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ABSTRACT

The rheology of foam was studied through structural modelling and
experiments. A formalism was developed to calculate the total stress
tensor in terms of the foam microstructure by embedding basis vectors
along the foam film edges. This enabled us to calculate stresses for
any arbitrary foam cell orientation and arbitrary homogeneous deformation
for high gas fraction two-dimensional foam cell models. An experimental
technique was developed which eliminated all previous problems associated
with wall slippage in foam flow and allowed us to do experiments without
resorting to any empiricisms for the wall region.

Modelling work revealed foam to behave like a Bingham plastic with
its viscosity having contributions from the yield stress and dissipation
in the liquid films. The yield stress, which increased with gas fraction,
was proportional to the interfacial tension ¢ and inversely proportional
to cell size. For deformations below the yield point, foam behaved like
an elastic solid with the stress showing the same proportionality as
before, and the 1liquid films undergoing an extensional mution. It is
this elongational flow of the films that causes viscous dissipation in
steady flows. We also found the yield stress to be unaffected by a bimodal
cell size distribution indicating it to be not an important rheological
parameter. For low shear rates, the foam cell structure satisifes geometric
equilibrium; however, for higher shear rates the structure is determined
from a force balance of the viscous and interfacial forces at each Plateau
border. For large deformations, periodicity in the stress-strain behavior
was observed for certain initial cell orientations and shear rates. For
foams having finite liquid content, certain orientations were unstable
beyond a specific strain suggesting possiblities of preferential cell
orientations in foam. Finally, we observed the liquid film thickness
not to be an important parameter affecting rheological properties.

Experimental work also supports the theoretical findings. We observed
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foam to have a Bingham fluid behavior with its viscosity, n, having a
slope inversely proportional to shear rate indicating the presence of
a yield stress. Further measurements showed this yield stress to increase
with gas fraction. Elastic behavior of foam for small deformations was
indicated by its frequency independent moduli, very small phase shift
between strain input and stress output, and the ealstic modulus (G")
being much larger than the loss modulus (G''). Further proof of this
also came for the invariance of the normalized transient viscosity (n*)
versus strain plots for different shear rates.

Thesis Supervisor: Robert C. Armstrong
Title: Associate Professor of Chemical Engineering
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I. INTRODUCTION

A uniform dispersion of gas bubbles in a given amount of liquid
in which the separation between bubbles is no more than the bubble diameter
is termed a foam. Two extreme structural situations, depending on the
gas to liquid volume ratio, are noticed in foams. The first type consists
of spherical bubbles separated by rather thick liquid films. Such foams
are termed "wet" because of their low gas content. The second type contains
mostly gas. Bubbles are polyhedral in shape separated from each other
by very thin liquid films between the faces (Figure I-1a). These plane
parallel films are called the lamella of the foam [Bickerman, 1973; Kitchener
and Cooper, 1959; Kitchener, 1964]. Most common foams fall in the second
category, and our study is therefore confined only to such systems where
the gas volume fraction ranges from .74 for the hexagonally close packed
system to unity.

In order for foam cells to exist in mechanical equilibrium, certain
geometrical conditions have to be satisfied. The first constraint, which
follows from Plateau's law, requircs the structure be such that the surface
energy is at a local minimum. This implies that only three lamella can
meet at an edge to form a border or line (Figure I-2) called the Plateau
border [Rosen, 1978; Adamson, 1976; Shaw, 1970; Ross, 1969; Ross, 1983].
The coplanar angles are equal and 120 degrees each. Further, only four
Plateau borders can meet at a point forming mutually equal tetrahedral
angles.

The second constraint which is an outcome of Young and Laplace's

equation [Rosen, 1978] states that the radius of curvature of the cells
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A. PHOTOGRAPH

B. DODECAHEDRON

Figure I-1 Polyhedral foam cells showing very thin Plateau borders.
a) Real foam [Kitchener, et al., 1959] b) Schematic representation
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i
On

PLATEAU BORDER

FILM

Figure I-2 Schematic of Plateau border and lamella in foam. a) Cross
section through Plateau border showing 120 degree angles between films.
b) Side view of Plateau border
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be same. Young and Laplace's law states that the pressure drop across
an interface is inversely proportional to the radius of curvature. At
equilibrium, the pressure difference at all points across the gas-liquid
interfaces has to be same. This means that in adjoining cells the jump
in pressure at a point on going from the gas phase to the 1liquid film
should be equal. Thus at the Plateau border, where the three liquid
films meet and curve concave to the gas cells, the radii of curvature
have to be equal. The planar liquid walls also meet this criteria.
In terms of closed cell structures, only the dodecahedron (Fig. I-1b)
satisfies both equilibrium constraints. Real foam cells (Figure I-1b)
are close approximations of this [Bickerman, 1973; Matzke, 1946; Matzke
and Nestler, 1946; Princen, 1979; Princen, Aronson and Moser, 1980]

Like most dispersed systems, foams are unstable in a thermodynamic
sense. This is because the formation of gas bubbles results in a conco-
mitant increase in surface energy, and the system tends to reduce the
excess free energy by phase separation. Nevertheless, some foams can
persist for a sufficiently long time to be put to useful purposes. Articles
made of solid foams are examples of this. Here the liquid films undergo
cross linking féaotions before the foam had time to collapse.

Pure liquids do not foam. Generally, a surfactant which can consi-
derably lower the surface tension of the liquid to be foamed has to be
added in order to produce persistent ("metastable") foams. The formation
of foam is followed by liquid drainage and celi collapse. Capillary
pressure, present due to the different radii of curvature at the gas-liquid
interface because of polydispersity, and van der Waals attractive forces

in the liquid films cause the lamella to become thinner with time. For
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the foam to be stable the liquid film must have some surface elasticity
opposing this 1localised thinning. The most important source of this
is the Gibbs-Marangoni surface elastic effect [Shaw, 1970; Akers ed.,
1976]. Here the change in 1liquid film area with drainage changes the
equilibrium interfacial tension (Gibbs) as well as sets up a surface
tension gradient (Marangoni), both of which provide a restoring force.
In addition, surface viscosity and electric double layers [Kitchener
and Cooper, 1959; Kitchener, 1964; Rosen, 1978; Matijevic ed., 1971]
resist drainage. A balance between all these forces determines the lifetime
of a foam. Details of these along with the kinetics of bubble collapse
have been investigated by several researchers [Lemlich ed., 1972; Lemlich,
1978; Nishioka and Ross, 1981; Hartland and Barber, 1974, 1975; Steiner,
Hunkeler and Hartland, 1977; Kumar et al., 1982; New, 1967; Akers ed.,
1976; Desai et al., 1983; Ross, 1983; Kraynik, 1983]. Our study, however,
is restricted to the rheology of foams only. We focus on foams which
are stable compared to the process time so that stability effects can

be justifiably ignored.

A. RATIONALE FOR RESEARCH

Foam represents an important class of engineering materials. Its
low density and favorable mechanical and thermal properties makes it
useful in a wide range of applications. For instance, heavy and light
weight metallic components of automobiles are being replaced by foams.
Foam is used as a protective covering for cables. Foam cups are used
for their good thermal properties. However, one of its most important

current usage and which primarily motivated us to undertake this research
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lies in the space shuttle program. Here, polyurethane foam is used as
an ablative material to make components of the external fuel tank. For
certain parts foam (molded or sprayed) is used directly on metal substrates;
for others, foam is used on top of a granular composite material glued
onto the substrate. Foams are also used in nuclear plants as safeguards
for attenuation of explosively driven shock waves.

All these represent solid foams. However, to get these final products
liquid foams are used in processes, such as in some mold filling oper-
ation, where rheology becomes important. For instance, because of its
unusual nature, conventional processing techniques often do not lead
to desirable products. An understanding of the rheology is essential
here to optimize processing conditions and study the feasibility of new
products. For example, a lack of understanding of the flow behavior
of the polyurethane foam used in the space shuttle ablator results in
skin formation in the molded product, poor mold filling, non uniform
density and elongated cell structures. Removal of this skin and other
processing problems involves a trial and error procedure and is very
cost intensive.

Foams are also used in fluid form. Two rather unusual yet important
examples of this are the foams used to cover explosives planted by terrorists
before detonating them so as to absorb shock and thereby minimize damage,
and also to cover explosives with very sticky foam during transportation
to prevent them from being stolen by terrorists. Commonly, foams are
used universally at airports for emergency landing of aircrafts. Other
examples include fire fighting foams and shaving foams. An important

property governing the behavior of all such foams is their high viscosity.
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Another area where foam is being used increasingly is in transport of
particulates. In the oil industry, foams are used as a drilling fluid
to transport propant and to remove drilling debris out of oil wells [Mitchell,
1971; Beyer, Millhone and Foote, 1972]. In making paper by the Radfoam
process [Akers ed., 1976] aqueous foams are used to transport pulp and
coat it onto a web. Without foaming the water carrier, roughly ten times
as much water must be added in order to obtain a uniform paper sheet.

In all these processes, rheology plays a very important part.
For instance, an understanding of the structure-property relation in
foams will enable us to determine a priori how long different particulates
can be suspended in a foam. Unfortunately, despite the diverse uses
of foam, studies on its rheology are incomplete. Many critical questions
still remain to be answered. The potential benefits make understanding

these issues important.

B. LITERATURE REVIEW

Although work on foam morphology and stability has been going on
for a long time, it is only recently that studies on its rheology have
been undertaken. To the best of our knowledge, the only extensive work
on "wet"™ foam was done by Prud'homme [1978]. He devised a technique
to produce low gas fraction foams and the studied its different rheological
properties. The experimental work was accompanied by some theoretical
studies [Prud'homme and Bird, 1978] where expressions for different material
functions were derived. This work however, is restricted to very low
gas fraction foams and cannot be applied here.

Most of the studies on large gas fraction foam rheology dates back
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only as far as two decades and falls broadly into two categories: i)
The early work, which includes several independent studies done in the
late sixties and early seventies. These work however left a lot of unresolved
issues and led to renewed interest in this area in.the eighties. 1i1)
The recent studies, which started almost concurrently with our work and
are still in progress. Although started at the same time, most of these
studies along with ours have been complementary. Any overlap whatsoever
has merely served to verify the results. Both the early and recent studies
are discussed here.

1. Early Studies

Most of the major studies in this area are summarized in Table I-1.
This table includes the name of the researchers, the date and kind of
work done and some of the major findings. One exception has been made
in this section to include the recent work of Patton and coworkers [1981]
here. This 1is because although new, their work parallels the earlier
ones.

David [1968; 1969] was one of the first researchers to do a systematic
study on foams. He used a capillary viscometer for his studies and observed
considerable wall slippage in foam flow. Using Mooney's [1931] correction
factor, he determined the viscosity of foam and found it to be shear
thinning. Similar experiments done separately by Wenzel and coworkers
[1967] and Patton et al [1981] reported the same findings. Power law
behavior was also observed by Wenzel's group [1970] when he repeated
the experiments using a vaned cone and plate apparatus. All four studies
[David, 1968; David and Marsden, 1969; Wenzel, Stelson and Brungraber,

1967; Patton et al., 1981] using the tube flow experiments showed that
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SUMMARY OF EARLY FOAM WORK
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PARAMETERS

PROPERTILS

VISCOSITY

n

YIELD
STRESS

Ty

David(C)
1969
Wenzel(CP)
1970
Patton(C)

no 1/Y

GAS VOLUME
FRACTION

pavid(C)
1969
Wenzel(CP)
1970

ne« £(¢)

Beyer(C)
1972
Patton(C)
1981

David(C)
1969
Beyer(C)
1972

Wenzel(CP)
1970

Ty » f£(¢)
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BUBBLE
DIAMETER

Wenzel(CP)
1970

n = f(dy)

Wenzel(C)
1967

na 1/dp

David(C)
1969

n = f£(dp)

Wenzel(CP)
1970

Ty a 1/db

TUBE DIAMETER
dg

TUBE LENGTH

David(C)
n o dg
Patton(C)

n a d¢/L

C: CAPILLARY FLOW EXPERIMENTS

CP: CONE & PLATE EXPERIMENTS

T: THEORY



TABLE I-1 (continued)

SUMMARY OF EARLY FOAM WORK

PARAMETERS

PROPERTIES

SLIP
VELOCITY

Vs

SLIP LAYER
THICKNESS

]

SHEAR RATE
1

David(C)
1969
Beyer(C)
1972
Wenzel(CP)
1970
Surati(T)
1975

VSG';

high ¥

Wenzel(CP)
1970
Surati(T)
1975

Vg » £(Y)

Wenzel(CP)
1970
Surati(T)
1975

§ a ?_
(low Y)

§ » £(Y)
(high Y)

GAS VOLUME
FRACTION

David(C)
1969
Beyer(C)
1972

Vg a 1/¢

Wenzel(C)
1970

§ » £(¢)

pavid(C)
1968

§ ail/é

BUBBLE
DIAMETER

Wenzel(C)
1970

§ a dy

TUBE DIAMETER
dg

TUBE LENGTH

- —— - —— - - .- -
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tube diameter affected viscosity. Further Patton and David found viscosity
to be proportional to the tube diameter. Patton also found viscosity
to be inversely proportional to tube length. This tube length dependence
clearly indicates that Patton's experiments did not involve fully developed
flow. Another pr blem with these experiments was tha. the tube diameter
was almost commensurate with the bubble diameter. Further, the small
diameter led to considerable pressure drop and hence to compressibilty
effects. On the other hand, the big vanes in Wenzel's cone and plate
experiments gave a very non-homogeneous flow field. This, coupled with
the fact that wall slinpage at the cone surface (which had no vanes)
was not taken into account, makes Wenzel's data useful only in a semi-
quantitative sense.

Conflicting reports exist on the dependence of viscosity on gas
volume fraction (¢). Wenzel [1970], using a cone and plate geometry,
and David [1968; 1969] found no influence of ¢ on viscosity. However,
anotner study by Beyer and co-workers [1972] found viscosity to increase
with increasing gas volume fraction. Wenzel [1967; 1970] also found
contradictory results when trying to measure the effect of buoble diameter
(dp) on viscosity. The cone and plate experiments showed viscosity to
be independent of dp, but the tube flow experiments showed a 1/dp dependence
of viscosity. David also found viscosity to be influenced by bubble
size but did not derive any correlation for it.

Although all studies mentioned thus far indicate the presence of
a yield stress in foam, only two have attempted to measure it. Wenzel
[1970] arrived at a yield stress value by fitting his stress data t.

a Herschel-Bulkley model. David used a "Stormer" viscometer to obtain
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yield stress. Wenzel's study  showed Ty to be inversely proportional
to dp" where n=.65. Further, he did not observe any meaningful correlation
between yield stress and gas fraction. David, on the other hand, found
Ty to be proportional to ¢. Beyer and coworkers [1972] did some indirect
measurements on yield stress by studying particle lifting ability of
foam. They found this to increase with gas volume fraction.

Wenzel [1967] and co-workers looked at wall slip velocities for
flow of foam through a tube. By using a transparent pipe, they employed
flow visualization technique to time the movement of the foam at the
tube wall. They found this slip velocity, Vg, to increase intially with
average velocity or flow rate and then level off at higher flowrates.

Later, they did more careful experiments to actually measure this slip
layer. They used a vaned couette geometry where the inner cylinaer had
vanes to prevent slip while the outer one could be rotated by an external
motor. Torque on the inner cylinder was measured. Since Wenzel already
knew the yield stress from previous experiments, he focussed on the stress
region below it. Then, essentially all the shearing was going on in
the slip layer. For a Newtonian film undergoing laminar shearing flow,
1y=uVg/8 where Vg is the slip velocity (velocity of cylinder), 1, is
the wall shear stress and § the film thickness. Correlating this with
experiments, he found § to be of the same order of magnitude as the thickness
of the bubble film and increasing with shear rate. He found no correlation
between § and ¢ or bubble size leading him to believe that § is independent
of foam structure. In his experiments, he also observed that the thin
film seemed to have a very small yield stress of its own. Quantitative

experiments were not done to measure it.
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pavid and Marsden [1969] did not measure slip velocities directly.
Rather, by using Mooney's approach [1933], they defined a slip coefficient
(B) given by Vg=Bt,. Cappillary flow experiments revealed B (which is
directly related to §) to increase with lower gas fraction and larger
wall stress. Beyer et al. [1972] also used Mooney's approach to define
a slip coefficient. However, their coefficient was the inverse of David's
coefficient. Using experimental results from pie flow, they developed
an empirical relation between Vg, ¢ and t1,. They found Vg to increase
with wall stress and decrease with gas fraction.

Very 1little work has been done in developing a constitutive model
for foam in terms of its structural properties. Most of the theoretical
analyses [David et al., 1969; Beyer et al., 1972] was done using Mooney's
approach only to obtain material functions from tube flow experimental
data. Alternately, researchers fitted their data to some version of
the Bingham model [Wenzel et al., 1970; Patton et al., 1981]. Mahalingam
and co-workers [1975] went a step further. Using the Casson and Herschel-
Bulkley models and literature data, they developed the entire foam velocity
prcfile for pipe flow. Figure I-3 shows the velocity as a function of
radial distance. At low average velocities, tre flow is essentially
a plug. As average velocity increases, the plug radius decreases and
all three regions (skimming, intermediate, and plug) become quite distinct.
Further, the slip velocity asymptotes to a constant value. However,
none of these represented a structural model.

Clearly, the rheological study of foams were still in its infancy.

No structure-property models existed. Contradictions and defficiencies

existed in the experiments. Recently, therefore, a few groups including
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ours undertook some further studies. A report on the findings of these
groups form the subject matter of the next section.

2. Recent Work

Princen [1983] was one of the first (Prud'homme being the other)
to develop a structural model for foams. He used a two dimensional hexagonal
cell geometry for foam and derived stress-strain relations for shearing
deformation up to the yield point. He extended his model to incorporate
finite liquid volume fraction, the lower limit being determined by the
hexagonally close packed sphere system (Figure I-4). His range of gas
volume fraction coincides with most of the recent studies being done.
Results obtained showed the stress (and also the yield stress) to be
some function of ¢, directly proportional to the surface tension (o)
and inversely proportional to the hexagonal cell side length. This inverse
dependency with cell size is in agreement with Wenzel's tube flow experiments
[1967].

In his model, Princen focussed on only one specific initial cell
orientation (Figure I-4b) namely that where the vertices pointed upward.
Further, he considered interfacial forces to be dominant, and they were
assumed to act along.the liquid films. Thus, the shear stress could
be determined from the projection of all intersecting films on a horizontal
shearing plane. In order to get the orientation of the films as functions
of strain, he used an iterative technique and found the stress response
to be non-linear in strain.

To verify the theory, Princen [1984] has recently focussed on experiments
with oil in water emulsions. The aim of this study was to evaluate the

effect of gas volume fraction, surface tension, and cell diameter on
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HEXAGONAL CELLS

OC

$=1

CLOSE-PACKED SPHERES

¢= 0.9069

INCREASING GAS VOLUME FRACTION

Figure I-4 Two dimensional foam cell models. a) Hexagonally close-packed
spheres b) Hexagonal cells having ¢=1. ¢) Changing cell structure with
increasing gas volume fraction.
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the yield stress and look at boundary (wall slip) layer properties.
fde used a Couette device for his experiments where the outer cylinder
(radius R) was rotated and the torque measured at the inner one. He
characterized the slip layer between the emulsion and cylinder wall in
terms of the "fluidity" of that layer which he defined as ¢y,(1y) = h/n.
Here, ® is a function of stress only and h, n denote the effective thickness
and viscosity of the boundary layer. Thus, for flows where 1<1y, the
emulsion moves like a plug with a rigid angular velocity (wg). The stresses
can then be related by [Princen, 1984]:

T=0y1 wg Ry T2=dy2 (wp-wg) R

and, t{R12=1pR22 (neglecting end effects)
Here 1 and 2 refer to the inner and outer cylinders respectively. wg
was obtained by measuring the angular velocity of a pigmented radial
line on the emulsion. By plotting ¢, vs Tty or 1y Vs w, Princen obseved
a break in his curve which corresponded to the Ty of the emulsion (Figure
I-5 ). Thus he was able to obtain Ty indirectly from his experiments.
He found Ty to be proportional to ¢ and increasing with ¢ but not to
follow the 1/r dependence. He attributes the discrepancy to polydis-
persity, finite film thickness and contact angles.

In addition to measuring Ty, Princen analysed the slip layer. Extra-
polating the fluidity plots to zero stress and assuming a liquid viscosity,
he found the effective boundary layer to be approximately 45nm. He then
determined f, the fra:tion of the wall area occupied by thin aqueous
films between the wall and adjacent flattened droplets theoretically.
In this way, the corresponding film thickness was found to be around

20nm. Princen further noticed that the slip layer itself had a small
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Figure I-5 Fluidity of wall layer vs. wall stress for emulsions (EM
1-6) of variable dispersed/continuous phase volume ratio, Ry. Arrows
indicate yield stress [Princen, 1984].
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yield stress which he attributed to surface roughness. Similar observations
were also made by Wenzel in 1967.

Although Prud‘homme did some intial modelling work based on a hexagonal
cell geometry [1981], the emphasis of his studies has been experimental.
He and Yoshimura [1984] have developed a "slip layer model", some what
similar to Mooney's, where they define ¢ and h to be functions of stress
only. Their analyses shows that the slip layer problem in experiments
can be avoided by running the same experiments twice at the same stress
level in viscometers of two different sizes ( capillaries with two radii,
parallel plates with different gaps, etc). Thus for a parallel plate
device, the true bulk shear rate Y is given by:

Y=(YoHo-Hq Y1)/ (Hp-H1)
where ?1, Hj are the apparent shear rate and gap size respectively for
the two runs.

