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Abstract 

Introduction and Objective: Post-marketing drug safety surveillance research has focused on the 

product-patient interaction as the primary source of variability in clinical outcomes. However, the 

inherent complexity of pharmaceutical manufacturing and distribution, especially of biologic 

drugs, also underscores the importance of risks related to variability in manufacturing and supply 

chain conditions that could potentially impact clinical outcomes . We propose a data-driven signal 

detection method called HMMScan to monitor for manufacturing lot-dependent changes in 

adverse event (AE) rates and herein apply it to a biologic drug. 

Methods: The HMMScan method chooses the best-fitting candidate from a family of probabilistic 

Hidden Markov models to detect temporal correlations in per lot AE rates that could signal 

clinically relevant variability in manufacturing and supply chain conditions . Additionally, 

HMMScan indicates the particular lots most likely to be related to risky states of the 

manufacturing or supply chain condition. The HMMScan method was validated on extensive 

simulated data and applied to three actual lot sequences of a major biologic drug by combining lot 

metadata from the manufacturer with AE reports from the FDA Adverse Event Reporting Sys tem 

(FAERS). 

Results: Extensive method validation on simulated data indicated that HMMScan is able to 

correctly detect the presence or absence of variable manufacturing and supply chain conditions for 

contiguous sequences of 100 lots or more when changes in these conditions have a meaningful 

impact on AE rates. Applying the HMMScan method to FAERS data, two of the three actual lot 

sequences examined exhibited evidence of potential manufacturing or supply chain related 

variability. 

Conclusions: HMMScan could be utilized by both manufacturers and regulators to automate lot 

variability monitoring and inform targeted root cause analysis. Broad application of HMMScan 

would rely on a well-developed data input pipeline. The proposed method is implemented in an 

open-source GitHub repository.    

 

Key Points 

- The pharmacovigilance community lacks methods for systematically detecting variation 

in adverse event (AE) rates due to manufacturing and supply chain factors. 

- Our HMMScan method uses probabilistic Hidden Markov models to screen sequences of 

per manufacturing lot AE rates, separating patient and manufacturing-related variability 

and proposing lot ranges for targeted root cause analysis. 

- The method is extensively validated and applied to three actual lot sequences of a major 

biologic, detecting regions of potential manufacturing or supply chain variability in two 

of these sequences. 
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1 Introduction 1 

Methods for detecting post-marketing safety signals have long been the subject of 2 

active pharmacovigilance academic research, as well as regulatory and industr ial 3 

work. These efforts have primarily focused on uncovering novel drug-adverse 4 

event combinations [1–4], and specifically on the product-patient interaction as 5 

the primary source of variability in clinical outcomes. 6 

 7 

However, there are also known examples of serious adverse events (AEs), 8 

including fatalities of patients, caused by pharmaceutical products with root 9 

causes linked to manufacturing and supply chain sources [5]. The manufacturing 10 

process and related control mechanisms of drugs are specified in detail during the 11 

regulatory assessment and approval, and are mandated during the post-approval 12 

phase. Nevertheless, in 2019 the U.S. Food and Drug Administration (FDA) 13 

stated that monitoring the impact of manufacturing and supply chain variability on 14 

patients remains an open challenge for the pharmacovigilance community [6]. 15 

 16 

The risk of temporal variability in manufacturing and supply chain conditions, 17 

including raw materials sourcing, with potential impact on clinical outcomes is 18 

particularly relevant to biologic drugs because of the inherent complexity of the 19 

respective processes. Biologics are structurally much more complex than small 20 

molecule drugs. In addition to the increased complexity of a biological 21 

manufacturing process compared to chemical synthesis, the number of critical 22 

quality attributes is higher and their type is also more complex. Previously 23 

designed statistical approaches take as input a time series of monthly AE reports 24 

and aim to identify points in time where either temporary or systematic changes in 25 
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the rate of AE reports occur [7,8]. However, these approaches operate on 26 

aggregated monthly AE data and are not designed to specifically identify 27 

sequences of lots with unusually high AE rates. Additionally, in practice multiple 28 

lots may be used in parallel to treat patients, and the overall AE rates capture the 29 

aggregated number of AEs across all lots that are on the market. 30 

 31 

Mahaux et al. [9] apply a hierarchical statistical scanning method to simulated 32 

batch genealogy data, which links inputs and outputs of material through a 33 

sequence of manufacturing process steps, to identify steps that are associated with 34 

excess adverse events. The method relies on data that capture relationships 35 

between final product batches that share bulk intermediate product batches. 36 

Whereas their method could be used by manufacturers, particularly for detailed 37 

root cause analysis, it would likely be impractical for use by a regulator that does 38 

not often have access to such granular data consistently across multiple different 39 

products. 40 

 41 

This paper aims to augment existing post-marketing surveillance frameworks, 42 

specifically by addressing this challenge. The paper describes a new data-driven 43 

signal detection method, called HMMScan, inspired by the well-known family of 44 

Hidden Markov models (HMMs) [10]. Relying on standard reported clinical 45 

outcomes and manufacturing attributes, it is designed to monitor for 46 

manufacturing and supply chain lot-dependent changes. Specifically, the newly 47 

proposed method relies on the rate of reported AEs per final product lot to flag 48 

potential safety signals that could be related to variability in manufacturing and 49 

supply chain conditions.  50 

 51 
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Section 2 details the HMMScan method, as well as the design of the validation 52 

experiments on simulated data, as well as a use case based on industry data. The 53 

results of these experiments and an application to FDA Adverse Event Reporting 54 

System (FAERS) data are presented in Section 3. Section 4 provides a discussion 55 

of the aspects related to the application of the method and its limitations, as well 56 

as outlines directions for future data gathering and analysis, and Section 5 57 

concludes.  58 

2 Methods 59 

2.1 High Level Approach 60 

The goal of the HMMScan method is to provide an alert when the pattern of per 61 

lot AE rates in a time-ordered series of lots suggests that there might exist serial 62 

correlation in consecutive lots. The HMMScan method is applied to a single 63 

product at a time and takes as input a sequence of final product lots with their 64 

respective reported AE rates.   65 

 66 

The HMMScan method aims to detect signals that suggest the potential presence 67 

of clinically meaningful variability in manufacturing and supply chain-related 68 

processes. Under the hypothesis that no such variability exists, differences in per 69 

lot AE rates are expected to be driven solely by random variation in aggregate 70 

patient covariates, such as age, race, the average level of polypharmacy, and other 71 

societal factors with no consistent dependence of the sequence of the lots. Thus, 72 

the per lot AE rate should be statistically independent across lots. In contrast, if 73 

temporal variability of the manufacturing and supply chain conditions impacts 74 

patient outcomes, then it is expected that the per lot AE rates will exhibit 75 
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temporal, or serial, correlation between lots manufactured at similar times. These 76 

differences in manufacturing and supply chain between lots encompass both 77 

acceptable variation in measured quality attributes within the approved operating 78 

limits, as well as variation in unmeasured (or undetected) quality attributes that 79 

