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Abstract

As a critical component to realizing widespread autonomous driving, 3D perception
systems have come to be heavily studied in the community. However, many solutions
are solely focused on merely achieving the highest accuracy – overlooking other
practical considerations such as speed and cost. In this thesis, I develop two multi-
sensor fusion models for 3D Perception: BEVFusion, a camera-LiDAR fusion model,
and BEVFusion-R, a camera-radar fusion model. BEVFusion seeks to balance
accuracy and speed. By fusing features from each input modality in the shared
bird’s eye view space, it captures both semantic and geometric information from each
input. Its simple design allows it to achieve both state-of-the-art accuracy and a
24% speedup over competing works. BEVFusion-R further incorporates cost and
hardware deployment into the design consideration. By carefully designing the entire
model with both performance and acceleration, BEVFusion-R achieves a 2.1% NDS
improvement on nuScenes over the previous state-of-the-art with a 4.5× measured
speedup. Additionally, it is capable of real-time latency on edge GPUs. The code
will be publicly released at https://github.com/mit-han-lab/bevfusion

Thesis Supervisor: Song Han
Title: Associate Professor
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Chapter 1

Introduction

The National Highway Traffic Safety Administration (NHTSA) estimates that up

to 94% of serious motor accidents involve “driver error" as the critical reason [77].

Fully autonomous vehicles come with the promise of significantly improved safety

by removing the potential for human error. However, they are currently seldom

seen on the roads, aside from experimental trails or extremely limited use-cases.

Despite the extensive attention autonomous vehicles have received in both academic

and commercial study, the reality is that they have yet to see widespread practical

use. There are several bottlenecks to such widespread use, both technical and social.

However, one major bottleneck is the performance of the perception algorithm,

which feeds into the rest of the typical self-driving software stack, such as state

estimation, path planning, and controls algorithms. Responsible for interpreting

raw sensor inputs from the outside world, failures in this algorithm could lead to

catastrophic collisions.

Development of an effective 3D perception system is an involved task, but doing

so is fundamental to autonomous driving. After all, we have little hope of avoiding a
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Figure 1-1: 3D object detection - localizing relevant objects in space and determining
key properties - is an important first step to any autonomous driving stack. (©nuro.ai)

road hazard if we don’t perceive it in time, or worse still, we never perceive it at all.

1.1 Background

1.1.1 3D Perception

Given sensory data, the goal of 3D perception is to localize objects and parse scene

layouts. The research community has largely arrived at a handful of key tasks that

are critical to autonomous driving, such as object detection [57], object tracking [78],

map segmentation [36], and panoptic segmentation [1]. However, 3D object detection

remains a particularly fundamental task, and forms the focus of this thesis.

Sensors. Most autonomous driving systems and datasets use camera, LiDAR, and

radar sensors, but each sensor’s strengths and weaknesses vary. Cameras exhibit

poor performance in nighttime and in poor weather conditions. Moreover, localizing
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objects in 3D space is difficult; there is only a 2D image to work from. However,

cameras are not only cheap, but their high resolution yields rich semantic information.

LiDAR sensors, while robust to nighttime, similarly suffer reduced performance in

adverse weather, a significant challenge for robust safety [28]. However, its data,

returned as a point cloud, comes with very precise depth, making localization quite

straightforward. Finally, radar sensors mitigate the weather issue by utilizing a lower

frequency. They are also an order of magnitude cheaper than LiDAR sensors and

even offer accurate velocity estimation; however, the resolution is quite poor, making

it challenging to localize or even detect objects altogether.

Data. As machine learning models are notoriously data hungry, curating large,

multi-modal datasets has been a critical component to recent advancement. The first

real-world autonomous driving data curation work proposed the KITTI[16, 14] dataset,

containing 15000 LiDAR scans, 15000 images, and 200000 annotated objects. The

paradigm used – equipping a vehicle with LiDAR and camera sensors and capturing

data from roads – set a precedent for subsequent large datasets.

Following KITTI, modern datasets have made several improvements. First, several

large-scale datasets, such as the NuScenes [5], Waymo [78], and ONCE [56] contain

far more data than KITTI. For example, nuScenes has 26× more LiDAR scans and

93× more images, Waymo has 60× more object annotations, and ONCE surpasses

1 million LiDAR scans. Next, KITTI was captured in sunny, daytime conditions

in Karlsruhe, Germany. As data diversity is critical for robust models, modern

datasets [7, 5, 56, 91, 78] are all captured in a variety of conditions. Finally, recent

datasets also include additional data beyond merely LiDAR scans, images, and object

annotations. For example, [5] includes radar data, [7] provides HD maps for detailed

road information, and [10] provides thermal images.
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Models. Historically, LiDAR-based models and camera-based models have adopted

largely different architectures. LiDAR-based object detectors principally sought to

handle the sparse and irregular nature of the input point clouds, whereas image-based

detectors must solve an ill-posed depth estimation problem, which renders object

localization very difficult.

LiDAR-based models may choose to represent 3D points in a number of ways.

Originally, PointNet [66, 67] proposed point-level feature encoding while respecting

the permutation invariance. Point based detectors include PointRCNN [76] and

PointFormer [62]. Such point based models require downsampling and context

operations, such as ball query or furthest point sampling [57]. While the backbone

network is relatively efficient, these auxiliary operations are often expensive and

prohibitive for real-time computation.

Next, 3D convolution methods extend the common image processing paradigm

to three dimensions. Since outdoor point clouds are very sparse, directly using 3D

convolutions on a dense occupancy map, such as in [58, 50], is computationally

intractable. Instead, occupied voxels are represented and operated on in a sparse

manner [107]. Since the convolution operation repeatedly expands the receptive field,

the submanifold convolution [18] is widely used to maintain the sparsity. Such a

paradigm is used in several detectors like [96, 108, 101].

