
A Pipeline for Synthesizing Action-conditioned
Human Motion from Raw Motion Capture Data

by

Ritaank Tiwari
S.B. in Computer Science and Engineering and Mathematics

Massachusetts Institute of Technology (2022)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© 2023 Ritaank Tiwari. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Ritaank Tiwari
Department of Electrical Engineering and Computer Science
August 18, 2023

Certified by: Praneeth Namburi
Research Scientist
Thesis Supervisor

Certified by: Tony Eng
Senior Lecturer
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee



2



A Pipeline for Synthesizing Action-conditioned Human

Motion from Raw Motion Capture Data

by

Ritaank Tiwari

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In many sports, less-experienced trainees will often draw inspiration from videos of
experts. While this can be an effective tool for improvement, this process lacks the
ability for the trainee to specifically focus on improving their skills based on the
limitations of their current abilities, body type, and weaknesses.

Since sports are very competitive, there exists a need to convert expert movements
to a series of standardizable forms and movements that can then be pedagogically
applied to the differing needs of various trainees: specifically, their different abilities,
body types, and weaknesses.

Effectively, this conversion requires a pipeline that can take an input of motion
capture data, automatically label the markers used, create a skeletal representation,
and then train a machine learning model to accurately synthesize human motion,
conditioned on the action type.

The outputted motions can be rendered for any body type, and could be cus-
tomized to the trainee. The designed pipeline is not fencing specific – it is highly
adaptable to the nature of the data or sport, robust to errors and noise, as well as
tightly integrated in an easy-to-use library.

Thesis Supervisor: Praneeth Namburi
Title: Research Scientist

Thesis Supervisor: Tony Eng
Title: Senior Lecturer
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Chapter 1

Introduction

Motion capture refers to a set of technologies to record the movement of people

or objects in an accurate way such that the recorded data can be imported into a

computer, visualized, and manipulated. The use cases are broad, from animation,

gaming, and movie-making, to sports, virtual reality (VR), and augmented reality

(AR) experiences. With the growth of AI and virtual reality, this market is expected

to grow from $180 million dollars in 2022 to $600 million dollars by the year 2030

[15]. Our research focuses on the use of motion capture data in the context of sports,

specifically fencing, with the end goal of improving the process of athlete practice.

1.1 Motivation

Less-experienced athletes often draw inspiration from videos of experts, whose move-

ments have evolved through several stages of refinement. There are several prob-

lems with this destination-oriented approach. Copying the movements of experienced

athletes before the requisite abilities and skills have developed can increase (1) the

predisposition to injury, (2) the development of poor technique, and (3) an overall

delay in the learning process due to learnt bad habits. Practice does not make perfect

– practice makes permanent. Furthermore, videos often occlude important aspects

of the movement, as their perspective is limited. Even multi-camera setups, such as

those in professional sports leagues, face this limitation [5].

13



1.2 Preliminary Work

We are using sports fencing as the medium for tackling the above problems. Prelim-

inary work done by the MIT.nano Immersion Lab suggests that self-paced fencing

practice conducted in an immersive environment can improve athlete training and

response. An immersive environment refers to the use of extended reality, or XR for

short. Extended reality is a blanket term covering all interactions of the real and

the virtual, including AR and VR. In this preliminary work, a fencing trainee was

subjected to three experimental conditions. In the first, the trainee watches a video

demonstration of a move and then replicates it from memory. In the second, the

trainee mimics the action concurrently with the video demonstration. And in the

third, the trainee wears a virtual reality headset and mimics a demonstrator perform-

ing the move in virtual reality. The sequence of these conditions was randomized.

An empirical analysis of the motion data conducted by fencing coaches led to the

conclusion that the movements in the VR condition were more compact and consis-

tent, more closely recreating the demonstrator’s movement. Figure 1-1 summarizes

the experiment and visualizes the results [5]. Figure 1-1, panel (d), shows, in purple,

the trace of the sword tip through 3D space from the beginning to the end of the

movement. The white figure on the left represents the subject in the ready position.

Panel (e) shows the trajectories of the tip again, this time split according to the

experimental condition, from the subject’s horizontal point of view. Left to right,

these modalities are replicating video, mimicking video, and mimicking VR. Here,

the idea of ’compactness’ can be seen, with the tip having much less displacement in

the right-most (green) data. Panel (f) shows a birds-eye view of the same data as (e)

[5].

This experiment indicates the value of immersive experiences in athlete training.

In some ways, this is not surprising, as the VR experience creates a realistic, multidi-

mensional, and unoccluded view of the demonstrator, especially since the subject is

free to move around in the virtual world and view the demonstrator from all angles.

Figure 1-2 depicts the immersed VR view which is shown through the headset [17].
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1.3 Thesis Objective

The goal is to build a pipeline that leverages existing generative modeling techniques

to train a model that can return synthetic, action-conditioned human body motions

that match the subject’s body type. To train this model, we collect training data

of fencing movement, process it, compress it, and then train a generative modeling

architecture.

It may appear that simply recording data of many different fencing actions, each

performed across different skill levels, and replaying them to the trainee as requested

could be a simpler solution to having custom-generated actions. However, such an

approach has several limitations, many of which we have mentioned above: it fails to

factor in body types, expertise levels, and trainee weaknesses. The inherent random-

ness of the generative model aligns with the stochasticity of fencing. Additionally, the

architecture we use allows us to match the generated motion to the subject’s specific

body proportions, providing a much more realistic view of the action for the trainee.

The actual human testing of this synthetic training data and an associated evaluation

of learning is beyond the scope of this thesis; we focus on building the pipeline for

such experimentation to be done in the future.

