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Abstract

This thesis explores minimax formulations of machine learning and multi-agent learning
problems, focusing on algorithmic optimization and generalization performance. The first part
of the thesis delves into the smooth convex-concave minimax problem, providing a unified
analysis of widely used algorithms such as Extra-Gradient (EG) and Optimistic Gradient
Descent Ascent (OGDA), whose convergence behavior was not systematically understood.
We derive convergence rates for these algorithms in the convex-concave setting. We show
that these algorithms work effectively due to their approximation of the Proximal Point (PP)
method, which converges to the solution at a fast rate, but is impractical to implement. In
the next chapter, we expand our study to nonconvex-nonconcave problems. These problems
are generally challenging to solve, as a solution may not be well defined, or even if a solution
exists, its computation may not be tractable. We identify a class of nonconvex-nonconcave
problems that do have well defined and computationally tractable solutions. Leveraging
the concepts developed in the first chapter, we design algorithms to efficiently tackle this
special class of nonconvex-nonconcave problems. The final part of this thesis addresses the
issue of generalization. In many cases, such as GANs and adversarial training, the objective
function for finding the saddle point can be written as an expected value over the data
distribution. However, since we often do not have direct access to this distribution, we solve
the empirical problem instead, which involves averaging over the available dataset. The
final chapter aims to evaluate the quality of solutions to the empirical problem compared
to the original population problem. Existing metrics like the primal risk, which are used
to assess generalization in the minimax setting are found to be inadequate in capturing the
generalization of minimax learners. This prompts the proposal of a new metric, the primal
gap, which overcomes these limitations. This novel metric is then utilized to investigate the
generalization performance of popular algorithms like Gradient Descent Ascent (GDA) and
Gradient Descent-Max (GDMax).

Thesis Supervisor: Asuman Ozdaglar
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Socio-technological systems are all around us - in transportation, energy, social media and

healthcare. They are evolving at breakneck speeds thanks to abundance of online and sensory

data and advances in AI/ML technologies. These decentralized systems also involve multiple

agents interacting and learning both about each other’s strategies and uncertain changing

environments. Motivated by these applications, my research investigates design of algorithms

for robust training of ML models and stable learning dynamics in multi-agent systems.

Training such ML models involves the study of robust algorithms. This involves designing

algorithms which are robust to input perturbations, domain shifts, and task adaptations.

Development of such robust algorithms for multi-agent systems motivates the study of

minimax formulations. In particular, given a function 𝑓 : 𝒳 × 𝒴 → R (where 𝒳 ⊆ R𝑚 and

𝒴 ⊆ R𝑛), we consider finding a saddle point of the problem

min
𝑥∈𝒳

max
𝑦∈𝒴

𝑓(𝑥, 𝑦),

where a saddle point of this problem is defined as a pair (𝑥*, 𝑦*) ∈ 𝒳 × 𝒴 that satisfies

𝑓(𝑥*, 𝑦) ≤ 𝑓(𝑥*, 𝑦*) ≤ 𝑓(𝑥, 𝑦*)

for all 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 . This formulation arises in several areas, including zero-sum games [10],

robust optimization [15], robust control [62] and more recently in machine learning in the
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context of Generative Adversarial Networks (GANs) and Adversarial Training [80].

In Chapter 2, we focus on the unconstrained version of the problem. Furthermore, we

assume that the function 𝑓(𝑥, 𝑦) is convex-concave, i.e., for any 𝑦 ∈ R𝑛, the function 𝑓(𝑥, 𝑦)

is a convex function of 𝑥 and for any 𝑥 ∈ R𝑚, the function 𝑓(𝑥, 𝑦) is a concave function of 𝑦.

Our goal in this chapter is to analyze the convergence rate of some discrete-time gradient

based optimization algorithms for finding a saddle point in the convex-concave case. In

particular, we focus on Extra-gradient (EG) and Optimistic Gradient Descent Ascent (OGDA)

methods because of their widespread use for training GANs (see [34, 75]). We provide the first

unified convergence analysis for establishing a sublinear convergence rate of 𝒪(1/𝑘) in terms

of the primal-dual gap of the averaged iterates for both OGDA and EG for convex-concave

saddle point problems.

In the next chapter, we move our focus onto certain structured nonconvex-nonconcave

minimax problems. The specific structure we will be dealing with is the case where the

variables 𝑥 and 𝑦, can be written as a softmax parametrization of unconstrained variables 𝜃

and 𝜈 respectively. The main motivating example for this setting is multi-agent Reinforcement

learning (RL).

In this chapter, we study the global convergence of Natural Policy Gradient (NPG) [68],

which forms the basis for many popular Policy Gradient (PG) algorithms (e.g., Proximal

Policy Optimization (PPO)/Trust Region Policy Optimization (TRPO)), in the parameter

space and for multi-agent learning. We are interested in the setting where the agents take

symmetric roles and operate independently, as it does not require a central coordinator and

it scales favorably with the number of agents. We develop symmetric variants of the NPG

method, both without and with the optimistic updates (similar to the optimistic updates in

Chapter 2) and establish the last-iterate global convergence to the Nash equilibrium in the

policy parameter space.

Finally, in Chapter 4, we move our attention from the problem of optimization, to the

problem of generalization. Stochastic minimax optimization, a classical and fundamental

problem in operations research and game theory, involves solving the following problem:

min
𝑤∈𝑊

max
𝜃∈Θ

𝐸𝑧∼𝑃𝑧 [𝑓(𝑤, 𝜃; 𝑧)].
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More recently, such minimax formulations have received increasing attention in machine

learning, with significant applications in generative adversarial networks (GANs) [54], adver-

sarial learning [80], and reinforcement learning [27, 30]. Most existing works (including the

first two chapters!) have focused on the optimization aspect of the problem, However, the

optimization aspect is not sufficient to achieve the success of stochastic minimax formulations

in machine learning. In particular, as in classical supervised learning, which is usually studied

as a minimization problem [63], the out-of-sample generalization performance is a key metric

for evaluating the learned models.

Existing works have studied primal risk and/or (variants of) primal-dual risk under

different convexity and smoothness assumptions of the objective. Primal risk (see formal

definition in §4.2) is a natural extension of the definition of risk from minimization problems.

Primal-dual risk, on the other hand, is defined similarly but based on the duality gap of the

solution.

Although these metrics are natural extensions of generalization metrics from the min-

imization setting, they might not be the most suitable ones for studying generalization in

stochastic minimax optimization, especially in the nonconvex settings that is pervasive in

machine/deep learning applications, where the global saddle-point might not exist.

In this final chapter, we first identify the inadequacies of the existing metric, and proposing

a new metric, the primal gap that overcomes these inadequacies. We then provide generaliza-

tion error bounds for the newly proposed metric, and discuss how it captures information not

included in the other existing metrics.

Structure of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we study the convergence rates of

OGDA and EG for smooth convex-concave minimax problems. Then, in Chapter 3, we move

on to study algorithms to solve certain structured nonconvex-nonconcave problems which

appear in Reinforcement learning formulations. Finally, in Chapter 4, we study the problem

of generalization, and propose a new metric which correctly identifies the generalization

capabilities of several popular algorithms which are used to solve minimax problems. Note

that, we defer the proofs of all results in the chapter to the appendix which can be found at

17



the end of each chapter.
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Chapter 2

Convex-Concave Minimax Problems

2.1 Introduction

In this chapter, we consider finding a saddle point of the problem

min
𝑥∈R𝑚

max
𝑦∈R𝑛

𝑓(𝑥, 𝑦), (2.1.1)

We focus on two popular algorithms used to solve this problem: Extra-gradient (EG) and

Optimistic Gradient Descent Ascent (OGDA).

EG method is a classical algorithm for solving saddle point problems introduced in [70].

Its linear rate of convergence for smooth and strongly convex-strongly concave functions

𝑓(𝑥, 𝑦) 1 and bilinear functions, i.e., 𝑓(𝑥, 𝑦) = 𝑥⊤𝐴𝑦 (where 𝐴 is a square, full rank matrix),

was established in [70] as well as the variational inequality literature (see [124] and [41]). Its

𝒪(1/𝑘) convergence rate for the constrained convex-concave setting was first established by

[94] under the assumption that the feasible set is convex and compact.2 [91] established a

similar 𝒪(1/𝑘) convergence rate for EG without assuming compactness of the feasible set

by using a new termination criterion that relies on enlargement of the operator of the VI

reformulation of the saddle point problem defined in [21]. OGDA was introduced by [103],

1Note that when we state that 𝑓(𝑥, 𝑦) is strongly convex-strongly concave, it means that 𝑓(·, 𝑦) is strongly
convex for all 𝑦 ∈ R𝑛 and 𝑓(𝑥, ·) is strongly concave for all 𝑥 ∈ R𝑚.

2The result in [94] shows a 𝒪(1/𝑘) convergence rate for the mirror-prox algorithm which specializes to the
EG method for the Euclidean case.
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as a variant of the Extragradient method, and has gained popularity recently due to its

performance in training GANs (see [34]). To the best of our knowledge, iteration complexity

of OGDA for the convex-concave case has not been studied before.

In this chapter, we provide a unified convergence analysis for establishing a sublinear

convergence rate of 𝒪(1/𝑘) in terms of the primal-dual gap of the averaged iterates and a

saddle point for both OGDA and EG for convex-concave saddle point problems. Our analysis

holds for unconstrained problems and does not require boundedness of the feasible set, and

it establishes rate results using the primal-dual gap, as used in [94] (suitably redefined for

an unconstrained feasible set, see Section 2.5). Therefore, we get convergence of the EG

method in unconstrained spaces without using the modified termination (error) criterion

proposed in [91]. The key idea of our approach is to view both OGDA and EG iterates as

approximations of the iterates of the proximal point method that was first introduced in

[83] and later studied in [109]. We would like to add that the idea of interpreting EG as an

approximation of the Proximal Point method was first studied in [94]. This paper considers

the conceptual mirror prox, which is similar to the proximal point method, and shows that

the mirror prox algorithm (of which EG is a special case) provides a good implementable

approximation to this method. Further, [91] use a similar interpretation and propose the

Hybrid Proximal Extragradient method to establish the convergence of EG in unbounded

settings using a different convergence criteria. More recently, [88] study both OGDA and EG

as approximations of proximal point method and analyze these algorithms for bilinear and

strongly convex-strongly concave problems.

More specifically, we first consider a proximal point method with error and establish some

key properties of its iterates. We then focus on OGDA as an approximation of proximal point

method and use this connection to show that the iterates of OGDA remain in a compact set.

We incorporate this result to prove a sublinear convergence rate of 𝒪(1/𝑘) for the primal-dual

gap of the averaged iterates generated by the OGDA update. We next consider EG where

two gradient pairs are used in each iteration, one to compute a midpoint and other to find the

new iterate using the gradient of the midpoint. Our first step again is to show boundedness

of the iterates generated by EG. We then approximate the evolution of the midpoints using a

proximal point method and use this approximation to establish 𝒪(1/𝑘) convergence rate for
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the function value of the averaged iterates generated by EG.

Related Work

Several recent papers have studied the convergence rate of OGDA and EG for the case

when the objective function is bilinear or strongly convex-strongly concave. [34] showed the

convergence of the OGDA iterates to a neighborhood of the solution when the objective

function is bilinear. [75] used a dynamical system approach to prove the linear convergence

of the OGDA method for the special case when 𝑓(𝑥, 𝑦) = 𝑥⊤𝐴𝑦 and the matrix 𝐴 is square

and full rank. They also presented a linear convergence rate of the vanilla Gradient Ascent

Descent (GDA) method when the objective function 𝑓(𝑥, 𝑦) is strongly convex-strongly

concave. [51] considered a variant of the EG method, relating it to OGDA updates, and

showed the linear convergence of the corresponding EG iterates in the case where 𝑓(𝑥, 𝑦)

is strongly convex-strongly concave (though without showing the convergence rate for the

OGDA iterates). Optimistic gradient methods have also been studied in the context of convex

online learning [29, 107, 108].

[93] analyzed the (sub)Gradient Descent Ascent (GDA) algorithm for convex-concave

saddle point problems when the (sub)gradients are bounded over the constraint set, showing

a convergence rate of 𝒪(1/
√
𝑘) in terms of the function value difference of the averaged

iterates and a saddle point.

[25] focused on a particular case of the saddle point problem where the coupling term

in the objective function is bilinear, i.e., 𝑓(𝑥, 𝑦) = 𝐺(𝑥) + 𝑥⊤𝐾𝑦 − 𝐻(𝑦) with 𝐺 and 𝐻

convex functions. They proposed a proximal point based algorithm which converges at a

rate 𝒪(1/𝑘) and further showed linear convergence when the functions 𝐺 and 𝐻 are strongly

convex. [28] proposed an accelerated variant of this algorithm when 𝐺 is smooth and showed

an optimal rate of (𝐿𝐺

𝑘2
+ 𝐿𝐾

𝑘
), where 𝐿𝐺 and 𝐿𝐾 are the smoothness parameters of 𝐺 and

the norm of the linear operator 𝐾 respectively. When the functions 𝐺 and 𝐻 are strongly

convex, primal-dual gradient-type methods converge linearly, as shown in [26, 12]. Further,

[39] showed that GDA achieves a linear convergence rate in this linearly coupled setting when

𝐺 is convex and 𝐻 is strongly convex.

For the case that 𝑓(𝑥, 𝑦) is strongly concave with respect to 𝑦, but possibly nonconvex with

21



respect to 𝑥, [111] provided convergence to a first-order stationary point using an algorithm

that requires running multiple updates with respect to 𝑦 at each step.

2.2 Preliminaries

In this section we present properties and notations used in our results.

Definition 2.2.1. A function 𝜑 : R𝑛 → R is 𝐿-smooth if it has 𝐿-Lipschitz continuous

gradients on R𝑛, i.e., for any 𝑥, ̂︀𝑥 ∈ R𝑛, we have

||∇𝜑(𝑥) −∇𝜑(̂︀𝑥)|| ≤ 𝐿||𝑥− ̂︀𝑥||.
Definition 2.2.2. A continuously differentiable function 𝜑 : R𝑛 → R is convex on R𝑛 if for

any 𝑥, ̂︀𝑥 ∈ R𝑛, we have

𝜑(̂︀𝑥) ≥ 𝜑(𝑥) + ∇𝜑(𝑥)𝑇 (̂︀𝑥− 𝑥).

Further, 𝜑(𝑥) is concave if −𝜑(𝑥) is convex.

Definition 2.2.3. The pair (𝑥*, 𝑦*) is a saddle point of a convex-concave function 𝑓(𝑥, 𝑦), if

for any 𝑥 ∈ R𝑛 and 𝑦 ∈ R𝑚, we have

𝑓(𝑥*, 𝑦) ≤ 𝑓(𝑥*, 𝑦*) ≤ 𝑓(𝑥, 𝑦*).

Throughout this chapter, we will assume that the following conditions are satisfied.

Assumption 2.2.4. The function 𝑓(𝑥, 𝑦) is continuously differentiable in 𝑥 and 𝑦. Further,

for any 𝑦 ∈ R𝑛, the function 𝑓(𝑥, 𝑦) is a convex function of 𝑥 and for any 𝑥 ∈ R𝑚, the

function 𝑓(𝑥, 𝑦) is a concave function of 𝑦.

Assumption 2.2.5. The gradient ∇𝑥𝑓(𝑥, 𝑦), is 𝐿𝑥𝑥-Lipschitz with respect to 𝑥 and 𝐿𝑥𝑦-

Lipschitz with respect to 𝑦 and the gradient ∇𝑦𝑓(𝑥, 𝑦), is 𝐿𝑦𝑦-Lipschitz with respect to 𝑦 and
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𝐿𝑦𝑥-Lipschitz with respect to 𝑥, i.e.,

‖∇𝑥𝑓(𝑥1, 𝑦) −∇𝑥𝑓(𝑥2, 𝑦)‖ ≤ 𝐿𝑥𝑥‖𝑥1 − 𝑥2‖ ∀ 𝑦,

‖∇𝑥𝑓(𝑥, 𝑦1) −∇𝑥𝑓(𝑥, 𝑦2)‖ ≤ 𝐿𝑥𝑦‖𝑦1 − 𝑦2‖ ∀ 𝑥,

‖∇𝑦𝑓(𝑥, 𝑦1) −∇𝑦𝑓(𝑥, 𝑦2)| ≤ 𝐿𝑦𝑦‖𝑦1 − 𝑦2‖ ∀ 𝑥,

‖∇𝑦𝑓(𝑥1, 𝑦) −∇𝑦𝑓(𝑥2, 𝑦)| ≤ 𝐿𝑦𝑥‖𝑥1 − 𝑥2‖ ∀ 𝑦.

We define 𝐿 := 2 × max{𝐿𝑥𝑥, 𝐿𝑥𝑦, 𝐿𝑦𝑥, 𝐿𝑦𝑦}. 3

Assumption 2.2.6. The solution set 𝒵* defined as

𝒵* := {[𝑥; 𝑦] ∈ R𝑛+𝑚 : (𝑥, 𝑦) is a saddle point of Problem (2.1.1)}, (2.2.1)

is nonempty.

In the following sections, we present and analyze three different iterative algorithms for

solving the saddle point problem introduced in (2.1.1). The 𝑘𝑡ℎ iterates of these algorithms

are denoted by (𝑥𝑘, 𝑦𝑘). We denote the averaged (ergodic) iterates by ̂︀𝑥𝑘, ̂︀𝑦𝑘, defined as

follows:

̂︀𝑥𝑘 =
1

𝑘

𝑘∑︁
𝑖=1

𝑥𝑖, ̂︀𝑦𝑘 =
1

𝑘

𝑘∑︁
𝑖=1

𝑦𝑖. (2.2.2)

In our convergence analysis, we use a variational inequality approach in which we define the

vector 𝑧 = [𝑥; 𝑦] ∈ R𝑛+𝑚 as our decision variable and define the operator 𝐹 : R𝑚+𝑛 → R𝑚+𝑛

as

𝐹 (𝑧) = [∇𝑥𝑓(𝑥, 𝑦);−∇𝑦𝑓(𝑥, 𝑦)]. (2.2.3)

In the following lemma we characterize the properties of operator 𝐹 in (2.2.3) when the

conditions in Assumptions 2.2.4 and 2.2.5 are satisfied. We would like to emphasize that the

following lemma is well-known – see, e.g., [94] – and we state it for completeness.
3In this definition we need an additional factor of 2 because in the analysis we use 𝐿 as the Lipschitz

continuity of the operator 𝐹 (·) = [∇𝑥𝑓(·);−∇𝑦𝑓(·)].
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Lemma 2.2.7. Let 𝐹 (·) be defined as in Equation (2.2.3). Suppose Assumptions 2.2.4 and

2.2.5 hold. Then

(a) 𝐹 is a monotone operator, i.e., for any 𝑧1, 𝑧2 ∈ R𝑚+𝑛, we have

⟨𝐹 (𝑧1) − 𝐹 (𝑧2), 𝑧1 − 𝑧2⟩ ≥ 0.

(b) 𝐹 is an 𝐿-Lipschitz continuous operator, i.e., for any 𝑧1, 𝑧2 ∈ R𝑚+𝑛, we have

‖𝐹 (𝑧1) − 𝐹 (𝑧2)‖ ≤ 𝐿‖𝑧1 − 𝑧2‖.

(c) For all 𝑧* ∈ 𝒵*, we have 𝐹 (𝑧*) = 0.

According to Lemma 2.2.7, when 𝑓 is convex-concave and smooth, the operator 𝐹 defined

in (2.2.3) is monotone and Lipschitz. The third result in Lemma 2.2.7 shows that any saddle

point of problem (2.1.1) satisfies the first-order optimality condition, i.e ∀ (𝑥*, 𝑦*) ∈ 𝒵*, we

have:

∇𝑥𝑓(𝑥*, 𝑦*) = 0 ∇𝑦𝑓(𝑥*, 𝑦*) (2.2.4)

Before presenting our main results, we state the following well known result (see for

example [94]) which will be used later in the analysis of OGDA and EG. We present the

proof here for completeness.

Proposition 2.2.8. Recall the definition of the operator 𝐹 (·) in (2.2.3) and the points ̂︀𝑥𝑘, ̂︀𝑦𝑘
in (2.2.2). Suppose Assumptions 2.2.4 and 2.2.6 hold. Then for any 𝑧 = [𝑥; 𝑦] ∈ R𝑚+𝑛, we

have

𝑓(̂︀𝑥𝑁 , 𝑦) − 𝑓(𝑥, ̂︀𝑦𝑁) ≤ 1

𝑁

𝑁∑︁
𝑘=1

𝐹 (𝑧𝑘)⊤(𝑧𝑘 − 𝑧) (2.2.5)

Proof. Using the definition of the operator 𝐹 , we can write

1

𝑁

𝑁∑︁
𝑘=1

𝐹 (𝑧𝑘)⊤(𝑧𝑘 − 𝑧) =
1

𝑁

𝑁∑︁
𝑘=1

[∇𝑥𝑓(𝑥𝑘, 𝑦𝑘)⊤(𝑥𝑘 − 𝑥) + ∇𝑦𝑓(𝑥𝑘, 𝑦𝑘)⊤(𝑦 − 𝑦𝑘)]
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≥ 1

𝑁

𝑁∑︁
𝑘=1

[𝑓(𝑥𝑘, 𝑦𝑘) − 𝑓(𝑥, 𝑦𝑘) + 𝑓(𝑥𝑘, 𝑦) − 𝑓(𝑥𝑘, 𝑦𝑘)]

=
1

𝑁

𝑁∑︁
𝑘=1

[𝑓(𝑥𝑘, 𝑦) − 𝑓(𝑥, 𝑦𝑘)], (2.2.6)

where the inequality holds due to the fact that 𝑓 is convex-concave. Using convexity of 𝑓

with respect to 𝑥 and concavity of 𝑓 with respect to 𝑦, we have

1

𝑁

𝑁∑︁
𝑘=1

𝑓(𝑥𝑘, 𝑦) ≥ 𝑓(̂︀𝑥𝑁 , 𝑦),
1

𝑁

𝑁∑︁
𝑘=1

𝑓(𝑥, 𝑦𝑘) ≤ 𝑓(𝑥, ̂︀𝑦𝑁). (2.2.7)

Combining inequalities (2.2.6) and (2.2.7) yields

1

𝑁

𝑁∑︁
𝑘=1

𝐹 (𝑧𝑘)⊤(𝑧𝑘 − 𝑧) ≥ 𝑓(̂︀𝑥𝑁 , 𝑦) − 𝑓(𝑥, ̂︀𝑦𝑁),

completing the proof.

2.3 Proximal point method with error

One of the classical algorithms studied for solving the saddle point problem in (2.1.1) is

the Proximal Point (PP) method, introduced in [83] and studied in [109]. The PP method

generates the iterate {𝑥𝑘+1, 𝑦𝑘+1} which is defined as the unique solution to the saddle point

problem4

min
𝑥∈R𝑚

max
𝑦∈R𝑛

{︂
𝑓(𝑥, 𝑦) +

1

2𝜂
‖𝑥− 𝑥𝑘‖2 −

1

2𝜂
‖𝑦 − 𝑦𝑘‖2

}︂
. (2.3.1)

It can be verified that if the pair {𝑥𝑘+1, 𝑦𝑘+1} is the solution of problem (2.3.1), then 𝑥𝑘+1

and 𝑦𝑘+1 satisfy

𝑥𝑘+1 = argmin
𝑥∈R𝑚

{︂
𝑓(𝑥, 𝑦𝑘+1) +

1

2𝜂
‖𝑥− 𝑥𝑘‖2

}︂
, (2.3.2)

4Again {𝑥𝑘+1, 𝑦𝑘+1} is unique since the objective function of problem (2.3.1) is strongly convex in 𝑥 and
strongly concave in 𝑦
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𝑦𝑘+1 = argmax
𝑦∈R𝑛

{︂
𝑓(𝑥𝑘+1, 𝑦) − 1

2𝜂
‖𝑦 − 𝑦𝑘‖2

}︂
. (2.3.3)

Using the optimality conditions of the updates in (2.3.2) and (2.3.3) (which are necessary and

sufficient since the problems in (2.3.2) and (2.3.3) are strongly convex and strongly concave,

respectively), the update of the PP method for the saddle point problem in (2.1.1) can be

written as

𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇𝑥𝑓(𝑥𝑘+1, 𝑦𝑘+1),

𝑦𝑘+1 = 𝑦𝑘 + 𝜂∇𝑦𝑓(𝑥𝑘+1, 𝑦𝑘+1). (2.3.4)

It is well-known that the proximal point method achieves a sublinear rate of 𝒪(1/𝑘) when

𝑘 is the number of iterations for convex minimization and for solving monotone variational

inequalities (see [56, 57, 19, 122, 94]). Note that [94] in fact analyzed the conceptual mirror

prox (the proximal point method) as a building block to analyze the mirror-prox algorithm.

For completeness, we present the convergence rate of the proximal point method for convex-

concave saddle point problems in the following theorem (see Appendix 2.8.1 for the proof).

Theorem 2.3.1. Suppose Assumption 2.2.4 holds. Let {𝑥𝑘, 𝑦𝑘} be the iterates generated

by the updates in (2.3.4). Consider the definition of the averaged iterates ̂︀𝑥𝑘, ̂︀𝑦𝑘 in (2.2.2).

Then for all 𝑘 ≥ 1, we have

|𝑓(̂︀𝑥𝑘, ̂︀𝑦𝑘) − 𝑓(𝑥*, 𝑦*)| ≤ ‖𝑥0 − 𝑥*‖2 + ‖𝑦0 − 𝑦*‖2

𝜂𝑘
. (2.3.5)

The result in Theorem 2.3.1 shows that by following the update of proximal point method

the gap between the function value for the averaged iterates (̂︀𝑥𝑘, ̂︀𝑦𝑘) and the function value for

a saddle point (𝑥*, 𝑦*) of the problem (2.1.1) approaches zero at a sublinear rate of 𝒪(1/𝑘).

Our goal is to provide similar convergence rate estimates for OGDA and EG using the

fact that these two methods can be interpreted as approximate versions of the proximal point

method. To do so, let us first rewrite the update of the proximal point method given in
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(2.3.4) as

𝑧𝑘+1 = 𝑧𝑘 − 𝜂𝐹 (𝑧𝑘+1), (2.3.6)

where 𝑧 = [𝑥; 𝑦] ∈ R𝑚+𝑛 and the operator 𝐹 is defined in (2.2.3). In the following proposition,

we establish a relation for the iterates of a proximal point method with error. This relation

will be used later for our analysis of OGDA and EG methods.

Proposition 2.3.2. Consider the sequence of iterates {𝑧𝑘} ∈ R𝑛+𝑚 generated by the following

update

𝑧𝑘+1 = 𝑧𝑘 − 𝜂𝐹 (𝑧𝑘+1) + 𝜀𝑘, (2.3.7)

where 𝐹 : R𝑛+𝑚 → R𝑛+𝑚 is a monotone and Lipschitz continuous operator, 𝜀𝑘 ∈ R𝑛+𝑚 is an

arbitrary vector, and 𝜂 is a positive constant. Then for any 𝑧 ∈ R𝑛+𝑚 and for each 𝑘 ≥ 1 we

have

𝐹 (𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧)

=
1

2𝜂
‖𝑧𝑘 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧𝑘‖2 +

1

𝜂
𝜀𝑘

⊤(𝑧𝑘+1 − 𝑧). (2.3.8)

Proof. According to the update in (2.3.7), we can show that for any 𝑧 ∈ R𝑚+𝑛 we have

‖𝑧𝑘+1 − 𝑧‖2 = ‖𝑧𝑘 − 𝑧‖2 − 2𝜂(𝑧𝑘 − 𝑧)⊤𝐹 (𝑧𝑘+1) + 𝜂2‖𝐹 (𝑧𝑘+1)‖2 + ‖𝜀𝑘‖2

+ 2𝜀𝑘
⊤(𝑧𝑘 − 𝑧 − 𝜂𝐹 (𝑧𝑘+1)). (2.3.9)

We add and subtract the inner product 2𝜂𝑧⊤𝑘+1𝐹 (𝑧𝑘+1) to the right hand side and regroup

the terms to obtain

‖𝑧𝑘+1 − 𝑧‖2 = ‖𝑧𝑘 − 𝑧‖2 − 2𝜂(𝑧𝑘+1 − 𝑧)⊤𝐹 (𝑧𝑘+1) − 2𝜂(𝑥𝑘 − 𝑥𝑘+1)
⊤𝐹 (𝑧𝑘+1)

+ 𝜂2‖𝐹 (𝑧𝑘+1)‖2 + ‖𝜀𝑘‖2 + 2𝜀𝑘
𝑇 (𝑧𝑘 − 𝑧 − 𝜂𝐹 (𝑧𝑘+1)). (2.3.10)
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Replacing 𝐹 (𝑧𝑘+1) with (1/𝜂)(−𝑧𝑘+1 + 𝑧𝑘 + 𝜀𝑘), we obtain

‖𝑧𝑘+1 − 𝑧‖2

= ‖𝑧𝑘 − 𝑧‖2 − 2𝜂(𝑧𝑘+1 − 𝑧)⊤𝐹 (𝑧𝑘+1) + 2(𝑧𝑘 − 𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧𝑘 − 𝜀𝑘)

+ ‖𝑧𝑘+1 − 𝑧𝑘 − 𝜀𝑘‖2 + ‖𝜀𝑘‖2 + 2𝜀𝑘
𝑇 (𝑧𝑘+1 − 𝑧 − 𝜀𝑘)

= ‖𝑧𝑘 − 𝑧‖2 − 2𝜂(𝑧𝑘+1 − 𝑧)⊤𝐹 (𝑧𝑘+1) − ‖𝑧𝑘+1 − 𝑧𝑘‖2 + 2𝜀𝑘
𝑇 (𝑧𝑘+1 − 𝑧). (2.3.11)

On rearranging the terms, we obtain the following inequality:

𝐹 (𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧)

=
1

2𝜂
‖𝑧𝑘 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧𝑘‖2 +

1

𝜂
𝜀𝑘

𝑇 (𝑧𝑘+1 − 𝑧), (2.3.12)

and the proof is complete.

2.4 Optimistic Gradient Descent Ascent

In this section, we focus on analyzing the performance of optimistic gradient descent ascent

(OGDA) for finding a saddle point of a general smooth convex-concave function. It has been

shown that the OGDA method achieves the same iteration complexity as the proximal point

method for both strongly convex-strongly concave and bilinear problems; see [75], [51], [88].

However, its iteration complexity for a general smooth convex-concave case has not been

established to the best of our knowledge. In this section, we show that the function value of

the averaged iterate generated by the OGDA method converges to the function value at a

saddle point at a rate of 𝒪(1/𝑘), which matches the convergence rate of the proximal point

method shown in Theorem 2.3.1.

Given a stepsize 𝜂 > 0, the OGDA method updates the iterates 𝑥𝑘 and 𝑦𝑘 for each 𝑘 ≥ 0

as

𝑥𝑘+1 = 𝑥𝑘 − 2𝜂∇𝑥𝑓 (𝑥𝑘, 𝑦𝑘) + 𝜂∇𝑥𝑓 (𝑥𝑘−1, 𝑦𝑘−1) ,

𝑦𝑘+1 = 𝑦𝑘 + 2𝜂∇𝑦𝑓 (𝑥𝑘, 𝑦𝑘) − 𝜂∇𝑦𝑓 (𝑥𝑘−1, 𝑦𝑘−1) (2.4.1)
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with the initial conditions 𝑥0 = 𝑥−1 and 𝑦0 = 𝑦−1. The main difference between the updates

of OGDA in (2.4.1) and the gradient descent ascent (GDA) method is in the additional

“momentum" terms −𝜂(∇𝑥𝑓 (𝑥𝑘, 𝑦𝑘)−∇𝑥𝑓 (𝑥𝑘−1, 𝑦𝑘−1)) and 𝜂(∇𝑦𝑓 (𝑥𝑘, 𝑦𝑘)−∇𝑦𝑓 (𝑥𝑘−1, 𝑦𝑘−1)).

This additional term makes the update of OGDA a better approximation to the update of

the proximal point method compared to the update of the GDA; for more details we refer

readers to Proposition 1 in [88].

To establish the convergence rate of OGDA for convex-concave problems, we first illustrate

the connection between the updates of proximal point method and OGDA. Note that using the

definitions of the vector 𝑧 = [𝑥; 𝑦] ∈ R𝑛+𝑚 and the operator 𝐹 (𝑧) = [∇𝑥𝑓(𝑥, 𝑦);−∇𝑦𝑓(𝑥, 𝑦)] ∈

R𝑛+𝑚, we can rewrite the update of the OGDA algorithm at iteration 𝑘 as

𝑧𝑘+1 = 𝑧𝑘 − 2𝜂𝐹 (𝑧𝑘) + 𝜂𝐹 (𝑧𝑘−1). (2.4.2)

Considering this expression, we can also write the update of OGDA as an approximation of

the proximal point update, i.e.,

𝑧𝑘+1 = 𝑧𝑘 − 𝜂𝐹 (𝑧𝑘+1) + 𝜀𝑘, (2.4.3)

where the error vector 𝜀𝑘 is given by

𝜀𝑘 = 𝜂[(𝐹 (𝑧𝑘+1) − 𝐹 (𝑧𝑘)) − (𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1))]. (2.4.4)

To derive the convergence rate of OGDA for the unconstrained problem in (2.1.1), we first

use the result in Proposition 2.3.2 to derive a result for the specific case of OGDA updates.

We then show that the iterates generated by the OGDA method remain in a bounded set.

This is done in the following lemma (Note that boundedness of OGDA iterates can be deduced

from [103], whereas a result similar to Lemma 2.4.1(b) was shown in a recent independent

paper by [82]).

Lemma 2.4.1. Let {𝑧𝑘} be the iterates generated by the optimistic gradient descent ascent

(OGDA) method introduced in (2.4.2) with the initial conditions 𝑥0 = 𝑥−1 and 𝑦0 = 𝑦−1

(i.e. 𝑧0 = 𝑧−1). If Assumptions 2.2.4, 2.2.5, and 2.2.6 hold and the stepsize 𝜂 satisfies the
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condition 0 < 𝜂 ≤ 1
2𝐿

, then:

(a) The iterates {𝑧𝑘} satisfy the following relation:

𝐹 (𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧)

≤ 1

2𝜂
‖𝑧𝑘 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧‖2 − 𝐿

2
‖𝑧𝑘+1 − 𝑧𝑘‖2 +

𝐿

2
‖𝑧𝑘 − 𝑧𝑘−1‖2

+ (𝐹 (𝑧𝑘+1) − 𝐹 (𝑧𝑘))⊤(𝑧𝑘+1 − 𝑧) − (𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1))
⊤(𝑧𝑘 − 𝑧). (2.4.5)

(b) The iterates {𝑧𝑘} stay within the compact set 𝒟 defined as

𝒟 := {(𝑥, 𝑦) | ‖𝑥− 𝑥*‖2 + ‖𝑦 − 𝑦*‖2 ≤ 2
(︀
‖𝑥0 − 𝑥*‖2 + ‖𝑦0 − 𝑦*‖2

)︀
}, (2.4.6)

where (𝑥*, 𝑦*) = 𝑧* ∈ 𝒵* is a saddle point of the problem defined in (2.1.1).

Proof. Since OGDA iterates satisfy Equation (2.4.3) with the error vector 𝜀𝑘 given in Equation

(2.4.4), using Proposition 2.3.2 with this error vector 𝜀𝑘 leads to

𝐹 (𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧)

=
1

2𝜂
‖𝑧𝑘 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧𝑘‖2

+ (𝐹 (𝑧𝑘+1) − 𝐹 (𝑧𝑘))⊤(𝑧𝑘+1 − 𝑧) − (𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1))
⊤(𝑧𝑘+1 − 𝑧). (2.4.7)

We add and subtract the inner product (𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1))
⊤(𝑧𝑘 − 𝑧) to the right hand side of

the preceding relation to obtain

𝐹 (𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧)

=
1

2𝜂
‖𝑧𝑘 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧𝑘‖2

+ (𝐹 (𝑧𝑘+1) − 𝐹 (𝑧𝑘))⊤(𝑧𝑘+1 − 𝑧) − (𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1))
⊤(𝑧𝑘 − 𝑧)

+ (𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1))
⊤(𝑧𝑘 − 𝑧𝑘+1). (2.4.8)
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Note that (𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1))
⊤(𝑧𝑘 − 𝑧𝑘+1) can be upper bounded by

(𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1))
⊤(𝑧𝑘 − 𝑧𝑘+1) ≤ ‖𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1)‖‖𝑧𝑘 − 𝑧𝑘+1‖

≤ 𝐿‖𝑧𝑘 − 𝑧𝑘−1‖‖𝑧𝑘 − 𝑧𝑘+1‖

≤ 𝐿

2
‖𝑧𝑘 − 𝑧𝑘−1‖2 +

𝐿

2
‖𝑧𝑘 − 𝑧𝑘+1‖2, (2.4.9)

where the second inequality holds due to Lipschitz continuity of the operator 𝐹 (Lemma

2.2.7(b)) and the last inequality holds due to Young’s inequality.5 Replacing (𝐹 (𝑧𝑘) −

𝐹 (𝑧𝑘−1))
⊤(𝑧𝑘 − 𝑧𝑘+1) in (2.4.8) by its upper bound in (2.4.9) yields

𝐹 (𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧)

≤ 1

2𝜂
‖𝑧𝑘 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧𝑘‖2

+ (𝐹 (𝑧𝑘+1) − 𝐹 (𝑧𝑘))⊤(𝑧𝑘+1 − 𝑧) − (𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1))
⊤(𝑧𝑘 − 𝑧)

+
𝐿

2
‖𝑧𝑘 − 𝑧𝑘−1‖2 +

𝐿

2
‖𝑧𝑘+1 − 𝑧𝑘‖2

≤ 1

2𝜂
‖𝑧𝑘 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧‖2 − 𝐿

2
‖𝑧𝑘+1 − 𝑧𝑘‖2 +

𝐿

2
‖𝑧𝑘 − 𝑧𝑘−1‖2

+ (𝐹 (𝑧𝑘+1) − 𝐹 (𝑧𝑘))⊤(𝑧𝑘+1 − 𝑧) − (𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1))
⊤(𝑧𝑘 − 𝑧), (2.4.10)

where the second inequality follows as 𝜂 ≤ 1/2𝐿 and therefore − 1
2𝜂
‖𝑧𝑘+1− 𝑧𝑘‖2 ≤ −𝐿‖𝑧𝑘+1−

𝑧𝑘‖2. This completes the proof of Part (a) of the lemma. Now, taking the sum of the

preceding relation from 𝑘 = 0, · · · , 𝑁 − 1, we obtain

𝑁−1∑︁
𝑘=0

𝐹 (𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧)

≤ 1

2𝜂
‖𝑧0 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑁 − 𝑧‖2 − 𝐿

2
‖𝑧𝑁 − 𝑧𝑁−1‖2 +

𝐿

2
‖𝑧0 − 𝑧−1‖2

+ (𝐹 (𝑧𝑁) − 𝐹 (𝑧𝑁−1))
⊤(𝑧𝑁 − 𝑧) − (𝐹 (𝑧0) − 𝐹 (𝑧−1))

⊤(𝑧0 − 𝑧). (2.4.11)

5We use the following form of Young’s inequality throughout this chapter:

𝑎⊤𝑏 ≤ ‖𝑎‖2

2
+

‖𝑏‖2

2
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Now set 𝑧 = 𝑧*, where 𝑧* ∈ 𝒵*, to obtain

𝑁−1∑︁
𝑘=0

𝐹 (𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧*)

≤ 1

2𝜂
‖𝑧0 − 𝑧*‖2 − 1

2𝜂
‖𝑧𝑁 − 𝑧*‖2 − 𝐿

2
‖𝑧𝑁 − 𝑧𝑁−1‖2 +

𝐿

2
‖𝑧0 − 𝑧−1‖2

+ (𝐹 (𝑧𝑁) − 𝐹 (𝑧𝑁−1))
⊤(𝑧𝑁 − 𝑧*) − (𝐹 (𝑧0) − 𝐹 (𝑧−1))

⊤(𝑧0 − 𝑧*). (2.4.12)

Note that each term of the summand in the sum in the left is nonnegative due to monotonicity

of 𝐹 and therefore the sum is also nonnegative. Further, we know that 𝑧0 = 𝑧−1. Using these

observations we can write

0 ≤ 1

2𝜂
‖𝑧0 − 𝑧*‖2 − 1

2𝜂
‖𝑧𝑁 − 𝑧*‖2 − 𝐿

2
‖𝑧𝑁 − 𝑧𝑁−1‖2

+ (𝐹 (𝑧𝑁) − 𝐹 (𝑧𝑁−1))
⊤(𝑧𝑁 − 𝑧*). (2.4.13)

Using Lipschitz continuity of the operator 𝐹 (·) (Lemma 2.2.7(b)) and Young’s inequality in

the preceding relation, we have

0 ≤ 1

2𝜂
‖𝑧0 − 𝑧*‖2 − 1

2𝜂
‖𝑧𝑁 − 𝑧*‖2 − 𝐿

2
‖𝑧𝑁 − 𝑧𝑁−1‖2

+ 𝐿‖𝑧𝑁 − 𝑧𝑁−1‖‖𝑧𝑁 − 𝑧*‖

≤ 1

2𝜂
‖𝑧0 − 𝑧*‖2 − 1

2𝜂
‖𝑧𝑁 − 𝑧*‖2 − 𝐿

2
‖𝑧𝑁 − 𝑧𝑁−1‖2

+
𝐿

2
‖𝑧𝑁 − 𝑧𝑁−1‖2 +

𝐿

2
‖𝑧𝑁 − 𝑧*‖2

≤ 1

2𝜂
‖𝑧0 − 𝑧*‖2 − 1

2𝜂
‖𝑧𝑁 − 𝑧*‖2 +

𝐿

2
‖𝑧𝑁 − 𝑧*‖2 (2.4.14)

Regrouping the terms gives us

‖𝑧𝑁 − 𝑧*‖2 ≤ 1

(1 − 𝜂𝐿)
‖𝑧0 − 𝑧*‖2. (2.4.15)

Using the condition 𝜂 ≤ 1/2𝐿, it follows that for any iterate 𝑁 we have

‖𝑧𝑁 − 𝑧*‖2 ≤ 2‖𝑧0 − 𝑧*‖2, (2.4.16)
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and the claim in Part (b) follows.

According to Lemma 2.4.1, the sequence of iterates {𝑥𝑘, 𝑦𝑘} generated by OGDA method

stays within a closed and bounded convex set. We use this result to prove a sublinear

convergence rate of 𝒪(1/𝑘) for the function value of the averaged iterates generated by

OGDA to the function value at a saddle point, for smooth and convex-concave functions in

the following theorem.

Theorem 2.4.2. Suppose Assumptions 2.2.4, 2.2.5 and 2.2.6 hold. Let {𝑥𝑘, 𝑦𝑘} be the

iterates generated by the OGDA updates in (2.4.1). Let the initial conditions satisfy 𝑥0 = 𝑥−1

and 𝑦0 = 𝑦−1. Consider the definition of the averaged iterates ̂︀𝑥𝑁 , ̂︀𝑦𝑁 in (2.2.2) and the

compact convex set 𝒟 in (2.4.6). If the stepsize 𝜂 satisfies the condition 0 < 𝜂 ≤ 1/2𝐿, then

for all 𝑁 ≥ 1, we have

[︂
max

𝑦:(̂︀𝑥𝑁 ,𝑦)∈𝒟
𝑓(̂︀𝑥𝑁 , 𝑦) − 𝑓 ⋆

]︂
+

[︂
𝑓 ⋆ − min

𝑥:(𝑥,̂︀𝑦𝑁 )∈𝒟
𝑓(𝑥, ̂︀𝑦𝑁)

]︂
≤
𝐷(8𝐿+ 1

2𝜂
)

𝑁
, (2.4.17)

where 𝑓 ⋆ = 𝑓(𝑥*, 𝑦*) and 𝐷 = ‖𝑥0 − 𝑥*‖2 + ‖𝑦0 − 𝑦*‖2.

Proof. From Lemma 2.4.1(a), we have that the iterates generated by the OGDA method

satisfy Equation (2.4.5). On taking the sum of this relation from 𝑘 = 0, · · · , 𝑁 − 1, we obtain

for any 𝑧

𝑁−1∑︁
𝑘=0

𝐹 (𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧)

≤ 1

2𝜂
‖𝑧0 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑁 − 𝑧‖2 − 𝐿

2
‖𝑧𝑁 − 𝑧𝑁−1‖2 +

𝐿

2
‖𝑧0 − 𝑧−1‖2

+ (𝐹 (𝑧𝑁) − 𝐹 (𝑧𝑁−1))
⊤(𝑧𝑁 − 𝑧) − (𝐹 (𝑧0) − 𝐹 (𝑧−1))

⊤(𝑧0 − 𝑧). (2.4.18)

Note that for any 𝑧1, 𝑧2 ∈ 𝒟, we have:

‖𝑧1 − 𝑧2‖2 ≤ 2‖𝑧1 − 𝑧*‖2 + 2‖𝑧2 − 𝑧*‖2

≤ 4‖𝑧0 − 𝑧*‖2 + 4‖𝑧0 − 𝑧*‖2

≤ 8𝐷 (2.4.19)
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where we have used the fact that ‖𝑧 − 𝑧*‖2 ≤ 2‖𝑧0 − 𝑧*‖2 ∀ 𝑧 ∈ 𝒟 along with the fact that

∀ 𝑎, 𝑏 ∈ R𝑑, ‖𝑎+ 𝑏‖2 ≤ 2‖𝑎‖2 + 2‖𝑏‖2. As 𝑧−1 = 𝑧0 and 𝜂 ≤ 1/2𝐿, for any 𝑧 ∈ 𝒟 we have

1

𝑁

𝑁−1∑︁
𝑘=0

𝐹 (𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧) ≤

1
2𝜂
‖𝑧0 − 𝑧‖2 + (𝐹 (𝑧𝑁) − 𝐹 (𝑧𝑁−1))

⊤(𝑧𝑁 − 𝑧)

𝑁

≤
𝐷(8𝐿+ 1

2𝜂
)

𝑁
. (2.4.20)

This inequality follows since:

(𝐹 (𝑧𝑁) − 𝐹 (𝑧𝑁−1))
⊤(𝑧𝑁 − 𝑧) ≤ ‖𝐹 (𝑧𝑁) − 𝐹 (𝑧𝑁−1)‖‖𝑧𝑁 − 𝑧‖

≤ 𝐿‖𝑧𝑁 − 𝑧𝑁−1‖‖𝑧𝑁 − 𝑧‖ (2.4.21)

and for any 𝑥, 𝑦 ∈ 𝒟, we have:

‖𝑥− 𝑦‖ ≤ ‖𝑥− 𝑧*‖ + ‖𝑦 − 𝑧*‖

≤ 2
√

2𝐷 (2.4.22)

Therefore, we have:

(𝐹 (𝑧𝑁) − 𝐹 (𝑧𝑁−1))
⊤(𝑧𝑁 − 𝑧) ≤ 8𝐿𝐷 (2.4.23)

which immediately gives us Inequality (2.4.20). Combining relation (2.4.20) with Proposi-

tion 2.2.8 we have that for all 𝑥, 𝑦 ∈ 𝒟

𝑓(̂︀𝑥𝑁 , 𝑦) − 𝑓(𝑥, ̂︀𝑦𝑁) ≤
𝐷(8𝐿+ 1

2𝜂
)

𝑁
. (2.4.24)

which gives us the following convergence rate estimate:

[︂
max

𝑦:(̂︀𝑥𝑁 ,𝑦)∈𝒟
𝑓(̂︀𝑥𝑁 , 𝑦) − 𝑓 ⋆

]︂
+

[︂
𝑓 ⋆ − min

𝑥:(𝑥,̂︀𝑦𝑁 )∈𝒟
𝑓(𝑥, ̂︀𝑦𝑁)

]︂
≤
𝐷(8𝐿+ 1

2𝜂
)

𝑁
,

where 𝑓 ⋆ = 𝑓(𝑥*, 𝑦*).
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Note that convergence in Theorem 2.4.2 is shown in terms of the Primal-Dual gap

max𝑦:(̂︀𝑥𝑁 ,𝑦)∈𝒟 𝑓(̂︀𝑥𝑁 , 𝑦)−min𝑥:(𝑥,̂︀𝑦𝑁 )∈𝒟 𝑓(𝑥, ̂︀𝑦𝑁 ) which is a common measure to capture closeness

to the solution in convex-concave setting (see [94]). Indeed, the duality gap is zero if and only

if (̂︀𝑥𝑁 , ̂︀𝑦𝑁 ) is a saddle point of the problem. The primal-dual gap also has the following game

theoretic interpretation. If Player 𝑥 is playing ̂︀𝑥𝑁 , then max𝑦:(̂︀𝑥𝑁 ,𝑦)∈𝒟 𝑓(̂︀𝑥𝑁 , 𝑦) quantifies how

much Player 𝑦 can gain by playing an action in the set 𝒟. Similarly, if Player 𝑦 is playinĝ︀𝑦𝑁 , then −min𝑥:(𝑥,̂︀𝑦𝑁 )∈𝒟 𝑓(𝑥, ̂︀𝑦𝑁 ) quantifies how much Player 𝑥 can gain by playing an action

in 𝒟. Therefore, the quantity max𝑦:(̂︀𝑥𝑁 ,𝑦)∈𝒟 𝑓(̂︀𝑥𝑁 , 𝑦) − min𝑥:(𝑥,̂︀𝑦𝑁 )∈𝒟 𝑓(𝑥, ̂︀𝑦𝑁) is a measure of

the sum of how much each player can gain if they unilaterally deviate from the strategy

(̂︀𝑥𝑁 , ̂︀𝑦𝑁 ). This goes to zero at the Nash Equilibrium (saddle point), where no player can gain

by unilaterally deviating from the equilibrium strategy.

Also, note that the result in Theorem 2.4.2 also implies that |𝑓(̂︀𝑥𝑁 , ̂︀𝑦𝑁) − 𝑓 *| ≤ 9𝐿𝐷/𝑁

as we show in the following corollary.

Corollary 2.4.3. Suppose Assumptions 2.2.4, 2.2.5 and 2.2.6 hold. Let {𝑥𝑘, 𝑦𝑘} be the

iterates generated by the OGDA updates in (2.4.1). Consider the definition of the averaged

iterates ̂︀𝑥𝑁 , ̂︀𝑦𝑁 in (2.2.2). If the stepsize 𝜂 satisfies the condition 0 < 𝜂 ≤ 1/2𝐿, then for all

𝑁 ≥ 1, we have

|𝑓(̂︀𝑥𝑁 , ̂︀𝑦𝑁) − 𝑓 ⋆| ≤
𝐷(8𝐿+ 1

2𝜂
)

𝑁
,

where 𝑓 ⋆ = 𝑓(𝑥*, 𝑦*).

Proof. Note that [max𝑦:(̂︀𝑥𝑁 ,𝑦)∈𝒟 𝑓(̂︀𝑥𝑁 , 𝑦) − 𝑓 ⋆] and [𝑓 ⋆ − min𝑥:(𝑥,̂︀𝑦𝑁 )∈𝒟 𝑓(𝑥, ̂︀𝑦𝑁)] are both

nonnegative. To verify note that

max
𝑦:(̂︀𝑥𝑁 ,𝑦)∈𝒟

𝑓(̂︀𝑥𝑁 , 𝑦) ≥ 𝑓(̂︀𝑥𝑁 , 𝑦*) ≥ 𝑓(𝑥*, 𝑦*)

and

min
𝑥:(𝑥,̂︀𝑦𝑁 )∈𝒟

𝑓(𝑥, ̂︀𝑦𝑁) ≤ 𝑓(𝑥*, ̂︀𝑦𝑁) ≤ 𝑓(𝑥*, 𝑦*)

(since (𝑥*, 𝑦*) ∈ 𝒟). Further, note that (̂︀𝑥𝑁 , ̂︀𝑦𝑁) belongs to the set 𝒟. Hence, it yields

𝑓(̂︀𝑥𝑁 , ̂︀𝑦𝑁) − 𝑓 ⋆ ≤ max
𝑦:(̂︀𝑥𝑁 ,𝑦)∈𝒟

𝑓(̂︀𝑥𝑁 , 𝑦) − 𝑓 ⋆ ≤
𝐷(8𝐿+ 1

2𝜂
)

𝑁
.
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Also, we can show that

𝑓 ⋆ − 𝑓(̂︀𝑥𝑁 , ̂︀𝑦𝑁) ≤ 𝑓 ⋆ − min
𝑥:(𝑥,̂︀𝑦𝑁 )∈𝒟

𝑓(𝑥, ̂︀𝑦𝑁) ≤
𝐷(8𝐿+ 1

2𝜂
)

𝑁
.

Therefore, |𝑓(̂︀𝑥𝑁 , ̂︀𝑦𝑁) − 𝑓 ⋆| ≤ 𝐷(8𝐿+ 1
2𝜂

)

𝑁
.

The result in Corollary 2.4.3 shows that the function value of the averaged iterates

generated by OGDA converges to the function value at a saddle point of problem (2.1.1)

at a sublinear rate of 𝒪(1/𝑘) when the function is smooth and convex-concave. To the

best of our knowledge, this is the first non-asymptotic complexity bound for OGDA for the

convex-concave setting. Moreover, note that without computing any extra gradient evaluation,

i.e., computing only one gradient per iteration with respect to 𝑥 and 𝑦, OGDA recovers the

convergence rate of proximal point method.

2.5 Extragradient Method

In this section, we consider finding a saddle point of a general smooth convex-concave function

using the Extra-gradient (EG) method. Similar to our analysis of the OGDA method, we

show that by interpreting the EG method as an approximation of the proximal point method

it is possible to establish a convergence rate of 𝒪(1/𝑘) through a simple analysis.

