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Abstract
This dissertation investigates non-parametric regression over large function classes, specifically,
non-Donsker classes. We will present the concept of non-Donsker classes and study the statistical
performance of Least Squares Estimator (LSE) — which also serves as the Maximum Likelihood
Estimator (MLE) under Gaussian noise — over these classes. (1) We demonstrate the minimax
sub-optimality of the LSE in the non-Donsker regime, extending traditional findings of Birgé and
Massart 93’ and resolving a longstanding conjecture of Gardner, Markus and Milanfar 06’. (2) We
reveal that in the non-Donsker regime, the sub-optimality of LSE arises solely from its elevated bias
error term (in terms of the bias and variance decomposition). (3) We introduce the first minimax
optimal algorithm for multivariate convex regression with a polynomial runtime in the number of
samples – showing that one can overcome the sub-optimality of the LSE in efficient runtime. (4)
We study the minimal error of the LSE both in random and fixed design settings.
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Chapter 1

Introduction

This dissertation delves into the statistical performance of Empirical Risk Minimization (ERM)

utilizing squared loss, commonly known as Least Squares Estimator (LSE), within the context

of regression tasks. Notably, in the Gaussian noise model, LSE also serves as the Maximum

Likelihood Estimator (MLE). ERM has emerged as a critical concept in the field of machine

learning and statistical learning theory, shaping the way researchers and practitioners approach

model development and evaluation. As the volume and complexity of data continue to grow

exponentially, the need for effective and robust learning algorithms becomes increasingly pertinent.

ERM procedures address this need by offering a principled and mathematically grounded framework

for model selection and optimization. By minimizing the empirical risk or loss on a given dataset,

these procedures provide a means to identify models that best capture the underlying patterns and

relationships within the data, ultimately leading to improved generalization performance on unseen

observations. The importance of ERM cannot be overstated, as it serves as the foundation for

numerous widely-used learning algorithms and techniques, ranging from linear regression to deep

learning. Additionally, ERM has proven instrumental in fostering a deeper understanding of the

trade-offs between model complexity and generalization, thereby guiding the development of more

efficient and effective learning algorithms.

Formally speaking, this dissertation studies the problem of regression where the goal is to

estimate a function f ∗ : X → R from observations D := {(X1, Y1), . . . , (Xn, Yn)} drawn

11



according to the model

Yi = f ∗(Xi) + ξi for i = 1, . . . , n (1.1)

where X1, . . . , Xn are n-design points (fixed or random) and ξ1, . . . , ξn are i.i.d random variables

with mean zero and finite variance σ2. In the random design setting, the design points are drawn

i.i.d. from the same marginal distribution P over X , i.e. X1, . . . , Xn ∼
i.i.d.

P. In the fixed design

setting, the design points X1 = x1, . . . , Xn = xn are arbitrary and fixed, and we denote the uniform

measure over them by P(n). Throughout this thesis, we assume the following:

Assumption 1. The underlying function f ∗ lies in a known convex class of functions F .1

The convexity of F means that for any f , g ∈ F and λ ∈ [0, 1], λ f + (1− λ)g ∈ F , and

the assumption of f ∗ ∈ F is known as the well-specified model. F being a convex class of

functions ensures that the least squares solution is uniquely defined on the data points, and that it

is computationally tractable. Though, the convexity of F is a strong assumption, it is commonly

used to for studying the statistical performance of ERM procedures (cf. [Cha14; BBM05; Men14]).

Next, we assume that noise is isotropic Gaussian.

Assumption 2. ξ1, . . . , ξn are independent N(0, 1) random variables.

The assumption of normality is employed for the sake of simplicity in this presentation and due

to the fact that minimax rates (in the regression model) are generally proven in the setting of normal

noise [YB99]. Yet, our results remain applicable for other distributions of the noise ξ.

Next, we define an estimator as a measurable (random) function f̄n : (D, Ω) 7→ {X → R}, i.e

for any realization of the input D and some random parameter (“seed”) ω ∈ Ω, f̄n outputs some

real-valued measurable function on X . In many cases the estimator is a deterministic operator, i.e.,

a function D → {X → R}, but we will also consider estimators that may depend on some random

parameters.

1We also assume that F is also a closed set in terms of L2(Q), where Q ∈ {P(n), P}, which ensures that ERM
is well-defined. Closedness means that for any sequence { fn}∞

n=1 ⊂ F converging to f with respect to the norm of
L2(Q), the limit f lies in F .

12



The natural and classical estimator for any regression task is the LSE2, which is defined by

f̂n ∈ argmin f∈F

n

∑
i=1

(Yi − f (Xi))
2 , (1.2)

which is also the MLE under Assumption 2. Note that under Assumption 1, the LSE is uniquely

defined on the data points, as LSE is simply the projection operator on the closed convex set [Cha14]

FX := {( f (X1), . . . , f (Xn)) : f ∈ F} ⊂ Rn.

That is, the vector ( f̂n(X1), . . . , f̂n(Xn)) ∈ Rn is uniquely defined as the closest point in FX to

(Y1, . . . , Yn).

Remark 1. f̂n may not be be unique on the entire X , and therefore, we may equip it with a

map Ψ that chooses a unique solution over the entire domain X from all possible solutions, i.e.

f̂n,Ψ : D → F is defined as

D 7→̂
fn

{ f ∈ F : ∀1 ≤ i ≤ n f (Xi) = f̂n(Xi)} 7→
Ψ
F .

For example, Ψ can be the minimal ℓ2 norm solution in overparametrized linear regression.

As we mentioned earlier, this thesis mainly studies the statistical performance of the LSE in

the task of regression.3 There are many ways to measure the performance of an estimator, and we

mainly focus on the maximum risk (see e.g., [Tsy03a]) with respect to mean-squared loss. In details,

the maximum risk (or simply the risk) of an estimator f̄n in the fixed design is defined via

R( f̄n,F , P(n)) := sup
f ∗∈F

ED∥ f̂n − f ∗∥2
n, (1.3)

where the expectation is taken over ξ, and ∥ · ∥n denotes the L2(P
(n)) norm. Similarly, in the

2In the random design setting, the LSE may be also equipped with an additional map Ψ, see Remark 1 below.
3In Chapter 4 below, we construct and estimate the statistical guarantees of other estimators.
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random design setting, we define

R( f̄n,F , P) := sup
f ∗∈F

ED∥ f̂n − f ∗∥2, (1.4)

where the expectation is taken over both ξ and X; and ∥ · ∥ denotes the L2(P) norm. 4 In words,

for a given estimator f̄n, this measure chooses an underlying function f ∗ ∈ F that maximizes the

estimator’s error. In this fashion, the minimax rate of the function class F is defined via

M(F , P(n)) := inf
f̄n

sup
f ∗∈F

ED∥ f̂n − f ∗∥2
n (1.5)

and

M(n,F , P) := inf
f̄n

sup
f ∗∈F

ED∥ f̂n − f ∗∥2 (1.6)

in the fixed and random designs, respectively. That is, the minimax risk is simply the minimal

possible risk achievable by an estimator.

In this dissertation, we focus on non-parametric regression [Tsy03a], namely, when the function

class F cannot be described by a finite number of parameters. For example, the class of all linear

classifiers in Rd is parametric, since it can be described by d parameters. Whereas, the class of

all α-Hölder functions (suppose on the unit cube in Rd) cannot be described by finite number of

parameters for all d ≥ 1, and therefore it is a non-parametric class.

Non-parametric models motivate the following definition of minimax optimality:

Definition 1. In the random design setting, an estimator f̄n is minimax optimal if there exists

C1 = C(F , P) > 0 depending only on F and P such that

R( f̄n,F , P) ≤ C1 ·M(n,F , P).

In the fixed design setting, an estimator f̄n is called minimax optimal (in the number of samples) if

4If f̄n is a random estimator, the expectation is taken over its random parameters as well.
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there exists a constant C2 = C(F ) > 0 depending only on F such that

R( f̄n,F , P(n)) ≤ C2 ·M(F , P(n)).

Remark 2. In models with relatively low number of parameters, such as under-parameterized linear

regression, a refined notion of minimax optimality is used. One restrict the constants C1 > 0, C2 > 0

to absolute constants that are independent of F and P.

The statistical effectiveness and minimax optimality of the LSE are among the most critical

issues in the field of statistics (cf. [Gee00] and references within). This dissertation begins by

posing the following question:

Question. Given (n,F , P) (or (F , P(n))), can the LSE be deemed as minimax optimal?

This question has been thoroughly investigated, but remains unresolved in general. In this

dissertation, we aim to bring further clarity to this issue and present new findings regarding the

performance of ERM across diverse function classes. Our initial approach to addressing this

question involves understanding the intricate link between the minimax rate and the metric entropy

of the model (F , P). To explain this link, we first need to introduce a series of definitions and

assumptions:

Definition 2 (Entropy numbers). The ϵ-metric entropy of a function class G ⊂ {X → R} under

the L2(Q)-norm is the logarithm of the minimal cardinality of a finite set of functions Nϵ such that

for any f ∈ G there exists a f ′ ∈ Nϵ with ∥ f − f ′∥Q ≤ ϵ.

We remark that the set Nϵ is called an ϵ-net or ϵ-covering. Throughout this manuscript, we use

logN (ϵ,F , P) to denote the ϵ-entropy of the model (F , P).

First, we introduce the notation of ≍,≳,≲ to denote equality/inequality up to an absolute

constant. Next, we denote by DiamQ(G) to be the diameter of the class G with respect to the norm

L2(Q), i.e DiamQ(G) := sup f ,g∈G ∥ f − g∥Q. Our next assumption is mainly used to ensure that

the minimax can be described in terms of the ϵ-entropy numbers of the entire class F .

Assumption 3. The diameter of F in terms of Q ∈ {P, P(n)} is of order one, in our notation

DiamQ(F ) ≍ 1.
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The following is a classical result in non-parametric statistics [YB99; LeC73]:

Theorem 1. [Minimax rates in fixed design] Under Assumptions 1-35, the following holds:

M(F , P(n)) ≍ ϵ2
∗,

where ϵ∗ is the solution of

logN (ϵ,F , P(n)) ≍ nϵ2. (1.7)

In the random design setting, we further assume that the class is uniformly bounded:

Assumption 4. There exists an absolute constant Γ ≥ 0 such that sup f∈F ∥ f ∥∞ ≤ Γ, i.e. F is

uniformly bounded by Γ.

With this additional assumption, the same characterization of the minimax rate is available in this

case as well:

Theorem 2. [Minimax rates in random design [YB99]] Under Assumptions 1-46, the following

holds:

M(n,F , P) ≍ ϵ2
∗,

where ϵ∗ is the solution of

logN (ϵ,F , P) ≍ nϵ2. (1.8)

The central insight from these findings is that the minimax rate, up to a multiplicative absolute

constant, only depends on a straightforward and inherent feature of the model’s geometry - its

metric entropy.

Can the LSE be minimax optimal in the number of samples? Remarkably, as we will demonstrate,

for many function classes known as Donsker classes, LSE is always minimax optimal. Initially

associated with the uniform convergence of empirical processes, Donsker classes have since become

a fundamental part of non-parametric statistics and statistical learning theory [VW96].

5And the additional assumption of logN (ϵ/2,F , P(n))/ logN (ϵ,F , P(n)) > 1, for ϵ ≳M(F , P(n)).
6And the additional assumption of lim infϵ>0 logN (ϵ/2,F , P)/ logN (ϵ,F , P) > 1.
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Here, we divide to categorize existing results on the LSE into two groups based on whether

the class of functions F belongs to the Donsker regime or the non-Donsker regime. As the full

definition of Donsker classes involves the introduction of several notions we will not otherwise use,

we will present a simplified definition 7, sufficient for our purposes, that is widely used (cf. [Gee00;

CR06]). To this end, we introduce the definition of ϵ-entropy with bracketing:

Definition 3 (Entropy numbers with bracketing). The ϵ-metric entropy with bracketing of a function

class G ⊂ {X → R} under the L2(Q)-norm is the logarithm of the minimal number of N pairs of

functions N[],ϵ := {(li, ui)}N
i=1 that satisfy the following:

1. Every (l, u) ∈ N[],ϵ satisfies ∥l − u∥Q ≤ ϵ.

2. For every f ∈ G there exists (l, u) ∈ N[],ϵ such that l ≤ f ≤ u.

We remark that the set N[],ϵ is called an ϵ-net with bracketing. Throughout this manuscript, we use

logN[](ϵ,F , P) to denote the ϵ-entropy with bracketing of the model (F , P).

Note that by definition logN (ϵ,F , P) ≤ logN[](ϵ,F , P). In the asymptotic setting, where

(F , P) is fixed and n grows, it is considered a very mild assumption to assume the converse,

i.e. that logN[](ϵ,F , P) ≲ C(F , P) · logN (ϵ,F , P) (cf. [BM93]). This mild assumption is

used extensively in analyzing ERM on non-parametric classes in the random design setting 8 (cf.

[Gee00]). In order to define our notions of P-Donsker (or non-Donsker) classes, we shall assume it

as well:

Assumption 5. The following holds for all ϵ ∈ (0, DiamP(F )):

logN[](ϵ,F , P) ≍
F ,P

logN (ϵ,F , P),

where ≍
F ,P

denotes equality up to a multiplicative constant depending on F , P.

Remark 3. Assumption 5 has many roles in the literature of empirical process theory (cf. [Pol02;

Tal14] and references within). For one, this assumption implies the existence of a constant C3 =

7The formal definition of Donsker classes appear in [VW96, Pg. 17] and [Gee00, Cpt. 6].
8The bracketing property does not have any significance in the setting of fixed design regression (cf. [Pol02]).
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C3(P,F ) > 0 such that with high probability (over X1, . . . , Xn) the following holds uniformly for

all f , g ∈ F (cf. [Gee00, Lemma 5.16]):

4−1∥ f − g∥2 − C3 ·M(n,F , P) ≤ ∥ f − g∥2
n ≤ 4∥ f − g∥2 + C3 ·M(n,F , P),

where ∥ · ∥n, with some ambiguity in the notation, denotes the L2(Pn) norm which is defined by

the random (uniform) empirical measure over X1, . . . , Xn ∼
i.i.d.

P, i.e. Pn = n−1 ∑n
i=1 δXi . This

holds true in particular when taking f = f ∗, g = f̂n, and hence under this additional assumption,

the ERM is minimax optimal in random design if and only if it is minimax optimal in fixed design.

Now, as we promised above, we are finally ready to present the simplified definition of P-

Donsker classes [Gee00, Theorem 6.3]:

Definition 4 (Simplified Definition of Donsker classes). Under Assumptions 1-5, the F is called

P−Donsker if ∫ 1

0

√
logN (ϵ,F , P)dϵ < ∞. (1.9)

In particular, F is P-Donsker, when there exists p ∈ (0, 2) such that

logN (ϵ,F , P) ≍
F ,P

ϵ−p ∀ϵ ∈ (0, DiamP(F )).

We remark that when p ≥ 2, the integral of (1.9) diverges, and such a class does not satisfies the

formal definition of Donsker class.

Remark 4. The P-Donsker property is tightly connected to finite VC-dimension. For example, if

F ⊂ {X → {0, 1}}, then it is P-Donsker for any marginal P if and only if its VC-dimension is

finite [Dud99, Theorem 10.1.4].

In this thesis, we will mainly consider a special case (and yet very natural) of the general notion

of non-Donsker classes 9, which is nonetheless very widely applicable (as will be discussed below),

and it is defined as follows:

9In Chapter 3, we will also study properties of ERM on additional settings.
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Definition 5 (Non-Donsker Classes). Under Assumptions 1-5, we say that F is non P-Donsker

when there exists p > 2 such that

logN (ϵ,F , P) ≍
F ,P

ϵ−p ∀ϵ ∈ (0, DiamP(F )).

Throughout this thesis, we will refer to the class of models that satisfy Definition 4 as the

“Donsker regime”, and for models that satisfy Definition 5 as the “non-Donsker regime”.

Note that under the above two definitions, Theorem 2 above implies that the minimax rate of

F will be of order n−
2

2+p , whether the class is Donsker or non-Donsker. Furthermore, it should

be noted that different variants of the same general problem may fall in different regimes. For

example, the class of support functions of compact convex subsets of Rd is Donsker for d ≤ 5 and

non-Donsker for d ≥ 6. We revisit this example in detail in Chapter 2 below.

Finally, we reiterate that Definition 5 is not the general definition, but a special case. Yet our

definition covers many natural non-parametric classes such Isotonic, convex, α-Hölder functions and

more (cf. [Dud99]). We now describe the state of knowledge as it stood before our contributions:

On the Optimality of the LSE: In the Donsker regime, it is well-known that (under Definition

4), the LSE achieves the rate n−2/(2+p) [BM93]. Namely, according to our definitions, the LSE is

minimax optimal when the class F is P-Donsker.

In contrast, the minimax optimality of the LSE in the non-Donsker regime remains unresolved.

In a fundamental paper, [BM93] proved that in the non-Donsker regime, the rate of convergence of

the LSE is always at least as fast as n−1/p, and they also showed by example that this bound may

be tight. Namely, they observed that it is possible to design “unnatrual” function classes F where

the LSE provably achieves a risk of order n−1/p (up to logarithmic factors). By unnatrual, we mean

classes there were designed in adversarial way to maximize the error of the LSE, and do not appear

in real applications or even in theory. Later, [Bir06] provided additional unnatrual examples of such

classes. As it was mentioned earlier, the minimax rate of estimation is still of order n−2/(2+p) and

therefore the LSE may be suboptimal in the non-Donsker regime.

Some important progress on this open problem has been made in the recent papers [KDR19;
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Han19; Car+18; Han+19] (including a paper of the author of this thesis). Specifically, these papers

have shown that there exist “natural” non-Donsker families of functions where the LSE achieves the

minimax rate of order n−2/(2+p), among them: the class of bounded convex functions supported on

“smooth" domains in Rd for d ≥ 3, the class of multivariate isotonic functions over Rd for d ≥ 2,

and some other examples. Prior to our work, all known non-Donsker classes for which the LSE was

proved minimax suboptimal were somehow “pathological” in their nature.

We summarize this short discussion in the following observations:

Observation I: For a general non-Donsker class (F , P), the risk of the LSE can be

n−1/p or n−2/(2+p) (or some intermediate rate); i.e. the LSE can be minimax optimal or

sub-optimal in the non-Donsker regime

Observation II: Unlike the Donsker regime, the minimax optimality of the LSE in the

non-Donsker regime is influenced by additional characteristics of the class besides its

entropy numbers alone.

This naturally leads to the following question:

Question. Are there “natural” non-Donsker classes in which the LSE attains a sub-optimal error

rate?

The first part of this thesis answers this question. We show that there exist “natural” function

classes for which the LSE attains the this sub-optimal rate. We provide geometric conditions on the

geometry of the model (F , P) which implies the sub-optimality of the LSE, and show that these are

satisfied by the class of convex Lipschitz functions when d ≥ 5 and the class of support functions

of convex sets in Rd when d ≥ 6, hence implying that the LSE is minimax suboptimal on these

classes. We discuss this result in §1.1 below.

This result resolves a long-standing open problem [GKM06] on the sub-optimality of the

LSE on the problem of estimating a convex set in dimension d ≥ 6 from noisy support function

measurements; see for example [GKM06; Gun12; SC19a].

A natural follow-up question is what may be the cause of potential suboptimality of the LSE (or

ERM in general) in the non-Donsker regime.
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Question. What is the reason for the potential sub-optimality of LSE in the non-Donsker regime?

The second part of this thesis gives insight into this question. First, we remind the classical

bias-variance decomposition of the mean squared error of an estiamtor f̄n:

ED

∫
( f̄n − f ∗)2dQ = ED

∫
( f̄n −ED f̄n)

2dQ︸ ︷︷ ︸
V( f̄n)

+
∫
(ED f̄n − f ∗)2dQ︸ ︷︷ ︸

B2( f̄n)

, (1.10)

where Q = P(n) in the fixed design setting and Q = P in the random design setting. We refer to

the first term as the variance error term and the second term as the (squared) bias error term. Next,

we also define the maximal variance of an estimator f̄n as

V( f̄n,F , Q) := sup
f ∗∈F

V( f̄n) = sup
f ∗∈F

ED

∫
( f̄n −E f̄n)

2dQ, (1.11)

where Q ∈ {P(n), P}. In §1.2 and Chapter 3 below, we will show that in the fixed design setting

(under Assumptions 1-3), ERM has a minimax optimal variance error term up to a multiplicative

absolute constant, i.e.

V( f̂n,F , P(n)) ≲M(F , P(n)). (1.12)

Furthermore, we will bound V( f̂n,F , P) for various models in the random design setting. In

particular, we will show that if F is a non-P-Donsker class (see Definition 5), then

V( f̂n,F , P) ≲M(n,F , P). (1.13)

Note that for P-Donsker classes (see Definition 4), the LSE is always minimax optimal; therefore

its variance error term is minimax optimal as well. This yields the following corollary:

Corollary (Informal). In the non-Donsker regime, the suboptimality of the LSE can only be due to

the bias error term.

Now is an appropriate time to inquire: Could our fixation on LSE and ERM procedures be

unnecessary? Specifically, are there generic estimators which can be applied to any model (F , P)
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and achieve minimax optimality? Alternatively, are there methods that can reduce the (potentially)

significant bias of LSE or ERM procedures?

Indeed, such estimators exist, including aggregation procedures, the star algorithm, and more

(cf. [Yan04] and the discussion sections in [RST17])10. But these estimators have a significant

limitation: all of them are based on constructing a minimal ϵ-net with respect to L2(P). As an

example, we present the simplest of these estimators, known as the sieve estimator [Gee00, Pgs.

184-185]. The main idea behind it is to restrict the LSE to choose elements in the ϵ-net instead of

the entire class F . Formally, for each ϵ ∈ (0, 1), we define

f̂ ϵ
n := argmin f∈Nϵ

n−1
n

∑
i=1

(Yi − f (Xi))
2, (1.14)

where Nϵ is defined as the minimal ϵ-net with respect to L2(P).

Intuitively, as ϵ→ 0, the approximation error (the distance between the true function f ∗ and

the best approximation f ∗ϵ to f ∗ in Nϵ) decreases, while the estimation error (the average distance

between f̂ ϵ
n and f ∗ϵ ) increases. It turns out that there exists a choice of ϵ that balances the two terms,

which is precisely the minimax rate ϵ∗, and f̂ ϵ∗
n is a minimax optimal estimator.

However, this approach has the fundamental limitation that constructing such an ϵ-net is in

general computationally hard; in most situations, the size of an ϵ∗-net is itself superpolynomial in

the number of samples n, and lack of convexity in the optimization problem (1.14) means that it

usually cannot be solved in polynomial time. This motivates the following question:

Question. Does a minimax optimal algorithm exist for non-Donsker classes that is both minimax

optimal and has a polynomial runtime in the number of samples?

If such an algorithm exists and is relatively simple to compute, it could potentially replace

ERM procedures in practice. Settling this question could have significant practical implications.

Regrettably, despite numerous efforts and attempts, we have not been able to fully resolve this

question. However, we have achieved one advance which indicates that there might be hope for a

10In an forthcoming publication titled “Local Risk Bounds for Entropy Regularized Aggregation”, Prof. N. Zhivo-
tovskiy, and his colleagues provided an aggregation method that does not use ϵ-nets. Nevertheless, it is important to
note that their procedure has a super-polynomial runtime in the number of samples.
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positive resolution in the future.

In the third part of this thesis, we introduce the first efficient minimax optimal algorithm for

the task of multivariate convex Lipschitz regression when the dimension d ≥ 5 – which is a

non-Donsker class. In this task, the LSE is provably minimax sub-optimal (a result of the author

that was discussed above) and exhibits poor performance when tested in practice. Moreover, all

previously known algorithms (approximately a dozen) are either provably minimax suboptimal or

do not come with any statistical guarantees on maximum risk. We believe that all of them can be

proven to be minimax sub-optimal. We remark that our algorithm has a runtime of order nO(d)

which is polynomial in the number of samples for fixed dimension d; prior to our work all known

minimax optimal algorithms had an exponential runtime in n.

In the final part of this thesis, we move away from the notion of maximum risk, aiming to

estimate the statistical performance of LSE under the most optimistic manner, that is its minimal

error. Namely,

inf
f ∗∈F

ED

∫
( f̂n − f ∗)2dQ,

where Q ∈ {P(n), P}.

Naturally, we aim to understand the following question: Is the minimal error of the LSE is

affected by the richness of the entire class F both in the fixed or random design setting?. In

this introduction, we only state our result in the fixed design, as in the random design it is more

complicated and requires more terminology.

In the fixed design setting, the answer to the aforementioned question is affirmative. Specifically,

for any fixed design measure P(n), under Assumptions 1-3, we demonstrate the following:

inf
f ∗∈F

ED

∫
( f̂n − f ∗)2dP(n) ≳Wx(F )2,

whereWx(F ) := Eξ sup f∈F
1
n ∑n

i=1 ξi f (xi) (and remember that ξ1, . . . , ξn ∼
i.i.d.

N(0, 1)).

The quantityWx(F ) is known as the Gaussian complexity, which is a fundamental measure in

many fields, including mathematical statistics and high-dimensional geometry [Wai19; AAGM15],

and will be used throughout this thesis. Roughly speaking, the Gaussian complexity measures the
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richness of the class in the fixed design setting. Therefore, the latter implies that the minimal error

(or the adaptive rate) of the LSE is lower bounded by the square of the Gaussian complexity of the

entire class.

Before we delve into the detailed results, let us outline the organization of this thesis and

introduce the common notation used throughout:

Organization: Chapter 2 and §1.1 are based on [KRG20]. Chapter 3 and §1.2 are based on

[KPR23]. Chapter 4 and §1.3 are based on [KP22]. Chapter 5 and §1.4 are based on [KR21].

Notation: The following notational conventions are used throughout this document:

• C, c with subscripts represent positive absolute constants. When these constants depend on

parameters such as p, p1, . . ., they will be denoted as c(p), C(p), . . . or c(p, p1), C(p, p1), . . ..

Note that the values of these constants may change from line to line and from section to

section.

• Pn signifies the uniform measure over X1, . . . , Xn, where X1, . . . , Xn ∼
i.i.d.

P. The notation

∥ · ∥n is used to represent the L2(P
(n)) norm in the fixed design setting, and L2(Pn) in the

random design setting.

• Standard big-O, Ω, and Θ notation is used, along with their parameterized versions Op1 , Ωp1 , Θp1

for some parameters p1. For example, O(n2) implies bounded above by Cn2 for some ab-

solute constant C ≥ 0, whereas Op1(n
2) implies bounded by C(p1)n2 for some constant

C(p1) depending only on p1.

• The design points and the noise vector are represented in vector form as X := (X1, . . . , Xn)

and ξ := (ξ1, . . . , ξn), respectively. For any finite-dimensional vector v, ∥v∥2 denotes its

Euclidean norm, and Sd−1 denotes the unit sphere in Rd, i.e. Sd−1 := {v ∈ Rd : ∥v∥2 = 1}.
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1.1 On the sub-optimality of least squares

Here, we give a new recipe for establishing a lower bound for the LSE’s risk in the non-Donsker

regime, both in fixed and random design. As an application, we complement the aforementioned

recent results by proving that there also exist “natural” non-Donsker families of functions, where

the LSE cannot achieve a rate faster than n−1/p, up to logarithmic multiplicative factors (such

as the class of support functions of convex bodies in Rd for d ≥ 6). In other words, for these

non-Donsker classes, the LSE is provably suboptimal. In this introduction, we only define the class

of support functions on convex bodies in Rd and presenting our sub optimality result on the LSE

when d ≥ 6. In Chapter 2 below, we present our approach, which involves a technical result giving

general conditions on a function class under which one can prove a lower bound for the risk of the

LSE. This approach is quite technical in its nature and necessitates the use of additional statistical

notions.

The sub-optimality of least squares for estimating a convex set

The task of estimating a convex set from noisy support function measurements is a classical and

known task in non-parametric statistics and geometric tomography [GKM06; Bru16; Bru13; Gun12;

Fis+97; BGS15; SC19a]. First, let us define the support function of a compact convex set K ⊂ Rd.

For any vector u ∈ Sd−1, where Sd−1 is the unit sphere in Rd, the support function hK : Sd−1 → R

is defined via

hK(u) = max
x∈K
⟨x, u⟩ .

The support function uniquely determines the compact convex set K and is a fundamental object in

convex geometry (see, for example, [Sch14, §1.7] or [Roc70, §13]). Consider now the problem of

estimating an unknown compact, convex set K∗ from observations (X1, Y1), . . . , (Xn, Yn) drawn

according to the model:

Yi = hK∗(Xi) + ξi for i = 1, . . . n

where X1, . . . , Xn are design points (fixed or random) and ξ1, . . . , ξn ∼
i.i.d.

N(0, 1). Recovery of K∗

is a fundamental problem in geometric tomography [PW90; Gar95]. The natural estimator in this
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problem is the LSE, here it is defined by

K̂n ∈ argminK∈Cd

n

∑
i=1

(Yi − hK(Xi))
2

where Cd denotes the class of all compact, convex sets in Rd. Basic properties and algorithms for

computing K̂n can be found in [PW90; LKW92] and [Kid+08]. Rigorous accuracy results for K̂n

as an estimator of K∗ ⊂ Bd (here Bd denotes the unit-Euclidean ball) were proved in [GKM06].

Specifically, [GKM06, Corollary 5.7] proved that, under the fixed design setting of any X1, . . . , Xn

(fixed points) that form a well-separated set (i.e. a set of n points on the unit-sphere that are at least

c(d)n−
1

d−1 far from each other),

R(hK̂n
, Cd(1), P(n)) ≤ Od(βn) where βn =


n−4/(d+3) for d = 2, 3, 4

n−4/(d+3) · log n for d = 5

n−2/(d−1) for d ≥ 6.

(1.15)

where P(n) denotes the uniform measure on these n-well separated points.

Complementarily, [Gun12] proved that the minimax rate of estimation in this problem equals

Θd(n−4/(d+3)) for all d ≥ 2. These two results combined imply that the least squares estimator K̂n

is minimax optimal for d = 2, 3, 4 and nearly minimax optimal (up to the logarithmic multiplicative

factor log n) for d = 5. However, there is a gap between the upper bound Od(n−2/(d−1)) on the

rate of convergence of the least squares estimator (1.15) and the minimax rate Θd(n−4/(d+3)) for

d ≥ 6. This gap has remained open since the paper [GKM06] where it was suggested that the upper

bound is accurate and that the least squares estimator is indeed minimax suboptimal for d ≥ 6. The

goal of this section is to confirm the long-standing conjecture of [GKM06].

Specifically, we will use our recipe that appears below, to prove that the LSE is suboptimal for

d ≥ 6, in the sense that there exist sets for which the rate of convergence for LSE is bounded from

below by Ωd(n−2/(d−1)) up to a logarithmic multiplicative factor. Before, we state our theorem,

we denote by Cd(1) := {K ∈ Cd : K ⊂ Bd}, and by U(Sd−1) to be the uniform distribution on

Sd−1.
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Theorem 3. Let d ≥ 6 and n ≥ d + 1. Suppose that X1, . . . , Xn ∼
i.i.d.

U(Sd−1), then there exist a

positive constants γd depending only on d such that

R(hK̂n
, Cd(1), U(Sd−1)) = Ωd(n−2/(d−1) log(n)−γd).

Note that hK̂n
in not restricted to Cd(1), i.e. it can return any convex set in Rd. We emphasize

the our proof implies that the same bound will be valid for the restricted LSE over Cd(1), hence

this result is consistent with our assumptions on non-Donsker classes that appeared above. The

proof of the corollary can be modified to hold for any fixed design of n well-separated points. The

modification will follow from the fact that n well-separated points are a discrete approximation to

the uniform measure on the sphere. Therefore, we settle the question in [GKM06].

Remark 5. In the random design setting, our result is valid for any density g(x) on the sphere, such

that g(x) ≥ c1(d) for all x ∈ Sd−1.

1.2 On the Variance, Admissibility and Stability of Empirical

Risk Minimization

The study of asymptotic consistency of Maximum Likelihood has been central to the field for

almost a century [Wal49]. Along with consistency, failures of Maximum Likelihood have been

thoroughly investigated for nearly as long [NS48; Bah58; Fer82]. In the context of estimation of

non-parametric models, the seminal work of [BM93] provided sufficient conditions for minimax

optimality (in a non-asymptotic sense) of Least Squares while also presenting an example of a

model class where this basic procedure is sub-optimal. Three decades later, we still do not have

necessary and sufficient conditions for minimax optimality of Least Squares when the model class

is large. While the present work does not resolve this question, it makes several steps towards

understanding the behavior of Least Squares — equivalently, Empirical Risk Minimization (ERM)

with square loss — in large models.

Beyond intellectual curiosity, the question of minimax optimality of Least Squares is driven by
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the desire to understand the current practice of fitting large or overparametrized models, such as

neural networks, to data (cf. [BRT19; Bar+20]). At the present moment, there is little theoretical

understanding of whether such unregularized data-fitting procedures are optimal, and the study of

their statistical properties may lead to new methods with improved performance.

In addition to minimax optimality, many other important properties of Least Squares with large

models are yet to be understood. For instance, little is known about its stability with respect to

perturbations of the data. It is also unclear whether approximate minimizers of empirical loss enjoy

similar statistical properties as the exact solution. Conversely, one may ask whether in the landscape

of possible solutions, a small perturbation of Least Squares itself is a near-optimizer of empirical

loss.

In this part of the thesis, we provide novel insights into the aforementioned questions for convex

function classes in various settings. In details, we show the following:

1. We prove that in the fixed design setting, the variance term of ERM agrees with the minimax

rate of estimation; thus, if the ERM is minimax suboptimal, this must be due to the bias term

in the bias-variance decomposition (see Theorem 8 in §3.4.1 below). We remark that this

result implies Eq. (1.12) that appeared above.

2. In the random design, using tools from empirical processes theory, we provide an upper

bound for the variance error term under a uniform boundedness assumption on the class (see

Theorem 13 in §3.2.1 below). This bound also implies that under classical assumptions in

empirical process theory, the variance error term is minimax optimal (see Corollary 4 in

§3.2.1 below). In particular, it also covers our definition of the “non-Donsker” regime (see

Def. 5 above), and therefore it implies Eq. (1.13) above.

3. In the random design setting, we prove that under an isoperimetry assumption on the noise,

the expected conditional variance error term (in terms of the total law of variance) of ERM

is upper bounded by the “lower isometry” remainder, a parameter we introduce following

[BBM05; Men14] (see Theorem 14 in §3.2.2 below).

Furthermore, under an additional isoperimetry assumption on the covariates, we prove that the
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variance of ERM is upper bounded by the lower isometry remainder on any robust learning

architecture (namely, a class that all its functions are O(1)-Lipschitz) that almost interpolates

the observations. (cf. [BS23]) (see Theorem 15 in §3.2.2 below).

4. It is known that ERM is always admissible in the fixed design [Cha14; CGZ17], in the sense

that for any convex class F , there is no estimator that can have a lower error than ERM (up to

a multiplicative absolute constant) on every regression function. We provide a short proof of

this result for fixed design via a fixed-point theorem (see Theorem 11 and Corollary 2 below).

Using the same method, we also prove a somewhat weaker result in the random design case,

generalizing the main result of [Cha14] (see Theorem 16 below).

5. We show that ERM is stable, in the sense that all almost-minimizers (up to the minimax rate)

of square loss are close in the space of functions. This result is a non-asymptotic analogue

of the asymptotic analysis in [CR06], and extends its scope to non-Donsker classes (see

Theorems 8 and 13 below).

6. While any almost-minimizer of the square loss is close to the minimizer with respect to

the underlying population distribution, the converse is not true. We prove that for any non-

Donsker class of functions, there exists a target regression function such that, with high

probability, there exists a function with high empirical error near the ERM solution; this

means that the landscape of near-solutions is, in some sense, irregular (see Theorem 12

below).

1.3 Efficient Minimax Optimal Estimators For Multivariate

Convex Regression

Let Ω be a convex set in Rd that lies in the (Euclidean) ball with radius one, denoted by Bd, i.e.

Ω ⊂ Bd; and let F (Ω) be the class of all convex functions that their domain is Ω. In this part, we

consider the following sub-classes of F (Ω):

1. FL(Ω) – the class of convex L-Lipschitz functions supported on a polytope Ω.
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2. FΓ(Ω) – the class of Γ-uniformly bounded convex functions supported on a polytope Ω.

These tasks are known as L-Lipschitz convex regression [SS11] and Γ-bounded convex regression

[HW16], respectively. For reasons that will become apparent later, we always take d ≥ 5 (which,

unsurprisingly, corresponds to the non-Donsker regime of these tasks, see Definition 5). In our

work, we further assume that P satisfies the following condition:

Assumption 6. P is uniformly bounded on its support by some constants c(d), C(d) > 0, namely,

c(d) ≤ dP
dx (x) ≤ C(d), for all x ∈ Ω. Furthermore, P is known to us (i.e. we know the density of

P on each point in Ω).

Convex regression tasks have been a central concern in the “shape-constrained" statistics

literature [DL12], and have innumerable applications in a variety of disciplines, from economic

theory [Var82] to operations research [PT03] and more [Bal16]. In general, convexity is extensively

studied in pure mathematics [AAGM15], computer science [LV07], and optimization [BBV04]. We

remark that there is a density-estimation counterpart of the convex regression problem, known as

log-concave density estimation [Sam18; CSS10], and these two tasks are closely related [KDR19;

KS16].

Due to the appearance of convex regression in various fields, it has been studied from many

perspectives and by many different communities. For example, in the mathematical statistics

literature the minimax rates of convex regression tasks and the risk of the maximum likelihood

estimator (MLE) are the main areas of interest; an incomplete sample of works treating this problem

is [Gun12; GS13; Gar95; GW17; KRG20; Han19; Bru13; DSS18; DKS16; Car+18; KDR19;

BGS15]. In operations research, work has focused on the algorithmic aspects of convex regression,

i.e., finding scalable and efficient algorithms; see, e.g., [Gho+21; Bru16; OC21; SC21; Bal16;

Maz+19; CM20; BM21; Sia+21; Sim+18; HD12; Bla+19; LST20; CMS21; Bal22]. Initially, convex

regression was mostly studied in the univariate case, which is now considered to be well-understood.

Multivariate convex regression has only begun to be explored in recent years, and is still an area of

active research.

The naive algorithm for any variant of the convex regression task is the LSE, which is defined
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via

f̂n ∈ argmin f∈F
1
n

n

∑
i=1

(Yi − f (Xi))
2,

where F = FL(Ω) or F = FΓ(Ω) in our convex regression tasks. From a computational point of

view, the LSE can be formulated as a quadratic programming problem with O(n2) constraints, and

therefore can be computed in polynomial runtime in n [SS11; HW16]; however, the LSE has been

seen empirically not to be scalable for large number of samples [CM20].

From a statistical point of view, the minimax rates of both of our convex regression tasks are

Θd,L,σ(n
− 4

d+4 ) and Θd,Γ,σ,Ω(n
− 4

d+4 ) (respectively) for all d ≥ 1 [GW17; Bro76; YB99]. The LSE

is minimax optimal only in low dimension, when d ≤ 4 [BM93], while for d ≥ 5 it attains a

suboptimal risk of Θ̃d(n−
2
d ) [Kur+20]. The poor statistical performance of the LSE for d ≥ 5 has

also been verified empirically [GKM06; Gho+21]. There are known minimax optimal estimators

when d ≥ 5, yet all of them are computationally inefficient. Moreover, all of them are based on

some sort of discretization of the relevant function classes, i.e., they consider some ϵ-nets (see

Definition 2 above). In our tasks, these algorithms require examining nets of cardinality that is

exponential in the number of samples, and are thus perforce inefficient [RST17; Gun12].

The empirically-observed poor performance of the LSE and the computational intractability

of known minimax optimal estimators have motivated the study of efficient algorithms for convex

regression with better statistical properties than the LSE; an incomplete list of relevant works

appears above. However, previously studied algorithms are either provably minimax suboptimal

or do not provide any statistical guarantees at all with respect to the minimax risk. We would

however like to mention the “adaptive partitioning” estimator constructed in [HD13], which is the

first provable computationally efficient estimator for convex regression which has been shown to be

consistent in the L∞ norm. The authors’ approach is somewhat related to our proposed algorithm,

but it is unknown whether their algorithm is minimax optimal.

Our main results are the existence of computationally efficient minimax optimal estimators for

the task of multivariate Lipschitz convex regression and bounded convex regression under polytopal

support. Specifically, we prove the following results:

Theorem 4. Let d ≥ 5 and n ≥ d+ 1. Then, under Assumption 6, for the task of L-Lipschitz convex
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regression on a convex polytope Ω ⊂ Bd, there exists an efficient estimator, f̂L,n, with runtime of at

most nO(d) such that

R( f̂L,n,FL(Ω), P) ≤ (σ + L)2n−
4

d+4 log(n)h(d) + C(Ω)n−
d

d+4 log(n)2·h(d), (1.16)

where h(d) ≤ 3d and C(Ω) is a constant that only depends on the polytope Ω.11

Theorem 4 gives a minimax optimal estimator in many natural cases; e.g., it applies when the

polytope Ω is assumed to have only C(d) vertices or facets, where C(d) is a constant that only

depends on d; this class includes, for instance, the unit cube, the simplex, and the ℓ1 ball. Then by

[McM70], the second term in our bound is of order Õd(n
− d

d+4 ), which is strictly smaller than the

minimax rate Θd(n
− 4

d+4 ).