We must briefly introduce some understanding and vocabulary to better discuss

our objectives. In motion capture, data collection is performed by placing small

markers on the subject’s body, which a multi-camera system is then able to track in

real-time to capture the data. These markers are small orbs which reflect the infrared

light emitted by the infrared tracking cameras. Motion capture data can be collected

in primarily two ways: with active markers or passive markers. In both approaches,

markers are physically attached to the body at key joints and positions so that the

key aspects of the subject’s body and movement are recorded. In the OptiTrack [6]

system in the Immersion Lab, a calibrated, multi-camera system emits infrared light

which reflects off the markers to inform the camera system of the marker’s exact

location. In an active marker system, each marker has its own power source, which

can in turn power an LED so that each marker flashes with a unique pattern. Thus,
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the recorded data on an active system inherently knows which marker is which

(called a marker label), as opposed to a passive system. If there is a marker on a

subject’s hand, and the subject puts that hand in a pocket, and then removes it some

time later, the active system can recognize it as the same marker from before, whereas

the passive system cannot.

In the passive (unlabeled) system, collected data is essentially represented as a

vector of shape 𝐹,𝑀, 3 (number of frames by number of markers with an 𝑥, 𝑦, 𝑧

coordinate to represent each marker through time. This unlabeled data is often

called raw, or referred to as a mocap point cloud (MPC).

1. Our pipeline shall be fully end-to-end from data recording to motion synthesis.

This objective basically states the core work of the thesis. From some raw mo-

tion capture data, we build a pipeline combining many radically different com-

ponents: marker-labeling (labeling the markers with their associated body part

automatically), body-solving (determining the actual shape and orientation of

the human body from a cloud of markers), post-processing and data-alignment,

followed by the training of generative models. To be clear, this work does not

introduce a new model architecture for this objective. Instead, we leverage the

state-of-the-art architectures, and build interfacing, preprocessing, and postpro-

cessing between each often-disparate module to allow for a smooth data flow,

all the way from the point of data capture to the generation of synthetic mo-

tion (also called motion synthesis). The first half of the pipeline for automatic

labeling solves a huge pain point in the lab to label data captures, which are

currently done by hand.

2. Our pipeline shall be intuitive and easy to use.

The MIT.nano Immersion Lab attracts scientists and engineers of all disci-

plines, with unique strengths and skills. Thus, the key functions of our designed

pipeline must be intuitive to use and well-documented. Tools such as DeepLab-

Cut [12] are widely popular in pose estimation in motion research for their low

barrier of entry and their intuitive interface. We aim for a similar ease of use.
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3. Our pipeline shall be robust to all types of human motion data, whether the

markers are labeled or not, as well as the inherent noise in the data as well.

After data is collected, marker labeling takes place, which refers to the pro-

cess of manually analyzing the data and assigning part-of-body labels to each

marker for all the frames. Existing software does simplify this process some-

what, but even still, marker labeling remains a key pain point of the lab, as it

is a prerequisite for the analysis of almost all data that the lab collects. Auto-

matic labeling tools exist, but they lack accuracy and robustness in cases where

a specific marker falls off or is occluded. We design our pipeline to be able to

both process already-labeled data, as well as automatically label if needed using

the SOMA architecture [2]. We design this pipeline with fencing pedagogy in

mind, but it shall work with all types of human motion data. Furthermore,

the pipeline we construct is robust to the noise and inevitable inaccuracies in

the motion capture data collection process. This is a result of a combination of

using already robust architectures as well as intelligent interprocessing.
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Figure 1-1: Experimental approach: (a), (b), and (c) show the three different modal-
ities: watching then replicating on video, mimicking video, and mimicking in VR.
Section (d) shows a connected body and sword with the tip trajectories overlayed. In
(e) and (f) we see two different views of the same data, going left to right are datasets
from setup (a), (b), and (c) respectively. We see that (c) shows data which is both
more precise and accurate [5].
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Figure 1-2: The view of the demonstrator through the VR headset, flattened into an
image.
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Chapter 2

Background

In this section, we will explain the key related works and modeling approaches that

our work implements and extends. Namely, we introduce SMPL [9], a realistic 3D

model of the human body, which is able to express a rich human body from a small set

of parameters. We later introduce the variational autoencoder (VAE) [8], a generative

model which learns to mimick the input data passed in. We use the SMPL body model

extensively to represent our motion capture data, especially since its representation

is particularly appreciated by the VAE.

2.1 Body Modeling

A human body model refers to some framework for representing the human body in a

simplified way. The ultimate goal is to have a rendered mesh of the human body that

can move/be controlled by changing just a few parameters. Rendered meshes contain

thousands of vertices, and as such, a simplified representation is a highly effective

way to compress and represent the body. A simple example could be a body model

which represents a human body as a stick figure skeleton, which calculates a mesh

around the skeleton by calculating each vertex position relative to the skeleton joints

near it. This approach is not far from Linear-blend skinning (LBS), a key aspect of

the SMPL model, which we describe below.
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2.1.1 Linear-blend Skinning

LBS goes by many names: smooth skinning, blended skinning, and sometimes just

skinning. Skinning is simply a method for calculating a mapping between rigid joints

and a surface – like a human skeleton and skin. It is the basis of all animation

rendering, allowing a complex mesh to be controlled by a simple set of underlying

joints. In smooth skinning, each surface vertex of the mesh can be connected to

multiple joints, with different weights associated to each joint. For example, the

vertices in the forearm are simultaneously affected both by the elbow and wrist. A

logical assumption is that vertices closer to the wrist attribute a higher weight to

the wrist, and vice versa. This is the assumption made in LBS, and the final vertex

position is calculated as a linear combination of the weights of the related joints.

One final piece of this puzzle is the template pose 𝑇 , which contains the information

on the default relationship between surface vertex and underlying joints. The linear

combination of the template pose, as well as the weights of related joints, is where

the name linear-blend skinning originates.

Let 𝑁 be the number of vertices, and 𝐾 be the number of joints in our underlying

skeleton. As the body moves, the joint locations and rotations of the underlying

skeleton change. The exact parameters of linear-blend skinning are:

1. Blend skinning weights 𝑊 ∈ R𝑁×𝐾

2. Joint locations 𝐽 ∈ 𝑅3𝐾

3. Joint rotations 𝜃 ∈ R3𝐾

4. Mesh vertices in the template pose: 𝑇 ∈ R𝑁×𝐾 .

As a final note, LBS uses a kinematic tree to relate the joints in the skeleton

together. As such, each joint in the tree has exactly one parent joint, and child joints

(unless it is a terminus). The SMPL kinematic tree can be seen in Figure 2-2, with

branches coming out of the pelvis, which is the root joint in this construction. As

such, the joint rotations 𝜃 stores each rotation relative to its parent. Thus, the final
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skinning process involves a recursive calculation up the kinematic tree, to first find

a global orientation for any given joint. These rotations, along with locations, the

default mesh, and blending weights are passed into LBS to produce a mesh from the

base skeleton representation.