Consider the update of EG in which we first compute a set of mid-point iterates

{𝑥𝑘+ 1
2
, 𝑦𝑘+ 1

2
} using the gradients with respect to 𝑥 and 𝑦 at the current iterate

𝑥𝑘+ 1
2

= 𝑥𝑘 − 𝜂∇𝑥𝑓(𝑥𝑘, 𝑦𝑘),

𝑦𝑘+ 1
2

= 𝑦𝑘 + 𝜂∇𝑦𝑓(𝑥𝑘, 𝑦𝑘). (2.5.1)

Then, we compute the next iterates of the EG method {𝑥𝑘+1, 𝑦𝑘+1} using the gradients at

the mid-points {𝑥𝑘+ 1
2
, 𝑦𝑘+ 1

2
}, i.e.,

𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇𝑥𝑓(𝑥𝑘+ 1
2
, 𝑦𝑘+ 1

2
),

𝑦𝑘+1 = 𝑦𝑘 + 𝜂∇𝑦𝑓(𝑥𝑘+ 1
2
, 𝑦𝑘+ 1

2
). (2.5.2)
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We aim to show that EG, similar to OGDA, can be analyzed for convex-concave problems by

considering it as an approximation of the proximal point. To do so, let us use the notation

𝑧 = [𝑥; 𝑦] ∈ R𝑛+𝑚 and 𝐹 (𝑧) = [∇𝑥𝑓(𝑥, 𝑦);−∇𝑦𝑓(𝑥, 𝑦)] ∈ R𝑛+𝑚 to write the update of EG as

𝑧𝑘+ 1
2

= 𝑧𝑘 − 𝜂𝐹 (𝑧𝑘),

𝑧𝑘+1 = 𝑧𝑘 − 𝜂𝐹 (𝑧𝑘+ 1
2
). (2.5.3)

To better highlight the connection between proximal point and EG, let us focus on the

expression for the update of the mid-point iterates in EG. Considering the updates in (2.5.3),

we have

𝑧𝑘+ 1
2

= 𝑧𝑘 − 𝜂𝐹 (𝑧𝑘),

= 𝑧𝑘−1 − 𝜂𝐹 (𝑧𝑘− 1
2
) − 𝜂𝐹 (𝑧𝑘)

= 𝑧𝑘− 1
2

+ 𝜂𝐹 (𝑧𝑘−1) − 𝜂𝐹 (𝑧𝑘− 1
2
) − 𝜂𝐹 (𝑧𝑘)

where the second equality follows by replacing 𝑧𝑘 by its update 𝑧𝑘−1−𝜂𝐹 (𝑧𝑘− 1
2
), and the second

equality follows by considering the update 𝑧𝑘− 1
2

= 𝑧𝑘−1 − 𝜂𝐹 (𝑧𝑘−1). Therefore, rearranging

this equation, we can rewrite the updates as

𝑧𝑘+ 1
2

= 𝑧𝑘− 1
2
− 𝜂𝐹 (𝑧𝑘− 1

2
) − 𝜂(𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1)). (2.5.4)

One can consider the expression 𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1) as an approximation of the variation

𝐹 (𝑧𝑘+ 1
2
)−𝐹 (𝑧𝑘− 1

2
). To be more precise, if we assume that the variations 𝐹 (𝑧𝑘)−𝐹 (𝑧𝑘−1) and

𝐹 (𝑧𝑘+ 1
2
) − 𝐹 (𝑧𝑘− 1

2
) are close to each other, i.e., 𝐹 (𝑧𝑘+ 1

2
) − 𝐹 (𝑧𝑘− 1

2
) ≈ 𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1), then

the update in (2.5.4) behaves like the proximal point update with. respect to the mid-point

iterates, i.e.,

𝑧𝑘+ 1
2

= 𝑧𝑘− 1
2
− 𝜂𝐹 (𝑧𝑘+ 1

2
). (2.5.5)

We first derive a result similar to Proposition 2.3.2 for the specific case of EG iterates

(Lemma 2.5.1(a)). We then show the the boundedness of the EG iterates in Lemma 2.5.1(b)

(Note that the boundedness of the EG updates can also be deduced from the convergence
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results of [70] and [91]).

Lemma 2.5.1. Let {𝑧𝑘}, {𝑧𝑘+ 1
2
} be the iterates generated by the extra-gradient (EG) method

introduced in (2.5.3). If Assumptions 2.2.4, 2.2.5 and 2.2.6 hold and the stepsize 𝜂 satisfies

the condition 0 < 𝜂 < 1/𝐿, then:

(a) The iterates {𝑧𝑘}, {𝑧𝑘+ 1
2
} satisfy the following relation:

𝐹 (𝑧𝑘+ 1
2
)⊤(𝑧𝑘+ 1

2
− 𝑧)

≤ 1

2𝜂
‖𝑧𝑘− 1

2
− 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+ 1

2
− 𝑧‖2 +

𝐿

2
‖𝑧𝑘− 1

2
− 𝑧𝑘−1‖2

+ (𝐹 (𝑧𝑘+ 1
2
) − 𝐹 (𝑧𝑘))⊤(𝑧𝑘+ 1

2
− 𝑧) − (𝐹 (𝑧𝑘− 1

2
) − 𝐹 (𝑧𝑘−1))

⊤(𝑧𝑘− 1
2
− 𝑧). (2.5.6)

(b) The iterates {𝑧𝑘}, {𝑧𝑘+ 1
2
} stay within the compact set 𝒟 defined as

𝒟 := {(𝑥, 𝑦) | ‖𝑥− 𝑥*‖2 + ‖𝑦 − 𝑦*‖2 ≤
(︂
2 +

2

1− 𝜂2𝐿2

)︂
(‖𝑥0 − 𝑥*‖2 + ‖𝑦0 − 𝑦*‖2)}, (2.5.7)

where (𝑥*, 𝑦*) = 𝑧* ∈ 𝒵* is a saddle point of the problem defined in (2.1.1). Moreover, the

sum
∑︀∞

𝑘=0 ‖𝑧𝑘+ 1
2
− 𝑧𝑘‖2 is bounded above by

∞∑︁
𝑘=0

‖𝑧𝑘+ 1
2
− 𝑧𝑘‖2 ≤

‖𝑧0 − 𝑧*‖2

1 − 𝜂2𝐿2
. (2.5.8)

The result in Lemma 2.5.1 shows that the iterates generated by the update of EG belong

to a bounded and closed set. Now we use this result to show that the function value of the

averaged iterates converges at a sublinear rate of 𝒪(1/𝑘) to the function value at a saddle

point for the EG method in the following theorem.

Theorem 2.5.2. Suppose Assumptions 2.2.4, 2.2.5 and 2.2.6 hold. Let {𝑥𝑘+1/2, 𝑦𝑘+1/2} be

the iterates generated by the EG updates in (2.5.1)-(2.5.2). Let the initial conditions satisfy

𝑥0 = 𝑥−1/2 and 𝑦0 = 𝑦−1/2 Consider the definition of the averaged iterates ̂︀𝑥𝑁 , ̂︀𝑦𝑁 in (2.2.2)

and the compact convex set 𝒟 in (2.5.7). If the stepsize 𝜂 satisfies the condition 𝜂 = 𝜎
𝐿

for
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any 𝜎 ∈ (0, 1), then for all 𝑁 ≥ 1, we have

[︂
max

𝑦:(̂︀𝑥𝑁 ,𝑦)∈𝒟
𝑓(̂︀𝑥𝑁 , 𝑦) − 𝑓 ⋆

]︂
+

[︂
𝑓 ⋆ − min

𝑥:(𝑥,̂︀𝑦𝑁 )∈𝒟
𝑓(𝑥, ̂︀𝑦𝑁)

]︂
≤
𝐷𝐿

(︁
16 + 33

2(1−𝜎2)

)︁
𝑁

, (2.5.9)

where 𝑓 ⋆ = 𝑓(𝑥*, 𝑦*) and 𝐷 = ‖𝑥0 − 𝑥*‖2 + ‖𝑦0 − 𝑦*‖2.

Now, similar to Corollary 2.4.3, we have:

Corollary 2.5.3. Suppose Assumptions 2.2.4, 2.2.5 and 2.2.6 hold. Let {𝑥𝑘+1/2, 𝑦𝑘+1/2} be

the iterates generated by the EG updates in (2.5.1)-(2.5.2). Let the initial conditions satisfy

𝑥0 = 𝑥−1/2 and 𝑦0 = 𝑦−1/2 Consider the definition of the averaged iterates ̂︀𝑥𝑁 , ̂︀𝑦𝑁 in (2.2.2).

If the stepsize 𝜂 satisfies the condition 𝜂 = 𝜎
𝐿

for any 𝜎 ∈ (0, 1), then for all 𝑁 ≥ 1, we have

|𝑓(̂︀𝑥𝑁 , ̂︀𝑦𝑁) − 𝑓 ⋆| ≤
𝐷𝐿

(︁
16 + 33

2(1−𝜎2)

)︁
𝑁

,

where 𝑓 ⋆ = 𝑓(𝑥*, 𝑦*).

2.6 Discussion and Numerical Experiments

The main message of this work is that the OGDA algorithm obtains the same convergence rate

of 𝒪(1/𝑘), the best achievable rate (see [94]), also achieved by EG. However, the advantage

of OGDA is that we need only one gradient computation at each step, as opposed to two

gradient computations needed in EG. This shows the computational advantage that OGDA

has over EG.

We compare the performance of OGDA and EG in terms of gradient computations, on

the bilinear minimax games considered in [94], without any constraint. In particular, we

consider the following minimax problem:

min
𝑥∈R𝑛

max
𝑦∈R𝑛

𝑥⊤𝐵𝑦, (2.6.1)

where 𝐵 ∈ R𝑛×𝑛 is a sparse random matrix generated as follows. Each element is nonzero

independently with probability 𝑝. If an element is chosen to be non-zero, it is chosen uniformly
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Figure 2-1: Number of Gradient computations required (𝑥-axis) to reach any error level
(𝑦-axis) for both OGDA and EG for the problem in Equation (2.6.1)

from [−1, 1]. We compare the number of gradient computations required to reach a desired

accuracy level for this problem in Figure 2-1. As we observe, both EG and OGDA converge

to the saddle point of the bilinear problem at a sublinear rate of 𝒪(1/𝑘), but OGDA slightly

outperforms EG in terms of number of gradient evaluations. Once again, this is due to the fact

that for both descent and ascent updates of OGDA requires only one gradient computation

each, while EG requires two gradient computations for both updates at each iteration.

Note that the Lipschitz constants for the considered problem can be estimated from

data using standard line search techniques. In particular, [14] discuss a backward tracking

algorithm (ISTA with backtracking) which can be used to estimate the Lipschitz constants, in

particular 𝐿𝑥𝑥 and 𝐿𝑦𝑦. Several variants of this algorithm, including the Lipschitz line-search

algorithm (Algorithm 2) in [114], can also be used to estimate the Lipschitz constants 𝐿𝑥𝑥

and 𝐿𝑦𝑦. For the specific case of saddle point problems, a recent paper [60] proposes a line

search algorithm, to estimate the Lipschitz constant 𝐿𝑥𝑥, 𝐿𝑥𝑦, 𝐿𝑦𝑥 and 𝐿𝑦𝑦. They propose

an algorithm - Accelerated Primal Dual with backtracking (Algorithm 2.3) which uses a

backtracking procedure, similar to [81], to locally estimate the Lipschitz constants of the
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problem. Also, regarding the initial error, we would like to highlight that in the analysis

of convex minimization problems or convex-concave saddle point problems, we often have

a term of the form ‖𝑥0 − 𝑥*‖2 in the upper bound (for instance see [96, 91]) which shows

the effect of initial error. This parameter is hard to estimate in general but can be upper

bounded in specific cases. For example, if we are looking at for mixed strategies in zero-sum

games, we know that we are looking for a solution lies in the probability simplex, so we can

bound the initial error simply by the diameter of the simplex. In general, if we know that

our iterates of the algorithm are going to lie in some compact set, we can upper bound the

initial distance to the solution simply by the diameter of the compact set.

2.7 Conclusions

In this chapter, we established convergence guarantees of the optimistic gradient ascent-descent

(OGDA) and Extra-gradient (EG) methods for unconstrained, smooth, and convex-concave

saddle point problems. In particular, we showed a sublinear convergence rate of 𝒪(1/𝑘) in

terms of function value error for both OGDA and EG by interpreting them as approximate

variants of the proximal point method. This result leads to the first theoretical guarantee

for OGDA in convex-concave saddle point problems. Moreover, it provides a simple and

short proof for the convergence rate of EG in convex-concave saddle point problems when we

measure optimality gap in terms of function value.

2.8 Appendix

We present omitted proofs of this chapter in this section.

2.8.1 Proof of Theorem 2.3.1

The update of the proximal point method can be written as:

𝑧𝑘+1 = 𝑧𝑘 − 𝜂𝐹 (𝑧𝑘+1) (2.8.1)
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According to this update we can show that

‖𝑧𝑘+1 − 𝑧‖2 = ‖𝑧𝑘 − 𝑧‖2 − 2𝜂(𝑧𝑘 − 𝑧)⊤𝐹 (𝑧𝑘+1) + 𝜂2‖𝐹 (𝑧𝑘+1)‖2 (2.8.2)

Now add and subtract the inner product 2𝜂𝑧⊤𝑘+1𝐹 (𝑧𝑘+1) to the right hand side and regroup

the terms to obtain

‖𝑧𝑘+1 − 𝑧‖2 = ‖𝑧𝑘 − 𝑧‖2 − 2𝜂(𝑧𝑘+1 − 𝑧)⊤𝐹 (𝑧𝑘+1) − 2𝜂(𝑥𝑘 − 𝑥𝑘+1)
⊤𝐹 (𝑧𝑘+1)

+ 𝜂2‖𝐹 (𝑧𝑘+1)‖2. (2.8.3)

Replace 𝐹 (𝑧𝑘+1) with (1/𝜂)(−𝑧𝑘+1 + 𝑧𝑘) to obtain

‖𝑧𝑘+1 − 𝑧‖2

= ‖𝑧𝑘 − 𝑧‖2 − 2𝜂(𝑧𝑘+1 − 𝑧)⊤𝐹 (𝑧𝑘+1) + 2(𝑧𝑘 − 𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧𝑘)

+ ‖𝑧𝑘+1 − 𝑧𝑘‖2

= ‖𝑧𝑘 − 𝑧‖2 − 2𝜂(𝑧𝑘+1 − 𝑧)⊤𝐹 (𝑧𝑘+1) − ‖𝑧𝑘+1 − 𝑧𝑘‖2. (2.8.4)

On rearranging the terms, we get the following

𝐹 (𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧) =

1

2𝜂
‖𝑧𝑘 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+1 − 𝑧𝑘‖2, (2.8.5)

Now, on substituting 𝑧 = 𝑧*, and noting that 𝐹 (𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧*) ≥ 0, we have:

‖𝑧𝑘+1 − 𝑧*‖2 ≤ ‖𝑧𝑘 − 𝑧*‖2 − ‖𝑧𝑘+1 − 𝑧𝑘‖2 (2.8.6)

and the proof of boundedness is complete.

On adding Equation (2.8.5) from 𝑘 = 0, · · ·𝑁 − 1 and diving by 𝑁 , we get:

1

𝑁

𝑁∑︁
𝑘=1

𝐹 (𝑧𝑘)⊤(𝑧𝑘 − 𝑧) ≤ ‖𝑧0 − 𝑧‖2

𝜂𝑁
(2.8.7)

42



Now, using Proposition 2.2.8 we can write

|𝑓(̂︀𝑥𝑁 , ̂︀𝑦𝑁) − 𝑓 ⋆| ≤ ‖𝑥0 − 𝑥‖2 + ‖𝑦0 − 𝑦‖2

𝜂𝑁
, (2.8.8)

and the proof is complete.

2.8.2 Proof of Lemma 2.5.1

(a) Considering the updates in (2.5.4) and (2.5.5) we can write the update of mid-points in

EG as

𝑧𝑘+ 1
2

= 𝑧𝑘− 1
2
− 𝜂𝐹 (𝑧𝑘+ 1

2
) + 𝜀𝑘, (2.8.9)

where,

𝜀𝑘 = 𝜂
[︁
(𝐹 (𝑧𝑘+ 1

2
) − 𝐹 (𝑧𝑘− 1

2
)) − (𝐹 (𝑧𝑘) − 𝐹 (𝑧𝑘−1))

]︁
. (2.8.10)

Therefore, we can simplify the last term in Equation (2.3.8) of Proposition 2.3.2 as follows:

1

𝜂
𝜀𝑘

⊤(𝑧𝑘+ 1
2
− 𝑧)

=
1

𝜂
× [(𝜂𝐹 (𝑧𝑘+ 1

2
) − 𝜂𝐹 (𝑧𝑘)) − (𝜂𝐹 (𝑧𝑘− 1

2
) − 𝜂𝐹 (𝑧𝑘−1))]

⊤(𝑧𝑘+ 1
2
− 𝑧)

= (𝐹 (𝑧𝑘+ 1
2
) − 𝐹 (𝑧𝑘))⊤(𝑧𝑘+ 1

2
− 𝑧) − (𝐹 (𝑧𝑘− 1

2
) − 𝐹 (𝑧𝑘−1))

⊤(𝑧𝑘− 1
2
− 𝑧)

− (𝐹 (𝑧𝑘− 1
2
) − 𝐹 (𝑧𝑘−1))

⊤(𝑧𝑘+ 1
2
− 𝑧𝑘− 1

2
). (2.8.11)

Using Lipschitz continuity of the operator 𝐹 (Lemma 2.2.7(b)) and Young’s inequality, we

have

1

𝜂
𝜀𝑘

⊤(𝑧𝑘+ 1
2
− 𝑧)

≤ 𝐹 (𝑧𝑘+ 1
2
) − 𝐹 (𝑧𝑘))⊤(𝑧𝑘+ 1

2
− 𝑧) − (𝐹 (𝑧𝑘− 1

2
) − 𝐹 (𝑧𝑘−1))

⊤(𝑧𝑘− 1
2
− 𝑧)

+ 𝐿‖𝑧𝑘− 1
2
− 𝑧𝑘−1‖‖𝑧𝑘+ 1

2
− 𝑧𝑘− 1

2
‖

≤ 𝐹 (𝑧𝑘+ 1
2
) − 𝐹 (𝑧𝑘))⊤(𝑧𝑘+ 1

2
− 𝑧) − (𝐹 (𝑧𝑘− 1

2
) − 𝐹 (𝑧𝑘−1))

⊤(𝑧𝑘− 1
2
− 𝑧)

+
𝐿

2
‖𝑧𝑘− 1

2
− 𝑧𝑘−1‖2 +

𝐿

2
‖𝑧𝑘+ 1

2
− 𝑧𝑘− 1

2
‖2 (2.8.12)
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Substituting the upper bound in (2.8.12) into Equation (2.3.8) of Proposition 2.3.2, implies

that

𝐹 (𝑧𝑘+ 1
2
)⊤(𝑧𝑘+ 1

2
− 𝑧)

≤ 1

2𝜂
‖𝑧𝑘− 1

2
− 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+ 1

2
− 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+ 1

2
− 𝑧𝑘− 1

2
‖2

+ (𝐹 (𝑧𝑘+ 1
2
) − 𝐹 (𝑧𝑘))⊤(𝑧𝑘+ 1

2
− 𝑧) − (𝐹 (𝑧𝑘− 1

2
) − 𝐹 (𝑧𝑘−1))

⊤(𝑧𝑘− 1
2
− 𝑧)

+
𝐿

2
‖𝑧𝑘− 1

2
− 𝑧𝑘−1‖2 +

𝐿

2
‖𝑧𝑘+ 1

2
− 𝑧𝑘− 1

2
‖2. (2.8.13)

Since 𝜂 < 1/𝐿, we have − 1
2𝜂
‖𝑧𝑘+ 1

2
− 𝑧𝑘− 1

2
‖2 + 𝐿

2
‖𝑧𝑘+ 1

2
− 𝑧𝑘− 1

2
‖2 ≤ 0 and therefore

𝐹 (𝑧𝑘+ 1
2
)⊤(𝑧𝑘+ 1

2
− 𝑧)

≤ 1

2𝜂
‖𝑧𝑘− 1

2
− 𝑧‖2 − 1

2𝜂
‖𝑧𝑘+ 1

2
− 𝑧‖2 +

𝐿

2
‖𝑧𝑘− 1

2
− 𝑧𝑘−1‖2

+ (𝐹 (𝑧𝑘+ 1
2
) − 𝐹 (𝑧𝑘))⊤(𝑧𝑘+ 1

2
− 𝑧) − (𝐹 (𝑧𝑘− 1

2
) − 𝐹 (𝑧𝑘−1))

⊤(𝑧𝑘− 1
2
− 𝑧). (2.8.14)

which completes the proof of Part (a).

(b) Based on the update of EG in (2.5.3), we can write

‖𝑧𝑘 − 𝑧‖2

= ‖𝑧𝑘 − 𝑧𝑘+1 + 𝑧𝑘+1 − 𝑧‖2

= ‖𝑧𝑘+1 − 𝑧‖2 + 2(𝑧 − 𝑧𝑘+1)
⊤(𝑧𝑘+1 − 𝑧𝑘) + ‖𝑧𝑘+1 − 𝑧𝑘‖2

= ‖𝑧𝑘+1 − 𝑧‖2 + 2(𝑧 − 𝑧𝑘+ 1
2
)⊤(𝑧𝑘+1 − 𝑧𝑘)

+ 2(𝑧𝑘+ 1
2
− 𝑧𝑘+1)

⊤(𝑧𝑘+1 − 𝑧𝑘) + ‖𝑧𝑘+1 − 𝑧𝑘‖2

= ‖𝑧𝑘+1 − 𝑧‖2 + 2(𝑧 − 𝑧𝑘+ 1
2
)⊤(𝑧𝑘+1 − 𝑧𝑘) + ‖𝑧𝑘+ 1

2
− 𝑧𝑘‖2 − ‖𝑧𝑘+ 1

2
− 𝑧𝑘+1‖2. (2.8.15)

Now we proceed to bound the difference ‖𝑧𝑘+ 1
2
− 𝑧𝑘+1‖2. Using the fact that the operator 𝐹

is 𝐿-Lipschitz (Lemma 2.2.7(b)), we have

‖𝑧𝑘+ 1
2
− 𝑧𝑘+1‖2 = 𝜂2‖𝐹 (𝑧𝑘+ 1

2
− 𝐹 (𝑧𝑘)‖2

≤ 𝜂2𝐿2‖𝑧𝑘+ 1
2
− 𝑧𝑘‖2. (2.8.16)
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Substituting this upper bound back into (2.8.15) and taking 𝑧 = 𝑧* implies

‖𝑧𝑘 − 𝑧*‖2

≥ ‖𝑧𝑘+1 − 𝑧*‖2 + 2(𝑧* − 𝑧𝑘+ 1
2
)⊤(𝑧𝑘+1 − 𝑧𝑘) + (1 − 𝜂2𝐿2)‖𝑧𝑘+ 1

2
− 𝑧𝑘‖2. (2.8.17)

Further, since the operator 𝐹 is monotone, we have

(𝑧* − 𝑧𝑘+ 1
2
)⊤(𝑧𝑘+1 − 𝑧𝑘) = 𝜂(𝐹 (𝑧𝑘+ 1

2
))⊤(𝑧𝑘+ 1

2
− 𝑧*)

≥ 𝜂(𝐹 (𝑧𝑘+ 1
2
) − 𝐹 (𝑧*))⊤(𝑧𝑘+ 1

2
− 𝑧*)

≥ 0, (2.8.18)

where in the first inequality we used the fact that 𝐹 (𝑧*) = 0 (Lemma 2.2.7(c)), and the last

inequality holds due to monotonicity of 𝐹 (Lemma 2.2.7(a)). Therefore, we can replace the

inner product 2(𝑧* − 𝑧𝑘+ 1
2
)⊤(𝑧𝑘+1 − 𝑧𝑘) in (2.8.17) by its lower bound 0 to obtain

‖𝑧𝑘 − 𝑧*‖2 ≥ ‖𝑧𝑘+1 − 𝑧*‖2 + (1 − 𝜂2𝐿2)‖𝑧𝑘+ 1
2
− 𝑧𝑘‖2 (2.8.19)

The result in (2.8.19) shows that the seqeunce ‖𝑧𝑘 − 𝑧*‖2 is non-increasing. Therefore, for

any iterate 𝑘, it holds that

‖𝑧𝑘 − 𝑧*‖2 ≤ ‖𝑧0 − 𝑧*‖2. (2.8.20)

Now, for all 𝑘 ≥ 0, we have:

‖𝑧𝑘+ 1
2
− 𝑧*‖2 ≤ 2‖𝑧𝑘 − 𝑧*‖2 + 2‖𝑧𝑘+ 1

2
− 𝑧𝑘‖2

≤
(︂

2 +
2

1 − 𝜂2𝐿2

)︂
‖𝑧𝑘 − 𝑧*‖2

≤
(︂

2 +
2

1 − 𝜂2𝐿2

)︂
‖𝑧0 − 𝑧*‖2 (2.8.21)

where the first inequality follows from the fact that ∀ 𝑎, 𝑏 ∈ R𝑑, ‖𝑎 + 𝑏‖2 ≤ 2‖𝑎‖2 + 2‖𝑏‖2,

the second inequality follows from (2.8.19) and the third inequality follows from (2.8.20).
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Therefore from (2.8.20) and (2.8.21), since 0 < 1 − 𝜂2𝐿2 < 1, we see that the iterates

{𝑧𝑘}, {𝑧𝑘+ 1
2
} belong to the compact set 𝒟 defined in (2.5.7).

Now by summing both sides of (2.8.19) for 𝑘 = 0, . . . ,∞, we obtain

(1 − 𝜂2𝐿2)
∞∑︁
𝑘=0

‖𝑧𝑘+ 1
2
− 𝑧𝑘‖2 ≤ ‖𝑧0 − 𝑧*‖2 (2.8.22)

Therefore, by regrouping the terms we obtain

∞∑︁
𝑘=0

‖𝑧𝑘+ 1
2
− 𝑧𝑘‖2 ≤

‖𝑧0 − 𝑧*‖2

1 − 𝜂2𝐿2
, (2.8.23)

and the claim in (2.5.8) follows.

2.8.3 Proof of Theorem 2.5.2

Using Equation (2.5.6) of Lemma 2.5.1(a), summing it from 𝑘 = 0, · · · , 𝑁 − 1 and dividing

by 𝑁 , we obtain

1

𝑁

𝑁−1∑︁
𝑘=0

𝐹 (𝑧𝑘+ 1
2
)⊤(𝑧𝑘+ 1

2
− 𝑧)

≤
1
2𝜂
‖𝑧0−𝑧‖2 + (𝐹 (𝑧𝑁− 1

2
)−𝐹 (𝑧𝑁−1))

⊤(𝑧𝑁− 1
2
−𝑧)

𝑁
+

𝐿

2𝑁

𝑁−1∑︁
𝑘=0

‖𝑧𝑘− 1
2
−𝑧𝑘−1‖2. (2.8.24)

The bound in Equation (2.5.8) from Lemma 2.5.1(b) yields

1

𝑁

𝑁−1∑︁
𝑘=0

𝐹 (𝑧𝑘+ 1
2
)⊤(𝑧𝑘+ 1

2
− 𝑧)

≤
𝐿‖𝑧0 − 𝑧‖2 + (𝐹 (𝑧𝑁− 1

2
) − 𝐹 (𝑧𝑁−1))

⊤(𝑧𝑁− 1
2
− 𝑧)

𝑁
+

𝐿‖𝑧0 − 𝑧*‖2

2(1 − 𝜂2𝐿2)𝑁

≤
𝐿‖𝑧0 − 𝑧‖2 + 𝐿‖𝑧𝑁− 1

2
− 𝑧𝑁−1‖‖𝑧𝑁− 1

2
− 𝑧‖ + 𝐿

2(1−𝜎2)
‖𝑧0 − 𝑧*‖2

𝑁
, (2.8.25)
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where in the last inequality we use Lipschitz continuity of the operator 𝐹 (Lemma 2.2.7(b))

and the fact that 𝜂 = 𝜎
𝐿
. Note that for any 𝑧1, 𝑧2 ∈ 𝒟, we have:

‖𝑧1 − 𝑧2‖ ≤ ‖𝑧1 − 𝑧*‖ + ‖𝑧2 − 𝑧*‖

≤

√︃(︂
2 +

2

1 − 𝜂2𝐿2

)︂
‖𝑧0 − 𝑧*‖ +

√︃(︂
2 +

2

1 − 𝜂2𝐿2

)︂
‖𝑧0 − 𝑧*‖

≤ 2

√︃
𝐷

(︂
2 +

2

1 − 𝜎2

)︂
. (2.8.26)

Therefore, for any point 𝑧 in the set 𝒟, we can substitute the preceding relation in Equation

(2.8.25) to get

1

𝑁

𝑁−1∑︁
𝑘=0

𝐹 (𝑧𝑘+ 1
2
)⊤(𝑧𝑘+ 1

2
− 𝑧) ≤

𝐷𝐿
(︁

16 + 33
2(1−𝜎2)

)︁
𝑁

. (2.8.27)

Now, using Proposition 2.2.8 we have that for all 𝑥, 𝑦 ∈ 𝒟:

𝑓(̂︀𝑥𝑁 , 𝑦) − 𝑓(𝑥, ̂︀𝑦𝑁) ≤
𝐷𝐿

(︁
16 + 33

2(1−𝜎2)

)︁
𝑁

, (2.8.28)

where ̂︀𝑥𝑁 = 1
𝑁

∑︀𝑁−1
𝑘=0 𝑥𝑘+1/2 and ̂︀𝑦𝑁 = 1

𝑁

∑︀𝑁−1
𝑘=0 𝑦𝑘+1/2 which gives us the following convergence

result:

[︂
max

𝑦:(̂︀𝑥𝑁 ,𝑦)∈𝒟
𝑓(̂︀𝑥𝑁 , 𝑦) − 𝑓 ⋆

]︂
+

[︂
𝑓 ⋆ − min

𝑥:(𝑥,̂︀𝑦𝑁 )∈𝒟
𝑓(𝑥, ̂︀𝑦𝑁)

]︂
≤
𝐷𝐿

(︁
16 + 33

2(1−𝜎2)

)︁
𝑁

,

where 𝑓 ⋆ = 𝑓(𝑥*, 𝑦*).
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Chapter 3

Structured Nonconvex-Nonconcave

Problems

3.1 Introduction

In this chapter, we move our focus onto certain structured nonconvex-nonconcave minimax

problems. The main motivating example for this setting is multi-agent Reinforcement learning

(RL).

Policy gradient (PG) methods have served as the workhorse of modern RL [115, 116, 58],

and enjoy the desired properties of being scalable to large state-action spaces, stability with

function approximation, as well as sample efficiency. In fact, policy gradient methods have

achieved impressive empirical performance in multi-agent RL [78, 139], the regime where

many RL’s recent successes are pertinent to [120, 100, 118].

Despite the tremendous empirical successes, theoretical foundations of PG methods, even

for the single-agent setting, have not been uncovered until recently [45, 1, 145, 129, 85, 22].

The theoretical understanding of PG methods for multi-agent RL remains largely elusive,

except for several recent attempts [32, 151, 131, 23]. The key challenge is that in the policy

parameter space, even for the basic two-player zero-sum matrix game, the problem becomes

nonconvex-nonconcave and is computationally intractable in general [36].

In this chapter, we aim to fill in the gap by studying the global convergence of natural PG

(NPG) [68], which forms the basis for many popular PG algorithms (e.g., Proximal Policy
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Optimization (PPO)/Trust Region Policy Optimization (TRPO)), in the parameter space and

for multi-agent learning. We are interested in the setting where the agents take symmetric

roles and operate independently, as it does not require a central coordinator and it scales

favorably with the number of agents. Analysis of this setting is challenging precisely because

the concurrent updates of the agents makes the learning environment non-stationary from

one agent’s perspective. With asymmetric update rules among agents, the non-stationarity

issue can be mitigated, and the global convergence of PG methods has been established

lately in [146, 32, 151]. However, though being valid as an optimization scheme, asymmetric

update-rules might be hard to justify in game-theoretic multi-agent learning with symmetric

players. It is thus desirable to develop provably convergent PG methods with symmetric

update rules.

We focus on the last-iterate convergence of the policy parameters, which is critical to

establish in order to avoid stability issues during learning. For example, if the norm of

the parameters blow up, we might end up with precision issues in computing the gradient

and updating the parameters. This is particularly relevant to the setting with function

approximation, where we can only operate on low-dimensional parameters of the policy,

instead of the high-dimensional policy per se. Indeed, we aim to explore the convergence

property in the function approximation setting to handle large state-action spaces. Finally,

our results are also motivated from the study of nonconvex-nonconcave minimax optimization

problems, especially those with certain structures that yield global convergence of gradient-

based methods. We aim to explore such structures in multi-agent learning with parameterized

policies.

Contributions. Our contributions are three-fold. First, we identify the non-convergence

issue in the policy parameter space of natural PG methods for RL. We show that this issue

persists even with entropy regularized rewards. Second, we develop symmetric variants of the

natural PG method, i.e., both without and with the optimistic updates ([108]) and establish

the last-iterate global convergence to the Nash equilibrium in the policy parameter space.

Third, we generalize the scope of symmetric PG methods in game-theoretic multi-agent

learning, including two-player zero-sum matrix and Markov games (MGs), multi-player
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monotone games, and the corresponding linear function approximation settings under certain

assumptions, in order to handle enormously large state-action spaces, all with last-iterate

parameter convergence rate guarantees. We have also provided numerical experiments to

validate the effectiveness of our algorithms.

3.1.1 Related work

Policy gradient RL methods for games. Gradient-descent-ascent (GDA) with projection

on simplexes can be viewed as symmetric policy gradient methods for solving matrix games

with direct policy parameterization [1], which enjoys an average-iterate convergence [24]. Such

a guarantee is shared with multiplicative weight update (MWU), which is especially suitable

for repeated matrix games, and equivalent to natural PG method with tabular softmax policy

parameterization [1]. To the best of our knowledge, however, neither parameter convergence

nor function approximation has been studied in this context. For Markov games, [146, 20, 59]

have studied global convergence of PG methods for those with a linear quadratic structure;

for zero-sum Markov games, [32] established global convergence of independent PG with two-

timescale stepsizes for the tabular setting; [151] studied a double-loop natural PG algorithm

with function approximation; more recently, [2] proposed a framework of natural actor-critic

algorithms. No last-iterate convergence to the Nash equilibrium was established in these works,

and these update-rules were all asymmetric. [104] developed symmetric policy optimization

methods for certain zero-sum Markov games with structured transitions. Concurrently, [148]

proposed a policy optimization framework with fast average-iterate convergence guarantees

for finite-horizon Markov games. Finally, [74, 149, 37] have studied global convergence of

symmetric PG methods in Markov potential games recently, not focused on last-iterate or

parameter convergence.

Last-iterate convergence in constrained multi-agent learning. Several papers in-

cluding [125, 7, 66, 42] and references therein studied the last-iterate behavior of strongly

monotone games. Furthermore, [52, 53] extended this analysis to the monotone game setting.

However, these papers did not consider parametrized policies. More specifically, in the matrix

game setting with a simplex constraint, papers including [31, 130, 23] showed the last-iterate
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policy convergence of optimistic methods. However, these papers did not consider policy

parameterization or the function approximation settings, and some papers required the

assumption that the NE is unique [31, 130]. For Markov games, [151] established last-iterate

convergence, but not to NE due to asymmetric update; [131, 23] were, to the best of our

knowledge, the only last-iterate policy convergence results in Markov games with symmetric

updates. However, these works did not study the function approximation setting, or monotone

games beyond the two-player zero-sum case. Also, though having greatly inspired our work,

the regularization idea in [23] alone cannot prevent the non-convergence issue of the policy

parameters from happening (see §4.2). Our goal, in contrast, is to study the (last-iterate)

convergence of the actual policy parameters, and for more general multi-agent learning

settings beyond the tabular zero-sum one.

Nonconvex-nonconcave minimax optimization. It is shown that for general nonconvex-

nonconcave minimax optimization, even local solution concepts [67] may not exist, and finding

them can be intractable [36]. Thus, specific structural properties have to be exploited to design

efficient algorithms with global convergence. [77, 123, 99, 135] have studied the nonconvex-

(strongly)-concave or the nonconvex-Polyak-Lojasiewicz (PL) or PL-PL settings, with global

convergence rate guarantees. The algorithms in these papers are all asymmetric in that they

run the inner loop (which solves the maximization problem) multiple times (or on a faster

timescale with larger stepsizes) to reach an approximate solution of the inner optimization

problem, and then run one step of descent on the outer problem (or on a slower timescale

with smaller stepsizes). Closely related to one motivation of our work, [128, 48, 87] studied

nonconvex-nonconcave minimax problem with hidden convexity structures, and show that

GDA can fail to converge globally even so. Interestingly, the benefit of regularization (more

generally, strict convexity), and natural gradient flow under Fisher information geometry,

were also examined in [48, 87] to establish some positive convergence results. Different from

our work, the dynamics there are in continuous-time, and the parameterization in [48] is

decoupled by dimension, and the convergence rate in the perturbed game is not global. These

conditions prevent the application of their results and proof techniques to our setting directly.

Also, last-iterate finite-time rates of the iterates were not established in [87].
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Notation. For vector 𝑣 ∈ R𝑑, we use [𝑣]𝑎 with 𝑎 ∈ {1, 2, · · · , 𝑑} to denote the 𝑎-th element

of 𝑣. We use ‖𝑣‖ to denote the ℓ2-Euclidean norm of a vector 𝑣 and ‖𝑄‖ to denote the

ℓ2-induced norm of matrix 𝑄. We also use ‖𝑄‖∞ to denote the infinity norm and ‖𝑄‖𝐹
to denote the Frobenius norm of matrix 𝑄. For a finite-set 𝒮, we use ∆(𝒮) to denote the

simplex over 𝒮. We use 1 to denote the matrix of all ones of appropriate dimension. For any

positive integer 𝑛, we use [𝑛] to denote the set {1, · · · , 𝑛}. We use the subscript −𝑖 to denote

the quantities of all players other than player 𝑖. KL(𝑝‖𝑞) denotes the KL divergence between

two probability distributions 𝑝 and 𝑞. For a matrix 𝐶, we use 𝐶 = [𝐴 | 𝐵] to denote the

concatenation of the component matrices 𝐴 and 𝐵. For two vectors 𝑥, 𝑦 ∈ R𝑑, 𝑥 · 𝑦 denotes

their inner-product, i.e., 𝑥⊤𝑦. We use 𝐼𝑑 to denote an identity matrix of dimension 𝑑.

3.2 Motivation & Background

In this section, we introduce the background of the natural PG methods we study, with

two-player1 zero-sum matrix games being a motivating example.

Zero-sum matrix games. Two-player zero-sum matrix games are characterized by a tuple

(𝒜,ℬ, 𝑄), where 𝑄 ∈ R𝑛×𝑛 denotes the cost2 matrix, 𝒜 and ℬ denote the action spaces of

players 1 and 2, respectively. For notational simplicity, we assume both action spaces have

cardinality 𝑛, i.e., |𝒜| = |ℬ| = 𝑛. Note that our results can be readily generalized to the

setting with different action-space cardinalities. For convenience, we use indices of the actions

to denote the actions, i.e., 𝒜 = ℬ = {1, 2, · · · , 𝑛}, without loss of generality. Note that the

actual actions of both players for the same index need not to be the same, and the cost

matrix 𝑄 needs not to be symmetric. The problem can thus be formulated as a minimax

(i.e., saddle-point optimization) problem

min
𝑔∈Δ(𝒜)

max
ℎ∈Δ(ℬ)

𝑓(𝑔, ℎ) := 𝑔⊤𝑄ℎ, (3.2.1)

1Hereafter, we use player and agent interchangeably.
2Note that we can also model it as a payoff, with a negative sign.
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where 𝑔 and ℎ are referred to as the policies/strategies of the players. By Minimax Theorem

[98], the min and max operators in (3.2.1) can be interchanged, and the solution concept of

Nash equilibrium (NE), which is defined as a pair of policies (𝑔⋆, ℎ⋆) such that

𝑓(𝑔, ℎ⋆) ≥ 𝑓(𝑔⋆, ℎ⋆) ≥ 𝑓(𝑔⋆, ℎ), for any (𝑔, ℎ) ∈ ∆(𝒜) × ∆(ℬ)

always holds. In particular, at the Nash equilibrium, the players execute the best-response

policies of each other, and have no incentive to deviate from it.

Policy parameterization. To develop policy gradient methods for multi-player learning,

the policies (𝑔, ℎ) ∈ ∆(𝒜)×∆(ℬ) are parameterized by some parameters 𝜃 and 𝜈. Specifically,

consider the following softmax parameterization that is common in practice: for any 𝑎 ∈ 𝒜

and 𝑏 ∈ ℬ

𝑔𝜃(𝑎) =
𝑒𝑝𝜃(𝑎)∑︀

𝑎′∈𝒜 𝑒
𝑝𝜃(𝑎′)

, ℎ𝜈(𝑏) =
𝑒𝑞𝜈(𝑏)∑︀

𝑏′∈ℬ 𝑒
𝑞𝜈(𝑏′)

, (3.2.2)

where 𝜃, 𝜈 ∈ R𝑑 for some integer 𝑑 > 0, 𝑝𝜃, 𝑞𝜈 : R𝑑 → R𝑛 are two differentiable functions.

Note that 𝑔𝜃(𝑎), ℎ𝜈(𝑏) > 0 for any bounded 𝑝𝜃, 𝑞𝜈 , and
∑︀

𝑎∈𝒜 𝑔𝜃(𝑎) =
∑︀

𝑏∈ℬ ℎ𝜈(𝑏) = 1. This

parameterization gives the following minimax problem for the zero-sum matrix game:

min
𝜃∈R𝑛

max
𝜈∈R𝑛

𝑓(𝜃, 𝜈) := 𝑔⊤𝜃 𝑄ℎ𝜈 , (3.2.3)

where by a slight abuse of notation, we use 𝑓(𝜃, 𝜈) to denote 𝑓(𝑔𝜃, ℎ𝜈). In this section and

§3.3, we consider the tabular softmax parameterization where 𝑝𝜃 = 𝜃 ∈ R𝑛 and 𝑞𝜈 = 𝜈 ∈ R𝑛.

In §3.4, we consider the setting with function approximation where 𝑑 < 𝑛.

The benefits of softmax parameterization are that: 1) it transforms a constrained problem

over simplexes to an unconstrained one, making it easier to implement; 2) it readily incorpo-

rates function approximation to deal with large spaces (see §3.4). On the other hand, this

policy parameterization makes the optimization problem (3.2.3) more challenging to solve.

Indeed, the minimax problem (3.2.3) becomes a nonconvex-nonconcave problem in 𝜃 and 𝜈,

even with the tabular parameterization as we will show later in Lemma 3.2.2.
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Remark 3.2.1 (Hidden bilinear problem). Note that Problem (3.2.3), which resembles a

bilinear zero-sum game, in fact falls into the class of hidden bilinear minimax problems

discussed in [128] (or more generally the hidden convex-concave games studied in [48, 87]). It

was shown in [48] that for general smooth functions of 𝑔𝜃 and ℎ𝜈 , vanilla gradient descent-

ascent exhibits a variety of behaviors antithetical to convergence to the solutions. We here

instead, show that for the specific softmax parameterization, and for certain variants of the

vanilla gradient-descent-ascent method, the last-iterate convergence rate of the parameters 𝜃

and 𝜈 can be established.

Natural PG & Non-convergence pitfall. Before proceeding further, we first introduce

the regularized game:

min
𝜃∈R𝑛

max
𝜈∈R𝑛

𝑓𝜏 (𝜃, 𝜈) := 𝑔⊤𝜃 𝑄ℎ𝜈 − 𝜏ℋ(𝑔𝜃) + 𝜏ℋ(ℎ𝜈), (3.2.4)

where the cost of both players is regularized by the Shannon entropy of the policies, with

𝜏 > 0 being the regularization parameter, and ℋ(𝜋) = −
∑︀

𝑎∈𝒜 𝜋(𝑎) log(𝜋(𝑎)) for 𝜋 on a

simplex. The entropy regularization, which is commonly used in single-player RL, enjoys the

benefits of both encouraging exploration and accelerating convergence [97, 85]. Our hope is

also to exploit the benefits of entropy regularization in the multi-player setting. Indeed, the

regularized cost traces its source in the game theory literature [84], to model the imperfect

knowledge of the cost matrix 𝑄. In the next lemma, we show that the problem in Equation

3.2.4 can be of the nonconvex-nonconcave type:

Lemma 3.2.2. The minimax problem (3.2.4) is nonconvex in 𝜃 and nonconcave in 𝜈, even if

𝑝𝜃 = 𝜃 and 𝑞𝜈 = 𝜈.

Note that the nonconvexity in the parameters remains even when we regularize with the

entropy of the policy, i.e., 𝜏 > 0.

Motivated by the successes of natural policy gradient [68] and its variants, as PPO/TRPO

[115, 116], in RL practice, we consider the natural PG descent-ascent update for (3.2.4),
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which is given by

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 · 𝐹 †
𝜃 (𝜃𝑡) ·

𝜕𝑓𝜏 (𝜃𝑡, 𝜈𝑡)

𝜕𝜃
= (1− 𝜂𝜏)𝜃𝑡 − 𝜂𝑄ℎ𝜈𝑡 + 𝜂𝜏

(︂
log

∑︁
𝑎′∈𝒜

𝑒𝜃𝑡(𝑎
′) − 1

)︂
, (3.2.5)

𝜈𝑡+1 = 𝜈𝑡 + 𝜂 · 𝐹 †
𝜈 (𝜈𝑡) ·

𝜕𝑓𝜏 (𝜃𝑡, 𝜈𝑡)

𝜕𝜈
= (1− 𝜂𝜏)𝜈𝑡 + 𝜂𝑄⊤𝑔𝜃𝑡 − 𝜂𝜏

(︂
log
∑︁
𝑏′∈ℬ

𝑒𝜈𝑡(𝑏
′) − 1

)︂
, (3.2.6)

where 𝐹𝜃(𝜃) = E𝑎∼𝑔𝜃 [(∇𝜃 log 𝑔𝜃(𝑎))(∇𝜃 log 𝑔𝜃(𝑎))⊤] and 𝐹𝜈(𝜈) =

E𝑏∼ℎ𝜈 [(∇𝜈 log ℎ𝜈(𝑏))(∇𝜈 log ℎ𝜈(𝑏))⊤] are the Fisher information matrices, 𝑀 † denotes

the pseudo-inverse of the matrix 𝑀 , and 𝜂 > 0 is the stepsize. The derivations for natural

policy gradient can be found in §3.9.1 for completeness.

Unfortunately, the vanilla NPG update (3.2.5)-(3.2.6) may fail to converge in the parameter

space for any stepsize 𝜂 > 0. The key reason for the failure is that the mappings represented

in (3.2.5)-(3.2.6) may not have a fixed point for a general 𝑄 and 𝜏 (which could be the

only limit point for this dynamics). In fact, this issue persists even when the regularization

parameter 𝜏 = 0. We formalize this pitfall in the following lemma, with its proof deferred to

appendix.

Lemma 3.2.3 (Pitfall of vanilla NPG). There exists a game (3.2.4) with 𝜏 ≥ 0 and |ℬ| = 1,

such that the updates (3.2.5)-(3.2.6) do not converge for any 𝜂 > 0.

Remarkably, we emphasize that our Lemma 3.2.3, by construction, also even applies to

the single-agent setting, with a regularized cost and the NPG update, as studied recently in

[22, 72, 140]. These works only focus on the convergence in the policy space, which does not

imply the desired convergence in the policy parameter space. The later becomes especially

relevant in the function approximation setting, as we will study later. Finally, we remark that,

the non-convergence here also should not be confused with the last-iterate non-convergence

of no-regret learning algorithms for solving bilinear zero-sum games [35, 9], as our example is

essentially a single-agent case. We summarize the importance and motivation of establishing

parameter convergence as follows.

Importance of Parameter Convergence:
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Numerical instability: Prior works were only able to show the convergence of values and/or

policies, and the convergence behavior of policy parameters was unclear (or overlooked).

Arguably, having (last-iterate) parameter convergence is the strongest type of convergence

among the three. In practice, having parameters blow-up to infinity can cause numerical

issues. For example, once the size of the parameter crosses a threshold (say 264 for an integer

in a 64-bit operating system), there would be overflow issues, and the stored parameter

would be void, and NaN (not a number) would be returned by the program. This blow-up

would then cause trouble in recovering the policy, or approximating the policy with arbitrary

accuracy. In order to circumvent this issue, a common practice in Neural Network training is

to do Clipping/Projection. In fact, ensuring the stability of the model is very important in

deep learning. Specifically, consider max𝜃∈R𝑛 𝑞⊤𝑔𝜃 + 𝜏ℋ(𝑔𝜃), where we know that under the

NPG updates, 𝑔𝜃 → 𝑔⋆ while 𝜃 could blow up to infinity. One could clip the parameter 𝜃 to

some large constant 𝜃max, i.e., solving max‖𝜃‖∞≤𝜃max 𝑞
⊤𝑔𝜃 + 𝜏ℋ(𝑔𝜃) instead. For concreteness,

let 𝑛 = 2, 𝜏 = 1, 𝜃max = 80 and 𝑞 = [−2,−3]. The optimal solution is then given by

𝑔⋆𝑖 ∝ exp(𝑞𝑖) for 𝑖 = 1, 2. On running the vanilla NPG algorithm, since we do weight clipping,

the algorithm converges to 𝜃 = [𝜃max, 𝜃max] corresponding to the distribution [1/2, 1/2] ̸= 𝑔⋆.

Meanwhile, the modified NPG we propose converges to 𝜃 = [−2,−3] (see Theorem 3.3.4)

which exactly corresponds to the optimal solution 𝑔⋆. Hence, in practice where the norm of

the (neural network) parameters is bounded, one might not obtain policy convergence using

vanilla NPG as desired, while our proposed algorithm works.

Nonconvex-nonconcave minimax optimization: The second reason comes from a

minimax optimization perspective of solving (3.2.3). We view optimization over the parameter

space as an interesting nonconvex-nonconcave minimax optimization problem with a hidden

structure (See Lemma 3.2.2). To the best of our knowledge, we are the first to provide a

symmetric discrete-time algorithm to solve certain nonconvex-nonconcave problem (and more

generally non-monotone variational inequalities) with last-iterate convergence rates, even

including the specialized settings (like the ones with Polyak-Łojasiewicz condition [99, 135]).

Function approximation (FA): Parameter convergence becomes crucial in FA settings

(used in practice). Here, the policy lies in a high-dimensional space (or even an infinite-
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dimensional space if the actions are continuous), which we simply do not have access to

and/or cannot operate on. The way practitioners run PG methods is to just operate on the

low-dimensional policy parameter space. Thus, parameter convergence is necessary to design

meaningful stopping criteria for optimization algorithms. If parameters explode to infinity,

we cannot decide on how close we are to convergence, and the numerical issue mentioned

before would cause trouble in recovering the policy.

3.3 Warm-up: (Optimistic) NPG for Matrix Games

To address the pitfall above about parameter convergence, we introduce two variants of the

vanilla NPG (3.2.5)-(3.2.6), and show their convergence for solving matrix games.

3.3.1 NPG for Matrix Games

We first introduce the following variant of the vanilla NPG update:

𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂𝑄ℎ𝜈𝑡 , (3.3.1)

𝜈𝑡+1 = (1 − 𝜂𝜏)𝜈𝑡 + 𝜂𝑄⊤𝑔𝜃𝑡 , (3.3.2)

where we removed the last term in (3.2.5)-(3.2.6), respectively. Note that these updates

correspond to the popular Multiplicative Weights Update (MWU) for the regularized game

in policy space (we succinctly represent 𝑔𝜃𝑡 and ℎ𝜈𝑡 as 𝑔𝑡 and ℎ𝑡, respectively), i.e.,

𝑔𝑡+1(𝑎) ∝ 𝑔𝑡(𝑎)(1−𝜂𝜏)𝑒−𝜂[𝑄ℎ𝑡]𝑎 ,

ℎ𝑡+1(𝑏) ∝ ℎ𝑡(𝑏)
(1−𝜂𝜏)𝑒𝜂[𝑄

⊤𝑔𝑡]𝑏 . (3.3.3)

First, we provide a convergence result for the updates in Equations (3.3.1)-(3.3.2), the

non-optimistic version, both in terms of policy as well as parameters. In order to do so,

we need to first show that the iterates of the regularized MWU in Equations (3.3.1)-(3.3.2)

ensure that the policies stay bounded away from the boundary of the simplex. We show this

in the following lemma:
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Lemma 3.3.1. The policies corresponding to the iterates of regularized MWU in Equations

(3.3.1)-(3.3.2) with stepsize 𝜂 < 1/𝜏 stay within a set ∆′ ⊂ ∆ which is bounded away from the

boundary of the simplex, i.e., ∀𝑥 ∈ ∆′ with 𝑥 = (𝑥1, · · · , 𝑥𝑛)⊤, and for all 𝑖 ∈ [𝑛], 𝑥𝑖 ≥ 𝛿 > 0

for some 𝛿.

Since the iterates of the policies lie within ∆′, a closed and bounded set, and the regularized

cost is continuously differentiable with respect to the policies, we let 𝐿 denote the smoothness

constant of the regularized cost in the policy space, i.e.,

‖(𝑀𝑧1 + 𝜏∇ℋ(𝑧1)) − (𝑀𝑧2 + 𝜏∇ℋ(𝑧2))‖ ≤ 𝐿‖𝑧1 − 𝑧2‖, ∀𝑧1, 𝑧2 ∈ 𝒵 ′, (3.3.4)

where 𝑧 = [𝑔;ℎ], 𝒵 ′ ∈ ∆′ × ∆′ and with a slight abuse of notation, we define ∇ℋ(𝑧) =

[∇𝑔ℋ(𝑔);∇ℎℋ(ℎ)], and also, we define the matrix 𝑀 =

⎛⎝ 0 𝑄

−𝑄⊤ 0

⎞⎠.