The viscosity can therefore be obtained using the Rabinowitz correction.
Figure I-6 shows stress versus shear rate curves for different runs along
with the corrected result. It is clear from the plot that the material
(oil in water emulsion) exhibits a yield stress.

In a second set of experiments, Prud'homme and Yoshimura [1984]
measured yield stress directly by using a stress rheometer and an eight
bladed vane device like Boger's apparatus [1983]. The stress rheometer
was used to apply a constant torque to the vane device (a Couette apparatus
with the inner cylinder having vanes) and monitor its position. The
shear stress at the cylindrical surface which encompasses the blade edges
could be calculated from the known torque, and the lowest stress at which

the vane position changed continuously with time was taken as the yield
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stress. Figure I-7 shc.us a typical experimental plot for the same emulsion.
Note from the two plots (Figure I-6, 7) that the yield stress values
are different.

The final set of experiments dealt with observing the dynamic behavior
of emulsions at large strains. Using a forced oscillation technique,
they observed non-sinusoidal stresses on applying sinusoidal strains.
They used their slip layer theory along with the assumption that the
bulk fluid behaved like a Voight element to simulate such flows and found
very good qualitative agreement with experimental results.

Kraynik's work involves both experiments and modelling. For his
experimental study [1982] he used a capillary viscometer to measure the
viscosity of foam (the other two studies have been with emulsions) and
corrected for wall slip in his analyses. He used long tubes with large
diameters (1 inch) to avoid the problems of compressibility and cell
size effects. He also developed a new technique to measure yield stresses.
In his method, a large gas bubble (~1cm diameter) is injected into the
foam near the tube wall (Figure I-8). For each run the stress is measured,
while from the relative motion between this bubble and a foam cell near
the wall one determines whether the stress in foam is below or above
the yield point. For stress smaller than the yield stress, there is
no relative motion between the bubbles as the foam flows like a plug
with all shearing going on in the thin wall films. For w1y, the large
gas bubble being close to the center line is dragged faster. One can
thus pinpoint the yield point from a few set of experiments. Figure
1-9 shows such a yield stress plot for different gas volume fraction.

A point to note here is that film formation is an important component



37

‘[hg6l ‘awwoy,pndd pue eanuiysox] TeAdajuy awmyl yoea SutJnp paytdde
anbuoj Juejsucd 3y 03 Teuojjdodoud aue sJaqunu Yyl *J339WO03Yd €634}
ayy Sursn (26°=¢) UOISTNWd UE JO JU3WdJINEE3W SEIJIS PI2IX L-I 9aJn3d13

0-30 ‘¥ (°33Si 3Ll 00350 0
1 | | 1 i 1 A 4. |

10-a8 1

(z) NIviis

R/S3u4P 997 = ZGT X el 1=

10585 ‘€



38

BELOW THE YIELD STRESS:

°

= O O

ABOVE THE YIELD STRESS:

Figure I-8 Flow visualization technique used to measure yield stress
in foam. Relative movement between bubbles is indicative of stresses
above yield point [Kraynik, 1982].
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in this technique. One has to be a little careful for stresses slightly
larger than Ty because the drag on the large bubble distorts the flow
around it and may affect the motion (accelerate) of the foam cell. This
may decrease or prevent relative motion between the two leading one to
mistake the stress as lower than Ty. Recently, Kraynik is engaged in

modelling large deformations of foam.

C. SCOPE OF WORK

The object of this study is to examine and understand the rheological
behavior of foam. We have primarily focussed on studying the shear flow
properties of foam since these are most important in engineering and
processing applicatons and since they are most amenable to experimental
verification. In this research, two general areas have been considered:

1) Rheological model describing structure-property relationship
in foam

2) Experimental Characterization of foams

The first part of this study involves developing a rheological
model for foam in terms of its intrinsic properties: bubble size, gas
volume fraction, liquid surface tension, 1liquid film viscosity. The
modelling work presented in this thesis parallels its evolution with
each successive model adding more complexity to the initial simplified,
analytic model.

In the experimental phase of the research, experiments were designed
to study systematically the dependence of the different shear flow properties
of foam on shear rate. Time dependent experiments were also done. We

developed methods to directly check the existence of as well as measure
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the value of the yield stress in foam. The influence of gas volume fraction
in foam on these material functions were also be examined. Finally,
the predictive ability of the model was checked against experimental
data.

In Chapter II of this thesis, we develop a simple analytic model
for foam rheology relating macroscopic material functions to the micro-
structure. We consider two-dimensional, monodisperse, hexagonal foam
cells of any arbitrary initial cell orientation, and interfacial tension
along the films to be the only dominant force. However, we restrict
ourselves to gas volume fractions approaching unity and to low shear
rates so that equilbrium conditions are preserved at any deformed state.

In Chapter III, we relax some of the restrictions of the first model
by looking at polydispersity. Calculations are done here for a bimodal
cell size distribution and for cells having irregular structures. We
also look at higher deformation rates where equilibrium conditions may
no longer prevail as viscous forces in films become finite. As before,
this chapter also deals with gas volume fraction approaching unity.

In Chapter IV, the effect of gas volme fraction on rheology is studied.
We confine our 2-D model to gas fractions ranging from 0.9069 for the
hexagonally close packed systems to unity. The cells are therefore made
of curved Plateau borders joined by straight line edges. Two cases are
studied here. In the first, we consider negligible film (straight 1line
portion) thickness with all 1liquid confined in the Plateau borders.
In the second case, we consider films of finite thickness and use 1liquid
film theory to relate the thickness to the radius of the Plateau border.

In the final phase of the modelling work (Chapter VII), we study
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large deformations of foam for both, very small (equilibrium conditions)
and finite deformation rates.

Chapters V and VI cover all the experimental details of this research.
We focussed on steady and dynamic shear flow experiments to evaluate
the viscoelastic properties of foam. In Chapter V, we discuss a method
to generate stable, reproducible foam along with techniques to measure
its material properties. Because of the nature of foam, commercially
available rheological equipments are inadequate to measure its properties.
In Chapter VI, results of all experiments are presented and compared

with model predictions.
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I1. MODEL FOR ORY FOAM

The goal of this chapter is to develop a rheological model for foam
in terms of some of its intrinsic porperties i.e. cell size, liquid film
viscosity, and interfacial tension. We restrict ourselves to gas volume
fraction (¢) approaching unity and to very low shear rates. In this
model we assume monodisperse, hexagonal foam cells of any arbitrary initial
orientation and derive analytic expressions for stresses for small shearing
and elongational deformation (up to the yield point) as well as for steady
shear fiow. For strains below the yield point, we look at the influence
of initial cell orientation on the stress-strain relation for shear,
normal and elongational stresses. In steady shear flcw, unlike any previous
models we take into account the influence of liquid film viscosity and
derive a simple analytic expression for the foam viscosity.

Our approach to this problem is: i) to first determine the "microme~-
chanics" or the actual cell structure for any arbitrary applied deformation
based on the kinematics, ii) relate this information to the macroscopic
variables i.e. the stresses, and finally, 1ii} i¢ derive explicit material
functions f{or certain specific flows mentioned earlier. The first two
calculations form the subject matter for next section while the last

one is derived in the following one,

A. MODEL AND GOVERNING EQUATIONS

1. Assumptions

In order to derive a stress-strain relation for foam, we make the

following assumptions:
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1. The foam cells are monodisperse, two dimensional hexagons (Figure
II-1). Thus, one can visualize foam as a collection of infinitely long
cylinders with hexagonal faces. The choice for hexagonal cells in two
dimension is obvious because it is the only structure that meets all
equilibrium criteria i.e. satisfy the force balance along the liquid
films and have minimum surface energy.

2. There is negligible 1liquid hold up in the 1liquid films, i.e. the
gas volume fraction, ¢, is unity.

3. Film drainzge and mass transfer are negligible while heat transfer
is infinitely fast. Negligible drainage assures no wall thinning, and
hence no cell rupture or coalescence. Further, with no mass transfer,
bubble sizes remain constant with time as there is no diffusion of gas
between bubbles. Fast heat transfer ensures isothermal conditions.

i, Since the foam cells are spatially periodic, for any deformation,
the mid-points or the centroid of the hexagonal cells move affinely with
the bulk. Because of geometric symmetry, this also ensures that the
midpoint of each liquid film moves affinely. Further, in any deformation,
the gas-liquid interfaces always remain planar. This follows from Young
and Laplace's equation [Rosen, 1978; Hiemenz, 1977].

5. Total cell volume is always conserved, that is, we consider only
constant volume deformations. For the two dimensional case, this means
that the area of the hexagons remain constant.

6. At equilibrium, the only force acting on the cells is the interfacial
tension, 20, along each liquid film. Effect of gravity is thus neglec-
ted. However, as the system undergoes deformation, there will be viscous

forces acting along the films too. We assume the deformation to be slow
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enough so that these viscous forces, which depend on deformation rate,
will be very small and will not affect the structure of the cells 1in
any way. The system can therefore be considered to be always at equi-
librium.

T. In order for the foam to be stable, only three 1liquid films can
meet at a point with an angle of 120 degrees between adjacent films [Bicker=-
man, 1973]). This 120 degree criterion, which follows from a force balance
at the Plateau border and ensures minimum surface energy, is preserved
in any deformation. Loss of this leads to instability.

2. Cell Deformation and Micromechanics

From the assumptions that the midpoint of the 1liquid films move
affinely with the bulk and that the 120 degree angle between films are
always preserved, we can determine the cell deformation for any applied
deformation based on kinematics only.. Let us, for modelling purposes,
define a 'unit cell' as the smallest repeat structure possible in foam.
This is the dashed parallelogram in Figure II-l. If we consider the
undeformed hexagonal foam cells to have sides of length 'a', the area
of this unit cell is 3/3a2/ll. Since we are working with 2-D structures
all equations in this chapter will be in terms of unit length in the
infinite direction.

Let us consider hexagonal foam cells confined betwe .n two parallel
plates under an applied deformation. To derive the microstructure we
choose a triangular subcell within the unit cell (Figure II-1b) formed
by joining the midpoints of three adjacent liquid films. Such a choice
has been found to simplify calculations. Further, the rest of the unit

cell ocontains no liquid film and can be ignored. Let us consider AABC
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Figure II-1 Schematic of foam cells and unit cell. The parallelogram
represents the unit cell and the dashed lines the liquid films.
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in Figures II-2, 3 to be the subcell with OA, OB, OC denoting the liquid
films. Thus L, the total length of the three films are given by L =
OA + OB + OC . In these two figures, which show the subcell deformation
for shear and elongational flows respectively, structures 2a and 3a &s
drawn represent a specific initial orientation of foam, namely that of
Figure II-1a with no strain applied. We will refer to this orientation
as the 00 orientation. Our goal here is to obtain the cell structure
for any initial orientation and deformation. 1In order to do so, we embed
two vectors b1© and by© along sides AB and AC of AABC in Figures II-2a,
3a. We choose A to be the origin in our x-y coordinate system and initially
have OA=OB=0C=a/2. Defining B° as the matrix representation for the
two vectors, we have:
__8=°- (by9, 920)1 I1I-1
Since A, B, C are mid-point of nodes, they move affinely. Continuum
fluid mechanics can therefore be applied on these points. Thus, A, B,
C, or equivalently the vectors by, bp for any orientation and deformation
can be found by rotating AABC counterclockwise by an angle 6 (Figures
II-2b, 3b) around point A and then applying an arbitrary deformation
defined tensorially by E (Figures II-2c, 3c). Mathematically this 1is
equivalent to
g - E.g.go 1I-2
where g_:_, N are respectively the displacement gradient and rotation tensors

-

given by [Bird, Armstrong and Hassager, 1977]:

dx1
Eij - —— I1-3
de
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cos® -sin®
=" | sine coss I1-4

B is the matrix representation of by, by for any orientation and strain.
xJ'. xj denote Cartesian components of a particle position at present
time t and past time t'.

Thus, as will be seen later, once the deformation is specified and E
is known we can get B explicitly.

Thus far the coordinates of A, B and C have been found as functions
of orientation and deformation using the affine motion assumption. In
order to obtain the cell structure, we still need to know the coordinates
of the node O. Let this have coordinates x, y given by the position
vector X. Therefore, embedding three vectors gy, go and g3 along 04,

OB and OC respectively, we have:

G- (g g2s g3)7
- (<%, 2K, b))t 11-5

Since gy, g2, g3 always make 120 degrees with each other, we use

the following relations to get the coordinates of 0.

S1xg2  &3Xgn
g§1°82 §E3°&n

- V3§, 11-6

From these, we get two quadratic relations between x and y which when
solved specifies point O in terms of components of Q and E. Thus, we
are able to completely describe the microstructural motion once the defor-

mation is specified.
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3. Derivation of Stresses

The goal of this section is to relate the microstructural deformation
to the applied stresses. Two independent methods are used to derive
the stresses: the work-energy concept and the force projection approach.

i)  WORK-ENERGY CONCEPT

Our analysis is based on the fact that the work required to deform
the foam cells is equal to the change in free energy of the foam micro-
structure. Consider the foam unit cell in Figure II-1b with the three
l1iquid films, and also a continuum enclosed by this unit cell. To the
latter let us apply an arbitrary, infinitesimal, homogeneous deformation
such that the position vector of a typical particle in the macroscopic
continuum changes from r to r', where r' =r+ dr and

dr = a°r I1-7
a is therefore the deformation gradient tensor. Thus, once we specify
the kind of deformation, say for example shear, we can determine r and
dr and hence obtain a explicitly.

The work done per unit length on applying this deformation to the
continuum takes the more generalized form [Bird, et al., 1977]:

dW = (1:a2) S 11-8
_wWhere,

dW = differential work

= stress tensor

u

r = position vector
S = area of unit cell
This work done also equals the change in free energy of the foam

microscruture in the unit cell, and is given by the product of the force
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along each liquid film and the change in area over which it is acting,
summed over all three films. For our 2-D case, area corresponds to the
length of the liquid films in a unit cell. Thus, dA, the change in ener-
gy/unit length is given by:
dA = I Fy dly 11-9

where,

1; is the length of the ith film and Fy the force along this film. The
summation is over the three films in the unit cell.

There are two parts to the force term: the interfacial tension,
20, which is same for all films and a viscous force term F,j. Correspon-
dingly, there are two modes of energy change in foams, one arising from
surface forces and the other from the viscous dissipation in the films. One

can thus rewrite Equation II-9 as

dA = 20 dL + Fj dlj II1-10
where,

L is the total 1liquid film length in a unit cell, and, repeated
indices denote summation over the films.

Ye will not delve into the exact form for the viscous stress term
here. Suffice it to say though that since the 1liquid films undergo an
extensional motion for any macroscopic deformation, this stress will
be proportional to the Hencky elongation rate of the films [Bird, Armstrong
and Hassager, 1977]. This in turn is related to the invariant of the
rate of strain tensor. Since most of the chapter deals with very small
deformation rates where equilibrium conditions prevail, this term can

be justifiably ignored. We will, however, take this viscous stress term
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into account when we extend our model to derive expressions for the steady
shear viscosity.

For an isothermal deformation, dA=dW [Treolar, 1967]. This gives:
(::g) S = 20 dL + Fq dlj II-11

Thus, once the deformation is specified, we can get o explicitly from
Equation 1I-7 as well as information about the films from the microme-
chanics. The stresses can then be obtained from the above relation.

ii) FORCE PROJECTION APPROACH

Since work and energy are scalar quantities, the approach used in
the last section cannot in general supply information about the total
stress tensor. In this section, therefore, we use vectors i.e. forces
along the liquid films, to obtain the stress tensor. A similar approach
has been used by Kraynik [1984] in his foam model. Our work is built
on some of the ideas from polymer kinetic theory of Hookean Dumbbell
models [Bird, Hassager, Armstrong and Curtiss, 1977].

Consider a surface with a unit normal vector n and tangential vector
t. Center around this surface a square cell having the same area as
the unit foam cell. Such a square area ensures that it encloses foam
films having the same gas fraction as the foam, on the average. Let
VS denote the sides of the square in the n and t directions respectively.
The probability that film gy cuts the plane (n) is [Bird, Hassager, Armstrong

and Curtiss, 19771]:
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gy 11-12
/s

where,

gi is the vector representation of the ith film.

The associated force in the film is F; g;j/g; and the area over which
the force is applied is VS. So the contribution to the stress tensor

from film i is:

F, g.( ng.)
Ie°n-= L1 1 11-13
g S

It should be noted that we could have used a rectangle instead of a square
because the actual lengths of the sides do not matter as long as the
area is that of the unit foam cell. Thus, on rearrangement, we get the

following expression for the stress tensor:

) F, By &
S

I1-14
g

T
-

Since all g's are known from the kinematics, the stress can be easily

calculated.

B. SMALL DEFORMATIONS BELOW THE YIELD POINT

1. Shear, Normal and Yield stresses

Stress-strain relations for small shearing deformations applied
to foam are developed here. We consider the deformation of hexagonal

foam cells confined between two parallel plates under an applied shear
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strain Y. For such a deformation, the micromechanics can be easily deter-

mined from the equations of the previous section. For shearing flows,

wnm

1 Y
NEY 1115

From Figure II-2a, and Equation II-1, we get §° to be:

8= (b1°, boO)t

v3/4 v3/2
=2 I1I1-16

3/4 0

Thus using Equation II-2, we get by, Dp for any orientation and strain:

by= a/3/2 { [ cos(6+60) + Y sin(8+60) ] 8x + sin(8+60) 8y }
II-17

bp= a/3/2 { [ cose + Y siné ] 84 + sine §y }

where §y and gy are the unit vectors in the x and y directions respectively.

Thus far the coordinates of A, B and C have been found as functions
of 8 and Y using the affine motion assumption. In order to find the
cell structure, we still need to know the coordinates of the node O.
Using Equation II-6, we get the following quadratic relations between

x and y, the coordinates of O:

¥2 + y2 -~ as2 [ v3 cose + Y/3 sine + sind ] x

-~ a/2 [ V3 sind - cos® =Y sine J y = 0 1I-18a, b
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x2 + y2 —a/2 [ v3 cos(8+60) - sin(6+60) + Y/3 sin(60+8) ] x

« a/2 [ cos(60+8) + v3 sin(60+6) + Y sin(60+68) ] y =0

Solving the above equations, we get for point 0, the coordinates

x: a [Y sin(8+30) + 2 cos(8+30)] K / [4 + Y2]

y: a [2 sin(8+30) - Y cos(8+30)] K / [4 + ¥2] I1I-19

where, K= { 1+ Y 3in(28+60) + Y2 [1 - 2 cos(26+60)]/4 }

The vectors g; are obtained from Equation II-5 and the lengths
of g1, g> and g3 are then found after considerable algebraic manipulation
to be:

g1 = ak/ /(4 +72) 1I-20a, b, ¢

g = a [1 - Y sin(20) + Y2 sin(60+6) cos(8+30)1/V/(4 + Y2)

g3 = a [1 - Y cos(26+30) - Y2 sin(e8) cos(6+30)1/V(4 + Y2)

Since we have all the structural information now, let us look at
the actual cell deformatiom. Figure II-4 shows such a deformation for
initial orientation 6=0°, 1Initially, each side has length "a" (Figure
II-4a). Let us label three sides as 'a', 'b' and ‘'c'. As the cells
deform, the three liquid films still meet at 120 degrees. Moreover,
the mid-point between nodes move affinely. Under these conditions, side
'a' shrinks while 'b', 'c' elongate (Figure II-4b). With increasing

strain a critical point is reached at which side 'a' reduces to zero
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Figure II-4 Shear deformation in foam cells. Increasing strain in clockwise
direction. Initial cell orientation 6=00°,
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length (Figure II-4c). The 120 degree angle criterion can no longer
be preserved and the bubbles have reached their stable limit; they then
reform (Figure 1I-4d). The stress corresponding to this critical strain
is the yield stress. Figure I1I-5 shows foam deformation for a differ-
ent initial cell orientation. The same criteria hold as before and the
yield point is reached when side 'a' reduces to a point. The figure
also reveals that deformed cells look quite different depending on their
initial orientation. Comparison of the two figures indicates that the
critical strain is a function of orientation.

In order to have a stress-strain equation describing this motion
up to the critical point, we first use the work-energy equation derived
in the previous section.

In a simple shear, a assumes the form:

0 dy
o= II-21
= 0 o0
Equation II-10 in this case becomes:
20 y duL
Tyx = —== == - I11-22
y a a3/3 dy

where we assumed Fj to be negligible. From the kinematics we have found
the lengths of the liquid films as functions of strain (Equation II-20).
Thus,

da. 3 Y

e B 11-23
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Unstrained
6 = 30 deg.

Figure 1I-5 Effect of initial orientation on critical strain and cell
structure in a shearing deformation. 6=30° in this case.
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and,

. = e —————— 1I-24
a v(3Y2 + 12)

This is the equation of state that describes the shear deformation
of foam up to the critical point. An important thing to realize here
is that the work-energy approach enabled us to calculate only the shear
stress. Because of the scalar nature of the method, we lost all information
on the normal stresses.

Using the force projection approach, however, we can get the entire
stress tensor simultaneously. Equation II-14 reveals that the only infor-
mation we need to calculate the stresses are the orientations and lengths
of the three liquid films in a unit cell. Using them in Equation II-14
we obtain the same expression for the shear stress. For the normal stresses,

however, we get:

82 82

T -1 _&U_z[__i_x__’_iL] 11_25
XX

S 31

which reduces tc,
2

20 Y
.. - s =— [ ] 1I-26
xx Yy a /(3 Y2 + 12)

Here, gix and 8iy represent the x and y components of the vector gj.

