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Abstract The optimized gradient method (OGM) provides a factor-
√
2 speedup

upon Nesterov’s celebrated accelerated gradient method in the convex (but
non-strongly convex) setup. However, this improved acceleration mechanism
has not been well understood; prior analyses of OGM relied on a computer-
assisted proof methodology, so the proofs were opaque for humans despite being
verifiable and correct. In this work, we present a new analysis of OGM based
on a Lyapunov function and linear coupling. These analyses are developed
and presented without the assistance of computers and are understandable
by humans. Furthermore, we generalize OGM’s acceleration mechanism and
obtain a factor-

√
2 speedup in other setups: acceleration with a simpler rational

stepsize, the strongly convex setup, and the mirror descent setup.

1 Introduction

Nesterov’s celebrated accelerated gradient method (AGM) solves the problem
of finding the minimum of an L-smooth convex function with an “optimal”
accelerated O(1/k2) complexity [38]. Surprisingly, AGM turned out to be not
exactly optimal, but optimal only up to a constant. The optimized gradient
method (OGM) has a factor-2 smaller (better) worst-case guarantee and thereby
requires factor-

√
2 fewer iterations to guarantee the same accuracy [22,26].
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However, this remarkable discovery has not been well understood. OGM
was originally obtained through a computer-assisted methodology based on the
performance estimation problem (PEP). The resulting convergence analyses
involve arduous but elementary calculations that are verifiable but arguably
not understandable by humans.

Contribution. In this work, we present human-understandable analyses of OGM.
First, we show that the improved acceleration mechanism of OGM can be un-
derstood and analyzed through an unconventional Lyapunov function. We then
use this insight to propose a new method that obtains the factor-

√
2 speedup

in the strongly convex setup. Finally, we present a human-understandable
derivation of OGM based on refining the linear coupling analysis of Allen-Zhu
and Orecchia [5], and generalize OGM to the mirror descent setup.

As minor contributions, we analyze the primary and secondary sequences
of OGM through a single unified analysis; to the best of our knowledge, prior
works provide two separate convergence proofs for x- and y-sequences. Moreover,
we present a unified class of accelerated methods containing AGM and OGM
through the linear coupling analysis.

1.1 Definitions and prior work

For L > 0, a differentiable convex function f : Rn → R is L-smooth with
respect to a norm ∥ · ∥ if

∥∇f(x)−∇f(y)∥∗ ≤ L∥x− y∥ ∀x, y ∈ Rn,

where ∥ · ∥∗ denotes the dual norm. A convex function f : Rn → R is µ-strongly
convex if f(x)− (µ/2)∥x∥2 is convex [39,47].

Throughout this paper, we consider the problem

minimize
x∈Rn

f(x)

and make the following assumptions on f : Rn → R:

(A1) f is convex, differentiable, and L-smooth with respect to ∥ · ∥ and
(A2) f has a minimizer (not necessarily unique).

We write x⋆ for a minimizer of f and f⋆ = f(x⋆) for the optimal value. To
clarify, the proofs of Section 2 do not require the minimizer x⋆ to be unique.

Nesterov’s AGM. Nesterov’s AGM is

yk+1 = xk − 1

L
∇f(xk)

xk+1 = yk+1 +
θk − 1

θk+1
(yk+1 − yk),

2            
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where y0 = x0, θ0 = 1, and θ2k+1 − θk+1 = θ2k for k = 0, 1, . . . [38]. We can
equivalently write AGM as

yk+1 = xk − 1

L
∇f(xk)

zk+1 = zk − θk
L
∇f(xk)

xk+1 =

(
1− 1

θk+1

)
yk+1 +

1

θk+1
zk+1

with z0 = x0 [40].
AGM can be generalized to use the relaxed parameter requirement θ2k+1 −

θk+1 ≤ θ2k on the positive sequence {θk}∞k=0. The choice θk = (k + 2)/2 is a
common instance.

In the setup where f is furthermore µ-strongly convex, Nesterov’s AGM
for the strongly convex setup (SC-AGM) is

yk+1 = xk − 1

L
∇f(xk)

xk+1 = yk+1 +

√
κ− 1√
κ+ 1

(yk+1 − yk)

for k = 0, 1, . . . , where κ = L/µ and y0 = x0 [39].

Optimized gradient method. OGM is

yk+1 = xk − 1

L
∇f(xk)

xk+1 = yk+1 +
θk − 1

θk+1
(yk+1 − yk) +

θk
θk+1

(yk+1 − xk)

for k = 0, 1, . . . , where y0 = x0 and {θk}∞k=1 is the same as that of AGM [22,26].
We refer to θk−1

θk+1
(yk+1 − yk) as the momentum term and θk

θk+1
(yk+1 − xk) as

the correction term. The added correction term is the difference between AGM
and OGM. We can equivalently write OGM as

yk+1 = xk − 1

L
∇f(xk)

zk+1 = zk − 2θk
L

∇f(xk)

xk+1 =

(
1− 1

θk+1

)
yk+1 +

1

θk+1
zk+1,

where z0 = x0 [26]. The factor 2 in zk+1 is the difference compared to AGM.
The yk-sequence of OGM exhibits a rate faster than that of AGM by a

factor of
√
2. This rate was proved in [27], and we also state it in Corollary 1.

To clarify, the guarantee on the function value is smaller (better) by a factor
of 2, and, combined with the O(1/k2) iteration dependence, this represents

3            
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a factor-
√
2 reduction in the number of iterations necessary to reach a given

accuracy.
Furthermore, OGM’s original presentation [22,26] involves what we refer

to as the last-step modification on the secondary sequence

x̃k+1 = yk+1 +
θk − 1

φk+1
(yk+1 − yk) +

θk
φk+1

(yk+1 − xk)

=

(
1− 1

φk+1

)
yk+1 +

1

φk+1
zk+1,

where φ2
k − φk − 2θ2k−1 = 0. The x̃k-sequence of OGM exhibits a rate slightly

better than OGM’s yk-sequence and is in fact exactly optimal [19] under the
smooth (non-strongly) convex function class. This rate was proved in the
original presentation of OGM [22,26], and we also state it in Corollary 3. In
this work, we present the first variant of OGM for the strongly convex setup.

θk-sequence asymptotic characterization. Throughout the exposition of this
work, we will use the following asymptotic characterization: if θ0 = 1 and
θ2k+1 − θk+1 = θ2k for k = 0, 1, . . . , then

θk =
k + ζ + 1

2
+

log k

4
+ o(1) (1)

as k → ∞, where ζ ≈ 0.646. While we suspect this result may be known, we
could not find it in any reference. Therefore, we formally state and prove (1)
as Lemma 7 in the appendix.

Computer-assisted derivation and analysis of OGM. OGM was originally ob-
tained through a computer-assisted methodology based on the performance
estimation problem (PEP); it was first discovered numerically [22] and then its
analytical form and convergence analysis was found [26]. The PEP methodol-
ogy’s key insight is to optimize over the class of fixed-step first-order gradient
methods, with the objective being the convergence guarantee. Surprisingly,
this problem is semidefinite programming- (SDP-) representable and has a
tightness guarantee [54]. OGM was re-discovered by using the PEP to find
a greedy first-order method simplified with a “subspace-search elimination
procedure” [21].

However, these prior analyses of OGM, generated by computers, are verifi-
able but arguably not understandable by humans. Moreover, as the analyses
rely on finding analytical solutions to the SDPs arising from the PEP, they are
inaccessible to those unfamiliar with the methodology.

Lyapunov analysis of AGM. Nesterov’s original 1983 paper established the
celebrated O(1/k2) rate using a Lyapunov analysis [38]. Subsequent works
[11, 12,32, 39–41,43,55] analyzed AGM and its variants through the “estimate
sequence” technique, which many consider to be less transparent than Lya-
punov analyses. In recent years, there has been a renewed interest in studying
accelerated methods via Lyapunov analyses [1, 7–9,13,16, 50, 52]. In this work,
we present the first Lyapunov analysis of OGM.

4            
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Linear coupling analysis of AGM. The interpretation of AGM as a linear
coupling between gradient descent and mirror descent was presented in [5].
Specifically, AGM can be written as

yk+1 = argmin
y

{
⟨∇f(xk), y − xk⟩+

L

2
∥y − xk∥2

}
zk+1 = argmin

y
{Vzk(y) + ⟨αk+1∇f(xk), y − xk⟩}

xk+1 = (1− τk+1)yk+1 + τk+1zk+1,

where Vz is a Bregman divergence. The yk-update can be viewed as a gradient
descent update and the zk-update can be viewed as a mirror descent update.
Mirror descent [37] was originally presented as a method that maps the current
point to a dual space, performs a gradient update, and maps the point back
to the primal space. An alternate proximal form of mirror descent (which we
use) was presented in [15]. An alternate “dual averaging” interpretation of
mirror descent as a method that constructs a lower bound of the function was
presented in [42]. The key insight of linear coupling is to carefully interpolate
between mirror descent and gradient descent to obtain AGM.

Linear coupling has been used to obtain and analyze many extensions of
AGM [2–4,6], but whether the linear coupling argument itself can be further
refined seems not to have been studied. In this work, we show that refining the
linear coupling analysis naturally leads to OGM.

Tight inequalities. We informally say an inequality is tight if it cannot be
improved without further assumptions and formally if it satisfies the “interpola-
tion conditions” [54]. The recent literature on performance estimation problem
focuses on using tight inequalities to obtain proofs that are provably cannot be
improved [17,24,25,33,46,52,53].

The tight inequality we use is

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1

2L
∥∇f(x)−∇f(y)∥2∗

for all L-smooth convex function f and x, y ∈ Rn. The linear coupling analysis
of AGM uses strictly weaker inequalities, as discussed in Section 4. By refining
the analysis by replacing the non-tight inequalities with tight ones, we obtain
OGM.