Finally, the entropy regularized optimization problem in the policy space can be formulated

as:

min
𝑔∈Δ(𝒜)

max
ℎ∈Δ(ℬ)

= 𝑔⊤𝑄ℎ− 𝜏ℋ(𝑔) + 𝜏ℋ(ℎ). (3.3.5)

Now, we use this to derive the policy and parameter convergence of the MWU updates in

Equations (3.3.1)-(3.3.2) in the following theorem.

Theorem 3.3.2. The solution (𝑔⋆, ℎ⋆) to the problem (3.3.5) is unique. Furthermore, let

𝜃⋆ = −𝑄ℎ⋆

𝜏
and 𝜈⋆ = 𝑄⊤𝑔⋆

𝜏
. Then on running Equations (3.3.1)-(3.3.2) with the stepsize

satisfying 0 < 𝜂 ≤ 𝜏/𝐿2, we have:

KL(𝑧*‖𝑧𝑡+1) ≤
(︁

1 − 𝜂𝜏

2

)︁
KL(𝑧*‖𝑧𝑡), (3.3.6)

and

‖𝜃𝑡+1 − 𝜃⋆‖2 + ‖𝜈𝑡+1 − 𝜈⋆‖2 ≤ (1 − 𝜂𝜏/4)𝑡

(︃
‖𝜃0 − 𝜃⋆‖2 + ‖𝜈0 − 𝜈⋆‖2 +

4𝐶

𝜂𝜏

)︃
, (3.3.7)

where 𝐶 =
(︁

1 + 1
𝜂𝜏

(1 − 𝜂𝜏)2
)︁

4𝜂2‖𝑄‖2∞KL(𝑧⋆‖𝑧0). Here 𝑧0 = (𝑔𝜃0 , ℎ𝜈0) and 𝑧⋆ = (𝑔⋆, ℎ⋆).
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To the best of our knowledge, this is the first policy convergence guarantee for NPG

(without optimism) for regularized matrix games. As the theorem above shows, parameter

convergence can be established as well. In other words, though the vanilla NPG descent-ascent

diverges for Problem (3.2.4), the variant we propose (Equations (3.3.1)-(3.3.2)) implicitly

regularizes the parameter iterates to converge to a particular solution, in last-iterate. Recall

from Lemma 3.2.2 that Problem (3.2.4) is a nonconvex-nonconcave minimax problem and

there have been no convergence guarantees, to the best of our knowledge, of any symmetric

and simultaneous-update algorithms in general (see [135, 105, 77] and references therein as

examples for some structured nonconvex-nonconcave problems). From Theorem 3.3.2, the

rate we can hope to achieve with NPG is 𝒪(𝜅2 log(1/𝜖)) (number of steps to reach a point

𝜖 close to the solution), where 𝜅 is the condition number 𝐿/𝜏 of the problem. In the next

subsection, we see how adding optimism ([108]) will improve this rate of convergence.

3.3.2 Optimistic NPG (ONPG) for Matrix Games

In this subsection, we study the variant of the NPG updates in Equations (3.3.1)-(3.3.2) along

with optimism [103, 108, 35, 31, 90]. In particular, we introduce the intermediate iterates

(𝜃𝑡, 𝜈𝑡), and the following optimistic variant of the NPG (here (𝜃0, 𝜈0) is initialized as (𝜃0, 𝜈0)):

𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂𝑄ℎ𝜈𝑡 , 𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂𝑄ℎ𝜈𝑡+1

𝜈𝑡+1 = (1 − 𝜂𝜏)𝜈𝑡 + 𝜂𝑄⊤𝑔𝜃𝑡 , 𝜈𝑡+1 = (1 − 𝜂𝜏)𝜈𝑡 + 𝜂𝑄⊤𝑔𝜃𝑡+1
.

This optimistic update is motivated by the success of optimistic gradient methods in saddle-

point problems recently analyzed in several papers including [64, 89, 90]. Note that our

algorithm is symmetric in 𝜃 and 𝜈 updates and both players update simultaneously. The

update rules are also tabulated in Algorithm 1.

Remark 3.3.3 (Connections to the literature). Note that the natural PG update rule in

Equations (3.3.1)-(3.3.2) has a close relationship to the multiplicative weight update rule

[49, 5] in the policy space (𝑔𝜃, ℎ𝜈), see Section C.3 in [1] for a detailed discussion. Similarly,

the optimistic NPG update in Algorithm 1 also relates to the optimistic MWU update [31].

In fact, recent works [130, 23] have shown the last-iterate policy convergence of OMWU for
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zero-sum matrix games (with [130] relying on the uniqueness assumption of the NE). Our

goal, in contrast, is to study the (last-iterate) convergence behavior of the actual policy

parameters (𝜃, 𝜈), and go beyond the tabular zero-sum setting.

Inspired by the results which show that adding optimistic updates improves convergence

rates [108], we next explore our modified NPG updates with optimism, and show that the

convergence rate does in fact improves (in line with the comparison of the performance of

GDA and optimistic GDA, see e.g., [42]).

In the next theorem, we show that our Optimistic NPG Algorithm (Algorithm 1) in fact

converges linearly in last-iterate to a unique point in the set of NE in the parameter space, at

a faster rate3 than the non-optimistic counterpart in Equations (3.3.1)-(3.3.2). The results

are formally stated below.

Theorem 3.3.4. Let 𝜃⋆ = −𝑄ℎ⋆

𝜏
and 𝜈⋆ = 𝑄⊤𝑔⋆

𝜏
, where 𝑔⋆ and ℎ⋆ are the solutions to

the regularized game (3.2.4). Then on running Algorithm 1 with the stepsize satisfying

0 < 𝜂 ≤ min
{︁

1
2𝜏+2‖𝑄‖∞ ,

1
4‖𝑄‖∞

}︁
, we have:

‖𝜃𝑡+1 − 𝜃⋆‖2 + ‖𝜈𝑡+1 − 𝜈⋆‖2 ≤ (1 − 𝜂𝜏/2)𝑡𝑉0, (3.3.8)

where 𝑉0 = ‖𝜃0 − 𝜃⋆‖2 + ‖𝜈0 − 𝜈⋆‖2 + 2𝐶
𝜂𝜏

and 𝐶 =
(︁

1 + 1
𝜂𝜏

(1 − 𝜂𝜏)2
)︁

4𝜂2‖𝑄‖2∞KL(𝑧⋆‖𝑧0).

Here 𝑧0 = (𝑔𝜃0 , ℎ𝜈0) and 𝑧⋆ = (𝑔⋆, ℎ⋆).

This result shows that the specific hidden bilinear minimax problem we are dealing with

does not fall into the spurious categories discussed in [128], if we resort to the (optimistic)

natural PG update. Note that achieving parameter convergence is a non-trivial task since we

are dealing with a nonconvex-nonconcave minimax problem (see Lemma 3.2.2) The proof

relies on the specific structure of the softmax policy parametrization and the construction of

a novel Lyapunov function (see §3.9.2 for more details). Next, we show how the optimistic

NPG algorithm solves the original matrix game without regularization.

3Note that we say that the optimistic version achieves a faster rate, since the range of stepsizes which
permits convergence is much larger for the optimistic variant. This can be noted from the fact that 𝐿 in
equation (3.3.4) will be larger than ‖𝑄‖∞ + 𝜏 .
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Corollary 3.3.5. If we run the non-optimistic variant of NPG in Equations (3.3.1)-(3.3.2) or

the optimistic version in Algorithm 1 for time 𝑇 = 𝒪
(︁

log𝑛
𝜂𝜖

log
(︀
1
𝜖

)︀)︁
and set 𝜏 = 𝜖/(8 log 𝑛),

we have that the output (𝜃𝑇 , 𝜈𝑇 ) is an 𝜖-NE of the original unregularized Problem (3.2.3).

We extend these results to simple function approximation settings in the next section.

3.4 Matrix Games with Function Approximation

To handle games with excessively large action spaces, we resort to policy parameterization

with function approximation. In particular, consider the following problem:

min
𝜃∈R𝑑

max
𝜈∈R𝑑

𝑔⊤𝜃 𝑄ℎ𝜈 , (3.4.1)

where 𝑔𝜃 and ℎ𝜈 are both parameterized in a softmax way as in (3.2.2), with the linear function

class 𝑝𝜃(𝑎) = 𝜑⊤
𝑎 𝜃 (also called log-linear policy in [1]), where 𝜑𝑎 ∈ R𝑑 is a low-dimensional

feature representation of the action (see [18, 1]) (Note that usually 𝑑 < 𝑛). We define:

Φ = [𝜑1, 𝜑2, · · · , 𝜑𝑛] ∈ R𝑑×𝑛. (3.4.2)

Assumption 3.4.1. Φ is a full rank matrix. In particular, assume that Φ = [𝑀 | 0], where

𝑀 ∈ R𝑑×𝑑 is an invertible 𝑑× 𝑑 square matrix.

Note that the full-rankness of Φ is a standard assumption (see Assumption 6.2 in [1]). It

essentially requires the features to be the bases of some low-dimensional space. Furthermore,

the results also extend to the case where the matrix Φ is of the from [𝑀 | 𝑐1] where 1 is the

matrix of all 1s of appropriate dimension, and 𝑐 is any constant. This particular structure

of the feature matrix, though being restrictive, ensures that the constraint set of policies is

convex, as shown next, otherwise the minimax theorem of min max = max min might not

hold, i.e., the Nash equilibrium for the parameterized game does not exist. Moreover, the

assumption is also not as restrictive as it seems. For example, in applications of self-driving

car and robotics, only a subset of actions (steering angles) is essential in controlling the agent,

with other actions being insignificant/redundant. Our feature matrix encodes patterns like
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these. Moreover, as a first step studying policy optimization in multi-agent learning with

function approximation, we start with this simpler setting. Extending the ideas to more

general FA settings is an interesting direction worth exploring.

Remark 3.4.2. Note that the results in this section are presented for the case where the

feature matrix is identical for both players purely for simplification of notation. The results

continue to hold for the case with asymmetric features as well (as long as the feature matrix

also satisfies Assumption 3.4.1.

As motivated in the previous section, we study the following regularized problem in order

to solve (3.4.1) efficiently:

min
𝜃∈R𝑑

max
𝜈∈R𝑑

𝑔⊤𝜃 𝑄ℎ𝜈 − 𝜏ℋ(𝑔𝜃) + 𝜏ℋ(ℎ𝜈), (3.4.3)

where ℋ denotes the entropy function and 𝜏 > 0 is the regularization parameter. Note that

this problem can still be nonconvex-nonconcave in general, given the example in §3.3 as a

special case.

We define the solution to this problem next, the Nash equilibrium in the parameterized

policy classes, i.e., in-class NE.

Definition 3.4.3 (𝜖-in-class Nash equilibrium). The policy parameter (̃︀𝜃, ̃︀𝜈) is an 𝜖-Nash

equilibrium of the matrix game with function approximation (or 𝜖-in-class NE), if it satisfies

that for all 𝑖 ∈ [𝑁 ],

𝑔⊤̃︀𝜃 𝑄ℎ𝜈 − 𝜖 ≤ 𝑔⊤̃︀𝜃 𝑄ℎ̃︀𝜈 ≤ 𝑔⊤𝜃 𝑄ℎ̃︀𝜈 + 𝜖, ∀𝜃, 𝜈 ∈ R𝑑. (3.4.4)

Furthermore, when 𝜖 = 0, we refer to it as the in-class Nash Equilibrium.

3.4.1 Equivalent problem characterization

In this subsection, we study the regularized problem (3.4.3) under a log-linear parametrization

and find an equivalent problem in the tabular case.

First, in the following lemma, we characterize the set of distributions covered by this

parametrization, and study the equivalent problem in the space of probability vectors.
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Lemma 3.4.4. Under Assumption 3.4.1, the log-linear parametrization in Equation (3.2.2)

covers all distributions in the following convex set:

̃︀∆ = {𝜇 : 𝜇 ∈ ∆, 𝜇𝑑+1 = 𝜇𝑑+2 = · · · = 𝜇𝑛}, (3.4.5)

and Problem (3.4.3) is equivalent to

min
𝑔𝜃∈̃︀Δ max

ℎ𝜈∈̃︀Δ 𝑔⊤𝜃 𝑄ℎ𝜈 − 𝜏ℋ(𝑔𝜃) + 𝜏ℋ(ℎ𝜈). (3.4.6)

Lemma 3.4.4 characterizes the set of distributions which can be represented by log-linear

parametrization. Therefore, when we try to solve the matrix game with such function

approximation, the best we can hope for is to find an equilibrium within the set ̃︀∆.

Next, we characterize the Nash equilibrium of the regularized Problem (3.4.3) in the

function approximation setting, and show its equivalence to another problem in the tabular

softmax setting.

Theorem 3.4.5. An in-class Nash equilibrium (𝜃⋆, 𝜈⋆) of Problem (3.4.3) under the function

approximation setting exists, and any such in-class NE satisfies:

𝑔𝜃⋆(𝑎) =
𝑒−

[Ψ⊤𝑄Ψℎ𝜈⋆ ]𝑎
𝜏∑︀

𝑎′ 𝑒
−

[Ψ⊤𝑄Ψℎ𝜈⋆ ]𝑎′
𝜏

, ℎ𝜈⋆(𝑎) =
𝑒

[Ψ⊤𝑄⊤Ψ𝑔𝜃⋆ ]𝑎
𝜏∑︀

𝑎′ 𝑒
[Ψ⊤𝑄⊤Ψ𝑔𝜃⋆ ]𝑎′

𝜏

,

where Ψ ∈ R𝑛×𝑛 is defined as:

Ψ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐼𝑑 0

0

1
𝑛−𝑑

· · · 1
𝑛−𝑑

· · · · · · · · ·
1

𝑛−𝑑
· · · 1

𝑛−𝑑

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.4.7)
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Furthermore, Problem (3.4.3) is equivalent to4

min
𝑔𝜃∈Δ

max
ℎ𝜈∈Δ

𝑔⊤𝜃 Ψ⊤𝑄Ψℎ𝜈 − 𝜏ℋ(𝑔𝜃) + 𝜏ℋ(ℎ𝜈). (3.4.8)

Note that the matrix Ψ defined in Theorem 3.4.5 is the invariant matrix for the set ̃︀∆,

i.e., Ψ𝜇 = 𝜇, ∀𝜇 ∈ ̃︀∆.

3.4.2 Optimistic NPG algorithm

From Section 3.3, we see that the optimistic version of NPG leads to faster convergence (of

both policy and parameters). This motivates us to focus on the optimistic version of the

methods. In this subsection, (and the ones that follow), we focus on optimistic methods

instead of their non-optimistic counterparts. Note that similar to Section 3.3, we can derive

convergence rates for the non-optimistic versions as well, which would be slower than the

corresponding optimistic versions.

As Theorem 3.4.5 characterizes the solution to the function approximation setting to that

of the tabular softmax setting, we modify the algorithm for function approximation setting

as follows:

𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂[(𝑀⊤)−1 | 0] ̃︀𝑃𝑄ℎ𝜈𝑡 ,
𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂[(𝑀⊤)−1 | 0] ̃︀𝑃𝑄ℎ𝜈𝑡+1 , (3.4.9)

and a similar update for 𝜈 to reach the solution of the regularized problem under a log-linear

parametrization. Here, the matrix ̃︀𝑃 is defined as

̃︀𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐼𝑑

−1
𝑛−𝑑

· · · −1
𝑛−𝑑

· · · · · · · · ·
−1
𝑛−𝑑

· · · −1
𝑛−𝑑

0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

4By equivalent, we mean that the two problems have the same value at the NE. We will also show the
relationship between the solutions in Proposition 3.4.6
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The additional term involving the inverse of the feature matrix arises due to the nature of

the log-linear function approximation. We make this formal in the following proposition.

Proposition 3.4.6. Consider Algorithm 2 used to solve Problem (3.4.3) under the log-linear

parametrization in Equation (3.2.2) under Assumption 3.4.1. Then the iterates of Algorithm

2 have the same guarantees provided in Theorem 3.3.4. Here, the NE parameter value to

which the algorithm converges to is given by:

𝜃⋆ =
−[(𝑀⊤)−1 | 0] ̃︀𝑃𝑄ℎ𝜈⋆

𝜏
, 𝜈⋆ =

[(𝑀⊤)−1 | 0] ̃︀𝑃𝑄⊤𝑔𝜃⋆

𝜏
.

Next, we show how the optimistic NPG algorithm solves the original matrix game without

regularization.

Corollary 3.4.7. If we run Algorithm 2 for time 𝑇 = 𝒪
(︁

log𝑛
𝜂𝜖

log
(︀
1
𝜖

)︀)︁
and set the regu-

larization parameter 𝜏 = 𝜖/(8 log 𝑛), we have that the output (𝜃𝑇 , 𝜈𝑇 ) is an 𝜖-in-class NE

(Definition 3.4.3) of the unregularized Problem (3.4.1).

3.5 Multi-player Monotone Games

Monotone games. Consider a multi-player continuous game over simplexes, which

strictly generalizes the zero-sum matrix game in §4.2. The game is characterized by

(𝒩 , {𝒜𝑖}𝑖∈[𝑁 ], {𝑓𝑖}𝑖∈[𝑁 ]), where 𝒩 = [𝑁 ] is the set of players. Without loss of general-

ity, we assume |𝒜𝑖| = 𝑛 for all 𝑖 ∈ [𝑁 ]. For notational convenience, let ∆ denote the simplex

over 𝒜𝑖, and 𝑧 := (𝑔1, 𝑔2, · · · , 𝑔𝑁 ) ∈ ∆𝑁 denote the strategy profile of all 𝑁 players, with each

𝑔𝑖 ∈ ∆. We define the pseudo-gradient operator 𝐹 : ∆𝑁 → R𝑛𝑁 as 𝐹 (𝑧) := [∇𝑔𝑖𝑓𝑖(𝑔𝑖, 𝑔−𝑖)]
𝑁
𝑖=1.

To make the 𝑁 -player game tractable, we make the following standard assumptions on 𝐹

[110, 94, 41].

Assumption 3.5.1 (Monotonicity & Smoothness). The operator 𝐹 is monotone and smooth,

i.e., ∀𝑧, 𝑧′ ∈ ∆𝑁

⟨𝐹 (𝑧)− 𝐹 (𝑧′), 𝑧 − 𝑧′⟩ ≥ 0, ‖𝐹 (𝑧)− 𝐹 (𝑧′)‖ ≤ 𝐿 · ‖𝑧 − 𝑧′‖,

66



where 𝐿 > 0 is the Lipschitz constant of the operator 𝐹 .

The goal is to find the NE, given by strategy 𝑧⋆ such that 𝑓𝑖(𝑧⋆𝑖 , 𝑧⋆−𝑖) ≤ 𝑓𝑖(𝑧𝑖, 𝑧
⋆
−𝑖), ∀ 𝑧𝑖 ∈

∆, 𝑖 ∈ [𝑁 ]. Under Assumption 3.5.1, it is known that the NE exists [110].

Policy parameterization & regularized game. To develop policy gradient methods,

we parameterize each policy 𝑔𝑖 ∈ ∆ by 𝑔𝜃𝑖 in the softmax form as before, i.e., for any

𝑎𝑖 ∈ 𝒜𝑖, 𝑔𝜃𝑖(𝑎𝑖) = 𝑒𝑝𝜃𝑖 (𝑎𝑖) ·
(︀∑︀

𝑎′𝑖∈𝒜𝑖
𝑒𝑝𝜃𝑖 (𝑎

′
𝑖)
)︀−1, where 𝜃𝑖 ∈ R𝑑, and we consider both the tabular

case with 𝑝𝜃𝑖 = 𝜃𝑖 and the linear function approximation case with 𝑝𝜃𝑖(𝑎𝑖) = 𝜑⊤
𝑎𝑖
𝜃𝑖. This

parameterization leads to the following set of optimization problems:

min
𝜃𝑖∈R𝑛

𝑓𝑖(𝑔𝜃𝑖 , 𝑔𝜃−𝑖
), ∀ 𝑖 ∈ [𝑁 ], (3.5.1)

whose solution (𝜃⋆1, 𝜃
⋆
2, · · · , 𝜃⋆𝑁), if exists, corresponds to the Nash equilibrium under this

parameterization. Note that (3.5.1) can also be viewed as a nonconvex game (Lemma 3.2.2 is

a special case) with a “hidden” monotone variational inequality structure, which generalizes

the class of hidden convex-concave problems discussed in [48, 87].

Motivated by §4.2, we also consider the regularized game in hope of stronger convergence

guarantees for solving (3.5.1). Specifically, the players solve

min
𝜃𝑖∈R𝑛

𝑓𝑖(𝑔𝜃𝑖 , 𝑔𝜃−𝑖
) − 𝜏ℋ(𝑔𝜃𝑖), ∀ 𝑖 ∈ [𝑁 ], (3.5.2)

where 𝜏 > 0 and ℋ is the entropy function. With a small enough 𝜏 , the solution to (3.5.2)

approximates that to (3.5.1).

3.5.1 Softmax parameterization

We first consider the tabular softmax parameterization with 𝑝𝜃𝑖 = 𝜃𝑖 ∈ R𝑛 for all 𝑖 ∈ [𝑁 ].

In this case, the Nash equilibrium 𝜃⋆ = (𝜃⋆1, 𝜃
⋆
2, · · · , 𝜃⋆𝑁) of the regularized monotone game

(3.5.2) satisfies the following property.

Lemma 3.5.2. The NE of the game (3.5.2) exists. A vector 𝜃⋆ = (𝜃⋆1, 𝜃
⋆
2, · · · , 𝜃⋆𝑁) is a NE

of (3.5.2) if and only if: 𝑔𝜃⋆𝑖 (𝑎) ∝ exp
(︀−[∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃⋆
𝑖
,𝑔𝜃⋆−𝑖

)]𝑎

𝜏

)︀
and the vector (𝑔𝜃⋆1 , 𝑔𝜃⋆2 , · · · , 𝑔𝜃⋆𝑁 ) is
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unique. We denote 𝑔⋆𝑖 := 𝑔𝜃⋆𝑖 .

Note that although the NE policy (𝑔𝜃⋆1 , 𝑔𝜃⋆2 , · · · , 𝑔𝜃⋆𝑁 ) is unique, the NE parameter

(𝜃⋆1, 𝜃
⋆
2, · · · , 𝜃⋆𝑁) is not necessarily the case. Motivated by §4.2 and §3.3, we propose the

following update-rule for solving (3.5.2): ∀ players 𝑖 ∈ [𝑁 ],

𝜃𝑡+1
𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − 𝜂∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑡𝑖 , 𝑔𝜃𝑡−𝑖
), 𝜃𝑡+1

𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − 𝜂∇𝑔𝜃𝑖
𝑓𝑖(𝑔𝜃𝑡+1

𝑖
, 𝑔𝜃𝑡+1

−𝑖
).

We refer to the update-rule as optimistic NPG (as summarized in Algorithm 3), as it

corresponds to the optimistic version of the (specific instance of) natural PG direction for

the regularized objective (3.5.2). We choose this specific instance of NPG due to the pitfall

discussed in §4.2; and the optimistic update is meant to obtain fast last-iterate convergence.

See §3.9.4 for a detailed derivation of the update rule.

As shown in §4.2, the problem (3.5.1) is nonconvex in the policy parameter space, and can

be challenging in general. Our strategy is to show that our algorithm solves the regularized

problem (3.5.2) fast, with last-iterate parameter convergence (see Theorem 3.5.3), which,

with small enough 𝜏 , also solves the nonconvex game (3.5.1) (see Corollary 3.5.5).

Theorem 3.5.3. Let 𝑧⋆ = (𝑔⋆𝑖 )𝑁𝑖=1 be the unique Nash equilibrium given in Lemma 3.5.2.

Also, we denote 𝑧𝑡 = (𝑔𝜃𝑡𝑖 )
𝑁
𝑖=1. Then for Algorithm 3 with stepsize 0 < 𝜂 < 1

2(𝑁+4)𝐿+2𝜏
, we

have:

max {KL(𝑧⋆‖𝑧𝑡),KL(𝑧⋆‖𝑧𝑡+1)} ≤ (1 − 𝜂𝜏)𝑡2KL(𝑧⋆‖𝑧0),

‖𝜃𝑡+1 − 𝜃⋆‖2 ≤ (1 − 𝜂𝜏/2)𝑡𝑉0, (3.5.3)

where 𝜃⋆𝑖 =
−∇𝑔𝜃𝑖

𝑓𝑖(𝑔
⋆
𝑖 ,𝑔

⋆
−𝑖)

𝜏
, 𝑉0 = ‖𝜃𝑡−𝜃⋆‖2+ 2𝑁𝐶

𝜂𝜏
, and 𝐶 = 4𝜂2𝐿2

(︁
1 + 1

𝜂𝜏
(1 − 𝜂𝜏)2

)︁
KL(𝑧⋆‖𝑧0).

The proof follows by first showing convergence in the policy space, in which we are dealing

with a strongly convex problem under convex constraints. We then use this result, along with

a novel Lyapunov function to demonstrate the convergence in the parameter space, in which

it is a nonconvex problem. The proof technique might of independent interest, and might be

generalized to showing convergence in other nonconvex games with a hidden monotonicity

structure.
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Remark 3.5.4. The proof for Theorem 3.5.3 follows by first showing the convergence rate

of the Proximal Point method, and then observing that Optimistic methods approximate

this method and could potentially achieve the same convergence rates (see [90] for a unified

analysis). We provide a convergence analysis for the Proximal Point and Extragradient

methods in §3.9.4.

Now, we present the convergence of Algorithm 3 to an 𝜖-NE of the un-regularized problem

(3.5.1).

Corollary 3.5.5. If we run Algorithm 3 for time 𝑇 = 𝒪
(︁

𝑁 log𝑛
𝜂𝜖

log
(︀
1
𝜖

)︀)︁
and set the

regularization parameter 𝜏 = 𝜖/(4𝑁 log 𝑛), we have that 𝜃⊤ = [𝜃⊤1 , 𝜃
⊤
2 , · · · , 𝜃⊤𝑁 ], the iterate at

time 𝑇 , is an 𝜖-NE of Problem (3.5.1).

We extend the results to certain function approximation settings in §3.9.4 in the Appendix.

3.6 Optimistic NPG for Markov Games

We now generalize our results to the sequential decision-making case of Markov games.

Model. A two-player zero-sum Markov game is characterized by the tuple (𝒮,𝒜,ℬ, 𝑃, 𝑟, 𝛾),

where 𝒮 is the state space; 𝒜,ℬ are the action spaces of players 1 and 2, respectively;

𝑃 : 𝒮 × 𝒜× ℬ → ∆(𝒮) denotes the transition probability of states; 𝑟 : 𝒮 × 𝒜× ℬ → [0, 1]

denotes the bounded reward function of player 1 (thus −𝑟 is the reward function of player 2);

and 𝛾 ∈ [0, 1) is the discount factor. The goal of player 1 (player 2) is to minimize (maximize)

the long-term accumulated discounted reward.

Specifically, at each time 𝑡, player 1 (player 2) has a Markov stationary policy 𝑔 : 𝒮 → ∆(𝒜)

(ℎ : 𝒮 → ∆(ℬ)). The state makes a transition from 𝑠𝑡 to 𝑠𝑡+1 following the probability

distribution 𝑃 (· | 𝑠𝑡, 𝑎𝑡, 𝑏𝑡), given (𝑎𝑡, 𝑏𝑡). As in the Markov decision process model, one can

define the state-value function under a pair of joint policies (𝑔, ℎ) as

𝑉 𝑔,ℎ(𝑠) := E𝑎𝑡∼𝑔(· | 𝑠𝑡),𝑏𝑡∼ℎ(· | 𝑠𝑡)

[︂∑︁
𝑡≥0

𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡, 𝑏𝑡)

⃒⃒⃒⃒
𝑠0 = 𝑠

]︂
.
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Also, the state-action/Q-value function under (𝑔, ℎ) is defined as

𝑄𝑔,ℎ(𝑠, 𝑎, 𝑏) := E𝑎𝑡∼𝑔(· | 𝑠𝑡),𝑏𝑡∼ℎ(· | 𝑠𝑡)

[︂∑︁
𝑡≥0

𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡, 𝑏𝑡)

⃒⃒⃒⃒
𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝑏0 = 𝑏

]︂
.

Similar as the matrix game setting, a common solution concept in Markov game is also

the (Markov perfect) Nash equilibrium policy pair (𝑔⋆, ℎ⋆), which satisfies the following

saddle-point inequality:

𝑉 𝑔,ℎ⋆

(𝑠) ≤ 𝑉 𝑔⋆,ℎ⋆

(𝑠) ≤ 𝑉 𝑔⋆,ℎ(𝑠), ∀ 𝑠 ∈ 𝒮. (3.6.1)

It follows from [119, 47] that there exists a Nash equilibrium (𝑔⋆, ℎ⋆) ∈ ∆(𝒜)|𝒮| × ∆(ℬ)|𝒮| for

finite two-player discounted zero-sum MGs. The state-value 𝑉 ⋆ := 𝑉 𝑔⋆,ℎ⋆ is referred to as the

value of the game. The corresponding Q-value function is denoted by 𝑄⋆.

We focus on the softmax parameterization 𝑔𝜃 and ℎ𝜈 of the policies 𝑔 and ℎ, respectively.

Policy parameterization. Following the matrix game setting, we also use the softmax

parameterization of the policies. Specifically, for any 𝜃, 𝜈 ∈ R𝑑, (𝑠, 𝑎, 𝑏) ∈ 𝒮 ×𝒜× ℬ,

𝑔𝜃(𝑎 | 𝑠) =
𝑒𝑝𝜃(𝑠,𝑎)∑︀

𝑎′∈𝒜
𝑒𝑝𝜃(𝑠,𝑎′)

, ℎ𝜈(𝑏 | 𝑠) =
𝑒𝑞𝜈(𝑠,𝑏)∑︀

𝑏′∈ℬ
𝑒𝑞𝜈(𝑠,𝑏′)

. (3.6.2)

Note that for any 𝑠 ∈ 𝒮,
∑︀

𝑎 𝑔𝜃(𝑎 | 𝑠) =
∑︀

𝑏 ℎ𝜈(𝑏 | 𝑠) = 1. We will consider both

1) the tabular case with 𝑝𝜃 = 𝜃 and 𝑞𝜈 = 𝜈, where 𝜃 ∈ R|𝒜|×|𝒮| and 𝜈 ∈ R|ℬ|×|𝒮|. We will

use 𝜃𝑠 and 𝜈𝑠 to denote the parameters corresponding to state 𝑠, i.e., 𝜃𝑠 = [𝜃𝑠,1, 𝜃𝑠,2, · · · , 𝜃𝑠,|𝐴|]

and similarly 𝜈𝑠;

2) the linear function approximation case with 𝑝𝜃(𝑠, 𝑎) = 𝜃 ·𝜑(𝑠, 𝑎) and 𝑞𝜈(𝑠, 𝑎) = 𝜈 ·𝜑(𝑠, 𝑎)

(See §3.9.5 for more details)5.

The parameterization thus leads to the following definition of the solution concept.

Definition 3.6.1 (𝜖-in-class-NE for Markov games). The policy parameter pair (̃︀𝜃, ̃︀𝜈) is an

5Once again, note that we use the same features for both players for notational convenience. Our results
continue to hold when the two players have different features 𝜑.
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𝜖-in-class Nash equilibrium if it satisfies that for all 𝑠 ∈ 𝒮,

𝑉
̃︀𝜃,𝜈(𝑠) − 𝜖 ≥ 𝑉

̃︀𝜃,̃︀𝜈(𝑠) ≥ 𝑉 𝜃,̃︀𝜈(𝑠) + 𝜖, ∀𝜃, 𝜈 ∈ R𝑑, (3.6.3)

where 𝑉 𝜃,𝜈(𝑠) = 𝑉 𝑔𝜃,ℎ𝜈 (𝑠) denotes the value of the parameterized policy pair (𝑔𝜃, ℎ𝜈). Note

that if we are in the tabular setting, we will have 𝑑 = 𝑛, and the definition covers that of the

standard 𝜖-NE for Markov games. We also define the 𝜖-in-class NE 𝑄-value accordingly.

Given that matrix games considered in §4.2 is a special case of the Markov games with

|𝒮| = 1 and 𝛾 = 0, Lemma 3.2.2 implies that finding the NE in Definition 3.6.1 is nonconvex-

nonconcave in general, and can be challenging to solve. We show in the following lemma that,

for the tabular and linear function approximation settings we consider, such a parameterized

NE exists.

Lemma 3.6.2 (Existence of parameterized/in-class NE). Under policy parameterization

(3.6.2) with tabular parameterization, the in-class NE defined in Definition 3.6.1 exists.

Motivated by §3.3 and §3.4, we consider the modified version of NPG with optimism to

solve this problem.

Optimistic NPG. Following §4.2, we also consider the regularized Markov games [50, 144,

23], in hope of favorable convergence guarantees. Define the regularized value functions as

𝑉 𝜃,𝜈
𝜏 (𝑠) := E𝑎𝑡∼𝑔𝜃(· | 𝑠𝑡),𝑏𝑡∼ℎ𝜈(· | 𝑠𝑡)

[︃ ∞∑︁
𝑡=0

𝛾𝑡
(︀
𝑟𝑡 − 𝜏 log 𝑔𝜃(𝑎𝑡|𝑠𝑡) + 𝜏 log ℎ𝜈(𝑏𝑡|𝑠𝑡)

)︀ ⃒⃒⃒
𝑠0 = 𝑠

]︃
, (3.6.4)

where 𝑟𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡, 𝑏𝑡), 𝜏 < 1, and

𝑄𝜃,𝜈
𝜏 (𝑠, 𝑎, 𝑏) := 𝑟(𝑠, 𝑎, 𝑏) + 𝛾E𝑠′∼P(·|𝑠,𝑎,𝑏)[𝑉

𝜃,𝜈
𝜏 (𝑠′)]. (3.6.5)

We denote by 𝑉 ⋆
𝜏 and 𝑄⋆

𝜏 , the NE value and Q-functions respectively, for the regularized

Markov game (“regularized NE”), i.e., 𝑉 ⋆
𝜏 = min𝜃 max𝜈 𝑉 𝜃,𝜈

𝜏 and 𝑄⋆
𝜏 is the corresponding

Q-function. Note that their existence follows along similar lines as Lemma 3.6.2. As a

generalization of regularized matrix games in §4.2, the non-convergence pitfall of vanilla NPG
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also occurs. We also define the following notation

𝑓𝜏
(︀
𝑄(𝑠); 𝑔𝜃(· | 𝑠), ℎ𝜈(· | 𝑠)

)︀
:= − 𝑔𝜃(· | 𝑠)⊤𝑄(𝑠)ℎ𝜈(· | 𝑠) − 𝜏ℋ(𝑔𝜃(· | 𝑠)) + 𝜏ℋ(ℎ𝜈(· | 𝑠)). (3.6.6)

3.6.1 Convergence guarantees

To stabilize the algorithm, we propose the update rule where the parameters (𝜃, 𝜈) for all

states are updated at a faster time scale, and the 𝑄 matrix is updated at a slower time scale.

To be more precise, at every time 𝑡 of the outer loop, we solve the matrix game 6

min
𝜃𝑠∈R𝑛

max
𝜈𝑠∈R𝑛

𝑓𝜏 (𝑄(𝑠); 𝑔𝜃(· | 𝑠), ℎ𝜈(· | 𝑠)), (3.6.7)

for each state 𝑠 ∈ 𝒮 by running 𝑇𝑖𝑛𝑛𝑒𝑟 iterations of the Optimistic NPG algorithm (Algorithm

1). At the end of each inner loop, the outer loop updates the 𝑄 matrix for each state 𝑠 ∈ 𝒮

as 𝑄𝑡+1(𝑠, 𝑎, 𝑏) = 𝑟(𝑠, 𝑎, 𝑏) + 𝛾E𝑠′∼P(·|𝑠,𝑎,𝑏)[𝑓𝜏 (𝑄𝑡(𝑠
′); 𝑔𝜃𝑇𝑖𝑛𝑛𝑒𝑟

(· | 𝑠′), ℎ𝜈𝑇𝑖𝑛𝑛𝑒𝑟
(· | 𝑠′))].

The complete algorithm is presented in Algorithm 6. Note that we use the name ONPG

for Markov games because the inner matrix game is solved using the ONPG updates. The two-

timescale-type update rule (between the policy and value updates) for solving infinite-horizon

Markov games has also been used before in [112, 23, 131].

Next, we provide a convergence result for the performance of Algorithm 6 for the regularized

Markov game.

Theorem 3.6.3. Let 𝑄⋆
𝜏 be the NE 𝑄-value of the regularized Markov Game under the

tabular parametrization. Choose the stepsize 𝜂 = 1−𝛾
2(1+𝜏(log𝑛+1−𝛾))

for the inner loop in

Algorithm 6. Let 𝑇 denote the total number of iterations (𝑇𝑜𝑢𝑡𝑒𝑟 · 𝑇𝑖𝑛𝑛𝑒𝑟). Then, after

𝑇𝑖𝑛𝑛𝑒𝑟 = 𝒪
(︂

1

𝜂𝜏

(︂
log

1

𝜖
+ log

1

1 − 𝛾
+ log log 𝑛+ log

1

𝜂

)︂)︂
,

𝑇𝑜𝑢𝑡𝑒𝑟 = 𝒪
(︂

1

1 − 𝛾

(︂
log

𝑑

𝜖
+ log

(︂
8

𝜏

(︀
1 + 𝐶2‖𝑄⋆‖2𝐹

)︀)︂
+ log

1 + 𝜏 log 𝑛

1 − 𝛾

)︂)︂
, (3.6.8)

iterations, we have ‖𝑄𝑇 −𝑄⋆
𝜏‖∞ ≤ 𝜖 and max{‖𝜃𝑇 − 𝜃⋆‖, ‖𝜈𝑇 − 𝜈⋆‖} ≤ 𝜖 where (𝑄𝑇 , 𝜃𝑇 , 𝜈𝑇 )

6Note that here we use the fact that min𝑔𝜃(· | 𝑠) maxℎ𝜈(· | 𝑠)[𝑓𝜏 · · · ] is equivalent to
min𝜃𝑠∈R|𝐴| max𝜈𝑠∈R|𝐴| [𝑓𝜏 · · · ] for each 𝑠.
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is the output of Algorithm 6 after 𝑇 iterations, and (𝜃⋆, 𝜈⋆) are defined in Equation (3.9.185).

Finally, we show how the optimistic NPG algorithm solves the original Markov game

without regularization.

Corollary 3.6.4. If we run Algorithm 6 for time 𝑇𝑖𝑛𝑛𝑒𝑟 = 𝒪
(︁

log𝑛
(1−𝛾)2𝜖

log
(︀
1
𝜖

)︀)︁
, 𝑇𝑜𝑢𝑡𝑒𝑟 =

𝒪
(︁

1
(1−𝛾)

log
(︀
1
𝜖

)︀)︁
, and setting 𝜏 = 𝒪((1−𝛾)𝜖/ log 𝑛), the output (𝜃𝑇 , 𝜈𝑇 ) will be an 𝜖-in-class

NE (Definition 3.6.1) of the original unregularized Markov game.

Remark 3.6.5. We remark that Theorem 3.6.3, to the best of our knowledge, is the first

to show policy parameter convergence in Markov games with policy parametrization, and is

different from the policy convergence results of several recent works [151, 131, 23] (see §3.1.1

for a detailed comparison).

We extend these results to simple function approximation settings in §3.9.5 in the

Appendix.

3.7 Simulations

We now provide simulation results to corroborate our theoretical results. First, we study

matrix games under the tabular setting in Figure 3-1a. Here, we show the behavior of vanilla

NPG and our proposed variant (Equations (3.3.1)-(3.3.2)). We plot the first element of the

iterate, i.e., 𝜃(1) on the y-axis. It is shown that even for vanishingly small stepsizes, vanilla

NPG diverges, whereas the proposed variant converges even with reasonable step-size choices.

The cost matrix 𝑄 is taken to be an identity matrix of dimension 5.

Next, we confirm the convergence of our variant of NPG in Figure 3-1b. In this figure,

we compare the behavior of ONPG and NPG, and show that ONPG admits convergence

for larger stepsizes. Smaller stepsizes that enables NPG convergence would lead to a slower

convergence rate than ONPG. This is in line with our results in Theorems 3.3.2 and 3.3.4.
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(b) NPG vs ONPG.

Figure 3-1: Comparison of vanilla NPG, proposed variant of NPG and ONPG in matrix
game under the tabular setting, in terms of parameter convergence.

3.7.1 ONPG in Markov games with function approximation

Figures 3-2a and 3-2b study the behavior of Algorithm 7 in Markov games with log-linear

function approximation, and corroborate the results of Theorem 3.9.22. Here we take the

feature matrix Φ ∈ R10×100, and |𝒮| = 10, i.e., there are 10 states. The first 10 columns

correspond to the first action of each of the 10 states. This means that Φ(𝑠,1) = 𝑒𝑠 for

𝑠 = {1, 2, · · · , 10} where 𝑒𝑠 is a standard basis vector with element 1 at position 𝑠. We take

the discount factor 𝛾 = 0.8. We take the transition probability to be uniform for each state

action pair, i.e., P(·|𝑠, 𝑎, 𝑏) = 1/10 for all (𝑠, 𝑎, 𝑏), i.e., P(𝑠′|𝑠, 𝑎, 𝑏) = 1/10 for all state 𝑠′ ∈ 𝒮.

Finally, we take the regularization parameter 𝜏 = 0.1.
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Figure 3-2: Convergence in Markov Games with linear function approximation.

3.8 Concluding Remarks

In this chapter we study the global last-iterate parameter convergence of symmetric policy

gradient methods for multi-agent learning. We identified the non-convergence issue of vanilla

natural PG in policy parameters, even in presence of regularized reward function, and

developed variants of natural PG methods that enjoy last-iterate parameter convergence.

We have then expanded the scope of the symmetric PG methods for multi-agent learning,

and incorporated function approximation to handle large state-action spaces. Future work

includes embracing more general function approximation in policy parameterization, and

exploring the power of our approach in nonconvex-nonconcave minimax optimization with

other hidden convex structures.

3.9 Appendix

In this section, we provide missing details and proofs from the main part of the chapter.
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3.9.1 Missing Details and Proofs in §3.2

Proof of Lemma 3.2.2

We show that the problem

min
𝜃∈R𝑛

max
𝜈∈R𝑛

𝑔⊤𝜃 𝑄ℎ𝜈 , (3.9.1)

is nonconvex-nonconcave.

Let

𝑄 =

⎡⎣1 0

0 1

⎤⎦ . (3.9.2)

Consider 𝜃1 = (0, 0) and 𝜃2 = (log 4, log 9). This implies 𝑔𝜃1 = (1/2, 1/2)⊤ and 𝑔𝜃2 =

(4/13, 9/13)⊤. Also, from the form of 𝑄, we have 𝑄ℎ𝜈 = [ℎ𝜈(1), ℎ𝜈(2)]⊤, ∀𝜈. Now, for

[ℎ𝜈(1), ℎ𝜈(2)] = [1/3, 2/3], we have

1

2
(𝑔⊤𝜃1𝑄ℎ𝜈 + 𝑔⊤𝜃2𝑄ℎ𝜈) < 𝑔(𝜃1+𝜃2)/2𝑄ℎ𝜈 , (3.9.3)

which implies nonconvexity in 𝜃.

Similarly, taking 𝜈1 = (0, 0) and 𝜈2 = (log 4, log 9) (which implies ℎ𝜈1 = (1/2, 1/2)⊤ and

ℎ𝜈2 = (4/13, 9/13)⊤, and taking 𝑔𝜃 = (2/3, 1/3)⊤, we have

1

2
(𝑔⊤𝜃 𝑄ℎ𝜈1 + 𝑔⊤𝜃 𝑄ℎ𝜈2) > 𝑔𝜃𝑄ℎ(𝜈1+𝜈2)/2, (3.9.4)

which implies nonconcavity in 𝜈.

Note that adding regularization does not get rid of this convexity. For example consider

the specific case when ℎ𝜈 is a constant policy and the matrix 𝑄 is 0. We show the nonconvexity

of the function −𝜏ℋ(𝑔𝜃) in 𝜃 next. Consider 𝜃1 = (0, 0) and 𝜃2 = (log 4, log 9). We have

𝑔𝜃1 = (1/2, 1/2) and 𝑔𝜃2 = (4/13, 9/13). Furthermore, we have 𝑔(𝜃1+𝜃2)/2 = (1/3, 2/3), and we
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can see that:

−𝜏
2

(ℋ(𝑔𝜃1) + ℋ(𝑔𝜃2)) < −𝜏ℋ(𝑔(𝜃1+𝜃2)/2) (3.9.5)

which shows nonconvexity of −𝜏ℋ(𝑔𝜃). This completes the proof of the lemma.

Vanilla NPG for matrix games

Next, we compute the Fisher Information Matrix 𝐹𝜃(𝜃) =

E𝑎∼𝑔𝜃

[︀(︀
∇𝜃 log 𝑔𝜃(𝑎)

)︀(︀
∇𝜃 log 𝑔𝜃(𝑎)

)︀⊤]︀. For the softmax parametrization, we have:

∇𝜃 log 𝑔𝜃(𝑎) = ∇𝜃

(︃
𝜃(𝑎) − log

(︁∑︁
𝑎′∈𝒜

𝑒𝜃(𝑎
′)
)︁)︃

= [−𝑔𝜃(1),−𝑔𝜃(2), · · · , 1 − 𝑔𝜃(𝑎), · · · ,−𝑔𝜃(𝑛)]⊤. (3.9.6)

Now, consider the (𝑖, 𝑖)𝑡ℎ element of the Fisher information matrix. We have:

[𝐹𝜃(𝜃)]𝑖𝑖 = 𝑔𝜃(𝑖)(1 − 𝑔𝜃(𝑖))(1 − 𝑔𝜃(𝑖)) +
∑︁
𝑗 ̸=𝑖

𝑔𝜃(𝑗)𝑔𝜃(𝑖)
2 = 𝑔𝜃(𝑖)(1 − 𝑔𝜃(𝑖)). (3.9.7)

Similarly, we have the (𝑖, 𝑗)𝑡ℎ element, where 𝑖 ̸= 𝑗 is given by:

[𝐹𝜃(𝜃)]𝑖𝑗

= (1 − 𝑔𝜃(𝑖) − 𝑔𝜃(𝑗))𝑔𝜃(𝑖)𝑔𝜃(𝑗) − 𝑔𝜃(𝑖)(1 − 𝑔𝜃(𝑖))𝑔𝜃(𝑗) − 𝑔𝜃(𝑗)(1 − 𝑔𝜃(𝑗))𝑔𝜃(𝑖)

= −𝑔𝜃(𝑖)𝑔𝜃(𝑗). (3.9.8)

Therefore, the matrix 𝐹𝜃(𝜃) can be succinctly written as:

𝐹𝜃(𝜃) = diag(𝑔𝜃) − 𝑔𝜃𝑔
⊤
𝜃 , (3.9.9)
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where diag(𝑔𝜃) is a diagonal matrix with entries 𝑔𝜃. Note that this is in fact ∇𝜃𝑔𝜃 (see [85]),

i.e.,

∇𝜃𝑔𝜃 = diag(𝑔𝜃) − 𝑔𝜃𝑔
⊤
𝜃 . (3.9.10)

Therefore, we have:

𝐹 †
𝜃 (𝜃)∇𝜃𝑔𝜃 = 𝐼. (3.9.11)

The update of the vanilla NPG thus simplifies to the following:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 · 𝐹 †
𝜃 (𝜃𝑡) ·

𝜕𝑓𝜏 (𝜃𝑡, 𝜈𝑡)

𝜕𝜃
= 𝜃𝑡 − 𝜂

𝜕𝑓𝜏 (𝜃𝑡, 𝜈𝑡)

𝜕𝑔𝜃

= 𝜃𝑡 − 𝜂 (𝑄ℎ𝜈𝑡 + 𝜏(1 + log 𝑔𝜃𝑡)) . (3.9.12)

However, since 𝑔𝜃(𝑎) = 𝑒𝜃(𝑎)∑︀
𝑎′∈𝒜 𝑒𝜃(𝑎

′) , we have

𝜃𝑡+1(𝑎) = (1 − 𝜂𝜏)𝜃𝑡(𝑎) − 𝜂

(︂
[𝑄ℎ𝜈𝑡 ]𝑎 + 𝜏 − 𝜏 log

∑︁
𝑎′∈𝒜

𝑒𝜃𝑡(𝑎
′)

)︂
. (3.9.13)

A similar update for 𝜈 leads to the updates in Equations (3.2.5)-(3.2.6). Note that when we

write a constant in the update, we mean a constant vector with all elements being the same.

Proof of Lemma 3.2.3

We restate the lemma here first for convenience:

Lemma 3.9.1 (Pitfall of vanilla NPG). There exists a game (3.2.4) with 𝜏 ≥ 0 (we allow

for unregularized games as well) and a dummy player 2, i.e., |ℬ| = 1, for which the updates

(3.2.5)-(3.2.6) do not converge for any 𝜂 > 0.

Proof. Consider the 𝜃 update under NPG:

𝜃𝑡+1(𝑎) = (1 − 𝜂𝜏)𝜃𝑡(𝑎) − 𝜂

(︂
[𝑄ℎ𝜈𝑡 ]𝑎 + 𝜏 − 𝜏 log

∑︁
𝑎′∈𝒜

𝑒𝜃𝑡(𝑎
′)

)︂
. (3.9.14)
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From here, it is easy to see that it need not converge for the case where 𝜏 = 0, since this

would require 𝑄ℎ𝜈𝑡 = 0 which need not be the case (For example consider 𝑄 = [1 | 1]⊤, and

ℎ𝜈 = [1]. In this case, ℎ𝜈𝑡 = 1 for any parameter 𝜈𝑡).

Next, we consider the case where 𝜏 > 0. Suppose 𝜃 converges to some point 𝜃⋆. Since

|ℬ| = 1, we have ℎ𝜈𝑡 = [1]. Substituting the point 𝜃⋆ into the update we have:

𝜃⋆(𝑎) = (1 − 𝜂𝜏)𝜃⋆(𝑎) − 𝜂

(︂
[𝑄]𝑎 + 𝜏 − 𝜏 log

∑︁
𝑎′∈𝒜

𝑒𝜃
⋆(𝑎′)

)︂
. (3.9.15)

This implies:

𝜂𝜏𝜃⋆(𝑎) = −𝜂𝜏
(︂

[𝑄]𝑎
𝜏

+ 1

)︂
+ 𝜂𝜏 log

∑︁
𝑎′∈𝒜

𝑒𝜃
⋆(𝑎′). (3.9.16)

This leads to:

log 𝑒𝜃
⋆(𝑎) − log

∑︁
𝑎′∈𝒜

𝑒𝜃
⋆(𝑎′) = − [𝑄]𝑎

𝜏
− 1. (3.9.17)

However,

log 𝑒𝜃
⋆(𝑎) − log

∑︁
𝑎′∈𝒜

𝑒𝜃
⋆(𝑎′) = log

𝑒𝜃
⋆(𝑎)∑︀

𝑎′∈𝒜 𝑒
𝜃⋆(𝑎′)

= log 𝑔𝜃⋆(𝑎). (3.9.18)

Substituting this in Equation (3.9.17), we have:

𝑔𝜃⋆(𝑎) = exp

(︂
− [𝑄]𝑎

𝜏
− 1

)︂
. (3.9.19)

This need not be a valid probability measure. For example, consider 𝑄 = [−2 | 2]⊤ and

𝜏 = 1, we have:

𝑔𝜃⋆(1) = 𝑒 > 1, (3.9.20)

which contradicts the fact that 𝑔𝜃 is a probability measure. This implies that the original

NPG updates cannot have a fixed point, and therefore does not converge for any stepsize
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Algorithm 1 Optimistic NPG
Initialize: 𝜃0 = 0 and 𝜈0 = 0.
for 𝑡 = 1, 2, · · · do
𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂𝑄ℎ𝜈𝑡
𝜈𝑡+1 = (1 − 𝜂𝜏)𝜈𝑡 + 𝜂𝑄⊤𝑔𝜃𝑡

𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂𝑄ℎ𝜈𝑡+1

𝜈𝑡+1 = (1 − 𝜂𝜏)𝜈𝑡 + 𝜂𝑄⊤𝑔𝜃𝑡+1

end for

𝜂 > 0.

3.9.2 Missing Details and Proofs in §3.3

Remark 3.9.2. We note that all results presented in this section also follow for the case

where the action spaces for both players are asymmetric. However, we stick to the case where

the number of actions is the same for both players, for ease of exposition.