could impact patient outcomes and safety.  80 

 81 

The newly proposed method relies on a probabilistic modeling framework that 82 

can detect serial correlation in a series of lots ordered by packaging date, which is 83 

used as a proxy for the manufacturing timing of the respective lots. However, 84 

more generally, the specific order of lots could be further refined using 85 

information about the source of the intermediate materials for each lot.  86 

 87 

One of the main challenges in identifying the manufacturing or supply chain 88 

related impact on the per lot AE rates is the fact that conditions of the 89 

manufacturing or supply chain systems may not be fully observable. This 90 

motivates the use of candidate models that fall into the broad category of HMMs, 91 

each consisting of two major elements. The first element is the number of 92 

underlying hidden (unobserved) states, and the respective transition probabilities 93 

from each state to all other states. The model assumes that each lot is 94 

manufactured and handled under a hidden state that corresponds to a certain state 95 

of the underlying manufacturing or supply chain conditions. The second element 96 

is a state-dependent binomial mixture distribution that captures the probabilistic 97 

pattern of the AEs per lot manufactured under the respective state. The dynamic 98 

transition between hidden states in the HMMs captures the potential variability in 99 

the underlying manufacturing or supply chain conditions. The corresponding 100 

impact of these states on the number of reported AEs per lot is captured through 101 
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the respective state-dependent binomial mixture distribution. The ‘best’ model is 102 

selected using Bayesian Information Criterion (BIC) [11], which weighs the 103 

explanatory power of the model with respect to the observed data against the 104 

complexity of the model (number of parameters). If the best model has only one 105 

state, this corresponds to the scenario with no clinically meaningful variability in 106 

the underlying manufacturing and supply chain conditions. Alternatively, if the 107 

best model exhibit multiple states, then there is a signal for potential impact of 108 

changing conditions on patient outcomes.  109 

2.2 Detailed Method Description 110 

2.2.1 Method Inputs 111 

The input data to the HMMScan method are the observed AE counts for each lot 112 

in the sequence of 𝐿 lots. In particular, denote the per lot AE counts as the random 113 

vector 𝑨 = (𝐴1, 𝐴2, … , 𝐴𝐿). The number of doses per lot, which without loss of 114 

generality is assumed constant, for each lot in the sequence, is denoted by 𝐷. For 115 

simplicity of exposition, it is assumed that each dose generates either zero or one 116 

AE. The HMMScan method takes as input a specific realization of the random 117 

vector 𝑨 denoted by 𝒂 = (𝑎1,𝑎2, … , 𝑎𝐿). This vector is then normalized by 𝐷 to 118 

form observed AE rates, i.e., the number of AEs per 𝐷 doses. The method can be 119 

extended to accommodate variation in the number of doses per lot by taking as 120 

input in addition to the vector 𝒂 a vector of the lot sizes also of length 𝐿. In this 121 

case, lots are given weights proportional to their number of doses during the 122 

parameter estimation process to reflect the fact that larger lots have a lower 123 

variance in the estimated AE rate. 124 
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2.2.2 Hidden Markov Models 125 

The modeling assumption is that the distribution of the random vector 𝑨 (and the 126 

corresponding observed vector 𝒂) is governed by a Hidden Markov Model 127 

(HMM) [10].  The respective HMM model captures both the potential 128 

heterogeneity of the patient population receiving the drug, as well as the different 129 

states (conditions) of the respective manufacturing and supply chain processes. In 130 

particular, let 𝒞 = {1, 2, … , 𝐶} be the set of patient subpopulations that are 131 

exposed to a given sequence of drug lots. Additionally, let 𝒮 = {1,2, … , 𝑆} be the 132 

set of possible states of the underlying manufacturing and supply chain 133 

conditions. For each state 𝑠 ∈ 𝒮 and subpopulation 𝑐 ∈ 𝒞 , let 𝑝𝑠𝑐  be the average 134 

probability per dose of incurring an AE. Let 𝑤𝑠𝑐  be the likelihood that a lot in 135 

state 𝑠 is used within a subpopulation 𝑐 ∈ 𝒞 . The state of each lot ℓ ∈ {1,2, … , L}, 136 

which is unobserved (or hidden), is a random variable denoted by 𝐻ℓ. The number 137 

of observed AEs for lot ℓ given that 𝐻ℓ = 𝑠 is captured through a state-dependent 138 

mixture of binomials (MB) distribution. That is, for each integer 𝑎 ∈ {1, 2, … , 𝐷}: 139 

𝑃(𝐴ℓ = 𝑎|𝐻ℓ = 𝑠) = ∑(𝑤𝑠𝑐 ⋅ Binomial(𝑎; 𝐷, 𝑝𝑠𝑐))

𝐶

𝑐=1

 140 

The expression Binomial(𝑥; 𝑛, 𝑝) denotes the probability mass for a binomial 141 

distribution with 𝑛 trials and 𝑝 probability of success evaluated at 𝑥. For the 142 

remainder of the paper, the state with the lowest (highest) mean AE rate will be 143 

referred to as the “low-risk” (“high-risk”) state. Additionally, the sequence of 144 

states {𝐻ℓ}ℓ∈{1,2,…,𝐿}  evolves according to a Markov transition matrix that captures 145 

the probability of moving from each state to any other state [10]. Specifically, the 146 

transition matrix captures, for each pair of states 𝑠, 𝑠′ ∈ 𝒮, the probability 147 

𝑃(𝐻ℓ+1 = 𝑠|𝐻ℓ = 𝑠′). Finally, note that the transition matrix induces a stationary 148 
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distribution over the states that represents the long-run frequency of each state if 149 

the hidden Markov process were run on an infinitely long lot sequence. 150 

2.2.3 Model Selection  151 

This section describes how the newly proposed HMMScan method selects the 152 

HMM model structure with the best fit to the observed sequence of per lot AE 153 

rates from a set of candidate model structures. The HMMScan model selection 154 

procedure in Fig. 1 takes as input the observed sequence of AE rates, 𝒂, and a set 155 

of HMM candidate models. The candidate models are obtained by varying the 156 

assumed number of states and subpopulations (i.e., the size of 𝑆 and 𝐶) over a grid 157 

of potential values from 1 to 𝑆𝑚𝑎𝑥  and 𝐶𝑚𝑎𝑥 , respectively.  158 

 159 

Generally, the range of plausible HMM models in the typical use-cases considered 160 

in this paper can be covered by using relatively small values for 𝑆𝑚𝑎𝑥  and 𝐶𝑚𝑎𝑥  161 

(i.e., less than 10). The reason is that, typically, the number of clinically 162 

meaningful relevant subpopulations is relatively small, and the manufacturing 163 

conditions can typically be aggregated into high-level states that capture the 164 

respective risk level for quality variation. Additionally, complex HMM structures 165 

with many hidden states and mixture components tend to overfit. Each candidate 166 

model corresponds to a hypothesis regarding the number of hidden states and 167 

patient subpopulations that best describes the observed AE rate sequence. 168 

 169 

The HMMScan model selection procedure applies two sequential steps. The first 170 

step involves Parameter Estimation to calibrate the parameters of each candidate 171 

model. In the second step, BIC Model Fit Evaluation is used to determine which 172 

candidate models provide the best fit to the sequence of observed per lot AE rates.  173 
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 174 

