
Deep Transfer Learning for Macroscale Defect

Detection in Semiconductor Manufacturing
by

John Timothy Waterworth
B.S. Mechanical Engineering

Texas A&M University, 2022

Submitted to the Department of Mechanical Engineering in partial fulfillment

of the requirements for the degree of

MASTER OF ENGINEERING IN MECHANICAL ENGINEERING

in conjunction with the Advanced Manufacturing and Design Innovation Program

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© John T. Waterworth, 2023. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to exercise

any and all rights under copyright, including to reproduce, preserve, distribute and publicly display copies

of the thesis, or release the thesis under an open-access license.

Authored by: John T. Waterworth
Department of Mechanical Engineering
August 11, 2023

Certified by: Duane Boning
Clarence J. LeBel Professor, Electrical Engineering and Computer Science
Thesis Supervisor

Certified by: David E. Hardt
Professor of Mechanical Engineering; Ralph E. and Eloise F. Cross Professor in Manufacturing
Thesis Supervisor

Accepted by: Nicolas Hadjiconstantinou
Professor of Mechanical Engineering
Graduate Officer, Department of Mechanical Engineering

PAGE INTENTIONALLY LEFT BLANK

2

Deep Transfer Learning for Macroscale Defect Detection in

Semiconductor Manufacturing
by

John Timothy Waterworth
Submitted to the Department of Mechanical Engineering on August 11, 2023, in partial fulfillment of the

requirements for the degrees of

Master of Engineering in Mechanical Engineering

Abstract
This thesis proposes improvements to wafer macro inspection processes and tools on four axes at

Texas Instruments. The major axis of improvement involves real-time machine learning recommendations

regarding the presence of macroscale defects. In this work, a model for detecting central defects is

described in detail, and a novel approach to overcoming data scarcity through the creation of synthetic

data is deployed. The binary classifier model achieves an out-of-distribution area under curve (AUC) of

0.909 for detecting hotspot defects. Detection for other classes of central defects is also explored but

limited by even greater data sparsity. Models for catching spin on glass defects and edge defects are also

trained with out-of-distribution AUCs reaching 0.927 and 0.906 respectively. Other axes of improvement

covered in this thesis involve gauge reliability and repeatability analysis of macro inspection tools, the

creation of a new user interface called OwlView, and the trial of a new macro inspection system used

in-line on photolithography tools for greater efficiency. Gauge repeatability and reliability analysis gives

insight into tool function and assists the team and technicians in root cause analysis. Several hardware

failures of current toolsets are identified and addressed. Maintenance procedures are also updated to keep

tools operating within specifications. The OwlView interface is developed with features to increase user

efficiency. Additionally, the interface helps create an infrastructure for tagging more data, which will be

fed back into the models to address data scarcity. Lastly, an in-line inspection trial shows achievable high

quality wafer images compatible with the machine learning and inspection infrastructures developed in

this work.

Thesis Supervisor: Duane Boning

Title: Clarence J. LeBel Professor, Electrical Engineering and Computer Science

3

PAGE INTENTIONALLY LEFT BLANK

4

Acknowledgments
Thank you to the Advanced Manufacturing and Design Innovation program at MIT and Texas

Instruments for making this collaboration happen. Specifically, I thank our project advisor Duane Boning,

program director Jose Pacheco, and Professor Dave Hardt at MIT. I am also very grateful to our project

sponsors Todd Binnix and Vidya Krishnan at Texas Instruments. Additionally, there are countless

engineers, technicians, specialists, managers, and so forth we worked with this summer I would like to

thank. Most importantly, thank you to Jonathan and Sophia for coming to Texas and completing this

project with me. Finally, thank you to my parents, brother, and friends for their endless support.

5

PAGE INTENTIONALLY LEFT BLANK

6

Contents
Glossary...15
Chapter 1: Introduction...17

1.1 Project Motivation... 17
1.2 Problem Statement...18
1.3 Approach... 18
1.4 Division of Work... 19
1.5 Thesis Outline..19

Chapter 2: Problem Background..20
2.1 Manufacturing and Inspection Overview.. 20

2.1.1 Overview of Wafer Manufacturing at DFAB...20
2.1.2 Macro Inspection Process Overview..21

2.2 Improvement Axes and Goals... 24
2.2.1 GR&R Goals.. 24
2.2.2 Improved User Interface Goals.. 25
2.2.3 Machine Learning Goals..25
2.2.4 In-line Inspection Pilot Goals.. 26

2.3 Chapter Summary.. 26
Chapter 3: Gauge Repeatability and Reproducibility Analysis...27

3.1 Summary of GR&R Purpose and Procedure... 27
3.2 Summary of GR&R Results and Corrective Action..29
3.3 Summary of GR&R Future Work..31

Chapter 4: Graphical User Interface Development..32
4.1 Motivation for New User Interface... 32
4.2 Design of New User Interface... 33

4.2.1 Development Software...33
4.2.2 Proposed Integration of User Interface.. 33
4.2.3 Color Equalization Filtering Development.. 35
4.2.4 Retroactive Logpoint Tracking Development..36
4.2.5 Specialist Inspection Flagging and Tracking Development...38
4.2.6 Machine Learning Recommendations Development...40
4.2.7 Other Features Development... 42

4.3 OwlView Interface...42
4.3.1 OwlView Interface Layout...42
4.3.2 OwlView Wafer View Section... 43
4.3.3 OwlView Recent Logpoints Section.. 45
4.3.4 OwlView ML Recommendations Section..46
4.3.5 OwlView Wafer Navigation Section..47
4.3.6 OwlView Defect Flagging Section...49

7

4.4 Implementation of OwlView... 50
4.4.1 Use as Production Tool.. 50
4.4.2 Use as an Engineering Tool..51
4.4.3 Use as a Machine Learning Data Tagging Tool... 51

4.5 Chapter Summary.. 51
Chapter 5: Data Availability and Data Preparation Tools... 52

5.1 Motivation for ML Data Infrastructure... 52
5.2 Data Availability..52
5.3 Scraping from EAGLEView Server.. 53
5.4 Data Tagging.. 54

5.4.1 General Defect Tagging... 54
5.4.2 Spatial Defect Tagging...54

5.5 Data Sorting Tools... 55
5.5.1 Data Splitter... 55
5.5.2 Indices Remover.. 57
5.5.3 Random Reducer..57
5.5.4 Train Test Divider.. 57

5.6 Chapter Summary.. 57
Chapter 6: Related Work in Macroscale Defect Detection.. 58

6.1 Macroscale Defect Detection in Industry.. 58
6.2 Machine Learning Macroscale Defect Detection.. 59
6.3 Chapter Summary.. 60

Chapter 7: Overview of Machine Learning Methods...61
7.1 Selected Model Architecture and Functions..61

7.1.1 Supervised Deep Learning Approach.. 61
7.1.2 Model Architecture.. 61
7.1.3 Transfer Learning...63
7.1.4 Optimization...63
7.1.5 Loss Function...63

7.2 Investigated Model Parameters and Techniques..64
7.2.1 Regularization.. 64
7.2.2 Cross-Validation Technique... 64
7.2.3 Image Split Value N... 65
7.2.4 Linear Probing..65
7.2.5 Data Augmentation.. 65
7.3 Model Performance Metrics..66

7.4 Localization Heat Map Activation.. 67
7.5 Receiver Operator Characteristic Curves.. 67
7.6 Chapter Summary.. 68

Chapter 8: Spin on Glass Defect Detection Model..69
8.1 Summary of SOG Model Motivation and Methods.. 69

8

8.2 Summary of SOG Model Key Results.. 70
8.3 Summary of SOG Model Future Work..72

Chapter 9: Edge Defect Detection Model...73
9.1 Summary of Edge Model Motivation and Methods.. 73
9.2 Summary of Edge Model Key Results.. 74
9.3 Summary of Edge Model Future Work... 76

Chapter 10: Center Defect Detection Model... 77
10.1 Problem of Data Availability for Central Defects... 77
10.2 Methodology for Central Defects Model...79

10.2.1 Proposed Experiments for Central Defects Model...79
10.2.2 Evaluation of Models... 81
10.2.3 Generation of Synthetic Data...82

10.3 Model Results.. 85
10.4 Limitations...93
10.5 Chapter Summary.. 94

Chapter 11: In-line Inspection Evaluation and Findings... 95
11.1 Summary of In-line Inspection Motivation and Methods..95
11.2 Summary of In-Line Inspection Trial.. 97
11.3 Summary of Future Work.. 99

Chapter 12: Conclusions..100
12.1 Summary of Results and Conclusions... 100
12.2 Future Work... 100

Bibliography... 103

9

PAGE INTENTIONALLY LEFT BLANK

10

List of Figures
Figure 2-1: General flow of wafers through a fab..21
Figure 2-2: Inspection process flow... 22
Figure 2-3: Wafer scans at varying logpoints for a single wafer..23
Figure 3-1: Defective wafers for GR&R study.. 28
Figure 3-2: EAGLEView classifications for 200mm GR&R...29
Figure 3-3: EAGLEView classifications for 150mm GR&R...30
Figure 4-1: Initial macro inspection module data flow..34
Figure 4-2: Proposed macro inspection module data flow...34
Figure 4-3: Color equalization demonstration... 36
Figure 4-4: Saving structure within lot on 150mm or 200mm database..37
Figure 4-5: Naming format for individual wafer scans..37
Figure 4-6: Image splitting, inference, and display scheme for new GUI... 41
Figure 4-7: OwlView interface with annotated sections.. 42
Figure 4-8: OwlView wafer view section.. 43
Figure 4-9: OwlView wafer view section functionality... 44
Figure 4-10: OwlView recent logpoints section...46
Figure 4-11: OwlView ML section.. 46
Figure 4-12: OwlView wafer navigation section... 48
Figure 4-13: OwlView wafer navigation functionality.. 48
Figure 4-14: OwlView defect flagging section.. 49
Figure 4-15: OwlView defect flagging functionality... 49
Figure 5-1: Wafer scan location through lifetime.. 52
Figure 5-2: Spatial trainer demonstration.. 54
Figure 5-3: Mask generation in spatial tagger..55
Figure 5-4: Splitting algorithm methodology.. 56
Figure 6-1: Wafermap compared to EAGLEView scan...59
Figure 7-1: VGG-11 architecture visualization..61
Figure 7-2: Receiver Operator Characteristic example curves.. 68
Figure 8-1: SOG defect examples.. 69
Figure 8-2: In and out-of-distribution ROC curves for configuration 8.. 71
Figure 8-3: Configuration 8 GradCAM Examples...72
Figure 9-1: Examples of wide EBR, eyelash, and spin defects in an N = 3 split...73
Figure 9-2: Configuration 1 results across five different weight decays... 75
Figure 9-3: AUC scores and ROC curves plotted for the Configuration 1..75
Figure 9-4: GradCAM images for edge defects ..76
Figure 10-1: Examples of different center defects... 77
Figure 10-2: Examples of different hotspots..78
Figure 10-3: Examples of different technologies...78

11

Figure 10-4: Examples of the same lot, different hotspots.. 79
Figure 10-5: Synthetic data generation process example...82
Figure 10-6: Synthetic and real hotspot samples... 83
Figure 10-7: Synthetic hotspot samples two.. 84
Figure 10-8: Synthetic and real data samples all types.. 85
Figures 10-9: Configuration 1 training and validation accuracy across five folds...................................... 86
Figure 10-10: Configuration 1 validation loss... 86
Figure 10-11: Configuration 1 ROC curves... 86
Figure 10-12: Configuration 1 GradCAM examples... 87
Figure 10-13: Configuration 2 and 3 training accuracy across weight decays.. 88
Figure 10-14: AUC vs. model configuration for weight decay of zero... 89
Figure 10-15: ROC curve for configuration 3 and weight decay of 0.05.. 90
Figure 10-16: Configuration 3 and weight decay of 0.05 GradCAM examples..91
Figures 10-17: Configuration 4 training and validation accuracy over 80 epochs...................................... 91
Figures 10-18: Configuration 4 ROC curve for out-of-distribution real defects... 92
Figures 10-19: Configuration 4 GradCAM examples..93
Figure 11-1: Keyence Line Scan and Lumitrax light bar... 95
Figure 11-2: In-line inspection TEL mounts..96
Figure 11-3: Installation of the mount on a TEL tool.. 97
Figure 11-4: Wafer images collected during tool calibration of the in-line imaging system....................... 97
Figure 11-5: Keyence software detection images.. 98

12

List of Tables
Table 2-1: Possible specialist decisions for good and bad wafers..23
Table 3-1: Questions and evaluation criteria for GR&R study.. 28
Table 3-2: GR&R testing matrix ... 29
Table 3-3: Root cause analysis actions and findings for EV802..30
Table 4-1: Inspect data file sample generated by inspection..38
Table 4-2: Defect codes..39
Table 8-1 The sizes of the new data set for SOG defects before augmentation...70
Table 8-2: Accuracy metrics for configurations 7 and 8, without and with weight decay [6].....................71
Table 9.1: Configurations tested for the edge defect learning model [35]...74
Table 10-1: Data set configurations for hotspot binary classifier...80
Table 10-2: Data set configuration for central defect binary classifier.. 81
Table 10-3: Test and out-of-distribution data set AUC values...89

13

PAGE INTENTIONALLY LEFT BLANK

14

Glossary
Architecture - A machine learning model’s arrangement and sizing of layers and functions.

Class Imbalance - Varying sample sizes between classes fed into a machine learning model.

Convolutional Neural Network (CNN) - A type of artificial neural network commonly used for image

recognition that uses mathematical convolutions in one or more of the layers.

Defect - An unwanted feature imparted to a wafer that will lead to scrap or yield loss.

Die - An individual circuit pattern that exists within a wafer before cutting and packaging.

Fab - A facility where wafers containing die are produced.

Gallium Nitride (GaN) - A composite semiconductor material with a higher electron mobility,

operational temperature limit, and power density than silicon.

Hyperparameter - A machine learning parameter that controls its learning process and is set before

training begins.

Layer / Mask Level - The layer of the wafer in the manufacturing process created through

photolithography which dictates part geometry.

Logpoint - A four-digit identifier number corresponding to the layer level and processes a lot of wafers

have undergone to a certain point.

Lot - A group of 25 wafers held together in a cassette.

Macroscale Defects - Defects that are visible without needed magnification.

15

Poka-Yoke - A measure that prevents human error in a manufacturing environment.

ROC (Receiver Operating Characteristic) Curve - A 2D plot showing a binary classifier’s capabilities

on a given data set.

Root Cause Analysis (RCA) - A process in which the cause of systematic variation in product or process

quality is diagnosed.

Scrap - A wafer that contains so many defects that it is thrown out entirely, meaning 100% of the die are

lost.

SOG - Refers to a process called “Spin on Glass” in which an insulator layer is added after metal levels.

SOG Defects - Non-reworkable defects arising from the SOG process in which a solvent splatters all over

a wafer.

Transfer Learning - The process of using initial machine learning model weights that are the result of a

different and often larger data set.

Wafer - A circular disc of crystalline semiconductor material that circuitry is built upon.

Yield Loss - The loss of die on a wafer attributable to some random or systematic variation in the

manufacturing process.

16

Chapter 1

Introduction

In recent years, the semiconductor industry has seen - and is undergoing - unprecedented growth.

This growth is driven by the exponentially increasing demand for chips in products like vehicles and

smart devices [1]. Paired with this growth is a newfound incentive to produce more chips domestically

given shortcomings in supply chains exposed by the COVID pandemic and geopolitical tensions between

China and Taiwan [2]. It is crucial that wafer fabs can produce as many chips as possible to meet this

demand. While newer 300mm fabs are being built to accommodate this, older 200mm wafer fabs still

must and do produce chips. Although more advanced in age, these fabs produce cutting-edge technologies

like Gallium Nitride (GaN) wafers. Unfortunately, the fabs are not equipped with the most advanced

systems and are often highly manual regarding tool loading and wafer inspection. This thesis details the

development and application of software, procedures, and machine learning (ML) models used for defect

detection in the semiconductor industry's older fabs. In this chapter, the background and motivation for

the work is detailed. Additionally, items such as a problem statement and thesis structure are described.

1.1 Project Motivation

Macroscale wafer inspection occurs within the photolithography module at Texas Instruments's

(TI’s) 150mm and 200mm fab, DFAB. Inspection involves the wafers being sent through an EAGLEView

(EV) macro inspection tool that images the wafers and marks them for defects. All images are then

reviewed by an operator who sends wafers that look defective to microscopic inspection, and then they

are reworked if a defect is confirmed. It is crucial that defects are caught within this module since they are

reworkable. If they are missed and sent to another module, they will be turned to scrap. The current

inspection process is flawed on several fronts. First, the inspection tool used to image and flag defective

wafers operates on a rules-based algorithm with a high miss rate. Additionally, seven different models of

this tool are in use, and their performance is not repeatable or reliable - as exemplified later in Chapter 3.