Proof of Theorem 3.3.2

Policy convergence: Consider the following modified NPG updates for the regularized

game:

𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂𝑄ℎ𝜈𝑡 , (3.9.21)

𝜈𝑡+1 = (1 − 𝜂𝜏)𝜈𝑡 + 𝜂𝑄⊤𝑔𝜃𝑡 . (3.9.22)

Note that these updates correspond to the popular Multiplicative Weights Update [49, 5]

for the regularized game in policy space (we succinctly represent 𝑔𝜃𝑡 and ℎ𝜈𝑡 as 𝑔𝑡 and ℎ𝑡,

respectively), i.e.,

𝑔𝑡+1(𝑎) ∝ 𝑔𝑡(𝑎)(1−𝜂𝜏)𝑒−𝜂[𝑄ℎ𝑡]𝑎 ,

ℎ𝑡+1(𝑏) ∝ ℎ𝑡(𝑏)
(1−𝜂𝜏)𝑒𝜂[𝑄

⊤𝑔𝑡]𝑏 . (3.9.23)

We can write these updates as a mirror descent update with Bregman function given

by the negative entropy (i.e., the corresponding Bregman distance is the KL divergence) as
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follows:

𝑔𝑡+1 = argmin
𝑔∈Δ

{⟨𝑄ℎ𝑡 + 𝜏∇𝑔ℋ(𝑔𝑡), 𝑔⟩ + KL(𝑔‖𝑔𝑡)},

ℎ𝑡+1 = argmax
ℎ∈Δ

{⟨𝑄⊤𝑔𝑡 − 𝜏∇ℎℋ(ℎ𝑡), ℎ⟩ − KL(ℎ‖ℎ𝑡)}. (3.9.24)

Note that we can write these updates succinctly as one Mirror Descent update in the

following form:

𝑧𝑡+1 = argmin
𝑧∈𝒵

{⟨𝑀𝑧𝑡 + 𝜏∇ℋ(𝑧𝑡), 𝑧⟩ + KL(𝑧‖𝑧𝑡)}, (3.9.25)

where 𝑧 = [𝑔;ℎ], 𝒵 ∈ ∆ × ∆ and with slight abuse of notation, we define ∇ℋ(𝑧) =

[∇𝑔ℋ(𝑔);∇ℎℋ(ℎ)]. Also, we define the matrix

𝑀 =

⎛⎝ 0 𝑄

−𝑄⊤ 0

⎞⎠ . (3.9.26)

We can now use properties of mirror decent to analyze the iterates of MWU.

First, we have the following two lemmas which follow from [11], Proposition 2.3, and

Lemma D.4 in [121] which will be used to derive the final convergence rate:

Lemma 3.9.3. For all 𝑧 ∈ 𝒵, we have

𝜂⟨𝑀𝑧𝑡 + 𝜏∇ℋ(𝑧𝑡), 𝑧𝑡+1 − 𝑧⟩ ≤ KL(𝑧‖𝑧𝑡) − KL(𝑧‖𝑧𝑡+1) − KL(𝑧𝑡+1‖𝑧𝑡). (3.9.27)

Lemma 3.9.4. For all 𝑧 ∈ 𝒵, we have

𝜂⟨𝑀𝑧 + 𝜏∇ℋ(𝑧), 𝑧* − 𝑧⟩ ≤ −𝜂𝜏(KL(𝑧‖𝑧*) + KL(𝑧*‖𝑧)). (3.9.28)

In the next lemma, we show that the iterates of MWU on the regularized problem will be

bounded away from the boundary of the simplex.

Lemma 3.9.5. For 𝜂 < 1/𝜏 , the iterates of regularized MWU stay within a set ∆′ ⊂ ∆

which is bounded away from the boundary of the simplex, i.e., 𝑥𝑖 ≥ 𝛿 > 0 for some 𝛿 > 0,
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∀𝑥 ∈ ∆′.

Proof. Consider the update of 𝑔. We have the following property from Mirror Descent (see

[13])

KL(𝑔*‖𝑔𝑡+1) ≤ (1 − 𝜂𝜏)KL(𝑔*‖𝑔𝑡) − (1 − 𝜂𝜏)KL(𝑔𝑡+1‖𝑔𝑡) − 𝜂𝜏ℋ(𝑔𝑡+1) + 𝜂𝜏ℋ(𝑔*)

− 𝜂⟨𝑔𝑡+1 − 𝑔*, 𝑄ℎ𝑡⟩

≤ (1 − 𝜂𝜏)KL(𝑔*‖𝑔𝑡) + 2𝜂𝜏 log 𝑛+ 2𝜂‖𝑄‖∞. (3.9.29)

This implies that

KL(𝑔*‖𝑔𝑡) ≤ 2 log 𝑛+
2‖𝑄‖∞
𝜏

+ KL(𝑔*‖𝑔0). (3.9.30)

From the definition of the KL divergence and Equation (3.9.30), we have:

𝑔𝑡,𝑖 ≥ exp

(︂
−1

𝑔*min

(︂
2 log 𝑛+

2‖𝑄‖∞
𝜏

+ KL(𝑔*‖𝑔0) + ℋ(𝑔*)

)︂)︂
> 0, ∀ 𝑖, and ∀ 𝑡.

(3.9.31)

Here 𝑔*min is the smallest value of the Nash Equilibrium policy (which is greater than 0 since

the NE policy of the regularized game is in the interior of the simplex). This completes the

proof of the Lemma.

Since the iterates lie within ∆′, we let 𝐿 denote the Lipschitz constant of 𝑀𝑧 + 𝜏∇ℋ(𝑧)

(a continuous function over ∆ × ∆ whose norm approaches infinity as 𝑧 approaches the

boundary) in the set 𝒵 ′ (where 𝒵 ′ = ∆′ × ∆′), i.e.,

‖(𝑀𝑧1 + 𝜏∇ℋ(𝑧1)) − (𝑀𝑧2 + 𝜏∇ℋ(𝑧2))‖ ≤ 𝐿‖𝑧1 − 𝑧2‖, ∀𝑧1, 𝑧2 ∈ 𝒵 ′. (3.9.32)

Now, we use these lemmas to derive the convergence rate of MWU for the regularized

problem.

Theorem 3.9.6. Consider the modified NPG updates in Equation (3.9.21)-(3.9.22) with
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stepsize satisfying 0 ≤ 𝜂 ≤ 𝜏/𝐿2. We then have:

KL(𝑧*‖𝑧𝑡+1) ≤
(︁

1 − 𝜂𝜏

2

)︁
KL(𝑧*‖𝑧𝑡). (3.9.33)

Proof. Note that the constraint 𝜂 ≤ 𝜏/𝐿2 will automatically satisfy 𝜂 < 1/𝜏 (as needed by

Lemma 3.9.5) since 𝜏 ≤ 𝐿.

We have the following string of inequalities:

KL(𝑧*‖𝑧𝑡+1) ≤*1 𝐾𝐿(𝑧*‖𝑧𝑡) − KL(𝑧𝑡+1‖𝑧𝑡) + 𝜂⟨𝐹 (𝑧𝑡) + 𝜏∇ℋ(𝑧𝑡), 𝑧
* − 𝑧𝑡+1⟩

= KL(𝑧*‖𝑧𝑡) − KL(𝑧𝑡+1‖𝑧𝑡) + 𝜂⟨𝐹 (𝑧𝑡+1) + 𝜏∇𝑔(𝑧𝑡+1), 𝑧
* − 𝑧𝑡+1⟩

+ 𝜂⟨(𝐹 (𝑧𝑡) + 𝜏∇ℋ(𝑧𝑡)) − (𝐹 (𝑧𝑡+1) + 𝜏∇ℋ(𝑧𝑡+1)), 𝑧
* − 𝑧𝑡+1⟩

≤*2 KL(𝑧*‖𝑧𝑡) − KL(𝑧𝑡+1‖𝑧𝑡) − 𝜂𝜏 (KL(𝑧𝑡+1‖𝑧*) + KL(𝑧*‖𝑧𝑡+1))

+ 𝜂⟨(𝐹 (𝑧𝑡) + 𝜏∇ℋ(𝑧𝑡)) − (𝐹 (𝑧𝑡+1) + 𝜏∇ℋ(𝑧𝑡+1)), 𝑧
* − 𝑧𝑡+1⟩

≤*3 KL(𝑧*‖𝑧𝑡) − KL(𝑧𝑡+1‖𝑧𝑡) − 𝜂𝜏 (KL(𝑧𝑡+1‖𝑧*) + KL(𝑧*‖𝑧𝑡+1))

+ 𝜂𝐿‖𝑧𝑡+1 − 𝑧𝑡‖‖𝑧* − 𝑧𝑡+1‖

≤*4 KL(𝑧*‖𝑧𝑡) − KL(𝑧𝑡+1‖𝑧𝑡) − 𝜂𝜏 (KL(𝑧𝑡+1‖𝑧*) + KL(𝑧*‖𝑧𝑡+1))

+
1

2
‖𝑧𝑡+1 − 𝑧𝑡‖2 +

𝜂2𝐿2

2
‖𝑧* − 𝑧𝑡+1‖2

≤*5 KL(𝑧*‖𝑧𝑡) − KL(𝑧𝑡+1‖𝑧𝑡) − KL(𝑧𝑡+1‖𝑧*) + 𝜂2𝐿2KL(𝑧𝑡+1‖𝑧*)

− 𝜂𝜏KL(𝑧𝑡+1‖𝑧*) − 𝜂𝜏KL(𝑧*‖𝑧𝑡+1)

≤*6 KL(𝑧*‖𝑧𝑡) − 𝜂𝜏KL(𝑧*‖𝑧𝑡+1). (3.9.34)

Here (*1) follows from Lemma 3.9.3, (*2) follows from Lemma 3.9.4, (*3) follows from

Equation (3.9.32), (*4) follows from Young’s inequality, (*5) follows from Pinskers inequality

and (*6) follows from 𝜂 ≤ 𝜏/𝐿2. Therefore, we have

KL(𝑧*‖𝑧𝑡+1) ≤
1

1 + 𝜂𝜏
KL(𝑧*‖𝑧𝑡) ≤

(︁
1 − 𝜂𝜏

2

)︁
KL(𝑧*‖𝑧𝑡), (3.9.35)

which completes the proof.
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Parameter convergence: Now, we show convergence of the policy parameters. We

have the following theorem.

Theorem 3.9.7. Consider the modified NPG updates in Equation (3.9.21)-(3.9.22) with

stepsize satisfying 0 ≤ 𝜂 ≤ 𝜏/𝐿2. We then have:

‖𝜃𝑡+1 − 𝜃⋆‖2 + ‖𝜈𝑡+1 − 𝜈⋆‖2 ≤ (1 − 𝜂𝜏/4)𝑡

(︃
‖𝜃0 − 𝜃⋆‖2 + ‖𝜈0 − 𝜈⋆‖2 +

4𝐶

𝜂𝜏

)︃
, (3.9.36)

where 𝜃⋆ = −𝑄ℎ⋆

𝜏
, 𝜈⋆ = 𝑄⊤𝑔⋆

𝜏
and 𝐶 =

(︁
1 + 1

𝜂𝜏
(1 − 𝜂𝜏)2

)︁
4𝜂2‖𝑄‖2∞KL(𝑧⋆‖𝑧0).

Proof. We begin by first providing the intuition of the proof, when the opponent is playing

the NE strategy. We denote the NE strategies of the players as 𝑔⋆ and ℎ⋆. Then, the NPG

update has the following form:

𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂𝑄ℎ⋆. (3.9.37)

We know that the NE satisfy:

𝑔⋆(𝑎) =
𝑒−[𝑄ℎ⋆]𝑎/𝜏∑︀

𝑎′∈𝒜 𝑒
−[𝑄ℎ⋆]𝑎′/𝜏

=
𝑒−[𝑄ℎ⋆]𝑎/𝜏

𝐾
, (3.9.38)

where we define 𝐾 :=
∑︀

𝑎′∈𝒜 𝑒
−[𝑄ℎ⋆]𝑎′/𝜏 . Taking log on both sides, we have:

−𝜂𝑄ℎ⋆ = 𝜂𝜏 log 𝑔⋆ + 𝜂𝜏 log𝐾. (3.9.39)

Substituting this back into the 𝜃 update in (3.9.37), we have:

𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 + 𝜂𝜏 log 𝑔⋆ + 𝜂𝜏 log𝐾

= 𝜃𝑡 − 𝜂𝜏𝜃𝑡 + 𝜂𝜏 log 𝑔⋆ + 𝜂𝜏 log𝐾 − 𝜂𝜏 log𝑍𝜃𝑡 + 𝜂𝜏 log𝑍𝜃𝑡

= 𝜃𝑡 + 𝜂𝜏 log 𝑔⋆ − 𝜂𝜏 log

(︂
𝑒𝜃𝑡

𝑍𝜃𝑡

)︂
+ 𝜂𝜏 log

(︂
𝐾

𝑍𝜃𝑡

)︂
= 𝜃𝑡 + 𝜂𝜏 log 𝑔⋆ − 𝜂𝜏 log 𝑔𝜃𝑡 + 𝜂𝜏 log

(︂
𝐾

𝑍𝜃𝑡

)︂
= 𝜃𝑡 + 𝜂𝜏 log

(︂
𝑔⋆

𝑔𝜃𝑡

)︂
+ 𝜂𝜏 log

(︂
𝐾

𝑍𝜃𝑡

)︂
= 𝜃𝑡 + 𝜂𝜏 log

(︂
𝑔⋆𝐾

𝑔𝜃𝑡𝑍𝜃𝑡

)︂
. (3.9.40)
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We can further simplify this as:

𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝜏 log

(︂
𝑒−[𝑄ℎ⋆]/𝜏

𝑒𝜃𝑡

)︂
, (3.9.41)

which is nothing but:

𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝜏

(︂
−𝑄ℎ⋆

𝜏
− 𝜃𝑡

)︂
. (3.9.42)

Note that this is the Gradient Descent update on the strongly convex function 1
2

⃦⃦−𝑄ℎ⋆

𝜏
− 𝜃
⃦⃦2

with stepsize 𝜂𝜏 . This update leads to the following convergence guarantees:

‖𝜃𝑡+1 − 𝜃⋆‖2 ≤ (1 − 𝜂𝜏)2‖𝜃𝑡 − 𝜃⋆‖2, (3.9.43)

where 𝜃⋆ = −𝑄ℎ⋆

𝜏
.

The analysis above shows that if one of the players is already at the NE strategy, the

parameters of the second player converges to the NE at a linear rate. However, the original

NPG update for 𝜃 is given by

𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂𝑄ℎ⋆ + 𝜂𝑄(ℎ⋆ − ℎ𝜈𝑡). (3.9.44)

Since ℎ𝜈𝑡+1 converges to ℎ⋆ at a linear rate (from Theorem 3.9.6), we expect the term

𝜀𝑡 = 𝜂𝑄(ℎ⋆ − ℎ𝜈𝑡), (3.9.45)

to be small, and goes to 0. This is formalized in what follows.

The NPG update for 𝜃 can be re-written using 𝜀𝑡 as:

𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝜏

(︂
−𝑄ℎ⋆

𝜏
− 𝜃𝑡

)︂
+ 𝜀𝑡. (3.9.46)
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Once again, defining 𝜃⋆ = −𝑄ℎ⋆

𝜏
, we have:

‖𝜃𝑡+1 − 𝜃⋆‖2 = ‖𝜃𝑡 + 𝜂𝜏 (𝜃⋆ − 𝜃𝑡) + 𝜀𝑡 − 𝜃⋆‖2 = ‖(1 − 𝜂𝜏)(𝜃𝑡 − 𝜃⋆) + 𝜀𝑡‖2

= (1 − 𝜂𝜏)2‖𝜃𝑡 − 𝜃⋆‖2 + 2(1 − 𝜂𝜏)(𝜃𝑡 − 𝜃⋆)⊤𝜀𝑡 + ‖𝜀𝑡‖2

≤*1 (1 − 𝜂𝜏)2‖𝜃𝑡 − 𝜃⋆‖2 + 𝜂𝜏‖𝜃𝑡 − 𝜃⋆‖2 +
1

𝜂𝜏
(1 − 𝜂𝜏)2‖𝜀𝑡‖2 + ‖𝜀𝑡‖2

= (1 − 𝜂𝜏 + 𝜂2𝜏 2)‖𝜃𝑡 − 𝜃⋆‖2 +

(︂
1 +

1

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
‖𝜀𝑡‖2, (3.9.47)

where *1 follows from Young’s inequality.

Next, we analyze the error term ‖𝜀𝑡‖. We have:

‖𝜀𝑡‖2 = ‖𝜂𝑄(ℎ⋆ − ℎ𝜈𝑡)‖2 ≤ 𝜂2‖𝑄‖2∞‖(ℎ⋆ − ℎ𝜈𝑡)‖21 ≤*1 2𝜂2‖𝑄‖2∞(KL(ℎ⋆‖ℎ𝜈𝑡)). (3.9.48)

Here *1 follows from Pinsker’s Inequality. Now, writing the same inequality for 𝜈, we have:

‖𝜃𝑡+1 − 𝜃⋆‖2 + ‖𝜈𝑡+1 − 𝜈⋆‖2

≤ (1 − 𝜂𝜏 + 𝜂2𝜏 2)(‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2)

+

(︂
1 +

1

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
2𝜂2‖𝑄‖2∞KL(𝑧⋆‖𝑧𝑡)

≤ (1 − 𝜂𝜏 + 𝜂2𝜏 2)(‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2)

+

(︂
1 +

1

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
4𝜂2𝐶‖𝑄‖2∞

(︁
1 − 𝜂𝜏

2

)︁𝑡
KL(𝑧⋆‖𝑧0).

Define:

𝐶 =

(︂
1 +

1

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
4𝜂2‖𝑄‖2∞KL(𝑧⋆‖𝑧0). (3.9.49)

Substituting back in Equation (3.9.70), along with the corresponding expression for 𝜈, we

have:

‖𝜃𝑡+1 − 𝜃⋆‖2 + ‖𝜈𝑡+1 − 𝜈⋆‖2 ≤ (1 − 𝜂𝜏 + 𝜂2𝜏 2)(‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2) + 𝐶
(︁

1 − 𝜂𝜏

2

)︁𝑡
.

(3.9.50)
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For 𝜂𝜏 < 1/2 we have:

‖𝜃𝑡+1 − 𝜃⋆‖2 + ‖𝜈𝑡+1 − 𝜈⋆‖2 ≤ (1 − 𝜂𝜏/4)(‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2) + 𝐶(1 − 𝜂𝜏/2)𝑡.

(3.9.51)

Consider the Lyapunov function:

𝑉𝑡+1 = ‖𝜃𝑡+1 − 𝜃⋆‖2 + ‖𝜈𝑡+1 − 𝜈⋆‖2 +
4𝐶

𝜂𝜏
(1 − 𝜂𝜏/2)𝑡+1. (3.9.52)

We have:

𝑉𝑡+1 ≤ (1 − 𝜂𝜏/4)(‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2) + 𝐶(1 − 𝜂𝜏/2)𝑡 +
4𝐶

𝜂𝜏
(1 − 𝜂𝜏/2)(1 − 𝜂𝜏/2)𝑡

= (1 − 𝜂𝜏/4)(‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2) +
4𝐶

𝜂𝜏
(1 − 𝜂𝜏)𝑡(1 − 𝜂𝜏/4)

= (1 − 𝜂𝜏/4)

(︂
‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2 +

4𝐶

𝜂𝜏
(1 − 𝜂𝜏)𝑡

)︂
= (1 − 𝜂𝜏/4)𝑉𝑡. (3.9.53)

This shows linear convergence of the parameter 𝜃 to 𝜃⋆ since:

‖𝜃𝑡+1 − 𝜃⋆‖2 + ‖𝜈𝑡+1 − 𝜈⋆‖2 ≤ 𝑉𝑡+1 ≤ (1 − 𝜂𝜏/4)𝑡𝑉0. (3.9.54)

This completes the proof.

Proof of Theorem 3.3.4

We first prove the following result which follows from Theorem 1 in [23].

Lemma 3.9.8. [Theorem 1, [23]] Consider Algorithm 1. Suppose that the learning rates

satisfy:

0 < 𝜂 ≤ min

{︂
1

2𝜏 + 2‖𝑄‖∞
,

1

4‖𝑄‖∞

}︂
. (3.9.55)

Let 𝑧𝑡 = (𝑔𝜃𝑡 , ℎ𝜈𝑡) and 𝑧𝑡 = (𝑔𝜃𝑡 , ℎ𝜈𝑡). Then:

max

{︂
KL(𝑧⋆‖𝑧𝑡),

1

2
KL(𝑧⋆‖𝑧𝑡+1)

}︂
≤ (1− 𝜂𝜏)𝑡KL(𝑧⋆‖𝑧0). (3.9.56)
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Proof. Let 𝑔𝑡 and 𝑔𝑡 denote 𝑔𝜃𝑡 and 𝑔𝜃𝑡 respectively. Also, for any parameter 𝜃, we denote 𝑍𝜃

to be the normalizing constant
∑︀

𝑎′∈𝒜 𝑒
𝜃(𝑎′) (Define 𝑍𝜈 similarly). We have:

𝑔𝑡+1(𝑎) =
𝑒𝜃𝑡+1(𝑎)∑︀

𝑎′∈𝒜 𝑒
𝜃𝑡+1(𝑎′)

∝ 𝑒𝜃𝑡+1(𝑎) = 𝑒(1−𝜂𝜏)𝜃𝑡(𝑎)−𝜂[𝑄ℎ𝜈𝑡 ]𝑎 = 𝑒(1−𝜂𝜏)𝜃𝑡(𝑎)+log𝑍𝜃𝑡
−log𝑍𝜃𝑡

−𝜂[𝑄ℎ𝜈𝑡 ]𝑎

= 𝑒(1−𝜂𝜏) log 𝑒𝜃𝑡(𝑎)+log𝑍𝜃𝑡
−log𝑍𝜃𝑡

−𝜂[𝑄ℎ𝜈𝑡 ]𝑎 = 𝑒
(1−𝜂𝜏) log

(︂
𝑒𝜃𝑡(𝑎)

𝑍𝜃𝑡

)︂
+log𝑍𝜃𝑡

−𝜂[𝑄ℎ𝜈𝑡 ]𝑎

∝ 𝑒
(1−𝜂𝜏) log

(︂
𝑒𝜃𝑡(𝑎)

𝑍𝜃𝑡

)︂
−𝜂[𝑄ℎ𝜈𝑡 ]𝑎

= 𝑒(1−𝜂𝜏) log 𝑔𝑡(𝑎)−𝜂[𝑄ℎ𝜈𝑡 ]𝑎 = 𝑒log 𝑔𝑡(𝑎)
(1−𝜂𝜏)−𝜂[𝑄ℎ𝜈𝑡 ]𝑎

= 𝑔𝑡(𝑎)(1−𝜂𝜏)𝑒−𝜂[𝑄ℎ𝜈𝑡 ]𝑎 . (3.9.57)

Therefore:

𝑔𝑡+1(𝑎) ∝ 𝑔𝑡(𝑎)(1−𝜂𝜏)𝑒−𝜂[𝑄ℎ𝜈𝑡 ]𝑎 . (3.9.58)

Similarly, we have:

𝑔𝑡+1(𝑎) ∝ 𝑔𝑡(𝑎)(1−𝜂𝜏)𝑒−𝜂[𝑄ℎ𝜈𝑡+1 ]𝑎 ,

ℎ̄𝑡+1(𝑎) ∝ ℎ𝑡(𝑎)(1−𝜂𝜏)𝑒𝜂[𝑄
⊤𝑔𝜃𝑡 ]𝑎 ,

ℎ𝑡+1(𝑎) ∝ ℎ𝑡(𝑎)(1−𝜂𝜏)𝑒
𝜂[𝑄⊤𝑔𝜃𝑡+1

]𝑎 , (3.9.59)

which is the same as the OMW updates for the regularized problem in [23]. Therefore,

by Theorem 1 in [23], we have convergence of 𝑔𝜃 and ℎ𝜈 to the solution of the regularized

min-max problem.

We begin by first providing the intuition of the proof, when the opponent is playing the

NE strategy. We denote the NE strategies of the players as 𝑔⋆ and ℎ⋆. Then, the optimistic

NPG update has the following form:

𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂𝑄ℎ⋆. (3.9.60)
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From [86], we know that the NE satisfy:

𝑔⋆(𝑎) =
𝑒−[𝑄ℎ⋆]𝑎/𝜏∑︀

𝑎′∈𝒜 𝑒
−[𝑄ℎ⋆]𝑎′/𝜏

=
𝑒−[𝑄ℎ⋆]𝑎/𝜏

𝐾
, (3.9.61)

where we define 𝐾 :=
∑︀

𝑎′∈𝒜 𝑒
−[𝑄ℎ⋆]𝑎′/𝜏 . Taking log on both sides, we have:

−𝜂𝑄ℎ⋆ = 𝜂𝜏 log 𝑔⋆ + 𝜂𝜏 log𝐾. (3.9.62)

Substituting this back into the 𝜃 update in (3.9.60), we have:

𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 + 𝜂𝜏 log 𝑔⋆ + 𝜂𝜏 log𝐾

= 𝜃𝑡 − 𝜂𝜏𝜃𝑡 + 𝜂𝜏 log 𝑔⋆ + 𝜂𝜏 log𝐾 − 𝜂𝜏 log𝑍𝜃𝑡 + 𝜂𝜏 log𝑍𝜃𝑡

= 𝜃𝑡 + 𝜂𝜏 log 𝑔⋆ − 𝜂𝜏 log

(︂
𝑒𝜃𝑡

𝑍𝜃𝑡

)︂
+ 𝜂𝜏 log

(︂
𝐾

𝑍𝜃𝑡

)︂
= 𝜃𝑡 + 𝜂𝜏 log 𝑔⋆ − 𝜂𝜏 log 𝑔𝜃𝑡 + 𝜂𝜏 log

(︂
𝐾

𝑍𝜃𝑡

)︂
= 𝜃𝑡 + 𝜂𝜏 log

(︂
𝑔⋆

𝑔𝜃𝑡

)︂
+ 𝜂𝜏 log

(︂
𝐾

𝑍𝜃𝑡

)︂
= 𝜃𝑡 + 𝜂𝜏 log

(︂
𝑔⋆𝐾

𝑔𝜃𝑡𝑍𝜃𝑡

)︂
. (3.9.63)

We can further simplify this as:

𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝜏 log

(︂
𝑒−[𝑄ℎ⋆]/𝜏

𝑒𝜃𝑡

)︂
, (3.9.64)

which is nothing but:

𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝜏

(︂
−𝑄ℎ⋆

𝜏
− 𝜃𝑡

)︂
. (3.9.65)

Note that this is the Gradient Descent update on the strongly convex function 1
2

⃦⃦−𝑄ℎ⋆

𝜏
− 𝜃
⃦⃦2

with stepsize 𝜂𝜏 . Note that this update leads to the following convergence guarantees:

‖𝜃𝑡+1 − 𝜃⋆‖2 ≤ (1 − 𝜂𝜏)2‖𝜃𝑡 − 𝜃⋆‖2, (3.9.66)

where 𝜃⋆ = −𝑄ℎ⋆

𝜏
.
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The analysis above shows that if one of the players is already at the NE strategy, the

parameters of the second player converges to the NE at a linear rate. However, the original

OGDA update for 𝜃 is given by

𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂𝑄ℎ⋆ + 𝜂𝑄(ℎ⋆ − ℎ𝜈𝑡+1). (3.9.67)

Since ℎ𝜈𝑡+1 converges to ℎ⋆ at a linear rate (from Lemma 3.9.8), we expect the term

𝜀𝑡 = 𝜂𝑄(ℎ⋆ − ℎ𝜈𝑡+1), (3.9.68)

to be small, and goes to 0. This is formalized in what follows.

The OGDA update for 𝜃 can be re-written using 𝜀𝑡 as:

𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝜏

(︂
−𝑄ℎ⋆

𝜏
− 𝜃𝑡

)︂
+ 𝜀𝑡. (3.9.69)

Once again, defining 𝜃⋆ = −𝑄ℎ⋆

𝜏
, we have:

‖𝜃𝑡+1 − 𝜃⋆‖2 = ‖𝜃𝑡 + 𝜂𝜏 (𝜃⋆ − 𝜃𝑡) + 𝜀𝑡 − 𝜃⋆‖2 = ‖(1 − 𝜂𝜏)(𝜃𝑡 − 𝜃⋆) + 𝜀𝑡‖2

= (1 − 𝜂𝜏)2‖𝜃𝑡 − 𝜃⋆‖2 + 2(1 − 𝜂𝜏)(𝜃𝑡 − 𝜃⋆)⊤𝜀𝑡 + ‖𝜀𝑡‖2

≤*1 (1 − 𝜂𝜏)2‖𝜃𝑡 − 𝜃⋆‖2 + 𝜂𝜏‖𝜃𝑡 − 𝜃⋆‖2 +
1

𝜂𝜏
(1 − 𝜂𝜏)2‖𝜀𝑡‖2 + ‖𝜀𝑡‖2

= (1 − 𝜂𝜏 + 𝜂2𝜏 2)‖𝜃𝑡 − 𝜃⋆‖2 +

(︂
1 +

1

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
‖𝜀𝑡‖2, (3.9.70)

where *1 follows from Young’s inequality.

Next, we analyze the error term ‖𝜀𝑡‖. We have:

‖𝜀𝑡‖2 = ‖𝜂𝑄(ℎ⋆ − ℎ𝜈𝑡+1)‖2 ≤ 𝜂2‖𝑄‖2∞‖(ℎ⋆ − ℎ𝜈𝑡+1)‖21 ≤*1 2𝜂2‖𝑄‖2∞(KL(ℎ⋆‖ℎ𝜈𝑡+1)). (3.9.71)

Here *1 follows from Pinsker’s Inequality. Now, writing the same inequality for 𝜈, we have:

‖𝜃𝑡+1 − 𝜃⋆‖2 + ‖𝜈𝑡+1 − 𝜈⋆‖2 ≤ (1 − 𝜂𝜏 + 𝜂2𝜏 2)(‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2)
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+

(︂
1 +

1

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
2𝜂2‖𝑄‖2∞KL(𝑧⋆‖𝑧𝑡+1)

≤ (1 − 𝜂𝜏 + 𝜂2𝜏 2)(‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2)

+

(︂
1 +

1

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
4𝜂2𝐶‖𝑄‖2∞(1 − 𝜂𝜏)𝑡KL(𝑧⋆‖𝑧0).

Define:

𝐶 =

(︂
1 +

1

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
4𝜂2‖𝑄‖2∞KL(𝑧⋆‖𝑧0). (3.9.72)

This gives us (Using Lemma 3.9.8):

‖𝜃𝑡+1 − 𝜃⋆‖2 + ‖𝜈𝑡+1 − 𝜈⋆‖2 ≤ (1 − 𝜂𝜏 + 𝜂2𝜏 2)(‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2) + 𝐶(1 − 𝜂𝜏)𝑡.

(3.9.73)

For 𝜂𝜏 < 1/2 we have:

‖𝜃𝑡+1 − 𝜃⋆‖2 + ‖𝜈𝑡+1 − 𝜈⋆‖2 ≤ (1 − 𝜂𝜏/2)(‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2) + 𝐶(1 − 𝜂𝜏)𝑡. (3.9.74)

Consider the Lyapunov function:

𝑉𝑡+1 = ‖𝜃𝑡+1 − 𝜃⋆‖2 + ‖𝜈𝑡+1 − 𝜈⋆‖2 +
2𝐶

𝜂𝜏
(1 − 𝜂𝜏)𝑡+1. (3.9.75)

We have:

𝑉𝑡+1 ≤ (1 − 𝜂𝜏/2)(‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2) + 𝐶(1 − 𝜂𝜏)𝑡 +
2𝐶

𝜂𝜏
(1 − 𝜂𝜏)(1 − 𝜂𝜏)𝑡

= (1 − 𝜂𝜏/2)(‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2) +
2𝐶

𝜂𝜏
(1 − 𝜂𝜏)𝑡(1 − 𝜂𝜏/2)

= (1 − 𝜂𝜏/2)

(︂
‖𝜃𝑡 − 𝜃⋆‖2 + ‖𝜈𝑡 − 𝜈⋆‖2 +

2𝐶

𝜂𝜏
(1 − 𝜂𝜏)𝑡

)︂
= (1 − 𝜂𝜏/2)𝑉𝑡. (3.9.76)
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Algorithm 2 Optimistic NPG (Function Approximation)
Initialize: 𝜃0 = 0 and 𝜈0 = 0.
for 𝑡 = 1, 2, · · · do
𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂[(𝑀⊤)−1|0] ̃︀𝑃𝑄ℎ𝜈𝑡
𝜈𝑡+1 = (1 − 𝜂𝜏)𝜈𝑡 + 𝜂[(𝑀⊤)−1|0] ̃︀𝑃𝑄⊤𝑔𝜃𝑡

𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − 𝜂[(𝑀⊤)−1|0] ̃︀𝑃𝑄ℎ𝜈𝑡+1

𝜈𝑡+1 = (1 − 𝜂𝜏)𝜈𝑡 + 𝜂[(𝑀⊤)−1|0] ̃︀𝑃𝑄⊤𝑔𝜃𝑡+1

end for

This shows linear convergence of the parameter 𝜃 to 𝜃⋆ since:

‖𝜃𝑡+1 − 𝜃⋆‖2 + ‖𝜈𝑡+1 − 𝜈⋆‖2 ≤ 𝑉𝑡+1 ≤ (1 − 𝜂𝜏/2)𝑡𝑉0. (3.9.77)

This completes the proof.

Note that proof of Corollary 3.3.5 follows from Remark 4 and the preceding discussion in

[23].

3.9.3 Missing Details and Proofs in §3.4

Remark 3.9.9. We note that all results present in this section also follow for the case where

the cardinality of the action spaces for both players are unequal. However, we stick to the

case where the number of actions is the same for both players for ease of exposition.

Proof of Lemma 3.4.4

The first part of the lemma describes the set of distributions in the 𝑚-dimensional simplex

covered by this parametrization. Since the set of distributions covered by the log-linear

parametrization would be the same for all invertible 𝑀7, for simplicity, we study the case

where 𝑀 = I. Note that this would imply:

𝑔𝜃(𝑎) ∝ 𝑒𝜃(𝑎) ∀𝑎 ∈ {1, 2, · · · , 𝑑},

7To see this, consider ̃︀𝜃 = 𝑀𝜃. Since 𝑀 is invertible, there is a 1-1 correspondence between ̃︀𝜃 and 𝜃. The
distribution parametrized by 𝜃 under the function approximation matrix 𝑀 , is the same as the distribution
parametrized by ̃︀𝜃 under the function approximation matrix 𝐼. Therefore it is enough to consider the special
case of 𝑀 = I.
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𝑔𝜃(𝑎) ∝ 1 ∀𝑎 ∈ {𝑑+ 1, 𝑑+ 2, · · · , 𝑛}. (3.9.78)

Similarly for ℎ𝜈 . Therefore, according to this parametrization the first 𝑑 elements can

be chosen freely, and the rest 𝑛 − 𝑑 parameters have to be equal. In other words, this

parametrization covers the following set of distributions:

̃︀∆ = {𝜇 : 𝜇 ∈ ∆, 𝜇𝑑+1 = 𝜇𝑑+2 = · · · = 𝜇𝑛}, (3.9.79)

which is a closed convex subset of the 𝑛-dimensional simplex. To see that any element of ̃︀∆ can

be represented by the log-linear parametrization, we can take the parameters 𝜃(𝑎) = log 𝜇(𝑎)

for 𝑎 = 1, 2, · · · , 𝑑8. This would be a valid parametrization under the log-linear function

approximation setting, and therefore all elements of ̃︀∆ can be represented in this manner.

Therefore, since the two sets are equivalent, we can rewrite the problem in terms of the policy

vectors lying in the constraint set ̃︀∆ which completes the proof of the lemma.

Proof of Theorem 3.4.5

For the regularized game (3.4.6), let player 2 play the NE strategy ℎ⋆𝜈 . Then player 1’s

optimization problem is given by:

min
𝑔𝜃∈̃︀Δ 𝑔⊤𝜃 𝑄ℎ

⋆
𝜈 − 𝜏ℋ(𝑔𝜃). (3.9.80)

Define the following Lagrange multipliers (and associated constraints):

𝜆 :
𝑛∑︁

𝑎=1

𝑔𝜃(𝑎) = 1,

𝛽1 : 𝑔𝜃(𝑑+ 1) = 𝑔𝜃(𝑑+ 2),

𝛽2 : 𝑔𝜃(𝑑+ 2) = 𝑔𝜃(𝑑+ 3),

· · ·

𝛽𝑛−𝑑−1 : 𝑔𝜃(𝑛− 1) = 𝑔𝜃(𝑛). (3.9.81)

8Note that if 𝜇(𝑎) = 0, the corresponding paramter would be −∞.
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Therefore, for the optimal Lagrange multipliers, taking the first-order optimality conditions

(with respect to the variable 𝑔𝜃), we have:

[𝑄ℎ⋆𝜈 ]𝑎 + 𝜏(log 𝑔𝜃(𝑎) + 1) + 𝜆 = 0 ∀𝑎 ∈ {1, 2, · · · , 𝑑},

[𝑄ℎ⋆𝜈 ]𝑎 + 𝜏(log 𝑔𝜃(𝑎) + 1) + 𝜆+ 𝛽𝑎−𝑑 − 𝛽𝑎−𝑑−1 = 0 ∀𝑎 ∈ {𝑑+ 1, 𝑑+ 2, · · · , 𝑛}, (3.9.82)

where 𝛽0 and 𝛽𝑛−𝑑 are defined to be equal to 0. This gives us:

𝑔⋆𝜃(𝑎) ∝ 𝑒−[𝑄ℎ⋆
𝜈 ]𝑎/𝜏 ∀𝑎 ∈ {1, 2, · · · , 𝑑}. (3.9.83)

For actions with indices 𝑎 > 𝑑, the equality constraints give us:

[𝑄ℎ⋆𝜈 ]𝑎 + 𝛽𝑎−𝑑 − 𝛽𝑎−𝑑−1 = 𝐶 ∀𝑎 ∈ {𝑑+ 1, 𝑑+ 2, · · · , 𝑛}, (3.9.84)

for some constant 𝐶. On solving these equations for 𝐶, we have:

𝐶 =
1

𝑛− 𝑑

𝑛∑︁
𝑎=𝑑+1

[𝑄ℎ⋆𝜈 ]𝑎, (3.9.85)

which gives us

𝑔⋆𝜃(𝑎) ∝ 𝑒−𝐶/𝜏 ∀𝑎 ∈ {𝑑+ 1, · · · , 𝑛}. (3.9.86)

Now, consider the symmetric matrix Ψ ∈ R𝑛×𝑛 defined as:

Ψ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐼𝑑 0

0

1
𝑛−𝑑

· · · 1
𝑛−𝑑

· · · · · · · · ·
1

𝑛−𝑑
· · · 1

𝑛−𝑑

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.9.87)

Note that

[Ψ⊤𝑄ℎ⋆𝜈 ]𝑎 = [𝑄ℎ⋆𝜈 ]𝑎 ∀𝑎 ∈ {1, 2, · · · , 𝑑},
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[Ψ⊤𝑄ℎ⋆𝜈 ]𝑎 = 𝐶 ∀𝑎 ∈ {𝑑+ 1, 𝑑+ 2, · · · , 𝑛}. (3.9.88)

Therefore, we can succinctly write the optimal distribution as:

𝑔⋆𝜃(𝑎) ∝ 𝑒−[Ψ⊤𝑄ℎ⋆
𝜈 ]𝑎/𝜏 ∀𝑎 ∈ {1, 2, · · · , 𝑛}. (3.9.89)

Also, we have Ψ𝜇 = 𝜇, ∀𝜇 ∈ ̃︀∆.
Now, since ℎ⋆𝜈 is the optimal distribution for Player 2, we must have ℎ⋆𝜈 ∈ ̃︀∆, which

implies:

Ψℎ⋆𝜈 = ℎ⋆𝜈 . (3.9.90)

Doing a similar calculation for 𝑔⋆𝜈 , we have that the NE satisfy:

𝑔⋆𝜃(𝑎) =
𝑒−[Ψ⊤𝑄Ψℎ⋆

𝜈 ]𝑎/𝜏∑︀
𝑎′ 𝑒

−[Ψ⊤𝑄Ψℎ⋆
𝜈 ]𝑎′/𝜏

, ℎ⋆𝜈(𝑎) =
𝑒[Ψ

⊤𝑄⊤Ψ𝑔⋆𝜃 ]𝑎/𝜏∑︀
𝑎′ 𝑒

[Ψ⊤𝑄⊤Ψ𝑔⋆𝜃 ]𝑎′/𝜏
. (3.9.91)

Now, from this characterization of the NE, we see that these solutions are also the same as

those of the following problem:

min
𝑔∈Δ

max
ℎ∈Δ

𝑔⊤Ψ⊤𝑄Ψℎ− 𝜏ℋ(𝑔) + 𝜏ℋ(ℎ). (3.9.92)

Note that in the analysis above we have found a solution in the (relative) interior of the

constraint set. For example, if for some action 𝑎, we have 𝑓𝜃(𝑎) = 0, then the term log 𝑓𝜃(𝑎)

is not defined and the Lagrangian would be different. However, since this is a strongly convex

strongly concave minimax problem over a convex compact set, there is a unique solution

(see [41]). As we have already found a solution in the interior of the constraint set, by

the argument above we have that this is the unique solution. This allows us to solve the

first-order KKT optimality conditions (see [17]) to find the solution. Also, since all terms

satisfy 𝑓𝜃(𝑎) > 0 (similarly for 𝑔𝜈(𝑎)) we do not need to explicitly write down the Lagrange

multipliers for the non-negativity constraint. This completes the proof.
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Proof of Proposition 3.4.6

The algorithm is similar to the one proposed for the tabular case. However, since the

exponents are elements of Φ⊤𝜃 instead of just 𝜃 as was in the case of tabular softmax, we have

the updates modified as well (we write the updates here for the combined update instead of

the two step update for ease of presentation):

Φ⊤𝜃𝑡+1 = (1 − 𝜂𝜏)Φ⊤𝜃𝑡 − (2 − 𝜂𝜏)𝜂Ψ⊤ ̃︀𝑃𝑄Ψℎ𝜈𝑡 + (1 − 𝜂𝜏)𝜂Ψ⊤ ̃︀𝑃𝑄Ψℎ𝜈𝑡−1 ,

Φ⊤𝜈𝑡+1 = (1 − 𝜂𝜏)Φ⊤𝜈𝑡 + (2 − 𝜂𝜏)𝜂Ψ⊤ ̃︀𝑃𝑄⊤Ψ𝑔𝜃𝑡 − (1 − 𝜂𝜏)𝜂Ψ⊤ ̃︀𝑃𝑄⊤Ψ𝑔𝜃𝑡−1 , (3.9.93)

where Φ is a full-rank feature matrix. Note that the additional matrix ̃︀𝑃 is to ensure that

the probability vector at each step of the algorithm satisfies the function approximation

constraint9. Since Φ is full-rank, we can explicitly write this update for 𝜃 and 𝜈 as follows:

𝜃𝑡+1 = [ΦΦ⊤]−1Φ
(︁

(1 − 𝜂𝜏)Φ⊤𝜃𝑡 − (2 − 𝜂𝜏)𝜂Ψ⊤ ̃︀𝑃𝑄Ψℎ𝜈𝑡 + (1 − 𝜂𝜏)𝜂Ψ⊤ ̃︀𝑃𝑄Ψℎ𝜈𝑡−1

)︁
,

𝜈𝑡+1 = [ΦΦ⊤]−1Φ
(︁

(1 − 𝜂𝜏)Φ⊤𝜈𝑡 + (2 − 𝜂𝜏)𝜂Ψ⊤ ̃︀𝑃𝑄⊤Ψ𝑔𝜃𝑡 − (1 − 𝜂𝜏)𝜂Ψ⊤ ̃︀𝑃𝑄⊤Ψ𝑔𝜃𝑡−1

)︁
,

which can be simplified to:

𝜃𝑡+1 = (1− 𝜂𝜏)𝜃𝑡 − (2− 𝜂𝜏)𝜂[ΦΦ⊤]−1ΦΨ⊤ ̃︀𝑃𝑄Ψℎ𝜈𝑡 + (1− 𝜂𝜏)𝜂[ΦΦ⊤]−1ΦΨ⊤ ̃︀𝑃𝑄Ψℎ𝜈𝑡−1 ,

𝜈𝑡+1 = (1− 𝜂𝜏)𝜈𝑡 + (2− 𝜂𝜏)𝜂[ΦΦ⊤]−1ΦΨ⊤ ̃︀𝑃𝑄⊤Ψ𝑔𝜃𝑡 − (1− 𝜂𝜏)𝜂[ΦΦ⊤]−1ΦΨ⊤ ̃︀𝑃𝑄⊤Ψ𝑔𝜃𝑡−1 .

(3.9.94)

Note that for Φ = [𝑀 | 0], we have

[ΦΦ⊤]−1Φ = ([𝑀 |0][𝑀 |0]⊤)−1[𝑀 |0] = (𝑀𝑀⊤)−1[𝑀 |0] = [(𝑀⊤)−1|0]. (3.9.95)

From the previous discussion, since all the terms 𝑔𝜃𝑡 and ℎ𝜈𝑡 lie in the set ̃︀∆, we have

Ψ𝑔𝜃𝑡 = 𝑔𝜃𝑡 and Ψℎ𝜈𝑡 = ℎ𝜈𝑡 . Also, we have:

[ΦΦ⊤]−1ΦΨ⊤ = [(𝑀⊤)−1|0]Ψ⊤ = [(𝑀⊤)−1|0], (3.9.96)

9This is based on the fact that for a probability vector 𝑥𝑖 ∝ 𝑒𝑦𝑖 , we will also have 𝑥𝑖 ∝ 𝑒𝑦𝑖−𝑘 for any
constant k independent of the index 𝑖.
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from the structure of Ψ. Therefore, the update can be written as:

𝜃𝑡+1 = (1 − 𝜂𝜏)𝜃𝑡 − (2 − 𝜂𝜏)𝜂[(𝑀⊤)−1|0] ̃︀𝑃𝑄ℎ𝜈𝑡 + (1 − 𝜂𝜏)𝜂[(𝑀⊤)−1|0] ̃︀𝑃𝑄ℎ𝜈𝑡−1 ,

𝜈𝑡+1 = (1 − 𝜂𝜏)𝜈𝑡 + (2 − 𝜂𝜏)𝜂[(𝑀⊤)−1|0] ̃︀𝑃𝑄⊤𝑔𝜃𝑡 − (1 − 𝜂𝜏)𝜂[(𝑀⊤)−1|0] ̃︀𝑃𝑄⊤𝑔𝜃𝑡−1 , (3.9.97)

which completes the proof.

Simulation to show convergence of ONPG in the function approximation setting

In this section, we show the performance of the ONPG algorithm under Function Approxima-

tion (Algorithm 2). The policies have a log linear parametrization, with the feature matrix

Φ = [𝐼 | 0] ∈ R10×100, and the cost matrix 𝑄 is chosen to be a random matrix of dimension

100 × 100.
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Figure 3-3: Behavior of Algorithm 2 in the matrix game under the log-linear function
approximation setting.

3.9.4 Missing Details and Proofs in §3.5

Remark 3.9.10. We note that all results presented in this section also follow for the case

where the number of possible actions for each player can be different. However, we stick to

the case where the number of action is the same for both players for ease of exposition. Note

that the actual action spaces need not be identical, but only their cardinalities.
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Algorithm 3 Optimistic NPG for monotone games
Initialize: 𝜃0𝑖 = 0 for all players 𝑖.
for 𝑡 = 1, 2, · · · do
𝜃𝑡+1
𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − 𝜂∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑡𝑖 , 𝑔𝜃𝑡−𝑖
) ∀𝑖 ∈ [𝑁 ].

𝜃𝑡+1
𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − 𝜂∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑡+1
𝑖
, 𝑔𝜃𝑡+1

−𝑖
) ∀𝑖 ∈ [𝑁 ].

end for

Definition 3.9.11 (In-class Nash equilibrium for a monotone game). The policy parameter

𝜃⋆ = [𝜃⋆1, 𝜃
⋆
2, · · · , 𝜃⋆𝑁 ] is an NE under function approximation, i.e., (in-class NE) of the

monotone game, if it satisfies that for all 𝑖 ∈ [𝑁 ],

𝑓𝑖(𝑔𝜃⋆𝑖 , 𝑔𝜃⋆−𝑖
) ≤ 𝑓𝑖(𝑔𝜃𝑖 , 𝑔𝜃⋆−𝑖

), ∀𝜃𝑖 ∈ R𝑑. (3.9.98)

Note that if we are in the tabular setting, we will have 𝑑 = 𝑛.

Definition 3.9.12 (𝜖-in-class Nash equilibrium for a monotone game). The policy parameter

(̃︀𝜃1, · · · , ̃︀𝜃𝑁) is an 𝜖-Nash equilibrium under function approximation (or in-class 𝜖-NE) of the

monotone game if it satisfies that for all 𝑖 ∈ [𝑁 ],

𝑓𝑖(𝑔̃︀𝜃𝑖 , 𝑔̃︀𝜃−𝑖
) − 𝜖 ≤ 𝑓𝑖(𝑔𝜃𝑖 , 𝑔̃︀𝜃−𝑖

), ∀𝜃𝑖 ∈ R𝑑. (3.9.99)

Note that if we are in the tabular setting, we will have 𝑑 = 𝑛.

We will also use the notation 𝑓 𝜏
𝑖 (𝑔𝑖, 𝑔−𝑖) = 𝑓𝑖(𝑔𝑖, 𝑔−𝑖) − 𝜏ℋ(𝑔𝑖).

Proof of Lemma 3.5.2

We can follow the analysis for a two player game from [86] to write down the solution form

for the N-player monotone setting. We let 𝑔𝑖 and 𝑔−𝑖 denote 𝑔𝜃𝑖 and 𝑔𝜃−𝑖
respectively. First,

note that the solutions in the policy space exists for the unregularized game, since we are

solving a monotone VI over a convex compact set, and this solution is unique if we regularize

the game, since in this case we are solving a stringly monotone VI over a convex compact set.

See [41].

Consider player 𝑖′𝑠 optimization problem when other players play the equilibrium strate-
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gies:

min
𝑔𝑖∈Δ

𝑓𝑖(𝑔𝑖, 𝑔
⋆
−𝑖) − 𝜏ℋ(𝑔𝑖). (3.9.100)

Since we are in the monotone setting with a strongly convex regularizer, the first order

Karush–Kuhn–Tucker (KKT) conditions are both necessary and sufficient. The first order

KKT conditions are:

[∇𝑔𝑖𝑓𝑖(𝑔
⋆
𝑖 , 𝑔

⋆
−𝑖)]𝑎 + 𝜏(log 𝑔⋆𝑖 + 1) + 𝜆 = 0,

where 𝜆 is the Lagrange multiplier corresponding to the simplex constraint. This implies:

𝑔⋆𝑖 (𝑎) ∝ 𝑒
−[∇𝑔𝑖𝑓𝑖(𝑔

⋆
𝑖 ,𝑔⋆−𝑖)]𝑎

𝜏 , (3.9.101)

which shows the NE in the policy space. Now, to complete the proof of the lemma, we need

to find parameters 𝜃⋆ which leads to this distribution. This can be easily seen by setting

𝜃⋆𝑖 =
−[∇𝑔𝑖𝑓𝑖(𝑔

⋆
𝑖 ,𝑔

⋆
−𝑖)]

𝜏
, thereby completing the proof of the lemma.

(Optimistic) NPG for monotone games

As noted in §3.9.1, we have that the Fisher Information matrix 𝐹𝜃(𝜃) = ∇𝜃𝑔𝜃. Therefore, the

NPG update for player 𝑖 can be simplified as:

𝜃𝑡+1
𝑖 = 𝜃𝑡𝑖 − 𝜂 · 𝐹 †

𝜃 (𝜃𝑡𝑖) ·
𝜕𝑓 𝜏

𝑖 (𝑔𝜃𝑡𝑖 , 𝑔𝜃𝑡−𝑖
)

𝜕𝜃
= 𝜃𝑡 − 𝜂

𝜕𝑓 𝜏
𝑖 (𝑔𝜃𝑡𝑖 , 𝑔𝜃𝑡−𝑖

)

𝜕𝑔𝜃𝑖

= 𝜃𝑡 − 𝜂
(︁
∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑡𝑖 , 𝑔𝜃𝑡−𝑖
) + 𝜏(1 + log 𝑔𝜃𝑡𝑖 )

)︁
. (3.9.102)

This can be simplified as:

𝜃𝑡+1
𝑖 (𝑎) = (1 − 𝜂𝜏)𝜃𝑡𝑖(𝑎) − 𝜂[∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑡𝑖 , 𝑔𝜃𝑡−𝑖
)]𝑎 + 𝜂𝜏(log𝑍𝜃𝑡𝑖

− 1), (3.9.103)

where 𝑍𝜃𝑡𝑖
=
∑︀

𝑎′∈𝒜 𝑒
𝜃𝑡𝑖(𝑎

′). Note that this update will have the same pitfall of parameter

divergence as the NPG update for the matrix game, since a matrix game is a special case of
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the monotone game. Therefore, we propose the following modified version of NPG, as done

for the matrix game:

𝜃𝑡+1
𝑖 (𝑎) = (1 − 𝜂𝜏)𝜃𝑡𝑖(𝑎) − 𝜂[∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑡𝑖 , 𝑔𝜃𝑡−𝑖
)]𝑎. (3.9.104)

This leads to the modified NPG dynamics for the monotone game. Now, similar to the matrix

game, we analyze the optimistic version of this algorithm with updates:

𝜃𝑡+1
𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − 𝜂∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑡𝑖 , 𝑔𝜃𝑡−𝑖
), 𝜃𝑡+1

𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − 𝜂∇𝑔𝜃𝑖
𝑓𝑖(𝑔𝜃𝑡+1

𝑖
, 𝑔𝜃𝑡+1

−𝑖
),

in §3.5.

Proof of Theorem 3.5.3

We prove the following Lemma first:

Lemma 3.9.13. For any 𝑧 = (𝑔𝜃𝑖 , 𝑔𝜃−𝑖
) ∈ ∆𝑁 , consider an update of the form:

𝜃𝑡+1
𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − 𝜂∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑖 , 𝑔𝜃−𝑖
) ∀𝑖 ∈ [𝑁 ]. (3.9.105)

We have:

⟨log 𝑧𝑡+1 − (1 − 𝜂𝜏) log 𝑧𝑡 − 𝜂𝜏 log 𝑧⋆, 𝑧 − 𝑧⋆⟩ ≤ 0, (3.9.106)

where 𝑧⋆ = (𝑔⋆𝑖 )𝑁𝑖=1.

