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Abstract

Imaging underwater environments is of great importance to marine sciences, ocean
sustainability, climatology, defense, marine robotics, geology, space exploration, and
global food security. Despite advances in underwater imaging, most of the ocean and
marine organisms remain unobserved and undiscovered. Existing methods for un-
derwater imaging are unsuitable for scalable, long-term, in situ observations because
they require tethering for power and communication. Here we describe underwater
backscatter imaging, a method for scalable, real-time wireless imaging of underwa-
ter environments using fully-submerged battery-free cameras. The cameras power
up from harvested acoustic energy, capture color images using ultra-low-power active
illumination and a monochrome image sensor, and communicate wirelessly at net-
zero-power via acoustic backscatter. We demonstrate the potential of this method in
wireless battery-free imaging of animals, plants, pollutants, and localization tags in
enclosed and open-water environments. The method’s self-sustaining nature makes
it desirable for massive, continuous, and long-term ocean deployments with many
applications including marine life discovery, submarine surveillance, and underwater
climate change monitoring.
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terns to reconstruct the transmitted image. (b) The batteryless sensor

is shown in an experimental trial where it is used to image an un-

derwater object with active illumination that enables capturing color

images. (c) The plot shows the voltage in the supercapacitor, which is

harvested from acoustic energy and varies over time as a function of the

power consumption of different processing stages. (d) The spectrogram

shows the frequency response of the signal received by the hydrophone

over time, demonstrating its ability to capture reflection patterns due

to backscatter modulation and decode them into binary to recover the

transmitted image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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corresponding captured monochromatic images, which are transmitted

to a remote receiver. (b) The figure shows the color image output

synthesized by the receiver using multi-illumination pixels which are

constructed by combining the monochromatic image output for each

of the three active illumination LEDs. (c) A side view of the camera

prototype demonstrates a larger dome which houses the CMOS image

sensor and a smaller dome which contains the RGB LEDs for active illu-

mination. The structure is connected to a piezoelectric transducer. (d)

The circuit schematic demonstrates how the imaging method operates

at net-zero power by harvesting acoustic energy and communicating

via backscatter modulation. (e) The plots show the power consump-

tion over time. The power consumption peaks during active imaging

and drops when the captured images are being backscattered. . . . . 23
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ing. (a) The figure shows a photo of a prototype deployed in Keyser
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itoring pollution in Keyser Pond. (c) RGB image output for Protore-
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Chapter 1

Introduction

Underwater images of marine animals, plants, oceanic basins, coral reefs, and ma-

rine debris are key to understanding marine environments and their impact on the

global climate system [42, 41, 46, 31]. Underwater imaging enables the discovery of

new marine species and advances our understanding of the impact of climate change

and human activity on the underwater world [42, 12, 32]. Underwater imaging also

supports global aquaculture food production, the world’s fastest-growing food sector,

where it is used to detect diseases such as sea lice, monitor harmful algae blooms, and

regulate fish feeding patterns to optimize growth [13, 62]. More generally, underwa-

ter imaging has a large number of applications across oceanography, marine biology,

underwater archeology, climatology, space exploration, sustainability, robotics, and

defense [39, 33, 34, 63, 26, 5, 28, 7].

Despite advances in underwater imaging, studies estimate that most of the ocean and

marine organisms have not been observed yet [40, 24, 11]. A long-standing imped-

iment for underwater observations stems from the difficulty of long-term, real-time,

in situ imaging of underwater environments. Existing methods for continuous un-

derwater imaging need to be tethered to ships, underwater drones, or power plants

for power and communication [32, 48, 60, 36, 9]. In the absence of such tethering,

they rely on batteries which inherently limit their lifetime (and require expensive

oceanographic missions for battery replacement). In principle, one could overcome

this limitation and power up underwater cameras by harvesting energy from ocean
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waves, underwater currents, thermal gradients, or sunlight [9, 65, 57, 61, 27]. How-

ever, adding a tidal, solar, or wave harvester to each underwater camera would make

it significantly more bulky and expensive, and may limit its deployment environment

(for example, solar and wave harvesters work well only near the surface). As a result,

it remains challenging today to perform sustainable, continuous, and distributed un-

derwater imaging.

Here, we report underwater backscatter imaging, a battery-free wireless imaging

method for underwater environments. Our imaging method is an asymmetric sys-

tem where an acoustic projector with an active power source wirelessly interrogates

and collects image data from a remote battery-less imaging platform. Our imag-

ing platform consumes five orders of magnitude less power than previously reported

underwater wireless imaging systems [16, 64, 56]. The ultra-low-power nature of our

imaging sensor enables it to operate entirely based on harvested energy. Independence

of batteries enables long-term, in situ imaging of remote underwater objects, and wire-

less communication enables real-time monitoring of underwater environments. As a

result, this method may be deployed at scale to discover rare species and observe

marine populations, act as early warning systems for diseases in aquaculture farms,

monitor geological processes (such as submarine volcanoes) and changes in ocean cur-

rents, and more closely surveil commercial and military operations [40, 36, 17].

Our method encompasses fully-integrated ultra-low-power operations including opti-

cal sensing, active illumination, processing, and wireless communication. It is capable

of performing passive imaging as well as active color imaging using ultra-low-power

active illumination, which enables it to operate in different lighting conditions, in-

cluding complete darkness. Captured images are communicated to a remote receiver

that uses them to reconstruct color images of underwater environments. This method

can be powered by energy harvested from external sources, such as acoustic, solar,

thermal, or ocean current energy. We implement acoustic energy harvesting because

of its high efficiency, low cost, and capacity for long-range propagation in underwater

environments [53]. The same approaches to energy-neutral imaging can be realized

with other sources of ambient energy, such as solar, thermal, or ocean current energy.
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Figure 1-1: Overview of underwater backscatter imaging. (a) A remote acous-
tic projector (top right) transmits sound on the downlink. The acoustic energy is har-
vested by a piezoelectric transducer and converted to electrical energy that powers up
the batteryless backscatter sensor node. The energy accumulates in a super-capacitor
that powers up an FPGA unit, a monochromatic CMOS sensor that captures an im-
age, and three LEDs which enable RGB active illumination. The captured image
is communicated via acoustic backscatter modulation on the uplink, and a remote
hydrophone measures the reflection patterns to reconstruct the transmitted image.
(b) The batteryless sensor is shown in an experimental trial where it is used to image
an underwater object with active illumination that enables capturing color images.
(c) The plot shows the voltage in the supercapacitor, which is harvested from acous-
tic energy and varies over time as a function of the power consumption of different
processing stages. (d) The spectrogram shows the frequency response of the signal
received by the hydrophone over time, demonstrating its ability to capture reflection
patterns due to backscatter modulation and decode them into binary to recover the
transmitted image.

Figure 1-1a schematically summarizes the key components of this wireless imaging

method. In acoustically-powered underwater backscatter imaging, a remote projector

transmits an acoustic signal on the downlink. Our battery-free sensor node harvests

energy from the received acoustic signal using piezoelectric transducers. The received

acoustic energy is converted to electrical energy, rectified using a full-wave rectifier,

and stored in a super-capacitor. When the stored energy reaches a minimum re-

quired threshold, it autonomously activates a power management unit to regulate
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the voltage and supply it to an on-board processing and memory unit (realizable

as a field-programmable gate array or FPGA) and ultra-low-power oscillators. The

processing unit and oscillator trigger an ultra-low-power monochromatic CMOS cam-

era and on-board active illumination to capture the image of an underwater object

(Figure 1-1b). The entire imaging process is powered by the harvested energy in

the super-capacitor, whose stored voltage varies over time as a function of the power

consumption of different processing stages (Figure 1-1c).

A critical step toward realizing battery-free imaging is the development of a tech-

nique for ultra-low-power underwater communication. Specifically, the communica-

tion component of the system must not consume more energy than what can be

harvested from the remote acoustic source, which typically ranges from a few tens to

hundreds of microwatts (see Section 3.1). However, state-of-the-art low-power under-

water communication modems require 50-100 milliwatts to communicate over tens of

meters [50]. Thus, they would require three to five orders of magnitude more power

than what is available from harvesting. This significant energy imbalance would make

battery-free operation with these modems impractical.

To operate within the energy harvesting constraints of our proposed battery-free

imaging method, we leverage piezo-acoustic backscatter to communicate the cap-

tured image on the uplink, extending a recently developed net-zero power commu-

nication technology [29, 21] to enable telemetry of imaging data. Underwater piezo-

acoustic backscatter communicates messages by modulating the reflection coefficient

of its piezoelectric transducer (Figure 1-1a). Specifically, due to the electromechani-

cal coupling between a piezoelectric transducer and its electrical impedance load, it

is possible to modulate the transducer’s radar cross section. Thus, the battery-free

node encodes pixels into communication packets by switching between different elec-

tric loads (inductors) connected to the transducer. The switching is done by simply

controlling two transistors and is realizable with 24 nanowatts of power. A remote

hydrophone measures the received acoustic signal to sense changes in the reflection

patterns due to backscatter (Figure 1-1d). The reflection patterns are decoded and

used to reconstruct the image captured by the remote battery-free cameras. Robust
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end-to-end communication is realizable by implementing a full networking and com-

munication stack that incorporates underwater channel estimation, packetization, and

error detection.