Despite leveraging the sparsity of point clouds, the computational cost of sparse

convolutional methods are still relatively expensive. In order to avoid any computation

in three dimensions, PointPillars [34] extended their voxels infinitely in the Z-axis,

thus becoming pillars. After extracting point features via PointNet [66] within each

pillar, the features are scattered back to the 2D plane, allowing them to be processed

with traditional 2D convolutions. Further works leveraging this pillar representation

include [74, 86].
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Besides, there are also hybrid methods, such as point-voxel based methods [50, 80,

75]. Such processing techniques seek to leverage the benefits from each representation.

Point-voxel based detectors benefit from the fine-grained information from the points

and efficient computation from the voxels.

There are also less common approaches toward handling sparse 3D point clouds.

For example, OctNet [71] uses recursive octrees to allocate more resources to dense

regions of space. They propose to directly perform the 3D convolution on the octree-

based data structure. Also, range-based approaches such as LaserNet [59] use a 2D

representation while imbuing each pixel with depth information.

In contrast, camera-based approaches, whether monocular (single image), stereo

(pair of images), or multi-view (several cameras), must contend with the challenge of

ambiguous three-dimensional localization, a challenge absent from standard 2D object

detection. Two stage detectors extend 2D detection methods, such as [17, 70, 69],

and additionally regress 3D characteristics, such as depth, to lift the predicted

bounding box into 3D space. One stage detectors either use anchor-based [33, 4] or

center-based [106, 84] heads to directly predict 3D bounding boxes. Furthermore,

pseudo-LiDAR methods [85, 65, 26, 25] directly transform the image pixels or features

into 3D space, effectively generating a point cloud from the image.

1.1.2 Efficient Perception

The importance of 3D perception tasks is not limited to autonomous vehicles. In

augmented reality, object detection and scene understanding it crucial to allowing

for smooth interaction between the physical and virtual worlds. Similarly, robotic

systems often require an understanding of their surroundings to carry out the desired

task.
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Regardless of the application, successful perception systems must excel in both

accuracy and efficiency. The efficiency requirement is especially critical in real-world

deployment since systems will be run on resource constrained hardware and subject to

hard latency constraints. For example, self-driving cars and robotic agents must carry

their hardware onboard. Even more restrictive, the hardware powering augmented

reality experiences must be confined to a small headset. All the while, the systems

must be able to process incoming data in real-time.

To meet these resource-constrained and latency sensitive demands, several lines of

research have studied model compression, including pruning, quantization, distillation,

and neural architecture search. Pruning [19, 20, 54, 13] reduces inference complexity

by discarding portions of the network that have minimal impact. This can take

several forms, from fine-grained weight level pruning to coarse-grained channel level

pruning to activation pruning.

Quantization [82, 83, 90, 22, 60] leverages the idea that not each bit is equally

important. Instead of performing computations with 32-bit floating point numbers,

the arithmetic in the neural network can be performed with 16- or even 8-bit floats.

At an extreme, binary neural networks [103] – those that only use 0’s and 1’s in their

computation – have even been proposed to reduce the computational cost.

It is well known that employing several separately trained models, then averaging

their predictions, will boost the overall performance in a process known as model

ensembling [12]. Of course, the inference cost will scale linearly with the number

of models used. As such, model distillation [23] has been proposed to compress the

aggregate knowledge in an ensemble of models into a single model, thus eliminating

the overhead.

Many of the above model compression techniques involve making several design

choices, effectively requiring the search of a large design space. As such, Neural
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Architecture Search (NAS) methods [24, 27] are crucial for alleviating both the

engineering and computational overhead of searching a large space. Early methods

include using evolutionary search [68, 80] or reinforcement learning [110]. These

methods nonetheless still require training several models, which is an expensive task.

Following, efforts to lift this requirement include differentiable architecture search [44]

and one-shot [6] or even zero-shot [41] NAS.

1.2 Problem Statement

The focus of this work is to holistically develop a practical 3D perception model.

Such a model ought to leverage multiple complementary sensor modalities, a technique

that has been shown to significantly improve performance [3, 98, 49], in a way that

maximally utilizes the information from each. Furthermore, such a model ought to

be designed with three primary characteristics in mind: robust accuracy, efficiency,

and cost.

Robust Accuracy Efficiency Cost

Figure 1-2: Characteristics of a practical 3D detector. Widespread commercial
autonomous driving would not be possible without each of these met.
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Robust Accuracy. The importance of accuracy in a driving perception system

needs little motivation. The primary metric used to evaluate detectors in literature is

mean average precision (mAP), extended from 2D object detection. When computing

recall curves, datasets use varying methods of detecting matches, such as IoU based

(either 3D or BEV), center distance based, or even heading error weighted average

precision [78]. Recently, [5] also noted that attribute and velocity estimation are

completely ignored by mAP, and proposed their own nuScenes Detection Score (NDS)

for more holistic evaluation.

However, regardless of the metric the robustness of a 3D detector is often poorly

captured. It is well known that camera-based detectors perform poorly in nighttime

conditions and LiDAR-based methods suffer during poor weather conditions [109].

This can create hazardous situations where the perception algorithm fails in safety

critical scenarios. Indeed, using multi-sensor fusion is a promising direction for

mitigating these challenges, but however it is accomplished, a practical perception

model should be robust to a variety of conditions.

Efficiency. Due to the hardware and latency constraints unique to autonomous

driving perception, computational efficiency is a crucial component to its success. In

particular, autonomous driving perception algorithms ought to run in 50 ms, or 20

Hz, in order to keep pace with the various inputs [5]. Despite achieving impressive

performance, the top perception algorithms struggle to meet that goal, especially

those employing sparse 3D computations. In benchmarking tests shown in Figure 1-3,

of the state-of-the-art models, only PointPillars actually achieves real-time latency at

the cost of significant accuracy.

Moreover, most models are benchmarked using powerful desktop GPUs, as opposed

to edge GPUs which would realistically be used in drive systems. Figure 1-4 elucidates
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Figure 1-3: State-of-the-art object detection algorithms have continuously advanced
performance on the Nuscenes dataset, posting ever higher NDS (Nuscenes detection
score). However, their computational cost leaves much to be desired. Even bench-
marked with desktop GPUs, many models fall short of the real-time threshold of 20
Hz.

the main differences between the two: edge GPUs trade significant performance for

size, power draw, and therefore cost. As such, they perform as poorly as several

times slower than their desktop counterparts. A deployment-ready 3D perception

algorithm ought to run at real-time speeds on edge GPUs, a requirement not met by

state-of-the-art models.