As a final note, a drawback of the LBS algorithm does not include any under-

standing of how a human body is constructed – it simply strives to create a smooth

mesh from calculations of linear combinations. Human body deforms in different

ways, many of which cannot be represented by the stick-figure skeleton representa-

tion of the human body. Consider for example the widening of the hips when a human

attempts the splits. Without considering these unique aspects of the human body,

the LBS algorithm can have many strange artifacts, with one of the most well-known

being the candy-wrapper effect [20] as shown in Figure 2-1.

Figure 2-1: At joint intersections, linear blend skinning, although creating a smooth
vertex mesh, can create completely unrealistic outputs. Pictured is the popular candy-
wrapper effect [20].

2.1.2 SMPL

SMPL improves on the key shortcomings of LBS, while also extending the body

model to include all kinds of human body shapes and types. Where previously the
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parameters 𝑊 , 𝑎𝑛𝑑𝑇 would need to be manually crafted per subject in LBS, SMPL

uses a condensed set of 10 shape parameters, collectively known as 𝛽, which are able

to represent just about every realistic body shape possible.

At the high level, the SMPL model is additive by nature. It does not replace the

LBS approach – instead, the formulation adds corrective components that combine

with the existing LBS approach to prevent the candy wrapper effect, represent a

variety of human shapes and sizes, and form more realistic outputs. Specifically, the

SMPL model maps 23 joint rotations (24 after including the global rotation), as well as

10 shape parameters (𝛽 to an output mesh of 6890 vertex locations. The 6890 vertices

form a mesh of the human body being represented. The joint rotations effectively

capture the subject’s unique pose, and are thus also called the pose vector, referred

to as 𝜃. 𝜃 represents rotations in axis-angle notation, which requires 3 parameters

for a rotation. This gives (24) * 3 = 72 parameters required to represent pose 𝜃, and

10 parameters for the body shape 𝛽. Figure 2-2 shows a graphical representation

of the SMPL joints underneath a mesh [4] [9]. SMPL incorporates this construction

with a set of three pre-trained models (for the male, female, and neutral body). This

pre-trained model takes 𝜃 and 𝛽 as input, performs skinning, and outputs a result

mesh.

One of the key innovations in the SMPL model is that it is an additive model.

We mentioned above that SMPL adds corrective components that are combined with

the LBS skinning approach to be more realistic to the actual human body. One of

those corrective components we have already introduced: 𝛽, which adds a correction

for the specific shape and proportions of the body we wish to render.

Shape Blend Shapes:

Shape blend shapes modify the template mesh to encode the different body shapes

that people have. Principal component analysis (PCA) was performed on shape dis-

placements on a dataset of individuals of varying shapes, and the SMPL model uses

the 10 most significant principal components to represent the different shapes. These

parameters are referred to as 𝛽. These betas are human-interpretable, with the first

𝛽 parameter primarily modifying height proportionally. Other 𝛽 values affect hips,
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waist, chest, limbs, and their proportion. It is possible to use more than 10 𝛽 val-

ues, as the shape blend shapes are calculated as a simple linear combination of the

given 𝛽 values for an individual with the matrix of principal components of shape

displacements. SMPL picks 10, as their PCA analysis showed that an overwhelm-

ing majority of the variations in body shape could be represented in the 10 largest

principal components.

Pose Blend Shapes:

Pose blend shapes solve the candy-wrapper problem as described above. These

pose blend shapes effectively act as a correction between the rough skeleton approx-

imation of the human body to a more realistic one. For example, a subject doing

the splits would receive a pose blend correction in the hips to widen them, better

representing the human body. The parameters of the pose blend shape function are

learned from datasets of high-resolution scans containing subjects who each perform

many poses; the specifics of how these were learned can be found in [9]. Importantly,

the template position (noted 𝜃*) has no contribution of pose blend shapes, as there is

nothing to correct – it is the standard position. From another perspective, the mesh

vertices in the template pose (noted 𝑇 ) represent a form of a pose-blend shape for

the template pose. LBS does the erroneous assumption that the shape mapping stays

the same through all poses, instead of it being pose-dependent. In conclusion, the

corrective blend shapes add on to the template mesh 𝑇 to deviate the template mesh

for higher accuracy.

The combined process of the SMPL algorithm can be seen in Figure 2-3. This is

a very powerful visualization. It shows the template mesh on the left, and moving

to the right shows progressive SMPL corrections which are added in. In the second

mesh, we add in shape blend shapes from 𝛽. The third image incorporates pose blend

shapes 𝐵𝑃 , and finally, the modified mesh is skinned. In this graphic, dual-quaternion

blend skinning is used, which is interchangeable with LBS. The skinning algorithm

takes the modified additive mesh and outputs the final vertex locations.

SMPL offers an intuitive model to represent human motion in a unified and com-

pressed way. This model framework is key to enabling our pipeline. To conclude,
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using the pre-trained SMPL models, with an input of 𝜃 and 𝛽, a global root rotation,

and an optional global translation, we can generate a realistic mesh of a body in the

desired pose.

2.2 Variational Autoencoders

The VAE forms the backbone of the generative modeling architecture we employ

in our pipeline. Essentially, the VAE takes in input data, and learns a process to

generate new data similar to the inputted data. It does so by numerically extracting

the key properties of the input data, and then generating new random data which

is still grounded in those same extracted properties. The connection between the

VAE and SMPL is as follows: we will be passing human motion (fencing) data,

represented as SMPL parameters, into the VAE for training. As a result, the VAE

will output parameters in the SMPL space, which we can then use in turn to easily

render realistic human movement meshes of bodies performing fencing actions. The

SMPL body model gives us a compressed and noise-resistant parameterization of

motion, and this ends up being critical for the VAE to learn a good representation.