Our method is capable of capturing color images of underwater objects at ultra-low

 Time (minute)

Red

Green

Blue

Red

Illuminated 

scene

Monochromatic 

image output

a b

c
Super 

capacitor
Transparent dome

Processing unit
Printed 

circuit 

board
Lens

CMOS image 

sensor

RGB active 

illumination

Rubber 

gasket
LED 

power

Energy 

harvester

Piezoelectric 

transducer

Pixel encoding
Harvested 

voltage

d e

RGB image output

5 cm

0.5 1 1.5 2 2.5 30
0

2

4

6

8

10

12

 P
o
w

e
r 

c
o

n
s
u
m

p
ti
o
n
 (

m
W

)
2 2.2 2.4

0.02

0.04

0.06

0

Figure 1-2: Active illumination in underwater backscatter imaging. (a) To
recover color images with a monochrome sensor, the camera alternates between acti-
vating three LEDs - red, green, and blue. The top figures show the illuminated scene,
while the bottom figures show the corresponding captured monochromatic images,
which are transmitted to a remote receiver. (b) The figure shows the color image out-
put synthesized by the receiver using multi-illumination pixels which are constructed
by combining the monochromatic image output for each of the three active illumina-
tion LEDs. (c) A side view of the camera prototype demonstrates a larger dome which
houses the CMOS image sensor and a smaller dome which contains the RGB LEDs
for active illumination. The structure is connected to a piezoelectric transducer. (d)
The circuit schematic demonstrates how the imaging method operates at net-zero
power by harvesting acoustic energy and communicating via backscatter modulation.
(e) The plots show the power consumption over time. The power consumption peaks
during active imaging and drops when the captured images are being backscattered.

power even in low-lighting conditions, which are standard in the deep sea due to

light absorption in the water column. To do so, we utilize an ultra-low-power CMOS

imaging sensor (HM01B0 from Himax Corporation), which can capture monochro-

matic images. To reconstruct color images using the monochromatic imaging sensor,
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we devised a method for low-power multi-color active illumination. Our battery-free

imaging system incorporates three monochrome light emitting diodes (LEDs): red,

green, and blue. An ultra-low-power processing and memory unit (IGLOO nano

FPGA) alternates between activating each of these LEDs and captures monochro-

matic images with each active illumination cycle (Figure 1-2a). The monochromatic

images are acoustically backscattered to the remote receiver. After decoding each of

the images, the receiver synthesizes the received packets into multi-illumination pixels

by applying them to the RGB channels of a digital pixel array to reconstruct color

images, demonstrating the possibility to recover color patterns of underwater objects

such as corals (Figure 1-2b).

We demonstrate that in situ underwater wireless batteryless imaging is possible using

a self-powered camera system (Figure 1-2c) that harvests acoustic energy and com-

municates using piezo-acoustic backscatter (Figure 1-2d). The harvested energy is

expended in cycles that alternate between imaging and communication (Figure 1-2e).

Upon capturing image segments, the processing unit packetizes the pixels and com-

municates them using piezo-acoustic backscatter, at a power consumption of 59 𝜇W.

To deal with the bandwidth mismatch between the ultra-low-power CMOS image

sensors (few Mbps) and the underwater acoustic communication channel (few kbps),

the captured images are buffered in the memory unit cells. Our fabricated opto-

electro-mechanical system consists of multilayer piezo-electric transducers, electronic

components (diodes, capacitors, low-power voltage regulators, and DC-DC convert-

ers, low-power oscillators), a processing and memory unit (FPGA), LEDs, and a

CMOS image sensor. Active illumination using the LEDs is the most power con-

suming operation of the battery-free imaging system. For acoustic communication

rates of 1 kbps, empirical measurements demonstrate an average power consumption

of 276.31 𝜇W for active imaging. In our demonstrations of passive monochromatic

imaging where active illumination isn’t needed, the batteryless camera consumes an

average of 111.98 𝜇W. In both configurations, the entire energy budget is harvested

from underwater acoustics. Other configurations with different throughput and active

illumination techniques are possible.
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We built a proof-of-concept prototype to demonstrate underwater backscatter imag-
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Figure 1-3: Sample images obtained using underwater backscatter imaging.
(a) The figure shows a photo of a prototype deployed in Keyser Pond for monitoring
pollution from plastic bottles on the lakebed. (b) The RGB image output obtained
from the imaging method while monitoring pollution in Keyser Pond. (c) RGB image
output for Protoreaster linckii, demonstrating qualitative success in recovering its
color and numerous tubercles along the starfish’s five arms. (d) The imaging method
was used to monitor the growth of an Aponogeton ulvaceus over a week. The figures
show the captured images on different days of the week.

ing with animals, plants, and pollution across controlled and uncontrolled environ-

ments. The prototype was tested in Keyser Pond in southeastern New Hampshire

(43°N, 72°W), where it was used to image pollution from plastic bottles on a lakebed at

50 cm from the imaging sensor (Figure 1-3a). Here, color imaging using a monochro-

matic sensor was successful (Figure 1-3b), despite the presence of external illumina-

tion. The prototype was also successful in imaging the Protoreaster linckii, also known

as the African starfish, in a controlled environment with external illumination; the

captured image displays numerous tubercles along the starfish’s five arms (Figure 1-

3c). Furthermore, due to the ability of underwater backscatter imaging to operate

continuously, the method was successful in monitoring the growth of an Aponogeton

ulvaceus, where imaging was performed in the dark over a week, while relying entirely

using the harvested energy and active multi-color illumination (Figure 1-3d). In all

of these scenarios, the prototype was fully-submerged, wireless, batteryless, and au-
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tonomous.

The benefits of underwater backscatter imaging extend beyond observational mon-

itoring to more complex tasks such as underwater localization and inference. To

demonstrate the feasibility of such tasks, the imaging method was used to detect

and localize visual tags such as AprilTags; these tags have been previously utilized

for underwater localization and robotic manipulation [14, 10]. Our evaluation results

show that the imaging method can achieve very high detection rate and high local-

ization accuracy (localization error below 10 cm) up to 3.5 m. We also evaluated the

method’s harvesting and communication capabilities as a function of distance in the

Charles River in eastern Massachusetts (at 42°N, 71°W). Our results demonstrate the

ability of the system to robustly decode packets beyond 40 meters by leveraging a

decision feedback equalizer (DFE) at the receiver [20]. These results show that under-

water backscatter imaging is a viable batteryless telemetry method and that higher

ranges may be realizable with higher levels of underwater acoustics or by leveraging

underwater transducers with higher efficiency [2] (see Section 3.1).

In summary, this work demonstrates that wireless battery-free imaging in underwater

environments is possible. Our method encompasses a highly efficient underwater color

camera and innovations that enable robust acoustic backscatter communication in

practical underwater environments. The tetherless, inexpensive, and fully-integrated

nature of our method makes it a desirable approach for massive ocean deployments.

Scaling the method for large-scale deployments requires more sophisticated under-

water transducers or high-power underwater acoustic transmissions. Its scalability

may be further enhanced by leveraging a mesh network of buoys like those already

being deployed on the ocean surface, networks of subsea robots like Argo floats, or

surface vehicles like ships to remotely power the energy-harvesting cameras [59, 47].

Massive deployments would enable tracking undersea movements - including the flow

of particulate organic carbon [44], marine animals, and naval assets - at scales not

realizable today. These may be used to create more accurate models capable of mon-

itoring climate change [19], decrease the stealthiness of nuclear submarines through

large scale observations, and advance various marine scientific fields.
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Chapter 2

Methods

2.1 Communication through backscatter

To enable ultra-low-power communication, our batteryless sensor employs piezo-

acoustic backscatter [29]. Piezo-acoustic backscatter differs from traditional under-

water acoustic communication in that it does not need to generate its own acoustic

signal to communicate. Instead, it communicates by modulating the reflections of

incident underwater sound, and a remote receiver can decode the transmitted data

by recovering patterns in the reflected signals.

To transmit the stored image data via piezo-acoustic backscatter, our prototype uses

two N-channel MOSFETs to modulate the impedance across the terminals of an un-

derwater transducer. The design uses these MOSFETs to switch the transducer’s re-

flectivity between two states similar to prior underwater backscatter designs [29, 21, 1].

The signal-to-noise ratio (SNR) at the receiver is maximized when the complex-valued

difference (i.e., amplitude and phase) between the two reflective states is maximum.

Through our empirical analysis, we have observed that a high SNR on the uplink

channel is achieved when the node switches between an inductively matched load and

an open circuit. Hence, the FPGA controls the switch to alternate the load between

an open circuit and the inductive load to send image data using bi-phase space en-

coding modulation (also known as FM0) which is known to have high noise resilience

in time-varying channels [4]. Other modulation and coding schemes are also possible.
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2.2 Uplink decoding

The backscatter communication signal is received by the hydrophone and decoded

using a robust demodulation and decoding pipeline (figure 2-1) that is implemented

through offline packet processing.