Hardware Cost. Often times, cost becomes a key bottleneck when attempting to

bridge the gap between academic research and widespread commercial adoption. In
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Sources: NVIDIA Ampere GA102 GPU Architecture Whitepaper and  
https://www.nvidia.com/en-il/autonomous-machines/embedded-systems/jetson-orin/ 

Server GPU (NVIDIA RTX 3090)

Edge GPU (NVIDIA Jetson AGX Orin)

Power (Watts)

Peak INT8 TOPS

0 150 300 450 600

RTX 3090 Jetson AGX Orin

Edge GPUs draw far less power than Server GPUs but deliver much weaker performance.

Figure 1-4: Most performance benchmarks are carried out with powerful server GPUs,
like the NVIDIA RTX 3090 or the NVIDIA A6000. In contrast, realistic drive systems
will employ edge GPUs, such as the NVIDIA Jetson AGX Orin.

designing a full perception system, each component’s cost must be considered. The

cost of the deployed sensors can constitute the majority of the expense. In particular,

despite providing accurate and useful data, LiDAR sensors are prohibitively costly.

Recent research [35] in both solid-state and spinning LiDARs have significantly

lowered the cost of manufacturing, but LiDARs fitting for autonomous driving remain

an order of magnitude higher than radars and cameras. Since economic cost is a

key consideration and hurdle for widespread commercial use, practical 3D object

detectors should not use LiDAR.
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Figure 1-5: Of the sensors deployed on the nuScenes [5] data collection vehicle, the
spinning Velodyne LiDAR was by far the costliest. Costs estimated from commercial
price at time of writing.

1.3 Thesis Outline

1.3.1 Camera-LiDAR Fusion: BEVFusion

In Chapter 2, I develop a camera-LiDAR fusion model that solely focuses on

accuracy and efficiency. BEVFusion performs sensor fusion in the Bird’s Eye View

space, allowing for straightforward adoption of sensor-specific encoders, efficient fusion,

and strong robustness. I further present several experiments to verify its efficacy and

flexibility.

In Section 1.1, I discussed the various input modalities in autonomous driving

systems, as well as their strengths and weaknesses. As they exhibit complementary

characteristics, an ideal fusion paradigm would allow the perception algorithm to fully

exploit each modality’s strengths and mitigate the weaknesses. However, such a fusion

paradigm is nontrivial, since each modality captures information in fundamentally
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different ways: images are captured in perspective view, whereas LiDAR and radar

point clouds are in 3D view. Recent sensor fusion methods vary in how they handle

this view discrepancy.

One natural idea is to project all 3D points to the 2D image plane via known

calibration transforms. Then, this augmented 2D image could be processed by well-

established 2D vision techniques like CNNs [32]. However, the valuable inherent

geometric information from the point cloud is lost: not only can previously distant

points can be projected near each other on the image, but previously close points can

end up far away.

In the other direction, another idea is to match image features with the 3D points

based on the same geometry, thus essentially augmenting the point cloud. Then, a

LiDAR detector, such as VoxelNet [107] or PointPillars [34] can be employed. This

approach, however, relies on the density of the point cloud. In regions of the image

where there are no 3D points, the semantic information from the image is irreversibly

lost.

Using this framework, which unifies the different modalities in the 2D bird’s eye

view (BEV) space, BEVFusion preserves the geometric information from 3D point

clouds as well as the semantic information from images. Compared to the competing

models at the time of writing, BEVFusion achieves state-of-the-art accuracy while

achieving significant speedup.

1.3.2 Camera-Radar Fusion: BEVFusion-R

Finally, the third chapter builds BEVFusion-R, a fusion model that still targets

accuracy and efficiency, but further considers cost efficiency and deployment readiness

as well. Being designed with precisely the practical considerations from Section 1.2 in

22



mind. It is fast, cheap, and deployment-ready, all while sacrificing minimal accuracy

and setting a new state-of-the-art for camera-radar fusion.

In order to build such a practical perception algorithm, accuracy must be balanced

with cost, speed, and deployability. First, despite impressive recent advancements in

LiDAR sensor manufacturing, the cost of a LiDAR sensor is still an order of magnitude

higher than cameras or radars. As such, BEVFusion-R uses only camera-radar fusion.

Next, we design a novel radar-guided view transformer in order to further

aid the multi-sensor fusion. Despite being a strong fusion paradigm, one weakness of

BEVFusion is that the image-to-BEV projection depends on accurate depth estimation,

which is a fundamentally difficult problem. By providing depth information from

radar returns, we allow the model to more accurately perform the image-to-BEV

projection, hence further reducing spatial misalignment.

Then, in order to ensure a fast and constant runtime, BEVFusion-R employs

TensorRT1 acceleration for hardware optimization. In order to do so, BEVFusion-R

is designed from the beginning with hardware optimization in mind. Specifically,

we not only avoid operators with irregular data access patterns, such as deformable

convolutions, but also use TensorRT supported operations wherever possible.

However, despite targeting model simplicity, there are certain non-standard opera-

tors, such as BEV pooling, that are unavoidable. In order to ensure that BEVFusion-R

is deployment ready, we design an engineering pipeline based on the ONNX [2] for-

mat. Upon exporting the model to an ONNX file, BEVFusion-R can be run on any

TensorRT device with ease.

1https://github.com/NVIDIA/TensorRT
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Chapter 2

Efficient Camera-LiDAR Fusion

2.1 Introduction

Autonomous driving systems are equipped with diverse sensors. For example,

the Nuscenes dataset is captured with 1 LiDAR sensor, 5 long-range radar sensors,

and 6 cameras [5]. Even more extensive, the setup for the Waymo Open Dataset

has 5 LiDARs, 6 radars, and 29 cameras [78]. Such diversity, in theory provides

much value to any perception task by encapsulating complementary signals: cameras

capture rich semantic information, LiDARs provide accurate spatial information,

while radars offer instant velocity estimation. However, in practice, fully leveraging

this valuable information is far from straightforward. Therefore, multi-sensor fusion

is of great importance for accurate and reliable perception [49]. In this section, I will

develop BEVFusion, a camera-LiDAR fusion model. By projecting features from each

modality into the shared bird’s eye view, BEVFusion retains the semantic density

from images while preserving geometric structure from the LiDAR points. BEVFusion

is able to achieve state-of-the-art performance on the nuScenes object detection task,
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while achieving a 24% speedup.

