos or cameras.

In summary, reusing historical expert models is a promising complement to model re-

training, and when used jointly, it leads to better resource efficiency and more stable and

accurate model adaptation. That said, to make model reuse practical, several technical

challenges remain, which we will tackle in the next section.

6.3 Design of RECL

This chapter presents RECL, a new end-to-end design of model adaptation for continu-

ous learning on edge devices. At a high level, RECL is given an accurate-yet-expensive

model (the “teacher”) and a set of edge devices, and it automatically adapts the deployed
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Figure 6-5: RECL system architecture. Edge devices (cameras) run real-time inference
using lightweight models, and the model-adaptation controller manages a model zoo of
expert models trained on history frames from edge devices (cameras) and, on receiving
a model-update query, quickly selects a suitable model from the model zoo and recently
trained models (the light-blue box). New models are also continuously retrained (opti-
mized by a custom training scheduler) and then incrementally added to the model zoo over
time. (The figure does not show optimizations to speedup inference on edge devices or the
controller-device communication, as they are orthogonal to RECL.)

lightweight (“expert”) models, each dynamically tailored to an edge device’s particular dis-

tribution of video frames at any point in time, allowing each edge device to obtain results

similar to running the teacher model.

Overall architecture (Fig. 6-5): RECL launches a model-adaptation controller on a server

machine (e.g., in the cloud, edge compute cluster, etc.), which manages a set of daemons

running on edge devices. The controller selects and deploys lightweight models on edge

devices, which run local fast inference using the lightweight model. This work focuses on

the adaptation controller, and the optimizations inside the edge devices or on the commu-

nication between the controller and the edge device are orthogonal to RECL. Furthermore,

we assume the interactions between the server and edge do not interfere with any other

processes running on the edge device (including the local inference).

In each model-update window (by default, every 30 seconds),1 each edge device sends

sampled frames to the controller to query if a new model should be used. (Note that the

RECL controller only updates models for edge devices, which then use models to run

inference on video streams.) The frame sampling rate is set dynamically based on the

extent of scene change (similar to the technique used in AMS [2]). AMS takes the drift

rate of the labels measured at the server as a signal for setting the frame sampling rate. As

1We use fixed update windows, similar to Ekya [180]. Dynamic window size is orthogonal to RECL. In
general, an update window can be triggered by an edge device when it detects substantial changes in its video
stream, and there are several prior efforts on scene change detection.
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labels are usually in a lower dimension than input images, their variation rate is a less noisy

proxy for detecting the scene change pace.

Based on the sampled frames, the controller performs two basic functions—model se-

lection (§6.3.1), which selects a suitable expert model from a collection of history expert

models to quickly respond to the edge device’s query, and model retraining (§6.3.2), which

fine-tunes the selected model based on the sampled frames and manages GPU resources to

many edge devices to retrain their models. Furthermore, retrained models are periodically

added to the model zoo shared with other edge devices (§6.3.3). The rest of the section will

present their designs and rationales.

6.3.1 Model Selection

RECL’s model selection module, on receiving a query from an edge device, should quickly

select a high-quality (accuracy) expert model from a collection of models. RECL achieves

this goal by: (𝑖) maintaining a large (potentially growing) model zoo of history expert

models that are previously trained for any edge device; and (𝑖𝑖) using a fast and robust

selection procedure to navigate the large model zoo.

Sharing model zoo across video sessions: RECL’s model zoo consists of a set of lightweight

expert models, each trained for a specific scene distribution previously seen by some edge

device managed by the controller. For example, if the controller manages several driv-

ing video sensors in an area, the model zoo might contain experts for different streets or

neighborhoods, different weather conditions, etc. It is crucial to note that RECL does not

directly rely on any priors about the features (e.g., weather conditions) of video content

as a signal for creating new models; rather, an expert model is created based on frames of

an edge device in an update time window, and then added to the model zoo if it improves

performance (see §6.3.3).

An important design choice of RECL is that rather than caching the history models

of different devices separately, RECL shares the model zoo and its gating network across

devices, enabling model reuse across similar video sessions of different devices that might

share similar temporal-spatial correlations (e.g., in the same geographical vicinity) [191].

This reduces the need for online model retraining and improves system responsiveness

when an edge device experiences a sudden scene change for which a previously trained

model (probably of another device) with good accuracy is available. For example, cars

in the same city would observe the same scenery over time, even though the frames ob-

served throughout one driving session may vary significantly. In such an application, the

model zoo would eventually include an expert for most scene distributions encountered,
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significantly reducing the need for per-session model training.

Fast, robust online model selection: Figure 6-5 (right-hand side) describes RECL’s online

procedure to select a model from the model zoo. One strawman solution to the model

selection problem is running an exhaustive search over all experts in the zoo. However, the

number of models in the zoo can grow large over time, and it would become prohibitively

expensive to select models by testing all of them on the sampled frames in each update

window. To scale model selection to a large model zoo, RECL uses a gating network [185]

to directly infer which models in the zoo better fit a given video content. The gating network

is a lightweight DNN that given an image, assigns a score to each model in the model zoo.

Logically, the gating network is similar to an image classifier, except that the labels are not

object classes but models in the model zoo. A higher score indicates the model likely has

higher accuracy on the image. (§6.3.3 will explain how to update the gating network to

handle the changing model zoo.)

An alternative approach [182, 192] to model selection is to map video content to an em-

bedding space (via an autoencoder), partition the embedding space, and map each partition

to a specific expert model. We found that this approach works poorly in practice (§6.5.2).

The intuitive reason is that auto-encoders are trained to learn the distributions of only input

data (e.g., which video frames look similar), rather than simply learning which frames can

share a good expert model. The former task is too generic, and therefore, it is significantly

hard to learn an efficient embedder to deploy in practice. We refer readers to [193] for

further details. In contrast, RECL’s gating network directly predicts the quality (accuracy)

of each expert model and avoids the need to have a good auto-encoder.

That said, it is hard to train a gating network that always picks the best model from

the model zoo. Instead, RECL runs the gating network on the edge device’s latest sam-

pled frames and selects the top-𝐾 models (e.g., 𝐾 = 10) with the highest average scores.

