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Abstract

Despite recent advances in deep reinforcement learning (RL), deploying RL policies
in robotics often leads to various challenges. The typical training paradigm in RL
involves the rollouts of policies executed in a finite horizon or episodes. However,
such policies may struggle to generalize well in various non-episodic tasks, including
both object manipulation and locomotion. In this thesis, we study the challenges that
arise from non-episodic tasks in two settings: (1) object manipulation in the Habitat
Home Assistant Benchmark (HAB) [18] and (2) locomotion in the MuJoCo suite [20].

In the first of these two settings, we study the failure modes of the baseline methods
and characterize much of the failures as being due in part to the instabilities in object
placement and the lack of error recovery in the setting of open-loop task planning.
We consider a possible approach to address this issue by modifying the steady-state
termination condition in the RL objective to place the object at the goal position for
a longer horizon. We next consider an error-corrective policy using inverse-kinematics
(IK) following the execution of the RL policy. The integration of an IK policy leads
to a significant improvement in the final task success rate from 41.8% to 65.3% in
SetTable, one of the three tasks in the HAB.

In the second setting, we consider extrapolation in the non-episodic task of loco-
motion in the MuJoCo suite. Typical RL policies are trained for a finite horizon, but
may need to be executed for a longer horizon during deployment in locomotion tasks.
However, current RL approaches may fail to generalize beyond the training horizon.
To address this issue, we consider the use of time-to-go embeddings as part of the
observations. Specifically, we introduce the use of a constant time-to-go embedding
in the setting where the horizon is much longer during evaluation or deployment. We
find limited evidence of improvements in the average episode returns during evalua-
tion in 6 tasks in the MuJoCo suite.

Thesis Supervisor: Pulkit Agrawal
Title: Assistant Professor
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Chapter 1

Introduction

A key objective of the robotics community has been the development of robots that

can serve as assistants in performing manual chores, especially in home-like environ-

ments. To this end, we focus on algorithms that can enable robots to perform object

manipulation and locomotion tasks in the mobile manipulation setting. The purpose

of this thesis is to address important questions that arise from solutions to mobile

manipulation tasks.

To illustrate such problems, we first focus on the Habitat Home Assistant Bench-

mark (HAB) released by Meta in 2022 [18]. In this challenge, a mobile manipulator

(i.e., a home robot) is tasked with achieving objectives in a home-like simulator envi-

ronment. The challenge presented seeks to find a way to seamlessly execute various

skills, including picking and placing, opening and closing, and navigation. The first

objective of this thesis is the development of methods for improving the accuracy of

completing a curated set of tasks, as provided by the Habitat 2.0 Challenge. In this

setting, we assume that an open-loop high-level task plan is provided to the agent.

The objective of the agent is to execute each skill and switch from one skill to the next

skill. In this thesis, we first examine a significant failure mode in current open-loop

solutions to the HAB – namely, instabilities arising from object placements. In Chap-

ter 2, we consider various solutions and illustrate that a corrective inverse-kinematics

policy helps improve performance.

While the first part of this thesis focuses on the challenges associated with ob-
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ject manipulation, the second part focuses on the problem of non-episodic tasks us-

ing policies trained using reinforcement learning (RL). In particular, we consider

issues that arise from the common assumption in RL that the policy for solving the

infinite-horizon problem extends beyond the time-limited finite-horizon problem that

is constrained in practical applications of RL. To this end, we examine the use of

the time-to-go in observation inputs to RL policies. We introduce methods for using

time-awareness as a means to extrapolate beyond the finite horizon used during the

training of the RL policy. We illustrate our findings in on-policy RL methods in the

MuJoCo [20] suite of locomotion tasks, illustrating both the benefits and limitations

of our method.

This thesis spans two adjacent problems in the search of discovering control policies

for stable behavior for non-episodic tasks in robotics settings.
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Chapter 2

Stability of Object Placements in the

Home Assistant Benchmark

In 2022, Meta released the Habitat 2.0 Rearrangement Challenge and the Home

Assistant Benchmark (HAB), a benchmark suite for performing mobile manipulation

tasks in a home-like environment [18]. The HAB consists of three mobile manipulation

problems: TidyHouse, PrepareGroceries, and SetTable. In each of these tasks, a Fetch

robot [1] is asked to rearrange objects from various parts of a virtual apartment. As

part of this rearrangement, the robot may need to navigate to different parts of the

apartment, open or close a drawer, and pick and place objects. The basic premise

of each task is that the agent is provided sensory information about the goal and its

progress towards the goal.

The challenge of mobile manipulation has been studied from various perspectives,

including reinforcement learning (RL) and task and motion planning (TAMP). De-

spite the appeal of deploying a single end-to-end RL policy (referred to as monolithic

RL) for commanding low-level controls, such methods have not had much success in

mobile manipulation tasks [18]. On the other hand, TAMP provides a hierarchical

approach with a high-level task planner and a low-level motion planner, thus enabling

an agent to discover control policies for solving different tasks. TAMP solutions may

either involve a precomputation of the task plan before deployment (open-loop) or an

integration of the task planner and motion planner with feedback during deployment
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(closed-loop).