Further, operators review every single wafer image and make the ultimate decision to flag a wafer in the

end. This is problematic as human judgment is highly variable, and it is impossible to review thousands of

wafer images daily at a high and consistent standard. Lastly, the software that the operator utilizes to

review the images lacks features or filtering options to view defects efficiently.

17

As a result of these flaws, TI has sponsored our work to revamp their macroscale inspection

capabilities with ML models. The scope of our work can be defined under four axes of improvement.

First, to understand and quantify current tool and operator performance. Second, to make the macro

inspection process more effective by creating a new graphical user interface (GUI) for operators to inspect

wafers. Third, to create ML models that identify defects and can be integrated into the GUI developed.

And fourth, to identify and pilot new inspection methods that are in-line with 200mm tools and

compatible with the new GUI and ML frameworks.

1.2 Problem Statement

Before this work, no significant projects had been pursued at DFAB to revamp the macro

inspection process. Quotes for new EAGLEView tools have been gathered, but with a price tag over

$500,000 per tool, there is no justifiable return on investment (ROI) for adoption. Additionally, other less

expensive macro inspection tools are typically incompatible with DFAB given its 200mm production size.

With the goal of catching as many macroscale defects as possible, several hypotheses are generated. First,

the massive repository image scans from the EAGLEView tools can be utilized to create ML algorithms

for different defect classes. This proves to be a significant undertaking, as while large amounts of data are

available, large amounts of sorted and tagged data are not. Additionally, there are class imbalance issues

given that different defect types occur at different rates across technologies and layer levels. Further,

image scans of wafers come with some tool-dependent artifacts that manifest as noise ML models may

wrongly cling to.

A second hypothesis is that superior, in-line macro inspection is viable for DFAB, and can be

implemented to antiquate the problematic EAGLEView toolsets at a justifiable ROI. To test this

hypothesis, a trial imaging system is mounted on a spin coater tool, evaluated, and proven to be

compatible with the GUI and ML framework developed through the scope of this work.

1.3 Approach

Given the broad scope of work covered in this study, a high degree of interdisciplinarity,

collaboration, adaptability, and analysis is required. Early on, a thorough understanding of the macro

inspection process is garnered through GR&R analysis and time on the production floor. The new

operator GUI is developed continually with input from manufacturing management, operators, IT, and

engineering. New in-line wafer imaging options are explored and a model is selected and trialed.

In parallel, image data for ML models is gathered, tagged, and sorted utilizing custom

engineering tools developed by our team. One such tool is a modified version of the new GUI.

18

Convolutional neural network (CNN) models are developed using VGG-11 with pre-trained weights and

biases to identify specific high-priority defects that arise from spin-on-glass (SOG) tools. Additional

models for edge and central defects are also developed. The models utilize data augmentation and

normalization techniques to address limited data and the wide variance of defect sizes. Issues regarding

implementing these models to the GUI, such as inference time, are also addressed. A framework is also

established such that more models can be devised and implemented with our system in the future. This is

true whether models are trained on the EAGLEView data set, or new image types from in-line inspection.

1.4 Division of Work

In addressing the wide array of work conducted throughout the summer, Sophia Cheung,

Jonathan Sampson, and I all contributed to each of the axes of improvement in significant ways. The axes

of improvement often intertwine and lend key insight into how the other elements of our work take effect.

For the scope of this thesis, the development of the GUI, the creation of an ML infrastructure, and

innovations regarding the ML model for center defects are covered in-depth. Relatively short summaries

of the other sections are presented in this work, and more in-depth descriptions are found in the theses of

Sophia Cheung [35] and Jonathan Sampson [6].

1.5 Thesis Outline

Chapter 2 details the manufacturing equipment and procedures related to DFAB’s macro

inspection module, along with improvement goals for each of the axes. The work done in regard to

GR&R and critical findings is summarized in Chapter 3. Chapter 4 outlines the design and

implementation of a GUI for image inspection, as well as its use as an ML data tagging tool. Chapter 5

covers the availability of data and the development of additional tools to prepare data for ML training.

Next, Chapter 6 introduces macro-scale defect detection in the semiconductor industry. Chapter 7

introduces and discusses different machine learning methodologies and concepts applied to our detection

algorithms. The use of our ML infrastructure to train a model for detecting spin-on-glass (SOG) defects is

summarized in Chapter 8. Chapter 9 summarizes the use of our ML infrastructure to train a model for

recognizing edge defects. Next, Chapter 10 gives an in-depth analysis of methods used to train an ML

model to recognize center defects. Chapter 11 summarizes the team's findings surrounding the use of

in-line inspection at DFAB. Chapter 12 presents conclusions and future work relating to the macro

inspection module at DFAB.

19

Chapter 2

Problem Background

This chapter outlines background information relevant to semiconductor manufacturing and wafer

macro inspection at DFAB. The overall manufacturing and inspection process is first overviewed,

followed by a discussion of the improvements desired in the macro inspection process. The key points of

the chapter are then summarized.

2.1 Manufacturing and Inspection Overview

This section first introduces the overall existing fab and manufacturing process at TI. The macro

inspection process is then described in more detail, which is the focus of this thesis.

2.1.1 Overview of Wafer Manufacturing at DFAB

One of TI’s oldest wafer fabs is DFAB, which began operation under that name in the late 1990s -

although it ran its first production wafer in the late 1960s. DFAB is unique in that while being among TI’s

oldest fabs, it manufactures some of its most innovative products like GaN wafers - which yield chips

with higher power densities and switching speeds due to the substrate’s elevated electron mobility [3].

DFAB produces both 150mm and 200mm wafers, with 150mm production phasing out over the next few

years. It has found its niche within TI by both absorbing technologies produced by other older fabs as they

close down and by pioneering the production of GaN technologies on smaller wafer sizes - since GaN

cannot be scaled to 300mm production yet [4]. The vision for DFAB is to become a 200mm GaN fab.

Consequently, it is undergoing a massive scale-up to meet production goals among many changes.

Contrary to newer 300mm fabs, DFAB is highly manual, and tools are typically not covered by the

manufacturer. As a result, a high degree of innovation is required to keep DFAB competitive with other

more advanced fabs.

Typically, toolsets within fabs are supported by tool vendors, but outside of the GaN and Epitaxial

Film modules, this is rarely the case at DFAB due to its advanced age. As a result, management is set to

meet ambitious production goals for GaN with older and problematic toolsets. Additionally, it is difficult

to replace these toolsets since providers have shifted focus to 300mm technologies. Thus, a high degree of

innovation is required to keep DFAB running and to meet the growing demand for GaN technologies.

20

Like other wafer fabs, DFAB is composed of many modules that perform specific operations on

the wafers. Macro inspection happens just after the photolithography module. This is key as defects

generated by photolithography are reworkable. If reworkable defects are missed, wafers travel to other

modules where nonreversible processes are carried out, and scrap or yield loss is generated. Figure 2-1

shows an outline of material flow through a typical wafer fab.

Figure 2-1: General flow of wafers through a fab. Wafers are coated in a photocurable resin in the

photolithography module and then selectively cured to create geometric features. These layers are

subsequently macro-inspected on EAGLEView tools. In other modules, various permanent processes are

conducted.

A crucial metric for overall fab efficiency is days per mask level (DPL). This is the average time

it takes for a wafer to return to the photolithography module after its previous layer. Upper management

aims to drive this number down so that chips can be delivered to customers faster.

2.1.2 Macro Inspection Process Overview

DFAB macro inspects wafers using seven different EAGLEView (EV) tools that flag wafers for

defects after the photolithography steps. Manufacturing specialists load wafers onto the EAGLEView

tools, which scan the wafers individually. Next, these images are flagged by EV’s rules-based algorithms

and sent to a server. From here, manufacturing specialists review every single image and EAGLEView

decision and then make a judgment on whether or not to flag each wafer for a microscopic inspection.

Figure 2-2 outlines the current process flow for macro inspection.

21

Figure 2-2: Inspection process flow. EAGLEView makes a classification decision and marks wafer scans

as good or bad. These scans are sent to the specialist to review on a desktop PC next to EAGLEView. The

specialists decide whether or not the wafer scan is truly good or bad via visual inspection of the image.

Within this system, there are two key judgments made on a wafer that dictate whether or not it is

flagged for microscopic inspection. The first is the decision made by the EAGLEView tool the wafer is

run on to flag the wafer as good or bad. The EAGLEView uses a rules-based golden wafer algorithm that

looks for discrepancies between the first wafer scanned and the rest of the lot. While powerful at times,

there are numerous performance issues. In short, the performance of this algorithm is highly variable

based on both the wafer mask level and the tool’s hardware, as discussed in Chapter 3. Wafer mask levels

lead any given wafer to have a wildly different appearance throughout its journey as displayed by Figure

2-3, complicating adjustments necessary for EAGLEView software to be effective - particularly for dark

logpoints.

22

Figure 2-3: Wafer scans at varying logpoints for a single wafer. The same wafer has varying optical

properties at each logpoint, and EAGLEView’s algorithm struggles with classifying darker layers. At each

scan, the background color and presence of artifacts also vary with the EAGLEView the lot is run on.

The second key judgment is made by the manufacturing specialist on shift. This specialist is often

responsible for both loading EAGLEView tools and reviewing the wafer images. Shifts run three to four

days a week for twelve hours every day, and the module is typically staffed with two specialists at a time.

Specialists utilize software developed by EAGLEView for review that is riddled with issues. It randomly

quits, runs slow when multiple operators use it, allows specialists to submit lots without reviewing them,

has no color equalization filtering for darker layers, and so on. As a result, specialists are not as effective

as they can be at catching defects. The specialists' decisions are governed by a detailed standard operating

procedures (SOP) document with details on over 80 different defect classes they are expected to identify.

Further, there are details regarding the shape, size, and number of defects tolerable for a given wafer or

lot. Table 2-1 shows the possible specialist decisions and associated outcomes of each.

Table 2-1: Possible specialist decisions for good and bad wafers.

Reality: Good Bad

Specialist Decision: Good Bad Good Bad

Case: True Negative False Positive False Negative True Positive

Outcome: Wafer Continues Wasted Time Defect Missed Defect Caught

In the above table, a comparison between the specialist decision and reality is made, and the

associated outcomes are identified. If the wafer is good, and the specialist agrees, the wafer exits the

module with no hold for micro inspection. If the wafer is good but the specialist thinks it is bad, it is

wrongly sent to micro inspection - wasting time and resources. If the wafer is bad but the specialist thinks

it is good, the defect is sent through the module and the defect will be turned into permanent yield loss or

scrap. Yield loss refers to cases where localized parts of the wafer are affected and it is still run through

23

production. Scrap refers to cases where the whole wafer must be thrown out. Both are very costly. The

final case is the wafer being bad, and the specialist agreeing. In this case, the defect is caught at micro

inspection and then the wafer is reworked - preventing scrap or yield loss.

Performance by the specialist is variable, as team leads have years of reviewing experience

whereas newer hires have proven harder to train and retain. Typically, specialists err on the side of

caution, flagging a far higher number of wafers than ones that have defects. In fact, the average monthly

flagging rate is 35%. In contrast, the average rework rate is 0.2%, indicating 34.8% (35% - .2%) of wafers

are flagged and sent to micro inspection without being identified as needing rework by the micro

inspection process. Micro inspection is much slower than macro inspection, so the micro inspection

station is typically staffed with three specialists. If the false positive rate of the EAGLEView and

specialist review can be reduced, the number of specialists required to inspect at a given time can be as

well, impacting operational costs.

Conversely, specialists also miss defects. When wafers with critical defects pass through EV, they

are turned to scrap. On average, 28 wafers/month are identified as passing through EAGLEView with a

reworkable defect and then turning into scrap. Additionally, there are numerous instances of chip yield

loss associated with smaller defects not being identified by EV. Lastly, defects from other modules have

the potential of being caught at EV. If these instances of false negatives by the combined EAGLEView

and specialist review can be reduced, significant material savings can be generated.

2.2 Improvement Axes and Goals

Our team identified four main axes of improvement for DFAB’s macro inspection process:

GR&R, enhanced specialist software and procedures, ML-aided algorithms, and an in-line inspection

investigation. The goals associated with each project section are described in the subsections below.

2.2.1 GR&R Goals

Systemic issues exist within the EAGLEView toolset and the procedures surrounding them. To

address this, the team plans to conduct a GR&R analysis to help identify root causes. In doing so, an

immediate impact on the module's performance is had. Subsequently, based on findings, procedures and

recommendations are generated to prevent systematic shifts in tool performance in the future.

24

2.2.2 Improved User Interface Goals

Manufacturing specialists can be made more effective through a new GUI. The current review

software specialists use is flawed on several fronts that hinder operator performance. The team aims to

build a new GUI based on the needs described by specialists, engineers, and managers. Of these, features

like enhanced filtering, speed improvements, and an inspection tracking mechanism are paramount. This

avenue is also pursued since, to give specialists real-time ML-based recommendations, an interface is

required.

2.2.3 Machine Learning Goals

Within the macro inspection module, wafer scans go through two layers of critique for flagging:

the EAGLEView algorithm and the specialist’s visual review on the EAGLEView software. Each of these

has its own suite of issues. The EAGLEView algorithm is rules-based, and relies upon a golden wafer

technique in which the first wafer scanned is assumed perfect and the rest of the lot is compared to it. As a

result, when defects affect a whole lot, or there is an issue with the golden wafer, inaccuracies grow.

Additionally, there are performance issues within and between tools that lead to poor accuracy.

Ultimately, the decision is made by the specialist whether or not to flag a wafer for micro inspection.

Unfortunately, specialists must review thousands of images over long shifts leading to high degrees of

variability and subjectivity.

To address these issues, a third layer of critique is added of ML algorithms for defect detection. In

theory, ML is superior to rules-based algorithms at identifying different defects across a wider array of

wafer technologies since they can abstract features. Additionally, there is no reliance on a golden wafer,

so defects that affect the whole lot will not be missed as they are by EV.

DFAB had no infrastructure for creating or training ML algorithms at the start of our work. While

true, DFAB does have a large archive containing scans of hundreds of thousands of wafers from the

EAGLEView module. So, the goal of the first stage is to create a robust infrastructure for ML at DFAB.

Next, it is to train several ML models that target the most persistent and costly defects slipping through

the macro inspection module. The first of these are SOG defects, among the smallest and hardest to

recognize for EVs and specialists. The next are edge defects, which are commonly the result of an edge

bead removal (EBR) or photoresist dispense that is out of control. The final is for defects affecting the

center of the wafers, which are commonly manifest in areas of photoresist not cured properly due to a

slew of different root causes.

25

2.2.4 In-line Inspection Pilot Goals

Increasingly, fabs have shifted to in-line macro inspection of wafers because it can help reduce

the DPL of a fab [5]. Due to this, and the fact that DFAB is shifting to a 200mm only GaN fab over the

next few years, inspection of wafers in-line on Tokyo Electronic (TEL) tools is explored. For the pilot, the

team aims to select an imaging method, design mounts, install a trial unit on a tool, validate image quality,

validate image data flow, prove integrability to our GUI and ML infrastructure, and create a detailed

financial model and recommendation for upper management based upon findings.

2.3 Chapter Summary

Within this chapter, a brief overview of DFAB and semiconductor manufacturing was provided.

The flow of wafers through the macro inspection module was detailed. The EAGLEView rules-based

golden wafer algorithm was introduced, as well as details surrounding the human inspection. Key needs

were identified based on the current system as being GR&R, a new GUI, ML-based detection, and

exploration of in-line inspection.

26

Chapter 3

Gauge Repeatability and Reproducibility Analysis

In this chapter, a high-level overview of the GR&R study conducted on the macro inspection

toolset is covered. For a more detailed analysis of the work conducted by the team, please refer to

Sampson [6].

3.1 Summary of GR&R Purpose and Procedure

A GR&R study is conducted to evaluate EAGLEView performance with respect to three primary

questions. These are as follows

● Can an EAGLEView tool accurately locate a known defect on a given wafer and correctly

classify

the wafer?

● Will a single EAGLEView tool output consistent classifications and defect localization markings

each time a wafer is run through the tool?

● Do all EAGLEView tools provide the same classifications and defect localization markings for a

given wafer?

To understand these ends, an experiment is devised for both the 200mm and 150mm

EAGLEView toolsets. This experiment is simplistic and brief so that the production floor is minimally

disrupted. Lots containing one to five known defective wafers are run through each toolset multiple times.