The intuition is that the performance of the best of the top-𝐾 models improves quickly

with larger 𝐾 (see §6.5.3). In short, the top-𝐾 filtering approach strikes a decent balance

between leveraging a large model zoo and fast model selection.

The safety checker then tests the accuracy of these top 𝐾 models, along with the current

model of the edge device and the last model retrained on video frames from the same edge

device (explained in §6.3.2). The testing is based on the sampled frames and their “ground

truth” labeled by the more accurate and more expensive “teacher” model. Finally, among

these models (top-𝐾 from the model zoo, current model, and the last retrained model),

RECL selects the one with the highest empirical accuracy on the labeled images and sends

it to the device. This online model selection process is fully automatic and has a low

compute cost. For the object detection task, for example, we use YOLOX-nano for the
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lightweight experts and ResNet18 as the gating network. These two models have a close

inference cost per sample (1.1 vs. 1.8 GFLOPs). However, the gating network only runs

on a significantly smaller subset of frames (e.g., 1/30th of frames).

6.3.2 Model Retraining

So far, we discussed how to reuse the previously trained models. Like other continuous

learning frameworks [2, 180, 182], RECL also retrains models online for each edge device.

The edge device periodically queries the controller in every model-update window. For

each query, RECL will initiate a retraining job using the sampled frames sent by the device

(similar to [180]), after the model selection process described above is finished.

However, to scale to more edge devices, many of which need new models, RECL must

carefully allocate its GPU resource to model retraining jobs. The basic idea of RECL is to

closely monitor how accuracy improves on each training job and dynamically share more

GPU resources to the jobs that benefit more from additional GPU cycles.

RECL time-shares the GPU among multiple retraining jobs by micro-windows—in a

micro-window, we let one of the retraining jobs use all GPU cycles and may switch to a

different job at the boundary of micro-windows based on the logic described next. Each

micro-window is long enough for one retraining job to complete one epoch (i.e., going

through all sampled frames once). A typical micro-window size is about one second. (We

will explain the reason for timesharing GPU shortly.)

Retraining scheduling algorithm: Targeting a fixed maximum accuracy gap with the

teacher model for each video scene can become quickly intractable as it can be pretty

challenging for the student model to track the same target performance for all real-world

scenes. However, as our results show later, we can still target a fixed maximum gap on

the average accuracy. Hence, having a system that uses the resources efficiently, we can

always add more resources as the number of cameras grows till we are happy with the

overall accuracy.

Consider 𝐶 concurrent training jobs (one for each edge device). We define 𝐼𝑐(𝜏) as the

improvement achieved from training the model corresponding to camera 𝑐 for 𝜏 seconds.

Our objective is:

max
𝜏1,𝜏2,...,𝜏𝐶

𝐶∑︁
𝑐=1

𝐼𝑐(𝜏𝑐)

𝑠.𝑡.

𝐶∑︁
𝑐=1

𝜏𝑐 = 𝑇

(6.1)

116



Algorithm 4 RECL GPU Sharing Algorithm
1: Input: training requests ℛ, micro-window number of seconds 𝜇, window size of 𝑇

sec
2: 𝑏𝑢𝑑𝑔𝑒𝑡← 𝑇 {Total time budget}
3: procedure PROCESSREQUEST(𝑟)
4: 𝑎𝑐𝑐𝑖← 𝑟.EVAL()
5: Train the model for request 𝑟 for 𝜇 seconds
6: 𝑎𝑐𝑐𝑓 ← 𝑟.EVAL()
7: 𝑏𝑢𝑑𝑔𝑒𝑡← 𝑏𝑢𝑑𝑔𝑒𝑡− 𝜇
8:
9: return (𝑎𝑐𝑐𝑓 - 𝑎𝑐𝑐𝑖)/𝜇 {Returns the accuracy gain}

10: end procedure{Initialize the gain estimates:}
11: for r in R do
12: 𝑔𝑎𝑖𝑛[𝑟]← PROCESSREQUEST(𝑟)
13: end for{Schedule the most promising:}
14: while 𝑏𝑢𝑑𝑔𝑒𝑡 > 𝜇 do
15: 𝑟 ← argmax 𝑔𝑎𝑖𝑛 {Find the request with max gain}
16: 𝑔𝑎𝑖𝑛[𝑟]← PROCESSREQUEST(𝑟)
17: end while

That is, given a time budget 𝑇 (e.g., the update window duration), we want to time-share

GPU resources to maximize the total improvement of accuracy across all models.

To solve this optimization problem, RECL uses the following iterative scheduler (Algo-

rithm 4). At the beginning of each update window of size 𝑇 , the scheduler receives a set of

training requests, ℛ. Each training request corresponds to a set of labeled frames (already

labeled by the teacher model as part of safety checking), and an expert model checkpoint

(selected by the safety checker at the beginning of the window). In each micro-window

of 𝜇 seconds, the PROCESSREQUEST procedure (Lines 3-9) takes one of the requests 𝑟

as input and evaluates how much its accuracy improves between before and after a micro-

window. Notes that the cost of these accuracy evaluations is ignored as they only require a

lightweight forward pass on the test subset of the data.

The main loop of the algorithm first spends one micro-window to process each request

and initialize its accuracy improvement (Lines 10-12). Then it iteratively picks the training

request with the largest accuracy improvement as our next model to train till we run out of

time (Lines 13-16).

Since DNN training curves 𝐼𝑐(𝜏) are usually concave (i.e., accuracy improves quickly

and then slows down), then this iterative algorithm effectively minimizes the maximum

speed of these models’ training curves (𝜕𝐼𝑖
𝜕𝜏𝑖

). It can be shown that this iterative process con-

verges to a near-optimal partition of the total time budget that maximizes the total accuracy
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improvement across the training jobs [194].

Design choices: We highlight two design choices behind the retraining scheduler.