Prior work evaluated on the HAB ([18], [8]) has studied solutions with open-loop

task planning with skills trained with RL (denoted as TP+SRL). Gu et. al. [8]

propose region-based rewards for training navigation skills and illustrate a marked

improvement over the baseline performance. However, in SetTable, for instance, the

success rate of the full task sequence is still under 30% when evaluated cross-layout

on the held-out test set and 41.8% on the validation set, as provided by Gu et. al.

[8].

In this work, we explore a common failure of open-loop task planning in mobile

manipulation: incorrect object placements. We define an object placement as being

goal-stabilizing if the policy successfully places the object and the object stays in the

designated goal region in the subsequent timesteps where the object is not required for

manipulation. In long-horizon mobile manipulation tasks where the task planner is an

open-loop controller, the success of object placements depends on a goal-stabilizing

placing policy, as the agent has no mode of error-recovery. As a case study, we focus

on the HAB and first consider the task specification of the place skill in SRL. We

first provide an alternate task specification that modifies the prior success criteria for

the place skill. Lastly, we consider a solution that augments the SRL with inverse

kinematics (IK) to control the position of the end effector for goal-stabilizing object

placements.

2.1 Mobile Manipulation Failures from Object Place-

ments

In this section, we consider the failure modes of mobile manipulation in the Habitat

Home Assistant Benchmark and approaches to address these issues from the perspec-

tive of the task specification of RL placing policies in the framework of an open-loop

task planner.
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2.1.1 Failure Cases of Mobile Manipulation in the Home As-

sistant Benchmark (HAB)

To understand the failure modes of open-loop task planning with skills trained using

RL (TP+SRL), we illustrate the various outcomes of evaluation on the HAB. In the

context of Figure 2-1, we refer to a place execution as being unstable if the object

placement is not goal-stabilizing. Figure 2-1 illustrates the breakdown of evaluation

outcomes, including successes, failures due to unstable place skill executions, or other

failures. As evaluated in the validation set, in SetTable, the most challenging of the

three HAB mobile manipulation tasks, the baseline TP+SRL has a success rate of

41.8% (and a failure rate of 58.2%), and of the unsuccessful episodes, 23.4% are due

to failures in place_0 (i.e., the first placing task in the task sequence) and 54.6%

are due to failures in place_1 (i.e., the second placing task in the task sequence).

Figure 2-1 highlights that the object placements are not goal-stabilizing and present

a significant failure mode in open-loop mobile manipulation task planning.

Figure 2-1: This figure shows the failure modes of the baseline TP+SRL [8] in the
HAB when evaluated on the validation set. Best viewed zoomed in.

2.1.2 Task Specification of Object Placement in Reinforce-

ment Learning

To better understand why the place skill in SRL is not goal-stabilizing, we now

examine the prior task specification ([18], [8]) of the placing task in TP+SRL. Let

x𝑜,x𝑔 be positions of the object and its goal, respectively, and let 𝑑𝑔𝑜,𝑡 be the Euclidean

distance between x𝑜 and x𝑔 at time 𝑡. Let x𝑒𝑒,x𝑟 be positions of the end effector and
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its resting goal, respectively, and let 𝑑𝑟𝑒𝑒,𝑡 be the Euclidean distance between x𝑜 and

x𝑔 at time 𝑡. For context in the Habitat simulator, the robot is assumed to receive

continuous sensor readings of 𝑑𝑔𝑜 and 𝑑𝑟𝑒𝑒,𝑡 [18].

Let 1ℎ𝑜𝑙𝑑𝑖𝑛𝑔 indicate whether the robot is currently holding an object (and similarly

1!ℎ𝑜𝑙𝑑𝑖𝑛𝑔 for not holding an object), and let 1𝑠𝑢𝑐𝑐𝑒𝑠𝑠 denote the success measure for the

object placement task. For thresholds 𝜖𝑔, 𝜖𝑟 ≥ 0, the object placement success measure

is defined as:

1𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = (𝑑𝑔𝑜 ≤ 𝜖𝑔) ∧ 1!ℎ𝑜𝑙𝑑𝑖𝑛𝑔 ∧ (𝑑𝑟𝑒𝑒 ≤ 𝜖𝑟)

In other words, if the object position is within 𝜖𝑔 of the goal position, the robot is

no longer grasping an object, and its end effector is within 𝜖𝑟 of the resting position,

then the policy is deemed successful. However, this task specification does not enforce

constraints on the future positions of the object. In other words, during the training of

an RL policy, an episode may be terminated before the object is at rest, as long as the

object is within the acceptable goal region. This can lead to unintended consequences,

as an object may fall and escape the goal region.