This is conducted with wafer randomization deactivated and other tool settings standardized. This is key

so that each EAGLEView has the same golden wafer between runs. Due to time and production

limitations, this procedure is only done once for each wafer size. Table 3-1 below shows the evaluation

criteria utilized to answer each of the three questions posed by the team.

27

Table 3-1: Questions and evaluation criteria for GR&R study [6].

Investigation Question Evaluation

Can an EAGLEView tool accurately
locate a known defect on a given wafer

and correctly classify the wafer?

- qualitative evaluation of defect localization accuracy
- binary wafer classification accuracy

Will a single EAGLEView tool output
consistent classifications and defect

localization markings each time a wafer
is run through the tool?

- inter-trial comparison of classification and defect
localization results
- comparison of accuracy metrics and confusion matrices
- qualitative comparison of defect localization

Do all EAGLEView tools provide the
same classifications and defect

localization markings for a given wafer?

- binary wafer classification accuracy and comparison across
tools
- qualitative comparison of defect localization across tools

For the studies conducted, manufacturing specialists identified and ran lots for the 200mm and

150mm tools. The defective wafers utilized for both studies are shown below in Figure 3-1.

Figure 3-1: Defective wafers for GR&R study. The left image shows the 200mm wafer with a known

center defect as utilized in the 200mm GR&R trial. The right image shows the 150mm wafer with a

known center defect as utilized in the 150mm GR&R trial.

As discussed in the following paragraphs, a more thorough evaluation would involve many defect

types across many different layers and technologies. While advantageous, the team is limited to defective

28

lots identified by specialists and short timeframes to keep production running. A test matrix is shown in

Table 3-2 below.

Table 3-2: GR&R testing matrix [6].

Input

OutputLot Size Wafer Size Known Defects Scan Trials

25 200mm #15 2+ EV Classifications: [GOOD]/[BAD]

25 150mm #6, #8, #9, #15, #22 2+ EV Localizations: Annotations in Red

For the 200mm study, a lot containing one known defect is utilized. For the 150mm study, a lot

with five known defects is utilized. For both, the EV’s classification and ability to localize the defect is

evaluated.

3.2 Summary of GR&R Results and Corrective Action

The study results show that the 200mm EAGLEView tools perform poorly in repeatability and

reliability, whereas the 150mm tools display better results. Figure 3-2 shows the EAGLEView

classifications for the 200mm toolsets, whereas Figure 3-3 shows the classifications for 150mm toolsets.

Figure 3-2: EAGLEView classifications for 200mm GR&R [6]. Results for each EAGLEView tool are

averaged across three trials for all except EV803 (2 trials).

29

Figure 3-3: EAGLEView classifications for 150mm GR&R [6]. Results for each EAGLEView tool are

averaged across three trials.

The 200mm tools perform considerably worse than the 150mm tools in this study, which may be

attributed to the small defect size utilized in the 200mm trial and the dark layer level. Regardless, EV801

still identifies and localizes the defect in each of the three trials performed on it, indicating it was

detectable for EV’s algorithms. Because the EAGLEView software and settings are baselined across tools,

root cause analysis is initiated for the hardware problematic EVs. Table 3-3 shows the actions taken and

findings for root cause analysis (RCA) conducted by EAGLEView technicians for EV802.

Table 3-3: Root cause analysis actions and findings for EV802 [6].

Action Taken Findings

Clean scanner, replace scanner cathode

fluorescent lamp and neutral density filter

Issue unresolved, all components in working order

Evaluate internal component layout All components tightly packed together, not
properly mounted–resting on other components.
Power supply showing signs of significant
temperature rise, potentially affecting proximate
components

Evaluate power supply Power supply showing signs of failure

Evaluate CPU Control board Adhesive residue from tape melting and dripping
onto CPU Control board due to internal
temperature rise

Replace power supply Classification and localization results improved

30

Investigation conducted by a technician reveals that the power supply was overheating, leading to

random noise and false flagging of defects across the wafers (thus the high recall percentages).

Additionally, the investigation spurred the creation of new mounting hardware and components to prevent

issues with overheating and warping of the neutral density filters on some EAGLEView tools. As a result

of these findings, the team recommends the following preventive maintenance proceedings be conducted.

Diagnostic Testing

Recurring GR&R Study

● Perform a GR&R study similar to the investigation designed in this work every two months

● Evaluate all EAGLEView tools, and replicate the study for a variety of layers and logpoints

● Use results to determine the frequency of maintenance activity

Tool Evaluation and Maintenance

As a result of the recurring GR&R study, the following evaluation procedures are recommended if the

investigation yields results indicating the tools require service.

Neutral Density Filter

● Check filter and glass cover status

○ ensure the filter is not warping due to temperature rise

Power Supply

● Check power supply status and replace if necessary

Scanner Light Source

● Check lamp status, replace scanner if necessary

Scanner

● Evaluate dust and particle accumulation on scanner head

Scanner Guide Rod

Guide rod already lubricated every month

3.3 Summary of GR&R Future Work

The investigation described in this chapter is rather limited in that it only covers one defective lot

for each of the wafer sizes. The introduction of different defect types across different layer levels would

help make the study more robust and potentially lead to more discoveries of hardware failures on each of

the tools. Along with this, an investigation into how the EVs perform given differing tool settings would

be useful. Perhaps with different thresholds and resolutions, the tools will perform better for certain defect

classes.

31

Chapter 4

Graphical User Interface Development

This chapter details the new graphical user interface developed for wafer inspection. The

interface is designed for use by specialists on the production floor and by engineers in the collection and

tagging of data. Its motivation, design, and implementation are covered in this chapter.

4.1 Motivation for New User Interface

Development of a new user interface is motivated by three key factors. First, to present real-time

ML-based recommendations, an interface that is easy to interpret for a manufacturing specialist is

required. The EAGLEView software utilized by manufacturing exists in the form of a compiled

executable with no editable source code. As a result, it is impossible to integrate ML models into the

current display. Without a new GUI, two interfaces would have to be used by the operator in parallel,

which is not a robust or practical solution.

Second, the current inspection software is riddled with performance issues that are detrimental to

module performance. The initial issue described by engineering management to the team is a lack of

wafer image filtering on the production floor. Wafer defects exist in various shapes and sizes, across a

wide array of layer types. Certain layer and defect types are nearly impossible to discern without filtering,

hindering operator performance. The only filtering option in the current production software is a simple

color inversion, which has not proven helpful in defect identification. Management and engineering also

expressed the desire for specialists to be able to review the same wafer scans as they existed at previous

log points to observe how the defect has progressed between layers. To achieve this in the current

software, specialists are required to reload each individual logpoint. With each change of logpoints taking

up to minutes, this is often too time expensive to execute on the production floor. As a result, specialists

have no practical insight into how a defect is progressing between layers on the production floor. The

final key issue expressed by management and engineers is the lack of specialist tracking and poka-yokes.

In the current software, specialists can pass a whole lot of wafers without actually reviewing a wafer

image. Further, engineering and management have no insight into how long each wafer image was

reviewed by the specialist on shift. Consequently, engineering often has difficulties identifying why or

how a specialist decided to pass a wafer.

32

Finally, the development of a custom GUI is motivated by the fact it can be repurposed in several

useful applications. First, it can be utilized to tag data for ML models more efficiently. In doing so,

metadata regarding which tool wafers ran on before becoming defective could also be tracked and stored

to aid in root cause analysis investigations. Additionally, the GUI can easily be repurposed into an

engineering tool since many engineers in the Product and Photolithography Engineering groups

frequently sort through the EAGLEView server to find which logpoint defects first became visible for

certain wafers. Finally, it can be used to process and display data from the new in-line inspection system

summarized in Chapter 11.

4.2 Design of New User Interface

It is crucial the designed interface meets all user needs and functionalities. Additionally, it is key

that this interface is developed in a robust and iterable fashion for proper implementation. In this

subchapter, details regarding the design and development of the interface are covered.

4.2.1 Development Software

To develop the new GUI, Python is utilized due to each team member being relatively proficient

in the language and necessary libraries like OpenCV and PIL. Additionally, the PyQT library is amongst

the most commonly used libraries for GUI development and applications can easily be generated and run

on other systems using a handful of commands [8].

4.2.2 Proposed Integration of User Interface

In the macro inspection module, the EAGLEView user interface does not run locally to a

computer. Rather, it runs on a server that users must access individually. This leads to issues in terms of

run and loading times that specialists and engineers frequently complain about. Also, whenever two or

more users try to access the software simultaneously, the other user gets booted off - which is

problematic. The team proposes implementing the new GUI to run locally on whichever device it is

installed to alleviate this issue. Figure 4-1 below shows the current system’s configuration regarding

software and detection algorithms. Figure 4-2 shows the proposed system.

33

Figure 4-1: Initial macro inspection module data flow. In this orientation, EAGLEView’s algorithms run

locally, and compressed jpeg files classified as good or bad are uploaded to the server corresponding to

the wafer size. The review stations access a web-based application that loads images from the respective

server and displays information to the operators.

Figure 4-2: Proposed macro inspection module data flow. In the new orientation, the GUI runs locally on

the review station PCs. This simplifies the data flow and fixes issues associated with multiple users and

speed.

34

In each of the above orientations, EAGLEView runs its own detections local to each tool, and

then uploads compressed versions of the high-resolution bitmaps in the form of jpegs that are

approximately 2000 by 2000 pixels. From there, the existing interface software simply loads the image

from the appropriate server and displays it to the specialist, where he or she decides to flag wafers for

micro inspection. It is also noteworthy that the current configuration has no tie to automation. Currently,

specialists have two windows open at the inspection station - one for review and one for flagging lots for

micro inspection. This is problematic as specialists needlessly flag wafers inside the EAGLEView user

interface, and that information is not going anywhere. Instead, hand-typed comments are sent to

micro-inspect along with the lot containing instructions. User-typed notes are supposed to be consistent

between specialists, but each specialist uses inconsistent language when describing inspection procedures.

Problems arise in the form of miscommunication and difficulty algorithmically sorting specialist decision

data. Thus, the team proposes that the new GUI be integrated with automation so that one window may be

opened without typing separate notes to send to the micro inspection station.

4.2.3 Color Equalization Filtering Development

Enhanced filtering capabilities are a vital customer need for the new GUI. Engineers within the

Product Engineering team have identified several methods of filtering wafer images to see defects better.

These methods are only used in root cause investigations though. The most popular and universally

successful method for filtering wafers is color equalization. The images can be created by using

OpenCV’s equalizehist function on the r, g, and b channels of the image, and then merging the channels.

This method works by taking the range of values that exist within each color channel and stretching them

such that the bounds are at or approaching 0 and 255. The resultant image is such that contrast is

enhanced, and the image intensities are more evenly distributed [8]. Figure 4-3 below illustrates the color

equalization filter applied to a wafer image of an early logpoint.

35

Figure 4-3: Color equalization demonstration. On the left, features of the wafer are nearly indiscernible -

making specialists either blindly trust a potentially flawed EAGLEView decision or make their best guess.

On the right, the color-equalized image beautifully reveals the underlying patterns present within the

darker layers. Defect visibility is also greatly improved using this methodology.

The described color normalization is integrated into the new user interface through a

multithreading operation so that whenever a new lot is loaded for investigation, the filter is applied to all

25 wafer images present from the EAGLEView server. Filtered versions of the images are saved in a

folder created in parallel to the original logpoints folder in the server, with the only difference being the

string “__FILTERED” appearing at the end of the folder name. This folder is utilized to store other

information discussed in the following subsections.

4.2.4 Retroactive Logpoint Tracking Development

As mentioned previously, each lot of wafers passes through EAGLEView after the

photolithography module. So, every unique layer of the wafer is scanned just after being coated with a

UV-cured photopolymer that dictates circuit geometry. Because of this, every wafer should have a scan

captured of it for every single layer level available on the EAGLEView database. Each layer level

corresponds to a logpoint and is stored with a four-digit identifier, a date, and a time. Figure 4-4 below

shows how this file structure manifests within the 150mm and 200mm databases.

36

Figure 4-4: Saving structure within lot on 150mm or 200mm database. The lot information captured

above is stored within a folder containing a seven-digit lot identifier number. Each logpoint is stored with

a date, time, and logpoint identifier shown in red, blue, and green respectively.

Within each of the logpoint folders are scans of each of the wafers and files with information on

the EAGLEView and lot. EAGLEView also randomizes the wafer order to avoid any sort of systematic

variation that could arise from a given wafer always processing in the same spot relative to other wafers

for a given process. Figure 4-5 below shows the naming format for wafer scans within their respective

logpoint folders.

Figure 4-5: Naming format for individual wafer scans. Each filename stores the incoming slot number,

wafer number, and EAGLEView classification as shown in red, blue, and green respectively. This

information is extracted in the new interface to enable the display of relevant wafer information.

It is important to note that wafers deemed defective by EAGLEView have two copies. The first is

called ‘bad,’ which is the wafer scan with additional marking for what the EAGLEView thinks is

37

defective. The second is ‘bad_org,’ which is the original wafer scan produced by the EAGLEView with

no marking.

Using the naming formats, a feature for helping specialists view the same wafer at different

logpoints is developed. It works by using basic string manipulation to read each wafer’s number and find

the file path to that wafer present in each of the logpoint scans. Then, using the date and time within the

logpoints, the file paths are sorted from recent to oldest. The user can then iterate through historic

logpoints for the same wafer by using buttons or hotkeys and see how the defect and wafer have

progressed over time. Additionally, the previous layer can also be filtered utilizing the color equalization

filter described prior in Section 4.2.3.

4.2.5 Specialist Inspection Flagging and Tracking Development

A key requirement of the new and improved GUI is enhanced specialist tracking, flagging, and

poka-yokes. Supervisors would like to know how long the specialist reviews each wafer to help determine

the root cause of a defect making it through the macro inspection module. Additionally, by tracking

specialist decisions and review times, metrics can be constructed to evaluate the effectiveness and

efficiency of each specialist. From here, specialists with higher performance metrics can be rewarded, and

their review strategies can be used to train specialists with lower scores. To achieve this, an internal timer

is set within the GUI’s code to capture how long each wafer is inspected. Within each lot that is inspected,

these individual times are appended to a list, and then summed and written to a file containing other

inspection metrics. Similar to the filtered images, this file is saved to the “__FILTERED” folder

corresponding to the lot that is inspected. This file is referred to as the “Inspect Data” file, and it is

generated for every lot that a r decision is submitted on. Table 4-1 below shows an example of the Inspect

Data file generated for a test lot.

Table 4-1: Inspect data file sample generated by inspection.

In Slot # Wafer # Out Slot #
Inspect Time

(sec)
User Flagged?

(val = 1)
Defect Code

(0-28)

1 0 0 5 0 None

2 10 24 0.8 0 None

3 7 13 0.4 0 None

4 16 1 5.6 1 10

… … … … … …

25 15 14 1.3 0 None

38

In addition to storing how long each wafer is inspected, five other columns of information are

tracked and stored for each wafer. The slot when the wafer entered EV, the wafer number, and the output

slot number are stored in the first three columns respectively. The fourth column displays the

aforementioned inspection time associated with every wafer. The “User Flagged?” column displays

whether or not the specialist flags a given wafer for a defect, where 1 corresponds to a flagged wafer. The

final column, “Defect Code,” shows the associated defect code a given wafer is flagged for. The team

simplified the 80 plus defect codes within the current EAGLEView software to 28 unique codes as shown

below in Table 4-2.

Table 4-2: Defect codes.

Defect Type Defect EAGLEView Code Defect Number

Scan Artifact SCAN 0

Bubbles BUBL 1

Ghost / Channel Stop GHOS 2

Tilt TILT 3

SOG SOGP 4

Spin Defects Entire Wafer SPEW 5

Spin Defects Center SPCT 6

Spin Defects Edge SPED 7

Spin Defect Single SPSL 8

Particles PART 9

Hotspots HTSP 10

Flash Fields FLFD 11

Develop Drips DVLP 12

EBR Drips EBRD 13

Contamination Large CNLG 14

Contamination Small CNSM 15

Bad Rinse BRNS 16

Wide EBR EBRP 17

Lifting Resist LIFT 18

Scratches Human SCRH 19

Scratches Machine SCRM 20

39

Chips CHIP 21

Color Variation CLVR 22

Over Developed OVDP 23

Partial/No Pattern MISS 24

Lense Heating LENS 25

Misalignment MSAL 26

Other - 27

The decision to simplify the number of defect codes down to twenty-eight is driven by the fact

that specialists rarely use most of them. Additionally, it makes sorting of data for ML simpler by reducing

the possible number of classes. Each of these unique defect types has many unique appearances and root

causes. By correctly identifying defects more frequently and at a higher rate, root causes can be identified

faster. As a result, systematic shifts in tool performance causing higher rates of defectivity can be resolved

faster, meaning fewer wafers will be affected.