Figure 2-1: Demodulation and decoding pipeline. The signal received by the
hydrophone is passed through a band-pass filter, then downconverted and passed
through a low-pass filter to remove noise. This signal is then passed through a high-
pass filter to remove the signal variations caused by low-frequency surface waves. The
demodulated and filtered signal is fed to a maximum likelihood decoder.

The demodulation pipeline consists of a series of filters followed by a maximum like-

lihood decoder. To remove noise from the received signal, we use a bandpass filter

centered around the carrier frequency of 20 kHz with a passband of 10 kHz from 15-25

kHz (the filter is implemented as a linear phase type 1 discrete-time FIR filter with

filter length of 297). After the bandpass filter, we downconvert the passband sig-

nal to baseband by multiplying it with the carrier frequency (20 kHz sinusoid), then

use a low pass filter with a bandwidth of 4 kHz (a linear phase type 1 discrete-time

FIR filter with filter length of 347, and 6 kHz stopband frequency) to remove high-

frequency components from the signal. To mitigate low-frequency interference from

naturally-occurring surface waves and turbulence, we implement a high-pass filter (a
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linear phase type 1 discrete-time FIR filter with filter length of 4535; the respective

passband and stopband frequencies of the filter are 150 Hz and 20 Hz). These filter-

ing stages enable the receiver to operate correctly in uncontrolled and time-varying

underwater environments.

After filtering and demodulation, the receiver proceeds to packet detection. Each

backscatter packet starts with a preamble, and each image segment is sent over mul-

tiple packets (as discussed in the subsequent section on FPGA control and logic). The

receiver correlates the raw received signal with a known preamble sequence to detect

the beginning of the packet. After packet detection, the receiver proceeds to decod-

ing the FM0-encoded packets in baseband. We implemented a bit-by-bit maximum

likelihood decoder that has high resilience to channel variations. Formally, consider

a received FM0 symbol of size 𝑛 x = 𝑥0, 𝑥1, ..., 𝑥𝑛−1. The decoding operation is done

in two steps. The first step performs mean subtraction, exploiting the fact that each

FM0 encoded bit has zero mean with respect to neighboring half bits. Mean subtrac-

tion removes the constant self-interference signal from the projector as well as any

hardware offsets at the receiver. The mean-subtracted symbol x′ can be expressed

as:

x
′
= x− 1

2𝑛

𝑛+𝑛
2
−1∑︁

𝑖=−𝑛
2

𝑥𝑖

The second step is maximum likelihood decoding, which is performed by projecting

the mean-subtracted received symbol on the time-series symbols y0 and y1, which

represent bits 0 and 1 respectively, as per the equation:

𝑏 = argmax
𝑘=0,1

(
𝑛−1∑︁
𝑖=0

𝑦𝑘𝑖 𝑥
′
𝑖

‖𝑥‖2
)

Once a packet is decoded, a packet sequence number is used to identify if any of the

packets were missed or dropped during the communication process, and a parity bit

helps identify incorrectly decoded packet payloads. The packet number and parity

check allow the receiver to detect corrupted or missed packets. By incorporating

downlink communication, future designs may leverage this capability to request re-
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transmissions from the batteryless sensor.

Finally, it is worth noting that while our implementation focused on uplink com-

munication between one camera sensor and a hydrophone receiver, it is possible to

extend to this design with downlink communication, multiple sensor nodes, and mul-

tiple receivers; it is also possible to implement other packet sequences with alternate

headers that include additional addressing and coding schemes similar to prior work

on underwater backscatter [29, 21]. Note that the extension of the current imaging

platform with narrowband downlink communication would only take minimal energy

(as shown in the prior work [29]) and therefore, it would add little to the overall power

consumption of the system.

2.3 Energy harvesting and power management

To operate at net-zero power, the batteryless underwater camera sensor may harvest

sufficient energy from a remote acoustic source. We use an underwater projector that

transmits a 20 kHz sinusoidal acoustic signal (source level 180 dB re 1 𝜇Pa @ 1 meter)

on the downlink 1. The transmitter uses a layered transducer node to convert the

input electrical sinusoidal wave to an acoustic wave.

The transmitted acoustic signal propagates underwater and reaches our batteryless

sensor. On the sensor side, a harvesting transducer converts the mechanical vibra-

tions, which are due to pressure changes of the incident acoustic signal, into an

electrical sinusoidal signal that can be used to power the circuit. Since the electrical

signal produced by our transducer is an alternating current signal, it first needs to

be rectified. In our design, the outer layer of the harvesting transducer is directly

connected to the harvester circuit; the harvester circuit is composed of an impedance

matching network that ensures maximum power transfer efficiency and a four-stage

voltage multiplier that rectifies the incoming differential input voltage and quadru-

ples the rectified DC voltage (figure 2-2). The rectifier utilizes Schottky diodes with

1The projector has a toroidal radiation pattern and consumes 25 W of power to achieve a source
level of 180 dB re 1 𝜇Pa @ 1 meter (see Sections 4.1 and 3.1). The power consumption of the
transmitter can be reduced by using a directional transducer.
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Figure 2-2: Schematic of the hardware design. The harvester node at the bottom
is connected to a multi-stage rectifier followed by a supercapacitor, which stores the
harvested energy. The supercapacitor voltage is fed to a 2.8V LDO and to a 1.4V
DC/DC step-down converter. The output of the DC/DC converter is used to power
the FPGA core, and the output of the LDO is used to power the FPGA banks. The
FPGA is also connected to two external clocks (32kHz and 4MHz) and to the camera
via several GPIO pins (pixel clock, line valid, data, power, master clock). The FPGA
controls the operation of the MOSFETs connected to the communication transducer
on the top left. This transducer is responsible for sending camera data via backscatter
communication.

a maximum forward voltage of 350 mV. This rectified voltage is then fed into a super

capacitor. The super capacitor’s output voltage is regulated by a 2.8 V Low Dropout

(LDO) which drives digital components such as the bank voltage of the FPGA and

two external clocks (32 kHz and 4 MHz). The LDO is connected to a DC-DC step

down converter, which steps down its 2.8 V to 1.4 V. This allows running the Himax

camera and oscillators at their required voltages while running the FPGA core at 1.4

V to minimize power consumption.

In principle, the regulated voltage can be directly used to power up the rest of the

sensor electronics and bootstrap the image capture operation and communication. In

practice, however, the harvested power may be less than that required to run the elec-

tronics for an entire imaging cycle. This is particularly true when the sensor is further

away from the projector, leading to a lower harvested power than that required for

imaging. In such scenarios, if the capacitor were to provide energy to the rest of the
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electronic components prematurely, they would drain its energy and abruptly shut

down the circuitry before it can capture an image segment.

To ensure that the rest of the circuit does not power up prematurely, our method in-

corporates a cold-start phase where it harvests energy in its super-capacitor before it

powers on the rest of the circuit electronics. To implement this cold-start phase, our

design leverages the DC-DC step down converter as a power-gating mechanism (i.e.,

as a way to buffer energy before providing it to the rest of the circuit), exploiting the

fact that the DC-DC converter controls the core voltage of the FPGA logic unit. To

do this, our design uses a potential divider to feed a portion of the capacitor voltage

to the “enable” pin of the DC-DC step down, so that the DC-DC activates when the

capacitor voltage reaches a desired voltage (e.g. 3.2 V in our design). This allows our

circuit to harvest energy for a sufficient period of time before it starts operation. Ad-

ditionally, once the DC-DC turns on, it does not turn off until the enable pin voltage

falls below a minimum threshold voltage (e.g.,1.4 V in our design). In other words,

hysteresis allows the DC-DC to stay active even when the voltage at the enable pin

is fluctuating over a wide range. The fluctuation in voltage typically happens due to

two main reasons: the first is the variations in harvested energy (from sound) due

to the changing underwater channel, and the second is the variation in current draw

from various on-board components during different phases of operation (as described

in subsequent sections on FPGA control and logic and on Power analysis).

Finally, we discuss how the capacitance (𝐶) of 7500 𝜇F and minimum threshold value

(𝑉𝑡ℎ𝑟𝑒𝑠) of 3.2 V are determined. Since the camera sensor requires a minimum voltage

(𝑉𝑚𝑖𝑛) of 2.8 V for reliable operation, the design of the batteryless sensor must en-

sure that the capacitor voltage remains above 𝑉𝑚𝑖𝑛 when the camera is operational.

Conservatively, the super-capacitor needs to store enough energy to power the circuit

for capturing an entire image segment before the energy drawn causes the voltage to

drop below 𝑉𝑚𝑖𝑛; this analysis is conservative since the sensor continues harvesting

even during the imaging phase. Mathematically, we can express this energy buffer as:

𝐸𝑛𝑒𝑟𝑔𝑦𝐵𝑢𝑓𝑓𝑒𝑟 ≥ 1

2
𝐶𝑉 2

𝑡ℎ𝑟𝑒𝑠 −
1

2
𝐶𝑉 2

𝑚𝑖𝑛
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The energy buffer was determined empirically by measuring the energy required by

the camera prototype to capture an image segment using active imaging (5 mJ, see

subsequent section on Power Analysis). Given that 𝑉𝑚𝑖𝑛 is 2.8 V, we can select C =

7500 𝜇F and 𝑉𝑡ℎ𝑟𝑒𝑠 = 3.2 V to satisfy the above inequality.

