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1 Introduction

A central challenge of high-energy physics is to develop observables that are easily accessible
experimentally, have a clean and clear connection to dynamics of interest in the underly-
ing physical theory, and can be computed theoretically at high precision. An important
observable for quantum chromodynamics that currently satisfies the first two criteria is
the energy-energy correlator (EEC), an infrared and collinear (IRC) safe event shape that
characterizes the angular distribution of particles produced in e+e− collisions [1, 2],

dΣ
d cosχ

=
∑
i,j

∫
dσ

EiEj

Q2 δ(cosχ − cos θij) . (1.1)

The EEC has many useful generalizations, including the transverse EEC (TEEC) for
hadron-hadron collisions [3], multi-point energy correlators [4], as well as EEC and TEEC
observables for electron-hadron colliders [5, 6]; it is also related to energy correlation func-
tions for jets [7–9]. Nonperturbative contributions to energy correlators are expected to be
small, making them compelling candidates for studying strong interactions [10], whether
through extracting the QCD coupling constant [11, 12], investigating transverse momentum
distributions [5, 6], or probing factorization violation [13]. These observables have been
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measured at LEP and the LHC at CERN [14–19], SLD at SLAC [20], and are a target of
the planned Electron-Ion Collider at Brookhaven [21]. To interpret experimental data, it
is important to have corresponding high-precision theoretical predictions.

The EEC was first studied at leading order in the 1970s [2], instigating a decade of
work producing numerical predictions at next-to-leading order (NLO) [22–30]. It took
two further decades to achieve the first numerical results at next-to-next-to-leading order
(NNLO) [31, 32] and analytic results at NLO [33]. Higher-order perturbative results for the
EEC exist only for certain cases: in the so-called collinear limit at next-to-next-to-leading
logarithms (NNLL) [34–36], in the back-to-back limit at N3LO, N3LL′ and N4LL [32, 37–
42], as well as for N = 4 supersymmetric Yang-Mills theory both at leading power at
NNLO and at subleading power only in the back-to-back limit [43–47].

There has been much less recent work on nonperturbative power corrections for the
EEC. Ref. [48] pointed out that the EEC has ΛQCD/Q power corrections for all values of
the angular variable χ, in constrast to event shapes for which such power corrections appear
in the dijet limit. Ref. [48] also carried out a renormalon calculation for a weighted integral
over the EEC, finding a result in agreement with the presence of 1/Q power corrections.
Ref. [49] initiated the use of operator methods to study EEC power corrections, and argued
that the leading corrections take the form

1
σ0

dΣ
d cosχ

= 1
σ0

dΣ̂
d cosχ

+ 2
sin3χ

Ω̄1
Q

, (1.2)

with Ω̄1 ∼ ΛQCD. Here Ω̄1 = λ1/2 in the notation of refs. [49, 50]. Note that relative
to [49, 50], we multiply by 2π for the azimuthal angular integral and include an additional
combinatoric factor of 2, since either of the energies Ei or Ej can become nonperturbative.
Ref. [51] reached this same conclusion in the dispersive model for power corrections with
the same factors of 2 shown in eq. (1.2), and also considered perturbative corrections to
the power correction coefficient. The universality of the power correction is not violated
by gluon splitting [52], an effect known as the Milan factor [53]. The earliest prediction for
the 1/ sin3 χ behavior of EEC power corrections was in the fragmentation model of ref. [2].
Our Ω̄1 notation follows ref. [54], where a value of Ω̄1 for thrust was determined by a fit
to data. Using massless kinematics, the parameter Ω̄1 appearing for the EEC is the same
as the one appearing in the dijet limit of thrust and other e+e− event shapes [49, 50, 55];
however, this universality can be spoiled by O(1) hadron mass corrections, which depend
on the method used to reconstruct particle energies and momenta [56, 57].

Interestingly, to our knowledge, a direct bubble-sum renormalon calculation of the
χ-dependence of the 1/Q power correction to the EEC in Borel space has not yet been
carried out, so we do so here. Our expectation is that the leading Borel-space renormalon
will agree with the 1/ sin3χ in eq. (1.2); however, the renormalon analysis method relies on
completely different approximations than the operator-based approach, and thus provides
an independent nontrivial confirmation. The Borel-space result also gives access to higher-
order renormalons. We find that in the bubble-sum approximation, there is no renormalon
corresponding to an O(1/Q2) power correction. Additionally, our calculations provide
input to assess the convergence of the MS-scheme perturbative expansion for the EEC,
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which is known to be asymptotic. At O(α2
s), we observe that the large-β0 approximation

provides a reasonable approximation to the full result. From figure 1 of ref. [32] at O(α3
s),

we note that the EEC seems to exhibit slow perturbative convergence for some values of
χ. This is also true for the z → 0 fixed-order and resummed results in ref. [34].

We present a scheme change from MS to an MSR scheme [54, 58, 59], which removes the
leading renormalon from both the perturbative EEC series and its leading power correction.
This scheme change yields improved convergence for the perturbative EEC series. Using
the universality between the thrust and EEC Ω̄1 parameters, we show that our MSR results
are already consistent at O(α2

s) with EEC data from the OPAL experiment at LEP [60].
The outline of this paper is as follows. Section 1.1 provides a brief overview of asymp-

totic series and the types of divergences that they may exhibit, including renormalons. In
section 2, we utilize the bubble chain formalism for probing renormalons from the infrared
structure of final-state gluons to calculate a Borel space result for the EEC, and demon-
strate that its leading renormalon is consistent with the 1/Q power correction in eq. (1.2),
while a renormalon corresponding to the 1/Q2 power correction is absent. In section 3,
we show how to remove the u = 1/2 renormalon from the MS perturbative series using
an MSR scheme, and demonstrate that this improves both perturbative convergence and
agreement with experimental data. We make concluding remarks in section 4.

1.1 Borel summation and renormalons

Perturbative expansions of observables in QFT are generally asymptotic [61]: even if their
first few terms appear to converge, at some order of expansion, the coefficients begin to
rapidly grow. Divergences should not be viewed as a fundamental sickness of a theory;
rather, asymptotic series encode all-orders nonperturbative information [62–66]. Nonethe-
less, extracting useful information from such a series is nontrivial; there are many different
types of divergences, each of which must be handled in different ways.