Logic is also implemented such that the submit button cannot be clicked for a lot until every

single wafer is viewed by the specialist using the software. The required inspection time parameter is

tunable by the manufacturing supervisor. This poka-yoke helps ensure that every wafer is reviewed by an

operator, and should decrease the amount of reworkable scrap that passes through the module each month.

4.2.6 Machine Learning Recommendations Development

The most crucial element of the new GUI is real-time ML-based recommendations for specialists.

To develop this feature, an ML model is first required to give inferences on what defects are present

within a given wafer image. As outlined in Chapters 8, 9, and 10, several different ML models are

developed by the team for different types of defects. Additionally, as discussed in Chapter 5, wafer

images are deconstructed into smaller image slices. This strategy helps overcome the relatively limited

amount of sorted defect data present within DFAB’s databases. So, to run inferences on a wafer, the

schema shown in Figure 4-6 is utilized.

40

Figure 4-6: Image splitting, inference, and display scheme for new GUI. The color-equalized wafer is

split into slices, where N is three in this case. Models run inferences on slices, and areas identified as𝑁2

positive (containing a defect) are overlaid onto the original image as shown on the right.

As seen above, each wafer image is broken into smaller square images. This N value corresponds

to the number of squares the wafer image will be broken into along each axis. For instance, an N value of

3 results in 9 total images since the wafer is broken into three images along each axis. From here, the

individual slices are run through the respective ML models. When a defect is detected, the wafer slice is

put through the color equalization filter, and when a defect is not detected, no filtering is applied. The

visual of the final inference wafer is then integrated to be displayed to the user in parallel to the original

image.

Inferencing time is a concern when implementing this on the final production GUI. While it is

advantageous for ML inferencing to run in a parallel thread within the GUI, inference time can become a

rate-limiting step for wafer images split into smaller squares. This is not an issue when a small N value is

utilized. As N grows, the amount of time required to inference on a wafer grows exponentially, creating a

bottleneck. Since several models are to be run on every wafer, and N values above five are utilized for

ML training, multithreading of inferences within the new GUI is not utilized. Instead of running the

inferences within the GUI, a separate Python script is proposed that monitors the EAGLEView databases.

Upon a new wafer image being saved to its corresponding folder by EV, the described splitting and

inference procedure is immediately carried out, and images are saved to the “__FILTERED” folder. This

is an acceptable solution given that EVs take several minutes to run a lot of wafers with each wafer image

being uploaded to the corresponding server as soon as the scan is captured. Additionally, specialists do

not inspect the lot until after the tool has finished running, and wafers have been unloaded from it. As a

result, there is a several-minute gap between when the last scan is captured, and when the specialist opens

41

the lot in the user interface. Thus, inferencing can occur safely within this time frame. This feature must

be developed more fully once the tool is implemented on the production floor.

4.2.7 Other Features Development

Other standard features expected for a production-grade tool are implemented into the new GUI

including zooming, panning, fullscreening, and more. The use of these features is discussed in Section 4.3

of this chapter, but development is not detailed in this work.

4.3 OwlView Interface

The current version of the OwlView interface is introduced in this subchapter. Some of its key

features are highlighted, such as color filtering, navigation, lot loading, and retroactive logpoint tracking.

4.3.1 OwlView Interface Layout

An annotated view of the new GUI, called OwlView, is shown below in Figure 4-7. As shown,

OwlView has five main sections. The “Wafer View'” section shows the current wafer loaded into the lot

by the user. The “Recent Logpoints” section shows the most recent logpoints loaded in from the

EAGLEView server. The “ML Section” shows the recommendations generated by ML models discussed

in Chapters 8, 9, and 10. The “Wafer Navigation” section shows information the specialist can utilize to

navigate through and inspect wafers. The “Defect Flagging and Lot Submission” section gives an

interface for the user to flag defective wafers. The use of each of these components is discussed in the

following subsections.

Figure 4-7: OwlView interface with annotated sections: OwlView’s five main sections are outlined.

42

4.3.2 OwlView Wafer View Section

The wafer view section of OwlView is the largest component within the GUI window. Here,

specialists can view each wafer image in a large screen format. An expanded view of this section is shown

below in Figure 4-8.

Figure 4-8: OwlView wafer view section: A focused view of the wafer view section of OwlView is shown

above. In this section, the user can zoom into wafer images, apply filtering, move between wafers in a lot,

and move between logpoints for the same wafer.

To navigate between wafers, the user can click on either of the left or right arrows at the bottom

of the screen. To apply the color equalization filter, the user can select the filter button at the bottom of the

screen. To see the wafer at previous logpoints the user can select the “Next LOGP” and “Prev LOGP”

buttons. Hotkeys are also available such that the operator may complete all of these functions with

intuitive keyboard commands. This is crucial given the large volume of wafers a specialist reviews within

a given day. Figure 4-9a through Figure 4-9c below shows the functionalities of this section.

43

Figure 4-9a: OwlView wafer view section functionality: wafer navigation. To move between wafer slots,

the user can click one of the two arrows shown in the bottom right of the window.

Figure 4-9b: OwlView wafer view section functionality: wafer filtering. To filter wafers, the user can

click the button labeled “Filter” in the bottom of the window.

44

Figure 4-9c: OwlView wafer view section functionality: logpoint tracking. To change logpoints, the user

can click the button labeled “Back LOGP” to go backward, and “Next LOGP” to go forward.

Additionally, the user can zoom into the wafer image by double-clicking with their mouse.

Panning is also available. The integration of these features alone is a significant improvement to the

current user interface.

4.3.3 OwlView Recent Logpoints Section

In the recent logpoints section, the user can see what logpoints have been scanned most recently

by the EV. An expanded view of this section is shown below in Figure 4-10. Here, the most recently

scanned logpoints continually filter to the top of the queue. The specialist can load in the lot for a given

logpoint by clicking on the desired row and hitting the load button. Alternatively, the user may load in

specific logpoints by clicking the browse button and looking at the server's file system if desired. Further,

the user can type in the seven-digit lot identifier number to the top text bar if desired. Once a lot is

inspected and submitted by the operator, it will appear green if no wafers were flagged for inspection, and

red if any wafers failed. This functionality ensures that operators can efficiently and effectively load in

and keep track of inspected lots. For user convenience, the lot’s information is displayed in large

characters at the top of the screen, whereas it is obscure to find in the current software.

45

Figure 4-10: OwlView recent logpoints section. In this section, the user can load in recent logpoints.

4.3.4 OwlView ML Recommendations Section

In the ML recommendations section, the user can see a specially filtered image generated based

on ML inferences. An expanded view of this section with examples of flagged and not flagged wafers is

shown below in Figure 4-11.

Figure 4-11: OwlView ML section. In this section, the user can see selectively filtered images generated

by ML algorithms. The above example is generated based on training data.

46

As the user moves through the wafers of the lot, the ML-filtered image is automatically shown in

parallel with confidences for each of the classifications. This filtering method, as discussed in Section

4.2.6, varies from the EV-generated images, as rather than outlining defective pixels in red, they are

simply color equalized. This is superior because EV-generated images often interfere with the user’s

ability to truly tell if there is a defect present. Given EV’s poor performance on GR&R, this leads to an

abundance of falsely flagged good wafers where the specialist may simply blindly trust EAGLEView and

send the lot to micro inspect. When the ML algorithms falsely flag a wafer, the underlying area is more

visible than before, making it such that the specialist can make an informed decision to pass or let the

defect through.

4.3.5 OwlView Wafer Navigation Section

In the wafer navigation section, the user can see and move between wafers based on the incoming

slot numbers. An expanded view of this section is shown below in Figure 4-12. At the top of this section,

the wafer number, incoming slot number, and outgoing slot number are also plainly displayed and updated

continually for every wafer. This helps the specialist identify which wafer to take out of the cassette when

necessary. The circular numbered buttons correspond to each slot of the cassette. These buttons are

outlined blue if the slot is empty, green if EAGLEView classified the wafer as good, red if the

EAGLEView classified the wafer as bad, and gold if the wafer is the golden wafer. This intuitive display

helps the specialist understand why EAGLEView made the classification it did. For instance, if every

wafer is marked as red but the golden wafer, there is likely a defect on the golden wafer. If every other

wafer slot is marked as red, and EAGLEView is right, there is likely some systematic variation in tool

performance affecting every other wafer. As this information is tagged by the operator it is saved in the

Inspect Data file and can be utilized for future ML training.

47

Figure 4-12: OwlView wafer navigation section. In this section, the user can see relevant information and

navigate between wafers graphically. Green circles are good according to EV. Red circles are bad. Gold is

the golden wafer.

Whenever the wafer is currently being inspected and displayed in the wafer view section of the

GUI, the corresponding button has a solid fill. Once a wafer is viewed, the fill of the button becomes

transparent but visible. This way, the specialist can keep track of what they have and have not reviewed.

Figure 4-13 below shows this functionality, where every wafer after wafer 12, which is currently being

viewed, has not been inspected.

Figure 4-13: OwlView wafer navigation functionality. Once a wafer has been viewed, it gets a

semi-opaque background. The user must review every wafer to submit the lot.

In the configuration above, the user cannot submit the lot until every wafer has been inspected

and has a partially opaque infill.

48

4.3.6 OwlView Defect Flagging Section

In the defect flagging and lot submission section, the user can flag wafers for inspection and

submit the lot. An expanded view of this section is shown below in Figure 4-14. Here, the 28 unique

defect codes are present for the specialist to select and apply to each wafer. To apply a defect code to the

wafer, the user must simply select the check box corresponding to the defect and select the flag wafer

button. When the user does this, the wafer image in the wafer navigation section will turn a bright pink

color. This is exemplified in Figure 4-15.

Figure 4-14: OwlView defect flagging section. Using this section, the user can select different defect

classes and apply them to different wafers in the lot.

Figure 4-15: OwlView defect flagging functionality. In the above example, the user flags the wafer in slot

number 12 as having a hotspot defect. They do so by clicking the “HotSpots” checkbox and the flag wafer

button next. The wafer navigation section updates by highlighting the button bright pink.

49

If the user wishes to unflag a wafer, he or she can simply view the wafer in question and reclick

the flag wafer button. This will undo the changes brought about by initially clicking the button. If the user

wishes to flag a whole lot, the same process holds, but with clicking the flag lot button. Also, whenever

the specialist moves between wafer images within a lot, the checked defects update. Whenever the

specialist is finished inspecting a lot, he or she can select the submit button. Then, the Inspect Data file is

created and populated with the appropriate defect codes. In addition to the Inspect Data file, a metadata

file is generated containing information on which tool the lot was run on before EV, what technology

group the wafer is a part of, and more. This can be utilized by engineers for root cause analysis, and be

fed into future ML models for enhanced root cause finding. Finally, whenever users open a lot that has

already been inspected, all of the previously flagged wafers will be loaded in and can be modified.

4.4 Implementation of OwlView

Implementation of the OwlView interface as a production, engineering, and ML tagging tool are

discussed in this subchapter. OwlView provides benefits to each of these three avenues that are described,

along with actions taken by the team to achieve implementation.

4.4.1 Use as Production Tool

Steps have been taken to get the new OwlView interface into production. This is important as the

enhanced features will help with specialist accuracy. Additionally, as specialists utilize the tool in

production, the availability of tagged data for machine learning skyrockets and can be fed back into the

ML models.

The SOPs for the current system were read and then reworked by our team for the new OwlView

interface. In the new procedures, tool use is described per standard TI formatting. Additionally, errors in

the old SOP are corrected. For instance, in the old SOP, it was discovered that specialists let through

defects if they affect less than one percent of the wafer. This heuristic allows SOG defects to be let

through production by specialists even if they do see them. In the new SOP, this feature does not exist, so

the SOG defect catch rate should improve.

In addition to new SOPs, training documents were created by our team for the specialists and

supervisors. Several training sessions were conducted with specialists across shifts in which we gave

specialists hands-on training in the software. Feedback from specialists and supervisors was generally

positive, and new features were added as a result of our discussions.

The OwlView Python script was also compiled as an application file that can be run on any PC

with Windows 10+. Unfortunately, the PCs on the factory floor are not up to date. As of 08/11/2023, the

50

photolithography and metrology teams are working on a PC upgrade so that this software can be utilized

on the production floor.

4.4.2 Use as an Engineering Tool

The OwlView interface is also helpful for engineering teams. Engineering teams across the

photolithography and product groups frequently do root cause investigations where they inspect hundreds

of lots that passed through EV. In doing so, they manually sort through the EAGLEView servers, copy

files over, and run filtering scripts to look for defects. To help aid this process, a version of OwlView is

given to engineering teams for enhanced root cause identification.

4.4.3 Use as a Machine Learning Data Tagging Tool

OV is also a powerful ML data tagging tool. Local copies of lots with known defects are first

copied to the user's computer and then accessed using the browse feature within OV. Next, the user can

inspect lots just as a specialist would. From here, information from the inspect data file is used to sort data

into classes based on the tagged defects.

This is important to highlight since the data infrastructure within DFAB makes it challenging to

find large quantities of tagged data. From the moment this GUI is implemented on the floor for

production, Inspect Data files will be generated by specialists nonstop, greatly multiplying the potential

for engineers to train more robust ML models with a broader array of representation for all defect types

across more technologies.

4.5 Chapter Summary

To give real-time ML suggestions and improve specialist performance, a new GUI called

OwlView was developed by our team. OwlView contains enhanced color filtering, logpoint tracking, ML

recommendations, and greater functionality overall compared to the current software system. SOPs and

training documents were generated for the software package. Changes to the IT infrastructure were also

implemented so that the software can be integrated in-line with production. Additionally, training sessions

were conducted by our team with specialists. Along with the enhanced functionality provided by the use

of this software in production, it has powerful applications as an engineering and ML data tagging tool.

51

Chapter 5

Data Availability and Data Preparation Tools

This chapter details data availability and tools developed to tag and sort data for machine learning

models. The motivation for a robust ML infrastructure is first described, followed by an overview of data

availability at DFAB. Scripts for tagging, sorting, and splitting the data are also covered.

5.1 Motivation for ML Data Infrastructure

Before our work, DFAB had no infrastructure for data collection or tagging. Procedures and tools

for gathering and tagging large amounts of image data are crucial to training models. Further, a robust ML

infrastructure applies to any image, such as those collected in the in-line inspection trial as discussed in

Chapter 11 of this work.

5.2 Data Availability

Wafer scans captured at the EAGLEView module are stored within one of two databases

dependent on wafer size. Within each of these databases, there are two subdirectories: one is a current

database and one is an archive. The current database stores wafer images from the last six months

approximately, whereas the archive stores them for about a year. Eventually, wafer images are lost to

deletion to save server space. The general flow is from the current database, to the archive, to deletion as

shown in Figure 5-1. Within this structure, data is sorted by lot and logpoint with EV’s good or bad

classification. Due to the poor performance of EV, there is no meaningful way to automatically extract

and sort data for ML training.

Figure 5-1: Wafer scan location through lifetime. EAGLEView scans are moved from the active database

to an archive after being inactive for several weeks. From there, the archive is cleared as more storage

space becomes necessary.

52

It was suspected that SQL queries could be generated to pull lot and logpoint numbers from the

micro inspect station that was reworked. Unfortunately, this is not feasible. Although the micro inspect

station decisions are stored, the wafer numbers affected and defect type are not. Additionally, all notes

regarding this are hand typed by the specialist, with each one using slightly different words and codes to

describe the same issue.

Several good sources of confirmed defect data are present, however. The first is engineering

containment data. Whenever a certain tool error is causing systemic defect propagation across many

wafers, engineers open contaminants in which they manually inspect dozens and even hundreds of wafer

images for suspected defects. They track these defects, the wafers affected, and lot information so that

they may be identified in the EAGLEView server. Information regarding the lot, wafer numbers, and

defect types are stored in a file.

A second source of data is the photolithography rework report - which is used by engineering

management to evaluate tool performance. While powerful, data tagging is not standardized, and many lot

numbers described within these reports are not actually affected by the described defect classes.

Additionally, of the 80-plus defect types, only a handful have meaningful amounts of data.

A third source of data is online reports. These allow users to search for event types that have led

to a large amount of wafer scrap. While useful in some cases, only events that have occurred within the

last year are useful since older EAGLEView scans are deleted.

From each of these data sources, files containing lot and logpoint numbers for lots affected by

certain defects can be populated. Data does have varying sparsity for different defect classes, however,

and the wide array of sources makes it difficult to gather large amounts of affected wafers. Additionally,

due to the error rate and lack of wafer number-affected labeling, manual tagging is required to ensure

proper data sorting.