Our proof-of-concept implementation employs two separate transducers for harvesting

and backscatter communication. In principle, it is possible to use a single transducer

- rather than two - for both energy harvesting and backscatter communication, since

both transducers are identical. However, doing so would result in less harvested en-

ergy; this is because less energy may be harvested in the open-circuit state than in

the inductively matched state. Thus, in our prototype implementation, we decou-

ple the communication from the energy harvesting so that both processes can occur

simultaneously without either of them reducing the other’s efficiency. Alternate im-

plementations with a single transducer for both harvesting and communication, or

with multiple transducers for each of harvesting and communication are possible. The

latter is useful for enabling longer-range operation since the combination of multiple

transducers can harvest more energy and achieve higher SNR on the uplink (both of

which increase with the number of transducers used).

2.4 FPGA control and logic

A key challenge in enabling net-zero power wireless underwater imaging arises from

the limited communication bandwidth of underwater acoustic communication, which

is typically of the order of few kilobits/sec [30]. Due to the limited bandwidth of un-

derwater acoustic channels, the transfer time of underwater images is typically tens of

minutes or even hours [23]. In principle, one could keep the CMOS imaging sensor and

LED illumination turned on during this period. However, such an approach would

be counterproductive since these components consume significantly more power than

the rest of the circuit. Here, it is worth noting that higher throughput (thus shorter

transfer time) may be realizable using more advanced modulation techniques such as

OFDM [38]. However, these techniques require much higher power consumption than
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underwater piezo-acoustic backscatter [29].

To enable low-power operation while dealing with the bandwidth constraints of under-

water acoustic channels, our method employs an FPGA that operates in two phases:

image capture phase (which is power-limited) and backscatter communication phase

(which is bandwidth limited). The operation in each of these phases is optimized to

minimize overall energy consumption of the underwater backscatter imaging method

and enable net-zero operation, as explained below.

2.4.1 Image Capture Phase

Once the super-capacitor has stored sufficient energy from harvesting (e.g., 3.2 V or

higher), the voltage at the enable pin of the DC-DC overcomes its threshold, allowing

it to power the FPGA core at 1.4 V, as well as the 32 kHz external oscillator. Once

the FPGA core is turned on, it initiates its logic sequence to power on the Himax

camera sensor along with an external 4 MHz oscillator. The higher frequency clock

signal is necessary to operate the camera (which requires at least 3 MHz) and com-

municate with it over an I2C interface (100 kHz - 400 kHz).

Once all the onboard components are powered on, the interfacing process starts. The

FPGA configures the camera sensor through the I2C communication bus, which en-

ables it to set different parameters on the camera sensor - such as the image resolution,

exposure level, and data bits sequence - to enable adapting the image capture to dif-

ferent environmental conditions. In our implementation, the FPGA logic first resets

the camera sensor, then sets the image resolution to Quarter Video Graphics Array

(QVGA) frame with a resolution of 324 by 244 pixels (each pixel is represented by 8

bits for a total of 632,448 bits per image) and specifies the data transfer protocol to

be serial (using a single port and sending the most significant bit first). Finally, the

FPGA sets the clock of the camera sensor core to be master clock (MCLK) divided

by 8, or more specifically, 4 MHz/8 = 0.5 MHz. To set these parameters, the FPGA

uses two I2C connections (SDA, SCL), and it receives all necessary information from

three distinct pins on the camera sensor: 1) HSYNC (or line valid), a signal that

goes high when a row of the image is being sent and is low otherwise, 2) PCLK (the
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pixel clock), and 3) DATA0, where the data is transmitted serially. Moreover, the

FPGA controls the power to the camera through the power pins (AVDD/IOVDD)

(figure 2-2). The CMOS imaging sensor sends an acknowledgement after each I2C

instruction, indicating the successful execution of the corresponding instruction.

Upon successful I2C communication, the FPGA powers on the red LED, then in-

structs the camera sensor to capture an image and initiate data transfer process to

the FPGA memory. Due to the limited FPGA on-board RAM size (a total of four

4608-bit blocks), only 12 kbs are saved to memory at a time. The RAM is configured

as 256-word-deep FIFO, with 48-bit words. After reaching full memory capacity, the

FPGA turns off the camera, LED, and 4 MHz oscillator, and switches to the 32 kHz

oscillator as it enters the communication phase where it transmits the stored image

segment to the receiver.

2.4.2 Backscatter Communication Phase

During the backscatter communication phase, our FPGA uses the lower frequency

oscillator of 32 kHz for reading from the memory and transmitting the stored im-

age data because the data rate is limited to 1 kbps due to the narrow bandwidth of

underwater acoustic channels. Additionally, the low frequency oscillator allows the

FPGA to operate at extremely low power because its dynamic power consumption

decreases with the clock frequency. At 32 kHz, most of the power consumption is

static (as opposed to dynamic).

The FPGA encodes the image data into packets (figure 2-3). Each 77-bit-long packet

contains a 16-bit preamble, followed by a 12-bit packet number, 48 bits of data, and a

single parity bit at the end. Furthermore, to help the decoder identify packet bound-

aries, the FPGA introduces a brief silent period (equivalent to the time needed to

transmit 23 bits) at the end of each packet. The FPGA converts the data bits into

FM0 modulation. The FPGA feeds the FM0 encoded data bits to the gate pin of the

two MOSFETs to communicate the image data through backscatter.

After each image segment (stored in memory) is sent, the aforementioned process

repeats for the same segment but with a different LED turned on (i.e, green and
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Figure 2-3: Packetization of pixel data. The image captured by the CMOS image
sensor is divided into 53 segments. Each image segment is divided into 250 packets,
where each packet contains data for 6 pixels. The uplink packet structure includes a
16-bit preamble, followed by a 12-bit long packet number, and a payload of 48 bits.
A parity bit is appended to each packet; it is set to 1 if the sum of bits in the payload
is even and is set to 0 otherwise.

then followed by blue). Once the same image segment is transmitted and received

for all three illuminations (RGB), the FPGA stores the next segment of the im-

age and repeats the same process until an entire image is transmitted. The FPGA

also stores the segment index in a designated register and uses a counter to wait for

12000*𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑖𝑛𝑑𝑒𝑥 clock cycles to store the desired segment to the FIFO memory.

The overall process requires 53 repetitions (53 segments per image, due to memory

constraints on the FPGA) for monochromatic images and 159 for active color illu-

mination. For FPGAs with larger memory size, the number of repetitions will be

lower.

2.5 Power analysis

Our proof of concept prototype can perform active and passive imaging at an overall

average power consumption of 276 𝜇W (table 2.1) and 112 𝜇W (table 2.2) respectively.

Note that the additional power requirements for active imaging is due to the active

illumination, and that the average power is reported over the duration of capturing

and transmitting an entire image (i.e., by dividing the total energy consumed across

all operation phases by the time to capture and transmit the image).
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Image Capture Phase Backscatter Communication
(700 ms per image segment) Phase

(25 s per image segment)
Device

Components
Power Con-
sumption
(mW)

Energy
Consump-
tion (mJ)

Power Con-
sumption
(mW)

Energy
Consump-
tion (mJ)

Camera Sensor 1.1 0.77 0 0
Active Illumina-
tion (R,G,B)

(8.22696,
4.391, 2.71)

(5.7588,
3.0737,
1.8977)

0 0

AGLN060
FPGA

0.4807 0.336 0.0224 0.56

4MHz oscillator 0.168 0.1176 0 0
32kHz oscillator 0.0126 0.0088 0.0126 0.3150
DC/DC step-
down converter

0.054867 0.0384 0.001244 0.0311

Low dropout
(R,G,B)

(1.4372,
1.3127,
0.575233)

(1.00604,
0.91889,
0.4026631)

0.022854 0.57135

N-Channel
MOSFETs

0 0 24e-9 6e-7

Average [Total Energy Consumption (Image Capture Phase) +
Power Con- Total Energy Consumption (Backscatter Communication
sumption Phase)]/Total time = [894.2 mJ + 234.91 mJ]/4086.3 s

= 0.276 mW = 276.31 𝜇W

Table 2.1: Power consumption for active color imaging. The table shows the
power consumption breakdown for each component in the prototype while performing
active imaging. The energy consumption is computed and shown separately for each
of the image capture and backscatter communication phases. Since there are 53
segments per image and each segment is repeated three times (once for each active
illumination), the average power consumption of capturing and communicating an
entire color image is 276 𝜇W.