Perhaps the most conspicuous source of divergence in QFT is factorial growth in the
number of Feynman diagrams at high orders, which may lead to corresponding growth of
the series [67–70]. The technique of Borel summation is often sufficient to overcome such
growth. First, we take a Borel transform of an observable f(αs) → F (u), which for QCD
is most often defined by:

f(αs) =
∞∑

n=−1
cn αn+1

s → F (u) = c−1 δ(u) +
∞∑

n=0

cn

n!

(4π

β0

)n+1
un . (1.3)

The factor of 4π/β0 provides a convenient normalization for the Borel variable u, where
β0 = 11CA/3 − 2nf /3 is the lowest order QCD β-function. Next, we compute the new,
more rapidly convergent sum F (u). Finally, we take an inverse Borel transform to recover
the initial observable f(αs):

f(αs) =
∫ ∞

0
du exp

[
− u

4π

β0αs(µ)

]
F (u) . (1.4)

For more details of summation methods, see refs. [64, 71].
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Borel summation techniques are powerful but not sufficient for every series. If an
observable exhibits poles on the positive real axis in the complex-u Borel plane [72–74], the
inverse Borel transform runs into a problem. In order to evaluate the integral in eq. (1.4),
one must deform the integration contour above or below the real line to avoid the pole.
Depending on where one chooses to deform the contour, the inverse Borel transform will
yield different results. This leads to an ambiguity in the value of the perturbative series, the
magnitude of which is given by the residue of the pole. Such poles are called infrared (IR)
renormalons, which we hereafter refer to as simply renormalons (poles on the negative real
axis are UV renormalons, which are not discussed here). Renormalons nearer to the origin
create greater uncertainty in the value of a perturbative series, since the series coefficients
grow as ∼ n! (2/p)n for large n, given a pole at u = p/2.

Generally, one wishes to evaluate QCD observables theoretically at a level of precision
comparable to experiment. Luckily, renormalon ambiguities in observables are unphysical:
they cancel out between the perturbative series and nonpeturbative matrix elements (or
parameters of the field theory). We may view them as merely an artifact of not cleanly
separating perturbative and nonperturbative contributions to an observable when carrying
out a coupling expansion.1

Renormalons originate in the IR region of momentum integrals in loop diagrams [64],
and their behavior depends crucially on our choice of renormalization scheme; they ap-
pear in many schemes, such as the popular MS scheme. We may improve the conver-
gence of a perturbative expansion by modifying our renormalization scheme choice for
matrix elements (or parameters) in a manner that systematically removes these instabili-
ties. This modification improves both perturbative behavior and the stability of the matrix
element (or parameter) extraction. Examples of renormalons in QCD include the heavy-
quark mass [89–93], the B∗-B mass splitting governed by the parameter λ2 [58, 94], and
hadronization parameters describing jet cross-sections [54, 90, 95–99]. In this paper, we
obtain a Borel-space result for EEC renormalons, and then apply the method of ref. [58]
to improve stability for the EEC.

1The path integral formalism provides further intuition for divergent series in QFT. We may conceptual-
ize perturbative effects as representing fluctuations about the vacuum, whereas nonperturbative effects arise
from fluctuations about nontrivial saddle points. Some nonperturbative saddle points, such as instanton-
anti-instanton pairs, are Borel summable [75, 76]. On the other hand, renormalons are connected to the
more nuanced bions, or fractional instanton-anti-instanton pairs [65, 66, 77–83]. Developments from the
rich and evolving field of hyper-asymptotics, resurgence theory, and trans-series [84–87] promise to provide
further insight into nonperturbative effects in QFT as well as mathematical tools for handling asymptotic
expansions unambiguously.

To construct a trans-series, one sums up a traditional perturbative series with a nonperturbative con-
tribution, expressed as a complicated sum involving powers of exponential and logarithmic functions of
the coupling. If one examines only a subset of terms in the trans-series, an imaginary ambiguity like a
renormalon may arise. However, one expects [84] that a set of the so-called resurgence relations connecting
the perturbative and nonperturbative sectors of the trans-series will cancel all ambiguities in the overall
observable. This appears to be related to well-known phenomena in QCD where renormalon ambiguities
are removed by using alternate renormalization schemes to define the perturbative and nonperturbative
terms (see [64, 88] for reviews), which we explore later in this paper with an MSR scheme.
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(a) (b)

Figure 1. Leading-order diagrams for the energy-energy correlator in eq. (2.1).

2 EEC renormalons

The EEC describes how the energies of final-state hadrons in an e+e− collision are corre-
lated, as a function of their angle χ relative to one another:

dΣ
d cosχ

=
∑
i,j

∫
dσe+e−→ijX

EiEj

Q2 δ(cosχ − cos θij). (2.1)

The right-hand side of eq. (2.1) is a weighted sum over differential cross-sections for all
possible inclusive processes e+e− → ijX in which particles i and j are detected, with X

representing the remaining (arbitrary) final states. We take the total invariant mass of
the incoming e+e− to be Q2 and work in the center-of-mass frame, where the measured
final-state particles carry energy Ei and Ej and are separated by angle θij .

2.1 Leading order

We begin by briefly reviewing the calculation of the EEC at leading order, as our renor-
malon studies directly build off of this result. At LO, the EEC is defined in terms of
e+e− → qq̄g Feynman diagrams shown in figure 1, and eq. (2.1) becomes

dΣ̂
dz

=
∫

d3p

2E

d3p̄

2Ē

d3k

2Eg

δ4(q − p − p̄ − k)
(2π)5

∑
i,j=q,q̄,g

EiEj

Q4 δ(z − zij)αs(µ) ⟨|M0|2⟩, (2.2)

where we write the angular variable as cosχ = 1 − 2z and cos θij = 1 − 2zij . Here, p,
p̄, and k are the four-momenta of a final-state quark, anti-quark, and gluon, respectively,
with corresponding energies E, Ē, and Eg. The four-momentum of the virtual photon is
q, with Q2 = q2. The initial-state leptons have four-momenta l and l̄, and treating the
leptons as unpolarized, we can average over both spins and leptonic angles relative to a
given coordinate system. The spin-averaged LO matrix element ⟨|M0|2⟩ from summing
figures 1a and 1b then evaluates to

⟨|M0|2⟩ = σ0 π229CF
E2 + Ē2

(Q − 2E)(Q − 2Ē)
. (2.3)

Here, the tree-level cross section is

σ0 = 4πα2

Q2

∑
q

e2
q , (2.4)
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where eq is the charge of a quark of flavor q. Plugging eq. (2.3) into eq. (2.2) and carrying
out the phase space integrals, one finds the result for the EEC at O(αs):

1
σ0

dΣ̂LO
dz

= αsCF

4π

3− 2z

z5(1− z)
[
3z(2− 3z) + 2(3− 6z + 2z2) log(1− z)

]
. (2.5)

Note that this cross-section scales as 1/z as z → 0 and as 1/(1 − z) as z → 1 (modulo
logarithms), and that this is the generic scaling expected for perturbative contributions to
the EEC in these limits.

