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ABSTRACT
An iterative approach to the problem of reconstructing the
relative positions of the nodes in a Packet Radio Network when some
internode distance information is available (Position Location
problem) is proposed.

The Position Location problem is expressed as a nonlinear
minimization problem where configurations of the network compatible
with the distance information available correspond to global minima of
a suitable cost function.

The structure of the family of cost functions proposed is
analysed and we establish that the cost functions, in certain
instances, not only may not be globally convex but may have
non-optimal local minima. A possible way to overcome this dificulty
is suggested. Analysis of the Hessian matrix of the cost function
reveals that this matrix is positive semidefinite at the global
minima. Hence the cost functions proposed are 1locally convex at
global minima points. Steps to make the cost functions strictly
convex at global minima are described.

A software package implementing our iterative approach was
developed and was applied to a few sample networks. Convergence to
valid configurations of the networks was achieved in several
instances. Instances of convergence to non-optimal local minima are
also presented. Finally the effect of errors in distance measurements
on the results obtained through the iterative approach are analyzed
for the case where the errors are small.
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Chapter 1 gives an informal introduction to the subject of
research. We explain the motivation behind it, review some relevant

related work and give an outline of the thesis.

1.1 INTRODUCTION

In the field of computer communications packet-switched networks
employing radios are of interest because they offer special attractive
features, for example possible mobility of their elements. Networks
of this type present in several respects problems and features

particular to the broadcast nature of the communication system.

A Packet Radio Network (PRN) is a collection of geographically
distributed packet radio units (PRUs) wutilizing packet-switched
communications in a broadcast mode of operation. Packet Radio Network
applications are suited to networks where the users need to be mobile,
for example civilian fleets in urban services (e.g. police) and
military applications. The Advanced Research Projects Agency (ARPA)
has set up an experimental PRN in California were new network software
is continually being evaluated. A good review of PRN features can be

found in [K et all.

One possible feature in Packet Radio Networks is the wuse of
distance measurements for position location. Assume that any two PRUs

in the network, that are within mutual range, can measure their
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separation, then distance information of this type among a set of PRUs
could be employed by a processor to determine the relative position of
the units involved. Typically not all units will be within range of
each other, hence the distance information available will not
correspond to all possible pairs of nodes in the network but rather to
a subset of pairs. Besides, in situations where interference or
physical obstacles are present, it may not be the case that any two
nodes within range can measure their mutual distance. Thus, distance

information available to the processor may be arbitrary.

A type of signalling waveform, which allows distance
measurements, is Spread Spectrum modulation. Tybical examples are
Pseudo-noise (PN) modulation and Frequency Hopped (FH) modulation.
Both systems employ a wide bandwidth for transmission. This wide
bandwidth allows good time resolution for measurement of packet time
of arrival which can be used to implement a Position Location System

(PLS).

A position location system based on the type of information
described, if feasible, could become a useful feature in PRNs, and a
system of this type is the subject of our research. Position Location
may be an end in itself: when location of nodes in the network is
desired; or it could be exploited by algorithms taking advantage of
position information to assist other functions, for example to decide
on the best routing path for a stream of data packets. We have
formulated and investigated the problem of position location having a
Packet Radio Network scenario in mind. Position Location, however, is

a problem interesting in its own right.
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1.2 TING PO CATION SY
1.2.1 Fixed reference points available.

In general Position Location Systems use distance measurements to
locate the position of one or more units of interest. When reference
points of known positions are available and the measurements are with
respect to these points, systems that exploit triangulation or similar
techniques can be constructed. If no known reference points exist it
is still possible sometimes, given enough measurements among the units
of interest, to find the mutual relative positions of these units.

This is the idea behind a PRN Position Location System.

The following 2-dimensional example illustrates one way in which
location can be achieved if a set of reference points are available.
Consider 3 noncollinear points, P1,P2 and P3, whose positions are
known, and a point R whose position is sought (see Figure 1.1-a). Let
the distances from R to P1, P2, P3 (D1, D2, D3 respectively) be known.
Let the position coordinates of P1 be P1x ’ P1y and similarly

for P2, P3 and R. This information then yields the following set of

equations
2
2 2 = D1 1.1.a
(R ~P1.)" + (Ry-P1y) ,
2 2 = D2 1.1.b
(Rx-sz) + (Ry—PZy) )
- D3 1.1.0

2 2

(Rx-P3x) + (Ry-P3y)
corresponding to the loci of three circumferences of known centers and
radii and with a common intersection point R. This system of
nonlinear equations can be reduced to a system of simultaneous linear

equations as follows:
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Subtracting the equations pairwise (1.1.b from 1.1.a and 1.1.c from
1.1.a, say) and sorting yields

K(P2,P1) 1.2.a

2(P2x-P1x) Rx + 2(P2y—P1y) Ry

2(P3X-P1x) Rx + 2(P3y-P1y) Ry K(P3,P1) 1.2.b

where K(Pj,Pi), a constant, is given by,
2 2 2 2 2

K(Pj,Pi) = Di" - D§” + Pj, " - PL" + Pj = - Pi,

Equations 1.2 constitute a system of inhomogeneous linear
equations. The unknowns in the system are Rx and Ry. The
system has a unique solution (the intersection of the circumferences)
if the points P1, P2, P3 are not collinear, otherwise at least one of
the equations 1.1 would be redundant and the system would have
typically two solutions (Figure 1.1-b), one to either side of the line
defined by P1, P2 and P3. Extension of this principle to n-dimensions

is straightforward (c.f. section 4.5).