Accelerated methods for smooth strongly convex minimization. For the problem
setup of minimizing smooth strongly convex functions, Nesterov’s SC-AGM [39]
achieves the convergence rate O (exp (−k/

√
κ)). Recently, the triple momentum

method [31] and the information-theoretic exact method [51] were presented
with an improved O (exp (−2k/

√
κ))-rate, and their optimality was established

through the matching Θ (exp (−2k/
√
κ))-lower bound of [20], which improves

upon the classical Θ (exp (−4k/
√
κ))-lower bound of [35, 36]. The SC-OGM

method we present in this work has a rate of O
(
exp

(
−
√
2k/

√
κ
))

, between

5            
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the rates of SC-AGM and TMM. For strongly convex quadratic functions,
the heavy ball method exhibits the rate O (exp (−4k/

√
κ)) [39] and OGM-q

exhibits the rate O
(
exp

(
−2

√
2k/

√
κ
))

[28]. The heavy ball method’s rate
matches the classical Θ (exp (−4k/

√
κ))-lower bound of [35,36].

2 Lyapunov analysis of OGM

In this section, we present a Lyapunov analysis of OGM. Our key insight is to
use (

f(xk)− f⋆ −
1

2L
∥∇f(xk)∥2

)
,

which is nonnegative due to L-smoothness, instead of (f(xk)− f⋆) or (f(yk)− f⋆)
in the construction of the Lyapunov function. Throughout this section, ∥ · ∥ =
∥ · ∥∗ denotes the Euclidean norm.

Based on this insight, we present: (i) a more human-understandable analysis
of OGM (ii) a unified analysis of both the primary and secondary sequences of
OGM that admits simpler θk-choices.

2.1 Nesterov’s AGM

Nesterov’s AGM has the rate

f(yk)− f⋆ ≤ L ∥x0 − x⋆∥2

2θ2k−1

=
2L ∥x0 − x⋆∥2

(k + ζ)2
− 2L ∥x0 − x⋆∥2 log k

(k + ζ)3
+ o

(
1

k3

)
for k = 0, 1, . . . . (We derived the equality in Appendix E.) This rate can be
established through the following Lyapunov analysis [38]: for k = 0, 1, . . . ,
define

Uk = θ2k−1 (f(yk)− f⋆) +
L

2
∥zk − x⋆∥2

with θ−1 = 0 and show Uk ≤ · · · ≤ U0. Conclude with

θ2k−1 (f(yk)− f⋆) ≤ Uk ≤ U0 =
L

2
∥x0 − x⋆∥2 .

2.2 Primary sequence analysis of OGM

We now analyze OGM’s convergence through an analogous Lyapunov analysis.

6            
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Theorem 1 Assume (A1) and (A2). Let the positive sequence {θk}∞k=0 satisfy
θ0 = 1 and 0 ≤ θ2k+1 − θk+1 ≤ θ2k for k = 0, 1, . . . . OGM’s yk-sequence exhibits
the rate

f(yk)− f⋆ ≤ L ∥x0 − x⋆∥2

4θ2k−1

for k = 1, 2, . . . .

Proof Set θ−1 = 0 and x−1 = x0. For k = −1, 0, 1, . . . , define

Uk =2θ2k

(
f(xk)− f⋆ −

1

2L
∥∇f(xk)∥2

)
+

L

2
∥zk+1 − x⋆∥2 .

We can show that {Uk}∞k=−1 is nonincreasing. Using f(yk) ≤ f(xk−1) −
1
2L ∥∇f(xk−1)∥2, which follows from L-smoothness, we conclude the rate with

2θ2k−1 (f(yk)− f⋆) ≤ 2θ2k−1

(
f(xk−1)− f⋆ −

1

2L
∥∇f(xk−1)∥2

)
≤ Uk−1 ≤ U−1 =

L

2
∥z0 − x⋆∥2

for k = 1, 2, . . . . Now we complete the proof by showing that {Uk}∞k=−1 is
nonincreasing. For k = −1, 0, 1, . . . , we have

Uk − Uk+1

= 2θ2k

(
f(xk)− f⋆ −

1

2L
∥∇f(xk)∥2

)
− 2θ2k+1

(
f(xk+1)− f⋆ −

1

2L
∥∇f(xk+1)∥2

)
+

L

2
∥zk+1 − x⋆∥2 −

L

2
∥zk+2 − x⋆∥2

= 2θ2k

(
f(xk)− f⋆ −

1

2L
∥∇f(xk)∥2

)
− 2θ2k+1

(
f(xk+1)− f⋆ −

1

2L
∥∇f(xk+1)∥2

)
− ⟨2θk+1∇f(xk+1), x⋆ − zk+1⟩ −

2

L
θ2k+1 ∥∇f(xk+1)∥2

= 2θ2k

(
f(xk)− f⋆ −

1

2L
∥∇f(xk)∥2

)
− 2θ2k+1

(
f(xk+1)− f⋆ +

1

2L
∥∇f(xk+1)∥2

)
− ⟨2θk+1∇f(xk+1), x⋆ − zk+1⟩

≥ 2(θ2k+1 − θk+1)

(
f(xk)− f⋆ −

1

2L
∥∇f(xk)∥2

)
− 2θ2k+1

(
f(xk+1)− f⋆ +

1

2L
∥∇f(xk+1)∥2

)
− ⟨2θk+1∇f(xk+1), x⋆ − zk+1⟩

= 2(θ2k+1 − θk+1)

(
f(xk)− f⋆ −

1

2L
∥∇f(xk)∥2 − f(xk+1) + f⋆ −

1

2L
∥∇f(xk+1)∥2

)
− 2θk+1

(
f(xk+1)− f⋆ +

1

2L
∥∇f(xk+1)∥2

)
− ⟨2θk+1∇f(xk+1), x⋆ − zk+1⟩

7            
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= 2(θ2k+1 − θk+1)

(
f(xk)− f(xk+1)−

1

2L
∥∇f(xk)∥2 −

1

2L
∥∇f(xk+1)∥2

)
+ 2θk+1

(
f⋆ − f(xk+1)−

1

2L
∥∇f(xk+1)∥2 + ⟨∇f(xk+1), xk+1 − x⋆⟩

)
+ 2θk+1⟨∇f(xk+1), zk+1 − xk+1⟩

≥ 2(θ2k+1 − θk+1)

(
f(xk)− f(xk+1)−

1

2L
∥∇f(xk)∥2 −

1

2L
∥∇f(xk+1)∥2

)
+ 2θk+1⟨∇f(xk+1), zk+1 − xk+1⟩,

where the inequalities follow from the cocoercivity of f .
Consider two separate cases k = −1 and k = 0, 1, . . . . In case of k = −1,

θ2k+1 − θk+1 = 1 − 1 = 0 and zk+1 − xk+1 = z0 − x0 = 0. The last formula
becomes zero, so U−1 − U0 ≥ 0. For k = 0, 1, . . . ,

2(θ2k+1 − θk+1)

(
f(xk)− f(xk+1)−

1

2L
∥∇f(xk)∥2 −

1

2L
∥∇f(xk+1)∥2

)
+ 2θk+1⟨∇f(xk+1), zk+1 − xk+1⟩

= 2(θ2k+1 − θk+1)

(
f(xk)− f(xk+1)−

1

2L
∥∇f(xk)∥2 −

1

2L
∥∇f(xk+1)∥2

)
+ 2θk+1(θk+1 − 1)⟨∇f(xk+1), xk+1 − xk +

1

L
∇f(xk)⟩

= (2θ2k+1 − 2θk+1)

(
f(xk)− f(xk+1)−

1

2L
∥∇f(xk)−∇f(xk+1)∥2

+ ⟨∇f(xk+1), xk+1 − xk⟩
)

≥ 0,

where the inequalities follow from the cocoercivity of f . ⊓⊔

As with AGM, the optimal {θk}∞k=0 is given by θ2k+1 − θk+1 = θ2k, which
was used in the original presentation of OGM [22,26].

Corollary 1 Under the setup of Theorem 1, the choice θ2k+1− θk+1 = θ2k leads
to the rate

f(yk)− f⋆ ≤ L ∥x0 − x⋆∥2

4θ2k−1

=
L ∥x0 − x⋆∥2

(k + ζ)2
− L ∥x0 − x⋆∥2 log k

(k + ζ)3
+ o

(
1

k3

)
for k = 1, 2, . . . .

Proof This follows from Theorem 1 and (1). ⊓⊔

The relaxed parameter requirement 0 ≤ θ2k+1 − θk+1 ≤ θ2k of Theorem 1 is
reminiscent of the requirement for AGM. We note that [30] had presented a gen-
eralized analysis with requirement θ2k+1 ≤

∑k+1
i=1 θi based on the performance

estimation problem methodology.

8            
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The relaxed parameter requirement allows us to use the simpler rational
coefficients θk = (k + 2)/2. This leads to

yk+1 = xk − 1

L
∇f(xk)

xk+1 = yk+1 +
k

k + 3
(yk+1 − yk) +

k + 2

k + 3
(yk+1 − xk),

which we call Simple-OGM.

Corollary 2 Assume (A1) and (A2). Simple-OGM’s yk-sequence exhibits the
rate

f(yk)− f⋆ ≤ L ∥x0 − x⋆∥2

(k + 1)2

for k = 1, 2, . . . .

Proof This follows from Theorem 1. ⊓⊔

2.3 Secondary sequence analysis of OGM

We now analyze the convergence of OGM’s secondary sequence with last-step
modification through a unified Lyapunov analysis.

Theorem 2 Assume (A1) and (A2). Let the positive sequence {θk}∞k=0 satisfy
θ0 = 1, and 0 ≤ θ2k+1 − θk+1 ≤ θ2k for k = 0, 1, . . . . Let the positive sequence
{φk}∞k=0 satisfy 0 ≤ φ2

k−φk ≤ 2θ2k−1 for k = 0, 1, . . . , where we define θ−1 = 0.
OGM’s x̃k-sequence, the secondary sequence with last-step modification, exhibits
the rate

f(x̃k)− f⋆ ≤ L ∥x0 − x⋆∥2

2φ2
k

for k = 0, 1, . . . .