To address this problem, we consider a slight modification of this task specification

in which the object placement policy is deemed successful if the object is additionally

not grasped and at the goal position for ∆ consecutive timesteps:

1𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =

[︃
Δ−1⋀︁
𝑖=0

(𝑑𝑔𝑜,𝑡−𝑖 ≤ 𝜖𝑔) ∧ 1!ℎ𝑜𝑙𝑑𝑖𝑛𝑔

]︃
∧ (𝑑𝑟𝑒𝑒 ≤ 𝜖𝑟)

We hypothesize that this specification will encourage the agent to place the object

to be within the goal for more time. To understand the need for the “not holding”

indicator 1!ℎ𝑜𝑙𝑑𝑖𝑛𝑔, we note that grasping the object may be an easier way for ensuring

the object placement to not fall outside of the goal region for ∆ timesteps. We

hypothesize that this indicator 1!ℎ𝑜𝑙𝑑𝑖𝑛𝑔 is needed for the duration of the ∆ timesteps

to ensure that we do not encourage the agent to discover a policy of holding the object

near the goal. Lastly, we note that ∆ is a hyperparameter that can be chosen during

training.
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2.2 Goal-Stabilizing RL Place Skill Policies using In-

verse Kinematics

While the mobility of a robot’s base expands its reach in the workspace, the robot’s

placing actions can be unstable. For instance, the robot may displace its base while

placing an object on a surface. This presents the challenge of making goal-stabilizing

object placements. Another source of instability may arise from the robot dropping

an object from a high vertical distance, resulting in higher variations in the object’s

contacts with the goal surface. To mitigate these issues, we make use of inverse

kinematics (IK) upon the execution of the RL-based object placement policy.

In the context of the Habitat simulator, the grasping action is emitted as a scalar

control; when the scalar is negative, the gripper is holding the object, and when the

scalar is positive, the gripper is not holding an object. Based on the scalar emitted

by the agent, the agent can release or grasp objects. When the RL policy outputs

a grasping action that is positive, the object would typically be ejected from the

gripper. Instead, in our IK-based approach, we make a switch from executing the RL

policy to executing the IK policy.

The IK-based policy executes a control sequence generated from inverse kinematics

to move from its initial position to the desired end position of the end effector. To

find a desired end effector position, we consider the initial (𝑥, 𝑦, 𝑧) ∈ R3 position of

the end effector at the start of IK policy. This position must be directly above the

goal region, given both the fact that the RL-based policy output would command the

gripper to drop the grasped object and that the RL-based policy has a high success

rate evaluated individually (see Section 2.1.2). Thus, the desired end effector position

may be chosen to be (𝑥, 𝑦, 𝑧− 𝜀) for some chosen 𝜀 ≥ 0. Once the robot executes the

IK-generated plan, the policy commands a positive grasping action, thus dropping

the object.
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2.3 Evaluation on the Habitat 2.0 Home Assistant

Benchmark

We evaluate our methods in the three tasks given the provided validation set [8] of

the Habitat Home Assistant Benchmark, as each of the three tasks deploy the placing

skill. We evaluate on 100 episodes across 3 seeds used for training and 3 seeds for

evaluation (for a total of 9 seeds and 900 episodes). Figure 2-2 illustrates the success

curves (reported as the mean and standard error) across the task sequences. The

success of each task depends on the continued successes of the previous tasks. For

instance, in SetTable, close_1 fails if the object placed during place_1 falls outside

of the goal region. Additionally, Figure 2-3 illustrates the failure modes of TP+SRL

using inverse kinematics, similar to Figure 2-1.

Figure 2-2: Average Success Rates in the Home Assistant Benchmark

Figure 2-2 shows that the use of inverse kinematics in substantially increases the

final task success rate in SetTable from 41.8% to 65.3%. This improvement in success

is directly attributed to the goal-stabilizing behavior, as evidenced by the reduction in

failures due to object placement from a total of 45.4% (13.6% for place_0 and 31.8%

for place_1) in the baseline TP+SRL to 18.0% in the TP+SRL and IK placing skill.

Interestingly, training the RL policy with our task specification of ∆ = 200 timesteps

and for 200M frames (instead of the defaults of 200 steps and 100M frames) led to

worse performance in each of the three tasks. Additionally, for both the TidyHouse

and PrepareGroceries tasks, the use of inverse kinematics does not have a substantial

effect in performance. In the next section, we investigate an explanation for why

inverse kinematics does not improve the performance significantly in these two HAB
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tasks.

Figure 2-3: This figure shows the failure modes of the TP+SRL with inverse kine-
matics used in the placing skill [8] in the HAB when evaluated on the validation set.
Best viewed zoomed in.

2.4 Does the Success Rate of Object Placements De-

pend on the Object Type?

Figure 2-4: This figure depicts the Fetch robot grasping a can (in red) in the Habitat
simulator.

To study the limitations of modifying only the place skill, we analyze the rela-

tionship between the object placement success rate and the object types. In fact, we

find that the majority of the failure cases in the TidyHouse and PrepareGroceries

tasks result from difficulties associated with placing cylinders (i.e., the target object

to be placed is a soup can). We illustrate in Figure 2-5 the number of goal stabiliz-

ing object placement failures that are associated with placing cylinders and placing

non-cylinders.
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(a) TidyHouse (TP+SRL)
(b) TidyHouse (TP+SRL with
IK+RL)

(c) PrepareGroceries (TP+SRL)
(d) PrepareGroceries (TP+SRL with
IK+RL)

Figure 2-5: Success Rates of Placing Cylinders and Non-Cylinders in TidyHouse and Pre-
pareGroceries

Figure 2-5 illustrates that the majority of the failures associated with placing ob-

jects in TidyHouse and PrepareGroceries is associated with placing cylinder objects.