S is the unit cell area.
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As can be seen, the stress in foam is independent of the initial
orientation of the cell. In Figure I1I-6 are plotted the shear stress
and the normal stress difference (Ny) as a function of strain. As can
be seen, the shear stress rises faster initially while Ny does so at
a higher strain. The cross over point is at Y=1. An interesting thing
to note from the stress equations is that the ratio tyy/Nq equals Y.

In order to get the yield stress, Ty, We Just substitute the critical
strain into the shear stress expression. It must be noted here that
although the stress-strain relation is independent of cell orientation,
the critical strain is a function of orientation; hence, so is Ty. The
critical strain is the smallest value of Y that causes one of the gi's
in Equation II-20 to equal zero. In Figure II-7, which shows plots of
critical strain and yield stress as function of initial orientation,
we observe a discontinuity at 6 = U5 degrees. This can be explained
from the fact that for 00 < 8 < 450, side OC (Figures II-2, 4, 5) reduces
to zero length, whereas for 450 < 8 < 60°, side OB goes to zero at the
ecritical strain. It must be noted here that 6 = 0 and 60 degrees corres-—
pond to the same orientation because of the sixfold symmetry in hexagonal
cells.

2. Extensional Deformation

Let us consider an extensional deformation in the x direction governed
by the Hencky elongation strain e. When such an extension is applied
to the foam cells, the motion of the mid-side ncdes is given by [Bird,
Armstrong and Hassager, 19771,

X=Xye€ ,ys=yge€ 11-27

where, x, are the positions of a mid-point after an extension, and, xq,
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Figure II-6 Shear stress(1y,) and Normal stress difference(N)) as a
function of strain. Y=1 at the cross over point.
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6= o0° 30° - 45°

Figure II-7 Critical strain(Y,) and yield stress(ty) as a function of
orientation(®8). The stress has been non-dimensionalised by the surface
tension(oc) and undeformed cell side length(a).
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Yo are the initial coordinates of the mid-point. Further, as the cells
deform, the liquid films still meet at 120 degrees. Figure II-8 shows
the deformation of foam cells for a specific initial orientation (6 =
0°) using these two conditions. 1Initially (Figure II-8a) all cells have
sides of equal length. On applying an elongation deformation, one side
shrinks while the other two increase in length at the same rate (Figure
1I-8b). At a critical strain e;, one side reaches zero length and the
foam has reached its stability 1limit. The stress corresponding to this
point is the elongation yield stress t1,. In Figure II-9 we see the effect
of applying an elongational deformation to a foam for a different initial
orientation, 6=30°. In this case, one side increases in length with
increasing strain and other two sides become shorter (Figure II-9b).
However, the latter two sides never reach zero length because of the
volume constraint. So, for this orientation, there is no yield stress
or critical strain.

In order to describe the elongation deformation of foam, we use

Equations II-2 and 3. Here, 90 in Figure II-3 is given by:

8% = ( by, b2 )7

v3/4  -/3/4

=2 II-28

3/4 374

On applying a strain e (Figure II-3¢) to AABC for any arbritrary ini-

tial orientation 8 (Figure II-3b), E is given by:

I1-29
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x=x, e¢
yryg e ¢

Figure 1I-8 Cell structure as a function of elongational deformation
defined by x = x, €€, y = y, e"€. ¢, is the critical strain. Initial
orientaion, =00,
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Figure 1I-9 Effect of initial orientation in elongational deformation.
No oritical strain is observed in this case of 6=30°,
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o]

he ]

Therefore, B = g-g-

cos(6+60) e® - cos(60-08) ef

= a¥/3/2 11-30
sin(e+60) e"€ sin(60-6) e€

We now know the coordinates of A, B, C as functions of € and 6.

In order to describe the foam structure analytically, we need to Kknow

the coordinates of 0 in addition. Using Equation II-6 as before, we

get the coordinates of O to be:

x= ~a sind [e~€(3 cos2e - sine) - e€(cose - 3 sin28)]/4
II-31

y= a cosd [e~€(3 cos?8 - sin2@) - e€(cos?6 - 3 sin28)1/4

The lengths of the liquid films, as functions of 6 and e, are then found

to be:

OA = a [e"€ sin(6+60) sin(60-8) ~ e€ cos(60+8) cos(60-06)]
OB = a [e”€ 8in® sin(60+8) + e€ cos® cos(6+60)] I1-32a,b,c

OC = a [e€ cos® cos(60-8) ~ e"€ sind sin(60-6)]

We now have all the information to calculate the stresses using
the force approach. In order to use the energy approach, we however
need a. For an extensional deformation, a is given by:

de 0
II-33
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and,

dL
—_— - 3a/u [eE - e-e] 11_3)"
de

Hence usinrg either Equation II-11 or II-14, we get the same expression

for the stresses, i.e.
2 -
Txx “Tyy = ;33 [e€ -e7€] 11-35

The force balance approach further reveals that Tyx-O in this case.

From this relationship, we observe that the stress in elongational
deformation is independent of orientation. However, as in the shearing
case, the critical strain, €, and therefore the yield stress is dependent
on initial cell orientation. This critical point is found by seeing
which of the Equations II-32 a,b,c go to zero for the smallest €. Figure
I1-10 shows the elongational yield stress and the critical strain as
a function of orientation. As we mentioned before, we observe no yield

point for 8=300,

C. STEADY SHEAR FLOWS

So far, we have looked at the stress-strain behavior of foam for
deformations only up to the critical point. For calculations up to this
point we have neglected the viscous dissipation in the 1liquid films.
This is because the deformation was slow enough to make Yore effectively
zero. In this section, we extend our model to steady shear flows and

derive an expression for the viscosity of foam. From our calculations,
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Figure I1-10 Critical strain(eg)

as a function of orientation.
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Note absence of critical point for 6=

300,
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and stress(te) in elongational deformation



we know that one component of the «hear stress for steady flows will
be the yield stress term. Further, in a steady flow with shear rate
Y the viscous force cannot be neglected. Our goal here is to derive
this viscous force, Fuiv in terms of known variables.

From the previous section, we know that in a shear deformation the
liquid films in a foam undergo planar extension or contraction. This
in turn gives rise to viscous forces in them. The velocity of a thin
liquid film for such an extensional flow is given by [Bird, Armstrong
and Hassager, 19771:

Vy= €X , vy = -y 11-36
where E, the Hencky elongation rate is given by
€ = —mmmmmee I1-37

and 1 is the length of the liquid film.

In a unit cell, each liguid film has a different € given by:

g = === Y= a3 11-38

where Y is the bulk shear rate and i= 1,2,3 in 1; represents lengths
of sides OA ,0B , OC respectively, and in Ei.the corresponding elongation
rate.

Thus the viscous stress, which is really the elongation stress in

a film, is given by:

70
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Ty =ML € 11-39

In order to ge the corresponding force, we will assume ¢ to be
slightly less than unity so that the liquid films have a nonzero thickness.
Therefore,

Fug = u, € 84 I1I-40
where 6; is the film thickness.

We will consider the foam cells to be still hexagonal. Then, based
on geometry, the film thickness at any instant is given by:

&3 = C(¢) a2 7 1y II-41
C(¢) has been derived in Appendix A and is given by:

C(¢) = V3 (1=V¢) V¢/2 II-42

Therefore ,

, C(e) Y d1, .
F1 = 20 + uL a > II-43
1 oy

We can use this force expression along with our stress tensor expression
(Equation II-14) to directly obtain all material functjons, or use the
work equation. Either way, we get the rolkowing expression for the shear
stress in steady flow: \

\

Tyx = Ty + C“ ML, i II-4Y

where,
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dl1

11 dy

2

C, = C(¢) I ( ) 1I-45

1

Here, the squared term represents the average value over one cycle, and
Ty the yield stress.

Hence, the foam viscosity is giver by:
n= ‘[y/§ + C-luL II"“6

For 6=0°, C{ has a value of 0.043 assuming ¢=0.99

Therefore, in a steady shear flow, foam will behave like a Bingham
plastic with its viscosity being the sum of two different components:
the first contribution comes from its yield stress and is proportional
to o/a ; the second contribution comes from the liquid viscosity. From
the form of Equation II-U5, one can clearly see that this is essentially
a viscous dissipation contribution. Thus, the shape of the viscosity
versus shear rate curve will depend on the relative values of the two
terms. At very low shear rates, the viscosity will vary as 1/Y. At
high shear rates, the second term will dominate and the viscosity will
become independent of Y. However, in cases where Ty >> u, we may not

observe the levelling off effect within the experimental regime.

D. DISCUSSION

In this chapter, a simplified aralytical model for foam rheology
has been developed. This model differs considerably from the existing
foam model by Princen [1983]. Previous models developed by Prud'homme

[1981] and Princen [1983] are restricted to a specific initial foam cell
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orientation. Real systems however have all possible orientation. Princen's
atress-strain relationship however has the same ¢/a dependence as ours
for sqlall deformation as it must because of dimensional consideration,
and is a specific case (6=0°) of our model. In his derivation, Princen
does not get an analytical result describing the foam cell microstructure.
Consequently, he fails to get an analytic stress-strain equation of state
and uses an iterative technique to obtain stress for a specified strain.
His approach is a simplified version of the force projection method.
He looks at a shearing plane and the 1liquid films cutting that plane.
The component of the interfacial tension of these liquid films in the
shearing direction is then taken as the stress. Although Princen has
not looked at normal stresses, steady shear viscosities, elongational
deformation and the effect of liquid viscosities, he has however looked
at cases where the contact-angle between gas and 1liquid is not zero.
This is something which wil not be addressed in this thesis. Despite
some of its limitations, this model had been the first one to to provide
a good insight into the physics of foam deformation.

Prud'homme's calculations are in disagreement with both models although
he uses the same cell geometry. In fact, he uses the hexagonal cells
to derive two different expressions for viscosity, one of which is applicable
to tube flows only.

In deriving the stresses in our model, we have used two different
techniques: the work argument and the force projection method. It Iis
clear from our study that the latter is a better approach since it gives
the total stress tensor Jjust from the orientation and 1lengths of the

liquid films. In the work-energy approach, we have to know how these
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film lengths vary with strain., Further, we cannot get the total stress
tensor. An advantage of the energy approach, however, is that it is
foolproof and therefore serves as a verifying tool for other techniques.

In formulating our problem and deriving the cell structure, we assumed
120° angle between films. The entire problem can be done in a generalized
way without making any such assumption by using an energy minimisation
approach. In this method, we consider the system to have the minimum
energy for any deformed state. It so happens that the 120° criterion
ensures this [Beris, 1984].

In Figure II-11, we show a typical viscosity versus shear rate profile
as predicted by the model. As mentioned before, at low shear rates the
yield stress is dominating and n goes down with a slope of -1. At some
shear rate, ‘?t, vhe 1liquid contribution will become important and the
curve will start to level off. This transition value will depend on
the ratio o/ayp.

It should be mentioned here that the viscous term in the viscosity
expression could also have been derived from viscous dissipation arguments. In
this approach, we assume dissipation in foam to occur predominantly in
the liquid films. One can then compute this by considering foam as a
continuum and equating the macroscopic dissipation in the equivalent
cont inuum undergoing shearing flow to the energy dissipated in the extensional
flow of the liquid rilms (micrcstructure).

Finally we would like to comment on some of the restrictions of
the model. This model is restricted to gas fractions of unity. We feel
that incorporation of liquid into it will shift the viscosity curve down.

Further, real foam is polydisperse amd three dimensional. We have not
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Figure II-11 Schematic of dimensionless foam viscosity versus shear
rate as predicted by model. 1y, is the liquid viscosity and Y, corres-

ponds to the shear rate at which viscosity starts asymptoting to a constant
value.
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taken them into account here. Some of these effects are considered in
later chapters. Besides these, the model has one major weakness. This
is the assumption that the cells reform back to the original configuration
when strained past the yield point. Although this is obvious for 0=0°,
it is not so for other orientations. In fact, this is why we did our
viscosity calculation for this orientation only. We will comment further
on this later on. One may also argue that equilibrium conditions (120°
angles betweeen films) may not prevail at all times. This is because
with the films undergoing stretching motion, the extensional forces may
become important in the force balance at the Plateau border and thereby

affect the microstructure. This is the subject of the next chapter.

E. CONCLUSIONS

In this chapter, we have developed a generalized model for foam
having gas volume fraction approaching unity by assuming monodisperse,
two dimensional hexagonal cells. Despite its restrictions, this has
been the first succesful attempt in deriving a simple, analytic interpretative
model for foam flow. From the model we found that the flow behavior
of foam can be described by a simple analytic expression. In steady
shear flow, foam behaves like a Bingham plastic with its viscosity being
dominated by the yield stress at low shear rates and the liquid viscosity
at high shear rates. The yield stress, in turn, is directly proportional
to the liquid film interfacial tension and inversely proportional to
the cell size.

For small deformations up to the yield point, foam behaves 1like

an .lastic material with the stress strain relation independent of cell
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orientation. However, the critical strain is dependent on the initial

cell orientation, and hence so is the yield stress.
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III. POLYDISPERSITY AND VISCOUS EFFECTS ON DRY FOAM RHEOLOGY

Real foams have a distribution of cell sizes with cells having sides
of different lengths. The monodisperse, dry foam model developed earlier
is deficient in this respect. In this chapter, we have tried to take
some of the cell size effects into account by looking at a bimodal cell
size distribution i.e. a "bidisperse" foam system (Figure III-1a), and
at irregular cell structures (Figure III-1b). Furthermore, in the dry
foam case, all forces except interfacial tension Wwere ignored in determining
cell shape. It seems apparent that in addition to the interfacial tension,
there are viscous forces in the liquid films opposing their extensional
motion. The effect of such forces on cell deformation and rheology have
also been looked into here separately. In all cases only shear deformation

up to the yield point has been considered.

A, POLYDISPERSITY

Two ways of introducing polydispersity havz been studied here. Although
both are crude they provide useful indication of the sensitivity of the
rheology to inclusion of cells of more than one size. In the first case,
cells having initial sides of three different lengths are considered.
For hexagonal cells with internal angles of 120 aegrees this is the maximum
number of sides possible. In the second case, repeat units of alternate
layers of same size cells are considered. The first layer of this bilayered
system has regular hexagonal cells; the second layer has cells with the
vertical films differing in length from the other sides of the hexagon

so that the resulting cells are either elongated or flattened (Figure
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Figure IiI-1 Schematic diagram of Bidisperse and Irregular cell structures.
a) Bimodal cell size distribution with a; representing side length of
regular hexagons. b) Irregular cells with sides of three different lengths

a1, az, a3.
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III-1a). For both cases we have restricted our study to the initial
orientation shown in the first figure, and to low deformation rates so
that viscous forces are unimportant.

1. Irregular Cells

Although only one orientation where two sides of the hexagons point
vertically have been considered here, our approach is general enough
to be used for any arbitrary initial orientation. All calculations are
done in terms of ratios of side lengths using 'a,', the length of the
vertical side, as reference. Further, the concepts and approach of the
last chapter have been used extensively here.

As before, we will assume the liquid films to have mutual angles
of 120 degrees and their mid points to have affine motion. Figure III-2
shows a unit cell along with the triangular subcell formed by joining
the mid points of three adjacent films. Unlike the regular hexagon case,
this triangle is scalene. OA, OB, and OC, the three liquid films, have
lengths given by ay/2, ap/2, and a3/2 respectively at zero strain. Let
us define two ratios:

Co=as/aq c3=az/aq
The vectors by and by along AB and AC of AABC for any arbitrary strain

are then given by (Section II-A.2):

by=aq { [vV3/2+7¥(cp+1/2)] §x + [cp+1/2] &y )

bo=ay { [v3/2(1+c3)+Y/2(1~c3)] §x + 1/2[1-c3] &y } I1I-1

In order to get the stress strain relation, we first need to know the

lengths and orientations of the liquid films as functions of strain.
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Figure III-2 Unit cell and possible subcells in an irregular cell system.
Parallelogram and triangles represent unit cell and subcell respectively.
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The information missing is the coordinates of point 0. Let these be

X, Y. Then by using Equations II-6, which is an outcome of the 120 degree

criterion, we get the following relations between x and y:

x2 + y2 - a;y [ (1+cp) + Y/V3 (1/2+¢p) ]

- aix [ 1//3 (1=¢cp) + ¥ (1/2+cp) 1 = O

x2 + y2 = a;x [ Y/2 (1-c3) + 1/¥/3 (2+c3) ]

+ajy [ e3+ Y (1-e3) /2/3] =0

Solving these equations, we get the coordinates of point O as:

x = a; [(1+cp+eg) + Y/V3 (1+cp-e3/2)] x N1/D1
y = a7 [(1+cp+e3)/v3 = ¥ (ep+e3/2)] x N1/D1
where,
N1= [2(14cp+c3)/V3 + Y(1+cp+e3) + Y2(1/2+cp)(1-e3)/v3]
D1= [ 4(1+cp+e3)2/3 + 2Y(1+cp+e3)(1-c3)
+ Y2{(1+cp=c3/2)2/3 + (cp+c3/2)?} ]

The lengths of the liquid films can now be calculated. Thus,

OA = a; x N1 / /D1
0B = aj; [ 2 cp (1+4cp+c3)/V3 + ¥ (1-c3) e
+ 2 Y2 (1/72+cp) (ep*e3/2)/¥3 ] / VDI
OC = ay [ 2 e3 (1+cp+c3)/¥3 = Y (e32+cpe3+40)p)

- Y2 (1-e3) (cp*e3/2)/¥3 1 / /D1

III-2

III-3

III-4
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From the work-energy arguments of Section II-A.2, we know that

dL
Tyx S = 20 ay

S, the area of the unit cell, is four times the area of AABC and is given
by:
S =v3 a2 (cp + e3 + cpc3) / U

We thus get the following stress-strain relation.

20

. - 2 2 -
-(yx - —-375-1 03/2) "’(02"'03/2) )]a, III-5

[(1-c,) (1+c,t03)+/3Y {%'(ch

As before, we do not get the normal stresses from the energy arguments.
Using the force approach, however, we get the normal stresses from the
g's since,

Txx = Tyy = 20/S ] ( gix2-8iy? )/84

2. "Bidisperse System"

Certain important differences exist here from the monodisperse case.
Let us focus on Figure III-3 which shows a collection of bidisperse foam
cells. The centers of these cells move affinely with the bulk. The
horizontal lines drawn through these points always intersect the vertical
foam films at their midpoints. Consequently, from symmetry, these represent
points of affine motion. However, unlike the previous cases the midpoints
of the other films do not move affinely. This becomes clear from the
triangular subcells formed by Jjoining midpoints of adjacent vertical
fiims. Because of two different cell sizes, we now deal with a pair
of subcells. Figure III-3 shows the unit cell with the subcells ABC

and AB'C'. It is clear from the similar triangles OAB and O'A'B' that
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Figure III-3 Unit cell DBD'B' and triangular subcells ABC, A'B'C' .n

a bidisperse system.
lines of affine motion.

The horizontal lines through the center represent
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A, C, C', which move affinely with the bulk, are not the mid points of
the respective films but divide them in the ratio of the vertical sides
OB and O'B'. Let OB . a,/2 and O'B' = a,/2. Then, the following
relations at zero strain must hold:

O'A/OA = a,/a, = ¢
OA = a,/ (1+c) O'A = c OA

C = v3a, / (1+c) AC' = c AC
BP = a,(2+c) / 2(1+c) B'P' = ¢ BP
Let us choose A as our frame of reference for calculational purposes,
and a,=a. Tii2n, on applying a shear strain the coordinates of the vertices
of the two triangles are given vuy:
For AAB'C',
A: (0,0)
B': (v/3/2 ac/(1+c) - acY/2 (2+c)/(1+c), =-ac/2 (2+c)/(1+c))
C': (V3 ac/(1+c), 0)
For AABC, I11-7

(=v¥3/2 a/(1+c) + aY¥/2 (2+c)/(1+e), a’2 (2vc)/(1+c))

c

(-v3 a/(1+c), 0)
To get the stress, we have to find O, O' as functions of strain., For
the moment, let us 2zcnsider AABC only. Using the 120° criterion and the

approach of the last section, we obtained the coordinates of 0. Thus,

a_[(0+5) = /3(e+2)¥] [/3(5+c) - (2+0)%]
x 2 (14c) [ (e+5)% + (e+2)2 ¥2 ]
I111-8
a [ (c+£)? - 25 (e+2)° ¥° 3
y 2 (1+c) [ (c+5)2 + (c+2)2 Y2 ]
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From these, we could get the following expressions for the liquid films.
OA = a [(c+5) - ¥3 (2+c) Y] / D2
0B = a/2 [(c+1) (c+5) + Y2 (c+2)2] / D2 111-9
OC = a [(c+5) +/3 (c+2) Y] / D2
where,
D2 = (1+c) VI (c+5)2 + (c+2)2 ¥2 ]

Consider now the subcell AB'C', Since the three films in the undeformed
state have the lengths of the films in AABC scaled by ¢, we would anticipate
this to hold for any arbitrary homogeneous deformation. Rigorouscalculations
showed this to be valid i.e. O'A=cOA, O'B=cOB, 0'C=cOC. From the previous
section, we know that the energy approach gives
- S 20 d (L1+ Lz)
day
where L1=OA+0B+0C and Ly=0'A+0'B'+0'C'. S in this case is given by four
times the areas of AABC and AAB'C' in the undeformed state. Thus,

S = CC'x (BP+B'P') = ¥3 a2 (c+2)
Substituting all these information, we get the required relation.