Proof. In the proof below, we define 𝑔𝑖 := 𝑔𝜃𝑖 and 𝑔𝑡𝑖 := 𝑔𝜃𝑡𝑖 . From the update sequence in

Equation (3.9.105), we have

log 𝑔𝑡+1
𝑖 = (1 − 𝜂𝜏) log 𝑔𝑡𝑖 − 𝜂∇𝑔𝑖𝑓𝑖(𝑔𝑖, 𝑔−𝑖) + 𝑐 · 1, (3.9.107)

where 𝑐 is the normalization constant. This implies:

⟨log 𝑔𝑡+1
𝑖 − (1 − 𝜂𝜏) log 𝑔𝑡𝑖 , 𝑔𝑖 − 𝑔⋆𝑖 ⟩ = ⟨−𝜂∇𝑔𝑖𝑓𝑖(𝑔𝑖, 𝑔−𝑖) + 𝑐 · 1, 𝑔𝑖 − 𝑔⋆𝑖 ⟩
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= ⟨−𝜂∇𝑔𝑖𝑓𝑖(𝑔𝑖, 𝑔−𝑖), 𝑔𝑖 − 𝑔⋆𝑖 ⟩. (3.9.108)

Note that ⟨𝑐 · 1, 𝑔𝑖 − 𝑔⋆𝑖 ⟩ = 0, since 𝑔𝑖, 𝑔⋆𝑖 ∈ ∆. Since this is true for all players 𝑖, we have:

⟨log 𝑧𝑡+1 − (1− 𝜂𝜏) log 𝑧𝑡, 𝑧 − 𝑧⋆⟩ = −𝜂
∑︁
𝑖

⟨∇𝑔𝑖𝑓𝑖(𝑔𝑖, 𝑔−𝑖), 𝑔𝑖 − 𝑔⋆𝑖 ⟩ = −𝜂⟨𝐹 (𝑧), 𝑧 − 𝑧⋆⟩. (3.9.109)

Now, from the properties of the NE, we have:

𝜂𝜏 log 𝑔⋆𝑖 = −𝜂∇𝑔𝑖𝑓𝑖(𝑔
⋆
𝑖 , 𝑔

⋆
−𝑖) + 𝑐 · 1, (3.9.110)

which gives us:

⟨𝜂𝜏 log 𝑔⋆𝑖 , 𝑔𝑖 − 𝑔⋆𝑖 ⟩ = ⟨−𝜂∇𝑔𝑖𝑓𝑖(𝑔
⋆
𝑖 , 𝑔

⋆
−𝑖), 𝑔𝑖 − 𝑔⋆𝑖 ⟩. (3.9.111)

Since this is true for all players 𝑖, we have

⟨𝜂𝜏 log 𝑧⋆, 𝑧 − 𝑧⋆⟩ = −𝜂⟨𝐹 (𝑧⋆), 𝑧 − 𝑧⋆⟩. (3.9.112)

From Equations (3.9.109) and (3.9.112), we have:

⟨log 𝑧𝑡+1 − (1 − 𝜂𝜏) log 𝑧𝑡 − 𝜂𝜏 log 𝑧⋆, 𝑧 − 𝑧⋆⟩ = −𝜂⟨𝐹 (𝑧) − 𝐹 (𝑧⋆), 𝑧 − 𝑧⋆⟩ ≤ 0, (3.9.113)

where the last step uses the monotonicity assumption of 𝐹 . This completes the proof of the

lemma.

Lemma 3.9.14. For updates of the form:

𝜃𝑡+1
𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − 𝜂∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑡+1
𝑖
, 𝑔𝜃𝑡+1

−𝑖
), ∀𝑖 ∈ [𝑁 ], (3.9.114)

we have

(1 − 𝜂𝜏)KL(𝑧⋆‖𝑧𝑡) ≥ (1 − 𝜂𝜏)KL(𝑧𝑡+1‖𝑧𝑡) + 𝜂𝜏KL(𝑧𝑡+1‖𝑧⋆) + KL(𝑧𝑡+1‖𝑧𝑡+1)

− ⟨log 𝑧𝑡+1 − log 𝑧𝑡+1, 𝑧𝑡+1 − 𝑧𝑡+1⟩ + KL(𝑧⋆‖𝑧𝑡+1), (3.9.115)
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and

KL(𝑧⋆‖𝑧𝑡+1) = KL(𝑧⋆‖𝑧𝑡+1) − KL(𝑧𝑡+1‖𝑧𝑡+1) − ⟨𝑧⋆ − 𝑧𝑡+1, log 𝑧𝑡+1 − log 𝑧𝑡+1⟩. (3.9.116)

Proof. From the definition of KL divergence we have:

−⟨log 𝑧𝑡+1 − (1 − 𝜂𝜏) log 𝑧𝑡 − 𝜂𝜏 log 𝑧⋆, 𝑧⋆⟩ = −(1 − 𝜂𝜏)KL(𝑧⋆‖𝑧𝑡) + KL(𝑧⋆‖𝑧𝑡+1).

(3.9.117)

Next, note that:

⟨log 𝑧𝑡+1 − (1 − 𝜂𝜏) log 𝑧𝑡 − 𝜂𝜏 log 𝑧⋆, 𝑧𝑡+1⟩

= ⟨log 𝑧𝑡+1 − (1 − 𝜂𝜏) log 𝑧𝑡 − 𝜂𝜏 log 𝑧⋆, 𝑧𝑡+1⟩ + ⟨log 𝑧𝑡+1 − log 𝑧𝑡+1, 𝑧𝑡+1⟩

− ⟨log 𝑧𝑡+1 − log 𝑧𝑡+1, 𝑧𝑡+1 − 𝑧𝑡+1⟩

= (1 − 𝜂𝜏)KL(𝑧𝑡+1‖𝑧𝑡) + 𝜂𝜏KL(𝑧𝑡+1‖𝑧⋆) + KL(𝑧𝑡+1‖𝑧𝑡+1)

− ⟨log 𝑧𝑡+1 − log 𝑧𝑡+1, 𝑧𝑡+1 − 𝑧𝑡+1⟩. (3.9.118)

Now, substituting 𝑧 = 𝑧𝑡+1 in Lemma 3.9.13 we have:

⟨log 𝑧𝑡+1 − (1 − 𝜂𝜏) log 𝑧𝑡 − 𝜂𝜏 log 𝑧⋆, 𝑧𝑡+1 − 𝑧⋆⟩ ≤ 0. (3.9.119)

Substituting Equations (3.9.117) and (3.9.118) in (3.9.119), we get the Inequality (3.9.115).

Inequality (3.9.116) follows from the properties of KL divergence.

From the ONPG updates in Algorithm (3), we have:

log 𝑔𝑡+1
𝑖 − log 𝑔𝑡+1

𝑖 = −𝜂
(︀
∇𝑔𝑖𝑓𝑖(𝑔

𝑡
𝑖 , 𝑔

𝑡
−𝑖) −∇𝑔𝑖𝑓𝑖(𝑔

𝑡+1
𝑖 , 𝑔𝑡+1

−𝑖 )
)︀

+ 𝑐 · 1. (3.9.120)

This implies:

⟨log 𝑔𝑡+1
𝑖 − log 𝑔𝑡+1

𝑖 , 𝑔𝑡+1
𝑖 − 𝑔𝑡+1

𝑖 ⟩

= −𝜂⟨∇𝑔𝑖𝑓𝑖(𝑔
𝑡
𝑖 , 𝑔

𝑡
−𝑖)−∇𝑔𝑖𝑓𝑖(𝑔

𝑡
𝑖 , 𝑔

𝑡
−𝑖) +∇𝑔𝑖𝑓𝑖(𝑔

𝑡
𝑖 , 𝑔

𝑡
−𝑖)−∇𝑔𝑖𝑓𝑖(𝑔

𝑡+1
𝑖 , 𝑔𝑡+1

−𝑖 ), 𝑔𝑡+1
𝑖 − 𝑔𝑡+1

𝑖 ⟩
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≤*1 𝜂
(︀
‖∇𝑔𝑖𝑓𝑖(𝑔

𝑡
𝑖 , 𝑔

𝑡
−𝑖)−∇𝑔𝑖𝑓𝑖(𝑔

𝑡
𝑖 , 𝑔

𝑡
−𝑖)‖+ ‖∇𝑔𝑖𝑓𝑖(𝑔

𝑡
𝑖 , 𝑔

𝑡
−𝑖)−∇𝑔𝑖𝑓𝑖(𝑔

𝑡+1
𝑖 , 𝑔𝑡+1

−𝑖 )‖
)︀
‖𝑔𝑡+1

𝑖 − 𝑔𝑡+1
𝑖 ‖

≤*2 𝜂𝐿
(︀
‖𝑔𝑡𝑖 − 𝑔𝑡𝑖‖+ ‖𝑔𝑡−𝑖 − 𝑔𝑡−𝑖‖+ ‖𝑔𝑡+1

𝑖 − 𝑔𝑡𝑖‖+ ‖𝑔𝑡+1
−𝑖 − 𝑔𝑡−𝑖‖

)︀
‖𝑔𝑡+1

𝑖 − 𝑔𝑡+1
𝑖 ‖

≤*3 1

2
𝜂𝐿
(︀
‖𝑔𝑡𝑖 − 𝑔𝑡𝑖‖2 + ‖𝑔𝑡−𝑖 − 𝑔𝑡−𝑖‖2 + ‖𝑔𝑡+1

𝑖 − 𝑔𝑡𝑖‖2 + ‖𝑔𝑡+1
−𝑖 − 𝑔𝑡−𝑖‖2 + 4‖𝑔𝑡+1

𝑖 − 𝑔𝑡+1
𝑖 ‖2

)︀
,

(3.9.121)

where (*1) follows from the fact that 𝑎⊤𝑏 ≤ ‖𝑎‖‖𝑏‖, (*2) follows from Assumption 3.5.1, and

(*3) follows from 𝑥 · 𝑦 ≤ 1
2
(𝑥2 + 𝑦2). Since this is true for all players 𝑖, we have:

⟨log 𝑧𝑡+1 − log 𝑧𝑡+1, 𝑧𝑡+1 − 𝑧𝑡+1⟩

≤ 1

2
𝜂𝐿

𝑁∑︁
𝑖=1

(︀
‖𝑔𝑡𝑖 − 𝑔𝑡𝑖‖2 + ‖𝑔𝑡−𝑖 − 𝑔𝑡−𝑖‖2 + ‖𝑔𝑡+1

𝑖 − 𝑔𝑡𝑖‖2 + ‖𝑔𝑡+1
−𝑖 − 𝑔𝑡−𝑖‖2 + 4‖𝑔𝑡+1

𝑖 − 𝑔𝑡+1
𝑖 ‖2

)︀
≤ 1

2
𝜂𝐿
(︀
𝑁‖𝑧𝑡 − 𝑧𝑡‖2 +𝑁‖𝑧𝑡+1 − 𝑧𝑡‖2 + 4‖𝑧𝑡+1 − 𝑧𝑡+1‖2

)︀
≤*1 𝜂𝐿 (𝑁KL(𝑧𝑡‖𝑧𝑡) +𝑁KL(𝑧𝑡+1‖𝑧𝑡) + 4KL(𝑧𝑡+1‖𝑧𝑡+1)) , (3.9.122)

where (*1) follows from Pinsker’s Inequality and the fact that the 𝑙1 norm is an upper bound

for the 𝑙2 norm. Substituting this in Equation (3.9.115), we have

KL(𝑧⋆‖𝑧𝑡+1) ≤ (1 − 𝜂𝜏)KL(𝑧⋆‖𝑧𝑡) − (1 − 𝜂𝜏 −𝑁𝜂𝐿)KL(𝑧𝑡+1‖𝑧𝑡) − 𝜂𝜏KL(𝑧𝑡+1‖𝑧⋆)

− (1 − 4𝜂𝐿)KL(𝑧𝑡+1‖𝑧𝑡+1) +𝑁𝜂𝐿KL(𝑧𝑡‖𝑧𝑡). (3.9.123)

For 𝜂 < 1
2(𝑁+4)𝐿+2𝜏

, we have: 𝑁𝜂𝐿 ≤ (1 − 𝜂𝜏)(1 − 4𝜂𝐿). This gives us:

KL(𝑧⋆‖𝑧𝑡+1) + (1 − 4𝜂𝐿)KL(𝑧𝑡+1‖𝑧𝑡+1) ≤ (1 − 𝜂𝜏)KL(𝑧⋆‖𝑧𝑡) +𝑁𝜂𝐿KL(𝑧𝑡‖𝑧𝑡)

≤ (1 − 𝜂𝜏) (KL(𝑧⋆‖𝑧𝑡) + (1 − 4𝜂𝐿)KL(𝑧𝑡‖𝑧𝑡)) .

Define:

𝑉𝑡 = KL(𝑧⋆‖𝑧𝑡) + (1 − 4𝜂𝐿)KL(𝑧𝑡‖𝑧𝑡). (3.9.124)
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Then we have:

𝑉𝑡+1 ≤ (1 − 𝜂𝜏)𝑉𝑡, (3.9.125)

and therefore:

KL(𝑧⋆‖𝑧𝑡+1) ≤ 𝑉𝑡+1 ≤ (1 − 𝜂𝜏)𝑡𝑉0 = (1 − 𝜂𝜏)𝑡KL(𝑧⋆‖𝑧0), (3.9.126)

which shows convergence of KL(𝑧⋆‖𝑧𝑡+1). Next we show convergence of KL(𝑧⋆‖𝑧𝑡+1).

Similar to derivation of Equation (3.9.122), we have

−⟨𝑧⋆ − 𝑧𝑡+1, log 𝑧𝑡+1 − log 𝑧𝑡+1⟩ ≤ 𝜂𝐿 (𝑁KL(𝑧𝑡‖𝑧𝑡) +𝑁KL(𝑧𝑡+1‖𝑧𝑡) + 4KL(𝑧⋆‖𝑧𝑡+1)) .

(3.9.127)

Substituting this in Equation (3.9.116), we have:

(1 − 4𝜂𝐿)KL(𝑧⋆‖𝑧𝑡+1) ≤ KL(𝑧⋆‖𝑧𝑡+1) + 𝜂𝐿 (𝑁KL(𝑧𝑡‖𝑧𝑡) +𝑁KL(𝑧𝑡+1‖𝑧𝑡)) . (3.9.128)

Now, using Equation (3.9.123), we have:

(1−4𝜂𝐿)KL(𝑧⋆‖𝑧𝑡+1)

≤ (1 − 𝜂𝜏)KL(𝑧⋆‖𝑧𝑡) − (1 − 𝜂𝜏 − 2𝑁𝜂𝐿)KL(𝑧𝑡+1‖𝑧𝑡) − 𝜂𝜏KL(𝑧𝑡+1‖𝑧⋆)

− (1 − 4𝜂𝐿)KL(𝑧𝑡+1‖𝑧𝑡+1) + 2𝑁𝜂𝐿KL(𝑧𝑡‖𝑧𝑡)

≤ (1 − 𝜂𝜏)KL(𝑧⋆‖𝑧𝑡) + 2𝑁𝜂𝐿KL(𝑧𝑡‖𝑧𝑡)

≤ KL(𝑧⋆‖𝑧𝑡) + (1 − 4𝜂𝐿)KL(𝑧𝑡‖𝑧𝑡) := 𝑉𝑡, (3.9.129)

which gives us:

KL(𝑧⋆‖𝑧𝑡+1) ≤ 2𝑉𝑡 ≤ 2(1 − 𝜂𝜏)𝑡𝑉0 = 2(1 − 𝜂𝜏)𝑡KL(𝑧⋆‖𝑧0). (3.9.130)

This completes the proof of the first part of the theorem.
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Next, we prove parameter convergence. We have from Equation (3.9.70):

‖𝜃𝑡+1
𝑖 − 𝜃⋆𝑖 ‖2 = (1 − 𝜂𝜏 + 𝜂2𝜏 2)‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 +

(︂
1 +

1

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
‖𝜀𝑡‖2, (3.9.131)

where 𝜃⋆𝑖 =
−∇𝑔𝑖𝑓𝑖(𝑔

⋆
𝑖 ,𝑔

⋆
−𝑖)

𝜏
(Note that the term 𝜀𝑡 however is different here from definition of 𝜀𝑡

in Equation (3.9.70)). Now, for ONPG, we have:

‖𝜀𝑡‖2 = 𝜂2‖∇𝑔𝑖𝑓𝑖(𝑔
⋆
𝑖 , 𝑔

⋆
−𝑖) −∇𝑔𝑖𝑓𝑖(𝑔

𝑡+1
𝑖 , 𝑔𝑡+1

−𝑖 )‖2

≤ 𝜂2𝐿2‖𝑧𝑡+1 − 𝑧⋆‖2 ≤ 2𝜂2𝐿2KL(𝑧⋆‖𝑧𝑡+1). (3.9.132)

This gives us:

‖𝜃𝑡+1
𝑖 − 𝜃⋆𝑖 ‖2 ≤ (1 − 𝜂𝜏 + 𝜂2𝜏 2)‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 + 𝐶(1 − 𝜂𝜏)𝑡, (3.9.133)

where

𝐶 = 4𝜂2𝐿2

(︂
1 +

1

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
KL(𝑧⋆‖𝑧0), (3.9.134)

from the first part of the Theorem proved above. For 𝜂𝜏 < 1/2, this reduces to:

‖𝜃𝑡+1
𝑖 − 𝜃⋆𝑖 ‖2 ≤ (1 − 𝜂𝜏/2)‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 + 𝐶(1 − 𝜂𝜏)𝑡. (3.9.135)

Now, consider the Lyapunov function:

𝑉𝑡+1 = ‖𝜃𝑡+1
𝑖 − 𝜃⋆𝑖 ‖2 +

2𝐶

𝜂𝜏
(1 − 𝜂𝜏)𝑡+1. (3.9.136)

We have:

𝑉𝑡+1 ≤ (1 − 𝜂𝜏/2)‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 + 𝐶(1 − 𝜂𝜏)𝑡 +
2𝐶

𝜂𝜏
(1 − 𝜂𝜏)(1 − 𝜂𝜏)𝑡

= (1 − 𝜂𝜏/2)‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 +
2𝐶

𝜂𝜏
(1 − 𝜂𝜏)𝑡(1 − 𝜂𝜏 + 𝜂𝜏/2)

= (1 − 𝜂𝜏/2)‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 +
2𝐶

𝜂𝜏
(1 − 𝜂𝜏)𝑡(1 − 𝜂𝜏/2)
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= (1 − 𝜂𝜏/2)

(︂
‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 +

2𝐶

𝜂𝜏
(1 − 𝜂𝜏)𝑡

)︂
= (1 − 𝜂𝜏/2)𝑉𝑡. (3.9.137)

This shows linear convergence of the parameter 𝜃𝑖 to 𝜃⋆𝑖 since: ‖𝜃𝑡+1
𝑖 − 𝜃⋆𝑖 ‖2 ≤ 𝑉𝑡+1 ≤

(1 − 𝜂𝜏/2)𝑡𝑉0. Merging these inequalities for all players 𝑖 completes the proof of the Theorem.

Proof of Corollary 3.5.5

We define 𝑔𝑖 := 𝑔𝜃𝑖 . The duality gap for the regularized game is given by:

DG𝜏 (𝑔1, 𝑔2, · · · , 𝑔𝑁 ) =

𝑁∑︁
𝑖=1

[︂
𝑓 𝜏
𝑖 (𝑔𝑖, 𝑔−𝑖)−miñ︀𝑔𝑖 𝑓 𝜏

𝑖 (̃︀𝑔𝑖, 𝑔−𝑖)

]︂
= max̃︀𝑔1,̃︀𝑔2,··· ,̃︀𝑔𝑁

𝑁∑︁
𝑖=1

[𝑓 𝜏
𝑖 (𝑔𝑖, 𝑔−𝑖)− 𝑓 𝜏

𝑖 (̃︀𝑔𝑖, 𝑔−𝑖)]

= max̃︀𝑔1,̃︀𝑔2,··· ,̃︀𝑔𝑁
𝑁∑︁
𝑖=1

[𝑓 𝜏
𝑖 (𝑔𝑖, 𝑔−𝑖)− 𝑓 𝜏

𝑖 (𝑔𝑖, 𝑔
⋆
−𝑖) + 𝑓 𝜏

𝑖 (𝑔𝑖, 𝑔
⋆
−𝑖)− 𝑓 𝜏

𝑖 (̃︀𝑔𝑖, 𝑔⋆−𝑖) + 𝑓 𝜏
𝑖 (̃︀𝑔𝑖, 𝑔⋆−𝑖)− 𝑓 𝜏

𝑖 (̃︀𝑔𝑖, 𝑔−𝑖)]

≤ max̃︀𝑔1,̃︀𝑔2,··· ,̃︀𝑔𝑁
𝑁∑︁
𝑖=1

[𝑓 𝜏
𝑖 (𝑔𝑖, 𝑔−𝑖)− 𝑓 𝜏

𝑖 (𝑔𝑖, 𝑔
⋆
−𝑖) + 𝑓 𝜏

𝑖 (𝑔𝑖, 𝑔
⋆
−𝑖)− 𝑓 𝜏

𝑖 (𝑔
⋆
𝑖 , 𝑔

⋆
−𝑖) + 𝑓 𝜏

𝑖 (̃︀𝑔𝑖, 𝑔⋆−𝑖)− 𝑓 𝜏
𝑖 (̃︀𝑔𝑖, 𝑔−𝑖)].

(3.9.138)

Next, we note that:

𝑁∑︁
𝑖=1

𝑓 𝜏
𝑖 (𝑔𝑖, 𝑔−𝑖)− 𝑓 𝜏

𝑖 (𝑔𝑖, 𝑔
⋆
−𝑖) + 𝑓 𝜏

𝑖 (𝑔𝑖, 𝑔
⋆
−𝑖)− 𝑓 𝜏

𝑖 (𝑔
⋆
𝑖 , 𝑔

⋆
−𝑖) + 𝑓 𝜏

𝑖 (̃︀𝑔𝑖, 𝑔⋆−𝑖)− 𝑓 𝜏
𝑖 (̃︀𝑔𝑖, 𝑔−𝑖)

≤
𝑁∑︁
𝑖=1

[︀
‖𝑓 𝜏

𝑖 (𝑔𝑖, 𝑔−𝑖)− 𝑓 𝜏
𝑖 (𝑔𝑖, 𝑔

⋆
−𝑖)‖+ ‖𝑓 𝜏

𝑖 (𝑔𝑖, 𝑔
⋆
−𝑖)− 𝑓 𝜏

𝑖 (𝑔
⋆
𝑖 , 𝑔

⋆
−𝑖)‖+ ‖𝑓 𝜏

𝑖 (̃︀𝑔𝑖, 𝑔⋆−𝑖)− 𝑓 𝜏
𝑖 (̃︀𝑔𝑖, 𝑔−𝑖)‖

]︀
≤

𝑁∑︁
𝑖=1

[︀
‖𝑓 𝜏

𝑖 (𝑔𝑖, 𝑔−𝑖)− 𝑓 𝜏
𝑖 (𝑔𝑖, 𝑔

⋆
−𝑖)‖+ ‖𝑓 𝜏

𝑖 (𝑔𝑖, 𝑔
⋆
−𝑖)− 𝑓 𝜏

𝑖 (𝑔
⋆
𝑖 , 𝑔

⋆
−𝑖)‖+ ‖𝑓 𝜏

𝑖 (̃︀𝑔𝑖, 𝑔⋆−𝑖)− 𝑓 𝜏
𝑖 (̃︀𝑔𝑖, 𝑔−𝑖)‖

]︀
≤ 𝐶1

𝑁∑︁
𝑖=1

[︀
‖𝑔𝑖 − 𝑔⋆𝑖 ‖+ ‖𝑔−𝑖 − 𝑔⋆−𝑖‖

]︀
≤ 𝐶2𝑁

√︀
KL(𝑧⋆‖𝑧𝑡). (3.9.139)

This follows by noting that the functions 𝑓 𝜏
𝑖 are Lipschitz since they are continuous functions

defined on a compact domain. The last step follows from Pinsker’s inequality and the fact

that the 𝑙1 norm is an upper bound for the 𝑙2 norm.
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Algorithm 4 Proximal Point Method
Initialize: 𝜃0𝑖 = 0 for all players 𝑖.
for 𝑡 = 1, 2, · · · do
𝜃𝑡+1
𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − 𝜂∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑡+1
𝑖
, 𝑔𝜃𝑡+1

𝑖
) ∀𝑖 ∈ [𝑁 ].

end for

Combining the two inequalities (3.9.138) and (3.9.139) we have:

DG𝜏 (𝑔1, 𝑔2, · · · , 𝑔𝑁) ≤ 𝐶2𝑁
√︀

KL(𝑧⋆‖𝑧𝑡). (3.9.140)

Let DG denote the Duality gap of the unregularized problem. Then we have:

DG(𝑔1, 𝑔2, · · · , 𝑔𝑁) ≤ DG𝜏 (𝑔1, 𝑔2, · · · , 𝑔𝑁) + 2𝑁𝜏 log 𝑛. (3.9.141)

Therefore, setting 𝜏 = 𝜖
4𝑁 log𝑛

and solving the regularized problem to an accuracy of 𝜖2

4𝐶2
2𝑁

2 in

terms of KL divergence, we have that:

DG(𝑔1, 𝑔2, · · · , 𝑔𝑁) ≤ 𝜖, (3.9.142)

completing the proof.

Proximal point and Extragradient methods for multi-player monotone games

We define 𝑔𝑖 := 𝑔𝜃𝑖 and 𝑔𝑡𝑖 := 𝑔𝜃𝑡𝑖 for simplicity.

Proximal-point updates

In this subsection, we show the convergence of the Proximal Point (PP) updates to the NE

of the regularized N-player monotone game. The PP algorithm is presented in Algorithm 4

Theorem 3.9.15. Let 𝑧⋆ = (𝑔⋆𝑖 )𝑁𝑖=1 be the Nash equilibrium of Problem (3.5.2). Also, we

denote 𝑧𝑡 = (𝑔𝑡𝑖)
𝑁
𝑖=1. Define 𝜃⋆𝑖 :=

−∇𝑔𝑖𝑓𝑖(𝑔
⋆
𝑖 ,𝑔

⋆
−𝑖)

𝜏
. Then for updates in Algorithm 4, we have for

𝜂𝜏 < 1/2:

• KL(𝑧⋆‖𝑧𝑡+1) ≤ (1 − 𝜂𝜏)𝑡KL(𝑧⋆‖𝑧0).
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• ‖𝜃𝑡+1 − 𝜃⋆‖2 ≤ (1 − 𝜂𝜏/2)𝑡𝑉0, where,

𝑉0 = ‖𝜃𝑡 − 𝜃⋆‖2 +
2𝑁𝐶

𝜂𝜏
, 𝐶 = 2𝜂2𝐿2

(︂
1 +

4

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
KL(𝑧⋆‖𝑧0).

Proof. From the definiton of the KL divergence we have:

−⟨log 𝑧𝑡+1 − (1 − 𝜂𝜏) log 𝑧𝑡 − 𝜂𝜏 log 𝑧⋆, 𝑧⋆⟩ = −(1 − 𝜂𝜏)KL(𝑧⋆‖𝑧𝑡) + KL(𝑧⋆‖𝑧𝑡+1),

(3.9.143)

and

⟨log 𝑧𝑡+1 − (1 − 𝜂𝜏) log 𝑧𝑡 − 𝜂𝜏 log 𝑧⋆, 𝑧𝑡+1⟩ = (1 − 𝜂𝜏)KL(𝑧𝑡+1‖𝑧𝑡) + KL(𝑧𝑡+1‖𝑧⋆). (3.9.144)

Substituting in Lemma 3.9.13 with 𝑧 = 𝑧𝑡+1, we have:

⟨log 𝑧𝑡+1 − (1 − 𝜂𝜏) log 𝑧𝑡 − 𝜂𝜏 log 𝑧⋆, 𝑧𝑡+1 − 𝑧⋆⟩ ≤ 0, (3.9.145)

and using the two equalities, we get:

−(1 − 𝜂𝜏)KL(𝑧⋆‖𝑧𝑡) + KL(𝑧⋆‖𝑧𝑡+1) + (1 − 𝜂𝜏)KL(𝑧𝑡+1‖𝑧𝑡) + KL(𝑧𝑡+1‖𝑧⋆) ≤ 0. (3.9.146)

This implies:

KL(𝑧⋆‖𝑧𝑡+1) ≤ (1 − 𝜂𝜏)KL(𝑧⋆‖𝑧𝑡). (3.9.147)

This shows linear convergence of the KL divergence to the Nash equilibrium for the proximal

point method, which completes the proof of the first part of the Theorem.

When the agents are playing the NE strategy, the updates reduce to

𝜃𝑡+1
𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − 𝜂∇𝑔𝑖𝑓𝑖(𝑔

⋆
𝑖 , 𝑔

⋆
−𝑖). (3.9.148)
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From Lemma 3.9.13, we know that the NE satisfy:

𝑔⋆𝑖 (𝑎) =
𝑒

−[∇𝑔𝑖𝑓𝑖(𝑔
⋆
𝑖 ,𝑔⋆−𝑖)]𝑎

𝜏

𝐾
, (3.9.149)

where 𝐾 =
∑︀

𝑎′∈𝒜𝑖
𝑒

−[∇𝑔𝑖𝑓𝑖(𝑔
⋆
𝑖 ,𝑔⋆−𝑖)]𝑎′

𝜏 . Taking log on both sides, we have:

−𝜂∇𝑔𝑖𝑓𝑖(𝑔
⋆
𝑖 , 𝑔

⋆
−𝑖) = 𝜂𝜏 log 𝑔⋆𝑖 + 𝜂𝜏 log𝐾. (3.9.150)

Substituting this back into the 𝜃 update, we have:

𝜃𝑡+1
𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 + 𝜂𝜏 log 𝑔⋆𝑖 + 𝜂𝜏 log𝐾

= 𝜃𝑡𝑖 − 𝜂𝜏𝜃𝑡𝑖 + 𝜂𝜏 log 𝑔⋆𝑖 + 𝜂𝜏 log𝐾 − 𝜂𝜏 log𝑍𝜃𝑡𝑖
+ 𝜂𝜏 log𝑍𝜃𝑡𝑖

= 𝜃𝑡𝑖 + 𝜂𝜏 log 𝑔⋆𝑖 − 𝜂𝜏 log

(︃
𝑒𝜃

𝑡
𝑖

𝑍𝜃𝑡𝑖

)︃
+ 𝜂𝜏 log

(︃
𝐾

𝑍𝜃𝑡𝑖

)︃

= 𝜃𝑡𝑖 + 𝜂𝜏 log 𝑔⋆𝑖 − 𝜂𝜏 log 𝑔𝜃𝑡𝑖 + 𝜂𝜏 log

(︃
𝐾

𝑍𝜃𝑡𝑖

)︃

= 𝜃𝑡𝑖 + 𝜂𝜏 log

(︃
𝑔⋆𝑖
𝑔𝜃𝑡𝑖

)︃
+ 𝜂𝜏 log

(︃
𝐾

𝑍𝜃𝑡𝑖

)︃
= 𝜃𝑡𝑖 + 𝜂𝜏 log

(︃
𝑔⋆𝑖𝐾

𝑔𝜃𝑡𝑖𝑍𝜃𝑡𝑖

)︃
. (3.9.151)

We can further simplify this as:

𝜃𝑡+1
𝑖 = 𝜃𝑡𝑖 + 𝜂𝜏 log

(︂
𝑒−[∇𝑔𝑖𝑓𝑖(𝑔

⋆
𝑖 ,𝑔

⋆
−𝑖)]/𝜏

𝑒𝜃
𝑡
𝑖

)︂
. (3.9.152)

This is nothing but:

𝜃𝑡+1
𝑖 = 𝜃𝑡𝑖 + 𝜂𝜏

(︂
−[∇𝑔𝑖𝑓𝑖(𝑔

⋆
𝑖 , 𝑔

⋆
−𝑖)]

𝜏
− 𝜃𝑡𝑖

)︂
. (3.9.153)

Now the Proximal Point updates can be written as:

𝜃𝑡+1
𝑖 = 𝜃𝑡𝑖 + 𝜂𝜏

(︂
−∇𝑔𝑖𝑓𝑖(𝑔

⋆
𝑖 , 𝑔

⋆
−𝑖)

𝜏
− 𝜃𝑡𝑖

)︂
+ 𝜀𝑡, (3.9.154)
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where 𝜀𝑡 = 𝜂∇𝑔𝑖𝑓𝑖(𝑔
⋆
𝑖 , 𝑔

⋆
−𝑖) − 𝜂∇𝑔𝑖𝑓𝑖(𝑔

𝑡+1
𝑖 , 𝑔𝑡+1

−𝑖 ).

Defining 𝜃⋆𝑖 =
−∇𝑔𝑖𝑓𝑖(𝑔

⋆
𝑖 ,𝑔

⋆
−𝑖)

𝜏
, we have:

‖𝜃𝑡+1
𝑖 − 𝜃⋆𝑖 ‖2 = ‖𝜃𝑡𝑖 + 𝜂𝜏

(︀
𝜃⋆𝑖 − 𝜃𝑡𝑖

)︀
+ 𝜀𝑡 − 𝜃⋆𝑖 ‖2 = ‖(1 − 𝜂𝜏)(𝜃𝑡𝑖 − 𝜃⋆𝑖 ) + 𝜀𝑡‖2

= (1 − 𝜂𝜏)2‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 + 2(1 − 𝜂𝜏)(𝜃𝑡𝑖 − 𝜃⋆𝑖 )
⊤𝜀𝑡 + ‖𝜀𝑡‖2

≤*1 (1 − 𝜂𝜏)2‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 + 𝜂𝜏‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 +
4

𝜂𝜏
(1 − 𝜂𝜏)2‖𝜀𝑡‖2 + ‖𝜀𝑡‖2

= (1 − 𝜂𝜏 + 𝜂2𝜏 2)‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 +

(︂
1 +

4

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
‖𝜀𝑡‖2, (3.9.155)

where *1 follows from Young’s inequality.

Now, for the proximal point methods, we have:

‖𝜀𝑡‖2 = 𝜂2‖∇𝑔𝑖𝑓𝑖(𝑔
⋆
𝑖 , 𝑔

⋆
−𝑖) −∇𝑔𝑖𝑓𝑖(𝑔

𝑡+1
𝑖 , 𝑔𝑡+1

−𝑖 )‖2

≤ 𝜂2𝐿2‖𝑧𝑡+1 − 𝑧⋆‖2 ≤ 2𝜂2𝐿2KL(𝑧⋆‖𝑧𝑡+1), (3.9.156)

where it follows from Pinsker’s inequality and the fact that the 𝑙1 norm is an upper bound

for the 𝑙2 norm.

This gives us:

‖𝜃𝑡+1
𝑖 − 𝜃⋆𝑖 ‖2 ≤ (1 − 𝜂𝜏 + 𝜂2𝜏 2)‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 + 𝐶(1 − 𝜂𝜏)𝑡, (3.9.157)

where

𝐶 = 2𝜂2𝐿2

(︂
1 +

4

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
KL(𝑧⋆‖𝑧0). (3.9.158)

For 𝜂𝜏 < 1/2, this reduces to:

‖𝜃𝑡+1
𝑖 − 𝜃⋆𝑖 ‖2 ≤ (1 − 𝜂𝜏/2)‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 + 𝐶(1 − 𝜂𝜏)𝑡. (3.9.159)
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Algorithm 5 Extragradient Method
Initialize: 𝑔0 and ℎ0.
for 𝑡 = 1, 2, · · · do
𝜃𝑡+1
𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − 𝜂∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑡𝑖 , 𝑔𝜃𝑡−𝑖
) ∀𝑖 ∈ [𝑁 ].

𝜃𝑡+1
𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − 𝜂∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑡+1
𝑖
, 𝑔𝜃𝑡+1

−𝑖
) ∀𝑖 ∈ [𝑁 ].

end for

Now, consider the Lyapunov function:

𝑉𝑡+1 = ‖𝜃𝑡+1
𝑖 − 𝜃⋆𝑖 ‖2 +

2𝐶

𝜂𝜏
(1 − 𝜂𝜏)𝑡+1. (3.9.160)

We have:

𝑉𝑡+1 ≤ (1 − 𝜂𝜏/2)‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 + 𝐶(1 − 𝜂𝜏)𝑡 +
2𝐶

𝜂𝜏
(1 − 𝜂𝜏)(1 − 𝜂𝜏)𝑡

= (1 − 𝜂𝜏/2)‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 +
2𝐶

𝜂𝜏
(1 − 𝜂𝜏)𝑡(1 − 𝜂𝜏 + 𝜂𝜏/2)

= (1 − 𝜂𝜏/2)‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 +
2𝐶

𝜂𝜏
(1 − 𝜂𝜏)𝑡(1 − 𝜂𝜏/2)

= (1 − 𝜂𝜏/2)

(︂
‖𝜃𝑡𝑖 − 𝜃⋆𝑖 ‖2 +

2𝐶

𝜂𝜏
(1 − 𝜂𝜏)𝑡

)︂
= (1 − 𝜂𝜏/2)𝑉𝑡. (3.9.161)

This shows linear convergence of the parameter 𝜃𝑖 to 𝜃⋆𝑖 since:

‖𝜃𝑡+1
𝑖 − 𝜃⋆𝑖 ‖2 ≤ 𝑉𝑡+1 ≤ (1 − 𝜂𝜏/2)𝑡𝑉0. (3.9.162)

Merging these inequalities for all players 𝑖 completes the proof of the theorem.

Extragradient updates

In this subsection, we show the convergence of the Extragradient method to the NE of the

regularized N-player monotone game. The EG algorithm is presented in Algorithm 5.

Theorem 3.9.16. Let 𝑧⋆ = (𝑔⋆𝑖 )𝑁𝑖=1 be the unique Nash equilibrium of Problem (3.5.2). Also,

we denote 𝑧𝑡 = (𝑔𝜃𝑡𝑖 )
𝑁
𝑖=1. Then for updates in Algorithm 5, we have for stepsize satisfying

0 < 𝜂 < 1
2𝑁𝐿+𝜏

:

111



• Convergence of distributions:

max {KL(𝑧⋆‖𝑧𝑡),KL(𝑧⋆‖𝑧𝑡+1)} ≤ (1 − 𝜂𝜏)𝑡2KL(𝑧⋆‖𝑧0). (3.9.163)

• Convergence of parameters:

‖𝜃𝑡+1 − 𝜃⋆‖2 ≤ (1 − 𝜂𝜏/2)𝑡𝑉0, (3.9.164)

where,

𝑉0 = ‖𝜃𝑡 − 𝜃⋆‖2 +
2𝑁𝐶

𝜂𝜏
, 𝐶 = 4𝜂2𝐿2

(︂
1 +

4

𝜂𝜏
(1 − 𝜂𝜏)2

)︂
KL(𝑧⋆‖𝑧0).

Proof. From the EG updates in Algorithm 5, we have:

log 𝑔𝑡+1
𝑖 − log 𝑔𝑡+1

𝑖 = −𝜂
(︀
∇𝑔𝑖𝑓𝑖(𝑔

𝑡
𝑖 , 𝑔

𝑡
−𝑖) −∇𝑔𝑖𝑓𝑖(𝑔

𝑡+1
𝑖 , 𝑔𝑡+1

−𝑖 )
)︀

+ 𝑐 · 1. (3.9.165)

This implies:

⟨log 𝑔𝑡+1
𝑖 − log 𝑔𝑡+1

𝑖 , 𝑔𝑡+1
𝑖 − 𝑔𝑖𝑡+1⟩ = −𝜂⟨∇𝑔𝑖𝑓𝑖(𝑔

𝑡
𝑖 , 𝑔

𝑡
−𝑖) −∇𝑔𝑖𝑓𝑖(𝑔

𝑡+1
𝑖 , 𝑔𝑡+1

−𝑖 ), 𝑔𝑡+1
𝑖 − 𝑔𝑡+1

𝑖 ⟩

≤*1 𝜂‖∇𝑔𝑖𝑓𝑖(𝑔
𝑡
𝑖 , 𝑔

𝑡
−𝑖) −∇𝑔𝑖𝑓𝑖(𝑔

𝑡+1
𝑖 , 𝑔𝑡+1

−𝑖 )‖ · ‖𝑔𝑡+1
𝑖 − 𝑔𝑡+1

𝑖 ‖

≤*2 𝜂𝐿
(︀
‖𝑔𝑡+1

𝑖 − 𝑔𝑡𝑖‖ + ‖𝑔𝑡+1
−𝑖 − 𝑔𝑡−𝑖‖

)︀
‖𝑔𝑡+1

𝑖 − 𝑔𝑡+1
𝑖 ‖

≤*3 1

2
𝜂𝐿
(︀
‖𝑔𝑡+1

𝑖 − 𝑔𝑡𝑖‖2 + 2‖𝑔𝑡+1
𝑖 − 𝑔𝑡+1

𝑖 ‖2 + ‖𝑔𝑡+1
−𝑖 − 𝑔𝑡−𝑖‖2

)︀
, (3.9.166)

where (*1) follows from the fact that 𝑎⊤𝑏 ≤ ‖𝑎‖‖𝑏‖, (*2) follows from Assumption 3.5.1, and

(*3) follows from 𝑥 · 𝑦 ≤ 1
2
(𝑥2 + 𝑦2). Since this is true for all players, we have:

⟨log 𝑧𝑡+1 − log 𝑧𝑡+1, 𝑧𝑡+1 − 𝑧𝑡+1⟩

≤ 1

2
𝜂𝐿

𝑁∑︁
𝑖=1

(︀
‖𝑔𝑡+1

𝑖 − 𝑔𝑡𝑖‖2 + 2‖𝑔𝑡+1
𝑖 − 𝑔𝑡+1

𝑖 ‖2 + ‖𝑔𝑡+1
−𝑖 − 𝑔𝑡−𝑖‖2

)︀
≤ 1

2
𝜂𝐿
(︀
𝑁‖𝑧𝑡+1 − 𝑧𝑡‖2 + 2‖𝑧𝑡+1 − 𝑧𝑡+1‖2

)︀
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≤ 𝑁

2
𝜂𝐿
(︀
‖𝑧𝑡+1 − 𝑧𝑡‖2 + ‖𝑧𝑡+1 − 𝑧𝑡+1‖2

)︀
≤*1 𝑁𝜂𝐿 (KL(𝑧𝑡+1‖𝑧𝑡) + KL(𝑧𝑡+1‖𝑧𝑡+1)) , (3.9.167)

where (*1) follows from Pinsker’s Inequality and the fact that the 𝑙1 norm is an upper bound

for the 𝑙2 norm. Substituting this in Equation (3.9.115), we have

KL(𝑧⋆‖𝑧𝑡+1) ≤ (1 − 𝜂𝜏)KL(𝑧⋆‖𝑧𝑡) − (1 − 𝜂𝜏 −𝑁𝜂𝐿)KL(𝑧𝑡+1‖𝑧𝑡)

− 𝜂𝜏KL(𝑧𝑡+1‖𝑧⋆) − (1 −𝑁𝜂𝐿)KL(𝑧𝑡+1‖𝑧𝑡+1). (3.9.168)

If 𝜂 ≤ 1
𝜏+𝑁𝐿

, we have:

KL(𝑧⋆‖𝑧𝑡+1) ≤ (1 − 𝜂𝜏)KL(𝑧⋆‖𝑧𝑡). (3.9.169)

Similar to the derivation of Equation (3.9.167), we have:

−⟨log 𝑧𝑡+1 − log 𝑧𝑡+1, 𝑧
⋆ − 𝑧𝑡+1⟩ ≤ 𝑁𝜂𝐿 (KL(𝑧𝑡+1‖𝑧𝑡) + KL(𝑧⋆‖𝑧𝑡+1)) . (3.9.170)

Substituting this in Equation (3.9.116) we have:

(1 −𝑁𝜂𝐿)KL(𝑧⋆‖𝑧𝑡+1) ≤ KL(𝑧⋆‖𝑧𝑡+1) +𝑁𝜂𝐿KL(𝑧𝑡+1‖𝑧𝑡). (3.9.171)

Now, plugging Inequality (3.9.168) in (3.9.171) we have:

(1 −𝑁𝜂𝐿)KL(𝑧⋆‖𝑧𝑡+1) ≤ (1 − 𝜂𝜏)KL(𝑧⋆‖𝑧𝑡)

− (1 − 𝜂𝜏 − 2𝑁𝜂𝐿)KL(𝑧𝑡+1‖𝑧𝑡) − 𝜂𝜏KL(𝑧𝑡+1‖𝑧⋆) − (1 −𝑁𝜂𝐿)KL(𝑧𝑡+1‖𝑧𝑡+1).

(3.9.172)

With stepsize 𝜂 < 1
𝜏+2𝑁𝐿

we have:

KL(𝑧⋆‖𝑧𝑡+1) ≤ 2KL(𝑧⋆‖𝑧𝑡) ≤ 2(1 − 𝜂𝜏)𝑡KL(𝑧⋆‖𝑧0), (3.9.173)

which completes the first part of the proof.
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The proof of parameter convergence follows exactly from the proof of Theorem 3.5.3 and

we avoid rewriting it here.

Parameterization with function approximation

In this section, we discuss the monotone game setting with function approximation for policy

parameterization, as discussed for matrix games in §3.4. In this setting, the regularized

problem each player 𝑖 faces is:

min
𝜃𝑖∈R𝑑

𝑓𝑖(𝑔𝜃𝑖 , 𝑔𝜃−𝑖
) − 𝜏ℋ(𝑔𝜃𝑖), (3.9.174)

where 𝑔𝜃𝑖 is a log-linear policy parametrization. In the next lemma, we show the existence of

a NE in this setting as well as the equivalence of this problem to one on the entire simplex,

in the same spirit as in §3.4 for matrix games:

Lemma 3.9.17. The in-class NE (Definition 3.9.11) for the unregularized (and regularized)

monotone game under the log-linear policy parametrization exists. Also, under Assumption

3.4.1, solving Problem (3.9.174) for all 𝑖 is equivalent to:

min
𝑔𝜃𝑖∈Δ

𝑓𝑖(Ψ𝑔𝜃𝑖 ,Ψ𝑔𝜃−𝑖
) − 𝜏ℋ(𝑔𝜃𝑖), (3.9.175)

where Ψ is defined in Equation (3.4.7).

Now, using Lemma 3.9.17, and Proposition 3.4.6, we describe an algorithm to solve this

problem in the following corollary.

Corollary 3.9.18. The update rule:

𝜃𝑡+1
𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − [(𝑀⊤)−1|0]𝜂 ̃︀𝑃∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑡𝑖 , 𝑔𝜃𝑡−𝑖
)

𝜃𝑡+1
𝑖 = (1 − 𝜂𝜏)𝜃𝑡𝑖 − [(𝑀⊤)−1|0]𝜂 ̃︀𝑃∇𝑔𝜃𝑖

𝑓𝑖(𝑔𝜃𝑡+1
𝑖
, 𝑔𝜃𝑡+1

−𝑖
),

solves Problem (3.9.174) with similar guarantees given by Theorem 3.5.3. Here, the NE

parameter value to which the algorithm converges to is given by 𝜃⋆𝑖 =
−[(𝑀⊤)−1|0] ̃︀𝑃∇𝑔𝜃𝑖

𝑓𝑖(𝑔
⋆
𝑖 ,𝑔

⋆
−𝑖)

𝜏
.

Furthermore, by choosing the regularization parameter 𝜏 small enough, like in Corollary 3.5.5,

114



Algorithm 6 Optimistic NPG for Markov Games
Initialize: 𝑄0 = 0
for 𝑡 = 1, 2, · · · , 𝑇𝑜𝑢𝑡𝑒𝑟 do

for 𝑠 = 1, 2, · · · , |𝒮| do
Let 𝑄𝑡(𝑠, 𝑎, 𝑏) := 𝑟(𝑠, 𝑎, 𝑏) + 𝛾E𝑠′∼P(·|𝑠,𝑎,𝑏)[𝑉𝑡(𝑠

′)]
Solve min𝜃∈R𝑛 max𝜈∈R𝑛 𝑓𝜏 (𝑄(𝑠); 𝑔𝜃, ℎ𝜈) by running the Optimistic NPG algorithm
(Algorithm 1) for 𝑇𝑖𝑛𝑛𝑒𝑟 iterations and return the last iterates (𝜃𝑇𝑖𝑛𝑛𝑒𝑟

, 𝜈𝑇𝑖𝑛𝑛𝑒𝑟
).

Set 𝑉𝑡+1(𝑠) = 𝑓𝜏 (𝑄𝑡(𝑠); 𝑔𝜃𝑇𝑖𝑛𝑛𝑒𝑟
(· | 𝑠), ℎ𝜈𝑇𝑖𝑛𝑛𝑒𝑟

(· | 𝑠))
end for

end for

we reach an 𝜖-in-class NE (Definition 3.9.12) of the unregularized monotone game under the

function approximation setting.

Proof of Lemma 3.9.17

The proof of this Lemma follows along the lines of Lemma 3.4.4 and Theorem 3.4.5. The key

here is to notice that:

∇𝑔𝜃𝑖
𝑓𝑖(Ψ𝑔𝜃𝑖 ,Ψ𝑔𝜃−1) = Ψ⊤∇Ψ𝑔𝜃𝑖

𝑓𝑖(Ψ𝑔𝜃𝑖 ,Ψ𝑔𝜃−1), (3.9.176)

and that: Ψ𝜇 = 𝜇, ∀𝜇 ∈ ̃︀∆. The rest of the proof is identical to the proof of Lemma 3.4.4.

3.9.5 Missing Details and Proofs in §3.6

Remark 3.9.19. We note that all results presented in this section also follow for the case

where the cardinality of the action spaces for both players are asymmetric. However, we stick

to the case where the number of action is the same for both players in all states for ease of

exposition.

Proof of Theorem 3.6.3

We first have the following lemma which shows the smoothness property of the NE policy

with respect to the game matrix 𝑄.
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Lemma 3.9.20. Consider the following entropy regularized game:

min
𝑥∈̃︀Δ max

𝑦∈̃︀Δ 𝑥⊤𝑄𝑦 − 𝜏ℋ(𝑥) + 𝜏ℋ(𝑦), (3.9.177)

where ̃︀∆ ⊆ ∆ is a convex compact subset of the simplex given by Equation (3.4.5). Let

(𝑥⋆𝑄, 𝑦
⋆
𝑄) denote the unique solution to this problem (note that this is unique since we have a

strongly convex-strongly concave objective over a compact convex set). Then, we have:

max
{︀
‖𝑥⋆𝑄1

− 𝑥⋆𝑄2
‖, ‖𝑦⋆𝑄1

− 𝑦⋆𝑄2
‖
}︀
≤ 𝐶 · ‖𝑄1 −𝑄2‖𝐹 , (3.9.178)

for some constant 𝐶 > 0 and for any 𝑄1, 𝑄2 ∈ R𝑛×𝑛.

Proof. First notice that by the proof of Theorem 3.4.5, solving (3.9.177) is equivalent to

solving

min
𝑥∈Δ

max
𝑦∈Δ

𝑥⊤Ψ⊤𝑄Ψ𝑦 − 𝜏ℋ(𝑥) + 𝜏ℋ(𝑦), (3.9.179)

with Ψ being defined in Equation (3.4.7), which admits a unique solution. In other words,

the solution (𝑥⋆𝑄, 𝑦
⋆
𝑄) also solves (3.9.179). Also, notice that the solution to (3.9.179) always

lies in the relative interior of ∆, given by (3.9.91). In other words, [𝑥⋆𝑄]𝑎 > 0 and [𝑦⋆𝑄]𝑏 > 0

for all 𝑎 and 𝑏. Due to the simplex constraint, the free variable is of dimension 𝑛 − 1,

and the last dimension of 𝑥 can be represented as 1 −
∑︀𝑛−1

𝑎=1 𝑥𝑎 > 0 (similarly for 𝑦).

Let ̃︀𝑥 = (𝑥1, 𝑥2, · · · , 𝑥𝑛−1)
⊤, ̃︀𝑦 = (𝑦1, 𝑦2, · · · , 𝑦𝑛−1)

⊤, and 𝑓(𝑥, 𝑦) := 𝑥⊤Ψ⊤𝑄Ψ𝑦 − 𝜏ℋ(𝑥) +

𝜏ℋ(𝑦). Recall that 𝑓(𝑥, 𝑦) is strongly convex in 𝑥 and strongly concave in 𝑦. Note that

𝑓(𝑥, 𝑦) = 𝑓
(︀
Λ(̃︀𝑥),Λ(̃︀𝑦)

)︀
= ̃︀𝑓(̃︀𝑥, ̃︀𝑦) := Λ(̃︀𝑥)⊤Ψ⊤𝑄ΨΛ(̃︀𝑦) − 𝜏ℋ

(︀
Λ(̃︀𝑥)

)︀
+ 𝜏ℋ

(︀
Λ(̃︀𝑦)

)︀
, where

𝑥 = Λ(̃︀𝑥) =

⎡⎣ 𝐼

−1⊤

⎤⎦ ̃︀𝑥 +

⎡⎢⎢⎢⎢⎢⎢⎣
0

0
...