2.2 Bubble diagram calculation

Computing all possible radiative corrections to an observable and analyzing them for singu-
larities is prohibitively involved. In QCD, it is conventional to instead examine the smaller
set of so-called bubble diagrams to probe the existence of a renormalon. We define an
n-bubble diagram by replacing the outgoing gluon in figure 1a and figure 1b by a chain of
n fermion loops, shown in detail in figure 2. We must evaluate eq. (2.2) with M0 replaced
by the sum Mbub of all possible n-bubble diagrams, from n = 0 to ∞:

dΣ̂bub
dz

=
∫

d3p

2E

d3p̄

2Ē

d3k

2Eg

δ4(q −
∑

pi)
(2π)5

∑
i,j

EiEj

Q4 δ(z − zij)αs(µ) ⟨|Mbub|2⟩, (2.6)

where

i
√

αsMbub =
∞∑

n=0

 +

 .

(2.7)

Bubble diagrams comprise a gauge-invariant subset of all possible Feynman diagrams,
which for nf light quark flavors are proportional to nk

f , with the highest possible power
of k at each order in αs. Thus, they serve as a convenient probe for the existence and
severity of renormalon ambiguities [64]. Though the bubble diagram procedure is by nature
imprecise, it nevertheless provides us sufficient information to both analyze and improve
perturbative convergence, as well as better understand subleading power corrections.

It will be convenient to organize results at higher orders in perturbation theory in terms
of color coefficients that involve {β0, CF , CA, . . .} rather than {nf , CF , CA, . . .}. Here,
β0 = 11CA/3−2nf /3, and the ellipses denote terms beyond quadratic Casimirs. The basis
with β0 is more convenient here because terms with the maximum number of β0 factors
are known to numerically dominate perturbative series in many cases [100], while terms
with CF or CA in place of a β0 are numerically subleading. The renormalon bubble-chain
calculation predicts precisely these leading-β0 terms. Using the analytic results at O(α2

s)
from ref. [33], one can confirm that for the EEC the β0 terms numerically dominate, as we
show in figure 3a.
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Figure 2. EEC bubble diagram, formed by replacing the external gluon in figure 1a with a chain
of n fermion bubbles. Evaluating eq. (2.6) over the sum of all bubble diagrams allows us to probe
for renormalon divergences in the EEC.

2.2.1 Modified gluon propagator probe
Our impetus to evaluate eq. (2.6) is that a bubble-sum-modified gluon propagator probes
the infrared structure of the perturbative series, and thus can reveal renormalons. To make
the gluon propagator explicit, we rewrite the gluon phase-space integral in eq. (2.6) as∫

d3k

2Eg
= 2

∫
d4k

2π
Θ(k0) Im

[ 1
−k2 − i0

]
. (2.8)

For expediency, we define Πg(k) as the gluon propagator times g2, i.e. −(4παs)iSαβ/(k2 +
i0) = −4πiSαβΠg(k). It is convenient to work in Lorentz gauge, so that the same transverse
Lorentz index structure is present at tree level and in the presence of quark bubbles, in
which case Sαβ = (gαβ − kαkβ/k2)δab. The effect of inserting bubbles into eq. (2.6) is

⟨|Mbub|⟩2Πg(k) = ⟨|M0|⟩2Πbub(k) , (2.9)

where Πbub is the bubble-modified gluon propagator defined as

−4πi Sαβ Πbub(k) =
∞∑

n=0
, (2.10)

where the dots on the ends give a factor of g2 = 4παs. Substituting eq. (2.9) into eq. (2.6),

dΣ̂bub
dz

= 2
∫

d3p

2E

d3p̄

2Ē

d4k

2π
Θ(k0)

∑
i,j

EiEj

Q4 δ(z − zij)Im
[
−Πbub

]δ4(q −
∑

pi)
(2π)5 ⟨|M0|2⟩. (2.11)

We will make an approximation when evaluating eq. (2.11). Diagrammatically, the
result for ImΠbub includes both terms with a cut gluon propagator and terms where a pair
of quarks in a bubble are cut. While both of these cuts are included in our analysis, we
allow the energy factors Ei and Ej to select only from the original q, q̄, or a gluon with
k0, and never from the individual quarks in the cut quark bubble. This has the virtue
of significantly simplifying the calculation while still allowing the resulting modified gluon
propagator to act as a probe of infrared dynamics.

Let us evaluate the series for Πbub in eq. (2.10). The n = 0 term is −4πiSαβΠg. The
n = 1 renormalized result is well known:

= −2α2
snf

3
(−iSαβ)
k2 + i0 ln

(
µ2ec

−k2 − i0

)
. (2.12)
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Again, we have included couplings and gluon propagators at either end. We use the
modified minimal subtraction (MS) renormalization scheme with parameter µ, and define
c = 5/3. It is now straightforward to evaluate the bubble propagator sum in (2.10):

Πbub(k) =
1

k2 + i0
4π

β0

∞∑
n=0

(
αsβ0
4π

)n+1[
ln

(
µ2ec

−k2 − i0

)]n

. (2.13)

Here, we moved into the color coefficient basis {β0, CA, CF , . . .} by making the standard
replacement nf → −3β0/2. Next, we move eq. (2.13) into Borel space using eq. (1.3),
taking αsβ0/(4π) to the Borel variable u:

Πbub(u) =
−1

(−k2 − i0)1+u

4π

β0
(µ2ec)u, (2.14)

We can now convert the bubble phase-space integral in eq. (2.11) back from four dimensions
into a three-dimensional phase-space integral. When doing so, it is important to remember
that the squared amplitude ⟨|M0|2⟩ and EEC weighting factor EiEj are functions of ener-
gies, which we denote by A(k0). For any A(k0) we can carry out the transverse momentum
integral to obtain2

2
∫

d4k

2π
Θ(k0) Im

[ 1
(−k2 − i0)1+u

]
A(k0) =

∫
dk+dk−

2π
Θ(k0)A(k0) Im

[
d2k⊥

(k⃗2
⊥ − k+k− − i0)1+u

]

= sin(πu)
πu

2π

∫
dk+dk−

4 Θ(k+)Θ(k−) (k+k−)−uA
(

k+ + k−

2

)
= sin(πu)

πu

∫
d3k

2
∣∣⃗k∣∣1+2u (sin

2 θk)−uA(|⃗k|) . (2.15)

In the last line, we make the change of variable k± = |⃗k| ± kz to transform the result
back into the form of a standard phase-space integral, and use k+k− = |⃗k⊥|2 = |⃗k|2 sin2 θk.
Here, θk is a polar angle defined relative to any fixed axis l̂, a freedom we use later on. We
now have all the ingredients we need for the bubble-approximated cross-section eq. (2.11).