To find the best GPU allocation, both Ekya and RECL predict each retraining job’s

training speed (accuracy improvement vs. epochs) but with different approaches. Ekya pe-

riodically runs extra (“out-of-band”) micro-profiling on each camera: running a few epochs

of training on a subset of history images to build a profile of the training curve of each cam-

era. Such upfront micro-profiling has extra compute overhead and fails when the training

curve changes over time. In other words, they inherently trade off between the profile ac-

curacy and their overhead. In contrast, RECL uses an “in-band” profiler—it measures the

actual learning progress (accuracy improvement) of each job on the fly and dynamically

determines which one progresses faster. This scheme avoids the micro-profiling overhead

of Ekya without losing accuracy. Note that RECL requires fast switching between models,

which will be discussed next. Our scheduler’s iterative algorithm is similar to [195] which

is designed to achieve fairness among the cluster-level training jobs which compete at a

significantly longer time scale.

Instead of splitting GPU cycles spatially across concurrent training jobs, RECL time-

shares the GPU cycles by switching among concurrent retraining jobs every micro-window.

While it is logically equivalent to spatially sharing, RECL’s GPU timesharing is based

on three practical considerations. (1) The delay to context switch between GPU-loaded

models (usually less than tens of milliseconds) is negligible compared to a micro-window.

Since a lightweight model in RECL has a small memory footprint, we can load it to GPU

memory and not swap it out (even when switching between retraining jobs) until the model

retraining completes. (2) Unlike Ekya, RECL does not have to finish model training very

quickly (it responds to each edge device by first selecting a good model from the model

zoo or the most recently trained model has been good enough). (3) It does not rely on any

GPU library to dynamically reallocate GPU across different jobs.

6.3.3 Updating the Model Zoo & Selector

Admission of new models to model zoo: RECL does not add every retrained model to the

model zoo. A recently trained model is considered promising if the safety checker finds

this retrained model’s accuracy is 𝛼 higher than the rest of the candidate models (the top-

𝐾 experts selected by gating network and edge device’s current model). These promising

models are put in a queue. When the promising model’s queue grows larger than a fixed

threshold, 𝛾, we empty the queue by adding them to the model zoo and update the gating

network (explained next) to consider the recently added models. Hence, 𝛼 and 𝛾 control
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the frequency of model selector updates. We later study the impact of the zoo admission

rate on the system performance (§6.5.3).

Incrementally update of gating network: Recall that the gating network predicts the

accuracy of each expert in the model zoo on the input frame. Hence, when updating the

gating network to handle new expert models, we need to first label the accuracy of all

experts on both the new frames that were used to train the new expert models as well as a

sub-sampled set of history frames (those used to update gating network before). To this end,

we label the new samples with existing experts in the zoo and label the existing samples

with the new experts added to the zoo. This way, we track the performance of all experts

on a sampled set of frames so far. Note that when we create the training frame set of the

gating network, we sub-sample frames used before and mix them with the new frames in

order to keep the same training size over time.

As the zoo size increases, the output size of our gating network must change as well.

Since the accuracy prediction logic does not change for most of the models in the zoo,

we only need to add corresponding neurons for the new models to the final layer without

changing the connectivity weights for existing expert models. This way, we transfer as

much knowledge as possible from one gating network to the next. To further speed up the

training of the gating network, we use the mean and variance of the most recent model

selector in order to initialize the connectivity weights corresponding to the new experts in

the final layer.

Pruning the model zoo: Though updating the gating network is usually fast, the overhead

of retraining for updating the gating network grows proportionally with the size of the

model zoo. To prevent the model zoo to grow indefinitely, we deem an expert in the zoo

ineffective if other experts always have a preferred accuracy. In particular, we remove the

experts that are chosen less than 𝜂 times in the last 𝑞 model selection calls. We set 𝑞 = 3000,

which is about one day’s worth of video streaming in our system and study the impact of

the 𝜂 parameter later in §6.5.2.

6.4 Implementation

We have implemented RECL in Python and used Pytorch [196] for inference and training

of ML tasks. For communication between the services, we use the gRPC [197] framework

for remote procedure calls.

Microservices: We implement several microservices to prototype RECL. These microser-

vices are designed to generalize to different continuous adaptation design choices in prior

work. RECL runs a camera streaming service on each camera device to send the sub-
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sampled video frames to the teacher labeler service running on the adaptation server. We

use TensorRT [198] and half-precision computation to further speed up the inference pro-

cesses. One runner microservice manages the coordination of different components across

all video streams that share resources in the server.

Hooks: Each microservice can register a hook in other microservices. These hooks are

specific functions to run at predefined time events in the system. Our time events are a com-

bination of before/after, window/microwindow, and first/last time. For example, if a model

zoo update strategy requires to have information about the training gain of each model

at the microwindow level, it registers accuracy evaluation hooks in the training scheduler

before and after each window.

Adaptation state: There is an adaptation state shared across all microservices that register

to the same runner. All microservices have read and write access to the adaptation state to

optimize their decisions, possibly share the hooks results, and keep track of possible global

events like the beginning of a new window.

Training strategy: Our training scheduler service relies on a sharing strategy abstraction.

Each strategy has access to the adaptation state, can register or subscribe to a hook, and has

a run method to decide which camera model should train next in each microwindow. If an

adaptation scheme is not microwindow-based, it only has to register hooks for the first and

last microwindow.

Performance monitoring: For tracking the system performance metrics, we implement

logging hooks to track system-level metrics like compute times and resource utilization in

addition to RECL-specific performance metrics like zoo admission rate and model reuse

rates.

6.5 Evaluations

Finally, we evaluate RECL on two video-analytics tasks using real-world driving videos.

Our key findings include:

• Given the same compute resource, RECL improves the object detection mAP and image

classification accuracy over state-of-the-art baselines by up to 9.0% and 7.4%, respec-

tively. The baselines need to use at least 3.2× more compute resources to match RECL’s

accuracy.

• The superior performance of RECL comes primarily from our distinctive design of model

reuse. RECL’s fast gating network and safety checker outperform the state-of-the-art

model selection mechanism in terms of accuracy and efficiency by a large margin.

• RECL is highly responsive to a model-update request. On average, the time RECL needs
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Figure 6-6: End-to-end scaling of the average accuracy across different schemes for two
typical vision tasks.

to adapt models to the same accuracy is 11–91 seconds faster than that of the baselines,

with the gap growing both at the tail of the distribution (by almost 2×) and with the total

number of cameras.