To understand variational autoencoders, we must first review the autoencoder

which it is based on. Autoencoders are an approach to representation learning by

compression. In an autoencoder, we take some input 𝑥 and pass it through an encoder,

𝑓 which is a feedforward network that maps to some compressed latent representation

𝑓(𝑥). This latent representation is then passed into a decoder 𝑔, typically a mirror of

the encoder, outputting a vector that is the same shape as 𝑥. We call this output 𝑥′,

so 𝑥′ = 𝑔(𝑓(𝑥)).

The autoencoder then compares 𝑥′ to 𝑥, and their difference is known as recon-

struction loss. The decoder determines if the compressed latent representation still

contains enough important information of 𝑥’s data such that we can extract a repre-

sentation close enough to 𝑥 from the latent. This indicates a ’good’ compression. The

training process is fully self-supervised, as no ground truth labels are needed, and the

weights for both the encoder and decoder are learned. After training, if successful,

26



the encoder 𝑓 gives an effective compression of data. The goal of an autoencoder is

to learn a good latent representation. If the latent encoded representation 𝑓(𝑥) is not

expressive or large enough to encode the whole input, then the reconstruction loss

will be high. The autoencoder will also fail to be effective if the layers of encoding

(and decoding) are not effective in helping to extract the essence of the input. This

reconstruction loss objective takes an 𝐿2 norm, and can be expressed as:

𝑓*, 𝑔* = argmin
𝑓,𝑔

E𝑥||𝑥− 𝑔(𝑓(𝑥))||22.

It might appear that by using the decoder, we could effectively generate new

samples of data by inputting a random latent value into the decoder. In a normal

autoencoder, this isn’t quite possible, since the latent space is not necessarily dense:

there are likely many possible latent values that decode to jumbled-up garbage. To

truly be able to sample from the latent space, it must be dense, meaning the architec-

ture must be encouraged to tighten the distribution of this latent space. Figure 2-4

[16] shows the difference between a sparse and dense latent space. The variational au-

toencoder (VAE), introduced by Kingma and Welling in 2013 [8], solves this problem.

Essentially, VAEs modify the objective to learn latent variables which are the means

𝜇 and the standard deviations 𝜎 of a mixture of Gaussians. The number of Gaussians

is a hyperparameter 𝑑, representing the size of our latent space, and in many cases

we might just have 𝑑 = 1. Effectively, this architecture encourages the encoder to

work in such a way that it produces and fills a set of Gaussian distributions.

Filling the distribution is important to create a dense latent space, and the only

way to force the dense filling of the whole distribution is to add a stochastic element

in between encoding and decoding. Otherwise, the architecture will learn pathways

for specific sets of 𝜇 and 𝜎 only, with ’garbage’ being outputted for the rest of the

values on the distribution. However, simple stochastic sampling makes the VAE non-

differentiable, so a reparameterization trick is used. The reparameterization trick

replaces simply sampling from a distribution, noted as 𝑧 ∼ 𝒩 (𝜇, 𝜎2), which is non-

differentiable, with a differentiable 𝑧 = 𝜇+𝜎⊙𝜖. We create a new variable 𝜖 ∼ 𝒩 (0, 1),
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and element-wise multiply it with our encoded 𝜎. The ⊙ represents element-wide

multiplication. If we now consider backpropagation, the gradient will not be able to

do a backward pass through 𝜖, but we are indifferent, as we only need gradients to flow

through 𝜇 and 𝜎 to train the encoder effectively. Our trick allows a stochastic input

into our decoder, while keeping all stochasticity inside the noise variable 𝜖, making

our network differentiable once again.

Variational autoencoders include the same reconstruction loss as autoencoders,

but they also introduce a new loss to manage the forming of the latent distribution.

Specifically, we assume that every one of our 𝑑 latent Gaussians will be centered

around 0 with constant variance 1. We thus penalize per dimension 𝑑 to punish any

deviation of the latent distribution from this assumption. Such an assumption allows

us to safely sample the latent space upon successful training as we know the expected

means and variances. We use Kullback-Leibler divergence to calculate the divergence

between distributions, and formulate the KL-loss as follows:

𝐷∑︁
𝑑=1

(𝜇2
𝑑 + 𝜎2

𝑑 − log 𝜎𝑑 − 1).

Combining the KL and reconstruction loss creates an effective loss function for the

variational autoencoder. A successfully trained VAE allows us to randomly sample

from the latent space and receive well-formed, synthetic, decoded outputs that are

very similar to our input data. Using fencing data represented in SMPL parameters,

we can train our VAE. The VAE can then be sampled to generate new, synthetic,

motions of the fencing actions which the VAE was trained on. To be clear, an action

refers to a concept in fencing, such as a lunge, or an advance, whereas a motion refers

to data (either recorded or synthetically generated) of a body performing an action.

With this high-level understanding clear, we will now discuss the precise methodology

of the steps in the pipeline.
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Figure 2-2: The 23 joints of SMPL, shown underneath a rendered mesh. The root
vertex can be seen around the waist, and it represents the global rotation of the
body in the coordinate system. It is important to note that only the joint rotations
are inputted into SMPL, not the 3d locations. The distances between joints for a
specific rendered mesh are determined by the 𝛽 parameters, which affect the shape
and proportions. Figure from [4].
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Figure 2-3: Figure from the original SMPL paper [9]. The template mesh is in (a). In
(b), we see the mesh change in terms of proportion as by 𝛽. In (c) the pose-specific
changes are introduced. Notice the hips are wider to match the wide-legged acrobatic
pose the subject is performing. Where (b) stays the same for the subject, (c) changes
in each pose vector 𝜃. Finally, the modified mesh is skinned and vertices rendered.