1

⎤⎥⎥⎥⎥⎥⎥⎦, and 1 denotes an all-one vector of proper dimension. Note

that ̃︀𝑓(̃︀𝑥, ̃︀𝑦) is also strongly convex in ̃︀𝑥 and strongly concave in ̃︀𝑦, as for any ̃︀𝑦, the Hessian

∇2̃︀𝑥 ̃︀𝑓(̃︀𝑥, ̃︀𝑦) =
[︁
𝐼
⃒⃒
− 1

]︁
∇2

𝑥𝑓(Λ(̃︀𝑥),Λ(̃︀𝑦))

⎡⎣ 𝐼

−1⊤

⎤⎦ ≻ 0, so is the Hessian with respect to ̃︀𝑦 for
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any ̃︀𝑥. Hence, the solution to the minimax problem

min{︀̃︀𝑥 ⃒⃒ ̃︀𝑥𝑎≥0,1−
∑︀𝑛−1

𝑎=1 ̃︀𝑥𝑎≥0
}︀ max{︀̃︀𝑦 ⃒⃒ ̃︀𝑦𝑏≥0,1−

∑︀𝑛−1
𝑏=1 ̃︀𝑦𝑏≥0

}︀ ̃︀𝑓(̃︀𝑥, ̃︀𝑦) (3.9.180)

is given by (̃︀𝑥⋆𝑄, ̃︀𝑦⋆𝑄), where ̃︀𝑥⋆𝑄 and ̃︀𝑦⋆𝑄 are just the first 𝑛 − 1 dimensions of 𝑥⋆𝑄 and 𝑦⋆𝑄,

satisfying [̃︀𝑥⋆𝑄]𝑎 > 0, [̃︀𝑦⋆𝑄]𝑏 > 0, and 1 −
∑︀𝑛−1

𝑎=1 [̃︀𝑥⋆𝑄]𝑎 > 0, 1 −
∑︀𝑛−1

𝑏=1 [̃︀𝑦⋆𝑄]𝑏 > 0, i.e., the

constraints in (3.9.180) are not violated at (̃︀𝑥⋆𝑄, ̃︀𝑦⋆𝑄). By KKT conditions, it holds that at

(̃︀𝑥⋆𝑄, ̃︀𝑦⋆𝑄)

𝜏∇̃︀𝑥ℋ(Λ(̃︀𝑥⋆𝑄)) −
[︁
𝐼
⃒⃒
− 1

]︁
Ψ⊤𝑄ΨΛ(̃︀𝑦⋆𝑄) = 0 (3.9.181)

𝜏∇̃︀𝑦ℋ(Λ(̃︀𝑦⋆𝑄)) +
[︁
𝐼
⃒⃒
− 1

]︁
Ψ⊤𝑄⊤ΨΛ(̃︀𝑥⋆𝑄) = 0. (3.9.182)

Define operator 𝒢
(︀̃︀𝑥, ̃︀𝑦, vec(𝑄)

)︀
as

𝒢
(︀̃︀𝑥, ̃︀𝑦, vec(𝑄)

)︀
:=

⎡⎣ 𝜏∇̃︀𝑥ℋ(Λ(̃︀𝑥)) −
[︁
𝐼
⃒⃒
− 1

]︁
Ψ⊤𝑄ΨΛ(̃︀𝑦)

𝜏∇̃︀𝑦ℋ(Λ(̃︀𝑦)) +
[︁
𝐼
⃒⃒
− 1

]︁
Ψ⊤𝑄⊤ΨΛ(̃︀𝑥)

⎤⎦ ,
where vec(𝑄) is the vectorization of 𝑄. Then, (̃︀𝑥⋆𝑄, ̃︀𝑦⋆𝑄) is given by the solution to

𝒢
(︀̃︀𝑥, ̃︀𝑦, vec(𝑄)

)︀
= 0. Note that the Jacobian of 𝒢 with respect to [̃︀𝑥⊤, ̃︀𝑦⊤]⊤ is

ℳ
(︀̃︀𝑥, ̃︀𝑦, vec(𝑄)

)︀
:=
[︁
𝜕𝒢
𝜕̃︀𝑥 ⃒⃒ 𝜕𝒢

𝜕̃︀𝑦
]︁
=

⎡⎢⎢⎢⎢⎢⎢⎣
𝜏∇2̃︀𝑥ℋ(Λ(̃︀𝑥)) −

[︁
𝐼
⃒⃒
− 1

]︁
Ψ⊤𝑄Ψ

⎡⎣ 𝐼

−1⊤

⎤⎦
[︁
𝐼
⃒⃒
− 1

]︁
Ψ⊤𝑄⊤Ψ

⎡⎣ 𝐼

−1⊤

⎤⎦ 𝜏∇2̃︀𝑦ℋ(Λ(̃︀𝑦))

⎤⎥⎥⎥⎥⎥⎥⎦ ,

which is always invertible for any ̃︀𝑥 and ̃︀𝑦 belonging to the constraints in (3.9.180), due to the

fact that 𝜏∇2̃︀𝑥ℋ(Λ(̃︀𝑥)), 𝜏∇2̃︀𝑦ℋ(Λ(̃︀𝑦)) ≻ 0, and ℳ
(︀̃︀𝑥, ̃︀𝑦, vec(𝑄)

)︀
is skew-symmetric, yielding

the fact that the real parts of the eigenvalues of ℳ
(︀̃︀𝑥, ̃︀𝑦, vec(𝑄)

)︀
, which are the eigenvalues

of (ℳ⊤ + ℳ)/2, are always positive. In fact, the real parts are uniformly lower bounded by

some constant 𝜂 > 0 for any ̃︀𝑥 and ̃︀𝑦 belong to the constraints in (3.9.180), due to the strong
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convexity of ℋ(Λ(̃︀𝑥)) and ℋ(Λ(̃︀𝑦)). Hence, we have

⃦⃦
ℳ
(︀̃︀𝑥, ̃︀𝑦, vec(𝑄)

)︀−1⃦⃦
2
≤ 2

𝜆min

(︁
ℳ
(︀̃︀𝑥, ̃︀𝑦, vec(𝑄)

)︀
+ ℳ

(︀̃︀𝑥, ̃︀𝑦, vec(𝑄)
)︀⊤)︁ ≤ 1

𝜂
.

Due to the invertibility of ℳ
(︀̃︀𝑥, ̃︀𝑦, vec(𝑄)

)︀
, we can apply implicit function theorem [71] for

any solution to 𝒢
(︀̃︀𝑥, ̃︀𝑦, vec(𝑄)

)︀
= 0, and obtain that for any such a solution (̃︀𝑥⋆𝑄, ̃︀𝑦⋆𝑄, vec(𝑄)),

there exists a neighborhood of it such that for any (̃︀𝑥, ̃︀𝑦, vec( ̃︀𝑄)) in the neighborhood

𝜕[̃︀𝑥⊤, ̃︀𝑦⊤]⊤

𝜕vec( ̃︀𝑄)
= −ℳ

(︀̃︀𝑥, ̃︀𝑦, vec( ̃︀𝑄)
)︀−1 ·

𝜕𝒢
(︀̃︀𝑥, ̃︀𝑦, vec( ̃︀𝑄)

)︀
𝜕vec( ̃︀𝑄)

.

Notice that 𝜕𝒢(̃︀𝑥,̃︀𝑦,vec( ̃︀𝑄))

𝜕vec( ̃︀𝑄)
is uniformly bounded in norm on the constrained sets in (3.9.180),

due to the boundedness of the sets. Hence, there exists a uniform constant 𝐶 ′ > 0 such that

⃦⃦⃦⃦
𝜕[(̃︀𝑥⋆𝑄)⊤, (̃︀𝑦⋆𝑄)⊤]⊤

𝜕vec(𝑄)

⃦⃦⃦⃦
2

≤
⃦⃦⃦
ℳ
(︀̃︀𝑥⋆𝑄, ̃︀𝑦⋆𝑄, vec(𝑄)

)︀−1
⃦⃦⃦
2
·
⃦⃦⃦⃦
𝜕𝒢
(︀̃︀𝑥⋆𝑄, ̃︀𝑦⋆𝑄, vec(𝑄)

)︀
𝜕vec( ̃︀𝑄)

⃦⃦⃦⃦
2

≤ 𝐶 ′

for any (̃︀𝑥⋆𝑄, ̃︀𝑦⋆𝑄, vec(𝑄)). By the mean-value theorem, we know that

⃦⃦
[(̃︀𝑥⋆𝑄1

)⊤, (̃︀𝑦⋆𝑄1
)⊤] − [(̃︀𝑥⋆𝑄2

)⊤, (̃︀𝑦⋆𝑄2
)⊤]
⃦⃦
2
≤ 𝐶 ′ ·

⃦⃦
vec(𝑄1) − vec(𝑄2)

⃦⃦
2
.

Finally, notice that

⃦⃦
[(𝑥⋆𝑄1

)⊤, (𝑦⋆𝑄1
)⊤] − [(𝑥⋆𝑄2

)⊤, (𝑦⋆𝑄2
)⊤]
⃦⃦
2

≤

⃦⃦⃦⃦
⃦
⎡⎣ 𝐼

−1⊤

⎤⎦ ⃦⃦⃦⃦⃦
2

·
⃦⃦

[(̃︀𝑥⋆𝑄1
)⊤, (̃︀𝑦⋆𝑄1

)⊤] − [(̃︀𝑥⋆𝑄2
)⊤, (̃︀𝑦⋆𝑄2

)⊤]
⃦⃦
2
,

which completes the proof by the equivalence of norms.

Tabular case and proof of Theorem 3.6.3

We set the stepsize to be:

𝜂 =
1 − 𝛾

2(1 + 𝜏(log 𝑛+ 1 − 𝛾))
. (3.9.183)
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The convergence of the 𝑄-function follows from Lemma 3.9.8, along with Theorem 2 in

[23]. In particular, it is shown that when the inner problem is solved upto an accuracy of 𝜖,

we have:

‖𝑄𝑡 −𝑄⋆‖∞ ≤ 𝜖+ 𝛾𝑡‖𝑄0 −𝑄⋆‖∞ (3.9.184)

We show the convergence of the parameter next. We define:

𝜃⋆(𝑠) =
−𝑄⋆

𝜏ℎ𝜈⋆(· | 𝑠)
𝜏

, 𝜈⋆(𝑠) =
𝑄⋆

𝜏
⊤𝑔𝜃⋆(· | 𝑠)
𝜏

. (3.9.185)

Similarly, we also define 𝜃⋆𝑄𝑡
and 𝜈⋆𝑄𝑡

as:

𝜃⋆𝑄𝑡
=

−𝑄𝑡ℎ𝜈⋆𝑄𝑡
(· | 𝑠)

𝜏
, 𝜈⋆(𝑠) =

𝑄𝑡
⊤𝑔𝜃⋆𝑄𝑡

(· | 𝑠)
𝜏

. (3.9.186)

We have:

‖𝜃𝑡 − 𝜃⋆𝑄⋆‖2 = ‖𝜃𝑡 − 𝜃⋆𝑄𝑡
+ 𝜃⋆𝑄𝑡

− 𝜃⋆‖2 ≤ 2‖𝜃𝑡 − 𝜃⋆𝑄𝑡
‖2 + 2‖𝜃⋆𝑄𝑡

− 𝜃⋆‖2. (3.9.187)

Now, the first term converges approximately after the inner loop terminates. We can analyze

the second term as follows:

‖𝜃⋆𝑄𝑡
− 𝜃⋆‖2 =*1 1

𝜏
‖𝑄𝑡ℎ𝜈⋆𝑄𝑡

−𝑄⋆ℎ𝜈⋆
𝑄⋆

‖2 = 1

𝜏
‖𝑄𝑡ℎ𝜈⋆𝑄𝑡

−𝑄⋆ℎ𝜈⋆𝑄𝑡
+𝑄⋆ℎ𝜈⋆𝑄𝑡

−𝑄⋆ℎ𝜈⋆
𝑄⋆

‖2

≤ 2

𝜏

(︁
‖𝑄𝑡ℎ𝜈⋆𝑄𝑡

−𝑄⋆ℎ𝜈⋆𝑄𝑡
‖2 + ‖𝑄⋆ℎ𝜈⋆𝑄𝑡

−𝑄⋆ℎ𝜈⋆
𝑄⋆

‖2
)︁

≤ 2

𝜏

(︁
‖𝑄𝑡 −𝑄⋆‖2𝐹 + ‖𝑄⋆‖2𝐹 ‖ℎ𝜈⋆𝑄𝑡

− ℎ𝜈⋆
𝑄⋆

‖2
)︁

≤*2 2

𝜏

(︀
‖𝑄𝑡 −𝑄⋆‖2𝐹 + 𝐶‖𝑄⋆‖2𝐹 ‖𝑄𝑡 −𝑄⋆‖2𝐹

)︀
=

2

𝜏

(︀
1 + 𝐶2‖𝑄⋆‖2𝐹

)︀
‖𝑄𝑡 −𝑄⋆‖2𝐹 , (3.9.188)

where (*1) follows from the definition of 𝜃⋆ and (*2) follows from Lemma 3.9.20. Substituting

this in Equation (3.9.187) we have:

‖𝜃𝑡 − 𝜃⋆𝑄⋆‖2 ≤ 2‖𝜃𝑡 − 𝜃⋆𝑄𝑡
‖2 +

4

𝜏

(︀
1 + 𝐶2‖𝑄⋆‖2𝐹

)︀
‖𝑄𝑡 −𝑄⋆‖2𝐹 . (3.9.189)
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Therefore, we have ‖𝜃𝑡 − 𝜃⋆𝑄⋆‖2 ≤ 𝜖 if

‖𝜃𝑡 − 𝜃⋆𝑄𝑡
‖2 ≤ 𝜖

4
, ‖𝑄𝑡 −𝑄⋆‖2𝐹 ≤ 𝜖

8
𝜏

(1 + 𝐶2‖𝑄⋆‖2𝐹 )
. (3.9.190)

Note that the first term can be achieved by setting the inner-loop iterations 𝑇𝑖𝑛𝑛𝑒𝑟 to be the

following (from Theorem 3.3.4):

𝑇𝑖𝑛𝑛𝑒𝑟 = 𝒪
(︂

1

𝜂𝜏

(︂
log

1

𝜖
+ log

1

1 − 𝛾
+ log log 𝑛+ log

1

𝜂

)︂)︂
, (3.9.191)

and the second term can be achieved by noting that:

‖𝑄𝑡 −𝑄⋆‖𝐹 ≤ 𝑑‖𝑄𝑡 −𝑄⋆‖∞, (3.9.192)

for 𝑑 = |𝒮| × |𝐴|. Now, using Inequality (3.9.184), we can set the outer-loop iterations 𝑇𝑜𝑢𝑡𝑒𝑟
to be:

𝑇𝑜𝑢𝑡𝑒𝑟 = 𝒪
(︂

1

1− 𝛾

(︂
log

𝑑

𝜖
+ log

(︂
8

𝜏

(︀
1 + 𝐶2‖𝑄⋆‖2𝐹

)︀)︂
+ log

1 + 𝜏 log 𝑛

1− 𝛾

)︂)︂
, (3.9.193)

to get the desired convergence result. This completes the proof.

Function approximation setting

In this subsection, we discuss Markov games where the policies have a log-linear parametriza-

tion. The basic idea is to follow the tabular setting, but only for those states for which there

is an action for which the feature vector corresponding to the state-action pair is non-zero.

We first make the following assumption on the feature matrix 𝜑.

Assumption 3.9.21. The feature matrix Φ is full rank, Moreover, it is of the form Φ =

[𝜑1, 𝜑2, · · · , 𝜑|𝒮|×|𝒜|] = [𝐼 | 0].

Note that this assumption is similar to Assumption 3.4.1 for the matrix game. This The

full rank assumption is standard in the literature. Furthermore, this particular structure of the

feature matrix, though being restrictive, ensures that the constraint set of policies is convex

(similar to the case of matrix games), otherwise the minimax theorem of min max = max min
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might not hold, i.e., the Nash equilibrium for the parameterized game does not exist. See

the paragraph below Assumption 3.4.1 for further discussion on the structure of the feature

matrix. We next describe the detailed description of the setup.

Setup

Each column of Φ is a feature vector corresponding to some state action pair (𝑠, 𝑎). Note that

for each state, there could be 0 to min{𝑛, 𝑑} actions for which the feature vector is non-zero.

Now, consider a state 𝑠 ∈ 𝑆. Define 𝐴𝑠 = {𝑎 ∈ 𝒜 : Φ𝑠,𝑎 ̸= 0} where Φ𝑠,𝑎 corresponds to

the column in the feature matrix for state 𝑠, and action 𝑎, and here 0 denotes the zero vector.

Therefore 𝐴𝑠 is the set of actions in state 𝑠 for which the feature vector is non-zero. For sake

of notational simplicity, let these be the actions 1, 2, · · · , |𝐴𝑠|. Note that 𝐴𝑠 can be an empty

set. We further assume that the first |𝐴1| columns of Φ are corresponding to state 1, the

next |𝐴2| columns correspond to state 2 and so on. Note that we have
∑︀

𝑠∈𝒮 |𝐴𝑠| = 𝑑.

For state 𝑠, if 𝐴𝑠 is nonempty, define the feature matrix Φ𝑠 = [𝐼|𝐴𝑠| | 0] ∈ R|𝐴𝑠|×𝑛. Note

that this would be the feature matrix corresponding to each state for the original feature

matrix Φ. Now, define ̃︀∆𝑠 corresponding to each state 𝑠 using the feature matrix Φ𝑠, as in

Equation (3.4.5). This corresponds to the set of admissible distributions under the function

approximation setting for state 𝑠. If the set 𝐴𝑠 is empty, we take ̃︀∆𝑠 to be the singleton set

with the uniform distribution. Furthermore, we define ̃︀∆ = ×𝑠∈𝒮 ̃︀∆𝑠.

Next, for notational convenience, we let the first 𝑑1 columns of the Matrix Φ correspond

to state 𝑠1, i.e., 𝑑1 = |𝐴𝑠1|, the next 𝑑2 columns correspond to actions in state 𝑠2 and so on

till finally the columns from 𝑑− 𝑑𝐷 + 1 to column 𝑑 correspond to state 𝑠𝐷, i.e., we partition

the columns for which the feature vector is non-zero into the different states they correspond

to. Therefore, 𝐷 corresponds to the number of states for which there is at least one action

for which the feature vector corresponding to the state action pair is non-zero. This means

that the states 𝑠1, 𝑠2, · · · , 𝑠𝐷 are the only states for which there is at least one action with

a nonzero feature vector, and therefore ̃︀∆𝑠 is not a singleton set for these states. For all

other states 𝑠 ∈ 𝒮∖{𝑠1, 𝑠2, · · · , 𝑠𝐷}, we have that ̃︀∆𝑠 is a singleton set containing the uniform

distribution. We will also separate the parameters as follows: 𝜃𝑠1 denotes the first 𝑑1 elements

of 𝜃, 𝜃𝑠2 denotes the next 𝑑2 elements of 𝜃 and so on. Similarly for 𝜈.
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Now, the algorithm used to solve the Markov game in this function approximation setting,

is similar to the tabular setting, except that we only have to run the inner iteration on the

states 𝑠𝑖, 𝑖 = {1, 2, · · · , 𝐷}. We describe the algorithm in detail in Algorithm 7 in §3.9.5.

Theorem 3.9.22. Let 𝑄⋆
𝜏 be the in-class NE (Definition 3.6.1) 𝑄-value defined in Equation

(3.6.5) of the regularized problem, under the log-linear parametrization satisfying Assumption

3.9.21. Note that we have existence of the in-class NE from Lemma 3.9.25. Choose the

stepsize 𝜂 = 1−𝛾
2(1+𝜏(log𝑛+1−𝛾))

for the inner loop in Algorithm 7.Then, after running Algorithm

7 for

𝑇𝑖𝑛𝑛𝑒𝑟 = 𝒪
(︂

1

𝜂𝜏

(︂
log

1

𝜖
+ log

1

1 − 𝛾
+ log log 𝑛+ log

1

𝜂

)︂)︂
,

𝑇𝑜𝑢𝑡𝑒𝑟 = 𝒪
(︂

1

1 − 𝛾

(︂
log

𝐷

𝜖
+ log

(︂
8

𝜏

(︀
1 + 𝐶2‖𝑄⋆‖2𝐹

)︀)︂
+ log

1 + 𝜏 log 𝑛

1 − 𝛾

)︂)︂
, (3.9.194)

iterations, we have ‖𝑄𝑇 −𝑄⋆
𝜏‖∞ ≤ 𝜖 and max{‖𝜃𝑇 − 𝜃⋆‖, ‖𝜈𝑇 − 𝜈⋆‖} ≤ 𝜖 where (𝑄𝑇 , 𝜃𝑇 , 𝜈𝑇 )

is the output of Algorithm 7 after 𝑇 iterations and (𝜃⋆, 𝜈⋆) are defined in Equation (3.9.195).

Remark 3.9.23. Note that Theorem 3.9.22 provides the convergence rate for a two player

Markov game under the function approximation setting. This covers the tabular case by

setting the feature matrix, Φ (See Equation (3.4.2) in §3.4), to be equal to the identity matrix.

In particular, making this substitution recovers the results of Theorem 3.6.3 .

Remark 3.9.24. We remark that Theorem 3.9.22, to the best of our knowledge, provides

the first symmetric algorithm with convergence rate guarantees for Markov games under

the function approximation setting. The only other existing result in this setting is [151],

where the update is asymmetric, and one of the players performs multiple updates while the

other player updates once. An asymmetric update-rule also appears in [32], without function

approximation. Our results also improve over [131, 23] by generalizing the results to the case

of certain function approximation, as well as showing parameter convergence.

Proof of Theorem 3.9.22
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Algorithm 7 Optimistic NPG for Markov Games with Function Approximation
Initialize: 𝑄0 = 0
for 𝑡 = 1, 2, · · · , 𝑇𝑜𝑢𝑡𝑒𝑟 do

Let 𝑄𝑡(𝑠, 𝑎, 𝑏) := 𝑟(𝑠, 𝑎, 𝑏) + 𝛾E𝑠′∼P(·|𝑠,𝑎,𝑏)[−𝑓𝜏 (𝑄𝑡(𝑠
′); 𝑔𝜃𝑇𝑖𝑛𝑛𝑒𝑟

(· | 𝑠′), ℎ𝜈𝑇𝑖𝑛𝑛𝑒𝑟
(· | 𝑠′))]

for 𝑖 = 1, 2, · · · , 𝐷 do
Solve min

𝜃∈R|𝐴𝑠𝑖 | max
𝜈∈R|𝐵𝑠𝑖 | 𝑓𝜏 (𝑄(𝑠𝑖); 𝑔𝜃, ℎ𝜈) by running the Optimistic NPG algo-

rithm (Algorithm 2) with feature matrix Φ𝑠𝑖 for 𝑇𝑖𝑛𝑛𝑒𝑟 iterations and return the last
iterates (𝜃𝑇𝑖𝑛𝑛𝑒𝑟

𝑠𝑖
, 𝜈𝑇𝑖𝑛𝑛𝑒𝑟

𝑠𝑖
).

end for
Set (𝜃𝑇𝑖𝑛𝑛𝑒𝑟

, 𝜈𝑇𝑖𝑛𝑛𝑒𝑟
) =

(︀
[𝜃𝑇𝑖𝑛𝑛𝑒𝑟

𝑠1
, 𝜃𝑇𝑖𝑛𝑛𝑒𝑟

𝑠2
, · · · , 𝜃𝑇𝑖𝑛𝑛𝑒𝑟

𝑠𝐷
], [𝜈𝑇𝑖𝑛𝑛𝑒𝑟

𝑠1
, 𝜈𝑇𝑖𝑛𝑛𝑒𝑟

𝑠2
, · · · , 𝜈𝑇𝑖𝑛𝑛𝑒𝑟

𝑠𝐷
]
)︀
.

end for

In order to characterize the point where the parameter converges to, we define:

𝜃⋆ = [(𝜃⋆𝑠1)
⊤, (𝜃⋆𝑠2)

⊤, · · · , (𝜃⋆𝑠𝐷)⊤]⊤, 𝜈⋆ = [(𝜈⋆𝑠1)
⊤, (𝜈⋆𝑠2)

⊤, · · · , (𝜈⋆𝑠𝐷)⊤]⊤, (3.9.195)

where

𝜃⋆𝑠𝑖 = −[𝐼|𝐴𝑠𝑖 ||0]
𝑄⋆

𝜏 (𝑠𝑖)ℎ𝜈⋆(· | 𝑠𝑖)
𝜏

∈ R𝐴𝑠𝑖 , 𝜈⋆𝑠𝑖 = [𝐼|𝐴𝑠𝑖 ||0]
𝑄⋆

𝜏 (𝑠𝑖)
⊤𝑔𝜃⋆(· | 𝑠𝑖)
𝜏

∈ R𝐴𝑠𝑖 ,

and 𝑄⋆
𝜏 is the in-class NE Q-value (see Definition 3.6.1). The existence of this in-class NE

follows from Lemma 3.9.25.

The in-class Nash equilibrium (𝜃⋆, 𝜈⋆) under the function approximation setting satisfies:

𝑉 𝜃⋆,𝜈(𝑠) ≥ 𝑉 𝜃⋆,𝜈⋆(𝑠) ≥ 𝑉 𝜃,𝜈⋆(𝑠) ∀𝜃, 𝜈 ∈ R𝑑, ∀𝑠 ∈ 𝒮. (3.9.196)

Note that this is equivalent to (from Lemma 3.4.4):

𝑉 𝑔𝜃⋆ ,ℎ𝜈 (𝑠) ≥ 𝑉 𝑔𝜃⋆ ,ℎ𝜈⋆ (𝑠) ≥ 𝑉 𝑔𝜃,ℎ𝜈⋆ (𝑠) ∀𝑔𝜃, ℎ𝜈 ∈ ̃︀∆, ∀𝑠 ∈ 𝒮. (3.9.197)

We denote the NE V (and Q) as 𝑉 ⋆ (and 𝑄⋆) (We use this notation for the general regularized

version with 𝜏 ≥ 0, i.e., we do not explicitly state the dependence on 𝜏), i.e.,

𝑄⋆(𝑠, 𝑎, 𝑏) = 𝑟(𝑠, 𝑎, 𝑏) + 𝛾E𝑠′∼P(·|𝑠,𝑎,𝑏)[𝑉
⋆(𝑠′)]. (3.9.198)
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Next, we define the soft-Bellman operator as 10:

𝒯𝜏 (𝑄)(𝑠, 𝑎, 𝑏) := 𝑟(𝑠, 𝑎, 𝑏) + 𝛾E𝑠′∼P(·|𝑠,𝑎,𝑏)[− min
𝜃∈R|𝐴𝑠|

max
𝜈∈R|𝐴𝑠|

𝑓𝜏 (𝑄(𝑠′); 𝑔𝜃(· | 𝑠′), ℎ𝜈(· | 𝑠′))],

(3.9.199)

where

𝑓𝜏 (𝑄(𝑠); 𝑔𝜃(· | 𝑠), ℎ𝜈(· | 𝑠) := − 𝑔𝜃(· | 𝑠)⊤𝑄(𝑠)ℎ𝜈(· | 𝑠) − 𝜏ℋ(𝑔𝜃(· | 𝑠)) + 𝜏ℋ(ℎ𝜈(· | 𝑠)),

(3.9.200)

and 𝑄(𝑠) is the Q-value matrix at state 𝑠. Let 𝜃𝑠, 𝜈𝑠 be the NE parameters at state 𝑠. Note

that by 𝑁𝐸 we mean the solution to the min-max problem (which is the in-class NE in

the function approximation setting). Then the concatenation 𝜃 = [𝜃⊤𝑠1 , 𝜃
⊤
𝑠2
, · · · , 𝜃⊤𝑠𝐷 ]⊤ (and

similarly for 𝜈) denotes the parameters.

Note that the inner min max problem is equivalent to (from §3.4):

min
𝑔𝜃(·|𝑠′)∈̃︀Δ𝑠′

max
ℎ𝜈(·|𝑠′)∈̃︀Δ𝑠′

𝑓𝜏 (𝑄(𝑠′); 𝑔𝜃(· | 𝑠′), ℎ𝜈(· | 𝑠′)). (3.9.201)

Consider the value iteration:

𝑄𝑡+1 = 𝒯𝜏 (𝑄𝑡). (3.9.202)

We have ‖𝑄𝑡−𝑄⋆‖∞ ≤ 𝛾𝑡‖𝑄0−𝑄⋆‖∞, due to the non-expansiveness property of the min max

operator and the contracting factor 𝛾 < 1. Note from Lemma 3.9.25, this fixed point in fact

corresponds to the in-class NE 𝑄−value matrix of the regularized Markov game.

The inner problem, which solves the saddle-point problem, is solved for each state with

the input feature matrix Φ𝑠 using Algorithm 2. The iteration complexity follows from a

similar analysis to the tabular case. This completes the proof.

10Note that we use the structure of the feature matrix Φ, along with Theorem 3.4.5, to show that
min𝑔𝜃(· | 𝑠)∈̃︀Δ maxℎ𝜈(· | 𝑠)∈̃︀Δ is equivalent to min𝜃𝑠∈R|𝐴𝑠| max𝜈𝑠∈R|𝐴𝑠|
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Proof of Lemma 3.6.2

Consider the operator 11

𝒯 (𝑉 )(𝑠) := max
𝜃𝑠∈R|𝐴|

min
𝜈𝑠∈R|𝐴|

E𝑎∼𝑔𝜃(·|𝑠),𝑏∼ℎ𝜈(·|𝑠)
[︀
𝑟(𝑠, 𝑎, 𝑏) + 𝛾E𝑠′∼P(·|𝑠,𝑎,𝑏)[𝑉 (𝑠′)]

]︀
. (3.9.203)

The proof here is for the regularized game, i.e., with 𝜏 ≥ 012.Note that this is the operator for

the value function 𝑉 corresponding to the 𝑄-value operator in Equation (3.9.199) with 𝜏 = 0.

We have, from the nonexpansive property of the min-max operator (see for example [47]):

‖𝒯 (𝑉1) − 𝒯 (𝑉2)‖∞ ≤ 𝛾‖𝑉1 − 𝑉2‖∞, (3.9.204)

which shows that this is a contracting operator and therefore has a unique fixed point by

the Banach Fixed Point theorem. We show that this fixed point will lead to the in-class

Nash equilibrium policy defined in Definition 3.6.1. Let the fixed point be denoted by 𝑉 ⋆,

and let (𝜃⋆, 𝜈⋆) be the maxmin policy parameters in Equation (3.9.203) when plugging in 𝑉 ⋆.

Note that 𝜃⋆ = (𝜃⋆𝑠)
|𝒮|
𝑠=1

13 and similarly 𝜈⋆. We will show that (𝜃⋆, 𝜈⋆) is in fact the NE policy

parameters. We have:

𝑉 ⋆(𝑠) = E𝑎∼𝑔𝜃⋆ (·|𝑠),𝑏∼ℎ𝜈⋆ (·|𝑠)
[︀
𝑟(𝑠, 𝑎, 𝑏) + 𝛾E𝑠′∼P(·|𝑠,𝑎,𝑏)[𝑉

⋆(𝑠′)]
]︀

= min
𝜈𝑠∈R|𝐴|

E𝑎∼𝑔𝜃⋆ (·|𝑠),𝑏∼ℎ𝜈(·|𝑠)
[︀
𝑟(𝑠, 𝑎, 𝑏) + 𝛾E𝑠′∼P(·|𝑠,𝑎,𝑏)[𝑉

⋆(𝑠′)]
]︀

≤ E𝑎∼𝑔𝜃⋆ (·|𝑠),𝑏∼ℎ𝜈(·|𝑠)
[︀
𝑟(𝑠, 𝑎, 𝑏) + 𝛾E𝑠′∼P(·|𝑠,𝑎,𝑏)[𝑉

⋆(𝑠′)]
]︀

∀ 𝜈 ∈ R𝑑. (3.9.205)

Now applying Lemma 4.3.3 in [47] to Inequality (3.9.205) for all states 𝑠, we have:

𝑉 ⋆ ≤ 𝑉 𝜃⋆,𝜈 ∀ 𝜈 ∈ R𝑑, (3.9.206)

11Note that we here we use the structure of the tabular parametrization, by noting that
max𝑔𝜃(· | 𝑠)∈Δ minℎ𝜈(· | 𝑠)∈Δ is equivalent to max𝜃𝑠∈R|𝐴| min𝜈𝑠∈R|𝐴| using Theorem 3.3.2.

12We suppress the dependency on 𝜏 in the notation, by dropping the subscript 𝜏 for 𝑄, 𝑉 , and the operator
𝒯 .

13Since we are in the tabular setting, each element 𝜃⋆𝑠 is of length |𝐴|.
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where 𝑑 = |𝒮| × |𝐴|. Applying the same inequality for 𝜈⋆, we have:

𝑉 𝜃⋆,𝜈 ≥ 𝑉 ⋆ ≥ 𝑉 𝜃,𝜈⋆ ∀ 𝜃, 𝜈 ∈ R𝑑. (3.9.207)

Furthermore, since we have:

𝑉 ⋆ = E𝑎∼𝑔𝜃⋆(·|𝑠),𝑏∼ℎ𝜈⋆ (·|𝑠)
[︀
𝑟(𝑠, 𝑎, 𝑏) + 𝛾E𝑠′∼P(·|𝑠,𝑎,𝑏)[𝑉

⋆(𝑠′)]
]︀
. (3.9.208)

Lemma 4.3.3 in [47] gives us that 𝑉 ⋆ = 𝑉 𝜃⋆,𝜈⋆ . Combining this with Inequality (3.9.207), we

have:

𝑉 𝜃⋆,𝜈 ≥ 𝑉 𝜃⋆,𝜈⋆ ≥ 𝑉 𝜃,𝜈⋆ ∀𝜃, 𝜈 ∈ R𝑑, (3.9.209)

which shows that (𝜃⋆, 𝜈⋆) is the required NE. Finally, using Theorem 4.3.2 (iii) in [47], we

can find the NE (𝜃⋆, 𝜈⋆) for each state 𝑠 ∈ 𝒮 by solving the following matrix game (for which

the solution is guaranteed to exist, from Theorem 3.3.2) :

max
𝜃𝑠∈R|𝐴|

min
𝜈𝑠∈R|𝐴|

E𝑎∼𝑔𝜃(·|𝑠),𝑏∼ℎ𝜈(·|𝑠)
[︀
𝑟(𝑠, 𝑎, 𝑏) + 𝛾E𝑠′∼P(·|𝑠,𝑎,𝑏)[𝑉

⋆(𝑠′)]
]︀
.

This completes the proof.

Lemma 3.9.25 (Existence of parameterized/in-class NE under Linear FA). Under policy

parameterization (3.6.2) with log linear policy parametrization and Assumption 3.9.21, the

in-class NE defined in Definition 3.6.1 exists.

Proof. The proof follows exactly along the lines of Lemma 3.6.2, along with the fact that the

matrix game under linear function approximation and Assumption 3.9.21 has a solution, as

shown in Theorem 3.4.5.

126



Chapter 4

Generalization of Minimax Learners

4.1 Introduction

In this chapter, we move our attention from the problem of optimization, to the problem

of generalization. Stochastic minimax optimization, a classical and fundamental problem in

operations research and game theory, involves solving the following problem:

min
𝑤∈𝑊

max
𝜃∈Θ

𝐸𝑧∼𝑃𝑧 [𝑓(𝑤, 𝜃; 𝑧)].

Such minimax formulations have recently received increasing attention in machine learning.

Most existing works (including the first two chapters) have focused on the optimization aspect

of the problem, i.e., studying the rates of convergence, robustness, and optimality of algorithms

for solving an empirical version of the problem where it approximates the expectation by

an average over a sampled dataset, in various minimax settings including convex-concave

[95, 91], nonconvex-concave [76, 106], and certain special nonconvex-nonconcave [99, 135]

problems.

However, the optimization aspect is not sufficient to achieve the success of stochastic

minimax optimization in machine learning. In particular, as in classical supervised learning,

which is usually studied as a minimization problem [63], the out-of-sample generalization

performance is a key metric for evaluating the learned models. The study of generalization

guarantees in minimax optimization (and related machine learning problems) has not received
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significant attention until recently [4, 46, 138, 73, 43, 143]. Specifically, existing works along

this line have investigated two types of generalization guarantees: uniform convergence

generalization bounds, and algorithm-dependent generalization bounds. The former is more

general and irrespective of the optimization algorithms being used, while the latter is usually

finer and really explains what happens in practice, when optimization algorithms play an

indispensable role. In fact, the former might not be able to explain generalization performance

in deep learning, e.g., these bounds can increase with the training dataset size and easily

become vacuous in practice [92], making the latter a more favorable metric for understanding

the success of minimax optimization in machine learning.

Algorithm-dependent generalization for minimax optimization has been studied recently

in [43, 73, 134, 137]. These papers build on the algorithmic stability framework developed in

[16], which are further investigated in [61]. In particular, these works have studied primal risk

and/or (variants of) primal-dual risk under different convexity and smoothness assumptions

of the objective. Primal risk (see formal definition in §4.2) is a natural extension of the

definition of risk from minimization problems. Primal-dual risk, on the other hand, is defined

similarly but based on the duality gap of the solution. It is know that it is well-defined

and can be optimized to zero only when the global saddle-point exists (i.e., min and max

can be interchanged). Based on these metrics, [43, 73] compare the performance of specific

algorithms, e.g., gradient descent-ascent (GDA) and gradient descent-max (GDMax).

Although these metrics are natural extensions of generalization metrics from the minimiza-

tion setting, they might not be the most suitable ones for studying generalization in stochastic

minimax optimization, especially in the nonconvex settings that is pervasive in machine/deep

learning applications, where the global saddle-point might not exist. In particular, we are

interested in the following fundamental question:

What is a good metric to study generalization of minimax learners1?

In this final chapter, we answer this question, by first identifying the inadequacies of the

existing metric, and proposing a new metric, the primal gap that overcomes these inadequacies.

We then provide generalization error bounds for the newly proposed metric, and discuss how

it captures information not included in the other existing metrics.
1We use learner and learning algorithm interchangeably.
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Reference Assumption Metric Rate
[43] NC-𝜇-SC PR 𝐿

√
𝜅2 + 1𝜖

[73] NC-𝜇-SC PR 𝐿(1 + 𝜅)𝜖

[73] 𝜇-SC-SC PD
√
2𝐿(1 + 𝜅)𝜖

This work (Theorem 3) NC-C PG
√︁

4𝐿ℓ𝐶2
𝑝 ·

√
𝜖+ 𝜖𝐿+ 4𝐿*

𝜃𝐶𝑒/
√
𝑛

This work (Lemma 1) NC-C PR
√︁
4𝐿ℓ𝐶2

𝑝 ·
√
𝜖+ 𝜖𝐿

This work (Theorem 7) C-C PD
(︁√︁

4𝐿ℓ𝐶2
𝑝 +

√︁
4𝐿ℓ(𝐶𝑤

𝑝 )
2
)︁√

𝜖+ 2𝜖𝐿

Table 4.1: Generalization bounds for 𝜖-stable algorithms. PR stands for Primal Risk, PD
stands for the primal-dual risk and PG stands for the primal gap. NC-𝜇-SC stands for
nonconvex-𝜇 strongly concave. 𝜇-SC-SC stands for 𝜇 strongly convex-𝜇 strongly concave.
NC-C stands for nonconvex-concave. C-C convex-concave. 𝐿 is the Lipschitz constant of the
function 𝑓 . 𝜅 stands for the condition number 𝐿/𝜇. The constants in the theorems have been
defined in the appropriate sections. Note that there are other results in [43, 73] for cases
where the expectation and max operator can be interchanged. This case is almost identical
to the minimization problem and we thus do not include it in the table.

Contributions. First, we introduce an example through which we identify the inadequacies

of primal risk, a well-studied metric for generalization in stochastic minimax optimization, in

capturing the generalization behavior of nonconvex-concave minimax problems. Second, to

address the issue, we propose a new metric – the primal gap, which provably avoids the issue in

the example, and derive its generalization error bounds. Next, we leverage this new metric to

compare the generalization behavior of GDA and GDMax, two popular algorithms for minimax

optimization and GAN training, and answer the question of when does GDA generalize better

than GDMax? Moreover, we also address two open questions in the literature: establishing

generalization error bounds for primal risk and primal-dual risk without strong concavity

or assuming that the maximization and expectation can be interchanged, while at least one

of these assumptions was needed in the literature [43, 73, 134, 137]. Finally, under certain

assumptions of the max learner, our results also generalize to the nonconvex-nonconcave

setting.

4.1.1 Related work

Algorithms for minimax optimization. There is a vast literature on algorithms for

minimax optimization. The most popular algorithms include the Extragradient (EG), the
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Optimistic Gradient Descent Ascent (OGDA) and the Gradient Descent Ascent and their

variants. The EG algorithms introduced in [70], has been analyzed in several papers including

[91, 89, 90, 53] for (strongly)convex-(strongly)concave problems. Another popular algorithm

is OGDA introduced in [103] and has been analyzed in several recent works including

[33, 64, 52]. Once again, all these works focus on the (strongly)convex-(strongly)concave

setting. Stochastic versions of these algorithms in similar settings have also been analyzed in

several papers including [95, 64, 42]. A few papers including [76, 142, 65, 150, 102, 69, 142]

analyze gradient based algorithms in the nonconvex-(strongly)concave cases. Some papers

including [106, 136, 101, 55] analyze special cases of nonconvex-nonconcave (like nonconvex-

PL) for algorithms like GDA and its variants. However, in this chapter, we are interested in

the generalization performance of these algorithms. We summarize below the most related

literature that studies the generalization behavior in minimax optimization problems.

Algorithm-independent generalization. Specific to the machine learning problems

of GAN and adversarial training, there have been several papers studying the uniform

convergence generalization bounds. [4] establish a uniform convergence generalization bound

which depends on the number of discriminator parameters. [133] connect the stability-based

theory to differential privacy ([117]) in GANs and numerically study the generalization

behavior in GANs. [147, 8] analyze the Rademacher complexity of the players to show the

uniform convergence bounds for GANs. In the simpler Gaussian setting, [46] and [113] derive

bounds for GANs and adversarial training, respectively. The uniform convergence bounds

for adversarial training have also been studied under several statistical learning frameworks,

e.g., PAC-Bayes [44], Rademacher complexity [138], margin-based [132], and VC analysis

[6]. Recently, [143] investigate the generalization of empirical saddle point (ESP) solution in

strongly-convex-concave problems using a stability-based approach. Note that these results

are not specific to the optimization algorithms being used.

Algorithm-dependent generalization. Algorithm specific generalization bounds for

minimax optimization have attracted increasing attention. Based on the algorithmic stability

framework in [16], [43] have established generalization bounds of standard gradient descent-
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ascent and proximal point algorithms under the convex-concave setting, and those of stochastic

GDA and GDMax under the nonconvex-strongly concave setting. Concurrently, [73] derive

high-probability generalization bounds for both convex-concave and weakly convex-weakly

concave settings, with possibly nonsmooth objectives, also through the lens of algorithmic

stability. Both works hinged on the metrics of primal risk and primal-dual risk. As shown

in the present work, the former is not necessarily suitable to characterize the generalization

behavior of minimax optimization, while the latter is known to be appropriate only when the

saddle point exists, which is usually not the case in the nonconvex settings that are common in

machine learning. Following this line of work, [134] provide generalization bounds specifically

for adversarial training, which is essentially the primal risk, also using the algorithmic stability

framework. Recently, [137] study the generalization of stochastic GDA under differential

privacy constraints.

4.2 Preliminaries

4.2.1 Problem formulation

In this chapter, we consider the following (stochastic) minimax problem:

min
𝑤∈𝑊

max
𝜃∈Θ

𝐸𝑧∼𝑃𝑧𝑓(𝑤, 𝜃; 𝑧). (4.2.1)

We make the following assumption on the sets 𝑊 and Θ throughout the chapter.

Assumption 1. 𝑊 and Θ are convex, closed sets, and we further assume that 𝑊 is compact

with ‖𝑤‖ ≤𝑀(𝑊 ),∀𝑤 ∈ 𝑊 . Here 𝑀(𝑊 ) is a constant dependent on the set 𝑊 .

Let 𝑟(𝑤, 𝜃) = 𝐸𝑧∼𝑃𝑧𝑓(𝑤, 𝜃; 𝑧). For a training dataset 𝑆 = {𝑧1, · · · , 𝑧𝑛} with 𝑛 i.i.d.

variables drawn from 𝑃𝑧, we define 𝑟𝑆(𝑤, 𝜃) = 1
𝑛

∑︀𝑛
𝑖=1 𝑓(𝑤, 𝜃; 𝑧𝑖). Next, we define the

following quantity:
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Definition 1 (Primal risk (empirical/population)). Primal population risk is given by2

𝑟(𝑤) = max
𝜃∈Θ

𝐸𝑧∼𝑃𝑧𝑓(𝑤, 𝜃; 𝑧),

and the primal empirical risk is given by:

𝑟𝑆(𝑤) = max
𝜃∈Θ

1

𝑛

𝑛∑︁
𝑖=1

𝑓(𝑤, 𝜃; 𝑧𝑖).

Throughout this chapter we use (𝑤𝑆, 𝜃𝑆) to denote a solution of the minimax problem:

min𝑤∈𝑊 max𝜃∈Θ 𝑟𝑆(𝑤, 𝜃). Notice that (𝑤𝑆, 𝜃𝑆) need not be a global saddle-point of 𝑟𝑆.

Furthermore, we use (𝑤*, 𝜃*) to denote a solution of min𝑤∈𝑊 max𝜃∈Θ 𝑟(𝑤, 𝜃). Once again,

notice that (𝑤*, 𝜃*) may not be a saddle point of 𝑟.

The goal in Problem (4.2.1) is to minimize the primal population risk 𝑟(𝑤). Note that

this function can be decomposed as

𝑟(𝑤) = 𝑟𝑆(𝑤) + (𝑟(𝑤) − 𝑟𝑆(𝑤)). (4.2.2)

In practice, we only have access to 𝑟𝑆(𝑤, 𝜃), and our goal is to design algorithms for

minimizing 𝑟(𝑤) using dataset 𝑆. Suppose 𝐴 is a learning algorithm initialized at (𝑤, 𝜃) =

(0, 0). We define (𝑤𝐴
𝑆 , 𝜃

𝐴
𝑆 ) to be the output of Algorithm 𝐴 using dataset 𝑆.

From Equation (4.2.2), it is clear if we ensure 𝑟𝑆(𝑤𝐴
𝑆 ) as well as 𝑟(𝑤𝐴

𝑆 )− 𝑟𝑆(𝑤𝐴
𝑆 ) are small,

this would guarantee that 𝑟(𝑤𝐴
𝑆 ) is small, which is the goal of Problem (4.2.1). Note that we

can always ensure that 𝑟𝑆(𝑤𝐴
𝑆 ) is small by using a good optimization Algorithm 𝐴 (if the

problem is tractable). The main goal in the study of generalization is therefore to estimate

the generalization error of the primal risk, as defined below.

Definition 2. The generalization error for the primal risk is defined as:

𝜁𝑃𝑔𝑒𝑛(𝐴) = 𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 ) − 𝑟𝑆(𝑤𝐴

𝑆 )]. (4.2.3)

2Note that we slightly abuse the notation here by allowing 𝑟 and 𝑟𝑆 to have inputs that can be both 𝑤
and (𝑤, 𝜃). The distinction will be clear from context.
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Here the expectations are taken over the randomness in the dataset 𝑆, as well as any

randomness used in the Algorithm 𝐴.

This metric has been used to study generalization in stochastic minimization problems,

i.e., when the maximization set Θ is a singleton, as well as several recent works in stochastic

minimax optimization (see [61, 43, 73]).

We are interested in the question of when the solution to the empirical problem 𝑤𝐴
𝑆

has good generalization behavior, i.e., when 𝐸[𝑟(𝑤𝐴
𝑆 ) − min𝑤∈𝑊 𝑟(𝑤)] is small – 𝑤𝐴

𝑆 is an

approximate minimizer of the primal population risk 𝑟. In the next subsection, we briefly

describe why the generalization error of the primal risk 𝜁𝑃𝑔𝑒𝑛(𝐴) is a good measure to study

the generalization behavior in minimization problems.

𝜁𝑃𝑔𝑒𝑛(𝐴) for minimization problems

Consider a stochastic optimization problem of the form

min
𝑤∈𝑊

𝐸𝑧∼𝑃𝑧 [𝑔(𝑤; 𝑧)]. (4.2.4)

We define the (minimization) primal risk (population and empirical version respectively) as:

𝑟(𝑤) = 𝐸𝑧∼𝑃𝑧𝑔(𝑤; 𝑧), and 𝑟𝑆(𝑤) = 1
𝑛

∑︀𝑛
𝑖=1 𝑔(𝑤; 𝑧𝑖). The generalization error 𝜁𝑃,𝑚𝑖𝑛

𝑔𝑒𝑛 (𝐴) for

the (minimization) primal risk is the same as in Definition 2 using the (minimization) primal

risk.

Assume that the generalization error of the primal risk for an Algorithm 𝐴 is small,

say 𝜁𝑃,𝑚𝑖𝑛
𝑔𝑒𝑛 (𝐴) ≤ 𝜖. This implies that (from Definition 2): 𝐸[𝑟(𝑤𝐴

𝑆 )] ≤ 𝐸[𝑟𝑆(𝑤𝐴
𝑆 )] + 𝜖. Note

that the expectation is with respect to 𝑆 and 𝐴. Now, in order to show that 𝑤𝐴
𝑆 has good

generalization behavior, we first see that:

𝐸[𝑟(𝑤𝐴
𝑆 ) − min

𝑤∈𝑊
𝑟(𝑤)] ≤ 𝐸[𝑟𝑆(𝑤𝐴

𝑆 )] + 𝜖− min
𝑤∈𝑊

𝑟(𝑤). (4.2.5)

However, note that for minimization problems, since 𝐸[𝑟𝑆] = 𝑟, we have that3 min𝑤∈𝑊 𝑟(𝑤) ≥

3Here we use the fact that 𝐸𝑧[min𝑥 𝑓(𝑥, 𝑧)] ≤ min𝑥 𝐸𝑧[𝑓(𝑥, 𝑧)].
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𝐸[min𝑤∈𝑊 𝑟𝑆(𝑤)], which gives us:

𝐸[𝑟(𝑤𝐴
𝑆 ) − min

𝑤∈𝑊
𝑟(𝑤)]

≤ 𝐸[𝑟𝑆(𝑤𝐴
𝑆 )] + 𝜖− 𝐸[min

𝑤∈𝑊
𝑟𝑆(𝑤)] = 𝐸[𝑟𝑆(𝑤𝐴

𝑆 ) − min
𝑤∈𝑊

𝑟𝑆(𝑤)] + 𝜖 = 𝜖.

Therefore, for minimization problems, if the generalization error for primal risk is small,

the solution to the empirical risk minimization problem has good generalization behavior.

Next, we highlight some results in the literature which discusses generalization error bounds

of the primal risk. These results depend on the concept of algorithmic stability we use later.

4.2.2 Stability of algorithms

Stability analysis is a powerful tool to analyze the generalization behavior of algorithms (see

[16]). In this section, we will review some definitions and theoretical results about stability

bounds existing in the current literature. More specifically, in this chapter, we adopt the

following definition of stability:

Definition 3 (𝜖-stable Algorithm). Suppose that 𝐴 is a randomized algorithm for solving

the stochastic minimax problem. We define (𝑤𝐴
𝑆 , 𝜃

𝐴
𝑆 ) as the output of Algorithm 𝐴 using

dataset 𝑆. We say 𝑆 and 𝑆 ′ are neighboring dataset if they defer only in one sample. An

Algorithm 𝐴 is defined to be 𝜖-stable if 𝐸𝐴‖𝑤𝐴
𝑆 − 𝑤𝐴

𝑆′‖ ≤ 𝜖 and 𝐸𝐴‖𝜃𝐴𝑆 − 𝜃𝐴𝑆′‖ ≤ 𝜖 for any

neighboring datasets 𝑆 and 𝑆 ′.

[61] gives the following basic result for the generalization error of 𝑟𝑆(𝑤).

Theorem 1 ([61]). Consider the (stochastic) minimization problem defined in 4.2.4. Suppose

𝑔(·; 𝑧) is 𝐿̄-Lipschitz continuous, i.e., ∀𝑧, it holds that ‖𝑔(𝑤1; 𝑧) − 𝑔(𝑤2; 𝑧)‖ ≤ 𝐿̄‖𝑤1 −

𝑤2‖,∀𝑤1, 𝑤2 ∈ 𝑊 . Then, for an 𝜖-stable Algorithm 𝐴, we have |𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 )−𝑟𝑆(𝑤𝐴

𝑆 )]| ≤ 𝐿̄𝜖.

When is primal risk a valid metric for minimax learners?

According to the above discussions for minimization problems, we know that the primal

risk is a valid metric to study generalization behavior in these problems, and furthermore,
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the generalization error bound of the primal risk can be estimated in terms of algorithmic

stability. However, Theorem 1 cannot be directly extended to analyze the generalization

behavior of minimax learners because we have an additional maximization step before taking

expectation.

A natural question emerges: Under what conditions does primal risk serve as a valid

metric to study generalization behavior of minimax problems. One sufficient condition is

when the maximization step and expectation can be interchanged, i.e., when

max
𝜃∈Θ

𝐸𝑧∼𝑃𝑧𝑓(𝑤, 𝜃; 𝑧) = 𝐸𝑧∼𝑃𝑧 [max
𝜃∈Θ

𝑓(𝑤, 𝜃; 𝑧)]

for any distribution 𝑃𝑧. Letting 𝑓max(𝑤; 𝑧) = max𝜃∈Θ 𝑓(𝑤, 𝜃; 𝑧), we further have

𝑟(𝑤) = max
𝜃∈Θ

𝐸𝑧∼𝑃𝑧𝑓(𝑤, 𝜃; 𝑧) = 𝐸𝑧∼𝑃𝑧 [max
𝜃∈Θ

𝑓(𝑤, 𝜃; 𝑧)] = 𝐸𝑧∼𝑃𝑧𝑓max(𝑤; 𝑧).

Therefore, the minimax problem in (4.2.1) is equivalent to the (stochastic) minimization

problem with loss function 𝑓max(𝑤; 𝑧). Moreover, letting 𝑃 (𝑆) be the uniform distribution

over the dataset 𝑆 = {𝑧1, · · · , 𝑧𝑛}, we have

𝑟𝑆(𝑤) = max
𝜃∈Θ

𝐸𝑧∼𝑃 (𝑆)[𝑓(𝑤, 𝜃; 𝑧)]𝐸𝑧∼𝑃 (𝑆)[max
𝜃∈Θ

𝑓(𝑤, 𝜃; 𝑧)] =
1

𝑛

𝑛∑︁
𝑖=1

𝑓max(𝑤; 𝑧𝑖).