Proof Let {Uk}∞k=−1 be as defined in the proof of the Theorem 1. Define
{Ũk}∞k=0 as

Ũk =φ2
k (f(x̃k)− f⋆) +

L

2

∥∥∥∥zk − 1

L
φk∇f(x̃k)− x⋆

∥∥∥∥2 .
We can show that Ũk ≤ Uk−1, we conclude the rate with

φ2
k (f(x̃k)− f⋆) ≤ Ũk ≤ U−1 =

L

2
∥x0 − x⋆∥2

for k = 0, 1, . . . . Now we complete the proof by showing that Ũk ≤ Uk−1. For
k = 0, 1, . . . , we have

Uk−1 − Ũk

9            
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= 2θ2k−1

(
f(xk−1)− f⋆ −

1

2L
∥∇f(xk−1)∥2

)
− φ2

k (f(x̃k)− f⋆)

+
L

2
∥zk − x⋆∥2 −

L

2

∥∥∥∥zk − 1

L
φk∇f(x̃k)− x⋆

∥∥∥∥2
= 2θ2k−1

(
f(xk−1)− f⋆ −

1

2L
∥∇f(xk−1)∥2

)
− φ2

k (f(x̃k)− f⋆)

− ⟨φk∇f(x̃k), x⋆ − zk⟩ −
1

2L
φ2
k ∥∇f(x̃k)∥2

= 2θ2k−1

(
f(xk−1)− f⋆ −

1

2L
∥∇f(xk−1)∥2

)
− φ2

k

(
f(x̃k)− f⋆ +

1

2L
∥∇f(x̃k)∥2

)
− ⟨φk∇f(x̃k), x⋆ − zk⟩

≥ (φ2
k − φk)

(
f(xk−1)− f⋆ −

1

2L
∥∇f(xk−1)∥2

)
− φ2

k

(
f(x̃k)− f⋆ +

1

2L
∥∇f(x̃k)∥2

)
− ⟨φk∇f(x̃k), x⋆ − zk⟩

= (φ2
k − φk)

(
f(xk−1)− f⋆ −

1

2L
∥∇f(xk−1)∥2 − f(x̃k) + f⋆ −

1

2L
∥∇f(x̃k)∥2

)
+ φk

(
f⋆ − f(x̃k)−

1

2L
∥∇f(x̃k)∥2 + ⟨∇f(x̃k), x̃k − x⋆⟩

)
+ ⟨φk∇f(x̃k), zk − x̃k⟩

≥ (φ2
k − φk)

(
f(xk−1)− f(x̃k)−

1

2L
∥∇f(xk−1)∥2 −

1

2L
∥∇f(x̃k)∥2

)
+ ⟨φk∇f(x̃k), zk − x̃k⟩

= (φ2
k − φk)

(
f(xk−1)− f(x̃k)−

1

2L
∥∇f(xk−1)∥2 −

1

2L
∥∇f(x̃k)∥2

)
+ φk(φk − 1)⟨∇f(x̃k), x̃k − xk−1 +

1

L
∇f(xk−1)⟩

= (φ2
k − φk)

(
f(xk−1)− f(x̃k)−

1

2L
∥∇f(xk−1)−∇f(x̃k)∥2 + ⟨∇f(x̃k), x̃k − xk−1⟩

)
≥ 0,

where the inequalities follow from the cocoercivity of f . ⊓⊔

Corollary 3 Under the setup of Theorem 2, the choice θ2k+1 − θk+1 = θ2k and
φ2
k − φk = 2θ2k−1 leads to the rate

f(x̃k)− f⋆ ≤ L ∥x0 − x⋆∥2

2φ2
k

=
L ∥x0 − x⋆∥2

(k + ζ + 1/
√
2)2

− L ∥x0 − x⋆∥2 log k
(k + ζ + 1/

√
2)3

+ o

(
1

k3

)
for k = 0, 1, . . . .
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Proof This follows from (1), which implies φk =
k+ζ+ 1√

2√
2

+
√
2 log k
4 + o(1), and

Theorem 2. ⊓⊔
Simple-OGM with the last-step modification is

yk+1 = xk − 1

L
∇f(xk)

xk+1 = yk+1 +
k

k + 3
(yk+1 − yk) +

k + 2

k + 3
(yk+1 − xk)

x̃k+1 = yk+1 +
k√

2(k + 2) + 1
(yk+1 − yk) +

k + 2√
2(k + 2) + 1

(yk+1 − xk),

where x0 = y0.

Corollary 4 Assume (A1) and (A2). Simple-OGM’s x̃k-sequence, the sec-
ondary sequence with last-step modification, exhibits the rate

f(x̃k)− f⋆ ≤ L ∥x0 − x⋆∥2

(k + 1 + 1/
√
2)2

for k = 0, 1, . . . .

Proof Use Corollary 3 with θk = k+2
2 and φk =

k+1+ 1√
2√

2
. ⊓⊔

2.4 Discussion

We clarify that the presented Lyapunov analysis is a novel contribution, while
the results themselves are mostly known [26,27,30].

We emphasize two key points. First is the somewhat unusual construction
of the Lyapunov function. This key insight will be used in the following section
to present a novel method for the strongly convex setup.

The second point we emphasize is that we present a unified analysis of
the primary and last-step-modified secondary sequences using the Lyapunov
functions Uk and Ũk. Prior works on the two sequences of AGM and OGM
rely on two separate analyses [26,27].

3 Strongly convex OGM

In this section, we present strongly convex OGM (SC-OGM), a novel method
that provides a factor-

√
2 improvement over Nesterov’s SC-AGM. The method

and its analysis are obtained with following the key insight of Section 2: use
the OGM-type correction term in the method and use(

f(xk)− f⋆ −
1

2L
∥∇f(xk)∥2

)
in the construction of the Lyapunov function. Throughout this section, ∥ · ∥ =
∥ · ∥∗ denotes the Euclidean norm.

Based on this insight, we present: (i) a novel method SC-OGM and (ii) a
unified analysis of both the primary and secondary sequences of SC-OGM.
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3.1 Nesterov’s SC-AGM

Further assume f is µ-strongly convex and write κ = L/µ. SC-AGM’s conver-
gence rate

f(yk)− f⋆ ≤
(
1 +

1√
κ− 1

)−k
µ+ L

2
∥x0 − x⋆∥2 = O

(
exp

(
− k√

κ

))
can be established through the following Lyapunov analysis [13]. For k =
0, 1, . . . , define

Uk =

(
1 +

1√
κ− 1

)k (
f(yk)− f⋆ +

µ

2
∥zk − x⋆∥2

)
with zk = (

√
κ+ 1)xk −

√
κyk and show Uk ≤ · · · ≤ U0 ≤ µ+L

2 ∥x0 − x⋆∥2.

3.2 Primary-sequence analysis of SC-OGM

We newly propose SC-OGM:

yk+1 = xk − 1

L
∇f(xk)

xk+1 = yk+1 +
1

2γ + 1
(yk+1 − yk) +

1

2γ + 1
(yk+1 − xk)

for k = 0, 1, . . . , where y0 = x0 and γ =
√
8κ+1+3
2κ−2 .

Theorem 3 Assume (A1), (A2), and that f is µ-strongly convex. SC-OGM’s
yk-sequence exhibits the rate

f(yk)− f⋆ ≤ (1 + γ)−k+1µ+ 2L

2
∥x0 − x⋆∥2 = O

(
exp

(
−
√
2k√
κ

))

for k = 1, 2, . . . .

Proof For k = 0, 1, . . . , define

zk =
2γ + 1

γ
xk − γ + 1

γ
yk

and

Uk = (1 + γ)k
(
f(xk)− f⋆−

1

2L
∥∇f(xk)∥2 +

µ

2
∥zk+1 − x⋆∥2

)
.
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We can show that {Uk}∞k=0 is nonincreasing and U0 ≤ µ+2L
2 ∥x0 − x⋆∥2. Using

f(yk) ≤ f(xk−1) − 1
2L ∥∇f(xk−1)∥2, which follows from L-smoothness, we

conclude the rate with

(1 + γ)k−1 (f(yk)− f⋆) ≤ (1 + γ)k−1

(
f(xk−1)− f⋆ −

1

2L
∥∇f(xk−1)∥2

)
≤ Uk−1 ≤ U0 ≤ µ+ 2L

2
∥x0 − x⋆∥2

for k = 1, 2, . . . . Now we complete the proof by showing U0 ≤ µ+2L
2 ∥x0 − x⋆∥2,

showing some relationships between xk and zk, and showing that {Uk}∞k=0 is
nonincreasing.

Firstly, we have

U0 = f(x0)− f⋆ −
1

2L
∥∇f(x0)∥2 +

µ

2
∥z1 − x⋆∥2

= f(x0)− f⋆ −
1

2L
∥∇f(x0)∥2 +

µ

2

∥∥∥∥x0 −
1

L

γ + 2

γ
∇f(x0)− x⋆

∥∥∥∥2
= f(x0)− f⋆ +

1

2L

1

γ + 1
∥∇f(x0)∥2 −

γ

1 + γ
⟨∇f(x0), x0 − x⋆⟩+

µ

2
∥x0 − x⋆∥2

≤ 1

γ + 1
(f(x0)− f⋆) +

1

2L

1

1 + γ
∥∇f(x0)∥2 +

µ

2
∥x0 − x⋆∥2

≤ 2

1 + γ
(f(x0)− f⋆) +

µ

2
∥x0 − x⋆∥2

≤
(
L+

µ

2

)
∥x0 − x⋆∥2.

Second, Let Xk = xk −x⋆ and Zk = zk −x⋆, for k = 0, 1, . . . . We will prove

(xk+1 − xk) +
1

L
∇f(xk) + γXk+1 =

1

1 + γ
(γZk+1 + γ2Xk+1) (2)

Zk+1 =
1

γ + 1
Zk +

γ

γ + 1
Xk − 1

L

γ + 2

γ
∇f(xk)

(3)

for k = 0, 1, . . . .
Plug yk+1 = xk− 1

L∇f(xk) in the definition of zk+1. (We remind the reader
that zk was defined in the beginning of the proof.) Then we obtain (2).
For (3), from definition of zk and zk+1

zk+1 =
2γ + 1

γ
xk+1 −

γ + 1

γ
xk +

1

L

1 + γ

γ
∇f(xk)

zk =
2γ + 1

γ
xk − γ + 1

γ
xk−1 +

1

L

1 + γ

γ
∇f(xk−1)
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and definition of xk, we have

xk+1 =
2γ + 2

2γ + 1
yk+1 −

1

2γ + 1
yk − 1

L

1

2γ + 1
∇f(xk)

=
2γ + 2

2γ + 1
xk − 1

2γ + 1
xk−1 −

1

L

2γ + 3

2γ + 1
∇f(xk) +

1

L

1

2γ + 1
∇f(xk−1).