Figure 2-4: An unregularized latent space (left) vs. a regularized one (right). In this
example, the latent spaces encode information about specific shapes, but sampling
the space in between produces garbage. By regularizing the latent space, we ensure
that any random value passed into the decoder results in a meaningful generation.
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Chapter 3

Methodology

We seek to build an end-to-end, intuitive system for processing raw motion capture

data into a unified body model through which generative models can be trained

and conditioned motions synthesized. We will walk through each component of the

pipeline individually. At a high level, we want to do the following:

1. auto-label the markers to their respective locations on the body,

2. extract SMPL parameters for each movement using the labeled markers (called

’solving the body’), and

3. pass a compressed representation of our SMPL parameters into a VAE which

can learn a generative action-conditioned distribution.

We implement a modified VAE construction, known as a conditional VAE [18]

– one which we can pass the desired action type into the decoder. More on this

architecture can be found in Section 3.5. The overarching flow of the pipeline can be

seen in Figure 3-1.

This chapter follows the full life cycle of our data, from the point of data capture

all the way to the generation of synthetic motions. The chapter is organized to desribe

the pipeline and also provide brief overviews of the processing modules themselves.

The three major sections match the three key components of the pipeline enumerated

above.
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3.1 Data Collection

The story starts with collecting raw data. The Immersion Lab houses a complete

OptiTrack [6] optical motion capture system, capable of high-accuracy passive motion

capture at up to 240fps. Motion Capture data is recorded by applying passive markers

according to a specific layout on the body, followed by calibration and recording. After

the data is recorded, it can be replayed and even labeled via the OptiTrack Motive

software [7]. Data is usually extensively labeled by hand, matching the marker to

its label name frame-by-frame. Motive contains a built-in proprietary skeletal solver,

however, the values of this solved skeleton are not allowed to be exported into other

use cases.

3.2 Data Preprocessing

Our goal is to convert our motion capture marker data into SMPL parameters, to give

us a unified, compressed representation of our motion capture data. It is from these

SMPL parameters that further generative modeling is possible. In data collection,

data is recorded in long ‘takes’, and the subject typically performs multiple actions,

even different kinds of actions, in each such take. Thus, the only manual part of our

pipeline involves the labeling of actions by start and end timestamp. Our pipeline is

robust to minor inaccuracies in this labeling process.

The preprocessing step consists of modules to export our data from OptiTrack,

split the takes into files per individual action, and otherwise process the data to

be easily ingested by SOMA. We use the SOMA [2] architecture then automatically

labels the markers of our raw motion capture clouds.

3.3 SOMA Auto-labeling

As stated, our data is collected with passive markers. In a passive system, each marker

simply reflects infrared light so that a camera system can track its location in 3D.

Thus, if a marker is occluded, and then re-appears, the system cannot intrinsically
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know that it is the same marker. This raw data from a passive motion capture system

is often called a mocap point cloud (MPC).

The SOMA model can take inputs of MPCs, which are naturally noisy and often

occlusion-filled, and label the markers without calibration or any other input data.

This problem can be accurately described by Figure 3-2. Even though our data is

unlabeled, in many cases, a marker can be tracked over a local interval of time. These

tracked intervals are known as tracklets, representing a consistent marker through

frames. The smallest ’tracklet’ for technical completeness is only one frame long.

However, in the event of an occlusion or a tight movement that creates ambiguity,

the tracklet ends. The next time that same marker can be tracked, a new tracklet

is created for it, as it is now recognized as separate from the tracklet which ended

earlier. Thus our input MPC is converted to a series of many unmatched, unlabeled

tracklets. The only upper bound on the number of disjoint tracklets a marker may

form is the total number of frames itself (one tracklet per frame). SOMA performs

two main steps, first finding correspondence between tracklets, and then combining

matched tracklets and providing a part-of-body label.

3.3.1 Multi-headed Self-attention

We have just described a difficult problem. From an unlabeled point cloud, made

up of disjoint tracklets, how do we even find correspondences between the different

tracklets attributed to each marker, much less know that a specific marker refers to

the left tibia? The key to understanding this comes from SOMA’s attention-based

Transformer approach [19]. We provide a high-level overview below.

Self-attention allows individual components of the data to interact with each other

to improve their "self-understanding". This technique was first implemented in lan-

guage translation to allow words in a sentence to improve their own embeddings based

on specific important words around them. For our situation, our ‘words’ are the indi-

vidual markers, and the sentence is the body. Imagine the situation where some raw

marker understands that its own location is highly dependent on the locations

of a few markers, all of which are above the ground, and all located to the right of the
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point cloud center. This marker has just effectively understood that it is somewhere

on the right arm!

The technical implementation involves learning key, query, and value matrices

which help each data point understand exactly which other markers relate to it the

best. Over time, a set of key, query, and value matrices may become good at finding

a specific type of dependency. Each set of key, query, and value matrices forms an

attention head. To learn multiple inter-dependencies in the data, multiple heads are

used in parallel, with each head initialized to random values to encourage diversifica-

tion. In a Transformer, these attention heads are applied layer by layer, repeatedly

onto the data. At the deeper layers, the essence of the inter dependencies eventually

filters through.

Figure 3-3 shows the effects of attention from the first layer (top) to the deepest

layer (bottom). Here, a random attention head is sampled over 50 frames of the input,

and the weight averages are pooled. We see the head closely finds association with

the spine, the hand with the shoulder and arm, and the toe with the leg. The square

indicates the marker of interest whose attention graph is being depicted. From left

to right, this marker is on the head, the right wrist, and the right toe.

After the self-attention re-weights the markers, an optimal transport layer enforces

constraints on the body, as well as constraints between mapping the labels to the

markers. This layer outputs the final marker assignments. This is made possible

by using a pre-trained model which is trained on a ’superset’ of 89 potential marker

locations. This superset is able to accurately label markers if they are placed in one

of the 89 spots that it understands. The full extent of the training details, as well as

a description of the optimal transport layer, can be found in the SOMA paper [2]

Currently, the Immersion Lab hand labels the markers for much of the collected

motion capture data. This easy-to-use SOMA integration solves a large pain point, as

labeled data lends itself to many kinds of kinematic analyses beyond simply the use

case of our pipeline. In cases where the collected data is already labeled, we expose

an easy-to-use interface that can be called to skip SOMA and process the existing

label data into the correct formats as well. See the branch in Figure 3-1.
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While marker-labeling is very powerful by itself, our goal lies ultimately in body-

solving: extracting the SMPL parameters of shape 𝛽 and pose 𝜃 for each action. For

this, we use MoSh++ [11], a robust SMPL skeletal solver for labeled mocap data.

