
MIT Open Access Articles

Data Extraction via Semantic Regular Expression Synthesis

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Chen, Qiaochu, Banerjee, Arko, Demiralp, ?a?atay, Durrett, Greg and Dillig, I??l. 2023. 
"Data Extraction via Semantic Regular Expression Synthesis." Proceedings of the ACM on 
Programming Languages, 7 (OOPSLA2).

As Published: https://doi.org/10.1145/3622863

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/152906

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/152906
https://creativecommons.org/licenses/by/4.0/


287

Data Extraction via Semantic Regular Expression Synthesis

QIAOCHU CHEN∗, University of Texas at Austin, USA

ARKO BANERJEE, University of Texas at Austin, USA

ÇAĞATAY DEMIRALP∗,MIT CSAIL, USA

GREG DURRETT, University of Texas at Austin, USA

IŞIL DILLIG, University of Texas at Austin, USA

Many data extraction tasks of practical relevance require not only syntactic pattern matching but also semantic

reasoning about the content of the underlying text. While regular expressions are very well suited for tasks

that require only syntactic pattern matching, they fall short for data extraction tasks that involve both a

syntactic and semantic component. To address this issue, we introduce semantic regexes, a generalization of

regular expressions that facilitates combined syntactic and semantic reasoning about textual data. We also

propose a novel learning algorithm that can synthesize semantic regexes from a small number of positive

and negative examples. Our proposed learning algorithm uses a combination of neural sketch generation and

compositional type-directed synthesis for fast and effective generalization from a small number of examples.

We have implemented these ideas in a new tool called Smore and evaluated it on representative data extraction

tasks involving several textual datasets. Our evaluation shows that semantic regexes can better support

complex data extraction tasks than standard regular expressions and that our learning algorithm significantly

outperforms existing tools, including state-of-the-art neural networks and program synthesis tools.

CCS Concepts: • Software and its engineering→ Domain specific languages; Programming by example.

Additional Key Words and Phrases: Program Synthesis, Regular Expression

ACM Reference Format:

Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durrett, and Işıl Dillig. 2023. Data Extraction via

Semantic Regular Expression Synthesis. Proc. ACM Program. Lang. 7, OOPSLA2, Article 287 (October 2023),

30 pages. https://doi.org/10.1145/3622863

1 INTRODUCTION

Regular expressions (or regexes) are a convenient and versatilemechanism for extracting information
from textual data. Because of their wide applicability, many programming languages provide built-
in support for regular expressions, allowing developers to perform textual pattern matching.
Further, because regular expressions have numerous applications in user-facing applications like
spreadsheets, recent years have seen an explosion in the number of new techniques for learning
regular expressions from examples and/or natural language [Chen et al. 2020; Lee et al. 2016].
Despite their general practicality, regexes are mainly applicable in settings where the desired

data extraction task is purely syntactic in nature. For example, regexes are very well-suited to tasks

∗Work started and partially completed at Sigma Computing.

Authors’ addresses: Qiaochu Chen, University of Texas at Austin, Austin, Texas, USA, qchen@cs.utexas.edu; Arko Banerjee,

University of Texas at Austin, Austin, Texas, USA, arko.banerjee@utexas.edu; Çağatay Demiralp, MIT CSAIL, Cambridge,

Massachusetts, USA, cagatay@csail.mit.edu; Greg Durrett, University of Texas at Austin, Austin, Texas, USA, gdurrett@cs.

utexas.edu; Işıl Dillig, University of Texas at Austin, Austin, Texas, USA, isil@cs.utexas.edu.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART287

https://doi.org/10.1145/3622863

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0003-4680-5157
HTTPS://ORCID.ORG/0009-0005-2690-6059
HTTPS://ORCID.ORG/0009-0003-2080-0443
HTTPS://ORCID.ORG/0000-0002-7061-7298
HTTPS://ORCID.ORG/0000-0001-8006-1230
https://doi.org/10.1145/3622863
https://orcid.org/0000-0003-4680-5157
https://orcid.org/0009-0005-2690-6059
https://orcid.org/0009-0003-2080-0443
https://orcid.org/0000-0002-7061-7298
https://orcid.org/0000-0001-8006-1230
https://doi.org/10.1145/3622863


287:2 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

like describing phone numbers and dates because such concepts can be described in terms of a
specific syntactic format (e.g., +D-DDD-DDD-DDDD or DD/DD/DDDD). However, many data
extraction tasks of practical relevance are not so easy to describe using a purely syntactic pattern.
As a simple example, consider the task of extracting business emails from a text file. Any email
address must follow a certain syntactic format, but this task also involves a semantic component in
that it requires determining whether some text in the email describes a business entity. As another
example, consider the problem of extracting zip codes that fall within a certain range. In addition to
checking whether a string syntactically matches a zip code pattern (DDDDD or DDDDD-DDDD),
it requires interpreting part of the string as a number and then performing a semantic range check,
which is difficult to do using regexes.

Based on this observation, this paper proposes the concept of a semantic regex as a mechanism
for combining the strengths of syntactic pattern matching with semantic reasoning. Our proposed
semantic regexes generalize standard regular expressions in that they provide a semantic pattern

matching construct which accepts strings that (a) belong to a category g (e.g., business, location,
person) and (b) satisfy a predicate q when interpreted as an instance of type g . For example, this
construct can be used to match strings that (a) correspond to a City (type g ), and (b) further satisfy
some additional criterion, such as being in the United States or in the state of California (predicate
q). Under the hood, semantic pattern matching employs large language models like GPT-3 [Brown
et al. 2020; Chowdhery et al. 2022] to test membership in some category g but further allows refining
the query result using a logical predicate q . In this sense, one can view our semantic regexes as
deciding membership in a refinement type and then combining the matching strings using standard
regex operators.
Beyond proposing the notion of semantic regexes, another key contribution of this paper is

a new synthesis algorithm for learning semantic regexes from positive and negative examples.
The learning problem in this context is more challenging than traditional regex synthesis because
semantic regexes are much more expressive than standard regexes. As a result, the hypothesis
space in this setting is very large, which has two important consequences:

• First, the semantic regex learning problem cannot be solved using a purely search-based approach
due to the sheer size of the search space. In fact, the search space is theoretically not even bounded
because our semantic regex language does not restrict the types g to a pre-defined vocabulary.
• Second, due to the extremely large hypothesis space, there are typically many semantic regexes
consistent with a small number of examples. Hence, to find the intended semantic regex, our
learning algorithm must have a strong inductive bias towards user intent.

The synthesis technique proposed in this paper surmounts these challenges using a novel
combination of three key ideas:

(1) Neural sketch generation: Our learning algorithm uses a large language model (GPT-3) to
generate a sketch of the desired semantic regex. Our key observation is that LLMs are well-
suited to this task because they are effective at identifying semantic commonalities between
the positive examples and inferring appropriate types to be used within the semantic pattern
matching constructs.

(2) Compositional synthesis:Our learning algorithm decomposes the synthesis task into multiple
simpler sub-problems. Because the holes (i.e., unknowns) in the generated sketches are typed,
the synthesis technique lends itself to a compositional solution, where we can synthesize each
hole largely (though not entirely) independently.

(3) Type-directed search: The presence of type information in the sketches makes it possible
to fill each hole in a type-directed way. Specifically, we utilize a type system with subtype
polymorphism to infer the space of valid completions of a hole.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



Data Extraction via Semantic Regular Expression Synthesis 287:3

Sketch 

Generator
Positive/Negative 

Examples
Sketch

Sketch Repair

Decompose Semantic Regex
LLM

Synthesize 
No more  

sub-problem
Next sub-problem

Sub-problem

Fig. 1. Schematic overview of our approach.

Object ID Department Artist Bio

1 Decorative Art Heinrich Reinhold, Germany, 1740-1789

2 Contemporary Art Cindy Sherman, United States, 1954-present

3 Medieval Art Sandro Botticelli, Italy, 1470-1561

4 Modern Art Max Ernst, Germany, 1891-1976

5 Medieval Art Niclaus Gerhaert von Leyden, North Netherlands, 1462-1473

· · · · · · · · ·

Fig. 2. Dataset about pieces of art exhibited in a museum.

Figure 1 shows the workflow of our proposed learning approach, which first utilizes the provided
examples to generate a semantic regex sketch using GPT-3. In the next step, our approach searches
for completions of the sketch by (a) decomposing the overall problem into several subproblems and
(b) using type-directed synthesis to solve each subproblem. If the sketch has a valid completion,
the resulting semantic regex is returned to the user. Otherwise, our approach analyzes the root
cause of failure and uses this information to query the language model for a more accurate sketch.
We have implemented the proposed technique in a tool called Smore and evaluated it on

information extraction tasks involving several different datasets. Our evaluation shows that these
data extraction tasks can be successfully automated using our proposed semantic regexes and
that our learning algorithm is quite effective for automating the desired data extraction task. In
particular, our approach achieves an average �1 score of 0.87 on the test data, while prior data
extraction techniques achieve a maximum �1 score of 0.65.
To summarize, this paper makes the following contributions:

• We propose semantic regular expressions to combine the flexibility of syntactic pattern matching
with semantic queries involving types and logical predicates.
• We describe a new learning technique for synthesizing semantic regexes from positive and
negative examples. Our approach combines the power of large language models with type-
directed synthesis for effective automation of data extraction tasks.
• We evaluate our tool, Smore, on representative data extraction tasks and show that semantic
regexes are useful for these tasks and that our learning approach outperforms other data extraction
techniques in terms of average �1 score.

2 OVERVIEW

In this section, we illustrate our technique using the motivating example shown in Figure 2, which
contains information about artworks exhibited at a museum. Given this dataset, suppose that a
user wants to extract all European artists who were born before the 20th century and whose name
contains Thomas. This data extraction task is challenging because it requires both syntactic and
semantic reasoning:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



287:4 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

• Syntax: In order to retrieve the desired information from this dataset, we first need to perform
pattern matching over the syntax of the “Artist Bio” column. In particular, because this column
contains information of the form “Name, Country, Birth Year - Death Year”, we first need to
syntactically parse the input string into its four constituent fields and check whether the first
field (corresponding to the artist name) contains “Thomas”.
• Semantics: After performing syntactic pattern matching, we then need to perform semantic
reasoning about the contents of each row to understand whether (a) the first field describes a
name, (b) the artist’s nationality is European and (c) they were born before the 20th century.

2.1 Semantic Regexes

Our proposed semantic regex concept is a natural fit for the data extraction task illustrated in this
example. Semantic regexes combine the convenience of regexes for syntactic pattern matching
with the power of semantic reasoning about data types. In addition to supporting the standard
regex operators (concatenation, disjunction, Kleene star), semantic regexes provide the following
semantic pattern matching construct, written using a refinement-type-like notation:

{E : g | q}

This construct matches any string that is semantically of type g and that further satisfies the
(optional) logical qualifier q . For instance, going back to our example, recall that we need to pattern
match strings that correspond to a European country. This can be expressed using the semantic
regex {E : Country | E ∈ Europe}, which, for example, matches the strings “France”, “Britain” and
“North Netherlands”, but fails on the strings “United States”, “Korea” etc. Similarly, we can express
the desired constraint on the artists’ birth year using the following semantic regex:

{E : Year | E < 1900}

which matches strings that (a) correspond to a year and (b) whose value is less than or equal to
1899. Putting all of this together, our desired data extraction task can be accomplished using the
following overall semantic regex:

A1 · “, ” · A2 · “, ” · A3 · “ − ” · A4

where A1 = {E : Name} ∩ Contain(“Thomas”)

A2 = {E : Country | E ∈ Europe}

A3 = {E : Year | E < 1900}

A4 = {E : Year}

In other words, this semantic regex matches all strings of the form “X, Y, Z-W" where - is a
name containing Thomas, . is a European country, / is a year before 1900, and, is any year.