This is challenging even when switching from the RL placing policy to the inverse

kinematics policy, as evidenced by a comparison between the two columns of Fig-

ure 2-5. This may be explained by the fact that our inverse kinematics solution still

strictly follows the open-loop task plan and does not perform an adjustment to the

grasp (see Figure 2-4). This is especially undesirable in placing cylinders, as the jaws

of the gripper may obstruct the two flat surfaces of the cylinders. On the other hand,

SetTable does not involve cylinder target objects, thus benefiting greatly from the

use of inverse kinematics.

20



2.5 Discussion

In this work, we identified and analyzed a common failure mode of open-loop task

planning in the context of Meta’s Habitat 2.0 Home Assistant Benchmark. We il-

lustrated that failures due to the instabilities in object placement lead to failures

in mobile manipulation tasks. We considered multiple approaches to address these

failures, including modifying the task specification to encourage the agent to place

the object in the goal position for more timesteps. Finally, we illustrated the benefits

and limitations of an error-corrective inverse-kinematics policy for more stable object

placements (or goal-stabilizing execution, as we define here).

The use of inverse kinematics enables us to exploit the Cartesian action space for

stable object placements. This switch from an RL policy with joint space actions to

inverse kinematics leads us to consider the possibility of a single RL policy executing

such actions with delicate manipulation in a seamless way.

Previous work has analyzed the comparison of various action spaces for learning

manipulation tasks and has considered the use of impedance control for performing

actions in RL settings and, thus, make use of a task space controller, in contrast

with configuration space controllers. The use of an impedance controller has been

shown to have benefits in peg manipulation tasks [22] and other manipulation tasks,

such as door opening and surface wiping [10]. Additionally, prior work has considered

unifying the joint and Cartesian action spaces and have illustrated its benefits through

implicit policies [6], much like the policies trained from implicit behavior cloning [5].

A key limitation of the methods used in our work was the assumption of an

open-loop task planner. This led our work to use inverse kinematics to search in

the Cartesian space and solve for the joint angles for producing more goal-stabilizing

action sequences. One way to address this would be to employ a closed-loop task and

motion planner to enable for integrated planning and error recovery when the precon-

ditions of a particular predicate are not satisfied [7]. Such solutions are advantageous

in practice, though could be limited by the planning time needed for robot execution

and the need for symbolic representations in satisfying preconditions and achieving
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the desired effects of predicates. Recent work has also considered executing open-

loop plans generated from a STRIPS planner [4], as we do here, but using Logical

Geometric Programming to search over the limited set of relative object poses, thus

leading to faster wall-clock time execution [11]. Such methods may provide promising

alternative approaches that
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Chapter 3

Learning to Extrapolate the Horizon

in Locomotion Tasks

3.1 Introduction

The current paradigm of reinforcement learning (RL) trains the agent by rolling out

trajectories in the environment, observing the returns (i.e., sum of rewards over time),

and updating the policy to increase the returns. We can characterize the agent’s

task as being either episodic or non-episodic. Many practical applications are non-

episodic, which are common in cyclical tasks (e.g. locomotion) or goal-reaching tasks

(e.g. dextrous manipulation).

In the practical training procedure in RL, the trajectory rollouts are time-limited

by the choice of the training horizon. However, in non-episodic tasks, such policies

trained in the finite-horizon setting may be deployed for horizons longer than the

training horizon. Despite the appeal of typical RL, the learned policies may not

generalize well beyond the training horizon or in the infinite-horizon setting.

The discount factor 𝛾 plays an important role in affecting the agent’s ability to

make such a generalization. In particular, setting 𝛾 < 1 can guarantee the convergence

of the value function, but it can also limit the effective planning horizon [3]. Solving

the infinite-horizon task in RL may involve estimating the value function using the

undiscounted rewards (𝛾 = 1) at future states. However, setting the discount factor
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𝛾 = 1 can be impractical, as the value function can diverge when there is no absorbing

state in the observation space. Additionally, in theory, setting the discount factor 𝛾

to be large (but still 𝛾 < 1) could still lead to high variances in the value estimates

[19].

Given that the discount factor provides a way to specify the effective planning

horizon, one may be able to approximate the optimal policy for a discounted infinite-

horizon task by finding the optimal policy in the undiscounted finite-horizon task [9].

As part of our ongoing empirical work, we claim that this approximation could lead

to lower variance in the value estimates by including the current number of timesteps

remaining (or time-to-go) as part of the observation.

On its own, using the time-to-go embedding as part of the observation presents

challenges in the infinite-horizon setting. Practically, the episode length may not be

known for computing the time-to-go and the variance in the value estimates could

increase at a prohibitive rate as the episode length grows. To address these issues,

we propose methods that aim to approximate the policy for solving an undiscounted

finite-horizon task at every timestep. In this work, we do so by inputting a constant

time-to-go in the observation during the deployment of the policy in the infinite-

horizon task. During the training procedure, the policy 𝜋 and value function 𝑉 receive

as input 𝑠‖𝜙(𝑡𝑔𝑜) – the concatenation of the observation 𝑠 and the 𝜙 embedding of

time-to-go 𝑡𝑔𝑜. However, during the evaluation, we query the policy with 𝜋(𝑠||𝜙(𝐶))

for constant 𝐶 at every timestep.

