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ABSTRACT

Contrary to the stunning feats observed in birds of prey, aerial manipulation and grasping with
flying robots still lack versatility and agility. Conventional approaches using rigid manipulators re-
quire precise positioning and are subject to large reaction forces at grasp, which limit performance
at high speeds. The few reported examples of aggressive aerial grasping rely on motion capture
systems, or fail to generalize across environments and grasp targets. We describe the first example
of a soft aerial manipulator equipped with a fully onboard perception pipeline, capable of robustly
localizing and grasping visually and morphologically varied objects. The proposed system features
a novel passively closing tendon-actuated soft gripper that enables fast closure at grasp, while com-
pensating for position errors, complying to the target-object morphology, and dampening reaction
forces. The system includes an onboard perception pipeline that combines a neural-network-based
semantic keypoint detector with a state-of-the-art robust 3D object pose estimator, whose estimate
is further refined using a fixed-lag smoother. The resulting pose estimate is passed to a minimum-
snap trajectory planner, tracked by an adaptive controller that fully compensates for the added
mass of the grasped object. Finally, a finite-element-based controller determines optimal gripper
configurations for grasping. Rigorous experiments confirm that our approach enables dynamic,
aggressive, and versatile grasping. We demonstrate fully onboard vision-based grasps of a variety
of objects, in both indoor and outdoor environments, and up to speeds of 2.0 m/s— the fastest
vision-based grasp reported in the literature. Finally, we take a major step in expanding the utility
of our platform beyond stationary targets, by demonstrating motion-capture-based grasps of targets
moving up to 0.3 m/s, with relative speeds up to 1.5 m/s.

Video Attachment: https://www.youtube.com/watch?v=HF4M7TooqfE

Thesis Supervisor: Luca Carlone
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Current quadrotor platforms can fly at high speeds, maneuver with great agility, and carry a wide

range of payloads, but their ability to interact with the world remains limited. Most quadrotor plat-

forms sense their environment for applications such as navigation, inspection, or videography [1]–

[4]. However, many tasks require interacting with the environment, and quadrotors built to accom-

plish such tasks must handle complicated time-varying contact dynamics and have the ability to

perceive task-relevant features of the environment. Recent work has increasingly focused in this

direction, including a number of perching mechanisms [5]–[7], and full systems for applications

such as contact-based inspection [8], and tree eDNA collection [9]. These tasks require contact

with the environment, but not necessarily changing the environment. Other work has explored us-

ing quadrotors for building structures [10], [11], but requires external localization to function. Our

work enables quadrotors to take a more active role in shaping the world around them by picking

up and moving objects without the need for external motion capture infrastructure, expanding the

kinds of tasks that can be accomplished by such platforms.

Building an aerial grasping system requires solving problems at the intersection of mechani-

cal design, perception, motion planning, control, and manipulation. There is extensive prior work
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toward solving each of these problems individually. Many works focus on gripping or grasping

mechanisms for attaching to conventional drones [5]–[7], [12], [13] or helicopters [14]. Recent

work has examined a closer coupling between the drone and gripper design [5], [15]. The control

of aerial manipulators has been studied in [16]–[19], and recently for related tasks such as catch-

ing balls in flight [20] and grabbing other drones out of the air [21]. Vision-based object pose

estimation and tracking are widely studied problems in robotics, and many existing methods are

relevant for estimating the target’s position for aerial manipulation; notable examples applied to

aerial grasping include [22]. While each of these works reports promising advances in individual

subsystems, aggressive and versatile aerial manipulation still remains out of reach, and prior work

falls short of presenting a system that can perform aggressive grasping without strong assumptions

about the target object and the environment.

Combining perception, control, and manipulation to achieve aggressive and versatile aerial

manipulation presents several challenges. First, conventional approaches using rigid manipulators

require precise positioning and are subject to large reaction forces at grasp, which limit perfor-

mance at high speeds. Second, in contrast to systems that passively sense the environment, a

quadrotor manipulating objects in the environment must adapt to changing dynamics, in particular

since the added mass of the grasped object might be non-negligible compared to the mass of the

drone itself. Third, if such systems are to be generally useful, they must also function without per-

fect state information from external motion capture systems; therefore they must rely on onboard

perception and their perception system has to be resilient to the manipulator partially occluding the

onboard camera. These problems must be solved in real-time, to enable efficient operation, and

with the limited onboard computation, to circumvent the need for an external infrastructure.

The few reported examples of aggressive aerial grasping rely on motion capture systems, or

fail to generalize across environments or grasp targets. For instance, Thomas et al. [16] demon-

strate aggressive grasping in a motion capture system, but they assume a suspended target to avoid

the risk of undesired contact forces with the surface the object is lying on. Fishman et al. [23]

demonstrate dynamic grasping with a soft aerial gripper, but the system requires external local-
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ization for the quadrotor and target. Existing vision-based aerial manipulation systems reduce

errors by using a motion-capture system for the drone’s self-localization [24], by flying at slower

speed [25], [26], or by making strong assumptions about the target shape that cannot be extended

to arbitrary objects [27], [28]. None of these works combines vision-based drone localization and

target pose estimation, the ability to pick up targets with meaningful forward velocity, and fully

onboard computation.

1.2 Contribution

We posit that aerial grasping can be improved by focusing on soft grasping mechanisms rather

than trying to achieve extremely precise positioning with a rigid manipulator. We draw inspira-

tion from biological systems (e.g., birds), which utilize a combination of rigid and soft tissues to

achieve unparalleled agility and robustness [29]. Soft robotic grippers can passively conform to the

grasped object, reduce the need for explicit grasp analysis, and weaken the coupling of flight and

manipulation dynamics; this is an example of morphological computation, i.e., the exploitation of

passive mechanical elements to supplement explicit control [30]. In this work, we combine a rigid

quadrotor platform with a soft robotic gripper. Rigid and soft robots can operate together syner-

gistically [31] as hybrid systems that get the best of worlds: our system combines the speed and

agility of a rigid quadcopter with the natural compliance and robustness of a soft robotic gripper,

and harnesses control methodologies that enable its rigid and soft components to work together.

Our first contribution is to develop a soft, quadrotor-mounted gripper with passively closing

and tendon-actuated foam fingers. Our design enables fast closure at grasp, while compensating

for positions errors, complying to the target-object morphology, and dampening reaction forces.

Our second contribution is to develop a real-time and fully onboard perception pipeline for drone

and target state estimation. Our perception pipeline combines a neural-network-based semantic

keypoint detector with a state-of-the-art method for robust 3D object pose estimation and a fixed-

lag smoother. Finally, we integrate a minimum-snap grasp trajectory planner with an adaptive
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Figure 1.1: Overview of the Soft Drone. (A-B) The proposed Soft Drone platform flying outdoors.
(C) Front view of the Soft Drone platform, with the soft gripper in the passively closed state. (D) Ex-
ploded CAD view of the quadrotor and gripper, including onboard sensing and computation.
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controller for the drone and a finite-element-based approach for the soft gripper control. The

adaptive controller is able to adjust to quickly changing dynamics, caused by the grasped object

and related aerodynamic effects (e.g., ground effect and down-wash resulting from the grasped

object); the finite-element-based approach computes optimal configurations for the soft gripper

that are key for high-speed grasping.

We evaluate our soft drone with onboard perception when grasping a variety of objects in both

indoor and outdoor environments. We present extensive experimental results across 180 flight tests.

In contrast to prior work, our system performs all computation on board, can fly with or without

a motion capture system, and can perform aggressive grasping of static targets at up to 2.0 m/s.

Moreover, we show that when operating within a motion capture system the soft drone can also

grasp objects from moving platforms: a quadruped robot carrying a med-kit moving forward at 0.3

m/s, and a rotating turntable with a relative grasp speed of 1.5 m/s.
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Chapter 2

System Overview and Experimental

Evaluation

We have designed and built a combined quadrotor and soft gripper platform (Fig. 1.1A,B) able

to aggressively grasp different object types at high speeds. The gripper mechanism consists of

four flexible, tendon-actuated foam fingers to provide robust grasp performance. The quadrotor

uses two onboard cameras (Fig. 1.1C,D) to estimate its own state and a target object’s pose, which

enables operation without external localization infrastructure such as a motion-capture system.

All perception, planning, and control algorithms run onboard the quadrotor. To demonstrate the

effectiveness of our system, we performed 180 flights, where we measured grasping performance

and provided an ablation of our main design choices. In this section, we provide an overview of

our system (Section 2.1) and then discuss the results of our flights with both static (Section 2.2) and

moving targets (Section 2.3). More technical details are postponed to Section 3, and visualizations

of the system and experiments are shown in Movie 1.

2.1 System Overview

A successful object grasp requires the drone to detect and estimate the object’s pose, plan a feasible

grasping trajectory, and track that trajectory while facing complicated contact dynamics and other
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Figure 2.1: Grasping pipeline overview. An accurate estimate of the target and drone’s pose is first
identified and used to plan the polynomial grasp trajectory. This trajectory is tracked with an adaptive
quadrotor controller, and the soft gripper states are dictated by an FEM-based optimization.

external disturbances.