20 Y (c+2)

II1-10
a V(3 [(e+5)% + (c+2)? Y 2]y

'yx -

The critical strain here corresponcds to the strain at which sides OA
or O'A become zero. For c=1, this stress strain relation reduces to
the familiar dry foam Equation II-24,

3. Results and Discussion

Several conclusions can be drawn from our study of the irregular

cell system. From Equation III-5, it is clear that except for the case
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where c3=1 this equation gives a non zero stress at Y=0. This means
that when cell structures with three different lengths are formed they
would instantaneously reform to that strained state where the stress
would become 2zero. Such instantaneous reformation becomes apparent if
one looks at a horizontal shearing plane drawn through the cells (Figure
III-4). As can be seen there is no symmetry across this plane; different
films are intersected at different angles with no apparent repeat units.
Since shear stress 1is proportional to the horizontal component of the
intersecting films, lack of symmetry leads to a net resultant force. In
the case where c3=1, we have cells with two different side lengths.
The structure is syumetric across the x axis and the net force across
any horizontal plane is zero. In Figure III-5 strain values are shown
as functions of cell side ratios. These values correspond to the strains
at which the shear stress (Equation III-5) would be zero for the given
c's f.e. it is the strained state the cells would reform to. These strains
can be negative or positive depending on the cell side ratios.

In Figure 1I1I-6 are shown the yield stress and critical strains
for the c3=1 case. In this case Y=0 does correspond to the stress free
state. An important observation from the figure is the fact that although
the c¢ritical strain varies with ¢, the yield stress remains constant.
This implies that in a nonuniform shearing flow such as a pressure driven
flow, the plug flow region will not be affected by the irregular struc-
tures. In the figure, we also observe the critical strain to decrease
with increasing cp,. However, the horizontal displacement between cell
centers of adjacent rows is more for a higher cell side ratio i.e for

more elongated structures. In Figure III-7, the stress-strain plots
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Figure 1II-4 Instantaneous reformation in irregular cells can be ubserved
from the lack of symmetry across a horizontal shearing plane. a) No
symmetry is observed across horizontal shearing plane for irregular cells.
b) Cells with c,®a,/a,=1 showing symmetry across horizontal plane.
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Figure I1II-7 Stress versus strain for a.a irregular cell system. Here
cells have only two different side lengths (c3-1) and cp represent ratio
of the unequal sides (Figure III-1). cp=1 corresponds to regular hexagons;
c2<1 and c3>1 to squashed and elongated cells respectively.
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for elongated (co=2) and flattened celis (cp=0.5) are compared with the
regular hexagon data. We find that for a larger c, a larger stress is
needed to reach the same strain. In other words, for a given stress
the more elongated cells are strained the least. Calculations reveal
that the horizontal displacement between cell centers of adjacent rows,
however, is larger in this case.

Central to all our calculations for the "bidisperse" system is a
very general assumption that was never used directly before. In all
our previous calculations, we assumed the mid points of the liquid films
to move affinely with the bulk. This is no longer true for a bidisperse
system. The reason for this difference can be understood from the general
assumption which states that the midpoint of the cells, and not necessarily
the mid points of the films, move affinely. For a monodisperse, regular
system the latter is an outcome of the general assumption of affine motion
of the geometric center of the cell.

In a bidisperse system, stresses are zero at Y=0. This is apparent
from the symmetry observed along any plane parallel to the x axis. Figures
I1I11-8, 9 show stress-strain and critical point data for different cell
size ratios. As before, we find Ty to be invariant with ¢, indicating
that the plug flow regime in foam flow is unaffected by "bidispersity". The
critical strains are larger for smaller c's although the horizontal displac-
ement between cell centers is smaller. The stress—strain also show the
same trends as before i.e. stresses increase faster with strain for larger
cell size ratios. Comparing Figures III-7 and 9, we find ¢ to influence
the stress-strain curves more for an irregular structure than a bidisperse

system. This is evident from the smaller deviation cf the curve from
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Figure I11I-8 Stress versus strain for different cell size ratio in a
bidisperse foam system. c¢ is the ratio of the vertical sides of the
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the c=1 curve in the latter case.

B. EFFECT OF VISCOUS FORCES ON FOAM DEFORMATION

All our calculations so far has been based on equilibriumconditions. We
assumed interfacial tension to be the only force in the 1liquid films,
resulting in angles of 120° between them. In a real process, however,
there is a finite shear rate. Consequently, with the onset of deformation,
viscous forces are set up in the liquid films opposing their extensional
motion. The angles between films are then determined from a balance
of these viscous and ..rface tension forces at the Plateau border (Figure
I11I-10). In this section, we study the importance of these viscous forces
on cell deformation and stresses. Deformations at varying shear rates
and up to the critical strain are considered here.

1. Formulation of Equations

All possible initial celi orientations are taken into account here.
We restrict ourselves to monodisperse, hexagonal cells and assume the
midpoints of the fiims to move affinely with the bulk. As will become
evident later, in order for viscous forces to exist in the liquid films,
these films must have a finite thickness. Thus, although we are dealing
with a dry foam system, we will assume the gas volume fraction, ¢, to
be approaching, but not exactly, unity. In that case, finite films are
possible and we will let this thickness be §. This thickness is a function
of gas fraction and strain. The unit cell and the triangular subcell,
shown in Figure III-10, are the same as in the dry foam case.

The energy as well as the force projection approach wiil be used

here to determine the stresses. Initially, we will however focus on
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Figure III-10 Structures of foam cells and unit cell when viscous forces
are present.
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the former. From the work energy equivalence, we know
Tyx S = E-dL
- ) Fy dlj I1I-11
Here, L = total length of films in a unit cell
S = 3 /3/4 a2, the area of the unit cell
Fjy = the force along the film 1j and is given by, Fj = Fg + Fuis
with F; = 20, and the summation is over the three films in the unit cell.
F,j is the viscous force and is different on each film, their values
depending on the length and orientation of the respective films. To
find Fui. we use some of the concepts of elongational flow from Section
II-C. As the cells deform, the films undergo a stretching and compressive
motion. For such extensional flows in thin films, the viscous force
is the elongation stress multiplied by the film thickness.
Thus, Fy: = y, 51 83

Here yj, is the 1liquid viscosity, and éi is the elongation rate given

and 8§ is the film thickness.

Since film thickness enters our calculation, we assume ¢ to be slightly
less than unity and all films to have uniform thickness initially. Thus
the structure is hexagonal (Figure III-10). Some approximation is involved
here since in the actual case the Plateau borders are curved. However,
this does not affect the final results. Further, we will assume that
liquid does not flow in and out of each film. Both these points have

been discussed later. Based on geometric arguments, the thickness of
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a film at any instant is given by:
8y = C(¢) a2 /7 1 I1I-12
C(¢), which has been derived in Appendix A, is given by:
C(¢) = V372 (1-V¢) V¢

In this way, we get

, C(®) ¥ a1,
Fi = 20 + uL a > III-14
1 A

Let g1, 82 and g3 represent three non dimensional vectors along
OA, OB and OC of the triangular subcell i.e. gy = OA/a etc.
Then gy = 1j/a . We now define a non dimensional number, Nca, given by:
Noa = M, C(¢) Y a / 20 111-15
This number, which can be thought of as a modified Capillary number,
gives the relative importance of viscous and suface tension forces.

In terms of Ny, we get

N dg
F, = 20 (1 + —"g—--—-i—) I11-16
g Ay

Substituting this into the stress expression yields:

] III-17

For zero shear rate the second term in the equation drops out and the
expression reduces to that of the equilibrium dry foam case. The stress
tensor using the force approach was already worked out in the last chapter

and is given by:
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F, 1,1
i =i =i
I= 3 11 II-14

We can therefore determine the stresses from both expressions once
the lengths and orientations of the liquid films gj and their derivatives
are known as functions of Y. Let us focus on AABC of Figure III-10 and
choose A as the origin of a Cartesian coordinate system. Then from Equation

II-17, the vectors by, bp along AB, AC are given by:

by = a/3/2 {[cos(6+60)+Ysin(8+60)] &x + sin(6+60) &y}

by = a/3/2 {[cosé + Ysin®] &x +siné §y}

Thus far the coordinates of A, B, C are known. To get the lengths of
the liquid films we still need to know the coordinates of node 0. Let
this be x, y. Unlike previous cases, we cannot use the 120° degree criterion
(Equation II-6) here to get x and y. However, we can use a force balance
at point O. The force along each film is given by Equation III-16. At
the Plateau border 0, the sum of the components of the three forces in
the x and y direction vanish independently. Thus,

IFix=IFjy=0 11118
From this force balance we obtain two coupled differential equations
of the form

Ry (x',y',x,y,Y) = 0 III-19
where,

J=1, 2 and ' denote derivatives with respect to Y. RJ is a funetion.

On simplification this leads to:
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x'-(AgB3“BzA3)/(A1BZ—A22) Y"(A2A3-B3A1)/(A1BZ-A22)

in which Aj and Bj are given by

A,= N +
1 ca y y
81 82 83

g 2 B 2 g8 2
[ 11X 2X . 3: ]

8, 8 g,.8 8,,8
A= N [ 1x°1y N 2X°2Y + 3x %x j

2 ca y y
g, 8, g
4 2 g 2 g2
By= No, [— * — 5+~
g, g, 83

2 2
g g g a’3 g g
A, = -[ 1x , 2%, 3x ] - Ncé-——[-gl—sin(e+60) - —3f—sine]
B.

2 y

av3

g, 8 g,.8
- Nca—[-—gf-—gy sin(0+60) - —2-3¥ sine]
2

y
8ix and gjy are the magnitudes of the x and y components respectively
of the liquid film 1y.
These coupled ordinary differential equations were solved using
a sixth order Runge-Kutta method to obtain x and y as functions of Y.
With knowledge of the coordinates of point 0, all necessary information

such as film lengths, angles between films and stresses could be calculated.

2. Discussion of Results

In all our calculations, ¢=0.99 were used. This resulted in a value

of 4.32x10~% for C(¢). Deformations only up to the yield point were calcu-
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lated. However, it should be realized here that at this critical strain
the length of the shrinking film never goes to zero. This is because
each film has a finite liquid content determined by ¢, and this volume
is conserved at all times. Thus, the strain beyond which further shrinkage
of the film leads to violation of the liquid volume conservation is charac-
terized as the critical strain, Y., here. For a film with initial length
a and thickness §,, Y, roughly corresponds to the point 1j becomes vasg.
Calculations carried out in Appendix A for ¢=0.99 show the 1length of
this film to be approximately 7% of its original length at this point.
The improbability of 1§ going to zero value can also be seen from a different
perspective. In the stress equation (III-16), one of the terms has gj
in the denominator. Thus for g4 to go to zero we would require an infinite
stress.

One other thing should be noted in terms of our calculations here.
Although we used a value of 0.99 for ¢, our results for a specified Capillary
number, Noa, would not have changed had we used a different gas fraction
to approximate a dry foam. The critical strain however would be slightly
different since §,, which affects Yo, is a function of ¢. Also, it is
evident from the definition of Ny (Equation III-15) that for a given
Nca the shear rate would be different in this case.

In formulating our equations, we assumed a hexagonal foam cell and
ignored the curvature of the Plateau border. 1In reality, the Plateau
borders are curved with its radius of curvature proportional to &0,
Introducing such curvature does affect C(¢). However, all such effects
are embedded in the dimensionless Capillary number, Noa and our results

for a specific Npy do not change. The shear rate corresponding to this
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Nea and the critical strain would however be different in this case.
Also, inherent in our calculation is the assumption that the liquid volume
of each film remain constant i.e. there is no flow into or out of it
to the Plateau border. We feel this to be reasonable because with a
finite shear rate the system does not have time to equilibrate and there
can be only localised thinning or thickening of films. Clearly in the
equilibrium situation, all §is should be same as predicted by liquid
film theory and Young Laplace's equation (See Chapter IV).

The equations developed in the last section were solved as increasing
functions of strain for different values of Ny and 6. In Figure III-11,
cell deformations for 8=0° and Noa=.001 has been compared with the equilibrium
(Ngg=0) case. In all cell structures shown in this section the thin
line represents the equilibrium structures and the bold one the Ngg=0
case. In this figure, which shows cell structures with increasing strain
in a clockwise direction, we observe very good overlap with the Nga=0
case. Only in structure D do we observe a very slight difference. For
the equilibrium case this corresponds to the yield point with film OC
having zero length. For Nga=0.001, the films can never be zero. We
are thus bound to observe some differences near the Y, of the equilibrium
case. This deviation is also reflected in the stress-strain plots of
the two Capillary numbers (Figure I1I-12). We observe very good agreement
between the two upto Y-1 (Figure III-11c). Beyond this, close to Y,
83 starts to get very small, the 1/33 term dominates and we see a corres-
ponding increase in stress., Overall, however, the equilibrium model
approximates the Npa=0.001 case very well.

As we go to higher capillary numbers, we observe a gradual predominance
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Figure III-12 Effect of viscous stresses in the stress-strain relation
for initial orientaion, 6=0°. Nca is the ratio of viscous and surface
forces. aw®length of undeformed side of hexagon; o=surface tension.
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of the viscous forces in determining the cell strlzctures. In Figure
I11-13, deformations for Nga=0.01 and Ngy=0 are compared. We observe
good overlap for strains up to ~0.5. At higher strains, the deviation
is obvious (structure C). At this Y, the equilibrium foam has already
reached the critical state. From Figures III-12, 13d we find the critical
strain for the Ngaz=.01 case to be two times larger. The cells are also
more inclined in the direction of shear. The stress-strain curve also
show deviations in this case but not as significant as that for Nga=0.1
(Figure 1II-12). In the latter case, there is barely any overlap; the
stresses rise much faster and then level off. Y, is four times larger
than the equilibrium case. The deformation pictures also reveal the
differences (Figure III-14). Even at strains of ~0.14 (structure &)
we start seeing deviations which increase with strain. At Y, for the
equilibrium case (structure C), unlike the two previous cases, the length
of the shrinking film (for Nga=.1) is still quite large. At Yv=4.5 (D),
which is close to Y, for this case, the cells are elongated and inclined.
Finally, in Figure III-15 are shown the plots for Ngz=1. Here viscous
effects become evident even at such small strains as .07 (structure A).
Two of the angles have already changed by more than one degree from 120°
to 107 and 126°. With further increase in strain, the viscous forces
stretches one of the films much more rapidly than the film which is shrink-
ing. The resulting structures become very elongated and stretched out.
Although deformations upto Y3 are shown, the critical strain in this
case is -28. At such large strains the cells are very thin elongated
structures and a typical cell goes weii beyond a page in length in the

x direction. Physically, one would expect the cells to rupture much
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before this state is reached. Thus, at high \.(, this model predicts possible
modes of cell rupture. In the stress-strain plot (Figure III-16), the
stress reaches a maximum value almost instantaneously at the onset of
deformation. The stress then goes through a couple of oscillations before
approaching a constant value. The oscillations probably arise from the
non monotonic changes in the angle betweeen the films. For example,
angle BOC (yq) decreases and then increases; angle AOC (v3) increases,
then decreases for strains up to 3 before finally increasing again.
These changes are reflected in the humps. We also find side OA to increase
up to Y-3 and then to decrease.

Figure III-17 has the cell deformation for 8=30° and Ngyz =.01.
Analogous to the corresponding 6=0° case, slight deviations from the
equilibrium situation are observed here. For strains lower than 0.9
there is good overlap. However, beyond that we start observing differences.
The critical strain, as can also be seen from Figure III-18, is larger
than the Nga=0 case. However, Yo is not as affected as in 8=0°., From
the stress-strain plot, we observe stress deviations around Y=.9. For
Noa=0.1, the behavior is very similar to the 8=0° case with hardly any
stress overlap. An interesting feature to note is the shoulder in the
stress curve. This can be attributed to the same cause that caused the
humps in the stress plot for Nya=1 and 6=0°, Here, angle yji increases,
then decreases, and then finally increases again with strain. ¢, shows
the reverse behavior while film OB shows an initial decrease in length
before starting to extend. However, their effect on stress is not as
pronounced as the earlier case.

For an initial orientation of 0=450, several observations can be
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Figure III-16 Stress-strain relation for 6=0°, Nca=1.0. Critical strain,
Yo is much larger (28) here than the equilbrium case (1.15).
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Figure III-18 Effect of viscosity on the shear stress-strain relation
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made. For Ngy3=0.005, there is very good agreement with that for Nga=0
both in the stress-strain plot (Figure III-19) and cell deformation (Figure
II1I-20). The critical strain is a little larger (2.25 instead of 2)
and the corresponding structure slightly different from the equilibrium
case. For Npa=.01 there is very good overlap in the stress plot (Figure
I1II-19) up to the point where the equilibrium curve ends. Cell deformation
(Figure III-21) also shows a similar behavior up to this point (structure
B). Beyond this we observe a very interesting phenomenon. Earlier in
the last Chapter, we found that at 450 sjide OB goes to zero length at
Yo. Here, for strains up to 3 (structure C), we observe a decrease in
the length of OB. But just before it can reach its 'zero' length, OB
starts to grow again. So eventually it is film OC that goes to 'zero'.
This 1'lip-flop is observed in the structures C and D. Thus, here the
shear rate influences the final shape of the cells. In the t-Y curves
for Noa=.01 and .1 we observe maximums because of the reasons mentioned
earlier. The critical strain for the latter is four times as large compared
to the equilibrium situation.

For =500, we find the film OB and not OC to shrink to zero (Figure
III-22) at Yo for Nga=.01. From the figure we observe good agrement
for strain up to -0.7. At Y=1,2, which is the critical point for the
corresponding Ngog=0 case, we see small differences in the cell structures.
For Ngg=0.1, however, things are quite different. The critical strain
is eight times as large (Figure III-23) and the stress shows a pronounced
maximum. The cell structures are strongly affected by the viscous forces
(Figure IIl-24). We observe the flipping of sides (structures C & D).

Further, the cells are highly elongated suggesting the possibility of
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Figure I1I-23 Stress-strainrelation for different Nca. Initial orientation,
#=50°., Nca is the ratio of viscous and surface forces.
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rupture to occur.

Based on all the information presented above it is clear that viscous
force effects are strongly influenced by the initial orientation of the
cells. For instance, even at the same capillary number (0.01), two different
sides go to zero length for a five degree change (459+50°) in orienta-
tion. Further the magnitude of the viscous stresses itself is not very
large compared to the total stress.

In Figure I11I-25, we have plotted for 8=0° and Nca=0.1 the shear
stress and its two components, the viscous force and the surface force,
as a function of strain. These two components corresponds to the first
and second term of Equation III-17 respectively. We observe the viscous
stress to be much smaller than the stress due to surface forces, and
asymptoting to a zero value at large strains. Recall from Equation III-16
that the viscous force 1is inversely proportional to 112. At the onset
of deformation, some side of the foam cell shrinks rather rapidly. Conse-
quently, the viscous stress goes up quickly (Figure III-25). Beyond
a certain point, however, this shrinking side shows no significant changes
in length and the other sides stretches rapidly (Figure III-14) resulting
in a monotonic decrease in viscous stress. It is evident from this and
all cell deformation plots that the major effect of incorporating viscous
forces in our model is the change in the orientation and shape of the
cell structures. This change in structure and not the actual viscous
contribution increases the total stress from the equilibrium model.

In our discussion so far we focussed on shear stress only. However,
our method is general enough to give us the total stress tensor. Figure

III-26 shows the normal stress difference, Ny, for 6=0° and three different
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capillary numbers. We observe good overlap among them for small strains.
In Figure III-27 we plot Nqy for Nca=1.0. Unlike the shear stress, which
showed overshoots and oscillations, we observe only a small kink in this
stress strain curve. We also find Ny to be almost linear and proportional
to Y at large strains for both Nca=0.1 and 1. The corresponding shear
stress curves (Figures III-12, 16) asymptote to constant values with
increasing strain. From our equilibrium dry foam model of the previous

chapter, we have:

Tyx = == —===Tmmmms = a constant (for large Y)
a v(3Y2 +12)

2
20 [ Y -

a /(3 ¥+ 12)

b S ¢ = = (constant)eY (for large Y)

XX Yy

Thus, the simplified model also predicts such asymptotic behavior
correctly.

Finally we address the question of the validity and usefulness of
the equilbrium dry foam model developed earlier in the last chapter.
As we have seen here, incorporation of 1liquid viscosity can result in
significant changes in rheology. However, one should realize here that
for typical values of cell size and interfacial tension even a very small
capillary number like 0.001 corresponds to a macroscopic shear rate larger
than 1000. It is indeed satisfying to see from the 0° (Figures III-11,
12) and 450 case (Figures III-19, 20) that even at such high shear rates
the equilibrium condition is a very gocd assumption for foam deforma-

tion. Further, in most processes shear rates higher than this would
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would be hard to reach without destroying the foam. Even if higher shear
rates could be obtained, all practical foam flows are characterized by
wall film formation. Most of the shearing would then be concentrated
in this 1liquid film. All these go to show that the equilibrium model,

although not as refined as this one, clearly is useful.

C. SUMMARY

Two separate effects, cell size and viscous forces in films, on
the rheology of dry foam were studied here. In the former one, two subcases
were considered. As an initial case, we derived the stress-strain relation
for irregular foam cells i.e. foam cells with three different side lengths
(Figure III-1b). Restricting ourselves to one specific initial orientation
where one of the sides was vertical, we could draw the following conclusions:

a) The stresses were non zero even at Y=0 indicating that the initial
configuration was not an equilibrium one. Thus one would expect such
cells to reform imﬁediately. This instability could also be seen from
the fact that the liquid films intersect any shearing plane without any
periodicity (Figure III-Y4) so that the resulting force across the plane
is always finite.

b) In the case where only two of the sides were different (c3-1).
the system was stable at zero strain. This is apparent from the symmetry
of the system with respect to the shearing plane. We also found the
yield stress to be constant regardless of the cell side ratio. This
suggests that the plug flow region in foam is unaffected by cell irregu-
larities.

c) The critical strain (c3=1 case) dec.eased with increasing cell
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side ratios, indicating that the strain required to reach the same stress
level is smaller for elongated cells. Calculations however showed the
horizontal djsplacements between cell centers of adjacent rows to be
larger for larger c's.