Therefore, 𝑟𝑆(𝑤) is just the empirical primal risk corresponding to the minimization problem

with loss function 𝑓max(𝑤; 𝑧). Hence, Theorem 1 can be directly used to minimax problems

where the maximization and expectation can be interchanged.

Theorem 2. Suppose that 𝑓(𝑤, 𝜃; 𝑧) is 𝐿̄-Lipschitz continuous with respect to 𝑤, i.e.,

|𝑓(𝑤1, 𝜃; 𝑧) − 𝑓(𝑤2, 𝜃; 𝑧)| ≤ 𝐿̄‖𝑤1 − 𝑤2‖ for any 𝑤1, 𝑤2 ∈ 𝑊, 𝜃 ∈ Θ and 𝑧. If an Algorithm 𝐴

is 𝜖-stable, we have

𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 ) − 𝑟𝑆(𝑤𝐴

𝑆 )] ≤ 𝐿̄𝜖.

Proof. From the previous analysis along with Theorem 1, it suffices to show that 𝑓max(·; 𝑧) is
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𝐿̄-Lipschitz continuous. In fact, we have

𝑓max(𝑤1; 𝑧) − 𝑓max(𝑤2; 𝑧) = 𝑓(𝑤1, 𝜃(𝑤1); 𝑧) − 𝑓(𝑤2, 𝜃(𝑤2); 𝑧)

≤ 𝑓(𝑤1, 𝜃(𝑤1); 𝑧) − 𝑓(𝑤2, 𝜃(𝑤1); 𝑧) ≤ 𝐿̄‖𝑤1 − 𝑤2‖,

where 𝜃(𝑤) ∈ arg max𝜃∈Θ 𝑓(𝑤, 𝜃; 𝑧), the first inequality is because of the definition of 𝜃(𝑤)

and the second inequality is because of the Lipschitz continuity of 𝑓 with respect to 𝑤. Using

the same argument, we can prove

𝑓max(𝑤2; 𝑧) − 𝑓max(𝑤1; 𝑧) ≤ 𝐿̄‖𝑤1 − 𝑤2‖.

Therefore, we prove the 𝐿̄-Lipschitz continuity of 𝑓max(·; 𝑧) and hence finish the proof.

By the above discussion, we know that if maximization and expectation can be inter-

changed, the minimax problem can be reduced to a minimization problem and hence the

primal risk is a valid metric for studying the generalization behavior of minimax learners

and the generalization error can be estimated using the same method as for minimization

problems. In practice, the adversarial-training problems can be such an example of minimax

problems.

Example 1 (Adversarial-training). We consider the adversarial training problem [80]. Sup-

pose we have loss function 𝑔(𝑤; 𝑧) for a supervised learning problem. Here 𝑧 denotes the

training sample and 𝑤 denotes the model parameter. Due to the noise in the data or due

to an adversarial attack, for any sample 𝑧, we consider an uncertainty set 𝐵(𝑧, 𝜖0) around

it. The goal is to train a model that is robust to the data with possible perturbation in the

uncertainty set. Let 𝜃𝑧 be some adversarial sample from the set 𝐵(𝑧, 𝜖0) and let 𝜃 be an

infinite dimensional vector (functional) with the component 𝜃𝑧 corresponding to the sample

𝑧. Define the function 𝜄𝐵(𝑣) to be the indicator function of the set 𝐵, i.e., 𝜄𝐵(𝑣) = 0 if 𝑣 ∈ 𝐵

and 𝜄𝐵(𝑣) = ∞ otherwise. The goal of adversarial training is to solve the following minimax

problem:

min
𝑤

max
𝜃

𝐸𝑧∼𝑃𝑧𝑓(𝑤, 𝜃; 𝑧), (4.2.6)
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where 𝑓(𝑤, 𝜃; 𝑧) = 𝑔(𝑤; 𝜃𝑧) + 𝜄𝐵(𝑧,𝜖0)(𝜃𝑧). For any distribution 𝑃𝑧 over 𝑧’s, we have

max
𝜃

𝐸𝑧∼𝑃𝑧𝑓(𝑤, 𝜃; 𝑧) = max
𝜃

𝐸𝑧∼𝑃𝑧 [𝑔(𝑤; 𝜃𝑧) + 𝜄𝐵(𝑧,𝜖0)(𝜃𝑧)]

= 𝐸𝑧∼𝑃𝑧 [max
𝜃𝑧

(𝑔(𝑤; 𝜃𝑧) + 𝜄𝐵(𝑧,𝜖0)(𝜃𝑧))]

= 𝐸𝑧∼𝑃𝑧 [max
𝜃

𝑓(𝑤, 𝜃; 𝑧)],

where the second and the third equalities use the fact that 𝜃𝑧′ does not contribute to 𝑓(𝑤, 𝜃; 𝑧)

if 𝑧 ̸= 𝑧′. Therefore, the expectation and maximization can be interchanged in adversarial

training problems. This implies that the results of Theorem 2 can be applied and therefore

primal risk is a valid metric to study the generalization behavior in such problems.

Unfortunately, maximization and expectation are not necessarily interchangeable for

many minimax problems. If they are not interchangeable, it is unclear how to estimate the

generalization error bound of the primal risk. In fact, whether primal risk is still a good

metric for studying generalization behavior in such problems remains elusive.

In the next section, we will see how to estimate generalization error bound of primal risk for

nonconvex-concave and even nonconvex-nonconcave problems. To the best of our knowledge,

this is the first result which provides generalization error bounds for the primal risk without

assuming the interchangeability or strong concavity of the inner maximization problems

(see e.g., [73]). Furthermore, we will see that even in some simple minimax problems, the

generalization error bound of the primal risk can fail to capture the generalization behavior of

minimax learners. We then propose a new metric and use its generalization error to properly

characterize the generalization behavior of minimax learners.

4.3 Primal Gap: A New Metric to Study Generalization

The key idea behind the success of 𝜁𝑃𝑔𝑒𝑛(𝐴) as a way to characterize to study generalization

for minimization learners is that 𝐸[𝑟𝑆(𝑤)] = 𝑟(𝑤) for any 𝑤, which is no longer the case in

the minimax case. In fact, we first show via example that a good bound for the generalization

error of primal risk does not imply good generalization behavior for minimax learners.
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4.3.1 Primal risk can fail for minimax learners

We provide an example where the generalization error of the primal risk is small, but the

final solution to the empirical problem has poor generalization behavior. In this example, the

minimizer of 𝑟𝑆(𝑤) is suboptimal for 𝑟(𝑤) with high probability, and 𝐸𝑆[𝑟(𝑤𝑆) − 𝑟(𝑤*)] is

large.

Example 2 (Analytical example). Let 𝑦 ∼ 𝑁(0, 1/
√
𝑛) be a Gaussian random variable in

R. Define the truncated Gaussian variable 𝑧 ∼ 𝑃𝑧 as follows: 𝑧 = 𝑦 if |𝑦| < 𝜆 log 𝑛/
√
𝑛

and 𝑧 = 𝜆 log 𝑛/
√
𝑛 if 𝑦 ≥ 𝜆 log 𝑛/

√
𝑛. Let 𝑓(𝑤, 𝜃; 𝑧) = 1

2
𝑤2 −

(︀
1

2𝑛2 𝜃
2 − 𝑧𝜃 + 1

)︀
𝑤, where

𝑤 ∈ 𝑊 = [0, 1], 𝜃 ∈ Θ = [−𝜆𝑛, 𝜆𝑛] with a sufficiently large 𝜆 > 0, and 𝑧𝑖 ∼ 𝑃𝑧 be i.i.d

truncated Gaussian variables. Then, we have 𝑟𝑆(𝑤, 𝜃) = 1
2
𝑤2 −

(︁
1

2𝑛2 𝜃
2 −

∑︀𝑛
𝑖=1 𝑧𝑖
𝑛

𝜃 + 1
)︁
𝑤, and

𝑟(𝑤, 𝜃) =
1

2
𝑤2 −

(︂
1

2𝑛2
𝜃2 + 1

)︂
𝑤. (4.3.1)

Note that this leads to the primal population risk function: 𝑟(𝑤) = 1
2
𝑤2 − 𝑤.

It is not hard to see that we always have 𝑟𝑆(𝑤) ≥ 𝑟(𝑤). Note that this means 𝜁𝑃𝑔𝑒𝑛(𝐴) ≤ 0,

and thus we have a small generalization error for primal risk. However, we can prove that for

large enough 𝜆,

𝐸𝑆[𝑟(𝑤𝑆) − 𝑟(𝑤*)] ≥ 0.02. (4.3.2)

This means that 𝑤𝑆 has a constant error compared to 𝑤* in terms of the population risk,

despite that its generalization error is small. This phenomenon is due to that min𝑤∈𝑊 𝑟𝑆(𝑤)−

min𝑤∈𝑊 𝑟(𝑤) > 𝑐 for some 𝑐 > 0, and hence minimizing 𝑟𝑆(𝑤) is very different from minimizing

𝑟(𝑤).

This example shows that the generalization error of primal risk is not a good measure

to study generalization in minimax learners. The main drawback is that min𝑤 𝑟𝑆(𝑤) and

min𝑤 𝑟(𝑤) can be very different. We now introduce another more practical example, from

GAN training, to further illustrate this point.

Example 3 (GAN-training example). Suppose that we have a real distribution 𝑃𝑟 in R𝑑

which can be represented as 𝐺*(𝑦) with 𝑦 ∈ R𝑘 drawn from a standard Gaussian distribution
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𝑃0 and a mapping 𝐺* : R𝑘 → R𝑑. For an arbitrary generator 𝐺, we define 𝑃𝐺 to be the

distribution of the random variable 𝐺(𝑦) with 𝑦 ∼ 𝑃0. So our goal is to find a generator 𝐺

such that 𝑃𝐺 = 𝑃𝑟. GAN is a popular tool for solving this problem. Consider a GAN with

generator 𝐺, parametrized by 𝑤 and discriminator 𝐷 parametrized by 𝜃. The goal of GAN

training is to find a pair of a generator 𝐺 and a discriminator 𝐷 that solves the minimax

problem:

min
𝐺

max
𝐷

{𝐸𝑥∼𝑃𝑟𝜑(𝐷(𝑥)) + 𝐸𝑥∼𝑃𝐺
[𝜑(1 −𝐷(𝑥))]}

= min
𝑤

max
𝜃

{𝐸𝑥∼𝑃𝑟𝜑(𝐷𝜃(𝑥)) + 𝐸𝑦∼𝑃0 [𝜑(1 −𝐷𝜃(𝐺𝑤(𝑦)))]},

where 𝜑 : R → R is concave, monotonically increasing and 𝜑(𝑢) = −∞ for 𝑢 ≤ 0. To connect

to the minimax formulation in (4.2.1), we note that 𝑧 = (𝑥, 𝑦), and 𝑃𝑧 = 𝑃𝑟 × 𝑃0. Also, we

denote

𝑟(𝑤, 𝜃) = 𝐸𝑥∼𝑃𝑟𝜑(𝐷𝜃(𝑥)) + 𝐸𝑦∼𝑃0 [𝜑(1 −𝐷𝜃(𝐺𝑤(𝑦)))]

to be the population risk. We now give the empirical version of this problem. Let

𝑆1 = {𝑥1, · · · , 𝑥𝑛} and 𝑆2 = {𝑦1, · · · , 𝑦𝑛}. Let 𝑆 = 𝑆1 ∪ 𝑆2 and 𝑟𝑆(𝑤, 𝜃) =

1
𝑛

(
∑︀𝑛

𝑖=1 𝜑(𝐷𝜃(𝑥𝑖) + 𝜑(1 −𝐷𝜃(𝐺𝑤(𝑦𝑖)))). We assume that 𝑃𝐺𝑤 has the same support set

as 𝑃𝑟. Moreover, we assume that ‖𝑤 − 𝑤*‖ ≤ 0.5 and 𝐺𝑤(𝑦) is 1-Lipschitz w.r.t. 𝑤 for

any 𝑦. Here 𝑤* denotes the parameter for which 𝐺𝑤* = 𝐺*. Then, combining Theorem B.1

in [4] and the Lipschitz continuity of 𝐺𝑤(𝑦) as well as ‖𝑤 − 𝑤*‖ ≤ 0.5, we have that the

distance between the sets 𝑆1 and {𝐺𝑤(𝑦1), 𝐺𝑤(𝑦2), · · · , 𝐺𝑤(𝑦𝑛)} will be larger than 0.6 with

probability greater than 1 −𝑂(𝑛2/𝑒𝑑). Now, if 𝑛 is only of polynomial size of 𝑑, the optimal

discriminator for disjoint datasets outputs 1 on one dataset, and 0 on the other. On the other

hand, when 𝑤 = 𝑤*, the optimal discriminator for the population problem outputs 1/2 for

any sample it receives. Combining these two results, we have:

𝐸𝑆[min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)] ≥ (1 − 𝛿) (2𝜑(1) − 2𝜑(1/2))

which is bounded away from 0.

Note that in this example, we also have 𝐸𝑆[min𝑤 𝑟𝑆(𝑤) − min𝑤 𝑟(𝑤)] > 0, implying that
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using 𝜁𝑃𝑔𝑒𝑛(𝐴) might not be a good way to characterize the generalization behavior in GAN

training. To address this issue, we next define a new metric, the primal gap, and use its

generalization error to study the generalization of minimax learners.

4.3.2 Primal gap to the rescue

The population and empirical versions of the primal gap are defined as follows:

Definition 4 (Primal gap (empirical/population)). The population primal gap is defined

as

∆(𝑤) = 𝑟(𝑤) − min
𝑤∈𝑊

𝑟(𝑤),

and the empirical primal gap is defined as

∆𝑆(𝑤) = 𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟𝑆(𝑤).

Notice that these two primal gaps can always take 0 at 𝑤𝑆 ∈ arg min𝑤∈𝑊 𝑟𝑆(𝑤) and

𝑤* ∈ arg min𝑤∈𝑊 𝑟(𝑤) respectively even if the saddle point of problem (4.2) does not exist.

Next, we define the expected generalization error of this primal gap as follows:

Definition 5. The generalization error for the primal gap is defined as

𝜁𝑃𝐺
𝑔𝑒𝑛(𝐴) = 𝐸𝑆𝐸𝐴[∆(𝑤𝐴

𝑆 ) − ∆𝑆(𝑤𝐴
𝑆 )].

Remark 1. For Example 1, since the maximization and expectation can be interchanged,

the minimax problem is equivalent to a minimization problem. Then we have

𝐸𝑆[min
𝑤
𝑟𝑆(𝑤)] = 𝐸𝑆[min

𝑤
max

𝜃
𝐸𝑧∼𝑃𝑧(𝑆)𝑓(𝑤, 𝜃; 𝑧)] = 𝐸𝑆[min

𝑤
𝐸𝑧∼𝑃𝑧(𝑆)[max

𝜃
𝑓(𝑤, 𝜃; 𝑧)]]

= 𝐸𝑆[min
𝑤
𝐸𝑧∼𝑃𝑧(𝑆)[𝑓max(𝑤; 𝑧)]] ≤ 𝐸𝑆[𝐸𝑧∼𝑃𝑧(𝑆)[𝑓max(𝑤; 𝑧)]]

for any 𝑤. Therefore, we have 𝐸𝑆[min𝑤 𝑟𝑆(𝑤)] ≤ min𝑤 𝑟(𝑤). Consequently, we have

𝜁𝑃𝑔𝑒𝑛 ≥ 𝜁𝑃𝐺
𝑔𝑒𝑛 , which means that good generalization bounds for the primal risk implies good

generalization bounds for the primal gap. Therefore, if the maximization and expectation
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are interchangeable, primal risk is sufficient to study the generalization behavior because the

generalization error of the primal risk is an upper bound of the generalization error of the

primal gap in this case.

Now we provide bounds on 𝜁𝑃𝐺
𝑔𝑒𝑛(𝐴) for a stable algorithm 𝐴, and show that in Example

2, 𝜁𝑃𝐺
𝑔𝑒𝑛(𝐴) cannot be small (unlike 𝜁𝑃𝑔𝑒𝑛(𝐴)).

4.3.3 Relationship between generalization and stability

We provide bounds for the generalization error of the primal gap (Definition 5) for an 𝜖-stable

Algorithm 𝐴. We will focus on the nonconvex-concave case where the following assumptions

are made throughout the rest of the chapter.

Assumption 2. The function 𝑓 in Problem (4.2.1) is nonconvex-concave, i.e., 𝑓(𝑤, ·; 𝑧) is a

concave function for all 𝑤 ∈ 𝑊 and for all 𝑧.

Next we define the notion of capacity, which will play a key role in the bounds we derive

for 𝜁𝑃𝐺
𝑔𝑒𝑛(𝐴).

Definition 6 (Capacity). For any 𝑤 ∈ 𝑊 and any constraint set Θ, we define

Θ(𝑤) = arg max
𝜃∈Θ

𝑟(𝑤, 𝜃) Θ𝑆(𝑤) = arg max
𝜃∈Θ

𝑟𝑆(𝑤, 𝜃).

We define the capacities 𝐶𝑝 and 𝐶𝑒 as:

𝐶𝑝(Θ) = max
𝑤∈𝑊

dist(0,Θ(𝑤)), 𝐶𝑒(Θ) = max
𝑆

max
𝑤∈𝑊

dist(0,Θ𝑆(𝑤)),

where dist(𝑝,𝒮) denotes the distance between a point 𝑝 to a set 𝒮 in Euclidean space, i.e.,

dist(𝑝,𝒮) := inf
𝑞∈𝒮

‖𝑝− 𝑞‖2.

For the specific constraint set in Problem (4.2.1), we succinctly denote the capacities as 𝐶𝑝

and 𝐶𝑒, respectively.
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The norm of the model parameter (its distance to 0) is usually viewed as the metric

for the complexity of the model. In fact, the norm of the optimal solution determines the

Rademacher complexity of the function class in statistical learning theory [126]. Moreover, in

deep learning, minimum-norm solution of overparameterized neural networks is well-known

to enjoy better generalization performance [141]. Hence, we view the capacity constant 𝐶𝑒

and 𝐶𝑝 as natural metrics to capture the model complexity for the best response of the max

learner, i.e., the power of the maximizer, when using the empirical data set and population

data respectively.

Now, we are ready to discuss the relationship between the stability bound and the

generalization error of algorithms in nonconvex-concave minimax problems. All proofs have

been deferred to the appendix. We make the following assumptions throughout the chapter:

Assumption 3. The gradient of 𝑓 is ℓ-Lipschitz-continuous for all 𝑧, i.e., for all 𝑧

‖∇𝑓(𝑤1, 𝜃1; 𝑧)−∇𝑓(𝑤2, 𝜃2; 𝑧)‖ ≤ ℓ(‖𝑤1 − 𝑤2‖+ ‖𝜃1 − 𝜃2‖), ∀𝑤1, 𝑤2 ∈ 𝑊, ∀𝜃1, 𝜃2 ∈ Θ.

Moreover, fixing 𝑤 ∈ 𝑊 , the partial gradient ∇𝜃𝑓(𝑤, ·; 𝑧) is ℓ𝜃𝜃-Lipschitz continuous with

respect to 𝜃 for all 𝑧, i.e., ‖∇𝜃𝑓(𝑤, 𝜃1; 𝑧)−∇𝜃𝑓(𝑤, 𝜃2; 𝑧)‖ ≤ ℓ𝜃𝜃‖𝜃1−𝜃2‖,∀𝑤 ∈ 𝑊, ∀𝜃1, 𝜃2 ∈ Θ.

Assumption 4. For any Θ1 ⊆ Θ, we assume that 𝑓 is 𝐿(Θ1)-Lipschitz-continuous with

respect to 𝑤 ∈ 𝑊, 𝜃 ∈ Θ1 for all 𝑧, i.e., ‖𝑓(𝑤1, 𝜃1; 𝑧) − 𝑓(𝑤2, 𝜃2; 𝑧)‖ ≤ 𝐿(Θ1)(‖𝑤1 − 𝑤2‖ +

‖𝜃1 − 𝜃2‖), ∀𝑤1, 𝑤2 ∈ 𝑊, ∀𝜃1, 𝜃2 ∈ Θ1, and the gradient ∇𝑓(𝑤, 𝜃; 𝑧) is uniformly bounded

as ‖∇𝑤,𝜃𝑓(𝑤, 𝜃; 𝑧)‖ ≤ 𝐿(Θ1) for all 𝑧 and 𝑤 ∈ 𝑊, 𝜃 ∈ Θ1. Moreover, 𝑓(𝑤*, ·; 𝑧) is 𝐿*
𝜃-

Lipschitz continuous with respect to 𝜃 where 𝑤* ∈ arg min𝑤∈𝑊 𝑟(𝑤). We also define 𝐿 :=

𝐿(𝐵(0, 2𝐶𝑝 + 1) ∩ Θ) and 𝐿𝑟 := 𝐿(𝐵(0, 𝑟) ∩ Θ), where 𝐵(𝑣, 𝑟) denotes the 𝑙2-ball with radius

𝑟 centered at 𝑣.

Note that we can decompose the generalization error of the primal gap as follows:

𝜁𝑃𝐺
𝑔𝑒𝑛(𝐴) := 𝐸𝑆𝐸𝐴[∆(𝑤𝐴

𝑆 ) − ∆𝑆(𝑤𝐴
𝑆 )]

= 𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 ) − 𝑟𝑆(𝑤𝐴

𝑆 )] + 𝐸𝑆[min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)]

= 𝜁𝑃𝑔𝑒𝑛(𝐴) + 𝐸𝑆

[︀
min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)
]︀
.
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Next, we provide a bound on the generalization error for the primal risk 𝜁𝑃𝑔𝑒𝑛(𝐴). To the

best of our knowledge, this is the first bound for 𝜁𝑃𝑔𝑒𝑛(𝐴) in the nonconvex-concave (without

strong concavity) setting.

Lemma 1. The generalization error of the primal risk of an 𝜖-stable Algorithm 𝐴 for

a minimax problem with concave maximization problem can be bounded by 𝜁𝑃𝑔𝑒𝑛(𝐴) ≤√︀
4𝐿ℓ𝐶2

𝑝 ·
√
𝜖+ 𝜖𝐿.

We show that this dependence on 𝜖 is tight in the Appendix Section 4.6.3.

Since we already have the generalization error for the primal risk 𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 ) − 𝑟𝑆(𝑤𝐴

𝑆 )]

from Lemma 1, we only need to estimate

𝐸𝑆𝐸𝐴

[︀
min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)
]︀

= 𝐸𝑆

[︀
min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)
]︀

[Primal Min Error]. (4.3.3)

The following theorem gives the generalization bound of the primal gap using the upper

bound from Lemma 1 and bounding the Primal Min Error in Equation (4.3.3).

Theorem 3. Suppose Algorithm 𝐴 is 𝜖-stable. The generalization error bound of the primal

gap is given by

𝜁𝑃𝐺
𝑔𝑒𝑛(𝐴) ≤

√︁
4𝐿ℓ𝐶2

𝑝 ·
√
𝜖+ 𝜖𝐿+ 4𝐿*

𝜃𝐶𝑒/
√
𝑛.

The first term in the bound above is from the generalization bound of the primal risk, as

shown in Lemma 1. Note that the bound in Lemma 1 only involves 𝐶𝑝, as the key in the

analysis is to upper-bound the population risk 𝑟(𝑤𝐴
𝑆 ), which requires bounding the power of

the maximizer using the population capacity 𝐶𝑝. This reflects the intuition that the power of

the maximizer should affect the generalization behavior of minimax learners, and the stronger

the maximizer is, the harder for the learner to generalize. On the other hand, the bound

in Theorem 3 additionally involve 𝐶𝑒, the empirical capacity. Technically, 𝐶𝑒 (instead of

𝐶𝑝) appears since we need to bound min𝑤 𝑟𝑆(𝑤) (defined on the empirical dataset) in the

Primal Min Error term in (4.3.3). We show the tightness of this bound in Section 4.6.3. The

appearance of 𝐶𝑒 reflects the intuition that the difference between the maximizers of the

empirical and population risks should make a difference in characterizing the generalization
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of minimax learners. This intuition cannot be captured by the generalization error of the

primal risk, as in Lemma 1. Note that in the minimization case, the Primal Min Error can

be upper-bounded directly by zero, and such a distinction disappears, making primal risk a

valid metric.

4.3.4 Revisiting Example 2

Recall Example 2 in Section 4.3.1. In this example, we have that the primal risk has a small

generalization error, but the solution 𝑤𝑆 does not generalize well. In particular, as shown in

the appendix (Proposition 4), we have

𝐸𝑆[min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)] ≥ 0.005. (4.3.4)

On the other hand, it is easy to compute that 𝐿*
𝜃 = 𝜆 log 𝑛/

√
𝑛 and 𝐶𝑒 = 𝜆𝑛. Therefore,

by Theorem 3, we have an upper bound for the Primal Min Error (see Equation (4.3.3)):

𝐸𝑆[min𝑤∈𝑊 𝑟𝑆(𝑤) − min𝑤∈𝑊 𝑟(𝑤)] ≤ 4𝐿*
𝜃𝐶𝑒/

√
𝑛 = 4 log 𝑛, which is tight up to a log factor

according to (4.3.4). Therefore, the primal gap has a constant generalization error which is

consistent with the observation that the solution to the empirical problem does not have

good generalization behavior.

4.3.5 Nonconvex-nonconcave case

In this section, we extend our results to the nonconvex-nonconcave setting. We will show that

under certain assumptions on the inner maximization problem, we can derive generalization

error bounds for the primal risk and primal gap in terms of algorithmic stability.

We make the following assumptions on the inner maximization problem:

Assumption 5. For any 𝛾 > 0, there exists an algorithm which outputs 𝜃𝛾𝑃 (𝑤), for the inner

maximization problem max𝜃∈Θ 𝑟(𝑤, 𝜃), satisfying the following conditions:

1. 𝑟(𝑤) − 𝑟(𝑤, 𝜃𝛾𝑃 (𝑤)) ≤ 𝛾.

2. ‖𝜃𝛾𝑃 (𝑤) − 𝜃𝛾𝑃 (𝑤′)‖ ≤ 𝜆𝑝

𝛾
‖𝑤 − 𝑤′‖ with some constant 𝜆𝑝 > 0 for all 𝑤,𝑤′ ∈ 𝑊 .
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Assumption 6. For any 𝛾 > 0, there exists an algorithm which outputs 𝜃𝛾𝐸(𝑆), for the inner

maximization problem max𝜃∈Θ 𝑟𝑆(𝑤*, 𝜃), satisfying the following conditions:

1. 𝑟𝑆(𝑤*) − 𝑟𝑆(𝑤*, 𝜃𝛾𝐸(𝑆)) ≤ 𝛾.

2. For any neighboring dataset 𝑆, 𝑆 ′, we have ‖𝜃𝛾𝐸(𝑆) − 𝜃𝛾𝐸(𝑆 ′)‖ ≤ 𝜆𝑒

𝑛𝛾
with some constant

𝜆𝑒 > 0.

The following lemma gives sufficient conditions for these two assumptions to hold.

Lemma 2. Consider constants 𝐷𝑒 ≥ 𝛾 and 𝐷𝑝 ≥ 𝛾.

1. Suppose that gradient ascent with diminishing stepsizes 𝑐0/𝑡 for the problem

max𝜃∈Θ 𝑟(𝑤, 𝜃) has convergence rate 𝑟(𝑤) − 𝑟(𝑤, 𝜃𝑠) ≤ 𝐷𝑝/𝑠. Then we define 𝜃𝛾𝑝 (𝑤) by

performing 𝑠 = 𝐷𝑝/𝛾 steps of gradient ascent. Then, 𝜃𝛾𝑝 (𝑤) satisfies Assumption 5.

2. Suppose that gradient ascent with constant stepsize 𝑐0 for the problem max𝜃∈Θ 𝑟(𝑤, 𝜃)

has convergence rate 𝑟(𝑤) − 𝑟(𝑤, 𝜃𝑠) ≤ 𝐷𝑝𝜂
𝑠 for some constant 0 < 𝜂 < 1. Then we

define 𝜃𝛾𝑝 (𝑤) by 𝑠 = log(𝐷𝑝/𝛾)/ log(1/𝜂) steps of gradient ascent. Then, 𝜃𝛾𝑝 (𝑤) satisfies

Assumption 5.

3. Suppose that gradient ascent with diminishing stepsizes 𝑐0/𝑡 for the problem

max𝜃∈Θ 𝑟𝑆(𝑤, 𝜃) has convergence rate 𝑟𝑆(𝑤) − 𝑟𝑆(𝑤, 𝜃𝑠) ≤ 𝐷𝑝/𝑠. Then we define 𝜃𝛾𝑒 (𝑆)

by performing 𝑠 = 𝐷𝑒/𝛾 steps of gradient ascent. Then, 𝜃𝛾𝑒 (𝑆) satisfies Assumption 6.

4. Suppose that gradient ascent with constant stepsize 𝑐0 for the problem max𝜃∈Θ 𝑟𝑆(𝑤, 𝜃)

has convergence rate 𝑟𝑆(𝑤) − 𝑟𝑆(𝑤, 𝜃𝑠) ≤ 𝐷𝑒𝜂
𝑠 for some constant 0 < 𝜂 < 1. Then we

define 𝜃𝛾𝑒 (𝑤) by 𝑠 = log(𝐷𝑒/𝛾)/ log(1/𝜂) steps of gradient ascent. Then, 𝜃𝛾𝑒 (𝑆) satisfies

Assumption 6.

Remark 2. Note that for some practical nonconvex optimization problems in machine

learning, gradient descent indeed converges to the global minima at a reasonably fast rate,

e.g., in training deep overparametrized neural networks [38], robust least squares problems

[40], phase retrieval and matrix completion [79]. Our Assumptions 5 and 6 can be viewed as

an abstract summary of some benign properties of gradient descent for certain nonconvex

optimization problems.
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Furthermore, we assume that 𝑓(·, ·; 𝑧) is 𝐿-Lipschitz4 continuous in 𝑊 × Θ. This, along

with Assumptions 5 and 6, allows us to derive the generalization error bounds of the primal

risk and primal gap in terms of algorithmic stability.

Lemma 3. Suppose that Assumption 5 holds. If a minimax learning Algorithm 𝐴 is an

𝜖-stable algorithm, we have

𝜁𝑃𝑔𝑒𝑛(𝐴) ≤ 𝐿𝜖+
√︀
𝐿𝜆𝑝

√
𝜖.

Similarly, we can derive the generalization bound for the primal gap given the above

assumptions.

Theorem 4. Suppose Assumptions 5 and 6 hold. Then we have

𝜁𝑃𝐺
𝑔𝑒𝑛(𝐴) ≤ 𝜁𝑃𝑔𝑒𝑛(𝐴) +

√︀
𝐿𝜆𝑒

⧸︀√
𝑛.

The proof of this theorem is similar to the proof of Lemma 3 and Theorem 3 and hence

omitted.

4.4 Comparison of GDA and GDMax

In Section 4.3.3, we provide generalization bounds for the primal gap for any 𝜖-stable algorithm.

In this section, we focus on two algorithms in particular – GDA and GDMax. These two

algorithms are described in Algorithms 8 and 9 in Appendix 4.6.4.

We note that though analyzing the optimization properties of GDA/stochastic GDA for

solving the empirical minimax problem is an important topic, our focus in this chapter is

on studying the generalization behavior of these algorithms. We assume that the empirical

version of the stochastic minimax problem can be solved by GDA and GDMax, i.e., we

assume that GDA and GDMax satisfy the following assumption:

Assumption 7. Let 𝐴 be a minimax learner, such as GDA or GDMax. Then we assume

that 𝐴 has the following convergence rate: 𝐸𝐴[𝑟𝑆(𝑤𝑡) − min𝑤∈𝑊 𝑟𝑆(𝑤)] ≤ (𝜑𝐴(𝑀(𝑊 )) +

4Note that this is different from the 𝐿 defined for the nonconvex-concave case. Here 𝐿 captures the
Lipschitz constant over the whole constraint set. In the nonconvex-concave case, 𝐿 = 𝐿(𝐵(0, 2𝐶𝑝 + 1)).
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𝜑𝐴(𝐶𝑒))/𝜓𝐴(𝑡), where 𝑀(𝑊 ) is the maximum of the norms of 𝑤, and 𝜑𝐴(𝑠), 𝜓𝐴(𝑠) are

nonnegative, increasing functions that tend to infinity as 𝑠→ ∞.

For simplicity, throughout this section, we assume that ‖𝑓(𝑤, 𝜃; 𝑧)‖ ≤ 1 for all 𝑤, 𝜃,

and 𝑧. The next theorem provides a bound for the population primal gap ∆(𝑤𝐴
𝑆 ) :=

𝑟(𝑤𝐴
𝑆 ) − min𝑤∈𝑊 𝑟(𝑤). Note that the goal of any algorithm is to make this gap as small as

possible.

For an Algorithm 𝐴 and subsets 𝑊0 ⊆ 𝑊,Θ0 ⊆ Θ, we define 𝐴(𝑊0,Θ0) as the algorithm

which restricts 𝐴 to solve (4.2.1) under constraint sets 𝑊0 and Θ0. Specifically, 𝐴(𝑊,Θ) is

just 𝐴.

Theorem 5. Let 𝑤𝐴,𝑡
𝑆 , 𝜃𝐴,𝑡

𝑆 be the 𝑡-th iterate generated by Algorithm 𝐴 using dataset 𝑆.

Assume that {𝜃𝐴,𝑡
𝑆 } ⊆ Θ0 = Θ𝐴

𝜃 for 𝑡 ≤ 𝑇 with probability 1 − 𝛿 (due to the randomness

in 𝑆) and 𝐵(0, 𝐶𝑝) ⊆ Θ𝐴
𝜃 . Here 𝐵(𝑣, 𝑟) denotes the 𝑙2-ball with radius 𝑟 centered at 𝑣. Let

𝐴0 = 𝐴(𝑊,Θ0). Then after 𝑇 iterations of Algorithm 𝐴, the population primal gap can be

bounded as:

𝐸𝑆[𝑟(𝑤𝐴,𝑇
𝑆 ) − min

𝑤∈𝑊
𝑟(𝑤)]

≤ (𝜑𝐴0(𝑀(𝑊 )) + 𝜑𝐴0(𝐶𝑒(Θ
𝐴
𝜃 )))/𝜓𝐴0(𝑇 ) + 4𝐿*

𝜃𝐶𝑒(Θ
𝐴
𝜃 )/

√
𝑛⏟  ⏞  

𝐼𝐼

+ 𝜁𝑃𝑔𝑒𝑛(𝐴0)⏟  ⏞  
𝐼

+𝛿,

where 𝜁𝑃𝑔𝑒𝑛(𝐴0) = 𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴0,𝑇
𝑆 ) − 𝑟𝑆(𝑤𝐴0,𝑇

𝑆 )] is the generalization error of the primal risk of

Algorithm 𝐴0.

Remark 3. Theorem 5 builds a closer connection between generalization behavior and the

dynamics of the minimax learner 𝐴. It shows that suitable restriction to the max learner

can lead to better minimax learner, in terms of generalization. We make this clear in the

comparison of GDA and GDMax by analyzing the three terms in Theorem 5.

4.4.1 Analyzing the term 𝐼

First, we study the generalization error bound of the primal risk, i.e., 𝜁𝑃𝑔𝑒𝑛 in Theorem 5. For

GDA, we can estimate 𝜁𝑃𝑔𝑒𝑛 by using Lemma 1. Therefore, it suffices to estimate the stability

of GDA. We do this in the following lemma:
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Lemma 4. Let 𝑐0 = max{𝛼0, 𝛽0}, If we use diminishing stepsizes 𝛼𝑡 = 𝛼0/𝑡 and 𝛽𝑡 = 𝛽0/𝑡

for GDA for 𝑇 iterations, we have the stability bound 𝜖𝐺𝐷𝐴 ≤ 2𝐿Θ𝐺𝐷𝐴
𝜃

𝑇 𝑐0ℓ/(𝑛ℓ).

Now, since we have a bound for 𝜁𝑃𝑔𝑒𝑛(𝐴) for an 𝜖-stable Algorithm 𝐴 in Lemma 1, we can

substitute the stability bound for GDA from Lemma 4 in this expression to get a bound on

𝜁𝑃𝑔𝑒𝑛(𝐺𝐷𝐴) for GDA. We do this in the next proposition. We can bound 𝜁𝑃𝑔𝑒𝑛(𝐴0) for GDA

by substituting the stability bound in Lemma 4 into Lemma 1 (letting 𝜖 = 𝜖𝐺𝐷𝐴).

Proposition 1. Let 𝑐0 = max{𝛼0, 𝛽0} and assume that 𝑓(·, ·; 𝑧) is 𝐿Θ𝐺𝐷𝐴
𝜃

-Lipschitz-

continuous inside the set 𝑊 × Θ𝐺𝐷𝐴
𝜃 . For GDA with diminishing stepsizes 𝛼0/𝑡, 𝛽0/𝑡 run for

𝑇 iterations (denoted by 𝐺𝐷𝐴𝑇 ), the generalization error of the primal risk can be bounded

by:

𝜁𝑃𝑔𝑒𝑛(𝐺𝐷𝐴𝑇 ) ≤ (𝐿Θ𝐺𝐷𝐴
𝜃

)3/2
√︁

8𝐶2
𝑝/ℓ
√︀
𝑇 𝑐0ℓ/𝑛+ 2𝐿2

Θ𝐺𝐷𝐴
𝜃

𝑇 𝑐0ℓ/(𝑛ℓ).

However, for GDMax, we can not compute a uniform stability bound that vanishes as 𝑛

goes to infinity. In fact, we can show from the following simple example that 𝜁𝑃𝑔𝑒𝑛(GDMax)

can be a constant that is independent of 𝑛, which means that for the case where 𝑟(𝑤, 𝜃) is

nonconvex-concave, the generalization error of primal risk of GDMax can be undesirable.

Example 4 (Constant generalization error of primal risk for GDMax). Consider a dataset

𝑆 with 𝑛 elements. Define the objective function: 𝑓(𝑤, 𝜃; 𝑧) =
(︀

𝑤
𝑛2 − 𝑧

)︀
𝜃 − 𝜃2

2𝑛
, where

𝑤 ∈ 𝑊 = [−𝑛
√
𝑛, 𝑛

√
𝑛], 𝜃 ∈ Θ = R and 𝑧 is drawn from the uniform distribution over

{−1/
√
𝑛, 1/

√
𝑛}. We have

𝑟𝑆(𝑤) =
𝑛2

2

(︃
𝑤

𝑛2
− 1

𝑛

𝑛∑︁
𝑖=1

𝑧𝑖

)︃2

,

and 𝑟(𝑤) = 𝑤2

2𝑛2 . Therefore, min𝑤∈𝑊 𝑟(𝑤) = 0. From the definition of the function 𝑓 and the

sets 𝑊 and Θ, we have ℓ = 1/𝑛2, 𝐿 = 𝒪(1/
√
𝑛).

Note that one step of GDMax can attain the minimizer of 𝑟𝑆(𝑤) (since it is a one

dimensional quadratic problem), i.e., 𝑤𝑆 = 𝑛
∑︀𝑛

𝑖=1 𝑧𝑖 and 𝑟𝑆(𝑤𝑆) = 0. Furthermore, we have

𝐸𝑆𝑟(𝑤𝑆) = 𝐸[
(
∑︀𝑛

𝑖=1 𝑧𝑖)2

2
] = 1/2 > 0. Thus, 𝜁𝑃𝑔𝑒𝑛(GDMax) = 𝐸[𝑟(𝑤𝑆) − 𝑟𝑆(𝑤𝑆)] = 1/2 > 0

cannot be made small.
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Therefore, from Proposition 1 and Example 4, we see that the bound for the expected

population primal gap contains the term 𝜁𝑃𝑔𝑒𝑛 which cannot be bounded for GDMax, whereas

can be bounded for GDA which leads us to the conclusion that GDA generalizes better

than GDMax for such problems. However, it is possible to bound 𝜁𝑃𝑔𝑒𝑛(GDMax) in certain

problems, and in this case the other terms in Theorem 5 become crucial. We analyze them

next.

4.4.2 Analyzing the term 𝐼𝐼

As shown in Example 2, sometimes GDMax can have a good generalization bound for

the primal risk. Therefore, we need to analyze the other two terms in Theorem 5, i.e.,

(𝜑𝐴(𝑀𝑤)+𝜑𝐴(𝐶𝑒(Θ
𝐴
𝜃 )))/𝜓𝐴(𝑇 ) and 𝐿*

𝜃𝐶𝑒(Θ
𝐴
𝜃 )/

√
𝑛. For these two terms, since 𝐿*

𝜃 is fixed, the

constant 𝐶𝑒(Θ
𝐴
𝜃 ) is the key term which differentiates the performance of different algorithms.

By definition, the constant 𝐶𝑒(Θ
𝐺𝐷𝑀𝑎𝑥
𝜃 ) for GDMax is nearly 𝐶𝑒 (See Definition 6).

Therefore, the population primal gap after 𝑇 steps of GDMax is dominated by 𝐶𝑒 if 𝐶𝑒 is

large. However, the set Θ𝐺𝐷𝐴
𝜃 for GDA can be much smaller than Θ, which implies that

𝐶𝑒(Θ
𝐺𝐷𝐴
𝜃 ) can be much smaller than 𝐶𝑒. This phenomenon can be seen from Example 2:

If we perform one step of GDMax with primal stepsize 1, we can attain 𝑤1 = 𝑤𝑆. Then

𝐸𝑆[𝑟(𝑤1
𝑆) − min𝑤∈𝑊 𝑟(𝑤)] ≥ 0.005 from (4.3.2). For GDA, we can see that 𝑤1 = 1 after one

step of GDA with stepsize 1. Therefore, GDA generalizes better than GDMax. Generally, we

have the following estimate of 𝐶𝑒(Θ
𝐺𝐷𝐴
𝜃 ).

Lemma 5. Let 𝐿0 = max𝑧 ‖∇𝑓(𝑤0, 𝜃0; 𝑧)‖. Let 𝑐0 = max{𝛼0, 𝛽0}. If we use diminishing

stepsizes 𝛼𝑡 = 𝛼0/𝑡 and 𝛽𝑡 = 𝛽0/𝑡 for GDA, then after 𝑇 steps we have ‖𝜃𝑡‖ ≤ 𝑇 𝑐0ℓ𝐿0/ℓ for

𝑡 ∈ [𝑇 ].

Therefore, if 𝐶𝑒 is much larger than 𝐶𝑝, using GDA with 𝐶𝑝 ≤ 𝑇 𝑐0ℓ𝐿0/ℓ ≤ 𝐶𝑒 is better

than GDMax. We make this more concrete in the context of GAN training next.

4.4.3 GAN training

We now study the specific case of GAN training to explore why GDA might generalize

better than GDMax. This is numerically verified in the literature, such as [43]. Specif-
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ically, we revisit Example 3, and consider a special case: 𝐷 is restricted to be a over-

parametrized linear function with respect to 𝜃. Define the descriminator 𝐷(𝑥) = Φ𝑇 (𝑥)𝑣+ 𝑏0,

where Φ(𝑥) = [Φ1(𝑥), · · · ,Φ𝑚(𝑥)]𝑇 ∈ R𝑚 is the feature matrix and 𝑏0 ∈ R. Also suppose

that 𝐺 is parametrized by 𝑤 and 𝐺* = 𝐺𝑤* . Then the GAN problem can be written as

min𝑤∈𝑊 max𝜃∈Θ 𝑟(𝑤, 𝜃), where

𝑟(𝑤, 𝜃) = 𝐸𝑥∼𝑃𝑟 [𝜑(𝑣𝑇Φ(𝑥) + 𝑏0)] + 𝐸𝑦∼𝑃0 [𝜑(1 − 𝑣𝑇Φ(𝐺𝑤(𝑦)) − 𝑏0)].

Here 𝜃 = (𝑣, 𝑏0). Assume that
√︁
𝜎max

(︀
𝐸𝑥∼𝑃𝐺𝑤

Φ(𝑥)Φ𝑇 (𝑥)
)︀
≤ 𝜎̄max/

√
𝑚, where 𝜎max(·)

denotes the largest singular value of a matrix and 𝜎̄max > 0 is a constant. Also assume that

𝐸𝑥∼𝑃𝐺𝑤
Φ(𝑥)Φ𝑇 (𝑥) is full rank. Also, we assume that |𝜑′(𝜆)| ≤ 𝐿𝜑 for any 𝜆 ∈ [0, 1]. Therefore,

we have 𝐸[‖∇𝜃𝑓(𝑤, 𝜃; 𝑧)‖2] ≈ 𝐿2
𝜑𝜎̄

2
max. Then it is reasonable to assume that ‖∇𝑓‖ ≤ 𝒪(1).

Lemma 6. Suppose Φ(𝑥) is sub-Gaussian and the matrix

𝑄𝑆 =
[︁
Φ(𝑥1) Φ(𝑥2) · · · Φ(𝑥𝑛) Φ(𝐺𝑤(𝑦1)) · · · Φ(𝐺𝑤(𝑦𝑛))

]︁
is full column rank (𝑚 > 𝑛) with probability 1. Then with probability at least 1 − 𝐶𝛿 with

some constant 𝐶, we have ‖𝜃𝑆(𝑤*)‖ ≥ Ω(
√
𝑛), where 𝜃𝑆(𝑤*) ∈ arg max𝜃∈Θ 𝑟𝑆(𝑤*, 𝜃).

Now, for 𝜃 ∈ arg max𝜃′∈Θ 𝑟(𝑤
*, 𝜃′), it can be easily seen that 𝑣 = 0, 𝑏0 = 1/2 in this

case. Therefore, 𝐶𝑝 ≈ 1/2. Finally, combining the previous discussion on GDA in Lemma 5,

and using the fact that 𝐶𝑒 is large from Lemma 6, we see from Theorem 5 that GDA can

generalize better than GDMax. More detailed discuss of the GAN-training example and

Lemma 6 can be found in Section 4.6.4.

4.5 Conclusions

In this chapter, we first demonstrate the shortcomings of one popular metric, the primal risk,

in terms of characterizing the generalization behavior of minimax learners. We then propose

a new metric, the primal gap, whose generalization error overcomes these shortcomings and

captures the generalization behavior of algorithms that solve stochastic minimax problems.
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Finally, we use this newly proposed metric to study the generalization behavior of two different

algorithms – GDA and GDMax, and study cases where GDA has a better generalization

behavior than GDMax. Future directions include further investigation of the proposed

new metric, the primal gap, and deriving its (tighter) generalization error bounds in other

structured stochastic minimax optimization problems in machine learning.

4.6 Appendix

In this section, we present supplementary material and proofs omitted from the main text of

the chapter.

4.6.1 Existing Related Results

From [43], we have the following theorem showing the connection between stability and

generalization for minimax problems.

Theorem 6 ([43]). Consider an Algorithm 𝐴 which is 𝜖-stable. We have the following two

claims:

1. If the maximization and the expectation can be swapped when computing 𝑟(𝑤), then

𝐸𝑆𝐸𝐴[𝜁𝑃𝑔𝑒𝑛(𝐴)] ≤ 𝜖.

2. If 𝑓(·, ·; 𝑧) is nonconvex-strongly-concave and 𝑓 is 𝜇-strongly-concave with respect to 𝜃,

then

𝐸𝑆𝐸𝐴[𝜁𝑃𝑔𝑒𝑛(𝐴)] ≤ 𝐿
√
𝜅2 + 1𝜖.

Remark 4. In [73], the authors proved a generalization bound in a weak sense, i.e., they

consider the weak duality gap:

(max
𝜃∈Θ

𝐸𝑆𝐸𝐴𝑟(𝑤
𝐴
𝑆 , 𝜃) − min

𝑤∈𝑊
𝐸𝑆𝐸𝐴𝑟(𝑤, 𝜃

𝐴
𝑆 )) − (max

𝜃∈Θ
𝐸𝑆𝐸𝐴𝑟𝑆(𝑤𝐴

𝑆 , 𝜃) − min
𝑤∈𝑊

𝐸𝑆𝐸𝐴𝑟𝑆(𝑤, 𝜃𝐴𝑆 )).
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However, notice that the expectation is inside the min and max operators. It does not deal

with the coupling of the maximization and expectation.

Remark 5. According to Theorem 6, the generalization bound for 𝜁𝑃𝑔𝑒𝑛 scales with the

condition number 𝜅𝜃, and therefore cannot give useful bounds in the absence of strong

concavity (when 𝜅𝜃 → ∞).

Remark 6. The generalization bounds for 𝜁𝑃𝑔𝑒𝑛 of algorithms for problems in terms of stability

without strong concavity is still open to the best of our knowledge. As mentioned in [73],

finding generalization bounds without the strong concavity assumption is an interesting open

problem.

4.6.2 Analysis of Example 2

In this section, we analyze the toy example given in Example 2.

Proposition 2. For the risk function and data distribution given in Example 2, we have

𝐸𝑆[𝑟(𝑤) − 𝑟𝑆(𝑤)] ≤ 0

for any 𝑤 ∈ 𝑊 .

Proof. For a fixed 𝑤, 𝑟(𝑤) = 𝑤2/2 − 𝑤. On the other hand,

𝑟𝑆(𝑤) = max
𝜃∈Θ

𝑟(𝑤, 𝜃) (4.6.1)

≥ 𝑟𝑆(𝑤, 0) (4.6.2)

= 𝑟(𝑤). (4.6.3)

Therefore, we have the desired result.

Next, we prove that |
∑︀𝑛

𝑖=1 𝑧𝑖| will stay in the interval [0.5, 𝜆] with high probability.

Lemma 7. For large enough 𝜆 > 2, we have

Pr

(︂⃒⃒⃒⃒ 𝑛∑︁
𝑖=1

𝑧𝑖

⃒⃒⃒⃒
∈ [0.5, 𝜆]

)︂
> 0.4, Pr

(︂⃒⃒⃒⃒ 𝑛∑︁
𝑖=1

𝑧𝑖

⃒⃒⃒⃒
∈ [2, 𝜆]

)︂
> 0.01.
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Proof. Let 𝑦𝑖 ∼ 𝑁(0, 1/
√
𝑛), 𝑖 = 1, · · · , 𝑛 be 𝑛 i.i.d. variables. Then

∑︀𝑛
𝑖=1 𝑦𝑖 ∼ 𝑁(0, 1).

According to the table of Normal distribution, we have Pr(|
∑︀𝑛

𝑖=1 𝑦𝑖| ∈ [0.5, 𝜆]) ≥ 0.41. By

the definition of 𝑧𝑖, we have

Pr(|
𝑛∑︁

𝑖=1

𝑧𝑖| ∈ [0.5, 𝜆])

≥ Pr(|
𝑛∑︁

𝑖=1

𝑦𝑖| ∈ [0.5, 𝜆], |𝑦𝑖| < 3 log 𝑛/
√
𝑛) + Pr(max

𝑖∈[𝑛]
(|𝑦𝑖|) ≥ 3 log 𝑛/

√
𝑛).

For the first term, we have

Pr(|
𝑛∑︁

𝑖=1

𝑦𝑖| ∈ [0.5, 𝜆], |𝑦𝑖| < 3 log 𝑛/
√
𝑛)

≥ Pr(|
𝑛∑︁

𝑖=1

𝑦𝑖| ∈ [0.5, 𝜆]) − Pr(max
𝑖∈[𝑛]

(|𝑦𝑖|) ≥ 3 log 𝑛/
√
𝑛)

≥ 0.41 −
𝑛∑︁

𝑖=1

Pr(|𝑦𝑖| ≥ 3 log 𝑛/
√
𝑛)

≥ 0.41 − 𝑛𝑒−𝛾9 log2 𝑛 ≥ 0.41 − 1/𝑛𝜆𝛾−1.

Taking 𝜆 sufficiently large yields the desired result, where the first inequality is because of

the union bound and the second inequality is due to the tail bound of Normal distribution.

Therefore, Pr(|
∑︀𝑛

𝑖=1 𝑧𝑖| ∈ [0.5, 𝜆]) > 0.4 for sufficiently large 𝑛. The second statement

follows similarly, noting from the table of Normal distribution that Pr(|
∑︀𝑛

𝑖=1 𝑦𝑖| ∈ [0.5, 𝜆]) ≥

0.046.

Proposition 3. For sufficiently large 𝜆 > 0, we have

𝐸𝑆[𝑟(𝑤𝑆) − min
𝑤∈𝑊

𝑟(𝑤)] ≥ 0.001.

Proof. If |
∑︀𝑛

𝑖=1 𝑧𝑖| ∈ [0.5, 𝜆], we have

𝑤𝑆 = max(0, 1 − (
𝑛∑︁

𝑖=1

𝑧𝑖)
2/2) ≤ 0.9.
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In this case, we have

𝑟(𝑤𝑆) − min
𝑤∈𝑊

𝑟(𝑤) ≥ 0.005, (4.6.4)

by direct calculation. Therefore, we have

𝐸𝑆[𝑟(𝑤𝑆) − min
𝑤∈𝑊

𝑟(𝑤)] (4.6.5)

≥ Pr(|
𝑛∑︁

𝑖=1

𝑧𝑖| ∈ [0.5, 𝜆]) · 0.05 + Pr(|
𝑛∑︁

𝑖=1

𝑧𝑖| /∈ [0.5, 𝜆]) · 0 (4.6.6)

≥ 0.02, (4.6.7)

where the first inequality is because of (4.6.4) and the fact that 𝑟(𝑤𝑆) − min𝑤∈𝑊 𝑟(𝑤) ≥ 0

for any 𝑆.

Proposition 4. For sufficiently large 𝜆 > 0, we have:

𝐸𝑆[min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)] ≥ 0.005

for Example 2.