3.4 Skeletal Solving

MoSh++ [11] extends the previous MoSh model [10] to output solve bodies for SMPL

shape parameters 𝛽 and pose parameters 𝜃. At a high level, this is done in a two-

step, loss-minimizing way. We want to minimize vertex-to-vertex loss between our

given markers and the parameterized model we are hoping to fit. For given labeled

𝑁 markers and locations, with some guess of SMPL parameters 𝜃 and 𝛽, the pre-

trained SMPL model is fed the parameters to generate the guess mesh. MoSh++

then simulates the same 𝑁 markers on this mesh at their known locations. All 89

markers from the ’superset’ SOMA model are known and understood by MoSh++.

The loss is calculated as a function of the distance between these simulated markers

on our guessed SMPL body with the actual marker locations in the labeled motion

capture.

In the first step, we solve for 𝛽 values, which represent the subject’s proportions,

height, hips, limbs, etc. This is done by taking 12 random frames from the motion

capture data per subject, and optimizing each frame with its own 𝜃 (pose parameters)

and a shared 𝛽. This process includes many improvements to prevent local minima

and ensure that an optimal 𝛽 which represents the subject’s true shape parameters

is learned.

In the second step, the 𝛽 values are held constant, and the model iterates through

the capture, minimizing the loss due to 𝜃. This optimization includes a pose prior,

which acts as a grounding to ensure the resulting pose values are well-formed and

constrained to realistic motion, as well as a temporal smoothness factor to reduce

jitter between poses, ultimately acting as a continuous pose prior through time.

Figure 3-4 shows a resulting frame from an unlabeled dataset processed with

SOMA and MoSh++. The markers represent the raw data, and the mesh is the
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SMPL-parameterized fit.

3.5 Generative Modeling

With our action classes and SMPL parameterization, we are now ready for generative

modeling. We follow the architecture described in ACTOR [14] by Petrovich et. al.,

who train an action-conditioned Transformer VAE for human motion synthesis. We

introduced the VAE architecture in Section 2.2. This architecture combines the VAE

loss objective with the Transformer architecture, with the Transformer being used as

both the encoder and decoder. The Transformer is essentially made up of many layers

of self-attention, which we describe in Section 3.3.1. The downside of self-attention

is that the attention heads have no knowledge of the order of input sequences – each

embedded token (in our case, frame) is compared to other tokens, completely naive

to the token’s position. While this worked well in SOMA, as we were attending

over all of our tracklets, which did not have any order, here, we are dealing with

a sequential motion. Order does matter. ACTOR uses the solution defined in the

Transformer paper [19] points to use a sinusoidal positional embedding added to each

token’s embedding (using addition so as to be differentiable) to indicate a position in

the sequence.

As described in ACTOR’s architecture, we add two [class] tokens at the start of

our embedding into our encoder, one for 𝜇, and one for 𝜎, containing the means and

standard deviations for our multi-Gaussian latent space, respectively. These [class]

tokens follow the idea in BERT [1], allowing the attention heads to learn the desired

values of 𝜇 and 𝜎, and this contrasts the vanilla VAE we described in Section 2.2.

In the basic VAE, the last layer of the encoder is a fully connected layer to outputs,

which essentially averages or pools the layer into 𝜇 and 𝜎 values. The two [class]

tokens operate in the same way as an aggregator of the encoder. Notably, these

class tokens encourage the use of attention in the pooling process itself, as the 𝜇

and 𝜎 values are now attended to by the encoder architecture, rather than simply

being an average over attention heads. Beyond this, the final modification involves

36



the incorporation of the action label token in both the encoder and decoder to learn

a conditioned VAE [18]. To do this, the model learns a bias term for each action

label which is incorporated upon decoding to essentially shift the location of latent

sampling into the specific distribution space that is learned for the given action label.

Thus, for synthesis, the decoder acts as a generator, taking input of time infor-

mation 𝑇 , the number of generated frames desired, and an action label. Figure 3-5

shows the full VAE architecture described in the ACTOR paper.

Our pipeline postprocesses the MoSh++ outputs to prepare the data for training

in the VAE model. Following guidance from ACTOR, this includes pose alignment,

file conversion, downsampling and serialization.
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Figure 3-1: Our end-to-end pipeline, starting from the data collection, and ending
with synthesized motions.
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Figure 3-2: Showing the two key steps of SOMA. The inputted data is formed of many
disjoint tracklets, visualized in the top section in grey. The x-axis represents time, and
the y-axis represents tracklets of markers. In the first step, the matching tracklets
are identified. This is visualized in the middle section, where matching colors are
applied to different tracklets which represent the same marker. Then, these matching
tracklets are combined robustly to handle occlusions. Gaps in the tracklet data are
representative of occlusions (no data recorded). The final step involves assigning a
label name to each marker for the part of the body (not pictured). Figure from the
SOMA paper [2].
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Figure 3-3: The red square highlights the marker whose attention weights are shown.
The background meshes show the first attention layer, and we can see the deepest
layer in the foreground. The attention is much more sparse at the deepest layer, as
the key essence of the inter dependencies have been understood. Figure from the
SOMA paper [2].
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Figure 3-4: Visualized SMPL mesh from a raw motion capture cloud processed with
SOMA and the MoSh++. Figure from the SOMA paper [2].