5.3 Scraping from EAGLEView Server

Once a file containing lot and logpoint data of lots containing defects is gathered from one of the

sources described in Section 5.2, those lots are copied from the EAGLEView server to a local destination

on the user's computer. To do so, a basic Python script is constructed that searches through both

EAGLEView servers and writes local copies of the images to the user's computer with the same

organization present on EV. Next, these images must be tagged for defects.

53

5.4 Data Tagging

In this subchapter, procedures and tools developed for data tagging are outlined. These include

the procedure for using OwlView to tag data, as well as the separate spatial defect tagger developed by the

team.

5.4.1 General Defect Tagging

With local image data saved to the engineer's computer, he or she then tags data using the

OwlView interface described in Chapter 4 of this thesis. To do so, the engineer loads in a lot of wafers

and inspects them just as a specialist would. After submitting each lot, an Inspect Data file is created

containing all of the engineer’s decisions. To ensure accurate tagging, team members studied the same

SOPs and training material specialists use to identify defects. Additionally, because these lots have

defects confirmed for one reason or another, the likelihood of wrongly classifying a defect is reduced. If

at any time a team member is unsure of a defect, he or she can check the “maybe” button within the defect

classes, making it so that the data sorting software bypasses the wafer in question.

5.4.2 Spatial Defect Tagging

For each wafer confirmed as having a defect, a separate spatial defect tagging tool is developed

and implemented by our team. This interface works by opening all images in the defective wafers folder,

as sorted in Section 5.4.1, and allowing the user to draw a mask showing where the defect is located. This

interface and its use are demonstrated in Figure 5-2 below.

Figure 5-2: Spatial trainer demonstration. In the left image, a defect resembling a scratch is present on the

center of the wafer. The user marks the defect by drawing over it with their cursor (right).

54

In the instance above, the wafer is tagged as having a scratch defect, as seen in the left center of

the wafer. The right image shows a mask generated by the user to identify where the defect type is

present. The user can create a mask for any number of defects that occur in a given image. The masks are

stored in files within the same folder for each image. The files have an entry corresponding to every pixel

within the wafer image, where unmasked areas equal zero. Each separate mask drawn by the user is

correlated to a new number, with the first mask being one. Figure 5-3 illustrates this concept.

Figure 5-3: Mask generation in spatial tagger. Everywhere the user draws on the spatial tagger creates a

mask with a non-zero value. In the mask, each pixel corresponds to a value.

Spatial tagging is important because masks enable defect localization for certain ML models. As

discussed in Section 5.5.1, this method is also utilized to overcome the sparsity of defect data available to

our team.

5.5 Data Sorting Tools

In this subchapter, data sorting tools are covered that enable the team to train effective machine

learning algorithms. These include scripts for splitting the data into smaller units and resorting, and other

tools for creating a balanced data set for machine learning.

5.5.1 Data Splitter

There is no reasonable way to source enough data to train robust ML models with the methods

described to this point. This is especially clear after tagging and sorting data for SOG defects, which are

notorious for being amongst the most difficult to spot for their small size and mild coloring. After filtering

through several engineering contaminants that involved the tagging of nearly 200 lots, there are only 300

55

wafers identified as having defects. Additionally, these defects occur almost exclusively on the same

mask level and are often obscure due to their deceptive appearance. The team observed that training a

model on this data set would lead the model to identifying other patterns (such as the layer level affected

being biased towards containing SOG defects). Further, there are concerns regarding the loss of features

in reducing the image's original sizes of approximately 2000 by 2000 pixels. This is discussed in more

detail in Chapter 8.

To overcome these concerns, a method of data multiplication is devised through our spatial

tagging tool. We hypothesize that by splitting a single wafer image into smaller squares and then resorting

to the squares where defects are present, we can multiply our training data set and overcome issues

surrounding image compression. This idea is shown in Figure 5-4 below.

Figure 5-4: Splitting algorithm methodology: The wafer is split based on the user-generated mask and the

inputted N value. Higher N values would lead to more bad samples being generated, as the above defect

would be split into more squares.

To achieve this functionality, we use a new Python script for sorting that takes a user input of N,

where N corresponds to the number of squares desired along the x and y dimensions. For instance, the

figure above shows how a split occurs for N = 4. Here, a single bad data point is turned into sixteen data

points, where one is bad. This strategy is also advantageous because defective wafers often contain many

defects spread across the wafer surfacer. Therefore, one wafer image can yield many good and bad

sections. By splitting images, we work against the development of overfit biases in ML models that may

result from such cases. This innovation is effective in helping models converge, as discussed in the ML

sections of this paper.

56

5.5.2 Indices Remover

Because certain defect classes tend to affect certain areas of the wafer, tools are developed for

removing unwanted squares created when using the splitting script. Whenever a wafer is split and

resorted, a row and column identifier number is added to its filename. A Python script that removes

user-specified unwanted indices from the data set, whether they be central or on the edge, is developed

and utilized for this.

5.5.3 Random Reducer

Data sets are always imbalanced after tagging with far more goods than bads. To overcome this, a

Python script for randomly reducing a data set to match the other one is produced. This is essential as

training on a data set containing an imbalance of classes may guide a model into simply guessing which

class is more statistically probable rather than considering specific features.

5.5.4 Train Test Divider

To train an ML model with a given data set, data is divided into testing and training folders. A

simple Python script that randomly resorts data into this structure is generated. To run the script, the user

must simply input the desired test and training percentages.

5.6 Chapter Summary

Within this chapter, the availability of data was first described. From there, methods surrounding

tagging data were outlined. Next, the key innovation of splitting wafer images to overcome data scarcity

was described. Lastly, other tools for data sorting and quality were presented.

57

Chapter 6

Related Work in Macroscale Defect Detection

This chapter details related work in macroscale defect identification and classification in industry

and research settings. Macroscale defect detection is typically achieved using rules-based approaches in

industry. Much work is being done by academics to classify defect types based on wafer yield maps using

ML.

6.1 Macroscale Defect Detection in Industry

Macroscale defect detection is critical in the semiconductor industry, as reworkable defects can be

caught and addressed. Before automated visual inspection, all inspection of wafers was conducted

manually, but over the past decades tools have been adopted that rely on various automated inspection

techniques [9]. These inspection tools can run in or out of line with toolsets, with inline inspection being

superior due to a reduction in tool changes and cycle times experienced by each lot of wafers [10].

Regardless, innovations in automated visual inspection of wafers fabs helped alleviate the rate-limiting

and subjective steps involving human judgments. A wide array of tools exist for macroscale defect

detection that are deployed across fabs globally. At DFAB, EAGLEView is the only toolset used for

macroscale wafer inspection, and it works in tandem with human operators.

Algorithms utilized by tools are typically rules-based. In the EAGLEView case, the tool has

preset thresholding parameters and tolerances that dictate how much each wafer scan may vary from the

initial wafer, also called the golden wafer. The primary parameter utilized for comparison is the intensity

of each pixel [11]. If there is too large a variance between the intensities of corresponding pixels of wafer

scans, those areas are identified as defective by the software. Other rules-based detection algorithms work

without using a randomly selected golden wafer for a lot. In these cases, single images are broken into

sections, and average pixel parameters are compared for each region. If a region has abnormalities

compared to regions within the same region, it is likely a defect is present [12]. Rules-based approaches

are powerful but not without flaws. Image resolution must be high, image quality and camera positioning

must be consistent, and practical rules must be user-set that work for often unseen and unpredictable data.

58

6.2 Machine Learning Macroscale Defect Detection

The use of ML models to identify macroscale defects shows promise in overcoming the

limitations of rules-based approaches. Several studies have been conducted for identifying and classifying

macroscale defect types using the WM-811K wafer data set. This data set contains 46,393 lots, leading to

811,457 unique wafer maps for training [13]. Wafer maps show representations of die affected by a

macroscale defect, and differ from actual scans of a wafer. Figure 6-1 below shows wafer maps from the

WM-811K wafer data set compared to data from EAGLEView utilized by our team for training.

Figure 6-1: Wafermap compared to EAGLEView scan. Wafer maps are representations of the spatial

distribution of defective die found on wafers. Wafermaps can be generated from wafers once they are

probed at the end of the line.

Gong & Lin trained supervised learning models on the WM-811k data set using AlexNet and

VGG16 architectures that achieved 88.5% and 92% accuracies respectively [14]. Additionally, Chen et al.

achieved 97% accuracy in defect classification using a multi-feature fusion perceptual network [15].

These models simply classify the defect pattern present on a given wafer map, but localization is also a

key feature in root cause investigation. To this end, Shinde et al. achieved 94% classification accuracy

using a You Only Look Once (YOLO) architecture on the same wafer maps data set [16].

While methods utilizing CNNs have surpassed traditional methods in accuracy and classification

time, they are susceptible to the effects of training with imbalanced classes - which Chen et al. addressed

with a CNN-based knowledge distillation technique [17]. Boning et al. address the class imbalance issue

through synthetic sample generation and integrate a selective learning approach to refrain from classifying

high-risk defect patterns to achieve 99% classification accuracy of defects [18].

Other approaches employ unsupervised learning methods to identify defect patterns on unlabeled

data sets. Liukkonen and Hitunen used k-means clustering and self-organizing maps to find systematic

59

defect patterns from large groups of wafers [19]. This methodology varies from the aforementioned

supervised learning techniques that require large amounts of tagged data.

The previously described models are all trained on the WM-811k data set, whereas our work is

related to real wafer images. We aim to apply techniques and methodologies described in these papers to

real wafer images at DFAB.

6.3 Chapter Summary

In this chapter, macroscale defect detection in the semiconductor industry was introduced. The

advantages and drawbacks of using ML over a rules-based system were considered. Lastly, attempts by

others to classify macroscale defects were covered.

60

Chapter 7

Overview of Machine Learning Methods

This chapter overviews the machine learning architecture, hyperparameters, and strategies

deployed for different defect models. Models are developed using PyTorch [20].

7.1 Selected Model Architecture and Functions

In this subchapter, the selected model architecture and accompanying functions are described and

justified. Details surrounding our supervised transfer learning approach, as well as the optimizer and loss

function selected are outlined.

7.1.1 Supervised Deep Learning Approach

There are two types of deep learning: supervised and unsupervised. The learning in this work is

supervised, in that data with classifier labels is fed to the models. Unsupervised techniques, such as

k-means clustering, require no tagging of data. In a supervised learning scheme, the objective is for a

predictive model, f, to correlate data (X) and its corresponding tags (Y). The following equation displays

this idea, where are the parameters of the model.Θ

(7.1)𝑦
𝑖
 = 𝑓(𝑥

𝑖
 ; Θ)

Once the proper model is constructed, it can then be utilized to make predictions on unseen data X. From

there, the effectiveness of said model is judged based on metrics discussed in Section 7.3.

7.1.2 Model Architecture

A VGG (Visual Geometry Group) deep convolutional neural network architecture is selected and

utilized for models trained in Chapters 8, 9, and 10 of this work. It is utilized for its relative simplicity,

wide availability of pre-trained variants, and computational simplicity when compared to other models.

While true, the architecture is powerful and widely used since Simonyan and Zisserman proved the

architecture's improved performance due to its deeper weighted layers paired with 3x3 convolution filters

[21]. Figure 7-1 below shows a visualization of this architecture.

61

Figure 7-1: VGG-11 architecture visualization [21]. The above diagram shows the layer-by-layer

breakdown of VGG-11 from the input image size, convolutions, max pooling steps, fully connected linear

layers, and the softmax function.

For the scope of this work, the VGG-11 variant of the architecture is utilized, which contains

eleven weighted layers, of which eight are convolutional and three are fully connected. While smaller

than the VGG-16 and VGG-19 versions, it is still large and robust, carrying with it 133 million parameters

[21]. The architecture is implemented through the use of easily accessible and documented libraries

within PyTorch [22]. As seen in the above figure, the ReLU (Rectified Linear Unit) activation function is

utilized after each convolutional layer to enable non-linear relationships to exist within data points.

Pooling layers are also employed that reshape and downsample the inputted 224 by 224 by 3 images as

features are extracted. In the final three fully connected layers, the linear operations are carried out and

results are fed into the softmax function. Here, class scores are converted into probabilities which are then

turned into binary classifications through the argmax function. The softmax function works by finding

for each element in a given input array through the following equation.σ(𝑧
𝑖
)

(7.2)σ(𝑧
𝑖
) = 𝑒

𝑧
𝑖

𝑗 = 1

𝐾

∑ 𝑒
𝑧

𝑗

Here, the input array is the output of the fully connected dense layers, of which there are two for a

binary classification model. By normalizing the matrix values applied to the exponential function,

confidences are constructed for both the positive and negative classifications that sum to one.

62

7.1.3 Transfer Learning

Due to the relatively limited availability of defect data, transfer learning is utilized to create a

more robust model. When transfer learning is applied, the weights and biases of the model are initialized

to those of the model trained for object recognition on a completely different data set. Yosinski et al.

showed that utilizing transfer learning increases model performance when compared to using randomized

weights and biases initially [23]. For our models, pre-trained weights and biases are utilized for a model

trained on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012-2017 data set. This

data set contains approximately 1.28 million training images, 50,000 validation images, and 100,000 test

images [24]. All models trained utilize pre-trained weights and biases.

7.1.4 Optimization

The Adam (Adaptive Moment Estimation) optimization algorithm is utilized across models

developed in this work. While other optimization algorithms are applicable, Adam is selected for its

automatic learning rate adaptation and momentum optimization. It works by continually updating

parameters like time step, gradients, biased moment estimates, and learning rates based on previous time

steps after each iteration the parameter vector, theta t, has not converged. Additionally, Adam only utilizes

first-order gradients which require relatively little memory [25]. When comparing the performance of

different optimizers, it has been shown that the optimal choice is often data set dependent [26]. While

true, Adam is the only optimizer explored in the scope of our work.

7.1.5 Loss Function

The cross-entropy loss function is utilized for the models developed through the scope of our

work. It serves as the objective function for the model to minimize as weights and biases are tuned

between epochs. It works by taking the output of the softmax function, which in the binary classification

case of our models, are one-dimensional matrices with two values. The cross-entropy loss function for a

general classification case is characterized by the following equation.

(7.3)𝐿
𝐶𝐸𝑖

 = −
𝑖 = 0

𝐾

∑ 𝑙𝑜𝑔𝑃(𝑦 = 𝑦
𝑖
 | 𝑥

𝑖
, Θ)

63

7.2 Investigated Model Parameters and Techniques

Between models trained, different model parameters and techniques are utilized in the creation of

a given model. In this section, the parameters and techniques as investigated and tested by the team are

outlined.

7.2.1 Regularization

Several regularization methods are deployed to prevent overfitting. The first of these is dropout,

which is deployed in the fully connected layers of our models. Dropout functions by stochastically

dropping units and corresponding connections from the model during training, and has been proven to

reduce the effects of overfitting in vision applications [27]. All models trained in this work utilize a

dropout value of 0.5.

A second method is the integration of early model termination. Under this scheme, save states are

continually generated for a model during training between epochs. These save states are based on metrics

such as loss, validation accuracy, f1-score, and so on. By implementing this technique, models can be

saved before entering overfit territory.

The third method utilized is weight decay. Weight decay penalizes model complexity and thus,

overfitting. When weights are updated by the optimizer, an additional term is added in which two times

the product of the initial weight and weight decay coefficient is subtracted from the weights. Several

weight decay coefficients are explored in this work to protect against overfitting.

7.2.2 Cross-Validation Technique

While some SOG models discussed in Chapter 8 of this work use a typical train and test data split

for training, all other models utilize a cross-validation technique. Cross-validation differs in that the

training data set is split into different folds, where the amount of training data in each fold is the total data

in the training set divided by the number of folds. When training, a different one of the folds is withheld

from the training set each iteration. The withheld data set then becomes the validation set that the model

inferences on each epoch for feedback into the loss function. The test set initially withheld is used to

inference across all folds at the end of training. This method helps more robust models be designed and

selected [28].

64

7.2.3 Image Split Value N

As introduced in Chapter 5, image splitting is utilized to overcome the limited nature of tagged

and sorted defect data. In this scheme, the defective wafer image is divided into subsquares, where N𝑁2

is the number of squares along each image axis. As N is increased, the total number of images grows to

the square power, increasing the effective data set and reducing the image's resolution. This is

advantageous as the VGG-11 architecture takes a 244 by 244 pixel image as an input, so a smaller split

image maintains less feature loss in the resizing process. The N value is modified depending on defect

size and availability. SOG defects, discussed in Chapter 8, are amongst the smallest of defects, and a

larger N value is required as a result. Edge and center defects, investigated in Chapters 9 and 10, are much

larger. Consequently, the N values selected are typically smaller. In each of the following three chapters,

the N values selected for the final models are discussed and justified in terms of data availability, feature

size, and inference time tradeoffs.