• RECL’s retaining scheduler also makes better use of GPU. In contrast to round-robin and

out-of-band profiling used in several recent continuous learning systems, RECL’s in-band

profiling provides a 2.0% higher mAP at up to 6.1× lower overhead.

• Compute overhead of RECL decreases gracefully over time as more models are trained

and added to the zoo.

6.5.1 Methodology & Setup

Dataset: We evaluate RECL on two computer-vision tasks—image classification and ob-

ject detection—using 151 driving videos collected from YouTube. Since we would like our

video sessions to include meaningful data drifts, we adopt videos that have a length of at
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Model Params FLOPs Throughput (FPS)
MobileNetV2 3.5M 0.32G 1.5K

ResNet50 25.6M 4.12G 153
YOLOX-Nano 0.91M 1.1G 312

YOLO-X 99.1M 282G 58
ShuffleNetV2 2.28M 0.15G 3.7K

ResNet18 11.7M 1.8G 490

Table 6.1: Specifications of the models used for the evaluation. Throughputs are reported
for NVIDIA V100 GPU with a batch size of 1.

least a few minutes (up to a couple of hours)2 with a total length of 71 hours. Furthermore,

our dataset covers a wide range of cities and driving situations in North America, includ-

ing weather conditions, time of day, and driving speed. Note that in each experiment, we

do not play the exact same video segment twice on any edge devices, since it might arti-

ficially amplify the gain from model reusing. Driving video is a remarkably challenging

workload for evaluating our system as the scenes change more widely and frequently. This

workload brings a variety of situations where exact matching is impossible and requires

more than a few models to cover the wide range of possible scenarios. Responsiveness is

also more challenging for driving cameras compared to fixed cameras. For example, traf-

fic light cameras mostly need only to update every few hours when the lighting/weather

change, significantly stressing the compute power at the adaptation server.

Models: For object detection, we use YOLOX-Nano and YOLOX-X [173] for the student

and teacher models, respectively. For image classification, we use MobileNetV2 [200] and

ResNet50 [201] for the student and teacher models. Details of these models are shown

in table 6.1. Our models are pre-trained on ImageNet [202] and COCO [203] datasets for

classification and detection, respectively. For fast model selection, we use ResNet18 as the

gating network architecture by default, unless otherwise stated.

Metrics: To evaluate the accuracy of different schemes, we compare the inference results

on the edge device with labels extracted for the same video frames using the teacher model

(similar to prior work [2, 180]). We use mean Average Precision (mAP) for the detection

task, while for classification, we report accuracy by the proportion of correct predictions

(both true positives and true negatives) among the total number of cases examined. We

calculate these metrics across all 80 and 1000 classes of MS COCO and ImageNet datasets

for detection and classification, respectively.

Setup: In our setting, model selection and training of the adaptation controller happen in

the cloud, and each edge device only runs inference by the lightweight expert model on

2Video sessions in other similar video datasets like Berkeley Driving Dataset (BDD) [199] were not long
enough for our purpose. For example, each driving episode in BDD is only 40 seconds.
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the local video stream. All experts can run at a real-time inference speed (30 frames-per-

second) even on lower compute power edge devices such as NVIDIA Jetson Nano [24]

and Coral Edge TPU [23], and we do not evaluate any optimization on the edge device,

as it is orthogonal to RECL. We use NVIDIA V100 GPUs for the adaptation server. The

adaptation processes of different edge devices share the same pool of GPU resources.

Baselines. We compare RECL against the following continuous learning methods:

• No Adaptation: We run the pre-trained model on the edge device without any adaptation.

• One-Time Adaptation: We fine-tune the entire model on the first half of the videos and

test on the rest. This adaptation happens only once. Comparing RECL with this scheme

will show the benefit of having a continuous adaptation system in place.

• AMS: We implement Adaptive Model Streaming (AMS) as in [2], which uses a remote

server to continually adapt lightweight expert models running on edge devices. As the

update intervals are longer and our lightweight models are smaller than AMS, network

bandwidth consumption is less of a concern in our setup. As such, we relax the bandwidth

constraint of AMS and allow for full model parameter updates in this scheme. AMS

uses a simple round-robin mechanism for GPU sharing. Comparison with AMS mainly

highlights the gains of model reuse and optimized GPU sharing. As AMS reasonably

outperforms Just-In-Time [179] and remote server inference in prior work [2], we no

longer compare with these schemes.

• Ekya: Ekya enables both retraining and inference to co-exist on the edge node without

any model reuse. Since RECL shares the server GPU resource only among model retrain-

ing and selection jobs (inference is on edge devices), for a fair comparison, we compare

RECL with applying Ekya’s microprofiler and thief scheduler (released in Ekya [180])

to model retraining jobs. Despite the more sophisticated resource-sharing mechanisms

compared to AMS, Ekya, however, incurs the out-of-band profiling overhead and cannot

reuse models compared to RECL. Moreover, since Ekya shows how continuous retrain-

ing significantly outperforms naive model reuse methods (e.g., reuse models from the

same time of the day) [180, §6.4], we do not compare RECL with these naive reuse

heuristics.

• ODIN: ODIN [182] is a video analytics system that can detect and recover from data

drift by building expert models based on the similarity of video scenes. We use the

autoencoder-based method proposed in ODIN for model selection. Specifically, the av-

erage of embedding vectors of the sampled frames in a window is used as the embedding

vector of that window. Also, each trained expert is assigned an embedding vector the

same as its training data. We use the L2 distance between the embedding vector of a

window and the models in the zoo as a measure of similarity, and the model selector re-
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turns the model with the least distance from the samples in each window as in the ODIN

paper [182].

6.5.2 Results

End-to-end performance: We first compare the end-to-end accuracy of RECL with the

baselines over a range of provisioned GPUs and a varying number of concurrent cameras

replaying videos from our dataset. Whenever a video ends, we continue with another video

from our dataset. Note that we never repeat the same video twice as it favorably impacts

the accuracy gain of model reuse. We use NVIDIA V100 GPU as the adaptation server.