During the Parameter Estimation step, maximum likelihood estimates for the 175 

respective HMM parameters are obtained via the Expectation Maximization (EM) 176 

algorithm [12]. The EM algorithm takes as input an HMM with initial parameter 177 

values and returns locally optimal parameter estimates. The HMMScan method 178 

searches for globally optimal parameter estimates by running EM with multiple 179 

random initializations. For HMMs with 𝑆 = 1, the EM algorithm uses closed form 180 

equations to iteratively optimize the binomial mixture weights and probabilities 181 

until convergence [10]. For HMMs with 𝑆 > 1, the Baum-Welch algorithm, a 182 

variation of EM, optimizes both the transition probabilities and the state-specific 183 

distribution parameters [13] The HMMScan implementation referenced in this 184 

paper relies on the implementations of EM and Baum-Welch in the pomegranate 185 

Python package [14]. Further details regarding parameter initialization can be 186 

found in Section S1 of Online Resource 1.  187 

 188 

The second step of the HMMScan model selection procedure, BIC Model Fit 189 

Evaluation, compares the fitted candidate models using Bayesian Information 190 

Criteria (BIC) and selects the model with the minimum BIC value. The BIC 191 

captures a tradeoff between the explanatory power of the model with respect to 192 

the data, and the complexity of the model in terms of the number of parameters 193 

[11].  194 

 195 

The form of the BIC is motivated by the notion that finding the best-fitting HMM 196 

structure for the observed data is equivalent to maximizing the likelihood of the 197 

data given the HMM hyperparameters 𝑆 and 𝐶, 𝑃(𝒂|𝑆, 𝐶), over all possible 198 

combinations of 𝑆 and 𝐶. The BIC approximates this likelihood, which is not 199 
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observable, using the maximum likelihood parameter estimates.  The 200 

approximation consists of two terms, a negative term that depends on the 201 

likelihood of the model evaluated at the maximum likelihood parameter values, 202 

and a positive complexity term that penalizes the number of estimated parameters 203 

(i.e., hidden states and mixture components) in the model. Therefore, a lower BIC 204 

value indicates increased plausibility of the model after accounting for model 205 

complexity. 206 

 207 

Pairwise differences in BIC values can also be translated into a more interpretable 208 

metric, the relative odds that one model fits the observed data better than the 209 

other. In [11], Raftery calculates that, for models fit on long input data sequences, 210 

a BIC difference of 10 or more indicates a greater than 99% probability that the 211 

model with the lower BIC value provides a stronger fit to the observed data. 212 

2.2.4 Method Output 213 

The HMMScan method outputs the best-fitting model according to the BIC, and 214 

this model can be used to detect whether there is statistical evidence in favor of 215 

serial correlation in the AE rates in the input lot sequence. If an HMM with 𝑆 > 1 216 

provides the best fit to the observed AE rates according to the BIC, then the 217 

HMMScan method signals that there is evidence in favor of serial correlation in 218 

AE rates for the input lot sequence. This is considered as a positive HMMScan 219 

signal for a serial correlation. On the other hand, if 𝑆 = 1 provides the best fit, this 220 

is considered a negative HMMScan signal, i.e., no evidence of serial correlation.  221 

 222 

In addition to indicating the potential presence of clinically relevant variation in 223 

manufacturing and supply chain conditions, the best-fitting HMM is used to 224 
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identify the most likely sequence of hidden states associated with the input lot 225 

sequence. The mostly likely state sequence is calculated using the well-known and 226 

efficient Viterbi algorithm [10], which returns the path of hidden states that 227 

maximizes the joint likelihood of the hidden state sequence and the observed AE 228 

rates given the estimated maximum likelihood parameter values. These predicted 229 

hidden states can provide important temporal information as to what lots have 230 

been produced under high-risk states, and this could be used to inform subsequent 231 

root cause analysis, as discussed in Section 4. 232 

2.3 Validation on Simulated Data 233 

This section describes a validation and performance assessment of the HMMScan 234 

method through simulated data that capture different conditions and data input 235 

attributes. The selected conditions for the accuracy assessment are motivated by 236 

practical scenarios for true dynamics of manufacturing and supply chain 237 

conditions. The specific instances for each respective scenario are captured 238 

through corresponding ground truth HMM models used to generate the simulated 239 

data. Specifically, the scenarios vary in the number of hidden states, the degree of 240 

similarity of the state-dependent mixtures of binomial distributions, and the 241 

structure of the underlying transition matrix of the hidden states.  242 

 243 

HMMScan is evaluated for its ability to detect the correct model structure for 244 

sample sequences of varying length generated by each ground truth model. For 245 

each sample sequence, the Model Selection step is applied according to the 246 

description in Section 2.2.3 above. Specifically, the method fits a collection of 247 

candidate HMMs, each corresponding to a hypothesis about the structure of the 248 

ground truth HMM. This collection contains single-state models with up to six 249 
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mixture components, two-state models with up to three mixture components, and 250 

three- and four-state models with up to two mixture components. Models with 251 

additional states and components did not provide the best BIC for any of the 252 

simulated sample sequences.  253 

 254 

The performance of the HMMScan method is evaluated according to two metrics. 255 

The first metric is detection accuracy, which compares the structure of the lowest 256 

BIC model to the ground truth model. The detection accuracy of HMMScan is 257 

defined for a particular ground truth model structure as the fraction of samples for 258 

which HMMScan correctly detects the model structure. The most important 259 

aspect for this metric is the ability of the method to distinguish between single and 260 

multiple state models.   261 

 262 

The second metric is state prediction accuracy, which evaluates the hidden state 263 

predictions. For a given sample sequence, the HMMScan method is deemed to 264 

have correctly detected the model structure if that sample is generated by a 265 

multiple-state (single-state) model and the model with the lowest BIC also has 266 

multiple states (a single state).  267 

 268 

The state prediction accuracy for a single sample sequence is defined as the 269 

balanced accuracy of the per lot hidden state predictions from the model with the 270 

lowest BIC. Balanced accuracy is defined as the equally weighted average of the 271 

hidden state prediction accuracies for each hidden state. This metric is used to 272 

correct for imbalance in the ground truth frequency of the hidden states in a 273 

sample sequence. In instances with a ground truth model with multiple states, and 274 

where the model with the lowest BIC, selected by the HMMScan method, has a 275 
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single-state structure, the ground truth state with the lowest mean AE rate (the 276 

low-risk state) will be predicted for all lots in the sequence. The state prediction 277 

accuracy for HMMScan for a particular ground truth model structure is defined as 278 

the mean of the state prediction accuracies across the samples generated by that 279 

model structure. 280 

 281 

The primary accuracy assessment is performed using instances with ground truth 282 