2.2 Synthesizing Semantic Regexes

While semantic regexes provide a useful mechanism for information extraction, they can nonetheless
be non-trivial for end-users to construct. Motivated by this problem, another key contribution of
this paper is a new technique for synthesizing semantic regexes from a small number of positive
and negative examples. We now illustrate how our technique can be used to automate the data
extraction task for our running example. Suppose that the user describes the target data extraction
task using the following positive and negative examples:

Positive Examples Negative Examples

John Thomas Young Gilroy, Britain, 1898-1985 Alma Thomas, United States, 1891-1978

Thomas Hudson, Britain, 1701-1779 Sandro Botticelli, Italy, 1470-1561

Thomas Couture, France, 1815-1879 Thomas Nölle, Germany, 1948-2020

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



Data Extraction via Semantic Regular Expression Synthesis 287:5

Here, the positive examples correspond to the artist biographies that should be extracted, while
the negative examples are those that should be ignored. In particular, the first negative example
does not conform to the “European country” restriction; the second negative example does not
contain “Thomas” in the artist’s name; and the third one fails the criteria “born before the 20th
century”. We will now describe how our approach synthesizes the target semantic regex given only
these examples.

At the heart of our learning approach lies the notion of a typed sketch, which captures the general
syntactic structure of the target semantic regex. In addition, the holes (i.e., unknowns) in the sketch
are annotated with types capturing commonalities in the positive examples. Returning to our
running example, our synthesis approach generates an initial candidate sketch by querying a large
language model (GPT-3) with user-provided positive examples. Suppose that GPT-3 returns the
following sketch:

{□ : Name} · “, ” · {□ : Country} · “, ” · {□ : Year}

Here, the symbol {□ : } denotes an unknown expression, and the notation {□ : t} indicates that
any string matched by {□ : } should be a subtype of t.

Starting with the GPT-3-synthesized sketch, our method decomposes the synthesis problem into
multiple sub-problems, one for each hole in the sketch, and performs a type-directed search to
complete each hole. For this example, our synthesis method infers the following positive examples
for each hole:

{□ : Name} {□ : Country} {□ : Year}

John Thomas Young Gilroy Britain 1898-1985

Thomas Hudson Britain 1701-1779

Thomas Couture France 1815-1879

Note that it is not possible to propagate negative examples for individual holes, as it suffices for
the synthesized regex for one hole to reject its corresponding string, but we do not a priori know
which one. In particular, for this example, it would not be accurate to deduce that “Alma Thomas”,
“Sandro Botticelli”, and “Thomas Nölle” as negative examples for the first hole.

Given this decomposition, our approach tries to synthesize a regex A8 for each hole {□ : g8 }8 such
that (a) the type of A8 is a subtype of g8 and (b) A8 matches all of its corresponding positive examples.
For this example, our synthesis algorithm can immediately deduce that the sketch is incorrect since
no subtype of Year can match the corresponding positive examples for the third hole.
To repair the sketch, our learning algorithm localizes parts of the sketch for which synthesis

failed (in this case, Year) and synthesizes a different sketch for the failing part. In the next iteration,
suppose that we consider the following correct sketch:

{□ : Name} · “, ” · {□ : Country} · “, ” · {□ : Year} · “ − ” · {□ : Year}

Our synthesis algorithm tries to independently find the completion of each hole with the appro-
priate type and satisfy the corresponding decomposed positive examples. As before, the positive ex-
amples are used to prune the search space: for example, since the second hole must match the strings
“Britain” and “France”, the synthesizer can rule out completions such as {E : Country | E ∈ Asia} and
{E : Country | E ∈ Asia ∧ . . .}. Similarly, type information in the sketch is critical, enabling the syn-
thesizer to avoid enumerating useless sub-programs. For instance, when synthesizing the last hole in
the sketch, the synthesizer would not enumerate programs such as {E : Month | . . .}∪{E : Date | . . .},
since this regex can match strings that are not of type Year. It would, however, consider regexes
of the form {E : Year | E ≤ . . .}, as the strings that are matched by this regex would be a subtype
of year. After independently synthesizing each hole, the algorithm checks whether the resulting
regex A rejects all negative examples and, if so, returns A as a solution. Otherwise, it generates a
different regex by looking for a different completion for at least one of the holes.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



287:6 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

d ::= _B. match(B, A )

A ::= 2 | 22 | ∅

| {E : 5 (g@)} | {E : 5 (g1 ) | q}

| ¬A | A? | A ∗ | A + | A {:1} | A {:1, :2}

| A · A | A ∪ A | A ∩ A

5 ::= id | toUpper | toLower | abbreviate[2]

q ::= ⊤ | ¬q | q ∧ q | q ∨ q

| C ⊕g1 C where ⊕ ∈ {≤, ≥,=, ∈}

C ::= E | E .0 | 2 | =

g1 ::= Person | Organization | Product | Event | Work of Art
| Number | Integer | Float
| Date | Year | Month | Day
| Time | Hour | Minute | Second
| Place | Location | Nationality | Country | City

Fig. 3. Semantic string matching language. 2 is a constant string, 22 is a character class (e.g. le�ers). g1 is a
built-in base type, and g@ is an arbitrary base type in our type system. Also, : ∈ Z,= ∈ R, and 0 ∈ Attributes,
where Attribute is type-dependent.

3 SEMANTIC REGULAR EXPRESSIONS

In this section, we describe the syntax and semantics of our proposed semantic regular expression
language. At a high level, semantic regexes combine standard regular expression operators with
pre-trained neural networks that identify semantic types and provide knowledge about the world.

DSL Syntax. The syntax of our semantic string matching language is presented in Figure 3.
A semantic regex d takes as input a string B and returns a boolean indicating whether there is a
match. Semantic regexes include all the standard regular expression constructs, including constant
strings 2 , character classes like letters and numbers (denoted 22), concatenation (·), complement (¬),
union (∪), intersection (∩), and Kleene star (∗). Additionally, the notation A {:1} denotes repetition
of A :1 times and A {:1, :2} denotes A repeated between :1 to :2 times. As standard, A? indicates an
optional occurrence of A , and A+ denotes one or more occurrences of A .

In addition to these standard regex constructs, Figure 3 includes two semantic pattern matching

constructs, denoted as {E : 5 (g@)} and {E : 5 (g1) | q}, where 5 is an (optional) built-in function, g1
is a built-in type (Integer, Month, etc) and g@ is an arbitrary (user-defined) type. Note that the DSL
does not place any restrictions on g@ , so the user can provide any arbitrary string to define their
own type. However, we only allow a logical qualifier q to be used for built-in types.
In the most basic form, the construct {E : g} matches strings that are semantically of type g ,

where g can either be a built-in or user-defined type. For example, {E : Place} matches any string
that corresponds to a geographical location. The optional function 5 used in this construct allows
refining the query result by performing additional semantic-preserving string processing. For
example, {E : toUpper(Place)} matches any string that corresponds to a location name in upper
case letters (e.g., “NEW YORK”). More generally, {E : 5 (g)} matches a string B if B is equal to 5 (B′)

where B′ is a string of type g . As another example, {E : abbreviate[.] (Place)} matches the strings
“N.Y.”, “S.F.” etc. because the function abbreviate[2] abbreviates a string through initialism, using
the character 2 as a separator.

When performing semantic pattern matching using built-in types g1 , one can additionally use a
logical qualifier q . In particular, {E : g1 | q}matches those strings that are of type g1 and additionally
satisfy predicate q . To check whether a string B satisfies q , B is first parsed as an instance > of
type g1 and then checked for conformance against q . Note that these semantics justify why logical

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



Data Extraction via Semantic Regular Expression Synthesis 287:7

J_B. match(B, A )KB = B ∈ JAK
J2K = {2}

J¬AK = {B | B ∉ JAK}
JA0K = {n}

JA 8K = {B1 · B2 | B1 ∈ JA 8−1K, B2 ∈ JAK}
JA ∗ K =

⋃

=∈{0..∞} JA
=K

JA1 · A2K = {B1 · B2 | B1 ∈ JA1K, B2 ∈ JA2K}
JA1 ∪ A2K = JA1K ∪ JA2K
JA1 ∩ A2K = JA1K ∩ JA2K

J{E : 5 (g@)}K = {J5 KB | SemanticType(B) = g@}

J{E : 5 (g1 ) | q}K = {J5 KB | SemanticType(B) = g1 ∧ Cast<g1>(B) = > ∧ q (>)}

Fig. 4. Semantics of matching part of the DSL. Here, SemanticType is an oracle that determines the semantic
type of string B , Cast<g> casts string B to object > of type g .

qualifiers are only allowed with built-in types: because we need to parse the string as an instance
of g1 , there must be some built-in mechanism for deserializing the string, which only makes sense
for pre-defined types. As an example, the semantic regex {E : Float | E < 0.1} matches strings that
can be interpreted as a floating point number whose value is less than 0.1 (e.g., 0.0051). As another
example, {E : toUpper(City) | E ∈ Europe} matches strings, such as “ROME” that (a) correspond to
European cities and (b) are in upper case letters.

DSL Semantics. Figure 4 presents the formal semantics of our DSL for semantic string matching,
where JAK denotes the set of all strings that A matches.1 Observe that the semantics of the DSL is
parametrized by a helper function called SemanticType, which is implemented by a pre-trained
neural network and which is used to check whether the type of a string B is g . Hence, the con-
struct {E : 5 (g@)} matches all strings B such that (a) B = 5 (B′) for some string B′, and (b) where
SemanticType(B′) = g@ . Similarly, {E : 5 (g1) | q} matches all strings B such that (a) B = 5 (B′) for
some string B′, (b) B′ is an instance of built-in type g1 , and (c) when B′ is parsed into an object > of
type g1 , o satisfies predicate q .

Example 3.1. The semantic regex {E : Date | E .month = 5} matches all strings that represent
dates in May. In particular, any string matching a Date is first parsed into a datetime object and
its month field is checked for being equal to 5. Examples of strings matched by this regex include
“May 2023” and “2023-05-01”.

4 OVERVIEW OF THE TYPE SYSTEM

While our semantic regex DSL is not explicitly typed, our approach utilizes a type system to facilitate
effective synthesis. In this section, we give an overview of the type system.

4.1 Type Syntax

The syntax of our type system is shown in Figure 5, where Any corresponds to the top element in
the type system and CharSeq indicates any string without semantic meaning, such as “1a2b3c”,
“,.3d,.” etc. The type Semantic(gB ) indicates strings that can interpreted as instance of gB (e.g., Date).
In addition, the type Optional(g) includes both n (empty string) as well as any string of type g .
Semantic types gB include both built-in types g1 (e.g., Integer, Float, Date) as well as user-defined
types g@ . Hence, the type syntax is not fixed a priori and is parametrized over any user-defined
types that occur in the program.

1Semantics of functions are provided in the appendix.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



287:8 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

g := Any | Optional(g ′) | g ′

g ′ := Semantic(gB ) | CharSeq
gB := Person | Organization | Product | Event | Work of Art

| Number | Integer | Float
| Date | Year | Month | Day
| Time | Hour | Minute | Second
| Place | Location | Nationality | Country | City

Fig. 5. Type syntax.

⊢ CharSeq <: Any ⊢ Semantic(gB ) <: Any ⊢ Optional(g) <: Any
⊢ Year <: Date ⊢ Month <: Date ⊢ Day <: Date
⊢ Hour <: Time ⊢ Minute <: Time ⊢ Second <: Time
⊢ Country <: Place ⊢ City <: Place
⊢ Institution <: Organization ⊢ Company <: Organization

Trans
⊢ g ′′ <: g ′ ⊢ g ′ <: g

⊢ g ′′ <: g
Semantic

⊢ g ′ <: g

⊢ Semantic(g ′ ) <: Semantic(g )

Optional-Width
⊢ g <: Optional(g )

Optional-Congruence
⊢ g ′ <: g

⊢ Optional(g ′ ) <: Optional(g )
User-defined

W (g ′ ) ⊆ W (g )

⊢ g ′ <: g

Fig. 6. Subtyping relations. W (g) is the concretization function denoting the set of objects represented by g .