Figure 3-5: The action-conditioned Transformer VAE architecture as described in
[14]. Note the [class] tokens which are initialized from the sequence’s action label.
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Chapter 4

Dataset

With our pipeline explained, we will now provide an overview of the data that we will

pass through this pipeline and train generative models on. While our framework is

robust to all kinds of sports and action data, our motivation comes from the goal of

building a system to improve fencing pedagogy. As such, we use a dataset collected

in the Immersion Lab, whose collection was led by Enya Ryu [17]. We assisted in

the collection and analysis of this data as needed. This dataset contains 30 subjects,

who are all explicitly beginners to fencing, with the goal of analyzing the effects of

various XR technologies on motor learning. As such, the subjects are subjected to

various learning modalities, with the task of mimicking the movements of a rendered

avatar. The modalities include full virtual reality, augmented reality, 2D video, 360-

degree video, and memory (no avatar). These modalities were created using the

Varjo XR3 [13] headset, which the subjects wore throughout the experiment as they

replicated the fencing actions. Thus, the data collected is from fencing beginners

who are performing actions while wearing a VR headset and tracked with full-body

markers. Figure 4-1 shows screenshots from four of the five modalities, with memory

not pictured as it contains no demonstrator. Again, the modalities are randomized

per subject to lower confounding variables.

Figure 4-2 depicts a visual of the marker placements, with markers added to the

fencing sword as well. It is important to note that our body modeling framework

only models the body, and not the sword data directly. Thus, the sword data is not
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Figure 4-1: Each of the modalities presented to the subjects in the data collection
process. The fifth modality, memory has no demonstration. From [17].

passed into the generative architecture. It is possible to infer the sword position and

orientation relative to the hand and wrist positions and rotations of the weapon arm.

Though the dataset collects data from beginners, it contains a rich set of thousands

of actions in multiple classes for us to train our generative models. One inhibitor to

our VAE successfully learning representations is the high variance of the nature of

the data, as beginners all have varying posture, form, and flexibility. However, this

can also be a strength, as the nature of beginners has high variance, and thus it

can be argued to model it as such. This high variance contrasts with a potential

dataset exclusively of experts. Although every fencer does have a unique style, it

is fair to assume that the data of experts would have less variance, although this

assumption is irrelevant to our process. A visualization of the dataset collected is

shown in Figure 4-3. What we can see here is a relatively good clustering of the

tip data, indicating some bound on the variance of the movement, which is a good

sign that our data is well-positioned to train our generative model. The figure plots
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Figure 4-2: The locations of the markers, on body and on the fencing sword. From
[17].

every collected action, plotting two traces – the movement of the front toe, and the

weapon tip. The action data has been grouped by the modality it was collected

in to highlight potential differences in the data based on modality, similar to the

preliminary experiment referenced in Section 1.2.

4.1 Data Summary

Let us better understand the different action labels in our dataset. To summarize, this

data contains 30 subjects, all beginners to fencing, observed under five modalities,

recording a total of 4703 individual actions. We considered 5 different actions: the

advance, the jump, the lunge, the combined advance-jump-lunge, and the special

‘elements together’ action. An advance represents a step forward, a jump is a two-

footed jump while maintaining the hand position, and the lunge involves reaching

the front foot forward with an open hip stance, and extending the weapon arm. The
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Figure 4-3: A visualization of the data collected. Each color represents a different
modality, with the lower lines representing the front toe, and the upper ones repre-
senting the sword tip. Principal component analysis was used on the front-toe marker
to determine the major axis of movement, and the rotations from PCA were applied
to tightly overlay all action data for accurate analysis. The modality labels are shown
in the figure. Figure from [17].

advance-jump-lunge is a combination attack, consisting of an advance that moves

fluidly into a jump, and then right into a lunge. In this combination attack, the

point at which a single component ends and the next starts is indistinguishable.

The special ‘elements together’ block consists of an advance, jump, then lunge – all

done in succession, but includes a brief pause in between each element, The data is

represented below:

Label Count

Advance 591

Jump 672

Lunge 671

Advance-Jump-Lunge 2638

Elements Together 131

Total 4703

Our data appears to be skewed in favor of the advance-jump-lunge. However,
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we still have many samples from the other action classes for the model to learn a

meaningful representation. In the ACTOR paper [14], some models were trained

with as few as 30 actions per class. However, more important than the amount of

data is the data consistency. Our data naturally contains high variance due to the

nature of the subjects.
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Chapter 5

Results

In this chapter, we will visualize some of the key results from the SOMA [2] pro-

cess, mainly focusing on the results from using the dataset in Chapter 4 with our

aforementioned pipeline.

Figure 5-1: A frame of recorded raw motion capture data, rendered in OptiTrack
Motive software [7].

Recall that the raw data collected by the optical tracking system consists of the

(𝑥, 𝑦, 𝑧) locations of each of these marker dots recorded frame-by-frame, visualized in

Figure 5-1. No modeling engine can effectively use this data as is. We took this data

and processed it iteratively until it contained the essence of human motion, videos

for which exist, but are not included in this thesis.
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Figure 5-2: Left: Swapped head marker labels from SOMA occasionally create an
inaccurate mesh. Right: a manually labeled mesh yields the correct body movement.

5.1 Auto-labeling

Auto-labeling does not always work. Where in most cases, the SOMA auto-labeler

performed in line with the hand-labeled process, we highlight the following case where

the two key head markers were labeled inversely, creating an inaccurate yet humanly

possible mesh. Figure 5-2 shows this side-by-side comparison. The fencer on the left

should be looking at their extended right arm, not the other way. Incorrectly swapped

left and right head marker labels cause a flip. After the skeletons were solved, we

inspected the rendered meshes to verify general correctness, manually editing marker

labels in the rare cases where it was needed. (In situations where SOMA fails to find

a marker labeling with high confidence, it self-reports an error. However, we did not

experience this.)

5.2 Motion Generation

The final results are visualized in Figures 5-3 and 5-4. These are synthetic digital

renderings conforming to human body limitations and extensible to perform other

actions in the future. They preserve the larger essence of the sporting action. These

figures represent the major accomplishment of the work that went into this thesis.

The figures for the remaining three action classes are included in Appendix A.
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In Figure 5-3, we visually represent motion outputs from the generative model,

splitting a video into important frames. Time progresses downwards row-by-row in

the figure. This figure contains five columns: in the first two on the left, we have a

sampled real ground-truth action, followed by a reconstruction of that action sample.