HMMs models of one state or two states (low-risk and high-risk). The one-state 283 

ground truth HMMs have two binomial mixture components. The transition 284 

matrices associated with the two-state ground truth models are defined by three 285 

input parameters. The first parameter is the number of hidden states. The second 286 

parameter is the stationary probability of the low-risk state. Finally, the third 287 

parameter is the average number of consecutive lots in the high-risk state, often 288 

called the mean high-risk sojourn length. The different combinations of these 289 

inputs can be mapped to the following five practical motivating scenarios: 290 

 291 

1. No High-Risk Sojourns. Sequences are generated by single-state HMMs, 292 

reflecting a process where per lot AE rates are not affected by 293 

manufacturing and supply chain variation. 294 

2. Short and Frequent High-Risk Sojourns. The lots oscillate rapidly 295 

between the low-risk state and the high-risk state, simulating 296 

manufacturing and supply chain processes that lacks proper control.  297 

3. Short and Infrequent High-Risk Sojourns. The process primarily 298 

operates in the low-risk state and occasionally moves into a high-risk state 299 

for a short period of time. The low sojourn time of the high-risk state 300 

indicates that the initially unobserved, or hidden, manufacturing or supply 301 
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chain issues driving the differences in AE risk are resolved promptly, but 302 

the recurrence of the high-risk state indicates that the root cause is not 303 

fully resolved or a different issue has occurred. 304 

4. Long and Frequent High-Risk Sojourns. The process experiences many 305 

hidden issues that take an extended period of time to detect and resolve. 306 

5. Long and Infrequent High-Risk Sojourns. The process experiences few 307 

hidden issues that take an extended period of time to detect and resolve. 308 

 309 

Within each scenario, both the length of the input sample sequence and the 310 

similarity between the mixture components (one-state models) or state-dependent 311 

distributions (two-state models) are varied. The similarity between two 312 

distributions is controlled by setting the binomial parameters to induce a particular 313 

value of the overlapping coefficient (OVL) [15,16]. The OVL, which ranges 314 

between 0 and 1, measures the probability mass that is intersected by two 315 

probability mass functions. The length of the sample sequences is varied between 316 

50 to 500. This range covers the sequences lengths observed in the use case data 317 

described in Section 3.2.1 (114-460 lots). Table 1 lists the specific parameter 318 

values used to define the ground truth models and sequences lengths. 319 

2.4 Use Case Application and Validation 320 

The HMMScan method is also applied to real field data for three sequences of 321 

lots, each consisting of a different dose form of the same drug. The three dose 322 

forms each have different manufacturing and supply chain attributes and different 323 

mean levels of AEs. The lots for each dose form were considered as a temporal 324 

sequence based on the packaging date.  325 

 326 
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The manufacturer shared the sequence of valid lot numbers, sizes, and packaging 327 

dates for three lot sequences of interest. The reported AE counts per lot were 328 

obtained from the U.S. FDA Adverse Event Reporting System (FAERS) database 329 

[17], which aggregates spontaneous AE reports from manufacturers, patients, and 330 

health care providers primarily based in the United States. Each AE report 331 

consists of one or more reactions for a single patient incident. The manufacturer 332 

data were matched to the AE information from FAERS using the lot numbers 333 

provided in both sources. Due to data privacy constraints, the manufacturer was 334 

not able to share patient covariates or additional distribution and manufacturing 335 

information related to the lots. 336 

 337 

For each dose form, the HMMScan method returns the fitted HMM with the best 338 

BIC score. The structure of this HMM is denoted as (𝑆𝐵𝐼𝐶 , 𝐶𝐵𝐼𝐶 ), i.e., 𝑆𝐵𝐼𝐶  states 339 

and 𝐶𝐵𝐼𝐶  mixture components. A similar validation approach to Section 2.3 is then 340 

applied to the field data and the fitted HMMs to gauge the likelihood that 341 

HMMScan method has accurately identified the correct model structures. 342 

Specifically, the goal is to estimate the probability than an HMM with structure 343 

(𝑆𝐵𝐼𝐶 , 𝐶𝐵𝐼𝐶 ) would have been chosen if the observed lot sequence were generated 344 

by an HMM with a different structure. 345 

 346 

To obtain this estimate, 100 sample sequences with the same length as the 347 

observed sequence are generated from each fitted candidate HMM not selected by 348 

the BIC. Consider a sample sequence generated by a specific such candidate 349 

HMM (not selected by the BIC) with structure denoted by (𝑆𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 , 𝐶𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 ). 350 

A sample sequence is considered misidentified if an HMM with structure 351 

(𝑆𝐵𝐼𝐶 , 𝐶𝐵𝐼𝐶 ) has the best BIC of all candidate models fit to that sequence. The 352 



17 

fraction of misidentified sample sequences gives an estimate of the probability of 353 

misidentifying a sequence generated by a (𝑆𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 , 𝐶𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 ) HMM as a 354 

sequence from a (𝑆𝐵𝐼𝐶 ,𝐶𝐵𝐼𝐶 ) HMM. Similarly, the single-state false negative rate 355 

is defined as the probability that a single-state HMM has the best BIC score when 356 

all candidate models are fit to a sample generated by the (𝑆𝐵𝐼𝐶 ,𝐶𝐵𝐼𝐶 ) HMM, 357 

where 𝑆𝐵𝐼𝐶 > 1. The single-state false negative rate provides additional insight 358 

about how distinct the fitted (𝑆𝐵𝐼𝐶 ,𝐶𝐵𝐼𝐶 ) model is from candidate fitted HMMs 359 

with 𝑆 = 1 structures. Additional false negative rates are described in Section S2 360 

of Online Resource 1, estimating the probability that a sample from the 361 

(𝑆𝐵𝐼𝐶 , 𝐶𝐵𝐼𝐶 ) HMM is incorrectly identified as the wrong multiple-state model or a 362 

model with the wrong number of mixture components. 363 

 364 

Finally, as a separate sensitivity analysis, the HMMScan method is applied to the 365 

sequence of AE counts and lot sizes and the results are compared to primary 366 

results using normalized observed AE rates.  367 

3 Results 368 

All analysis was conducted in R and Python, and the code is available as a GitHub 369 

repository [18]. This repository includes a tutorial for generating results for a new 370 

use case, as well as instructions for reproducing the use case and simulation 371 

results presented in this paper. The relevant data are also stored in a public 372 

repository [19]. This analysis was performed during the period between 2018 and 373 

2023. 374 
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3.1  Validation on Simulated Data 375 

The results of the single-state model simulations, provided in Section S3.1 of 376 

Online Resource 1, show HMMScan detection accuracies above 0.97 for all 377 

sequence lengths and all degrees of mixture component overlap. The two-state 378 

simulation results are presented in Fig. 2. The results indicate that the HMMScan 379 

method has detection accuracy greater than 0.90 for sequence lengths 100 lots or 380 

longer, where both the low-risk and high-risk states are well separated (i.e., 381 

overlapping coefficient equal to 0.05), and have similar long-term frequencies 382 