7.2.4 Linear Probing

A linear probing strategy is introduced to aid model convergence and performance. In this

technique, the non-linear layers of the model are initially frozen while only the linear layers are adjusted.

This aids the model in extracting high-level features and can be particularly useful for training on small

data sets. Additionally, it has been shown that models trained using a linear probing strategy can have

higher out-of-distribution test accuracy than models trained with fine-tuning only [29]. In models trained

through the scope of this work, a linear probing strategy is utilized in almost all cases. In these instances,

the non-linear layers are frozen for a set number of epochs initially, before being unfrozen and fine-tuned.

7.2.5 Data Augmentation

Data augmentation helps prevent overfitting and increase model performance and is especially

crucial when working with small data sets [30]. Several augmentation methods are applied in varying

capacities to the different training sets and models gathered by our team. Within a given model, up to

eight unique data augmentations are applied to each training and test image through Torchvision’s

transformations library [32]. One such augmentation is a color inversion. The rest of the augmentations

are random flips and rotations about various axes. As a result, each data point is utilized to create up to

seven unique data points and then appended to the training and testing data sets.

A second form of data augmentation employed in this study is the generation of synthetic data.

Synthetic data creation entails the generation of completely new data points. The use of synthetic data

65

paired with real data has been shown to increase model performance, but comes at the risk of domain shift

- a phenomenon in which the test accuracy on real data points falls [32]. This may occur in part to the

model latching onto certain unintended artifacts that come with generated synthetic data. To overcome

this, synthetic training data can also be created for the good training set in some cases [33]. Synthetic data

generation is explored in the central defects model discussed in Chapter 10 given the especially sparse

nature of defect data for center defects.

7.3 Model Performance Metrics

Several metrics are utilized to evaluate the performance of models trained in this work. These are

accuracy, precision, recall, specificity, and F1 score. Each of these is a function of the number of true

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) a model identifies in a

data set. A TP is when the model correctly identifies a defect, and a TN is when the model correctly

classifies the image as not containing a defect. A FP is when the model wrongly predicts the image as

containing a defect, and a FN is when the model does not identify a defect as being present even though

there is one.

Accuracy refers to how correct the model is in overall classification. To calculate accuracy the

following equation is utilized.

(7.4)𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

While useful, accuracy does not give insight to the relative ratios of FP and FN. This is crucial to

understand as FP and FN have different implications. In our case, FP means the specialist is notified of a

defect being present even though none exists. This is preferable to a FN, as in that case no notification

occurs and the defect is missed causing scrap or yield loss. Precision is defined by the following equation.

(7.5)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

It is the ratio of correct defect identification to incorrect defect identification for the positives

only. This is useful in isolating the cases the model predicts positives only. Recall is the ratio of correct

defect identification to that plus the times the model misses a defect. It is described by the equation below.

(7.6)𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

Recall is a key metric for models trained throughout this study as FN must be minimized to

ensure that defects do not make it through the inspection module. Thus, recall should be maximized.

66

Specificity is the ratio of correct good wafer identification to that plus times the model wrongly identifies

a defect as being present. Its equation is shown below.

(7.7)𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁+𝐹𝑃

This gives insight into how well the model passes truly negative samples relative to its false

positive rate, mirroring the recall metric. Lastly, the F1 score is the harmonic mean of precision and recall.

Its formula is below.

(7.8)𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2*𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛*𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

Typically, precision and recall are difficult to maximize together as models slant towards too

many FP or FN. F1 score gives insight into the balance of these two metrics. No one metric is utilized to

fully evaluate an ML model. Rather, the scores are analyzed in union to understand model tendencies

across data sets.

7.4 Localization Heat Map Activation

Gradient-weighted class activation mapping (GradCAM) is utilized to spatially analyze

activations at the convolutional layer of the network in inference. GradCAM is a form of weakly

supervised localization that creates visualizations to aid in class discrimination and the identification of

biases present in data sets [34]. Through its implementation, the areas of an image that contribute most to

the model's decision become visible. These highlighted areas should align with where defects are present

in a well-functioning model. When paired with the model's confidence for a given decision and metrics

from Section 7.3 across test data sets, greater understanding can be garnered.

7.5 Receiver Operator Characteristic Curves

Receiver operator characteristic curves help illustrate the capabilities and performance of a binary

classifier, such as the models trained in the scope of this work. These curves are generated based on the

true positive rate (TPR) and false positive rate (FPR) of a model. Within the model's classification,

different threshold values are set for being considered a positive based on the confidences outputted by

the model. For each of these thresholds, the TPR and FPR are recorded and subsequently plotted to create

67

a ROC curve. Figure 7-2 below shows examples of ROC curves with accompanying area under the curve

(AUC) scores.

Figure 7-2: Receiver Operator Characteristic example curves: three ROC curves are shown above for an

AUC of .5 (random), AUC of .75, and AUC of .99. Higher AUC values indicate a better model.

In the figure above, the dashed red line corresponds to random guessing. In contrast, the blue line

is a model trained to recognize defects with an AUC of .75, and the green line corresponds to an AUC of

.99. In the case of random guessing, the TPR and FPR are always equal to one another. For a model with

better or worse than random guessing accuracy, the curves become less linear. From here, the optimal

operating threshold in terms of TPR and FPR can be selected for a model and then used for inference.

These curves can be generated based on distribution or out-of-distribution data. For more robust

inference, out-of-distribution data must be considered.

7.6 Chapter Summary

In this chapter, the utilized machine learning architecture, functions, parameters, and methods

were introduced. Metrics for model evaluation were also described, including scores like accuracy,

precision, f1, and recall. Concepts used to understand model performance, such as GradCAM and ROC

curves, were also detailed.

68

Chapter 8

Spin on Glass Defect Detection Model

In this chapter, only a brief summary of the model for detecting SOG defects is provided. For an

in-depth discussion of this model, see Sampson [6].

8.1 Summary of SOG Model Motivation and Methods

SOG defects are non-reworkable defects that occur outside the photolithography module.

Although non-reworkable, it is crucial these defects are caught fast. This is because they are often the

result of systematic tool variation affecting all wafers processed by a tool. So, the ability to correctly

identify a SOG defect early allows the team to prevent large containment events in which hundreds of

wafers are affected. Also, rather than direct integration to the user interface, the SOG model is better used

as an out of line engineering tool that continuously monitors wafers run through SOG tools at logpoints

the defects may be visible. This is because SOG defects are difficult to see due to their size and coloring.

As a result, a large N value is required for ML training, so that the features take up a larger percentage of

the image trained on.

SOG data is sourced entirely from engineering contaminants and trained on N=8 and N=12 data

splits with the architectures and parameters described initially in Chapter 7. Initial models were trained on

a single SOG containment event with approximately 500 data points after an N=12 split. Results were

insufficient and overfit. While working, a second SOG containment was discovered leading to an

explosion of available data. Figure 8-1 shows examples of SOG defects from the improved data set.

Figure 8-1: SOG defect examples. Examples of SOG defects at an N=12 split on different technologies.

69

The above SOG defect samples exist over a far greater number of layers and technologies than

the initial containment data. Additionally, far more wafers are affected in the new containment, leading to

even more data. So, data from the new containment is utilized for training, validation, and distribution

testing, whereas the initial containment data is withheld for out-of-distribution testing. Table 8-1 shows

the breakdown of training, validation, and testing data for new models trained. Additionally, all data

points are color equalized initially.

Table 8-1: The sizes of the new data set for SOG defects before augmentation [6].

Data Split Training Data Validation Data Test Data - In
Distribution

Test Data -
Out-of-Distribution

N = 12 4512 images 1128 images 1410 images 828 images

With the above split, two model configurations are trained with a cross-validation strategy. Both

models utilize eight augmentations and pre-trained weights and biases. The first model presented in this

work is configuration 7, which is trained with no linear probing. The second is configuration 8, which is

trained with linear probing. Within each configuration, a weight decay of 0.001 is used in one version,

and not in the other.

8.2 Summary of SOG Model Key Results

Table 8-2 below shows the test accuracy, F1 score, and AUC score for each of the configurations

on both in-distribution and out-of-distribution data. For both configurations 7 and 8, results are superior

for models not using weight decay. This indicates the weight decay parameter of 0.001 selected may be

too high, or even unnecessary given the large data set utilized for training. Configuration 8 with no weight

decay is the superior model across the four trained, marking the highest accuracy metrics across all six

determined excluding the out-of-distribution F1 score. The out-of-distribution AUC achieved for

configuration 8 with no weight decay is 0.927. The accompanying in and out-of-distribution ROC curves

are shown in Figure 8-2.

70

Table 8-2: Accuracy metrics for configurations 7 and 8, without and with weight decay [6].

Configuration Test Accuracy Test F1 Score AUC Score

In
Distribution

Out-of-
Distribution

In
Distribution

Out-of-
Distribution

In
Distribution

Out-of-
Distribution

7
(N = 12,
without weight
decay)

89.6% 86.4% 0.895 0.866 0.961 0.914

7
(N = 12, with
weight decay)

77.4% 51.3% 0.792 0.439 0.860 0.559

8
(N = 12,
without weight
decay)

91.6% 86.9% 0.917 0.855 0.964 0.927

8
(N = 12, with
weight decay)

86.2% 68.4% 0.863 0.679 0.927 0.749

Figure 8-2: In and out-of-distribution ROC curves for configuration 8, no weight decay.

GradCAM is applied to the out-of-distribution data run on configuration 8 with no weight decay.

Figures 8-3a and 8-3b show an example of a true positive and the associated activations. Activations are

localized to the area of the wafer containing the SOG defect. Figures 8-3c and 8-3d show activations for a

true negative case, where no areas are localized. This is indicative of the model's ability to abstract SOG

defects and make the proper classifications. While these cases are promising, and constitute a majority of

71

inferences; false positives and negatives both exist. In these cases localization often occurs needlessly to

artifacts of different wafer technologies, or the defects are localized but misclassified. An increase in

training data should help with this issue.

Figures 8-3a, 8-3b, 8-3c, and 8-3d: a) Configuration 8 true positive from out-of-distribution, b) GradCAM

of 8-3b, c) Configuration 8 true negative from out-of-distribution set, d) GradCAM of 8-3c. The highest

activation areas are red.

8.3 Summary of SOG Model Future Work

Several models are trained for detecting SOG defects on wafers for deployment in an engineering

tool outside of the OwlView interface. The best performing model uses linear probing and no weight

decay to reach an out-of-distribution AUC of 0.927. As more SOG data becomes available, it should be

fed into the model to enhance accuracy metrics and most importantly the out-of-distribution performance.

72

Chapter 9

Edge Defect Detection Model

In this chapter, the model developed for detecting edge defects is discussed only at a high-level.

For an in-depth discussion of this model, see Cheung [35].

9.1 Summary of Edge Model Motivation and Methods

Edge defects are the most common reworkable defects linked to the photolithography process.

They include wide EBR, eyelash, and spin defects as shown in Figure 9-1. Each of these is the result of

systematic variations in a pump's ability to dispense a photocurable resin or systematic variations in the

wafer's surface. Thus, a binary classifier model is trained for the identification of defects along the edge

of a wafer.

Figure 9-1: Examples of wide EBR (left), eyelash (center), and spin (right) defects in an N = 3 split [35].

Data for this defect class is relatively abundant, with over 1500 whole wafer images available

containing spin defects of one sort or another. Splits of N=3 and N=5 are selected for investigation as spin

defects are comfortably visible in these image splits, and real-time inference is required for this model. As

a result, a small N lends to fewer inferences per wafer and per lot - leading to the consumption of less

computational power. After applying a single color inversion augmentation to both the N=3 and N=5 data

sets, 48,000 and 96,000 total images are available for training in each of the cases, respectively.

Additionally, this model is trained on only color-equalized images just like all other models, as defects are

73

more visible. Table 9-1 shows the configurations of various models trained for the edge model. Varying

weight decays are applied and experimented with to aid in model convergence and out-of-distribution

performance.

Table 9.1: Configurations tested for the edge defect learning model [35].

Center Defect Configuration Matrix

Configuration N Linear Probe Weight Decay

1 3 Off - 0.01 0.03 0.05 0.1

2 3 On - 0.01 - - -

3 5 Off - 0.01 - - 0.1

4 5 On 0.001 0.01 - - -

9.2 Summary of Edge Model Key Results

Of all models trained, configuration 1 displayed superior results. Figures 9-2a and 9-2b show a

single fold's training and validation accuracies across varying weight decays. Further, ROC curves for the

in and out-of-distribution test sets are shown in Figures 9-3a and 9-3b. While the model with no weight

decay does achieve a higher validation accuracy than other model iterations, its out-of-distribution

performance is inferior to the model with a weight decay of 0.01.

74

Figures 9-2a and 9-2b: Configuration 1 results across five different weight decays for [35] a) training

accuracies, and b) validation accuracies.

Figures 9-3a and 9-3b: AUC scores and ROC curves plotted for the Configuration 1 model with weight

decay = 0.01 tested on a) test set in distribution, and b) test set out-of-distribution.

GradCAM is applied to the out-of-distribution data run on configuration 1 with a weight decay of

0.01. Figure 9-4a shows an example of a true positive, where activations appear to correctly localize spin

defects on the edge of a wafer. Figure 9-4b shows an example of a true negative, where activation is more

diffuse, indicating no false edge defect localization by the model. Figure 9-4c shows an example of a false

positive where the model wrongly localizes a feature of the wafer technology. Figure 9-4d shows an

example of a false negative, in which spin defects appear to be localized by the model but the wrong

classification is made. Each of the false cases are expected to occur with reduced frequency as more data

is fed into the models.

75

Figures 9-4a, 9-4b, 9-4c, and 9-4d: GradCAM images for edge defects [35]. a) true positive, b) true

negative, c) false negative, d) and false negative

9.3 Summary of Edge Model Future Work

Results of the edge models show promise and some production readiness - with an

out-of-distribution AUC approaching 0.91. The models trained show the ability to localize and correctly

classify edge defects but could be improved with increased data. As the OwlView interface is

implemented on the fab floor, the availability of data is expected to grow - and model performance will

improve subsequently.

76

Chapter 10

Center Defect Detection Model
In this chapter, the model developed for detecting center defects is discussed in detail. Methods

and techniques utilized to overcome the extremely sparse nature of the data- such as the generation of

synthetic data - are described. Models trained are outlined in detail.

10.1 Problem of Data Availability for Central Defects

The central model is the last model pursued by our team, partly due to the unique challenges

presented by data availability. A wide array of defects may affect the center of any given wafer. These

include but are not limited to centerholes, particles, hotspots, flashfields, contaminations, and scratches.

All of these defects have unique visual qualities. Examples of each of these are shown in Figure 10-1

below.

Figure 10-1: Examples of different center defects. The above images are taken from N=5 splits of wafer

images tagged by the team. These examples show different underlying technologies for each defect type.

The above figure shows a single example of each of the defect types, but the shape, coloring and

sizes of the defects can vary greatly. Figure 10-2 illustrates this by presenting a sample of different

hotspot defects.

77

Figure 10-2: Examples of different hotspots. The above images are taken from N=5 splits of wafer images

tagged by the team. This figure displays the array of ways in which a hotspot might appear.

To further complicate this, along with each layer of the wafer looking different between logpoints

as shown previously in Figure 2-3, the underlying technology of the wafer can vary greatly as DFAB

produces over 1000 technologies, with six disparate examples shown below in Figure 10-3.

Figure 10-3: Examples of different technologies. The above images are taken from N=5 splits of wafer

images tagged by the team. No defects are present on these wafer sections.

For the SOG model discussed in Chapter 8, many recent engineering contaminants are available,

which made it relatively easy to source and tag data. Additionally, SOG defects are only visible on a

handful of logpoints, so concerns about the model's applications to other layer levels are not as relevant.

For the spin defects model discussed in Chapter 9, rework data is widely available on online databases

78

making the creation of a more robust model feasible. For central defects, this is not the case. Data is less

available, and the man hours it takes to source a wide array of central defects across the hundreds of

technologies and dozens of logpoints made an approach mirroring those taken in Chapter 8 or 9

impractical.

10.2 Methodology for Central Defects Model

In this subchapter, the model parameters for the four central defect models trained are first

described. Next, model evaluation criteria are discussed. Finally, methods for generating synthetic data as

utilized in the models are outlined.

10.2.1 Proposed Experiments for Central Defects Model

The team proposes that by augmenting our data set with synthetic data for different central defect

types, we can create a model capable of detecting different central defects across layers and technologies

not represented in the training set. To achieve this, hotspot defects are selected as the single defect class to

focus on initially to prove the validity of the synthetic data creation strategy. This is justified for three

reasons. First, hotspots are the most abundant in our data set. After tagging, the team collected 700 unique

hotspot defect occurrences. While relatively ample, many of these defects seem identical. This is because

hotspot defects often affect a whole lot of wafers, rather than just a single one. Figure 10-4 shows

examples of four unique hotspot defects affecting different wafers within the same lot.