Our system (Fig. 2.1) is designed to perform fully onboard perception, using a RealSense

D455 color and depth camera for object pose estimation and a RealSense T265 stereo fisheye

camera for visual-inertial odometry (VIO) for drone state estimation [32]. After estimating the

target’s and drone’s pose in the global frame,1 the quadrotor plans a minimum-snap polynomial

trajectory [33] connecting its initial hover point, a grasp point directly above the target, and a

terminal hover point. This reference trajectory is then tracked by an adaptive flight control law [34]

which learns to compensate for the additional mass after grasp and for unmodeled aerodynamic

effects. The gripper’s finger positions are controlled along the trajectory using a finite-element-

based approach [29], [35] governed by an objective functions that balances target object visibility

and grasp robustness. The object pose estimation and trajectory planning algorithms run on a

Jetson Xavier NX, the low-level flight control runs on a Pixhawk micro-controller, and the visual-

inertial odometry pipeline runs on the RealSense T265 camera module.

Below, we provide an overview of our soft gripper design (Section 2.1.1) and the onboard

perception system (Section 2.1.2), while we postpone the details to Section 3.

1While some aerial grasping approaches based on visual servoing avoid the need for an explicit world-frame target
estimate [27], [28], we form a global estimate of the target’s pose to remove the constraint that the target must always
be visible in the camera’s field of view, which is a restricting assumption in particular right before grasping.
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2.1.1 Soft Gripper Design and Modeling

Eliminating all estimation and tracking errors from the perception and control systems is infea-

sible, so the grasp mechanism must be robust to imprecise positioning to enable reliable grasps.

Collisions between the fingers and the ground present a particular challenge. Small amounts of

error in the planned or executed trajectory lead to the manipulator contacting the ground. With a

traditional rigid manipulator, these unexpected contact forces induce a moment on the quadrotor

that results in it rapidly pitching forward, leading to a crash or failed grasp [23].

We propose to solve this issue with compliant fingers for picking up the object (Fig. 2.2A).

Such fingers weaken the coupling between ground contact and drone dynamics, enabling steadier

flight in the event of ground contact (Movie 1). Soft fingers also provide robustness for grasping the

object: they conform to the object morphology and do not require precisely chosen grasp points.

Our finger design is made of foam molded in a closed position. Soft foams, especially castable

expanding polyurethane, have been recently harnessed to produce highly-deformable soft robots

with favorable strain-stress ratios [36]. A cable connected via eyelets along the outside edge of

the finger controls its shape (Fig. 2.2B). As the motor at the base of the finger turns, the cable

shortens and pulls the finger into an open position. This passively closed finger design has the

advantage that the closing speed is limited only by the stiffness of the finger and no-load speed

of the motor, in addition to lower power draw when the fingers are closed. The resulting finger

design is mechanically quite simple compared to more traditional rigid finger designs that require

actuation at each joint. In comparison to our previous soft finger design [23] that required two

motors working in synchronization to open and close each finger, our current design has half the

number of motors and is much easier to fabricate and control. Now each finger only has a single

degree of freedom, yet it can assume nontrivial shapes (Fig. 2.2C).

The positioning of the fingers is important for a successful grasp. We model the body of the

gripper as a finite element mesh, and the cables as unilateral springs running through via points in

the mesh. Given a feasible choice of real-world control inputs, e.g., motor angles u, this approach
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Figure 2.2: FEM modeling and objective functions. (A) Still frames from a grasp with over 2 m/s forward
velocity. The compliance of the soft fingers mitigates the high reaction forces faced at this speed (A3) and
the gripper configuration reduces the sensitivity of the gripper closing timing. (B) Soft finger in its passively
closed state (left) and partially open state (right). The finger opening is actuated by a motorized winch
contracting a tendon fixed to the tip of the finger and routed through guides. (C) The finger shape predicted
by the FEM model based on cable retraction length u (top) matches the actual finger shape for the same
cable length (bottom). (D) Target observation state: the field-of-view objective, OFOV, drives the mesh
nodes, including the node with position xi, out of the half space bounded by the plane defined by point p
and normal n and corresponding to the cameras’ frustum. (E) Pre-grasp state: the grasp margin objective,
Ograsp, maximizes the area enclosed by the grippers fingertips y1 and y2 and the target point s. (F) Gripper
closed configuration: the fingers return to their passively closed state.
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to soft robotic modeling can accurately predict the real finger’s deformed shape. This is done

by minimizing the total energy of the system, to find a statically stable deformed mesh position,

following the approach in [29], [35]:

x(u) = argmin
x

E(u,x). (2.1)

In addition to helping us predict the gripper’s motion, the FEM-based model can be harnessed in

a nested optimization to do control. In this work, we find optimal control inputs by minimizing a

suitable objective function:

u∗ = argmin
u

(
Ograsp(x(u)) +OFOV(x(u))

)
, (2.2)

where the objective is designed to produce control inputs that deform the gripper into a shape x(u∗)

that maximizes the area enclosed by the fingertips and the target’s centroid (as quantified by the

term Ograsp(x(u)) in Eq. 2.2, see Section 3 for a complete mathematical expression) while also not

occluding the quadcopter’s field of view (as quantified by the term OFOV(x(u))). The exact choice

of objective depends on the different phases of the grasp, as discussed below. The optimization

is performed offline to obtain optimal motor angles, which are then commanded during the grasp

procedure.

When the drone is planning the grasp trajectory (Fig. 2.4A-1), the front fingers should not be

in the front camera’s field of view or they may obscure the object (Fig. 2.2D). The back fingers

also need to stay out of the navigation camera’s field of view, to avoid interfering with the drone

localization system. We refer to this configuration as target observation state (Fig. 2.4B-1), and

set OFOV(x(u)) = OFOVR
(x(u)) + OFOVF

(x(u)) as the sum of the FOV constraints for the rear

(T265) and front (D455) cameras.

Right before grasping the target (what we call the pre-grasp state, Fig. 2.4B-2), we can re-

move the front camera FOV constraint because we have global knowledge of the target’s location.

Therefore, OFOV(x(u)) = OFOVR
(x(u)), and the front fingers can reach the unconstrained grasp
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configuration, which increases the grasp volume and greatly improves our position error margins

(Fig. 2.2E). We note that this objective function also results in the rear fingers pointing down-

ward; if the fingers are closed too late, the target will still be caught up by the back fingers and a

successful grasp may still be possible (Fig. 2.2A).

To initiate the grasp closure, the tendons are simply commanded back to their rest positions and

the fingers return to the passively closed state, thus enclosing the target (Fig. 2.2F, Fig. 2.4B-3).

2.1.2 Perception System Design

Our perception system enables global position and orientation estimation of the target object

(Fig. 2.3). It is important to estimate the target’s orientation in addition to position, as some objects

are much more difficult to pick up along certain axes (e.g., the two-liter bottle in Fig. 2.3B). The

perception pipeline assumes that the shape (more precisely, the CAD model) of the objects to be

picked up is known ahead of time, but the framework is generalizable to arbitrary objects.

A deep-neural-network-based keypoint detector can be rapidly trained with an automated data

collection tool (Fig. 2.3A) and predicts a set of keypoints in each color image collected by the

onboard Realsense 455 camera (Fig. 2.3C); each semantic keypoint corresponds to a specific 3D

point on the object CAD model. The detected 2D points are mapped to 3D keypoints based on the

image’s depth channel. The object’s pose can be then estimated by aligning the detected keypoints

to the corresponding points in the known object CAD model (Fig. 2.3B). As there may be outliers

in the semantic keypoint detection process, we employ a robust registration algorithm, namely

TEASER++ [38], to find the target pose. Combining the camera-relative object pose with the

quadrotor’s own odometry estimate gives a global pose estimate for the target object (Fig. 2.3C). In

our implementation, we use the visual-inertial odometry computed by the T265 RealSense camera

as the quadrotor’s state estimate.

Fig. 2.3D-F show the pixel-space, translation, and rotation errors for the pose estimates pro-

duced by out perception pipeline for a med-kit on a test dataset held out from training. As the

distance to the target increases, the translation estimate degrades while the keypoint and rotation
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Figure 2.3: Keypoint-based object pose estimation. (A) Keypoints are labeled to generate training data
for the semantic keypoint detector, for each object of interest. A checkerboard in the background of the
collection area enables calculation of camera pose, which accelerates and partially automates the labeling
process. A Resnet-18 neural network [37] is trained to predict object keypoints based on this dataset. (B) The
3D keypoints predicted by the perception system are matched against the corresponding keypoint locations
on the object CAD model. A rigid transformation computed between the observed and CAD keypoints gives
an estimate of the relative pose between the object and the camera. (C) The keypoint and pose detection
system generalizes across environments and targets. The red points are predicted keypoints, the green points
are ground-truth keypoints, the dark colored axes indicate the estimated pose, and the light colored axes
denote the ground-truth pose. (D-F) Error characteristics for the proposed perception system, showing
pixel-space, translation, and rotation error depending on distance between the target object and the camera
for a med-kit object.
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errors remain roughly constant, indicating that our range is mostly limited by the depth camera’s

accuracy. In our flight tests, we manage this error by estimating the target’s pose when the drone

is within 1.25m of the target. Additionally, these raw global pose estimates are filtered using a

fixed-lag smoother to further improve accuracy; see Section 3 for details.

Our system is capable of estimating the full 3D rotation of the target, which is necessary to

plan grasps for targets on inclines or for determining the feasibility of a grasp. However, for most

grasping applications, the target can be assumed to rest on a flat horizontal plane. Thus, only the

target’s yaw is used to plan trajectories.