Therefore,

zk+1 −
1

γ + 1
zk =

2γ + 1

γ
xk+1 −

γ + 1

γ
xk +

1

L

1 + γ

γ
∇f(xk)

− 1

γ + 1

(
2γ + 1

γ
xk − γ + 1

γ
xk−1 +

1

L

1 + γ

γ
∇f(xk−1)

)
=

2γ + 1

γ
xk+1 −

γ2 + 4γ + 2

γ(γ + 1)
xk +

1

γ
xk−1 +

1

L

1 + γ

γ
∇f(xk)

− 1

L

1

γ
∇f(xk−1)

=
2γ + 1

γ

(
2γ + 2

2γ + 1
xk − 1

2γ + 1
xk−1 −

1

L

2γ + 3

2γ + 1
∇f(xk)

+
1

L

1

2γ + 1
∇f(xk−1)

)
− γ2 + 4γ + 2

γ(γ + 1)
xk +

1

γ
xk−1

+
1

L

1 + γ

γ
∇f(xk)−

1

L

1

γ
∇f(xk−1)

=
γ

γ + 1
xk − 1

L

γ + 2

γ
∇f(xk)

so we obtained (3).
Lastly, we will show that {Uk}∞k=0 is nonincreasing. It suffices to show that

for k = 0, 1, . . . ,
(1 + γ)−k(Uk − Uk+1) ≥ 0

which is equivalent to showing(
(f(xk)− f⋆ −

1

2L
∥∇f(xk)∥2)− (1 + γ)(f(xk+1)− f⋆ −

1

2L
∥∇f(xk+1)∥2)

)
+

µ

2

(
∥zk+1 − x⋆∥2 − (1 + γ) ∥zk+2 − x⋆∥2

)
≥ 0.

By L-smoothness of f , we have

f(xk+1)− f(xk) ≤ − 1

2L
∥∇f(xk+1)−∇f(xk)∥2 + ⟨∇f(xk+1), xk+1 − xk⟩

and from strong convexity,

f(xk+1)− f⋆ ≤ ⟨∇f(xk+1), xk+1 − x⋆⟩ −
µ

2
∥xk+1 − x⋆∥2 .

For k = 0, 1, . . . , using above two inequalities, (2), and (3),
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(
f(xk)− f⋆ −

1

2L
∥∇f(xk)∥2

)
− (1 + γ)(f(xk+1)− f⋆ −

1

2L
∥∇f(xk+1)∥2)

= (f(xk)− f(xk+1))− γ(f(xk+1)− f⋆) +
1 + γ

2L
∥∇f(xk+1)∥2 −

1

2L
∥∇f(xk)∥2

≥
(

1

2L
∥∇f(xk+1)−∇f(xk)∥2 + ⟨∇f(xk+1), xk − xk+1⟩

)
− γ

(
⟨∇f(xk+1), xk+1 − x⋆⟩ −

µ

2
∥xk+1 − x⋆∥2

)
+

1 + γ

2L
∥∇f(xk+1)∥2 −

1

2L
∥∇f(xk)∥2

= ⟨∇f(xk+1),−
1

L
∇f(xk)− xk+1 + xk − γ(xk+1 − x⋆)⟩

+
2 + γ

2L
∥∇f(xk+1)∥2 +

µγ

2
∥xk+1 − x⋆∥2

= ⟨∇f(xk+1),−
1

1 + γ
(γZk+1 + γ2Xk+1)⟩

+
2 + γ

2L
∥∇f(xk+1)∥2 +

µγ

2
∥xk+1 − x⋆∥2 .

In addition,

µ

2

(
(1 + γ) ∥Zk+2∥2 − ∥Zk+1∥2

)
=

µ

2

(
(1 + γ)

∥∥∥∥ 1

1 + γ
Zk+1 +

γ

1 + γ
Xk+1 −

1

L

2 + γ

γ
∇f(xk+1)

∥∥∥∥2 − ∥Zk+1∥2
)

=
µ

2

(
− γ

1 + γ
∥Zk+1∥2 +

γ2

1 + γ
∥Xk+1∥2 + (1 + γ)

1

L2

(2 + γ)2

γ2
∥∇f(xk+1)∥2

+ 2
γ

1 + γ
⟨Zk+1, Xk+1⟩ − 2

2 + γ

Lγ
⟨∇f(xk+1), Zk+1⟩

− 2
2 + γ

L
⟨∇f(xk+1), Xk+1⟩

)
.

Since

µ
2 + γ

Lγ2
=

1

1 + γ
,

we can telescope concerned ∇f(xk+1)’s inner product in Uk − Uk+1.
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For k = 0, 1, . . . , we have

(1 + γ)−k(Uk − Uk+1)

≥ 2 + γ

2L
∥∇f(xk+1)∥2 +

µγ

2
∥Xk+1∥2

− µ

2

(
− γ

1 + γ
∥Zk+1∥2 +

γ2

1 + γ
∥Xk+1∥2

+ (1 + γ)
1

L2

(2 + γ)2

γ2
∥∇f(xk+1)∥2 + 2

γ

1 + γ
⟨Zk+1, Xk+1⟩

)
= −µ

2

(
− γ

1 + γ
∥Xk+1∥2 −

γ

1 + γ
∥Zk+1∥2 + 2

γ

1 + γ
⟨Zk+1, Xk+1⟩

)
=

µ

2

γ

1 + γ
∥Zk+1 −Xk+1∥2 ≥ 0.

⊓⊔

3.3 Secondary sequence analysis

We now analyze the convergence of SC-OGM’s secondary sequence with a
unified Lyapunov analysis. We note that SC-OGM does not require the last-step
modification, unlike the non-strongly convex counterpart.

Theorem 4 Assume (A1), (A2), and that f is µ-strongly convex. SC-OGM’s
xk-sequence, the secondary sequence without last-step modification, exhibits the
rate

f(xk)− f⋆ ≤ (1 + γ)−k+2

2γ

(
µ+ 2L

2
∥x0 − x⋆∥2

)
for k = 1, 2, . . . .

Proof Let {zk}∞k=0 and {Uk}∞k=0 be defined as in the proof of the Theorem 3.
For k = 0, 1, . . . , define

Ũk = (1+γ)k−1

(
2γ

1 + γ
(f(xk)− f⋆) +

µ

2

∥∥∥∥zk −
(
γ + 2

γ

)
1

L
∇f(xk)− x⋆

∥∥∥∥2)
We can show that Ũk ≤ Uk−1. We conclude the rate with

(1 + γ)k−1 2γ

1 + γ
(f(xk)− f⋆) ≤ Ũk ≤ U0 ≤ µ+ 2L

2
∥x0 − x⋆∥2

for k = 1, 2, . . . . Now we complete the proof by showing that Ũk ≤ Uk−1. Note
that γ+1

γ

(
(xk − xk−1) +

1
L∇f(xk−1)

)
= (Zk −Xk). Then we have(

f(xk−1)− f⋆ −
1

2L
∥∇f(xk−1)∥2

)
− 2γ

1 + γ
(f(xk)− f⋆)
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+
Lγ2

2(1 + γ)(2 + γ)
∥zk − x⋆∥2 −

Lγ2

2(1 + γ)(2 + γ)

∥∥∥∥zk −
(
γ + 2

γ

)
1

L
∇f(xk)− x⋆

∥∥∥∥2
=

(
f(xk−1)− f⋆ −

1

2L
∥∇f(xk−1)∥2

)
− 2γ

1 + γ
(f(xk)− f⋆)

+
γ

1 + γ
⟨Zk,∇f(xk)⟩ −

1

2L

2 + γ

1 + γ
∥∇f(xk)∥2

=

(
f(xk−1)− f⋆ −

1

2L
∥∇f(xk−1)∥2

)
− 2γ

1 + γ
(f(xk)− f⋆)

+
γ

1 + γ

〈
γ + 1

γ

(
(xk − xk−1) +

1

L
∇f(xk−1)

)
+Xk,∇f(xk)

〉
− 1

2L

2 + γ

1 + γ
∥∇f(xk)∥2

=

(
f(xk−1)− f⋆ −

1

2L
∥∇f(xk−1)∥2

)
− 2γ

1 + γ
(f(xk)− f⋆)

+ ⟨xk − xk−1,∇f(xk)⟩+
1

L
⟨∇f(xk−1),∇f(xk)⟩+

γ

1 + γ
⟨Xk,∇f(xk)⟩

− 1

2L

2 + γ

1 + γ
∥∇f(xk)∥2

=

(
f(xk−1)− f(xk)−

1

2L
∥∇f(xk−1)−∇f(xk)∥2 + ⟨∇f(xk), xk − xk−1⟩

)
+

1

2L

γ

1 + γ
∥∇f(xk)∥2 +

1

1 + γ

(
f(xk)− f⋆ −

1

2L
∥∇f(xk)∥2

)
+

γ

1 + γ

(
f⋆ − f(xk)−

1

2L
∥∇f(xk)∥2 + ⟨Xk,∇f(xk)⟩

)
≥ 0.

Since Lγ2

2(1+γ)(2+γ) =
µ
2 , above inequality indicates that(

f(xk−1)− f⋆−
1

2L
∥∇f(xk−1)∥2

)
+

µ

2
∥zk − x⋆∥2

≥ 2γ

1 + γ
(f(xk)− f⋆) +

µ

2

∥∥∥∥zk −
(
γ + 2

γ

)
1

L
∇f(xk)− x⋆

∥∥∥∥2 .
⊓⊔

3.4 Discussion

The factor-
√
2 improvement of SC-OGM over SC-AGM is consistent with the

factor-
√
2 improvement of OGM over AGM. AGM and OGM share the same

momentum term while OGM has the additional “correction term”. In contrast,
the momentum coefficients differ in the strongly convex case: SC-AGM has

√
κ− 1√
κ+ 1

= 1− 2√
κ
+O

(
1

κ

)
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while SC-OGM has

1

2γ + 1
= 1− 2

√
2√
κ

+O
(
1

κ

)
.