Figure 10-4: Examples of the same lot, different hotspots: four unique wafers within the same lot have

similar-looking hotspots. These hotspots also appear in the same location on each wafer.

The above figure helps illustrate the second motivation for selecting hotspot defects. They are

often missed by EV’s rules-based detection algorithm because they affect every wafer within a lot.

Consequently, the golden wafer and all other wafers look similar and detection accuracy suffers. The

79

above figure also helps demonstrate that, while 700 unique hotspots exist, only around 50 are completely

unique in visual properties - further justifying the need for a synthetic data approach to be applicable

across layer levels and technologies. The third motivation in selecting hotspots over other defects is their

distinct patterning. While hotspots come in many shapes and sizes, through various imaging editing

techniques, convincing synthetic ones are creatable through various image modification strategies.

So, to establish the feasibility of this technique, models with the data sets described in Table 6-1

are trained. For each model, an N value of five is utilized along with pre-trained weights and biases.

Additionally, ten epochs of linear probe, the Adam optimizer with an initial learning rate of 1E-4, and

eight data augmentations are utilized.

Table 10-1: Data set configurations for hotspot binary classifier.

Config:

Number of Good Images Number of Bad (Hotspot Defects)

Real

Synthetic

One Goods

Synthetic

Two Goods Real

Synthetic

One Defects

Synthetic

Two Defects

1 576 0 0 576 0 0

2 576 576 0 576 576 0

3 576 576 576 576 576 576

In the above table, parameters and data inputs for the models are described for three unique

configurations. In the first configuration, there is no synthetic data. In the second configuration, there is

synthetic data generated through the use of our first method (called synthetic one) for creating said data.

In the third configuration, there is data created using both the first and second methods (synthetic two) of

synthetic data generation.

A fourth model configuration is also devised for detecting all types of central defects with the

same optimizer and learning rate. This model has significant limitations regarding the availability of real

defect data across defect types. For centerholes, only 213 unique defect images exist, with some of those

being repeats affecting a whole lot. For contaminations, there are only 129 unique defect images gathered

through the scope of our work. For scratches, there are only 146 unique defect images. In each of these

cases, the defect images are already subdivided using an N=5 split.

While a classifier model could be trained on this limited data set, it would be overfit and perform

poorly on out-of-distribution data. Additionally, there would be so little out-of-distribution data to test.

Instead, a binary classifier model is devised for configuration 4as shown in Table 6-2.

80

Table 10-2: Data set configuration for central defect binary classifier.

Configuration 4

Good Images Bad Images

Real Synthetic

Real

Hotspots

Synthetic

Hotspots

Synthetic

Contaminations

Synthetic

Scratches

Synthetic

Centerholes

1728 1728 576 1152 576 576 576

In the above configuration, the model is trained on a one-to-two ratio of real to synthetic hotspots,

exactly identical to configuration 3. In addition, the model is trained on only synthetic centerholes,

scratches, and contaminations. The aim of this model is to evaluate performance on out-of-distribution

real defects.

For each of the described models, parameters like N, use of pre-trained weights and biases, and

learning rates are used based on finding from the models trained in Chapters 8 and 9. For a more in-depth

discussion of those parameters, refer to those sections. While additional adjustment of said parameters can

impact and improve model performance, the chief motivation of the central defects model is proving the

viability of a synthetic data creation strategy to create models applicable across the many technologies

and logpoint types at DFAB. Consequently, model hyperparameters are held constant. In future iterations

of these models, these can be further tuned. Within models, the weight decay parameter is tuned.

10.2.2 Evaluation of Models

To garner an understanding of the effects of the synthetic data’s inclusion in the data set, the

models are trained using a cross-validation strategy as described in Chapter 7. Here, the good and bad

data sets are split into training and test sets with respective ratios of 80% to 20%. For the training set, a

k-fold of 5 is utilized such that five unique models are trained with each training set split into 1 of the 5

unique validation sets respectively. The remaining test set is then utilized to inference and evaluate the

models' performances on data it never saw throughout training. In this case, the defects and layer levels

are likely represented in the training data set. This is because the test set is randomly pulled from the total

good and bad splits. While useful, we aim to evaluate the model's performance on unseen data not

represented in the test set.

To achieve this, a second test data set is created containing real hotspots from layer levels and

technologies completely unseen by the model. For configurations 1 to 3, this dataset contains 115 good

and 115 bad examples of real hotspots. This data set is utilized to evaluate the model's performance on

technologies and hotspots with characteristics the model has never seen before. For the fourth

81

configuration model encompassing all center defects and synthetic data, 124 real defects of each type are

withheld for out-of-distribution inferencing.

10.2.3 Generation of Synthetic Data

To generate synthetic data, images of good wafers are first required. It is important these good

wafers are from a wide array of technologies and layer levels. To achieve this, an SQL query is utilized to

randomly pull lots and logpoints from the different technology groups produced by DFAB in an even

distribution. While powerful, this data still requires tagging so that no defective wafers are included in the

good data set. In total, for the first three configurations on hotspots only, 188 unique lots of wafers are

identified and tagged. For the fourth configuration only, 375 additional lots are added to increase the

number of technologies included in the data set. In each of these lots several logpoints are pulled as well.

These images are split and sorted with the methodologies described in Chapter 5 of this work.

From here, two primary synthetic data generation methodologies are applied to each wafer image. These

are “synthetic one” and “synthetic two.” Synthetic one is applied first in z configuration 2. Synthetic two

is created next for configuration 3, which contains data from both methods.

For the synthetic one, a Python script is created that reads in a good wafer image, filters out dark

pixels that outline the individual die, applies a hotspot-shaped mask to the remaining underlying area,

modifies the masked area with brightness and saturation changes, and then recombines the images such

that the hotspot appears underneath the rigid geometric patterns as typical in reality. Figure 10-5 displays

this methodology.

Figure 10-5: Synthetic data generation process example: in the above procedure, the mask shape and

spatial properties are randomized as well.

In each of these steps, elements of randomization are deployed so that no two hotspots generated

look the same. The mask that eventually becomes the hotspot is randomly selected from a folder

82

containing 50 hand-generated masks using different brushing techniques in Microsoft Paint. These masks

are randomly flipped and altered such that an array of positions and sizes are present. The brightness and

saturation factors are also randomly generated for each image.

The method was arrived upon after much investigation and experimentation. Initially, a

solid-colored mask was simply placed on top of the wafer image. After training and evaluating those

models’ performances, it was clear that the model was simply discovering whether or not the masked

layer was present - as it caught no real defects in inference. The new method shows promise for two

reasons. First, defects generated are embedded within the actual image rather than simply being the last

mask level. Second, because parameters like saturation and brightness are modified, the masked hotspots

have color profiles with many varying colors. This stands in contrast to the earlier attempts that create

uniformly colored pixels within each hotspot mask. Figure 10-6a shows examples of synthetic hotspots

generated with synthetic one, whereas Figure 10-6b shows examples of real hotspots.

Figure 10-6a: Synthetic hotspot samples: hotspots generated using synthetic one.

Figure 10-6b: Real hotspot samples: real hotspots gathered, tagged, and split by team.

Additionally, synthetic data is created for the goods to work against the models' ability to detect

images modified by us. Here, the masks used are uniform across the whole wafer with varying opacities.

With this script, thousands of synthetic data points are generated and then randomly downsampled to 576

for good and bad to match the data set for configuration one. This way, configuration two has an even

balance of synthetic and real data points for hotspots.

83

The second method for generating synthetic hotspot defects works similarly. Like the first, a

Python script is created that reads in a good wafer image, filters out dark pixels that outline the individual

dies and applies a hotspot-shaped mask to the remaining underlying area. Here, rather than modifying the

brightness and saturation, the color profiles are modified. Next, everything is recombined the same way,

but the opacity of the color mask is randomly modified. This leads to authentic looking fake hotspots.

Figure 10-7a shows examples of synthetic hotspots generated with this method, whereas Figure 10-7b

shows examples of real ones.

Figure 10-7a: Synthetic hotspot samples: hotspots generated using synthetic two.

Figure 10-7b: Real hotspot samples two: real hotspots gathered, tagged, and split by team.

Synthetic two is used to create data for configuration 3. These methods are utilized to create

synthetic hotspot data. For other defect types as explored in the fourth model configuration, different

defect types are generated using the same methodologies. Here, only the mask geometries and ranges of

random parameters like brightness, saturation, and color are modified. Figure 10-8a shows examples of all

types of synthetic defects generated with this method, whereas Figure 10-8b shows examples of real ones.

84

Figure 10-8a: Synthetic data samples all types. Examples of synthetic data generated for centerholes,

contaminations, hotspots, and scratches. Many thousands of these are generated for each across layer

levels and technologies. Additionally, the mask geometries and positions are randomized as well.

Figure 10-8b: Real data samples of all types. Examples of real data gathered for centerholes,

contaminations, hotspots, and scratches.

The synthetic defects generated for these examples are randomly generated across over 300 lots

pulled to capture a random distribution of the technologies produced by DFAB.

10.3 Model Results

Figures 10-9a and 10-9b show the training and validation accuracy scores of each of the five folds

of configuration one, which was trained on only real hotspot data. Figure 10-10 shows the validation loss

for each of the five folds of configuration one. Figure 10-11a shows the ROC curve for configuration 1

performance on the test data set - which is in-distribution data. Figure 10-11b shows the ROC curve for

configuration one performance on out-of-distribution data.

85

Figures 10-9a and 10-9b: Configuration 1 training and validation accuracy across five folds. a) Training

accuracy; b) Validation accuracy.

Figure 10-10: Configuration 1 validation loss. Validation loss plotted over 50 epochs for five folds.

Figures 10-11a and 10-11b: Configuration 1 ROC curves: a) in distribution test set AUC=0.997; b)

out-of-distribution data AUC=0.245.

86

The training and validation accuracies for configuration 1 converged to scores over 97.5% within

30 epochs as the validation losses fell. This model is grossly overfit, however, as out-of-distribution AUC

performs worse than guessing odds. So while the model learned something, its ability to correctly classify

out-of-distribution data is non-existent. These results are expected, however, given the limited nature of

hotspot defect data, and the limited amount of layers represented. Figures 10-12a, 10-12b, 10-12c, and

10-12d show examples of hotspot defects and the model's corresponding activation maps.

Figures 10-12a, 10-12b, 10-12c, and 10-12d: a) Configuration 1 true positive from test data set (in

distribution), b) GradCAM of 10-12a, c) Configuration 1 false negative from out-of-distribution det, d)

GradCAM of 10-12c. The highest activation areas are red.

Figure 10-12a shows a true positive from the test data set, which is in distribution data that the

model did not see. In this case, the activations shown in Figure 10-12b, are not localized to the hotspot

defect shown in the bottom right corner. So, the model correctly classified this hotspot, but the area

containing the hotspot did not have a high activation. This trend is true for other hotspots correctly

identified in this case, which had the AUC score of 0.997 from Figure 10-11a. This model simply learned

that this layer level and technology pairing will likely contain a hotspot defect since other nearly identical

hotspots were fed into this model in training. For Figures 10-12c and 10-12d, a false negative from the

out-of-distribution test set and its corresponding activation image is shown as run through configuration

1’s model for inference. Although it is misclassified, activation is high corresponding to the hotspot

defect. This further confirms the notion of overfitting, as although the model does have some ability to

abstract hotspot defects for technologies it has never seen, its classification is still wrong as it is overfit for

the data in the training set. Figures 13-a and 13-b show the training and validation accuracy scores for the

configuration 2 models, which introduce synthetic data to the training set. Figures 10-13c and 10-13d

show the same for configuration 3 models, which utilize two synthetic data creation strategies. For these

models, only one fold is plotted at varying weight decays. The weight decay is adjusted to affect

overfitting.

87

Figures 10-13a, 10-13b, 10-13c, and 10-13d: a) Configuration 2 training accuracy across weight decays,

b) Configuration 2 validation accuracy across weight decays, c) Configuration 3 training accuracy across

weight decays, d) Configuration 3 validation accuracy across weight decays.

For each of the above figures, models are slower to converge, and they converge to lower overall

training and validation accuracies as the weight decay parameter, WD, increases. Weight decays vary

slightly between models as they are iteratively adjusted and evaluated. For configuration 2, the .05 weight

decay case was allowed to run longer, converging above 95% after 120 epochs. For configuration three,

the 0.05 weight decay model never converged. The above models have lower training and validation

accuracies than the configuration 1 model, which is encouraging as the configuration 1 model is overfit

and performs poorly on out-of-distribution data. ROC curves are generated for each of the models for test

data (in-distribution) and out-of-distribution data. Table 10-3 shows the AUC scores for each of the

models.

88

Table 10-3: Test and out-of-distribution data set AUC values.

Configuration Weight Decay Test Data Set (in distribution) AUC Out-of-Distribution Data Set AUC

1 0 0.997 0.245

2 0 0.980 0.423

2 0.001 0.967 0.520

2 0.01 0.980 0.589

2 0.05 0.965 0.538

3 0 0.958 0.778

3 0.001 0.957 0.664

3 0.005 0.955 0.809

3 0.01 0.951 0.714

3 0.05 0.763 0.337

For each of the data sets, a small increase in weight decay shows some benefit in model

performance on out-of-distribution data. Too much weight decay eventually lowers a given model’s

performance, however. This typically comes at the cost of in-distribution performance, indicating a

reduction in overfitting. Between configurations 1, 2, and 3 for the no weight decay cases, there is an

improvement in AUC as shown in Figure 10-14.

Figure 10-14: AUC vs. model configuration for weight decay of zero. AUC climbs between model

configurations from 0.245 to 0.778 as synthetic data is introduced.

89

For the three model configurations above, everything is identical except the datasets.

Configuration 1 has no synthetic data, 2 has synthetic data made with one method, and 3 has synthetic

data made with two methods. Additionally, the amount of data doubles between 1 and 2, and triples

between 1 and 3 as a result of the synthetic data. The large growth in AUC from 0.245 to 0.778 in the

datasets without weight decay shows the viability of the synthetic data strategy in helping the model

inference better on out-of-distribution data, which is key for this application. Of the model 3

configurations trained at varying weight decays, the highest AUC for out-of-distribution data is achieved

with a weight decay of 0.005. This AUC value is 0.809; the corresponding ROC curve is shown below in

Figure 10-15.

Figure 10-15: ROC curve for configuration 3 and weight decay of 0.05. Receiver operator characteristic

curve for hotspot-only model with best AUC of models trained on out-of-distribution data.

Considering the extremely limited dataset of real hotspots, this is a promising result that is not

quite production ready. Although the true positive rate is up to three times better than the false positive

rate in certain operating points, the odds of false positives are still large, as nine inferences are required

for every wafer. If the false positive rate is too high, the operator will likely ignore OwlView suggestions

entirely. Thus, a higher AUC is desired for production. Integrating synthetic data strategies and weight

decay to reduce overfitting led to a large increase in AUC from the original overfit models trained on only

real hotspots. While true, a greater amount of data is simply required to utilize the central defect model.

This data can be gained once the system is implemented on the fab floor. Examination of GradCAM

images from model 3 gives some insight into its performance as seen in figures 10-16a through 10-16d.

90

Figures 10-16a, 10-16b, 10-16c, and 10-16d: a) Configuration 3 and weight decay of 0.05

out-of-distribution true positive example, b) GradCAM of 10-16a, c) Configuration 3 and weight decay of

0.05 out-of-distribution false negative example, d) GradCAM of 10-16c.

Model activations for real hotspot defects show the model's capacity to localize defects across

several wafer technologies. While true, false negative cases still exist where activations seem to come

from unseen chip technologies the model has not learned to bypass. With the integration of more training

data, we expect the model's activations to become more precise across a wider array of technologies.

Figures 10-17a and 10-17b show the training and validation accuracy of configuration 4’s five folds as

trained with a 0.001 weight decay.

Figures 10-17a and 10-17b: a) Configuration 4 training accuracy over 80 epochs, b) Configuration 4

validation accuracy over 80 epochs.

Training accuracy climbs asymptotically approaching one for all five folds across 80 epochs.

Likewise, the validation accuracy follows, except plateauing around a score of 0.9. This model is trained

across defect types, where it only sees synthetic data for the non-hotspot defects. Figures 10-18a through

91

10-18d show the ROC curves for model performance on out-of-distribution data for each of the 4 defect

classes targeted.