2.2 Results: Grasping Static Targets

We conducted grasps of three distinct stationary objects (a med-kit, a two-liter bottle, and a card-

board box, Fig. 2.4C-E) to demonstrate the versatility of the proposed soft gripper and vision

system and quantify the effects of various sources of error. In our tests, upon takeoff, the drone

flies to a randomized starting point from which it can see the target, as shown in Fig. 2.4A. Once

the perception system has an estimate of the target’s pose, it flies to a point such that the forward

direction of the drone is aligned with a predefined grasp direction for the target. (Fig. 2.4A-1,B-1).

From that starting point, the quadrotor flies a trajectory through the grasp point (Fig. 2.4A-2,B-2)

that terminates at an endpoint away from the target (Fig. 2.4A-3,B-3). The drone stops updating

its estimate of the target pose once it has started the grasp trajectory, relying on its initial estimate

of target pose and updated estimate of its own state in the global frame in order to fly to the grasp

point.

2.2.1 Grasp Success Rate

In this first set of tests, the reference trajectories were chosen to have a forward velocity of 0.5 m/s

at the grasp point. A grasp is considered a success if the target remains grasped until the drone

lands. For all tests, the target is secured to a horizontal surface with weak magnets to prevent the
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Figure 2.4: Overview and timelapses of experiments with static targets. (A) Experimental setup for the
vision-based experiments. The red curve depicts the distribution of random start points, the green line the
grasp trajectory; the numbers denote the grasp planning point 1⃝, the grasp point 2⃝, and the terminal point
3⃝. (B) Configurations of the gripper states through the course of the grasp trajectory: 1⃝ target observation
state, 2⃝ pre-grasp state, and 3⃝ post-grasp state. (C-E) Static vision-based grasps at 0.5 m/s for med-kit,
two-liter bottle, and cardboard box, respectively. (F) Outdoor vision-based grasped of the med-kit at 0.5
m/s.
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downdraft of the quadrotor displacing the target pre-grasp. Under these conditions, the system

achieves a success rate of 9/10, 6/10, and 10/10 for the med-kit, cardboard box, and two-liter

bottle, respectively, and with fully onboard vision (Fig. 2.5A). We repeated these experiments with

a motion capture system to determine the extent that our perception system affects grasp success.

The motion capture baseline performs similarly to the vision-based approach (Fig. 2.5A), slightly

under-performing for the med-kit, improving for the cardboard box, and performing equally for

the bottle. Our results show that our vision system is able to consistently match the motion capture

results at this speed, indicating that the gripper mechanism is robust against the additional error

caused by the perception pipeline.

The biggest contributors to grasp performance difference among objects are their mass and

surface morphology. The two-liter bottle’s cylindrical geometry and low mass (60g) enable con-

sistent enveloping grasps. The uneven, roughly concave edges of the med-kit provide good grasp

surfaces, but the high mass (148g) makes sustaining the grasp more difficult. The cardboard box’s

tall, straight walls combined with its relatively high mass (115g) force the gripper to rely on large

pinching force to secure the grasp, making it the most difficult target to grasp.

2.2.2 Error Analysis

We collected ground-truth pose data for the drone and target with a motion-capture system in

order to understand the relative contribution of errors from the target estimation pipeline, the VIO

estimate, and the trajectory tracking to the system’s performance.

The filtered pose estimate for each target (Fig. 2.5B) at the start point of the trajectory has

at most 5 cm translation error and less than 10 degrees of rotation error. Furthermore, only the

target’s yaw is needed for grasp planning and at most has roughly 6 degrees of error.

The average error between the quadrotor’s actual position and VIO-based estimate (Fig. 2.5C)

up until the grasp point is about 2 cm, for a forward speed of 0.5 m/s.

Finally, the trajectory tracking performance (Fig. 2.5D,E) before the grasp point is comparable

for all three objects, with approximately 5 cm position error, and 0.05 m/s velocity error. One
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Target Position
Error [cm]

Rotation
Error [deg]

Yaw
Error [deg]

Med-kit 4.26 7.39 2.16

2-liter 4 7.28 6.27

Cardboard Box 5.02 9.69 5.64

Commanded
Speed [m/s]

Actual
Speed [m/s]

VIO
Drift [cm]

0.5 0.47 2

1.25 1.04 2.69

2 1.58 4.39

3 2.15 7.08

A B

C

D E

F G

0.5 m/s Two-liter

Figure 2.5: Static grasp experiments results. (A) Success rate for each experiment, comparing motion-
capture-based performance (when available) with onboard-vision-based performance. 10 flights were con-
ducted for each experiment, as indicated by the horizontal dashed line. (B) Filtered target pose estimation
errors for each object at the time of trajectory planning, averaged across all runs. (C) Actual forward ve-
locity as measured by motion capture and VIO drift for varying commanded speeds, averaged across runs.
(D-E) Position and velocity tracking errors over the grasp trajectory for the three objects. (F-G) Position and
velocity errors for four different speeds. The vertical dashed line denotes the time of grasp and the shaded
regions represent one standard deviation from the mean. The errors here are computed as the mismatch
between the vision-based estimate and desired setpoint.
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cause of tracking error before the grasp time is the presence of the ground effect, where the drone

experiences greater thrust efficiency when approaching a horizontal surface [39], thus raising the

drone vertically above its desired setpoint (Fig. A.1). This is partially compensated by the adaptive

controller, and the ability of the soft fingers to safely contact the ground reduces the risk from

overcompensation. Apart from specific aerodynamic effects, our platform has a low thrust-to-

weight ratio, which limits its control authority and invokes slight tracking errors even in normal

flight conditions.

After the grasp, the higher mass of the med-kit and cardboard box lead to increased tracking

errors primarily in the vertical direction (Fig. A.1), which reduce over time as the adaptive con-

troller learns to compensate. It is important that both pre- and post-grasp errors are minimal for a

successful grasp: high pre-grasp errors may cause the drone to be misaligned and miss the target,

while high post-grasp errors could cause unintended collisions with the environment (e.g., floor)

and destabilize the drone.

Further breakdown of errors across separate axes is presented in Fig. A.1, Table A.1-Table A.3,

and Appendix B, and information on how these error metrics are measured is provided in Sec-

tion 3.3.4.

2.2.3 Grasp Speed Analysis

We further evaluate the performance of our system by increasing the desired forward grasp velocity

to 1.25 m/s, 2 m/s, and 3 m/s for the two-liter bottle. We conducted ten flights for each speed with

the full vision-based system, and repeated another ten flights for each speed in motion capture

as a baseline. Our system is capable of grasping the bottle with full vision at over 2 m/s with a

success rate of 3/10 (Fig. 2.5A). To our knowledge, this is the fastest fully vision-based aerial grasp

reported in the literature.

The increases in speed are accompanied by larger tracking errors in both position and velocity

(Fig. 2.5F, G). Because there exists a large discrepancy between the desired and actual speeds at

grasp, we report the drone’s average actual grasp speed as measured by the motion capture system
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in (Fig. 2.5C). This error can be attributed to lower control authority at higher speeds; our platform

operates near its maximum payload capacity and struggles to accelerate quickly. However, the

error is mostly along the longitudinal direction (i.e., grasp or forward axis), with the lateral and

vertical errors remaining low regardless of speed. Longitudinal tracking errors have little effect on

our grasp success as the gripper control is informed by the current position of the drone, not its

desired position. As long as the drone’s state estimate remains accurate up until the time of grasp,

the grasp will be triggered at the appropriate time. We validate this by analyzing the VIO drift for

the varying speeds (Fig. 2.5C). VIO drift does increase with grasp speed, remaining manageable

for desired speeds less than 2 m/s, but reaching a substantial 7 cm for a desired speed of 3 m/s. As

reflected in Fig. 2.5A, this increase in VIO error proves to have a non-negligible effect on grasp

performance. Table A.1-Table A.3 further break down VIO error per axis for each speed.

2.2.4 Outdoor Grasps

A central motivation for our onboard perception system is the ability to operate in places where a

localization infrastructure is unavailable. To emphasize this capability, we demonstrate the quadro-

tor picking up the med-kit in an outdoor field (Fig. 2.4F) at 0.5 m/s. Grasping objects in outdoor

environments presents several additional challenges, including unpredictable wind disturbances,

varying illumination conditions, and visually diverse surroundings. Furthermore, the sustained

ground plane introduces an additional challenge compared to the indoor flights where the target

was placed on a raised pedestal. Post-grasp, the delay in adapting to the target’s mass causes the

drone to drag across the ground temporarily which increases the chance of failure. To combat

this, we introduce a feedforward acceleration impulse that counteracts the immediate vertical dis-

turbance post grasp and briefly raises the drone up from the ground plane. Afterwards, the drone

continues tracking the nominal trajectory. We also note that the starting point of the drone was left

fixed, rather than randomized as in the indoor experiments. We demonstrate a success rate of 8/10,

and, to our knowledge, the first instance of aggressive manipulation in an outdoor environment.
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Figure 2.6: Timelapses of experiments with moving targets. (A) Moving grasps of med-kit attached to a
quadruped robot that has forward velocity of 0.3 m/s and with a relative grasp speed of 0.1 m/s. (B) Moving
grasps of two-liter bottle on a turntable moving with a tangential speed of 0.08 m/s and with a relative grasp
speed of 0.5 m/s; see Movie 1 for more visualizations.
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Figure 2.7: Moving grasp experiments results. (A) Success rates for each experiment, including different
moving platforms (Quadruped and Turntable) and increasing speeds. (B-C) Position and velocity of the
target for the quadruped experiments. (D-E) Position and velocity of the target for the turntable experiments.
Here, X,Y represent the axes in the inertial floor plane. (F-G) Position and velocity tracking errors for the
quadruped experiments. (H-I) Position and velocity tracking errors for the turntable experiments. For all
plots, the solid black line denotes the start of the grasp trajectory, and the dashed black line is the time of
grasp (after which the target pose is unavailable).
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2.3 Results: Grasping Moving Targets

In this section we investigate grasping moving targets at high velocities, or with high relative veloc-

ity between the drone and the target. These maneuvers are common in biological systems, where

birds of prey must quickly capture their prey before it can escape. In robotics applications, this

capability can increase efficiency by removing the need to decelerate before grasping as well as

minimize the time the drone must spend near the ground in dangerous environments.