Our work makes several contributions, distinct from prior work on time-to-go em-

beddings in observations. In particular, we introduce a geometric time-embedding,

different from the linear time-embedding previously studied [13] Importantly, we con-

sider the use of our time-embedding as part of the observation input to RL policies

and training with episode length 𝑇𝑡𝑟𝑎𝑖𝑛 while evaluating the performance with the

episode length 𝑇𝑡𝑒𝑠𝑡 ≫ 𝑇𝑡𝑟𝑎𝑖𝑛. To this end, we consider using a constant time-to-

go embedding input as part of the observation during deployment and illustrate its

benefits across six tasks in the MuJoCo locomotion suite [20].
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3.2 Reinforcement Learning Policies Beyond the Train-

ing Horizon

In this section, we contextualize the objective of typical RL and provide intuition to

explain its limits in generalization across the time horizon in simulated locomotion

environments.

3.2.1 Typical Objective in Reinforcement Learning

Formally, in RL, the objective is to learn a control policy 𝜋 in a Markov Decision

Process (MDP). An agent starts at an initial state sampled from an initial state

distribution 𝜌(𝑠𝑜). At each timestep 𝑡, the agent observes the state 𝑠𝑡 and chooses

an action 𝑎𝑡 ∼ 𝜋(· | 𝑠𝑡), after which the agent receives reward 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡) and

transitions to the state 𝑠𝑡+1, as defined by the MDP. In the setting of online RL,

the objective is to learn 𝜋* = argmax𝜋𝐽(𝜋), where 𝐽(𝜋) is the expected 𝛾-discounted

infinite-horizon return:

𝐽(𝜋) = E𝑠0∼𝜌0,𝑎𝑡∼𝜋(·|𝑠𝑡),𝑠𝑡+1∼𝒯 (·|𝑠𝑡,𝑎𝑡)

[︁ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡, 𝑎𝑡)
]︁

In practice, directly solving the infinite-horizon problem may not feasible and a finite

time limit is often imposed.

3.2.2 Limited Capacity of RL to Generalize Beyond the Train-

ing Horizon

A question that arises from imposing such time limits is: how well does the policy

perform beyond the time limit of an episode during training? This question leads

us to our choice of evaluation metric. In particular, we measure how well a policy

can make such a generalization by training using an episode time limit of 𝑇𝑡𝑟𝑎𝑖𝑛 and

testing using an episode time limit of 𝑇𝑡𝑒𝑠𝑡. In our focus on non-episodic tasks, we set

𝑇𝑡𝑒𝑠𝑡 > 𝑇𝑡𝑟𝑎𝑖𝑛.
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Figure 3-1 illustrates performance gaps in the cumulative episode returns corre-

sponding to two sets of policies in the MuJoCo suite of locomotion tasks [20]. One set

of policies is trained with a maximum episode length of 200 timesteps, and the other

set of policies is trained with a maximum episode length of 1000 timesteps. We note

that, despite the cyclical nature of locomotion, the policies trained for 200 timesteps

do not match the performance of the policies trained for 1000 timesteps in three of

the four tasks (Ant-v3, Hopper-v3, and Walker2d-v3).

(a) Ant-v3 (b) HalfCheetah-v3 (c) Hopper-v3 (d) Walker-v3

Figure 3-1: This figure illustrates the cumulative evaluation episode returns with two sets
of policies: one trained with episodes of length 200 timesteps and another trained with
episodes of length 1000 timeteps.

By imposing a time limit for the episode length in RL training, the objective

is to train a policy to maximize the discounted sum of rewards within the episode.

Oftentimes, there are robot tasks that may require infinite-horizon planning; one

notable example is robot locomotion. A robot trained with a locomotion policy for

a short horizon may not generalize well beyond the time limit. In fact, we observed

how the length of the training episode affects the performance in Figure 3-1, where

we compared two sets of policies with different training episode lengths.

3.2.3 Role of the Discount Factor in Generalization

The discount factor 𝛾 plays an important role in the ability of an RL policy to

generalize well beyond the training horizon. Practically, the discount factor is used

to weight the relative importances of future rewards. A policy trained with a low

discount factor can lead to actions that are myopic, as the value estimates more heavily

discount the rewards from future timesteps; a policy trained with a high discount

factor can lead to actions that are made aware of rewards from future timesteps, as is
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desirable in non-episodic tasks. In other words, the choice of 𝛾 can limit the effective

training horizon.

Despite the apparent benefit of higher discount factors in non-episodic tasks, it

is important to consider that 𝛾 < 1 can theoretically guarantee the convergence of

the value function [3]. On the other hand, setting 𝛾 = 1 can theoretically lead to the

divergence of the value function when there are no sink states (or absorbing states)

in the observation space of the MDP. Even large values of 𝛾 (but still 𝛾 < 1) have

been found to lead to difficulties in training and could lead to a higher variance in

the value estimates [19].

We note that the optimal policy in the discounted return infinite-horizon setting

can be approximated by finding the optimal policy in the finite-horizon setting [9].

What this means is that planning with an infinite horizon and discounted rewards

can be analogous to planning with a finite horizon and undiscounted rewards at every

timestep. This claim may be intuitively explained by the fact that the discount factor

provides a way to limit the effective planning horizon [9]. Given the nature of the

finite horizon setting, where a time limit (or horizon) is imposed as part of the task,

we may incorporate the current number of timesteps remaining (or time-to-go) in

the episode as part of the observation. The inclusion of the time-to-go as part of

the observation theoretically guarantees the convergence of the value function even

when 𝛾 = 1, as the recursive calculation of the value function follows the dynamic

programming paradigm [2].