A reconstruction represents the output of the VAE when the training sample is passed

through. The final three columns visualize a single action-conditioned generation

from the model from three different camera viewpoints. The limbs are color-coded as

follows: the right arm is green, the left arm is blue, the right leg is red, and the left

leg is magenta. The top-most row shows the legs wide, at the start of a step. In the

middle rows, the back leg approaches the front leg, completing the advance, and the

final row shows a widening stance with an extending arm, indicating the start of a

lunge.

Figure 5-4 depicts a generated lunge action. We see the lunge begin decisively right

from the beginning of the motion, quickly reaching a wide stance and an extended

arm. We see that the real lunge in the graphic depicts a right-handed lunge, whereas

the generated lunge is left-handed. In training our model, we elected to not split right

and left-handed subjects into different label classes, mainly due to an overwhelming

majority of our data being right-handed, which would only imbalance our dataset

labels even further.

Finally, our generative model predicts SMPL parameters 𝜃, which can be used to

skin a realistic mesh. In Figure 5-5, we show a top-down view of a generated mesh

performing a lunge. Note that the 𝛽 values here are set to their defaults, and they

can be changed to generate the same action in a variety of different body types.

Successful generation of realistic motion outputs represents a working pipeline.

Generative models are difficult by nature to evaluate since there is no simple error to

be calculated as exists in classification. A precedent in generative motion introduced

by Guo et al. [3] considers four key factors: the Frechet inception distance (FID),

recognition accuracy, diversity, and multimodality. The FID effectively compares the

distributions of features extracted from the generated actions with those from the

ground truth or test data, with less difference between the two being better. These
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Figure 5-3: Generated motions for the advance-jump-lunge action. Time progresses
downwards row-by-row in the figure.
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features represent some high-level features of our data, and this requires a separately

trained recognition model from which features can be extracted. For accuracy, again,

a separately trained classification model (often the same model as for FID) is used to

guess action categories for the generated actions. Diversity and multimodality ensure

that the generated actions contain variance over all action categories as well as within

an action category. Our true evaluation lies in the success of our downstream system

to quantifiably improve trainee abilities – and this is not yet possible to test. We leave

the design of a recognition model to quantify the FID and accuracy of the generated

outputs as future work.
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Figure 5-4: Generated motions for the lunge action. Time progresses downwards row-
by-row in the figure.
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Figure 5-5: Generated motions for a lunge from bird’s eye view, skinned with SMPL.
Time progresses downwards row-by-row in the figure.
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Chapter 6

Conclusion

6.1 Summary of Contributions

1. Gained an understanding of generative modeling technology and its data re-

quirements.

2. Gathered raw data from motion capture and understood its limitations of how

a generative model could not use it.

3. Used existing frameworks to process this data and converted it in a three-step

process to a format that preserved its larger essence while standardizing its

usability.

4. Wrote code for the generative model to iteratively import this data and debug

until a clean, usable workflow emerged.

5. Created tools for visual rendering such that it can be used by a coach to show

various actions with appropriate modifications as needed.

This thesis illustrates the creation of a working, end-to-end pipeline that takes

motion capture data and synthesizes conditioned motion data from it. It enables

downstream systems for improved athlete learning with realistic, customized genera-

tions. The implemented pipeline combines many different processes under a unified
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hood, including the OptiTrack [6] hardware used to collect the raw data, the internal

existing Immersion Lab tools, the various architectures for labeling and solving the

motion capture, namely SOMA and MoSh++, and the generative modeling architec-

ture. Importantly, the system is highly intuitive and well documented, which is the

result of iterative testing in the Immersion Lab with other members to understand

the pain points and fix bugs in the process.

The integration of these many different systems together was no small feat.

Whereas the architectures used in the workflow all had open-source published imple-

mentations, every single one required the construction of a custom fork to fix bugs,

incorporate performance enhancements, and incorporate interfacing to work with our

desired data types and structures. All of these customized forks were then combined

into a library which was integrated with the Immersion Lab codebase for seamless

use with existing workflows.

6.2 Future Work

The most prominent future work would be the use of our modeling – either with the

dataset we used as a proof-of-concept for this thesis, or another dataset – to create

a virtual training system for fencing. This would require rendering the outputted

generated SMPL mesh in a virtual environment, as well as incorporating the cus-

tomizability of our generative model. Additionally, this would require the rendering

of the sword in the virtual environment. With subject experimentation, we could

analyze the efficacy of this pedagogical technique, and compare the results to the

non-customized generic experience.

Additionally, we would like to quantitatively analyze the generated motions to

have a numerical sense of success beyond just a minimization of the VAE loss. This

would require training a recognition model to evaluate the generated actions and

predict a label. Thus, an effective generative model could be described as one which

generates actions that the recognition model can identify with high accuracy.

This work progresses towards the full, deep integration of human movement in
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sports and technology. An action-conditioned generative model could be extended

from single actions to generate full suites of competition-like movements on request,

and even become a live competing partner. Additionally, effective action recognition

models can be leveraged to provide immersed, real-time trainee feedback, helping

enact live corrections to the trainee’s form, posture, and movement. The status quo,

in which trainees copy the movements of experienced athletes before the requisite

abilities and skills have developed, can increase (1) the predisposition to injury, (2)

the development of poor technique, and (3) an overall delay in the learning process

due to learned bad habits. Our work makes meaningful progress in developing a

system which addresses all three concerns.

Finally, where we leveraged a motion capture system for high-accuracy movement

data, high-accuracy marker-less tracking techniques can be used at comparable ac-

curacies, lowering the barriers in data collection and making such training systems

widely accessible. Such systems have transformative applications in the world of

movement and sport.
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Appendix A

Supplementary Results
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Figure A-1: Generated motions for the advance action. Time progresses downwards
row-by-row in the figure.
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Figure A-2: Generated motions for the ‘elements together’ action. Time progresses
downwards row-by-row in the figure.
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Figure A-3: Generated motions for the jump action. Time progresses downwards
row-by-row in the figure.
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