Grasping moving targets presents additional challenges on top of the ones observed with static

targets. When an object has rotational velocity, the desired grasp direction also rotates. This

requires more lateral tracking accuracy than is needed for the static cases. Dynamic objects also

have uncertainty in their motion model, which we observe when trying to grasp an object from a

moving quadruped. While our system cannot simultaneously handle errors from perception and

dynamics, we demonstrate the ability to aggressively grasp moving objects with the aid of motion

capture for drone and target localization.

Our first set of experiments with moving targets consists of the med-kit mounted on top of a

Unitree A1 quadruped robot (Fig. 2.6A). A human operator steers the quadruped in a roughly linear

motion (Fig. 2.7B). Even though the trajectory is nominally linear and constant velocity, there is

noticeable variation. We conducted 10 flights at a slow quadruped forward velocity (roughly 0.15

m/s) and a fast forward velocity (roughly 0.3 m/s) (Fig. 2.7C). The drone was commanded to grasp

the med-kit with a relative forward velocity of 0.1 m/s. The drone achieved 10/10 success for the

slow speed, and 6/10 for the fast (Fig. 2.7A). This difference can primarily be attributed to the

increased tracking errors seen at grasp point for the higher speed (Fig. 2.7F,G), with noticeable

increases in lateral and vertical errors (Fig. A.2, Table A.2, Table A.3).

For our second set of dynamic experiments, the two-liter bottle sits on a lever arm attached to

a motorized turntable (Fig. 2.6B). With a fixed rotation speed of the turntable, we perform 10 tests

for each desired relative grasp speeds of 0.5 m/s, 1.0 m/s, and 1.5 m/s. For all experiments, the

two-liter bottle follows a circular arc (Fig. 2.7D) with a tangential speed of approximately 0.08 m/s

33



(Fig. 2.7E). Circular motion is challenging for our approach; because the drone tracks the target

at a lever arm, the angular velocity of the bottle gets amplified into large translational velocities

at the drone’s setpoint. Despite this, the drone exhibited high success rates for the three speeds

(Fig. 2.7A). Similar to the the static speed analysis, the tracking errors increase with relative speed

(Fig. 2.7H, I). However, these errors remain mostly concentrated in the longitudinal axis (Fig. A.2,

Table A.2, Table A.3), which has little effect on the grasp success. The rotational motion does

induce higher lateral errors with speed (Table A.2), which causes a misalignment that contributes

to failed grasps at high speeds.
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Chapter 3

Hardware Design and Software Methods

3.1 Hardware Design

3.1.1 Drone Design

Our drone platform (Fig. 1.1C) is a quadrotor inspired by the Intel Aero Ready to Fly (RTF) drone.

It has a custom waterjet carbon fiber frame, but uses the same Yuneec brushless DC motors and

propellers as the RTF drone. A Pixhawk 4 Mini flight controller running custom PX4 firmware

handles the low-level adaptive controller. The drone is powered by a four-cell Lithium Polymer

battery, which provides about three minutes of flight time (enough for three grasp trajectories).

The drone has a front-facing Realsense D455 RGB-D camera pitched down at a 35 degree angle

for target pose estimation, and a rear-facing Realsense T265 for VIO estimation. We observed

the T265’s odometry estimation failing under high-vibration conditions, so we added vibration

damping silicone grommets between the camera and drone. The camera required physical masking

on the bottom of the camera lens to match the field of view constraint used in the gripper’s tendon

length optimization, as the camera does not support software-defined region masking. Ensuring

that the fingers were not in the camera frame was vital, as the visual odometry estimate when the

fingers entered the frame proved to be quite poor.

The visual target estimation pipeline and trajectory planner are run on a Jetson Xavier NX. Both
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Realsense cameras are connected to the Xavier via USB 3.0 and a powered USB hub. The Xavier

communicates with the Pixhawk over UART. When using motion-capture pose estimates instead

of visual navigation, the Xavier receives pose updates over Wifi from a base station connected to

the motion capture system. See Table A.4 for detailed component specifications.

3.1.2 Gripper Design

The drone interfaces with the gripper through standoffs connected to a 3D printed base plate,

which houses the gripper components (Fig. 1.1D). A custom-made, lightweight PCB embeds an

ATMega32U4 microcontroller to handle logic control, 2 DRV8434 motor controllers which actuate

four 31:1 gear ratio 12V DC motors, and a voltage regulator and connector to convert the Lipo

battery’s voltage into a stable 12V. Jumper cables are wired from GPIO pins on the Xavier to the

PCB to connect the gripper state machine with the low level gripper controller.

The gripper features four passively closing, cable actuated fingers (Fig. 2.2B). Each finger is

molded using Smooth-On FlexFoam-iT! X [40] and a custom 3D-printed mold, which follows a

circular arc (Fig. A.4). The initial state of the finger is then its closed position, which is maintained

by the elasticity of the mesh. A 3D-printed finger-base connector is super glued to the top of

the finger and can be slotted into the base plate for quick replacement. The tendon guides are

positioned between evenly placed foam extrusions and adhered with super glue. Braided fishing

line is fixed to the last tendon guide and the motorized winch, passing through the interior tendon

guides. As the winch tightens, the tendon contracts, compressing the outer edge of the finger and

forcing it open. As the winch loosens, the elastic force of the mesh returns the finger to its default

closed position.

3.2 Target Object Perception and Pose Estimation

We present a robust pose estimation system that combines a keypoint detector with a state-of-the-

art algorithm for kepoint-based 3D pose estimation, namely Teaser++ [38]. Estimated poses are
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further refined through a fixed-lag smoother (Fig. 2.1). We also developed a semi-automated data

annotation tool to rapidly train the keypoint detector.

3.2.1 Semi-Automated Keypoint Annotation

Keypoint annotation can be a costly process, requiring multiple points to be labeled in each image

of a large image dataset (e.g., with tens of thousands of images). We draw inspiration from prior

methods of speeding up keypoint labeling by using known camera poses at training time [41],

[42], enabling a small number of manually labeled keypoints to be projected into many images.

Fig. 2.3A presents an overview of the annotation pipeline. The target object and calibration board

are positioned such that both are visible in the recorded camera frames, and they are fixed for

the entirety of the recording process. We move the D455 camera at varying distances and angles

from the object and record all RGB and depth images. The pose of the camera with respect to the

calibration board for each image can be readily determined by computing the camera extrinsics

using the calibration board. Known camera poses enable reasoning about the 3D position of each

keypoint across the whole trajectory sequence. First, pixel locations for the keypoints in user-

selected images are manually annotated using the Matlab tool GUI (Fig. A.5). The 3D position for

each keypoint relative to the camera is determined by back-projecting the pixel coordinates using

the depth of each keypoint, given by the D455. The keypoint positions can be further refined by

minimizing the reprojection error in a small number of manually labeled training images, and then

reprojected into all other images based on the camera model.

In our tests, we only annotate keypoints on the top face of the object and assume that no

keypoints are occluded in our training set; this is a valid assumption considering the viewing

angle of our drone. Proper annotation of keypoint visibility is important to prevent the neural

net from associating features blocking the view of the keypoint with the true keypoint features.

The labeling method does support keypoints placed on all sides of the object, but self-occlusions

require visibility detection. This can be done by sampling the depth of each keypoint using the

depth image and comparing that against the expected depth obtained by transforming the keypoint
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relative to the camera. If there is a large discrepancy, the keypoint is assumed to be occluded. This

method requires a highly accurate depth sensor and the D455 proved to be inadequate.

We add variety in the training set to improve generalization of the keypoint detector by collect-

ing data in several environments: a motion capture room, a cluttered workshop, a lounge space,

a foyer, and an outdoor field (Fig. A.6). For each location, the data collection process was re-

peated multiple times with different poses of the target object. A randomly selected subset of the

runs were added to the validation set. Across the three targets, 39548 training images and 15172

validation images were collected and annotated, within only a few days of manual labor.

3.2.2 Keypoint Detection

To minimize training time and increase generalizability, we apply transfer learning on a state-of-

the-art keypoint detection architecture, trt-pose [37]. The network is comprised of a ResNet-18

backbone, followed by a keypoint prediction head. The training data is augmented using standard

techniques (perturbations of translation, rotation, scale, and contrast) to further improve diversity

of the training set. We present the full set of parameters we used for trt-pose’s training pipeline in

Table A.5. Training takes around seven hours on an Nvidia GeForce GTX 1080 Ti GPU, with the

loss converging after 75 epochs.