2.2 Motivation

Different features can exist in different views. For instance, camera features are

in the perspective view, while LiDAR features are typically in the 3D/bird’s-eye

view [49]. Even for camera features, each one of them has a distinct viewing angle

(i.e., front, back, left, right). This view discrepancy makes the feature fusion difficult

since the same element in different feature tensors might correspond to completely

different spatial locations. Therefore, it is crucial to find a shared representation,

such that (1) all sensor features can be easily converted to it without information

loss, and (2) it is suitable for different types of tasks.

An image-centric 
framework

LiDAR

Project

Sparse LiDAR Depth

Camera

RGB + Sparse Depth (RGB-D)

Figure 2-1: An image-centric paradigm, such as [43], projects point clouds into the
camera view, but loses geometric information.

Camera-Centric Fusion. One choice for a shared representation is to use the

perspective view that images are in. Doing so would involve projecting any LiDAR

or radar point clouds to the camera plane, imbuing it with the depth, and directly

considering it as an augmented 2D input [43]. However, this approach loses geometric
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information. Points that are far away in 3D space may be projected very close to each

other, despite having little geometric relationship. As such, localization specific tasks

are at a significant disadvantage in this paradigm. The camera-centric paradigm is

visualized in Figure 2-1

A point-centric 
framework 

(PointPainting)

Figure 2-2: A point-centric paradigm projects pixel features (in this case semantic
segmentation labels) onto the points. However, many pixels are not matched, resulting
in semantic loss. Image credit: [73]

LiDAR-Centric Fusion. Many sensor fusion works [73, 38, 100, 81] instead project

camera pixels or features onto their corresponding LiDAR or radar points. In contrast

with camera plane projection, this approach loses semantic information. Since

cameras and point clouds inherently have different densities, less than 5% of camera

features will be matched to a point [49], even in the case of the densest LiDAR

sensor. As such, tasks that rely heavily on semantic information suffer performance

drawbacks. The point-centric paradigm is visualized in Figure 2-2.

Object-Centric Fusion. Aside from these geometric views, some recent works

[8, 87, 3] propose to define object queries in 3D space. These object-centric paradigms,

however, cannot generalize easily to geometric tasks like map segmentation.
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Bird’s Eye View. In contrast, the Bird’s Eye View is a strong contender for

a unified representation. Since most 3D perception tasks involve a BEV output

space, there is no projection required after the sensor fusion. Moreover, it solves

both aforementioned problems. Projecting point clouds to the BEV space simply

involves flattening along the height dimension: no geometric distortion is introduced.

Similarly, projecting images to the BEV space does not lose semantic information

due to the ray projection and pillar pooling (described in the next section), which

results in a dense feature map in the BEV space.

2.3 Method

BEVFusion focuses on multi-sensor fusion in a task-agnostic setting. As motivated

by Section 2.2, this paradigm transforms each of the multi-modal features into a

unified BEV representation, in contrast with point-centric fusion common at the time

of writing.

2.3.1 Framework Overview

The overview of the framework is provided in Figure 2-3 [49]. Features are first

extracted from various inputs via modality-specific encoders. For images, common

choices include ResNet [21] and Swin-T [47], and for point clouds, typically variants of

VoxelNet [107], PointPillars [34], or PointNet [66] are employed. Next, the modality-

specific features are transformed to a unified BEV representation by a view transformer,

which preserves both geometric and semantic information. There, features can

either be simply concatenated or joined through convolution [49] or attention based

fusers [30]. Finally, nearly any task-specific head can be used to support the desired
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Figure 2-3: In the BEVFusion paradigm, input features are extracted independently,
then converted into the shared bird’s eye view (BEV) space via view transformers.
There, the features can be fused and further processed by a 2D BEV encoder. Finally,
this paradigm supports different tasks with task-specific heads.

task, allowing this framework to be task-agnostic.

2.3.2 The View Transformation

In contrast to point clouds, where transformation to the shared BEV space is

straightforward, projecting camera features into the BEV view is difficult. Doing

so requires performing depth estimation, a fundamentally ill-posed problem. Early

works simply projected each camera feature to all possible depths [72]. Later, depth

estimation modules were employed to estimate a depth distribution. In this Lift-Splat-

Shoot (LSS) paradigm, features scattered are along the ray scaled according to the

depth estimation confidence [65, 26].

Later, it was observed in [39] that this depth estimation is 1) not implicitly

learned well and 2) crucial to 3D object detection. To show the first point, the

authors replaced the depth estimation with a random vector. The accuracy only
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dropped from 28.2% mAP to 24.5% mAP, implying that the depth estimation module

provides limited value. However, when the depth estimation was replaced by the

ground-truth depth, the model’s accuracy jumped to 47.0% mAP, showcasing the

potential power of accurate depth estimation. As such, BEVDepth proposed a directly

supervised depth loss, along with a far stronger depth estimation module.

While BEVFusion can easily incorporate the BEVDepth paradigm, it does not

provide a way for the depth estimation module to leverage the LiDAR or radar data

for more accurate depth estimation. As such, one point of improvement explored

in Chapter 3 is the development of a radar-guided view transformer, based on the

motivating observation that accurate depth is essential to accurate detection.

2.4 Experiments

To empirically evaluate 3D object detectors, many existing works use the nuScenes [5]

dataset, a large-scale outdoor dataset featuring 1000 scenes, 1.4 million images, 390,000

LiDAR sweeps, and 1.4M annotated object bounding boxes. One common perfor-

mance metric for the object detection on the nuScenes dataset is mean average

precision (mAP). It computes average precision (AP), as defined by the BEV center

distance, over 4 distance thresholds and all ten classes, then reports the average.