Of course, SC-OGM also has the correction term, which is essential in the
analysis. We clarify that SC-OGM is not an optimal algorithm for the set of
minimizing smooth strongly convex functions as discussed in Section 1.1.

Another interesting line of research is to extend the faster rates to the
composite minimization setup, which minimize f + g with a smooth strongly
convex f and convex but possibly non-smooth g, as has been pursued in [49]
and [10]. Interestingly, the algorithm of [10, Theorem 6] is different from SC-
OGM, but achieves the same O

(
exp

(
−
√
2k/

√
κ
))

-rate as SC-OGM, while
having an extension to the composite minimization setup.

4 Linear coupling analysis

While the Lyapunov analyses of Sections 2 and 3 do provide insight into the
acceleration mechanism of OGM, they do not shed light onto the provenance of
the method. Originally, OGM was generated through a computer-assisted proof
methodology as the exactly optimal first-order method, but this approach is
arguably opaque to humans.

In this section, we present a human-understandable derivation of OGM
based on linear coupling. Specifically, we obtain OGM by refining the linear
coupling analysis of Allen-Zhu and Orecchia [5] through replacing the use of
non-tight inequalities with tight inequalities.

We specifically provide: (i) a natural (and non-computer assisted) derivation
of OGM, (ii) a generalization of OGM to the mirror descent setup, and (iii) a
unification of AGM and OGM. We moreover provide (iv) a generalization of
SC-OGM to the mirror descent setup in the appendix, in Section D.

Assumption and notation. In this section, assume

(A3) ∥·∥ =
√
xTQx is a quadratic norm, where Q is a symmetric positive definite

matrix.

Assumption (A1) is to be interpreted as L-smoothness with respect to norm
∥ · ∥. Write ∥ · ∥∗ = xTQ−1x for the dual norm of ∥ · ∥. However, ⟨·, ·⟩ is the
standard Euclidean inner product (unrelated to Q). Let w : Rn → R be a
“distance generating function” that is differentiable and 1-strongly convex with
respect to ∥ · ∥, and let

Vx(y) = w(y)− ⟨∇w(x), y − x⟩ − w(x) ∀x, y ∈ Rn

be the Bregman divergence generated by w.
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4.1 Linear coupling analysis of AGM

We briefly outline the linear coupling analysis of AGM presented in [5] and
point out where the analysis can be refined.

Consider the problem of minimizing f under assumptions (A1), (A2), and
(A3). The linear coupling method is

yk+1 = xk − L−1Q−1∇f(xk) (LC)
zk+1 = argmin

y∈Rn

{Vzk(y) + ⟨αk+1∇f(xk), y − xk⟩}

xk+1 = (1− τk+1)yk+1 + τk+1zk+1

for k = 0, 1, . . . , where x0 = z0 and {αk}∞k=1 and {τk}∞k=1 are positive sequences
to be determined.

We obtain AGM by performing a non-tight analysis of (LC) and letting
the analysis inform the choices of {αk}∞k=1 and {τk}∞k=1. The first step of this
analysis is

αk+1⟨∇f(xk), zk − x⋆⟩ ≤
α2
k+1

2
∥∇f(xk)∥2∗ + Vzk(x⋆)− Vzk+1

(x⋆)

≤ α2
k+1L(f(xk)− f(yk+1)) + Vzk(x⋆)− Vzk+1

(x⋆).

The second inequality follows from

f(xk)− f(yk+1) ≥
1

2L
∥∇f(xk)∥2∗ +

1

2L
∥∇f(yk+1)∥2∗,

but the underscored term 1
2L ∥∇f(yk+1)∥2∗ is not used, i.e., proof utilizes the

weaker and non-tight inequality

f(xk)− f(yk+1) ≥
1

2L
∥∇f(xk)∥2∗ .

The second step of this analysis is to choose τk = 1
αk+1L

to eliminate f(xk)

and to show

α2
k+1L

(
f(yk+1)− f⋆

)
+ Vzk+1

(x⋆) ≤
(
α2
k+1L− αk+1

)
(f(yk)− f⋆) + Vzk(x⋆).

The inequality follows from

f(xk)− f⋆ ≤ ⟨∇f(xk), xk − x⋆⟩ −
1

2L
∥∇f(xk)∥2∗

and

⟨∇f(xk), yk − xk⟩ ≤ f(yk)− f(xk)−
1

2L
∥∇f(yk)−∇f(xk)∥2∗,

but the underscored terms are not used. Finally, convergence is established
through a telescoping sum argument as Appendix C.
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4.2 Linear coupling analysis of OGM

We now derive OGM through performing a tight analysis of (LC) and letting
the analysis inform the choices of {αk}∞k=1 and {τk}∞k=0.

In the first step of our linear coupling analysis, we follow the same arguments
but do not take the step utilizing the non-tight inequality.

Lemma 1 Assume (A1) and (A2). The iterates (LC) satisfy

αk+1⟨∇f(xk), zk − x⋆⟩ ≤
α2
k+1

2
∥∇f(xk)∥2∗ + Vzk(x⋆)− Vzk+1

(x⋆)

for k = 0, 1, . . . .

Proof This is exactly the first part of Lemma 4.2 of [5]. ⊓⊔

In the second step of our linear coupling analysis, we choose τk = 2
αk+1L

to
allow for a telescoping sum argument and show the following lemma.

Lemma 2 Assume (A1), (A2) and (A3). Let 0 < τk = 2
αk+1L

≤ 1 for k =

0, 1, .., α1 = 2
L , and x−1 = x0. Set h(x) = f(x) − f⋆ − 1

2L ∥∇f(x)∥2∗. The
iterates (LC) satisfy

α2
k+1L

2
h(xk) + Vzk+1

(x⋆) ≤
α2
k+1L− 2αk+1

2
h(xk−1) + Vzk(x⋆)

for k = 0, 1, . . . .

Proof For k = 1, 2, . . . , we have

αk+1 (f(xk)− f⋆))

≤ αk+1⟨∇f(xk), xk − x⋆⟩ −
αk+1

2L
∥∇f(xk)∥2∗ (4)

= αk+1⟨∇f(xk), xk − zk⟩+ αk+1⟨∇f(xk), zk − x⋆⟩ −
αk+1

2L
∥∇f(xk)∥2∗

=
1− τk
τk

αk+1⟨∇f(xk), yk − xk⟩+ αk+1⟨∇f(xk), zk − x⋆⟩ −
αk+1

2L
∥∇f(xk)∥2∗

=
1− τk
τk

αk+1⟨∇f(xk), xk−1 − xk − 1

L
Q−1∇f(xk−1)⟩

+ αk+1⟨∇f(xk), zk − x⋆⟩ −
αk+1

2L
∥∇f(xk)∥2∗ (5)

≤ 1− τk
τk

αk+1

(
f(xk−1)− f(xk)−

1

2L
∥∇f(xk−1)∥2∗ −

1

2L
∥∇f(xk)∥2∗

)
(6)

+ αk+1⟨∇f(xk), zk − x⋆⟩ −
αk+1

2L
∥∇f(xk)∥2∗

≤ 1− τk
τk

αk+1

(
f(xk−1)− f(xk)−

1

2L
∥∇f(xk−1)∥2∗ −

1

2L
∥∇f(xk)∥2∗

)
(7)

+
α2
k+1

2
∥∇f(xk)∥2∗ + Vzk(x⋆)− Vzk+1

(x⋆)−
αk+1

2L
∥∇f(xk)∥2∗ .
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(4) and (6) follow from Lemma 11, (5) follows from the definition of linear
coupling, and (7) follows from Lemma 1.

The case of k = 0 follows from α1 = 2
L and f⋆ − f(x0) − ⟨∇f(x0), x⋆ −

x0⟩ − 1
2L ∥∇f(x0)∥2∗ ≥ 0 with Lemma 1. ⊓⊔

Theorem 5 Assume (A1), (A2), and (A3). Let the positive sequence {αk}∞k=1

satisfy 0 ≤ α2
k+1L− 2αk+1 ≤ α2

kL for k = 1, 2 . . . and α1 = 2
L . Let τk = 2

αk+1L

for k = 1, 2, . . . . The yk-sequence of (LC) exhibits the rate

f(yk)− f⋆ ≤ 2Vx0
(x⋆)

Lα2
k

for k = 1, 2, . . . .

Proof Sum the inequality of Lemma 2 from 0 to (k− 1). Then use Vzk(x⋆) ≥ 0

and f(yk) ≤ f(xk−1)− 1
2L ∥∇f(xk−1)∥2∗ to conclude the rate. ⊓⊔

The {θk}∞k=0 of the original OGM formulation is related to {αk}∞k=1 through
αk+1 = 2θk/L for k = 0, 1, . . . . The seemingly different parameter choices
τk = 1

αk+1L
for AGM and τk = 2

αk+1L
for OGM actually turn out to be the

same as {αk}∞k=1 for AGM and OGM differ by a factor of 2.
The parameters {αk}∞k=1 and {τk}∞k=1 are chosen to make the telescoping

sum argument work and to make it work tightly, as described in Section C.
Specifically, one starts with the form

Mk

(
f(xk)− f⋆−

1

2L
∥∇f(xk)∥2∗

)
+ Vzk+1

(x⋆)

≤ Nk−1

(
f(xk−1)− f⋆ −

1

2L
∥∇f(xk−1)∥2∗

)
+ Vzk(x⋆),

where the scalar coefficients Mk, Nk−1 are determined by (7). Comparing the
coefficients of ∥∇f(xk)∥2∗, we have

− 1

2L

(
αk+1 +

1− τk
τk

αk+1

)
= −

α2
k+1

2
+

1

2L

(
αk+1 +

1− τk
τk

αk+1

)
.

Solving this equation leads to the choice τk = 2
Lαk+1

. The requirement α2
k+1L−

2αk+1 ≤ α2
kL is needed for the telescoping sum argument to work, and the

choice α2
k+1L− 2αk+1 = α2

kL makes the argument tight.