In measuring the impact of the number of cameras on the accuracy, we fix the number of

GPUs to 1. For the varying number of GPUs experiment, we run a workload consisting of

8 cameras. As shown in Figure 6-6:

1. Continuous adaptation significantly improves mAP and accuracy. Gains from continu-

ous learning grow with more resources provisioned per camera.

2. Overall, RECL outperforms all baselines by a large margin. In object detection, for

instance, RECL improves mAP by up to 9.0% (8 cameras, 1 GPU) compared to the

second best approach. In terms of resource consumption, RECL supports 2.6× more

cameras on one GPU, and requires 3.2× fewer GPU cycles to maintain an mAP of 35%.

3. mAP/accuracy improvements from model reuse are significant. Compared with Ekya

and AMS which do not reuse historical models, RECL brings up to 9.8% and 10.7%

improvement in mAP and accuracy for object detection and image classification, re-

spectively.

4. In image classification, ODIN performs the best among the baselines due to its model

reuse and specialization design. Nonetheless, ODIN’s auto-encoder-based model selec-

tor (and the lack of optimized resource sharing) performs poorly on relatively compli-

cated tasks like object detection. In contrast, we see better performance of RECL across

all settings in both tasks due to our unique model selector and retraining scheduler de-

sign.

Model selection performance: To directly examine the model selector performance, in Fig-

ure 6-7a, we plot the accuracy of the selected models vs. the system’s wall-clock for 8

GPUs, i.e., within each hour on the wall-clock, the system ingests 8 hours of video. In the

figure, we also include the performance of ODIN (a recent model selector) over the same

zoo created by RECL, as well as the accuracy of an oracle model that exhaustively searches

over all models in the zoo at each point in time (while ignoring the oracle’s compute over-

head). It is not surprising that the accuracy of the model selected by RECL improves over
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Figure 6-8: Model reuse impact on improving the response time.

time as more models are being added to the zoo. Furthermore, we observe that RECL per-

forms closely to the oracle selector, while ODIN struggles to select a good model from the

same zoo. Notice that the cost of running the oracle model is prohibitively expensive as,
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Figure 6-9: Impact of profiling on retraining performance: RECL’s retraining scheduler
(which uses a low-overhead in-band profiling) outperforms Ekya (which relies on out-of-
band profiling on each job) and AMS (whic uses a round-robin scheduler).

after a couple of hours, it requires testing the accuracy of thousands of experts in the zoo

for each sample frame. On the contrary, RECL uses ResNet18 as the underlying gating

architecture that runs at 490 frames per second (see table 6.1).

We further notice that, in Figure 6-7a, the model zoo roughly converges to a desirable

accuracy after four hours, totaling 32 hours of video stream ingestion. This observation

shows an opportunity to reduce model zoo update frequency (and thus its cost) after enough

representative experts are collected in the system. With the growing model zoo, model

reuse becomes more favorable over time as well. Figure 6-7b depicts the percentage of the

time that the safety checker prefers the selected model over the rest (e.g., a recently trained

model). For a fair comparison of the effectiveness of model reuse, we run RECL and ODIN

end-to-end independently (i.e., they are not sharing the same model zoo). As can be seen

in Figure 6-7b, RECL’s model hit ratio increases with a larger zoo, making our system both

more accurate and efficient than ODIN.

Impact of model reuse on responsiveness: Model reuse improves the response time of the

adaptation server by not needing to retrain a new expert model first. To directly evaluate

this effect, we first profile the accuracy of 102 models generated in Ekya (in a video of

51 minutes long) against 2 minutes of offline training on a single V100 GPU. Using these

profiles, we then measure the time it would take Ekya, as a continuous retraining approach,

to adapt each model to the same accuracy level of the RECL’s selected model for reuse on
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Figure 6-10: Breakdown of compute cost by the components of RECL controller. The total
cost drops over time as the extra-cost of maintaining the model zoo significantly reduces,
allowing RECL to enjoy the benefit of model reuse without much additional overhead.

the same window. We refer to this metric as Time-to-RECL-Accuracy. Figure 6-8 shows

the mean and 90th percentile of the Time-to-RECL-Accuracy for the object detection task

across a varying number of cameras sharing one GPU. We observe that Ekya takes up to

90 seconds longer than RECL, on average, to achieve the same level of accuracy. More

importantly, this gap grows significantly large with increasing the number of cameras and

at the tail scenarios.

Scheduler performance: We now evaluate RECL’s retraining scheduler with its “in-band”

profiling (§6.3.2) and compare its performance with Ekya’s out-of-band micro-profiler and

AMS’s round-robin scheduling method. For a fair comparison between Ekya and RECL,

we let Ekya adapt its early stop parameter, which has a similar effect to the micro-window-

based scheduling in RECL. To run Ekya’s profiler, we set its early stop parameter to 1,

5, and 10 epochs. Figure 6-9 compares the accuracy and profiling overhead (ratio of the

time spent on profiling in each window) of these schedulers vs. the number of cameras.

We observe that Ekya’s out-of-band profilings are either too costly to run (e.g., Ekya with

an early stop of 10 epochs), or too noisy to identify a good early stop parameter, which

results in low accuracy. For example, an early stop at 1 epoch has the same cost as RECL’s

in-band method but performs worse than round-robin when resource allocation becomes

more challenging with 8 cameras.

Breakdown of compute cost: Figure 6-10 shows the cost of different components in

RECL over the course of 7 hours. Initially, model selector update has the dominant cost

in the system. However, as the zoo grows over time, the need for updating the model zoo

(and consequently the selector) reduces to the extent that after a while, the teacher labeler
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Figure 6-11: Pruning policy impact on RECL accuracy.
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Figure 6-12: Impact of changing the admission rate through the 𝛼-promise threshold on
RECL model selection performance.

and training scheduler become the dominant cost of the system, but these “base cost” is the

same as a typical continuous retraining system (such as Ekya and AMS). In short, the extra

overhead for RECL to enable model reusing (model selector and maintaining a growing

model zoo) significantly reduces over time.