2.2.2 Borel-space result
We now insert the LO matrix element eq. (2.3), the Borel-transformed bubble propagator
eq. (2.14), and the phase-space integral relation eq. (2.15) into the bubble-modified EEC
cross-section eq. (2.11), and find

1
σ0

dΣ̂bub
dz

= 8
π2

CF (µ2ec)u

Q4β0

sin(uπ)
uπ

∫
d3p d3p̄ d3k δ4(q −

∑
pi) (sin2 θk)−u (2.16)

×
∑
i,j

EiEj

EĒE1+2u
g

δ(z − zij)
E2 + Ē2

(Q − 2E)(Q − 2Ē)
.

2If we were to ignore A(k0), it would be natural to carry out the k0 integral to find the modified phase-
space integral in the last line of eq. (2.15). This choice corresponds to using the equation of motion k0 = |⃗k|
to simplify A(k0) before (rather than after) carrying out the bubble sum in Borel space. Because eq. (2.15)
involves an integral over offshell momenta k2 ̸= 0, these choices lead to different results, with or without
the (sin2 θk)−u factor. Since the EEC has linear terms in k0, one must use the equations of motion after the
bubble sum, as in eq. (2.15), because higher-order terms in the series k0 = |⃗k|+k2/(2|⃗k|)+ . . . all contribute
with equal weight to the renormalon. This constrasts with offshell terms in A like k2/(p · p̄), which can
safely be dropped (and could only modify the residues of poles u ≥ 3/2).
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We can break this integral up into two pieces. The first term comes from the choice ij = qq̄.
The second term comes from ij = qg and q̄g, which are equal by symmetry of eq. (2.16).
We illustrate how to evaluate these integrals using the qg case. First, we integrate over d3p̄

using δ3(q⃗ −
∑

p⃗ ). Without loss of generality, we can take the quark along the l̂-axis, so
θk = θqg, and we can write d3pd3k = 4πE2E2

g dEdEgd cos θkd∆ϕ, where ∆ϕ is the difference
in azimuthal angle between the quark and the gluon. We carry out the angular integrals
using δ(z − zqg). Next, we eliminate the remaining energy-conserving delta function using
dĒ. This leaves us with a single remaining integral in E = Qx/2.

Combining both the qq̄ and qg/q̄g terms, we have

1
σ0

dΣ̂bub
dz

= CF (µ2ec)u

β0Q2u

sin(uπ)
uπ

1
[z(1− z)]1+u

∫ 1

0
dx

x(1− x)−2u

(1− xz)4−2u
(2.17)

×
{

z(1− x)
[
1− 2x + 2x2 − 2x3z + x4z2

]
+ 2(1− z)

[
1− 4xz + x2(1 + 2z + 4z2)− 2x3z(1 + 2z) + 2x4z2

]}
.

It is possible to perform these integrals analytically. Writing

1
σ0

dΣbub
dz

= CF (µ2ec)u

β0Q2u

sin(uπ)
uπ

1
[z(1− z)]1+u

(
Iqq̄ + 2 Iqg

)
, (2.18)

we find

Iqq̄ ≡ z

∫ 1

0
dx

x(1− x)−2u

(1− xz)4−2u
(1− x)

[
1− 2x + 2x2 − 2x3z + x4z2

]
=4u3(1−z)3 − 18u2(1−z)2 − u(1−z)(z2 + 7z − 32)−6(4−3z)

6(u − 2) 2F1(1, 4− 2u, 5− 2u, z)

+ −8u4(1−z)2 + 8u3(1−z)(5−z) + u2(2z2 + 50z − 86)− u(2z2 + 15z − 90)− 36
6(u − 1)(2u − 3) ,

Iqg ≡ (1− z)
∫ 1

0
dx

x(1− x)−2u

(1− xz)4−2u

[
1− 4xz + x2(1 + 2z + 4z2)− 2x3z(1 + 2z) + 2x4z2

]
=
4u2(1−z)3 − 2u(1−z)2(7−3z) + (1−z)

(
4z2 − 14z + 13

)
2(u − 2) 2F1(1, 4− 2u, 5− 2u, z)

+ 1
(u − 1)(2u − 3)(2u − 1)

[
−8u4(1−z)2 + 12u3(1−z)(3−2z)− u2

(
30z2−88z+60

)
+ u(18z2 − 55z + 42) + 4z(3− z)− 12

]
, (2.19)

where 2F1(a, b, c, x) is the standard hypergeometric function. These results are only valid
in the region 0 < z < 1, as we have not included the full set of contributions needed to
carry out the calculation at z = 0 and z = 1.

2.3 Renormalons in the EEC

We can now identify renormalons in the EEC from eq. (2.18). Recall that renormalons
are poles on the positive real u-axis; given our normalization for the Borel transform, they
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generally appear at half-integer or integer values of u. We find that the leading renormalon
appears at u = 1/2, associated with a pole in Iqg but not in Iqq. This is consistent with
the picture of leading power corrections arising from the limit in which the measured gluon
becomes nonperturbative. Examining the u → 1/2 limit, we find

1
σ0

dΣ̂
dz

∣∣∣∣
u→1/2

=
Res1/2
u − 1/2 + . . .