(i.e., low-risk stationary probability is between 0.5 and 0.75, high-risk sojourn 383 

length is between 4 and 25).  384 

 385 

For models with more imbalanced long-term frequencies of the states (i.e., a high 386 

low-risk stationary probability of 0.75 or 0.90) and either very short or very long 387 

high-risk sojourn lengths (i.e., 2 and 25, respectively), input sequences of 150 lots 388 

or more are required to meet this detection threshold. Moreover, when the states 389 

are not as well-separated (overlapping coefficient of 0.25 or greater), input 390 

sequences of 200 lots or more are required. In scenarios in which the high-risk 391 

state is much less frequent (low-state stationary probability equal to 0.90), then 392 

detection accuracy of over 0.90 is achieved only if the state-dependent AE 393 

distributions are well-separated (specifically, an overlapping coefficient of 0.25 or 394 

lower) and the high-risk sojourns are of moderate length (average length between 395 

2 and 10), even for input sequences of 300 lots or longer. 396 

 397 

For short input sequences, the highest detection accuracy is achieved in scenarios 398 

with equal prevalence of well-separated (overlapping coefficient equal to 0.05) 399 

high and low risk states and either medium length sojourns in the high-risk state 400 
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(high-risk sojourn length equal 10), or rapidly oscillating states (high-risk mean 401 

sojourn length equal 1.25). In contrast, very low detection accuracy (less than 402 

0.10) is observed for all input sequences lengths when the high risk state is 403 

infrequent (high risk mean sojourn length of 1.25 and low-risk stationary 404 

probability between 0.75 and 0.90), regardless of the degree of state overlap. This 405 

is somewhat expected since when the average high-risk sojourn lasts less than two 406 

lots, detection of multiple states is extremely difficult unless the frequency of the 407 

high and low risk states is nearly identical. Note that a generating model with two 408 

states and equal transition probabilities is indistinguishable from a single state 409 

model, accounting for the low accuracy in the first plot of the second row, which 410 

is again expected.  411 

 412 

Detailed state prediction accuracy results can be found in Sections S3.2 – S3.5 of 413 

Online Resource 1 for multiple-state simulations, including instances with three- 414 

and four-state models and multiple mixture components. These results are 415 

qualitatively the same as the two-state results described above. As expected, if 416 

two of the three states are very similar in a three-state generating model, it is 417 

difficult for the HMMScan method to distinguish between the similar states. 418 

Crucially, this does not impact HMMScan’s ability to detect that these samples 419 

were drawn from a multiple-state model.  420 

3.2 Use Case Application and Validation 421 

3.2.1 Data 422 

Table 2 summarizes the inclusion and exclusion criteria with respect to the AEs 423 

reported from FAERS for the three dose forms of the respective biologic. First, 424 
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AE reports with a missing lot number in FAERS are excluded from the analysis, 425 

as are reports with an invalid lot number that does not appear in the 426 

manufacturer’s records. AEs related solely to drug administration reactions (e.g., 427 

“wrong dose administered”) or unrelated reactions (e.g., “dog bite”) that are 428 

highly unlikely to reflect product quality issues are also excluded. A full list of 429 

excluded reactions can be found in Section S4 of Online Resource 1.  430 

 431 

The primary analysis further limits the set of relevant AEs to those with at least 432 

one reaction that is either known to be associated with the drug or that involves a 433 

serious reaction. These restrictions reflect a desire to minimize the number of 434 

included AEs that are not directly related to the product without omitting very 435 

serious AEs. A list of known reactions is obtained from the drug’s package label. 436 

Chest pains, pneumonia, fungal infections, malignancies, and relapse of 437 

prescribed indications are examples of known reaction categories included in the 438 

analysis. This list is augmented with the following serious reactions: loss of 439 

consciousness, arrythmia, hospitalization, and death. 440 

 441 

A secondary robustness analysis is conducted using only AEs from expedited 442 

reports. This class of AEs contains event reports deemed both serious and 443 

unexpected by the manufacturers, and therefore manufacturers are required by 444 

regulation to report these events to the FDA. The expedited reports capture events 445 

that are most likely to be concerning to manufacturers and regulators.  446 

 447 

After restricting the set of eligible AEs, the raw AE counts and the number of 448 

doses per lot are used to create per lot AE rates based on a normalized lot size of 449 

𝐷 = 100,000 doses. The choice of the normalization factor is due to data privacy 450 
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considerations with respect to the exact lot sizes. The final preprocessing step 451 

removes 17 lots (1.9%) with outlier AE rates from the dataset1. When the outlier 452 

lots are removed from a lot sequence, the lots on either side of the outliers are 453 

treated as consecutive, a method known as “gluing” [20]. Prior research indicates 454 

that applying the gluing procedure with less than 8% of lots designated as missing 455 

does not affect the likelihood or magnitude of HMM parameter estimates [20]. 456 

Retaining outlier lots and capping their AE rates at the 75th percentile plus 1.5 457 

times the IQR was also tested as an alternative outlier preprocessing step with no 458 

meaningful changes in the results. The structures of the best-fitting HMM models 459 

and the sequences of predicted hidden states were not materially affected by the 460 

choice of outlier preprocessing method (see Section S5 of Online Resource 1 for 461 

full results using capping). Table 3 shows the distribution of the AE rates per lot 462 

for each modeled dose form.  463 

3.2.2 Model Selection Results 464 

For each dose form, the grid of candidate model structures is constructed by 465 

setting 𝑆𝑚𝑎𝑥 = 4 and 𝐶𝑚𝑎𝑥 = 9. The BIC values only degraded outside the 466 

chosen hyperparameter ranges, indicating that the complexity penalty is 467 

outweighing the likelihood gains, and likely overfitting models. Each of the 468 

candidate models is fit with 50 random initializations and the results 469 

corresponding to the parameter estimates with the highest likelihood are retained. 470 

The BIC values for the fitted candidate models are shown in Fig. 3. 471 

 472 

                                                 

1 An outlier is defined as an AE rate greater than the 75th percentile plus 1.5 times the interquartile 

range (IQR) [28]. 
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Dose Forms A and B. Multiple state HMMs have the best fit as measured by BIC 473 

for dose forms A and B (𝑆 = 3, 𝐶 = 2 for dose form A and 𝑆 = 3, 𝐶 = 3 for dose 474 

form B). The BIC difference between the best-fitting multiple state model and the 475 

best-fitting single state model is larger than 10 for both dose forms, suggesting 476 

significantly stronger fit for a multiple state model and related serial correlation in 477 

the per lot AE rates [11]. Note for dose form B that the other multiple-state 478 

models (𝑆 = 3, 𝐶 = 2;  𝑆 = 2, 𝐶 = 3;  𝑆 = 2, 𝐶 = 4) have similar BIC values to 479 

the best model (with 𝑆 = 3, 𝐶 = 3). 480 

 481 

Dose Form C. A multiple-state HMM with 𝑆 = 2 and 𝐶 = 3 provides the best 482 

BIC for dose form C, but the BIC difference between this model structure and a 483 

single state model with 𝐶 = 3 is lower than 10, indicating weaker evidence of 484 

serial correlation in the per lot AE rates. 485 

 486 

The models were also estimated when the exact lot sizes were considered using 487 

lot size weights in the likelihood function, and the respective results are shown in 488 