The original RGB images have size 1280× 720 and are cropped by removing the top half and

resized into 912 × 256 images to improve inference speed. Due to the geometry of the camera

mount, cropping the top half of the images does not reduce performance as objects in that region

are too far away to detect reliably anyway. The trained network is compiled to leverage the Jetson

Xavier’s hardware using TensorRT, and runs at approximately 14 Hz on the Xavier.

Fig. 2.3D shows the results of the keypoint detector on the med-kit test set, along with visual

representations in Fig. 2.3C. Keypoint error is defined as the pixel distance between the estimated

and ground-truth keypoints, averaged across all keypoints, and only for keypoints that were valid

detections (an invalid detection occurs when the keypoint isn’t detected and the network predicts

(0, 0)). The error remains roughly constant with distance, but we note that pixel error is influenced
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by the scale of the target. At far distances, the target’s perceived area is smaller and a unit of pixel

error translates to higher error in world coordinates than a unit of pixel error at close distances.

3.2.3 Robust Point Cloud Registration

From the depth image provided by the D455 camera and the detected keypoint pixel coordinates,

we create an estimated point cloud of keypoints, denoted as A = {ai}Ni=1. Furthermore, the

corresponding keypoints are also annotated on the known object CAD model through the data an-

notation tool, leading to a second point cloud, namely B = {bi}Ni=1. Solving for the transformation

between these two point clouds allows us to estimate the pose of the target relative to the camera.

We seek to find the rotation R ∈ SO(3) and translation t ∈ R3 which minimize the following

truncated nonlinear least squares problem [38]:

min
R∈SO(3),t∈R3

N∑
i=1

min
(
||bi −Rai − t||2 , c̄2

)
, (3.1)

where c̄ represents the upper bound on the residual error for a measurement to be considered an

inlier, and is set to be 10 mm. In the truncated least squares problem in Eq. 3.1, measurements

with residual error smaller than c̄ are used to compute a least-squares estimate, while residuals

greater than c̄ have no effect on the estimate and are discarded as outliers. In our application, this

is useful for filtering out outliers caused by spurious keypoint or depth detections. In practice,

we utilize Teaser++ [38] to solve this problem, which takes on average 2 ms to solve a single

registration problem on the Xavier NX. Fig. 2.3E-F demonstrate the results of our approach for the

med-kit object. Translation error is defined as the Euclidean distance between the estimated and

ground-truth translations, while rotation error is computed as the geodesic distance between the

estimated and ground-truth rotations. Additionally, we only report data for detections that had at

least one inlier point. We nominally plan trajectories at a distance of 1.25 m from the target, which

equates to roughly 5 cm of translation error and 15 degrees of rotation error. Our experiments

have validated that this error is well tolerated when combined with the fixed-lag smoother and the
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robustness of the soft gripper.

3.2.4 Fixed-Lag Smoother

Estimates of the target’s relative pose from individual images are fused together in a fixed-lag

smoother to reduce noise in the estimate and provide estimates for linear and angular velocity.

Knowledge of the target’s velocity is necessary for grasping moving targets at the desired relative

speed. We rely on the estimation process described below to infer velocity.

We model the target’s motion as a nearly constant velocity model [43], with the target’s pose

Tk ∈ SE(3) and linear and angular velocity ξk ∈ R6 at time k:

Tk+1 = Tk ⊞ (ξkdt)

ξk+1 = ξk + νkdt,

(3.2)

where νk ∈ R6 ∼ N (0,Σ) represents white-noise angular and linear acceleration, and ⊞ maps

a vector in R6 (on the right-hand-side of the operator) to SE(3) (e.g., via an exponential map or,

more generally, a retraction [44]) and then composes it with the pose on the left-hand-side of the

operator. Given observations of the target’s pose over the last τ timesteps, namely T̂T−τ :T , we

estimate TT−τ :T and ξT−τ :T as

min
TT−τ :tT

,ξT−τ :T

T∑
k=T−τ

||Tk ⊟ T̂k||2Ω1

+ ||(Tk ⊞ (ξkdt)) ⊟ Tk+1||2Ω2

+ ||ξk − ξk+1||2Ω3
+||ξk||2Ω4

,

(3.3)

where ⊟ denotes a tangent space representation of the relative pose between two poses. The first

term encourages the estimate to match the target pose observations, the second term constrains the

estimated velocity to be consistent with the poses, and the third term forces changes in velocity

between timesteps to be small. The final term provides regularization on the velocity estimate.
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We found a small amount of velocity regularization to be necessary for consistent initialization

of the filter. Ω1, Ω2, Ω3, Ω4 are tunable weight matrices to trade off among the four terms (see

Table A.6). The optimization is implemented in C++ using the GTSAM library [45]. The incre-

mental iSAM2 algorithm [46] is used to optimize (3.3), as it enables reuse of computation between

timesteps.

3.3 Trajectory Optimization and Control

To enable our grasps, we compute a smooth polynomial trajectory for the drone, passing at a set

distance over the target (the grasp point). This nominal trajectory is tracked with an adaptive

controller which compensates for the added mass after grasping and for other external distur-

bances. Throughout the grasp procedure, the drone’s current position is fed into a gripper state

machine, which sets the finger winch angle based on the results of an offline FEM-based optimiza-

tion (Fig. 2.1). The trajectory optimization and control are based on prior implementations for

motion-capture based grasping [23], with added functionality enabling trajectory planning during

flight and updating of the reference trajectory to account for moving targets.

3.3.1 Minimum-Snap Polynomial Trajectory Optimization

We compute a fixed-time polynomial aligned with the target’s grasp axis and constrained to start

at the drone’s initial position, pass through the grasp point, and end at an arbitrary final position.

The grasp point is defined as the target’s position, plus a tunable offset to account for the length

of the fingers and any misalignment between the target frame center and the geometric center. We

seek to find a polynomial that minimizes the 4th derivative of position, or snap, of the drone. As

shown in [33], polynomials of this form enable smooth, continuous motion which allows for sta-

ble, consistent grasps. The key idea which enables grasping moving targets is that the polynomial

is planned with respect to the target’s frame, rather than the inertial frame. As the target moves

the polynomial moves with it, inducing a disturbance which is compensated for by our low-level

41



tracking controller. The polynomial provides a series of position, velocity, and acceleration set-

points that are tracked by the drone’s flight controller. The drone’s yaw setpoint is set to always

point toward the estimated object position. Appendix C provides further exposition on our specific

trajectory optimization implementation.

3.3.2 Adaptive Quadrotor Control

The drone is subject to various forms of disturbances that could impede both grasp success and

post-grasp flight performance. After the target is grasped, the effective mass of the quadrotor

increases and the thrust efficiency decreases, as the grasped object partially obstructs the propellers.

Estimates of system model parameters are also imperfect, and benefit from online adaptation.

Additionally, we observe that our system is also sensitive to variable disturbances such as wind in

outdoor environments or the ground effect. To mitigate these disturbances, we adopt the geometric

adaptive control law presented in [34], that we briefly review below.

The external disturbances in our system primarily affect the translational dynamics of the drone,

with negligible impact on the rotational dynamics. Hence, we model the quadrotor dynamics as:

mp̈ = mg + fbz + θf

Ṙ = RΩ̂

JΩ̇ = −Ω× JΩ+ τ

(3.4)

where m is the drone’s mass, J is the moment of inertia, g is the gravity vector, p ∈ R3, ṗ ∈

R3, R ∈ SO(3), Ω ∈ R3 are the position, velocity, rotation, and angular velocity of the drone,

respectively, f is the scalar thrust force applied along the local vertical direction bz, τ is the torque

applied by the quadrotor, and θf is the unknown translational disturbance. The hat operator ·̂ maps

a vector in R3 to an element of the Lie algebra so(3), i.e., a 3× 3 skew symmetric matrix; see [34].
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We then compute the quadrotor’s thrust and moment as:

f = −bTz (kpep + kvev +mg −mp̈d + θ̄f ) (3.5)

τ = −krer − kΩeΩ + JRTRdΩ̇d

+(RTRdΩd)
∧JRTRdΩd (3.6)

where pd, Rd, Ωd are the desired position, attitude, and angular velocity, respectively, ep, ev, er,

eΩ are the position, velocity, rotation, and angular velocity errors, θ̄f is the estimated disturbance

on the translation dynamics, and kp, kv, kr, kΩ are user-specified control gains. We refer the reader

to [34] for the definition of the errors and a more comprehensive discussion.

The estimated disturbance is adjusted online using the following law:

dθ̄f

dt
=Π(γf (ev+kafep)) (3.7)

where γf , kaf are user-specified gains and Π is a suitable projection function.

This formulation ensures that the tracking errors asymptotically go to zero even in the presence

of unknown disturbances [34].

3.3.3 FEM-Based Gripper Control

To optimally actuate the gripper, the controller must deform its fingers such that they effectively

enclose the target object, while simultaneously ensuring that they do not obstruct the view of the

onboard cameras. To balance these two goals, we employ an optimization-based control method.

At the core of our control method is a finite element-based (FEM) model.