= −4CF

πβ0

µec/2

Q

1
[z(1− z)]3/2

1
u − 1/2 + . . . , (2.20)

where the ellipses denote terms of O
(
(u−1/2)0). We can compute the size of the ambiguity

∆1/2 in the MS perturbative series dΣ̂/dz associated with this renormalon. Specifically, we
evaluate the inverse Borel integral over a contour encircling the pole in complex u-space:

∆1/2

( 1
σ0

dΣ̂
dz

)
=

∮
u=1/2

du exp
[
− u

4π

β0αs(µ)
] Res1/2

u − 1/2

= −8iCF e5/6

β0

1
[z(1− z)]3/2

ΛQCD
Q

. (2.21)

This result is valid for 0 < z < 1. Note that renormalon ambiguities are always imaginary.
This form for the ambiguity in eq. (2.21) makes clear its connection to the ΛQCD/Q

EEC power correction. Using sin3 χ = 8[z(1− z)]3/2, we write eq. (1.2) in terms of z:

1
σ0

dΣ
dz

= 1
σ0

dΣ̂
dz

+ 1
2[z(1− z)]3/2

Ω̄1
Q

. (2.22)

Thus, the z-dependence of the leading renormalon in eq. (2.20) agrees with the leading
EEC power corrections derived in refs. [49, 50]. Since the left-hand side of eq. (2.22) is a
renormalon-free observable, the renormalon in the perturbative series dΣ̂/dz cancels against
the renormalon in the MS definition of the hadronic parameter Ω̄1. We can cross-check
our result for Res1/2 with the analogous renormalon bubble-chain calculations for thrust
in the dijet limit [54, 101], which allows us to infer the ambiguity

∆1/2
(
Ω̄1

)
= ΛQCD

16iCF e5/6

β0
. (2.23)

Thus, we confirm the cancellation of ambiguities between the two terms in eq. (2.23),
∆1/2(dΣ/dz) = 0. This cross-check also provides a test of the universality of power correc-
tions between thrust and the EEC, though we caution that the renormalon based calcu-
lation does not account for potential O(1) hadron-mass corrections which can potentially
spoil the universality.

The EEC observable obeys certain sum rules [34, 35, 102]. A particularly simple one,
which holds nonperturbatively,3 states that∫ 1

0
dz

dΣ
dz

= σ . (2.24)

3Note that results for higher z and (1 − z) moments of dΣ/dz rely on manipulations with massless
four-vectors and hence can have nonperturbative corrections in QCD.
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Equation (2.24) follows from energy conservation,
∑

i Ei = Q, and reflects that dΣ/dz inte-
grates to the total hadronic cross-section σ = σ(e+e− → X), just like a regular differential
distribution. This cross-section only has nonperturbative corrections at O(Λ4

QCD/Q4) for
massless quarks, implying that to properly treat the z = 0 and z = 1 endpoints, we must
modify the function [z(1 − z)]−3/2 such that it integrates to zero. The function remains
the same for 0 < z < 1, suggesting we need a plus distribution. Because we are dealing
with two singularities, at z = 0 and z = 1, we cannot determine a functional form uniquely
by imposing that the integral vanishes. The residual ambiguity can be parameterized by
a constant η, where 0 < η < 1. Constructing standard plus distributions over the inter-
vals [0, η] and [η, 1], and then recombining terms to cancel as much of the η dependence as
possible, we find that the regulated z-dependence for the power correction can be written as[

[z(1− z)]−3/2
]

+
≡ lim

ϵ→0

{
d

dz
θ(z − ϵ)θ(1− z − ϵ)G(z)

}
+

[
δ(1− z)− δ(z)

]
G(η) , (2.25)

where G(z) = −G(1− z), and

G(z) =
∫ z

dz′ [z′(1− z′)]−3/2 = 2z − 2(1− z)
z1/2(1− z)1/2 . (2.26)

It is easy to confirm that
∫ 1

0 dz
[
[z(1 − z)]−3/2]

+ = 0 for any value of η. A natural choice
is to require that the plus distribution be symmetric under z → 1 − z, implying η = 1/2
because G(1/2) = 0. In this case, the G(η) term in eq. (2.25) would vanish. With this
modification the formula for the EEC in MS with its leading power correction now reads

1
σ0

dΣ
dz

= 1
σ0

dΣ̂
dz

+ 1
2
[
[z(1− z)]3/2]

+

Ω̄1
Q

. (2.27)

While both Iqq̄ and Igq exhibit simple poles at u = 1, the prefactor sin(uπ) vanishes
here. Thus, the full dΣ̂bub/dz has no u = 1 pole,

1
σ0

dΣ̂
dz

∣∣∣∣
u=1

= 0
u − 1 + . . . , (2.28)

where the ellipses are O
(
(u − 1)0). This means our bubble-sum analysis has no sensitivity

to renormalons corresponding to Λ2
QCD/Q2 EEC power corrections. We do not, however,

rule out a non-Abelian contribution to the u = 1 residue. The presence of u = 1 poles
for event shape calculations which treat power corrections from the hard and collinear
regions at higher orders in perturbation theory have been discussed in the literature, see
for example [99, 103].

Our Borel-space result in eq. (2.18) indeed has no poles at any integer values of u = k,
corresponding to Λ2k

QCD/Q2k power corrections. We do observe poles at higher half-integer
values, u = k +1/2, associated with renormalons in Λ2k+1

QCD/Q2k+1 power corrections. Both
the Iqq̄ and Iqg terms contribute; for example, near u = 3/2, we find

1
σ0

dΣ̂
dz

∣∣∣∣
u=3/2

= CF

πβ0

µ3e3c/2

Q3
(2− 5z + 4z2)
[z(1− z)]3/2

1
u − 3/2 + . . . , (2.29)
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(a) (b)

Figure 3. (a) Contributions to the EEC at O(α2
s) (NLO) in perturbation theory as calculated

in ref. [33], organized by color channels C2
F , CF CA, and CF β0, as discussed in section 2.2. The

CF β0 term (red) dominates over the other channels. (b) Comparison at O(α2
s) of the perturbative

expansion of the u = 1/2 renormalon in eq. (2.30) (dashed red) and the CF β0 term of the EEC in
the MS scheme given in ref. [33] (solid black). Here, we take µ = Qe−5/6.

where the ellipses are O
(
(u − 3/2)0). Note that our calculational procedure renders the

residues of u ≥ 3/2 poles somewhat ambiguous because we used k2 = 0 to simplify the LO
matrix element in eq. (2.3). If we had instead expanded around k2 = 0, the higher-order
terms O(k2j/Q2j) would modify residues at u ≥ 3/2 (but not at u = 1/2 or u = 1).