However, as mAP is only a metric of localization, the nuScenes detection score (NDS)

is also widely used. The NDS weights mAP with other metrics, such as velocity,

orientation, translation, and scale errors, providing a more holistic score. As such, we

will select NDS as the primary reported metric throughout this thesis.
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Modality NDS mAP AP (Car) AP (Ped.) Latency (ms) MACs (G)

BEVDet [26] C 39.7 47.7 - - 529 -
PETR [45] C 44.2 37.0 - - - -
BEVDepth [39] C 53.8 41.8 - - - -
SOLOFusion [63] C 58.2 48.3 - - - -

PointPillars [34]* L 63.2 54.7 83.4 78.7 34.4 65.5
CenterPoint [99] L 67.3 60.3 - - 69.8 85.0
Object DGCNN [88] L 66.1 58.6 - - - -
SECOND [96] L 63.0 52.6 - - 69.8 85.0

3D-CVF [102] L+C 62.3 52.7 83.0 74.2 75 -
UVTR [37] L+C 71.1 67.1 - - - -
PointPainting [73]* L+C 69.6 65.8 - - 185.8 370.0
FusionPainting [94] L+C 70.4 66.3 86.3 87.5 - -
PointAugmenting [81] L+C 71.0 66.8 87.5 87.9 234.4 408.5
MVP [100] L+C 70.5 66.4 86.8 89.1 187.1 371.7
AutoAlign [9] L+C 71.1 66.6 85.9 86.4 - -
FUTR-3D [8] L+C 68.0 64.2 86.3 82.6 321.4 1069.0
TransFusion [3] L+C 71.3 67.9 87.1 88.4 156.6 485.8
BEVFusion [49] L+C 71.4 68.5 89.2 88.0 119.2 253.2

Table 2.1: Accuracy and latency results compiled from [57, 55, 49]. Despite its
simplicity, BEVFusion surpasses all other methods while remaining remarkably
efficient (*: Re-implemented in [49])

2.4.1 Main Results

As shown in Table 2.1, BEVFusion outperforms all contemporary multi-sensor

fusion works, and exhibits especially strong performance in localizing other cars.

Moreover, BEVFusion is also highly efficient, running 23.9% faster than competing

TransFusion. Indeed, its latency is near real time (119 ms latency, 8.4 FPS), albeit

on a desktop GPU. By being both accurate and performant, BEVFusion is a prime

candidate upon which to build a practical detector. In Chapter 3, I target a fully

real-time model that must run on an edge GPU.
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2.4.2 Robustness

Aside from overall accuracy, a 3D detector’s robustness is also crucial to safe

autonomous vehicle operation. The nuScenes dataset includes scenes in common

adverse scenarios, which can lead to poor image quality or distribution shift. By

splitting the scenes into Day, Night, Sunny, and Rainy scenes, the effect of each

condition can be systematically analyzed.

In particular, nighttime conditions are challenging for camera-based models, as

image quality becomes significantly degraded. In Table 2.2, the effect is very prominent

with the camera-only detectors. However, BEVFusion is able to most effectively

mitigate the accuracy drop from day to night, outperforming TransFusion by 2.0%

NDS.

In rainy situations, the light beams from LiDAR sensors can be affected by

atmospheric particles, leading to sensor noise and reduced performance in LiDAR-

only models. For example, CenterPoint suffers a 3.7% mAP drop in rainy conditions.

However, BEVFusion is able to mitigate that impact entirely, delivering on-par

performance in the same conditions.

2.5 Conclusion

BEVFusion leverages a powerful and flexible paradigm that results from a simple

choice of shared representation. It delivers strong results as an efficient and accurate

camera-LiDAR fusion model. By projecting all inputs into the bird’s eye view space,

both geometric and semantic information is preserved. Moreover, this paradigm

allows it to exhibit high robustness to adverse weather. However, LiDAR sensors are

extremely expensive; as such, in Chapter 3, I develop BEVFusion-R, a camera-radar
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Modality NDS mAP

Day Night Sunny Rainy Day Night Sunny Rainy

BEVDepth [39] C 41.0 22.9 39.4 44.7 33.7 13.2 33.1 33.3
DETR-3D [87] C 42.7 23.0 41.0 47.5 35.0 16.0 34.3 36.1
BEVFormer [40] C 48.1 27.3 47.0 50.8 37.2 20.1 36.6 38.3

CenterPoint [101] L – – – – 62.8 35.4 62.9 59.2

TransFusion [3] C+L 71.0 44.7 70.5 71.9 67.3 39.8 67.0 67.5
BEVFusion [49] C+L 71.5 46.7 71.3 72.2 68.5 43.9 68.4 69.5

Table 2.2: Robustness study under varying weather conditions, from [109]. While
nighttime conditions are particularly challenging for vision-dependent models, BEV-
Fusion displays robustness.

model that further incorporates cost into the practical considerations.
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Chapter 3

Efficient Camera-Radar Fusion

3.1 Introduction

The task of 3D object detection has become increasingly important over the past

few years, particularly in the context of autonomous driving applications. Large multi-

modal datasets [15, 5, 78] have been instrumental in driving research and advancing

accuracy. However, there has been relatively less emphasis on the practical deployment

of these models, which requires accounting for multiple factors simultaneously. As

discussed in Chapter 1, a practical detector should be both accurate and fast, while

also being cost-effective and deployable.

Although LiDAR-based 3D perception [99, 53, 31] has consistently outperformed

other modalities, camera-based approaches have also been extensively studied due to

their cost-effectiveness [40, 45, 46, 63, 93, 52, 97]. However, camera-based detection

suffers from poor distant object localization due to the ill-posed depth estimation

problem. Moreover, cameras are sensitive to lighting conditions, and their performance

degrades severely in nighttime conditions, which limits their usefulness in real-world
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scenarios [30, 89]. Conversely, LiDAR points provide very accurate depth, but the

sparsity of points at large distances can make object recognition very challenging.