The gripper’s volume is discretized into a finite element mesh with nodal positions x, and

simulated cables are routed through this mesh. Given cable contractions u, we can solve for a
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corresponding statically stable pose

x(u) = argmin
x

E(u,x) (3.8)

by minimizing the total potential energy of the system E using Newton’s method. This general

approach can be elegantly extended to account for dynamics, and is done in [29], [47].

Our control optimization is a nested optimization. Its objective O(u,x(u)) is written in terms

of the physically valid pose x(u), found by solving Eq. 3.8. We minimize this objective using

gradient descent to find optimal control inputs for a desired configuration

u∗ = argmin
u

O(u,x(u)). (3.9)

Computing the gradient of our control objective requires the Jacobian dx
du

relating changes in con-

trol inputs u to changes in the corresponding physically-valid mesh shape x(u), which we solve

for using direct sensitivity analysis, as described in [48].

Our specific control objective O is the weighted sum of two sub-objectives, which are illus-

trated in Fig. 2.2D-E:

O = Ograsp +OFOV (3.10)

The first sub-objective, Ograsp, drives the gripper’s fingers towards a configuration where they

can effectively grasp an object. The sub-objective

Ograsp = ||(s− y1(u))× (s− y2(u))||2 (3.11)

works by maximizing the area enclosed by the gripper’s fingertips and a target point s (Fig. 2.2E,

[23]). Here, s represents the centroid of the target shifted from the drone by a nominal offset which

approximates the relative position between the drone and target at the moment the gripper begins

to close. The fingertip positions y1(u) and y2(u) are defined in terms of the physically-valid mesh

position x(u) using barycentric coordinates.
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The second sub-objective, OFOV, ensures the the gripper’s fingers do not obstruct the camera’s

field of view. This is accomplished by defining a plane with point p and normal n, analogous to

the bottom face of a camera’s view frustum (Fig. 2.2D). To prevent the finger from entering into

the camera’s field of view, the sub-objective

OFOV =
∑
i

f ((p− xi(u)) · n) (3.12)

sums over the squared penetration depths of all nodes in the mesh. Here, the function

f(z) =


z2 − εz + ε2

3
, if ε < z,

z3

3ε
, if 0 < z ≤ ε,

0, otherwise

(3.13)

is a smooth one-sided quadratic, driving the mesh outside the camera’s field of view while ensuring

the optimizer is well-behaved. Depending on the grasp phase, OFOV is added for both the front and

the rear camera (to obtain the target observation state) or only for the rear camera (to obtain the

pre-grasp state).

3.3.4 Measuring Sources of Error

The success of our vision system depends on three sources of error: target estimation error, VIO

drift, and trajectory tracking error. We collect motion capture data alongside the vision flights to

benchmark these errors, although the quadrotor only uses vision-based data for its own control.

To quantify the amount of target estimation error (Fig. 2.5B), we placed motion capture mark-

ers near the target, but far from the key visual features. The target’s motion capture frame was

manually adjusted until it visually appeared aligned with the expected target’s vision frame. Esti-

mation error is then reported as the difference between our vision based estimate and the motion

capture ground truth. VIO drift (Fig. 2.5C) was measured by aligning the grasp trajectory as re-
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ported by the vision system with the recorded motion capture data. This alignment was done using

evo [49], which performs a least squares optimization to find the optimal rigid transformation be-

tween trajectories. Here, we are only concerned with aligning part of the trajectory up until the

grasp point, as post-grasp drift generally has litte effect on grasp success. Therefore, we align

trajectories starting from 9 seconds before the grasp time up until the grasp time. We found this

range to be suitable to be sure that the resulting alignment errors were due to trajectory drift and

not because of a lack of data points. Trajectory tracking errors (Fig. 2.5D-G) were analyzed by

extracting the setpoint and pose estimate from the flight controller.

When generating the plots and tables for these metrics, we exclude runs that resulted in catas-

trophic failures (i.e., the drone crashed after grasp). In total, we discarded two runs: one vision-

based run with the cardboard box and one vision-based run with the pepsi bottle at 3 m/s desired

speed. These runs were counted as failures. Additionally, for each of the turntable experiments, 5

trials were conducted with the turntable spinning clockwise and 5 were conducted counterclock-

wise. Because there is large variation between these cases, the error plots only use the clockwise

case. The success rates use both cases.
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Chapter 4

Conclusion

We advance the state of the art towards deployable, aggressive, and versatile aerial manipula-

tion. We accomplish this by combining the desirable properties of a soft gripper with an advanced

quadrotor platform and a state-of-the-art perception system. The gripper’s reliable performance

—even with imperfect grasp placement— and its ability to decouple the quadrotor dynamics from

contact constraints enable high speed grasps. The system’s ability to operate outside of a controlled

motion-capture room is vital in nearly every practical application, enabling aerial vehicles to per-

form manipulation tasks such as emergency supply distribution, package pickup and delivery, and

warehouse automation.

The compliant fingers of our soft gripper are key to enabling the full system to grasp at high

speeds. As the drone flies faster, its position estimate suffers and tracking errors increase. Fur-

thermore, the detections of the target’s pose have several centimeters of error and VIO drift adds

additional error. In spite of these error sources, the system successfully picks up objects at over

2 m/s, with full onboard vision.

The gripper mechanism is mechanically simple, which we have found to be a great advantage

in manufacturability and repairability. Each finger assembly requires only a handful of 3D-printed

parts, fishing line, off-the-shelf foam, and a small motor. The fingers themselves have been sur-

prisingly resilient when attached to the drone. Their most common failure modes are tears that
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develop near the base, which we have been able to easily repair with common super glue. They

also provide cushion to the drone during hard landings; during our development we have seen the

drone fall over six feet onto solid surfaces and not require any repair. Even in these cases, the

fingers did not break and were used successfully for subsequent grasps.

Controlling soft fingers can be challenging, as they are difficult to model. In comparison to rigid

manipulators, which have a well-defined finite dimensional state space, soft fingers are a continuum

and have an infinite-dimensional state space. This makes it difficult to relate control input to finger

state, which is necessary for our gripper to open its fingers for object grasping while staying out of

the cameras’ field of view when necessary. We have demonstrated that FEM-based modeling and

control enable us to accurately approximate the continuum mechanics of our soft fingers, enabling

reliable grasp performance. Our approach is readily generalizable to different, task-specific gripper

configurations, which could be designed to exploit the morphology of a specific target, following

the geometric analysis in Appendix B.

We see several potential avenues for future work. One limitation of our pose estimation pipeline

is its assumption of prior knowledge of the target object’s geometry and visual features. Leverag-

ing recent advances in category-level keypoint detection, e.g., [50], would enable the system’s

perception pipeline to generalize to other instances of the same semantic category (e.g., multiple

types of packages or soda bottles). Our drone is also currently limited to picking up light objects.

We expect that scaling up the drone platform relative to the gripper would lead to a wider range

of graspable objects without having to change the rest of the system, as a larger drone would have

more control authority and more reliable trajectory tracking both before and after grasp. Finally,

full vision-based grasps of moving targets is an immediate next step for our system. Grasping a

moving target using only vision-based inputs with our current system requires predicting the ob-

ject’s motion when it goes out of frame before the grasp point, inevitably adding error to the object

pose estimate. Timing offsets between the drone’s pose estimate and the camera image frame

also manifest as error in the object pose estimate. These two additional sources of error currently

prevent our drone from performing vision-based grasps of moving targets. More sophisticated
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trajectory prediction techniques or constraints on the target’s possible motion might be needed to

enable these moving grasps.
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Appendix A

Supplementary Figures

Figure A.1: Tracking error breakdown for experiments with static target (continued below). Longitu-
dinal, lateral, and vertical position and velocity tracking errors for the vision-based experiments with static
target. Before grasp, vertical errors become more positive due to ground effect. Post-grasp, the mass of the
object results in more vertical errors, that are gradually compensated for.

50



Figure A.1: Tracking error breakdown for experiments with static target (continued). As the velocity
increases, we see that longitudinal errors dominate while lateral and vertical errors increase slightly. Large
longitudinal tracking errors have little effect on grasp success, as the timing of the gripper closure is based
on the drone’s actual position with respect to the target. It is important, however, that the lateral and vertical
errors are minimal at the time of grasp closure.
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Figure A.2: Tracking error breakdown for experiments with moving target. Longitudinal, lateral,
and vertical position and velocity tracking errors for the motion-capture-based experiments with moving
targets. For the quadruped experiments, longitudinal errors increase greatly with increased linear speed of
the target. Lateral and vertical errors also see slight increases with speed, due to either the higher variation of
the target’s motion or worsening of the drone’s control authority at this speed. We see that there is increased
lateral errors when grasping a rotating target, due to the desired grasp direction also rotating. These errors
increase with increased relative grasp velocity.
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Figure A.3: Gripper dimensions and error bounds. (A) The table shows the dimensions of the three
objects. (B) The longitudinal error bound. Because the fingers close in roughly a circular arc, the longitu-
dinal gripper length decreases as it closes. Assuming the lowest point of the front finger is 7.5 cm above
the top face of the target, our effective longitudinal gripper length can be computed when the finger reaches
the same height as the target’s top face. This effective gripper length minus the target’s longitudinal length,
halved, gives us our error bound. (C) The lateral error bound. If the drone has greater lateral error than this
bound, then one half of the gripper will not make contact with the target. (D) The vertical error bound. If
there exists high error pointing downward, the front fingers will collide with target. Conversely, if there is
high error pointing upward, the rear fingers will not make contact.
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Experiment Pose
Error [cm]