4.3 Secondary sequence analysis

In the linear coupling context, the last-step modification can be expressed as

x̃k = (1− τ̃k)yk + τ̃kzk (8)

for k = 0, 1, . . . , where {τ̃k}∞k=0 is a positive sequence to be determined.
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Lemma 3 Assume (A1), (A2) and (A3). Let 0 < τ̃k = 1
α̃k+1L

≤ 1 for k =

0, 1, . . . , α̃1 = 1
L , and x−1 = x0. Then the x̃k-sequence of (8), the secondary

sequence with last-step modification of (LC), satisfies

α̃2
k+1L (f(x̃k)− f⋆) + Vzk+1

(x⋆) ≤
(
α̃2
k+1L− α̃k+1

)
h(xk−1) + Vzk(x⋆)

for k = 0, 1, . . . .

Proof Proof is identical to that of Lemma 2 with substituted τk by τ̃k. ⊓⊔

Theorem 6 In the setup of Theorem 5, let 0 ≤ α̃2
k+1L − α̃k+1 ≤ 1

2α
2
kL

and α̃1 = 1
L . Then the x̃k-sequence, the secondary sequence with last-step

modification, of the linear coupling method (LC) exhibits the rate

f(x̃k)− f⋆ ≤ Vx0(x⋆)

Lα̃2
k+1

for k = 0, 1, . . .

Proof Sum the inequality of Lemma 2 from 0 to (k − 2) and the inequality of
Lemma 3 with k − 1. Then use Vzk(x⋆) ≥ 0 to conclude the rate. ⊓⊔

4.4 Comparison of the linear coupling analyses of AGM and OGM

The linear coupling analysis of Allen-Zhu and Orecchia [5], which derives AGM,
relies on the following two key lemmas.

Lemma 4 [5, Lemma 4.2] In the linear coupling setup,

αk+1⟨∇f(xk), zk − x⋆⟩ ≤
α2
k+1

2
∥∇f(xk)∥2∗ + Vzk(x⋆)− Vzk+1

(x⋆)

≤ α2
k+1L (f(xk)− f(yk+1)) + Vzk(x⋆)− Vzk+1

(x⋆)

for k = 0, 1, . . . .

Lemma 5 [5, Lemma 4.3] (Coupling Lemma) In the linear coupling setup,

α2
k+1L (f(yk+1)− f⋆) + Vzk+1

(x⋆) ≤ (α2
k+1L− αk+1) (f(yk)− f⋆) + Vzk(x⋆).

for k = 0, 1, . . . .

As discussed, the proof of [5, Lemma 4.2] uses of the non-tight inequality

f(xk)− f(yk+1) ≥
1

2L
∥∇f(xk)∥2∗ ,

and the proof of [5, Lemma 4.3] follows steps similar to that of Lemma 2, but
uses the non-tight inequalities

f(xk)− f⋆ ≤ ⟨∇f(xk), xk+1 − x⋆⟩
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and

⟨∇f(xk), yk − xk⟩ ≤ f(yk)− f(xk).

In both linear coupling analyses, for OGM and AGM, the telescoping
sum argument is made tight by choosing {αk}∞k=1 and {τk}∞k=1 appropriately.
However, the analysis of Allen-Zhu and Orecchia [5] uses non-tight inequalities
before the telescoping sum argument, while our analysis uses tight inequalities
in all steps.

4.5 Unification of AGM and OGM

If we choose w(y) = 1
2t ∥y∥

2, so that Vx(y) =
1
2t ∥x− y∥2, and 0 < t ≤ 1, so

that w is 1-strongly convex, and substitute αk+1 = 2θk/L, (LC) becomes

yk+1 = xk − 1

L
∇f(xk)

zk+1 = zk − 2tθk
L

∇f(xk)

xk+1 =

(
1− 1

θk+1

)
yk+1 +

1

θk+1
zk+1

for k = 0, 1, . . . . We also express this method with the momentum and correction
terms and without the zk-iterates in Lemma 6. This method unifies AGM
and OGM through the constant t; AGM and OGM respectively correspond to
t = (1/2) and t = 1.

Corollary 5 Assume (A1), (A2) and (A3). Let 0 < t ≤ 1. Then

f(yk)− f⋆ ≤ L ∥x0 − x⋆∥2

4tθ2k−1

for k = 1, 2, . . .

Proof This follows from Theorem 5 with αk+1 = 2θk
L . ⊓⊔

The rates of Corollary 5 at t = 1
2 and t = 1 exactly match the previously

discussed rates of AGM and OGM.

Lemma 6 The unified form is equivalent to

yk+1 = xk − 1

L
∇f(xk)

xk+1 = yk+1 +
θk − 1

θk+1
(yk+1 − yk) + (2t− 1)

θk
θk+1

(yk+1 − xk).
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Proof To prove the equivalency, we show that the above sequence leads to

xk+1 =

(
1− 1

θk+1

)
yk+1 +

1

θk+1
zk+1.

That is,

xk+1 =

(
1− 1

θk+1

)
yk+1 +

θk
θk+1

yk+1 −
θk − 1

θk+1
yk − (2t− 1)

θk
θk+1

1

L
∇f(xk)

=

(
1− 1

θk+1

)
yk+1 +

θk
θk+1

(
xk − 1

L
∇f(xk)

)
− θk − 1

θk+1
yk − (2t− 1)

θk
θk+1

1

L
∇f(xk)

=

(
1− 1

θk+1

)
yk+1 +

θk
θk+1

xk − θk − 1

θk+1
yk − 2t

θk
θk+1

1

L
∇f(xk)

=

(
1− 1

θk+1

)
yk+1 −

θk − 1

θk+1
yk − 2t

θk
θk+1

1

L
∇f(xk)

+
θk

θk+1

(
yk +

θk−1 − 1

θk
(yk − yk−1)− (2t− 1)

θk−1

θk

1

L
∇f(xk−1)

)
=

(
1− 1

θk+1

)
yk+1 +

(
θk

θk+1
+

θk−1 − 1

θk+1
− θk − 1

θk+1

)
yk − θk−1 − 1

θk+1
yk−1

− (2t− 1)
θk−1

θk+1

1

L
∇f(xk−1)− 2t

θk
θk+1

1

L
∇f(xk)

=

(
1− 1

θk+1

)
yk+1 +

θk−1

θk+1
yk − θk−1 − 1

θk+1
yk−1

− (2t− 1)
θk−1

θk+1

1

L
∇f(xk−1)− 2t

θk
θk+1

1

L
∇f(xk)

=

(
1− 1

θk+1

)
yk+1 +

θk−1

θk+1

(
xk−1 −

1

L
∇f(xk−1)

)
− θk−1 − 1

θk+1
yk−1

− (2t− 1)
θk−1

θk+1

1

L
∇f(xk−1)− 2t

θk
θk+1

1

L
∇f(xk)

=

(
1− 1

θk+1

)
yk+1 +

θk−1

θk+1
xk−1 −

θk−1 − 1

θk+1
yk−1

− 2t
θk

θk+1

1

L
∇f(xk)− 2t

θk−1

θk+1

1

L
∇f(xk−1)

...

=

(
1− 1

θk+1

)
yk+1 +

θ0
θk+1

x0 −
θ0 − 1

θk+1
y0 −

1

θk+1

k∑
i=0

2tθi
1

L
∇f(xi)

=

(
1− 1

θk+1

)
yk+1 +

1

θk+1
zk+1.

⊓⊔
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4.6 Discussion

By identifying OGM as an instance of linear coupling, we generalized OGM to
the setup with quadratic norms and mirror descent steps while maintaining
the factor-

√
2 improvement. However, we do point out that the generalization

is narrower than that of [5], which allows non-quadratic norms and constrained
yk-and zk-updates. The analysis on strongly convex case follows from a similar
line of reasoning, and is presented in Appendix, Section D.

In addition to the human-understandable derivation of OGM, this section
provides two non-obvious observations, which we point out again. The first
is that AGM and OGM can be unified into a single parameterized family of
accelerated gradient methods, all achieving the O(1/k2) rate. Another is that
the linear coupling analysis of Allen-Zhu and Orecchia [5] was suboptimal in
the same way that AGM is suboptimal and can be improved.

5 Conclusion

In this work, we presented human-understandable analyses of OGM. The first
key insight is to use a Lyapunov function with f(xk) − f⋆ − 1

2L ∥∇f(xk)∥2,
a somewhat unusual term in Lyapunov analyses. The second key insight is
to obtain OGM by refining the linear coupling analysis of Allen-Zhu and
Orecchia [5] through replacing non-tight inequalities with tight ones. With
these insights, we extended the factor-

√
2 acceleration to other setups.

In our view, the most significant contribution of this work is the improved
understanding of OGM’s acceleration mechanism. While Nesterov’s acceleration
mechanism has been utilized as a component in a wide range of setups, OGM’s
acceleration mechanism has not yet seen any external use. Through the under-
standing provided by the analysis of this work, we hope OGM’s acceleration
becomes more widely utilized to gain a (perhaps factor-

√
2) speedup com-

pared to what can be achieved with AGM’s acceleration. For example, whether
accelerated coordinate gradient methods [6, 44] or non-convex stochastic opti-
mization [23] can be improved with OGM’s acceleration mechanism would be
an interesting question to address in future work. Improving the FISTA [16]
and the more general mirror descent setup [14,34] are also interesting directions,
although there are known limitations [18,29].

Finally, studying how OGM’s acceleration interacts with other techniques
used to analyze AGM, such as the continuous-time analysis [50], high-resolution
ODEs [48], and variational perspective [55] is also an interesting direction.
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A Method reference

For reference, we restate all aforementioned methods. In all methods, we assume that f
is L-smooth function, {θk}∞k=0 and {φk}∞k=0 are the sequences of positive scalars, and
x0 = y0 = z0.