In the second subcase, we considered repeat units of alternate layers
of different sized cells, the cells differing only in the length of the
vertical sides (Figure III-1a). We found the following in this case.

d) Similarities were observed between this and the irregular cell
situation. The yield stress values were invariant with cell size ratio
and Y, showed the same trend as before. Further, the system was stable.

e) The mid points of the films (except the vertical ones) do not
move affinely with the bulk. Rather, the points of affine motion divide
the respective films in the ratio of the vertical films.

Finally, in this chapter we looked at the effect of viscous fcrces
on cell deformation. 1In a shearing process, the liquid films undergo
an extensional motion which sets up opposing viscous stresses in them
(provided the shear rate is finite). The influence of these stresses,
_which are proportional to ?. were studied in terms of a non dimensional
modified capillary number, Npoo, defined as the ratio of viscous to surface
tension forces. We found that:

f) For Nga around 0.001 which corresponds to a Y of 103, the deformation
Lasentially remained the same as in the equilbrium zero shear rate case.
This means that the simple equilibrium model developed earlier is a useful
one at these low shear rates.

g) For higher shear rates (Nga 2 .01), cells started showing strong

deviations from the 120° film angle criterion. In some cases (Nga20.1,
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8=0 & 50°0), the cells were very stretched out suggesting the possibility
of rupture.

h) Further, the side reducing to zero length were affected by the
shear rate. Thus for =459, side OC of the triangular subcell went to
zero for Nog=.01 wheras for lower and zero shear rate it is side OB which
decreases to zero. This "flip-flopping" of sides was also observed for
other initial orientations.

1) The actual magnitude of the viscous term in the stress equation
was not large. The primary effect of the viscous stresses was to change

the orientation and lengths of the films and thereby change the stress.
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IV. EFFECT OF GAS VOLUME FRACTION

In this chapter, stress-strain relations for small shearing deformation
up to the yield point are derived for foams having finite liquid content.
The earlier dry foam model is generalized here to incorporate all gas
volume fractions between the hexagonally close packed system (¢=0.9069)
and unity (Figure IV-1). All possible initial cell orientation are taken
into account. Two cases are studied here. In the first case, the liquid
foam films are considered infinitesimally thin. In the second case,
the finite thickness of the liquid films are taken into account; the
thickness, &§, being determined by the van der Waals forces existing in
such films., Details of each of these are discussed in the following
sections.

In this chapter, the word "stability" is frequently used. We would
like to caution the reader that this term does not refer to stability
with respect to time for a given foam configuration. Rather, it refers
to the stabilty of different foam cell shapes and structures, i.e certain

foam configurations may reform instantaneously.

A. FOAMS WITH NEGLIGIBLE FILM THICKNESS

1. General Background

Several assumptions are made in order to derive the stress-strain
relation. These are enumerated below.

1. As before, only two dimensional, monodisperse cells are consi~
dered. These cells, as shown in Figure IV<1, are made of straight line

segments and rounded corners having same radii of curvature. Three of
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CLOSE-PACKED SPHERES HEXAGONAL CELLS

Figure 1IV-1 Two dimensional foam cell models. a) Hexagonally close
packed sheres. b) Hexagonal cells for gas fraction approaching unity.
c¢) Typical foam cells with straight line segments and rounded corners.
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these curved edges meet to form a triangular cusp, the Plateau border. All
the 1liquid resides in these Plateau borders and the linear films have
negligible thickness.

2. In any deformation, the mid points of these celis move affinely
with the bulk deformation. Further, total cell volume as well as the
gas and liquid volumes are always conserved in any deformation.

3. The deformation is slow enough so that viscous forces in the
films are not important and equilibrium interfacial forces determine
the cell shape.

4, The only important force is the interfacial tension, o, acting
along the gas-liquid interface. Because of two such interfaces, the
force along the linear films is 20 whereas in the Plateau border region
it is only o acting along each curved surface.

5. In any deformation, the radius of curvature of the Plateau
border can change. However, all cells must have the same radius. This
follows from the fact that the pressure difference, which is inversely
proportional to the radius of curvature, has to be the same across all
three gas-liquid interfaces.

The stress-strain analysis is based on the same work-energy concept

discussed in Section II-A. In this case, we have:

V-1
dL dR
ay 9 Tay

Here, F,; denotes surface tension forces and Ly the total gas-l1iquid interface

in a unit cell vectorially.
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S = area of the unit cell

L = total length of the 1liquid films (straight line portion) in

a unit cell

R = total length of curved interfaces in a unit cell

A very important point is that at the onset of deformation it is
only the linear films that get stretched and compressed. The radii of
the Plateau borders remain unchanged from the undeformed state up to
the point when two Plateau borders meet i.e. one of the straight films
shrinks to zero length (Figure IV-2). So for strains up to this point
the second term in Equation IV-1 is zero and the rate of charge of the
liquid films wtih respect to Y is the same as in the dry foam case (Chapter
II). This is because all asumptions, such as the 120 degree criterion,
are still valid. Results of the dry foam therefore apply here.

However, for strains beyond this point the 120° criterion is no
longer valid. The Plateau border radius now changes with Y, and both
terms in Equation IV-1 are non-zero. The problem, therefore, reduces
to finding the lengths of the two remaining liquid films and the radius
of curvature as functions of strain. All equations derived in the next

section pertain to this strain regime where the cusps have already met.

2. Governing Equations

Figure IV-3 shows a collection of deformed cells along with the
unit cell DEF formed by Jjoining the mid points of three adjacent cells.
The area of this unit cell, wnich remains constant throughout the deformation
process, is given by 3v3 a2/4, "a" is the length of the side of the

circumscribed hexagon to the undeformed foam cell (Figure IV-1). Also
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Figure IV-2 Cell deformation up to the point the Plateau borders meet.
Gas fraction, ¢=0.97. a) Initial orientation, v=00. b) ©6=40°, Note
that two different sides go to zero for the two orientations.
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Figure IV-3 Foam cells with zero film thickness. a) Unit cell DEF along
with subcell ABC. b) Two adjacent unit cells DEFG showing all micro-
structure. c¢) Isolated foam cell used to calculate gas volume fraction.
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shown within the unit cell is the triangular sub-cell ABC, the vertices
of which move affinely with the bulk deformation. Using the same approach
as in Section II-A, the lengths of sides AB, AC and BC, denoted by b4,
by and b3 respectively, can be derived for any arbitrary orientation,

6. Thus,

b12 = 3 a2 [1 + Y2 8in2(6+60) + Y sin (26+120) ] / 4

b2 = 3 a2 [1 + Y2 sin? (8) + Y sin (28) ] / 4 V-2
b32 = 3 a2 [1 + Y2 cos? (6+30) ~ Y sin (26+60) ] / 4

In order to solve completely the problem, one still needs to know
the film lengths 1y, 1, and the radius of curvature r of the Plateau
border. At this point, it is much easier to visualize the deformation
process if one focuses on two adjacent unit cells instead of one. The
parallelogram DEFG (Figures IV-3a, b) shows such a figure. Here all
the liquid.is confined in the cuspoid region PQRS. To find the amount
of this 1iquid, let us construct a rhombus HIJK by drawing lines perpendicular
to the radius of curvature at points P, Q, R and S respectively. The
length of the sides of this rhombus is therefore 2r. If we denote the
angle PIQ by B8, then the area of this rhombus is 4 r2 sing and the total
length of the curved interface in the two unit cells is 2wr. Therefore,
for a unit cell, R in Equation IV-1 is given by:

R=amr IvV-3

Equations for the four unknowns, 1y, 1lp, r and B are derived based
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on geometric and volume (area for 2-D) conservation constraints.

Geometric Constraints: Two relations are derived here using the cosine

law for triangles. In triangle APC,

AP2 + PC2 -2 AP.PC cos (90+8) = AC2
Since AP = 15, BQ = 1y, PC = r, AC = b and BC = b3, we get the following
after rearrangement,

1, = =r sin g + [ b2 - r2 cos? g 11/2 IV-4
Similarly, from triangle QBC, we get

1y = =r sin B + [ b32 - r2 cos? g ]1/2 V-5

Volume Constraints: The area of the liquid contained in two adjacent

cells is given by U4 r2 sing - w r2. Therefore, in a unit cell the liquid

area Aj, is given Dby:

AL=2r2sing-m1r2/2

If ¢ is the gas volume fraction in a unit cell, then by conservation

of liquid volume we get

(1-¢)3vV3a2/ 4=2r2sing=~mnrd/2 IV-6a
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This can be rewritten as

sin 8 = w/4 + (1-¢) 3 V3 a2 / (8 r2) IV-6b

or, r2 = (1-¢) 3 V3 a2 / (8 sin B - 2 1) IV-6¢C

Similarly, the gas volume (area) is also conserved in any deformation.

From Figure IV-3c, the gas filled area is given by:

41y 1, 8in g+ 4 lyr + 41+ wrd

Now, this equals the area of the gas in the undeformed state i.e.

3 v¥3 a2¢/2. Therefore, we have:
51 1p8in B + 4 r (1) + 1p) + nr2 = 3/3 ¢ a2/2 Iv-T

Thus, solving the last four coupled equations one can get 11, 1, B and
r as functions of Y. However, to calculate the stress one needs the

derivatives of these terms with respect to Y, because

Tyx =8 o [ 14"+ 1" + w/2r'] / [3/3 a2] Iv-8

where the ' denote derivatives with respect to Y.
By using the atove equations, one gets these derivatives in the
forms:

1;'= £y ( r,8,b,r'), 1p' = f5 (r,8,b,r') and,
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r's= f3 (P.B.b)

The explicit forms of the three functions along with all details
are given in Appendix B. The stress can therfore be easily calculated
from Equation IV-8 once Y, r and B are known.

There are two ways one can approach the numerical problem. The
four coupled equations can be reduced to one by substituting Equations
IV-4, 5, 6b into Equation IV-7. This gives r as a function of strain;
and by choosing a range of strains, the corresponding r (and hence the
stress) can be evaluated. In another method, which was the one we used,
Equations IV-4, 5 are substituted into Equation IV-7. One then substitutes
r here from Equation IV-6c to get a relation between g and Y. Although
Y is the independent variable, this equation is solved for strain using
a range of B values. From Figure IV-3 it is clear that when the Plateau
borders meet, B=60°. Further, it cannot exceed 120°. Thus, the non-linear
equation was solved for different gas fractions using a bisector method
for 8 values ranging from 60 to 120 degrees. The use of B as an input
instead of Y makes it easier to observe multiplicity of solutions.

It should be pointed out that depending on the initial orientation,
sometimes the 1liquid film 1y may reduce to zero length instead of 13
on applying a shear deformation (ef. Chapter II, Figure IV=2). In such

cases, L = 1, +13. where the respective 1l's are given by:

"1p = -r 8in B + ¥ [b12 - r2 cos? 8] 1V-9
13 = -r sin g + v [b32 - ré cos? g) IV=10

One can then obtain the stress~strain relation in this case by replacing
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13, 17 in Equations IV-7, 8 by 12, and 13.

3. Results and Discussion

The equations derived in the last section were solved for, different
gas volume fractions (¢) and initial orientations (8). Figure IV-Y4 shows
the effect of gas fraction on the stress strain behavior for cells having
® = 00, 1Initially, the curves follow the stress-strain response of the
dry foam case. This overlapping region represents the initial shrinking
of one of the linear films. The point of deviation reflects the meeting
of two Plateau borders. Thus, in the hexagonally close packed case,
no overlap is observed as the cusps already touch one another aé zero
strain. One can also see from the plot that the maximum stress, which
corresponds to the yield stress, decreases with decreasing gas fraction.
The corresponding strains show similar trends. This observation can
be explained from the fact that with decreasing ¢ the cells are less
polyhedral and more rounded. Thus, a smaller force is required for the
cells to go past one another.

Figure IV-4, which was obtained by solving the relevant equations
as functions of increasing strain, contains only half the stress-ttrain
response. A symmetric set of curves exists in the negative stress region
with the center of symmetry at the point the stresses go back to zero
again. Figure IV-5 shows the complete stress-strain plots of the hexagonal
close packed system for the 60 initial orientation while Figure IV-7
depicts the actual cell deformation. As the cells deform the stress
increases until it reaches a maximum. This corresponds to the structure

in Figure IV-Tb. With further increase of strain, the stress gradually
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decreases to zerc. This is represented by Figure IV-Tc. Beyond this
strain, the stress switches sign reaching a minimum at D (Figure IV-7d).
Finally at Y=2//3 the cells return back to the original configuration
and the stress to the starting value of zero. It should be clear from
Figure IV-T that at the strain the Plateau borders touch, B8=60°. With
increasing strain, B increases and equals 90° at the point of symmetry
of the stress strain curve (Figure IV-7c). Finally, when the cells reform
back to the original state, B reaches a value of 120°.

The reason for the negative stress becomes quite apparent when one
looks at the energy versus strain plot for ¢=0.9069 (Figure IV-8). Cell
structures A, B, C, D of Figure IV-7 are marked correspondingly in Figure
IV-8. The slope of this energy curve is directly proportional to the
stress. Therefore at B, where the slope is maximum, the stress is maximum.
C, the highest energy point on the other hand corresponds to zero stress.
For strains above C the energy starts to go down and the corresponding
stress becomes negative. One can also observe the existence of such
negative stresses by merely looking at the cell deformation pictures.
Let us focus on a shearing plane passing through the mid points of the
cells in Figure IV-14. The shear stress in this case would be proportional
to the x component of the intersecting films with this plane. Structures
B and D clearly give positive and negative x components respectively
for the intersecting liquid films.

Figure IV-5 along with Figure IV-6 also contain plots of the hexagonally
close packed system for other initial orientations. As one can see,
the stress«~strain relation is strongly influenced by 6 and the only symmetric

curve is that for 6=0°, Undeformed cells for all initial orientations
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correspond to the stress free or "equilibrium" state. However, for initial
orientations between 11 and 20 degrees, the cells become unstable for
any applied strain. This is because the equations of the previous section
have no solution for this regime, i.e. one cannot satisfy the affine
deformation and volume conservation constraint simultaneously. Thus
these orientations can be termed "inherently unstable", and the cells
reform back to some stable state for any infinitesimal strain. We also
find that 6=0° is the only orientation where the cells reform back to
the original configuration without passing through any unstable state.
For any other orientations studied, the cells become unstable at a certain
strain i.e. the equations no longer have solutions. There is no stress-
strain relation teyond this and the cells reform back to some other state.
In some cases this point is reached while the stress is positive (8=21-450),
In other cases (6=3-11,50-60°), the stability limit is reached after
the stress has become negative. Figure IV-9 shows the actual cell deformation
for one of the former case (6=30°). Here, with increasing strain the
two Plateau borders join to form a channel or cuspoid while two linear
films are generated. At some strain, however, one of the films starts
to shrink instead of elongating. The stability limit is reached when
this reduces to zero length (Figure IV-9b) and the cells are made of
two straight line portions connecting two circular sections. One other
feature to note is that for 8 greater than 20° the two Plateau borders
which form channels are different than that for o less than 119, This
phenomenon, which can be clearly observed from the cell deformation pictures
(Figures IV-7, 9), is analogous to the change observed in the dry foam

case for the side going to zero length at 6=45 degrees.
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Figure IV-3 Cell deformation for the hexagonally close packed system.
Initial orientation 6=30°,
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In Figures IV-10 and 11 are stress-strain plots of different initial
orientations for ¢=0.92. Here, unlike the hexagonal packed system, there
are no "inherent instabilities". This is because the cells here have
a finite film length to begin with., Unless this becomes zero, no instabi-
lities can occur. In this case 6=0°, 509, and 55° are the only stable
initial orientations in this figure. By stable initial orientation we
mean that B=120° is reached without passing through any unstable state.
At B=120°, the two Plateau borders which formed a channel are just touching
again. For strains beyond this, a liquid film will be formed between
them and the whole stress-strain mechanism will be similar to the dry
foam case. For all other orientations we observe a loss of solution
after a finite strain indicating reformation taking place at that strain.
For initial orientations of 40° and 45° (Figure IV-11), the shear stress
remain positive throughout but goes through a hump. This is observed
for ¢=.9069 also. All curves, such as these, which show a local minimum
resemble a rotated and skewed 0° curve. The rotation probably adds to
the distortion. The 6=50° curve represents a unique case as it becomes
unstable at a positive stress after passing through a whole cycle of
positive and negative stresses.

Plots for ¢=0.97 are given in Figures IV-12 and 13. In this case,
as the equations were solved as increasing functions of 8, we observed
multiple solutions and limit points i.e. the stress strain curve went
back in strain after reaching a certain maximum value. Figure IV«1y
shows the actual cell deformation for 6=0°, Focussing on this case,
as one increases stress the strain increases until the maximum stress

is reached. For any further increases in stress, the foam cells will
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keep on repeating the reformation cycle. 1In other words, if one increases
strain, point B corresponds to the strain at which the Plateau borders
Jjust meet (Figure IV-14b). With increasing strain, point B' is reached.
For any strain above this, the shear stress becomes negative and the
curve drops vertically down to point B''. So, the portion of the stress-
strain curve to the left of this vertical line represents an aphysical
region. In Figure IV-1lc, the Y=1//3 case corresponds to zero stress
and is therefore an aphysical state. It is clear from the energy versus
strain plot (Figure IV-8) that this zero stress, represented by C, cannot
be an equilibrium state since it has a much higher energy. From the
figure, we find this to be true for other gas fractions (¢=.9069) too.

In Figure IV-15, which shows the cell structures for 6=30°, we find
that the deformation looks very different from the 0° case. Here, the
cell B corresponds to the maximum stress configuration. For any stress
above this the cells reach the stability limit D (Figure IV-15) and reform.
In the stress-strain plot of Figure 1IV+<13, B' corresponds to the maximum
strain beyond which stress discontinuity to B'' 1is observed. So C in
both Figures IV-14 and 1IV-15 represent an aphysical configuration. It
should be noted that B equals 90° for both these cases of C. Further,
C represents the inflection point in the aphysical branch of the solution.

The reason for the stress discontinuity is apparent from the energy-
strain plot for 6=0° (Figure IV-8). Here, with increasing strain, region
B, the maximum energy configuration is reached. Any infinitesimal increase
in strain results in an energy drop to B'. This Jjump is reflected in
the stress~strain plot. Further, the point B' lies on the descending

slope of the energy curve. Hence, the stress at this point is negative.
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In this process, an energy equivalent to the jump from B to B' is Jost.
One can see this energy loss from the stress plot (Figure IV-12) also.
The energy input corresponds to the area of the envelope ABE whereas
that recovered corresponds to the area of EB'D. Clearly these two areas
are not equal and some energy is lost in the reformation cycle. However,
in the hexagonal close packed case for 6=0°, there is no energy loss.
This is evident from the equal areas in the positive and negative y-axis
of the stress-strain curves and from the smoothness and symmetry of the
energy curve. For other orientations, the stress curves show no symmetry
and energy is lost in the cyclic deformation process.

For ¢=0.97, the 200 orientation is the only unstable orientation
shown. In all other case B=120° is reached. An interesting situation
occurs for 6=U40°, Here, the stress goes through positive and negative
values before becoming positve again when B=120° is reached. Figure
IV~16 shows the actual cell deformation for this case. It is clear that
an further deformation the cells would not go back to the original config-
uration.

Incorporation of 1liquid thus reveals that deformation in foam is
a complex phenomenon with initial orientation playing a major influencing

factor on stability.

B. FOAMS WITH FINITE FILM THICKNESS

As before, the stress-strain response of the foam can be divided
into two deformation regions: Regime I, which starts with the onset of
deformation and ends when two Plateau borders meet, and, Regime II, which

starts at this strain, Y, and incorporates all higher strains. Because
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Y-0

Figure 1V-16 Cell defor mation for 0.97 gas fraction foam. 1Initial
orientation 6=40°,
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of the finite thickness of the liquid films, the dry foam model derivations
are no longer valid for Regime I. This is because on applying a deformation,
as the 1liquid films undergo an extensional motion, 1liquid flows into
and out of them into the Plateau borders. Thus, the Plateau border radius
changes with strain, and therefore the second term in Equation IV-1 is
nonzero. Equations for each of the regimes are therefore derived separately
here.

All assumptions listed in Section IV-A.1 are applicable here. The
equations for cell deformation are derived based on geometrical constraints,
gas and liquid area conservation, and the equal pressure difference cons-
traint. This third requirement, arising from assuming equal pressures
in all gas cells gives the additionél relation needed between § and r.
It states that at equilibrium the pressure drops across all interfaces
are the same, and for the curved interface, this pressure difference
equals o/r [Heimenz,1982]. Clearly, if this were the only relation to
hold for the straight films, there would be no pressure drop across such
films. There would be a net liquid suction toward the Plateau borders
resulting in cell collapse in no time. However, other forces, known
as disjoining forces, act in these films and prevent such localised thinning.
Such forces arise from van der Waals forces, electrostatic repulsion,
etc. and are related to the thickness of the straight films, 6. Liquid
film theory states states that the pressure drop across linsar films
is given by A/6" [ Wasan,1984; Teletzke,1984]1. Here, A is the Hamaaker
constant. The value of the exponent, n, depends on what the important
forces are in the film i.e. electrostatic, van der Waals, etc. This

in turn is determined by the thickness of the film. For foam films,
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where van der Waals forces predominate [Wasan,1984], n equals 3.
1. Regime I

Figure IV-17 shows the triangular unit cell DEF formed by Jjoining
the mid points of three adjacent foam cells. The dashed line represents
the circumscribed hexagonal foam cell. Also shown in the figure is the
subcell ABC which moves affinely with the bulk deformation, and the linear
films 1y, 1z, 13 along OB, OA and OC respectively. A triangle PQR is
drawn by Jjoining the three centers of the curved Plateau border inter-
faces. As the cells deform, the three angles at O remain 120°, There-
fore, PQR is always an equilateral triangle having sides of length 2r+s.
But the lengths of the sides change with deformation as 1liquid flows
in and out of the Plateau border in order to preserve overall liquid
area.