2.3.1 Renormalon series in MS

Next, we investigate the manifesation of renormalons in MS perturbative calculations.
Recall from figure 3a that the dominant contribution to the EEC comes from the CF β0 color
structure at O(α2

s) [33]. We determine the extent to which the u = 1/2 pole approximates
the full CF β0 contribution by expanding about u = 0. To retain the leading logarithmic µ-
independence when expanding in u, we replace Res1/2 → − 1

β0
Z exp[2u ln(µec/2/Q)] (which

simplifies back to Res1/2 = − 1
β0
Zµec/2/Q at u=1/2), and we also expand this exponential.

Here Z = 4CF [z(1− z)]−3/2/π. This gives

1
σ0

dΣ̂
dz

(u)
∣∣∣∣∣
ren.

=
Res1/2
u − 1/2 ≈ Z

β0

[
2 + 4u

(
1 + LQ

)
+ 8u2(1 + LQ + 1

2L2
Q

)
+ . . .

]
, (2.30)

where LQ = ln(µec/2/Q). Using the inverse Borel transform in eq. (1.4),

1
σ0

dΣ̂
dz

(αs)
∣∣∣∣∣
ren.

= Z
β0

∞∑
n=1

2n Γ(n)
(

αs(µ)β0
4π

)n n−1∑
k=0

Lk
Q

k! (2.31)

= Z
β0

[
2αs(µ)β0

4π
+ 4

(
αs(µ)β0

4π

)2
(1 + LQ) + . . .

]
.

In figure 3b, we compare the perturbative CF β0α2
s result from ref. [33] to the O(α2

s)
renormalon term in eq. (2.31), taking µ = Qe−c/2 so that LQ = 0. We see that the
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renormalon prediction mirrors the full CF β0 perturbative result in a substantial portion of
z-space. This evidentiates the importance of taming terms in eq. (2.31) at higher orders,
which grow as 2n(n − 1)! .

3 Mitigating renormalon effects with an MSR scheme

In this section, we reorganize the perturbative and nonperturbative corrections to EEC,
to remove leading renormalon effects from both of these terms. This leads to improved
perturbative convergence and a better agreement with experimental data.

3.1 EEC in the MSR scheme

It is possible to systematically mitigate renormalon effects by switching from the MS scheme
to a so-called MSR renormalization scheme [58, 93]. This scheme change removes the
dominant Borel pole from the perturbative series, and also modifies matrix elements like
Ω̄1. The full perturbative series for the EEC in the MS scheme is

1
σ0

dΣ̂
dz

=
∞∑

n=1
cn(z, µ/Q)

[
αs(µ)
4π

]n

, (3.1)

where cn is a function of z and µ/Q, eq. (2.5) gives c1, and ref. [33] gives c2 analytically.
To remove the u = 1/2 renormalon, we define an MSR scheme using a new subtraction
scale R. In the MSR scheme, the leading power correction is [54, 104]

Ω1(R) = Ω̄1 − δ̄(R) . (3.2)

Here δ̄(R) is a perturbative series that removes the leading renormalon,

δ̄(R) = R
∞∑

n=1
dn0

[
αs(R)
4π

]n

= R
∞∑

n=1
dn(µ/R)

[
αs(µ)
4π

]n

, (3.3)

where dn0 are numbers and dn(µ/R) are simple functions dn(µ/R) =
∑n−1

j=0 dnj lnj(µ/R).
For j ≥ 1, dnj = (2/j)

∑n−1
k=j k dk(j−1)βn−k−1, where the QCD β-function coefficients

βn are defined by µ d
dµαs(µ) = −2αs

∑∞
n=0 βnαn+1

s /(4π)n+1. To ensure that the scheme
change in eq. (3.2) does not modify the parametric size of the power correction Ω̄1, we
choose R such that δ̄(R) ∼ ΛQCD. A typical choice is R ≃ 2GeV. In the bubble-
sum approximation, the coefficients at large n grow due to the u = 1/2 renormalon as
dn+1(µ/R) ≃ (µ/R)n!(2β0)nZ, for constant Z, in agreement with eq. (2.31).

There are multiple possible choices for the dn0 coefficients that remove the u = 1/2
renormalon; refs. [54, 59, 101, 104] introduce suitable schemes using the hemisphere or
thrust soft functions. We follow the definition of ref. [59], whose coefficients dn0 stem
from perturbatively expanding the logarithm of the position-space thrust soft function,
ln S̃τ2(y, µ), and evaluating it at iy = 1/µ = 1/R. Universality implies that this per-
turbative series has the desired renormalon, and this scheme choice does not rely on the
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bubble-sum approximation since it contains terms with all allowed color structures. Nu-
merically, the first two coefficients in the scheme of ref. [59] are

d1(µ/R) = d10 = −8.357 , (3.4)

d2(µ/R) = d20 + 2β0 d10 ln
(

µ

R

)
= −72.443− 16.713β0 ln

(
µ

R

)
.

Calculating d30 requires the non-logarithmic term in the O(α3
s) thrust soft function, for

which only estimates exist [105]. Note that the di(µ/R) coefficients are independent of
hadron masses and are therefore suitable for removing the renormalon from Ω̄1 for all
observables related by massless universality.

We must also change the EEC perturbative series to the MSR scheme:

1
σ0

dΣ̂MSR(R)
dz

=
∞∑

n=1

{
cn(z, µ/Q) + R

2Q

dn(µ/R)[
[z(1− z)]3/2]

+

}[
αs(µ)
4π

]n

. (3.5)

Here, the u = 1/2 renormalon cancels order-by-order between the cn and dn series. This
perturbative MSR result depends both on the use of the standard MS scheme for the
coupling αs(µ), and on the MSR scheme for the power correction. When carrying out the
MSR scheme change on the full EEC observable, we have:

1
σ0

dΣ
dz

= 1
σ0

dΣ̂MSR(R)
dz

+ 1
2
[
[z(1− z)]3/2]

+

Ω1(R)
Q

. (3.6)

This represents an improvement over the MS EEC in eq. (2.23): here, neither the pertur-
bative series in the first term nor the power correction in the second term has a u=1/2
renormalon.4 Notably, this renormalon removal relies on the predicted z-dependence of
the power correction, but does not rely on the bubble-sum approximation of the residue.
Indeed, it captures and subtracts even non-Abelian contributions to the renormalon.