Remark 6. In the future extended version of the manuscript that this part is based on, we remove the

redundant term that depends on Ω. Specifically, we show that

R( f̂L,n,FL(Ω), P) ≤ (σ + L)2n−
4

d+4 log(n)h(d)

for any convex domain Ω ⊂ Bd. The proof for an arbitrary convex body Ω involves a technical (and

quite standard) detour through tedious techniques in stochastic geometry, and is therefore omitted

in this version.

Our second main result, concerning bounded convex regression, is proved in the same way as

Theorem 4, using the entropy bounds of [GW17].

Theorem 5. Let d ≥ 5 and n ≥ d + 1. Then, under Assumption 6, for the task of Γ-bounded convex

regression on the polytope Ω ⊂ Bd, there exists an efficient estimator, f̂ Γ,n, with runtime of at most

Od(nO(d)) such that

R( f̂ Γ,n,FΓ(Ω), P) ≤ C1(Ω)(σ + Γ)2n−
4

d+4 log(n)h(d),

where h(d) ≤ 3d and C1(Ω) is a constant that only depends on Ω.

11Specifically, it depends on the flags number of polytope Ω (cf. [RSW19]).
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As we mentioned earlier, for both of these two tasks the minimax rate is of order n−
4

d+4 , so up

to polylogarithmic factors in n, the above estimators are minimax optimal. We note that in Theorem

5, the dependence of the constants on the polytope Ω is unavoidable (differently from Theorem 4).

This follows from the results of [GW17; HW16], in which the authors showed the geometry of the

support of the measure P affects the minimax rate of bounded convex regression. For example, in

the extreme case Ω = Bd, the minimax rate is of order n−
2

d+1 , which is asymptotically larger than

the error rate for polytopes; thus, if we take a sequence of polytopes Ωn which approaches Bd, the

sequence of constants C(Ωn) will necessarily blow up.

We consider our results as mainly a proof-of-concept for the existence of efficient estimators for

the task of convex regression when d ≥ 5. Due to their high polynomial runtime, in practice our

estimators would probably not work well. However, as we mentioned above, the other minimax

optimal estimators in the literature are computationally inefficient, and they all require consideration

of some net of exponential size in n; our estimator is conceptually quite different. We hope that

insights from our algorithm can be used to construct a practical estimator with the same desirable

statistical properties. From a purely theoretical point of view, our estimators are the first known

minimax optimal efficient estimators for non-Donsker classes for which their LSE are provably

minimax suboptimal in L2(P). Prior to this work, there were efficient optimal estimators for

non-Donsker classes such that their corresponding LSE is provably efficient and optimal (such as

log-concave density estimation and isotonic regression, cf. [KDR19; Han+19; Han19; PS22]). Our

work should be contrasted with these earlier works. We show that it is possible to overcome the

suboptimality of the LSE with an efficient optimal algorithm in the non-Donsker regime - a result

that was unknown before this work.

We prove Theorems 4 and 5 in Chapter 4 below, we remark that the proof of Theorem 5 uses the

same method as that of Theorem 4, along with the main result of [GW17, Thm 1.1]. We conclude

this part with the following remarks:

Remark 7.

1. We conjecture that the estimators of Theorems 4 and 5 are minimax-optimal up to constants

that only depend on d, σ, i.e the. log(n) factors are unnecessary.
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2. Our estimators’ runtime is of order nO(d), which is significantly higher than the Od(n2)

runtime of the suboptimal Least Squares.

3. When d ≥ 5, one can show that when f ∗ is a max k-affine function (restricted to P ⊂ Bd),

i.e. f ∗1P(x) = max1≤i≤k a⊤i x + bi, our estimator attains a parametric rate, i.e.

E

∫
( f̂ Γ − f ∗)2dP ≤ Õd

(
C(P, k)

n

)
.

When d ≤ 4, [HW16] showed that LSE attains a parametric rate as well. However, when

d ≥ 5, the LSE attains a non-parametric error of Θ̃d(C(P, k)n−4/d) ([Kur+20]; for a more

general result see [KR21]). Therefore, our algorithm has the proper adaptive rates when

d ≥ 5; see [Gho+21] for more details.

4. An interesting property of our estimator is that the random design setting, i.e. the fact

that data points X1, . . . , Xn are drawn from P rather than fixed, is essential to its success,

a phenomenon not often observed when studying shape-constrained estimators. Usually

these estimators also perform well on a “nice enough" fixed design set, for example when

Ω = [−1/2, 1/2]d and X1, . . . , Xn are the regular grid points.

1.4 On the Minimal Error of Empirical Risk Minimization

Suppose a “simple” classH of models captures the relationship between the covariates X and the

response variable Y. Inspired by the use of overparameterized models, we may take a much larger

classH ⊂ F for computational or other purposes (such as lack of explicit description ofH) and

minimize training loss over this larger class.

It is natural to ask whether the learning procedure can adapt to the fact that data comes from a

simple model f ∗ ∈ H, in the sense that the prediction error depends on the statistical complexity

of H rather than F . We do have positive examples of this type: the least squares solution over

the class of all convex functions F on a convex compact subset of Rd (with d ≤ 4) automatically

enjoys the faster “parametric” rate Õ(1/n) of convergence to the true regression function f ∗ ∈ H,
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whereH constitutes the k-max affine convex functions with k = O(1) pieces. This rate should be

contrasted with the slow non-parametric rate Θ(n−4/(d+4)) when the true regression function is

‘complex’ and cannot be approximated well by a piece-wise linear convex function.

How generic is this phenomenon of automatic adaptivity of empirical minimizers to simplicity

of the true model? An affirmative answer would lend credibility to the practice of taking large

models, whereas a negative answer would necessitate the study of conditions that can make such

adaptivity possible.

This papt of this thesis, studies the fundamental limits of adaptivitiy of LSE in the setting of

nonparametric regression, in both random and fixed design. In contrast with the standard minimax

approach to lower bounds, which may hide the true performance of LSE on simple models, we focus

on lower bounds that hold for any (rather than the worst-case) regression function in a given class.

In the fixed design setting, we show that—informally speaking—for rich classes F , dependence on

the global statistical complexity of the class is unavoidable, as it controls the error of LSE for any

true regression function f ∗, no matter how ‘simple’ it is. In contrast, in the random design case, the

situation is more subtle. Somewhat counter-intuitively, we show that for rich classes F , adaptation

to the simplicity of f ∗ may only be possible if the local neighborhood of f ∗ in F is nearly as

rich as the class F . This finding can be viewed through the lens of recent results on interpolation

[BRT19; BHM18; Bar+20; LR20]. In these papers, the solutions can be seen as ‘simple-plus-spiky’

[Wyn+17] with spikes responsible for fitting the training data without affecting the error with

respect to the population. Since in these models there are enough degrees of freedom to fit any noisy

data, the effective function classes have rich local neighborhoods. In such cases, it is still possible

that “overfitting” to the training data does not result it large out-of-sample error. Conversely, we

show that—again, informally speaking—if f ∗ is embedded in a local neighborhood in F with low

complexity, the empirical minimizer will necessarily be attracted to a solution far away from f ∗

with respect to the out-of-sample loss. This finding initially appeared counter-intuitive to the author

of this thesis. We discuss and provide the main results (and their proofs) in Chapter 5 below.
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Chapter 2

On the Sub-Optimality of Least Squares in

the non-Donsker Regime

In this chapter, we will provide our general recipe to prove a lower bound of order n−1/p on the

risk of the LSE (as we promised in §1.1). In this chapter, ≍,≳,≲, denote equality/inequality up to

a multiplicative constant that only depends on p (or d in the case the support function of convex

functions).

In order to provide a good intuition for this recipe, we begin with describing our approach which

motivated our novel technique:

Sketch to our approach: First, as we discussed in the preceding chapter, the minimax rate for

a function class (F , P) is determined by its ϵ-entropy numbers, which is a measure of the global

geometry of (F , P). However, the error rate of the LSE on a function f ∗ is determined by the local

“complexity” (which will be the Gaussian complexity) of F in the neighborhood of f ∗ (cf. [Cha14]).

The possible disparity between this local “complexity” for certain choices of f ∗ and between the

global geometry is the engine behind our result. To explain what we mean requires the introduction

of an additional notion, the Gaussian complexity, which is tightly linked to the metric entropy and

to the error of the LSE. As a warm up, we first provide a rough sketch of our recipe.

First, recall that definition of the Gaussian complexity, that is defined for a class G ⊂ {X → R}
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and n data points x1, . . . , xn ∈ X , as

Wx(G) = E sup
f∈G

1
n

n

∑
i=1

ξi f (xi), (2.1)

where ξ1, . . . , ξn ∼
i.i.d.

N(0, 1). We denote the t-neighbourhood around f0 (in terms of L2(P
(n))) by

Bn( f0, t) := { f ∈ F : ∥ f − f0∥n ≤ t} .

Our main tool for lower-bounding the risk of the LSE is a result of [Cha14] which states that the

error of the LSE on an underlying function f ∗ is given by ϵ2
LSE, where

ϵLSE := argmaxϵ≥0 H f ∗(ϵ), (2.2)

where

H f ∗(ϵ) =Wx(Bn( f ∗, ϵ))− ϵ2

2
. (2.3)

It turns out that the function H f ∗(ϵ) is strictly concave – indeed, it is easy to see thatWx(Bn( f ∗, ϵ))

is concave by the convexity of F , and − ϵ2

2 is certainly concave.

Recall that the entropy numbers of a non-Donsker class (see Definition 5 above) behaves as

logN (ϵ,F , P(n)) ≍ ϵ−p for some p > 2; and the minimax rate is given by ϵ2
∗ ≍ n−

2
p+2 . Hence,

in order to show that the LSE is suboptimal on a given class F , we must find some function f ∗ ∈ F

such that the ϵ maximizing (2.2) is asymptotically larger than n−
1

p+2 .

Our strategy for doing this is as follows: we find a function f0 ∈ F whose local complexity is

“large” at the scale n−1/p, i.e.,Wx(Bn( f0, n−1/p)) ≳ n−1/p, and another function f(n) at distance

of order n−1/2p from f0 such thatWx(Bn( f(n), t)) ≲ n−1/2pt for t ≤ c1n−1/2p. (This sketch is

valid up to polylogarithmic factors in the number of samples.)

For large enough C > 0, the C · n−1/2p-neighborhood of f(n) contains an n−1/p-neighborhood

of f0 and hence its width is bounded below byWx(Bn( f , n−1/p)) ≳ n−1/p. At first glance, this
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does not seem to control the behavior of the function

H f(n)(ϵ) =Wx(Bn( f(n), ϵ))− ϵ2

2

for ϵ ≍ n−1/2p, since n−1/p and (n−1/2p)2 have the same asymptotic order. However, using the

fact that the function t 7→ Wx(Bn( f(n), t))/t is decreasing (under Assumption 1), we are able to

obtain that H f(n)(C1n−1/2p) ≥ C2n−1/p for some other constants C1, C2.

On the other hand, using the lower boundWx(Bn( f(n), t)) ≤ C3n−1/2pt for t ≤ cn−1/2p one

obtains

H f(n)(c2n−1/2p) ≤ Wx(Bn( f(n), C · n−1/2p)) ≤ C3n−1/2p · c2n−1/2p = c2C3n−1/p

and choosing c2 small enough one obtains that H f(n)(c2n−1/2p) ≤ H f(n)(C2n−1/2p), which implies

by the concavity of H f(n) that argmaxϵ H f(n)(ϵ) ≥ c2n−1/2p ≫ n−1/(p+2), and hence that the

squared error of the LSE on f(n) ∈ F is asymptotically larger than the minimax rate, as claimed.

We make two further remarks to guide the reader before proceeding to the formal statement of

our assumptions and results. First, in order to study the Gaussian complexity of different subsets

of F , we use standard inequalities – Sudakov’s and Dudley’s inequalities – which connect the

Gaussian complexity of a set to its entropy numbers; it is often much easier to compute the entropy

numbers of a set than to bound the Gaussian complexity directly. Thus, the assumptions under

which our general theorem (Theorem 6) holds are phrased in terms of entropy numbers.

Second, in the application of our general results to the class of support functions of convex

bodies, the choice of f0 and f(n) is quite natural – f0 is simply the support function of the Euclidean

ball, while f(n) will be the best polytopal approximation to the ball with
√

n-vertices. This concludes

the sketch of our approach.
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2.1 The Sub-Optimality Recipe

We start by stating assumptions that imply sub-optimality of LSE in a fixed design. Then, we extend

these assumption to the random design setting. Later, these assumptions will be verified in the case

of support functions of convex sets in Rd.

Assumption 7. [S.O. Assumptions: Fixed design] Let p > 2 and n ≳ 1. Assume there are two

functions f0, f(n) ∈ F such that for some β, γ ≥ 0,

logN (ϵ, Bn( f0, 2ϵ), P(n)) ≳ ϵ−p ∀ ϵ ≳ n−1/p log(n)γ. (2.4)

Furthermore, suppose

∥ f(n) − f0∥n ≲ n−
1

2p log(n)−sp,γ , (2.5)

where sp,γ = γ
2 (

p
2 − 1), and either

logN (ϵ, Bn( f(n), t), P(n)) ≲
√

n log(n)p·sp,γ

(
log

1
ϵ

)β ( t
ϵ

)p
(2.6)

for every n−
1
p log(n)−sp,γ ≲ ϵ ≤ t ≲ n−

1
2p log(n)−

β
p−

3sp,γ
2 or a weaker condition

Wx(Bn( f(n), t)) ≲ n−
1

2p log(n)
β
p+sγ,p t, (2.7)

for some t ≲ n−
1

2p log(n)−
β
p−

3sp,γ
2 holds.

The following theorem establishes that under the aforementioned assumptions, the rate of

convergence of the LSE is bounded below by n−1/p, up to a poly-logarithmic multiplicative factor.

Theorem 6. Let n ≥ 1 and (F , P(n)). Then, under Assumptions 1,2,3, and Assumption 7 for some

p > 2, the following holds:

R( f̂n,F , P(n)) ≳ n−
1
p log(n)−

2β
p −3sp,γ .

We shall next extend Theorem 6 to the random design setting. Recall that in this setting, the
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design points X1, . . . , Xn ∼
i.i.d.

P and we denote by Pn the random empirical measure of X1, . . . , Xn

and ∥ · ∥n denotes the L2(Pn) and ∥ · ∥ denotes the L2(P) norm.

It is sufficient for our purposes to establish a quasi-isometry with high probability, i.e.

∀ f , g ∈ F , 2−1∥ f − g∥n − dn ≤ ∥ f − g∥ ≤ 2∥ f − g∥n + dn, (2.8)

for some remainder dn that decays to zero with increasing n. In the case of uniformly bounded

functions, sufficient conditions for the two-sided inequality (2.8) can be found in the literature on

local Rademacher averages (see e.g., [Bou02; BBM05]), while the right-hand side of (2.8) holds

under weaker conditions [KM13; Men14; Men17]. For the purpose of proving lower bounds for

random design, however, we need the more demanding left-hand side of (2.8). Hence, we shall

assume that functions in F are uniformly bounded.

In addition, we assume the following:

Assumption 8. The growth of Koltchinskii-Pollard entropy for all ϵ ∈ (0, 1) satisfies the following:

sup
n∈N

sup
Q∈Pn

logN (ϵ,F , Q) ≍
(F ,P)

logN (ϵ,F , P) (2.9)

where Pn denotes the set of all probability measures supported on finite subsets of X of

cardinality at most n. Under this assumption, with high probability dn ≲ (log n)2n−1/p [RST17].

This will allow us to reduce the random design setting to a fixed design and use Theorem 6, since

the remainder (dn)2 is of the lower order than n−1/p.

To establish a lower bound for LSE in random design, we may verify that above assumptions

(2.4), (2.5), (2.6) hold with high probability for random measures Pn and employ near-isometry for

the distance between LSE and the regression function. Alternatively, it may be easier to verify the

corresponding assumptions in the population. We now state this latter approach.

Assumption 9. [S.O. Assumptions: Random Design] Let p > 2. Assume there exists a function

f0 ∈ F such that for every integer m ≳ 1, there exists f(m) ∈ F such that

logN (ϵ, B( f0, 2ϵ), P) ≳ ϵ−p ∀ϵ ∈ (0, 1) (2.10)
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and

∥ f(m) − f0∥ ≲ m−
1
p . (2.11)

Furthermore, for some β ≥ 0

logN[](ϵ, B( f(m), t), P) ≲ m
(

log
1
ϵ

)β ( t
ϵ

)p
, (2.12)

for every 0 < ϵ ≤ t ≲ log(m)−β/pm−1/p.

We remark that Assumption (2.10) is satisfied for non-Donsker classes of functions (cf. [YB99,

Lemma 3] for the proof of existence). The following is our lower bound for the random-design

setting:

Corollary 1. Let n ≥ 1 and (F , P). Then, under Assumptions 1,2,4,8 and Assumption 9 for some

p > 2, the following holds:

R( f̂n,F , P) ≳ n−
1
p log(n)−

2β
p −3( p

2−1).

Remark 8. In some cases it may be possible to relax Assumptions 8 and 4 in Corollary 1. For exam-

ple, when (F , P) satisfies a small-ball condition or L2-L4 entropy condition [Men14; Kur+20]).

The ideas behind our assumptions: Equation (2.10) says that the neighborhood around f0 has

high “complexity”. Next, Equation (2.11) states that f0 is approximated by f(n) up to the accuracy

n−1/p for every n. Finally, Equation (2.12) captures the “simplicity” of the functions f(n) in relation

to the complex function f0 satisfying (2.10). Note that when t = O(ϵ), the right hand side of

(2.12) is logarithmic in ϵ (assuming that n is not too large) while the right hand side of (2.10) is

polynomial in 1/ϵ. Thus the local neighborhood of f(n) is smaller than that of f0 and in this sense

f(n) is simpler than f0. Note also that there is a factor of m on the right hand side of (2.12) which

means that the complexity of the functions f(n) increases with n. There exist natural non-Donsker

function classes F which satisfy (2.10), (2.11) and (2.12). For example, we show that the class of

support functions of compact convex sets in Rd satisfies these properties with f0 being the support

42



function of the unit ball, and f(m) the support function of a regular polytopal approximation to the

unit ball with m vertices. In a twin paper of the author of this thesis [Kur+20], provide more classes

that satisfy these properties.

The proof of Theorem 6 will reveal that f̂n achieves the rate n−1/p (up to logarithmic factors)

when the regression function is in the class { f(m), m ≥ 1}. In fact, the specific function achieving

the rate n−1/p is f ∗ = f(m) for m ≍
√

n. It is interesting to note that for m ≍
√

n and t ≍ n−1/2p,

the local neighborhood Bn( f(m), t) has the same metric entropy as the right hand side of (2.10). Our

main technical insight is that the sub-optimality occurs at a function f ∗ = f(m) instead of perhaps a

more natural candidate function such as f0 (we actually believe that the rate at f0 may be equal to

Θp(n−2/(2+p))).

2.1.1 The non-Donsker regime – revisited

The recent results on families in the non-Donsker regime [KDR19; Han19; Car+18; Kur+20;

Han+19] and the our results, the LSE may be optimal or sub-optimal in the non-Donsker regime

for natural classes of functions, even if uniformly bounded. These results also indicate that LSE

achieves a risk that equals to the Gaussian complexity of the class, up to a constant that depends on

dimension. Namely, in contrast to the Donsker regime, there is no localization. In the problem of

convex regression with uniformly bounded functions and Euclidean ball as domain, as well as in

multiple isotopic regression, the minimax rate equals to the Gaussian complexity of the family. In

contrast, by Theorem 3, for support function regression and for convex uniformly bounded regression

(or Lipshitz-convex regression) with support on the cube [Kur+20], the Gaussian complexity differs

from the minimax rate.

2.2 Proofs

Notation Throughout this text, c, C with subscripts are positive absolute constants that do not

depend on the dimension d. Additionally, positive constants that only depend on the dimension or

on p are explicitly denoted, respectively, by c(d), C(d), c(p), C(p). These constants may change
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from line to line, and from section to section Õ(·), Ω̃(·) denotes behavior up to logarithmic factors

in n or ϵ. Also, remember the notation ∥ · ∥2, which represents the Euclidean norm in Rd.

2.2.1 Proof of Theorem 6

Our main technical tool is the following important result of [Cha14] which gives sharp upper and

lower bounds for the accuracy of an LSE over a convex family of functions in the fixed-design

setting. We use the following notation in this result.

Theorem 7. [[Cha14, Theorem 1.1]] Let F be a convex family of functions and consider the LSE

for the fixed design setting. Let

t f := argmaxt≥0 H f (t) where H f (t) :=Wx(Bn( f , t))− t2

2
. (2.13)

Then, t f is unique, H f (·) is a concave function, and we have

Pr
{

0.5t2
f ≤ ∥ f̂n − f ∥2

n ≤ 2t2
f

}
≥ 1− 3pn, (2.14)

where pn = exp
(
−cnt2

f

)
.

The proof of Theorem 6 is reduced to the following “two points” lemma that is mainly based on

Theorem 7. The notation f(n) is to emphasize the fact that f(n) is a function that is chosen based on

the number of samples.

Lemma 1. [Lower bound for fixed design] Let f0, f(n) ∈ F , and rn ≥ Cn−1/4, δn, wn, sn be

positive constants. Also, let w′n = max{ r2
n

8δn
, wn}, and assume the following:

• Wx(Bn( f0, sn)) ≥ r2
n

• ∥ f(n) − f0∥n ≤ δn, and rn ≤ 2δn, sn ≤ δn.

• Wx(Bn( f(n), t)) ≤ w′nt for some t ≤ r4
n

16δ2
nw′n

.
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Then, when Yi = f(n)(xi) + ξi, the following holds with high probability

∥ f̂n − f(n)∥2
n ≥ c ·min

{
r8

n
δ4

nw2
n

,
r4

n
δ2

n

}
.

Proof of Lemma 1. By Theorem 7, it is enough to show that t f(n) is greater than r4
n

16δ2
nwn

. Namely,

the functional H f(n)(·) attains its unique maximum on a t f(n) ≥
r4

n
16δ2

nwn
. First, using the second

assumption and the upper bound on δn, we see that

Bn( f0, sn) ⊆ Bn( f(n), ∥ f(n) − f0∥n + sn) ⊆ Bn( f(n), 2δn).

By the convexity of F , the function t 7→ Wx(Bn( f(n), t))/t is nonincreasing. Therefore, by the

first assumption and the above inclusion, for all t ≤ 2δn

Wx(Bn( f(n), t)) ≥ r2
n

2δn
t.

Now, by the last equation and the second assumption, we know that for t1 = r2
n

2δn
≤ 2δn

H f(n)(
r2

n
2δn

) =Wx(Bn( f(n),
r2

n
2δn

))−

(
r2

n
2δn

)2

2
≥ r2

n
2δn
·
(

r2
n

2δn

)
−

(
r2

n
2δn

)2

2
≥ r4

n
8δ2

n
.

Finally, by the last assumption, we know that for t2 = r4
n

16δ2
nw′n

< t1 the following holds:

H f(n)(
r4

n
16δ2

nw′n
) ≤ Wx(Bn( f(n),

r4
n

16δ2
nw′n

)) ≤ w′n
r4

n
16δ2

nw′n
=

r4
n

16δ2
n

.

Since H f(n)(·) is concave in t, we conclude by the last two equations that t f(n) ≥
r4

n
16δ2

nw′n
and the

claim follows from Theorem 7.

In addition to Lemma 1, we need the following two standard facts (which can be found, for

example, in [Kol11]) to prove Theorem 6.

45



Lemma 2 (Sudakov Minoration). There exists a universal positive constant c ≥ 0 such that the

following holds for any class F of real-valued functions:

Wx(F ) ≥ c · sup
ϵ>0

ϵ
√

logN (ϵ,F , P(n))/n.

Lemma 3 (Dudley Integral). There exists a universal positive constant C ≥ 0 such that the

following holds for any class F of real-valued functions:

Wx(F ) ≤ C · inf
ϵ>0

(
ϵ +

1√
n

∫ Diam
P(n) (F )/2

ϵ

√
logN (u,F , P(n))du

)
,

where diam
P(n)(F ) is the diameter of F with respect to L2(P(n)).

Proof of Theorem 6. We aim to apply Lemma 1. In order to satisfy its first assumption, we need to

estimate the Gaussian width of Bn( f0, C3n−1/p log(n)γ). By Lemma 2 and Eq. (2.10)

Wx(Bn( f0, C3n−1/p log(n)γ)) ≥ C√
n

sup
ϵ≥C1n−1/p log(n)γ

{
ϵ
√

logN (ϵ, Bn( f0, C3n−1/p log(n)γ), P(n))

}
≥ c3(p)n−

1
p log(n)−γ(

p
2−1),

(2.15)

where we chose ϵ = C1(p)n−1/p log(n)γ. Now, we aim to upper boundWx(Bn( f(n), t)) when

t = c1(p)n−
1

2p log(n)−
β
p−

3γ
2 (

p
2−1),
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for some suitable c1(p). By using Lemma 3, and Eq. (2.11), we see that

Wx(Bn( f(n), t)) ≤ C inf
ϵ>0

(
ϵ +

1√
n

∫ t

ϵ

√
logN (u, Bn( f(n), t), P(n))du

)

≤ C inf
ϵ>0

ϵ +
C2(p)√

n

∫ t

ϵ

 tn
1

2p log(n)
γ
2 (

p
2−1) log(u−1)

β
p

u


p
2

du


≤
(∗)

C inf
ϵ>0

ϵ +
C3(p)√

n

 tn
1

2p log(ϵ−1)
β
p log(n)

γ
2 (

p
2−1)

ϵ


p
2

ϵ


≤ C4(p)n−

1
2p log(n)

β
p+

γ
2 (

p
2−1)t,

(2.16)

where in (∗) we used the fact that p > 2, which implies that
∫ t

ϵ

(
tn

1
2p log(n)

γ
2 (

p
2−1) log(u−1)

β
p

u

) p
2

du ≤

C1
∫ 2ϵ

ϵ

(
tn

1
2p log(n)

γ
2 (

p
2−1) log(u−1)

β
p

u

) p
2

du; and set

ϵ = C1(p)n−
1

2p log(n)
β
p+

γ
2 (

p
2−1)t = C2(p)n−

1
p log(n)−γ(

p
2−1).

Hence, it is enough to assume (2.7) in place of (2.6). Finally, we can apply Lemma 1 with the

following parameters:

∥ f(n) − f0∥n ≤ c1(p)n−
1

2p log(n)−
γ
2 (

p
2−1) =: δn,

where we used Eq. (2.6). Also, we set sn = C5(p)n−1/p log(n)γ,

r2
n = min{c3(p), c1(p)/8}n−

1
p log(n)−γ(

p
2−1)

and

wn = C4(p)n−
1

2p log(n)
β
p+

γ
2 (

p
2−1).
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Therefore, Lemma 1 gives that

R( f̂n,F , P(n)) ≥ c5(p)

 n−
1
p log(n)−γ(

p
2−1)

n−
1

2p log
β
p+

γ
2 (

p
2−1)

(n)

2

≳ n−
1
p log(n)−

2β
p −3γ(

p
2−1),

and the claim follows.

2.2.2 Proof of Corollary 1

The following is an almost immediate consequence of [Gee00, Thm 5.11] (see §2.3 below).

Lemma 4. Let G be a family of functions uniformly bounded by one, and P be some probability

measure. For any f ∈ G and t ≥ 0, let ε( f , t) be the stationary point of

1√
n

∫ t

δ
c

√
logN[](u, B( f , t), P)du = δ

for some absolute constant c > 0. Then, for any ε ≥ ε( f , t) the following holds with probability of

at least 1− C exp(−cnε2):

Wx(B( f , t)) ≲ ε + t · n−1/2.

Proof of Corollary 1. First, we take m = C(p)
√

n log(n)
pγ
2 (

p
2−1) in (2.11) and set f(n) := f(m).

By using Eq. (2.8) and the estimate dn ≲ (log n)2n−1/p from [RST17], we see that with high

probability,

∥ f(n) − f0∥n ≤ 2∥ f(n) − f0∥+ C log2(n)n−
1
p ≲ n−

1
2p log(n)

γ
2 (

p
2−1).

Thus Eq. (2.5) holds for f(n). Next, by using Eq. (2.8), it is easy to see that Eq. (2.4) hold with

γ = 2. It remains to show that (2.7) holds.
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First, by (2.8), we know that for t ≥ Cdn the following holds:

Wx(Bn( f(n), t)) ≤ Wx(B( f(n), 2t + dn)) ≤ Wx(B( f(n), 4t)).

To estimate the last term, we use our bracketing assumption along with the uniform boundedness of

functions in F . These assumptions let us apply Lemma 4 that yields an upper bound on this term.

In order to upper bound ε( f(n), 4t) (the fixed point of Lemma 4), we use Eq. (2.12) and derive that

1√
n

∫ 4t

ε
c

 tn
1

2p log(n)
γ
2 (

p
2−1) log(u−1)

β
p

u


p
2

du ≲
1√
n

 tn
1

2p log(n)
β
p log(n)

γ
2 (

p
2−1)

ε


p
2

ε

where in the last inequality we used the fact that p > 2 and ε ≥ 1/n. Setting the right-hand side

equal to ε, we find an upper bound on the fixed point

ε( f(n), 4t) ≲ n−
1

2p log
β
p+

γ
2 (

p
2−1)

(n)t.

We now set t ≍ n−
1

2p log(n)−
β
p−

3sp,γ
2 and apply Lemma 4 with ε ≍ n−1/p log(n)−γ(p/2−1),

concluding that with probability of at least 1− C exp(−Ω̃(n1−2/p))

Wx(B( f(n), 4t)) ≲ ε ≍ n−
1

2p log
β
p+

γ
2 (

p
2−1)

(n)t.

Hence, all the assumptions of Theorem 6 hold with high probability. Therefore, by Eq. (2.8) and

Theorem 6, we conclude that

∥ f̂n − f ∗∥2 ≥ 1
4
∥ f̂n − f ∗∥2

n − 2d2
n ≥

1
8
∥ f̂n − f ∗∥2

n

≳ n−
1
p log(n)−

2β
p −3γ(

p
2−1),

and the claim follows.
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2.2.3 Proof of Theorem 3

Throughout this subsection P := U(Sd−1). In this proof we will use the following auxiliary

lemmas:

Lemma 5 ([Bro76; Dud99]). The following holds for all 0 < ϵ < 1,

c12−dϵ−
d−1

2 ≤ logN2 (ϵ, Cd(1), P) ≤ logN∞ (ϵ, Cd(1)) ≤ Cd5/2ϵ−
d−1

2 ,

where logN∞ (ϵ, Cd(1)) denotes covering with respect to ∥ · ∥∞.

Lemma 6 ([Bro76; Dud99]). Let hBd : Sd−1 → R be the support function of the unit ball in Rd,

namely the constant function hBd ≡ 1. Then for any 0 ≤ ϵ ≤ c, there exists a set of cardinality

M(ϵ, d) ≥ 210−dϵ−(d−1)/2
of convex functions on Sd−1, denoted by h1, . . . , hKM(ϵ,d)

, that has the

following properties:

• ∀ 1 ≤ i < j ≤ M(ϵ, d): ∥hKi − hKj∥ ≥ ϵ.

• ∀ 1 ≤ i ≤ M(ϵ, d): ∥hKi − hBd∥ ≤ 8ϵ.

Definition 6. We say that f : Rd → R is a k-piecewise simplicial linear if f is a convex piecewise

linear function and its support can be written as a union of k-simplicials, and f is linear in each of

them.

For the following lemma, let Pd be the regular simplex with d + 1 faces that contains the unit

Euclidean ball, with vertices at distance d from the origin, and let

F (Γ,Pd) := { f : Pd → R : f is convex function and ∥ f ∥∞ ≤ Γ }

Lemma 7 (Theorem 4.4 in [Kur+20] ). Let fk ∈ F (Γ,Pd) be k piecewise simplicial linear. Then,

the following bound holds for 0 ≤ ϵ ≤ t:

N[](ϵ, BUnif( fk, t), Unif) ≤ C(d) (t/ϵ)d/2 logd+1
(

ϵ−1
)

log(Γ),
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where BUnif( fk, t) ⊂ F (Γ,Pd) and Unif denotes the normalized Lebesgue volume measure on Pd.

In order to prove Corollary 3, we first prove that when we restrict the LSE to C(C1 · d) (here C1

is some absolute constant) we achieve the desired bound:

Lemma 8. For every d ≥ 6, n ≥ C(d), the following holds

argminK∈C(C1·d)

n

∑
i=1

(Yi − hK(Xi))
2 ≥ c(d) logγd(n)n−

2
d−1 , (2.17)

whenever K∗ ∈ Cd(1).

Then, in Subsection 2.3.2, we prove that with high probability,

argminK∈C

n

∑
i=1

(Yi − hK(Xi))
2 = argminK∈C(C1·d)

n

∑
i=1

(Yi − hK(Xi))
2

whenever K∗ ∈ Cd(1), and therefore Corollary 3 follows.

Proof of Lemma 8. Let hK ∈ Cd(1) and t > 0, denote by

B(hK, t) := {L ∈ C(C1 · d) : ∥hK − hL∥ ≤ t}.

We will need the following Lemma (its proof appears in Section 2.3.1).

Lemma 9 (The regular polytope lemma). For every m ≥ 4d, d ≥ 2 there exists a polytope

Pm,d ⊂ Bd with m vertices that satisfies the following:

1. ∥hPm,d(x)− 1∥∞ ≤ C1m−
2

d−1

2. logN[](ϵ, BP(hPm,d , t), P) ≤ C(d)m log(ϵ−1)d(t/ϵ)(d−1)/2 for all 0 < ϵ ≤ t.

Now, observe that the family is uniformly bounded by C1 · d. Therefore, we can invoke Corollary

1 with f(m) = hPm,d , β = d, f0 = hBd , and p = d−1
2 . By Lemmas 5, 6, and 9, we satisfy all

the corollary’s assumptions (observe that an upper bound on ∞-covering implies that Koltchinski-

Pollard entropy satisfies the same upper bound). Thus R(ĥK̂n
, Cd(1), P) ≥ Ω̃(n−

2
d−1 ), and the

claim follows.
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2.3 Loose Ends and Missing Parts

Proof of Lemma 4. Under the conditions of the Lemma, [Gee00, Thm 5.11] implies that for the

fixed point ε,

sup
g∈B( f ,t)

∣∣Pn(g)−P(g)
∣∣ ≲ ε,

with probability of at least 1− C exp(−c(n(ε/t)2)) ≥ 1− C exp(−cnε2) since t ≤ 1 due to

uniform boundedness. Now, using de-symetrization argument (e.g. [Kol11]), we know that

EXWx(B( f , t))− t√
n
≲ E sup

g∈B( f ,t)

∣∣Pn(g)−P(g)
∣∣ ≲ ε.

Therefore, in expectation we have the desired bound. Since the class in uniformly bounded by one,

we can apply Adamzacks’s inequality (e.g. [Kol11]) which gives

Pr
(
Wx(B( f , t))− C1(ε + t/

√
n) ≥ u

)
≤ exp(−cnu2)

and by setting u = C(ε + (t/n)1/2) the claim follows.

Next, we will use the following lemma:

Lemma 10 (Jacobian of the radial function, see for example [SW08]). Let H = {x ∈ Rd : xTu =

h} be a d − 1 hyper-plane and any integrable f : H → R, the following holds for the radial

function R(x) = x/∥x∥2:

∫
H

f (x)
uTx
∥x∥d

2
dx =

∫
R(H)

f (R−1(x))dS(x).

Lemma 11 (Basic facts on the support function, see for example [AAGM15]).

• For every K ∈ Cd(1), the function hK can be extended to the whole of Rd via hK(x) =

∥x∥2hK(x/∥x∥2) and this extension makes hK a convex and 1-Lipschitz function on Rd.

• For any λ > 0, K ∈ C the following holds for all x ∈ Rd: hλK(x) = λhK(x).
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2.3.1 Proof of Lemma 9

In this proof, we denote by BG(x, r) a geodesic ball on the sphere with center x and radius r. Let

V := {vi}s
i=1 be a set of vertices of size m ≤ s ≤ 400d ln(d)m with norm one. This set is a

m−
1

d−1 -net on Sd−1 with the following property: In any geodesic ball with radius of m−
1

d−1 on the

sphere there are at most 400d ln(d) points. When m ≥ Cd such a set exists by [BW03].

Now, we define a polytope Pm,d := conv{V}. First, observe that for each x ∈ Rd the following

holds:

hPm,d(x) = max
v∈V
∥x∥2∥v∥2 cos(∠(x, vπ)) = ∥x∥2 cos(∠(x, vπ)), (2.18)

where vπ is the closest point in the net to x/∥x∥2. Then, using the fact that cos(t) = 1− t2/2 +

O(t4), we know that when m ≥ Cd
1 , for all u ∈ Sd−1

0 ≤ 1− hPm,d(u) ≤ Cm−
2

d−1

and the first part of the Lemma follows.

Now, we prove the last part of Lemma 9, that is an upper bound on the entropy numbers. Let us

consider the support function when it is restricted to the facets of regular simplex Pd, denoted by

Sk, 1 ≤ k ≤ d + 1. Now we prove the following:

Lemma 12. For any k ∈ {1, . . . , d + 1}, hPm,d : Sk → R is at most C ln(d)m piecewise linear,

and every piece has at most C(d ln(d))24d−1 (d− 2)- facets.

Proof. First, we use the Voronoi cells of the vertices V when they are restricted to Sd−1, that is each

cell, denoted by C(vi), 1 ≤ i ≤ |V|, is defined by

C(vi) := {x ∈ Sd−1 : ∥vi − x∥2 ≤ ∥vj − x∥2 ∀j ̸= i}.

By Eq. (2.18) we know that for each x ∈ Rd the value of hPm,d is attained on the closest vi ∈ V to
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Sd−1

<latexit sha1_base64="BOPdNSWiaJWr9nQ7ztsdOH5iUkE="></latexit>

C(vi)

<latexit sha1_base64="zGdbQZ/w6fzDfzlZlAGcES2ofxM="></latexit>

vi

<latexit sha1_base64="RCV1UIxPKGdovuGerzvnrnf6Ru4="></latexit>

Pd

<latexit sha1_base64="PwZjY2KrHfcqvWisNBgM7amo2gQ="></latexit>

Sk
<latexit sha1_base64="ccuzhMDpTp7gnW9upXOUxRzfbdI="></latexit>

Pm,d

<latexit sha1_base64="Jg+Kwe+DIboM34V2GYDagbvrmho="></latexit>

Figure 2-1: Illustration of the proof. The function hPm,d is linear on the set R−1(C(vi)) (in blue)
and convex piece-wise linear on Sk.

x/∥x∥ (since all the vertices of Pn,d have the same norm). Thus, we can write

Sk =
|V|⋃
i=1

R−1(C(vi)) ∩ Sk

where R denotes the radial function from Pd to Sd−1. Moreover, observe that

hPm,d : R−1(C(vi))(x) ≡ vT
i x.

Since hPm,d : Sk → R is a convex function, we conclude that it i also piecewise linear. Due to

the regularity of the net V , we know that number of pieces can be bounded by 2|V|/(d + 1) ≤

C ln(d)m.

Next, observe that the number of d− 2 facets of each piece, which corresponds to some vi ∈ V ,

is determined by the number of neighbors of the Voronoi cell C(vi). By the construction of V , it can

be bounded by C(d ln(d))24d−1. To see this, since V is a m−1/(d−1)-net, clearly all the neighbors

of vi ∈ V lie in BG(vi, 4ϵ). Moreover, we can bound the number of vertices in this ball by

|{v ∈ V : v ∈ BG(vi, 4ϵ)}| ≤ 400d ln(d) · |N (ϵ, BG(vi, 4ϵ), dG)|

≤ C(d ln(d))24d−1,
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and the claim follows.

Now, we are ready to prove Lemma 9. It is easy see that each hPm,d : Sk → R is uniformly

bounded by d (since K ⊂ Bd implies that hK restricted to Sk is bounded by d). Moreover,

since we assume that all hL ∈ B(hK, t) are bounded in C1d, we also know that our family is

uniformly bounded by Cd2. Now, recall that all of hPm,d C
√

m/(d − 1)-pieces have at most

(Cd ln(d))24(d−1) facets, hence, it is also C(d)
√

m piecewise simplicial linear. Thus, we can apply

Lemma 7 and find a (d + 1)−1/2ϵ-net, denoted by { fk,j}Sϵ
j=1, with respect to Unif(Sk), where

Sϵ := logN[]((d + 1)−1/2ϵ, BUnif(Sk)
(hPm,d , t), Unif(Sk)) ≤ C(d)m log(ϵ−1)d

(
t
ϵ

)(d−1)/2

.

Recall that we aim to bound the entropy numbers of the the support function on the sphere. Therefore,

we use the radial function to project each facet Sk onto the sphere, and show that the set of functions

{∥R−1(x)∥−1 fk,j(R−1(x))}Sϵ
j=1

forms an (d + 1)−1/2ϵ-net on BUnif(R(Sk))
(hPm,d , t) with respect to uniform measure.