VIO
Error [cm]

Tracking
Error [cm]

Total
Error [cm]

E�ective Total
Error [cm]

Max Allowed
Error [cm]

Vision Medkit 0.5 m/s 0.42± 0.2 1.06± 0.2 2.84± 0.96 4.32± 1.09 1.48 ± 0.28 2.95

Vision Carboard Box 0.5 m/s 2.39± 0.37 1.01± 0.08 4.87± 1.71 8.27± 1.79 3.4 ± 0.38 5.45

Vision 2-liter 0.5 m/s 0.93± 0.3 1.08± 0.07 3.66± 0.93 5.67± 1.1 2.01 ± 0.31 6.7

Vision 2-liter 1.25 m/s 1.13± 0.71 2.21± 0.32 6.67± 2.09 10.02± 2.36 3.34± 0.78 6.7

Vision 2-liter 2 m/s 0.47± 0.32 3.6± 0.42 8.94± 3.64 13.02± 3.89 4.07 ± 0.53 6.7

Vision 2-liter 3 m/s 0.47± 0.32 6.74± 0.98 12.42± 5.8 19.63± 5.89 7.21 ± 1.03 6.7

Mocap Quadruped Slow - - 1.22± 2.24 1.22± 2.24 - 2.95

Mocap Quadruped Fast - - 10.18± 7.45 10.18± 7.45 - 2.95

Mocap Turntable 0.5 m/s - - 5.46± 1.09 5.46± 1.09 - 6.7

Mocap Turntable 1.0 m/s - - 11.11± 1.88 11.11± 1.88 - 6.7

Mocap Turntable 1.5 m/s - - 16.94± 1.15 16.94± 1.15 - 6.7

Table A.1: Longitudinal errors at the time of grasp. Longitudinal pose estimate, VIO, tracking errors,
total error, and maximum allowed error for each experiment. As the majority of the grasp’s motion happens
in this axis, we see much higher tracking errors compared to the lateral and vertical axes. These errors
increase greatly with increased velocity, due to limited control authority. However, these tracking errors
have little effect on the success of the grasp. If the drone is aligned vertically and laterally, the grasp will
succeed if it is triggered at the proper time, which is affected by VIO drift and our initial pose estimate.
We can then compute our effective total error, which is the sum of only these two sources. We see that in
the majority of our experiments, the effective total error remains within the maximum allowed longitudinal
error bound derived in Appendix B.
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Experiment Pose
Error [cm]

VIO
Error [cm]

Tracking
Error [cm]

Total
Error [cm]

Max Allowed
Error [cm]

Vision Medkit 0.5 m/s 3.98± 0.13 0.3± 0.12 0.49± 0.22 4.78± 0.54 6.85

Vision Carboard Box 0.5 m/s 4.07± 0.34 0.41± 0.11 1.03± 0.76 5.51± 0.92 7.85

Vision 2-liter 0.5 m/s 3.6± 0.26 0.3± 0.1 0.83± 0.54 4.72± 0.78 10.6

Vision 2-liter 1.25 m/s 3.73± 0.58 0.45± 0.32 1.12± 0.52 5.3± 1.14 10.6

Vision 2-liter 2 m/s 3.07± 0.36 0.56± 0.38 1.29± 0.73 4.92± 1.59 10.6

Vision 2-liter 3 m/s 3.07± 0.36 0.74± 0.18 4.58± 1.14 8.39 ± 1.21 10.6

Mocap Quadruped Slow - - 0.21± 1.26 0.21± 1.26 6.85

Mocap Quadruped Fast - - 1.01± 2.0 1.01± 2.0 6.85

Mocap Turntable 0.5 m/s - - 1.22± 0.6 1.22± 0.6 10.6

Mocap Turntable 1.0 m/s - - 2.37± 0.76 2.37± 0.76 10.6

Mocap Turntable 1.5 m/s - - 3.03± 0.71 3.03± 0.71 10.6

Table A.2: Lateral errors at the time of grasp. Lateral pose estimate, VIO, tracking errors, total error, and
maximum allowed error for each experiment. We see high lateral error in our pose estimate, which we note
could be accounted for by alignment errors in the ground truth pose. VIO is minimal for all speeds, while
tracking errors increase with speed and are effected by the rotational motion of the turntable experiments.
For all experiments, the total lateral error remains within the maximum allowed lateral error bound derived
in Appendix B. Despite this, we observe complex grasp interactions such as buckling or twisting of the
fingers which result in fingers failing to make secure contact in the lateral direction, and, consequently,
failed grasps.
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Experiment Pose
Error [cm]

VIO
Error [cm]

Tracking
Error [cm]

Total
Error [cm]

Max Allowed
Error [cm]

Vision Medkit 0.5 m/s 1.44± 0.15 1.31± 0.29 3.33± 0.76 6.1± 0.91 7.6

Vision Carboard Box 0.5 m/s 1.65± 0.23 1.35± 0.15 4.58± 1.69 7.58± 1.76 7.6

Vision 2-liter 0.5 m/s 1.32± 0.19 1.46± 0.15 3.36± 0.39 6.14± 0.66 7.6

Vision 2-liter 1.25 m/s 3.71± 0.98 0.83± 0.41 1.52± 0.76 6.06± 1.49 7.6

Vision 2-liter 2 m/s 2.57± 0.74 1.55± 0.67 1.94± 1.26 6.07± 2.0 7.6

Vision 2-liter 3 m/s 2.57± 0.74 1.21± 0.38 7.17± 1.53 10.95± 1.74 7.6

Mocap Quadruped Slow - - 1.26± 0.86 1.26± 0.86 7.6

Mocap Quadruped Fast - - 2.41± 0.84 2.41± 0.84 7.6

Mocap Turntable 0.5 m/s - - 1.61± 0.4 1.61± 0.4 7.6

Mocap Turntable 1.0 m/s - - 2.1± 0.3 2.1± 0.3 7.6

Mocap Turntable 1.5 m/s - - 1.33± 0.93 1.33± 0.9 7.6

Table A.3: Vertical errors at the time of grasp. Vertical pose estimate, VIO, tracking errors, total error,
and maximum allowed error for each experiment. We see that pose and VIO errors are minimal for all
experiments. Differences in the pose estimate for the two-liter experiments are explained by slight alignment
differences when defining the ground truth, motion capture pose for the bottle. Tracking errors at the point
of grasp are explained by ground effect, unintended pre-grasp interaction with the target, and general control
authority limitations. In particular, we see high vertical tracking error at the fastest speed. This could be
due to the coupling of forward velocity and altitude control for quadrotors, where our altitude authority
worsens at higher speeds. The remaining experiments remain within our vertical error bounds (derived in
Appendix B), albeit on the boundary in some cases. Indeed, vertical misalignment is a common failure
mode.
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Component Specification

Frame Carbon Fiber, 3mm and 1mm
Camera Mounts 3D printed PLA
Motor Yuneec Intel Aero Ready to Fly
Propeller Yuneec 9x4.5”
Electronic Speed Controller Tekko32 F4 4 in 1 Mini 45A
Power Distribution Board Holybro PM06 v2.0
Flight Controller Pixhawk 4 Mini
RC Receiver Spektrum FPV Racing Serial Receiver
Battery 4-cell, 3200mAh, 50C LiPo Spektrum G2 smart battery
Target Camera Intel Realsense D455
VIO Camera Intel Realsense T265 Tracking Camera
Onboard Compute Jetson Xavier NX (6 ARM cores, 8GB unified RAM/VRAM)
Jetson Carrier Board Leetop A203 v2

Table A.4: Drone specifications. Component list for the drone platform and the perception system.
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Figure A.4: Passively closed finger mold. (A) The mold is 3D printed into a circular arc and consists of
a top and bottom, such that the mold can be opened to remove the finger after it has cured. The top piece
has outlets for excess liquid foam to escape during the curing process. Evenly spaced slits are placed in the
interior of the mold; this leaves small foam protrusions on the cured finger that help mark the placement
of the tendon guides. (B) Annotated drawing of the bottom mold, detailing the mold’s radius and cross-
sectional dimensions.
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Figure A.5: Automated data annotation tool. Example of the automated keypoint annotation Matlab GUI.
The tool automatically parses RGB and depth images from a Rosbag and computes the camera pose for each
image. Here, the user is manually placing a keypoint on the corner of the medkit. With known camera poses
and leveraging the depth channel of the camera, this keypoint can then be projected back to pixel space for
all subsequent frames. Once all the keypoints are labelled and refined, the user can switch to the recording
tab, which will annotate the pixel locations of keypoints in every image and format the data to be ready to
train the network.
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A B C

D E

Figure A.6: Keypoint detector training environments. To increase the generalizability of our keypoint
detector, we collect training data in several environments: (A) motion capture room, (B) cluttered workshop,
(C) lounge space, (D) foyer, and (E) outdoor field. We can quickly generate training data for new environ-
ments and targets with the aid of our automated data annotation tool.