Since the 120° criterion is assumed applicable in this regime, we
know the lengths of OA, OB and OC as functions of Y from Chapter II (Equa-
tion 11-20). Further, from Figure IV-17, we get:

19 = OB - (r + §/2)/¥3

1p = OA - (r + §/2)/V3 IV-11

13 = OC - (r + 8/2)//3
Thus,

11412413 = 3a /(Y2+4)/4 - (r+8/2)V3
The first term of the right hand side in the last relation was obtained
using Equation II-20.

Now the total 1liquid in the films remains constant. Thus,

(11412+13)6 + V3 (2r+8)2/4 - nr2/2 = (1-4)3/3 a2/4 Iv-12a, b
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Figure IV-17 Foams with finite film thickness. a) Foam cells b) Unit

cell used for deformations up to the point the Plateau borders meet (Regime
I).
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or,
3a8 V(Y2+4) /4 + /3 (r2-§2/4) - wr2/2 = (1-¢)3/3 a2/4
Further, from the equal pressure drop requirement, we get
AP = a/83 = o/r
or Iv-13
§ = [Ar/0]1/3
This value of & can be substituted into Equation IV-12 and the corresponding
equation solved as a function of strain.
Now, stress in this case is given by Equation IV-8. By using the
same approach as in Section IV-A.2, we get an explicit expression for

stress given by:

8 ¢ 3 Y dr - m__ Y3 A 1/3
T = { =a + —{ —~-V3 - ( ) 21} IV-14
yx 3/3a2 4 vV ( 72+u) dy - 2 6 0 p?

where %% is given in Appendix B,

Thus once the radius of curvature, r, is obtained , one can get the corres-
ponding stress. The non-linear equations, Equations 11-13, were solved
by using the bisector method.
2. Regime II

The approach taken here is very similar to that of Section IV-A.Z2.
Consequently, no geometric details are presented here. Figure IV-18
shows the two adjacent unit cells along with all the relevant foam struc-
tures. 1y, 1 denote half the lengths of the actual linear films connecting
two Plateau borders and therefore correspond to the lengths of the equivalent
films (given by the dashed lines). The equations for the b's are same

here as Equation IV-2, Based on Figure IV-18, the other relevant equations
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Figure IV-18 Adjacent unit cells used for calculating deformations in
Regime II where Plateau borders have already met.
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are given below.

Let rqy = r + §/2 IV-15
Therefore,

1y = -ry sin 8 + vV [ b32 - r12 cos? g ] IV-16

1, = ~ry sin 8 + ¥ [ bp2 - r12 cos? 8 ] Iv-17

The area of the rhombus HIJK is: (2r+§)2 sing
The area of the circle in the rhombic region is: mr2
Liquid area conservation within DEFG gives:

25(19+413) + (2r+8)2 sin B -mr2 = (1-¢) 3/3 a?/2 IV-18

Gas area conservation gives:

4r(14+1) + wr2 + 4 1y 1 sin B = ¢ 3V/3 a2/2 Iv-19

The equal pressure drop relation gives:
6§ =( Ar/g )V/3 Iv-13
All these equations can be combined into one and solved in the same
way as in the zero film thickness case. Then the stresses can be obtained
from Equation IV-8. The derivatives in this case are similar to the
previous case although much more complicated.
For certain initial orientations, the film 1y may go to zero length
instead of 13 (Figure IV-17). In such cases, by should be replaced by

by ir all equations.
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3. Results and Discussion

An important aspect of the model developed here 1is its realistic
nature. Real foams have finite film thickness which vary with deforma-
tion. Liquid is not confined within the Plateau border regions. In
our model, too, allowance is made for liquid movement in and out of the
Plateau borders. The radius of the Plateau border region and the film
thickness are determined by the pressure drop relation and vary with
the gas volume fraction and state of strain. However, since this is
an equilibrium model all films have the same thickness § at all times.

Shear stress-strain results of the two strain regimes for different
¢'s and 6's have been combined and compared with the zero film thickness
case in Figures IV-19, 20. In order to solve the equations, a Hamaaker
constant of 1012 and an interfacial tension of 22 dynes/cm were used.
The latter number is the actual surface tension of the liquid used in
our experiments (see Chapter V). The Hamaaker constant value is typical
for thin films. However, using values three orders of magnitude higher
or lower than this showed no effect on the results. From the figures
we observe that although the equations in this case are different, the
stress-strain results are the same as the 6=0 case. The same instabilities
were observed in the hexagonal close packed case for 6 between 119 and
209, In this case, however, the cells have a very small film at zero
strain. The solutions therefore become unstable beyond these infinite-
simally small strains.

The excellent agreement between the two results can be explained
from the following reasons. With the Hamaaker constant used, the film

thickness calculated is significantly smaller than the cell size and
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the radius of curvature. Consequently, the values of r obtained are
almost exactly the same as in the 6=0 case. As the cells deform, liquid
flows in and out of the Plateau borders; r and 6 changes. However, the
change in § is too small to affect the change in r and the film lengths
in any significant way from the zero thickness case. One can also observe
this from an order of magnitude analysis. From Equation IV-15, we get:

ry/r =1 + 0.5 (8/r)

Using the equal pressure drop relation (Equation IV-13) to relate § and
r, and using values of 107'? and 25 dynes/cm for the Hamaaker constant
and surface tension respectively, we get:

ry/r =1 + ~107% p~2/2

where r is in cms.
Clearly, the error involved in using r instead of rqy is negligible.
Since the stress is related to the total interfacial length, we obtain
the same results as before. This close correspondence of the results
show that the negligible film thickness assumption, which has been used
in all our calculations so far, is a justifiable one.

Throughout this chapter, we have looked at shear deformations only.
However, one can use this approach to describe other kinds of deformation
such as extension. All assumptions, such as the affine motion of the
cell center and the pressure drop requirement, are general enough to
be carried over to this case.

One last point regarding critical strain needs to be mentioned here.
In the dry foam case, the critical strain corresponded to the value of
the strain when one of the cell sides reduced to zero length. The corres-

ponding stress was the yield stress. For foams with ¢<1, there is no
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such obvious way to define Y,. We could define the strain corresponding
to the maximum stress, or the strain at which the system goes unstable
as the critcal strain. For cases where the system is always stable (e.g.
¢=.92, 6=0°) or the two are synonymous (¢=.92, 6=30°, 40°), Y, is unambi-
guous. For other cases (e.g. ¢=.97, 6=300), one could use either definiton

since the stress-strain relation is unaffected by it.

C. CONCLUSIONS

In this chapter, the effect of gas volume fraction on small shearing
deformation of foams were studied. All possibie initial cell orientations
and cells with finite film thickness were taken into consideration in
this study. Based on cur calculations, we found:

2. Incorporation of finite liquid into our model affected the stress-
strain relationship. Thus, for 6=00, the yield stress or the maximum
stress decreased with decreasing gas fraction.

b. Unlike the dry foam case (cf. Chapter II), initial cell orientation
influenced the stress-strain relationship significantly. For some orien-
tations and gas fraction, limit goints and instabilties were observed
indicating possibilites of preferential cell orientation. Thus, for
$=.97, we observed limit points, while for ¢=.9069 and 6 between 11°
and 209, the system became unstable opon applying any strains.

c. Negative stresses were observed in the stress-strain cycle in
many cases. This is because the energy of the system passed through
a maximum as the cells were being deformed.

d. Introducing finite film thickness, §, into our model did not

change any of the results.
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V. EXPERIMENTS IN SHEAR FLOW

Experiments have been designed and conducted to characterize syste-
matically the shear flow properties of foam. Both steady and time dependent
experiments were done. The influence of gas volume fraction, ¢, on different
material functions was also examined.

Tnis study, which was done in three phases, consisted of: i) developing
a method to produce stable foam piyysically, ii) devising a suitable exper-
imental technique to characterize the foam rheologically, and finally,
i1i1) measuring the different material functions of interest. A detailed

description of each of these are presented below.

A. FOAM GENERATION

Experimental study of foam is complicated by cell collapse and film
drainage. In order to isolate rheological information from these, we
needed a system which could generate stable, reproduciole foam. Foam
produced in the laboratory met these requirements, and were used in all
our experiments. The gas volume fraction of this foam could also be
controlled and its effect on rheology studied.

1. Foam Formulation

A polymer-surfactant based aqueous solution was used as the foaming
liquid. The exact formulation, which is given in Table V-1, was ar. outgrowth
of the recipe used by Rand [1982] to make foam. The major differences
between the two is in the relative amounts of the different components
and in the polymer used. With this modification, we were able to produce

foam having large gas fractions (¢>.90) as well aa small cell size (~100
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TABLE V-1

FOAM FORMULATION AND PREPARATION

A. CONCENTRATE FORMULATION

% wt.
n-dodecanol y
n-butyl alchohol 10
surfactant (Witconate AOK, Witco Chemicals) 7.5

5 wt.% PEO (300K M.W., Scientific Prods.) solution in water 40

water 38.5

Add 20 wt.% of concentrate in water to make final product.

B. PREPARATION OF FOAM SOLUTION

1. Prepare PE0 solution. Use rollers or other mixers to dissolve
polymer. Mix it for a day.

2. Dissulve n-dodecanol in butyl alchohol. Time required for this
to dissolve is 15 minutes. Add PEO solution to this.

3. In a different container, pour the powdered surfactant into
water slowly. Mix until it dissolves (-15 minutes).

4, Add solution 2 to 3 to get concentrate.

5. Dilute solution as required.
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microns in diameter). Rand could not achieve both of these simultaneously
with his formulation.

In the formulation shown in Table V-1, the polymer n-dodecanol combi-
nation served as a stabilizer, Polyethylene oxide was chosen as the
polymer because it was water soluble and, more importantly, the resulting
solution was Newtonian. Thus any non Newtonian behavior observed in
foam could be directly attributed to its structure. The butyl alchohol
was used as a solvent. Foam produced using this formulation was stable
for about an hour.

2.  Apparatus

Figure V-1 shows a schematic diagram cof the foam generator used
in our laboratory. This kind of foam generator, which is a modified
version of one first built at Sandia Laboratories [Rand, 1982], works
on the principle that mixing a stream of gas and liquid solution in some
porous structure such as a steel wool mesh, produces foam. As seen from
the figure, the surfactant solution is kept in a stainless steel tank
capable of withstanding pressures upto 125 psi. Figure V-2 gives a detailed
diagram of the tank along with the different dimensions. As can be observed,
the 1lid of the tank, which is screwed on to it, has four openings. To
these are attached: i) a Nitrogen source tank to pressurize the surfactant
solution when needed, ii) a pressure gauge (0-100 psi) to monitor tank
pressure, iii) a Nupro relief valve, and iv) an on-off valve to depressurize
the system after use.

The oottom of the tank is attached to a tube which connects to the
stainless steel mixer., This mixer, which is 4.6 inches long and 0.18

inches in inner diameter, is packed with 1.6 gm of coarse stainless steel
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Figure V-2 Sectional view of the surfactant solution tank.



173

wool up to 3.8 inches of its length. All tubings in the system are made
of polyethylene (0.25 inches 0.D) and all fittings are Swagelok fittings.
In order to produce foam all valves in the system are shut and the
tank filled with the surfactant solution. Having closed the tank, the
two Nitrogen pressure sources are turned on. Successively, the two on-
of £ valves leading to the metering valves are opened. When the two metering
valves are opened, the nitrogen pressing down on the 1liquid solution
causes it to flow down the tube to the mixer. At the same time the gas
flows through the other tube towards the steel wool packing. The liquid
and the gas mix here to create foam. With this generator, foams having
gas fraction as high as 0.98 could be produced. The gas volume fraction
is controlled by changing the liquid and gas flow rates. When foam produc-
tion is no longer required, the above procedure is repeated in reverse
order., The 1liquid tark is then depressurized using the valve on the
1id, the liquid emptied and the whole system flushed with distilled water.

3. Surface tensiun, Gas fraction and Bubble size measurements

In order to characterize fully the generated foam and to be able
to compare the model predictions, the liquid surface tension, the average
bubble diameter and the gas volume fraction have to be known. The first
of these was measured using a tensiometer, Details on the operation
of this instrument can be found in the Dunoi Tensiometer Handout. The
gas volume fraction of foam was found by filling a tube of known weight
and volume with foam and measuring the difference in weight with a sensitive
balance. This tube, which had the same inner diameter as the mixer in
the generator, was filled by attaching it to the end of the mixer. Tubes

of different lengths were used and agreement between them was excellent,
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Reproducibility was also checked by taking data at different time intervals.

The average bubble diameter was determined by taking microscopic
photographs of a sample of foam squashed between two glass slides separated
from each other by a lens paper. By counting the number of bubbles from
the photograph and calculating the volume of the sample between the slides,
an average bubble diameter could be obtained. In order for the method
to give the correct number of bubbles, the foam sample had to be one
layer thick. The thickness of the paper had to be less than the bubble

diameter to ensure this.

B. EXPERIMENTAL TECHNIQUE

1. Equipment Description

For all our rheological measurements the Rheometrics Mechanical
Spectrometer was used. The rationale for such a choice will be discussed
later. This instrument gives a sample a known deformation at a specified
rate and temperature. The measured outputs give the resulting stresses
in the sample. Figure V-3 shows a schematic overview of the instrument.

Deformations are produced through rotary motion, as shown in Figure
V-4, A dc torque mntor drives the upper spindle. Speed is controlled
by a feedback loop from a precision tachometer over a wide range, 0.001
to 100 radians/sec.

The lower spindle is an air bearing. It can rotate freely or be
lodked with the thumb screw at the bottom end of the spindle. The lower
spindle serves to transmit stresses from the sample to the transducer
which supports it. Small deflections of the transducer are converted

to electrical signals by semiconductor strain gauges. These are amplified
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and may be read on a strip chart recorder or fed directly to a computer.

Samples are held between test fixtures mounted on each of the spindles.
The upper fixture and spindle can be raised and lowered with the positioning
wheel, which hzs a coarse and fine motion. Vertical position is read
by a dial indicator which moves Qith the spindle. Figure V-4 shows a
disk-shaped sample confined between two flat plate fixtures. These are
readily installed or removed by the quick-disconnect couplings.

The sample temperature is controlled by forced convection with the
environmental chamber. As shown in Figure V-4, a platinum resistance
probe in the gas stream controls the temperature. A thermocouple in
the upper test fixture combined with slip rings allows the sample temperature
to be monitored directly. With an external. supply of 1liquid nitrogen,
the chamber is capable of temperature control from -150 ©C to 350 ©cC.
All our experiments were, however, done at room temperature without the
use of the controller. Experiments repeated on diff-z:rent days and times
revealed that the slight variation in room temperature did not affect
rheological measurements.

There are a number of fixtures available for use with the Mechanical
Spectrometer, including cone and plate, parallel plates, eccentric rotating
discs (ERD) and concentric cylinders. For all foam experiments, we used
the parallel plate flow mode of the mechanical spectrometer in which
the foam is put between two concentric parallel discs (Figure V-5).
The lower disc is kept locked, and the upper one rotated at a specified
angular velocity w. By changing the gap and frequency of rotation, the
shear rate can be varied. The outputs measured are the torque and the

normal force required to keep the distance between the plates fixed.
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In practice, however, the output of the normal force is small and is
plagued with noise.
2. Procedure

In any kind of foam flow, considerable wall slippage is observed.
This is because a thin liquid film forms at the walls thereby interfering
with getting accurate rheological information about foam. By pasting
sandpaper (3M 120) on the circular dises so that the liquid could reside
in the troughs of the sand paper, the effect of the 1iquid film on rheological
measurements was eliminated. The grit size of the sand paper did not
affect the results as long as the particles were commensurate with the
bubble size.

To do the experiments, the foam sample was loaded carefully in the
gap between the plates and any excess sample protruding beyond the rim
was removed. However, before doing any systematic experiments, the dynamic
stability of the foam was checked by running a sample at a particular
shear rate and observing how long the foam could sustain a constant torque
reading. A declining torque value indicated the breakdown of the foam
structure. In all cases, the foam was stable for about ten minutes and
most of our experimental runs were completed within a couple of minutes.
Further, to elimirate effects of foam drainage, fresh foam was used to
get each data point.

3. Advantages of Experimental Technigue

The reasons for choosing the current experimental procedure are
discussed below.
a) The use of sand paper eliminates the liquid slip layer in foams.

Readings obvained thus pertain to pure foam, In other methods, such
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as the capillary viscometer [David, 1968, 1969; Fan, 1981] or Couette
device, this is not possible. Raw data has to be reduced by making some
assumptions on the liquid film layer in order to get information on the
rheology of foam only. This introduces some uncertainties into the measure-
ments.

b) Experiments can be run at very low shear rates using the Mechanical
Spectrometer. In this regime, there is little cell breakdown and experimental
conditions are closer to the assumptions in the model. Further, the
sand paper along with the low shear rates enable us to do stress relaxation
experiments and measure yield stress directly. In other techniques this
is not possible. Moreover, in capillary viscometry, the shear rates
are high leading to large presure drops and higher probability of bubble
collapse and compressibility effects.

¢) The small gap in Couette flow and the tube diameter in capillary
tubes are often of the same order as the foam cells. This affects rheological
information. With the parallel plates, this is not a problem since the
gap can usually be made larger than the cell size.

d) Film drainage can be ignored with the Mechanical Spectrometer
by putting in fresh sample for each data point. Data taking requires
only a couple of minutes, which is considerably shorter than the collapse
time of the foam.

e) The entire sample is at atmospheric pressure. Compressibility

effects are therefore negligible.

C. EXPERIMENTS AND MATERIAL FUNCTIONS OF INTEREST

Most useful models and experiments are expressed in terms of a few
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material functions. These functions can be found from relatively simple
experiments and applied to other situations. We focussed our attention
on some material functions describing different shearing flows (steady
and dynamic) because these are the most important flows in engineering
and processing applications. Further, they are also most amenable to
quantitative experiments.

In the laboratory, however, the directly measured quantities are
not the the desired material functions but rather the torques and forces
exerted on different pieces of equipment, ro.ation rates, certain physical
dimensions of the equipment and so forch. These measurable parameters
can then be directly related to the material functions. 1In the ensuing
sections, these relationships along with a brief description of the experi-
ments are given. Further details on these have been discussed by Bird,

Armstrong and Hassager [1977], Dinh [1981] and Weinberg [1981].

1. Steady Shear Flow

Three material functions completely describe a simple shearing flow.
These are,
the viscosity, n = T1yx / Y
the first normal stress coefficient, ¥i= (Tyx = Tyy)/Y 2
the second normal stress coefficient, ¥p= (t1yy - tzz)/‘?2

In order to simulate such flow in the Mechanical Spectrome..r, the
bottom plate is kept fixed and the top rotated at a constant frequency,
We The measured outputs cre the normal force F (gms) and the torque
T (gm-cm) exerted on the lower plate. However in the parallel plate

mode, the shear rate Y is not constant throughout but a linear function



182

of the plate radius and is given by Y = wr/H. Hence, the viscometric
function are derived with repect to the rim shear rate Y R They are

given by:

. 3 3
n(F ) - (M2 (5, dln (T2e)

Y R dlin Y R

SF/nRz) d 1n (F/nRz)
¥, - ¥, - ) {2+ . }
Y dlny

Y R = wR/H 1s the rim shear rate,
R and Y are the disc radjus and separation respectively,
w is the angular velocity of the top plate, anc

F and T are the normal force and torque readings in gm and gm-cm

2. Stress Relaxation after Steady Shear

This exneriment, which i3 illustrated in Figure V-6, was done to
check the presence of a yield stress in foam. Boger [1983] was one of
the first to use a similar technique for yield stress measurement purposes.
Here the foam is put between the two discs as before, the upper plate
i3 rotated at so. - low frequency until steady state is reached and then
shut. off. For a material having no yield stress, the torque reading
wou.1 fall off to zero, but for a material with finite y‘<ld point, the
torque would relax back to some residual value associated with the yield
J.ress, This procedure should be repeated for dJdifferent frequencies

and the yleld stress should be independent of shear rate. The stress
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is calculated using the same equation as before.

So far, only steady flow experiments have been described. However,
these experiments do not provide adequate insights into a material's
response, especially for short time scales. One then has to resort to
dynamic methods., Two such experiments, small amplitude oscillatory flow
and start up of shear flow, were done on foam to measure some of its
viscoelastic properties as well as cbserve its response to different

time scales.

3. Small Amplitude Oscillatory Shear Flow

In this experiment, a sinusoidal strain is applied to the material
by oscillating the top plate at a specified frequency, w. Thus Y = Y4
sin wt, where, Y, is the maximum strain amplitude
of the top plate and is given by,

Yo = R x (maximum angular displacement in radians)/H
The corresponding stress in the material is also oscillatory in nature

and is given by [Bird, Armstrong and Hassager, 1977]:

Tyx - G'(W) Yo sin wt + G"(w) Yo cos wt +,..