OGM. One form of OGM is

yk+1 = xk −
1

L
∇f(xk)

xk+1 = yk+1 +
θk − 1

θk+1
(yk+1 − yk) +

θk

θk+1
(yk+1 − xk)

and an equivalent form with z-iterates is

yk+1 = xk −
1

L
∇f(xk)

zk+1 = zk −
2θk

L
∇f(xk)

xk+1 =

(
1−

1

θk+1

)
yk+1 +

1

θk+1
zk+1

for k = 0, 1, . . . . The last-step modification on the secondary sequence can be written as

x̃k+1 = yk+1 +
θk − 1

φk+1
(yk+1 − yk) +

θk

φk+1
(yk+1 − xk)

=

(
1−

1

φk+1

)
yk+1 +

1

φk+1
zk+1

where k = 0, 1, . . . .

OGM-simple. OGM-simple is a simpler variant of OGM with θk = k+2
2

and φk =
k+1+ 1√

2√
2

. One form of OGM-simple is

yk+1 = xk −
1

L
∇f(xk)

xk+1 = yk+1 +
k

k + 3
(yk+1 − yk) +

k + 2

k + 3
(yk+1 − xk)

and an equivalent form with z-iterates is

yk+1 = xk −
1

L
∇f(xk)

zk+1 = zk −
k + 2

L
∇f(xk)

xk+1 =

(
1−

2

k + 3

)
yk+1 +

2

k + 3
zk+1

for k = 0, 1, . . . . The last-step modification on secondary sequence is written as

x̃k+1 = yk+1 +
k

√
2(k + 2) + 1

(yk+1 − yk) +
k + 2

√
2(k + 2) + 1

(yk+1 − xk)

where k = 0, 1, . . . .
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SC-OGM. Here, we assume that f is a µ-strongly convex function, condition number of f
is κ = L/µ, and γ =

√
8κ+1+3
2κ−2

. SC-OGM is written as

yk+1 = xk −
1

L
∇f(xk)

xk+1 = yk+1 +
1

2γ + 1
(yk+1 − yk) +

1

2γ + 1
(yk+1 − xk)

for k = 0, 1, . . . .

LC-OGM. LC-OGM (Linear Coupling OGM) is defined as

yk+1 = xk − L−1Q−1∇f(xk)

zk+1 = argmin
y∈Rn

{Vzk (y) + ⟨αk+1∇f(xk), y − xk⟩}

xk+1 = (1− τk+1)yk+1 + τk+1zk+1

for k = 0, 1, . . . , where Vz(y) is a Bregman divergence, {αk}∞k=1 and {τk}∞k=1 are nonnegative
sequences defined as α1 = 2

L
, 0 ≤ α2

k+1L− 2αk+1 ≤ α2
kL, τk = 2

αk+1L
, and Q is a positive

definite matrix defining ∥x∥2 = xTQx.
For last step modification, we define positive sequences {α̃k}∞k=1 and {τ̃k}∞k=1 as α1 = 1

L
,

0 ≤ α̃2
k+1L− ˜αk+1 ≤ 1

2
α2
kL, and τ̃k = 1

α̃k+1L
, and also define

x̃k = (1− τ̃k)yk + τ̃kzk

for k = 1, 2, . . . .

Unification of AGM and OGM. Using LC-OGM, we can unify AGM and OGM as

yk+1 = xk −
1

L
∇f(xk)

zk+1 = zk −
2tθk

L
∇f(xk)

xk+1 =

(
1−

1

θk+1

)
yk+1 +

1

θk+1
zk+1.

for k = 0, 1, . . . . This is equivalent to

yk+1 = xk −
1

L
∇f(xk)

xk+1 = yk+1 +
θk − 1

θk+1
(yk+1 − yk) + (2t− 1)

θk

θk+1
(yk+1 − xk).

LC-SC-OGM. LC-SC-OGM (Linear Coupling Strongly Convex OGM) is

yk+1 = xk −
1

L
Q−1∇f(xk)

zk+1 =
1

1 + γ

(
zk + γxk −

γ

µ
Q−1∇f(xk)

)
xk+1 = τzk+1 + (1− τ)yk+1,

for k = 0, 1, . . . , where Q is a positive definite matrix.
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B Co-coercivity inequality in general norm

Lemma 7 Let f be a closed convex proper function. Then,

0 ≤ f(x) + f∗(u)− ⟨x, u⟩

and
inf
x
{f(x) + f∗(u)− ⟨x, u⟩} = 0

inf
u
{f(x) + f∗(u)− ⟨x, u⟩} = 0.

Proof By the definition of the conjugate function,

−f∗(u) = inf
x

{f(x)− ⟨x, u⟩}

and
inf
x
{f(x) + f∗(u)− ⟨x, u⟩} = 0.

Therefore,
0 ≤ f(x) + f∗(u)− ⟨x, u⟩ ∀x.

The statement with u follows from the same argument and the fact that f∗∗ = f . ⊓⊔

Lemma 8 Consider a norm ∥ · ∥ and its dual norm ∥ · ∥∗. Then,

0 ≤
1

2
∥x∥2 +

1

2
∥u∥2∗ − ⟨x, u⟩

and

inf
x∈Rn

{
1

2
∥x∥2 +

1

2
∥u∥2∗ − ⟨x, u⟩

}
= 0

inf
u∈Rn

{
1

2
∥x∥2 +

1

2
∥u∥2∗ − ⟨x, u⟩

}
= 0.

Proof This follows from Lemma 7 with f(x) = 1
2
∥x∥2 and

(
1
2
∥·∥2

)∗
= 1

2
∥·∥2∗. ⊓⊔

Lemma 9 Let

Grad(x) = argmin
y∈Rn

{
L

2
∥y − x∥2 + ⟨∇f(x), y − x⟩

}
.

Then,

⟨∇f(x), Grad(x)− x⟩+
L

2
∥Grad(x)− x∥2 = −

1

2L
∥∇f(x)∥2∗ .

Proof Let z = L(Grad(x)− x). By the definition of Grad(x) and Lemma 8, we have

1

2L
∥∇f(x)∥2∗ +

L

2
∥Grad(x)− x∥2 + ⟨∇f(x), Grad(x)− x⟩

= inf
z∈Rn

1

2L
∥∇f(x)∥2∗ +

1

2L
∥z∥2 +

1

L
⟨∇f(x), z⟩

= 0.

⊓⊔

Lemma 10 Let f : Rn → R be a differentiable convex function such that

∥∇f(x)−∇f(y)∥∗ ≤ L ∥x− y∥

for all x, y ∈ Rn. Then

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+
L

2
∥y − x∥2 .
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Proof Since a differentiable convex function is continuously differentiable [45, Theorem 25.5],

f(y)− f(x) =

∫ 1

0
⟨∇f(x+ t(y − x)), y − x⟩dt

=

∫ 1

0
⟨∇f(x+ t(y − x))−∇f(x), y − x⟩dt+ ⟨∇f(x), y − x⟩

≤
∫ 1

0
∥∇f(x+ t(y − x))−∇f(x)∥∗ ∥y − x∥ dt+ ⟨∇f(x), y − x⟩

≤
∫ 1

0
tL ∥y − x∥2 dt+ ⟨∇f(x), y − x⟩ =

L

2
∥y − x∥2 + ⟨∇f(x), y − x⟩.

⊓⊔

Lemma 11 (Co-coercivity inequality with general norm) Let f : Rn → R be a
differentiable convex function such that

∥∇f(x)−∇f(y)∥∗ ≤ L ∥x− y∥

for all x, y ∈ Rn. Then

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+
1

2L
∥∇f(x)−∇f(y)∥2∗ .

Proof Set ϕ(y) = f(y)− ⟨∇f(x), y − x⟩. Then x ∈ argminϕ. So by Lemma 9,

ϕ(x) ≤ ϕ(Grad(y))

≤ ϕ(y) + ⟨∇ϕ(y), Grad(y)− y⟩+
L

2
∥Grad(y)− y∥2

= ϕ(y)−
1

2L
∥∇ϕ(y)∥2∗ .

Substituting f back in ϕ yields the co-coercivity inequality. ⊓⊔

C Telescoping sum argument

Suppose we established the inequality

aiFi + biGi ≤ ciFi−1 + diGi−1 − Ei

for i = 1, 2, . . . , where Ei, Fi, Gi are nonnegative quantities and ai, bi, ci, and di are
nonnegative scalars. Assume ci ≤ ai−1 and di ≤ bi−1. By summing the inequalities for
i = 1, 2, . . . , k, we obtain

akFk ≤ −bkGk −
k∑

i=2

(ai−1 − ci)Fi−1 −
k∑

i=2

(bi−1 − di)Gi−1 −
k∑

i=2

Ei + c1F0 + d1G0

≤ c1F0 + d1G0.

However, note that the

−bkGk −
k∑

i=2

(ai−1 − ci)Fi−1 −
k∑

i=2

(bi−1 − di)Gi−1 −
k∑

i=1

Ei

terms are wasted in the analysis. If one has the freedom to do so, it may be good to choose
parameters so that

ai−1 = ci, bi−1 = di

and Ei = 0 for i = 1, 2, . . . . Not having wasted terms may be an indication that the analysis
is tight.
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D SC-OGM via linear coupling

In this section, we analyze SC-OGM through the linear coupling analysis. We consider the
linear coupling form

yk+1 = xk −
1

L
Q−1∇f(xk)

zk+1 =
1

1 + γ

(
zk + γxk −

γ

µ
Q−1∇f(xk)

)
xk+1 = τzk+1 + (1− τ)yk+1,

where τ is a coupling coefficient to be determined. As an aside, we can view zk+1 as a mirror
descent update of the form

zk+1 = argmin
z

{
1

2
∥z − zk∥2 +

γ

2
∥z − xk∥2 +

γ

µ
⟨∇f(xk), z⟩

}
,

which is similar to what was considered in [6].

Lemma 12 Assume (A1), (A2) and (A3). Then,

γ

µ
⟨∇f(xk), zk+1 − x⋆⟩ −

γ

2
∥xk − x⋆∥2

≤ −
γ2

2(1 + γ)µ2
∥∇f(xk)∥2∗ +

1

2
∥zk − x⋆∥2 −

1 + γ

2
∥zk+1 − x⋆∥2

for k = 0, 1, . . . .