6.5.3 Ablation Studies

Model zoo pruning: In Figure 6-11, we compare RECL accuracy across various levels

of pruning intensity over the course of nearly 60 hours. Naturally, reducing the value of 𝜂

leads to a significant drop in model zoo size without much accuracy sacrifice. For instance,

a balanced choice of the pruning threshold, 𝜂 = 4 provides the same accuracy despite

efficiently shrinking the size of the model zoo by a factor of 5.6×, from 830 down to about

150 experts.
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Figure 6-13: Impact of using top-k models suggested by the gating network for the default
gating network and a faster gating network model.

Zoo admission rate impact (𝛼-promise margin): In order to evaluate the impact of the

admission rate, we turn off the zoo pruning mechanism and measure the selected model

accuracy. Figure 6-12 shows this accuracy for three levels of 𝛼 for both the ideal oracle

selector and RECL’s selector. As decreasing 𝛼 allows for admitting more models to the

zoo, the oracle-based scheme can choose among more models. However, it gets harder for

the gating network model to select from an arbitrarily large model zoo. Hence, we observe

a diminishing return in increasing the admission rate beyond 𝛼 = 2%, which seems to be a

good balance between the zoo size and the model selection complexity.

It should be noticed that the exact values of these parameters (𝜂, 𝛼) largely depend on

the dynamics of video content. The message from Fig. 6-12 and 6-11 is that there are

sweet spots for them that, on a large set of videos, strike a desirable tradeoff between the

cost of maintaining a reasonably sized model zoo and the quality (accuracy) of the selected

models.

Model selector top-k: As discussed in §6.3.1, we pass the top-k selected model to the

safety checker (instead of 1) in order to find a better model for reuse. In Figure 6-13, we

show the accuracy of model selection and the performance of the selected model for our

default and a faster gating network model (see table 6.1 for speed comparison). Given this

observation, we find 𝐾 = 10 is a good default operating point for RECL. Notice that while

a higher 𝐾 increases the cost of the safety checker, as shown in Figure 6-10, our safety

checker still has a negligible overhead compared to the other components in the system.
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6.6 Discussion

Safety-critical applications: Predicting the feasibility of minimum accuracy thresholds is

not a trivial problem in non-convex ML training tasks. Therefore, as we cannot guarantee

a minimum accuracy level using continuous adaptation for safety critical problems, the

solution might come at the cost of provisioning enough resources to run the large state-

of-the-art model for inference. However, if the problem is not safety-critical, one solution

might be to set minimum accuracy thresholds with timeouts to achieve them, which we

leave to future work.

Data residency: RECL requires sharing training samples with the adaptation server. While

there are recent solutions in computation over encrypted data for secure AI [204], our

current evaluation has been based on having access to the actual video frames. Depending

on the data residency policies, such data sharing may constrain how far the adaptation

server can be taken from the cameras.

6.7 Related work

Optimization of video-analytics systems: To maintain high inference accuracy with low

resource usage and fast response, video-analytics systems have explored many approaches,

including model distillation [2, 176, 180], model architecture pruning [205, 206], config-

uration adaptation [190, 207], frame selection [208, 209], and DNN feature reusing [210,

211]. The closest to RECL is model distillation—creating lightweight models (i.e., experts

in RECL) that are small and fast yet accurate on a specific video scene [176, 212]. The

challenge is that as the video scene evolves, the system must create new expert models on

the fly to fit new video content. Existing solutions rely on either of two approaches—model

retraining techniques train the lightweight models on the latest video frames [2, 179, 180]

or on the most relevant images from the training set [189], and model selection techniques

maintain, and then select a model from, a collection of history models [182] or a cascade

of models with increasing capacities [189, 213].

In contrast, RECL uses both techniques—model retraining and model selection—as

building blocks in an end-to-end framework. In particular, when an edge device queries

for a model update, RECL can respond faster than Ekya [180] and AMS [2] by selecting a

model from a large collection of history models used by all edge devices which might have

seen a similar scene and object distribution. RECL also shares GPU cycles to enable more

concurrent model retraining jobs, refreshing new models for more edge devices.

Model selection under data drifts: In the ML literature, model selection in a collection
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of expert models, or Mixture-of-Experts (MoE), has attracted much attention, especially

after Shazeer et al. [185] demonstrated that using a sparsely gating network with an MoE

of many expert models can drastically reduce the compute cost of DNNs. Recent work

has obtained accuracy comparable to state-of-the-art expensive models with a fraction of

compute cost [214]. One key distinction between RECL and MoE applications is that

in MoE, all or a subset of the experts work together on each input. However, in RECL,

there only works one expert on each input. For example, the recent MoE approach [214]

operating on tokenized images requires access to 768 experts for inference on each input

image. To implement such an approach, one must either load all experts in the accelerator’s

memory or quickly swap the experts on the accelerator per patch per image, introducing

significant challenges for even more resourceful settings such as entirely cloud-based ap-

plications [215]. That said, many techniques in MoE also assume that the MoE consists

of a static set of models. To handle MoEs that gradually incorporate new models (as in

RECL), the gating network or the model selector must be retrained over time [216, 217].

To avoid retraining model selectors or saving training data, recent works leverage an au-

toencoder that projects input data to a latent space and map new models to a region in the

latent space [182, 192].

RECL’s model selection strategy (§6.3.1) builds on the literature on gating networks [185],

but reduces the delay and compute overhead when adding new expert models. Instead of

jointly training the new experts and the gating network [185], RECL freezes the new expert

models already trained to fit the edge devices’ recent videos and only reshapes and fine-

tunes the last layer of the gating network. Compared to recent autoencoder-based model

selectors [182], RECL’s gating network enjoys better algorithmic intuition (see §6.3.1) and

better empirical performance (§6.5.2).

Resource allocation for DNNs: Resource sharing for DNN-related jobs has been exten-

sively studied in the systems literature, including sharing of GPU and network resources

among multiple concurrent DNN training jobs (e.g., [195, 218]), inference tasks of video

analytics (e.g., [207, 219]), and between inference and training jobs [180]. The common

challenge facing these settings is to predict how much each job’s accuracy can improve

with the same amount of compute/network resources. This is usually profiled offline [207],

periodically [180], or by reusing compute data [195].