Let hK ∈ C(C1 · d) (which is convex and bounded by one) that is at least (d + 1)−1/2ϵ far from

hPm,d , when the support functions are restricted to R(Sk). Denote by hπ,K the closest member to the

hK with respect to Unif(Sk) in the aforementioned set. Then,

√∫
R(Sk)

(hK(x)− ∥R−1(x)∥−1hπ,K(R−1(x))2dS(x)

=

√∫
R(Sk)

∥R−1(x)∥−2(hK(R−1(x))− hπ,K(R−1(x)))2dS(x)

=

√∫
Sk

(hK(x)− hπ,K(x))2 uT
i x

∥x∥d+2 dx ≤
√∫

Sk

(hK(x)− hπ,K(x))2dx ≤ (d + 1)−1/2ϵ,

where we used the homogeneity of the support function, and Lemma 10. Therefore, we found our

55



desired net. Now, we can use [GW17], and conclude that for all 0 ≤ ϵ ≤ t

logN[](ϵ, BUnif(hPm,d , t), P) ≤
d+1

∑
k=1

logN[](
ϵ√

d + 1
, BSk(hPm,d , t), Unif(Sk))

≤
d+1

∑
k=1

logN[](
ϵ√

d + 1
, BUnif(R(Sk))

(hPm,d , t), Unif(R(Sk)))

≲ m log(ϵ−1)d (t/ϵ)(d−1)/2 ,

and the claim follows.

2.3.2 Reduction to Lemma 8

We will show that when K∗ ∈ Cd(1), the LSE only considers convex sets in C(C1 · d). First,

observe that the score of hK∗ is bounded by 5 when n is large enough. To see this,

n−1
n

∑
i=1

(Yi − hK∗(Xi))
2 ≤ 2n−1

(
n

∑
i=1

ξ2
i + hK∗(Xi)

2

)

≤ 2
(∫

Sd−1
h2

K(x)dP(x) + 1 + O(
1√
n
)

)
≤ 5.

(2.19)

where we used the fact that hK∗(x) ≤ 1 when x ∈ Sd−1.

Now, let K /∈ C(C1 · d). Then, K has a vertex (denoted by v1) with ∥v1∥2 > C1d. In this case

for C1 that is large enough, there exists a spherical cap of Sd−1, denoted by C(v1), with center

v1/∥v1∥2 and normalized surface area of 1/3, such that

hK(u) ≥ 100 ∀u ∈ C(v1).

To see this, observe that if C(v1) has a normalized surface of 1/3, then it implies that the

geodesic distance between v1/∥v1∥2 and its boundary is at most π/2− c2/(d− 1) (for some
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fixed c2 ≥ 0). Thus, for any u ∈ C(v1) the following holds:

hK(u) ≥ ∥v1∥2 cos(∠(v1, u)) ≥ C1d cos(π/2− c2/(d− 1))

= C1d sin(c2/(d− 1)) ≥ C1c2/2,

therefore if we choose C1 to be large enough then hK(u) ≥ 100 for all u ∈ C(v1).

Now, using the fact that Xi are i.i.d uniform on the sphere, we know that with probability of at

least 1− e−cn, there are at least n/4 points in this cap (using concentration for Bernoulli random

variables). Moreover, since ξi ∼ N(0, 1), we know that with high probability, at least 0.49 of the

points that lie in this cap, the ξi are negative. Thus, we conclude that with high probability

n−1
n

∑
i=1

(Yi − hK(Xi))
2 ≥ n−1 ∑

Xi∈C(v1), ξi≤0
(hK(Xi)− 1− ξi)

2 ≥ 11.

Using the last equation and Eq. (2.19), only sets in C(C1 · d) will be considered, and the claim

follows.
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Chapter 3

On the Variance, Admissibility, and Stability

of Empirical Risk Minimization

We begin with some notation, in the fixed design, we will abuse notation and treat f̂n as a vector in

Rn. In addition to f̂n, we analyze properties of the set of δ-approximate minimizers of empirical

loss, defined for δ > 0 via

Oδ :=

{
f ∈ F :

1
n

n

∑
i=1

(Yi − f (Xi))
2 ≤ 1

n

n

∑
i=1

(Yi − f̂n(Xi))
2 + δ

}
. (3.1)

Note that Oδ is a random set, in both fixed and random designs. Recall the bias-variance decom-

position of the mean squared error of an estimator f̄n (see Eq. (1.10) above), and the definition of

V( f̂n,F , Q) as the maximal variance error of an estimator f̄n (see Eq. (1.11) above). Finally, we

remind the total law of variance, that is

V( f̂n) = EXEξ

[∫ (
f̂n −Eξ

[
f̂n|X

])2
dP

]
︸ ︷︷ ︸

EV( f̂n|X)

+EX

[∫ (
Eξ

[
f̂n|X

]
−EX,ξ f̂n

)2
dP

]
︸ ︷︷ ︸

V(E( f̂n|X))

. (3.2)

We refer to the two terms as the expected conditional variance and the variance of the conditional

expectation, respectively. Thus, in the random design setting, the mean squared error decomposes
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into three terms:

ED

∫
( f̂n − f ∗)2dP = EXV( f̂n|X) + V(Eξ( f̂n|X)) + B2( f̂n). (3.3)

3.1 Main Results: Fixed Design

Before we present our results, we remind Assumptions 1,2,3 from the first chapter. The first

assumption states that F is convex, the second assumption is that the noise is an isotropic Gaussian,

and the final assumption states that the diameter of F (in terms of L2(P
(n))) is of order one.

Under these three assumptions, Theorem 1 ensures that the minimaxM(F , P(n)) is of order

ϵ2
∗, where ϵ∗ is the stationary point of logN (ϵ,F , P(n)) ≍ nϵ2.

Now, we can state our results. The first result, uses the notion of the set Oδ of δ-approximate

minimizers from (3.1).

Theorem 8. Let n ≥ 1 and δn ≲ ϵ2
∗. Then, under Assumptions 1,2,3, there exists an absolute

constant c > 0, such that for every f ∗ ∈ F the event

sup
f∈Oδn

∫
( f −ED f̂n)

2dP(n) ≲ ϵ2
∗ (3.4)

holds with probability at least 1− 2 exp(−cnϵ2
∗); and in particular, V( f̂n,F , P(n)) ≲M(F , P(n)).

Theorem 8 establishes our promised result form first chapter, and in particular it implies Equation

(1.12) above. It shows the variance of ERM necessarily enjoys the minimax rate of estimation,

and, hence, any sub-optimality of ERM must arise from the bias term in the error. The theorem

also incorporates a stability result: not only is the ERM close to its expected value ED f̂n with high

probability, but any approximate minimizer (up to an excess error of δ2
n) is close to ED f̂n as well.

We remark that we prove this bound for any ξ that satisfies the LCP property (see Equation (3.10)

below) which holds for i.i.d. N(0, 1) noise as well.

Remark 9. We remark that V( f̄n,F , P(n)) ≲ ϵ2
∗ holds for any estimator f̄n for which the map

ξ 7→ f̄n(ξ) is O(1)-Lipschitz. Furthermore, Theorem 8 also holds for the misspecified model (i.e.,
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even if f ∗ does not lie in F ).

Our next result complements Theorem 8 above, providing a lower bound on V( f̂n,F , P(n)).

Theorem 9. Let n ≥ 1. Then, under Assumptions 1,2, the following holds:

V( f̂n,F , P(n)) ≳M(F , P(n))2.

We remark that the proof of Theorem 9 is specific to f̂n and cannot be extended immediately to other

estimators. Next, we refine the result of Theorem 8, by both obtaining the exact characterization

(up to a multiplicative absolute constant) of the variance and relaxing Assumption 3. First, for every

f ∗ ∈ F , we define the following set:

H∗ := { f ∈ F : ∥ f −ED f̂n∥2
n ≤ 4 ·V( f̂n)}. (3.5)

In simple words, we take a neighborhood around the ED f̂n with a radius of order the square root

of the variance error term of f̂n, when the underlying function is f ∗ ∈ F . In the statement below,

recall the notation ofM(H∗, P(n)) denotes the minimax risk overH∗.

Theorem 10. Let n ≥ 1. Then, under Assumptions 1,2, for any underlying f ∗ ∈ F , the following

holds:

V( f̂n) ≍M(H∗, P(n)),

whereH∗ is defined in (3.5).

This theorem shows that the variance of f̂n (for a given f ∗ ∈ F ) equals (up to a multiplicative

absolute constant) to the minimax rate of a subclass ofH∗ ⊂ F (which depends on f ∗). Clearly, it

implies the optimality of the variance error term of f̂n without Assumption 3, sinceM(H∗, P(n)) ≲

M(F , P(n)) for any f ∗ ∈ F .

Our next result, which almost follows immediately from the proof of the last theorem, regards

f̂n when it is “nearly” unbiased for some target function f ∗ ∈ F . Specifically, we show that for

f ∗ ∈ F such that B2( f̂n) ≤ 4 · V( f̂n) (where B2 is the squared bias as defined in (1.10)), f̂n is
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“locally” minimax optimal on the set

G∗ := { f ∈ F : ∥ f − f ∗∥2
n ≤ 4 · E2

f ∗ + S/n}, (3.6)

where E2
f ∗ := ED∥ f̂n − f ∗∥2

n and S > 0 is an absolute constant (that will defined in §3.4.2 below).

Note that if B2( f̂n) ≤ 4 ·V( f̂n), then E2
f ∗ ≲M(F , P(n)) by Theorem 10; but E2

f ∗ may be much

smaller than the minimax rate. In the statement of the theorem below, recall the definition of the

risk .

Theorem 11. Let n ≥ 1. Then, under Assumptions 1,2, for any f ∗ ∈ F such that B2( f̂n) ≤

4 ·V( f̂n), the following holds:

R( f̂n,G∗, P(n)) ≍M(G∗, P(n)),

where G∗ is defined in (3.6).

In other words, even if we restrict our class to a Θ(max{E f ∗ ,
√

S/n})-neighborhood of f ∗, no

estimator on the restricted class G∗ performs (up to a multiplicative absolute constant) better on

every regression function f ∈ G∗ than f̂n (with respect to the original class F ) does on f ∗.

Remark 10. Both Theorems 10,11 hold with f̂n replaced by any estimator ĝn for which the map

ξ 7→ ĝn(ξ) is O(1)-Lipschitz. Furthermore, their proofs are almost identical to each other as we

will see in §3.4.2 below. In bothH∗ and G∗ there is nothing special about the constant 2; it may be

replaced by any absolute constant.

Next, we recall the notion of admissibility of f̂n, first established by [Cha14], with a simplified

proof given by [CGZ17]. The result states that for any estimator f̄n, there exists a regression function

f ∗ ∈ F such that ERM over the data drawn according to (1.1) has error which is no worse (up to an

absolute constant) than that of f̄n. Hence, while ERM may be suboptimal for some models f ∗ ∈ F ,

it cannot be ruled out completely as a learning procedure.

It is fairly straightforward to see that Theorem 11 implies f̂n is admissible if at least one f ∗ ∈ F

exists with a “small bias”. Our next result offers an alternative proof for Chatterjee’s admissibility
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theorem. In this proof, under Assumptions 1 and 2, we demonstrate that there always exists an

f ∗ ∈ F such that f̂n exhibits a small bias.

Corollary 2. [Chatterjee’s Admissibility Theorem] Let n ≥ 1 and f̄n be any estimator. Then, under

Assumptions 1,2, there exists an underlying function f ∗ ∈ F (that depends on f̄n) such that

ED

∫
( f̂n − f ∗)2dP(n) ≤ C ·ED

∫
( f̄n − f ∗)2dP(n), (3.7)

where C > 0 is a universal constant that is independent of F , P(n), and n.

Remark 11. Under Assumptions 1,2,3, our proof demonstrates that the admissibility property is

valid for any ĝn such that ξ 7→ ĝn(ξ) is O(1)-Lipschitz. Furthermore, it offers a new and simplified

perspective on this profound theorem. Specifically, we show that admissibility hinges on the

existence of a target regression function f ∗ ∈ F such that the estimator not only has a ’small bias’

but is also “stable” around it. Remarkably, the existence of such a target function is ensured by a

purely topological argument—the Brouwer’s fixed-point theorem. From a statistical perspective,

this has a simple interpretation: a “stable” estimator cannot have a “high” bias on every target

function within a compact function class.

Remark 12. [CGZ17] also gave an explicit upper bound of 1.65 · 105 for the constant C > 0 in

(3.7). Making the constants explicit in our proof yields a bound of the order 103 rather than 105; we

have not attempted to optimize the constants, so we believe this can be improved further.

Note that if we place f̄n in Corollary 2 to be a minimax optimal estimator immediately yields

the following:

Corollary 3. [Weak admissibility] Let (F , P(n)) that satisfies Assumptions 1,2. Then, there exists

an underlying function f ∗ ∈ F such that

ED

∫
( f̂n − f ∗)2dP(n) ≤ C1 ·M(F , P(n)), (3.8)

where C1 > 0 is a universal constant that is independent of F , P(n), and n.

63



That is, ERM cannot have minimax suboptimal error for every f ∗ ∈ F ; we name this result weak

admissibility. Namely, in the fixed design setting, the minimal error of ERM is at most the minimax

rate1

Finally, we establish the following counter-intuitive behavior of the landscape around f̂n when

(F , P(n)) is a non-Donsker class (a notion which will be defined formally in §3.4.8 below).

Theorem 12. Assume that (F , P(n)) is a non-Donsker class satisfying Assumptions 1,2 for all

n that are large enough. Then, there exist a sequence of functions f ∗n ∈ F and a sequence

Cn = ω(1), such that for each n, E∥ f̂n − f ∗n∥2
n ≲ ϵ∗(n)2 and

{
f ∈ F :

∫
( f − f̂n)

2dP(n) ≲ ϵ2
∗

}
̸⊂ OCn·ϵ∗(n)2 , (3.9)

with probability of at least 1− 2 exp(−c2nϵ∗(n)2).

Theorem 12 says that when the underlying function is f ∗n, the LSE solution f̂n displays counter-

intuitive behavior: on the one hand, f̂n estimates f ∗n optimally, but on the other hand, for most ξ

there exist functions which are very close to f̂n in L2(P
(n)), and yet far from being minimizers of

the squared error.

Remark 13. Is is easy to verify that for δn = ω(M(F , P(n))), the inequality (3.4) cannot be true

in the generality of our assumptions. Therefore, the stability threshold ofM(F , P(n)) is tight, up

to a multiplicative absolute constant.

We conclude this part with the following remark, which we will return to in §3.2.2. Theorems

8, and 12 and Corollary 3 hold for any ξ that satisfies a Lipschitz Concentration Property (LCP)

with an absolute constant cL > 0: this means that if F : Rn → R is 1-Lipschitz (with respect to the

Euclidean norm on Rn), then

Pr(|F(ξ)−EF(ξ)| ≥ t) ≤ 2 exp(−cLt2). (3.10)

1In the paper of [KR21], they provided a lower bound to the minimal error of ERM in the fixed design setting.
Later, we shall state and prove our new weak admissibility result for f̂n, analogous to Corollary 3, in the random design
setting.
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The LCP condition is stronger than the sub-Gaussian random vector assumption [BLM13], but

it is significantly less restrictive than requiring normal noise (in which case cL = 1/2 [Led01]).

The LCP condition is also known as the isoperimetry condition (cf. [BS23, Sec. 1.3]).

Remark 14. Herbst’s argument [Wai19] implies that the Lipschitz concentration property holds

for any random vector ξ satisfying a log-Sobolev inequality; the converse is not true in general.

However, in the seminal work of [Mil09], it was shown that if ξ is assumed to be log-concave,

then ξ which satisfies a LCP with constant cL also satisfies a log-Sobolev inequality with constant

Θ(cL).

3.2 Main Results: Random Design

We now turn our attention to the random design setting. Here, we establish similar results, albeit

under additional assumptions, and with significantly more effort. We shall use two different

approaches: the first uses the classical tools of empirical process theory [Gee00], and the second,

inspired by our fixed-design methods, relies heavily on isoperimetry and concentration of measure

(cf. [Led01]) to understand the behaviour of f̂n when X, ξ satisfy the LCP property.

For technical reasons (see Remark 17 below), we assume in this section that the error rate of the

class F is more than parametric:

Assumption 10. ϵ2
∗ ≳ log(n)/n, where ϵ∗ is the stationary point of nϵ2 ≍ logN (ϵ,F , P).

3.2.1 The Empirical Processes Approach

First, we assume that the function class and the noise are uniformly bounded.

Assumption 11. There exist universal constants Γ1, Γ2 > 0 such thatF is uniformly upper-bounded

by Γ1, i.e. sup f∈F ∥ f ∥∞ ≤ Γ1; and the components of ξ = (ξ1, . . . , ξn) are i.i.d. zero mean and

bounded almost surely by Γ2.

Remark 15. The uniform boundedness assumption is taken to simplify the presentation when

appealing to Talagrand’s inequality, and can be relaxed to i.i.d. sub-Gaussian, at the a price of a

multiplicative factor of log n in the error term in Theorem 13 below.
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Next, we follow definitions of [BBM05] of the lower and upper isometry remainders of

(F , P, n), denoted by IL(n, P) and IU(n, P) respectively. First, for each realization of the

input X := (X1, . . . , Xn), define

IL(X) := min
{

A > 0
∣∣∣∣ ∀ f , g ∈ F : 2−1

∫
( f − g)2dP− A ≤

∫
( f − g)2dPn

}

and

IU(X) := min
{

A > 0
∣∣∣∣ ∀ f , g ∈ F : 2−1

∫
( f − g)2dPn − A ≤

∫
( f − g)2dP

}

where Pn is the uniform (random) measure over X. In words, a bound on the lower isometry

remainder ensures that the distance with respect to the underlying distribution P between any two

functions in F is small if the distance between them with respect to the empirical measure is small,

up to a multiplicative constant and an additive remainder, and conversely for the upper isometry

remainder.

Definition 7. IL(n, P) and IU(n, P) are defined as the minimal constants δ1(n), δ2(n) ≥ 0 such

that

Pr
(
IL(X) ≤ δ1(n)

)
≥ 1− n−1 and Pr

(
IU(X) ≤ δ2(n)

)
≥ 1− n−1,

respectively.

Definition 8. Set ϵU := max{ϵ∗, ϵ̃}, where ϵ̃ is the solution of

IU(n, P) · logN (ϵ,F , P) ≍ nϵ4. (3.11)

Note that when IU(n, P) ≲ ϵ2
∗, then ϵU ≍ ϵ∗, while if IU(n, P) ≫ ϵ2

∗ then ϵU ≫ ϵ∗. The

following is our main result in this approach to the random design setting:

Theorem 13. Let n ≥ 1 and ϵ2
V := max{ϵ2

U, IL(n, P)}. Then, under Assumptions 1,10,11, for
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every f ∗ ∈ F the following holds with probability of at least 1− 2n−1:

sup
f∈Oδn

∫
( f −ED f̂n)

2dP ≲ ϵ2
V ,

where δn = O(ϵ2
V); and in particular V( f̂n,F , P) ≲ ϵ2

V .

Theorem 13 is a generalization of Theorem 8 to the random design case, and its proof uses the

strong convexity of the loss and Talagrand’s inequality. In §3.2.5 below, we discuss this bound in

the context of “distribution unaware” estimators.

Remark 16. Note that a bound similar to that of Theorem 13 cannot hold for the bias error term.

Indeed, one can construct a class F with IL(n, P) ≲ ϵ2
∗ and V(n, P,F ) ≍ ϵ2

∗ for which the bias

error term sup f ∗∈F B2( f̂n) does not decrease to 0 with n; moreover, for this class one has

EX,ξ∥ f̂n −Eξ f̂n|X∥2
n ≍ 1.

That is, neither the bias nor the empirical variance converge to zero. A remarkable consequence

of our results is that even though the ERM only observes the random empirical measure Pn, its

variance, measured in terms of P, converges to zero when IL(n, P)→ 0.

Remark 17. When ϵ2
∗ ≲ log(n)/n, the proof of Theorem 13 shows that there exists an fc ∈

f̂n such that ∥ f − fc∥ ≤ C1ϵV outside an event E of probability exp(−C2nϵ2
∗) for absolute

constants C1, C2 > 0. For instance, in the parametric case ϵ2
∗ ≍ n−1, this bound only yields that

Pr(E) ≥ 1− c1, for some c1 ∈ (0, 1). In particular, we cannot conclude that V( f̂n,F , P) ≲ ϵ2
∗,

because we have no control over the behavior of f̂n on E c.

An immediate and useful corollary of this result is that if we have sufficient control of the upper

and lower isometry remainders, the variance will be minimax optimal:

Corollary 4. Let n ≥ 1. Then, under Assumptions 1,10,11 and the additional assumption of

max{IL(n, P), IU(n, P)} ≲ ϵ2
∗, then with probability of at least 1− 2n−1

sup
f∈Oδn

∫
( f −ED f̂n)

2 dP ≲ ϵ2
∗
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if δn ≲ ϵ2
∗; in particular, V( f̂n,F , P) ≲ ϵ2

∗.

The assumption that max{IL(n, P), IU(n, P)} ≲ ϵ2
∗ is considered very mild in the empirical

process and shape constraints literature ([Gee00, Chp. 5] and references therein), and it holds

for many classical models. In the context of this thesis, the last corollary covers our definition of

non-Donsker classes (see Definition 5 above); and in particular it implies Equation (1.13) above.

Finally, we remark that Corollary 4 extends the scope of [CR06] to non-Donsker classes.

Remark 18. The assumption of max{IL(n, P), IU(n, P)} ≲ ϵ2
∗ holds for classes that satisfy

the Koltchinskii-Pollard condition [RST17] or the L2 − L2+δ entropy equivalence condition (see

[LM13] and references therein). In the classical regime, i.e. when F is fixed and n grows, it is hard

to construct function classes that does not satisfy this assumption for n that is large enough [BM93]

Remark 19. Corollary 4 may also be derived directly from Theorem 8 if the noise is assumed to

satisfy the LCP property. But the corollary holds for any sub-Gaussian noise – which is significantly

more general.

3.2.2 Random Design: The Isoperimetry Approach

In order to motivate this part, we point out that just requiring that IL(n, P) ≲ ϵ2
∗ is considered

to be a very mild assumption (cf. the influential work of [Men14]). However, the upper bound

of Theorem 13 depends on the upper isometry remainder as well; we would like to find some

sufficient conditions under which this dependency can be removed. Moreover, note that the isometry

remainders are connected to the geometry of (F , P) and not directly to the stability properties of

the estimator. Using a different approach, based on isoperimetry, we will upper-bound the variance

of ERM based on some “interpretable” stability parameters of the estimator itself. These stability

parameters will be data-dependent relatives of the lower isometry remainder.

We remind that f̂n is uniquely defined on the data points X when F is a convex closed function

class, but it may not be unique over the entire X (as multiple functions in F may take the same

values at X1, . . . , Xn). Here, we (implicitly) assume that f̂n is equipped with a selection rule such

that it is also unique over the entire X (e.g., choosing the minimal norm solution [Has+22; Bar+20]);

thus, in all the results below, f̂n denotes an element of F .
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Now, we are ready to present our results. First, as we mentioned at the end of §3.1, here we shall

assume that ξ is isotropic noise that satisfies the LCP condition (which includes Gaussian noise).

Assumption 12. ξ is an isotropic random vector satisfying the LCP condition of Equation (3.10)

with parameter cL = Θ(1).

Recall that ϵ∗ is defined as the stationary point of nϵ2 ≍ logN (ϵ,F , P), and that the condi-

tional variance of f̂n, which is a function of the realization X of the input, is defined as

V( f̂n|X) := Eξ [∥ f̂n −Eξ [ f̂n|X]∥2];

that is, we fix the data points X and take expectation over the noise. The formulation of the following

definition involves a yet-to-be-defined (large) absolute constant M > 0, which will be specified in

the proof of Theorem 14 (see §3.3.3 below).

Definition 9. For each realization X and f ∗ ∈ F , let ρS(X, f ∗) be defined as the minimal constant

δ(n) such that

Prξ

{
ξ ∈ Rn : ∀ξ

′ ∈ Bn(ξ, Mϵ∗) : ∥ f̂n(X, ξ
′
)− f̂n(X, ξ)∥2 ≤ δ(n)

}
≥ exp(−c2nϵ2

∗).

(3.12)

where Bn(ξ, r) = {ξ ′ ∈ Rn : ∥ξ − ξ
′∥n ≤ r}, and c2 > 0 is an absolute constant.

We also set ρS(X) := sup f ∗∈F ρS(X, f ∗). Note that ρS(X) measures the optimal radius of

stability (or “robustness”) of f̂n to perturbations of the noise when the underlying function and data

points X are fixed. This is a weaker notion than the lower isometry remainder; in fact, one can verify

that ρS(X) ≲ max{IL(X), ϵ2
∗} for every realization X (see Lemma 21 below for completeness).

Now, we are ready to present our first theorem:

Theorem 14. Let n ≥ 1. Then, for any realization of the input X satisfying Assumptions 1,3,10,12,

and any underlying f ∗ ∈ F , the following holds:

V( f̂n|X) ≲ max{ρS(X, f ∗), ϵ2
∗}.
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In particular, sup f ∗∈F EXV( f̂n|X) ≲ max{IL(n, P), ϵ2
∗}.

Note that if IL(n, P) ≲ ϵ2
∗ – a very mild assumption – then we obtain that the expected conditional

variance is minimax optimal. We believe that it is impossible to bound the total variance via the

lower isometry remainder alone. The intuition is f̂n only observes a given realization X, and in

general, the geometry of the function class “looks different” under different realizations (see the

discussion in §3.2.5 for further details).

In our next result, we identify models under which we can bound the total variance of f̂n by the

lower isometry remainder. Inspired by the recent paper of [BS23], we assume that X ∼ P satisfies an

isoperimetry condition and that F is a robust function class, i.e. F ⊂ {X → R : ∥ f ∥Lip = O(1)}.

(A function class all of whose functions are O(1)-Lipschitz is often referred to the literature as a

“robust learning architecture.”)

We fix a metric d : X × X → R on X , and denote by dn the metric on X n given by

dn(X, X′)2 = ∑ d(Xi, X′i)
2.

Assumption 13. The law P⊗n of (X1, . . . , Xn) satisfies the LCP condition with respect to dn, i.e.

for all 1-Lipschitz functions F : X n → R,

Pr(|F(X)−EF(X)| ≥ t) ≤ 2 exp(−cXt2), (3.13)

where cX is a constant depending only on (X , P). Furthermore, we assume that F ⊂ {X → R :

∥ f ∥Lip ≤ C}, for some C > 0.

In general, it is insufficient to assume that (X , P) satisfies an LCP, as this does not imply

that (X n, P⊗n) satisfies an LCP with a constant independent of n. However, if (X , P) satisfies a

concentration inequality which tensorizes “nicely,” such as a log-Sobolev or W2-transportation cost

inequality (cf. [Led01, §5.2, §6.2]) then (X n, Pn) does satisfy such an LCP.

Next, we assume that with high probability, f̂n nearly interpolates the observations.

Assumption 14. There exist absolute constants cI , CI > 0, such that the following holds:

PrD
(

n−1 ∑n
i=1( f̂n(Xi)−Yi)

2 ≤ CIϵ
2
∗

)
≥ 1− exp(−cInϵ2

∗).
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Note that for this assumption to hold, the dimension of X must be Ω(log(n)), as interpolation

with O(1)-Lipschitz functions is impossible in when the dimensionality is sub-logarithmic in the

number of samples n (this follows, e.g., from the behaviour of the entropy numbers of the class of

Lipschitz functions; cf. [Dud99]).

We now introduce another stability notion, which involves the random set Oδ ⊂ F of almost-

minimizers of the empirical loss, as defined in (3.1); note that Oδ depends on both X and ξ. The

random variable DiamP(Oδ) measures the stability of the ERM with respect to small errors in the

minimization procedure. The formulation of the following definition involves another yet-to-be-

defined (large) absolute constant M′ > 0, which will be specified in the proof of Theorem 15 (see

§3.4.6 below), as well as the constant cI from Assumption 14.

Definition 10. ρO(n, P, f ∗) is defined as the smallest δ(n) ≥ 0 such that

PrD(DiamP(OM′ϵ2∗
) ≤

√
δ(n)) ≥ 2 exp(−cInϵ2

∗), (3.14)

where cI ≥ 0 is the same absolute constant defined in Assumption 14.

In order to understand the relation between this and the previous stability notions, note that

under Assumption 14 and the event E of Definition 10, we have that on an event of nonnegligible

probability, ρS(X, f ∗) ≤ ρO(n, P, f ∗); in addition, ρO(n, P, f ∗) ≲ max{IL(n, P), ϵ2
∗} (see

Lemma 22 below). Under these additional two assumptions, we state our bound for the variance of

f̂n:

Theorem 15. Let n ≥ 1. Then, under Assumptions 1,3,10,12-14, the following holds for any target

regression function f ∗ ∈ F :

V( f̂n) ≲ c−1
X ·max{ϵ2

∗, ρO(n, P, f ∗)};

and in particular, we have that V( f̂n,F , P) ≲ c−1
X ·max{ϵ2

∗, IL(n, P)}.

This result connects the total variance of f̂n to a “probabilistic” threshold for the L2(P)-diameter of

the data-dependent set of Θ(ϵ2
∗)−approximating solutions of f̂n – two parameters which at first
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sight are unrelated.

Remark 20. If we remove Assumption 14, our proof only implies that V( f̂n,F , P) ≲ ϵ2
V , where

ϵV is defined in Theorem 13 above. Also, under Assumptions 1,3,10,12,13, one may arrive the

conclusion of Theorem 13 – V( f̂n,F , P) ≲ ϵ2
V , by using the LCP for X and ξ and the robustness

of F in place of Talagrand’s inequality.

3.2.3 Weak Admissibility

In order to present our weak admissibility result, we assume the following:

Assumption 15. For every x ∈ X , the evaluation functional f 7→ f (x) is continuous in the L2(P)

norm when restricted to F . Furthermore, N (ϵ,F , P) is finite for every ϵ ∈ (0, 1).

This regularity condition will be used in order to apply a fixed-point theorem for continuous

functions on a compact convex set in a Banach space. (Note that we have assumed that F is closed

and convex in Assumption 1, and the finite ϵ-entropy ensures that F is totally bounded, hence

compact.) The following is our weak admissibility result:

Finally, we state our new weak admissibility result, which holds under the following additional

assumption:

Theorem 16. [Weak admissibility of ERM in random design] Let n ≥ 1. Then, under Assumptions

1 and 15, there exists f ∗ ∈ F (depending only on n) such that

ED

∫
( f̂n − f ∗)2dP ≲ max{V( f̂n,F , P), IL(n, P)}.

We believe that our bound cannot be improved in general (see §3.2.5 below more details). It implies

that when max{V( f̂n,F , P), IL(n, P)} ≲ ϵ2
∗ ERM is weakly admissible. Differently from the

fixed design setting, we conjecture that there are models (n,F , P) in which ERM is not weakly

admissible.
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Conclusions

Our results show that the variance term of ERM enjoys optimal rate in two distinct regimes: the

classical regime (where the function class is fixed and the number of samples is increasing), and the

benign overfitting regime (in which capacity of F is large compared to the number of samples). It

follows that in both regimes the optimality of ERM is determined by its bias (or its implicit bias).

This work raises the natural question of finding computationally efficient debiasing methods for

ERM, with the hope that it may improve the statistical performance of ERM on large models.

3.2.4 Discussion and Prior Work

Stability of ERM Stability of learning procedures has been an active area of research in the early

2000’s, and the topic came to spotlight again recently because of the connections to differential

privacy and to robustness of learning methods with respect to adversarial perturbations. In the

interest of space, we only compare present results to those of [CR06]. In the latter paper, the authors

showed that the L1(P)-diameter of the set of almost-minimizers of empirical error (with respect to

any loss function) asymptotically shrinks to zero as long as the perturbation is o(n−1/2) and the

class F is Donsker. The analysis there relies on passing from the empirical process to the associated

Gaussian process in the limit, and studying uniqueness of its maximum using anti-concentration

properties. While the result there holds without assumptions of convexity of the class, it is limited

by (a) its asymptotic nature and (b) the assumption that the class is not too complex. In contrast, the

present work uses more refined non-asymptotic concentration results, at the expense of assumptions

such as convexity and minimax optimal lower and upper lower isometry remainders. Crucially,

the present result holds for non-Donsker classes — those for which the empirical process does not

converge to the Gaussian process.

Shape-constrained regression In shape-constrained regression, the class F is chosen to be a set

of functions with a certain “shape” property, such as convexity or monotonicity [SS18]. In these

problems, a common theme is that F becomes too large (or, non-Donsker) when the dimension

d of the input space surpasses a certain value. For instance, in convex (Lipschitz) regression, the
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transition happens at d = 5. It has been shown that below the threshold, the ERM procedure

is minimax optimal [SS11; HW16; KS16; SS11; Gun12], but in higher dimensions, for most

shape-constrained tasks, it is unknown whether ERM is minimax optimal. The few known cases

of minimax optimality of ERM in high dimensions include the tasks of isotonic regression and

log-concave density estimation [Han+19; KDR19; Car+18], and suboptimality of ERM above the

threshold in convex regression and estimation of convex bodies has been established in [Kur+20;

KRG20].

Our results imply that in all these high-dimensional shape-constrained regression tasks, the

sub-optimality of ERM can only be due to the high bias of ERM. These results also align with the

empirical observation that for the problem of estimation of convex sets, the ERM has a bias towards

“smooth" convex sets [SC19a; Gho+21].

High Dimensional Statistics In classical statistics, the MLE is typically unbiased, and the

standard approach is to introduce bias into the procedure in order to reduce the variance, overall

achieving a better trade-off (see [SC19b, §1] and references within). In contrast, in high-dimensional

models, the MLE may suffer from high bias even in tasks such as logistic regression and sparse

linear regression (cf. [CS20; JM18]). Our results align with this line of work.

Regularization It is statistical folklore that the main benefit of incorporating a regularization

term, such as ridge penalties, into an ERM procedure is that such regularized estimators have

reduced variance. However, our findings seem to indicate that the ERM exhibits much lower

conditional variance than variance of conditional expectation. This suggests that regularization

primarily reduces the variance of the conditional expectation as opposed to the full variance error

term.

3.2.5 Is the bound of Theorem 13 optimal?

When max{IL(n, P), IU(n, P)} ≫ ϵ2
∗, we have that ϵ2

V ≫ ϵ2
∗ – our upper bound on the variance

is much larger than the minimax error. Therefore, this bound seems at first glance to be suboptimal.
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However, to the best of our knowledge, all estimators that attain the minimax rate, such as

aggregation and the star algorithm (cf. [Yan04]), depend on the marginal distribution P of the

covariates. In many cases, though, we do not know or have an oracle access to the marginal

distribution P, and the estimator only estimator only has access to Pn and to F . It is natural to

ask what is the minimax rate of “distribution-unaware” estimators that only depend on Pn and

the function class F , when the underlying distribution P is allowed to vary over some family of

distributions.

To this end, given some family of probability distributions P on a domain X , consider the

following measurement of optimality of an estimator:2

∆(du)(n,F ,P) = inf
f̄n

sup
Q∈P

sup
f ∗∈F

ED
∫
( f̄n − f ∗)2dQ

M(n,F , Q)
.

We say that a distribution-unaware estimator is minimax optimal on (n,F ,P) when

∆(du)(n,F ,P) = Θ(1).

Unsurprisingly, if we do not place additional assumptions on F and P (beyond convexity), then

∆(du)(n,F ,P) may be ω(1) – no single estimator attains the minimax error on every distribution

Q ∈ P , or, in other words, a minimax optimal estimator for Q must “know” Q. In fact, one may

construct a set of probability distributions P on a domain X and a function class F such that for

any Q ∈ P ,M(n,F , Q) = O(n−1) (the parametric rate), and for any estimator f̄n, one may find

Q ∈ P such that R( f̄n,F , Q) = Ω(1); and in particular ∆(du)(n,F ) = ω(1) (see Example 1

below). The example also demonstrates (see Remark 22 below) that the “generalization diameter”

Ψ(n, P) := min
f ∗∈F

E[DiamP({ f ∈ F : ∀i ∈ 1, . . . , n f ∗(Xi) = f (Xi)})]

should appear in the error of any “distribution-unaware” estimator in terms of L2(P) (though we do

not know how to show this in complete generality). In the above example, Ψ(n, P) ≍ 1, while the

2Note that here ED is the expected error when the noise ξ is drawn from some fixed distribution, and X1, . . . , Xn
are drawn i.i.d. from Q.
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minimax rate is O(n−1); on the other hand, for every model, Ψ(n, P) ≤ IL(n, P). Therefore, it is

not surprising that the bound of Theorem 13 includes the lower isometry remainder.

The upper isometry remainder IU(n, P), though, is unrelated to Ψ(n, P). Nonetheless, we

conjecture that it cannot be removed from the bound of Theorem 13:

Conjecture 1. The bound of Theorem 13 is optimal in the following way: There exist models

(n,F , P) for which f̂n incurs an error ϵ2
U ≫ IL(n, P) ≳ ϵ2

∗ or an error IL(n, P) ≫ ϵ2
U ≫ ϵ2

∗;

and therefore our bound cannot be improved in general.

The intuition behind this conjecture is as follows: the ERM sees the geometry of F with

respect to Pn rather than P, and perturbing the data points X1, . . . , Xn by δ1, . . . , δn can change the

finite-dimensional geometry of the projected function class, reducing the “stability” of f̂n. This is

because f̂n is not a Lipschitz function in the data X with respect to the L2(P)-norm, in contrast

to its Lipschitz properties in ξ with respect to the L2(P
(n))-norm. Only if the upper and lower

isometry constants are small, say of the order ϵ2
∗ does the metric geometry of Fn not depend too

much on X, up to ϵ2
∗, in which case we expect the variance to be bounded by ϵ2

∗.

Our confidence that this is the correct explanation for the appearance of IU(n, P), rather

than some other phenomenon, derives from Theorem 14, which precisely states that the expected

conditional variance of f̂n is upper bounded by the lower isometry radius, i.e.

EXV( f̂n|X) ≲ IL(n, P). (3.15)

Therefore, if Conjecture 1 is correct and there are models in which V( f̂n,F , P) ≳ ϵ2
U ≫

IL(n, P), this must be due to the variance of conditional expectations:

sup
f ∗∈F

V
(

Eξ

[
f̂n|X

])
≳ ϵ2

U, (3.16)

and V
(

Eξ

[
f̂n|X

])
is precisely the error term which captures how the geometry of F varies under

different realizations.
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3.3 Proof sketches

In this section we sketch the proofs of less-technical results to give the reader a flavor of our methods.

Detailed proofs are given in the next section.

3.3.1 Sketch of proof of Theorem 8

The proof uses the probabilistic method [AS16]. Let f1, . . . , fN be centers of a minimal ϵ∗-

cover of F with respect to L2(P
(n)), per Definition 2. First, since for any i ∈ [N], the map

ξ 7→
√

n∥ f̂n(ξ)− fi∥n is 1-Lipschitz, Eq. (3.10) and a union bound ensure that with probability at

least 1− 1
2N , for all i ∈ [N],

Eξ∥ f̂n − fi∥n − ∥ f̂n − fi∥n ≲

√
log N

n
.

On the other hand, by the pigeonhole principle, there exists at least one i∗ ∈ [N] such that with

probability at least 1/N, ∥ f̂n − fi∗∥n ≤ ϵ∗. Hence, there exists at least one realization of ξ for

which both bounds hold, and thus, deterministically,

Eξ∥ f̂n − fi∗∥n ≲ ϵ∗ +

√
log N

n
≲ ϵ∗

where we used the balancing equation (1.7). Another application of (3.10) and integration of tails

yields

V( f̂n) = Eξ∥ f̂n −Eξ f̂n∥2
n ≤ Eξ∥ f̂n − fi∗∥2

n ≲ ϵ2
∗,

implying that the variance of ERM is minimax optimal.

3.3.2 Proof of Theorem 9

By the definition of the minimax risk, there exists some f ∗ ∈ F with risk at least δ2 :=

M(F , P(n)). By translating F , we may assume f ∗ = 0 without loss of generality, so that

Eξ [∥ f̂n∥2
n] ≳ δ2.
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Write f̂n(ξ) for the ERM computed when the target function is f ∗ = 0 and the noise is ξ,

namely, the projection of ξ onto F . We wish to show that Eξ [∥ f̂n −E f̂n∥2
n] ≳ δ4.

The fact that f̂n(ξ) is the projection of the observation vector ξ on the convex set F implies,

by convexity, that ⟨ f − f̂n, f̂n − ξ⟩n ≥ 0 for any f ∈ F (see §3.4.1 for the easy argument).

Substituting f = f ∗ = 0 and rearranging immediately yields that for any ξ,

⟨ f̂n(ξ), ξ⟩n ≥ ∥ f̂n(ξ)∥2
n.

Write fe = Eξ f̂n(ξ). Since Eξξ = 0, we may take expectations and insert f̂e to obtain

Eξ⟨ f̂n(ξ)− fe, ξ⟩n ≥ Eξ∥ f̂n(ξ)∥2
n ≥ δ2.

Applying Cauchy-Schwarz, we obtain

Eξ∥ f̂n(ξ)− fe∥2
n ·Eξ∥ξ∥

2
n ≥ δ4,

and because the noise is isotropic we immediately obtain

V( f̂n) = Eξ [∥ f̂n(ξ)− fe∥2
n] ≥ δ4,

as desired.

3.3.3 Sketch of proof of Theorem 14

As is well-known, the Lipschitz concentration condition (3.10) is equivalent to an isoperimetric

phenomenon: for any set A ⊂ Rn with Prξ(A) ≥ 1/2, its t-neighborhood At = {ξ ∈ Rn :

infx∈A ∥x− ξ∥n ≤ t} satisfies

Prξ(At) ≥ 1− 2 exp(−nt2/2). (3.17)
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One sees quickly that this implies that if A has measure at least 2 exp(−nt2/2), then A2t has

measure 1− 2 exp(−nt2/2).