Therefore, research in sensor fusion techniques [95, 37, 92, 104, 98] has been motivated

by the complementary features of these modalities.
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Figure 3-1: While outperforming competing works, our BEVFusion-R is optimization-
friendly, allowing it to enjoy significantly more hardware acceleration. See Section 3.4
for more details.

Recently, radar has garnered notable interest as a cost-efficient alternative to

LiDAR. Like LiDAR, radar data has characteristics that are largely complementary
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to cameras. However, radar sensors also have advantageous characteristics as well.

First, radar sensors are much cheaper than LiDAR. Despite the cost of LiDAR’s

decreasing nearly tenfold in recent years, a sensor still costs thousands of dollars,

whereas a radar sensor costs a few hundred. Second, radar uses a lower frequency

than LiDAR, allowing it to be more robust in rainy or foggy conditions. Finally, radar

data offers accurate velocity estimation, whereas LiDAR data depends on temporal

fusion to infer it.

In this chapter, we propose to use camera-radar fusion as a prime candidate to

satisfy all these desiderata. By performing the fusion in the shared bird’s-eye view

(BEV) space, we retain both semantic and geometric information from the input

modalities, which allows the model to exploit the complementary information from

each. Furthermore, we design the radar encoder and radar-guided view transforma-

tion in an optimization-friendly manner. In this way, our model, with TensorRT

acceleration, runs 4.5× faster than competing methods, while achieving 2.1% better

NDS. Together, these techniques allow us to deploy the model on an edge device and

realize real-time latency.

3.2 Radar

Similar to LiDAR, radar captures data in the form of a 3D point cloud. As

depicted in Figure 3-2, radar data is usually sparser and noisier compared to LiDAR

data. In fact, radar data can be over 100× sparser than 32-beam LiDAR data,

and more than 5× sparser than 1-beam LiDAR data. Nonetheless, a surface-level

comparison of the two modalities overlooks their inherent differences and the unique

advantages of radar. For instance, radar has superior coverage of distant objects and

enables accurate velocity estimation, which are both very crucial for 3D perception.

35



Figure 3-2: Radar returns are far sparser than LiDAR point clouds.

The incorporation of radar in 3D object detection models has been relatively

tepid among the research community, primarily due to its sparsity and noise of the

output point cloud, and general inferiority to LiDAR data. Such differences in quality

are readily apparent when visualized, as in Figure 3-2. However, when practical

characteristics like cost and robustness are considered, radar sensors become a prime

candidate for complementing camera-based object detection.

In this section, we motivate our usage of camera-radar fusion by studying the

characteristics of radar returns, especially compared to LiDAR and sparse LiDAR

data. In particular, we use the Nuscenes [5] dataset, and compare 32-beam LiDAR,

1-beam LiDAR, and radar data. Following common practice, we aggregate 6 frames

of previous radar data and 10 frames of previous LiDAR data, corresponding to the

previous 0.5 seconds. The preliminary results show that radar data has favorable

characteristics for complementing camera-based object detection. In particular, radar

36



Modality <10m 10-25m 25-50m >50m All

Radar 54 391 850 264 1589
1B LiDAR 2916 3643 2267 154 8980
32B LiDAR 156818 67278 16623 1039 241758

Table 3.1: Analysis of the depth distribution of various modalities. Despite being
much sparser overall, radar points are relatively denser at long range, a beneficial
characteristic to complement camera-based detection.

returns maintain high coverage for distance objects and significantly improve predicted

velocity error.

3.2.1 Object Coverage

As illustrated in Tables 3.1 and 3.2, while radar returns are generally sparser

than LiDAR, they are relatively dense at long range, where accurate localization is

especially deficient in camera-only detectors. Moreover, they offer superior object

coverage than sparse LiDAR and even comparable coverage to dense LiDAR at

distances greater than 50 meters. Here, an object is considered covered if at least one

radar or LiDAR point falls within its corresponding 3D cuboid. Maintaining good

object coverage at long ranges is crucial, particularly since camera-based localization

struggles disproportionately at these distances. Thus, having excellent object coverage

at long range is a desirable quality in camera-radar fusion.

3.2.2 Velocity Estimation

Accurate velocity estimation is crucial for 3D perception since it offers important

information for motion prediction. Almost all LiDAR perception models employ

multi-frame stacking to enable temporal reasoning. In contrast, radar data can

directly measure the tangential velocity component of a moving target. In Figure 3-3,

37



<10m 10-25m 25-50m >50m All

Objects 2.8 9.3 9.9 3.5 25.5

Radar 51% 60% 65% 28% 57%
LiDAR (1b) 46% 56% 44% 9% 44%
LiDAR (32b) 100% 100% 100% 32% 90%

Table 3.2: Object coverage at various distances. Despite its sparsity, radar data
provides superior object coverage compared to sparse LiDAR data and is even
comparable to dense LiDAR data at long range.

we analyze the correlation between the velocity obtained from radar returns and the

ground truth velocity of each covered object. When considering only moving objects,

we find a strong linear correlation of 𝑟2 = 0.77, which provides a robust basis for

accurate velocity estimation using camera-radar fusion.

Together, these observations motivate the focus on radar as a complementary

modality to camera-based approaches for practical 3D object detection.

3.3 Method

Following many recent works [25, 49, 30], and as motivated in Chapter 2, we

perform the camera-radar fusion in the bird’s-eye view (BEV) space. We first extract

image and radar features with encoders and then project the image features onto

BEV using a radar-guided view transformer. Finally, we fuse the multi-sensory

features using a BEV encoder, and generate the final prediction using a detection

head. Figure 3-4 illustrates our BEVFusion-R.

38



Figure 3-3: The velocity from radar exhibits a strong linear correlation with the
actual velocity.

3.3.1 Image Encoder

We encode multi-view RGB images with ResNet [21] and fuse multi-scale feature

maps with FPN [42]. Despite achieving higher accuracy, more advanced image

encoders, like Swin Transformer [48], tend to be less efficient.