3.2.4 Time-to-Go Embedding

Let 𝑠𝑡 denote the observation at time 𝑡, and for episode time-limit 𝑇 , let 𝜙(𝑡, 𝑇 )

denote the embedding of time-to-go 𝑡𝑔𝑜 that is appended to 𝑠𝑡 before executing the

policy 𝜋(𝑎𝑡 | (𝑠𝑡 ‖𝜙(𝑡, 𝑇 ))). The inclusion of the time-to-go as part of the observation

space has not been thoroughly studied. The idea was proposed in the context of

various approaches to address time limits in practical applications of RL [13], which

studied time-to-go, as well as partial-episode bootstrapping. Importantly, the prior

motivation for the time-to-go in the observations differs from ours, as the previous
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work explores time-to-go in the context of solving the finite-horizon problem. In

contrast, we motivate the use of time-to-go as a means to extrapolate the policy

beyond the training episode during deployment.

The prior work [13] illustrates the benefits of using time-to-go as part of the

observation in the MuJoCo suite in comparison with a baseline implementation of

proximal policy optimization (PPO) [17]. In their results [13], the use of time-to-go

has a marked improvement in the average training episode returns over the perfor-

mance of the baseline. However, in an attempt to reproduce these results, we found

that the results could not be reproduced to match the relative performances in com-

parison with the baseline. In particular, using an optimized set of hyperparameters

for PPO tuned in the MuJoCo suite [15], we illustrate in Figure A-1 our unsuccessful

attempt at reproducing the results of the prior work on time-awareness, matching

prior unsuccessful attempts to reproduce the results [14].

At a glance, we observe that the deployment of a policy with the current time-to-

go embedding may require inputting the episode length, thus making it undesirable in

the infinite-horizon setting. Additionally, the behavior of the policy for the same time-

unaware observation will be dependent on the time-to-go. Thus, the present use of

time-to-go in the observation may not be suitable for infinite-horizon or non-episodic

tasks.

3.2.5 Constant Time-Embedding During Evaluation

Central to our proposed method is a constant time-to-go input to the observation

only during deployment instead of the current time-to-go input at each timestep.

Assuming that the policy network is capable of generalizing to out-of-combination

inputs, inputting the observation and a constant time-to-go 𝐶 can be thought of as

invoking the policy with the observation and 𝐶 timesteps to go. By invoking the policy

with a constant time-to-go at each timestep, the policy is queried at each timestep

with the information that there are 𝐶 timesteps to go. In the context of receding

horizon approaches, the constant time-to-go alludes to the strategy of approximating

the solution to the infinite-horizon task by solving a sequence of finite-horizon tasks.
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It is important to note that our work does not provide theoretical guarantees of this

approximation but, rather, explores this intuition in non-episodic tasks.

3.2.6 Contributions

In this work, we consider the use of time-to-go in observations from the context of

generalization beyond the training episode horizon. We reintroduce the use of time-

to-go as part of the observations with this new perspective and propose a geometric

time-embedding, in contrast with the prior work using a linear time-embedding. Dur-

ing the training, we make use of domain randomization by varying the episode lengths

during the training to provide the policy with varied combinations of time-unaware

observations and time-to-go embeddings. Finally, during the deployment, we intro-

duce the use of a constant time-to-go embedding and illustrate its limited benefits in

the MuJoCo suite tasks.

3.3 Methods

3.3.1 Choice of Time-to-Go Embedding

In the prior work introducing time-awareness [13], the observations were appended

with 𝜙(𝑡, 𝑇 ) = 1 − (𝑡/𝑇 ), where 𝑡 represents the current timestep and 𝑇 represents

the maximum episode length. One possible concern regarding this time embedding

is that the initial time-to-go embedding is the same regardless of the episode length,

thus producing the same initial behavior regardless of the time horizon.

Our choice of time-to-go embedding is the 𝑑-dimensional vector [𝜆(𝑇−𝑡)
𝑖 ]𝑑𝑖=1, where

𝜆𝑖 ∈ [0, 1]. This geometric time-embedding aims to enable the agent to distinguish

between horizons of varying lengths and is, thus, hypothesized to be more preferred

in the task of generalizing the policy during deployment with a longer time horizon.

In our implementation, during the training, we choose evenly-spaced 𝜆𝑖 ∈ [0.99, 1.0].

As (𝑇 − 𝑡) → ∞, the embedding dimension 𝜆
(𝑇−𝑡)
𝑖 converges to 0 at a faster rate

for 𝜆𝑖 = 0.99 than for 𝜆𝑖 = 0.999. Increasing 𝑑 enables greater expressivity of the
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time-to-go.

3.3.2 Training Procedure with Time-to-Go Embedding

During the training, we set the discount factor 𝛾 = 1.0 to increase the effective plan-

ning horizon. As previously discussed, the inclusion of the time-to-go embedding

provides a theoretical guarantee that the value function will converge due to the dy-

namic programming procedure for updating the value function. Additionally, we use

domain randomization by terminating the episodes during training, resulting in a

random maximum episode length 𝑇 chosen uniformly at random 𝑇 ∈ [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥].