Let E be the event of Definition 9. As in sub-section 3.3.1, one obtains via the pigeonhole

principle and the definition of ϵ∗ that there exists some fc ∈ F such that

Prξ({ f̂n ∈ B( fc, ϵ∗)} ∩ E︸ ︷︷ ︸
A

|X) ≥
Prξ(E)

N (ϵ∗,F , P)
≥ exp(−C3nϵ2

∗).

By isoperimetry, Prξ(A2t) ≥ 1− 2 exp(−nt2/2), where t = Mϵ∗/2 and M is chosen such that

(M/2)2 ≥ 2C3; this fixes the value of the absolute constant M used in (3.12).

Applying (3.12) yields that if ξ ∈ A ⊂ E and ∥ξ ′ − ξ∥n ≤ Mϵ∗ = 2t, ∥ f̂n(ξ)− f̂n(ξ
′
)∥ ≤

ρS(X, f ∗) and so ∥ f̂n(ξ
′
)− fc∥ ≤ ϵ∗ + ρS(X, f ∗). This implies

Prξ({ f̂n ∈ B( fc, ϵ∗ + ρS(X, f ∗))}|X) ≥ Prξ(A2t|X) ≥ 1− 2 exp(−nt2/2),

which implies via conditional expectation that V( f̂n|X) ≲ max{ρS(X), ϵ2
∗}, as desired (where we

used that ϵ2
∗ ≳ log(n)/n, and therefore exp(−nt2) = O(ϵ2

∗)).

3.4 Remaining Proofs

We begin with additional notation: Given x1, . . . , xn and h : X → R, we denote

Gh = n−1
n

∑
i=1

ξih(xi).

For g ∈ F , we set Bn(g, t) := { f ∈ F : ∥ f − g∥n ≤ t}, and B(g, t) := { f ∈ F : ∥ f − g∥ ≤ t}.

Throughout the proof, we denote by c, c1, c2, . . . ∈ (0, 1), an C, C1, . . . ≥ 0 absolute constants (not

depending on F or on n) that may change from line to line.
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3.4.1 Proof of Theorem 8

First, we show that for all t ≥ 0 and for any fixed f ∈ F , the following holds:

Prξ

{∣∣∣∥ f̂n − f ∥n −Eξ∥ f̂n − f ∥n

∣∣∣ ≥ t
}
≤ 2 exp(−cLnt2), (3.18)

Indeed, this will follow immediately from the LCP condition (3.10) with L = n−1/2 if we prove

that h(ξ) = ∥ f̂n(ξ)− f ∗∥n is a n−1/2-Lipschitz function.

To prove this claim, observe that f̂n(ξ) is the projection of Y = f ∗ + ξ onto the convex set

Fn := {( f (x1), . . . , f (xn)) : f ∈ F} ⊂ Rn.

Therefore, we obtain

|h(ξ1)− h(ξ2)| = |∥ f̂n(ξ1)− f ∗∥n − ∥ f̂n(ξ2)− f ∗∥n| ≤ ∥ f̂n(ξ1)− f̂n(ξ2)∥n

≤ ∥ξ1 − ξ2∥n = n−1/2∥ξ1 − ξ2∥2,

where we have used the fact that the projection to a convex set is a contracting operator. This

concludes the proof of (3.18).

Next, fix ϵ > 0 (to be chosen later), let N (ϵ) := N (ϵ,F , P(n)), and let A = { f1, . . . , fN } be

a minimal ϵ-net of F . By the pigeonhole principle, there exists at least one element fϵ ∈ A such

that

Pr(∥ f̂n − fϵ∥n ≤ ϵ) ≥ 1/N (ϵ). (3.19)

Also, setting f = fϵ in (3.18) we have

Pr
(
|∥ f̂n − fϵ∥n −Eξ∥ f̂n − fϵ∥n)| ≥ t

)
≤ 2 exp(−cLnt2). (3.20)
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Taking t = log(4)
√

logN (ϵ)
cLn in (3.20) yields

Pr

∣∣∥ f̂n − fϵ∥n −Eξ∥ f̂n − fϵ∥n
∣∣ ≥ log(4)

√
logN (ϵ)

cLn

 ≤ 1
2N (ϵ)

. (3.21)

Combining (3.19) and (3.21) via the union bound we obtain

Pr

∥ f̂n − fϵ∥n ≤ ϵ,
∣∣∣∥ f̂n − fϵ∥n −Eξ∥ f̂n − fϵ∥n

∣∣∣ ≤ log(4)

√
logN (ϵ)

cLn

 ≥ 1
2|N (ϵ)| > 0

Since the event of the last equation holds with positive probability, we must have

Eξ∥ f̂n − fϵ∥n ≤ ϵ + log(4)

√
logN (ϵ)

cLn
.

To optimize the RHS over ϵ, we take ϵ such that ϵ =
√

logN (ϵ)/(cLn) — i.e., ϵ = ϵ∗ — and get

Eξ∥ f̂n − fϵ∥n ≤ Cϵ∗/
√

cL.

Substituting in (3.20) and taking t = ϵ∗, we obtain

Pr(|∥ f̂n − fϵ∥n ≥ Cϵ∗/
√

cL) ≤ 2 exp(−cnϵ2
∗).

This easily implies that E[∥ f̂n − fϵ∥2
n] ≤ C1ϵ2

∗/cL, and therefore also

E[∥ f̂n −E f̂n∥n] ≤ (E[∥ f̂n −E f̂n∥2
n])

1/2 ≤ (E[∥ f̂n − fϵ∥2
n])

1/2 ≤ C2ϵ∗/
√

cL.

Applying (3.18) once again, now with f = E f̂n, we obtain

Pr(∥ f̂n −E f̂n∥2
n ≥ C2ϵ2

∗/cL) ≤ 2 exp(−cnϵ2
∗). (3.22)

Therefore, the claim of the theorem follows for δn = 0 (i.e. all the exact minimizes).
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Next, condition on the high-probability event of (3.22) above, and consider some f ∈ Oδn .

Since

∥ f −E f̂n∥2
n ≤ 2(∥ f − f̂n∥2

n + ∥ f̂n −E f̂n∥2
n),

to obtain the theorem it suffices to show that for any f ∈ Oδn , we have

∥ f − f̂n∥2
n ≤ δ2

n

deterministically.

This is a matter of elementary convex geometry: we know that f̂n is the closest point in the

convex set Fn to the point Y, which implies that the ball B = B(Y, ∥ f̂n −Y∥n) is tangent to Fn at

f̂n. This implies that Fn is contained within the positive half-space H+ defined by the supporting

hyperplane of B at f̂n, i.e.,

Fn ⊂ H+ = { f : ⟨ f̂n −Y, f −Y⟩ ≥ ∥ f̂n −Y∥2}. (3.23)

We now compute:

∥ f −Y∥2
n = ∥ f − f̂n∥2

n + ∥ f̂n −Y∥2
n + 2⟨ f̂n −Y, f − f̂n⟩n.

Since f ∈ Fn, (3.23) implies that ⟨ f − Y, f̂n − Y⟩n ≥ ⟨ f̂n − Y, f̂n − Y⟩n, or equivalently, ⟨ f −

f̂n, f̂n −Y⟩n ≥ 0. Hence we obtain

∥ f − f̂n∥2
n ≤ ∥ f −Y∥2

n − ∥ f̂n −Y∥2
n,

but the RHS is at most δn by the definition of Oδn . This concludes the proof.

3.4.2 Proof of Theorems 10 and 11

Here we only prove Theorem 11, as the proof will reveal, almost identical arguments imply Theorem

10. For completeness, the proof of Theorem 10 appears in §3.5 below. For simplicity, we prove
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Theorem 11 assuming that the ERM is unbiased, in which case we have V( f̂n) = E2
f ∗ . In general,

if B2( f̂n) ≤ 2V( f̂n) we have V( f̂n) ≥ 1
3E2

f ∗ as B2( f̂n) + V( f̂n) = E2
f ∗ , and the proof goes along

the same lines.

To estimate the minimax risk of the class G∗ = { f ∈ F : ∥ f − f ∗∥2
n ≤ 4 · E2

f ∗ + S/n}, where

S > 0 will be defined below. We use the following classical characterization [YB99] (that holds for

Gaussian noise and for any class whose diameter is at most 1):

M(G∗, P(n)) ∼ min
ϵ

[
logN (ϵ,G∗, P(n))

n
+ ϵ2

]
. (3.24)

Case I: E2
f ∗ ≤ Sn−1. It is well known (see, e.g., [Wai19, Example 15.4]) that the minimax rate is

at least Ω(Diam
P(n)(G∗)2) on the restricted class G∗. Namely,

M(G∗, P(n)) ≥ c ·Diam
P(n)(G∗)2 ≥ c1

S
E2

f ∗ ,

for some c, c1 ∈ (0, 1). Next, recall that f̂n is a 1-Lipschitz map in ξ (and hence in Y). Therefore,

we conclude that

R( f̂n,G∗, P(n)) ≲ Diam
P(n)(G∗)2 ≲M(G∗, P(n)),

and the claim follows for this case. We remark that the assumption of 4 · B2( f̂n) ≤ V( f̂n) is not

used our argument. Hence, this result holds for any f ∗ such that E2
f ∗ ≤ Sn−1.

Case II: E2
f ∗ ≥ Sn−1. We will prove that the covering number of G∗ by balls of radius E f ∗/2 is

not too small:

logN (E f ∗/2,G∗, P(n)) ≥ c1n · E2
f ∗ , (3.25)

for some universal constant c1 > 0, to be chosen later.

Since N (ϵ,G∗, P(n)) increases when ϵ decreases, this easily implies that the RHS of (3.24)

is at least c2E2
f ∗ and hence, by Eq (3.24), that the minimax risk of G∗ is at least by c2E2

f ∗ . On the

other hand, M(G∗, P(n)) is certainly bounded above by 4E2
f ∗ , as this is an upper bound on the

risk of the trivial estimator which returns the fixed element f ∗ on any sample. Hence, one obtains
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M(G∗, P(n)) ≍ E2
f ∗ . Similarly,R( f̂n,G∗, P(n)) ≍ E2

f ∗ , as on the one hand, the risk of f̂n cannot

be smaller than the minimax risk, and on the other, the risk of any proper estimator on a class is

bounded by the squared diameter of the class.

So it suffices to prove that (3.25) holds for an appropriate c1 > 0. The proof strategy is very

similar to that of Theorem 8. Suppose for the sake of contradiction that

logN (E f ∗/2, Bn( f ∗, 2E f ∗), P(n)) < c1n · E2
f ∗ .

We consider the distribution of the ERM f̂n when the true function is f ∗. First, note that as

E∥ f̂n − f ∗∥2 = E2
f ∗ , and E f̂n = f ∗, we have that

Pr( f̂n ∈ G∗) = Pr( f̂n ∈ Bn( f ∗, 2E f ∗)) = 1− Pr(∥ f ∗ −E f̂n∥n ≥ 2E f ∗) ≥ 3/4

by Chebyshev’s inequality. Let A = { f1, . . . , fN } be a minimal E f ∗/2- net in G∗; by the pigeonhole

principle, there exists at least one element g ∈ A such that

Pr(∥ f̂n − g∥n ≤ E f ∗/2) ≥ 3
4N ≥

3
4

exp(−c1nE2
f ∗). (3.26)

Next, we apply (3.18) with f = g and t = E f ∗/3 to obtain

Pr(
∣∣∣∥ f̂n − g∥n −Eξ∥ f̂n − g∥n

∣∣∣ < E f ∗/9) ≥ 1− 2 exp(−cLnE2
f ∗/9). (3.27)

Recalling that we are in the case E2
f ∗ ≥ Sn−1, by choosing c1 > 0 small enough and S > 0

large enough we can ensure that exp(nE2
f ∗(1/18− c1)) > 8/3, or equivalently

3
4

exp(−c1nE2
f ∗)− 2 exp(−nE2

f ∗/18) > 0. (3.28)

Combining (3.26), (3.27), and (3.28) yields

Pr(∥ f̂n − g∥n ≤ E f ∗/2) + Pr
(∣∣∣∥ f̂n − g∥n −Eξ∥ f̂n − g∥n

∣∣∣ < E f ∗/6
)
> 1,
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so the two events

{∣∣∣∥ f̂n − g∥n −Eξ∥ f̂n − g∥n

∣∣∣ < E f ∗/6
}

, {∥ f̂n − g∥n ≤ E f ∗/2}

have nonempty intersection, which implies that Eξ∥ f̂n − g∥n < 2E f ∗/3.

Let h(ξ) = ∥ f̂n − g∥n. We have

Eh2 = (Eh)2 + E(h−Eh)2 < 4E2
f ∗/9.

As h is 1√
n -Lipschitz, the LCP implies that h is 1√

n -subgaussian. Thus h−Eh is a centered
1√
n -subgaussian random variable, so E(h−Eh)2 ≤ 2

n [Ver18, Proposition 2.5.2], and hence

Eξ∥ f̂n − g∥2
n <

4
9

E2
f ∗ +

2
n

. (3.29)

Again recalling that E2
f ∗ > Sn−1, by taking S large enough we can ensure that Eξ∥ f̂n− g∥2

n < E2
f ∗ ,

contradicting the assumption V( f̂n) = E2
f ∗ .

3.4.3 Proof of Corollary 2

Here, we prove this result under the additional Assumption 3. For completeness, we provide a proof

without this assumption in §3.5.1 below. We remark that it is very similar to the argument that we

present here and does not provide any new insights, and therefore omitted.

Consider the map F : Fn → Rn defined via

f ∗ → Eξ f̂n,

i.e., f ∗ maps to the expectation of the ERM f̂n when the underlying function is f ∗ ∈ Fn. One

verifies easily that F is continuous, since projection to a convex set is a 1-Lipschitz function; in

addition, the convexity of Fn implies that F( f ∗) ∈ Fn for all f ∗ ∈ Fn. Thus F is a continuous

map from the compact convex set Fn to itself, so by the Brouwer fixed point theorem, there exists
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an f ∗ ∈ Fn such that

f ∗ = Eξ f̂n.

Let E2
f ∗ = Eξ∥ f̂n− f ∗∥2

n = V( f̂n), and let P denote the projection toF , which is is 1-Lipschitz.

For any f ∈ G∗ = B( f ∗, 2E f ∗) ∩ F and any ξ we have

∥P( f + ξ)− f ∥2
n ≤ 3(∥P( f + ξ)− P( f ∗ + ξ)∥2

n + ∥P( f ∗ + ξ)− f ∗∥2
n + ∥ f ∗ − f ∥2

n)

≤ 3(∥P( f ∗ + ξ)− f ∗)∥2
n + 8E2

f ∗) = 3(∥ f̂n − f ∗)∥2
n + 8E2

f ∗),

and taking the expectation over ξ we see that Eξ∥P( f + ξ)− f ∥2
n, the squared error of the ERM

when the underlying function is f , is at most 27E2
f ∗ .

Now let ĥ : Rn → F be any estimator. By Theorem 11, we have

E2
f ∗ ≲ max

f∈G∗
∥ĥ( f + ξ)− f ∥2

n.

Picking f ∈ G∗ which maximizes the error of ĥ, we have that the squared error of f̂n on f is

upper-bounded by c · E2
f ∗ and the squared error of ĥ on f is lower-bounded by c1 · E2

f ∗ , which is

precisely what we want.

Remark 21. The Brouwer fixed point theorem, which we use in the first step of the proof to obtain

the existence of f ∗ ∈ F for which Eξ f̂n = f ∗, is a deep result, and one may ask whether it is

essential to the proof. Another commonly used fixed-point theorem is that due to Banach; the

Banach fixed point theorem is elementary, but requires a bound ∥F( f )− F(g)∥n ≤ c∥ f − g∥n for

some c < 1 and all f , g ∈ F .

One has

∥F( f )− F(g)∥n ≤ Eξ∥P( f + ξ)− P(g + ξ)∥n, (3.30)

where P denotes the projection to F . Note that ∥P( f + ξ)− P(g + ξ)∥n ≤ ∥ f − g∥n because P

is 1-Lipschitz. Also, it’s easy to see that there exists some ξ for which ∥P( f + ξ)− P(g + ξ)∥n is

strictly smaller than ∥ f − g∥n, and continuity of P ensures that the same holds for all ξ
′

sufficiently

close to ξ, implying ∥F( f )− F(g)∥n < ∥ f − g∥n. But this is not yet sufficient to apply the Banach
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fixed point theorem.

Via more delicate convex-geometric arguments, though, one can show that if ∥ξ∥n is sufficiently

large compared to the diameter of F (say, ∥ξ∥n > C · Diam(F )) and ⟨ f − g, ξ⟩n ≥ ϵ∥ f −

g∥n∥ξ∥n (i.e., the angle between f − g and ξ is bounded away from 90 degrees) then

∥P( f + ξ)− P(g + ξ)∥n ≤ (1− δ)∥ f − g∥n

for some δ depending on ϵ and C, which allows one to conclude, using (3.30), that ∥F( f ) −

F(g)∥n ≤ c∥ f − g∥n for some c < 1 and all f , g ∈ F . Hence, the Banach fixed point theorem

can be used in the proof instead of the Brouwer fixed point theorem, rendering it elementary but

more technical.

3.4.4 Proof of Theorem 13

Preliminaries The main tool we use from the theory of empirical processes is Talagrand’s

inequality [Kol11, Theorem 2.6]:

Lemma 13. LetH be a class of functions on a domain Z all of which are uniformly bounded by

M. Let Z1, . . . , Zn ∼
i.i.d.

P. Then, there exist universal constants C, c > 0 such that

Pr(|∥H∥n −E∥H∥n| ≥ t) ≤ C exp
(
− cnt

M
log
(

1 +
t

E∥H2∥n

))
,

where ∥H∥n := suph∈H n−1 ∑n
i=1 h(Zi), and ∥H2∥n = suph∈H n−1 ∑n

i=1 h(Zi)
2.

We abbreviate IL := IL(n, P), IU := IU(n, P). For every fixed X, ξ, the function L̂ : F →

R defined by

L̂( f ) := ∥Y− f ∥2
n − ∥ξ∥2

n = −2G f− f ∗ + ∥ f − f ∗∥2
n, (3.31)

satisfies f̂n = argmin f∈F L̂( f ). (Of course, L̂( f ) is just the empirical loss of f , up to subtracting

a constant.) Note that L̂( f ∗) = 0, so L̂( f̂n) must be non-positive.

Let { f1, . . . , fN} be an ϵU-net of F with respect to P of cardinality N = N (ϵU,F , P); for

each i ∈ [N], let B( fi) := B( fi, ϵU) denote the ball of radius ϵU around fi, so that the B( fi) cover
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F . For each i, let Li denote the minimal loss on the ball B( fi):

Li := min
f∈B( fi)

L̂( f ) (3.32)

The main technical result is the following lemma:

Lemma 14. Fix i∗ ∈ [N]. For any absolute constant A > 0, there exist absolute constants C1, C,>

0, such that the following holds with probability of at least 1− 2 exp(−Anϵ4
U/ max{IU, ϵ2

∗}):

∀i ∈ [N], |(Li − Li∗)−E(Li − Li∗)| ≤ C1ϵ2
U +

1
4
∥ fi − fi∗∥

2. (3.33)

We defer the proof of Lemma 14 to the end of the section, and show how it implies the theorem.

Proof of Theorem 13 (assuming Lemma 14). We apply Lemma 14 with i∗ = argmini∈[N] ELi.

Let E denote the event of Lemma 14 (the constant A > 0 in the lemma will be chosen shortly), and

let E ′ be the event that

∥ f − g∥2
n ≥

1
2
∥ f − g∥2 − IL (3.34)

for all f , g ∈ F . By the definition of IL, E ′ holds with probability 1 − n−1; in addition, a

mildly tedious computation, which we defer to Lemma 16, shows that A can be chosen such that

Pr(E) ≥ 1− n−1 as well. In the remainder of the proof, we work on E ∩ E ′.

Let f̂i∗ = argmin f∈B( fi∗ )
L̂( f ), so that Li∗ = L̂( f̂i∗). Consider the function h = f̂i∗+ f̂n

2 , which

lies in F as F is convex. We have

L̂(h) = −2Gh− f ∗ + ∥h− f ∗∥2
n

=
L̂( f̂i∗) + L̂( f̂n)

2
+

(
∥h− f ∗∥2

n −
∥ f̂i∗ − f ∗∥2

n + ∥ f̂n − f ∗∥2
n

2

)
. (3.35)

Applying the parallelogram law

∥a + b∥2
n + ∥a− b∥2

n = 2∥a∥2
n + 2∥b∥2

n
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with a = f̂i∗− f ∗
2 , b = f̂n− f ∗

2 yields

∥h− f ∗∥2
n −
∥ f̂i∗ − f ∗∥2

n + ∥ f̂n − f ∗∥2
n

2
= −

∥∥∥∥∥ f̂i∗ − f̂n

2

∥∥∥∥∥
2

n

.

Combining this equation with (3.35) yields

L̂(h) ≤ L̂( f̂i∗) + L̂( f̂n)

2
−
∥∥∥∥∥ f̂i∗ − f̂n

2

∥∥∥∥∥
2

n

.

But we also know that L̂(h) ≥ L̂( f̂n) by the definition of f̂n, so rearranging we obtain

L̂( f̂n) ≤ L̂( f̂i∗)−
1
2
∥ f̂i∗ − f̂n∥2

n. (3.36)

Now let i ∈ N such that f̂n ∈ B( fi) and substitute Li = L̂( f̂n), giving

Li ≤ Li∗ −
1
2
∥ f̂i∗ − f̂n∥2

n.

Since we are on E , we may apply (3.33) and obtain

ELi ≤ ELi∗ + C3ϵ2
U −

1
4
∥ f̂i∗ − f̂n∥2

n ≤ ELi∗ + C4ϵ2
U + IL −

1
8
∥ f̂i∗ − f̂n∥2.

But ELi∗ ≤ ELi by our choice of i∗, which implies finally that ∥ f̂i∗ − f̂n∥2
n ≲ max{ϵ2

U, IL} = ϵ2
V .

Recall that we are also interested in f ∈ Oδn for δn = O(ϵ2
V). By the geometric argument in

the proof of Theorem 8, for such f , we have ∥ f − f̂n∥n = O(δn).

Applying the lower isometry property (3.34), we obtain

∥ f̂n − f̂i∗∥, ∥ f − f̂n∥ ≤ CϵV

for any f ∈ Oδn on E ∩ E ′. Since ∥ f̂i∗ − fi∗∥ ≤ ϵV (as f̂i∗ ∈ B( fi∗) by definition), we also have

∥ f̂n − fi∗∥, ∥ f − fi∗∥ ≤ CϵV .
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In sum, thus far we have shown that under E ∩ E ′, an event of probability at least 1− 2n−1 any

f ∈ Oδn satisfies ∥ f − fi∗∥ ≲ ϵV . It remains to show that this implies that ∥ f −E f̂n∥ ≲ ϵV , for

which it suffices to show that ∥E f̂n − fi∗∥ ≲ ϵV . But

E f̂n − fi∗ = (E[ f̂n|E ∩ E ′]− fi∗)Pr(E ∩ E ′) + (E[ f̂n|(E ∩ E ′)c]− fi∗)Pr((E ∩ E ′)c).

By what we have shown, ∥E[ f̂n|E ∩ E ′]− fi∗∥ ≤ CϵV , while ∥E[ f̂n|(E ∩ E ′)c]− fi∗∥ = O(1)

by Assumption 11 and so the norm of the second term is asymptotically bounded by O(n−1)≪

ϵ∗ ≤ ϵV because ϵ∗ ≳
√

log n
n by Assumption 10. This concludes the proof.

It remains to prove the deferred lemmas. We begin with the most substantial one, Lemma 14.

Proof of Lemma 14. Recall that

−Li = sup
f∈B( fi)

(2G f− f ∗ − ∥ f − f ∗∥2
n).

We write f − f ∗ = ( f − fi) + ( fi − f ∗), expand, and decompose this expression into terms

depending on f − fi and terms depending only on fi − f ∗:

−Li = Ai + A′i, (3.37)

where

Ai := sup
f∈B( fi)

(
2G f− fi − ∥ f − fi∥2

n − 2⟨ f − fi, fi − f ∗⟩n
)

,

A′i := 2G fi− f ∗ − ∥ fi − f ∗∥2
n.
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We also write

Bi := A′i − A′i∗ = 2G fi− f ∗ − ∥ fi − f ∗∥2
n − (2G fi∗− f ∗ − ∥ fi∗ − f ∗∥2

n)

= 2G fi− fi∗
− ∥ fi∥2

n + ∥ fi∗∥
2
n + 2⟨ fi − fi∗ , f ∗⟩

= 2G fi− fi∗
+ ∥ fi − fi∗∥

2
n − 2∥ fi∥2

n + 2⟨ fi, fi∗⟩+ 2⟨ fi − fi∗ , f ∗⟩

= 2G fi− fi∗
+ ∥ fi − fi∗∥

2
n + 2⟨ fi − fi∗ , f ∗ − fi⟩

We claim that with probability 1− C exp(−cnϵ4
U/ max{ϵ2

∗, IU}) the following holds:

∀i ∈ [N], |Ai −EAi| ≤ C1ϵ2
U, (3.38)

∀i ∈ [N], |Bi −EBi| ≤ C2ϵ2
U +

1
4
∥ fi − fi∗∥

2. (3.39)

Since Li − Li∗ = Ai∗ − Ai − Bi, combining (3.38) and (3.39) yields the lemma.

We first prove (3.38). For each i ∈ [N], we control fluctuations of Ai by applying Talagrand’s

inequality. To this end, write

Ai = sup
f∈B( fi)

1
n

n

∑
j=1

a f (Xj, ξ j)

where

a f (x, ξ) = 2ξ( f (x)− fi(x))− 2( f (x)− fi(x))( fi(x)− f ∗(x))− ( f (x)− fi(x))2.

To apply Talagrand’s inequality, we need to bound E sup f∈B( fi)
n−1 ∑n

j=1 a f (Xj, ξ j)
2.

Using the identity (a + b + c)2 ≤ 3(a2 + b2 + c2), we see that

EX,ξ sup
f∈B( fi)

∫
a f (Xj, ξ j)

2dPn

≤ 3 ·EX,ξ sup
f∈B( fi)

∫ (
2ξ2( f (x)− fi(x))2 + 2( f (x)− fi(x))2( fi(x)− f ∗(x))2 + ( f (x)− fi(x))4

)
dPn.
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Using the assumptions |ξi| ≤ Γ1, ∥ f ∥∞ ≤ Γ2, one can obtain that

EX,ξ sup
f∈B( fi)

∫
a f (Xj, ξ j)

2dPn ≤ C ·EX sup
f∈B( fi)

∫
( f − fi)

2dPn

for some C = O(max{Γ2
1, Γ2

2}). Using the definition of the upper isometry constant IU and the

stationary point ϵU, we obtain

EX,ξ sup
f∈B( fi)

∫
a f (Xj, ξ j)

2dPn ≲ max{IU, ϵ2
U} ≍ max{IU, ϵ2

∗},

where the last step uses Lemma 15 below.

Thus we may apply Talagrand’s inequality to Ai with E∥H2∥n ≲ max{ϵ2
∗, ϵ2

U}, giving

PrX,ξ{|Ai −EAi| ≥ t} ≤ C exp(−cnt log(1 + t/ max{ϵ2
∗, IU})). (3.40)

Taking a union bound over i ∈ [N], we obtain

Prξ{∃i ∈ [N] : |Ai −EAi| ≥ t} ≤ C exp(−cnt2/ max{ϵ2
∗, IU}+ log N).

Choosing t = C1ϵ2
U for C1 sufficiently large and recalling that log N = logN (ϵ,F , P) ≤

nϵ4
U/ max(IU, ϵ2

∗) by (3.11), we obtain that

∀i ∈ [N], |Ai −EAi| ≤ C1ϵ2
U

with probability at least 1− 2 exp(−c1nϵ4
U/ max{ϵ2

∗, IU}), which is (3.38).

Next, we handle Bi for every i ∈ [N]. As in the case of Ai, we may write Bi = n−1 ∑n
j=1 bi(Xi, ξi)

where

bi(x, ξ) = 2ξ( fi(x)− fi∗(x)) + ( fi(x)− fi∗(x))2 + 2( fi(x)− fi∗(x))( f ∗(x)− fi(x)).
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We have |bi(x, ξ)| ≤ C| fi(x)− fi∗(x)|, so as before,

1
n

n

∑
j=1

E[bi(Xj, ξ j)
2] ≤ CE[∥ fi − fi∗∥

2
n] = C∥ fi − fi∗∥

2,

and hence by Bernstein’s inequality,

Pr(|Bi −EBi| ≥ t) ≤ exp
(
− cnt2

C3t + ∥ fi − fi∗∥2

)
.

Substituting t = ti := Cϵ2
U + ∥ fi − fi∗∥2/4, we obtain

Pr
(
|Bi −EBi| ≥ C2ϵ2

U +
∥ fi − fi∗∥2

4

)
≤ 2 exp

(
−c1nt2

i
C3ti + ∥ fi − fi∗∥2

)

≤ 2 exp
(
−c2n max

{
Cϵ2

U,
∥ fi − fi∗∥2

4

})
≤ 2 exp(−c3n · Cϵ2

U).

(3.41)

By the same exact argument as in the case of Ai, we may choose C > 0 sufficiently large such that

with probability 1− C exp(−cnϵ4
U/ max(IU, ϵ2

∗)),

|Bi −EBi| ≤ C2ϵ2
U + ∥ fi − fi∗∥

2/4

for every i ∈ [N], which is (3.39). This concludes the proof of Lemma 14.

Lemma 15. The following holds:

max{ϵ2
U, IU} ≍ max{ϵ2

∗, IU}. (3.42)

Proof. If IU ≲ ϵ2
∗, then ϵ2

∗ ≍ ϵ2
U by definition. If IU ≳ ϵ2

∗, assume to the contrary IU ≪ ϵU; as

we have nϵ4
U ≍ IU logN (ϵU,F , P), this implies

logN (ϵU,F , P)/n≫ ϵ2
U.
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However, this contradicts the definition of ϵ∗ as the maximal choice of ϵ satisfying the last equa-

tion.

Lemma 16. For a sufficiently large absolute constant A > 0, one has exp(−Anϵ4
U/ max(ϵ2

U, IU)) ≤

n−1.

Proof. First, we show that N = N (F , ϵU, P) ≳ n1/4/ log n. Suppose to the contrary that

N ≪ n1/4/ log n. Then

nϵ4
U ≍ IU · log N ≲ log n,

since IU is at most the squared diameter ofFn, which is Θ(1). This yields ϵU ≲ (log n/n)1/4. But

N (F , ϵ, P) ≥ 1
ϵ because DiamP(F ) = Θ(1) and Fn is convex, so we obtain N (F , ϵU, P) ≳

n1/4/ log n, contradiction.

To upper-bound exp(−Anϵ4
U/ max(ϵ2

U, IU)), we split into cases. If IU ≲ ϵ2
U then ϵU ≍ ϵ∗

and we have nϵ2
∗ ≳ log n by Assumption 10, so exp(−Anϵ4

U/ max{ϵ2
U, IU}) ≤ exp(−Anϵ2

∗) ≤

n−1 for sufficiently large A > 0.

Otherwise, if IU ≫ ϵ2
U we have nϵ4

U/IU ≳ log N by the definition of ϵU, and since

N ≳ n1/5, we have log N ≫ log n. Hence, by choosing A > 0 large enough we can en-

sure that exp(−Anϵ4
U/IU) ≤ n−1 in this case as well.

3.4.5 Proof of Theorem 14

Assume for simplicity that cL = 1. We say ξ has a Gaussian Isoperimetric Profile (GIP) with

respect to ∥ · ∥n, if for any measurable set A ⊂ Rn such that Prξ(A) ≥ 1/2, we have that

Prξ(At) ≥ 1− 2 exp(−nt2/2). (3.43)

where At = {ξ ∈ Rn : infx∈A ∥x− ξ∥n ≤ t}. It is not hard to verify that the GIP and LCP are

equivalent (cf. [AAGM15, Thm 3.1.30]).
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The main observation is the following simple and useful lemma which leverages the power of

isoperimetry:

Lemma 17. For any measurable A ⊂ Rn such that Prξ(A) ≥ 2 exp(−nt2/2), Prξ(A2t) ≥

1− 2 exp(−nt2/2).

Proof. Since A2t = (At)t, (3.43) implies that it’s sufficient to show that Pr(At) ≥ 1/2, and indeed

it suffices to show that Pr(At+ϵ) ≥ 1/2 for any ϵ > 0. Fix ϵ > 0, and assume to the contrary that

Pr(B) > 1/2, where B = Rn\At+ϵ. It’s easy to see that A ⊂ Rn\Bt+ϵ. Hence, using (3.43), we

obtain

Pr(Rn\A) ≥ Pr(Bt+ϵ) ≥ 1− 2 exp(−n(t + ϵ)2/2),

i.e., Pr(A) ≤ 2 exp(−n(t + ϵ)2/2) < 2 exp(−nt2/2), contradiction.

Denote the event of Definition 9 by E , and recall the definition of ϵ2
∗ via nϵ2

∗ ≍ logN (ϵ∗,F , P).

Letting S be an ϵ∗-net of F of cardinality N (ϵ∗,F , P), the pigeonhole principle implies the

existence of fc ∈ S such that

Prξ({ f̂n ∈ B( fc, ϵ∗)} ∩ E︸ ︷︷ ︸
A

|X) ≥
Prξ(E)

N (ϵ∗,F , P)
≥ exp(−c2nϵ2

∗)

N (ϵ∗,F , P)
≥ exp(−c3nϵ2

∗).

By isoperimetry, Prξ(A2t) ≥ 1− 2 exp(−nt2/2), where t = Mϵ∗/2 and M is chosen such

that (M/2)2 ≥ 2C3; this fixes the value of the absolute constant M used in (3.12).

Applying (3.12) yields that if ξ ∈ A ⊂ E and ∥ξ ′ − ξ∥ ≤ Mϵ∗ = 2t, ∥ f̂n(ξ)− f̂n(ξ
′
)∥2 ≤

ρS(X, f ∗) and so ∥ f̂n(ξ
′
)− fc∥ ≤ ϵ∗ +

√
ρS(X, f ∗). This implies

Prξ({ f̂n ∈ B( fc, ϵ∗ +
√

ρS(X, f ∗))}|X) ≥ Prξ(A2t|X) ≥ 1− 2 exp(−nt2/2).

To bound the variance of f̂n, we use conditional expectation as in Theorem 13. We have

V( f̂n|X) ≤ E∥ f̂n − fc∥2 ≤ (1− 2 exp(−nt2/2)) · (ϵ∗ +
√

ρS(X, f ∗)))2 + 2C exp(−nt2/2),
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where we have used the fact that DiamP(F ) = Θ(1). Recalling that ϵ2
∗ ≳ log(n)/n, and t =

Θ(ϵ∗), we have exp(−nt2) = O(ϵ2
∗) and hence the RHS is bounded by C max{ϵ2

∗, ρS(X, f ∗)},

as desired.

3.4.6 Proof of Theorem 15

For simplicity, we assume that cX = cL = cI = O(1), We abbreviate ρO := ρO(n, P, f ∗).

We shall use the joint metric on X n ×Rn given by

∆n((X1, ξ1), (X2, ξ2)) := n−1/2 · dn(X1, X2) + ∥ξ1 − ξ2∥n.

As (X, dn) and (ξ, ∥ · ∥2) both satisfy Lipschitz concentration inequalities with parameter Θ(1), so

does the product space X n ×Rn with the usual product metric

((X1, ξ1), (X2, ξ2)) 7→ dn(X1, X2) + ∥ξ1 − ξ2∥2,

and since ∆n is obtained by scaling this metric by n−1/2, we obtain that (X n ×Rn, ∆) satisfies an

LCP condition with parameter Θ(n).

Let E1 be the event of Assumption 14, namely, the event that the ERM is almost interpolating,

and let E2 be the event that DiamP(OM′ϵ2∗
) ≤ ρO. Since Pr(E1) + Pr(E2) > 1 + exp(−cInϵ2

∗),

we have Pr(E1 ∩ E2) > exp(−cInϵ2
∗).

Set E3 = E1 ∩ E2. Since Pr(E3) ≥ exp(−cInϵ2
∗), the same pigeonhole principle argument

used in the proofs of Theorems 8 and 14 shows that there exists an absolute constant c1 ∈ (0, cI)

and fc ∈ F such that

PrX,ξ(E3 ∩ { f̂n ∈ B( fc, ϵ∗)}) ≥ exp(−c1nϵ2
∗).

Denote this event by E (in this case, it is better to think about it as a subset of X n ×Rn). By the

same argument as in Theorem 14, Ẽ := EC1ϵ∗ will be an event of probability 1− exp(−c1nϵ2
∗),

where Ar = {(X, ξ) ∈ X n ×Rn : ∆n((X, ξ), A) ≤ r} as above, and C1 is an absolute constant
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depending on c1 and the LCP parameter of ∆.

Thus, we would like to show that any (X, ξ) ∈ Ẽ is not too far from fc. More precisely, we

claim that for any (X, ξ) at distance at most C1ϵ∗ from E , the corresponding f̂n is at distance at

most C2 ·max{ϵ∗,
√

ρO} from fc.

For f ∈ F , let fX denote ( f (X1), . . . , f (Xn)) ∈ Rn. We claim that it suffices to prove the

following: for every (X1, ξ1) ∈ E and such that ∆n((X2, ξ2), (X1, ξ1)) ≤ C1ϵ∗, we have

∥ f̂n(X2, ξ2)X1
− f̂n(X1, ξ1)X1

∥n ≲ ϵ∗, (3.44)

where f̂n(Xi, ξ i) is the ERM for the input points Xi and noise ξ i,. Indeed, assuming (3.44) we have

∥ f̂n(X2, ξ2)X1
−Y1∥2

n ≤ 2∥ f̂n(X1, ξ1)X1
−Y1∥2

n + 2∥ f̂n(X2, ξ2)X1
− f̂n(X1, ξ1)X1

∥2
n ≲ ϵ2

∗,

(3.45)

as the first term on the RHS is bounded by 2ϵ∗ because (X1, ξ1) ∈ E , and the second term is

bounded by 4ϵ2
∗ by construction. We now specify the constant M′ in the definition of ρO (Definition

10) to be any upper bound for the implicit absolute constant in (3.45). Under this definition,

(3.45) implies that f̂n(X2, ξ2)X1
∈ OM′ϵ2∗

and hence ∥ f̂n(X2, ξ2)− f̂n(X1, ξ1)∥2 ≤ ρO. Since

f̂n(X1, ξ1) ∈ E , this implies that

∥ f̂n(X2, ξ2)− fc∥2 ≤ 2(∥ f̂n(X2, ξ2)− f̂n(X1, ξ1)∥2 + ∥ f̂n(X2, ξ2)− fc∥2 ≲ max{ϵ2
∗, ρO}

as desired.

Thus, on the high-probability event Ẽ , f̂n ∈ B( fc, C max{ϵ2
∗, ρO}). As in the proof of Theorem

13, one concludes by conditional expectation that V( f̂n) ≤ C max{ϵ2
∗, ρO}.

Proof of (3.44): For convenience, denote fi,j = f̂n(Xi, ξ i)X j
, and similarly f ∗ j = ( f ∗)X j

. As

d((X2, ξ2), (X1, ξ1)) ≤ 2ϵ∗, we have by the Lipschitz property that ∥ fi,1 − fi,2∥n ≤ 2ϵ∗ and also

∥ f ∗1 − f ∗2∥n ≤ 2ϵ∗. In addition, letting Yi = f ∗i + ξ i be the observation vector, the Lipschitz

property of f ∗ and the bound on ∥ξ1− ξ2∥n together imply that ∥Y1−Y2∥n ≤ 4ϵ∗. The definition
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of fi,i as the ERM with data points Xi and observations Yi implies that for i = 1, 2,

∥ fi,i −Yi∥n ≤ ∥ fXi
−Yi∥n (3.46)

for any f ∈ F . Finally, the almost interpolating assumption (Assumption 14) yields ∥Y1− f1,1∥n ≤

Cϵ∗.

We obtain (3.44) by putting these bounds all together. Indeed, we have

∥ f1,1 − f2,1∥n ≤ ∥ f1,1 −Y1∥n + ∥Y1 −Y2∥n + ∥Y2 − f2,2∥n + ∥ f2,2 − f2,1∥n

≤ (C + 6)ϵ∗ + ∥ f2,2 −Y2∥n,

and substituting i = 2, f = f1 into (3.46) yields

∥ f2,2 −Y2∥n ≤ ∥ f1,2 −Y2∥n

≤ ∥ f1,2 − f1,1∥n + ∥ f1,1 −Y1∥n + ∥Y1 + Y2∥n

≤ (C + 6)ϵ∗,

so we finally obtain

∥ f1,1 − f2,1∥n ≤ 2(C + 6)ϵ∗ ≲ ϵ∗,

as desired.

3.4.7 Proof of Theorem 16

The proof strategy is identical to that of Corollary 2: use a fixed-point theorem to find a function

f ∗ for which f ∗ = EX,ξ f̂n, for which we have E∥ f̂n − f ∗∥2 ≤ sup f ∗∈F V( f̂n). However, the

infinite-dimensional random-design setting makes things a bit trickier.

For given f ∗, X, ξ, let FX,ξ( f ∗) denote the corresponding ERM (which we have previously

denoted f̂n). Recall that while the ERM is uniquely defined as a vector in Fn, its lift to F is

in general far from unique. We will make two temporary assumptions to streamline the proof,
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and explain at the end of the proof how to remove them, at the cost of some additional technical

complexity. First, we assume that FX,ξ( f ∗) is the (unique) element of F of minimal L2(P)-norm

mapping to the finite-dimensional ERM; second, we assume that for each X, the minimal-norm

lifting map, defined by

LX(v) = argmin{∥ f ∥ : f ∈ F | v = ( f (x1), . . . , f (xn))},

is continuous.