R R

Figure 1.1-a Figure 1.1-D

Most Position Location Systems use triangulation or some variant
of it to calculate user's position. Examples are the Position Location

Reporting System ([R],[KMM]), the Joint Tactical Information
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Distribution System ([N],[GMR],[SS],[KS]), and the Acoustic
Transponder Navigation System ([Hel). This last system for example
makes use of deep~-sea acoustic transponders and is used by ships and
submarines to determine their own position relative to the

transponders.

The Navstar satellite system, for example, uses four satellites
of known position and synchronized in time. The user receives from
the satellites signals which contain position information and the
signal time of departure. The user then calculates its distances to
the satellites and sets up a system of four equations similar to 1.1.
The equations now include three unknown space coordinates (the user's)
and a fourth unknown which is the wuncertainty in the distances
calculated. This uncertainty is introduced by the possible lack of

synchronization between the user and the satellites.

1.2.2 No fixed reference points available.

In a PRN scenario distance measurements need not be with respect
to a fixed set of reference nodes. It might not be possible either to
succesively apply triangulation, or some variant, and gradually expand
a subset of nodes, acting as references, so that new nodes can
triangulate to it. In some cases the solutions for the nodes involved
might have to be found together for all of them (see for example
Figure 1.4) and the systems above would fail. The information
available results in a set of equations, similar in form to equations
1.1, but that cannot be reduced to a 1linear system in the way we

obtained equations 1.2 and which is generally difficult to solve
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since most of the position coordinates in the equations are unknown.
The problem however might still have a unique solution for the
"relative positions" of the nodes even if a straightforward analytical
solution of the equations is not present. Position Location Systems

based on different principles are needed in these cases.

Work related to Position Location when reference points are not
present is sparse. Most of it treats the 2-dimensional case because
of its practical importance. The only work we are aware of having PRN
applications in mind is due to Y. Yemini. His work is of particular
importance since it treats theoretical aspects relevant to the problem
and also proposes one algorithm for the problem, the Incremental
Position Location System (IPLS). We are not aware of any other
systems proposed in this field. We will outline IPLS below and refer
the reader to [Y 81]. It will serve to illustrate present work and
also as a point of contrast since our approach to the problem is

different.

Before explaining IPLS let us comment on the nature of the
problem.

Given a sparse set of distance measurements in a PRN, when is
there enough information for the Position Location (PL) problem to
have a solution?

We identify three situations regarding this solution: a solution
does not exist, there is a cpuntable number of solutions, or there are
uncountably many solutions. For physical networks the first case
corresponds to an inconsistent set of measurements (due to inaccuracy

or mistakes for example). There is an important characterization in
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the framework of linear algebra to discriminate between the last two
cases. The term "rigidity" is used to denote the case when the number
of solutions is countable; it includes the case when there is a unique

solution (Figure 1.2).

unique countably many (2) uncountably many
Figure 1.2: Examples of types of solutions for PL problems

(2-dimensional example)

Yemini's IPLS [Y 81] treats the 2-dimensional case. IPLS
searches through the distance information trying to identify subsets
of points for which IPLS knows that their relative positions with
respect to each other are unique and also knows how to find these
relative positions. These subsets are denominated "hyperedges" and
elementary examples are the triangle or a simple edge. With several
hyperedges identified, those with common nodes are gradually merged
using a set of "welding rules". If the result is a structure with
unique solution it is considered a new hyperedge. If the result
admits several (countably many) solutions the result is denominated a

"superedge".
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Conceptually, a superedge constitutes a "tree" of position
knowledge, where branches represent possible relative configurations
of the constituent hyperedges (Figure 1.3). A superedge needs extra
information, in the form of measurements, hyperedges, or even other
superedges, to become a hyperedge. Until such information becomes
available the merging process must keep track of all possible
configurations; all relative reflections of hyperedges as in Figure
1.3 for example must be allowed as possibilities. Once the necessary
information arrives the correct combination of positions is chosen and
the new hyperedge is‘formed. This process is repeated until all

possible solutions are found.

/ABC
ﬁ /AB\ AB
ABC ABC ABC ABC

Figure 1.3: Example of "superedge" tree (2—d)
The set of hyperedges appears on the 1left. Capital
letters label the hyperedges (triangles). Letters with
an overbar in the tree denote a triangle that has been

folded over the triangle immediately to the left of it.