The purpose of this domain randomization is to provide the agent with a greater

number of combinations of time-unaware observations and time-embeddings, thus po-

tentially reducing the likelihood of sampling out-of-combination during deployment.

This is crucially important as our proposed method relies on the capability of the

policy network to generalize across combinations of time-unaware observations and

the time-to-go embedding.

3.3.3 Deployment Procedure with Time-to-Go Embedding

During the evaluation stage, as we evaluate with episode length 𝑇𝑡𝑒𝑠𝑡 ≫ 𝑇𝑡𝑟𝑎𝑖𝑛, we

consider several choices for the time-embedding at time 𝑡: (1) 𝜙(𝑡, 𝑇𝑡𝑒𝑠𝑡), (2) 𝜙(0, 𝐶),

and (3) 𝜙(𝑡 mod 𝐶,𝐶), where 𝐶 is a positive constant integer. (1) denotes no dif-

ference between the train and test settings (but just using 𝑇𝑡𝑒𝑠𝑡 to denote the episode

length during the evaluation), while (2) 𝜙(0, 𝐶) denotes our fixed time-embedding

with parameter 𝐶 and (3) 𝜙(𝑡 mod 𝐶,𝐶) denotes a time embedding at time 𝑡 with

periodicity 𝐶. Intuitively, one can interpret 𝜙(0, 𝐶) as the time-embedding for an

observation with 𝐶 timesteps remaining in an episode.
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3.4 Results

We evaluate our experiments across six MuJoCo suite tasks: Ant-v3, HalfCheetah-

v3, Hopper-v3, Walker2d-v3, Swimmer-v3, and Humanoid-v3. In these experiments,

we make use of the previously mentioned finetuned hyperparameters [15] for the

MuJoCo suite and use the Stable-Baselines3 implementation of PPO [16] for training

the RL policy. Unless otherwise mentioned, the evaluated policies use these default

hyperparameters.

We evaluate two baselines: (1) PPO using the default finetuned 𝛾 and (2) PPO

with 𝛾 = 1. In both of these two baselines, we set the maximum episode length during

training as 1000 steps. Additionally, we train our time-embedding methods by ran-

domly sampling the episode length from 𝑇𝑡𝑟𝑎𝑖𝑛 ∈ [200, 1000]. During the evaluation,

we evaluate each of these methods on 𝑇𝑡𝑒𝑠𝑡 = 100, 000 steps.

For our methods, we consider 𝜙(𝑡, 𝑇𝑡𝑒𝑠𝑡) (i.e., no change in the time-to-go embed-

ding from training to testing), 𝜙(0, 𝐶) (i.e., the constant time-to-go embedding), and

𝜙(𝑡 mod 𝐶,𝐶) (i.e., using a periodic time-to-go embedding). The choices for the

constant time-to-go embedding were varied from 𝐶 ∈ [0, 100, 200, . . . , 1000], as these

time-embeddings are in the training distribution of time-to-go embeddings.

Figure 3-2 illustrates the average evaluation returns across 5 train seeds and 100

evaluation seeds for the two baselines, as well as our best-performing policy using a

constant time-to-go embedding.

3.5 Discussion

In this work, we explored the use of time-to-go embeddings as part of the observations

and its capacity to extrapolate behavior well beyond the training episode length. In

the evaluation across the six tasks in the MuJoCo suite, the results were inconclu-

sive. In particular, in some tasks (Hopper-v3, Walker2d-v3 and Humanoid-v3), the

undiscounted baseline performs best, while in others (Ant-v3 and HalfCheetah-v3)

our method performs best. However, across all six tasks, our method either matches
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(a) Ant-v3 (b) HalfCheetah-v3 (c) Hopper-v3

(d) Walker2d-v3 (e) Swimmer-v3 (f) Humanoid-v3

Figure 3-2: This figure illustrates the average evaluation episode returns with and without
time-to-go observations.

or outperforms the performance of the discounted baseline that uses the tuned hy-

perparameters.

3.5.1 Limited Practical Benefits of Extrapolation in Cyclical

Tasks

As we discussed, a common failure mode of typical RL is the treatment of cyclical

tasks as episodic. This leads to unstable behavior towards the end of the episode, as

a robot incentivized to lurch forward may not receive any penalties for its unstable

behavior. In particular, the unstable behavior often occurs at the end of an episode

(i.e., 𝑡 = 𝑇 ) with a high positive reward. This means that the bias in the value

function will lead to action sequences that render the agent unstable at the end of

the episode.

In this work, we hypothesized that our time-to-go embedding, as well as the

training and deployment procedures help mitigate this issue. By introducing a time-

to-go embedding, the policy may learn that the unstable behavior is correlated with
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the time embedding 𝜙(𝑇, 𝑇 ), which denotes 0 timesteps remaining in the episode of

length 𝑇 . During deployment, we aimed to avoid this dilemma by choosing a constant

time-to-go embedding. In doing so, the policy may predict actions as though there

were 𝐶 > 0 timesteps remaining at any given time.

However, our current results do not strongly support this hypothesis. We believe

that the current approach of simply concatenating the observation and time-to-go

embedding may not lead to generalization across inputs of the time-to-go embedding

for the policy. Instead, future work may involve a different architecture for the policy

and value networks for better generalization across time-to-go inputs.