The map FX,ξ is the composition of the following maps:

F Fn Fn FPn v 7→PFn (v+ξ) LX

where Pn( f ) = ( f (x1), . . . , f (xn)), PFn is the projection from L2(P(n)) onto the convex set

Fn, which is the LSE in fixed design, and LX is the lifting map defined above. The linear map Pn is

continuous by Assumption 15, and the map v 7→ PFn(v + ξ) is continuous because projection onto

a convex set is continuous. As we have assumed (for now) that LX is continuous, this proves that

for every X, ξ, f 7→ FX,ξ( f ) is a continuous map of the compact set F to itself.

We claim that the expectation of this map, f 7→ EX,ξ [FX,ξ( f )], is also continuous: indeed, if

fk → f then

∥FX,ξ( fk)− FX,ξ( f )∥ → 0

for each X, ξ and is bounded by the diameter DP(F ), so Jensen’s inequality and dominated

convergence imply

∥E[FX,ξ( fk)]−E[FX,ξ( f )]∥ ≤ E[∥FX,ξ( fk)− FX,ξ( f )∥]→ 0

which is continuity.

We can thus apply the Schauder fixed point theorem [AB06, Theorem 17.56]:

Theorem 1. Let K be a nonempty compact convex subset of a Banach space, and let f : K → K be

a continuous function. Then the set of fixed points of f is compact and nonempty.
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The fixed point we obtain is a function f ∗ ∈ F for which f ∗ = E[FX,ξ( f )] = E f̂n and hence,

E∥ f̂n − f ∗∥2 = E∥ f̂n −E f̂n∥2 ≲ V( f̂n,F , P).

This concludes the proof in the case that the lifting maps LX are continuous.

Unfortunately, the assumption that the LX are continuous turns out to be unjustified in general.

Indeed, it is not difficult to construct an example of a convex set K ⊂ R3 for which the minimal-

norm lift PR2(K) → K is not continuous; in fact, one can construct K ⊂ R3 with no continuous

section PR2(K)→ K. So we need to explain how to proceed without this assumption.

Fortunately, each LX is always continuous on the relative interior of Fn (we sketch the proof of

this at the end of the section), so the following modification of FX,ξ does turn out to be continuous:

F Fn Fn Fn F ,
Pn v 7→PFn (v+ξ) φδ LX (3.47)

where

φδ(v) = (1− δ)(v− v0) + v0

is simply a contraction of Fn into a (1− δ)-scale copy of itself (v0 is some arbitrarily chosen point

in the interior of Fn).

Let F̃X,ξ denote the composition of the maps in (3.47). By the argument above, F̃X,ξ is continuous

and E[F̃X,ξ ] has a fixed point f ∗.

Of course, f ∗ is not a fixed point of E[FX,ξ ] as we would like. However, note that ∥φδ(v)−

v∥n ≤ 2δ for any v ∈ Fn (as the diameter of Fn is at most 2). Hence, we have for any v ∈ Fn that

∥LX(φδ(v))− LX(v)∥
2 ≤ 2∥φδ(v)− v∥2

n + CIL(n, P) ≤ 8δ2 + IL(n, P)

on an event E of high probability; in particular this holds for v = PFn(Pn( f ∗) + ξ), which means

that on E ,

∥F̃X,ξ( f ∗)− FX,ξ( f ∗)∥ ≤ 8δ2 + CIL(n, P).

Choosing δ ≲ IL(n, P) and applying conditional expectation (using the fact that E c is negligible)
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and Jensen’s inequality, we get that the f ∗ thus obtained satisfies

∥ f ∗ −E f̂n∥ ≲ max{V( f̂n,F , P), IL(n, P)}

, which shows that the ERM is admissible for this f ∗.

By the same argument, we may discard the assumption that the ERM is computed by finding

the element of F of minimal norm mapping to the finite-dimensional ERM f̂ ( f d)
n : indeed, under

the event E , the set of functions in F mapping to f̂ ( f d)
n has diameter C · IL(n, P), so changing the

selection rule for the ERM will shift its expectation by a perturbation of norm at most C · IL(n, P).

It remains to explain why the lifting map L = LX : Fn → F is continuous on the relative

interior of Fn. Replacing the ambient space with the affine hull of Fn, we may assume Fn has

nonempty interior.

Suppose vk → v in Fn and v ∈ intFn; we wish to show that L(vk) → f = L(v). As Fn is

compact, by passing to a subsequence we may assume L(vk) converges to some g ∈ F . Since

Pn is continuous, we have v = Pn(L(vk)) → Pn(g), i.e., g is a lift of v. Hence, by definition,

∥g∥ ≥ ∥ f ∥, and we wish to show that equality holds.

Suppose not. Then ∥g∥ > ∥ f ∥ and hence ∥L(vk)∥ ≥ ∥ f ∥+ ϵ for all k and some ϵ > 0; that

is, there exist vk arbitrarily close to v whose minimal-norm lift has much larger norm than that of v.

It suffices to show this is impossible (i.e., that u 7→ ∥L(u)∥ is upper semicontinuous at v). This

follows from the fact that u 7→ ∥L(u)∥ is convex, as is easily verified, and a convex function is

continuous on the interior of its domain [Sch14, Theorem 1.5.3]; for completeness, we give a direct

proof.

Since v ∈ intFn, there exists r > 0 such that B(v, r) ⊂ Fn. This implies that for any δ > 0,

one has

B(v, δ) ⊂ v +
δ

r
(Fn − v).

Let D be the diameter of F in L2(P). We have F ⊂ B( f , D) and hence Fn ⊂ Pn(B( f , D) ∩

F ). By linearity, this implies that

v + a(Fn − v) ⊂ Pn(B( f , aD) ∩ F )
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for any a > 0; choosing a = δ
r we obtain

B(v, δ) ∩ Fn ⊂ Pn

(
B
(

f ,
Dδ

r

)
∩ F

)
.

In other words, if ∥u− v∥n < δ and u ∈ Fn, there exists an element of F in B( f , Dδ
r ) mapping

to u, which in particular implies that ∥L(u)∥ ≤ ∥ f ∥+ Dδ
r . This means that u 7→ ∥L(u)∥ is upper

semicontinuous at v, which was precisely what we needed in order to conclude that L is continuous

at v.

3.4.8 Proof of Theorem 12

For the purposes of this proof, the assumption that (F , P(n)) is a non-Donsker class will be

formulated in the following way:

Assumption 1. For any n ≥ 1, E sup f∈F G f = ω(ϵ2
∗) and

1√
n

∫ 1

ϵ∗(n)

√
logN (ϵ,F , P(n)) dϵ = O(ϵ2

∗).

In order to avoid confusion, in this model F is a fixed function class, and P(n) is a sequence

of fixed measures. This model is inspired from non-parametric models that appear in the shape-

constraints literature such as convex regression when d ≥ 5 or α-Hölder regression in the suitable

dimension For example, in the case of convex Lipschitz regression [SS11] when d ≥ 5 and P(n)

are n-well separated grid points on X , Assumption 1 is valid.

Preliminaries The following is known as the maximal inequality (cf. [Ver18]):

Lemma 18. Let Z1, . . . , Zk be zero mean σ-sub-Gaussian random variables with bounded variance.

Then, we have that

E max
1≤i≤k

Zi ≲ σ
√

log k.

Next, we state the classical Dudley’s lemma (cf. [Ver18]):
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Lemma 19. The following holds for all ϵ ∈ (0, 1):

E sup
fi∈Nϵ

G fi− f ∗ ≤
C4√

n

∫ D
P(n) (F )

ϵ

√
logN (u,F , P(n))du, (3.48)

where Nϵ denotes the minimal ϵ-net in F .

Proof of Theorem 12. We start by finding a weakly admissible f ∗ by a more constructive method

than that used in the proof of Corollary 3 (the method here is closer to the original proof of [Cha14]).

Then, we prove (3.9) for this choice of f ∗.

Let S = { f1, . . . , fN } be a minimal ϵ∗ := ϵ∗(n)-net of F , and denote B( fi) := Bn( fi, ϵ∗),

i = 1, . . . ,N .

Our admissible f ∗ ∈ F is defined as

f ∗ := argmax fi∈S E sup
f∈B( fi)

G f− fi . (3.49)

Lemma 20. The following event holds with probability of at least 1− 2 exp(−cnϵ2
∗):

∀i ∈ [N ]

∣∣∣∣∣ sup
f∈B( fi)

G f− fi −E max
f∈B( fi)

G f− fi

∣∣∣∣∣ ≤ C1ϵ2
∗. (3.50)

In addition, for a fixed j ∈ 1, . . . , ⌈ϵ−1
∗ ⌉, the event

sup
fi∈(S∩B( f ∗,jϵ∗))

G fi− f ∗ ≤ C2 jϵ2
∗. (3.51)

holds with probability of at least 1− 2 exp(−c3nϵ2
∗).

The proof of this lemma appears below. We denote the event of (3.50) by E , and by E(j) the event

of (3.51).

Following [Cha14], we define

Ψξ(t) = sup
f∈Bn( f ∗,t)

2G f− f ∗ − t2.
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One easily verifies (see [Cha14, Proof of Theorem 1.1]) that Ψξ(t) is strictly concave and that

argmaxt Ψξ(t) = ∥ f ∗ − f̂n∥2
n.

This implies that if, for any particular ξ, we identify t1, t2 such that Ψξ(t1) > Ψξ(t2), the

unique maximum of Ψξ occurs for some t smaller than t2, i.e., ∥ f ∗ − f̂n∥ ≤ t2. We will take

t1 = ϵ∗ and t2 = Dϵ∗ for a sufficiently large constant D and show that Ψξ(t1) > Ψξ(t2) on

E ∩ E(D). This implies that ∥ f ∗ − f̂n∥ ≤ Dϵ∗ on E ∩ E(D), which precisely means that f̂n is

admissible for f ∗.

On the one hand, conditioned on E we have

Ψξ(ϵ∗) = sup
f∈B( f ∗)

2G f− f ∗ − ϵ2
∗

≥ max
fi∈N

E sup
f∈B( fi)

2G f− f ∗ − C1ϵ2
∗,

(3.52)

where we used the definition of f ∗ and Eq. (3.50) above. On the other hand, for D ≥ 2 we have

under E(D) ∩ E that

sup
f∈Bn( f ∗,Dϵ∗)

G f− f ∗ ≤ max
fi∈N∩B( f ∗,Dϵ∗)

sup
f∈B( fi)

G f− fi + sup
fi∈N∩B( f ∗,Dϵ∗)

G fi− f ∗

≤ sup
f∈B( f ∗,ϵ∗)

G f− f ∗ + C2Dϵ2
∗,

where we used the definition of f ∗ and (3.51). Substituting in the definition of Ψ, we obtain

Ψξ(Dϵ∗) = sup
f∈Bn( f ∗,Dϵ∗)

2G f− f ∗ − D2ϵ2
∗

≤ 2

(
sup

f∈B( f ∗)
G f− f ∗ + C2Dϵ2

∗

)
− D2ϵ2

∗

≤ Ψξ(ϵ∗) + (2C2 + 1)Dϵ2
∗ − D2ϵ2

∗.

Comparing with (3.52) we see that for D ≥ 2C2 + C1 + 1 (say) we have Ψξ(Dϵ∗) < Ψξ(ϵ∗) on

E ∩ E(D), which is what we wished to prove.
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Now, we are ready to prove (3.9). We first claim that with probability 1− 2 exp(−cnϵ2
∗),

sup
f∈B( f ∗)− f ∗

G f = ω(ϵ2
∗), (3.53)

where f ∗ is our admissible function. To prove this, we first apply the basic inequality [Gee00],

which implies that

Rn( f̂n,F , P(n)) ≤ E sup
f∈F

2G f− f ∗ ,

where we recall that the LHS denotes the risk of f̂n, i.e. the maximal L2(P
(n)) error that f̂n can

attain over F . By assumption,Rn( f̂n,F , P(n)) = ω(ϵ2
∗).

Next, we have by Lemma 19 and (3.49)

ω(ϵ2
∗) = E sup

f∈F
G f− f ∗ ≤ max

fi∈N∩Bn( f ∗,E f ∗ )
E sup

f∈B( fi)

G f− fi + E max
fi∈N

G fi− f ∗

≤ E sup
f∈B( f ∗)

G f− f ∗ +
C1√

n

∫ D
P(n)

ϵ∗

√
logN (t,F , P(n))dt

≤ E sup
f∈B( f ∗)

G f− f ∗ + O(ϵ2
∗),

where we used Assumption 1. Hence,

E sup
f∈B( f ∗)

G f− f ∗ = ω(ϵ2
∗)−O(ϵ2

∗) = ω(ϵ2
∗). (3.54)

This gives us a lower bound for sup f∈B( f ∗) G f− f ∗ in expectation, but we require a high-

probability bound. The proof of this is the same as the proof of Lemma 20, so we only sketch

it: sup f∈B( f ∗) G f− f ∗ is convex and ϵ∗n−1/2-Lipschitz, which means that it deviates from its

expectation by ϵ2
∗ with probability at most 2 exp(−cnϵ2

∗). Combining this with (3.54) proves

(3.53).

Let V denote the set of noise vectors for which ∥ f̂n − f ∗∥n ≤ Cϵ∗ and sup f∈B( f ∗) G f− f ∗ =
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ω(ϵ2
∗); by what we have already proven, we have

Pr(ξ ∈ V) ≥ 1− C exp(−cnϵ2
∗).

Let V ′ = V ∩ (−V) = {ξ : ξ,−ξ ∈ V}. By the union bound,

Pr(ξ ∈ V ′) ≥ 1− 2C exp(−cnϵ2
∗).

Fix any ξ ∈ V ′, and denote by f̂−n the ERM with the flipped noise vector −ξ:

f̂−n := argmin f∈F

(
∑

i
(−ξi + f ∗(xi)− f (xi))

2

)
.

Since ξ,−ξ ∈ V ′ ⊂ V , we have

∥ f̂n − f̂−n ∥n ≤ ∥ f̂n − f ∗∥n + ∥ f̂−n − f ∗∥n ≤ Cϵ∗.

In other words, f̂−n ∈ Bn( f̂n, Cϵ∗), so to prove (3.9), it thus suffices to show that f̂−n is not a

δ-approximate minimizer for δ = ω(ϵ2
∗) with respect to the noise ξ, i.e.,

1
n

n

∑
i=1

( f ∗(xi) + ξi − f̂−n (xi))
2 ≥ 1

n

n

∑
i=1

( f ∗(xi) + ξi − f̂n(xi))
2 + ω(ϵ2

∗).

Equivalently, (by subtracting ∥ξ∥2
n from both sides as in (3.31)), we wish to prove that

−2G f̂−n − f ∗ + ∥ f̂−n − f ∗∥2
n ≥ −2G f̂n− f ∗ + ∥ f̂n − f ∗∥2

n + ω(ϵ2
∗).

Since ∥ f̂−n − f ∗∥2
n, ∥ f̂−n − f ∗∥2

n = O(ϵ2
∗) as ξ,−ξ ∈ V , this reduces to showing that

−2G f̂−n − f ∗ ≥ −2G f̂n− f ∗ + ω(ϵ2
∗). (3.55)

On the one hand, by using Eqs. (3.52) and (3.53) above it is easy to see that on V ′ ⊂ V , we
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have G f̂n− f ∗ ≥ ω(ϵ2
∗). On the other hand,

G f̂−n − f ∗ =
1
n
⟨ f̂n − f ∗, ξ⟩ = − 1

n
⟨ f̂−n − f ∗,−ξ⟩. (3.56)

But note that 1
n ⟨ f̂−n − f ∗,−ξ⟩ is the process for the noise vector −ξ evaluated at the corresponding

ERM, namely f̂−n , and we have −ξ ∈ V ′, which implies that

1
n
⟨ f̂−n − f ∗,−ξ⟩ ≥ ω(ϵ2

∗).

Combining these last two inequalities we see that (3.55) indeed holds over all V ′, which implies

that (3.9) holds on V ′, as desired.

It remains to prove Lemma 20.

Proof of Lemma 20. First, define

Fi(ξ) := 2n−1 sup
f∈B( fi)

n

∑
k=1

( f − fi)(xk) · ξk.

Since ∥ f − fi∥n ≤ ϵ∗ for all f ∈ B( fi), we see that Fi(ξ) is a 2ϵ∗n−1/2-Lipschitz function (with

respect to the usual Euclidean norm on Rn). Hence, we apply (3.10) and obtain

Prξ

{∣∣∣∣∣ sup
f∈B( fi)

G f− fi −E sup
f∈Bn( fi)

G f− fi

∣∣∣∣∣ ≥ t

}
≤ 2 exp(−cnt2/ϵ2

∗). (3.57)

Therefore, by taking a union bound over 1 ≤ i ≤ |N |

Prξ

{
∀i ∈ [|N |] :

∣∣∣∣∣ sup
f∈Bn( fi)

G f− fi −E sup
f∈Bn( fi)

G f− fi

∣∣∣∣∣ ≥ t

}
≤ 2 exp(−cnt2/ϵ2

∗ + log |N |).

Now, recall thatN := N (ϵ∗,F , P(n)) and that by the definition of the minimax rate, log |N |/n ∼

ϵ2
∗. This allows us to choose t = Cϵ2

∗ (for large enough C > 0) such that with probability of at least
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1− 2 exp(−cnϵ2
∗), the following holds:

∀i ∈ [|N |] :

∣∣∣∣∣ sup
f∈Bn( fi)

G f− fi −E sup
f∈Bn( fi)

G f− fi

∣∣∣∣∣ ≤ Cϵ∗
√

logN/n ≤ C1ϵ2
∗, (3.58)

which proves (3.50).

For the second part of the lemma, fix j ≥ 1, and define

Fj(ξ) = sup
f∈N∩Bn( f ∗,jϵ∗)

2G f j− f ∗ .

Again, it is easy to verify that Fj(·) is convex and 2jϵ∗n−1/2-Lipschitz. Using (3.10) once again,

we obtain that

Pr

{∣∣∣∣∣ sup
f∈N∩Bn( f ∗,jϵ∗)

G f− f ∗ −E sup
f∈N∩Bn( f ∗,jϵ∗)

G f− f ∗

∣∣∣∣∣ ≥ t

}
≤ 2 exp(−cn(t/j)2/ϵ2

∗).

Choosing t ∼ jϵ∗/
√

n ≲ jϵ2
∗, we obtain

Pr

{∣∣∣∣∣ sup
f∈N∩Bn( f ∗,jϵ∗)

G f− f ∗ −E sup
f∈N∩Bn( f ∗,jϵ∗)

G f− f ∗

∣∣∣∣∣ ≥ jϵ2
∗

}
≤ 2 exp(−cϵ2

∗). (3.59)

Next, by applying the maximal inequality (Lemma 18) over |N | random variables, and the

definition of the minimax rate,

E sup
f∈N∩Bn( f ∗,jϵ∗)

G f− f ∗ ≤ Cjϵ∗
√

logN/n ≤ C1 jϵ2
∗. (3.60)

Combining (3.59) and (3.60) yields (3.51), concluding the proof.
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3.5 Loose Ends

Lemma 21. Under Assumption 1 the following holds: ρS(X) ≲ max{IL(X), ϵ2
∗} for any realiza-

tion X.

Proof. It is always the case that ρS(X) ≤ max{IL(X), ϵ2
∗} for any X. Indeed, if (3.12) holds, then

for any estimator f̄n such that ξ 7→ f̄n(ξ) is 1-Lipschitz, ∥ξ − ξ
′∥n ≲ ϵ∗ implies that

∥ f̄n(ξ
′
)− f̄n(ξ)∥2 ≤ 2(∥ f̄n(ξ

′
)− f̄n(ξ)∥2

n +IL(X)) ≤ 2(∥ξ ′− ξ∥2
n +IL(X)) ≲ max{ϵ2

∗, IL(X)}

deterministically, not just with non-negligible probability.

Lemma 22. Under Assumptions 1, 13-14, we have that ρS(X, f ∗) ≤ ρO(n, P, f ) ≲ max{IL(n, P), ϵ2
∗}.

Proof. Let E ⊂ X n ×Rn be the event that DiamP(OM′ϵ2∗
) ≤ ρO(n, P, f ∗) and ∥ f̂n(X, ξ) −

Y∥2
n ≤ CIϵ

2
∗. For any X ∈ X n, let EX = {ξ ∈ Rn | (X, ξ) ∈ E}.

Since Pr(E) ≥ exp(−cInϵ2
∗) by definition, the set

E ′ = {X ∈ X n |Prξ(EX) ≤ ρO(n, P, f ∗)) ≥ exp(−cInϵ2
∗) ∈ E}

satisfies PrX n(E ′) ≥ exp(−(cI/2)nϵ2
∗) by Fubini’s theorem.

Fix X ∈ E ′, ξ ∈ EX, and let Y = f ∗ + ξ
∣∣
X as usual. If ∥ξ ′ − ξ∥ ≤

√
M′−CI

2 ϵ∗ then

∥ f̂n(X, ξ
′
)−Y∥2

n ≤ 2(∥ f̂n(X, ξ
′
)− f̂n(X, ξ)∥2

n + ∥ f̂n(X, ξ)−Y∥2
n)

≤ 2((M′ − CI)ϵ
2
∗ + CI)ϵ

2
∗ = M′ϵ2

∗

where we have used ∥ f̂n(X, ξ ′) − f̂n(ξ)∥n ≤ ∥ξ − ξ
′∥n as f̂n is 1-Lipschitz in the noise. In

particular f̂n(X, ξ
′
) ∈ OM′ϵ2∗

and so ∥ f̂n(X, ξ
′
) − f̂n(X, ξ)∥ ≤ ρO(n, P, f ∗), as (X, ξ) ∈ E .

Thus, if M′ is chosen large enough so that M ≤
√

M′−CI
2 ϵ∗, one obtains (3.12) is satisfied with

δ(n) = ρO(n, P, f ) and c2 = cI/2, implying that ρS(X, f ∗) ≤ ρO(n, P, f ).
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To see that ρO(n, P, f ∗) ≲ max{IL(n, P), ϵ2
∗} is even easier: it’s easy to see that DiamPn(OM′ϵ2∗

) ≲

ϵ∗ (see the end of the proof of Theorem 8 for details), and the definition of the lower isometry

remainder implies that DiamP(OM′ϵ2∗
) ≲ DiamP(OM′ϵ2∗

) +
√
IL(n, P) on the high-probability

event IL(X) ≤ IL(n, P). This yields that for an appropriate choice of C > 0, δ(n) =

C max{IL(n, P), ϵ2
∗} satisfies (3.14) and hence ρO(n, P, f ∗) ≤ max{IL(n, P), ϵ2

∗}.

3.5.1 Full Proof of Corollary 2

Continuing from §3.4.3 above, tote that when the convex set

Fn := {( f (X1), . . . , f (Xn)) : f ∈ F}

is not compact, we cannot apply any fixed point theorem. However, if we find f ∗ ∈ F such that

B2( f̂n) ≤ max{3 ·V( f̂n), C/n}, (3.61)

where C > 0, then we may repeat the same steps as in §3.4.3 above. Since, the fixed point theorem

was only used to find a f ∗ ∈ F that satisfies the last equation.

First let us provide some intuition to our proof. The idea to find f ∗ ∈ F with low bias is

inspired from the Banach fixed point theorem. If f̂n has a “high” bias on some underlying f0 ∈ F ,

then, f̂n should have a lower or equal bias when the underlying function is f1 = E0 f̂n, where E0

means taking expectation when f ∗ = f0. Now, if f1 has a “low” bias, then we are done. Otherwise,

consider the underlying f2 = E1 f̂n, and repeat this process for n times. We will show that some

m ≤ n, f ∗ = fm will be our “admissible” function, i.e. a function that has a “low bias”.

This idea is captured in the following lemma (that we will prove below):

Lemma 23. Let f0 ∈ F and for any i ≥ 1 denote by fi = Ei−1 f̂n. Then, there exists m = O(n),

such that

B2
m( f̂n) ≤ 3 ·Vm( f̂n) + C/n, (3.62)
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where B2
m( f̂n) and Vm( f̂n) is the bias and variance error of f̂n when f ∗ = fm.

Proof. Assume that f ∗ = f0. If B2
0( f̂n) ≤ 3V0( f̂n) + C/n, then we are done. Otherwise, when

B2
0( f̂n) ≥ 3V0( f̂n) + C/n, we proceed with the following strategy: First, recall that when f = f ∗,

then

f̂n = argmaxg∈F 2⟨ξ, g− f ⟩n − ∥g− f ∥2
n. (3.63)

Define the score function of f̂n (when f ∗ = f ) via

Lξ( f ) = 2⟨ξ, f̂n − f ⟩n − ∥ f̂n − f ∥2
n.

and let

L( f ) = MedLξ( f ).

It is not hard to verify that when ξ, then 0 ≤ L( f ) ≤ 2.

Next, we will show that

L( f1)− L( f0) ≥
B2

0( f̂n)

3
. (3.64)

If we prove this equation, the lemma will follow. To see this, if f1 satisfies (3.62), then we stop.

Otherwise, repeat the same argument with f1 and f2. Then, we would obtain that

L( f2) ≥ L( f1) + B2
1( f̂n)/3 ≥ L( f1) + Cn−1 ≥ L( f0) + 2Cn−1,

where we used the B.

Therefore, if we repeat this process for n/C times. We must have that fm, for some m ≤ n/C,

will satisfy (3.62); since, L( f ) ≤ 2 for all f ∈ F . It remains to prove (3.64).

Proof of (3.64) Let Ṽ0( f̂n) := max{3V0( f̂n), C/n} and let f̃n be the restricted LSE on

G := Bn( f1,
√

Ṽ0( f̂n)) = { f ∈ F : ∥ f − f1∥2
n ≤ Ṽ0( f̂n)},
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namely, f̃n := argmin f∈G ∥Y− f ∥2
n. Define

L̃ξ( f ) = 2⟨ξ, f̃n − f ⟩n − ∥ f̃n − f ∥2
n.

Using (3.63), we have that

Lξ( f1) ≥ L̃ξ( f1) = sup
f∈G

2⟨ξ, f − f1⟩n − ∥ f − f1∥2
n ≥ sup

f∈G
2⟨ξ, f − f1⟩n − Ṽ2

0 ( f̂n),

where the first inequality follows from G ⊆ F , and the second equality follows from that f̃n =

argmax f∈G L̃ξ( f1), and finally that Diam(G)2 ≤ Ṽ0( f̂n).

Now, by Chebyshev’s inequality, with probability of at least 2/3, we have that f̂n ∈ G (when

f ∗ = f0) denote this event by E . Under E , we clearly have that

sup
f∈G
⟨ξ, f ⟩n ≥ ⟨ξ, f̂n⟩n.

Hence, using the last two equations, the following holds on the event E :

Lξ( f1)− Lξ( f0) ≥ L̃ξ( f1)− Lξ( f0) ≥ ∥ f̂n − f0∥2
n − ⟨ξ, f1 − f0⟩n − Ṽ0( f̂n).

Now, note that ⟨ξ, f1 − f0⟩n ∼ N(0, ∥ f1 − f0∥2
n) = N(0, B2

0( f̂n)). Hence, there exists an event

E1 ⊂ E that holds with probability of at least 0.5 such that

Lξ( f1)− Lξ( f0) ≥ ∥ f̂n − f0∥2
n − Ṽ0( f̂n)− C ·

√
B2

0( f̂n)/n. (3.65)

Next, using the fact that ∥ f̂n − f0∥n is 1/
√

n Lipschitz and the LCP inequality (3.10), we know

that ∥ f̂n − f0∥n − E∥ f̂n − f0∥n is 1/
√

n-subgaussian. Hence, by using standard argument of

integration of tails (see for example (3.29) above), it is easy to see that

E0∥ f̂n − f0∥2
n = Med0∥ f̂n − f0∥2

n + O(max{E0∥ f̂n − f0∥n/
√

n, 1/n}).
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Finally, we take a median on (3.65), and use the last equation and obtain:

L( f1)− L( f0) ≥ E0∥ f̂n − f0∥2
n − 3V2

0 ( f̂n)−O(max{
√

B2
0( f̂n)/n, E0∥ f̂n − f0∥n/

√
n, 1/n})

= B2
0( f̂n) + V2

0 ( f̂n)− 3V2
0 ( f̂n)−O(max{E0∥ f̂n − f0∥n/

√
n, 1/n})

= B2
0( f̂n)− 2V2

0 ( f̂n)−O(max{E0∥ f̂n − f0∥n/
√

n, 1/n})

≥ B2( f̂n)/3,

where we used that our assumption of B2
0( f̂n) ≥ C/n for C that is large enough; and the claim

follows.

3.5.2 Addendum to §3.2.5

Example 1. Let X = Sn, the Euclidean unit sphere of dimension n contained in Rn+1, let P

be the uniform measure on X , and for each hyperplane H passing through the origin, let PH

be the uniform measure on X ∩ H ∼= Sn−1. The set of such hyperplanes is the real (n + 1, n)

Grassmanian, denoted Grn+1,n.

For each H, let 1H denote the characteristic function of H, and let F = conv{1H, 1− 1H :

H ∈ Grn+1,n}. Note that in L2(P), F reduces to the class of constant functions between 0 and 1

because for any H, 1− 1H ≡ 0 and 1− 1H ≡ 1 almost everywhere on X . Similarly, in L2(PH),

1H ≡ 1 and 1− 1H ≡ 0, while for any H′ ̸= H, 1′H ≡ 1 and 1− 1H ≡ 0 because H ∩ H′ has

n-dimensional Hausdorff measure 0. In particular, regressing F on L2(P) or L2(PH) reduces to

estimating an element of [0, 1] given n noisy observations, for which the minimax rate is 1
n .

On the other hand, let P = {P} ∪ {PH : H ∈ Grn+1,n}, and consider the distribution-unaware

minimax riskM(du)
n (F ,P). We claim thatM(du)

n (F ,P) = ω(1) even when there is no noise.

The intuition behind this is that when the estimator f̄n observes (X1, Y1), . . . , (Xn, Yn), it does not

“know” whether the distribution is P or PH where H = Span(X1, . . . , Xn), and thus it does not

know whether to generalize the observations in a way which is consistent with the L2(P) norm or

the L2(PH) norm.
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To see this formally, let f̄n : D → F be some estimator. For any X ∈ X n, let Span(X) :=

Span(X1, . . . , Xn), which is an element of Grn+1,n with probability 1. In the noiseless setting, any

sample X, Y such that Span(X) ∈ Grn+1,n will have Y a multiple of (1, . . . , 1) with probability

1, so we may as well consider Y to be a constant function. To get a lower bound on the minimax

rate, it is also sufficient to consider only the extreme points of F , namely the functions in F ′ =

{1H, 1 − 1H : H ∈ Grn+1,n}, which are {0, 1}-functions, so we think of our estimators as

functions f̄n : X n × {0, 1} → F . We also assume for simplicity that f̄n always returns a function

in F ′; if f̄n is allowed to take values in the full convex hull F , one obtains the same lower bound

on the risk of f̄n by a more complicated version of the argument below.

Suppose, for example, that the estimator is given the sample (X, 1). In the noiseless setting,

there is no point in returning a function inconsistent with the observations, so f̄n must return either

1H for H = Span(X) or 1− 1H′ for some H′ ̸= H (not containing any of the Xi). Similarly, on

the sample (X, 0) an optimal estimator f̄n will return either 1− 1H or 1H′ for some H′ ̸= H. Let

pH,0 = PrXi∼PH{ f̄n(X, 0) = 1− 1H}

pH,1 = PrXi∼PH{ f̄n(X, 1) = 1H}

p0 = PrXi∼P{ f̄n(X, 1) = 1− 1Span(X)}

p1 = PrXi∼P{ f̄n(X, 1) = 1Span(X)}.

The Grassmannian Grn+1,n, which is itself isomorphic to Sn, has a uniform (i.e., rotationally

invariant) probability measure, and one has pi = EH∼U(Grn+1,n)
[pH,i]: choosing n points from

the unit sphere in Rn+1 is the same as choosing a uniform hyperplane and then choosing n points

uniformly from that hyperplane, by rotational invariance.

One computes that pH,i and pi determine the error of f̄n on F ′ as follows:

ε2
f ∗,PH := E

∫
( f̄n − f ∗)2 dPH =

pH,0 f ∗ ∈ {1− 1H} ∪ {1′H}H′ ̸=H

pH,1 f ∗ ∈ {1H} ∪ {1− 1′H}H′ ̸=H

,
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ε2
f ∗,P := E

∫
( f̄n − f ∗)2 dP =

1− p0 f ∗ ∈ {1H}H∈Grn+1,n

1− p1 f ∗ ∈ {1− 1H}H∈Grn+1,n

.

To lower-bound the distribution-unaware minimax risk, we consider the expected error of f̄n under

two different scenarios: when we choose a hyperplane H uniformly at random and measure the

error of f̄n on the function 1H when the input distribution is PH, and when we fix f ∗ = 1− 1H0

and measure the expected error of f̄n when the distribution is P. By the above, the error in the

first scenario is EH∼U(Grn+1,n)
[pH,1] = p1, while the error in the second scenario is 1− p1. As

max{1− p1, p1} ≥ 1
2 , this shows thatM(du)

n (F ,P) = ω(1), as desired.

Remark 22. Note that the L2(P)-diameter of the set of functions which generalize the observation

vector (X, 1) (say) is huge, as this set includes both 1H and 1− 1H′ , where H = Span(X) and H′

is any other hyperplane.

Remark 23. Example 1 may seem unnatural, as the measures P and PH are all mutually singular,

which leads to the “collapse” of the function class in different ways in L2(P) and each L2(PH). To

exclude such pathology, one might wish to consider only families of distributions all of which are

absolutely continuous with respect to some reference measure P(0). It is not difficult, though, to

modify Example 1 in such a way which avoids any measurability issues: for given n, let F = Fq

be the finite field of cardinality q for some q > n, let X = Fn+1\{0}, let P be the uniform

probability measure on X , and for each H in the set Grn+1,n(F) of n-dimensional linear subspaces

of Fn+1, let PH be the uniform probability measure on H\{0} ⊂ X , let F = conv{1H, 1− 1H :

H ∈ Grn+1,n(F)}, and let P = {P} ∪ {PH}H∈Grn+1,n(F) as above. (Note that all measures in

P are absolutely continuous with respect to P.) As q > n, each hyperplane H has P-measure

O(n−1) in X and for any H′ ̸= H, H ∩ H′ has PH-measure O(n−1), so one easily verifies all the

computations in the example are still valid, up to errors of order O(n−1).
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3.5.3 Proof of Theorem 10

Recall the following classical characterization for the minimax rate of [YB99] (that holds for

Gaussian noise and for any class whose diameter is at most 1):

M(H∗, P(n)) ∼ min
ϵ

[
logN (ϵ,H∗, P(n))

n
+ ϵ2

]
. (3.66)

Case I: V( f̂n) ≤ Sn−1. It is well known (see, e.g., [Wai19, Example 15.4]) that the minimax

rate is at least Θ(V( f̂n)) the restricted classH∗, when the diameter ofH∗ is less than O(1/
√

n).

Hence, the claim follows.

Case II: V( f̂n) ≥ Sn−1. We will prove that the covering number of H∗ by balls of radius√
V( f̂n)/2 is not too small:

logN (

√
V( f̂n)/2,H∗, P(n)) ≥ c1n ·V( f̂n), (3.67)

So it suffices to prove that (3.67) holds for an appropriate c1 > 0, as the minimax ofH∗ cannot be

larger than its diameter which is 2
√

V( f̂n). The proof strategy is very similar to that of Theorem

8. Suppose for the sake of contradiction that logN (
√

V( f̂n)/2,H∗, P(n)) < c1n · V( f̂n). We

consider the distribution of f̂n when the true function is f ∗. First, note that as E∥ f̂n −E f̂n∥2 =

V( f̂n), we have that

Pr( f̂n ∈ H∗) = Pr( f̂n ∈ Bn(ED f̂n, 2
√

V( f̂n))) = 1− Pr(∥ f̂n −ED f̂n∥2
n ≥ 4V( f̂n)) ≥ 3/4

by Chebyshev’s inequality. Let A = { f1, . . . , fN } be a minimal
√

V( f̂n)/2 - net in H∗; by the

pigeonhole principle, there exists at least one element g ∈ A such that

Pr(∥ f̂n − g∥n ≤
√

V( f̂n)/2) ≥ 1
2N ≥ 3 exp(−c1nV( f̂n))/4. (3.68)
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Next, we apply (3.18) with f = g and t =
√

V( f̂n)/6, to obtain

Prξ

(
|∥ f̂n − g∥n −Eξ∥ f̂n − g∥n| ≤

√
V( f̂n)/6

)
≥ 1− 2 exp(−nV( f̂n)/18). (3.69)

Recalling that we are in the case V( f̂n) ≥ Sn−1, by choosing c1 > 0 small enough and S > 0

large enough we can ensure that exp(nV( f̂n)(1/18− c1)) > 8/3, or equivalently

3
4

exp(−c1nV( f̂n))− 2 exp(−nV( f̂n)/18) > 0. (3.70)

Combining (3.68), (3.69), and (3.70) yields

Pr(∥ f̂n − g∥n ≤
√

V( f̂n)/2) + Pr
(∣∣∣∥ f̂n − g∥n −Eξ∥ f̂n − g∥n

∣∣∣ < √V( f̂n)/6
)
> 1,

so the two events

{∣∣∣∥ f̂n − g∥n −Eξ∥ f̂n − g∥n

∣∣∣ < √V( f̂n)/6
}

, {∥ f̂n − g∥n ≤
√

V( f̂n)/2}

have nonempty intersection, which implies that Eξ∥ f̂n − g∥n < 2
√

V( f̂n)/3.

Let h(ξ) = ∥ f̂n − g∥n. We have Eh2 = (Eh)2 + E(h− Eh)2 < 4V( f̂n)/9. As h is 1√
n -

Lipschitz, the LCP implies that h is 1√
n -subgaussian. Thus h−Eh is a centered 1√

n -subgaussian

random variable, so E(h−Eh)2 ≤ 2
n [Ver18, Proposition 2.5.2], and hence

ED∥ f̂n − g∥2
n <

4
9

V( f̂n) +
2
n

.

Again recalling that V( f̂n) > Sn−1, by taking S large enough we can ensure that ED∥ f̂n −

E f̂n∥2
n < V( f̂n), which contradicts the definition of V( f̂n).
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Chapter 4

Efficient Estimators For Multivariate

Convex Regression

4.1 Main Results

This chapter is dedicated to prove the results that appeared in §1.3 above.

Theorem 4. Let d ≥ 5 and n ≥ d+ 1. Then, under Assumption 6, for the task of L-Lipschitz convex

regression on a convex polytope Ω ⊂ Bd, there exists an efficient estimator, f̂L,n, with runtime of at

most nO(d) such that

R( f̂L,n,FL(Ω), P) ≤ (σ + L)2n−
4

d+4 log(n)h(d) + C(Ω)n−
d

d+4 log(n)2·h(d), (1.16)

where h(d) ≤ 3d and C(Ω) is a constant that only depends on the polytope Ω.1

Theorem 5. Let d ≥ 5 and n ≥ d + 1. Then, under Assumption 6, for the task of Γ-bounded convex

regression on the polytope Ω ⊂ Bd, there exists an efficient estimator, f̂ Γ,n, with runtime of at most

Od(nO(d)) such that

R( f̂ Γ,n,FΓ(Ω), P) ≤ C1(Ω)(σ + Γ)2n−
4

d+4 log(n)h(d),

1Specifically, it depends on the flags number of polytope Ω (cf. [RSW19]).
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where h(d) ≤ 3d and C1(Ω) is a constant that only depends on Ω.

4.1.1 Notations and Preliminaries

Throughout this text, C, C1, C2 ∈ (1, ∞) and c, c1, c2, . . . ∈ (0, 1) are positive absolute constants

that may change from line to line. Similarly, C(d), C1(d), C2(d), . . . ∈ (1, ∞) and

c(d), c1(d), c2(d), . . . ∈ (0, 1) are positive constants that only depend on d that may change from

line to line. We also often use expressions such as g(n) ≤ Od( f (n)) to mean that there exists

Cd ≥ 0 such that g(n) ≤ Cd f (n) for all n.

For any probability measure Q and m ≥ 0, we introduce the notation Qm for the random

empirical measure of Z1, . . . , Zm ∼
i.i.d.

Q , i.e. Qm = m−1 ∑m
i=1 δZi . Also, given a subset A ⊂ Ω of

positive measure, we let PA denote the conditional probability measure on A. For a positive integer

k, [k] denotes {1, . . . , k}.

Definition 11. A simplex in Rd is the convex hull of d + 1 points v1, . . . , vd+1 ∈ Rd which do not

all lie in any hyperplane.

Definition 12. A convex function f : Ω → R is defined to be k-simplicial if there exists

△1, . . . ,△k ⊂ Rdim(Ω) simplices such that Ω =
⋃k

i=1△i and for each 1 ≤ i ≤ k, we have

that f : △i → R is affine.

Note that the definition is more restrictive than the usual definition of a k-max affine function

(see Remark 3), since the affine pieces of a k-max affine function are not constrained to be simplices.

The following result from empirical process theory is a corollary of the peeling device [Gee00,

Ch. 5], [Bou02] and Bronshtein’s entropy bound [Bro76].