4.2 Subtyping

Our type system supports subtype polymorphism because there is a natural subtyping relation
between many entities of interest. We formalize the subtyping relation in Figure 6 using the
standard judgment ⊢ g1 <: g2, indicating that g1 is a subtype of g2. In Figure 6, the first three rules
are straightforward and establish Any as the top element of the type system. The following rules
(until Trans) show the subtyping relation involving built-in semantic types. For example, according
to these rules, Year,Month, and Day are all subtypes of the more generic Date type. The Trans rule
states the transitivity of the subtyping relation and the Semantic rule lifts the subtyping relation to
Semantic(g). The last two rules for Optional are also standard: Optional-Width states that any
type g is a subtype of Optional(g) and the last rule lifts the subtyping relation to optional types.
Finally, the last rule handles subtyping between user-defined types. If the set of objects represented
by g1 is a subset of those represented by g2, we have g1 <: g2. In practice, we perform this check by
querying a semantic ontology (specifically, DBPedia [Bizer et al. 2009] in our implementation).

4.3 Typing Rules

We present the typing rules for assigning types to DSL terms in Figure 7. These rules derive
judgments of the form ⊢ C : g indicating that term C has type g . Note that Figure 7 only shows
a representative subset of the typing judgments; the full set is presented in the Appendix under
supplementary materials.

Constant and characters. The first four rules show how to assign types to string constants and
character classes. For constants, we determine their type by querying a semantic oracle (GPT-3 in

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



Data Extraction via Semantic Regular Expression Synthesis 287:9

Const-Semantic

SemanticType(2 ) = g

g ≠ CharSeq

⊢ 2 : Semantic(g )
Const-CharSeq

SemanticType(2 ) = CharSeq

⊢ 2 : CharSeq

CC
22 ≠ < Num >

⊢ 22 : CharSeq
CC-Num

22 = < Num >

⊢ 22 : Semantic(Number)

matchSem
⊢ {E : 5 (g1 ) | q } : Semantic(g1 )

matchSem
⊢ {E : 5 (g@ ) } : Semantic(g@ )

Lifting
⊢ A : g g <: g ′

⊢ A : g ′
Optional

⊢ A : g

⊢ A? : Optional(g )

Union
⊢ A1 : g1 ⊢ A2 : g2

⊢ A1 ∪ A2 : g1 ∨ g2
And

⊢ A1 : g1 ⊢ A2 : g2

⊢ A1 ∩ A2 : g1 ∧ g2

Not
⊢ A : g

⊢ ¬A : Any
Concat

⊢ A1 : g1 ⊢ A2 : g2

⊢ A1 · A2 : Any

Fig. 7. Typing rules.

our implementation) and assign CharSeq if the oracle does not return a semantic type.2 Character
classes only have semantic meaning for numbers, so we assign the Semantic(Number) type if the
character is a number, and CharSeq otherwise.

Semantic matching. The MatchSem rules present the typing rules for the semantic matching
construct. The type of the expression is identical to the type specified as part of the program syntax.

Union and intersection. The typing rules for union and intersection presented in the Union
and And rules, respectively. These rules utilize the ∨ and ∧ operators, which are defined in Figure 8.
At a high level, the meet and join of two types are determined as the least upper bound (⊔)
and the greatest lower bound (⊓), respectively, in the corresponding type lattice. However, there
is a special case for the CharSeq type: Intuitively, taking the intersection of a semantic type g
and CharSeq further refines the objects of type g by placing an additional syntactic restriction;
hence, Semantic(g) ∧CharSeq is defined as Semantic(g). In contrast, the join of Semantic(g) and
CharSeq is the top element Any, as expected.

Not and concatenation. The Not and Concat are two cases where specific types cannot
be inferred. Even though the type of their arguments is known, the resulting type cannot be
determined, resulting in an output type of Any.

5 LEARNING SEMANTIC REGEXES FROM EXAMPLES

In this section, we describe our synthesis algorithm for solving the semantic string matching
problem from examples. Our method involves two main steps: generating a typed sketch from the
positive examples and completing the sketch using an enumerative search-based synthesizer. If
sketch completion fails, our method refines the sketch and performs synthesis using the new sketch.
In the rest of this section, we first provide some preliminary information, then present our top-level
learning algorithm, and then describe each of its key components.

2The semantic oracle returns CharSeq if the string has no semantic meaning.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



287:10 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

g ∧ Any = g

g1 ∧ Optional(g2) = g1 ∧ g2
Optional(g1) ∧ Optional(g2) = Optional(g1 ∧ g2)

Semantic(g1) ∧ Semantic(g2) = Semantic(g1 ⊓ g2)

Semantic(g) ∧ CharSeq = Semantic(g)

g ∨ Any = Any
g1 ∨ Optional(g2) = Optional(g1 ∨ g2)

Optional(g1) ∨ Optional(g2) = Optional(g1 ∨ g2)

Semantic(g1) ∨ Semantic(g2) = Semantic(g1 ⊔ g2)

Semantic(g) ∨ CharSeq = Any

Fig. 8. Type intersection and union.

( := A (regex)

| f(() (operator in the language)

| {□ : g} (typed hole)

JAK = {A }

Jf(()K = {f(A | ∀8∈ |A |A8 ∈ J(8K)}
J{□ : g}K = {A | ⊢ A : g}

Fig. 9. Sketch syntax and its semantics. Here f refers to any construct in the DSL defined in Figure 3.

5.1 Sketch Language

Our learning algorithm crucially relies on the notion of a typed sketch whose syntax is shown in
Figure 9. At a high level, the sketch language extends our semantic regex DSL by allowing a “typed
hole” (denoted {□ : g}) which represents an arbitrary expression of type g . Given a sketch ( , we
use the notation J(K to denote the set of all semantic regexes that can be obtained by completing
holes in ( by valid expressions of the corresponding type. Figure 9 also defines sketch semantics in
terms of the space of all programs they represent.

Example 5.1. Consider the sketch {□ : Organization} · “.2><”, which represents the space of
semantic regexes that match strings consisting of an organization name followed by the string
constant “.com”. Possible completions of this sketch include, but are not limited, to the following
semantic regexes: (1) {E : Company}·“.2><”, (2) {E : Institution}·“.2><”, and (3) ({E : Institution}∪
{E : Company}) · “.2><”.

5.2 Top-level algorithm

Our top-level algorithm is outlined in Figure 10. Given a set of positive examples E+ and a set of
negative examples E− , Synthesize returns a semantic regex that accepts all positive examples and
rejects all negative examples. At a high level, the algorithm repeatedly generates a new sketch using
a large language model, then attempts to find a valid instantiation of that sketch, and continues
this process until it finds a regex that is consistent with all user-provided examples. Intuitively,
each candidate sketch serves as a possible generalization of the positive examples, and the goal of
the synthesizer is to determine whether that sketch is a suitable generalization.
In more detail, the Synthesize procedure first calls GetNextSketch, which queries GPT-3

to produce a sketch ( that is likely to satisfy the positive examples. Then, for a given sketch ( ,
GetNextDecomp infers a decomposition Ψ, which is a mapping from each hole in ( to a set of
positive examples for that hole. Then, for a given decomposition Ψ, the algorithm calls Synthe-
sizeFromDecomp to perform compositional synthesis based on the inferred specification Ψ.
If the call to SynthesizeFromDecomp returns a non-empty mapping " , which maps each

hole in ( to a concrete regex A , we find a solution that is consistent with the specification and

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



Data Extraction via Semantic Regular Expression Synthesis 287:11

1: procedure Synthesize(E+, E−)

input: A set of positive E+ and negative examples E− .

output: A program that is consistent with the examples.

2: (5 ← ⊥;

3: while HasMoreSketch(E+) do

4: ( ← GetNextSketch(E+, (5 );

5: while HasDecomp((, E+) do

6: Ψ← GetNextDecomp((, E+);

7: " ← SynthesizeFromDecomp((,Ψ, E−);

8: if " ≠ ⊥ then return ( ["];

9: (5 ← ( ;

10: return ⊥;
Fig. 10. Top-level synthesis algorithm. Here, ( ["] means replacing each hole ℎ ∈ ( with" [ℎ].

returns the synthesized regex by replacing the holes in ( with the corresponding solution in " .
Otherwise, if the call to SynthesizeFromDecomp yields ⊥, there are two possibilities: Either the
decomposition Ψ is incorrect (recall from Section 2 that there is ambiguity in how to assign positive
examples to holes), or the sketch ( itself is incorrect. In the former case, the algorithm considers
a different decomposition, which maps at least one of the holes in the sketch to a different set of
examples. If the algorithm exhausts all possible decompositions, this means that the sketch must be
incorrect and the algorithm repairs the current sketch by performing fault localization and querying
GPT-3 to produce a different generalization of the positive examples. This process continues until
the algorithm finds a globally consistent regex with all (positive and negative) examples or runs
out of possible sketches. In the following discussion, we explain each of the three components
(decomposition, type-directed synthesis, and sketch repair) in more detail.

5.3 Decomposing the Specification

To perform compositional synthesis, our learning algorithm decomposes the global specification
into a set of specifications, one for each hole in the sketch. In this section, we describe the Get-
NextDecomp procedure for specification decomposition using the inference rules in Figure 11,
which derive judgments of the following shape:

E+ ⊢ ( { Ψ

The meaning of this judgment is that, given positive examples E+, Ψ is a possible decomposition
that maps each hole in the sketch to its corresponding positive examples. As mentioned earlier, the
decomposition is, in general, not unique, so there can be multiple decompositions Ψ1, . . . ,Ψ= for a
given sketch ( .
We now explain the decomposition rules from Figure 11 in more detail. The first rule, labeled

Sketch-Match, considers a program sketch with top-level operator 5 (e.g., concatenation or
intersection) and sub-sketches (1, . . . , (= . To infer a specification for each hole in ( , we first generate
a regex A★ that over-approximates ( (via the call to OverApprox). Intuitively, OverApprox generates
a regex A★ such that for any A ∈ J(K, A★ accepts every string that is accepted by A . Because our
over-approximation approach is exactly the same as used in prior work [Chen et al. 2020; Lee et al.
2016], we do not formally present it, but the basic idea is to replace each hole that appears under
an even (resp. odd) number of negation symbols by the regex .∗ (resp. ∅). This method guarantees
that the resulting regex A★ will accept every string that is accepted by any instantiation of ( .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



287:12 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

Sketch-Match

( = 5 ((1, . . . , (=) A★ = OverApprox(()

(E+
1
, . . . , E+= ) ∈ Match(A

★, E+)

E+8 ⊢ (8 { Ψ8 8 ∈ {1, . . . , =}

E+ ⊢ ( { Merge(Ψ1, . . . ,Ψ=)

Sketch-NoPosMatch

( = 5 ((1, . . . , (=) A★ = OverApprox(()

Match(A★, E+) ≡ ∅

E+ ⊢ ( { ⊥

Concrete-Feasible
Match(A, E+) ≠ ∅

E+ ⊢ A { ∅
Concrete-Infeasible

Match(A, E+) ≡ ∅

E+ ⊢ A { ⊥

Hole-Feasible
∀4 ∈ E+ . SemanticType(4) <: g

E+ ⊢ {□ : g} { [{□ : g} ↦→ E+]
Hole-Infeasible

∃4 ∈ E+ . SemanticType(4) ≮: g

E+ ⊢ {□ : g} { ⊥

Fig. 11. Procedure for GetNextDecomp((, E+). OverApprox(() returns a concrete regex that over-
approximates ( . Merge returns ⊥ if one of its argument is ⊥, otherwise it disjointly unions all its arguments.

Furthermore, note that A★ is a standard regex without any semantic pattern matching constructs,
as all holes have been replaced by either the universal or the empty set.
Next, once we generate the over-approximation A★, we infer positive examples for each sub-

sketch (1, . . . , (= used in ( . To do so, for each positive example 4 , we use a standard regex matching
tool to find a parse of 4 into the format 5 ((1, . . . , (=) with corresponding sub-strings 48 for each
sub-sketch (8 . After propagating each example 48 to nested sketch (8 and recursively applying the
inference rules, we obtain the decomposed specifications Ψ1, . . . ,Ψ= for each of the sub-sketches in
( . These mappings are finally combined via the call to the Merge function, defined as follows:

Merge(Ψ1, . . . ,Ψ=) =

{

⊥ if ∃8 ∈ [1, =] . Ψ8 = ⊥
⊎=

8=1 Ψ8 otherwise

where the notation ⊎ indicates disjoint union.
The next rule, labeled Sketch-NoMatch, corresponds to an infeasible sketch or decomposition.