Our method’s ultra-low power consumption is realizable due to multiple design

factors. First is the use of underwater backscatter communication to transmit pixel

data. In contrast to traditional underwater acoustic communication technologies,

underwater backscatter does not need to generate its own signal; instead, it commu-

nicates by modulating the reflection patterns of incident acoustic signals. The process

of switching between the two states requires passive switches (e.g. MOSFETs) which
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Image Capture Phase Backscatter Communication
(700 ms per image segment) Phase

(25 s per image segment)
Device

Components
Power Con-
sumption
(mW)

Energy
Consump-
tion (mJ)

Power Con-
sumption
(mW)

Energy
Consump-
tion (mJ)

Camera Sensor 1.1 0.77 0 0
AGLN060
FPGA

0.4807 0.336 0.0224 0.56

4MHz oscillator 0.168 0.1176 0 0
32kHz oscillator 0.0126 0.0088 0.0126 0.3150
DC/DC step-
down converter

0.054867 0.0384 0.001244 0.0311

Low dropout 0.1848 0.12936 0.022854 0.57135
N-Channel
MOSFETs

0 0 24e-9 6e-7

Average [Total Energy Consumption (Image Capture Phase) +
Power Con- Total Energy Consumption (Backscatter Communication
sumption Phase)]/Total time = [74.234 mJ + 78.304 mJ]/1362.1 s

= 0.112 mW = 111.98 𝜇W

Table 2.2: Power consumption for passive grayscale imaging. This table shows
the power consumption breakdown for each component of the prototype while per-
forming passive grayscale imaging. The energy consumption is computed and shown
separately for each of the image capture and backscatter communication phases. The
average power consumption of capturing and communicating an entire grayscale im-
age is 111.98𝜇W.

consume 24 nanowatts of power, making the communication process extremely low

power. Second is the use of low-cost commercially available ultra-low-power FPGAs,

which consume as little as 22 𝜇W during certain phases of the operation. Third is

the switched dual-oscillator method (of 32 kHz and 4 MHz), which allows minimiz-

ing the energy consumption by adapting clocking to different phases of operation.

Specifically, in the bandwidth-limited phase - i.e., when the method is constrained

by the bandwidth of the underwater acoustic channel, the method switches to the

low-frequency oscillator (32kHz), minimizing the power consumption of the FPGA.

On the other hand, in the power-limited phase - i.e. when the method is limited by

the power consumption of the CMOS image sensor (0.77-1.1 mW) and LEDs (1.9-8.2
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mW), it switches to the high-frequency clock to rapidly complete the pixel transfer

to the FPGA and turn off the camera and LEDs during the communication phase.

Since the FPGA switches the high-power components off during communication, the

supercapacitor can harvest energy and recharge during that phase. The overall power

consumption is optimized through a simple, low-cost, power-management unit with

a DC-DC converter, low-power LDOs, and resistor dividers as described earlier. The

ultra-low power consumption may be further reduced by duty cycling rather than

continuous operation.
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Chapter 3

Range & Timing Analysis

3.1 Range Analysis

In battery-free backscatter communication systems, the end-to-end communication

range is determined by the ability of a remote transmitter to power up the battery-

free sensor [3, 2]. Hence, to understand the communication range of our underwater

battery-free imaging system, we analyze the downlink range between the projector

and the battery-free node. Our downlink analysis follows a model introduced in

recent work that studied the range of underwater acoustic backscatter communication

systems [2].

The downlink communication range of our system is determined by two constraints:

(a) the harvested power and (b) the rectified voltage. In particular, the harvested

power needs to exceed a minimum threshold for continuous operation, and the rectified

voltage needs to exceed a minimum activation voltage required to turn on the LDO

(see Section 2.3). Since the harvested power and the rectified are both a function

of the open-circuit voltage, we first analyze the open-circuit voltage as a function of

range, then relate it to the harvested voltage and power.

41



3.1.1 Open-Circuit Voltage

The voltage at the harvesting transducer is a function of the transmit source level

(due to transmit power, projector efficiency, and directivity), range and pathloss (due

to absorption, spreading loss, and directivity), and the properties of the harvesting

transducer (efficiency, directivity and sensitivity). Specifically, the RMS open-circuit

voltage (𝑉𝑜𝑐) can be expressed as [3, 2]:

𝑉𝑜𝑐 = 10
𝑅𝐿(𝑃𝑡,𝑓,𝑅)+𝑅𝑉 𝑆

20

where 𝑅𝑉 𝑆 is the receiving voltage sensitivity of the backscatter node’s transducer,

and 𝑅𝐿 is the received signal level at the transducer, which itself is a function of the

transmit power (𝑃𝑡), transmit efficiency (𝜂𝑇𝑥), range (𝑅), and directivity of the pro-

jector (𝐷𝐼𝑇𝑥), spreading factor (𝑘), and absorption coefficient (𝛼) as per the following

equation [3, 6]:

𝑅𝐿(𝑃𝑡, 𝑓, 𝑅) = 170.8 + 10𝑙𝑜𝑔(𝜂𝑇𝑥𝑃𝑡) +𝐷𝐼𝑇𝑥 − 𝑘.10𝑙𝑜𝑔(𝑅)− 𝛼(𝑓)𝑅

3.1.2 Harvested Voltage

The harvested voltage is a function of the open-circuit voltage (𝑉𝑜𝑐). In particular,

recall that the harvesting transducer’s output (after matching) is passed through a

multi-stage rectifier that converts the AC to DC voltage and passively amplifies the

voltage. The harvested voltage at output of the rectifier (𝑉𝑟𝑒𝑐𝑡) is a function of the

number of stages (𝑁) and the diode threshold voltage (𝑉𝑡ℎ), and can be expressed as

follows [35]:

𝑉𝑟𝑒𝑐𝑡 = 𝑁(
√
2𝑉𝑜𝑐 − 𝑉𝑡ℎ)

In our prototype implementation, 𝑅𝑉 𝑆 = -180dB re 1V/𝜇Pa, 𝜂𝑇𝑥 = 0.175, 𝑃𝑇𝑥 = 25

W, 𝐷𝐼𝑇𝑥 = 2.62dB, 𝑘 = 1.5, 𝛼 = 0.0022dB, 𝑁 = 4, and 𝑉𝑡ℎ= 0.35 V.

To study the harvested voltage constraint in our battery-free imaging system, we

simulate the rectified voltage as a function of range following the above model (fig-
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ure 3-1a). The figure also plots the minimum activation voltage (dashed horizontal

line), which corresponds to 3.2 V in our design. We consider three optimizations for

our proof-of-concept prototype, following the parameters highlighted in prior work on

underwater backscatter [2]. First, we consider a design whose harvesting transducers

have an 𝑅𝑉 𝑆 of -157dB re 1V/𝜇Pa (instead of -180dB re 1V/𝜇Pa), and plot the recti-

fied voltage (in blue). Our second optimization considers a projector whose efficiency

is 0.5 (instead of 0.175), and we plot the corresponding rectified voltage (in orange).

Finally, we study how increasing the transmit power from 25 W to 500 W impacts the

harvested voltage as a function of range (in black). The figure shows that with more

optimized engineering parameters, the range of an underwater battery-free imaging

system may increase to more than 300 meters, matching prior analytical model [2].

It is worth noting that the activation voltage is also function of our system design

parameters. In principle, the main limitation on the voltage is determined by the non-

linearity of the harvester electronics, specifically the diodes, whose threshold voltage

is 0.35V. One can approach this threshold voltage (and achieve higher ranges) by in-

creasing the number of stages in the multi-stage rectifier as well as by using rectifiers

with lower threshold voltages [8].

3.1.3 Harvested Power

Next, we analyze the harvested power as a function of range. The harvested power

(𝑃ℎ𝑎𝑟𝑣) is a function of the open-circuit voltage, harvesting circuit efficiency (𝜂ℎ𝑎𝑟𝑣),

and transducer impedance (𝑍) as per the following equation [3, 2]:

𝑃ℎ𝑎𝑟𝑣 =
𝜂ℎ𝑎𝑟𝑣𝑉

2
𝑜𝑐.𝑅𝑒(𝑍)

‖𝑍‖2

In our prototype implementation, 𝜂ℎ𝑎𝑟𝑣 = 0.16 and 𝑍 = 35 - 203j.

We plot the harvested power as a function of range following the same parameters of

the above model in (figure 3-1b). We also plot the minimum power (dashed horizon-

tal line) required for our prototype to operate continuously. The plot demonstrates
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Figure 3-1: Range analysis for the camera prototype. (a) shows the rectified
voltage as a function of the distance between the transmitter and the battery-free
camera prototype. (b) shows the harvested electrical power plotted as a function
of the distance between the transmitter and the battery-less camera prototype. (c)
shows the harvesting time as a function of distance.

that underwater battery-free imaging may be possible at hundreds of meters under

optimized engineering design parameters.

It is worth noting that the harvested power can be further improved by optimizing

two other design parameters. First, in addition to the parameters discussed above,

it is possible to boost the AC-to-DC power conversion efficiency from 0.16 to higher

realizable efficiency of 0.60 [55]. Second, the end-to-end power transfer efficiency

(and range) may be improved by using beamforming.1 In particular, past work has

considered underwater acoustic beamforming and demonstrated that it can enable

directivity gains of 16dB [58]. A natural question here is: how can a projector iden-

tify the optimal beamforming direction so that it may electronically steer its array

accordingly? If the backscatter node’s location is known a priori, then the beam-

1Note that the current transducer has a toroidal radiation pattern (see Section 4.1). Beamforming
would allow the projector to focus the energy in a specific direction thereby extending the range of
operation for a given input power.