Lemma 24. Let d ≥ 5, m ≥ Cd and Q be a probability measure on Ω′ ⊂ Bd. Suppose Z1, . . . , Zm

are drawn independently from Q; then with probability at least 1− C1(d) exp(−c1(d)
√

m), the

following holds uniformly for all f , g ∈ FL(Ω′):

2−1
∫

Ω′
( f − g)2dQ− CL2m−

4
d ≤

∫
( f − g)2dQm ≤ 2

∫
Ω′
( f − g)2dQ + CL2m−

4
d . (4.1)
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Next, we introduce a statistical estimator with the high-probability guarantees we shall need,

based on a recent result that is presented in [MVZ21, Prop. 1]. Its statistical aspects are proven

in the seminal works [Tsy03b; LM19], and guarantees on its runtime are given in [Hop18; DL19;

HLZ20].

Lemma 25. Let m ≥ d + 1, d ≥ 1, δ ∈ (0, 1) and Q be a probability measure that is supported

on Ω′ ⊂ Bd with a known covariance matrix Σ. Consider the regression model W = f ∗(Z) + ξ,

where ∥ f ∗∥∞ ≤ L, and let Z1, . . . , Zm ∼
i.i.d.

Q. Then, there exists an estimator f̂R,δ that has an

input of (Σ, {(Zi, Wi)}m
i=1) and runtime of Õd(m) and outputs an L-Lipschitz affine function that

satisfies with probability at least 1− δ

∫
( f̂R,δ(x)− w∗(x))2dQ(x) ≤ C(σ + L)2(d + log(1/δ))

m
,

where w∗ = argminw affine

∫
(w− f ∗)2dQ.

4.1.2 The Proposed Estimator of Theorem 4

For simplicity assume that L = 1 and that σ = Θ(1). Without loss of generality, we may assume

that ∥ f ∗∥∞ ≤ L = 1, since our function is 1-Lipschitz and Ω ⊂ Bd. Also, without loss of

generality, we further assume that P = U(Ω), where U(Ω) denotes the uniform measure over Ω.

To see this, note that can always simulate Θd(n) uniform samples using the method of rejection

sampling given samples from any distribution P which satisfies Assumption 6 (cf. [Dev86]). To

conclude we assume that L = 1,σ = Θ(1), P = U(Ω), and recall that we assume that d ≥ 5.

In order on prove the correctness of our estimator, we develop the following approximation

theorem for convex functions (its proof appears below).

Theorem 17. Let Ω ⊂ Bd be a convex polytope, f ∈ FL(Ω), and k an integer greater than

(Cd)d/2, for some large enough C ≥ 0. Then, there exists a convex set Ωk ⊂ Ω and a k-simplicial

convex function fk : Ωk → R such that

P(Ω \Ωk) ≤ C(Ω)k−
d+2

d log(k)d−1. (4.2)
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and ∫
Ωk

( fk − f )2dP ≤ L2 ·Od(k−
4
d + C(Ω)k−1 log(k)d−1). (4.3)

Note that both Ωk, as well as fk, depend on f ∗. The bound of Eq. (4.3) is in fact tight, up to a

constant that only depends on d, cf. [LSW06]. Also note that fk is not necessarily an L-Lipschitz

function, i.e., it may be an “improper” approximation to f . We remark that the constant C(Ω)

depends on the flag number of the polytope Ω; for more details see [RSW19]. As we mentioned

earlier, we assume that the number of vertices or facets of Ω is bounded by Cd, so the definition of

the flag number and the upper bound theorem of McMullen [McM70] implies that we can assume

C(Ω) ≤ C1(d).

Fix n ≥ (Cd)d/2, f ∗ ∈ F1(Ω), and set k(n) := n
d

d+4 . Let fk(n) : Ωk(n) → R be the convex

function whose existence is guaranteed by Theorem 17 for f = f ∗. We have

∫
( f ∗ − fk(n))

2dP ≤ Od(n
− 4

d+4 ), (4.4)

and there exist△1, . . . ,△k(n) ⊂ Ω simplices such that fk(n)

∣∣∣
△i

is affine on each i.

If we were given the decomposition of Ω into pieces on which f ∗ is near-affine, it would be

relatively simple to estimate f ∗, as we show in §4.4 below. We recommend reading it, to get some

intuition for our approach, before attempting the description and correctness proof for our “full”

estimator below.

To overcome the fact that we do not know the simplices △i on which fk is affine, we need

another lemma, which says that if we randomly sample a set of n points {Xn+1, . . . , X2n} from Ω,

there exists a collection of at most Õd(k(n)) simplices covering “most” of Ωk, such that the vertices

of each simplex belong to {Xn+1, . . . , X2n} and fk is affine on each simplex in the collection:

Lemma 26. Let n ≥ d + 1, and△1, . . . ,△k(n) that are defined above, and let Xn+1, . . . , X2n ∼
i.i.d.

P. Then, with probability at least 1− n−1, there exist k(n) disjoint sets S1
X, . . . Sk(n)

X of simplices

with disjoint interiors such that

1. The vertices of each simplex in
⋃k(n)

i=1 S
i
X lie in {Xn+1, . . . , X2n}. Moreover, for each 1 ≤

i ≤ k(n), we have that |S i
X| ≤ Od(log(nP(△i))

d−1).
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2. For each 1 ≤ i ≤ k(n), we have that
⋃ S i

X ⊂ △i, and

P(
⋃
S i

X) ≥ P(△i)−min

{
Od

(
log(n) log(nP(△i))

d−1

n

)
, P(△i)

}
.

The proof of this lemma appears in subsection 4.2.2. Essentially, this lemma states that we can

triangulate “most” of each simplex△i with “few” simplices whose vertices lie among the points

Xn+1, . . . , X2n which fall in△i, so long as△i is large enough. From now on, we condition on the

high-probability event of Lemma 26.

Note that if we were given the set of simplices SX :=
⋃k(n)

i=1 S
i
X, we could use the same strategy

as in §4.4 to obtain a minimax optimal estimator for this task as well. Unfortunately, we do not

know how to identify the simplices of SX, but we do know that they belong to the collection of all

simplices with vertices in {Xn+1, . . . , X2n},

S := {conv{Xn+i : i ∈ S} : S ⊂ [n], |S| = d + 1} . (4.5)

Note that |S| = Od(nd+1), which is polynomial in n.

Instead of trying to identify the simplices SX ⊂ S on which f is close to being linear, our

algorithm finds a function f̂ which, on every simplex△ ∈ S , is “not much farther” from the best

linear approximation to f on△ then f is. Since f itself is close to its best linear approximation on

each simplex in SX, f̂ will be close to f on
⋃ SX, which is most of Ω.

We restate this a bit more precisely: if f̂ : Ω→ R is a convex Lipschitz function such that

∀△ ∈ S :
∫
( f̂ − w∗△)

2dP△ ≤ Õd

(∫
( f ∗ − w∗△)

2dP△ + (P(△)n)−1
)

(4.6)

where w∗△ = infw affine
∫
( f ∗ − w)2dP△, then f̂ satisfies

∫
Ω( f̂ − f ∗)2dP ≤ Õd(n

− 4
d+4 ), and the

RHS is the minimax optimal rate. (The idea of the proof is to use the fact that f ∗ is close to w∗△ for

each△ ∈ SX, along with the triangle inequality, and then sum over all simplices in SX; the full

justification is given at (4.15)-(4.18) below.) In the remainder of this section, we will describe an

efficient algorithm which constructs a function f̂ which comes “close enough” to satisfying (4.6)
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that it manages to attain the minimax optimal rate.

We now begin the description of our algorithm. In the notation of (4.6), for each simplex△ ∈ S ,

we estimate w∗△ by applying Lemma 25, with the data points of D1 = {(Xi, Yi)}n/2
i=1 that lie in△

as input; denote the regressor we obtain by ŵ△.

Next, we shall need to estimate (with high probability) the squared error of the regressor on

each simplex in S , i.e. ℓ2
△ := ∥ f ∗ − ŵ△∥2

L2(U(△)), up to a polylogarithmic multiplicative factor,

using the data points in D2 = {(Xi, Yi)}n
i=n/2+1 that lie in△. Letting w∗△ to be defined as above,

we have

ℓ2
△ = ∥w∗△ − ŵ△∥2

L2(U(△)) + ∥ f ∗ − w∗△∥2
L2(U(△));

the first term is called the (squared) estimation error and the second is called the (squared) ap-

proximation error. By Lemma 25, with probability at least 1− n−2d the estimation error will be

at most Cd log(n)/(P(△)n), which is no more than a O(d log(n)) factor times the expected

estimation error. However, f ∗ may not be affine on△, and the squared approximation error may be

significantly larger than the squared estimation error. When this occurs, the estimation of ℓ2
△ by

noisy samples is challenging, even in the (unrealistic) setting of sub-Gaussian noise with known

variance σ2. Indeed, it would be natural to estimate the approximation error by the (centered)

empirical mean of the squared loss, namely

1
P(△)n ∑

(X,Y)∈D2,X∈△
(Y− ŵ△(X))2 − σ2.

However, the additive deviation of this estimate is of order Ωd(n
− 1

2
△ ), where n△ ≈ P(△)n is the

number of data points falling in△, and therefore when ℓ2
△ is in the range [Od(n−1

△ ), Ωd(n
− 1

2
△ )] we

will not be able to estimate ℓ2
△ even up to a multiplicative constant, which is what our algorithm

requires in order to succeed.

Overcoming this problem necessitates constructing a new efficient procedure to estimate ℓ2
△, up

to a multiplicative constant with an additive deviation of Õd((P(△)n)−1), using the data points

of D2 that fall in △. Using the convexity of f ∗ − ŵ△ and techniques from potential theory and

stochastic geometry, we show that such a procedure indeed exists. Specifically, we prove the
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following:

Lemma 27. Let △ ⊂ Ω and let g : △ → [−2L, 2L] be a convex function such
∫
△ g2dP ≥

CdL2 log(n)2/n. Then, there exists an estimator f̂E,δ(n) (that uses that points of D2) with a

runtime Od(nO(1)) and with probability at least 1− n−2d satisfies

∥g∥2
L2(U(△)) ≤ f̂E,δ(n) ≤ C(d) log(n)2d−1

(
∥g∥2

L2(U(△)) + (L + σ)2 log(2/δ)

P(△)n

)
,

where C(d) is a constant that only depends on d.

We remark that our estimator requires an upper bound on L and σ (up to multiplicative constants

that only depend on d). Both can be found using standard methods when L = Θ(σ) = Θ(1). We

provide additional information about this estimator in §4.1.3 below.

We denote the output of the estimator of Lemma 27 for g = f ∗ − ŵ△ by ℓ̂2
△ for any△ ∈ S .

Given our regressors ŵ△ and squared error estimates ℓ̂2
△, we proceed to solve the quadratic program

which encodes the conditions ∥ f̃ − ŵ△∥2
L2(U(△)) ≤ ℓ̂2

△ for all simplices with large enough volume.

(We rely on the fact that the L2-norm on each simplex can be approximated by the empirical

L2-norm, again using Lemma 24.) This program is feasible, since f ∗ itself is a solution. f̃ is

close to f ∗ on every simplex in our collection and in particular on the simplices restricted to

which f ∗ is near-affine (which we don’t know how to identify), which allows us to conclude that∫
Ω̃k(n)

( f̃ − f ∗)2dP ≤ Õd(n
− 4

d+4 ) with high probability, where Ω̃k(n) is the union of the simplices

in Lemma 26.

So we have constructed a function f̃ which closely approximates f ∗ on Ω̃k(n). Ω̃k(n) is not

known to us, but as we shall see, Ω\Ω̃k(n) has asymptotically negligible volume, so the function

min{ f̃ , L} turns out to be a minimax optimal improper estimator (up to logarithmic factors) of f ∗

on all of Ω. In order to transform this improper estimator to a proper estimator, i.e., one whose

output is a convex L-Lipschitz function, we use a standard procedure (denoted by MP), as described

in §4.5 below. This concludes the sketch of our algorithm.

Pseudocode for the algorithm is given in Algorithm 1 below. In its formulation, note that the

procedure f̂R,δ(n) is described in Lemma 25, f̂E,δ(n) is described in Lemma 27, and MP is described
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in § 4.5.

Require: D = {(Xi, Yi)}n
i=1

Ensure: A random f̂L ∈ FL(Ω) s.t. w.h.p. ∥ f̂L − f ∗∥2
P ≤ Õd((L + σ)2n−

4
d+4 ).

Draw Xn+1, . . . , X2n ∼
i.i.d.

P

S ← {conv{Xn+i : i ∈ S} : S ⊂ [n], |S| = d + 1}
Part I:
D1 ← {(Xi, Yi)}n/2

i=1
D2 ← {(Xi, Yi)}n

i=n/2+1
for△1, . . . ,△i, . . . ∈ S do

ŵi ← f̂R,δ(n)({(X, Y) ∈ D1 : X ∈ △i}).
ℓ̂i ← min(4, f̂E,δ(n)({(X, Y− ŵi(X)) : (X, Y) ∈ D2, X ∈ △i}))

end
Part II:
for i ∈ 1, . . . |S| do

Draw Zi,1, . . . , Zi,n2 ∼ P△i
Define an inequality constraint

Ij := 1
n2 ∑n2

j=1( f (Zi,j)− ŵ⊤i (Zi,j))
2 ≤ ℓ̂2

i + CL2
√

d log(n)
n .

Construct f̃ ∈ FL(Ω) satisfying the constraints I1, I2 . . . , I|S| (cf. Eqs. (4.11)-(4.13))
end

return MP(min{ f̃ , L})
Algorithm 1: A Minimax Optimal For L-Lipschitz Multivariate Convex Regression

We now turn to the proof that Algorithm 1 succeeds with high probability. In the analysis,

we assume for simplicity that L = σ = 1. Let S be as defined in Algorithm 1, and let ST :=

{△ : △ ∈ S ,
∫
△ g2dP ≥ Cd log(n)2/n}, for some sufficiently large C. In particular, we have

P(S) ≥ C1(C)d log(n)/n for all S ∈ ST. We first note that our samples may be assumed to be

close to uniformly distributed on the simplices in ST. Indeed, by standard concentration bounds,

we have

∀△ ∈ ST, j ∈ {1, 2, 3} :
1
2
≤ P

(j)
n (△)

P(△)
≤ 2, (4.7)

with probability 1 − 3n−3d, where P
(1)
n = 2

n ∑n/2
i=1 δXi , P

(2)
n = 2

n ∑n
i=n/2+1 δXi and P

(3)
n =

1
n ∑2n

i=n+1 δXi (see Lemma 29 in sub-Section 4.2.2). From now on, we condition on the intersection

of the events of (4.7) and Lemma 26.

The first step in the algorithm is to apply the estimator of Lemma 25 for each△i ∈ ST with
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Q := P△i , and δ = n−(d+2), using those points among of D1 that fall in△i. (By the preceding

paragraph, under our conditioning, we may assume P(△i)n of the points in X1, . . . , X n
2

fall in each

△i, up to absolute constants. We will silently use the same argument several more times below.) By

the lemma and a union bound, we know that the following event has probability at least 1− n−1:

∀1 ≤ i ≤ |ST|
∫
△i

(ŵi(x)− f ∗(x))2dP△i ≤
2Cd log(n)

P(△i)n
+
∫
△i

(w∗i (x)− f ∗(x))2dP△i ,

(4.8)

where w∗i = argminw affine

∫
△i
(w(x)− f ∗)2dP△i . We condition also on the event of (4.8). Next,

we apply Lemma 27 (with δ = n−(d+2)) on each △i, with g = f ∗ − ŵi, and using those points

among of D2 that fall in△i, and obtain that

∀1 ≤ i ≤ |S| :
∫
△i

(ŵi − f ∗)2dP△i ≤ ℓ̂2
i , (4.9)

with ℓ̂2
i as defined in Algorithm 1. Note that for △ ∈ S \ ST, taking ŵi = 0 suffices, since f ∗

is bounded by 1, the loss is bounded by 4. Finally, we further condition on the event of the last

equation.

We proceed to explain and analyze Part II of Algorithm 1. We first claim that conditioned on

(4.9), the function f ∗ satisfies the constraints I1, I2, . . . defined in the algorithm with probability

at least 1− n−1. Indeed, for each 1 ≤ i ≤ |S|, ∥( f ∗ − ŵi)
2∥L∞(△i)

≤ 4, so by Hoeffding’s

inequality and (4.9) we know that with probability at least 1− n−(d+2), we have that

1
n2

n2

∑
j=1

( f ∗(Zi,j)− ŵi(Zi,j))
2 ≤

∫
△i

( f ∗ − ŵi)
2dP△i +

√
Cd log(n)

n

≤ ℓ̂2
i +

√
Cd log(n)

n
.

(4.10)

Taking a union over i, we know that (4.10) holds for all i with probability at least 1− n−1.

We also note (for later use) that applying Lemma 24 to the measures P△i and using a union

bound, it holds with probability at least 1− Cnde−c
√

n that for all i, the empirical measure P△i,n =

1
n ∑n

j=1 δZi,j on △i approximates P△i in the sense of (4.1). We condition on the intersection of
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these two events as well.

We now explain how to algorithmically construct f̃ ∈ FL(Ω) satisfying all the constraints Ij.

The idea is to mimic the computation of the convex LSE [SS11], by considering the values of the

unknown function yi,j = f̃ (Zi,j) and the subgradients ξi,j ∈ ∂ f (Zi,j) at each Zi,j as variables. More

precisely, we search for yi,j ∈ R and ξi,j ∈ Rd satisfying the following set of constraints (here

L = 1):

∀i ≤ |S| :
1
n2

n2

∑
j=1

(yi,j − ŵi(Zi,j))
2 ≤ ℓ̂2

i +

√
Cd log(n)

n
(4.11)

∀(i, j) ∈ [|S|]× [n] : ∥ξi,j∥2 ≤ L2 (4.12)

∀(i1, j1), (i2, j2) ∈ [|S|]× [n] : yi2,j2 ≥ ⟨ξi1,j1 , Zi2,j2 − Zi1,j1 + yi1,j1⟩. (4.13)

For any feasible solution (yi,j, ξi,j)i,j of (4.11)-(4.13), define the affine functions ai,j(x) =

yi,j + ⟨ξi,j, x− Zi,j⟩. We claim that the function f̃ = maxi,j ai,j is a 1-Lipschitz convex function

which satisfies the constraints Ij. Indeed, (4.13) guarantees that f̃ (Zi,j) = yi,j for each i, so the

Ij are satisfied due to (4.11); moreover, the ai,j are convex and 1-Lipschitz (the latter because

of (4.12)), so f̃ is convex as a maximum of convex functions and 1-Lipschitz as a maximum of

1-Lipschitz functions.

Conditioned on (4.10) there exists a feasible solution to the problem (4.11)-(4.13), namely that

obtained by taking yi,j = f ∗(Zi,j), ξi,j ∈ ∂ f ∗(Zi,j) (where ∂ f (x) denotes the subgradient set of

a convex function f at the point x). Moreover, the constraints in (4.11)-(4.13) are either linear or

convex and quadratic in f (Zi,j), ui,j, and hence the problem can be solved efficiently. For instance, it

can be expressed as a second-order cone program (SOCP) with Od(n2d+2) variables and constraints,

which can be solved in time Od(nO(d)) (see, e.g., [BTN01]).

Next, recall that under our conditions on the Zi,j, we have for each i that

∫
△i

( f̃ (x)− f ∗(x))2dP△i ≤
1
n2

n2

∑
j=1

( f̃ (Zi,j)− f ∗(Zi,j))
2 + Cn−

4
d , (4.14)
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since both f ∗ and f̃ lie in F1(Ω). Recall also that under our conditioning, for each i, the constraint

1
n2

n2

∑
j=1

(yi,j − ŵi(Zi,j))
2 ≤ ℓ̂2

i +

√
Cd log(n)

n

holds whether we take yi,j = f̃ (Zi,j) or yi,j = f ∗(Zi,j). Using this bound along with the inequality

( f ∗ − f̃ )2 ≤ 2( f̃ − ŵi)
2 + 2(ŵi − f ∗)2 in (4.14), we obtain

∫
△i

( f̃ (x)− f ∗(x))2dP△i ≤ 2ℓ̂2
i +

√
Cd log(n)

n
+ Cn−

4
d ≤ 2ℓ̂2

i + C′n−
4

d+4 , (4.15)

where we used our assumption of d ≥ 5. Now, recalling that ℓ2
i denotes the LSE error ∥ f ∗ −

ŵi∥2
L2(△i)

, which is bounded by (4.8), we have

ℓ̂2
i ≤ Cd log(n)3dℓ2

i ≤ Cd log(n)2d−1
(
∥ f ∗ − w∗i ∥2

L2(△i)
+

C(d) log n
P(△i)n

)
.

Substituting in (4.15), we obtain for any△i that

∫
△i

( f̃ (x)− f ∗(x))2dP△i ≤ C(d)

(
log(n)2d−1∥ f ∗ − w∗i ∥2

L2(△i)
+

log(n)2d

P(△i)n
+ n−

4
d+4

)
.

(4.16)

Now recall that fk(n) is our k(n)-simplicial approximation to f , and that fk(n)

∣∣∣
Si,j

is affine for

each i and Si,j ∈ S i
X, where the sets S i

X are defined in Lemma 26. Define Ω̃k(n) :=
⋃⋃k(n)

i=1 S
i
X.

Recall that by definition, ∥ f ∗ − w∗m∥2 = infw affine ∥ f ∗ − w∥2
L2(Sm)

for any Sm ∈ S , in particular

for those Sm which belong to one of the S i
X. Hence, multiplying (4.16) by P(△i) and summing
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over all the△i belonging to any of the S i
X, we obtain

∫
Ω̃k(n)

( f̃ − f ∗)2dP ≤ C1(d) ∑
△̃∈⋃k(n)

i=1 S
i
X

(
log(n)2d−1 inf

w affine

∫
△̃
( f ∗ − w)2dP +

log(n)2d

n
+ P(△̃)n−

4
d

)

≤ Cd

(
log(n)2d−1

∫
Ω̃k(n)

( fk(n) − f ∗)2dP + log(n)3dn−
4

d+4

)
≤ Od(n

− 4
d+4 log(n)3d),

(4.17)

where we used the fact that the cardinality of
⋃k(n)

i=1 S
i
X is bounded by Od(n

d
d+4 log(n)d), the

disjointness of all the simplices comprising Ω̃k(n), and finally the definition of fk(n). Next, it is not

hard to show that ∥ f̃ ∥∞ ≤ C (simply because f̃ is 1-Lipschitz, Ω is contained in the unit ball, and∫
Ωk(n)

( f̃ − f ∗)2 ≤ 4). Thus, we obtain that

∫
Ωk(n)\Ω̃k(n)

( f̃ − f ∗)2dP ≤ ∥ f̃ ∥∞P(Ωk(n) \ Ω̃k(n)) ≤ C1

k(n)

∑
i=1

P(△i \
⋃
S i

X)

≤ Od(n
− 4

d+4 log(n)d).

where we used part (2) of Lemma 26. Combining the last two equations, we obtain that

∫
Ωk(n)

( f̃ − f ∗)2dP ≤ Od(n
− 4

d+4 log(n)3d). (4.18)

Finally, since P(Ω \Ωk(n)) ≤ C(d)n−
d+2
d+4 log(n)d−1, we can estimate f ∗ simply by 1 on Ω\Ωk(n)

and the error of doing so will be asymptotically negligible (n−
d+2
d+4 ≪ n−

4
d+4 ), so min{ f̃ , 1} is a

minimax optimal estimator on all of Ω. (Recall that this is an improper estimator, and we can apply

the procedure MP described in §4.5 to obtain a proper estimator.) It is not hard to see that the

runtime of the above algorithm is Od(nO(d)). The proof of Theorem 4 is complete.

130



4.1.3 On The Estimator of Lemma 27

The construction of this estimator has a middle step that may be independent of interest. We develop

a new estimator for the L1(U(K)) norm of any convex function g : K → R:

Lemma 28. Let K be any convex body in Rd. Let δ ∈ (0, 1) and f : K → R be a convex function,

and suppose that m ≥ d + 1 i.i.d. samples are drawn from the regression model Y = f (Z) + ξ,

where Z ∼ U(K). There exists an estimator f̄ δ
m taking these samples as input which satisfies, with

probability at least 1− 3 max{δ, e−cm},

∥ f ∥L1(U(K)) ≤ f̄ δ
m ≤ C(d, K)∥ f ∥L1(U(K)) + C1(d, K)

√
log(2/δ)

m
· (∥ f ∥L2(U(K)) + σ),

where C(d, K), C1(d, K) are constants that only depend on the convex set K and the dimension d.

The estimator of Lemma 28 is invariant with respect to affine transformations of the domain.

Thus, the constants C(d, K), C1(d, K) are the same for all K in the class of affine images of a fixed

convex body in Rd, such as the class of simplices. Furthermore, it has the optimal error rate, with

respect to the number of samples m, for the L1(U(K))-norm of any convex function g (with no

restriction on its uniform norm or Lipschitz constant). However, we cannot extend this estimate for

the L2(U(K) for any convex K and any convex g : K → R. Unfortunately, it is essential for both

the statistical guarantees and the computational aspects of the proposed estimator of Lemma 27 to

assume that the domain of g is a simplex and that ∥g∥∞ ≤ L.

4.2 All Remaining Proofs

Basic notions regarding polytopes A quick but thorough treatment of the basic theory is given

in, e.g. [Sch14]. A set P ⊂ Rd is called a polyhedral set if it is the intersection of a finite set of

half-spaces, i.e., sets of the form {x ∈ Rd : x · a ≤ c} for some a ∈ Rd, c ∈ R. A polyhedral set

P is called a polytope if it is bounded and has nonempty interior; equivalently, a set P is a polytope

if it is the convex hull of a finite set of points and has nonempty interior.
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The affine hull of a set S ⊂ Rd is defined as

affHull S =
∞⋃

k=1

{
k

∑
i=1

aixi : xi ∈ K, ai ∈ R |
k

∑
i=1

ai = 1},

which is the minimal affine subspace of Rd containing S. For a convex set K, we define its dimension

to be the linear dimension of its affine hull.

For any unit vector u and any convex set K, the support set F(K, u) is defined as

F(K, u) = {x ∈ K : x · u = max
y∈K

y · u}.

(If maxy∈K y · u = ∞ then F(K, u) is defined to be the empty set.)

Suppose P is a polyhedral set. For any u ∈ Sm−1, F(P, u) is a polyhedral set of smaller

dimension than K. Any such F(P, u) is called a face of P, and if F(P, u) has dimension m− 1, it

is called a facet of P. A polyhedral set P which is neither empty nor the whole space Rd has a finite

and nonempty set of facets, and every face of P is the intersection of some subset of the set of facets

of P. If P is a polytope, all of its faces, and in particular all of its facets, are bounded. A polytope is

called simplicial if all of its facets are (m− 1)-dimensional simplices, which is to say, each facet F

of P is the convex hull of precisely m points in affHullF.

4.2.1 Proof of Theorem 17

Since the squared L2-error scales quadratically with the function to be estimated, it suffices to prove

the theorem for the class of 1-Lipschitz functions. Since the range of a 1-Lipschitz function on a

domain of diameter at most 1 is contained in an interval of length 1, it is no loss to assume that the

range of f ∗ is contained in [0, 1].

The construction of a k-affine approximation to any convex 1-Lipschitz function f ∗ : Ω→ [0, 1],

uses a combination of two tools: the theory of random polytopes in convex sets, and empirical

processes.

Fix a convex body K ⊂ Rd and n ≥ d + 1. The random polytope Kn is defined to be the convex

hull of n random points X1, . . . , Xn ∼ U(K). It is well-known and easy to justify that Kn is a
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simplicial polytope with probability 1: Indeed, if X1, . . . , Xn form a facet of Kn then in particular

they lie in the same affine hyperplane, and if k ≥ d + 1, the probability that Xk lies in the affine hull

H of X1, . . . , Xn is 0, since K ∩ H has volume 0. For future use we note that with probability 1,

the projection of every facet of Kn on the first d− 1 coordinates is a (d− 1)-dimensional simplex,

by similar reasoning.

For s ∈ {0, 1, . . . , d− 1} and P a polytope, we let fs(P) denote the number of s-dimensional

faces of P. The first result regarding random polytopes that we need appears in [Bá89, Corollary 3]:

Theorem 18. Let d ≥ 1, 1 ≤ s ≤ d − 1 and a convex body K ⊂ Rd. Then, there exists

C(d, s) ≤ C1(d) such that

E[ fs(Kn)] ≤ C(d, s)n
d−1
d+1 .

We will also use the following result that was derived in [Dwy88]:

Theorem 19. Let P ⊂ Bd be a polytope, and let Y1, . . . , Ym ∼
i.i.d.

PP. Then, Pm = conv(Y1, . . . , Ym)

is a simplicial polytope with probability 1, and the following holds:

EPP(P \ Pm) = Od(C(P)m−1 log(m)d−1),

The other result that we need from empirical processes appears as Lemma 24 in the main text.

We now describe our construction. Given a 1-Lipschitz function f ∗ : Ω → [0, 1], define the

convex body

K = {(x, y) : x ∈ Ω, y ∈ [0, 2] | f ∗(x) ≤ y}.

In other words, K is the epigraph of the function f ∗, intersected with the slab Rd × [0, 2]. Note that

Vold−1(Ω) ≤ Vold(K) ≤ 2Vold−1(Ω), since Im f ∗ ⊂ [0, 1].

Let n = ⌊k d+2
d ⌋, and consider the random polytope Kn ⊂ K. Let Ωk be the projection of Kn to

Rd, and define the function fk : Ωk → [0, 2] by

fk(x) = min{y ∈ R : (x, y) ∈ Kn},

i.e., fk is the lower envelope of Kn. In particular, since Kn ⊂ K, fk lies above the graph of f ∗. We
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would like to show that with positive probability, fk satisfies the properties in the statement of the

theorem. We treat each property in turn.

fk is k-simplicial with probability at least 9/10: Using Theorem 18, and Markov’s inequality Kn

has at most 10C(d)n
d

d+2 = C′(d)k facets (recall that all facets of Kn are simplices with probability

1). Letting△1, . . . ,△F be the bottom facets of Kn, and letting π : Rd×R→ Rd be the projection

onto the first factor, π(△1), . . . , π(△F) is a triangulation of Ωk and for each i = 1, . . . , F, fk|△i

is affine, as its graph is simply△i.

Bounding P(Ω\Ωk) with probability at least 9/10: Since Ωk is the projection of Kn to

Rd, it is equivalently defined as conv(π(X1), . . . , π(Xn)) where X1, . . . , Xn are independently

chosen from the uniform distribution on K, and π is the projection onto the first d coordinates as

above. π(Xi) is not uniformly distributed on Ω, so we cannot apply Theorem 19 (and Markov’s

inequality directly). Instead, we re-express π(Xi) as a mixture of a uniform distribution and another

distribution, and apply Theorem 19 to the points which come from the uniform distribution.

In more detail, note that we may write K = K1 ∪ K2 where K1 = (Ω× [0, 1]) ∩ epi f and

K2 = Ω× [1, 2], since f ≤ 1. Let p = Vol(K2)
Vol(Ω)

≥ 1
2 . The uniform distribution from K can be

sampled from as follows: with probability p, sample uniformly from K2, and with probability 1− p

sample uniformly from K1. Clearly, if X is uniformly distributed from K2 then π(X) is uniformly

distributed on Ω. Hence, Ωk can be constructed as follows: draw M from the binomial distribution

B(n, p) with n trials and success probability p, then sample M points X1, . . . , XM uniformly from

Ω and sample k−M points X′1, . . . , X′k−m from some other distribution on Ω, which doesn’t interest

us; then set Ωk = conv(X1, . . . , XM, X′1, . . . , X′k−M). In particular, P(Ω\Ωk) ≥ P(Ω\ΩM), so

it is sufficient to bound the RHS with high probability.

By the usual tail bounds on the binomial distribution, M ≥ np
2 ≥

n
4 with probability 1− e−Ω(n).

Hence, by Theorem 19 we obtain

EP(Ω\ΩM) ≤ EP(Ω\conv{X1, . . . , Xn/4}) + C(d)e−c(d)n ≤ Od(C(Ω)n−1 log(n)d−1)

≤ Od(C(Ω)k−
d+2

d log(k)d−1),
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and we obtain P(Ω\ΩM) ≤ 10C(Ω)k−
d+2

d log(k)d−1 with probability at least 9
10 by Markov’s

inequality.

Bounding
∫
( f − fk)

2dP with probability at least 9/10: Finally, we wish to bound the L2(P)-

norm of f ∗ − fk. To do this, we use the same strategy, arguing that on average, k of the points of Kn

can be thought of as drawn from the uniform distribution on a thin shell of width k−
2
d lying above

the graph of f ∗, which automatically bounds the empirical L2-norm
∫
( f ∗ − fk)

2 dPn and hence

the L2-norm by Lemma 24.

Now for the details. Set ϵ = k−
2
d , and define

Kϵ = {(x, y) : x ∈ Rd, y ∈ [0, 2] | f ∗(x) ≤ y ≤ f ∗(x) + ϵ},

i.e., Kϵ ⊂ K is just the strip of width ϵ lying above the graph of f ∗. By Fubini, Kϵ has volume

ϵVol(Ω) ≥ ϵ
2Vol(K) , and if X is uniformly distributed on Kϵ, π(X) is uniformly distributed on Ω.

Hence, we can argue precisely as in the preceding: with probability 1− e−Ω(n),

L := |{Xi : Xi ∈ Kϵ}| ≥
ϵn
4

=
k
4

.

Conditioning on L for some L ≥ k
4 and letting X1, . . . , XL be the points drawn from K which

lie in Kϵ we have that π(X1), . . . , π(XL) are uniformly distributed on Ω. Moreover, for any

i ∈ {1, . . . , n}, Xi ∈ Kn and so it lies above the graph of fk, but also Xi ∈ Kϵ and so it lies below

the graph of f ∗ + ϵ. Combining these two facts yields

∀1 ≤ i ≤ L : fk(π(Xi)) ≤ (Xi)d+1 ≤ f ∗(π(Xi)) + ϵ,

where (·)d+1 denotes the d + 1 coordinate. Hence,

∀1 ≤ i ≤ L : f ∗(π(Xi)) ≤ fk(π(Xi)) ≤ f ∗(π(Xi)) + Ck−2/d. (4.19)
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Thus, letting PL = 1
L ∑L

i=1 δπ(Xi)
denote the empirical measure on π(X1), . . . , π(XL), we obtain

∫
Ω
( f ∗ − fk)

2 dPL ≤
1
L

L

∑
i=1

ϵ2 = ϵ2 = k−
4
d .

Since the π(Xi) are drawn uniformly from Ω, if we knew that fk were 1-Lipschitz it would follow

from Lemma 24 that ∫
Ω
( f ∗ − fk)

2 dP ≤ k−
4
d + CL−

4
d = C′k−

4
d ,

with high probability.

We do not know, however, that fk is 1-Lipschitz. To get around this, define the function f̂k as

the function on Ωk whose graph is conv{(Π(Xi), f ∗(Π(Xi)))}L
i=1. Unlike fk, f̂k is necessarily

1-Lipschitz since f ∗ is (see, e.g., the argument in the paragraph below equations (4.11)-(4.13)), so

by Lemma 24, it follows that ∫
Ω
( f ∗ − f̂k)

2 dP ≤ C1k−
4
d

with probability at least 1− C(d) exp(−c(d)k). Also, by (4.19),

∀1 ≤ i ≤ L : f̂k(π(Xi)) ≤ fk(π(Xi)) ≤ f̂k(π(Xi)) + C1k−2/d.

It easily follows by the definitions of fk and f̂k as convex hulls that on the domain ΩΠ(X) :=

conv{(Π(Xi))}L
i=1, we have

f ∗ ≤ f̂k ≤ fk ≤ f̂k + Ck−2/d.

Hence, we conclude that

∫
ΩΠ(X)

( fk − f ∗)2 dP ≤ 2
∫

ΩΠ(X)

( f̂k − f ∗)2 dP + 2
∫

ΩΠ(X)

( fk − f̂k)
2 dP

≤ 2
∫

ΩΠ(X)

( f̂k − f ∗)2 dP + 2∥ fk − f̂k∥2
L∞(Π(X)) ≤ C2k−4/d

with high probability.
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Now, using Theorem 19 and Markov’s inequality, we also know that

P(Ω \ΩΠ(X)) ≤ 20C(Ω)k−1 log(k)d−1.

with probability at least 19
20 . Conditioned on this event, and using the fact that fk is uniformly

bounded by 1, we obtain

∫
Ω\ΩΠ(X)

( fk − f ∗)2dU(x) ≤ C(Ω)k−1 log(k)d−1.

On the intersection of the two events defined above, which has probability at least 9
10 , we have∫

Ω( fk − f ∗)2 ≤ C3k−
4
d + C(Ω)k−1 log(k)d−1.

Deriving the theorem Since we have three events each of which hold with probability at least

9/10, then the intersection of these events is not empty. Therefore, an fk satisfying all the desired

properties exists, and the theorem follows.

4.2.2 Proof of Lemma 26

We start with the following easy lemma:

Lemma 29. The following event holds with probability at least 1− n−3d:

∀1 ≤ i ≤ k(n) s.t. P(△i) ≥ C3d log(n)/n : 2−1P(△i) ≤ Pn(△i) ≤ 2P(△i). (4.20)

Proof. The lemma follows for the fact that n ·Pn(S) ∼ Bin(n, P(S)), along with the concentration

inequality (cf. [BLM13]) for binomial random variables: for all ϵ ∈ (0, 1),

Pr
(∣∣∣∣Pn(S)

P(S)
− 1
∣∣∣∣ ≤ ϵ

)
≤ 2 exp(−c min{P(S), 1−P(S)}nϵ2).

By taking ϵ = 1/2, and choosing C to be large enough, we conclude that for any particular△i,

P(△i) ≥ C3d log(n)/n : 2−1P(△i) ≤ Pn(△i) ≤ 2P(△i)
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with probability at least 1− n−(3d+1). Taking the union bound over all k(n) simplices, the claim

follows.

The main step is the following lemma, which shows that for any given simplex△i, if we draw

Cd log n points from the uniform distribution on△i for sufficiently large C, then there exists some

subset S of these points whose convex hull P covers almost all of the simplex and can also be

triangulated by a polylogarithmic number of simplices whose vertices lie in S.

Lemma 30. Let S ⊂ Rd be a simplex, and m ≥ C3d log(n), for some large enough C3 ≥ 0.

Let Y1, . . . , Ym ∼ PS. Then, with probability at least 1− n−3d there exists a set A of simplices

contained in S with disjoint interiors of cardinality |A| ≤ Cd log(m)d−1 such that

PS(S \
⋃
A) = Od(m−1 log(n) log(m)d−1).

Proof. For each s ∈ {0, 1, . . . , d − 1} and P a polytope, we let fs(P) denote the number of s-

dimensional faces of P. We need the following result, which was first proven in [Dwy88]; for more

details see the recent paper [RSW19].

Theorem 20. [[Dwy88]] Let S ⊂ Rd be a simplex, and let Y1, . . . , Ym ∼ PS. Then, Sm =

conv(Y1, . . . , Ym) is a simplicial polytope with probability 1, and the following holds:

EPS(S \ Sm) = Od(m−1 log(m)d−1),

and

E fd−1(Sm) = Od(log(m)d−1).

This theorem does not give us what we need directly, since it treats only expectation while we

require high-probability bounds. (To the best of our knowledge, sub-Gaussian concentration bounds

are not known for the random variables fd−1(Pm), P(S \ Sm) when S is a simplex, cf. [Vu05].)

This necessitates using a partitioning strategy. We divide our Y1, . . . , Ym into B := C1d log(n)

blocks, for C1 to be chosen later, each with m(n) := m
C1d log(n) samples drawn uniformly from
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△. Let P1, . . . , PB be the convex hulls of the points in each block, each of which are independent

realizations of the random polytope Sm(n). For each Pi, Markov’s inequality and a union bound

yield that with probability at least 1
3 ,

PS(S \ Pi) ≤ 3 ·EPS(S \ Pi) ≤ C1(d)m(n)−1 log(m(n))d−1

=
C2(d) log(m)d−1 log(n)

n
, (4.21)

and

fd−1(Pi) ≤ 3E fd−1(Sm(n)) ≤ Od(log(m(n))d−1) ≤ Od(log(m)d−1). (4.22)

Since there are C1d log(n) independent Pi, at least one of them will satisfy these conditions with

probability 1−
(2

3

)C1d log n
, and we may choose C1 so that this is at least 1− n−3d.

Conditioned on the existence of Pi satisfying (4.21) and (4.22), we take one such Pi and triangu-

late it by picking any point among the original Y1, . . . , Ym lying in the interior of Pi and connecting

it to each of the (d− 1)-simplices making up the boundary of Pi. The set A is simply the set of

d-simplices in this triangulation.

Now, to obtain Lemma 26, we condition on the event of Lemma 29 and apply Lemma 30

to each △i such that P(△i) ≥ Cd log(n)/n, with the Y1, . . . , Ym taken to be the points of

Xn+1, . . . , X2n drawn from P which fall inside of △i. Using the fact that Pn(△i) ≥ 0.5P(△i),

we see that m ≥ Cd log n for each△i, so Lemma 30 is in fact applicable. In addition, the bounds

on the cardinality of S i
X and on the volume of △i left uncovered by the simplices in S i

X follow

immediately by substituting cP(△i) for m in the conclusions of Lemma 30. For i such that

P(△i) ≤ Cd log(n)/n, we take S i
X to be the empty set.