Because every string accepted by A ∈ J(K must also be accepted by the over-approximation A★, the
algorithm yields ⊥ to indicate a failure when A★ doesn’t match at least one of the positive examples.
The remaining rules correspond to the base cases of the recursive decomposition algorithm.

Specifically, the rules prefixed with Concrete consider the case where the sketch is a concrete
regex A without a hole. Specifically, we check the feasibility of A by testing whether it matches all
of the positive examples. If so, the sketch is feasible, and the algorithm returns the empty mapping
∅. Otherwise (the Concrete-Infeasible case), the algorithm returns ⊥ to indicate failure.

The final two rules correspond to base cases for a hole and utilize the fact that sketches are typed.
In particular, given a hole of type g , if there exists a positive example 4 ∈ E+ whose type is not g ,
this indicates a conflict and the algorithm returns ⊥ in the Hole-Infeasible rule. Otherwise, in the
Hole-Feasible rule, the constructed specification maps this hole to the input positive examples E+.

Example 5.2. Consider the positive examples from Section 2 and the following sketch:

{□ : Name} · “, ” · {□ : Country} · “, ” · {□ : Year}1 · “ − ” · {□ : Year}2

The over-approximation for this sketch is the following regex:

. ∗ ·“, ” · . ∗ ·“, ” · . ∗ ·“ − ” · .∗

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



Data Extraction via Semantic Regular Expression Synthesis 287:13

1: procedure SynthesizeFromDecomp((,Ψ, E−)

input: A sketch ( , a specification Ψ, a set of negative examples E− .

output: A sketch completion consistent with all examples.

2: ℎ ← ChooseHole(()

3: while True do

4: A ← GetNextCompletion(TypeOf(ℎ),Ψ[ℎ], GetAllSubstr(E−));

5: if A ≡ ⊥ then return ⊥;

6: while True do

7: " ← SynthesizeFromDecomp(( [A/ℎ],Ψ, E−)

8: if " ≡ ⊥ then break;

9: "′ ← " ∪ [ℎ ↦→ A ];

10: if Reject(( ["′], E−) then yield "′;

11: return ⊥;
Fig. 12. Sketch completion algorithm for a given decomposition.

Using our decomposition technique, we infer the following positive examples for each hole:

{□ : Name} {□ : Country} {□ : Year}1 {□ : Year}2

John Thomas Young Gilroy Britain 1898 1985

Thomas Hudson Britain 1701 1779

Thomas Couture France 1815 1879

We conclude this subsection by stating the theorem about the soundness of decomposition:

Theorem 1. Consider the synthesis problem with positive examples E+. Let ( be a candidate sketch

and let A be a completion of ( mapping each hole ℎ8 in ( to a semantic regex A8 . If A satisfies all positive

examples E+, then there exists some Ψ ∈ GetNextDecomp((, E+) such that every A8 satisfies Ψ[ℎ8 ].

5.4 Compositional Type-Directed Synthesis

Next, we explain our compositional learning technique for synthesizing a semantic regex for a
given sketch and decomposed specification. This algorithm, called SynthesizeFromDecomp, is
shown in Figure 12. Given a sketch ( , specification Ψ, and negative examples E− , the recursive
SynthesizeFromDecomp procedure lazily generates possible sketch completions until it finds a
regex that is globally consistent with the top-level specification.

To perform synthesis for a given specification, the algorithm starts by choosing one of the holes
ℎ in the sketch (line 2) and synthesizes a completion A for that hole only by calling GetNextCom-

pletion at line 4. Then, the loop in lines 6–10 tries to find a completion for the remaining holes. In
particular, in each iteration of the nested loop, the algorithm recursively calls SynthesizeFromDe-
comp to fill all remaining holes, assuming that ℎ is replaced by A . If synthesis fails (i.e.," ≡ ⊥ at
line 8), the algorithm moves on to a different completion of ℎ. Otherwise, it checks if the current
solution (which is obtained by instantiating ( with" ∪ [ℎ ↦→ A ]) rejects all negative examples, and
if so, returns this solution.
The final missing piece for our sketch instantiation algorithm is the GetNextCompletion

procedure shown in Figure 13 which performs synthesis for a single hole. At a high level, this
algorithm performs top-down enumerative search and uses a combination of types [Frankle et al.
2016; Osera and Zdancewic 2015; Polikarpova et al. 2016] and observational equivalence [Morris
1968] to prune the search space. As standard in top-down search, this algorithm utilizes the notion
of partial programs [Feng et al. 2018, 2017], which can be thought of as an abstract-syntax tree
where some of the nodes are labeled with non-terminals to be expanded later.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



287:14 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

1: procedure GetNextCompletion(gℎ, E
+, E★)

input: Goal type gℎ , positive examples E+, and a set of strings E★ for checking observational equivalence.

output: A program of type gℎ that matches E+

2: %0 ← ((BG, gℎ), ∅);

3: W ← {%0}; ' ← {};

4: whileW ≠ ∅ do

5: % ←W .A4<>E4 ();

6: if IsComplete(%) then

7: if ⊢ % : gℎ ∧
∧

4∈E+ match(4, %) then

8: E ← {4 | 4 ∈ E★ ∧ ¬match(4, %)};

9: if E ∉ ' then ' ← ' ∪ {E}; yield % ;

10: else

11: for all % ′ ∈ Expand(%) do

12: if ∃= ∈ Nodes(% ′). IsComplete(% ′ (=))∧ ⊢ TypeOf(% ′ (=)) ≮: GoalType(=) then

13: continue;

14: else if ∃4 ∈ E+ .¬match(4, OverApprox(% ′)) then

15: continue;

16: W ←W ∪ {% ′};

17: return ⊥;

Fig. 13. Hole synthesis algorithm. OverApprox follows the procedure as described in Regel [Chen et al. 2020].

In more detail, the hole synthesis algorithm utilizes a worklistW, which is initialized to a partial
program %0 with a single node (lines 2–3). Each node in the partial program is annotated with a
grammar symbol (in this case, the start symbol BG) and its corresponding type (in this case, gℎ).
Then, in each iteration of the loop in lines 4–16, the algorithm dequeues one of the partial programs
% in the worklist and processes it. If the partial program is complete (meaning that all nodes are
labeled with terminal symbols), the algorithm performs the following checks:

(1) Type consistency: If the type of % is not gℎ , % clearly does not have the intended type and is
rejected (line 7).

(2) Consistency with examples: If % does not satisfy all positive examples E+, it does not satisfy
the specification and is also rejected at line 7.

(3) Observational equivalence: If % rejects the exact same set of strings as a program the algorithm
has previously encountered, it is redundant to consider % , as it is observationally equivalent to
another solution % ′ that has been rejected. Hence, the algorithm only yields % as a solution if it
is observationally different from a previously encountered solution (lines 8–9).

On the other hand, if the current partial program % is incomplete (meaning it has at least one
“open” node labeled with a non-terminal), the algorithm chooses one of the open nodes and expands
it using the available productions in the grammar (line 11). In particular, given an open node =
labeled with a non-terminal # , the Expand procedure considers each production of the form # → U

and adds new nodes where each new node with a grammar symbol and its corresponding (inferred)
type. However, because a resulting expansion % ′ may not necessarily be feasible, the algorithm
performs two additional checks before adding % ′ to the worklist at line 16:

• Type-directed feasibility check: For each complete subprogram %8 of %
′, the algorithm checks

if the actual type of %8 is a subtype of its annotated goal type (line 12). If this type feasibility

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



Data Extraction via Semantic Regular Expression Synthesis 287:15

1

2

3

4

5

Convert numbers in the following strings to texts: 

20 + 3 => Twenty + three 

4 * 5 => Four * five 

100 - 67 => One hundred - sixty-seven 

70 / 5 => Seventy / five 

examples

prompt

task description

Fig. 14. Sample input for a few-shot string transformation to GPT-3 and its output is highlighted in red.

check fails for any node =, then program % ′ is pruned from the search space, and none of its
expansions are considered.
• Feasibility check using over-approximation: Additionally, the algorithm constructs an over-
approximating regular expression A★ that accepts every string that is accepted by any A ∈ J% ′K
using the same OverApprox procedure from Section 5.3. If this over-approximation A★ fails to
match one of the positive examples, % ′ is infeasible and therefore pruned away at lines 14–15.

Otherwise, % ′ is added to the worklist, and the search process continues until a solution is found.

Theorem 2. Let ' be the set of solutions returned by GetNextCompletion(gℎ, E
+, E★). We have:

• Soundness: Every A ∈ ' is a solution to the hole synthesis problem, meaning (1) A has type gℎ and

(2) satisfies examples E+

• Completeness: If A ∉ ', then A is either not a solution or is observationally equivalent to some

A ′ ∈ ' for strings E★.

5.5 Sketch Generation

In the final part of this section, we describe our technique for generating typed sketches from
examples. In particular, we employ few-shot prompting and build our sketch generator on top of
GPT-3 [Brown et al. 2020].

5.5.1 Background on Few-Shot Prompting with LLMs. In recent years, large language models
(LLMs) [Brown et al. 2020; Chowdhery et al. 2022] have made major breakthroughs in natural
language understanding. These are models % (x) = % (G1)% (G2 | G1) . . . % (G= | G1, . . . , G=−1) modeling
a sequence as a product of distributions over each next word via the chain rule.

By showing LLMs a few examples of a task to perform and then giving them a test example, LLMs
can perform that task on the test example via in-context learning, without retraining or fine-tuning
the model’s parameters. The user only needs to provide a few examples and invoke the model’s
next-word prediction capabilities (repeatedly taking the most likely next token under the model).
To give a concrete example, consider the task of transforming numbers in strings to texts, a task
that GPT-3 has not specifically been trained on. Figure 14 shows a typical usage scenario of GPT-3
when performing such a task: here, line 1 provides the task description, lines 2-4 provides a few
examples, line 5 is the query, and the output of the model is highlighted in red.

5.5.2 �erying LLM for Sketches. To obtain typed sketches, our approach prompts GPT-3 with
suitable queries.3 As shown in Figure 15, the GetNextSketch procedure takes as input positive
examples E+ and an optional infeasible sketch ( 5 , which is used in later iterations of the algorithm
for sketch repair. Initially, the algorithm starts by querying GPT-3 for a sketch using the GetSketch
procedure, as illustrated in Figure 16. The prompt to GPT-3 contains a task description, a manually-
curated set of representative examples (in the form of a query and its desired output), and, finally,
the prompt itself (lines 12–17 in Figure 16). The GetSketch procedure then attempts to parse the

3We consider sketches generated from models text-davinci-003, code-davinci-002 and gpt-3.5-turbo.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



287:16 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

1: procedure GetNextSketch(E+, (5 )

input: A set of positive examples E+, and an optional infeasible sketch (5 .

output: A new sketch that has not been generated so far.

2: (�;; ← ∅

3: while True do

4: if (5 ≡ ⊥ then

5: ( ← GetSketch(E+);

6: if ( ∉ (�;; then (�;; ← (�;; ∪ {(}; yield ( ;

7: else

8: while HasRepair((5 , E
+) do

9: S,Ψ← LocateError((5 , E
+);

10: ( ← S[ℎ8 ↦→ GetSketch(Ψ[ℎ8 ]) | ℎ8 ∈ MetaHoles(S)]
11: if ( ∉ (�;; then (�;; ← (�;; ∪ {(}; yield ( ;

12: return ⊥;

Fig. 15. Sketch generation procedure. GetSketch(E+) prompts the neural model for a new sketch, as illus-
trated in Figure 16.

1

2

3

4

5

Summarize the structure of the following positive examples in the form of a regular expression sketch.  

Use {??: <semantic type>} to represent the unknown part of the sketch. 

Positive examples: 

-  (David J. Alexander), Marc Henri Sempere and Jocelyn Bulow 

-  (Connie Wong), Sai Wong 

-  (Amin Abughosh) and Joseph Abugosh and Abeer Elafifi 

Sketch: 

- \({??: Person}\) ((&|and|,) {??: Person})+ 

…… (7 more examples) 

Summarize the structure of the following positive examples in the form of a regular expression sketch.  

Use {??: <semantic type>} to represent the unknown part of the sketch. 