44



steering direction may be computed geometrically and the projector can apply the

corresponding beamsteering vector. Alternatively, if the backscatter node’s location

(or the projector’s location) is unknown, then the projector can find the correct beam

by employing one of the standard beam searching algorithms [52, 25]. For exam-

ple, the projector can first scan different directions, by sequentially applying different

beamforming vectors. When it reaches the correct direction, the backscatter node

powers up and responds with stored bits. The projector uses this feedback to identify

the correct direction, and continues beamforming in that direction for the remainder

of the communication session. Since the transmit source level in our evaluation is al-

ready high (180dB re:1𝜇Pa), such optimized designs will be critical to achieve higher

range in future work.

3.2 Timing Analysis

In this section, we analyze the timing performance of our ultra-low-power imaging

platform. Specifically, we analyze the time that the system needs to harvest sufficient

energy to power up and the time needed to capture and communicate one full image.

3.2.1 Energy Harvesting Time

Our battery-free camera sensor operates entirely on the harvested power, and the

time, 𝑇 needed to harvest sufficient energy to capture a gray-scale image is given by

the following equation:

𝑇 =
1.4006𝑚𝐽

𝑃ℎ𝑎𝑟𝑣

where 1.4006𝑚𝐽 is the energy required during the image capture phase (see table 2.2)

and 𝑃ℎ𝑎𝑟𝑣 is the harvested power. The harvested power depends on the transmit

power, distance from the projector, harvesting transducer’s 𝑅𝑉 𝑆, and the efficiency

of the harvesting circuit. With our current design parameters (see Range Analysis),

it takes around 10-12 seconds to harvest sufficient energy at 1 meter. However, recall

from our discussion in Range Analysis that these parameters can be optimized to
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increase the harvested power which would reduce the time needed to harvest sufficient

energy. Specifically, using the model parameters mentioned in Range Analysis and the

equation given above, we plot the harvesting time, 𝑇 as a function of distance (figure 3-

1c). The plot shows that under optimized design parameters, the energy harvesting

time is less than a second (i.e., the imaging operation starts instantaneously) even

beyond 100 meters.

Recall that sending a full image typically requires multiple captures (due to the

memory limitations on the FPGA), and one might wonder whether each of these

captures requires the above-mentioned harvesting time. However, that is not the

case, and the sensor needs the harvesting time only once during the beginning of the

operation. To see why, recall that the system operates in two phases: image capture

phase and backscatter communication phase. The backscatter communication phase

consumes significantly less power of 59 𝜇W (table 2.2) and lasts longer (due to the

narrow bandwidth of the underwater acoustic channel). As a result, the capacitor

fully recharges during this phase before it needs to enter the image capture phase

again, allowing for uninterrupted operation after the initial harvesting cycle.

Finally, it is worth noting that the above analysis assumes that the system is operating

in warm start (i.e., there is some pre-stored charge across the capacitor). During the

cold-start phase (which occurs only once in the system’s lifetime), the capacitor is

fully discharged and the time required to harvest sufficient energy to initiate the

operation is given by:

𝑇 =
1
2
𝐶𝑉 2

𝑡ℎ𝑟𝑒𝑠

𝑃ℎ𝑎𝑟𝑣

where 𝐶 is the capacitance value (7500 𝜇F) and 𝑉𝑡ℎ𝑟𝑒𝑠 is the threshold voltage (3.2

V) across the capacitor needed to initiate the operation. With our current design

parameters, it takes 4-5 minutes to harvest sufficient energy at 1 meter to initiate the

imaging operation. Moreover, following the same analysis discussed above, optimizing

the system design parameters would allow reduce this initiation time to few seconds.
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3.2.2 Image Framerate

The framerate of our system depends on the time needed to capture and communicate

image data to a remote receiver. Specifically, the total time, 𝑇 , needed for one full

image is given by the following equation:

𝑇 = (𝑇𝑠𝑒𝑔𝑚𝑒𝑛𝑡 +
𝐵𝑖𝑡𝑠𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝐷𝑎𝑡𝑎𝑟𝑎𝑡𝑒
).𝑇 𝑜𝑡𝑎𝑙𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

Where 𝑇𝑠𝑒𝑔𝑚𝑒𝑛𝑡 is the time needed to capture and store an image segment in the

FPGA’s memory and it is equal to 0.7 seconds (table 2.1), 𝐵𝑖𝑡𝑠𝑠𝑒𝑔𝑚𝑒𝑛𝑡 is the total

number of bits in a segment (25000 bits, which includes the bit-equivalent silent pe-

riod, see FPGA Control and Logic in Methods), 𝐷𝑎𝑡𝑎𝑟𝑎𝑡𝑒 is the bitrate of backscatter

communication (recall that we used 1 kbps in our experiments), and 𝑇𝑜𝑡𝑎𝑙𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 is

equal to the total number of segments (53 segments) in one full image (see FPGA

Control and Logic in Methods). For a communication data rate of 1 kbps, it takes

1362.1 seconds ( 22.7 mins) to capture a grey-scale image and around 68 min to cap-

ture a color image. Note that the image transmission is the most time-consuming

part because of the low datarate, and the framerate of the system can be improved

by increasing the datarate of communication.

To achieve higher framerate, we successfully experimented with communicating at 5

kbps (with BERs of 10−3 at 1m). At such datarates, the time needed to capture and

communicate a grey-scale image reduces to 5 mins ( 14 mins for the color image).

Moreover, higher framerates are achievable by leveraging past work on underwater

backscatter node design which has demonstrated throughputs up to 20kbps [21]; us-

ing such designs would further reduce the time for a grey-scale image to 1.1 mins (3.4

mins for a color image).
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Chapter 4

Fabrication & Evaluation

4.1 Fabrication Methods

The underwater camera is attached to two piezoelectric transducers. The fabrication

process of these transducers is similar to previous methods of building transducer

nodes for underwater communication [29, 21]. Each underwater transducer contains

two different types of piezoceramic cylinders (figure 4-1). The outer piezoceramic

cylinder has an outer radius of 27mm, inner radius of 23.5mm, height of 40mm, and a

nominal resonance frequency of 17 kHz in radial mode (SMC5447T40111, Steminc),

while the inner piezoceramic cylinder has an outer radius of 18mm, inner radius of

15.5mm, height of 20mm, and a nominal resonance frequency of 30 kHz in radial mode

(SMC3631T20111, Steminc). We stacked two of the inner piezoceramic cylinders and

soldered them together to obtain the same height as that of the outer cylinder. We

laser cut polyurethane gaskets from an abrasion-resistant polyurethane rubber sheet

(40A, McMaster-CARR) and set them on 3D-printed (Creator Pro, Flashforge) end

caps, and we tightly screwed the entire structure together to prevent leakage. We

placed this entire structure inside a 3D printed cylindrical mold with 3.0 cm radius

and 7.5 cm height, and we poured a polyurethane mixture (WC-575A/B, BJB En-

terprises) into the mold to insulate it from the surrounding environment. The top

and base lids have openings in between the outer and inner cylinders which allow the

mixture to fill in the gaps between the cylinders. Afterwards, we placed this structure
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Figure 4-1: Exploded view of the layered transducer. The structure contains a
polyurethane layer which is sandwiched between piezoceramic cylinders. The outer
piezoceramic cylinder has a nominal resonance frequency of 17kHz, while the inner
piezoceramic cylinder has a nominal resonance frequency of 30 kHz. Top and base
caps are padded with polyurethane gaskets, and the entire structure is tightened with
a screw, then encapsulated with another layer of polyurethane.

inside a pressure chamber (Pressure Chamber, Smooth-On) for 12 hours at a pressure

of 60 psi to remove residual bubbles from the polyurethane solution. After remov-

ing the node from the pressure chamber, we manually removed the mold. We used

this procedure to fabricate the transducers for both the projector and the camera.

We simulated the beam pattern and directivity of these transducers using COMSOL

Multiphysics (COMSOL). The transducers have a toroidal radiation pattern with a

directivity index (DI) of 2.62 dB (figure 4-2).

The housing of the camera prototype consists of two dome structures (figure 4-3). The

larger dome is six inches in diameter (6” Dome Port Lens, TELESIN) and houses the

circuitry. The smaller dome comprises of an in-house built plastic base, an abrasion-

resistant polyurethane rubber sheet, an acrylic dome which is 3 inches in diameter

(Plastic Hemisphere, SupremeTech), and six screws to hold the entire structure to-

gether.

The electrical components of the design include a PCB (designed using a freely

available software (Eagle, Autodesk) sent for fabrication to a commercial vendor
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Figure 4-2: Directivity of the layered transducer. (a) shows the pressure ra-
diation heatmap of the layered transducer obtained using COMSOL Multiphysics
software. Dark blue regions correspond to low pressure, while dark red regions rep-
resent higher pressure. The layered transducer has a directivity index of 2.62 dB (b)
shows the transverse cut of the radiation pattern which demonstrates that the layered
transducer is omnidirectional in the horizontal plane. (c) shows the lateral cut of the
radiation pattern.