4.2.3 Proofs of Lemmas and 28 and 27

In several places, we will use a high-probability estimator for the mean of a random variable

presented in [Dev+16]:

139



Lemma 31. Let δ ∈ (0, 1) and let Z1, . . . , Zk be i.i.d. samples from a distribution on R with

finite variance σ2
Z. There exists an estimator f̂δ : Rk → R with a runtime of O(k), such that with

probability at least 1− δ,

( f̂δ(Z1, . . . , Zk)−EZ)2 ≤
8σ2

Z · log(2/δ)

k
.

In the first sub-subsection, we construct the estimator for the L1 norm of a convex function g

defined on a convex body K, which is the content of Lemma 28. In the second sub-subsection, we

show how to “upgrade” this estimator to an estimator of the L2-norm in the special case that K is a

simplex.

The final step will be to estimate the L2 norm of g under the assumptions of Lemma 27, by

using Lemma 28 and the claim of Lemma 27 will follow.

Proof of Lemma 28

We only prove this this for K a simplex, for a general K can be done in similar fashion, by placing

K in John’s position (besides the computational aspects).

Let S be the regular simplex inscribed in the unit ball Bd, and for each t ∈ [0, 1], denote by

St := (1 − t)S. We will use the following geometric facts, which can be extracted from the

statements and proofs of [GW17, Lemmas 2.6-2.7].

Lemma 32. Let g : S→ R be a convex function, and let ∥g∥1 :=
∫

S |g|dU. Then,

• g(x) ≥ −Cd∥g∥1 on every x ∈ S.

• For each δ ∈ (0, 1), g|Sδ is is Cdδ−(d+1)∥g∥1-Lipschitz and satisfies g|Sδ ≤ Cdδ−(d+1)∥g∥1.

We immediately obtain the following corollary:

Corollary 1. For any a ∈ (0, 1), there exists a constant δ such that g restricted to Sδ is uniformly

bounded by Cds−(d+1)∥g∥1; moreover, letting g− = min(g, 0), we have

∫
S\Sδ
|g−| dU(x) ≤ a∥g∥1.
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Define a probability density pS on S by the formula

pS(x) :=
∫

S

1By(x)
U(By)

dU(y), (4.23)

where we define By to be the largest ball centered on y which is contained in S. For any simplex△,

we define the density p△ as the pushforward of pS under the affine transformation T sending S to

T.

Lemma 33. Let M, M′ be positive constants, let△ be a simplex contained in the unit ball Bd, and

let g : △ → [−M′∥g∥L1(U(△)), M′∥g∥L1(U(△))] be a convex M∥g∥L1(U(△))-Lipschitz function

which is orthogonal to affine functions, i.e.,

∫
△

gw dU = 0

for any affine function w. Then there exist positive constants c1 = c1(M, M′, d), C1 = C1(M, M′, d)

such that:

c1∥g∥L1(U(△)) ≤
∫

g(x)p△(x) dx ≤ C1∥g∥L1(U(△)), (4.24)

In addition, for every affine function w,

∫
wp△ dx =

∫
△

w dU(x).

Moreover,

max
x∈△

p△(x) ≤ αd := 2d d + 1
d− 1

vd−1

vd

where vd is the volume of the unit ball in dimension d, and there exists an efficient algorithm to

compute p△(x) for any x ∈ △.

The idea behind the proof of this lemma is that for any point x ∈ △ and a ball Bx ⊂ △, the

average ḡ(x) of g over Bx is at least g(x), with equality iff g is affine on Bx. If g is nonzero

and orthogonal to affine functions, the averaged function ḡ must have positive integral, and a

compactness argument then yields a lower bound on 1
∥g∥1

∫
ḡ. The full proof is given at the end of
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the sub-subsection.

Using the above results we can estimate the L1 norm g : △ → [−1, 1].

Letting T be the unique affine transformation such that T△ = S, we define the shrunken

simplex△δ by the△δ := T−1(T△)δ(l,d), where a = 1/10 and δ(a, d) is defined in Corollary 1.

The proof involves analysis of several cases.

Case 1: ∥g1△\△δ
∥1 ≥ 2−1∥g∥1, i.e. most of the L1-norm of g comes from the shell △ \△δ.

Using Corollary 1, we know that

∥g∥1 ≥
∫
△\△δ

gdU(x) =
∫
△\△δ

g+dU(x) +
∫
△\△δ

g−dU(x) ≥ (3/20) · ∥g∥1.

Therefore it is enough to estimate the mean (scaled by U(△ \ △δ)) of the r.v. g(X) where

X ∼ U(△ \△δ), which can be done using the samples that fall in△ \△δ. By Lemma 31 above,

we conclude that using these samples we have an estimator f̂(1) such that with probability at least

1− δ,

∣∣∣∣ f̂(1) − ∫△\△δ

g dU
∣∣∣∣2 ≤ U(△ \△δ)

2 Cd(σ2 + ∥g1△\△δ
∥2

2) log(2/δ)

U(△ \△δ)m

≤ Cd ·
(σ2 + ∥g∥2

2) log(2/δ)

m
, (4.25)

where we used that fact that U(△ \△δ) ≥ cd.

Case 2: If we are not in Case 1, we must have ∥g1△δ
∥1 ≥ 1

2∥g∥1, i.e., most of the L1-

norm of g comes from the inner simplex △δ. Decompose g = wg + (g − wg), where wg =

argminw affine ∥g− w∥L2(U(△δ))
is the L2(U(△δ))-projection of g onto the space of affine func-

tions. Note that by orthogonality, we have

max(∥wg∥L2(U(△δ))
, ∥g− wg∥L2(U(△δ))

) ≤ ∥g∥L2(U(△δ))
(4.26)
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by orthogonality, while by Lemma 32, we have

∥g∥L1(U(△δ))
≤ ∥g∥L2(U(△δ))

∥ ≤ Cd∥g∥L1(U(△δ))
. (4.27)

By the triangle inequality, we must have either ∥wg1△δ
∥1 ≥ 1

4∥g∥1 or ∥(g− wg)1△δ
∥1 ≥

1
4∥g∥1; we analyze each case below.

Case 2a: First, suppose ∥wg1△δ
∥1 ≥ 1

4∥g∥1. Using half of the samples that fall into △δ, we

may apply Lemma 25, giving us an affine ŵg such that with probability at least 1− δ,

∥ŵg − wg∥2
2 ≤ Cd(σ

2 + ∥g∥2
2)

log(2/δ)

m
.

Writing f̄(2a) := ∥ŵg∥1, we conclude that

1
4
∥g∥1 − Cd(σ + ∥g∥2)

√
log(2/δ)

m
≤ f̄(2a) ≤ ∥g∥1 + Cd(σ + ∥g∥2)

√
log(2/δ)

m
. (4.28)

Note that the right-hand inequality does not require the assumption ∥wg1△δ
∥1 ≥ 1

4∥g∥1.

Case 2b: Now suppose ∥(g− wg)1△δ
∥1 ≥ 1

4∥g∥1. To estimate ∥(g− wg)1△δ
∥1, we will use

our Lemma 33. Note that by the definition of△δ, we may assume by Lemma 1 that max{M′, M} ≤

C(d) (in Lemma 33). Therefore, we conclude that

c1(d)∥g− wg∥1 ≤
∫
△δ

(g− wg) · p△δ
≤ C1(d)∥g− wg∥1.

By our assumption ∥(g− wg)1△δ
∥1 ≥ 1

4∥g∥1; we also have

∥(g− wg)1△δ
∥1 ≤ ∥g∥1 + ∥ŵg∥1 ≤ ∥g∥1 + ∥ŵg − w

so it follows that

c2(d)∥g∥1 ≤
∫
△δ

(g− ŵg) · p△δ
≤ C2(d)∥g∥1.
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Therefore, it is enough to estimate
∫
(g− ŵg) · p△δ

, using the the second half of the samples that

fall into△δ.

To do this, we simulate sampling from p△δ
given samples from U(△δ) and their corresponding

noisy samples of g− ŵg. The idea is simply to use rejection sampling [Dev86]: given a single

sample X ∼ U(△δ), we keep it with probability p△δ
(x) · 1

αd
. Conditioned on keeping the sample,

X is distributed according to p△δ
. If we are given m/2 i.i.d. samples from U(△δ), then with

probability 1− e−c′dm the random number of samples N we obtain from p△ by this method is at

least c(αd) ·m ≥ c1(d)m, and conditioned on N, these samples are i.i.d. p△δ
. We condition on

this event going forward. Now, using these N samples, Lemma 31 gives an estimator f̄(2b) such that

∣∣∣∣ f̄(2b) −
∫
(g− ŵg) · p△δ

∣∣∣∣ ≤ Cd(σ + ∥g∥2)

√
log(2/δ)

m
. (4.29)

with probability at least 1−max{δ, e−cm}.

Note that each of f̄(1), f̄(2a), f̄(2b) is bounded from above by Cd∥g∥1 +Cd(σ+ ∥g∥2)
√

log(2/δ)
m ,

irrespective of whether we are in the case for which the estimator was designed; this follows from

(4.25), (4.28), (4.29), respectively.

Finally, by using f̄(1), f̄(2a), f̄(2b), we conclude that with probability 1− 3 max{δ, e−cm} at

least

c1(d)∥g∥1−Cd(σ+ ∥g∥2)

√
log(2/δ)

m
≤ f̄(1)+ f̄(2a)+ f̄(2b) ≤ C1(d)∥g∥1 +Cd|σ+ ∥g∥2|

√
log(2/δ)

m
,

and the claim follows.

Proof of Lemma 33. Recall that it suffices to show that

c1(M, M′) ≤
∫

S
g(x)pS(x)dx ≤ C1(M, M′).

Note that the function g is convex and in particular subharmonic, i.e., for any ball Bx with center x

contained in S we have
1

U(Bx)

∫
Bx

gdU(x) ≥ g(x),
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where U denotes the uniform measure on the regular simplex S. g is non-affine and hence strictly

subharmonic (as convex harmonic functions are affine), so there exists some x such that for any ball

Bx ⊂ S centered on x, the above inequality is strict, since subharmonicity is a local property. As g

is convex and in particular continuous, the inequality is strict on some open set of positive measure.

We obtain that for a non-affine convex function that∫
S

g(x)pS(x) dU(x) =
∫

S

∫
S

g(x)1By(x) dU(y) dU(x)

=
∫

S

(
1

U(By)

∫
By

g(x) dx
)

dU(y) >
∫

S
g(y)dU(y) = 0,

(4.30)

i.e. we showed that for a non-harmonic g that
∫

S g(x)pS(x) dx > 0.

Now, we show why Eq. (4.30) actually implies the lower bound of Eq. (4.24), which is

certainly not obvious a priori. However, it follows from a standard compactness argument. The

set C of convex M-bounded, M′-Lipschitz functions with norm 1 that is orthogonal to the affine

functions is closed in L∞(S), and also equicontinuous due to the Lipschitz condition. Hence, by the

Arzela-Ascoli theorem it is compact in L∞(S), and we conclude that

A =

{∫
S

g(x)pS(x)dx : g ∈ C
}

is compact; but (4.30) implies that A ⊂ (0, ∞), which finally implies the existence of c(M, M′, d) >

0 such that S ⊂ [c(M, M′, d), ∞). As for the upper bound in (4.24), it follows immediately from

the boundedness of pS, which we prove below.

We claim that in this case (4.23) can be evaluated analytically as a function of x, though the

formulas are sufficiently complicated that this is best left to a computer algebra system. Indeed,

we note that y ∈ S contributes to the integral at x if and only if x is closer to y than y is to the

boundary of S. The regular simplex can be divided into d + 1 congruent cells C1, . . . , Cd+1 such

that the points in Ci are closer to the i-th facet of the simplex than to any other facet (in fact, Ci is

simply the convex hull of the barycenter of S and the ith facet); for any y ∈ Ci, x ∈ By if and only

if x is closer to y than y is to the hyperplane Hi containing Ci. But the locus of points equidistant

from a fixed point x and a hyperplane is the higher-dimensional analog of an elliptic paraboloid, for
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which it’s easy to write down an explicit equation. Letting Pi,x be the set of points on x’s side of the

paraboloid (namely, those closer to x than to Hi), we obtain

pS(x) =
d+1

∑
i=1

∫
Ci∩Pi,x

dy
vd · d(y, Hi)d .

Each region of integration Ci ∩ Pi,x is defined by several linear inequalities and a single quadratic

inequality, and the integrand can be written simply as 1
yd

i
in an appropriate coordinate system. It is

thus clear that the integral can be evaluated analytically, as claimed.

Finally, we need to show that pS(x) is bounded above by αd. By symmetry,

pS(x) ≤
d+1

∑
i=1

dy
Ωd · d(y, Hi)d ≤

d + 1
Ωd
· sup

x∈Rn

∫
P1,x

dy
d(y, H1)d . (4.31)

Fix x, and choose coordinates such that H1 = {x1 = 0} and x = (x0, 0, . . . , 0) with x0 > 0.

Then for any y = (t, z) with t ∈ R, z ∈ Rd−1, y lies in P1,x if t2 ≥ (x0 − w)2 + |z|2, or

2tx0 − x2
0 ≥ |z|2. Hence,

∫
P1,x

dy
d(y, H1)d =

∫ ∞

x0
2

dt
td

∫
Rd−1

1|z|2≤2tx0−x2
0
(z) dz

≤
∫ ∞

x0
2

dt
td ·Ωd−1(2tx0 − x2

0)
d−1

2 ≤ Ωd−1

∫ ∞

x0
2

dt
td (2tx0)

d−1
2

= Ωd−12
d−1

2 x
d−1

2
0

∫ ∞

x0
2

dt

t
d+1

2

= Ωd−12
d−1

2 x
d−1

2
0 ·

(
d− 1

2

)−1 (x0

2

)− d−1
2

= Ωd−1 ·
2d

d− 1
,

and substituting in (4.31) gives the desired bound.

Proof of Lemma 27

Recall that we are given a convex L-Lipschitz function g satisfying ∥g∥∞ ≤ L; by homogeneity,

we may assume L = 1. Our goal in this subsection is to estimate ∥g∥2 up to polylogarithmic factors
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given an estimate of ∥g∥1, where g : △ → [−1, 1]. This part requires the additional assumption

that ∥g∥2 ≥ Cd1/2 log n
n1/2 .

For this section, we will need the following classical result about the floating body of a simplex

[BL88; SW90].

Lemma 34. For a simplex S and ϵ ∈ (0, 1). let Sϵ be its ϵ-convex floating body, defined as

Sϵ :=
⋂
{K : K ⊂ S convex , Vol(S \ K) ≤ ϵVol(S)},

and let S(ϵ) = S\Sϵ be the so-called wet part of S. Then Vol(S(ϵ)) ≤ Cdϵ log(ϵ−1)d−1Vol(S).

We also note that for any particular ϵ and x ∈ S one can check in polynomial time whether

x ∈ S(ϵ): indeed, letting

H+
x,u = {y ∈ Rn : ⟨y, u⟩ ≥ ⟨x, u⟩}

Hx,u = ∂H+
x,u = {y ∈ Rn : ⟨y, u⟩ = ⟨x, u⟩},

the function u 7→ U(S ∩ H+
x,u) is smooth on Sd−1 outside of the closed, lower-dimensional subset

A where Hx,u is not in general position with respect to some face of u, and, moreover, is given by an

analytic expression in each of the connected components Ci of Sd−1\A. It can thus be determined

algorithmically whether mini infx∈Ci U(S ∩ H+
x,u) ≤ ϵ, i.e., whether x ∈ S(ϵ).

Let v = P(S), and let imin = min(⌊log2(Cd log(n)d+1v−1)⌋, 0); note that since ∥g∥1 ≥

v ≥ log(n)d

n , |imin| ≤ C log n. Set V = g−1((−∞, 2imin ]), and for i = imin, imin + 1, . . . , 0, set

Ui = g−1((2i, 1]). Note that V is convex, while each Ui, i ≥ 0, is the complement of a convex

subset of S.

We will use the following lemma:

Lemma 35. For g and V, Ui as defined above, at least one of the following alternatives holds:

1. cd log(n)−d+1/2∥g∥2 ≤ v−
1
2∥g∥1 ≤ ∥g∥2.
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2. There exists i0 ∈ [imin, 0] such that 2−i0 ≥ Cd(log n)d−1 ∥g∥1
P(S) and

c log(n)−1/2∥g∥2 ≤ P(Ui0)
−1/2

∫
Ui0

g dP. (4.32)

The proof of this lemma appears at the end of this subsection.

If alternative (1) of the lemma holds, the L1-norm of g is only a polylogarithmic factor away

from the L2-norm (up to normalizing by the measure of S, which is known to us). Therefore, we

may use the L1-estimator of the previous subsection and estimate the L2 norm of g, up to a larger

polylogarithmic factor, as we will see below.

We must therefore consider what happens when alternative (2) of Lemma 35 holds. If we could

estimate the integral of g over Ui0 , we’d be done, but neither the index i0 nor the set Ui0 are given

to us. So we make use of the fact that each such Ui0 , being the complement of a convex subset

of △, is contained in the wet part S(P(Ui)), which has volume at most Cd log(n)d−1P(Ui) by

Lemma 34. We will show in the next lemma that this replacement costs us a Cd log(n)d/2 factor in

the worst case.

More precisely, let ϵj = 2−2j, and let S(ϵj) be the corresponding wet part of S, as defined in

Lemma 34. Then we have the following:

Lemma 36. With g as above, we have

max
j∈[imin,0]

P(S(ϵj))
−1/2

∫
S(ϵj)

gdP ≤ ∥g∥2,

and moreover, if alternative (2) of Lemma 34 holds, then there exists j such that P(S(ϵj)) ≥ Cd log n
n

and

cd log(n)−d/2∥g∥2 ≤ P(S(ϵj))
−1/2

∫
S(ϵj)

gdP.

Using the last lemma, we can construct an estimator for ∥g∥2 that is at most a polylogarithmic

factor away from the true value, whether we are in case (1) or case (2) of Lemma 35.

Indeed, note that we if alternative (2) holds, we have P(Sϵj) ≥
Cd log n

n and hence, as in Section

2, we can assume by a union bound that the number of sample points falling in S(ϵj) is proportional
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to P(S(ϵj)). Hence, for each j the estimation of
∫

S(ϵj)
g dPS(ϵj)

= P(S(ϵj))
−1
∫

S(ϵj)
g dP can be

done in a similar fashion as in §4.2.3, with an additive deviation that is proportional to
√

log(2/δ)
nP(S(ϵj))

.

However, since we need to estimate P(S(ϵj))
− 1

2
∫

S(ϵj)
g dP, we can multiply it by

√
P(S(ϵj)),

and obtain the correct deviation of O(
√

log(2/δ)/(P(S)n)) (as usual, we work on the event

P(S(ϵj))/2 ≤ Pn(S(ϵj)), which holds with probability at least 1− n−2d).

We conclude that the maximum over j ∈ [−c log(n) ≤ imin, 0], estimators of the means of the

random variables P(S(ϵj))
1
2
∫

S(ϵj)
g dPS(ϵ△i)

and the L1 estimator of the above sub-sub section

give the claim.

Proof of Lemma 35. Let g− = min(g, 0), g+ = max(g, 0), so that ∥g∥2
2 = ∥g−∥2 + ∥g+∥2.

We claim that alternative (1) holds if ∥g−∥2
2 ≥ 1

2∥g∥2
2. Indeed, by Lemma 32, g− ≥

−Cdv−1∥g∥1, which immediately yields

∫
S

g2
− dP ≤ −Cdv−1∥g∥1 ·

∫
g− dP ≤ −Cdv−1∥g∥2

1

i.e.,

v−1/2∥g∥1 ≥ cd∥g−∥2 ≥ c′d∥g∥2.

Note that by Jensen’s inequality we have that v−1/2∥g∥1 ≤ ∥g∥2. Otherwise, we have ∥g+∥2 ≥
1
2∥g∥2

2. Let Ti = Ui\Ui+1 = g−1((2i, 2i+1]). We have

1
2
∥g∥2

2 ≤ ∥g+∥2
2 ≤

0

∑
i=−∞

22(i+2))P(Ti).

By our assumption ∥g∥2
2 ≥ C log n

n and the fact that v ≤ 1, the terms in the sum with i ≤ imin =

log
(

C log n
n

)
+ 2 cannot contribute more than half of the sum, so we have .

1
4
∥g∥2

2 ≤ ∥g+∥2
2 ≤

0

∑
i=imin

22(i+2))P(Ti).
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Hence there exists i0 ∈ [imin, 0] such that

∥g∥2
2

4 log n
≤ 22(i0+2))P(Ti0) ≤ 4 min

x∈Ui
g(x)2 ·P(Ui) ≤ 4P(Ui0)

−1
(∫

Ui

g dP

)2

,

or

c log(n)−
1
2∥g∥2 ≤ P(Ui0)

− 1
2

∫
Ui0

g dP.

We consider two cases: either 2−i ≥ C(log n)d−1v−1∥g∥1, or 2−i ≤ C(log n)d−1v−1∥g∥1.

The first case leads immediately to alternative (2), while in the second case we have

c log(n)−
1
2∥g∥2 ≤ P(Ui0)

− 1
2

∫
Ui0

g dP ≤ 4C(log n)d−1v−1∥g∥1 ·P(Ui0)
1
2 ≤ C(log n)d−1∥g∥1v−

1
2 ,

which is another instance of alternative (1).

As for the right-hand inequality in alternative (1), this is simply Cauchy-Schwarz: (
∫
|g| dP)

2 ≤∫
g2 dP · v.

Proof of Lemma 36. The first inequality is again Cauchy-Schwarz: for any subset A of S, we have

∫
A

g dP ≤
(∫

A
g2 dP

) 1
2
(∫

A
1 dP

) 1
2

≤ ∥g∥2 ·P(A)
1
2 .

As for the second statement, first note that since ∥g∥∞ ≤ 1 and we have

c log(n)−1/2∥g∥2 ≤ P(Ui0)
−1/2

∫
Ui0

g dP ≤ P(Ui0)
1
2 .

Let j = ⌈log P(Ui0)⌉ ≥ imin, ϵj = 2j, so that Ui0 ⊂ S(ϵj) and

P(Sϵj) ≤ CP(Ui0) log(P(Ui0)
−1)d−1 ≤ CP(Ui0)(log n)d−1.
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Recalling again that by (32), g ≥ −C∥g∥1P(S)−1, we have

∫
S(ϵj)

g dP− 2−1
∫

Ui0

g dP ≥ 2−1
∫

Ui0

g dP +
∫

S(ϵj)\Ui0

g dP

≥ P(Ui0)2
i0 −P(S(ϵj)) · C∥g∥1P(S)−1

≥ P(Ui0)
(

2i0 − Cd(log n)d−1∥g∥1P(S)−1
)

≥ c ·P(Ui0) · 2
i0 > 0,

where we used our assumption on i0 in the last line. Therefore, by the last two inequalities

P(S(ϵj))
− 1

2

∫
S(ϵj)

g dP ≥ c(log n)−(d−1)/2P(Ui0)
− 1

2

∫
Ui0

g dP ≥ c(log n)−d/2∥g∥2,

as claimed. Finally, note that by the assumptions of ∥g∥2
2 ≥

Cd(log n)2

n and ∥g∥∞ ≤ 1, we obtain

that

P(S(ϵj)) ≥ P(Ui0) ≥ (c log(n)−
1
2∥g∥2/

√
∥g∥∞)2 ≥ C1d

log n
n

.

4.3 Sketch of the Proof of Theorem 5

The modifications of Algorithm 1 to work in this setting are minimal: we simply need to replace L

by Γ, and replace (4.12) with

∀(i, j) ∈ [|S|]× [n] : |yi,j| ≤ Γ (4.33)

∀ 1 ≤ i ≤ |S| 1
n

n

∑
j=1

( f (Zi,j)− ŵ⊤i (Zi,j, 1))2 ≤ l̂2
i + Γ

√
Cd log(n)

n

∀(i, j) ∈ [|S|]× [n] | f (Zi,j)| ≤ Γ

∀(i1, j1), (i2, j2) ∈ [|S|]× [n] f (Zi2,j2) ≥ ∇ f (Zi1,j1)
⊤(Zi2,j2 − Zi1,j1).
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For the correctness proof, we need some additional modifications. First, we replace Lemma 24

with a similar bound in the Γ-bounded setting. The following lemma is based on the L4 entropy

bound of [GW17, Thm 1.1] and the peeling device [Gee00, Ch. 5]; it appears explicitly in [HW16]):

Lemma 37. Let d ≥ 5, m ≥ Cd and Q be a uniform measure on a convex polytope P′ ⊂ Bd and

Z1, . . . , Zm ∼ Q. Then, the following holds uniformly for all f , g ∈ FΓ(P′)

2−1
∫

P′
( f − g)2dQ− C(P′)Γ2m−

4
d ≤

∫
( f − g)2dQm ≤ 2

∫
P′
( f − g)2dQ + C(P′)Γ2m−

4
d ,

with probability at least 1− C1(P′) exp(−c1(P′)
√

m).

Note that differently from Lemma 24, the constant before m−4/d depends on the domain P′,

and this dependence cannot be removed.

Since FΓ(P′) has finite L2-entropy for every ϵ, it is in particular compact in L2(P′), which

means that the proof of Lemma 27 in sub-Section 4.2.3 works for this class of functions as well.

The proof of Theorem 17 also goes through for this case, by replacing Lemma 24 by Lemma 37.

The precise statement we obtain is the following:

Theorem 21. Let P ⊂ Bd be a convex polytope, f ∈ FΓ(P), and some integer k ≥ (Cd)d/2, for

some large enough C ≥ 0, there exists a convex set Pk ⊂ P and a k-simplicial convex function

fk : Pk → R such that

P(P \ Pk) ≤ C(P)k−
d+2

d log(k)d−1.

and ∫
Pk

( fk − f )2dP ≤ Γ2 · C(P)k−
4
d

The remaining lemmas and arguments in the proof of Theorem 4, can easily be seen to apply in

the setting of Γ-bounded regression under polytopal support P.
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4.4 Simplified version of our estimator

Like the estimator for our original problem, the simplified version of our estimator is based on the

existence of a simplicial approximation f̂k(n) : Ωk(n) → [0, 1] to the unknown convex function

f ∗ (Theorem 4). Here we demonstrate how to recover f ∗ to within the desired accuracy if we are

given the simplicial structure of fk(n), i.e., the set Ωk(n) and the decomposition
⋃k(n)

i=1 △i of Ωk(n)

into simplices such that fk(n)|△i is affine for each i. In this case the performance of our algorithm

is rather better: it runs in time Od(nO(1)) rather than Od(nO(d)), and is minimax optimal up to a

constant that depends on d. We can also slightly weaken the assumptions: it is no longer required

that the variance σ2 of the noise be given.

We will use the following classical estimator [Gyö+02, Thm 11.3]; it is quoted here with an

improved bound which is proven in [MVZ21, Theorem A]:

Lemma 38. Let m ≥ d + 1, d ≥ 1 and Q be a probability measure that is supported on some

Ω′ ⊂ Rd. Consider the regression model W = f ∗(Z)+ ξ, where f ∗ is L-Lipschitz and ∥ f ∗∥∞ ≤ L,

and Z1, . . . , Zm ∼
i.i.d.

Q. Then, the exists an estimator f̂R that has an input of {(Zi, Wi)}m
i=1 and

runtime of Od(n) and outputs a function such that

E

∫
( f̂R(x)− f ∗(x))2dQ(x) ≤ Cd(σ + L)2

m
+ inf

w∈Rd+1

∫
(w⊤(x, 1)− f ∗(x))2dQ(x).

Note that this estimator is distribution-free: it works irrespective of the structure of Q, nor does

it require that Q be known.

The first step of the simplified algorithm is estimating f ∗|△i
on each △i ⊂ Ωk(n) (1 ≤ i ≤

k(n)) with the estimator f̂R defined in Lemma 38 (with respect to the probability measure P(·|△i))

with the input of the data points in D that lie in△i. We obtain independent regressors f̂1, . . . , f̂k(n)

such that

E

∫
△i

( f̂i(x)− f ∗(x))2 dP

P(△i)
≤ inf

w∈Rd+1

∫
△i

(w⊤(x, 1)− f ∗(x))2 dP

P(△i)
+E min{ Cd

Pn(△i)n
, 1},

(4.34)

where the min{·, 1} part follows from the fact that when we have less than Cd points, we can
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always set f̂i to be the zero function.

Now, we define the function f ′(x) := ∑
k(n)
i=1 f̂i(x)1x∈△i , and by multiplying the last equation

by P(△i) for each 1 ≤ i ≤ k(n) and taking a sum over i, we obtain that

E

∫
Ωk(n)

( f ′ − f ∗)2dP ≤
k(n)

∑
i=1

inf
wi∈Rd+1

∫
△i

(w⊤i (x, 1)− f ∗)2dP + E

k(n)

∑
i=1

min{Cd ·P(△i)

n ·Pn(△i)
, P(△i)}

≤
∫

Ωk(n)

( fk(n) − f ∗)2dP + C1dk(n) · n−1 = Od(n
− 4

d+4 ),

(4.35)

where in the first equation, we used the the fact that n ·Pn(△i) ∼ Bin(n, P(△i)) (for complete-

ness, see Lemma 29), and in the last inequality we used Eq. (4.4). Next, recall that Theorem 17

implies that

P(Ω \Ωk(n)) ≤ C(d)k(n)−
d+2

d ≤ Od(n
− d+2

d+4 ).

Therefore, if we consider the (not necessarily convex) function f̃ = f ′1Ωk(n)
+ 1Ω\Ωk(n)

, we obtain

that

E

∫
Ω
( f ′ − f ∗)2dP = E

∫
Ω\Ωk(n)

( f ′ − f ∗)2dP + E

∫
Ωk(n)

( f ′ − f ∗)2dP ≤ Od(n
− d+2

d+4 + n−
4

d+4 )

≤ Od(n
− 4

d+4 ).

Thus, f̃ is a minimax optimal improper estimator. To obtain a proper estimator, we simply need

to replace f̃ by MP( f̃ ), where MP is the procedure defined in §4.5.

It remains only to point out that the runtime of this estimator is of order Od(nO(1)). Indeed, the

procedure MP is essentially a convex LSE on n points, which can be formulated as a quadratic

programming problem with O(n2) constraints, and hence can be computed in Od(nO(1)) time

[SS11]. In addition, the runtime of the other estimator we use, namely the estimator of Lemma 38,

is linear in the number of inputs.
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4.5 From an Improper to a Proper Estimator

The following procedure, which we named MP, is classical and we give its description and prove

its correctness here for completeness. However, note that we only give a proof for optimality in

expectation; high-probability bounds can be obtained using standard concentration inequalities.

The procedure MP is defined as follows: given an improper estimator f̃ , draw X′1, . . . , X′k(n) ∼i.i.d.

P, and apply the convex LSE with the input {(X′i , f̃ (X′i))}
k(n)
i=1 , yielding a function f̂1. We remark

that the convex LSE is only unique on the convex hull of the data-points X′1, . . . , X′k(n), and not on

the entire domain Ω [SS11], so we will show that any solution f̂1 of the convex LSE is optimal.

First off, we have

E

∫
Ω
( f̃ − f ∗)2dP′k(n) = E

∫
Ω
( f̃ − f ∗)2dP (4.36)

Also recall the classical observation that for f̂1 that is defined above, we know that ( f̂1(X′1), . . . , f̂1(X′k(n)))

is precisely the projection of ( f̃ (X′1), . . . , f̃ (X′k(n))) on the convex set

Fk(n) := {( f (X′1), . . . , f (X′k(n))) : f ∈ F1(Ω)} ⊂ Rk(n),

cf. [Cha14]. Now, the function ΠFk(n)
sending a point to its projection onto Fk(n), like any

projection to a convex set, is a 1-Lipschitz function, i.e.,

∥ΠFk(n)
(x)−ΠFk(n)

(y)∥ ≤ ∥x− y∥ ∀x, y ∈ Rk(n).

We also know that ( f̂1(X′i))
k(n)
i=1 = ΠFk(n)

( f̃ ) and ΠFk(n)
(( f ∗(X′i))

k(n)
i=1 ) = ( f ∗(X′i))

k(n)
i=1 ; substi-

tuting in the preceding equation, we therefore obtain

E

∫
Ω
( f̂1 − f ∗)2dP′k(n) ≤ E

∫
Ω
( f̃ − f ∗)2dP′k(n) = E

∫
Ω
( f̃ − f ∗)2dP,

since
∫
(·)2dP′k(n) is just ∥ · ∥2/k(n). In order to conclude the minimax optimality of f̂1, we know
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by Lemma 24 that for any function in

O :=
{

f ∈ F1 :
∫

Ω
( f − f̃ ′)2dP′k(n) = 0

}
,

it holds that

E

∫
( f − f ∗)2dP ≤ 2E

∫
( f̃ − f ∗)2dP′k(n) + Ck(n)−

4
d ≤ 2E

∫
( f̃ − f ∗)2dP + C1n−

4
d+4 ,

where we used Eq. (4.36) and the fact that k(n) = n
d

d+4 . Since we showed that f̂1 must lie in O,

the minimax optimality of this proper estimator follows.
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Chapter 5

On the Minimal Error of Empirical Risk

Minimization

Recall the definitions of the risk and minimax optimality from Chapter 1. These definitions measure

the “worst case scenario” of a given estimator, and may hide the true statistical performance of the

ERM in real-life applications (cf. [Bel17]). For example, as mentioned in the introduction, if f ∗ is

known to belong to a smaller classH ⊂ F , the relevant quantity is

RH( f̂n,F , Q) := sup
f ∗∈H

E

∫
( f̂n − f ∗)2dQ,

where Q ∈ {P(n), P} that may be significantly smaller than the minimax risk. We remark that the

LSE is still defined over F , due to computational or other considerations.

As an example, consider linear regression in Rd when the true coefficient vector is sparse, i.e.

supported on k ≪ d coordinates. Then, due to computational considerations, it is standard to

replace the original problem of minimizing square loss over sparse vectors in Rd by minimization

over a larger ℓ1 ball in Rd (the Lasso procedure).

The second example was already briefly mentioned in the introduction, and we expand on it here.

Let Fd be the family of convex 1-Lipschitz functions on X = [0, 1]d, and let P = Unif(X ). The

subsetHd (of ‘simple functions’) is the set of 1-Lipschitz k-affine piece-wise linear functions with
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k = Θ(1). It is well known that ERM overHd is NP-hard since the problem is highly non-convex;

moreover, even estimating the number of pieces is computationally hard (cf. the recent paper

[Gho+21] for more details). In contrast, ERM over Fd can be efficiently computed [Gho+21].

While the minimax rate for (Fd, Pd) is Θ(n−
4

d+4 ) [Dud99; Bro76], it was proved in another paper

of author [Kur+20], that the risk of LSE is Θd(n
−min{ 2

d , 4
d+4}), which is minimax-suboptimal when

d ≥ 5. Furthermore, it was shown in [HW16; Fen+18] that

RHd( f̂n,Fd, Pd) = Õd(n−min{4/d,1}), (5.1)

which is significantly smaller than both the risk of ERM and the minimax rate. When the ERM (or

MLE) satisfies such improved bounds, we say that it exhibits adaptation (cf. [Fen+18; KGS18;

Sam18; Han+19; Kur+20]).

Here, we answer the two following questions: Does there exist a uniform lower bound on the

minimal error of ERM, i.e.

inf
f ∗∈F

ED

∫
( f̂n − f ∗)2dQ,

where Q ∈ {P, P(n)}. Does the richness of the entire class F affect the minimal error, or is there a

more refined notion of complexity that governs its behavior?

5.1 Main Results

5.1.1 Fixed Design

Notation: For n points x := {x1, . . . , xn} in X and G ⊆ F , we remind the definition of Gaussian

complexity of G as

Wx(G) := Eξ sup
f∈G

1
n

n

∑
i=1

ξi f (xi).

Let P(n) := n−1 ∑n
i=1 δxi and for any f : X → R we denote by ∥ f ∥n the L2(P

(n)) norm of f .

Next, for any f ∈ F and r ≥ 0 we denote by Bn( f , r) := {g ∈ F : ∥g − f ∥n ≤ r}, i.e the

intersection of the L2(P
(n)) ball around f and the class F .
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We now state our sharp lower bound for the fixed design error, for simplicity of exposition under

the assumption of uniform boundedness of F (the general statement is given below in Lemma 39).

Corollary 5. Under Assumptions 1,2,3, the minimal error of f̂n satisfies

inf
f ∗∈F

Eξ

∫
( f̂n − f ∗)2dP(n) ≳Wx(F )2. (5.2)

When F is uniformly bounded (say, by 1), a classical result in non-parametric statistics [Gee00]

and our theorem imply that

Wx(F )2 ≲ inf
f ∗∈F

Eξ

∫
( f̂n − f ∗)2dP(n) ≤ sup

f ∗∈F
Eξ

∫
( f̂n − f ∗)2dP(n)

︸ ︷︷ ︸
=R( f̂n,F ,P(n))

≤ 2Wx(F ).

Moreover, both of these bounds are tight, in the sense that they can be attained on certain families of

functions, up to constants (cf. [BM98; Han+19; KDR19]). Therefore, we conclude that in the fixed

design case, both the minimax risk and the minimal error of the ERM depend on the entire Gaussian

complexity of F (when it is convex and uniformly bounded). In particular, for the case of convex

regression, Corollary 5 recovers the rate in (5.1) (up to logarithmic factors) for the fixed design case,

since with high probability the global complexityWx(F ) is of the order max{n−2/d, n−1/2}.

5.1.2 Random Design

We begin and remind some notation:

Notation: We denote by Pn to be the random empirical measure of X1, . . . , Xn ∼
i.i.d.

P. Next, we

denote the averaged Gaussian complexity over X1, . . . , Xn in

W(G) := EWx(G).

With some ambiguity in the notation, for every f : X → R we denote by ∥ f ∥n the L2(Pn) norm

of f . Next, for any f ∈ F and r ≥ 0 we denote by Bn( f , r) := {g ∈ F : ∥g− f ∥n ≤ r}, i.e the
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intersection of the L2(Pn) ball around f and the class F . Next, for every f : X → R we denote

by ∥ f ∥ the L2(P) norm of f . Next, for any f ∈ F and r ≥ 0 we denote by B( f , r) := {g ∈ F :

∥g− f ∥ ≤ r}, i.e the intersection of the L2(P) ball around f and the class F .

We now can turn to the random design setting, which is significantly more subtle. Before stating

the result, we describe a direct proof strategy that fails. This approach would attempt to pass from

the fixed design lower bound to the random design lower bound by relating the population and

empirical norms ∥ · ∥ and ∥ · ∥n, uniformly over the class. A statement of this type (which may be

called “upper isometry,” in contrast with “lower isometry” studied, for instance, in [Men14]) could

be derived under additional assumptions on the geometry of (F , P), such as a small-ball condition

[Men14], Kolchinskii-Pollard entropy [RST17], or an ϵ-covering with respect to the sup-norm

[Gee00]. To the best of our knowledge, such upper-isometry statements can at best read

∥ f − g∥2 ≥ 1
2
∥ f − g∥2

n − C · W(F )2 ∀ f , g ∈ F ,

where C ≥ 1. SinceW(F )2 is larger than the lower bound on the fixed design error, this technique

does not appear to work.

Moreover, a uniform lower bound of orderW(F )2 in random design cannot be true in general.

For instance, it was shown in a string of recent works [LRZ20; BRT19; Bar+20] that it is possible

to completely interpolate Y1, . . . , Yn (i.e. achieve zero empirical error) and still have a small

generalization error (of order n−c, for some c ∈ (0, 1)), and even be minimax optimal (with an

appropriate function Ψ in the definition of LSE (see (1.2) above). In these examples, because of the

ability to interpolate any data, we know thatW(Bn( f ∗, 1)) = Θ(1); therefore, the lower bound in

the fixed design case cannot be always true in random design.

The last paragraph motivates the need to consider additional properties of the model F and

the underlying distribution P. With the interpolation examples in mind, we might hope that the

relation between the global complexity of the class and complexity of local neighborhoods around

the regression function f ∗ may play a role in determining rates of convergence of ERM. To this end,
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for every n and f ∗ ∈ F , we define the following notion of complexity:

tn,P( f ∗,F ) := max{t ∈ R+ :W(B( f ∗, t)) ≤ lξW(Bn( f ∗, 1))}, (5.3)

where lξ ∈ (0, 1) is a small absolute constant that will be chosen in the proofs. We remark that

under the additional assumption of F being uniformly bounded by 1, we have that W(F ) ≥

W(Bn( f ∗, 1)) ≥ 1
2W(Bn( f ∗, 2)) = 1

2W(F ), and up to a different lξ , we may replace the term

on the right-hand side of (5.3) with global Gaussian averagesW(F ).

The quantity tn,P( f ∗,F ) is the maximal radius of the population ball around f ∗ that has

Gaussian complexity comparable to that of the entire class (in the uniformly bounded case), up

to some absolute constant, or to a ball of constant radius within the class. As we show next, this

local richness is necessary in order to avoid the rate being dominated by the global complexity

of F . In the aforementioned interpolation examples we have both tn,P( f ∗,F ) = O(n−c) and

W(Bn( f ∗, 1)) = Θ(1). The last two relations must be true for any f ∗ ∈ F for which ERM attains

perfect fit to data, and yet a small generalization error of order n−c.

We now state the main result of this paper for the random design setting, under the additional

assumption of F being uniformly bounded. Remarkably, tn,P( f ∗,F ) is the only additional quantity

that we need to consider for a general uniform lower bound on a general family F . Specifically, we

prove the following:

Theorem 22. Let F be a convex class of functions1 uniformly bounded by one. Then, for large

enough n, the following holds for any f ∗ ∈ F

ED

∫
( f̂n − f ∗)2dP ≳ ·min{W(F )2, tn,P( f ∗,F )2},

where c ∈ (0, 1).