Proof. If |
∑︀𝑛

𝑖=1 𝑧𝑖| ≥ 𝜆 > 2, we have 𝑤𝑆 = 0 and hence 𝑟𝑆(𝑤𝑆) = 0. If |
∑︀𝑛

𝑖=1 𝑧𝑖| ≤ 𝜆, we

have

𝑟𝑆(𝑤𝑆) − 𝑟(𝑤*) ≥ 𝑟𝑆(𝑤𝑆) − 𝑟(𝑤𝑆) = 𝑤𝑆(
𝑛∑︁

𝑖=1

𝑧𝑖)
2/2 ≥ 0.

Therefore, min𝑤∈𝑊 𝑟𝑆(𝑤) ≥ min𝑤∈𝑊 𝑟(𝑤) for any 𝑆. By Lemma 7, we can prove that

Pr(|
∑︀𝑛

𝑖=1 𝑧𝑖| ∈ [2, 𝜆]) ≥ 0.01 for sufficiently large 𝜆. Notice that for |
∑︀𝑛

𝑖=1 𝑧𝑖| ∈ [2, 𝜆],

𝑟𝑆(𝑤𝑆) − min𝑤∈𝑊 𝑟(𝑤) = 1/2. Therefore, we have

𝐸𝑆[min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)] ≥ Pr(|
𝑛∑︁

𝑖=1

𝑧𝑖| ∈ [2, 𝜆]) · 1/2 ≥ 0.005.

This completes the proof.
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4.6.3 Proofs in Section 4.3

Proof of Lemma 1

In this subsection, we assume that 𝐴 is an 𝜖-stable algorithm. For any 𝑤 ∈ 𝑊 , let Θ𝑆(𝑤) =

arg max𝜃∈Θ 𝑟𝑆(𝑤, 𝜃) and Θ(𝑤) = arg max𝜃∈Θ 𝑟(𝑤, 𝜃) be the solution sets of the problems. Let

𝜃(𝑤) be any element in Θ(𝑤). Then

𝐸𝐴𝐸𝑆[𝑟(𝑤𝐴
𝑆 ) − 𝑟𝑆(𝑤𝐴

𝑆 )] = 𝐸𝐴𝐸𝑆[𝑟(𝑤𝐴
𝑆 , 𝜃(𝑤

𝐴
𝑆 )) − 𝑟𝑆(𝑤𝐴

𝑆 , 𝜃𝑆(𝑤𝐴
𝑆 ))]

≤ 𝐸𝐴𝐸𝑆[𝑟(𝑤𝐴
𝑆 , 𝜃(𝑤

𝐴
𝑆 )) − 𝑟𝑆(𝑤𝐴

𝑆 , 𝜃(𝑤
𝐴
𝑆 ))],

where the inequality is because 𝑟𝑆(𝑤𝐴
𝑆 , 𝜃𝑆(𝑤𝐴

𝑆 )) ≥ 𝑟𝑆(𝑤𝐴
𝑆 , 𝜃) for any 𝜃. Let 𝑓 be 𝜇-strongly

concave with respect to 𝜃. We denote the condition number by 𝜅𝜃 = ℓ𝜃𝜃/𝜇.

In the strongly concave case, Θ(𝑤) has a unique element 𝜃(𝑤), which is 𝜅𝜃-Lipschitz

continuous with respect to 𝑤 (see [76]).

Then, defining ̃︀𝑓(𝑤, 𝑧) = 𝑓(𝑤, 𝜃(𝑤); 𝑧), the minimax problem reduces to the usual min-

imization problem on the function ̃︀𝑓 . The stability and the Lipschitz continuity of 𝜃(𝑤)

with respect to 𝑤 yield the generalization bound of 𝐿
√
𝜅2 + 1𝜖. This is the result shown in

Theorem 1 of [43].

However, if the maximization problem is not strongly concave, we lose the Lipschitz

continuity and the uniqueness. To overcome this difficulty, we define an approximate

maximizer 𝜃(𝑤) to 𝑟(𝑤, 𝜃). Concretely speaking, we define 𝜃(𝑤) to be the point after 𝑠 steps

of gradient ascent for the function 𝑟(𝑤, ·) with a stepsize 1/ℓ𝜃𝜃 and being initialized at 0.

Then we have the following lemma:

Lemma 8. For any 𝑤 ∈ 𝑊 , we have5

1. ‖𝜃(𝑤) − 𝜃(𝑤′)‖ ≤ 𝑠 ℓ
ℓ𝜃𝜃

‖𝑤 − 𝑤′‖.

2. 𝑟(𝑤) − 𝑟(𝑤, 𝜃(𝑤)) ≤ ℓ𝜃𝜃𝐶
2
𝑝/𝑠.

5For point 2, it holds when 𝑠 > 0. For 𝑠 = 0, we have the bound 𝑟(𝑤)− 𝑟(𝑤, 𝜃(𝑤)) ≤ ℓ𝜃𝜃𝐶
2
𝑝 . We do not

separate this degenerate case for ease of presentation.
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Proof. To prove the first part, let 𝜃0 = 𝜃′0 = 0. Define 𝜃𝑡, 𝜃′𝑡 recursively as follows:

𝜃𝑡+1 = 𝜃𝑡 + ∇𝜃𝑟(𝑤, 𝜃𝑡)/ℓ𝜃𝜃

and

𝜃′𝑡+1 = 𝜃′𝑡 + ∇𝜃𝑟(𝑤
′, 𝜃′𝑡)/ℓ𝜃𝜃.

We prove ‖𝜃𝑡−𝜃′𝑡‖ ≤ 𝑡 ℓ
ℓ𝜃𝜃

‖𝑤−𝑤′‖ by induction. For 𝑡 = 0, 𝜃0−𝜃′0 = 0. Assume the induction

hypothesis ‖𝜃𝑡−1 − 𝜃′𝑡−1‖ ≤ (𝑡− 1) ℓ
ℓ𝜃𝜃

‖𝑤 − 𝑤′‖ holds. We have

‖𝜃𝑡 − 𝜃′𝑡‖ = ‖(𝜃𝑡−1 + ∇𝜃𝑟(𝑤, 𝜃𝑡−1)/ℓ𝜃𝜃) − (𝜃′𝑡−1 + ∇𝜃𝑟(𝑤, 𝜃
′
𝑡−1)/ℓ𝜃𝜃)

+ (∇𝜃𝑟(𝑤, 𝜃
′
𝑡−1) −∇𝜃𝑟(𝑤

′, 𝜃′𝑡−1))/ℓ𝜃𝜃‖

≤ ‖(𝜃𝑡−1 + ∇𝜃𝑟(𝑤, 𝜃𝑡−1)/ℓ𝜃𝜃) − (𝜃′𝑡−1 + ∇𝜃𝑟(𝑤, 𝜃
′
𝑡−1)/ℓ𝜃𝜃)‖

+ ‖(∇𝜃𝑟(𝑤, 𝜃
′
𝑡−1) −∇𝜃𝑟(𝑤

′, 𝜃′𝑡−1))/ℓ𝜃𝜃‖

≤ ‖𝜃𝑡−1 − 𝜃′𝑡−1‖ + ℓ‖𝑤 − 𝑤′‖/ℓ𝜃𝜃

≤ (𝑡− 1)
ℓ

ℓ𝜃𝜃
‖𝑤 − 𝑤′‖ +

ℓ

ℓ𝜃𝜃
‖𝑤 − 𝑤′‖

= 𝑡
ℓ

ℓ𝜃𝜃
‖𝑤 − 𝑤′‖,

where the first inequality follows from the triangle inequality, the second inequality follows

from non-expansiveness of gradient ascent for concave functions and the ℓ-Lipschitz continuity

of ∇𝑟, and the third inequality follows from the induction hypothesis.

Therefore, letting 𝑡 = 𝑠 completes the proof of the first part. The second part of this

lemma is just the convergence result for gradient ascent on smooth concave functions (see

e.g., [96]).

Consider a virtual algorithm 𝐴: for any 𝑆, the algorithm returns 𝑤 = 𝑤𝐴
𝑆 and 𝜃 = 𝜃(𝑤𝐴

𝑆 ).

Lemma 9. The stability of this virtual algorithm is 𝜖
√︂(︁

𝑠 ℓ
ℓ𝜃𝜃

)︁2
+ 1.

Proof. It is direct from the first part of Lemma 8.

Then we have the generalization bound of 𝑟𝑆(𝑤, 𝜃):
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Lemma 10. We have

𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 , 𝜃(𝑤

𝐴
𝑆 )) − 𝑟𝑆(𝑤𝐴

𝑆 , 𝜃(𝑤
𝐴
𝑆 ))] ≤ 𝜖𝐿

√︃(︂
𝑠
ℓ

ℓ𝜃𝜃

)︂2

+ 1.

Proof. For any 𝑧, by Assumption 4, we have

‖𝑓(𝑤𝐴
𝑆 , 𝜃

𝐴
𝑆 ; 𝑧) − 𝑓(𝑤𝐴

𝑆′ , 𝜃𝐴𝑆′ ; 𝑧)‖ ≤ 𝜖𝐿

√︃(︂
𝑠
ℓ

ℓ𝜃𝜃

)︂2

+ 1.

The result follows directly from the standard stability theory in [61].

Now we are ready to derive the generalization error bound of the Primal Risk for an

Algorithm 𝐴 with 𝜖-stability. First, we have

𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 ) − 𝑟𝑆(𝑤𝐴

𝑆 )] ≤ 𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 ) − 𝑟𝑆(𝑤𝐴

𝑆 , 𝜃(𝑤
𝐴
𝑆 ))]

≤ 𝐸𝑆𝐸𝐴[(𝑟(𝑤𝐴
𝑆 , 𝜃(𝑤

𝐴
𝑆 ) + ℓ𝜃𝜃𝐶

2
𝑝/𝑠) − 𝑟𝑆(𝑤𝐴

𝑆 , 𝜃(𝑤
𝐴
𝑆 ))]

= 𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 , 𝜃(𝑤

𝐴
𝑆 )) − 𝑟𝑆(𝑤𝐴

𝑆 , 𝜃(𝑤
𝐴
𝑆 ))] + ℓ𝜃𝜃𝐶

2
𝑝/𝑠

≤ 𝜖𝐿

√︃(︂
𝑠
ℓ

ℓ𝜃𝜃

)︂2

+ 1 + ℓ𝜃𝜃𝐶
2
𝑝/𝑠

≤ 𝜖𝐿𝑠
ℓ

ℓ𝜃𝜃
+
ℓ𝜃𝜃𝐶

2
𝑝

𝑠
+ 𝜖𝐿

where the first inequality is because 𝑟𝑆(𝑤𝐴
𝑆 ) = max𝜃 𝑟𝑆(𝑤𝐴

𝑆 , 𝜃), the second inequality is because

of the second part of Lemma 8 and the last inequality is because of Lemma 10. Optimizing

over6 𝑠, the generalization error is bounded by 𝜁𝑃𝑔𝑒𝑛(𝐴) ≤
√︀

4𝐿ℓ𝐶2
𝑝 ·

√
𝜖+ 𝜖𝐿. This completes

the proof.

Tightness of the bound for Primal Risk

Consider the following risk function: 𝑓(𝑤, 𝜃; 𝑧) =
√︀
𝑛/𝜖((𝑤/(𝑛

√
𝑛𝜖) − 𝑧)𝜃 − 𝜃2/(2𝑛

√
𝑛𝜖)),

where 𝑤 ∈ 𝑊 = [−𝜆𝜖
√
𝑛 log 𝑛, 𝜆𝜖

√
𝑛 log 𝑛] and 𝜃 ∈ Θ = R. The sample 𝑧 is drawn from

the uniform distribution over {−1/
√
𝑛, 1/

√
𝑛}. Then we have 𝑟(𝑤) =

√︀
𝑛/𝜖(𝑤2/(2𝜖𝑛

√
𝑛))

6Here we assume that the optimal 𝑠 is a real number greater than 0. Constraining 𝑠 to be an integer and
also incorporating 0 does not change the result and we ignore this case here. See also Footnote 5.
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and 𝑟𝑆(𝑤) =
√︀
𝑛/𝜖((𝜖𝑛

√
𝑛)(𝑤/(𝜖𝑛

√
𝑛) −

∑︀𝑛
𝑖=1 𝑧𝑖/𝑛)2/2). Now we have ℓ =

√
𝑛/𝜖

(𝜖𝑛
√
𝑛)

, 𝐶𝑝 =

𝜆𝜖
√
𝑛 log 𝑛 and 𝐿 =

√
𝑛/𝜖

√
𝑛

. If we perform one-step of GDMax with stepsize 1/ℓ𝑟𝑆 where

ℓ𝑟𝑆 =
√︀
𝑛/𝜖/(𝜖𝑛

√
𝑛), then we attain 𝑤𝑆 = arg min𝑤∈𝑊 𝑟𝑆(𝑤). The stability bound of the

GDMax is 𝜖. Therefore, the generalization error of the primal risk is estimated as:

𝜁𝑃𝑔𝑒𝑛(𝐺𝐷𝑀𝑎𝑥) ≤
√︁

8𝐿ℓ𝐶2
𝑝

√
𝜖 = 8𝜆 log 𝑛

√
𝜖.

On the other hand,
∑︀𝑛

𝑖=1 𝑧𝑖/𝑛 ∈ [−𝜆 log 𝑛/𝑛, 𝜆 log 𝑛/𝑛] holds with probability at least 1−𝐶/𝑛𝜆

by Hoefding inequality. Let 𝑤̄𝑆 = 𝜖
√
𝑛(
∑︀

𝑧𝑖∈𝑆 𝑧𝑖). Then with probability at least 1 − 𝐶/𝑛𝜆,

𝑤𝑆 = 𝑤̄𝑆 Notice that 𝐸𝑆[𝑟(𝑤̄𝑆) − 𝑟𝑆(𝑤̄𝑆)] = 𝐸𝑆[
√
𝑛 · (

√
𝜖𝑛
√
𝑛) · (

∑︀
𝑧𝑖∈𝑆 𝑧𝑖/𝑛)2] =

√
𝜖. It is

not hard to show that |𝑟(𝑤̄𝑆)| ≤ 𝑛
√
𝜖, 𝑟𝑆(𝑤̄𝑆) = 0, |𝑟(𝑤𝑆)| ≤ 2𝑛

√
𝜖 and |𝑟𝑆(𝑤𝑆)| ≤ 2𝑛

√
𝜖.

Then we have

𝐸𝑆[𝑟(𝑤̄𝑆) − 𝑟𝑆(𝑤̄𝑆)] − 𝐸𝑆[𝑟(𝑤𝑆) − 𝑟𝑆(𝑤𝑆)] ≤ 5𝐶𝑛
√
𝜖/𝑛𝜆.

Therefore, 𝐸[𝑟(𝑤𝑆) − 𝑟𝑆(𝑤𝑆)] ≥
√
𝜖/2 for sufficiently large 𝜆 and 𝑛. Then in this example we

have
√
𝜖/2 ≤ 𝜁𝑃𝑔𝑒𝑛(𝐴) ≤ 8𝜆 log 𝑛

√
𝜖.

For 𝜖 ≤ 1/𝑛𝜏+1, we have

log 𝑛 ≤ 1

𝜏 + 1
log(1/𝜖).

Therefore, the estimate 𝜁𝑃𝑔𝑒𝑛 ≤ 𝜆
√
𝜖 log(1/𝜖)/(𝜏 + 1) is tight up to a log(1/𝜖) factor.

Proof of Theorem 3

Recall that the empirical primal gap is defined as

∆𝑆(𝑤) = 𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟𝑆(𝑤)

and the population primal gap is given by

∆(𝑤) = 𝑟(𝑤) − min
𝑤∈𝑊

𝑟(𝑤).
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Suppose we are given an 𝜖-stable Algorithm 𝐴. We then want to derive the generalization

error

𝜁𝑃𝐺
𝑔𝑒𝑛(𝐴) = 𝐸𝑆𝐸𝐴[∆(𝑤𝐴

𝑆 ) − ∆𝑆(𝑤𝐴
𝑆 )].

Since we already have the generalization error for the primal risk 𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 ) − 𝑟𝑆(𝑤𝐴

𝑆 )]

in Theorem 1, we only need to estimate

𝐸𝑆𝐸𝐴[min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)] = 𝐸𝑆[min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)]

to get a generalization error bound on the primal gap.

Lemma 11. Let 𝑤* ∈ arg min𝑤∈𝑊 𝑟(𝑤). Suppose that 𝑓(𝑤*, ·; 𝑧) is 𝐿*
𝜃 Lipschitz continuous

with respect to 𝜃. Then we have

𝐸𝑆[min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)] ≤ 4𝐿*
𝜃𝐶𝑒/

√
𝑛.

Proof. We use similar techniques as in the proof of Lemma 1.

Step 1. We define an approximate maximizer ̃︀𝜃𝑆 of the function 𝑟𝑆(𝑤*, ·). ̃︀𝜃𝑆 is attained

by performing 𝑠 steps of gradient ascent to 𝑟𝑆(𝑤*, ·) with stepsize 1/ℓ𝜃𝜃 and being initialized

at 0.

Similar to Lemma 8, we have the following lemma:

Lemma 12. We have the following properties:

1. ‖̃︀𝜃𝑆 − ̃︀𝜃𝑆′‖ ≤ 2𝑠𝐿*
𝜃/(𝑛ℓ𝜃𝜃).

2. 𝑟𝑆(𝑤*) − 𝑟𝑆(𝑤*, ̃︀𝜃𝑆) ≤ ℓ𝜃𝜃𝐶
2
𝑒/𝑠.

Proof. The proof is similar to the proof of Lemma 8. To prove the first part, let ̃︀𝜃0 = ̃︀𝜃′0 = 0.

Define ̃︀𝜃𝑡, ̃︀𝜃′𝑡 recursively as follows:

̃︀𝜃𝑡+1 = ̃︀𝜃𝑡 + ∇𝜃𝑟𝑆(𝑤*, ̃︀𝜃𝑡)/ℓ𝜃𝜃
and ̃︀𝜃′𝑡+1 = ̃︀𝜃′𝑡 + ∇𝜃𝑟𝑆′(𝑤*, ̃︀𝜃′𝑡)/ℓ𝜃𝜃.
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We prove ‖̃︀𝜃𝑡 − ̃︀𝜃′𝑡‖ ≤ 𝐿*
𝜃/(𝑛ℓ𝜃𝜃) by induction. For 𝑡 = 0, ̃︀𝜃0 − ̃︀𝜃′0 = 0. Assume the induction

hypothesis ‖̃︀𝜃𝑡−1 − ̃︀𝜃′𝑡−1‖ ≤ (𝑡− 1)𝐿*
𝜃/(𝑛ℓ𝜃𝜃) holds. We have

‖̃︀𝜃𝑡 − ̃︀𝜃′𝑡‖ = ‖(̃︀𝜃𝑡−1 + ∇𝜃𝑟𝑆(𝑤*, ̃︀𝜃𝑡−1)/ℓ𝜃𝜃) − (̃︀𝜃′𝑡−1 + ∇𝜃𝑟𝑆(𝑤*, ̃︀𝜃′𝑡−1)/ℓ𝜃𝜃)

+ (∇𝜃𝑟𝑆(𝑤*, ̃︀𝜃′𝑡−1) −∇𝜃𝑟𝑆′(𝑤*, ̃︀𝜃′𝑡−1))/ℓ𝜃𝜃‖

≤ ‖(̃︀𝜃𝑡−1 + ∇𝜃𝑟𝑆(𝑤*, ̃︀𝜃𝑡−1)/ℓ𝜃𝜃) − (̃︀𝜃′𝑡−1 + ∇𝜃𝑟𝑆(𝑤*, ̃︀𝜃′𝑡−1)/ℓ𝜃𝜃)‖

+ ‖(∇𝜃𝑟𝑆(𝑤*, ̃︀𝜃′𝑡−1) −∇𝜃𝑟𝑆′(𝑤*, ̃︀𝜃′𝑡−1))/ℓ𝜃𝜃‖

≤ ‖̃︀𝜃𝑡−1 − ̃︀𝜃′𝑡−1‖ + ℓ‖𝑤 − 𝑤′‖/ℓ𝜃𝜃

≤ (𝑡− 1)
2𝐿*

𝜃

𝑛ℓ𝜃𝜃
+

2𝐿*
𝜃

𝑛ℓ𝜃𝜃

= 𝑡
2𝐿*

𝜃

𝑛ℓ𝜃𝜃
,

where the first inequality follows from the triangle inequality, the second inequality follows from

non-expansiveness of gradient ascent for concave functions and the 𝐿*
𝜃-Lipschitz continuity of

𝑓(𝑤*, ·; 𝑧), and the third inequality follows from the induction hypothesis.

Therefore, letting 𝑡 = 𝑠 completes the proof of the first part. The second part of this

lemma is just the convergence result for gradient ascent on smooth concave functions (see

e.g., [96]).

We then define the virtual algorithm ̃︀𝐴 given by 𝑤 ̃︀𝐴
𝑆 = 𝑤* and 𝜃 ̃︀𝐴

𝑆 = ̃︀𝜃𝑆. Since the output

argument 𝑤 of ̃︀𝐴 is always 𝑤*, the stability of ̃︀𝐴 only depends on ̃︀𝜃𝑆. Then the stability

bound of this virtual algorithm is given in the following lemma:

Lemma 13. The stability of Algorithm ̃︀𝐴 is given by 𝜖𝑠𝑡𝑎( ̃︀𝐴) = 2𝑠(𝐿*
𝜃)

2/(𝑛ℓ𝜃𝜃).

Then by the standard stability theory in [61], we have

|𝐸𝑆𝐸𝐴[𝑟𝑆(𝑤*, ̃︀𝜃𝑆) − 𝑟(𝑤*, ̃︀𝜃𝑆)]| ≤ 2𝑠(𝐿*
𝜃)

2/(𝑛ℓ𝜃𝜃). (4.6.8)

Step 2. We have

𝐸𝑆[min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)]
(i)
= 𝐸𝑆[𝑟𝑆(𝑤𝑆) − 𝑟(𝑤*, 𝜃*)]
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(ii)
≤ 𝐸𝑆[𝑟𝑆(𝑤*) − 𝑟(𝑤*, 𝜃*)]

(iii)
≤ 𝐸𝑆[𝑟𝑆(𝑤*, ̃︀𝜃𝑆) − 𝑟(𝑤*, 𝜃*)] + ℓ𝜃𝜃𝐶

2
𝑒/𝑠

(iv)
≤ 𝐸𝑆[𝑟𝑆(𝑤*, ̃︀𝜃𝑆) − 𝑟(𝑤*, ̃︀𝜃𝑆)] + ℓ𝜃𝜃𝐶

2
𝑒/𝑠,

where (i) follows from the definition of 𝑤*, 𝜃*, (ii) follows since 𝑤𝑆 minimizes 𝑟𝑆(𝑤), (iii)

follows from Lemma 12, and (iv) follows from the optimality of 𝜃* given 𝑤*. Then by (4.6.8),

we have

𝐸𝑆[min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)] ≤ 𝐸𝑆[𝑟𝑆(𝑤*, ̃︀𝜃𝑆) − 𝑟(𝑤*, ̃︀𝜃𝑆)] + ℓ𝜃𝜃𝐶
2
𝑒/𝑠 (4.6.9)

≤ 2𝑠(𝐿*
𝜃)

2/(𝑛ℓ𝜃𝜃) + ℓ𝜃𝜃𝐶
2
𝑒/𝑠 (4.6.10)

≤ 4𝐿*
𝜃𝐶𝑒/

√
𝑛 (4.6.11)

which completes the proof.

The final statement of the theorem follows from Lemma 11 and Lemma 1.

Tightness of Bound for Primal Min Error

We can construct an example with 𝐶𝑒,𝐿*
𝜃 independent of 𝑛 and the upper bound for 𝜁𝑃𝑀

𝑔𝑒𝑛 is

tight up a log factor.

Consider the following example:

• Let 𝑓(𝑤, 𝜃; 𝑧) = 1
𝑀

(𝑤2/2+𝑤(log2 𝑛𝜃2/(2𝐾2)+𝑛 log 𝑛𝑧𝜃/𝐾+1)), where 𝑤 ∈ 𝑊 = [−1, 1],

𝜃 ∈ Θ = [−𝜆𝐾, 𝜆𝐾] for some arbitrary constants 𝐾 > 0 and 𝑀 > 0. 𝑧 is drawn from a

truncated Gaussian distribution. Concretely speaking, let 𝑦 ∼ 𝑁(0, 1/
√
𝑛). Then 𝑧 = 𝑦

if |𝑦| ≤ 𝜆 log 𝑛/
√
𝑛 and 𝑧 = 𝜆 log 𝑛/

√
𝑛 if 𝑦 ≥ 𝜆 log 𝑛/

√
𝑛. Notice that 𝑀𝑓(𝑤, 𝜃; 𝑧) =

ℎ(𝑤, 𝜃′; 𝑧), where 𝜃′ = 𝑛 log 𝑛𝜃/𝐾, ℎ(𝑤, 𝜃′; 𝑧) = 𝑤2/2 + 𝑤((𝜃′)2/(2𝑛2) + 𝑧𝜃′ + 1), 𝜃′ =

𝑛 log 𝑛𝜃/𝐾 ∈ [−𝜆𝑛 log 𝑛, 𝜆𝑛 log 𝑛]. Notice that ℎ is just the risk function in Example 1.

Therefore, we can estimate the lower bound of the Primal Min Error corresponding to

𝑓 using the result in Example. The lower bound of Primal Min Error of the problem in

Example 1 (corresponding to ℎ) is 0.005. Then the Primal-Min Error (corresponding to
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𝑓) 𝜁𝑃𝑀
𝑔𝑒𝑛 (𝐴) = 𝐸𝑆 min𝑤∈𝑊 𝑟𝑆(𝑤) − min𝑤∈𝑊 𝑟(𝑤) ≥ 0.005/𝑀 . On the other hand, it is

not hard to have 𝐿*
𝜃 = 𝜆

√
𝑛 log2 𝑛/𝑀𝐾, 𝐶𝑒 = 𝜆𝐾. Therefore, 𝐿*

𝜃𝐶𝑒 = 𝜆2
√
𝑛 log2 𝑛/𝑀 .

Let 𝑀 =
√
𝑛 log2 𝑛. Then 𝐿*

𝜃 = 𝜆/𝐾.

If 𝐾 does not depend on 𝑛, 𝐿*
𝜃, 𝐶𝑒 do not depend on 𝑛. Therefore, the Primal-Min Error

𝜁𝑃𝑀
𝑔𝑒𝑛 (𝐴) satisfies 0.005𝜆2(𝐿*

𝜃𝐶𝑒)/(log2 𝑛
√
𝑛) = 0.005(𝐿*

𝜃𝐶𝑒)/(𝑀𝐿*
𝜃𝐶𝑒) ≤ 𝜁𝑃𝑀

𝑔𝑒𝑛 (𝐴) ≤

(𝐿*
𝜃𝐶𝑒)/

√
𝑛, which is tight up to a log2 𝑛.

• If we let 𝑀 = 1 and 𝐾 = 1, then 𝜁𝑃𝑀
𝑔𝑒𝑛 (𝐴) ≤ 𝜆2 log2 𝑛 as discussed in the main part of

the chapter. This upper bound means that we can not attain an arbitrary accuracy

𝛿 > 0. The lower bound, i.e., 𝜁𝑃𝑀
𝑔𝑒𝑛 (𝐴) ≥ 0.005𝜆4, also implies that we can not attain

an arbitrary accuracy.

• If we let 𝑀 = 1/(𝜆2 log2 𝑛) and 𝐾 = 1, 𝐿*
𝜃𝐶𝑒/

√
𝑛 = 1. This upper bound implies

that we can not let 𝜁𝑃𝑀
𝑔𝑒𝑛 smaller than arbitrariy required accuracy. Return to the

lower bound, i.e., 𝜁𝑃𝑀
𝑔𝑒𝑛 (𝐴) ≥ 0.005/(𝜆2 log2 𝑛). If we want to attain an accuracy 𝛿, the

required sample complexity is 2𝜆/
√
𝛿, which is larger than a polynomial size and hence

is still viewed as intractable. In this sense, the upper bound and the lower bound do

not make a major difference.

• Combining the two points above, we can conclude that in terms of sample complexity,

our bound is tight (up to logarithmic factors).

Proof of Lemma 2

We only prove the first part of this lemma and the others can be proved similarly. Let

𝑠 = [𝐷𝑝/𝛾] + 1, where [𝑟] denotes the largest integer no more than 𝑟. To prove the first part,

let 𝜃0 = 𝜃′0 = 0. Define 𝜃𝑡, 𝜃′𝑡 recursively as follows:

𝜃𝑡+1 = 𝜃𝑡 + 𝑐0∇𝜃𝑟(𝑤, 𝜃𝑡)/𝑡

and

𝜃′𝑡+1 = 𝜃′𝑡 + 𝑐0∇𝜃𝑟(𝑤
′, 𝜃′𝑡)/𝑡.
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We prove ‖𝜃𝑡−𝜃′𝑡‖ ≤ 𝑡 ℓ
ℓ𝜃𝜃

‖𝑤−𝑤′‖ by induction. For 𝑡 = 0, 𝜃0−𝜃′0 = 0. Assume the induction

hypothesis ‖𝜃𝑡−1 − 𝜃′𝑡−1‖ ≤ (𝑡− 1) ℓ
ℓ𝜃𝜃

‖𝑤 − 𝑤′‖. We have

‖𝜃𝑡 − 𝜃′𝑡‖ = ‖(𝜃𝑡−1 + 𝑐0∇𝜃𝑟(𝑤, 𝜃𝑡−1)/𝑡) − (𝜃′𝑡−1 + 𝑐0∇𝜃𝑟(𝑤, 𝜃
′
𝑡−1)/𝑡) (4.6.12)

+ 𝑐0(∇𝜃𝑟(𝑤, 𝜃
′
𝑡−1) −∇𝜃𝑟(𝑤

′, 𝜃′𝑡−1))/𝑡‖ (4.6.13)

≤ ‖(𝜃𝑡−1 + 𝑐0∇𝜃𝑟(𝑤, 𝜃𝑡−1)/𝑡) − (𝜃′𝑡−1 + 𝑐0∇𝜃𝑟(𝑤, 𝜃
′
𝑡−1)/𝑡)‖ (4.6.14)

+ 𝑐0‖(∇𝜃𝑟(𝑤, 𝜃
′
𝑡−1) −∇𝜃𝑟(𝑤

′, 𝜃′𝑡−1))/𝑡‖ (4.6.15)

≤ (1 + 𝑐0ℓ𝜃𝜃/𝑡)‖𝜃𝑡−1 − 𝜃′𝑡−1‖ + 𝑐0ℓ‖𝑤 − 𝑤′‖/𝑡. (4.6.16)

Here the first inequality follows from the triangle inequality, the second inequality follows

from the ℓ𝜃𝜃−Lipschitz continuity of ∇𝜃𝑟 and ℓ-Lipschitz continuity of ∇𝑟. Therefore, we

have

‖𝜃𝑡 − 𝜃′𝑡‖ ≤ (1 + 𝑐0ℓ𝜃𝜃/𝑡)‖𝜃𝑡−1 − 𝜃′𝑡−1‖ + 𝑐0ℓ‖𝑤 − 𝑤′‖/𝑡.

Let 𝛿𝑡 = ‖𝜃𝑡 − 𝜃′𝑡‖. Then by the above recursion, we have

𝛿𝑡 + ℓ/ℓ𝜃𝜃‖𝑤 − 𝑤′‖ ≤
𝑡∏︁

𝑖=1

(1 + 𝑐0ℓ𝜃𝜃/𝑖)ℓ‖𝑤 − 𝑤′‖/ℓ𝜃𝜃.

Using the inequalities 𝑒𝑎 ≥ 1 + 𝑎 and
∑︀𝑡

𝑖=1 1/𝑖 ≤ log 𝑡, we have

𝛿𝑡 ≤
𝑡ℓ

ℓ𝜃𝜃
‖𝑤 − 𝑤′‖.

Letting 𝑡 = 𝑠 yields

‖𝜃𝛾𝑝 (𝑤) − 𝜃𝛾𝑝 (𝑤′)‖ ≤ 𝑠ℓ

ℓ𝜃𝜃
‖𝑤 − 𝑤′‖.

Since 𝐷𝑝 > 𝛾, we have

𝑠 ≤ [𝐷𝑝/𝛾] + 1 ≤ 2𝐷𝑝/𝛾.

Hence,

𝑠
ℓ

ℓ𝜃𝜃
· 𝛾 ≤ 2𝐷𝑝ℓ/ℓ𝜃𝜃.

Setting 𝜆𝑝 = 2𝐷𝑝ℓ/ℓ𝜃𝜃 yields the desired result.
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Algorithm 8 GDA
Require: initial iterate (𝑤0

𝑆, 𝜃
0
𝑆) = (0, 0), stepsizes 𝛼𝑡, 𝛽𝑡, projection operators 𝑃𝑊 and 𝑃Θ;

1: for 𝑡 = 0, . . . , 𝑇 − 1 do
2: 𝑤𝑡+1

𝑆 = 𝑃𝑊 (𝑤𝑡
𝑆 − 𝛼𝑡∇𝑤𝑟𝑆(𝑤, 𝜃))

3: 𝜃𝑡+1
𝑆 = 𝑃Θ (𝜃𝑡𝑆 + 𝛽𝑡∇𝜃𝑟𝑆(𝑤, 𝜃))

4: end for

Algorithm 9 GDMax
Require: initial iterate (𝑤0

𝑆, 𝜃
0
𝑆) = (0, 0), stepsizes 𝛼𝑡, projection operators 𝑃𝑊 and 𝑃Θ;

1: for 𝑡 = 0, . . . , 𝑇 − 1 do
2: 𝑤𝑡+1

𝑆 = 𝑃𝑊 (𝑤𝑡
𝑆 − 𝛼𝑡∇𝑤𝑟𝑆(𝑤, 𝜃))

3: 𝜃𝑡+1
𝑆 = argmax

𝜃∈Θ
𝑟𝑆(𝑤𝑡+1

𝑆 , 𝜃)

4: end for

Proof of Lemma 3

This is similar to the proof of Lemma 1. We first define the virtual algorithm 𝐴 which outputs

(𝑤𝐴
𝑆 , 𝜃

𝛾
𝑝 (𝑤𝐴

𝑆 )). By Assumption 5, it can be easily seen that 𝐴 is (1 + 𝜆𝑝/𝛾)𝜖-stable. Then by

Theorem 1, we have

𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 , 𝜃

𝛾
𝑝 (𝑤𝐴

𝑆 )) − 𝑟𝑆(𝑤𝐴
𝑆 , 𝜃

𝛾
𝑝 (𝑤𝐴

𝑆 ))] ≤ 𝐿(1 + 𝜆𝑝/𝛾)𝜖.

This gives us:

𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 ) − 𝑟𝑆(𝑤𝐴

𝑆 )] ≤ 𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 , 𝜃

𝛾
𝑝 (𝑤𝐴

𝑆 )) − 𝑟𝑆(𝑤𝐴
𝑆 , 𝜃

𝛾
𝑝 (𝑤𝐴

𝑆 ))] + 𝛾

≤ 𝐿𝜖+ 𝐿𝜆𝑝𝜖/𝛾 + 𝛾.

Taking 𝛾 =
√︀
𝐿𝜆𝑝

√
𝜖, we have

𝜁𝑝𝑔𝑒𝑛(𝐴) ≤ 𝐿𝜖+
√︀
𝐿𝜆𝑝

√
𝜖.
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4.6.4 Proofs in Section 4.4

Proof of Theorem 5

First, we have

𝐸𝑆𝐸𝐴0 [𝑟(𝑤
𝐴0,𝑇
𝑆 ) − min

𝑤∈𝑊
𝑟(𝑤)]

= 𝐸𝑆𝐸𝐴0 [𝑟𝑆(𝑤𝐴0,𝑇
𝑆 ) − min

𝑤∈𝑊
𝑟𝑆(𝑤)] + 𝐸𝑆𝐸𝐴0 [𝑟(𝑤

𝐴0,𝑇
𝑆 ) − 𝑟𝑆(𝑤𝐴0,𝑇

𝑆 )]

+ 𝐸𝑆𝐸𝐴0 [min
𝑤∈𝑊

𝑟𝑆(𝑤) − min
𝑤∈𝑊

𝑟(𝑤)]. (4.6.17)

Furthermore, by Assumption 7 and Theorem 3, we have

𝐸𝑆𝐸𝐴0 [𝑟(𝑤
𝐴0,𝑇
𝑆 )−min

𝑤∈𝑊
𝑟(𝑤)] ≤ (𝜑𝐴0(𝑀𝑤)+𝜑𝐴0(𝐶𝑒(Θ0)))/𝜓𝐴0(𝑇 )+𝜁𝑃𝑔𝑒𝑛(𝐴0)+𝐿*

𝜃𝐶𝑒(Θ0)/
√
𝑛.

Next, notice that the output of 𝐴0 is equal to the output of 𝐴 with probability at least 1 − 𝛿

and ‖𝑟(𝑤)‖ ≤ 1. Therefore, we have

|𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴,𝑇
𝑆 )] − 𝐸𝑆𝐸𝐴0 [𝑟(𝑤

𝐴0,𝑇
𝑆 )]| ≤ 𝛿,

which gives the desired result.

Proof of Lemma 4

Define 𝛿𝑡 = ‖(𝑤𝑡
𝑆, 𝜃

𝑡
𝑆) − (𝑤𝑡

𝑆′ , 𝜃𝑡𝑆′)‖. We have

𝛿𝑡+1 ≤ (1 + 𝑐0ℓ/𝑡)𝛿𝑡 + 2𝑐0𝐿Θ𝐺𝐷𝐴
𝜃

/𝑛𝑡.

Therefore,

𝛿𝑡+1 +
2𝐿Θ𝐺𝐷𝐴

𝜃

ℓ𝑛
≤ (1 + 𝑐0ℓ/𝑡)

(︂
𝛿𝑡 +

2𝐿Θ𝐺𝐷𝐴
𝜃

ℓ𝑛

)︂
≤

2𝐿Θ𝐺𝐷𝐴
𝜃

ℓ𝑛
𝑇 𝑐0ℓ, (4.6.18)

which completes the proof.
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(a) GDA (b) GDMax

Figure 4-1: Comparison of the results on MNIST generated by GDA and GDMax.

Proof of Lemma 5

For a fixed dataset 𝑆, let 𝑔𝑡 = ∇𝑟𝑆(𝑤𝑡, 𝜃𝑡) and 𝑑𝑡 = ‖(𝑤0, 𝜃0) − (𝑤𝑡, 𝜃𝑡)‖. Then we have

𝑔𝑡 ≤ 𝐿0 + 𝑑𝑡ℓ and 𝑑𝑡+1 ≤ 𝑑𝑡 + 𝑐0𝑔𝑡/𝑡. Substituting the first inequality into the second one, we

have

𝑑𝑡+1 ≤ 𝑑𝑡 + 𝑐0𝑑𝑡/𝑡+ 𝐿0𝑐0/𝑡,

which gives us

𝑑𝑡+1 + 𝐿/ℓ ≤ (1 + 𝑐0ℓ/𝑡)(𝑑𝑡 + 𝐿0/ℓ).

Multiplying this inequality from 0 to 𝑇 − 1 yields

𝑑𝑇 ≤ 𝑇 𝑐0ℓ𝐿0/ℓ,

which completes the proof.

Proof of Lemma 6

Let 𝑢 = [1, 1, · · · , 1, 0, · · · , 0]𝑇 ∈ R2𝑛. Then 𝜃𝑆(𝑤) satisfies 𝑄𝑇
𝑆𝜃𝑆(𝑤) = 𝑢 − 𝑏0𝑒, where

𝑒 = [1, 1, · · · , 1]𝑇 ∈ R2𝑛. It can be easily seen that ‖𝑢− 𝑏0𝑒‖ ≥
√
𝑛/2.
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We can also show that 𝜎max(𝑄𝑆) ≤ 2𝜎max ·𝜎max(𝑃 ), where 𝑃 ∈ R2𝑛×𝑚 is full row-rank and

independent rows. Moreover, every row of 𝑃 has covariance matrix 𝐼𝑚/
√
𝑚. Then by random

matrix theory (see [127]), we have 𝜎max(𝑃 ) ≤ 𝒪(
√
𝑚/

√
𝑚−𝐶

√
𝑛/

√
𝑚+log(1/𝛿)/

√
𝑚) = 𝒪(1)

with probability 1 − 𝐶𝛿. Therefore, we have 𝜃𝑆(𝑤) ≥ Ω(
√
𝑛).

4.6.5 Experiments on GAN-training

In this section, we provide some numerical results to corroborate our theoretical findings.

Setup

We train a GAN on MNIST data using two algorithms – GDA and GDMax. Since the

stability is improved by using adaptive methods like Adam, we use Adam-descent-ascent

(ADA) and Adam-descent-max (ADMax) instead. ADA simultaneously trains the generator

and the discriminator, while ADMax trains the optimal discriminator for each generator step.

We simulate this by taking 10 steps of ascent for every descent step. Figure 4-1 plots the

images generated by GANs trained using these two algorithms. Finally, in Figure 4-2, we

plot the norms of the discriminator trained by these two algorithms.

Results

Figure 4-1 plots the images generated by GANs trained using GDA and GDMax (using

Adam instead of the simple gradient step). As predicted by the theory in Section 4.6.4,

we can see that GDA produces better images than the corresponding GAN trained using

GDMax. Furthermore, the claim that 𝐶𝑒 >> 𝐶𝑝 can be seen from Figure 4-2 where we see

that the norm of the discriminator trained using GDMax is much larger than the norm of

the discriminator trained using GDA. This follows from the results in Section 4.4.2. GDMax

trains the discriminator to exactly distinguish between the empirical data generated by

the true and fake distributions. Therefore, when they are nearly the same, their empirical

distributions would be close as well. This would imply that the discriminator would need to

have a very large slope (Lipschitz constant) to exactly distinguish between the two empirical

datasets, and this in turn leads to a large discriminator norm (which captures the Lipschitz
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Figure 4-2: Comparison of the norm squares of discriminator weights.

constant of the discriminator).

4.6.6 Generalization Error for Primal-Dual Risk

If the saddle-point exists, the primal-dual risk is often a good measure of generalization:

Definition 7. [Primal-dual risk] The population and empirical primal-dual (PD) risks are

defined as:

∆𝑃𝐷(𝑤, 𝜃) = max
𝜃′∈Θ

𝑟(𝑤, 𝜃′) − min
𝑤′∈𝑊

𝑟(𝑤′, 𝜃),

and

∆𝑃𝐷
𝑆 (𝑤, 𝜃) = max

𝜃′∈Θ
𝑟𝑆(𝑤, 𝜃′) − min

𝑤′∈𝑊
𝑟𝑆(𝑤′, 𝜃).

A point (𝑤, 𝜃) is called a saddle-point of 𝑟𝑆 (or 𝑟) if ∆𝑃𝐷
𝑆 (𝑤, 𝜃) = 0 (or ∆𝑃𝐷(𝑤, 𝜃) = 0).

Furthermore, if a saddle-point (𝑤𝑆, 𝜃𝑆) exists for 𝑟𝑆(·, ·), we have 𝑤𝑆 = min𝑤∈𝑊 𝑟𝑆(𝑤).

Moreover, if 𝑤𝑆 ∈ arg min𝑤∈𝑊 𝑟𝑆(𝑤) and 𝜃𝑆 ∈ arg max𝜃∈Θ 𝑟𝑆(𝑤𝑆, 𝜃), then (𝑤𝑆, 𝜃𝑆) is a saddle

point of 𝑟𝑆(·, ·).

Notice that if we can find an approximate saddle point (𝑤𝑆, 𝜃𝑆) of 𝑟𝑆(𝑤, 𝜃), i.e.,

∆𝑃𝐷
𝑆 (𝑤𝑆, 𝜃𝑆) < 𝜖 and guarantee that ∆𝑃𝐷(𝑤𝑆, 𝜃𝑆) − ∆𝑃𝐷

𝑆 (𝑤𝑆, 𝜃𝑆) is small, we can guar-

antee that ∆(𝑤𝑆, 𝜃𝑆) is small and therefore (𝑤𝑆, 𝜃𝑆) is an approximate saddle point of 𝑟(·, ·).

Hence if the saddle point exists for 𝑟𝑆(·, ·), the generalization error of the primal-dual risk

can be a good measure for the generalization of the solution to the empirical problem. We

define the expected generalization error for the primal-dual risk as follows:
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Definition 8. The generalization error for the primal-dual risk is defined as

𝜁𝑃𝐷
𝑔𝑒𝑛 (𝐴) = 𝐸𝑆𝐸𝐴[∆𝑃𝐷(𝑤𝐴

𝑆 , 𝜃
𝐴
𝑆 ) − ∆𝑃𝐷

𝑆 (𝑤𝐴
𝑆 , 𝜃

𝐴
𝑆 )].

The generalization of the primal-dual risk for convex-concave problems

Similar to Definition 6, we define the 𝑊 -capacity as follows:

Definition 9 (W-Capacity). Let

𝑊 *(𝜃) = min
𝑤∈𝑊

𝑟(𝑤, 𝜃), and 𝑊𝑆(𝜃) = min
𝑤∈𝑊

𝑟𝑆(𝑤, 𝜃).

The 𝑊 -capacities 𝐶𝑤
𝑒 and 𝐶𝑤

𝑝 are defined as

𝐶𝑤
𝑝 = max

𝜃
dist(0,𝑊 *(𝜃)

𝐶𝑤
𝑒 = max

𝑆,𝜃
dist(0,𝑊𝑆(𝜃)). (4.6.19)

Next, we also define the following:

Definition 10. Let 𝑓−(𝜃, 𝑤; 𝑧) = −𝑓(𝑤, 𝜃; 𝑧). We first have

𝑟−(𝜃, 𝑤) = 𝐸𝑧∼𝑃𝑧 [𝑓
−(𝜃, 𝑤; 𝑧)], 𝑟−𝑆 (𝜃, 𝑤) =

1

𝑛

𝑛∑︁
𝑖=1

𝑓−(𝜃, 𝑤; 𝑧𝑖). (4.6.20)

Furthermore, we define:

𝑟−(𝜃) = max
𝑤∈𝑊

𝑟−(𝜃, 𝑤) = −(min
𝑤∈𝑊

𝑟(𝑤, 𝜃))

𝑟−𝑆 (𝜃) = max
𝑤∈𝑊

𝑟−𝑆 (𝜃, 𝑤) = −(min
𝑤∈𝑊

𝑟𝑆(𝑤, 𝜃)). (4.6.21)

Now, we have the following bound for the generalization error of the primal-dual risk,

𝜁𝑃𝐷
𝑔𝑒𝑛 (𝐴) for an 𝜖-stable Algorithm 𝐴:

Theorem 7. Suppose that Algorithm 𝐴 is 𝜖-stable. The generalization error 𝜁𝑃𝐷
𝑔𝑒𝑛 (𝐴) for
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convex-concave problem, i.e., when 𝑓(·, ·; 𝑧) is convex-concave for all 𝑧, is bounded by:

𝜁𝑃𝐷
𝑔𝑒𝑛 (𝐴) ≤

(︁√︁
4𝐿ℓ𝐶2

𝑝 +
√︁

4𝐿ℓ(𝐶𝑤
𝑝 )2
)︁√

𝜖+ 2𝜖𝐿.

Proof. Notice that

𝜁𝑃𝐷
𝑔𝑒𝑛 (𝐴) = 𝐸𝑆𝐸𝐴[∆𝑃𝐷(𝑤𝐴

𝑆 , 𝜃
𝐴
𝑆 ) − ∆𝑃𝐷

𝑆 (𝑤𝐴
𝑆 , 𝜃

𝐴
𝑆 )] (4.6.22)

= 𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 ) − 𝑟𝑆(𝑤𝐴

𝑆 )] + 𝐸𝑆𝐸𝐴[𝑟−(𝜃𝐴𝑆 ) − 𝑟−𝑆 (𝜃𝐴𝑆 )]. (4.6.23)

The two terms can be bounded by Lemma 1 respectively. By Lemma 1, we have

𝐸𝑆𝐸𝐴[𝑟(𝑤𝐴
𝑆 ) − 𝑟𝑆(𝑤𝐴

𝑆 )] ≤
√︁

4𝐿ℓ𝐶2
𝑝

√
𝜖+ 𝜖𝐿

and

𝐸𝑆𝐸𝐴[𝑟−(𝜃𝐴𝑆 ) − 𝑟−𝑆 (𝜃𝐴𝑆 )] ≤
√︁

4𝐿ℓ(𝐶𝑤
𝑝 )2

√
𝜖+ 𝜖𝐿.

Combining these two inequalities yields the desired result.

𝜁𝑃𝐷
𝑔𝑒𝑛 (𝑇 ) for the proximal point algorithm

In this section, we study the generalization behavior of the proximal point algorithm (PPA)

((See Equation (3) in [43])). By [43], the stability of 𝑇 steps of PPA can be bounded as

follows:

Lemma 14 ([43]). The stability of 𝑇 steps of PPA can be bounded by 𝜖 ≤ 𝒪 (𝑇/𝑛).

Therefore, substituting the result of Lemma 14 in Theorem 7, we have the following bound

for 𝜁𝑔𝑒𝑛 for 𝑇 steps of PPA:

Theorem 8. After 𝑇 steps of PPA, the generalization error of the primal-dual risk can be

bounded by:

𝜁𝑃𝐷
𝑔𝑒𝑛 (𝑇 ) ≤ 𝒪

(︁√︀
𝑇/𝑛+ 𝑇/𝑛

)︁
.
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The population primal-dual risk of PPA

Finally, we give the population primal-dual risk after 𝑇 steps of PPA. By [90], we have the

following convergence result of PPA.

Lemma 15 ([90]). Let (𝑤𝑡
𝑆, 𝜃

𝑡
𝑆) be the iterates obtained after 𝑡 iterations of proximal point

algorithm on the function 𝑟𝑆(·, ·) and 𝑤̄𝑡
𝑆 = 1

𝑡

∑︀𝑡
𝑖=1𝑤

𝑖
𝑆, 𝜃

𝑡
𝑆 = 1

𝑡

∑︀𝑡
𝑖=1 𝜃

𝑖
𝑆 be the averaged

iterates. Then we have

∆𝑃𝐷
𝑆 (𝑤̄𝑇

𝑆 , 𝜃
𝑇
𝑆 ) ≤ ℓ(𝐶2

𝑒 + (𝐶𝑤
𝑒 )2)/𝑇.

Combining Lemma 15 and Theorem 8, we have the following result:

Theorem 9. Let (𝑤𝑡
𝑆, 𝜃

𝑡
𝑆) be the iterates obtained after 𝑡 iterations of proximal point

algorithm on the function 𝑟𝑆(·, ·) and 𝑤̄𝑡
𝑆 = 1

𝑡

∑︀𝑡
𝑖=1𝑤

𝑖
𝑆, 𝜃

𝑡
𝑆 = 1

𝑡

∑︀𝑡
𝑖=1 𝜃

𝑖
𝑆 be the averaged

iterates. Then, the expected population primal-dual risk at the point (𝑤̄𝑡
𝑆, 𝜃

𝑡
𝑆) can be bounded

by:

𝐸𝑆[∆𝑃𝐷(𝑤𝑡
𝑆, 𝜃

𝑡
𝑆)] ≤ 𝒪

(︁
1/𝑇 +

√︀
𝑇/𝑛+ 𝑇/𝑛

)︁
.
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Chapter 5

Conclusions

In this thesis, we study minimax formulations, i.e., we look at problems of the form

min
𝑥∈𝒳

max
𝑦∈𝒴

𝑓(𝑥, 𝑦)

We study two aspects of algorithms that solve these problems - convergence and generalization.

In Chapters 2 and 3 we study the convergence properties of algorithms which solve

this optimization problem. In Chapter 2, we look at the case where the function 𝑓 is

convex-concave. We show that simple algorithms like Gradient-Descent Ascent (GDA) fail

to converge in this setting. Motivated by this, we look at algorithms like the Optimistic

Gradient Descent Ascent (OGDA) and the Extra-Gradient (EG) method and show that these

algorithms in fact converge (at an optimal rate) to the desired solution. The main insight

used is the fact that these algorithms are trying to approximate the Proximal Point (PP)

method, which is a conceptual method that converges at an arbitrarily fast rate. Using this

connection, we establish a unified analysis for OGDA and EG and establish their convergence

in the convex-concave setting.

Next, in Chapter 3 we extend our studies to the nonconvex-nonconcave setting. Finding a

solution to this problem is hard in general. We restrict our attention to the case of zero-sum

games where the policies are parametrized using the softmax parametrization. In this case,

we show that using the ideas of optimism developed in Chapter 2, we, in fact, get optimal

convergence rates to the solution. Several open questions remain in this direction. For
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example, what other ‘non-convexities’ can we handle, i.e, which class of hidden nonconvex-

nonconcave games are tractable? Furthermore, for other classes of nonconvexities, cen we

develop similar ideas to optimism to get the optimal convergence rates? As in most machine

learning applications, the nonconvexties in the loss function arise due to parametrization of

the function class (say using neural networks). Therefore, if we have a handle on how to deal

with such nonconvexities, while exploiting the convexity of the original loss function, we can

hopefully provide tractable algorithms for several machine learning algorithms with provable

guarantees.

Finally, in Chapter 4, we study the generalization behavior of these algorithms. Most ML

applications use a loss function which involve an expectation over the data distribution. Since

we do no have access to this data distribution, we have to settle for the empirical average

over the given dataset. The question we study in this chapter is when is the solution to

the empirical minimax problem a good proxy for the solution to the population problem.

We show that existing metrics like the primal risk and the primal-dual risk are inadequate

and does not capture the generalization performance. We then propose a new metric, the

primal gap, which encapsulates the generalization behavior of minimax learners. We provide

(optimal) generalization bounds for this new metric, and finally use these bounds to compare

the generalization performance of several popular algorithms like GDA and GDMax.
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