RECL is a custom design of GPU sharing for continuous learning across many edge de-

vices. Compared to Ekya [180], the most recent related work on edge continuous learning,

RECL avoids profiling the training curve of each model; instead, it tracks the actual training

progress of each retraining job on the fly, similar to SLAQ’s quality-driven scheduler [195]

proposed for large-scale DL clusters.
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6.8 Conclusion

Resource efficiency is one of the most important problems in modern video analytics ap-

plications, and continuous retraining and deploying expert models is a promising direction.

We show that reusing historical expert models has a large potential to improve resource ef-

ficiency and response time for continuous retraining, but this approach comes with its own

challenges. We present RECL, the first end-to-end system that integrates model reusing

with model retraining for resource-efficient video analytics. We show that RECL achieves

significantly better resource efficiency and higher accuracy simultaneously than state-of-

the-art baselines with (i) a fast and robust model selection procedure, (ii) a model zoo that

shares across multiple edge devices, and (iii) an iterative training scheduler. We hope that

our findings and designs can stimulate further research in unleashing the full potential of

the synergy between model reusing and model retraining.
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Chapter 7

Conclusion

This thesis addresses the challenges of machine learning inference on resource-constrained

edge devices. The surge in edge computing and IoT devices, coupled with the massive

growth in machine learning models’ size and computational demands, has necessitated

new techniques for efficient inference at the edge. This thesis introduces two key meth-

ods—Model Streaming and Model Reuse—that enable continuous learning on edge de-

vices, improving the accuracy of lightweight models by adapting them to specific scenes

or narrow input distributions. Through a range of practical applications, including MM-

Net for signal detection in Massive MIMO environments, AMS for real-time video infer-

ence, SRVC for efficient video compression, and RECL for responsive video analytics, we

demonstrate the effectiveness and potential of these methods.

By addressing the computational and memory overhead challenges associated with con-

tinuous learning on edge devices, our proposed techniques open the door to more accurate

and responsive applications on the edge. Model Streaming and Model Reuse provide in-

novative solutions for offloading adaptation processes and reusing models, resulting in im-

proved operational efficiency and scalability for continuous learning systems. The appli-

cations showcased in this thesis highlight the potential of continuous learning to enhance

inference performance at the edge, in scenarios ranging from wireless signal detection to

video analytics.

The insights from this thesis offer a new paradigm for designing and deploying edge

applications. Continuous learning and the optimization techniques presented herein can en-

able more efficient utilization of computational resources, improved latency, and enhanced

energy efficiency for edge devices. Furthermore, by offering accurate and adaptable infer-

ence capabilities closer to the data source, continuous learning methods have the potential

to shape the development of new edge computing applications, paving the way for more

intelligent, efficient, and adaptive systems at the edge of the network.
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7.1 Future Work

While the continuous learning methods and optimization techniques introduced in this the-

sis have demonstrated considerable potential for improving lightweight machine learning

inference at the edge, there are several avenues for future research to further advance the

field and address new challenges:

Improved Adaptation Techniques: Improved adaptation methods might enable faster and

more precise continuous learning at the edge. Currently, most adaptation techniques de-

pend on gradient descent algorithms for optimizing the model parameters. However, this

approach is computationally demanding and time-consuming. RECL chapter 6 takes a

promising step in this direction. Nevertheless, many redundancies exist in data processing

as we do not fully understand the functionalities of different model components. Thus,

discovering faster optimization methods or gaining deeper insights into our models could

both lead to enhanced adaptation techniques.

Privacy-Preserving Continuous Learning: When edge devices offload the adaptation

process to remote servers, there may be privacy concerns. Future work could focus on

methods that ensure continuous learning while preserving data privacy. Depending on the

primary goals and concerns, promising ideas worth exploring further include moving the

adaptation servers closer to the edge (e.g., within the building), running neural networks

on encrypted data, offering partial privacy, secure multi-party computation, and filtering

sensitive parts of the data before sharing with remote servers.

Heterogeneous Edge Devices: Future work could investigate continuous learning methods

optimized for heterogeneous edge devices with varying computational capabilities. Less

powerful edge devices may need to run smaller models, which require more frequent up-

dates to maintain the same accuracy. Moreover, not all devices offer consistent connection

quality at all times. New notions of service quality and fairness might be needed to be

developed for continuous learning systems to be effectively implemented in such heteroge-

neous real-world edge scenarios.

Other Modalities: This thesis mainly focused on vision and video applications. Future

research can extend continuous learning techniques to other modalities, such as text and

audio, expanding the potential applications of continuous learning at the edge.

In conclusion, continuous learning offers a promising approach for improving the ac-

curacy of lightweight machine learning models at the edge. The methods and optimization

techniques introduced in this thesis have laid the foundation for further research and devel-

opment in this field. By exploring the avenues outlined above, we may be able to push the

boundaries of machine learning inference at the edge to new levels, enabling more efficient,
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accurate, and adaptable applications across various domains.
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Appendix A

Video Datasets Information

A.1 Outdoor Scenes Dataset

The Outdoor Scenes video dataset we release includes seven publicly available videos from

Youtube, with 7–15 minutes in duration. These videos span different levels of scene vari-

ability and were captured with four types of cameras: Stationary, Phone, Headcam, and

DashCam. For each video, we manually select 5–7 classes that are detected frequently

by our best semantic segmentation model (DeeplabV3 with Xception65 backbone trained

on Cityscapes data) at full resolution. Table A.1 shows summary information about these

videos. In Figure A-1 we show six sample frames for each video. For viewing the raw and

labeled videos, please refer to https://github.com/modelstreaming/ams.

A.2 Prior Work Videos

In our experiments, we also evaluate AMS on three long video datasets from prior work:

Cityscapes [115] driving sequence in Frankfurt (1 video, 46 mins long)1, LVS [104] (28

videos, 8 hours in total), A2D2 [116] (3 videos, 36 mins in total). Table A.1 shows the

summary information of the classes present in each video in these datasets. Overall, LVS

includes fewer classes per video, and A2D2 and Cityscapes only include driving scenes.

Hence, we introduced the Outdoor Scenes dataset that includes more diverse scenes and

more classes.