(EasyPCBUSA, Sun Circuits)), an FPGA (IGLOO nano AGLN060, Microsemi), a

CMOS monochrome camera sensor (HM01B0, HiMax), a camera connector (609-

4320-2-ND, Digikey), two oscillators of 32 kHz (SiT1566AI-JV-18E-32.768E, SiTime)

and 4 MHz (SiT8021AI-J4-18S-4.000000E, SiTime) frequencies, a 7500 𝜇F superca-

pacitor (667-EEU-FS0J752S, Mouser Electronics), a 2.8 V voltage regulator (TPS7A03-

28PDBVR LDO, Texas Instruments), a DC-DC step down converter (TPS62841DLCR,

Texas Instruments) and red, green, and blue LEDs (604-WP154A4SUREQBFZG,

Mouser Electronics). Additional components include four schottky diodes of 0.35

Volt threshold (750-CDBU0130L, Mouser Electronics), four capacitors of 0.1 𝜇F value

(587-3502-1-ND, Digikey), three other capacitors of values 47 𝜇F (490-10559-1-ND,

Digikey), 10 𝜇F (810-CGA3E1X7T0G106M0, Mouser Electronics), and 4.7 𝜇F (80-

C0603C475M9P7411, Mouser Electronics), four resistors of 1 MΩ, two resistors of 4.7

kΩ (13-RE0603FRE074K7LCT-ND, Digikey), one 2.2 𝜇H inductor (118-CC453232A-
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Figure 4-3: Exploded view of the camera dome and LED dome. (a) The
LED dome contains the red (R), green (G), and blue (B) LEDs, and a layer of
polyurethane gasket is added to the dome base to make it water-proof. (b) The
camera PCB contains the Himax image sensor, supercapacitor for harvesting energy,
power management electronics, and an FPGA for processing and memory. It also
contains programming pins to program the FPGA and change camera parameters.
The PCB is enclosed in a transparent dome, and the entire structure is tightly screwed
to make it water-proof.

2R2KLTR-ND, Digikey), and six 750 𝜇H inductors (HM3341-ND, Digikey). Each

electrical component is individually tested and manually soldered using a digital hot

air rework and soldering station (AO888A, Aoyue). Power measurements of electrical

components were made using a power profiler (PPK2, Nordic Semiconductor).

A function generator (SGD 1032x, Siglent) connected to a fabricated piezoelectric

transducer (fabrication procedure described above) through an audio amplifier (XLi

3500, Crown) is used as an underwater projector to transmit acoustic signals. An

acoustic hydrophone (H2A, Aquarian) is used as a remote receiver to measure under-

water sound. The hydrophone is connected to a laptop (XPS 15 7590, Dell), which

records sound using an open-source audio recording software (Audacity) at a sam-

pling rate of 192,000 samples/sec. The signal processing and decoding algorithms are

implemented in MATLAB R2020b (Mathworks). The FPGA program is designed

using a freely available IDE (Libero SoC v11.9, Microsemi), and the IDE-generated

programming file is flashed on the FPGA using a programmer kit (FlashPro 3, Mi-

crosemi).
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4.2 Cost Analysis

The total cost of fabricating and assembling our underwater batteryless imaging sen-

sor prototype is $353.97 (table 4.1). The main components of the design are the

Device Components Quantity Cost ($)
Piezo Ceramic Cylinder (17 kHz) 2 91.50
Piezo Ceramic Cylinder (30 kHz) 4 140.00
Polyurethane Elastomer WC-575 A/B 1 (0.03 Gal-

lon)
4.34

HiMax HM01B0 Camera Sensor 1 9.95
IGLOO nano AGLN060 FPGA 1 12.72
TELESIN 6” Dome Port 1 45.00
SupremeTech Acrylic 3” Dome Hemisphere 1 10.99
PCB Fabrication 1 12.00
Inductors HM3341ND 6 18.98
Electrical Components (including Oscillators, Ca-
pacitors, Resistors, Diodes)

- 19.48

Total Cost $353.97

Table 4.1: Cost breakdown of battery-free underwater camera prototype.
This table shows the cost breakdown of the underwater battery free imaging proto-
type. The overall cost of building a battery-free imaging sensor is $353.97.

piezoceramic transducers, camera sensor, FPGA, PCB, and housing. The prototype

uses a total of six piezoceramic cylinders: two with a resonance frequency of 17 kHz

and four with a resonance frequency of 30 kHz. The total cost of the piezoceramic

cylinders is $231.5 (45.7*2 +35*4). The housing of the camera prototype consists

of a Telesin dome port which costs $45 and a smaller acrylic dome priced at $11 to

encapsulate the active illumination hardware. The IGLOO nano FPGA costs $12.72,

the Himax camera sensor costs $9.95, and the total cost of PCB fabrication is $12.

The low cost of fabrication of our batteryless prototype - coupled with the fact that it

does not require an extensive infrastructure in the form of cabling for power and com-

munication [32, 48, 60, 36] - makes underwater backscatter imaging a viable method

for scalable underwater imaging.
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4.3 Evaluation & Testing

The batteryless camera prototype was evaluated qualitatively and quantitatively in

enclosed and open water environments.

4.3.1 Enclosed Water Testing Environments

Imaging: Testing in controlled environments was performed in an enclosed water

tank with a depth of 1.5 m and rectangular cross section of 3 m x 4 m (figure 4-4).

Here, the projector, hydrophone, and the two transducers of the batteryless camera

(for harvesting and backscatter) were all submerged at a depth of 75 cm below the

water surface. At the same time, the domes housing the camera and illumination

(which are connected to the two transducers using wires) were placed along with the

underwater objects in a separate tank to isolate them and control environmental con-

ditions including lighting and nutrient levels. Specifically, the coral reef model and

the Protoreaster linckii were co-located with the camera at the base of a smaller tank

with a depth of 40 cm and a rectangular cross-section of 40 cm x 50 cm (figure 4-4).

Similarly, several seeds of Aponogeton ulvaceus were planted in freshwater aquarium

substrate in a third tank with the same dimensions (40 cm x 50 cm x 40 cm), and

the camera was used to monitor their growth over a period of one week. Images in

figures 1-2b, 1-3c, and 1-3d demonstrate successful imaging in these evaluation sce-

narios.

AprilTag Detection and Localization: We used the imaging method to detect

and localize Apriltags(figure 4-5a) in underwater environments. Figure 4-5b shows

an image of an AprilTag obtained using underwater backscatter imaging. Figure 4-5c

shows the detection accuracy and the localization distance of the AprilTags imaged

at different ranges. The results demonstrate very high detection rate and high local-

ization accuracy (localization error below 10 cm) up to 3.5 m. Beyond this range, the

current resolution of the CMOS imaging sensor limits both detection and localization;

longer detection ranges would be possible with higher-resolution sensors.

AprilTag Data Collection: Data collection for the AprilTag localization and de-
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Figure 4-4: The prototype evaluation in enclosed and open environments.
(a) shows the experimental setup in Charles River, MA. (b) shows the underwater
setup in Keyser Pond, NH. (c) shows the nodes placed in the larger enclosed tank in
the lab. (d) shows the experimental setup while imaging in the smaller external tank.

tection task was performed in the larger tank (3 m x 4 m x 1.5 m). For this task,

the camera sensor was submerged in the tank at a depth of 30 cm below the surface

and placed at one side of the tank to capture images of the AprilTag. The AprilTag

was submerged at the same depth. The experimental trial was repeated by placing

the AprilTag at 8 different locations separated by 50 cm, up to 4 m of maximum

range between the AprilTag and the camera (i.e., the edge of the enclosed tank). At

each location (i.e., range), we used the camera to capture 20 images of the AprilTag,

where the orientation and angle was varied with respect to the camera in each image,

resulting in a total of 160 images (figure 4-6). To speed up the data collection process,

these images were collected by connecting the FPGA output directly to a USRP N210

software radio (Ettus); this removes the bandwidth limitation of underwater acoustic

communication and enables programming the FPGA to transmit captured pixels at

a much higher rate (2 Mbps). Note that we did not bypass the FM0 backscatter

modulation for the results shown in Figure 4-5c, but only bypassed the underwater

channel. In addition to this data collection, Figure 4-5b shows a sample AprilTag
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Figure 4-5: Captured images of AprilTag markers demonstrate successful
underwater inference and localization. (a) The prototype was used to detect and
localize submerged localization tags. (b) An image of the AprilTag obtained using a
batteryless prototype. (c) The estimated location of the AprilTag is plotted in red as
a function of its actual location, and the detection rate of AprilTag is plotted in green
as a function of distance. (d) Harvested voltage is plotted as a function of distance
between the transmitter and the batteryless camera prototype. The dots indicate the
voltage at depths, while the contour indicates the maximum voltage obtained when
the node’s depth is varied over the entire water column at the corresponding distance.
(e) SNR and BER of the imaging method are plotted as a function of distance. The
lower and upper bound of the orange band around the SNR plot indicate the 10th and
90th percentile of the collected SNR data at the corresponding distance. The dotted
and solid lines show the BER of the imaging method before and after equalization
respectively.

image captured in this setup using end-to-end batteryless imaging and underwater

backscatter communication (at 1 kbps).