Section S6 of Online Resource 1. The number of hidden states in the models with 489 

the lowest BIC values do not change compared to the results presented above 490 

when the inputs to the model are the normalized per lot reported AE rates.  491 

3.2.3 Identifying States with High AE Risk 492 

Fig. 4 and Table 4 illustrate the maximum likelihood estimated parameters for the 493 

HMM with the best BIC value for dose forms A and B. This includes the state 494 

transition matrix, the stationary distribution of the time spent in each state, and the 495 

state-dependent mixture distribution. Due to the relatively weak evidence in favor 496 

of a multiple-state state model for dose form C, the maximum likelihood 497 
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parameters are included in Section S6 of Online Resource 1. In Fig. 4, a clear 498 

separation exists for dose form A between states 3 and 1, corresponding to high 499 

and low average number of reported AEs, respectively. State 2 represents a 500 

medium-risk state. Similarly, there is clear separation between the high-risk state 501 

3 and the low-risk state 1 for dose form B. Section S7 of Online Resource 1 502 

provides the parameter estimates using lot size weights. 503 

3.2.4 AE Risk Transitions 504 

The estimated state-specific mean AE rates in Table 4 demonstrate that the 505 

ordering of the states by AE risk is robust. The estimated transition matrices both 506 

have high probabilities on the diagonal, indicating that the hidden states are all 507 

highly persistent. This suggests that high-risk and low-risk AE states tend to form 508 

long contiguous regions. 509 

 510 

In fact, these regions are observable in Fig. 5 for both dose form A and dose form 511 

B. This figure orders the lots by packaging date for both dose forms and colors the 512 

AE rate for each lot by its most likely hidden state. Both dose forms have two 513 

clearly identifiable regions of high-risk lots as well as multiple low-risk regions at 514 

the beginning and end of the sequences (Fig. 5a and Fig. 5b). Furthermore, when 515 

the HMMScan method is performed using AE rates based solely on expedited 516 

reports, the best-fitting HMMs indicate nearly identical high-risk regions (Fig. 5d 517 

and Fig. 5e). These regions are essentially contiguous despite the presence of 518 

occasional lots with low AE rates in the high-risk regions. Analysis of multiple 519 

AE definitions (known and serious, expedited) is used to establish consistency of 520 

the state transition points. Transitions to and from the high risk state near lots 20 521 

and 200 for dose form A, lots 25 and 140 for dose form B appear for both 522 
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definitions, signaling that these points should be prioritized for root cause 523 

investigation.  524 

 525 

Similar persistent high-risk regions are visible for dose form C in Fig. 5c. 526 

However, the results on the expedited AE reports indicate that a single-state 527 

model has the best BIC score, further suggesting only weak evidence in favor of 528 

multiple states in the ground truth model for this lot sequence. 529 

 530 

The most likely hidden state sequences generated by the models fit using lot size 531 

weights are available in Section S6 of Online Resource 1. The results differ only 532 

minimally compared to the Fig. 5.  533 

3.2.5 Use Case Validation 534 

Fig. 6 shows the estimated misidentification probability for each candidate model 535 

structure for each of the three lot sequences in the use case. Across all three lot 536 

sequences, the sample sequences generated by single-state HMMs are very rarely 537 

identified as having 𝑆𝐵𝐼𝐶  states and 𝐶𝐵𝐼𝐶  mixture components by HMMScan 538 

(misidentification probability ≤ 0.01). For dose form A, the misidentification 539 

probabilities for the two-state generating models are less than 0.10. The two-state 540 

generating model misidentification probabilities for dose form B are less than 541 

0.18.  542 

 543 

The estimated single-state false negative rates for dose forms A and B are very 544 

low, 0.0 and 0.02 respectively, and as expected much higher (0.71) for dose form 545 

C. Multiple state and mixture component false negative rates are reported in 546 

Section S2.2 of Online Resource 1.    547 
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4 Discussion 548 

The HMMScan method is proposed as an initial signal detection tool to identify 549 

lot sequences where serial correlation in AE rates suggests the potential presence 550 

of clinically relevant variation in manufacturing and supply chain conditions. The 551 

method can be naturally extended to take variable lot sizes as input, as well as 552 

additional temporal information with respect to intermediate lots used during the 553 

manufacturing process. The method is particularly relevant for biologic drug 554 

manufacturing, where the inherent complexity compared to traditional small 555 

molecule (chemical) drugs is well-known and stems from the fact that these 556 

processes are primarily based on biological processes. In addition, often biologic 557 

drugs require special maintaining special conditions throughout the supply chain 558 

and distribution (e.g., temperature control). 559 

 560 

In principle, a primary benefit of HMMScan is the potential to enable 561 

manufacturers and regulators to combine AE and lot-specific information to 562 

identify previously hidden signals and direct investigations in a scalable fashion 563 

across a range of pharmaceutical products. Realizing this benefit relies heavily on 564 

adverse event reporters providing lot numbers as good clinical practice. 565 

Additionally, such broad application of HMMScan would rely on a well-566 

developed data input pipeline to gather the following information for each lot: 567 

packaging date, relevant AE counts, number of doses, and dose form. This is the 568 

minimum required data input for the method as currently constructed, though in 569 

principle the model could take additional information about the distribution 570 

patterns by lot, including more granular regional distribution information and 571 

patient characteristics. Additional information about the lot-to-lot differences in 572 
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patient populations could be used to adjust the AE counts to account for these 573 

differences. In this case, a positive signal of serial correlation in AE rates would 574 

be even more likely to correspond to variation in manufacturing and supply chain 575 

conditions. However, the use case data available from the manufacturer did not 576 

include these in-depth lot-specific data related to patient characteristics and 577 

manufacturing conditions that would enable potential root causes of the observed 578 

variation. Further collaboration between regulators, manufacturers, and academics 579 

to collect and format these data is the first step toward realizing this opportunity to 580 

augment drug safety monitoring to improve patient outcomes. 581 

 582 

One natural question is how the proposed HMMScan compares with more naïve 583 

approaches to test for serial correlation. Indeed, simple statistical tests for serial 584 

correlation could indicate the presence or absence of serial correlation in a time 585 

series. However, hidden Markov models are also able to capture more subtle 586 

correlation structures likely to exist that differ across hidden states. Another 587 

advantage of the HMMScan method is that it also indicates which particular lots 588 

are more likely to be related to risky states of the manufacturing or supply chain 589 

condition. This could provide significant help to guiding further investigation of 590 

potential causal factors that drive the risky states. 591 

 592 

Another natural question is whether the BIC is the appropriate model selection 593 

criterion to select the best-fitting HMM. Other model selection criteria, including 594 

the Akaike Information Criterion (AIC) and the bootstrap likelihood ratio test, 595 

have been utilized in the literature to select between latent state models like 596 