Positive examples: 

- … 

Sketch: 

-

task description 

+ 

examples

prompt

6

7

8

9

10

11

12

17

16

13

14

15

Fig. 16. GPT-3 input structure for generating a sketch for the semantic string matching task.

model’s output into a typed sketch; however, there is no guarantee that the GPT-3 output will
belong to our sketch grammar. Hence, if parsing fails, the GetSketch procedure keeps prompting
GPT-3 for a new sketch until the model’s output is parseable.4

In future invocations of GetNextSketch, this procedure may be invoked with an infeasible
sketch ( 5 that needs to be repaired. Lines 8–11 of Figure 15 deal with this sketch repair aspect of
the algorithm. Specifically, given the infeasible sketch ( 5 and positive examples E+, LocateError
produces a repair specification, which consists of a so-called meta-sketch S and a specification Ψ. A
meta-sketch is like a sketch except that it contains untyped “meta-holes” that need to be instantiated
with a typed sketch. The specification Ψ maps each meta-hole in S to a set of positive examples.
Such a meta-sketch is instantiated into a regular sketch by querying GPT-3 via the GetSketch
procedure for each of the meta-holes ℎ8 in S and its corresponding examples Ψ[ℎ8 ].

4Past work has explored few-shot semantic parsing from natural language into DSLs using structured natural language as

an intermediate representation [Shin and Van Durme 2022]; however, more recent work has shown that LLMs can do well

at this task without such guidance, even in the presence of adversarial perturbations [Zhuo et al. 2023].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



Data Extraction via Semantic Regular Expression Synthesis 287:17

Sketch-Single-Fail

Match(OverApprox(( ), E+ ) ≡ ∅

( = 5 ((1, . . . , (= )

∃8 ∈ {1, . . . , =} A★8 = OverApprox(( [□/(8 ] )

(E+1 , . . . , E
+
8 , . . . , E

+
= ) ∈ Match(A

★

8 , E
+ )

E+8 ⊢ (8 ↩→ S8 ,Ψ8

E+ ⊢ ( ↩→ ( [S8/(8 ],Ψ8

Sketch-Multi-Fail

Match(OverApprox(( ), E+ ) ≡ ∅

( = 5 ((1, . . . , (= )

∀8 ∈ {1, . . . , =} A★8 = OverApprox(( [□/(8 ] )

Match(A★8 , E
+ ) ≡ ∅

E+ ⊢ ( ↩→ □, [□ ↦→ E+ ]

Sketch-Nested-Fail

( = 5 ((1, . . . , (= )

(E+1 , . . . , E
+
= ) ∈ Match(OverApprox(( ), E

+ )

E+8 ⊢ (8 ↩→ S8 ,Ψ8 8 ∈ {1, . . . , =}

E+ ⊢ ( ↩→ 5 (S1, . . . , S= ), Merge(Ψ1, . . . ,Ψ= )

Hole-Fail
∃4 ∈ E+ . SemanticType(4 ) ≮: g

E+ ⊢ {□ : g } ↩→ □, [□ ↦→ E+ ]
Hole-Correct

∀4 ∈ E+ . SemanticType(4 ) <: g

E+ ⊢ {□ : g } ↩→ {□ : g }, ∅

Concrete-Fail
Match(A, E+ ) ≡ ∅

E+ ⊢ A ↩→ □, [□ ↦→ E+ ]
Concrete-Correct

Match(A, E+ ) ≠ ∅

E+ ⊢ A ↩→ A, ∅

Fig. 17. Procedure for LocateError.

Finally, we turn our attention to the LocateError procedure, which is presented as inference
rules in Figure 17. These rules derive judgments of the following shape:

E+ ⊢ ( ↩→ S,Ψ

meaning that (S,Ψ) is a repair specification for infeasible sketch ( and examples E+. The fault
localization rules in Figure 17 largely resemble GetNextDecomp for performing decomposition in
that they use over-approximations. We explain these rules in more detail below.

Sketch-Single-Fail. This rule applies to a sketch ( of the form 5 ((1, . . . , (=) where (1) there
is at least one positive example that is not matched by the over-approximation of ( (premise
on the first line) and (2) where only one of the sub-sketches (8 is faulty. To determine whether
condition (2) holds, this rule replaces the entire sub-sketch (8 with a single hole and then checks
whether the over-approximation of the resulting sketch can accept all positive examples. If so, it
recursively performs fault localization on (8 and returns a meta-sketch by replacing (8 in ( with its
corresponding meta-sketch S8 .

Sketch-Multi-Fail. This rule is similar to the first one except that it deals with the scenario
where there aremultiple faulty sub-sketches. That is, even after we replace any individual sub-sketch
with a hole, there is still at least one positive example that is not matched by the over-approximation.
In this case, we generate a meta-sketch that consists of a single hole.

Sketch-Nested-Fail. This rule also applies to a sketch ( of the form 5 ((1, . . . , (=) but considers
the case where the over-approximation of ( matches all the positive examples. However, as the
sketch is infeasible, there must nonetheless be at least one problem inside the next sub-sketches.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



287:18 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

Hence, our fault localization technique recursively localizes the error in the sub-sketches and
returns the merged result.

Hole-Fail. This rule applies to the case where the type of a hole is incorrect in that its annotated
type is inconsistent with at least one of the positive examples. In this case, our algorithm generates
a meta-sketch by erasing the type annotation of this hole.

Hole-Correct, Concrete-Correct. Since these rules apply to base cases without any problems,
fault localization returns the original sketch.

Concrete-Fail. This rule applies to the case where a concrete regex does not match at least one
of the examples. In this case, we simply replace the concrete regex with a meta-hole.

Example 5.3. Consider the positive examples from Section 2 and the following sketch:

{□ : Name} · “, ” · {□ : Country} · “, ” · {□ : Year}

Suppose the synthesizer concluded this sketch to be infeasible since the string “1898-1985”
cannot be identified as a year and sends this as a failed sketch to the sketch generator. To repair
this sketch, we follow the Sketch-Nested-Fail rule to recursively traverse through each part of
the sketch until we locate the faulty hole, {□ : Year}. We then gather the positive examples that
should be matched by this hole, which are “1898-1985”, “1701-1779” and “1815-1879”, and replace
the faulty typed hole with a new hole with no type (rule Hole-Fail). With the generated repair
specification, we query GPT-3 to generate a new sketch for the faulty hole, and it returns a new
sketch {□ : Year} · “ − ” · {□ : Year}.

6 IMPLEMENTATION

We have implemented our synthesis algorithm in a new tool called Smore written in Python. In
this section, we provide implementation details about different components of Smore.

Implementation of the semantic matching construct. Our tool heavily relies on the use of
GPT-3 to identify the semantic meanings of strings.5 Our few-shot prompt (following the discussion
in Section 5.5) to accomplish this is shown in Figure 18. The input begins with a task description
that asks the model to identify all possible substrings of a particular semantic type, and we instruct
the model to return “none” if it does not find any. Following the task descriptions, we provide 8
examples,6 each of which shows the structure of a query: the first line provides the string of interest,
and the second line specifies the semantic type of interest. Furthermore, we provide sample outputs
for each example in the expected output format.

Implementation of checking observational equivalence. In the GetNextCompletion

procedure (Figure 13), we use the set E★ to prune out programs that are observationally equivalent
to previously synthesized programs. In Figure 12, E★ corresponds to all substrings of the negative
examples E− , but this set might contain too many strings in practice, leading to considerable
overhead in the observational equivalence check. To address this issue, we only obtain the substring
of the negative examples that are relevant to the specific hole under consideration. Specifically,
we identify the relevant substrings of the negative examples using the overapproximation of the
sketch. If a negative example can already be rejected by the overapproximation of the sketch,
it is safe to conclude that any instantiation of the sketch can reject this negative example and
therefore that this example is irrelavant. For those negative examples that can be matched by the
overapproximation, we identify substrings that might be matched by each hole of the sketch and

5We use the text-davinci-003 model.
6We provide all the in-context examples we use in the supplementary material.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



Data Extraction via Semantic Regular Expression Synthesis 287:19

1

2

3

4

5

Identify all possible substrings of the given input that has the specified semantic.  

Output none if you are not confident enough. 

Composite.Motors,Inc. 

Organization: [Composite.Motors];[Composite.Motors,Inc];[Composite.Motors,Inc.] 

Composite.Motors,Inc. 

Person: none 

…… (6 more examples) 

[New string] 

[Semantic Type]:

examples

prompt

6

7

8

9

10

11

12

13

task description

Fig. 18. GPT-3 input structure for identifying substring of specific semantics. [New string] is a placeholder for
the string we are querying about, and [Semantic Type] is the semantics we are asking the model to identify.

use those to check observational equivalence. This strategy provides the full benefits of checking
observational equivalence but significantly reduces overhead in some cases. We illustrate this
discussion through the following example:

Example 6.1. Consider a synthesis task with the following positive and negative examples:

Positive Examples Negative Examples

14+15 1+18

15+17 2+6

16+13 7-12

Suppose that the generated sketch is {□ : Integer}[+]{□ : Integer}. Using the overapproximation
(.∗)[+] (.∗), we can already reject the negative example “7-12”, so that negative example is not
relevant for selecting different instantiations of the sketch. To find the rest of the relevant strings,
notice that the overapproximation decomposes the first negative example by sending “1” to the
first hole and “18” to the second hole (as the negative example for each of the holes). Following the
same procedure, we obtain “1” and “2” as the relevant substring for the first hole. Now, considering
the two synthesized programs {E : Integer | G > 4} and {E : Integer | G > 5} for the first hole,
we can safely conclude that these two programs are observationally equivalent with respect to
the negative examples since both programs reject the same set of negative examples (specifically,
example “1+18” and “2+6”).

Ranking heuristic. Because there are often multiple semantic regexes that are consistent with
the provided examples, it is important to use a ranking heuristic to choose between possible solutions.
To this end, our method prioritizes sketches that maximize the number of type annotations, and
it prefers decompositions that minimize the number of holes that are assigned empty strings as
positive examples. Finally, when choosing between multiple regexes for a given hole, our algorithm
prefers those with smaller ASTs, first ranked by height and then by the number of nodes.

Hyperparameters. The Smore system has a hyperparameter that controls the maximum depth
of the synthesized programs for each hole, which is set to 4 by default. For GPT-3 hyperparameters,
we set the temperature to 0 (corresponding to greedy inference) and maximum length to 256.7

7We also define the suitable stop sequences for each prompt to ensure GPT-3 doesn’t have to generate 256 tokens.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



287:20 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

Table 1. Description of the sample tasks used in the evaluation.

Domain Task Description

Business Restaurants that are created before 2000 or after 2010

Businesses located in California

Sales
Products with Intel CPU that have more than 8GB memory

TVs of size less than 50’ or resolution less than 1080P

Retail
Website titles that start with product names and are followed by a url

Product names that contain measurement information

Marketing
Software engineering jobs that have specified working locations

Business names with at least 3 words

Account
Email addresses that have a country domain and where the username ends with number

Software versions with at least 10 minor updates and more than one patch

Stock
Company names with 3-letter abbreviation

Company names with ticker symbols containing special characters

Science
Location description with format State; County; More details

Locations that are less than 11 miles from a road

Server
Apache logs with file id >=151000 or in the format of a zip file with id <= 50

Photo files with numbers in their name

Museum
Purchase made by using three different funds

Artwork with two artists born in the 14th century

Exhibition
Dimension of item between 10 and 50 inches

Item that is associated with at least three categories

7 EVALUATION

In this section, we describe the results of our experimental evaluation, which is designed to answer
the following research questions:

• RQ1. How does our proposed data extraction approach compare against existing approaches?
• RQ2. How does our synthesis algorithm compare to relevant baselines?
• RQ3. How important are the different components of our synthesis algorithm for successfully
solving these benchmarks?
• RQ4. Do semantic regexes help humans more effectively solve data extraction tasks compared to
standard regexes?

Benchmarks. To answer these questions, we evaluate Smore on 50 data extraction tasks in-
volving 10 different datasets, which cover a wide range of domains like sales, science, and art.
These datasets contain many different string formats and involve a large variety of entities. Out of
50 tasks, 34 of the tasks require at least one built-in semantic type and 33 of the tasks require at
least one custom semantic type. We consider an average of 5 data extraction tasks for each dataset
and manually label a subset of the strings in each dataset as positive or negative for each task.
Specifically, we use 6 of the manually labeled examples for training and the rest for testing. Table 1
describes some example tasks for each domain.