Figures 10-18a, 10-18b, 10-18c, 10-18d: a) Configuration 4 ROC curve for out-of-distribution hotspots,

b) Configuration 4 ROC curve for out-of-distribution centerholes, c) Configuration 4 ROC curve for

out-of-distribution contaminations, d) Configuration 4 ROC curve for out-of-distribution scratches.

The model's ability to identify hotspots improved noticeably between configurations 3 and 4 to an

AUC of 0.909. This is likely due to the increased amount of data the model is trained on. The ROC curve

for centerholes is also impressive, with an AUC of 0.849. This is surprising as the model was never

exposed to a real centerhole. Being that some centerholes look like hotspots, this is a logical outcome

though. Out-of-distribution testing for contaminations (AUC = 0.755) and scratches (AUC = .594)

performed better than random guessing, but not as well as the hotspot models. In the future, as more data

for these defect classes arises, it is expected that the AUC scores will rise across defect types as seen in

hotspots. Additionally, as more real defects are tagged, a multi-class model can be developed for the

92

identification of each defect type. Figures 10-19a through 10-19h show examples of true positives for

each defect type in the out-of-distribution test sets, along with accompanying GradCAM activations.

Figures 10-19a, 10-19b, 10-19c, 10-19d, 10-19e, 10-19f, 10-19g, and 10-19h: a) Configuration 4 and

out-of-distribution true positive hotspot example, b) GradCAM of 10-16a, c) Configuration 4

out-of-distribution true positive contamination example, d) GradCAM of 10-16c, e) Configuration 4 and

out-of-distribution true positive scratch example, f) GradCAM of 10-16e, g) Configuration 4

out-of-distribution true positive centerhole example, h) GradCAM of 10-16g.

Across defect types, model activations for these true positives are highest where the defects are

present, which is a promising result. While promising, these are just examples of the true positives. There

are many cases like this for hotspots and centerhole defects, but for the worse performing scratches and

contaminations, there are fewer instances of proper model activations. This highlights the need for more

data showing real defects across technologies.

10.4 Limitations

Data is especially limited for center defects. As displayed, an increase in training data, whether

synthetic or real, leads to an increase in out-of-distribution performance for each model. Due to the

especially sparse nature of center defects, models couldn’t be trained using any real defects other than

hotspots, otherwise, there would be no data to withhold for out-of-distribution testing. Once OwlView is

93

implemented on the production floor, the amount of available and tagged data will grow rapidly, and

model performance should follow as the data is retrained.

10.5 Chapter Summary

Data is especially limited for center defects. Regardless, respectable models were trained for

detecting hotspot defects - with the best model achieving an out-of-distribution AUC of 0.909. Models

showed layer activations corresponding to the location of each defect on the wafer for many instances.

Better performing models had higher rates of true positives with proper activations. The major limitation

of this model is the sparse amount of training data available.

94

Chapter 11

In-line Inspection Evaluation and Findings

In this section, only a high-level overview of the in-line inspection evaluation is covered. For a

more detailed analysis, please refer to Cheung [35].

11.1 Summary of In-line Inspection Motivation and Methods

DFAB is in the process of converting to a 200mm only fab that produces primarily GaN

technologies. To meet this end, management hopes to shift away from the flawed EAGLEView toolsets.

While other out-of-line inspection tools could be integrated into the fab, a second and more compelling

option exists. This is the integration of in-line inspection capabilities.

In-line inspection entails capturing and inspecting wafer images while on the toolsets that produce

the defects. In the case of macro inspection, this occurs on toolsets that have coated the wafers with

photoresist, and selectively cured the die geometry subsequently. By capturing images in-line with other

processes, wafers do not need to be diverted to the EAGLEView module, saving both time and resources.

Additionally, there is the potential to increase the overall quality of wafer images captured, and thus the

inspection quality as well. To assess the feasibility of in-line macro inspection post photolithography at

DFAB, a trial is conducted using a Keyence Line Scan camera and paired Lumitrax light bar as shown in

Figure 11-1.

Figure 11-1: Keyence Line Scan and Lumitrax light bar [35]. The Line Scan camera captures images of

wafers as the production tool moves them from place to place.

95

This system captures wafer images as they move along a single axis. The Lumitrax system shines

different types of light on the wafer surface that are then used to create several different wafer images for

the same wafer. The result is a high-quality image of the wafer with no reflection or glare, something that

is near impossible to achieve without the Line Scan camera or Lumitrax. Additionally, the cameras come

with rules-based detection algorithms that can be programmed by engineers for defect detection. Ideally,

this can be used in parallel with ML algorithms trained on data collected upon implementation. As a

result, specialists can still use OV, but rather than EAGLEView scans, scans come from the in-line tools.

This system is trialed on a TEL coat and development tool, as TELs are superior to other work

cells in terms of cycle time, throughput, and downtime. Additionally, as DFAB shifts to a 200mm GaN

fab, TELs will be utilized more often and more may be added to the fab. So, to evaluate the efficacy and

feasibility of in-line inspection for macroscale defects, the mounting system shown in Figure 11-2 is

designed and prototyped by our team.

Figure 11-2: In-line inspection TEL mounts [35]: CAD rendering of inline inspection mount as installed

in a tool.

The above mount is designed so that it may be integrated into any of the TELs present at DFAB.

Additionally, the camera and lightbar positions are easily adjustable, a key requirement for the trial.

Finally, an amber filter is added to the lightbar to filter out any light wavelengths that could lead to

unwanted curing of the UV-sensitive photoresist. The described camera and lighting system is trialed for a

one-week period. In this period, the image quality and system feasibility are both evaluated.

96

11.2 Summary of In-Line Inspection Trial

Figure 11-3 below shows images of the trial imaging unit as installed on the tool. The camera and

light are controlled by, and write images to a computer next to the tool in the trial. The mount's

modularity allows for adjustment of the camera and lighting angle, both of which are crucial for proper

imaging of the wafer. Images are captured of the wafer as they are moved into the tool by a linear

actuator. Example images captured during the trial are shown next in Figure 11-4.

Figure 11-3: Installation of the mount on a TEL tool [35].

Figure 11-4: Wafer images collected during tool calibration of the in-line imaging system [35].

Images captured during the trial are partial given some limitations in the available lighting

equipment. To achieve a full wafer image, the light would either need to be lowered past its current

position - which is maximized in the current mounting arrangement - or be upgraded to a larger unit.

Regardless, the image quality captured on the imaging system is promising, and certainly to par with the

97

EAGLEView system in resolution and quality. The trial unit also involved built-in defect detection

algorithms, which are rules-based. Figure 11-5 below shows examples of the rules-based approach.

Figure 11-5: Keyence software detection images. No defect detected in the OK image (top), and a radial

surface defect was detected in the no good image (bottom).

In this example, the Keyence system correctly identifies the presence of a spin defect in the

bottom image and passes a good wafer in the top image. The pass or fail determination is made by user set

rules. The rules set are based on radial variations in contrasts, and can be refined to identify different

types of defects. The drawback of this approach is the need to set many rules for the many types of

defects, but the trial proved feasibility. For a more thorough analysis, a larger dataset of defect types

across wafers and layers is needed to create rules. Given EAGLEView tools utilize a rules-based

approach, it is reasonable to assume proper rules could be devised to achieve production ready accuracy

metrics.

98

11.3 Summary of Future Work

The trial proved the capacity to mount an imaging system that captures high-quality wafer

bitmaps - which is no trivial task given the reflective nature of wafers. Additionally, this is done with no

increase in wafer cycle time, which can help drive down the DPL of DFAB. Further, the rules-based

approach to finding defects shows promise. More data on different defect types is required to set proper

rules that catch defects. Work is also to be done in integrating the outputs of this in-line system to the new

user interface OwlView. Ultimately, once many wafer images are collected and analyzed for defects, data

can be used to train ML models with the same methodology described earlier in this thesis.

99

Chapter 12

Conclusions

Key results and conclusions of this thesis are first summarized, then areas for future work are

discussed.

12.1 Summary of Results and Conclusions

Major improvements are made across four axes for DFAB’s macro inspection module. The

primary axis explored in the work is machine learning for defect detection. Binary classifier models are

developed for SOG defects, edge defects, and central defects achieving out-of-distribution AUCs of

0.927, 0.906, and 0.909, respectively. Given the limited nature of defect data, particularly for center

defects, transfer learning and synthetic data techniques are applied to improve model performances.

GradCAM is used to visualize each model's ability to localize defect features, further supporting each

model’s ability to identify defective wafer regions. Results show a high potential for real-time ML-based

defect detection at DFAB, but more data is required for better performance. This is a result of the wide

array of different technologies, layers, and defect classes that exist. As a better representation of defects

across technologies and layers is fed into the model, the out-of-distribution AUCs are expected to climb.

In the development of these models, a machine learning infrastructure is created for future use by TI. This

includes the new specialist interface, OwlView, for data tagging, our spatial tagger, sorting and splitting

scripts, and more. Beyond machine learning, a new user interface called OwlView is developed based on

specialist needs. Enhanced features like color equalization filtering, retroactive logpoint tracking, and

more are added to make specialists more effective. Further, SOPs are updated to improve specialist

performance. Steps are taken to implement OwlView on the production floor, and specialists are trained in

the software. GR&R is conducted and various root causes of systematic shifts in EAGLEView

performance are identified and mitigated. Procedures are put in place for recurring studies as well. Results

from the in-line inspection trial show high quality image capture without the need for EV. Detection

algorithms employed by Keyence also show promise in detecting spin defects - based on the small dataset

of images the company utilized their rules-based approach on.

100

12.2 Future Work

Models developed in this work are trained on relatively limited data. Pending a PC upgrade in the

fab, the new user interface, OwlView, and accompanying models are set to be deployed. Upon

implementation, every decision stored by the operator can be utilized to sort data and multiply the amount

of training data over time. By retraining after a set interval, model performances are expected to climb.

Additionally, as the data set grows, new multiclass models can be trained for defect identification and

classification. The metadata stored for each image can also be used in ML training in future models.

Information including the tools that the wafer ran on before and the defect class can potentially be used as

model inputs for increased accuracy and more insight to root cause tool failures, leading to systematic

variations in product quality. As more GR&R studies on EAGLEView performance are conducted across

layer levels and technologies, more sources of systematic tool performance are expected to be identified -

leading to an increase in correct defect localization, and a decrease in false flagging rates.

101

PAGE INTENTIONALLY LEFT BLANK

102

Bibliography
[1] Burkacky, Ondrej, and Nikolaus Lehmann. “The Semiconductor Decade: A Trillion-Dollar

Industry,” McKinsey & Company, New York City, New York, 2022.

[2] Hufbauer, Gary Clyde, and Megan Hogan. “CHIPS Act will spur US production but not foreclose

China.” Peterson Institute for International Economics Policy Brief, 22-13 (2022).

[3] Han, Jaecheon, et al., “Optimizing n-type contact design and chip size for high-performance indium

gallium nitride/gallium nitride-based thin-film vertical light-emitting diode.” Materials Science in

Semiconductor Processing 31 (2015): 153-159.

[4] Boles, Timothy. “GaN-on-silicon present challenges and future opportunities.” 12th European

Microwave Integrated Circuits Conference (EuMIC). IEEE, 2017.

[5] Bordogna, A., et al., “Novel post-lithography macro inspection strategies for advanced legacy fab

challenges.” Metrology, Inspection, and Process Control for Microlithography XXXIV. Vol. 11325.

SPIE, 2020.

[6] Sampson, Jonathan A. Improving Macroscale Defect Detection in Semiconductor Manufacturing

using Automated Inspection with Convolutional Neural Networks. Sep. 2023. Massachusetts

Institute of Technology, Master’s of Engineering Thesis.

[7] Riverbank Computing Limited. “PyQT.” Version 5.15.9, Riverbank Computing Limited, 2012

[8] Bockstein, Ilia M. “Color equalization method and its application to color image processing.” JOSA

A 3.5 (1986): 735-737.

[9] Huang, Szu-Hao, and Ying-Cheng Pan. “Automated visual inspection in the semiconductor

industry: A survey.” Computers in Industry 66 (2015): 1-10.

[10] Lewis Jr, Richard E., Vinayan C. Menon, and Vandana Vishnu. “Implementation of integrated auto

macro-defect inspection in the photolithography tool cluster.” Metrology, Inspection, and Process

Control for Microlithography XIX. Vol. 5752. SPIE, 2005.

[11] Chang-Cheng Hung, Jhubei, and Hsinchu Tsai-Sheng Gau. METHOD and SYSTEM for WAFER

INSPECTION (U.S. Patent No. 8,617,410). 31 Dec. 2013.

103

[12] Lincoln, Schick. Keyence Camera Trial Meeting. 23 June 2023.

[13] Wu, Ming-Ju, Jyh-Shing R. Jang, and Jui-Long Chen. “Wafer Map Failure Pattern Recognition and

Similarity Ranking for Large-Scale Data Sets.” IEEE Transactions on Semiconductor

Manufacturing, Vol. 28, No. 1 (February 2015): 1–12.

[14] Gong, Jie, and Chen Lin. “Wafer Map Failure Pattern Classification Using Deep Learning."

[15] Chen, Yu, et al., “Wafer defect recognition method based on multi-scale feature fusion.” Frontiers

in Neuroscience 17 (2023): 1202985.

[16] Shinde, Prashant P., Priyadarshini P. Pai, and Shashishekar P. Adiga. “Wafer defect localization and

classification using deep learning techniques.” IEEE Access 10 (2022): 39969-39974.

[17] Chen, Yu, et al., “An Auto-adjusting Weight Model for Imbalanced Wafer Defects Recognition.”

2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial

Intelligence (ICSMD). IEEE, 2022.

[18] Alawieh, Mohamed Baker, Duane Boning, and David Z. Pan. "Wafer map defect patterns

classification using deep selective learning.” 2020 57th ACM/IEEE Design Automation Conference

(DAC). IEEE, 2020.

[19] Liukkonen, Mika, and Yrjö Hiltunen. “Recognition of systematic spatial patterns in silicon wafers

based on SOM and K-means.” IFAC-PapersOnLine 51.2 (2018): 439-444.

[20] Facebook AI Research. “PyTorch.” Version 3.8.1, Facebook AI Research, 2023

[21] Simonyan, Karen, and Andrew Zisserman. “Very deep convolutional networks for large-scale

image recognition.” arXiv preprint arXiv:1409.1556 (2014).

[22] PyTorch. “VGG11.” Version 3.8.1, Facebook AI Research, 2023

[23] Yosinski, Jason, et al., “How transferable are features in deep neural networks?.” Advances in

Neural Information Processing Systems 27 (2014).

[24] ImageNet Large Scale Visual Recognition Challenge (ILSVRC). “ILSVRC data set.” 2012-2017,

ImageNet, http://image-net.org/challenges/LSVRC/

[25] Kingma, Diederik P., and Jimmy Ba. “Adam: A method for stochastic optimization.” arXiv preprint

arXiv:1412.6980 (2014).

104

[26] Dogo, Eustace M., et al., “A comparative analysis of gradient descent-based optimization

algorithms on convolutional neural networks.” 2018 International Conference on Computational

Techniques, Electronics and Mechanical Systems (CTEMS). IEEE, 2018.

[27] Srivastava, Nitish, et al., “Dropout: a simple way to prevent neural networks from overfitting.”

Journal of Machine Learning Research 15.1 (2014): 1929-1958.

[28] Bergmeir, Christoph, and José M. Benítez. “On the use of cross-validation for time series predictor

evaluation.” Information Sciences 191 (2012): 192-213.

[29] Kumar, Ananya, et al., “Fine-tuning can distort pre-trained features and underperform

out-of-distribution.” arXiv preprint arXiv:2202.10054 (2022).

[30] Wong, Sebastien C., et al., “Understanding data augmentation for classification: when to warp?.”

2016 International Conference on Digital Image Computing: Techniques and Applications

(DICTA). IEEE, 2016.

[31] TorchVision. “TorchVision: Transforms and Augmentation Functions.” Version 0.15, PyTorch,

2023.

[32] Seib, Viktor, Benjamin Lange, and Stefan Wirtz. “Mixing Real and Synthetic Data to Enhance

Neural Network Training--A Review of Current Approaches.” arXiv preprint arXiv:2007.08781

(2020).

[33] Tan, Aik Jun. Deep Learning Image Augmentation using Inpainting with Partial Convolution and

GANs. Masters Thesis, Massachusetts Institute of Technology, 2021.

[34] Selvaraju, Ramprasaath R., et al., “Grad-cam: Visual explanations from deep networks via

gradient-based localization.” Proceedings of the IEEE International Conference on Computer

Vision. 2017.

[35] Cheung, Sophia.Machine Learning Methods for Automated Macro-Inspection and Improved Defect

Identification in Semiconductor Manufacturing. Sep. 2023. Massachusetts Institute of Technology,

Master’s of Engineering Thesis.

105