HMMs. Nylund et al. compare multiple information criteria, including BIC and 597 

AIC, to several likelihood ratio tests in the task of identifying the correct number 598 
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of hidden states in three types of latent variable models [23]. The authors identify 599 

the BIC and the bootstrap likelihood ratio test as the most accurate methods. 600 

However, the bootstrap likelihood ratio test, which takes a pair of models and 601 

provides a statistical signal about the relative fit of the pair, is difficult to apply for 602 

the HMMScan method because of the difficulty in identifying a single model from 603 

a set with the best fit to a particular sequence. 604 

 605 

The simulated scenario validation results suggest very natural insights with 606 

respect to the expected accuracy of the HMMScan method. Specifically, they 607 

illustrate that the method’s accuracy improves with longer input lot sequences, 608 

highly distinguishable low and high risk states, and balanced long-term frequency. 609 

High detection accuracy on well-separated states is important for identifying large 610 

differences between high-risk and low-risk states that are likely to correspond to 611 

high-priority investigations.  On the other hand, the scenarios in which the 612 

method’s accuracy is relatively lower, tend to be those in which the low and high 613 

risk states are less distinguishable, in which case, there is lower priority to detect 614 

them since the clinical impact is lower. The accuracy of the HMMScan method is 615 

also lower under scenarios with shorter input sequence and very long high-risk 616 

sojourn lengths. These results are somewhat unsurprising because in both of these 617 

scenarios there is a significantly lower number of state transitions, and thus, 618 

detecting the existence of multiple (different) states is objectively more 619 

challenging. 620 

 621 

Additional multiple-state simulations using instances with three- and four-state 622 

models and multiple mixture components directionally support the insights 623 

described above. As expected, if two of the three states are very similar in a three-624 
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state generating model, the HMMScan method is frequently unable to distinguish 625 

between the similar states. Most importantly, the HMMScan method exhibits 626 

high accuracy in distinguishing between a single vs. multistate scenarios. This is 627 

particularly important because the method generates a signal in cases where there 628 

seems to be evidence for the existence of low and well-separated high risk state.   629 

The simulation results also indicate that the HMMScan method has high detection 630 

accuracy for input sequence lengths that are similar to the use case data, where 631 

both the low-risk and high-risk states seem quite distinguishable and have 632 

approximately the same long-term frequency. 633 

 634 

Applying the method to the use case data shows strong evidence in favor of 635 

multiple state HMMs as the most likely generating models for the dose form A 636 

and B AE rate sequences. The use case validation results provide support for this 637 

interpretation. The estimated use case misidentification probabilities demonstrate 638 

a low risk that the observed dose form A and B sequences were generated by a 639 

single-state stochastic process. Furthermore, the single state false negative rate 640 

estimates indicate that samples from an HMM with 𝑆𝐵𝐼𝐶  states and 𝐶𝐵𝐼𝐶  mixture 641 

components are very rarely identified as samples from a single state model for 642 

dose forms A and B.  643 

 644 

Interesting, in contrast to dose forms A and B, the evidence from the detection 645 

results only weakly favor a multiple state model for dose form C. While the 646 

estimated misidentification probabilities for dose form C single state HMMs are 647 

low, the single-state false negative rate analysis indicates that samples from an 648 

HMM with 𝑆𝐵𝐼𝐶  states and 𝐶𝐵𝐼𝐶  mixture components are frequently mistaken for 649 

samples from single state models. Furthermore, only a single state appears in the 650 
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sequence of most likely states for the dose form C expedited AE sequence. 651 

Overall, this analysis does not strongly support the existence of differentiated 652 

manufacturing and supply chain risk states for dose form C.  This type of result 653 

could indicate that the mechanism of delivery may have an impact on reported AE 654 

rates, suggesting that manufacturing issues could be relevant beyond the mere 655 

active pharmaceutical ingredient (API). 656 

 657 

Upon receiving a signal from the HMMScan method, a root cause investigator 658 

could start by combining drug distribution data with patient population statistics 659 

to check for significant changes in the patient population for the lots in the 660 

vicinity of hidden state transitions. These are lots for which the HMMScan 661 

method suggests clinically meaningful changes to manufacturing and supply chain 662 

conditions might have occurred. Additionally, the investigator could look for 663 

evidence suggesting process differences in manufacturing facilities across lots, 664 

changes in raw materials suppliers and supply chain protocols, work order and 665 

deviations information, numerical product quality measurements, and other data 666 

available at a sub-lot level granularity to search for potential manufacturing and 667 

supply chain mechanisms for changes in AE rates. 668 

 669 

Limitations. One limitation of the HMMScan method is that it only raises a 670 

potential signal of relevant variability but does not provide exact causes. Root 671 

cause analysis utilizing additional, and likely proprietary, features of the 672 

manufacturing lots would be essential to rule out patient-related factors and 673 

confirm a causal relationship between manufacturing and supply chain conditions 674 

and AE rate variation. The method does not account for other potential societal 675 

sources of AE variability unrelated to manufacturing and patient-specific effects, 676 
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such as pandemics, pollution, and changes in awareness of AE reporting 677 

mechanisms. Another limitation is that the method does not provide explicit 678 

probabilistic guarantees about the signal.  679 

 680 

It is important to acknowledge that underreporting of AEs to spontaneous 681 

reporting systems has been a well-documented but not well-understood concern, 682 

with some estimates of the underreporting rate over 90% [10]. More recent 683 

research by Alatawi and Hansen continues to find wide disparities in the estimated 684 

underreporting rate across products, though the authors notably do not find any 685 

statistically significant underreporting for biologics [24]. In particular, if the 686 

reporting rate is constant over time or known in terms of relative magnitude over 687 

time, the ability for the HMMScan method to detect serial correlation is 688 

unaffected by the absolute level of this rate. Moreover, while sudden, short-term 689 

changes in the reporting rate could be mistaken as state transitions that affect the 690 

results of the HMMScan method, long-term, moderate trends, either positive or 691 

negative, should not meaningfully affect the ability of the method to detect local 692 

serial correlation. 693 

 694 

Future directions. A possible direction for future methodological research is to 695 

increase the complexity of the candidate model structures that HMMScan 696 

considers by allowing the hidden state of lot ℓ to depend on a prior history of 697 

states before lot ℓ − 1. Limited dependence on only the most recent hidden state 698 

is useful because it yields the fast and well-understood Baum-Welch algorithm for 699 

maximum likelihood parameter estimation. However, EM-based parameter 700 

estimation algorithms for variable length HMMs, which allow state dependence 701 

on history prior to the most recent state, have been proposed [25]. More recently, 702 
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a Bayesian model for variable length Markov chains was introduced [26], though 703 

this model has not been studied in a hidden Markov setting.  704 

 705 

The HMMScan model could be further extended by considering the hidden states 706 

as partially observed, as proposed in [27]. For example, variability in the lot sizes 707 

could indicate changes in the stability of the manufacturing process. More detailed 708 

lot-specific data could also be incorporated into this framework when available.  709 