3.3.2 Radar Encoder

Most existing camera-radar fusion approaches [30] use variants of PointNet++ [67]

as their radar encoders. However, they are not very efficient or hardware-friendly [50]

due to their costly neighbor query and gathering operations. In this paper, we adopt

PointPillars [34] as our radar encoder, which uses PointNet [66] within each pillar to
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Figure 3-4: BEVFusion-R is a highly efficient multi-modal 3D perception model
that leverages information from radar and camera sensors within the shared bird’s-
eye-view (BEV) space. In contrast to BEVFusion [49], our approach incorporates
a radar-guided view transformer, which utilizes precise depth information from 3D
radar to explicitly enhance camera-to-BEV projection.

extract features. We increase the size of the pillar to accommodate the additional

noise of the radar returns. Despite its simplicity, it achieves comparable performance

to strong sparse convolution-based encoders [96, 101, 79] while being 7× faster (see

Table 3.4 for detailed results).

3.3.3 Radar-Guided View Transformer

Since radar features are in BEV and image features are in the perspective view, we

follow LSS/BEVDet [65, 26] to transform image features into BEV. We first predict

the depth distribution of each pixel and then “splat” each pixel into 3D space based on

the depth prediction. As discussed in Section 2.3.2, the depth quality is a significant

performance bottleneck since estimating depth from a single image is an inherently

ill-posed problem. When image features are splatted to an inaccurate BEV position,

the semantic information can become misaligned with the radar features. To combat

this, given that radar returns provide sparse, noisy but relatively accurate spatial

information, we have re-designed the view transformer to be radar-guided. Specifically,
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we first height-expand the radar point cloud [51] and project radar points onto the

image plane. Next, we feed the radar point features and one-hot encoded radar depth

into a lightweight CNN. Finally, we input the resulting radar features with the image

features to the depth estimation module.

3.3.4 BEV Encoder

Once both image and radar features are in BEV, we proceed to fuse them using a

BEV encoder following BEVFusion [49]. Previous works have used deformable atten-

tion or deformable convolution in the BEV encoder to address spatial misalignment

between modalities in the LSS paradigm. However, these operators have an irregular

data access pattern, making them challenging to accelerate and deploy on hardware.

Instead, we observe that additional standard convolutions with residual connections

can also increase the receptive field and improve performance without requiring these

hardware-unfriendly operations.

3.3.5 Deployment

As our target hardware is NVIDIA GPUs, we deploy our model using TensorRT1

for the best system optimizations. Since deployment and efficiency was a consideration

since the model design, almost all operators in BEVFusion-R are directly deployable

using TensorRT, as we avoid using nearest neighbor query (in radar encoder) or

deformable convolution (in BEV encoder). For unsupported operators that were

unavoidable, such as the BEV pooling in the view transformer, we develop custom

ONNX and TensorRT plugins for each of them. By registering these custom operations

directly in PyTorch [64], then subsequently linking the corresponding TensorRT plugin,
1https://github.com/NVIDIA/TensorRT
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the entire model can be exported as a single ONNX file. Moreover, this deployment

pipeline is readily extendable to further custom operations and simplifies the process,

in contrast with alternative approaches such as generating multiple inference engines.

As a result, our entire model is deployment-ready and can be run in an end-to-end

manner.

3.4 Experiments

We conduct all our experiments on nuScenes [5], which is currently the largest

publicly available multimodal dataset that includes radar data. We evaluate our

model and baselines using two primary metrics, NDS and mAP, on the validation set.

We measure the latency numbers on a single NVIDIA RTX 3090 GPU, in FP16 with

a batch size of 1. As temporal fusion is not the focus of this work, we do not employ

temporal fusion, as proposed by [25].

3.4.1 Main Results

We compare BEVFusion-R with state-of-the-art single-frame camera-radar fusion

detectors, as summarized in Table 3.3. Our method not only achieves the highest

NDS score but also significantly reduces the inference latency of CRN [30] by 4.5×,

thanks to our deployment-friendly design. Moreover, BEVFusion-R operates at a

remarkable speed of 24 frames per second (FPS) on an NVIDIA Jetson AGX Orin,

enabling real-time 3D perception at the edge. We anticipate that BEVFusion-R can

further leverage the benefits of multi-frame camera inputs, as observed in [30]. In

order to realize the vision of a practical 3D detection algorithm, we demonstrate that

our model is easily deployable on edge devices, achieving real-time latency. We choose
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Latency NDS mAP mATE mASE mAOE mAAE mAVE

MVFusion [89] – 45.5 38.0 0.675 0.258 0.372 0.198 0.394
CenterFusion [61] 219ms 45.3 33.2 0.649 0.263 0.535 0.142 0.540
FUTR-3D [8] 271ms 51.1 39.9 0.647 0.270 0.365 0.189 0.413
CRAFT [29] 244ms 51.7 41.1 0.494 0.276 0.454 0.176 0.486
RCBEV4D [105] – 49.7 38.1 0.526 0.262 0.445 0.185 0.465
CRN [30] 49ms 50.3 42.9 0.519 – 0.577 – 0.520
BEVFusion-R 11ms 52.4 42.8 0.523 0.273 0.542 0.185 0.379

Table 3.3: Results for single-frame camera-radar fusion detectors on the nuScenes
validation set. BEVFusion-R achieves a state-of-the-art nuScenes detection score
(NDS) while maintaining a 92 FPS speed, which is 4.5× faster than the best available
baseline at the time of writing.

the NVIDIA Orin as our target edge device.

3.4.2 Ablation Studies

In order to validate the design choices of our fusion detection model, we carry out

several ablation studies on the Nuscenes val set.

To assess the impact of radar encoder architecture, we conducted an ablation

study presented in Table 3.4. We compared VoxelNet [96] (VN) and PointPillars

(PP) [34], which are commonly employed as 3D backbones in LiDAR-only and camera-

LiDAR 3D object detectors. VoxelNet generally exhibits superior accuracy at the

cost of increased latency, as shown in large accuracy gap for both LiDAR settings,

but especially dense 32-beam LiDAR. However, this accuracy advantage diminishes

rapidly when dealing with sparse 3D data, such as a single beam LiDAR or radar,

since neighboring voxels become less frequent. We therefore choose PointPillars as

our radar feature encoder in BEVFusion-R, which is 7× faster than VoxelNet and

delivers almost the same accuracy.