3.2 MSR scheme with resummation

Equation (3.6) still has one remaining issue, associated with large logarithms induced by the
scale R. To avoid large logarithms in cn(z, µ/Q) and dn(µ/R), we see from eq. (3.5) that we
would need R ≃ µ ≃ Q. Retaining the scaling Ω1(R) ∼ ΛQCD, however, requires a relatively
small value of R, like R ≃ 2GeV; and this scale would cause large ln(µ/R) ≃ ln(Q/R) in
dn(µ/R). We can resolve these conflicting needs by using the RGE for R in ref. [104], which
has been implemented for Ω1(R) in refs. [54, 59],

Ω1(R1) = Ω1(R0) + K(R1, R0) = Ω1(R0)−
∞∑

n=0
γΩ1,R

n

∫ R1

R0
dR

[
αs(R)
4π

]n+1
. (3.7)

Here K(R1, R0) is a dimension-1 evolution kernel that sums large logarithms between R0
and R1. For leading logarithmic (LL) resummation, we need the anomalous dimension

4One can conceptualize changing to an MSR scheme as locating a resurgence-pair of ambiguities in the
perturbative and nonperturbative sectors of a trans-series, and shuffling the ambiguities so they cancel out.
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Figure 4. Comparison of perturbative results for the EEC cross-section in the MS and MSR
schemes in eqs. (2.23) and (3.6), respectively. Here, LO is O(αs) and NLO is O(α2

s). The MSR
results have overlapping uncertainty bands and better convergence than MS.

γΩ1,R
0 = d10 = −8.357, while at next-to-leading logarithmic (NLL), we also need γΩ1,R

1 =
d20 − 2β0d10 = 55.693. Here, we again quote numerical values from ref. [59], with nf =
5 active light flavors, suitable for the Q = mZ that we use in our numerical analysis.
Calculating γΩ1,R

2 requires d30 as input, which is not yet available.
This solution to the R-RGE enables us to write

1
σ0

dΣ
dz

=
[ 1

σ0

dΣ̂MSR(R1)
dz

+ K(R1, R0)
2Q

[
[z(1− z)]3/2]

+

]
+ Ω1(R0)

2Q
[
[z(1− z)]3/2]

+
, (3.8)

where the first term in square brackets corresponds to the resummed perturbative predic-
tion for the EEC, while the last term contains the MSR power correction. Here, R0 ≃ 2GeV
and R1 ≃ Q.

3.3 Perturbative convergence

Next, we compute the MSR perturbative EEC cross-section dΣ̂MSR/dz at LO and NLO
from eq. (3.5). For simplicity, we take µ = R1 in dΣ̂MSR/dz. At LO, we carry out the
resummation in K(R1, R0) at NLL using γΩ1,R

0,1 . At NLO, one should use K at NNLL
order; however, γΩ1,R

2 is not yet known, so we use K at NLL. Based on previous R-RGE
studies [58, 93, 106], we anticipate that the NNLL kernel would lead to only slightly smaller
perturbative uncertainties at NLO.

In figure 4, we set Q = mZ and αs(mZ) = 0.118, and use R0 = 2GeV for the MSR
scheme.5 We assess the uncertainty from higher-order perturbative corrections in the con-
ventional manner, by varying the renormalization scale dependences µ in MS and R1 = µ

in MSR, both on the range Q/2 to 2Q, using the LL and NLL running of αs(µ) at LO
and NLO, respectively. In the left panel of figure 4, we show central values; in the right
panel, we show deviation from the NLO MSR curve and also include perturbative uncer-
tainties. The MS EEC value increases significantly from LO to NLO, and the NLO curve is

5A useful feature of MSR schemes is that the cutoff R0 dependence cancels between the perturbative
result and the Ω1 power correction in eq. (3.8). If we leave out Ω1, we can estimate the size of this power
correction by varying R0 in the perturbative term. We do not make use of this method here.
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not within the estimated LO uncertainty. In contrast, the MSR scheme exhibits improved
convergence, with NLO results contained within the LO uncertainty band. Furthermore,
the estimated perturbative uncertainty at NLO is about a factor of two smaller for MSR
than for MS. Note that (numerical) results exist for the EEC at NNLO=O(α3

s) in the MS
scheme [31, 32], and these results lie just above the upper edge of the NLO MS uncertainty
band for almost all values of z. We do not analyze these results here as corresponding
NNLO MSR results are not yet available.

Note that so far, we have only considered the EEC perturbative series, i.e. the first
MS term in eq. (2.27) and the bracketed MSR terms in eq. (3.8). We do not expect these
series to asymptote to the same value, as the nonperturbative parameters Ω̄1 and Ω1(R0)
differ.

3.4 Nonperturbative corrections and hadron masses

To make a more complete prediction for the EEC that includes nonperturbative infor-
mation, we capitalize on the universality between the thrust and EEC power corrections.
Ref. [54] determined the thrust power corrections Ω̄1 and Ω1(R0) by fits to data. These fits
also yielded αs(mZ) = 0.114, which for consistency we use throughout this section, along
with R0 = 2GeV. At N3LL′ + O(α3

s) order, they obtained Ω̄1 = 0.252 ± 0.069GeV and
Ωref.[51]

1 (R0) = 0.323± 0.045, which translates to Ω1(R0) = 0.739± 0.045GeV in the MSR
scheme of ref. [59] used here.6

If we treat all hadrons as massless, then universality implies that Ω̄1 and Ω1(R) are
the same for both thrust and the EEC [49, 50, 55]. Since Ω1 is the vacuum matrix element
of a measurement operator sandwiched by back-to-back lightcone Wilson lines, power cor-
rections for such observables are related by boost symmetry [55]. The assumption that
hadrons are massless enters such calculations when manipulating kinematic variables to
translate between energies, momenta, rapidity, and angles.

Hadron mass corrections are known to have a significant impact on universality re-
lations for Ω1 [56]. This is influenced by assumptions made about hadron masses when
using experimental measurements to determine a given observable. Ref. [57] developed
a field-theoretic method to compute hadron mass corrections to universality relations.
For an observable e, we denote the leading-power mass correction by Ωe

1 = ceΩge
1 , where

Ωge
1 =

∫ 1
0 dr ge(r) Ω1(r) and r = pT /

√
p2

T + m2 for a hadron of transverse momentum pT

and mass m. Here ce and ge(r) are analytically calculable terms, while Ω1(r) is a universal
hadronic matrix element. Following the notation of ref. [57], for the EEC we define

fEEC(r, y) = 2 cosh y δ

(1− cos θ

2 − z

)
= 2 cosh y δ

(1
2 − sinh y

2
√

r2 + sinh2 y
− z

)
. (3.9)

6Compared to eq. (3.4), the scheme of ref. [54] has d10 = 0 and non-zero results only at higher orders,
which is the main cause of this numerical difference.
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Figure 5. Predictions for the full EEC with the inclusion of the leading nonperturbative correction
in the MS and MSR schemes, compared to OPAL data [60], as discussed in section 3.4. Central
values are displayed at both LO=O(αs) and NLO=O(α2

s).