Experimental Setup. All of our experiments are conducted on a machine with an Apple M2
Max CPU and 32GB of physical memory, running the macOS 13.2.1 operating system. We run
GPT-3 through the OpenAI API. For each task, we set the timeout to 60 seconds (excluding the
time to query OpenAI).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



Data Extraction via Semantic Regular Expression Synthesis 287:21

Table 2. Evaluation results for Smore and data extraction baselines. P means precision and R means recall.

Tool # Finished P R F1 Synth Time (s) Matching Engine

ChatGPT-Regex-Synth 23/50 0.60 0.40 0.44 - Regex

ChatGPT-Exec - 0.60 0.77 0.65 - ChatGPT

FlashGPT 15/50 0.45 0.83 0.58 3.16 FlashGPT DSL

Smore 48/50 0.94 0.84 0.87 4.96 Semantic Regex

7.1 Comparison with Other Automated Data Extraction Techniques

There are several techniques that can be used to automate data extraction tasks. To answer our first
research question, we compare Smore against the following alternative data extraction approaches:

• ChatGPT-Regex-Synth [OpenAI 2022]: One way to automate data extraction is to synthesize
standard regexes from positive and negative examples. To evaluate this approach, we use ChatGPT
to synthesize standard regexes. If the synthesized regex rejects the positive examples or accepts
the negative examples, we ask ChatGPT to synthesize a different regex for up to ten iterations.8

• ChatGPT-Exec [OpenAI 2022]: Another way to automate data extraction is to directly use
ChatGPT. To evaluate this approach, we provide ChatGPT with positive and negative examples
and then query it about strings in the test set. Hence, this approach does not require synthesizing
a program; instead, it invokes ChatGPT on every test example.
• FlashGPT [Verbruggen et al. 2021]: Recent work has proposed an extension of FlashFill, called
FlashGPT, that can query GPT-3 in addition to performing syntactic transformations and pattern
matching. For our third baseline, we also compare against FlashGPT by giving it positive and
negative examples and then using it to synthesize a program in their DSL.

Main results. Our main results are summarized in Table 2. We evaluate each tool in terms of
precision, recall, and F1 score on the test set as well as synthesis time and number of benchmarks
solved. The P, R, and F1 columns represent the precision, recall, and �1 score on the test set.
Smore achieves the highest precision, recall, and �1 score among all the alternative data extraction
approaches. In particular, Smore outperforms the second best approach, namely ChatGPT-Exec,
by 22% in terms of �1 score. While ChatGPT-Exec and FlashGPT have fairly high recall, they
have low precision. ChatGPT-Regex-Synth has similar precision to ChatGPT-Exec but has very
low recall on the test set. Finally, FlashGPT and Smore are close in terms of recall, but Smore
significantly outperforms FlashGPT in terms of precision (for benchmarks that both tools can
synthesize within the time limit).

Next, the column labeled “# Finished” in Table 2 shows the number of tasks that each tool is able
to solve. For Smore and FlashGPT, solving a benchmark means they were able to find a program
consistent with the positive and negative examples within the 60-second time limit. Solving a
benchmark for ChatGPT-Regex-Synthmeans finding a regex consistent with the examples within
10 iterations.9 Since ChatGPT-Exec does not perform synthesis, this column is not applicable to
it. Among all the synthesis-based approaches, Smore terminates for 48 out of 50 tasks, which is
around twice as many as ChatGPT-Regex-Synth and around 3 times as many as FlashGPT.

Finally, the column labeled “Synth time” shows the synthesis time in seconds for FlashGPT and
Smore. Since we exclude the time to query OpenAI from synthesis time (this only takes at most a
few seconds), this column is not applicable to ChatGPT-Regex-Synth. As we can see from this

8We set the temperature to 0.7 for sampling.
9Recall we keep querying for a different regex for up to 10 times if the synthesized regex does not match the examples.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



287:22 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

Table 3. Evaluation results for our tool and synthesis baselines. P means precision and R means recall.

Tool # Finished P R F1 Synth Time (s)

ChatGPT-Synth 6/50 0.76 0.67 0.71 -

Smore-NoSketch 12/50 0.79 0.85 0.79 15.27

Smore 48/50 0.94 0.84 0.87 4.96

column, the synthesis time of Smore is around 5 seconds, so it takes slightly longer than FlashGPT

(which takes around 3 seconds) for the 14 tasks that both of the tools can solve. However, Smore is
able to synthesize a program for three times as many tasks as FlashGPT.

Failure Analysis for the baselines. To provide some insight into the shortcomings of existing
approaches, we briefly discuss the failure cases of the baselines. As expected, ChatGPT-Regex-
Synth struggles with tasks that are hard to represent as regular expressions, such as matching all
businesses that are in California. Although FlashGPT combines neural and symbolic constructs,
its neural component processes positive and negative examples rather than semantic types. In
other words, the neural constructs directly query GPT with positive and negative examples rather
than querying whether a string matches a certain type. As a result, it frequently generates trivial
programs that directly invoke GPT with the training examples as input. Hence, it ultimately ends
up sharing the same limitations as ChatGPT-Exec.

Failure analysis for the Smore. We examined instances where Smore is unable to complete the
synthesis task within the allotted time and found that it encounters difficulties in tasks that demand
a higher level of granularity from semantic pattern matching. For example, consider a task that
involves finding restaurant names containing a person’s name. For the positive example “Alice
Chinese Bistro”, the entity matcher may fail to recognize “Alice” as a person’s name, causing Smore
to fail to synthesize a program consistent with all examples.

7.2 Comparison with Other Semantic Regex Synthesis Techniques

To answer our second research question, we compare the neural-guided synthesis algorithm of
Smore against the following two purely-neural or purely-symbolic baselines:

• ChatGPT-Synth [OpenAI 2022]: To evaluate whether a purely neural synthesizer can solve
these benchmarks, we use ChatGPT to create a synthesizer for semantic regexes. Specifically,
our ChatGPT-Synth baseline queries ChatGPT to synthesize a semantic regex that matches all
positive examples and rejects all negative examples. If the generated semantic regex is inconsistent
with the examples, we query it again for a different one. We repeat this process for up to 10 times,
as done with our ChatGPT-Regex-Synth baseline in the previous subsection.
• Smore-NoSketch: To evaluate a semantic regex synthesis without neural sketch generation, we
create a variant of Smore that does not start with a sketch (i.e., it uses {□ : Any} as the sketch).

The results of this comparison are presented in Table 3. As we can see from the “# Finished”
column, ChatGPT-Synth can synthesize a semantic regex consistent with the examples for only 6
of the 50 benchmarks within 10 iterations. On the other hand, Smore-NoSketch times out on the
majority of benchmarks and only finds a consistent regex for 12 of the 50 benchmarks. Furthermore,
for semantic regexes that both Smore-NoSketch and Smore can synthesize, Smore is significantly
faster. Table 3 also shows that Smore outperforms both of these synthesizers in terms of �1-score
when evaluated on the test data. In particular, among all tasks that can be solved by both Smore

and ChatGPT-Synth, Smore achieves an �1 score of 0.94 versus 0.71, and, among tasks that can be
solved by both Smore and Smore-NoSketch, Smore achieves an �1 score of 0.88 versus 0.84.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



Data Extraction via Semantic Regular Expression Synthesis 287:23

0 5 10 15 20 25 30 35 40 45 50

0

100

200

300

400

500

# Completed Benchmarks

C
u
m
u
la
ti
v
e
T
im

e
(s
)

Smore

Smore-NoDecomp

Smore-NoLocateError

Smore-NoTypedHole

Smore-NoTypeSystem

Fig. 19. Solved tasks over time.

Task Manual-Regex Manual-SemRegex Smore

1 0.31 0.93 1.00
2 0.65 0.65 0.89
3 0.55 0.81 0.89
4 0.63 0.71 0.89

Average 0.54 0.78 0.92

Fig. 20. Average �1 scores achieved by
manually-wri�en regexes, semantic regexes,
and synthesized semantic regexes.

Table 4. Evaluation results for our tool and the no-sketch variant. P means precision and R means recall.

Tool # Finished P R F1 Synth Time (s)

ChatGPT-Synth 6/50 0.76 0.67 0.71 -

ChatGPT-Synth-Repair 12/50 0.76 0.67 0.71 -

Smore 48/50 0.94 0.84 0.87 4.96

7.3 Ablation Study

In this section, we describe two ablation studies to assess the relative impact of different components
of Smore: one evaluates the impact of the synthesis techniques proposed in Section 5.2-5.4, and
the other one evaluates the impact of generating sketches rather than concrete regexes.

Ablations of components of the synthesis techniques. To evaluate the effectiveness of the proposed
synthesis techniques, we consider the following ablations:

• Smore-NoDecomp: A variant of Smore that does not perform compositional sketch completion.
In particular, this variant does not infer positive examples for each hole.
• Smore-NoTypedHole: A variant of Smore that does not use typed sketches. That is, each hole
in the sketch is annotated with type Any.
• Smore-NoLocateError: A variant of Smore that does not perform error localization for sketch
repair. Instead, it queries GPT-3 for a new sketch through sampling.
• Smore-NoTypeSystem: A variant of Smore that does not perform type-directed synthesis.

The results of this ablation study are presented in Figure 19, which shows the number of
benchmarks completed (x-axis) within the given time limit (y-axis). As we can see from the gap
between the five lines, Smore is significantly faster than all other variants and achieves a speedup
of 14× compared to the second-fastest baseline, Smore-NoTypedHole. Hence, this ablation study
shows that all algorithmic components proposed in this paper are important for speeding up the
synthesis.

Ablations of sketch generations. To understand the significance of generating sketches as opposed
to concrete semantic regexes, we introduce a new baseline named ChatGPT-Synth-Repair. This
baseline extends the ChatGPT-Synth baseline from Section 7.2 with program repair. Specifically, it
first generates a concrete program using ChatGPT (using a similar prompt as the ChatGPT-Synth
baseline). If the generated program does not satisfy all the positive and negative examples provided,
it then performs the error localization and repair strategies presented in Section 5.5.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



287:24 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

The results of this ablation study are presented in Table 4. For clarity, we also include the results
of ChatGPT-Synth and Smore from Section 7.2 to show the difference evaluation results. This
ablation leads to the two following observations:

• ChatGPT-Synth-Repair solves 6 more benchmarks compared to ChatGPT-Synth. This shows
that our sketch repair technique can also be generalized to concrete program repair.
• Although ChatGPT-Synth-Repair exhibits superior performance over ChatGPT-Synth, it is
not comparable to the performance of Smore, which leverages sketches for synthesis. This
underscores the pivotal role sketches play in enhancing the tool’s efficacy. Upon analysis, we find
that ChatGPT-Synth-Repair is able to accurately locate the error when it does not generate
the desired program. However, ChatGPT struggles to generate a new program that precisely
separates positive from negative examples. In contrast, with Smore, since we produce sketches,
ChatGPT only needs to generate segments of the program it is confident about, delegating the
uncertain parts or those demanding intricate reasoning to the program synthesizer.

7.4 User Study

We conducted a user study to assess the efficacy of semantic regexes in aiding humans with
data extraction tasks compared to standard regexes. We recruited 13 participants, consisting of 3
CS undergraduate students, 6 CS graduate students, and 4 professional software engineers who
regularly use regexes in their work. We asked each participant to complete 4 data extraction tasks
by writing a regex. The participants were given 5 minutes for each task and asked to write standard
regexes for two randomly chosen tasks (out of the 4 total tasks) and semantic regexes for the
other two. The four tasks used in the study are simplified versions of the benchmarks used in our
evaluation — we intentionally simplified the tasks so that they are doable within 5 minutes.

Setup. To conduct this user study, we developed a command-line interface for Smore. For each
task, the interface initially displays the prompt for the task (including 3 positive and negative
examples) and then asks the user to input their answer. The tool randomly determines whether
the answer should be a standard or semantic regex and only accepts user answers in the correct
format. Upon entering a regex, the interface evaluates it against the test set and informs the user of
their regex’s performance, allowing unlimited attempts to enter a new regex within the 5-minute
time limit. The details of the user study protocol are provided in the supplementary material.