Table 3.5 shows the impact that accurate depth estimation can bring to a fusion
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NDS Latency (ms)

VN PP Δ VN PP Δ

32B LiDAR 64.8 60.2 +4.6 118.0 88.0 +30.0
1B LiDAR + Camera 53.2 50.5 +2.7 37.7 3.7 +34.0
Radar + Camera 48.7 48.6 +0.1 16.7 2.4 +14.3

Table 3.4: Ablation study on the choice of encoder for the point cloud. VN denotes
VoxelNet. PP denotes PointPillars. Despite worsening latency in all cases, using
VoxelNet, a 3D based encoder, will improve performance in the 32-beam and 1-beam
LiDAR settings. However, for radar inputs, it performs no better than PointPillars.

Method mAP NDS

No depth supervision 38.9 51.0
With depth supervision 40.7 51.6
With depth supervision + Radar input 41.4 52.2

With depth supervision + LiDAR input 50.2 58.5

Table 3.5: Ablation study on the View Transformer. Not only does explicit depth
supervision enable stronger performance, but using input from other modalities
further improves the accuracy. The final setting is an oracle setting: not achievable
in practice, but rather serving as an upper bound for optimal depth estimation.

detection model. As observed by [39], depth supervision can improve the overall

performance significantly. Moreover, allowing the depth estimation module to access

radar data allows it to more accurately predict the depth, again leading to better

results. We hope that better estimation frameworks can further close the performance

gap to the oracle setting presented in the last row.

In addition, we emphasize the significance of aggregating multiple radar frames, as

depicted in Figure 3-5. Motivated by Figure 3-3, the velocity estimation performance

improves by 25.7% when we increase the radar input from one frame to ten frames.

Moreover, considering that radar provides accurate 3D localization for a substantial

portion of objects (as demonstrated in Table 3.2), incorporating more radar frames
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Figure 3-5: Ablation study on the number of radar frames included. As the number
of radar points increases, both object localization (translation error) and velocity
estimation (velocity error) improve.

also leads to a 7.2% reduction in translation error.

3.4.3 Latency and Real Time Deployment

We conduct an in-depth analysis of the latency breakdown in BEVFusion-R, shown

in Figure 3-6. We compare our model with CRN [30], which is recognized as the fastest

available camera-radar fusion 3D object detector. Our BEVFusion-R is executed

end-to-end using TensorRT. For CRN, as the source code is unavailable at the time

of writing, we estimate its deployment latency by running all TensorRT-compatible

operators with the TensorRT backend while executing the remaining modules (e.g.

PointNet++ radar encoder, multi-modal fuser based on deformable attention) in

PyTorch. Consequently, our model benefits more from the faster TensorRT backend

(3.8× vs. 2.0× faster) compared to CRN. In addition, BEVFusion-R achieves 24.4

FPS on Orin, whereas CRN could only run at an estimated 10.7 FPS. It is noteworthy

that the nuScenes radar sensor operates at 13 FPS. Consequently, BEVFusion-R still

maintains real-time performance on the edge, while CRN could not.
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Figure 3-6: Acceleration of our model via TensorRT. Despite having similar PyTorch
latency as CRN[30], our model is entirely hardware friendly, whereas the red sections
in CRN are not. As such, we observe a much more dramatic speedup.

3.5 Conclusion

In this work, we developed BEVFusion-R, an efficient and performant camera-radar

fusion model tailored for practical real-time autonomous driving. By performing sensor

fusion in bird’s-eye view space with the help of a radar-guided view transformer, we

allow the model to exploit the complementary characteristics of the sensors. Moreover,

by considering hardware optimization from the beginning and performing end-to-end

deployment and acceleration, our model can simultaneously achieve state-of-the-art

accuracy while running 4.5× faster than previous methods. Capable of real-time

latency on an edge device, we hope that our method will inspire future research on

lightweight camera-radar fusion for 3D perception.
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Chapter 4

Conclusion

In this thesis, we have developed two models for efficient 3D detection, a key com-

ponent of ubiquitous adoption of autonomous driving: BEVFusion and BEVFusion-R.

BEVFusion targets efficient camera-LiDAR fusion, which naturally achieves the

highest accuracy due to the precise nature of LiDAR point clouds. By performing

the multi-sensor fusion in the Bird’s Eye View (BEV) space, the model is able to

simultaneously retain maximal semantic and geometric information from both input

modalities. Moreover, our model demonstrates strong robustness to adverse weather

conditions, especially compared to competing works.

BEVFusion-R is developed as a camera-radar fusion model with cost efficiency and

deployment readiness as additional considerations. Leveraging the same multi-sensor

fusion paradigm, we select radar as a cost-effective alternative to LiDAR. By using a

lightweight radar encoder and designing the entire model with TensorRT acceleration

in mind, BEVFusion-R runs on the edge at real-time speeds.
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4.1 Future Work

There are a few interesting directions for extension of the models developed in

this thesis.

One simple extension of this work would be the incorporation of temporal fusion.

While LiDAR and radar frames are aggregated for the past 0.5 seconds, it is fairly

common to use BEV space temporal fusion to incorporate multiple images as well [25,

30]. While BEVFusion and BEVFusion-R are both single image frame models,

incorporating this feature would allow for significant performance improvement while

sacrificing minimal latency, since the BEV features used for temporal fusion can be

cached and re-used.

Second, the BEVFusion model struggles with deployment readiness due to its

reliance on sparse 3D convolution based operators. 3D convolutions are not well

supported in TensorRT; however, there are separate backend engines for these work-

loads, such as [11, 79]. Allowing for hardware acceleration represents an interesting

direction for further development of camera-LiDAR fusion models.

Finally, one shortcoming of BEVFusion is in the difficult depth perception problem

in the camera-to-BEV projection. While addressed in BEVFusion-R with the radar-

guided view transformer, upper-bound studies in both this thesis and [39] indicate

promise in further utilizing either LiDAR or radar data in predicting accurate depth

from images.
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