Proof This proof follows steps similar to that of [6, Lemma 5.4].
From the definition of zk+1, we say

0 =⟨
∂

∂z

{
1

2
∥z − zk∥2 +

γ

2
∥z − xk∥2 +

γ

µ
⟨∇f(xk), z⟩

} ∣∣∣∣
zk+1

, zk+1 − x⋆⟩

=⟨Q(zk+1 − zk), zk+1 − x⋆⟩+
γ

µ
⟨∇f(xk), zk+1 − x⋆⟩+ γ⟨Q(zk+1 − xk), zk+1 − x⋆⟩

By three point equation,

γ

µ
⟨∇f(xk), zk+1 − x⋆⟩+ γ

(
1

2
∥xk − zk+1∥2 −

1

2
∥xk − x⋆∥2

)
= −

1

2
∥zk − zk+1∥2 +

1

2
∥zk − x⋆∥2 −

1 + γ

2
∥zk+1 − x⋆∥2 .

Plugging the definition of zk+1,

γ

2
∥xk − zk+1∥2 +

1

2
∥zk − zk+1∥2

=
γ

2

∥∥∥∥ 1

1 + γ
(xk − zk) +

γ

(1 + γ)µ
Q−1∇f(xk)

∥∥∥∥2 +
1

2

∥∥∥∥− γ

1 + γ
(xk − zk) +

γ

(1 + γ)µ
Q−1∇f(xk)

∥∥∥∥2
≥

γ2

2(1 + γ)µ2
∥∇f(xk)∥2∗ .

Combining results above, we get

γ

µ
⟨∇f(xk), zk+1 − x⋆⟩ −

γ

2
∥xk − x⋆∥2

≤ −
γ2

2(1 + γ)µ2
∥∇f(xk)∥2∗ +

1

2
∥zk − x⋆∥2 −

1 + γ

2
∥zk+1 − x⋆∥2 .

⊓⊔

34            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

Factor-
√
2 Acceleration of Accelerated Gradient Methods 35

Lemma 13 (Coupling lemma in SC-OGM) Assume (A1), (A2) and (A3). Then

(1 + γ)

(
f(xk)−

1

2L
∥∇f(xk)∥2∗ +

µ

2
∥zk − x⋆∥2

)
≤

(
f(xk−1)−

1

2L
∥∇f(xk−1)∥2∗ +

µ

2
∥zk−1 − x⋆∥2

)
holds for k = 1, 2, . . .

Proof We have

γ (f(xk)− f(x⋆))

≤ γ⟨∇f(xk), xk − x⋆⟩ −
µγ

2
∥xk − x⋆∥2

= γ⟨∇f(xk), xk − zk⟩+ γ⟨∇f(xk), zk − x⋆⟩ −
µγ

2
∥xk − x⋆∥2

=
1− τ

τ
γ⟨∇f(xk), yk − xk⟩+ γ⟨∇f(xk), zk − x⋆⟩ −

µγ

2
∥xk − x⋆∥2

=
1− τ

τ
γ⟨∇f(xk), xk−1 − xk −

1

L
Q−1∇f(xk−1)⟩+ γ⟨∇f(xk), zk − x⋆⟩ −

µγ

2
∥xk − x⋆∥2

≤
(
1− τ

τ
γ − 1

)
⟨∇f(xk), xk−1 − xk −

1

L
Q−1∇f(xk−1)⟩

+

(
f(xk−1)− f(xk)−

1

2L
∥∇f(xk−1)∥2∗ −

1

2L
∥∇f(xk)∥2∗

)
+ γ⟨∇f(xk), zk − zk+1⟩+ γ⟨∇f(xk), zk+1 − x⋆⟩ −

µγ

2
∥xk − x⋆∥2

≤
(
1− τ

τ
γ − 1

)
⟨∇f(xk), yk − xk⟩+

(
f(xk−1)− f(xk)−

1

2L
∥∇f(xk−1)∥2∗ −

1

2L
∥∇f(xk)∥2∗

)
+ γ⟨∇f(xk), zk − zk+1⟩ −

γ2

2(1 + γ)µ
∥∇f(xk)∥2∗ +

µ

2
∥zk − x⋆∥2 −

(1 + γ)µ

2
∥zk+1 − x⋆∥2 ,

where the last inequality is an application of Lemma 12. Note that

zk − zk+1 = zk −
1

1 + γ

(
zk + γxk −

γ

µ
Q−1∇f(xk)

)
=

γ

1 + γ
(zk − xk) +

γ

(1 + γ)µ
Q−1∇f(xk)

=
γ

1 + γ

1− τ

τ
(xk − yk) +

γ

(1 + γ)µ
Q−1∇f(xk).

To eliminate the ⟨∇f(xk), ·⟩ term, we choose τ to satisfy

1− τ

τ
γ − 1 =

γ

1 + γ

1− τ

τ
. (9)

Plugging this in, the inequality above is

γ (f(xk)− f(x⋆))

≤
(
f(xk−1)− f(xk)−

1

2L
∥∇f(xk−1)∥2∗ −

1

2L
∥∇f(xk)∥2∗

)
+

γ2

2(1 + γ)µ
∥∇f(xk)∥2∗ +

µ

2
∥zk − x⋆∥2 −

(1 + γ)µ

2
∥zk+1 − x⋆∥2 .
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In order to make the telescoping form such as

Mk

(
f(xk)−Bk ∥∇f(xk)∥2∗ +Ck ∥zk+1 − x⋆∥2

)
≤ Nk−1

(
f(xk−1)−Bk−1 ∥∇f(xk−1)∥2∗ + Ck−1 ∥zk − x⋆∥2

)
,

we chose Bk = 1
2L

and Ck = µ
2
, which leads to the choice of γ satisfying

2 + γ

2L
=

γ2

2(1 + γ)µ
. (10)

We get the desired result by plugging (9) and (10) in the above inequality. ⊓⊔

E Asymptotic characterization of θk

Theorem 7 Let the positive sequence {θk}∞k=0 satisfy θ0 = 1 and θ2k+1 − θk+1 − θ2k = 0
for k = 0, 1, . . . . Then,

θk =
k + ζ + 1

2
+

log k

4
+ o(1).

Proof Let θk = k+2
2

+ ck log k. The proof consists of the following 3 steps:

1. If ck < 1
4
, then ck+1 < 1

4
.

2. ck → 1
4

as k → ∞.
3. If θk = k+2

2
+ log k

4
+ ek, then ek is convergent.

First step. If ck < 1
4
, then ck+1 < 1

4
.

For our convenience, let c0 = 0 with c0 log 0 = 0. Plugging this in θ2k+1 − θk+1 − θ2k = 0,
we have (

k + 2

2
+ ck+1 log(k + 1)

)2

=

(
k + 2

2
+ ck log k

)2

+
1

4
,

so
(ck+1 log(k + 1)− ck log k) (k + 2 + ck+1 log(k + 1) + ck log k) =

1

4
.

Assume ck+1 ≥ 1/4. Then

1

4
= (ck+1 log(k + 1)− ck log k) (k + 2 + ck+1 log(k + 1) + ck log k)

≥
1

4
log

(
1 +

1

k

)
(k + 2)

>
1

4
,

which proves the first claim.

Second step. ck → 1
4

as k → ∞.
Put dk = 1

4
− ck, then 0 < dk ≤ 1

4
.

1

4
=

(
1

4
log

(
1 +

1

k

)
− dk+1 log(k + 1) + dk log k

)(
k + 2 +

1

4
log k(k + 1)− dk+1 log(k + 1)− dk log k

)
≤

(
1

4
log

(
1 +

1

k

)
− dk+1 log(k + 1) + dk log k

)(
k + 2 +

1

2
log(k + 1)

)
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Therefore

dk+1 log(k + 1)− dk log k ≤
1

4
log

(
1 +

1

k

)
−

1

4

1

k + 2 + 1
2
log(k + 1)

.

By talyor expansion,

dk+1 log(k + 1)− dk log k ≤
1

4

(
3 + 2 log k

2k2
+O

(
1

k2

))
.

So, By summing all the above inequality from 1 to k,

dk+1 log(k + 1) ≤ C

so dk+1 < C
log(k+1)

. In conclusion, as k → ∞, dk → 0.

Third step. If θk = k+2
2

+ log k
4

+ ek, then, ek converges.
From the previous claim, we can say that for some sufficiently large k, |ek| < 1

6
log k.(

k + 2

2
+

1

4
log(k + 1) + ek+1

)2

=

(
k + 2

2
+

1

4
log k + ek

)2

+
1

4

Then,

1

4
=

(
1

4
log

(
1 +

1

k

)
+ ek+1 − ek

)(
k + 2 +

1

4
log k(k + 1) + ek+1 + ek

)
≤

(
1

4
log

(
1 +

1

k

)
+ ek+1 − ek

)(
k + 2 +

5

6
log(k + 1)

)
.

So,

ek+1 − ek ≥
1

4
(
k + 2 + 5

6
log(k + 1)

) −
1

4
log

(
1 +

1

k

)
= −

5
6
log k + 3

2

k2
+O

(
1

k2

)
.

Summing this for k = 1, . . . , k, we get that ek+1 > D for some constant D. Moreover,

1

4
=

(
1

4
log

(
1 +

1

k

)
+ ek+1 − ek

)(
k + 2 +

1

4
log k(k + 1) + ek+1 + ek

)
≥

(
1

4
log

(
1 +

1

k

)
+ ek+1 − ek

)
(k + 2) >

1

4
+ (k + 2)(ek+1 − ek),

which indicates that ek+1 < ek. Since {ek}∞k=0 is a decreasing sequence with a lower bound,
it converges. ⊓⊔

Proof of equality in Section 2.1 We have

L ∥x0 − x⋆∥2

2θ2k−1

=
L ∥x0 − x⋆∥2

2
(

k+ζ
2

+
log(k−1)

4
+ o(1)

)2

=
2L ∥x0 − x⋆∥2

(k + ζ)2
(
1 +

log(k−1)
2(k+ζ)

+ o(1/k)
)2

=
2L ∥x0 − x⋆∥2

(k + ζ)2

(
1− 2

log(k − 1)

2(k + ζ)
+ o(1/k)

)
=

2L ∥x0 − x⋆∥2

(k + ζ)2
−

2L ∥x0 − x⋆∥2 log k
(k + ζ)3

+ o

(
1

k3

)
,

which verifies the equality in Section 2.1.
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