Results. We evaluate the quality of the regexes in terms of their �1 score on the test set. For
each task, Table 20 presents �1 scores for (a) manually-written standard regexes (“Manual-Regex”),
(b) manually-written semantic regexes (“Manual-SemRegex”), and (c) semantic regexes generated
automatically by Smore (the “Smore” column). Since some of the manually-written regexes have a
precision or recall score of 0, the �1 score is undefined. In Table 20, we only show average �1 score
across regexes for which the �1 score is defined.
As we can see from Figure 20, manually-written semantic regexes achieve a better overall �1

score (0.78) compared to standard regexes, for which the �1 score is 0.54. We ran a two-way ANOVA
to find the most significant factor affecting the �1 score. In particular, we model the �1 score
as the dependent variable and the type of tool and task as independent variables. The ANOVA
analysis shows that the “task” variable has a high p-value of 0.57, which indicates it does not have a
significant impact on the �1 score. On the other hand, the “type of tool” variable has a low p-value
of 0.003, suggesting that the type of tool used has a significant impact on user performance. The
analysis result indicates that participants are more effective at performing these types of data
extraction tasks using semantic regexes than with standard regexes. Another interesting aspect
of Figure 20 is that the semantic regexes learned by Smore seem to be even more effective than

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



Data Extraction via Semantic Regular Expression Synthesis 287:25

manually-written semantic regexes. In particular, for these four tasks, Smore learns regexes that
achieve an overall �1 score of 0.92 compared to the �1 score (0.78) of manually-written semantic
regexes. This result suggests that our proposed learning technique has the potential to improve
productivity even for expert users who are generally comfortable with writing regexes.

8 RELATED WORK

In this section, we survey related work on program synthesis and data extraction.

Learning regexes from examples. There is a large body of prior research on learning regular
expressions from positive and negative examples [Alquezar and Sanfeliu 1994; Angluin 1987; Firoiu
et al. 1998; Gold 1978; Parekh and Honavar 1996, 2001; Rivest and Schapire 1989]. Our work builds
on existing works that prune partial programs by evaluating the examples with respect to over-
and under-approximations [Chen et al. 2020; Lee et al. 2016; Ye et al. 2021]. In this work, we not
only use the over-approximations for pruning but also for decomposing the synthesis tasks.

Information Extraction from Semi-Structured Data. Past work has investigated similar
extraction tasks, particularly for extracting lists from web sources [Chen et al. 2021a; Lin et al. 2020;
Pasupat and Liang 2014; Raza and Gulwani 2020], answering questions based on tables [Pasupat
and Liang 2015], and general information extraction from tabular data [Le and Gulwani 2014; Wu
et al. 2018]. Recent work has specifically employed LLMs to extract information from tables [Cheng
et al. 2023] or raw text [Dunn et al. 2022]. Despite the prevalence of neural-based approaches that
emphasize data semantics, our work uniquely targets the integration of both semantic and symbolic
aspects of the data structure.

Neurosymbolic DSLs. Recent work has considered so-called neurosymbolic DSLs with both
standard language constructs and neural components [Andreas et al. 2016a,b; Bastani et al. 2022;
Chen et al. 2021a; Cheng et al. 2023; Gaunt et al. 2017; Huang et al. 2020b; Jiang et al. 2021; Shah
et al. 2020; Valkov et al. 2018; Verbruggen et al. 2021]. Among these, most relevant to our approach
are FlashGPT [Verbruggen et al. 2021] and Binder [Cheng et al. 2023]. FlashGPT augments the DSL
used in Flashfill [Gulwani 2011] with semantic transformation operators that can be used to reason
about the semantic properties of the input. However, FlashGPT relies on in-context examples and
does not utilize explicit semantic types, which hinders its ability to reason about combined semantic
and symbolic properties. On the other hand, Binder [Cheng et al. 2023] proposes a new program
structure that extends programming languages, such as SQL, with a function that allows querying
large language models (in particular, Codex). However, the constructs proposed in Binder focus
mainly on SQL-related tasks and do not transfer well to the string-matching domain.

Program Synthesis Using LLMs. The growing interest in leveraging LLMs for program syn-
thesis [Austin et al. 2021; Chen et al. 2021b; Cheng et al. 2023; Nijkamp et al. 2023; Zhou et al.
2023] stems from general-purpose models like ChatGPT and Codex demonstrating code generation
capabilities from various specifications, including natural language and input-output examples.
However, these models often generate code that violates syntactic and semantic rules due to their
limited understanding of program syntax and semantics. To address this, several approaches [Jain
et al. 2022; Poesia et al. 2022; Rahmani et al. 2021] integrate LLMs with symbolic methods like
program analysis to improve code quality. In our work, we use LLMs to generate sketches and
introduce a sketch repair technique to handle cases where the LLM fails to generate accurate
sketches.

Compositional program synthesis. Various approaches have been proposed for compositional
program synthesis [Bansal et al. 2023; Feser et al. 2015; Huang et al. 2020a; Polozov and Gulwani

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



287:26 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

2015]. Among these works, both _2 [Feser et al. 2015] and FlashMeta [Polozov and Gulwani 2015]
perform compositional PBE by inferring input-output examples for sub-programs using the inverse
semantics. In another example, Raza et al. [Raza et al. 2015] rely on the natural language description
to decompose the synthesis problems into smaller sub-problems. Furthermore, Zhang et al. [Zhang
et al. 2021] decompose the synthesis task into simpler sub-problems in the domain of UDF-to-SQL
translation using a dataflow graph. Our work differs from prior research by presenting a new
decomposition strategy on a typed sketch in the context of synthesizing string-matching programs.
While our decomposition approach helps reject incorrect programs using inferred positive examples,
the full result must still be tested against the negative examples to ensure correctness.

Semantic Checks for String Matching. There has been prior work in combining string
matching with semantic matching [Greenberg et al. 2022; Kozen 1997]; for example, Kleene algebra
with tests (KATs) [Kozen 1997] combines Kleene and Boolean algebra. While our semantic matching
construct can be conceptually viewed as a semantic guard for string matching, one key difference
is that the predicate (i.e. the “test”) part of the language in KATs is restricted to boolean algebra,
whereas our vocabulary of predicates is much richer, including function invocations and machine
learning models. Furthermore, the intended application domains are quite different: our proposed
semantic regexes are intended for textual data extraction, whereas KATs have traditionally been
used in the context of verification.

9 CONCLUSION

We have presented Smore, a new synthesis-powered system for data extraction. The key idea
behind Smore is the concept of semantic regexes, which augments the syntactic pattern matching
capabilities of regexes with a semantic pattern matching construct of the form {E : g | q} which
matches strings that have entity type g and that satisfy logical predicate q when interpreted as an
instance of g . As shown in our user study from Section 7.4, semantic regexes allow users to more
easily perform data extraction tasks that are hard to do using standard regular expressions.

In addition to proposing semantic regexes, we have also described a learning algorithm that can
synthesize semantic regexes from examples. Our synthesis algorithm is neural-guided and uses a
LLM to generate a typed sketch where unknown parts of the regex have useful type annotations
that are used to guide the search. Our synthesis algorithm is compositional and uses type-directed
reasoning to find a completion of each hole in the sketch. Our evaluation shows that our proposed
approach outperforms alternative data extraction techniques in terms of precision, recall, and �1
score. Our evaluation also shows the advantages of combining neural-guided sketch generation
with type-directed compositional synthesis in terms of synthesis time.

DATA-AVAILABILITY STATEMENT

The software that supports Section 5 and Section 7 is available on Zenodo [Chen et al. 2023].

ACKNOWLEDGMENTS

We thank our anonymous reviewers, Shankara Pailoor, Anders Miltner, Xi Ye, Nathan Taylor, Josh
Hoffman, Maxine Xin, Cole Vick, Sammy Thomas for their helpful feedback and support. This
material is based upon work supported by the National Science Foundation under Grant No. 1918889
and Grant No. 1762299. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author and do not necessarily reflect the views of the National
Science Foundation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.



Data Extraction via Semantic Regular Expression Synthesis 287:27

REFERENCES

R. Alquezar and A. Sanfeliu. 1994. Incremental Grammatical Inference From Positive And Negative Data Using Unbiased

Finite State Automata. In In Proceedings of the ACL’02 Workshop on Unsupervised Lexical Acquisition. 291–300.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016a. Learning to Compose Neural Networks for Question

Answering. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies. Association for Computational Linguistics, San Diego, California, 1545–1554.

https://doi.org/10.18653/v1/N16-1181

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016b. Neural Module Networks. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 39–48. https://doi.org/10.1109/CVPR.2016.12

Dana Angluin. 1987. Learning Regular Sets from Queries and Counterexamples. Inf. Comput. 75, 2 (1987), 87–106.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie J.

Cai, Michael Terry, Quoc V. Le, and Charles Sutton. 2021. Program Synthesis with Large Language Models. CoRR

abs/2108.07732 (2021). arXiv:2108.07732 https://arxiv.org/abs/2108.07732

Suguman Bansal, Giuseppe De Giacomo, Antonio Di Stasio, Yong Li, Moshe Y. Vardi, and Shufang Zhu. 2023. Compositional

Safety LTL Synthesis. In Verified Software. Theories, Tools and Experiments.: 14th International Conference, VSTTE 2022,

Trento, Italy, October 17–18, 2022, Revised Selected Papers (Trento, Italy). Springer-Verlag, Berlin, Heidelberg, 1–19.

https://doi.org/10.1007/978-3-031-25803-9_1

Osbert Bastani, Jeevana Priya Inala, and Armando Solar-Lezama. 2022. Interpretable, Verifiable, and Robust Reinforcement

Learning via Program Synthesis. Springer International Publishing, Cham, 207–228. https://doi.org/10.1007/978-3-031-

04083-2_11

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard Cyganiak, and Sebastian Hellmann.

2009. DBpedia - A crystallization point for the Web of Data. Journal of Web Semantics 7, 3 (2009), 154–165. https:

//doi.org/10.1016/j.websem.2009.07.002 The Web of Data.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,

Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and

Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems,

H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared Kaplan, Harrison Edwards,

Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,

Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser,

Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios

Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,

Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua

Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter

Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021b. Evaluating Large

Language Models Trained on Code. CoRR abs/2107.03374 (2021). arXiv:2107.03374 https://arxiv.org/abs/2107.03374

Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durrett, and Isil Dillig. 2023. Data Extraction via Semantic Regular

Expression Synthesis. https://doi.org/10.5281/zenodo.8144182

Qiaochu Chen, Aaron Lamoreaux, Xinyu Wang, Greg Durrett, Osbert Bastani, and Isil Dillig. 2021a. Web Question

Answering with Neurosymbolic Program Synthesis. In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery,

New York, NY, USA, 328–343. https://doi.org/10.1145/3453483.3454047

Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020. Multi-Modal Synthesis of Regular Expressions. In

Proceedings of the 41st ACM SIGPLANConference on Programming Language Design and Implementation (London, UK) (PLDI

2020). Association for Computing Machinery, New York, NY, USA, 487–502. https://doi.org/10.1145/3385412.3385988

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong, Dragomir Radev, Mari

Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. 2023. Binding Language Models in Symbolic Languages. In

The Eleventh International Conference on Learning Representations. https://openreview.net/forum?id=lH1PV42cbF

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,

Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua

Maynez, Abhishek Rao, Parker Barnes, Yi Tay, NoamM. Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Benton C.

Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm

Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier García, Vedant Misra, Kevin Robinson, Liam

Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi,

David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.

https://doi.org/10.18653/v1/N16-1181
https://doi.org/10.1109/CVPR.2016.12
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1007/978-3-031-25803-9_1
https://doi.org/10.1007/978-3-031-04083-2_11
https://doi.org/10.1007/978-3-031-04083-2_11
https://doi.org/10.1016/j.websem.2009.07.002
https://doi.org/10.1016/j.websem.2009.07.002
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.5281/zenodo.8144182
https://doi.org/10.1145/3453483.3454047
https://doi.org/10.1145/3385412.3385988
https://openreview.net/forum?id=lH1PV42cbF


287:28 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan

Saeta, Mark Díaz, Orhan Firat, Michele Catasta, Jason Wei, Kathleen S. Meier-Hellstern, Douglas Eck, Jeff Dean, Slav

Petrov, and Noah Fiedel. 2022. PaLM: Scaling Language Modeling with Pathways. ArXiv abs/2204.02311 (2022).