Please note that Bird, et al. uses a different sign convention and therefore
their equation have negative signs on the right hand side for the above
equation.

For small enough strains, the higher order terms are negligible
i.e. the material has a linear-viscoelastic behavior. One can then directly

measure the elastic modulus (G') and loss modulus (G'') from such experi-
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ments. Note that for a perfectly elastic solid the above equation reduces
to,

Tyx - Go Yo sin wt

and for a viscous Newton'an liquid to,

Tyx- H Yo w cos wt

where, Gy and u are the modulus and viscosity respectively.

To run this experiment on the Mechanical Spectrometer, a microcomputer
(IBM-PC) was used for input/output purposes. The input was the sinusoidal
strain and the measured outputs were the stress amplitude 1, and the
phase angle y between the stress and strain. The moduli were then calculated

from the following equations [Weinberg, 1981].

T T

G'-—;g— cos ¥ G"-—;9¥ sin ¢
o o

However, for these relations to be valid, the material has to be in the
linear viscoelastic region. The first step in this experiment was therefore
to run a strain sweep keeping frequency constant. As long as the moduli
were invariant with strain, the material was linear [Bird, Armstrong
and Hassager, 1977; Ferry, 1982]. A particular strain within this range
was then selected to run a frequency sweep and observe tie time scale

responses of foam.

4, Stress Growth

In a stress growth experiment, a constant shear rate is imposed

on a material initially at rest. The object here is to observe how the
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shear stress changes with time as it approaches the steady state value.
The importance of this experiment lies in the fact that materials often
show strong transient behavior whose nature depends on the rate of defor-
mation. These short time scale responses, such as viscosity overshoot,
go unnoticed in steady flow experiments,

As in the steady shear flow case, this deformation can be character-
ized by three corresponding material functions. Our interest, however,
was in the transient viscosity n* (?R.Y) which can be calculated from
the torque versus time output [Dinh, 1981]. Again the microcomputer
was used to impose the deformation as well as to record the outputs.

Here also the material function was determined at the rim shear rate.

The following is a derivation of the equation relating the transient
viscosity to measurable parameters.

The torque, T, measured in the Mechanical Spectrometer is the total
shearing force times moment arm on the circular surface of the lower

plate. Thus,

R
T = 2% J n +(Y) Y r2 dr

v 3

2R3 [Y
P

R
. BB I ' (m v 3 ay
e Yo

To get the last relation , we used the fact that Y=Yt. This relation

when differentiated with respect to YR and simplified gives:
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T
21R

d 1In( Tt/2ﬂR3 ) ]

- {3+
3YR d 1n YR

n(v) -

In a given experiment Yg is set and the transient viscosity obtained

as a function of strain or time.
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VI. EXPERIMENTAL RESULTS AND DISCUSSION

Results of the experiments described in the last chapter are presented
here. Almost all experiments were done for three different gas volume
fractions of foam: 0.92, 0.95 and 0.97. Fresh foam was used to get each
data point except in the stress growth experiments where it was used
to get each single run. The surface tension of the surfactant solution
and the average cell radius were found to be the same in all cases: 23+1
dynes/cm and 65+3 microns respectively. Two different transducers were
used interchangeably for the bottom plate of the viscometer depending
on the magnitude of the force/torque readings. For the regular transducer
(104 gm-cm maximum range), plates of 72 mm diameter were used whereas
for the sensitive transducer(10 gm-cm maximum scale), plates of S0 mm
diamzter were used. The gap between the plates was kept constant at
2.4 mm for all runs; however, test runs made with different gap widths

showed the material functiois to be independent of it.

A. RESULTS
1. Viscosity

The viscosity of foam was measured from the steady shear flow experi-
ment. Figure VI-1 shows & plot of viscosity as a function of shear
rate for three different gas volume fractions. As can be seen, foam
behaves like a shear thinning material with its viscosity being a strong
function of shear rate even at very low shear rate values. This is in
contrast to the Newtonian behavior of the parent liquid (Figure VI-2).

The viscosity of the PEO based solution, which was measured using a Haake
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Couette viscometer, was found to be about 5 mPa.s. Thus the foam viscosity
is significantly higher than that of the surfactant solution.

The plot also reveals two other things. First, the viscosity is
influenced by the gas volume fraction, a higher gas fraction resulting
in an upward shift of the viscosity-shear rate curve. Secondly, all
curves are linear and have slopes very close to -1. This suggests that
foam has a yield stress and all our experiments were done around this
region. Hence, in this shear rate regime, the yield stress dominates

the viscosity of foam.

2. Yield Stress

Indirect confirmation of the presence of yield stress comes from
Figure VI-3 where we have replotted the previous data in terms of viscosity
versus shear stress. We observe here that the viscosity of foam is approach-
ing an infinite value at a certain stress. This corresponds to the yield
stress.

We also find the yield stress (Ty) to be higher for a larger gas
volume fraction. This is because with increasing gas fraction the foam
cells become more polyhedral in structure. Consequently, larger stresses
are required for the cells to hop past (yield point) one another. The
same trend is reflected in the viscosity data (Figure VI-1) because viscosity
is dominated by the yield stress.

Direct measurements of the yielc stress were obtained using the
stress relaxation technique described in Section V-B. Figure VI-4 shows
the yield stress as a function of shear rate for two different gas fractions.

As shculd be the case 1y is independent of Y. Further, the values of
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the yield stress (13.5, 17.5) for the two gas fractions agree reasonably
well with the corresponding ones obtained by extrapolating the viscosity-
shear stress data (13, 18). It may be mentioned here that this method
fails at high shear rates because of irreversible breakdown of foam struc-
ture. We, therefore, started our experimental runs at the lowest possible
shear rate of the machine and worked our way upwards. As can be seen
from the plot, the structure was stable for a fairly large shear rate

range.

3. Elastic and Loss M_dulus

The elastic (G') and loss (G'') moduli of foam were found from the
small amplitude oscillatory shear experiments. Initially, a strain sweep
was made keeping frequency, w, constant at 2.5 rad/s. This is shown
in Figure VI-5. We found the moduli to be fairly constant for strains
up to 15% indicating that the material was linearly viscoelastic in this
region. Next, the effect of frequency was studied keeping strain constant
at 9.6%. Figure VI-6 shows plots of G' and G'' as a function of frequency
for three different gas volume fractions. One can observe that the moduli
are flat and fairly invariant with frequency which is typical of nighly
elastic materials. Further, the storage modulus in all cases was larger
than the loss modulus by a factor of 5. Confirmation of the strong elastic
nature of foams was found by plotting strain and the corresponding stress
in the material as a function of time. Figure VI-7 shows such a plot
where the strain has been normalized with respect to the maximum torque
value. The thing to note from this plot is that the torque (stress)

and position (strain) are almost in phase with each other. Thus, based
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on viscoelastic theory (Equation V-4), the response of foam to small
oscillatory deformation is essentially elastic. The same trend is observed
for different strain and gas fraction values as depicted in Figures VI-8

through VI-10.

4, Transient Viscosity

In Figures VI-11 through VI-13 are plots of transient viscosity,
n*, versus strain for three different gas fractions. Each run was made
at a constant shear rate. The effect of shear rate on n+ was studied
by keeping gas volume. fraction constant and running the experiments at
three different shear rates. Each of the figures shows this. We find
that the steady state viscosities approached are dependent on the shear
rate, a lower shear rate giving a higher steady state value. This is
expected because of the shear thinning behavior of foam.

The plots also reveal that the stress or viscosity overshoots are
fairly small in foam. Figures VI-14 through VI-16 3show normalized plots
of transient viscosities over the corresponding steady state viscosities
as functions of strain. Note that these curves also correspond to the
normalised shear stress. We find that for a specific gas fraction, data
for different shear rates collapses into a single curve. Further, in
all cases the overshoot is no greater than 15% of the steady state value.
In Figure VI-17, we compare the normalized stress curve for two different
gas fractions. .92 and .97, for the same shear rate. Although the curves

are very similar in shape, the maximum stress and the corresponding strain

are slightly larger for the higher gas fraction (0.97) case.
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B. DISCUSSION
In this section some of the experimental problems encountered in
working with foams are discussed. Physical insights into the experi-
mental results are also provided. Finally, the predictive and interpretive

ability of the theoretical model is compared with the measured quantities.

1. Steady Shear Experiments

In Figure VI-1, the viscosity of foam has been plotted. As can
be observed, the viscosity goes down with increasing shear rate with
a slope approximating -1. This shear thinning effect should not be confused
with the power law behavior typical in polymeric materials. Foam has
a yleld stress and all our data had been taken around the yield point.
Thus, the shear stress have been fairly constan. for each of the runs.
This yiela stress effect is reflected in the powerlaw behavior of foam
with a power law index very close to zero.

As has been mentioned before, n goes up with increasing gas fraction.
This is so because the yield stress increases with larger gas fraction.
This becomes clear when one looks at two dimensional foam structures
shown in Chapters II-IV. With increasing gas volume fraction, the cells
become more stuctured and polyhedral and it takes a larger force for
the cells to go past one another. At high shear rates too, one should
expect ¢ to influence viscosity. In this regime the viscous dissipation
in the foam films become important. This dissipation depends on the
thickness of the liquid films and Plateau border which in turn are clearly
related to ¢.

In Figure VI-18, the dry foam model prediction has been compared
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Figure VI-18 Viscosity as a function of shear rate. Model prediction
for ¢=1 and ¢=0.97 are compared with data for 0.97 gas fraction foam.
Rmaverage bubble radius; o=interfacial tension.
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with the .97 gas volume fraction foam data. We find the model to give
the correct trend but overpredicting the data by a factor of six. Also
shown in the plot is the prediction of the more refined model with finite
1iquid content (3% in this case). As expected the discrepancy is reduced
to a factor of 3. Considering the fact that the models are two dimensional,
neglect cell growth, film drainage and have some limitations in terms
of explaining cell reformation, we consider the agreement very good.
As a mean to interpret data they are even better. Although our calculations
show that a "bidisperse" system does not affect the yield stress and
consequently the viscosity at low shear rates, we feel that randomness
along with polydispersity could also account for some of the differences
between model and experiment.

In calculating the model prediction the measured surface tension,
average cell diameter and 1liquid viscosity were used. However, only
the yield stress part of the Equation II-44 was used to calculate the
viscosity. This is because the film dissipation term, C,(¢)uy, 1is negli-
gible in this shear rate regime. The viscous force effects, calculated
in Chapter III, are also negligible and therefore the equlibrium model
based on the 120 degree criterion could te used.

It would be interesting to compare the model prediction with experiments
at high shear rates. Unfortunately, the foam structure breaks down in
this region. This, along with film drainage, is a major problem in experi-
menting with foam. One possible way to do such experiments would be
to use a liquid-liquid emulsion and a modified Couette device or the
parallel plate device. By using 1iquid emulsions one would reduce cell

breakage and the driving force for drainage considerably. Problems asso-
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ciated with the parallel plate device at high shear rates, such as the
sample coming out of the gap, could also be avoided by using a couette
geometry. One could also reduce the gap between the parallel plates
and increase shear rate without increasing inertial effects.

Although we have done steady shear experiments, we did not report
any normal stress data. This does not imply the absence of normal stress
in foams but rather our inability to measure them. The problem in trying
to measure the normal stresses in foam lies in the very long relaxation
time of the material. When the foam is put between the parallel plates
and the plates brought closer together, one inevitably has to squeeze
the sample to properly fill the gap between the plates. This puts a
normal force on the transducer. Because of the yield stress of the material,
it does not relax back. Any measurements thus made are meaningless.
This problem, which has also been encountered by Yoshimura and Prud'homme
[1984], 1s more severe with the sand paper backed plates. Some efforts
made to get qualitative readings without using sand paper so that the
wall film helped in removing some of the residual stress, also did not
prove successful.

It should be mentioned here that this residual stress did not affect
our viscosity measurements. We verified this by running experiments
at different residual stresses and observing the obtaining the same viscosity

measurements.

2. Dynamic Experiments

In Figures VI-14 through 16, the normalized transient viscosity

of foam has been plotted. As mentioned before, the three curves representing
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three different shear rates collapses into a single one when normalized.
This indicates that the stress-strain reponse of foam is independent
of shear rate. Thus, in a physical process such as injection or compression
molding, the compression or injection rate would not be an important
processing parameter provided the foam retained its structure. The invariance
of n* with Y is typical of elastic materials and agrees very well with
our model. The dry foam model assumes the foam to be primarily elastic
when strained and give a non-linear stress-strain expression (Equation
11-24). In the experimental plot, at very small strains the material
is linearly elastic but with increasing strains non-linear effects become
important. Similar behavior is predicted by the model (Figure I11-6).
Thus, in terms of interpreting non-linear response of foam, the model
is good. However, the model fails to account for the observed stress
overshoot.

Usually, in a polymer solution, stress overshoots occur because
of molecular reaarangements [Ferry, 1982] with the maximum corresponding
to the breakdown of the initial structure. Such overshoots, which are
very large compared to the 15% observed in foam, increase with increasing
shear rate. In foams, for a given gas fraction, the normalised curves
of the transient viscosity (which is the same for stress) are independent
of shear rate with the maximum occuring at the same strain for different
shear rates., This leads us to believe that the maximum stress represents
the yield stress and the corresponding strain, Y., the critical strain
at which the initial foam structure reforms. This maximum stress is
also independent of shear rate which it should be if it is the yield

stress. Further corroboration of this idea also comes from Boger [1983])
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who observed small stress overshoots in materials with yield stress.
More importantly, however, Yo from the experiments are respectively ~.8,
.85 and .92 for ¢=.92, .95 and .97. From the model in Chapter IV, we
find that depending on initial orientation, Y, ranges from from .36 to
1 for ¢=.92 and from .57 to 1.3 for ¢=.97. These are clearly in the
correct range. The stress growth experiments also show the maximum stress
to be larger for a larger gas fraction. This is observed for the yield
stress in our model and also in the steady shear experiments.

Since the stress overshoots are only about 15% higher than the steady
stress value, the equilibrium foam cell structure in a steady flow at
any instant is not much different from the inital structure. Thus for
our experimental runs, foam structure was preserved in the steady shear
deformation. One important point to note here is that the yield stress
values obtained from the stress growth experiments are roughly 15% higher
than the ones measured using stress relaxation and extrapolation of viscosity
versus shear stress data., This is because in the steady experiments
we are measuring ty from equilbrium foam structures that are in motion. 1In
the stress growth experiment, we are measuring Ty at the onset of steady
flow when the inital structure is about to breakdown. Clearly, the inital
and the equilibrium structures are slightly different which leads to
this slight discrepancy.

One other information can be obtained from the n* - Y curves. For
strains below Y,, where the predominant mode of deformation is the extensional
motion of the liquid films, we can get the shear modulus, G(Y), of foam
from its definiton G(Y) = 1yx/Y. Figure VI-19 shows the experimental

shear modulus along with the dry foam model prediction (Equation II-24).



215

3
10 . — . — '
I DRY FOAM MDDEL PREDICTION -
3 | e e .
S
i -
=
- o| © o EXPERIMENT (¢ =0.97 )
%
0 - o )
< ' ° o, :
w - % |
I
wn - |
1
10 : - IR M :
O 0.2 0.4 0.6 0.8 1

STRAIN

Figure VI-19 Shear modulus as a function of strain. Model predictions
and experiments are compared.
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Although both curves show the same trend, the experimental one decreases
faster with strain.

In the oscillatory experiments, the flat nature of G' and G'' (Figures
VI-5, 6) for both strain and frequency sweeps go very well with expectation.
As can be seen from the n* versus Y plots, the stress-strain relation
is well within the linear regime. For such small sinusoidal deformation
it is the linear 1liquid films of the foam cells that is being stretched
and compressed. Since these films are also very thin, the response
of the material would be predominantly elastic. We may point out here
that for such small strains and frequencies, viscous stresses in the
films are negligible and the foam structure 1is essentially at equilibrium
(cf. Chapter III). For such equilibrium deformations, although the film
thickness in reality may changes with strain, the extensional motion
of the films are insensitive to it. This is evident from Chapter III
where we find the results for the finite film and zero film thickness
models to be the same and the deformation essentially elastic. However,
if we had strains going past the point where the cusps of two Plateau
borders meet (Figure IV-2), the response would clearly be nonlinear.
Viscous effects would be more important and the stress-strain phase shift
would be larger. This non linearity is reflected in a non-sinusoidal
torque output as observed by Prud'homme and Yoshimura [1984].

In the oscillatory shear flow experiments, we observe the moduli
to decrease slightly with decreasing ¢ (Figure VI-6). However, the ratio
of G'/G'' is constant for the gas fractions measured, suggesting that
the relative predominance of elastic over viscous effects do not change

with ¢. This happens because the experimental phase shifts between the
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torque output and strain, which is directly related to G'/G'' (cf. Equation
V-6), are same for all ¢'s (Figures VI-7, & and 9). Only the maximum
torque amplitude, which is related to the absolute value of the moduli,
change with ¢. Based on the modelling work, one would expect this.
With a lower ¢, the film thickness would be slightly more; so, the absolute
values of the moduli would go down a little. The response mode, still
being the compression and stretch of the liquid films, would essentially

be elastic.

C. SUMMARY

Steady and dynamic shear flow experiments done on foam revealed
the following information.

In steady shear flows, foam behaves like a Bingham plastic material.
In our low shear rate experimental regime, it showed a shear thinning
viscosity inversely proportional to the shear rate, indicating yleld
stress to be the predominant component of the viscosity. The value of
the viscosity, which was over four orders of magnitude higher than the
liquid solution viscosity, was an increasing function of the gas volume
fraction. Comparison with model prediction showed the model to give
the correct trend but overpredict the viscosity by a factor of three.

Indirect measurement of the yield stress of foam, Ty» by extrapolating
the viscosity versus shear stress data showed Ty to increase with larger
gas fraction. Direct measurement of Ty using stress relaxation confirmed
this.

Oscillatory dynamic experiments showed foam to behave like an elastic

solid for small deformation (consistent with theory). This was concluded .
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from the facts that the moduli of foam were insensitive to frequency
of oscillation, G' was much greater than G'', and finally the phase shift
between torque output and strain input was very small.

Stress growth experiments revealed the stres-strain behavior of
foam to be independent of shear rate confirming the elastic nature of
the material, and also indicating shear rate to be an unimportant processing
parameter. Small stress overshoots with the maximum corresponding to
the yield stress and critical strain, and independent of Y and shear
rate, typical of material with a yield stress, was observed for each

gas fraction of foam.
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VII. LARGE DEFORMATIONS AND PERIODICITY IN FOAMS

The goal of this chapter is to extend the dry foam model of Chapters
II and III to large deformations beyond the critical point. We focus
on shearing deformations only and study the periodicity of the stress-
strain relation and influence of initial orientations for large shear
strains. Deformations of hexagonal foam cells of any arbitrary initial
cell orientation with only surface forces present (equilibrium) as well

as with surface and viscous forces present are considered.

A. FORMULATION OF PROBLEM

The physics of foam deformation have already been discussed in Chapters
IT and III and all assumptions from these chapters carry over here.
Results up to the critical point are therefore the same as in the earlier
chapters. In this section we focus on formulating the problem beyond
the critical point or first "disproportionation". The stress tensor

is given from Equation II-14 as:

F. & B
1= j—i 22 VII-1

= S 81
where Fj is the magnitude of the force along the 1liquid film gj. For
the equilibrium case, Fi=20 whereas when both surface and viscous forces

are present Fj is given by (cf. Equations III-15, 16):

N dg
F, =20 (1+ °; —L, VII-2
31 dy

Here, No, 1s the Capillary number defined by Equation III-15.



220

As before, we need to know the micromechanics to evaluate the stress
tensor. Let us choose the same unit cell and triangular subcell ABC
as in Chapter II. Thus A, B, and C represent points of affine motion.
We embed vectors 2?:: Eéz along AB and AC respectively and assume these
to be known for any initial orientation from Chapter II. Thus, for any
deformation the vectors b,, b, along AB and AC are given by:

8- g
where,
g is the deformation gradient tensor defined in Equation II-3. g. 2?
are defined as:
g - (EJ'ES)T g? = (291.292)1
For a shearing deformation at a strain Y, this reduces to:
b, = (b9, + Y bO,y)éx + O,y 8y VII-2
b, = \bOy + Y bO,y)8x + DO,y 8y
Here, the subscripts x and y denote the respective components of the
vectors.

At the point of disproportionation when one of the films reduces
to zero length, we reinitiate the problem based on the following rules.
If film OC or g, goes to zero, then the new BO is given in terms of B8
for this point by:
8o - (b,=b,,b,) 1 VII-3
If £ilm OB or g, reduce to zero then,
8o = (b,,b,-b,)7 VII-4
If f£ilm OA or g, goes to zero length, then BO is given by:
8O - (bs,=b,)"? VII-5

The above formalism becomes clear if one looks at a cell at the point
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of disproportionation. Figure VII-1 shows the cell structure for initial
orientation 6=0° and Noa=0. Here, side 0C has reduced to zero length.
Since angle QPR is 60° and represents an unstable configuration, we would
expect the film to grow in direction 1 as shown so as to attain the 120
stable configuration. Growth of the film in direction 2 is not expected
because this would lead to the original foam structure. A much better
explanation for the film growth comes a force balance argument. Since
point P in Figure VII-1 experience forces along PQ and PR, this would
cause a film to emanate in direction 1. Thus, we can reinitiate the
problem by choosing PQR as the new subcell and embedding vectors b,,
b, along PQ and PR. Similar arguments hold for the two other films going
to zero.