5 Conclusion 710 

This paper presents HMMScan, a novel pharmacovigilance method for detecting 711 

patterns in AE rates across manufacturing lots using probabilistic modeling 712 

techniques. HMMScan is a method that could be utilized by both manufacturers 713 

and regulators to automate lot variability monitoring and inform targeted root 714 

cause analysis. Specifically, HMMScan provides: (1) a reliable signal when serial 715 

correlation is detected in an observed AE rate sequence, and (2) a model to 716 

identify individual lot subsequences where variation in manufacturing and supply 717 

conditions may have contributed to higher AE rates. HMMScan’s signal detection 718 

capability is validated using both simulated and field data. In a case study of three 719 

lot sequences corresponding to three dose forms of a major biologic, the strong 720 

evidence of serial correlation was detected for two of three dose forms.   721 
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Fig. 1 HMMScan model selection procedure. Alternatively, lot sizes and raw AE counts, both 𝐿-

dimensional vectors, can be provided as input data rather than per lot AE rates. In this case, during 

Parameter Estimation each lot is assigned a weight proportional to its respective number of doses.  

BIC: Bayesian Information Criterion; HMM: Hidden Markov Model 

Fig. 2 Method validation simulation results showing detection accuracy for HMMs with two 

states and one mixture component. Each point represents the HMMScan detection accuracy 

calculated on 100 sample sequences with the same length as denoted on the x-axis. The panels are 

organized in columns based on the low-risk state stationary probability and in rows by the mean 

high-risk state sojourn length. Each column value represents the expected fraction of lots from the 

low-risk state in a sample. Each row value represents the expected number of consecutive high -

risk state lots observed each time the system moves to the high-risk state.  

HMM: Hidden Markov Model 

Fig. 3 BIC values for the candidate HMMs for each dose form. Each tile indicates the BIC value 

for a fitted HMM with the number of states denoted on the x-axis and the number of binomial 

components per state-specific mixture distribution on the y-axis. Lower BIC values indicate a 

better fit of the model to the data, and the candidate HMMs with the best fit are highlighted in dark 

red  

HMM: Hidden Markov Model; BIC: Bayesian Information Criterion 

Fig. 4 Fitted state-specific binomial mixture distributions for the best-fitting HMMs for dose 

forms A and B. Each panel shows the distribution for the state-specific distribution associated with 

each hidden state.  

AE: Adverse Event 

Fig. 5 Per lot AE rates. The top row of plots calculates per lot AE rates based on the known and 

serious definition, while the bottom row includes only expedited AE reports. The lots are shaded 

by most likely hidden state according to the HMM with the best BIC.  

HMM: Hidden Markov Model; BIC: Bayesian Information Criterion 

Fig. 6 Estimated misidentification probabilities for the use case method validation. Each tile 

indicates the misidentification probability for a given sampling model with respect to 𝑆𝐵𝐼𝐶 and 

𝐶𝐵𝐼𝐶. For dose form A, 𝑆𝐵𝐼𝐶 = 3 and 𝐶𝐵𝐼𝐶 = 2, for dose form B, 𝑆𝐵𝐼𝐶 = 3 and 𝐶𝐵𝐼𝐶 = 3, and for 

dose form C, 𝑆𝐵𝐼𝐶 = 2 and 𝐶𝐵𝐼𝐶 = 3 
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Table 1 Input parameters for two-state model validation simulated instances.  

 Parameter Description Parameter Values 

All HMMs 

 Sequence Length Length of sample sequences  {50, 100, 150, … , 500} 

One-State, Two-Component HMMs 

 Overlapping Coefficient 
Overlap between binomial components of the 

mixture distribution 
{0.05, 0.25, 0.50} 

Two-State, One-Component HMMs 

 Overlapping Coefficient Overlap between state-specific binomial distributions {0.05, 0.25, 0.50} 

 
Low-Risk State 

Stationary Probability 
Long-term frequency of lots in low-risk state {0.50, 0.75, 0.90} 

 
High-Risk State Mean 

Sojourn Length (lots) 

Average number of consecutive high-risk lots in an 

infinitely long sample 
{1.25, 2,4, 10, 25} 

HMM: Hidden Markov Model 

 

Table 2 Count of adverse event reports by inclusion/exclusion criteria.  

 Dose Form A 
(463 lots) 

Dose Form B 
(271 lots) 

Dose Form C 
(119 lots) 

Missing Lot 
Number 

Invalid Lot 
Number 

Raw AEs from FAERS 71,890 13,582 2,789 283,888 8,653 

Excluding drug administration AEs 67,402 13,184 2,562   

Relevant (known + other serious) AEs 21,628 4,950 884   

Expedited AEs 7,798 2,051 437   

AEs: Adverse Events; FAERS: FDA Adverse Event Reporting System 

 

Table 3 Adverse Event Rates per Lot 

 All Lots  O utliers Removed 

 Dose Form 
A 

Dose Form 
B 

Dose Form 
C 

 Dose Form 
A 

Dose Form 
B 

Dose Form 
C 

Minimum 0 0 0  0 0 0 

25
th

 Percentile 27 9 3  27 9 2 

50th Percentile 41 18 11  41 18 10 

75
th

 Percentile 63 29 19  62 28 18 

95
th

 Percentile 85 44 47  84 39 23 

Maximum 151 280 248  113 51 30 

Mean 45 22 21  44 18 11 

Lot Count 463 271 119  459 264 113 

Lot Count, > 0 

reported AEs 
453 234 93 

 
449 227 87 

 

Table 4 Estimated transition matrix and state-specific mean AE rates for best-fitting HMMs, with 

mean AE rate 90% CIs (confidence intervals) estimated via parametric bootstrap [21,22].  

  Dose Form A  Dose Form B 

  Transition Probabilities  

(from row state to column state) 

   Transition Probabilities  

(from row state to column state) 

  

Hidden 

State 

 To State: 

1 

To State: 

2 

To State: 

3 

Mean AE Rate 

(90% CI) 

Stat. 

Prob. 
 

To State: 

1 

To State: 

2 

To State: 

3 

Mean AE Rate 

(90% CI) 

Stat. 

Prob. 
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1 
 

0.76 0.19 0.05 
9.8 

(9.4 – 12.8) 
0.14  0.92 0.08 0.00 

6.9 
(0.0 – 8.3) 

0.25 

2 
 

0.06 0.90 0.04 
32.9 

(29.4 – 32.6) 
0.43  0.06 0.85 0.09 

14.5 
(9.1 – 17.8) 

0.30 

3 
 

0.02 0.03 0.95 
66.4 

(60.2 – 64.5) 
0.43  0.00 0.06 0.94 

26.4 
(23.0 – 30.3) 

0.45 

HMM: Hidden Markov Model 
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