1This video sequence is not labeled and was the only long video sequence available from Cityscapes (upon
request).
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Dataset Description Classes

Outdoor Scenes

Interview Building, Vegetation, Terrain, Sky, Person, Car

Dance Recording Sidewalk, Building, Vegetation, Sky, Person

Street Comedian Road, Sidewalk, Building, Vegetation, Sky, Person

Walking in Paris Road, Building, Vegetation, Sky, Person, Car

Walking in NY Road, Building, Vegetation, Sky, Person, Car

Driving in LA Road, Sidewalk, Building, Vegetation, Sky, Person, Car

Running Road, Vegetation, Terrain, Sky, Person

A2D2 [116]
Driving in Gaimersheim Road, Sidewalk, Building, Sky, Person, Car

Driving in Munich Road, Sidewalk, Building, Sky, Person, Car

Driving in Ingolstadt Road, Sidewalk, Building, Sky, Person, Car

Cityscapes [115] Driving in Frankfurt Road, Sidewalk, Building, Sky, Person, Car

LVS [104]

Badminton Person

Squash Person

Table Tennis Person

Softball Person

Hockey Person

Soccer Person

Tennis Person

Volleyball Person

Ice Hockey Person

Kabaddi Person

Figure Skating Person

Drone Person

Birds Bird

Dogs Car, Dog, Person

Horses Horse, Person

Ego Ice Hockey Person

Ego Basketball Car, Person

Ego Dodgeball Person

Ego Soccer Person

Biking Bicycle, Person

Streetcam1 Car, Person

Streetcam2 Car, Person

Jackson Hole Car, Person

Murphys Bicycle, Car, Person

Samui Street Bicycle, Car, Person

Toomer Car, Person

Driving Bicycle, Car, Person

Walking Bicycle, Car, Person

Table A.1: Summary of the video datasets and their target classes in evaluations.
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Figure A-1: Sample video frames. Rows (from top to bottom) correspond to Interview,
Dance Recording, Street Comedian, Walking in Paris, Walking in NY, Driving in LA, and
Running.
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Appendix B

AMS Adaptive Training Rate (ATR)

We dynamically update the model update interval 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 for each device based on its video

characteristics. For this purpose, for each interval 𝑛, we look at ASR’s sampling rate

decision 𝑟𝑛 (see §4.3.2). A small sampling rate typically implies the scenes are changing

slowly, and conversely a large sampling rate suggests fast variations.

We introduce a slowdown mode to capture relatively stationary scenes. We enter the

slowdown mode if the scenes are highly similar, 𝑟𝑛 < 𝛾0, and exit this mode as variations

increase, 𝑟𝑛 > 𝛾1. Our implementation uses 𝛾0 = 0.25 fps and 𝛾1 = 0.35 fps. We start

at the maximum training rate (𝑇𝑢𝑝𝑑𝑎𝑡𝑒 = 𝜏𝑚𝑖𝑛), and update the training interval every 𝛿𝑡

seconds according to:

𝑇𝑢𝑝𝑑𝑎𝑡𝑒(𝑛+ 1) =

⎧⎨⎩𝑇𝑢𝑝𝑑𝑎𝑡𝑒(𝑛) + ∆, in slowdown mode

𝜏𝑚𝑖𝑛, otherwise
(B.1)

This rule gradually increases 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 by a fixed ∆ (e.g., ∆ = 2 sec) in slowdown mode, and
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Figure B-1: ATR updates of the model update intervals w.r.t. the average sampling rate
over time for Vid1. Vertical lines represent model updates. Model updates become distant
after entering the slowdown mode.
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aggressively resets it to 𝜏𝑚𝑖𝑛 as soon as we exit the slowdown mode to catch up with scene

changes.

The sever communicates the newest 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 (and sampling rate) with the edge so that the

edge device can accordingly synchronize its sample buffering and upload process (see §4.3.2).

In Figure B-1, we plot the behavior of ATR algorithm for the Interview video with

relatively stationary scenes from Outdoor Scenes dataset. We observe that ATR enters the

slowdown mode after 150 seconds as the average sampling rate goes below the entrance

threshold 𝛾0, and it stays in this mode as the scenes rarely change after this point. We

denote the model updates using the vertical lines in this plot. ATR increases the distance

between the model updates in the slowdown mode to save the training cycles for other

videos.
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Appendix C

AMS Server Utilization

Every user that joins a cloud server requires its own share of GPU resources for inference

and training operations. GPUs are expensive. At the current time, renting a GPU like the

NVIDIA Tesla V100 in the cloud costs at least $1 per hour. Hence, it is important to use

server GPU resources efficiently and serve multiple edge devices per GPU to keep per-user

cost low.

In our prototype, we use a simple strategy that iterates in a round-robin fashion across

multiple video sessions, completing one inference and training step per session. By allow-

ing only one process to access the GPU at a time, we minimize context switching overhead.

In Figure C-1 we show the decrease (w.r.t. single client) in average mIoU when different

number of clients share a GPU. We observe that even with a simple round-robin scheduling

algorithm, AMS scales to up to 7 edge devices on a single V100 GPU with less than 1% loss

in mIoU without adaptive training rate (ATR) enabled. Enabling ATR (see Appendix B)

increases the number of supported edge devices to 9. Note that these results depend on

the distribution of the videos and for this purpose, we have assumed a uniform sampling

of videos from the Outdoor Scenes dataset and reported the average result of multiple runs
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Figure C-1: Average multiclient mIoU degradation compared to single-client perfor-
mance.
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here. As most of the videos in this dataset (5 out of 7) tend to experience relatively high

levels of scene dynamic, majority of videos get high training frequency. Hence, we expect

to be able to support at least equal or even more devices by prioritizing certain videos that

need more frequent model updates over the stationary ones in real-world distribution of

videos.

Furthermore, we note that ASR (see §4.3.2) also significantly reduces the overhead of

running teacher inference over redundant frames at the server. The impact is particularly

pronounced because the teacher model usually runs at high input resolution and consumes

a significant amount of GPU time (up to 200 ms for labeling each frame on an NVIDIA

V100 GPU for the task of semantic segmentation).
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