A very important point to note here is the initial direction of
the growing film. For the equilibrium case, the forces along PQ and
PR are same (2¢) and hence the film will initially bisect the angle QPR.
When viscous forces are present, however, the forces along PQ and PR
are different and the direction of the growing film is given by the direc-
tion of the resultant force.

In order to get the cell shape, we use the 1200 criterion and Equations
II-5 and 6 for the equilibrium case. This gives the coordinates of point

0, the Plateau border, in terms of the vectors b, and b, as:
x =2 [ (b,+b,)*8x/v3 + (by,=by)8y JC1 / [ D1 V3]

y = 2 [ (by=b,)*8x + (by+b;)8y/v3 1 C1 / [ D1 V3]

where,
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C1 = by b, *+ (Bxb,)*85/Y3

D1 = [(b,+b,)*8x/¥3 + (b,=b;)+8y]? + [(b,=b,)8x + (b,+b,) 8y/v2]*

Thus at the point of disproportionation, once we reinitialize the tensor
8, we get a different foam cell structure at that same strain using the
above equations. Thus the new film grows instantaneously and this new
configuration corresponds to a lower energy state.

When viscous forces are present, we solve for the microstucture
using Equations III-18 and 19 and reinitialize the equations after each
disproportionation. Here, however, at the point of disproportionation
we specify the initial direction of film growth and the cells do not
reform instantaneously as viscous forces do not allow an instantaneous

extension of the new film.

B. RESULTS AND DISCUSSION

Kraynik [1984] has been the first to look at large deformations
in high gas fraction foams, Based on the methods in Chapter I1I, he developed
a formalism to study large deformations., Our model, in turn, builds
up on his work. The major difference between the two studies lies in
the method of reinitializing the problem after each disproportionation.
In his work, Kraynik chose the bisector of the angle between the two
films, i.e. angle QPR of Figure VII-1 as the initial direction of the
growing film. Clearly, this is not correct when viscous forces are present
as the direction is determined from the direction of the resultant of

the forces along the two films PQ and PR.
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In Figure VII-2 are shown the shear stress (tyy) and first normal
stress difference (N,) of foam for 6=0° and Nga=0. Clearly, the system
is periodic after one disproportionation with the stresses returning
to their original values. This is easily seen from the cell structures
(Figure VII-1) where at the point of disproportionation APQR, the new
subcell, is equivalent ot the original subcell AABC, and the system reforms
to the original configuration.

In Figure VII-3 are plotted the stress-strain relation for initial
orientation 8=30° and Nya=0. The plots reveal the system to be periodic
after three disproportionation. The first disproportionation occurs
at C and the system jumps to D; the second one occurs at F and the final
one at I. At this point the stresses jump back to its initial values.
Observe from the plot that the shear stress Jjumps to a nonzero value
after the first disproportionation (D) and becomes negative after the
second disproportionation at G. Such values are indicative of irregular
cell strucutres as revealed by our calculations in Chapter III. In Figure
VII-4, we show the actual cell deformation for this orientation with
the labels corresponding to those of the stress plot. At C, side 3 has
reduced to zero length and the structure reforms with a film growing
in the direction shown by the arrows. The new subcell along with the
new film is shown in D. Structure F represents the next disproportionation
where side 2 or OB has gone to zero length. G shows the reformed foam
structure and subcell. As this is deformed side OB shrinks in length
to zero at I; the cells then reform back to the original 30° orientation
at J. The cycle is repeated for larger strains, Note that D, G represent

irregular cell structures and the subcells have been drawn based on our
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stress difference.
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Figure VII-3 Stress-strain relations in large shearing deformations.
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formalism.

In Figure VII-5 are shown the shear and normal stress plots for
initial orientation 6=15° and Nga=0. We observe no periodicity even
after four disproportionations. This leads us to believe that the 150
orientation is not a periodic one and although the structures reform
they never return to their original configuration.

From our study of equilibrium systems we found initial orientation
to affect periodicty in foams. We felt that aperiodicity would become
more pronounced with viscous forces present because we introduce more
asymetry at the point of disproportionation by specifying the direction
of the growing film. In order to study the effect of viscosity we looked
at the stress-strain relation for 6=0 and Ng3=0.006 and .01. Figures
VII-6 and 7 show the stress—strain plots for these two Capillary numbers.
For both cases we observe periodicity after one disproportionation.
However, the stress values never come back to the original one and the
original stucture is never attained. As we noted earlier, this is not
the case for the equilibrium deformation. These plots along with that
for Noa=0 also reveal that the amplitude of oscillation goes down with
increasing Nyy indicating the structures at D to move further from the
equilibrium structure at A. At larger Ny, such as 1.0 and .1, we noted
in Chapter III that the structures start to elongate rapidly indicating
possibilities of cell rupture.

In Figure VII-B8 is shown the cell deformation as increasing functions
of strain for Npa=.01 and =09, Structure B represents the first dispropor-
tionation point of the stress plot. Here the forces along the films

causes the new film to grow in the direction shown. C in Figure VII-8
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Figure VII-5 Stress-strain relations for initial orientation 6=15° under
equilibrium conditions. a) Shear stress b) First normal stress dif-
ference. Note that the system is not periodic.



Nl x ¢ a/0 )

234

2.2 T
;f":, Nca-Do |
/f 6 =15
1.72¢ ;
//
1.24¢ .
o4
D. 76¢ i
D. 28 / ]
-0.2 . : : .
0 4 6 8 10
STRAIN

Figure VII-5 (continued)



235

1.2 O —
Nea = 0. 006 |
[ on0°
0. 86¢ T
b
N
o i //\ /4 // )
v 0. 72} S :
X
- i l
0
W o. 48} .
-
n _ ]
o
N
W g, 24} :
0
EJ' N R i N R ) N L
8] 1 2 3 4 S
STRAIN

Figure VII-6 Stresses as functions of strain for initial orientation
6=0° and Capillary number Nga=.006. a) Shear stress ©b) First normal
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F.gure VII-7 Stresses as functions of strain for initial orientation
6=0° and Capillary number Nga=.01. a) Shear stress b) First normal
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corresponds to the stress at C. The small newly formed film can be observed
distinctly here. Further, the films 2 and 3 in C correspond to the films
2 and 1 in the previous structure B, As the cells deform, film 3 decreases
in length and structure D corresponds to the local minimum in the shear
stress plot. Further deformation causes the cells to reach structure
B. Beyond this strain the cells follow the BCD cycle and the initial
configuration (A) is never attained.

In Figure VII-9 are plotted the shear and normal stresses for 6=30°
and Npa=0.001. From the figures we observe the system to be "almost"
periodic. The shear stress seems to be periodic with increasing amplitude;
the normal stress, however, does not show such increasing amplitude.
We feel that the sytem is not periodic because of the asymetric conditions
at the point of disproportionation in terms of the direction of the growing
film. This is in contrast to Kraynik's [1984] observation of periodicity
with his symmetric film growth condition for 6=30° and similar Capillary
numbers. Further, our results for =00 also differ from Kraynik's result
for the same Capillay number because of our conditions.

It is apparent from this study that for certain initial orientations
there are no steady state material functions for foam. For instance,
for 6=15° and Ny;=0, we would be unable to define a steady state viscosity
as the system always reforms to a new configuration after each dispropor-
tionation. In the cases presented here for 6=0°, however, we can define
a time averaged viscosity since the system is periodic. The question
that needs to be answered at this point is how can we explain the experi-
mentally observed steady state viscosity of foam. This observed phenomenon

can be attributed to the random, three-dimensional, polydisperse cell
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structure of real foams which our model fails to take into account.
Incorporation of all these factors into the model may reveal steady state
material functions.

Based on our study for large deformations, one last word needs to
be said about the steady shear viscosity expression derived in Chapter
II for the equilbrium dry foam model. In our calculations there for
the viscous dissipation in the foam films, we time averaged the dissipation
over the first disproportionation. This infers the first disproportion-
ation to be the period for the foam system. This is clearly not true
in the 30° case and one should time average the viscosity expression
over one cycle rather than the first disproportionation. Thus, the expres-—
sion derived in Chapter II is correct as long as it refers to one dispro-
portionation and not the entire period. The errror involved, however,
is very small since the the yield stress does not change from that at
the rist disproportionation. One should recall that for 6=0°, the period

equals one disproportionation.

C. SUMMARY

In this chapter, large shearing deformations of foam was 1looked
into. A force balance approach was used to determine the direction of
the growing film after each cell disproportionation. We found that initial
orientation and viscous forces strongly affected the periodicity of the
system. For 0=0° the system was periodic for equilibrium conditions
and when viscous forces were present. In the equilibrium case the system
always returned to its 6r131na1 configuration. For a finite yet small

Capillary number, the system was periodic but did not return to its original



244
configuration. For larger Ny, the cells were very elongated indicating
possibilities of cell rupture.

For 6=150 and Ny,=0, the system showed no periodicity. For 6=300
under equilibrium conditions the system was periodic and returned to
its original configuration in the reformation cycle. Incorporation of

viscosity however led to a loss of this periodicity.
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VIII. SUMMARY AND RECOMMENDATIONS

The study of the rheology of foam is complicated by the inherently
unstable nature of foam. In this study, such effects were eliminated
by using stable foam capable of retaining its structure for a long period
of time. The emphasis of this work had been to understand the physics
of microstructural deformation and relate it to observable macroscopic
material properties from a theoretical and experimental viewpoint. A
formulation for describing arbitrary deformation in foams in terms of
basis vectors along film edges was developed. This enabled, for the
first time, to calculate the total stress tensor for high gas fraction,
2-D foam cell model for any arbitrary initial cell orientation and arbitrary
homogeneous deformation. Experimental technique was developed which
eliminated all previous problems associated with wall slippage in foam
flow and allowed us to do experiments without resorting to any empiricisms
for the wall region. The major findings in this regard is put into pers-
pective in this chapter along with some relevant applications of this

study and possible areas of future research.

A, THEORY

Two dimensional foam cell models were used to determine the stress
strain relation and understand the underlying physics of foam deformation.
Central to all our calculations was the assumption that the foam system
was spatially periodic so that the centroid of the cells moved affinely

with the bulk deformation.
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1. Results in the limit ¢ approaches unity

In this limit the foam cells were hexagonal and the stress tensor

for any deformation was related to the microstructure by the following

relation.
o1 B A
= S 81

Here gj represents the film i vectorially, Fj the magnitude of the force
along it and gj the length of the film. S is the area of a unit cell
and the summation is over the three liquid films in the unit cell.

For small shearing deformations under equilibrium conditons, i.e. shear
rate is zero and surface forces dominate so as to make the angles between

films 1209, the above expression reduces to:

20 Y
Tyx - == meoseosmess
a v(3Y2 + 12)
2
20 Y
T -1 - [ ]
xx ¥y a V(3 ¥ + 12)

Similar expressions were obtained for elongational deformation.
These equations show that the stress in foam is independent of the initial
cell orientation, proportional to the surface tension and inversely propor-
tional to the cell side length. At the "micro" level, such a deformation
leads to extensional motions of the films with one film shrinking in
length with increasing strain. At a critical strain, Yq, this film reduces

to zero length and the corresponding stress represents the yield stress.
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For stresses below Ty» the material essentially behaves like an elastic
solid and retracts back to its original configuration upon removal of
the applied stress. Tys which has the same proportionality in terms
of ¢ and a, did not change for a bimodal cell size distribution suggesting
that the fluid mechanics of foam may be well described by a monodisperse
cell model.

For deformations at finite shear rate, viscous forces opposing the
extensional motion of the films are produced and the cell structure is
determined from a balance of viscous and surface forces at each Plateau
border. The influence of these viscous forces was studied in terms of
a non-dimensional Capillary number, Ny, giving the ratio of viscous
to surface forces and defined as:

Nea = u C(¢) Ya/20

For Ngoa around .001 which corresponds to a shear rate of approximately
10® for typical values of surface tension, cell size and liquid viscosity,
the deformation essentially remained the same as in the equilibrium case.
This meant that the simple equlibrium model is valid for such shear rates.
For Y>10° , however, the cell structure and stresses started showing deviations
from the equilibrium 120° case. The stress became a function of initial
orientation and the critical strain and Ty increased. At larger shear
rates, the cells became very elongated suggesting possible modes of cell
rupture.

The actual magnitude of the viscous stress in the films was however
small. Its primary effect was to change the orientation and lengths
of the rilms and thereby change the total stress.

In a real process, shear rates as high as 10® are hard to reach
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without destroying the foam. Even it were possible, most of the shearing
would be concentrated in the thin wall films and the actual Y within
the foam would be a lot lower enabling one to predict such deformations
by the equilibrium model.

Calculations for large strains revealed the foam deformation to
be periodic depending on initial orientation and Capillary number. Under
equilibrium condition, initial orientations of 0° and 30° showed periodicity
although for the latter three disproportionations were required before
the system returned to its original configuration. For 6=15°, no period-
icity was observed. With the inclusion of liquid viscosity the 30° orien-
tation showed no periodicity; the 0° orientation was still periodic about
some intermediate configuration. In all cases however, the yield stress
corresponded to the stress at the first disproportionation and magnitude
of the viscous disspation was negligible to affect the viscosity, thereby
rendering the small deformation models applicable in most cases.

For steady shearing flows, foam behaves like a Bingham plastic with
its viscosity being given by:

ns= ty/§ + C, y,

Here, y;, is the 1liquid viscosity and C, has a value of ~.05 assuming
¢=.99. Thus the foam viscosity is the sum of two components: the first
contribution comes from its yield stress and is proportional to o/a;
the second contribution comes the viscous dissipation in the liquid films
because of their extensional motion. The shape of the viscosity versus
shear rate curve will depend on the relative magnitudes of the two terms.
At low shear rates, the viscosity will vary as 1/?; at pigh shear rates,

the second term will dominate and the viscosity will become independent
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of Y. However, in most cases as in ours, 1y >> C,u, ard makes the second
term negligible.

2. Results for finite liquid content

Incorporation of finite liquid into the model results in cell structure
having straight line edges and rounded corners. Cases of zero and finite
film thickness (§) were considered. In both cases, the radius of curvature
changed with deformation but all cells had the same radii in order to
preserve equal pressures in cells [Heimenz, 1982]. For films having
finite thickness, allowance was made for in and outflow of 1liquid from
the Plateau border so as to maintain a § determined from the equal pressure
drop constraint given by [Wasan, 1984: Teletzke, 1984]:

A/8® = o/r

We found that incorporation of finite liquid into our model affected
the shear stress-strain relation. The yield stress or the maximum stress
increased with gas fraction. This observation can be explained from
the fact that with decreasing ¢, the cells are less polyhedral and more
rounded, thereby requiring a smaller force to go past one another. Initial
cell orientation influenced the stress-strain relationship significantly.
For some orientations instabilities were observed beyond a certain strain,
i.e. for strains larger than this the volume conservation and affine
motion criteria could not be satisfied and the cells reformed. This
indicated possibilites of preferential cell orientations. Thus for ¢=.9069
and 6 between 11 and 219, cells were unstable for any applied strain.

Introducing finite film thickness, §, into the model did not change
any of the results. This is because the change in § was too small to

affect the radius of curvature, r, and the film lengths any significant
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way from the zero thickness case. Since the stress is related to the
total interfacial length, we therefore obtain the same results as for
6=0. This close correspondence of the results shows that the negligible
film thickness assumption, which has been used in all our calculations

so far, is a justifiable one.

B. E¥PERIMENTAL RESULTS

Both steady and dynamic experiments were conducted on foam using
the parallel plate mode of the Rheometrics Mechanical Spectrometer.
Sand paper was pasted onto the plates to eliminate wall slippage. In
steady shear flows, foam behaved like a Bingham plastic. In the low
shear rate experimental regime, it showed a shear thinning viscosity
inversely proportional to the shear rate, indicating the yield stress
to be the predominant component of the viscosity. The value of the viscosity,
which was over four orders of magnitude higher than the constant liquid
solution viscosity (5 mPa.s), was an increasing function of the gas volume
fraction. Comparison with model predictions showed the model to give
the correct trend but overpredict the viscosity by a factor of three.
The discrepancy can be attributed to the monodispersity and two dimension-
ality of the model.

Indirect measurement of the yield stress of foam Tys obtained by
extrapolating the viscosity versus shear stress data showed Ty to increase
with larger gas fraction. Direct measurement of Ty using stress relaxation
confirmed this. Values of Ty obtained from the two techniques agreed
reasonably well.

Oscillatory dynamic experiments showed foam to behave like an elastic
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solid for small deformations (consistent with theory). This was concluded
from the facts that the moduli of foam were flat and insensitive to frequency
of oscillation, G' was much greater than G'', and finally the phase shift
between torque output and strain input was very small. All these are
typical of highly elastic materials.

Stress growth experiments revealed the stres-strain behavior of
foam to be independent of shear rate confirming the elastic nature of
the material, and also indicating shear rate to be an unimportant processing
parameter. Small stress overshoots with the maximum corresponding to
the yield stress and critical strain and indeperndent of Y and shear rate,
typical of material with a yield stress, were observed for each gas fraction

of foam.

C. APPLICATION TO PROCESSING PROBLEMS

Clearly, the findings of this study have direct and indirect uses
for industry. Two applications are mentioned here. Both model and experi-
ments predict the foam yield stress to increase with gas fraction. Further
we found Ty to be inversely proportional to cell size. Thus in any molding
processes where uniform product is required, large gas fraction foam
with small cell size is desirable. This is because the yield stress
for such systems will be high and the foam will flow as a plug without
cell deformation inside the mold. In terms of particie transport, the
rindings here can be used to obtain the bound on what gas fraction and
cell size foams can support such particulates. A force balance around
the particle determines the shear stress required to support it. From

this stress, which should be larger than the yield stress of foam, one
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can determine the cell size and gas fraction of the foam.

D. RECOMMENDATIONS FOR FUTURE WORK

Although there is good qualitative agreement between theory and
experiments, quantitative discrepancies exist. Further work needs to
be done in the modelling area in terms of introducing three-dimensional
foam cells and randomness in the foam structure. Some of the differences
between model and experiments could be accounted for by introducing a
third dimension to the model foam cells. One could concieve the foam
cells as pentagonal dodecahedra with the centroids moving affinely with
the bulk. 1In such a case the tetrahedral structure formed by Jjoining
four adjacent cell centers represents the unit cell and the vertices
of this tetrahedron move affinely with the bulk. One can then use energy
minimisation approach to determine the area of the liquid films and the
cell microstructure. The macroscopic stresses can then be related to
the microstructure by using either the force projection approach or the
work argument.

Real foams also show a random stnucture. Such randomness can be
computer generated with the resulting stucture being called a Voronoi
network. Weaire and Kermode [1983, 1984] are one of the first to have
used such techniques to generate a random two dimensional soap froth
structures. One can use such structures along with the proper physics
and dynamics learnt from this work to look at deformation of random cells.
Because of the randomness in the stucture, one cannot use the affine
motion assumption for each cell center. One would therefore have to

define the domain of spatial periodicity and solve this as a boundary
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value problem along with some restictive conditons for each node. We
feel that the results obtained for such systems would reduce the observed
discrepancy between our monodisperse (or bidisperse) model and experiments.

Another area in which this research can be extended to is reactive
systems. All real foam processes involve reactions. It is therefore
important to understand the time dependent behavior of such systems.

One can extend our results to such systems by introducing time dependence

into all our derived material functions.
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'APPENDIX A

Calculations for Dry Foam Model

K ee.

From the above figure, we get for zero strain:
X, = 6o/V3; a, = ¢'/2 a, a, + 2x, = a,
This gives 8, = V3 a, (1 - ¢*/2)/2 for zero strain.
As we strain, we can either set
1185 = o8, = 8,2 (1 - ¢'/2) V3/2
or,
165 = 8,8, = 8,2 (1 = ¢*/2) ¢'/2 ¥3/2
Because we are dealing with dry foam (assuming ¢=0.99) it makes very
little difference, which expression we use. The second expression assumes
that the Plateau border liquid volume is preserved in any deformation
and is therefore a more rigorous one. We therefore used this to get
C(¢) in the definition of Nga.

To get the final or critical strain, we use the criterion that at
this Y the liquid film length is given by:
2x + Va8, = a, (.707)
A simpler approximation to use would to assume that

a,——=+ Va8, = a, (.06588) at the critical strain.
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APPENDIX B

CALCULATIONS FOR CHAPTER IV
1. Explicit forms for 1,', 1,' and r' in Equation IV-8 for the 6=0

case:

1,'+1,'=3 (A5/A1 + A6/A2)/8 + r' [(1/A1 +1/A2) AW - 2 sing + 4 A3]

r'= ~NUM1/(DENO1 + DENO2)

NUM1=3r cos2?B [A6/A2 +A5/A11/8 + 3 sinB [A1.A6/A2 + A2.A5/A1]
DENO1=(A1 + A2) (cos2g + U.A3.sinB) + r cos?s Al [1/A1 + 1/A2]
DENO2= -2.A1.A2.A3/r - 2.r (2.A3.sin?g + /4 cos?g)

+ Ald.sinp (A1/A2 + A2/A1)

Al = [by? - r? cos?p]/? A2 = [b,? - r? cos?g]/?
A3 = sing - /i A4 = -r cos?B -2.sinB.r.A3
A5 = 2Y cos?(8+30) - sin(26+60)

A6 = 2Y sin?8 + sin(26)

2. Explicit form of r' for Regime I in the §=0 case (Equation IV-14)

r' = -NUM2/DENO3

NUM2 = 0.75 a.(1.C2.7/C3

DENO3 = 2/3.r - C12/(C2x2v/3) -»r + 0.25 a.C1.C3/(C2?)
Cl = (a/0)?/? c2 = r/? C3 = (Y2+4)1/2