Here, y is rapidity and the prefactor 2 is the combinatoric factor for two energies. Then,

cEEC =
∫ +∞

−∞
dy fEEC(1, y) = 1

2[z(1− z)]3/2 ,

gEEC(r) =
1

cEEC

∫ +∞

−∞
dy fEEC(r, y) = r . (3.10)

Here, cEEC is the coefficient of Ω1 for the massless universality relation, in agreement with
eqs. (2.27) and (3.8).

The result gEEC(r) = r implies that ΩgEEC
1 is in the so-called E-scheme universality

class of power corrections, which differs from the thrust universality class Ωgτ
1 quoted above.

Since gEEC(r) > gτ (r), we expect the value of the EEC power correction to be larger than
that for thrust. A two-term basis expansion provides a fairly accurate parametrization
for the impact of hadron masses on g(r) [57], enabling us to write any observable as a
linear combination of nonperturbative parameters Ωge

1 = be
0Ω

(0)
1 + be

1Ω
(1)
1 . Using the MSR

thrust fit, and Ω(0)
1 −Ω(1)

1 ≃ 0.7GeV from Monte Carlo fits [57], we find ΩgEEC
1 /Ωgτ

1 = 1.21.
Thus, hadron mass effects in the EEC induce a 21% increase in the value of Ω1(R0), giving
ΩgEEC

1 (R0) = 0.895±0.054GeV. It is harder to obtain an analogous MS estimate, as Monte
Carlo simulations with hadronization at the shower cutoff are physically similar to MSR,
but not to MS. Thus, we simply assume that MS hadron mass corrections also cause a
21% increase, yielding Ω̄gEEC

1 = 0.305± 0.084GeV.

3.5 Comparison to experimental data

We now combine the perturbative EEC results and leading nonperturbative corrections to
predict the total EEC cross-section. In figure 5, we compare our MS and MSR results with
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Figure 6. Full nonperturbative predictions for the EEC without (left) and with (right) corrections
from hadron mass effects as discussed in sections 3.4 and 3.5, normalized to NLO MSR. We show
the uncertainty bands for NLO curves with the perturbative and parametric uncertainties added in
quadrature.

OPAL data [60]. Here, Ω̄1 and Ω1(R0) include the estimated hadron mass corrections. We
normalize the theory results by dividing by the full hadronic cross-section σ, to O(αs) and
O(α2

s) for LO and NLO [107]. Our NLO MSR result agrees well with OPAL data, except
in the z → 0 and z → 1 regions, where one should resum large perturbative logarithms to
higher orders in αs. Note that the NLO MSR result is also closer to the data than the LO
MSR result. For MS, the power correction shifts MS predictions closer to the data, but it
is apparent that one needs higher-order perturbative corrections to improve agreement.

It is difficult to illustrate hadron mass effects and uncertainties in the theoretical
predictions on the scales shown in figure 5. Therefore, we display the same data as percent
deviations from the NLO MSR result in figure 6. In the left panel, we use the massless
hadron parameter values, corresponding to the thrust fit values of Ω̄1 and Ω1(R0). In the
right panel, we include the 21% increase in these parameters due to the hadron mass effects
discussed in section 3.4; we find that this strongly improves the agreement between theory
and data in both normalization and shape. We show both the perturbative uncertainties at
NLO from varying µ and R1 and the parametric uncertainties from the fit used to obtain
values for Ω1(R0) and Ω̄1, quoted in section 3.4. These two types of uncertainties are added
in quadrature in figure 6. We note that the MS perturbative uncertainty is about twice
as large as the parametric uncertainty of Ω̄1, and the MSR perturbative uncertainty is of
similar size as the parametric uncertainty of Ω1(R0).7 We also remark that in all cases the
power corrections give improved agreement with data compared to the purely perturbative
EEC. Furthermore, in the MSR scheme, the fixed-order result using a single R = R0 = R1
and resummation kernel K = 0 exhibits worse convergence and worse agreement with data
than the NLO MSR result shown here.

7Though we have only shown predictions for the EEC and not considered fits to the EEC data, we do
note that fits at a single value of Q are insufficient to break the degeneracy between different values of
αs(mZ) and Ω1(R0). For example, had we fixed αs(mZ) = 0.118, we could find a value of Ω1(R0) that
gives similarly good agreement with the OPAL data, as in the right panel of figure 6.
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4 Concluding remarks

Energy correlators show great promise for extracting a breadth of information about QCD
from colliders. To fully capitalize on the opportunity presented by this class of observables,
one must reach a high level of precision in both perturbative calculations and nonpertur-
bative corrections. In this paper, we analyzed renormalons in the MS EEC to investigate
the nature of its asymptotic perturbative series, and we converted our results to an MSR
scheme that removes the leading renormalon ambiguity, significantly improving conver-
gence and agreement with experimental data. Specifically, we computed the Borel space
MS EEC in the bubble-sum approximation, allowing us to calculate the z-dependence of
the leading u = 1/2 renormalon pole. We confirmed the expected [z(1 − z)]−3/2 depen-
dence of the corresponding O(ΛQCD/Q) power correction, and showed how to regulate the
z → 0 and z → 1 endpoints. We found no u = 1 pole under this approximation. Next, we
constructed an MSR renormalization scheme that removes the leading u = 1/2 renormalon
from both the perturbative and the nonperturbative contributions to the EEC, with ex-
plicit results given to O(α2

s). This scheme change significantly improves the convergence of
the EEC perturbative series and brings theoretical calculations of the EEC into reasonable
agreement with experimental data already at O(α2

s). This paper lays the groundwork for
improving theoretical predictions for other EEC observables, such as higher-point EEC
correlators (see e.g. ref. [4]) and EEC observables relevant for electron-ion and hadron-
hadron colliders. It would also be interesting to extend the analysis here to make use of
the O(α3

s) MS perturbative results for the two-point EEC [31, 32].
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