Alexander Dunn, John Dagdelen, Nicholas Walker, Sanghoon Lee, Andrew S. Rosen, Gerbrand Ceder, Kristin Persson, and

Anubhav Jain. 2022. Structured information extraction from complex scientific text with fine-tuned large language

models. arXiv 2212.05238 (2022).

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program Synthesis Using Conflict-Driven Learning. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia,

PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA, 420–435. https://doi.org/10.1145/

3192366.3192382

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-Based Synthesis of

Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference on

Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). Association for Computing Machinery,

New York, NY, USA, 422–436. https://doi.org/10.1145/3062341.3062351

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output

Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Portland, OR, USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 229–239. https://doi.org/10.

1145/2737924.2737977

Laura Firoiu, Tim Oates, and Paul R. Cohen. 1998. Learning Regular Languages from Positive Evidence. In Proceedings of the

Twentieth Annual Conference of the Cognitive Science Society. 350–355.

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-Directed Synthesis: A Type-

Theoretic Interpretation. In Proceedings of the 43rd Annual ACMSIGPLAN-SIGACT Symposium on Principles of Programming

Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY, USA, 802–815.

https://doi.org/10.1145/2837614.2837629

Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. 2017. Differentiable Programs with Neural

Libraries. In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia)

(ICML’17). JMLR.org, 1213–1222.

E Mark Gold. 1978. Complexity of automaton identification from given data. Information and Control 37, 3 (1978), 302 – 320.

Michael Greenberg, Ryan Beckett, and Eric Campbell. 2022. Kleene Algebra modulo Theories: A Framework for Con-

crete KATs. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and

Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 594–608.

https://doi.org/10.1145/3519939.3523722

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-Output Examples. In Proceedings of the

38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11).

Association for Computing Machinery, New York, NY, USA, 317–330. https://doi.org/10.1145/1926385.1926423

Jiani Huang, Calvin Smith, Osbert Bastani, Rishabh Singh, Aws Albarghouthi, and Mayur Naik. 2020b. Generating Pro-

grammatic Referring Expressions via Program Synthesis. In Proceedings of the 37th International Conference on Machine

Learning (Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 4495–4506.

https://proceedings.mlr.press/v119/huang20h.html

Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang. 2020a. Reconciling Enumerative and Deductive Program

Synthesis. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation

(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 1159–1174. https://doi.org/10.

1145/3385412.3386027

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram Rajamani, and Rahul Sharma.

2022. Jigsaw: Large Language Models Meet Program Synthesis. In Proceedings of the 44th International Conference on

Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA,

1219–1231. https://doi.org/10.1145/3510003.3510203

Chengyue Jiang, Zijian Jin, and Kewei Tu. 2021. Neuralizing Regular Expressions for Slot Filling. In Proceedings of the 2021

Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Online and

Punta Cana, Dominican Republic, 9481–9498. https://doi.org/10.18653/v1/2021.emnlp-main.747

Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19, 3 (may 1997), 427–443. https:

//doi.org/10.1145/256167.256195

Vu Le and Sumit Gulwani. 2014. FlashExtract: A Framework for Data Extraction by Examples. In Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14). ACM, 542–553. https:

//doi.org/10.1145/2594291.2594333

Mina Lee, Sunbeom So, and Hakjoo Oh. 2016. Synthesizing Regular Expressions from Examples for Introductory Automata

Assignments. In Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.

https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2837614.2837629
https://doi.org/10.1145/3519939.3523722
https://doi.org/10.1145/1926385.1926423
https://proceedings.mlr.press/v119/huang20h.html
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.18653/v1/2021.emnlp-main.747
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/2594291.2594333


Data Extraction via Semantic Regular Expression Synthesis 287:29

and Experiences (Amsterdam, Netherlands) (GPCE 2016). Association for Computing Machinery, New York, NY, USA,

70–80. https://doi.org/10.1145/2993236.2993244

Bill Yuchen Lin, Ying Sheng, Nguyen Vo, and Sandeep Tata. 2020. FreeDOM: A Transferable Neural Architecture for

Structured Information Extraction on Web Documents. In Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining (Virtual Event, CA, USA) (KDD ’20). Association for Computing Machinery, New

York, NY, USA, 1092–1102. https://doi.org/10.1145/3394486.3403153

James Hiram Morris. 1968. Lambda-calculus models of programming languages. Ph. D. Dissertation. Massachusetts Institute

of Technology, Cambridge.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong. 2023.

CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis. In The Eleventh International

Conference on Learning Representations. https://openreview.net/forum?id=iaYcJKpY2B_

OpenAI. 2022. Introducing ChatGPT. https://openai.com/blog/chatgpt. Accessed on March 16, 2023.

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-Example-Directed Program Synthesis. In Proceedings of the

36th ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR, USA) (PLDI ’15).

Association for Computing Machinery, New York, NY, USA, 619–630. https://doi.org/10.1145/2737924.2738007

Rajesh Parekh and Vasant Honavar. 1996. An incremental interactive algorithm for regular grammar inference. In Gram-

matical Interference: Learning Syntax from Sentences, Laurent Miclet and Colin de la Higuera (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 238–249.

Rajesh Parekh and Vasant Honavar. 2001. Learning DFA from Simple Examples. Machine Learning 44, 1 (01 Jul 2001), 9–35.

https://doi.org/10.1023/A:1010822518073

Panupong Pasupat and Percy Liang. 2014. Zero-shot Entity Extraction from Web Pages. In Proceedings of the 52nd Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,

Baltimore, Maryland, 391–401. https://doi.org/10.3115/v1/P14-1037

Panupong Pasupat and Percy Liang. 2015. Compositional Semantic Parsing on Semi-Structured Tables. In Proceedings of the

53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers). Association for Computational Linguistics, Beijing, China, 1470–1480.

https://doi.org/10.3115/v1/P15-1142

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit Gulwani. 2022. Syn-

chromesh: Reliable Code Generation from Pre-trained Language Models. In International Conference on Learning Repre-

sentations. https://openreview.net/forum?id=KmtVD97J43e

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement

Types. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 522–538. https:

//doi.org/10.1145/2908080.2908093

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. In Proceedings of

the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications

(Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 107–126. https:

//doi.org/10.1145/2814270.2814310

Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Daniel Morris, Arjun Radhakrishna, Gustavo Soares, and Ashish

Tiwari. 2021. Multi-Modal Program Inference: A Marriage of Pre-Trained Language Models and Component-Based

Synthesis. Proc. ACM Program. Lang. 5, OOPSLA, Article 158 (oct 2021), 29 pages. https://doi.org/10.1145/3485535

Mohammad Raza and Sumit Gulwani. 2020. Web Data Extraction Using Hybrid Program Synthesis: A Combination of

Top-down and Bottom-up Inference. In Proceedings of the 2020 ACM SIGMOD International Conference on Management

of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY, USA, 1967–1978.

https://doi.org/10.1145/3318464.3380608

Mohammad Raza, Sumit Gulwani, and NatasaMilic-Frayling. 2015. Compositional Program Synthesis fromNatural Language

and Examples. In Proceedings of the 24th International Conference on Artificial Intelligence (Buenos Aires, Argentina)

(IJCAI’15). AAAI Press, 792–800.

R. L. Rivest and R. E. Schapire. 1989. Inference of Finite Automata Using Homing Sequences. In Proceedings of the Twenty-first

Annual ACM Symposium on Theory of Computing (STOC ’89). ACM, 411–420.

Ameesh Shah, Eric Zhan, Jennifer J. Sun, Abhinav Verma, Yisong Yue, and Swarat Chaudhuri. 2020. Learning Differentiable

Programs with Admissible Neural Heuristics. In Proceedings of the 34th International Conference on Neural Information

Processing Systems (Vancouver, BC, Canada) (NIPS’20). Curran Associates Inc., Red Hook, NY, USA, Article 415, 13 pages.

Richard Shin and Benjamin Van Durme. 2022. Few-Shot Semantic Parsing with Language Models Trained on Code.

In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies. Association for Computational Linguistics, Seattle, United States, 5417–5425. https:

//doi.org/10.18653/v1/2022.naacl-main.396

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.

https://doi.org/10.1145/2993236.2993244
https://doi.org/10.1145/3394486.3403153
https://openreview.net/forum?id=iaYcJKpY2B_
https://openai.com/blog/chatgpt
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1023/A:1010822518073
https://doi.org/10.3115/v1/P14-1037
https://doi.org/10.3115/v1/P15-1142
https://openreview.net/forum?id=KmtVD97J43e
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/3485535
https://doi.org/10.1145/3318464.3380608
https://doi.org/10.18653/v1/2022.naacl-main.396
https://doi.org/10.18653/v1/2022.naacl-main.396


287:30 Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durre�, and Işıl Dillig

Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat Chaudhuri. 2018. HOUDINI: Lifelong

Learning as Program Synthesis. In Advances in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/

paper/2018/file/edc27f139c3b4e4bb29d1cdbc45663f9-Paper.pdf

Gust Verbruggen, Vu Le, and Sumit Gulwani. 2021. Semantic Programming by Example with Pre-Trained Models. Proc.

ACM Program. Lang. 5, OOPSLA, Article 100 (oct 2021), 25 pages. https://doi.org/10.1145/3485477

Sen Wu, Luke Hsiao, Xiao Cheng, Braden Hancock, Theodoros Rekatsinas, Philip Levis, and Christopher Ré. 2018. Fonduer:

Knowledge Base Construction from Richly Formatted Data. In Proceedings of the 2018 International Conference on

Management of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY, USA,

1301–1316. https://doi.org/10.1145/3183713.3183729

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2021. Optimal Neural Program Synthesis from Multimodal Specifications.

In Findings of the Association for Computational Linguistics: EMNLP 2021. Association for Computational Linguistics,

Punta Cana, Dominican Republic, 1691–1704. https://doi.org/10.18653/v1/2021.findings-emnlp.146

Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig. 2021. UDF to SQL Translation through Compositional Lazy

Inductive Synthesis. Proc. ACM Program. Lang. 5, OOPSLA, Article 112 (oct 2021), 26 pages. https://doi.org/10.1145/

3485489

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig. 2023. DocPrompting: Generating Code by

Retrieving the Docs. In The Eleventh International Conference on Learning Representations. https://openreview.net/forum?

id=ZTCxT2t2Ru

Terry Yue Zhuo, Zhuang Li, Yujin Huang, Fatemeh Shiri, Weiqing Wang, Gholamreza Haffari, and Yuan-Fang Li. 2023. On

Robustness of Prompt-based Semantic Parsing with Large Pre-trained Language Model: An Empirical Study on Codex.

arXiv 2301.12868 (2023).

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 287. Publication date: October 2023.

https://proceedings.neurips.cc/paper/2018/file/edc27f139c3b4e4bb29d1cdbc45663f9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/edc27f139c3b4e4bb29d1cdbc45663f9-Paper.pdf
https://doi.org/10.1145/3485477
https://doi.org/10.1145/3183713.3183729
https://doi.org/10.18653/v1/2021.findings-emnlp.146
https://doi.org/10.1145/3485489
https://doi.org/10.1145/3485489
https://openreview.net/forum?id=ZTCxT2t2Ru
https://openreview.net/forum?id=ZTCxT2t2Ru

	Abstract
	1 Introduction
	2 Overview
	2.1 Semantic Regexes
	2.2 Synthesizing Semantic Regexes

	3 Semantic Regular Expressions 
	4 Overview of the Type System
	4.1 Type Syntax
	4.2 Subtyping
	4.3 Typing Rules

	5 Learning Semantic Regexes from Examples
	5.1 Sketch Language
	5.2 Top-level algorithm
	5.3 Decomposing the Specification
	5.4 Compositional Type-Directed Synthesis
	5.5 Sketch Generation

	6 Implementation
	7 Evaluation
	7.1 Comparison with Other Automated Data Extraction Techniques
	7.2 Comparison with Other Semantic Regex Synthesis Techniques
	7.3 Ablation Study
	7.4 User Study

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