3.5.2 Future Experiments

Beyond the need to illustrate the benefits of our approach across the tasks in the

MuJoCo locomotion suite, additional experiments are necessary. To test on similar

environments, future experiments may involve testing on the DeepMind dm_control

software stack for physics-based simulation and RL environments [21]. For under-

standing whether our proposed method may help in other nonepisodic tasks, such as

goal-reaching, we may test on other environments, such as OpenAI’s ShadowHand

dextrous object manipulation environment [12].

3.6 Limitations

Aside from the limitations in performance, one limitation of our proposed time-to-go

embedding is that our method does not prescribe an optimal constant time-to-go em-

bedding during evaluation for extrapolation. Instead, we require a cross-validation

procedure to select the best-performing time-to-go embedding during evaluation.

However, this need for cross-validation could be perceived as advantageous over the

need for training across various choices of discount factors and selecting the one with

the highest episode returns.

Another limitation is that, despite the objective of extrapolating in nonepisodic

tasks, it is unclear whether our proposed methods may have benefits in goal-reaching
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tasks, such as object reorientation and dextrous manipulation. This, as described,

will require additional future experimentation.
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Chapter 4

Conclusion

In this thesis, we have examined two different sets of non-episodic tasks and the

failures of current RL policies, which are trained in an episodic setting.

In object manipulation, the first of these two sets of non-episodic tasks, we found

a common failure mode that led to failures in setting of the Habitat Home Assistant

Benchmark [18], due its solutions’ open-loop task planner. Despite considering RL

policy objectives that are more conducive to stabilizing behavior, we found limited

success in such RL policies. Instead, it was the combination of an RL policy followed

by the execution of an error corrective inverse-kinematics policy that resulted in more

stable object placements in the Habitat HAB. Such solutions lead one to consider the

potential for better integration of joint space planning in RL with the Cartesian space

planning in inverse-kinematics, combining the advantages of these two fields.

In locomotion, we analyze the failures of extrapolating the behavior of an RL pol-

icy trained in an episodic setting. Oftentimes, such policies fail due to the limitations

in the value estimation during the final steps in an episode, leading to unstable behav-

ior and, thus, failure in locomotion tasks during an extrapolation beyond the training

horizon. To address the problem of extrapolation, we considered the undiscounted

finite-horizon setting and sought an approach that could continuously output actions

from a policy optimized for finite-horizon. We proposed one such approach, though

without theoretical guarantees, that considered the use of a time-to-go embedding in

the observation input. We introduced the use of a constant time-to-go embedding
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during evaluation, and found inconclusive results and limited benefits over the base-

line RL policy trained using PPO in the MuJoCo suite. This finding leads to various

future considerations, including the need for more robust testing across a wide va-

riety of tasks and an analytical explanation for the utility of a constant time-aware

embedding during deployment.
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Appendix A

Additional Plots: Extrapolation in

Locomotion

A.1 Reproducibility of Linear Time-Aware Baseline

Figure A-1 illustrates the average training episode returns across 5 seeds. Here, we

illustrate the results across 3 methods: (1) PPO, (2) PPO with time-aware obser-

vations, and (3) PPO with time-aware observations and across 10 workers. Method

(3) was the baseline that performed best in the prior work [13] but could not be

reproduced to match that result.

(a) Ant-v3 (b) HalfCheetah-v3 (c) Hopper-v3 (d) Walker2d-v3

Figure A-1: This figure illustrates the training episode returns with and without time-aware
observations.
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A.2 Plots for Time-Aware Embedding Sizes 5 and 10

Let 𝑑 be the dimension of the observation space. Here, we choose the time-aware

embedding size to be 10 if 10 < 2𝑑/3 and 5 otherwise. In this case, we set the size as

5 for Hopper-v3 and 10 otherwise.

(a) Ant-v3 (b) HalfCheetah-v3 (c) Hopper-v3

(d) Walker2d-v3 (e) Swimmer-v3 (f) Humanoid-v3

Figure A-2: This figure illustrates the average evaluation performance across 5 train seeds
and 100 evaluation seeds per train seed. The 𝑥-axis represents the timestep during evaluation
with 𝑇𝑡𝑒𝑠𝑡 = 100, 000, and the 𝑦-axis represents the average cumulative returns. During the
evaluation, we set the time embedding as 𝜙(0, 𝐶) for 𝐶 ∈ {0, 100, 200, . . . , 1000}.

Figure A-2 illustrates the results when the time embedding is 𝜙(0, 𝐶), while Fig-

ure A-3 illustrates the results when the time embedding is 𝜙(𝑡 mod 𝐶,𝐶).
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(a) Ant-v3 (b) HalfCheetah-v3 (c) Hopper-v3

(d) Walker2d-v3 (e) Swimmer-v3 (f) Humanoid-v3

Figure A-3: This figure illustrates the average evaluation performance across 5 train seeds
and 100 evaluation seeds per train seed. The 𝑥-axis represents the timestep during evaluation
with 𝑇𝑡𝑒𝑠𝑡 = 100, 000, and the 𝑦-axis represents the average cumulative returns. During the
evaluation, we set the time embedding as 𝜙(𝑡 mod 𝐶,𝐶) for 𝐶 ∈ {0, 100, 200, . . . , 1000}.
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