Pipeline Parameter Value

Model resnet18 baseline att

Optimizer Adam

Learning Rate 1 × 10− 3

Random Angle [-0.2, 0.2]

Random Scale [0.5, 2.0]

Random Translate [-0.2, 0.2]

Brightness 0.15

Contrast 0.1

Saturation 0.1

Hue 0.1

Table A.5: Keypoint detector training parameters. All relevant, custom parameters used to train the
model. The parameters correspond to values specified in trt-pose’s training pipeline.
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Ω−1
i =


Σd +

[
t1 I3 0

0 r1 I3

]
[
ti I3 0

0 ri I3

]
i=2,3,4

(A.1)

Symbol Name Value

t1 Observation Translation Variance 0.2 [m]2

r 1 Observation Rotation Variance 0.05 [rad]2

t2 Motion Model Position Error Variance 0.005 [m]2

r 2 Motion Model Rotation Error Variance 0.005 [rad]2

t3 Motion Model Velocity Error Variance 0.01 [m/s]2

r 3 Motion Model Angular Velocity Variance 0.01 [rad/s]2

t4 Velocity Prior Variance (regularization) 10 [m/s]2

r 4 Angular Velocity Prior Variance (regularization) 1 [rad/s]2

Table A.6: Fixed-lag smoother parameters. Eq. A.1 defines the weight matrices Ω1, . . . ,Ω4 in the fixed-
lag smoother (Eq. 3.3) based on the the parameters in this table. Ω1 scales the penalty on error between
predicted and observed object pose, where Σd is the covariance matrix of the drone’s odometry estimate.
Note that Eq. A.1 assumes the measurement noise of the object relative to the camera is isotropic. In general,
the observation noise must be rotated into the global frame. Ω2 scales the penalty on the object pose estimate
differing from a constant velocity model. Ω3 scales the penalty associated with estimating higher changes in
velocity (i.e., how constant we expect the velocity to be). Ω4 is a small regularization term reflecting a prior
on the velocity and angular velocity not being too large. Note that our chosen values of t4 = 10 (m/s)2 and
r4 = 1 (rad/s)2 are quite reasonable, as any target we can hope to pick up will be moving at much slower
speeds. This term is included to help ensure reliable initialization of the smoother.
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Appendix B

Design Guidelines and Error Analysis

We compute an approximate geometry-based bound on the error that can be tolerated for a suc-

cessful grasp. The bound can be used to predict which objects are more likely to be grasped by a

given gripper design and can inform future redesigns of the soft gripper for other applications.

Towards this goal, we measured the dimensions of the smallest enclosing 3D bounding box

around each object; the results are shown in Fig. A.3-A. In the best case, we assume that any

positioning error that still enables all four fingers to contact this bounding box could still result in a

successful grasp, but positioning errors outside this range will likely fail. We can then approximate

longitudinal, lateral, and vertical error bounds by using the gripper dimensions in its pre-grasp

configuration and computing the maximum tolerable error (Fig. A.3-B-D) that still allows the four

fingers to make contact. For our analysis, we assume that the gripper’s center is aligned with the

target’s center laterally, and the top face of the target is vertically centered between the lowest

points on the rear and front fingers.

For the longitudinal error bound (Fig. A.3-B), the solid green region depicts the approximate

area the gripper encapsulates as it closes. Because the front fingers close in a circular arc, the

effective longitudinal gripper length decreases as the fingers close. Given our assumed drone’s

vertical position, the effective longitudinal gripper length at the moment the front fingers would

contact the target is δ1 = 23.4 cm. Our nominal control policy aims to have closed the gripper
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when the target is at the center of this longitudinal grasp length. If the gripper closes too early, the

front fingers will contact the top of the target, rather than the side, and the grasp may fail. If the

gripper closes too late, the gripper is more robust as the rear fingers can carry the target while the

front fingers continue to close. Calling ℓ1 the longitudinal target length, the maximum tolerable

longitudinal error can be computed as δ1−ℓ1
2

.

The lateral error bound (Fig. A.3-C) can be found similarly. If there exists so much lateral error

the one half of the gripper does not make contact with the target, the grasp is unlikely to succeed.

We measure the interior lateral gripper length between two pairs of fingers to be δ2 = 9.8 cm, and

—calling ℓ2 the lateral target length— compute the lateral error bound as ℓ2−δ2
2

For the vertical error bound (Fig. A.3-D), there exists two major failure modes: the rear fingers

are too high to secure a grasp, or the front fingers are too low such that they collide with the target

before grasp. We are less concerned with the rear fingers contacting the ground thanks to their

compliance. We measure the vertical gripper length between the lowest point on the rear fingers

and the lowest point on the front fingers as δ3 = 15.2 cm. As the top face of the target is assumed

to be centered in this interval, the vertical error bound is simply δ3/2 for all targets. We note that in

practice, we tune the vertical offset between the drone and the target at the grasp point empirically,

rather than centering it.

We report these error bounds, as well as our worst-case, averaged observed errors in the lon-

gitudinal, lateral, and vertical axes in Tables A.1, A.2, A.3. To obtain our worst case total error

for our experiments, we assume that the pose estimation error, VIO drift, and tracking error across

each axis sum together in a way that maximizes error.

In general, we see a bias in the pose estimation errors, particularly in the lateral axis. We

conjecture that this bias is due to a slight misalignment between the vision and motion capture

frames, and not an issue in our approach. Additionally, we note that our VIO metric is not a true

reflection of the exact amount of drift at the time of grasp (see Section 3.3.4). Because the timing

of the gripper closure only depends on the VIO state estimate and initial pose estimate of the target,

the longitudinal tracking errors have a minimal effect on grasp performance, but are still reported
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in the total error metric. Finally, we do not have ground truth target pose data available for the

two-liter 3 m/s experiment, and instead use the estimates from the two-liter 2 m/s experiment as

there should be minimal difference.

We note that most experiments remained within our theoretical error bounds. We remark that

these bounds are conservative: a grasp is unlikely to succeed outside of these bounds, but is not

guaranteed to succeed inside, due to the complex interaction between target and soft gripper.
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Appendix C

Evaluating Reference Polynomial in Object

Frame

Minimum-snap polynomials are widely used for generating quadrotor reference trajectories be-

tween waypoints. As the system is differentially flat [33], [51] in position and yaw, a reference

trajectory will be feasible if it has a continuous 4th derivative (subject to actuator limits). Each

axis of the reference trajectory can be solved independently. We solve for a separate polynomial

for each position axis, resulting in px(t), py(t), pz(t), by solving the following optimization prob-

lem:

min
p

∫ tf

0

||p4(t)||2dt

s.t.

p(0) = x0, ṗ(0) = 0, p̈(0) = 0,

p(tg) = xg, ṗ(tg) = vg, p̈(tg) = 0,

p(tf ) = xf , ṗ(tf ) = 0, p̈(tf ) = 0,

(C.1)

where p is a 10th degree polynomial, p4(t) is its fourth derivative with respect to t, x0 is the drone’s

current position in the relevant axis, xf is the desired post-grasp hover point, tg is the desired time
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of grasp, xg is the grasp waypoint, and vg is the grasp speed. This optimization can be solved

as a quadratic program (QP), although contrary to [33], [52] we solve for a single polynomial to

represent both segments of the trajectory. We use CVXOPT to solve the QP [53].

The curve

x(t) = [px(t), py(t), pz(t)], t ∈ [0, tf ]

represents the position setpoint over time of the drone during a grasp attempt. Similarly,

v(t) = ẋ(t) = [ṗx(t), ṗy(t), ṗz(t)], t ∈ [0, tf ]

a(t) = ẍ(t) = [p̈x(t), p̈y(t), p̈z(t)], t ∈ [0, tf ].

represent its velocity and acceleration. The yaw of the drone is set such that the drone points

toward its estimate of the object position at all times before grasp, and it maintains its yaw at the

grasp point for times after tg.

To enable the drone to grasp moving targets, we evaluate the grasp trajectory relative to the

moving target frame. As the lower-level controller expects a position, velocity, and acceleration

setpoint in the drone’s fixed odometry frame, we must transform [x(t), v(t), a(t)] from the ob-

ject’s moving frame to the fixed frame. We define the following variables:

The equations for transforming the setpoint into the global reference frame are then

xf
o = xf

m + xm
o (C.2)

vf
o = vf

m + ωf
m × xm

o + vm
o (C.3)

af
o = af

m +αf
m × xm

o + ωf
m ×

[
ωf

m × xm
o

]
+ 2ωf

m × vm
o + am

o . (C.4)

See, e.g., [54, Chapter 4], for more exposition on this transformation. In our experiments, we

assume the moving object’s angular acceleration is zero, setting αf
m = 0.
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Variable Names Description

xf
o ,v

f
o ,a

f
o Position, velocity, and acceleration setpoints for the

drone in the fixed odometry frame, expressed in the
basis of the fixed odometry frame.

x,v,a Position, velocity, and acceleration setpoints for the
drone relative to the moving target frame, expressed
in the moving object frame.

xm
o ,v

m
o ,a

m
o Position, velocity, and acceleration setpoints for the

drone relative to the moving target frame, expressed
in the basis of the fixed odometry frame. For a rota-
tion Rf

m from the moving frame to the fixed frame,
[xm

o ,v
m
o ,a

m
o ] = Rf

m[x,v,a]

xf
m,v

f
m,a

f
m,

ωf
m,α

f
m

Position, velocity, acceleration, angular velocity, and
angular acceleration of the moving target frame rel-
ative to the fixed odometry frame, expressed in the
fixed odometry frame.
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