Using the last theorem and the classical basic inequality (cf . [Gee00, Chp. 5]), we derive the

1We assume that F is non-degenerate and contains at least two functions such that ∥ f1 − f2∥ ≥ 1/2.
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analogue bound to 5.2, in the case of a uniformly bounded by one convex F :

∀ f ∗ ∈ F min{W(F )2, tn,P( f ∗,F )2} ≲ ED

∫
( f̂n − f ∗)2dP ≤ 8 · W(F ) (5.4)

and as in the fixed design class, there exist functions classes that attain both of these bounds.

Remark 24. Notably, Theorem 22 holds under only convexity and uniform boundedness assumptions

on the class F . Furthermore, one can easily design a convex uniformly bounded family and an

f ∗ ∈ F such that the ERM attains an error of order tn,P( f ∗,F )2 ≪W(F )2 for all n that are large

enough (for completeness see Section 5.5.1). Therefore, under no additional assumption on F , the

above lower bound is sharp up to absolute constants.

An almost immediate corollary of this theorem is the following key insight on the behavior of

the ERM procedure in the random design setting:

Corollary 6. Let F be convex and uniformly bounded by 1. For any f ∗ ∈ F such that

ED

∫
( f̂n − f ∗)2dP︸ ︷︷ ︸
:=E2( f ∗)

≪W(F )2,

there must exists some constant t( f ∗) ≤ c1 · E( f ∗) such that

W(B( f ∗, t( f ∗))) = Θ(W(F )),

where c1 ∈ (0, 1) is some absolute constant.

Informally speaking, if ERM learns some f ∗ ∈ F at a rate faster thanW(F )2, then the local

complexity of a population ball centered at f ∗ with a very small radius must be as rich as the

entire complexity of F . A more prescriptive recipe for guaranteeing such fast rates is an interesting

direction of further work.
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5.1.3 Donsker and non-Donsker Classes

Our next result shows that without further assumptions we cannot learn any function in a convex

uniformly bounded P-Donsker class faster than a parametric rate.

Corollary 7. Let F be a P-Donsker class (see Definition 4 above). Then,

n−1 ≲ inf
f ∗∈F

E

∫
( f̂n − f ∗)2dPn ≍ inf

f ∗∈F
E

∫
( f̂n − f ∗)2dP

This lower bound is sharp, namely there are classical P-Donsker classes, such as the convex

regression example mentioned in the introduction and Section 5.1, where ERM can attain a paramet-

ric rate (up to logarithmic factors) when optimizing over all convex Lipschitz functions, but only for

d ≤ 4 which puts us in the Donsker regime.

For non-Donsker classes, i.e when α > 2, the ERM procedure may not be optimal. One can

show that

n−
2

2+α ≲ R( f̂n,F , P) ≲ n−
1
α

and both of these bounds can be tight, up to logarithmic factors. Furthermore, one can show that

n−
2

2+α ≲W(F ) ≲ n−
1
α

and, again, both of these can be tight. Our next corollary shows that in this regime, the fixed-design

error is at least of the order W(F )2, i.e. it is impossible to learn at a parametric rate in the

non-Donsker regime (in terms of the L2(Pn)).

Corollary 8. Let F be a convex uniformly bounded non-P-Donsker class, and let X1, . . . , Xn ∼ P.

Then the following holds:

n−
4

2+α ≲W(F )2 ≲ inf
f ∗∈F

E

∫
( f̂n − f ∗)2dPn

The proof of these two corollaries appears in the appendix.

Remark 25. Due to the geometry of general non-Donsker classes, in random design case the same
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lower bound may not hold. However, in all the examples in the literature [HW16; Fen+18; KGS18;

Han+19; Kur+20] that study the adaptivity of ERM in non-Donsker families (such as convex

functions when d ≥ 5, isotonic functions when d ≥ 3), the term of tn,P( f ∗,F ) of Theorem 22

is significantly larger thanW(F ). As a consequence, one may use Theorem 22 to show that the

bound in (5.1) is tight up to logarithmic factors.

5.1.4 General Lower Bound for Fixed Design

In this section, we state the general lower bound for fixed design. In comparison to its consequence,

Corollary 5, the version below captures complexity of local neighborhoods around regression

functions that are close to f ∗. Note that this lemma holds for any convex family (and not necessarily

bounded).

Lemma 39. Let F be a convex family of functions and and let x1, . . . , xn ∈ X be some n points,

and let P(n) := n−1 ∑n
i=1 δxi . For all f ∗ ∈ F define

r( f ∗) := argmaxr≥0Wx(Bn( f ∗, r))− r2

2
(5.5)

and

Lx( f ∗) := max
g∈Bn( f ∗,1),t≥0

Wx(Bn(g, t))−Wx(Bn( f ∗, r( f ∗))− Cn−1

∥g− f ∗∥n + t

where C ∈ (1, ∞) is some absolute constant. Then the following lower bound holds:

Eξ

∫
( f̂n − f ∗)2dP(n) ≥ max{ (Wx(Bn( f ∗, 1))− Cn−1)2

4
, Lx( f ∗)2}.

Note that Corollary 5 follows almost immediately from the last lemma. To see this, the convexity

of F , and the uniform bounded by 1 assumption imply that

Ŵ(F ) =Wx(Bn( f ∗, 2)) ≤ 2Wx(Bn( f ∗, 1)).
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Remark 26. The second term in our lower bound may be significantly larger thanWx(F )2. For

example, the second term may be equal toWx(F ) in several non-Donsker families that appear in

[BM93; Kur+20; Bir06]. We also remark that constant 1
4 is tight (up to on(1)).

The rest of this paper is devoted to proofs. While the fixed design lower bound follows a rather

simple argument, the corresponding lower bound in the random design case is more subtle. In

particular, we employ a particular version of Talagrand’s inequality that, in our particular regime,

provides control on certain empirical processes, while the more commonly used versions (including

Bousquet’s inequality) result in vacuous estimates.

5.2 Proof of Lemma 39

Notation Throughout this section, c, c1, c2 ∈ (0, 1) and C, C1, C2 ∈ (1, ∞) are some absolute

constants that may change from to line to line. Also S1, s1, S2, s2 are absolute constants, but we use

this notation to emphasize that we have some freedom to control their size. We also use the notation

C(c1, C2) to mean that the constant depends on c1, C2.

To recap, we assume that F is a convex family of functions, Yi = f ∗(xi) + ξi, where ξi ∼

N(0, 1) i.i.d., x1, . . . , xn ∈ X , and f ∗ ∈ F . We write ⟨ f , g⟩n =
∫

f gdP(n). With slight abuse of

notation, we write ⟨ξ, f ⟩n = 1
n ∑n

i=1 ξi f (xi) for ξ := (ξ1, . . . , ξn).

Recall the definition of r( f ∗) in (5.5). The following lemma that was proven in [Cha14]:

Lemma 40. [[Cha14, Thm 1.1]] The following holds under the above assumptions:

Pr
(
|∥ f̂n − f ∗∥n − r( f ∗)| ≥ t

)
≤

3 exp(−nt2

64 ) t ≥ r( f ∗)

3 exp(− nt4

64r( f ∗)2 ) 0 ≤ t ≤ r( f ∗)
(5.6)

Moreover, for each t ≥ 0 the following holds

Pr
(
|⟨ f̂n − f ∗, ξ⟩n −Wx(Bn( f ∗, r( f ∗)))| ≥ t · r( f ∗)

)
≤

3 exp(−nt2

64 ) t ≥ r( f ∗)

3 exp(− nt4

64r( f ∗)2 ) 0 ≤ t ≤ r( f ∗)
(5.7)
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Also, we state a simple corollary that follows from this lemma (cf. [BLM13],[Cha14, Thm 1.2])

Corollary 2. The following two bounds hold

E

∣∣∣⟨ f̂n − f ∗, ξ⟩n −Wx(Bn( f ∗, r( f ∗)))
∣∣∣ ≤ C1 max{r( f ∗)3/2n−1/4, n−1}.

and

E

∣∣∣∥ f̂n − f ∗∥2
n − r( f ∗)2

∣∣∣ ≤ C2 max{r( f ∗)3/2n−1/4, n−1}.

Proof of Lemma 39.

For brevity, denote r̂ := r( f ∗), where r( f ∗) is defined in Lemma 40. Define

gξ := argmaxh∈Bn(g,t)⟨h− g, ξ⟩n.

Optimality of f̂n and convexity of F imply that ⟨∇ f ∥ f − y∥2
n| f= f̂n

, g− f̂n⟩n ≥ 0 for any g ∈ F .

In particular, for g = gξ this implies

0 ≥ E⟨ξ + f ∗ − f̂n, gξ − f̂n⟩n,

where the expectation is over ξ, conditionally on x1, . . . , xn. For any g ∈ F , we may write the

right-hand side as

E⟨ξ + f ∗ − f̂n, gξ − g + g− f ∗ + f ∗ − f̂n⟩n

=Wx(Bn(g, t))−E
[
⟨ξ, f̂n − f ∗⟩n + ⟨ f̂n − f ∗, gξ − g⟩n + ⟨ f̂n − f ∗, g− f ∗⟩n

]
+ E∥ f̂n − f ∗∥2

n

where we used the definition of gξ and the fact that E⟨ξ, g− f ∗⟩n = 0. Using Corollary 2, we
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obtain a further lower bound of

Wx(Bn(g, t))−Wx(Bn( f ∗, r̂))−E
[
⟨ f̂n − f ∗, gξ − g⟩n + ⟨ f̂n − f ∗, g− f ∗⟩n

]
+ r̂2 − Cr̂3/2n−1/4 − Cn−1

≥ Wx(Bn(g, t))−Wx(Bn( f ∗, r̂))−E
[
⟨ f̂n − f ∗, gξ − g⟩n + ⟨ f̂n − f ∗, g− f ∗⟩n

]
(5.8)

+ r̂2/2− C1n−1.

To verify the last inequality, observe that r̂2/2 ≥ C1r̂3/2n−1/4 when r̂ ≥ C2n−1/2 for C2 that is

large enough; on the other hand, if r̂ ≤ C2n−1/2, the Cn−1 term is dominant for C large enough.

Since ⟨ f̂n − f ∗, g− f ∗⟩n ≤ ∥ f̂n − f ∗∥n∥g− f ∗∥n and ⟨ f̂n − f ∗, gξ − g⟩n ≤ t · ∥ f̂n − f ∗∥n, we

conclude that

0 ≥ Wx(Bn(g, t))−Wx(Bn( f ∗, r̂))−E[∥ f̂n − f ∗∥n](∥g− f ∗∥n + t)− Cn−1. (5.9)

By re-arranging the terms and using Jensen’s inequality, we have

E∥ f̂n − f ∗∥2
n ≥

(
E∥ f̂n − f ∗∥n

)2
≥
(
Wx(Bn(g, t))−Wx(Bn( f ∗, r̂))− Cn−1

t + ∥ f ∗ − g∥n

)2

+

where (a)2
+ = max{a, 0}2. Since Lx( f ∗) in the statement of the Lemma is non-negative, the lower

bound of Lx( f ∗)2 follows.

Now, for the first part of the lower bound, we have to consider two cases. The first one is when

Wx(Bn( f ∗, r̂)) ≥ 2−1Wx(Bn( f ∗, 1)) + r̂2/2, and we have

E∥ f̂n − f ∗∥n ≥ E∥ξ∥n ·E∥ f̂n − f ∗∥n ≥ E⟨ξ, f̂n − f ∗⟩n

≥ 2−1Wx(Bn( f ∗, 1)) + r̂2/2− Cr̂3/2n−1/4 ≥ 2−1Wx(Bn( f ∗, 1))− C1n−1,

where we used Cauchy-Schwartz inequality and Corollary 2. In the other case, we use (5.9) with
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g = f ∗ and t = 1:

E∥ f̂n − f ∗∥n ≥ Wx(Bn( f ∗, 1))−Wx(Bn( f ∗, r̂))− Cn−1 ≥ 2−1Wx(Bn( f ∗, 1))− Cn−1,

concluding the proof.

5.3 Proof of Theorem 22

Throughout the proof of Theorem 22, Pn denotes the random empirical measure of X1, . . . , Xn.

Denote by r̂ := argmaxWx(Bn( f ∗, r))− r2

2 , with the hat emphasizing the dependence on xn =

(X1, . . . , Xn). We adopt the notation ∥ · ∥n, ⟨·, ·⟩n, Bn in the previous section for the norm and

the inner product with respect to Pn, and the L2(Pn) ball. Recall that we assumed that F is not

degenerate: W(F ) ≥ c/
√

n, for some c ∈ (0, 1).2

Proof of Theorem 22. Denote

t∗ := min{tn,P( f ∗,F ), s1

√
W(F ), s2W(F )} (5.10)

where s1, s2 ∈ (0, 1) are small enough absolute constants that will be defined in the proof, and

tn,P( f ∗,F ) is defined in (5.3).

Denote byM the maximal separated set with respect to L2(P) at scale 6
√
W(F ), and let

M =M(6
√
W(F ),F , P) (5.11)

denote its size.

For a constant K1 ∈ (1, ∞), let E1 denote the high-probability event that is defined by the

2See the proof of Lemma 43 for further details
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intersection of the events of Lemma 44 and Lemma 42:

E1 :=
{

xn : sup
f ,g∈F

∣∣∣∥ f − g∥2
n − ∥ f − g∥2

∣∣∣ ≤ 10W(F ),

sup
h∈B( f ∗,t∗),g∈M

|⟨(g− f ∗), (h− f ∗)⟩n −E[(g− f ∗)(h− f ∗)]| ≤ (8K1)
−1W(F )

}
.

(5.12)

Further, define the events

E2 =
{

xn : K−1
1 W(F ) ≤ Wx(F ) ≤ K1W(F ) + Cn−1/2

}
,

E3 =
{

xn :Wx(B( f ∗, t∗)) ≤ K1W(B( f ∗, t∗)) + C1W(F )1/2n−1/2
}

,

E = E1 ∩ E2 ∩ E3.

(5.13)

Lemma 43, proved in the appendix, shows that the event E holds with probability of at least 0.9. Note

that under the event E1,M is also a 2
√
W(F ) separated set with respect to the random empirical

measure Pn. Hence, we may apply Sudakov’s minoration (Lemma 45) with ϵ = 2
√
W(F ) and

empirical measure Pn defined on any xn ∈ E :

c1

√
4W(F ) · log M

n
≤ Wx(F ) ≤ K1W(F ) + Cn−1/2 ≤ C1K1W(F ), (5.14)

where in the last inequality we used the assumption thatW(F ) ≥ c · n−1/2, and C1 ≥ 0 is defined

to be large enough to satisfy the last inequality. Hence, the last equation implies that

M ≤ exp(C2K2
1nW(F )). (5.15)

First, recall the definition of tn,P( f ∗,F ) where in Lemma 42 (that appears in the supplementary)

we set lξ = (256K1)
−3. Recall (5.10), where in Lemma 42 we set s1 = c(K, K1, C2), and the

three constants K, K1, C2 follow from Sudakov’s minoration lemma, Talagrand’s inequality, and

Adamzcak’s bound. We define s2 := 16−1(K1)
−1.
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Define the event

A =
{
(ξ, xn) : f̂n ∈ B( f ∗, t∗)

}
(5.16)

and, for any xn, define the conditional event

A(xn) =
{

ξ : f̂n ∈ B( f ∗, t∗)
}

. (5.17)

Assume by the way of contradiction that Prx,ξ(A) > 0.5. Then, using the average principle (Fubini)

and the fact Pr(E) ≥ 0.9, we can find an event E4 ⊆ E that has a probability of at least 0.4 (when

n is large enough) such that

∀xn ∈ E4 Prξ(A(xn)) ≥ 0.5.

Our first step is to prove that, for all xn ∈ E4,

K1W(B( f ∗, t∗)) + lξW(F ) ≥ Wx(Bn( f ∗, r̂)). (5.18)

First, recall that t∗ ≤ s1
√
W(F ) and therefore under the event E1, we have

sup
h∈B( f ∗,t∗)

∥h− f ∗∥2
n ≤ 11 · W(F ). (5.19)

Now, for each xn ∈ E4 ⊆ E , the map ξ 7→ suph∈B( f ∗,t∗)⟨ξ, h− f ∗⟩n is Lipschitz with constant at

most

sup
h∈B( f ∗,t∗)

n−1/2∥h− f ∗∥n ≤ C3

√
W(F )n−1

by (5.19), and thus by Lipschitz concentration (Lemma 48), conditionally on xn,

Prξ

(
| sup

h∈B( f ∗,t∗)
⟨ξ, h− f ∗⟩n −Wx(B( f ∗, t∗))| ≥ ϵ

)
≤ 2 exp(−CnW(F )−1ϵ2)

for some absolute constant C. By setting ϵ = C5(n−1W(F ))1/2 in the last equation, we may
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define the event

A1(xn) =

{
ξ : | sup

h∈B( f ∗,t∗)
⟨ξ, h− f ∗⟩n −Wx(B( f ∗, t∗))| ≤ C5

√
W(F )n−1

}
∩A(xn).

that holds with probability of at least 0.25 (over ξ) for any xn ∈ E4 .

Before defining the next event, observe that

r̂ = argmaxr≥0Wx(Bn( f ∗, r))− r2/2 ≤ 2
√
Wx(F ),

according to Lemma 40 and the fact that for rn := 2
√
Wx(F ) we haveWx(Bn( f ∗, rn))− r2

n/2 ≤

0. As we already argued in (5.14), for any xn ∈ E2 we have thatWx(F ) ≤ C1K1W(F ) for some

absolute constant C1, and thus

∀xn ∈ E2, r̂ ≤ C
√

K1W(F ). (5.20)

Now, from (5.7) in Lemma 40, for C8 large enough, the event

{
ξ : |⟨ξ, f̂n − f ∗⟩n −Wx(Bn( f ∗, r̂))| ≤ C8(n−1/4r̂3/2 + n−1)

}
holds with probability of at least 0.5, and thus, in view of (5.20), for all xn ∈ E4, the event

A2(xn) =
{

ξ : |⟨ξ, f̂n − f ∗⟩n −Wx(Bn( f ∗, r̂))| ≤ C6K1W(F )3/4n−1/4
}
∩A1(xn)

that holds with probability of at least 0.1 over ξ.

We are now ready to prove (5.18), using the fact that A2(xn) is not empty for each xn ∈ E4. To

this end, fix xn ∈ E4 and ξ ∈ A2(xn). First, by definition of E3, we have

K1W(B( f ∗, t∗)) ≥ Wx(B( f ∗, t∗))− C
√
W(F )n−1
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which can be further lower bounded, by definition of A1(xn), by

sup
h∈B( f ∗,t∗)

⟨ξ, h− f ∗⟩n − C
√
W(F )n−1.

Since ξ ∈ A2(xn) ⊆ A(xn), the above expression is further lower bounded by

⟨ξ, f̂n − f ∗⟩n − C
√
W(F )n−1

which, under the assumption of ξ ∈ A2(xn), is lower bounded by

Wx(Bn( f ∗, r̂))− C2

√
W(F )n−1 − C6K1W(F )3/4n−1/4.

When n is large enough, the above estimate is lower bounded by

Wx(Bn( f ∗, r̂))− lξW(F ).

To see this, observe that under the assumption of W(F ) ≥ c/
√

n, both
√
W(F )n−1 =

on(W(F )) andW(F )3/4n−1/4 = on(W(F )). Therefore, we proved (5.18) holds, namely that

K1W(B( f ∗, t∗)) + lξW(F ) ≥ Wx(Bn( f ∗, r̂))

for all xn ∈ E4. Using the definition of lξ = (256K1)
−3, we have

W(B( f ∗, t∗)) ≤ lξW(F ) ≤ 128−3K−3
1 W(F ),

and thus for any xn ∈ E4,

8−1K−1
1 W(F ) ≥ Wx(Bn( f ∗, r̂)). (5.21)
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By Lemma 41 and (5.21), for any xn ∈ E4,

0 ≥(2−1K−1
1 − 8−1K−1

1 )W(F )−Eξ max
g∈M
⟨g− f ∗, f̂n − f ∗⟩n − 16

√
W(F )r̂,

and since xn ∈ E4 ⊆ E1, we also have

0 ≥(2−1K−1
1 − 8−1K−1

1 − 8−1K−1
1 )W(F )− sup

h∈B( f ∗,t∗),g∈M

∫
(g− f ∗)(h− f ∗)dP− 16

√
W(F )r̂

≥ (4K1)
−1W(F )−max

g∈M
∥g− f ∗∥t∗ − 16

√
W(F )r̂

≥ (4K1)
−1W(F )− 2t∗ − 16

√
W(F )r̂ (5.22)

where we used the Cauchy-Schwartz inequality, the fact that F ⊂ [−1, 1]X , and the definition of

lξ = (256K1)
−3.

If 16
√
W(F )r̂ < (8K1)

−1W(F ), then the last equation implies that

s2W(F ) = (16K1)
−1W(F ) < t∗.

However, this inequality contradicts the definition of t∗, and thus cannot hold for any xn ∈

E4. In the other case, we assume that 16
√
W(F )r̂ ≥ (8K1)

−1W(F ), or equivalently, r̂ ≥

(128K1)
−1
√
W(F ). Now, from Lemma 40 one can see that the maximizing value r̂ ensures

Wx(Bn( f ∗, r̂))− 2−1r̂2 > 0

and hence

Wx(Bn( f ∗, r̂)) > 2−1(128K1)
−2W(F ).

Therefore, under the event E4 and by (5.18)

2K1lξW(F ) ≥ K1W(B( f ∗, t∗)) + lξW(F ) ≥ Wx(Bn( f ∗, r̂)) > 2−1(128K1)
−2W(F ).

Once again, we have a contradiction for any xn ∈ E4, since we assumed that lξ = (256K1)
−3.
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Therefore, we showed that (5.22), cannot hold under the event E4, i.e. the set E4 is empty. This

contradicts our earlier conclusion that Pr(E4) ≥ 0.4, which was made under the assumption that

event A has probability at least 0.5. Hence, we conclude that Pr(A) ≤ 0.5, or, equivalently, with

probability at least 0.5, f̂n /∈ B( f ∗, t∗). Therefore, we must have that

E

∫
( f̂n − f ∗)2dP ≥ t2

∗
2

=
1
2

min{tn,P( f ∗,F )2, s2
1W(F ), s2

2W(F )2}

≥ c1 ·min{tn,P( f ∗,F )2,W(F )2}.

where in the last inequality, we used the fact that

W(F ) ≤ W([−1, 1]X ) ≤ E|ξ| ≤
√

Eξ2 = 1.

The theorem follows.

5.4 Lemmas

Lemma 41. Under the event E in (5.13), and for n that is large enough, the following holds:

0 ≥2−1K−1
1 W(F )−Wx(Bn( f ∗, r̂))−Eξ max

g∈M
⟨g− f ∗, f̂n − f ∗⟩n − 16

√
W(F )r̂, (5.23)

where K1 is defined in (5.13), and setM is defined in (5.11).

Lemma 42. Let X1, . . . , Xn ∼
i.i.d

P, then the following holds with probability of at least 1 −

K exp(−nW(F ))

sup
g∈M,h∈B( f ∗,t∗)

|⟨h− f ∗, g− f ∗⟩n −
∫
X
(h− f ∗)(g− f ∗)dP| ≤ (8K1)

−1W(F ).

whereM is defined in (5.11), t∗ is defined in (5.10), and K1, K are defined in (5.13), Lemma 46.

Lemma 43. The event E defined in (5.13) holds with probability of at least 0.9.
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5.4.1 Auxiliary Lemmas

Lemma 44. [[Kol11, pgs. 25-26]] Let F ⊆ [−1, 1]X be family of functions. Then with probability

of at least 1− 2 exp(−c1nW(F )),

∀ f , g ∈ F
∣∣∣∥ f − g∥2

n − ∥ f − g∥2
∣∣∣ ≤ 10W(F ),

and

∥ f̂n − f ∗∥2
n ≤ 10W(F ).

Lemma 45 (Sudakov’s minoration lemma). Let H ⊂ [−1, 1]X . There exists a constant c1 such

that for any Pn,

c1 sup
ϵ≥0

ϵ

√
logM(ϵ,H, Pn)

n
≤ Wx(H).

whereM(ϵ,H, Pn) denotes the size of the largest ϵ-separated set inH with respect to L2(Pn).

The next two lemmas appear in [Kol11, pgs. 24-25], [Ada08].

Lemma 46 (Talagrand’s inequality). Let X1, . . . , Xn ∼
i.i.d.

P, and H ⊆ [−U, U]X be a family of

functions. Let Z = sup f∈H |n−1 ∑n
i=1 f (Xi) − E[ f ]|. Then there exists an absolute constant

K ≥ 0 such that for any s ≥ 0

Pr (|Z−EZ| ≥ s) ≤ K exp
(
−K−1U−1 log(1 +

sU
V2 )ns

)
,

where V2 = sup f∈H
∫

f 2dP.

Lemma 47 (Adamczak’s inequality). Let G be a centred family of functions supported on D, and

Q be some distribution on D. Let Z = supg∈G |n−1 ∑n
i=1 g(Xi)|. Assume that there exists an

envelope function G such that |g(x)| ≤ G(x) for all g ∈ G, x ∈ D. Then, the following holds for

all t ≥ 0

K−1
2 EZ−V

√
t
n
−
∥max1≤i≤n f ′(Xi)∥ψ1t

n
≤ Z ≤ K2EZ + V

√
t
n
+
∥max1≤i≤n f (Xi)∥ψ1t

n
,

175



where V2 := supg∈G
∫

g2dQ, and K2 ∈ (1, ∞) is some universal constant, and ψ1 is the Orlicz

norm.

Lemma 48 (Lipschitz Concentration). Let ξ1, . . . , ξn ∼
i.i.d

N(0, 1), and f : Rn → R be a L-

Lipschitz function with respect to ∥ · ∥2. Then, for all ϵ > 0,

Pr(| f −E[ f ]| ≥ ϵ) ≤ exp(−cϵ2L−2).

5.5 Proofs

Proof of Lemma 41.

We invoke the lower bound of (5.8) with g = f ∗ and t = 2, implying

0 ≥ Wx(Bn( f ∗, 2))−Wx(Bn( f ∗, r̂))−E⟨ f̂n − f ∗, gξ − f ∗⟩n − Cn−1

=Wx(F )−Wx(Bn( f ∗, r̂))−E⟨ f̂n − f ∗, gξ −Π(gξ) + Π(gξ)− f ∗⟩n − Cn−1, (5.24)

where Π(gξ) := argming∈M ∥gξ − g∥n, and the equality follows for the fact that for F ⊆

[−1, 1]X we have Bn( f ∗, 2) = F .

Now, recall thatM is a maximal 6
√
W(F )-separated set with respect to L2(P), and therefore

also a 12
√
W(F )-net with respect to L2(P). Therefore, under the event E it is also a 16

√
W(F )-

net with respect to L2(Pn), and, in particular, ∥Π(gξ) − gξ∥n ≤ 16
√
W(F ). Hence, we can

rewrite (5.24) as

Eξ max
g∈M
⟨ f̂n − f ∗, g− f ∗⟩n

≥ Wx(F )−Wx(Bn( f ∗, r̂))−Eξ⟨ f̂n − f ∗, gξ −Π(gξ)⟩n − Cn−1

≥ K−1
1 W(F )−Wx(Bn( f ∗, r̂))− 16

√
W(F )Eξ∥ f − f̂n∥n − Cn−1

Now, we proceed by using the first part of Corollary 2 and the assumption of lying in E . The last
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expression is lower-bounded by

K−1
1 W(F )−Wx(Bn( f ∗, r̂))− 16

√
W(F )(r̂ + Cr̂1/2n−1/4). (5.25)

According to (5.20), under the event E , we have

r̂ ≤ C3

√
K1W(F )

for some constant C3. Thus the expression in (5.25) is further lower-bounded by

K−1
1 W(F )−Wx(Bn( f ∗, r̂))− 16

√
W(F )r̂− C4

√
K1W(F )3/4n−1/4 − Cn−1

≥ (2K1)
−1W(F )−Wx(Bn( f ∗, r̂))− 16

√
W(F )r̂

where the last inequality holds when n is large enough. To see this, recall thatW(F ) ≥ c/
√

n

and under this assumption both n−1 = on(W(F )) and W(F )3/4n−1/4 = on(W(F )) hold.

Therefore, the lemma follows.

Proof of Lemma 42. First, denote by ∥Pn − P∥H := suph∈H |n−1 ∑n
i=1 h(Xi)− E[h]|, and

for each gi ∈ M, define Gi = {(h− f ∗)(gi − f ∗) : h ∈ B( f ∗, t∗)}. By Talagrand’s inequality

(Lemma 46), the following holds for and u ≥ 0

Pr
(
|∥Pn −P∥Gi −E∥Pn −P∥Gi | ≥ u

)
≤ K exp

(
−nK−1 log(1 +

4−1us−2
1

W(F ) )u

)

where we used the fact that V2 ≤ suph∈F ∥g − f ∗∥2
∞t2
∗ ≤ 4s2

1W(F ). Now, we set u =

(16K1)
−1W(F ) in the last equation

Pr
(
|∥Pn −P∥Gi −E∥Pn −P∥Gi | ≥ (16K1)

−1W(F )
)

≤ K exp
(
−n(16K · K1)

−1W(F ) log(1 + 4−1(16K1)
−1s−2

1 )
)

.
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Next, we aim to take a union bound over M, and recall that log M ≤ C2K2
1nW(F ) ≤

C(K1)nW(F ), for some absolute constant that does not depend on s1. Therefore, we may choose

s1 := c(K, K1, C2) (5.26)

where c(K, K1, C2) is a constant that satisfies the following:

Pr
(
|∥Pn −P∥Gi −E∥Pn −P∥Gi | ≥ (16K1)

−1W(F )
)
≤ K exp(−2C2K1nW(F )).

Therefore, we have

Pr
(
∃1 ≤ i ≤ M : |∥Pn −P∥Gi −E∥Pn −P∥Gi | ≥ (16K1)

−1W(F )
)
≤ MK exp(−2C2K1nW(F )))

≤ K exp(−C2K1nW(F ))

≤ K exp(−nW(F )).

We conclude that with probability of at least 1− K exp(−nW(F )) the following holds for G :=

{(h− f ∗)(g− f ∗) : g ∈ M, h ∈ B( f ∗, t∗)}:

∥Pn −P∥G ≤ max
1≤i≤M

E∥Pn −P∥Gi + (16K1)
−1W(F ). (5.27)

The lemma will follow as soon as we show that

max
1≤i≤M

E∥Pn −P∥Gi ≤ (16K1)
−1W(F ).

In order to prove the last inequality, we first apply the symmetrization lemma (cf. [Kol11, p. 20])

and majorize the resulting Rademacher averages by a constant multiple of the Gaussian averages

E∥Pn −P∥Gi ≤ 8W(Gi) (5.28)

where we used the fact that 0 ∈ Gi.
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Next, since ∥gi − f ∗∥∞ ≤ 2, a standard argument (e.g. [GN16, Theorem 3.1.17]) gives

Eξ sup
h∈B( f ∗,t∗)

n−1
n

∑
k=1

(h− f ∗)(gi − f ∗)(Xk)ξk ≤ 2Eξ sup
h∈B( f ∗,t∗)

n−1
n

∑
k=1

(h− f ∗)(Xi)ξk.

Then, by taking expectation over X1, . . . , Xn over the last equation and by (5.28), we conclude

E∥Pn −P∥Gi ≤ 16W(B( f ∗, t∗)) ≤ 16lξW(F ) ≤ (16K1)
−1W(F ),

where we set lξ = (256K1)
−3. Then, by (5.27) and the last equation, the claim follows.

Proof of Lemma 43. It is enough to show that E2, E3 hold with probability of at least 0.99 for n

large enough. First, we prove this claim for E2.

We aim to apply Adamczak bound for concentration of the suprema of unbounded empirical

processes (Lemma 47). For this purpose, define the family of functions G := {y f (x), y ∈ R, f ∈

F − f ∗}, and the distribution Q = P⊗ N(0, 1). Note that F ⊆ [−1, 1]X and, ξ is Gaussian.

Therefore, by Pisier’s inequality (cf. [Pis83],[Ada08, p. 13]), we have

∥ max
1≤i≤n

|ξi f (Xi)|∥ψ1 ≤ C log(n) max
1≤i≤n

∥|ξi f (Xi)|∥ψ1 ≤ C2 log(n).

By Adamczak’s bound (Lemma 47),

K−1
2 ED sup

f∈F− f ∗
| 1
n

n

∑
i=1

f (Xi)ξi| −
10√

n
− C log(n)

n

≤ sup
f∈F− f ∗

| 1
n

n

∑
i=1

f (Xi)ξi| ≤ K2ED sup
f∈F− f ∗

| 1
n

n

∑
i=1

f (Xi)ξi|+
10√

n
+

C log(n)
n

,
(5.29)

with probability of at least 0.99 both X1, . . . , Xn and ξ.

Now, using the average principle, for n large enough, we can find an event E7 (that depends only

on X1, . . . , Xn) that holds with probability 0.98, such that for any fixed xn ∈ E7, there exists an

event A3(xn) of probability at least 0.98 (over ξ) such that (5.29) holds. For each xn ∈ E7, Lemma

48 (with Lipschitz constant sup f∈F ∥ f − f ∗∥n ≤ 2) implies that the middle term in (5.29) is, with
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high probability, within Cn−1/2 from its expectation (with respect to ξ). Therefore, we have for all

xn ∈ E7:

K−1
2 ED sup

f∈F− f ∗
|n−1

n

∑
i=1

f (Xi)ξi| −
C√

n

≤ Eξ sup
f∈F− f ∗

|n−1
n

∑
i=1

f (Xi)ξi| ≤ K2ED sup
f∈F− f ∗

|n−1
n

∑
i=1

f (Xi)ξi|+
C√

n
.

Finally, since 0 ∈ F − f ∗, we have

Eξ sup
f∈F− f ∗

n−1
n

∑
i=1

f (Xi)ξi ≤ Eξ sup
f∈F− f ∗

|n−1
n

∑
i=1

f (Xi)ξi| ≤ 2Eξ sup
f∈F− f ∗

n−1
n

∑
i=1

f (Xi)ξi.

Hence, the last two equations imply that whenW(F ) ≥ C1n−1/2, for C1 that is large enough, the

claim follows for E2. To handle the remaining case ofW(F ) ≤ C1n−1/2, recall that we assumed

that our class is not degenerate (i.e it has two functions that are ∥ f1 − f2∥ ≥ 0.5. Then, it is easy to

see that with probability of 0.99 it holds that

Wx(F − f ∗) ≥ W({0, f2 − f ∗, f1 − f ∗}) ≥ E max{n−0.5g, 0} ≥ c · n−1/2 ≥ c · C−1
1 W(F ),

where g ∼ N(0, 1/4). Therefore, for some K−1
1 = c(K2, c), the claim follows for E2.

Next, we handle E3. By using the definition of B( f ∗, t∗), and similar considerations that led to

(5.29), we have

sup
f∈B( f ∗,t∗)− f ∗

|n−1
n

∑
i=1

f (Xi)ξi| ≤ K2ED sup
B( f ∗,t∗)− f ∗

|n−1
n

∑
i=1

f (Xi)ξi|+
10t∗√

n
+

C log(n)
n

,

(5.30)

with probability of at least 0.99 over both X1, . . . , Xn and ξ.

As above, for n large enough, we can find an event E8 ⊆ E1 (where E1 is defined in (5.12)) of

probability at least 0.98 (over X1, . . . , Xn), such that for any xn ∈ E8, there exists an event A4(xn)

of probability at least 0.98 (over ξ) such that (5.30) holds. Then, similarly to the case of E2, we will

employ Lipschitz concentration for the middle term in (5.30), for each xn ∈ E8. To estimate the
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Lipschitz constant, recall that under E1 (more precisely, under the event of Lemma 44), we also

have that

∥ f − f ∗∥2
n ≤ s2

1W(F ) + 10W(F ) ≤ 11W(F )

for all f ∈ B( f ∗, t∗), under the choice t∗ in (5.10). Then, using the fact that A4(xn) holds with

probability of at least 0.98, and Lemma 48 with Lipschitz constant sup f∈B( f ∗,t∗) ∥ f − f ∗∥n ≤√
11W(F ), imply that for each xn ∈ E8, the middle term in (5.30) is within an additive factor of

C1
√
W(F )n−1/2 from its expectation over ξ. Namely, we have for all xn ∈ E8:

Eξ sup
f∈F− f ∗

|n−1
n

∑
i=1

f (Xi)ξi| ≤ K2ED sup
f∈F− f ∗

|n−1
n

∑
i=1

f (Xi)ξi|+
C
√
W(F )√

n
.

where we used the fact that t∗ ≤ s1
√
W(F ). The claim for E3 follows by similar considerations

that we used earlier.

Proof of Corollary 7. For any P-Donsker class we have with probability at least 0.9 [Gee00, Chap.

5]

Wx(F ) ≍ W(F ) ≍ n−1/2.

Then, by Corollary 5, we have that

E

∫
( f̂n − f ∗)2dPn ≳ n−1.

In order to prove the second part of the bound, we apply Theorem 22,

E

∫
( f̂n − f ∗)2dP ≳ max{n−1, tn,P( f ∗,F )2}.

The corollary will follow if we show that for any f ∗ ∈ F , we have that tn,P ≳ 1. To see this, we

use [Gee00, Thm 5.11] that shows that for all t ≥ 0, we have

W(B( f ∗, t)) ≲ n−1/2
∫ t

0
u−α/2du ≲ t

−α+2
2 n−1/2.
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Since α ∈ (0, 2), the right hand side is decreasing in t, therefore we know that if

W(B( f ∗, t∗)) ≳W(F ) ≳ n−1/2

then we have t∗ ≳ 1. Hence, tn,P( f ∗,F ) ≳ 1, and the claim follows.

Proof of Corollary 8. For any non P-Donsker class we have with probability of at least 0.9 [Gee00,

Chap. 5]

n−
2

2+α ≲Wx(F ) ≍ W(F ) ≲ n−
1
α .

Then, by Corollary 5, we have that

E

∫
( f̂n − f ∗)2dPn ≳ n−

4
2+α ,

and the claim follows.

5.5.1 An example to the tightness of Theorem 22 (a sketch)

Let P be the uniform density of [0, 1], and denote by I(xi, li) to be an interval with center xi and

length li. For each m ≥ 0 we define

Fm :=
{

m−1/6
m

∑
i=1

ϵi1I(xi,m−5/4) : ∀x1, . . . , xm s.t. 1 ≤ j ̸= k ≤ m I(xk, m−5/4) ∩ I(xj, m−5/4) = ∅,

∀(ϵ1, . . . , ϵm) ∈ {−1, 1}m}.

Now, we define F := conv{0,
⋃∞

m=1{Fm}}. Clearly, this family is uniformly bounded by one.

Also, we assume that f ∗ = 0.

Using a classical fact, we have that with probability of at least 1− n2,

max
1≤i ̸=j≤n

|Xj − Xi| ≥ c · (n log n)−1,
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and denote this event by A.

Clearly, for each xn ∈ A, we can find a function fξ ∈ Fn (that depends on xn as well) such that

⟨ fξ , ξ⟩n = n−1/6 · n−1
n

∑
i=1
|ξi|. (5.31)

To see this, under the event A, we can place X1, . . . , Xn in n disjoint intervals of length n−5/4,

therefore fξ is the function that is supported on these intervals, with the suitable signs.

Clearly, under the event A, f̂n /∈ ⋃∞
m=n+1{Fm}, since there is no “advantage” to more than n

intervals. Therefore, one can easily show that

Wx(Bn( f ∗, n−1/6)) ≍ n−1/6.

Now, denote by C(n) := C1(n log(n))4/5 for C1 that is large enough. Note that any Fm such that

C(n) ≤ m ≤ n− 1, we can only place m intervals with length of at most (c/2) · (n log(n))−1.

Therefore, under the event A, each of these intervals has at most one point. Hence, we have that

max
fm∈Fm

⟨ fm, ξ⟩n = m−1/6n−1 max
S∈(n

m),|S|=m
∑
i∈S
|ξi|.

Now, for any fixed C(n) ≤ m ≤ n− 1, by standard concentration inequalities,

E max
fm∈Fm

⟨ fm, ξ⟩n ≲ m−1/6(m/n) + m−1/6(m/n)
√

log(n/m) ≲ m−1/6(m/n)
√

log(n/m).

(5.32)

In the remaining case of m ≤ C(n), using standard arguments, it can be shown that with probability

of at least 1− n2 (over X1, . . . , Xn) the following holds:

Eξ sup
fm∈Fm

⟨ fm, ξ⟩n ≍ ED sup
fm∈Fm

⟨ fm, ξ⟩n ≪ n−1/6. (5.33)

By using Eqs. (5.31),(5.32),(5.33), one can show that with high probability f̂n ∈ Bn( f ∗, Cn−1/6),
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for some C ≥ 0, and also

W(F ) ≍ n−1/6.

Therefore, one can conclude that

E

∫
( f̂n − f ∗)2dPn ≍ n−

1
3 ≍ W(F )2,

and

E

∫
( f̂n − f ∗)2dP ≍ n−(

1
4+

1
3 ) ≪W(F )2 ≍ n−

1
3 .

Finally, it is easy to see that tn,P( f ∗,F ) ≳ n−(
1
8+

1
6 ), and therefore, by using the last equation

E

∫
( f̂n − f ∗)2dP ≍ tn,P( f ∗,F )2,

and the claim follows.
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