Calibration for AprilTag Localization: In order to determine an accurate rela-

tionship between a 3D location in the environment and its corresponding 2D pixel in

the image captured by our underwater camera, we compute the 3 x 3 homography

matrix that contains all the physical information (location and orientation) of the

tag [18]. Computation of the matrix requires the intrinsic parameters of the camera,

such as the focal length and optical center of the camera. To extract the parameters

from our underwater camera, we used a checkerboard calibration method, which is
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standard in 3D reconstruction problems in computer vision [18]. We captured 150

images of the checkerboard (7x10 square pixels with a pixel size of 23 mm x 23 mm)

from different viewpoints at 3 different distances: 50 cm, 80 cm, and 120 cm and

extracted the intrinsic parameters using the Multiplane calibration algorithm [66].

This calibration process needs to be completed only once since we used the same

underwater camera throughout all of the measurements.

After the camera is calibrated, the detection and localization tasks are performed

on the captured AprilTag images in the dataset described earlier. The tasks were

performed following similar procedures to prior work on AprilTag localization [43].

The detection algorithm computes the gradient of every pixel and clusters the pix-

els that have similar direction and magnitude into components. After performing a

recursive depth-first search, it extracts the edges of the AprilTag. Using the edges,

the algorithm finds four-sided regions that have a darker interior than their exterior

and verifies if the region has valid tag pixels. If the pattern is valid, the detection

succeeds, and the region is used as an input to the homography matrix which outputs

the tag’s location.

4.3.2 Open Water Testing Environments

Open water testing of the prototype was performed in Keyser Pond, NH and in

Charles River, MA (figure 4-4a and figure 4-4b). In Keyser Pond, the acoustic trans-

mitter1, harvesting and backscatter transducers, and hydrophone were submerged

half a meter below the water surface and the camera sensor was placed at a distance

of 50 cm from the plastic water bottle. The image was collected at night, yet the

prototype was successfully able to capture color features (as shown in figure 1-3b in

the introduction) due to its active illumination method.

Long-range communication experiments were performed in the Charles River. We

1In the Keyser Pod experiment, the cumulative sound exposure level (𝑆𝐸𝐿𝑐𝑢𝑚) value was 191.29
dB re 1 𝜇𝑃𝑎2s at a distance of 10 meters from the transmitter. Note that this value is within the
limits defined by Marine Mammal Protection Act (MMPA) [49] for all marine mammals except for
mammals that lie within high-frequency cetacean hearing group. However, there were no mammals
from this group (or any other group) within the 10-meter radius of the transmitter
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Figure 4-6: Sample AprilTag images. The camera prototype was used to capture
a total of 160 AprilTag images at different distances, orientations, and angles.

tested the method’s ability to communicate with a hydrophone receiver at different

distances, and computed the signal-to-noise ratio (SNR) and the bit error rate (BER)

of the decoded packets at different distances (figure 4-5e). The plot shows that SNR

decays and the BER increases with distance, demonstrating the ability to robustly
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decode packets beyond 40 meters by leveraging a decision feedback equalizer at the

receiver [20]. In these experiments, the acoustic projector2, harvesting and backscat-

ter transducers, and hydrophone were all submerged at a depth of 2 m below the

water surface. The projector and the backscatter transducer were separated by a

distance of 50 cm and the hydrophone was moved further away up to 40 m to test

communication at different distances. For this experiment, the backscatter node was

programmed to communicate a known pseudo-random sequence of 50 bits (10 bits

of preamble with 40 bits of data) in each packet at a data rate of 1 kbps. These

bits were constructed in MATLAB and were fed to the transistor switches M1 and

M2 using a signal generator (figure 2-2). The hydrophone was connected to a USRP

N210 to record the received signal for 20 seconds, resulting in 400 packets. For each

distance, we recorded data at three different depths (1.5 m, 2 m, and 2.5 m), and for

each depth, we computed a single value for BER and different values for SNR (one for

each decoded packet). The BER value was computed over all packets by comparing

the decoded 50 bits of each packet with the actual transmitted bits. SNR values

were computed individually for each packet where the signal power was determined

by projecting the received packet onto the transmitted packet and noise power was

evaluated by subtracting the signal power from the total received power. The SNR

and BER curves are shown in figure 4-5e as a function of distance, where the BER

curve shows the median value of BER across all three depths and the solid line for

SNR represents the median SNR over 900 packets (300 packets * 3 depths). The

lower and upper bound of the shaded region for the SNR curve represent the 10th

and 90th percentile respectively.

In addition to testing the communication capabilities of our method, we also evaluated

its harvesting performance at different ranges. An experiment was performed in the

Charles River, where the acoustic projector and the harvester node were submerged

at a depth of 2 m below the water surface. The harvester node was moved further

away (with an interval of 50 cm) up to 4 m. The open-circuit, rectified, harvested

2In our experiments at Charles River, 𝑆𝐸𝐿𝑐𝑢𝑚 value was 168 dB re 1 𝜇𝑃𝑎2s at a distance of 10
meters from the transmitter. This 𝑆𝐸𝐿𝑐𝑢𝑚 value is within the MMPA acoustic thresholds for all
marine mammal hearing groups.
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voltage was measured using a digital oscilloscope. For each distance, the harvester

node was moved to three different depths (1.5 m, 2 m, 2.5 m) and the voltage was

measured at each depth. At each depth, 3 measurements were taken, resulting in a

total of 9 measurements at each range. The harvester node was also moved gradually

across the entire water column for each distance to measure the maximum voltage

that the harvester transducer can harvest at each distance. The plot for harvested

voltage as a function of distance is shown in figure 4-5d where the maximum harvested

voltage is represented as the contour of the shaded region and the 9 measurements at

3 different depths are represented as dots.
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Chapter 5

Discussion & Conclusion

We discuss the performance of our underwater wireless imaging method in the context

of alternative methods for underwater communication.

5.1 Comparison to Low-Power Acoustic Modems

Our imaging method leverages acoustic backscatter communication to communicate

image data at net-zero power. Our evaluation demonstrates that the method achieves

communication ranges that are comparable to state-of-the-art low-power underwater

modems, albeit at much lower power. Specifically, a state-of-the-art low-power acous-

tic modem [50] requires 80 milli-Watts to transmit data at 1 kbps over 100m, while

our prototype consumes 59 microwatts to transmit data at the same rate over 40m

(see figure 4-5e, and see Backscatter Communication Phase in table 2.1). Our anal-

ysis demonstrates that higher ranges are realizable with more optimized transducers

(see Section 3.1).

One might wonder whether prior low-power modems could be operated entirely based

on harvested acoustic energy and used for net-zero-power underwater imaging. To

answer this question, we consider the amount of time needed to harvest sufficient

energy to transmit an image using a state-of-the-art low-power modem. Since the

modem operates at the same data rate as our backscatter prototype, it would re-

quire the same amount of time for image transmission (1362.1seconds, see table 2.2)
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to capture and transmit a grayscale image. Multiplying this by the communication

power (80mW) results in 106.07 Joules, which is 594x higher than our backscatter-

based wireless platform. If one were to harvest this energy from an acoustic source

(which can typically provide a few hundreds of microwatts, see Section 3.1), it would

take 4-6 days to harvest sufficient energy before initiating an imaging operation (in

comparison to our power-up time of 10-12 seconds). Thus, it would be impractical to

design an underwater battery-free wireless imaging system leveraging prior low-power

underwater acoustic modems.

Here, it is worth noting that backscatter communication does not eliminate the energy

requirements altogether; instead, it shifts the burden of power consumption from the

backscatter node to a remote acoustic source (which could be on a drone, submarine,

ship, or coastal base station) with a dedicated power source. According to the range

analysis in prior work [2] (see Section 3.1), acoustic backscatter can operate at dis-

tances of hundreds of meters under optimized system design parameters. Hence, with

careful engineering design, it would be possible to leverage underwater backscatter

sensor nodes for low-cost, scalable undersea observations.

5.2 Comparison to Alternative Underwater Commu-

nication Technologies

Next, we compare underwater acoustic backscatter to alternative underwater wireless

communication modalities that do not leverage acoustic signals [51, 22]. Under-

water optical communication systems can achieve higher data rates than acoustic

communication systems (up to Gbps), but their range is limited by the turbidity

of water [51]. Specifically, the communication range of low-power optical modems

is less than 10 meters in turbid waters [45, 15], in contrast to hundreds of meters

(or kilometers) for underwater acoustic communications [51] (including underwater

acoustic backscatter [2]). Aside from optical communications, some underwater com-

munication systems use radio frequency signals, such as very-low-frequency (VLF)
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and extremely-low-frequency (ELF); these systems can achieve underwater commu-

nication up to few kilometers, but require kilometer-long antennas [37], which makes

them bulky, expensive, and impractical for a compact underwater imaging system.

Finally, researchers have considered higher-frequency RF communication technologies

for underwater communication (such as Bluetooth or WiFi), but these are limited to

a few tens of centimeters of range [54], making them undesirable for underwater com-

munication.

In summary, our evaluation and analysis demonstrate that acoustic backscatter is a

viable approach for low-cost, low-power, and long-range imaging of underwater en-

vironments. Fundamentally, the power asymmetry inherent to acoustic backscatter

communication makes it a desirable approach for underwater sensor nodes, and en-

ables the design of batteryless underwater cameras that could be used for long-term

in situ sensing of the underwater world.
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