In [Y 81] Yemini reports seven different welding rules; for

example: two hyperedges with 3 noncollinear points in common can be
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merged into a single hyperedge. Using an analogy, welding rules take
the place of equations 1.1 to gradually expand the rigid subsef of
points. The most complex rule in IPLS applies to the case when the
topology shown in Figure 1.4 is found. The topology is identified by
the algorithm and a numerical library routine is used to solve the

equations for the positions. The computational cost however is high.

Figure 1.4: Example of welding rule
Lines represent edges or hyperedges. Points stand
for nodes or sets of points depending on

whether an edge or hyperedge is being treated.

As [Y 81] reports, this set of rules is not exhaustive; there are
infinitely many "basic" rules,(i.e. rules which cannot be expressed as
a combination of other rules) and the amount of computatibn required
to solve the equations corresponding to basic rules involving more

than, say, 10 nodes becomes too costly.

Some comments on IPLS are in order.
IPLS has important advantages:

- For the case with countably many solutions IPLS can determine in

18



Some

theory all possible solutions.

Subsets of the PL problem are solved while the algorithm is in
progress (e.g. assembling hyperedges), thus this knowledge is
available early in the PL process.

While in progress IPLS can, in theory, identify measurements
needed to turn a superedge into a hyperedge. This could be used
to place special measurement requests and speed up the PL
process.

Distributed versions of the system are possible, merging
distributed knowledge afterwards using the available rules. For
example, several processor nodes in a PRN could each apply IPLS
to a local subset of nodes. The resulting local PL solutions
would then be shared by the processors and merged at each of them
using IPLS. Such an algorithm reduces the computational demand
on the processor nodes since preprocessing takes place in a

distributed fashion.

important disadvantages are:

The set of basic welding rules is infinite. Even though most
correspond to improbable configurations the possibility still
exists that such configurations might be found. An extensive
catalogue listing possible configurations and their solutions
would be required and this could easily make the system
impractical.

Computation required for basic rules involving more than a few
nodes is costly and may be too demanding in special

configurations.
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- Another drawback 1lies in the combinatorial nature of the
algorithm. This is evidenced in part by the tree nature of the

data representation of superedges.

Below we comment on this last issue, focusing on the graph search

to identify hyperedges and on the problem of reflections.

IPLS searches through the graph underlying the given problem
trying to identify subgraphs isomorphic to any of several graphs that
IPLS maintains in its data base and whose solution is known.
Searching for a given subgraph of c¢ nodes in a graph G of V nodes can
be done, if need be, by comparing all possible c-node combinations in

'G against the subgraph of interest. There are V!/(V-c)lc! possible
c-node combinations. This can be upperbounded by ve. The
comparison would take at most c(e-1)/2 operations (by considering all
possible edges). This yields o(c?) operations. Thus an upper
bound on the complexity of the graph search for a given item in the
data base is 02V°, which is a polynomial growth on V. For a
given subgraph this is a polynomial growth of complexity in the number
of vertices of the graph G. However, since the maximum size of the
subgraphs necessary in the data base grows without bound as a function
of the number of vertices in G the search mechanism is in fact

exponential in V, the number of vertices of the graph G.

The graph search and the use of the welding rules produce a set
of hyperedges to be merged gradually. IPLS must keep track of
possible configurations of these hyperedges until some new information

determines the appropriate one. As illustrated in Figure 1.3 this
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implies an exponential growth of the operation count of IPLS as a
function of the number of nodes in the network. In fact, the problem
of finding the right combination of reflections to match the given
information can be shown [Y 79] to be NP-complete. For every instance
of the PARTITION problem (stated below) there is an equivalent

instance of the problem of reflections.

PARTITION:
Given integers C1""’Cn , is there a subset S of

{1,2y...,n} such that

SUMj in S[Cj] = SUMj in 8¢ [Cj]

where S® denotes the complement of S.

For the equivalent problem of reflections consider the following

1-dimensional network:

A- n nodes and n links.
B- The network is a cycle of n links.

C- The distance measurements are: }Cil,..., }Cn}.

Note: the order in which the distance measurements are assigned to

the links does not matter (see below).

For a YES instance of the PARTITION problem the network defined
has a valid 1-dimensional configuration. For a NO instance of the
PARTITION problem the network defined does not have a valid

1-dimensional configuration.
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Suppose we have a YES instance of PARTITION, let

- c-
S-{N1,...,Np} and let S '{Ml""’Mq}' Let LNi
denote the link corresponding to the distance INiI, and similarly

. . _ c_
define LMi' Define the sets A= {LN1"”’LNp} and A=
{LM1""’LMq}‘ Consider first the situation where the network
LN1,0.I’LNP,LMq’...’LM1.

(Consecutive links share one common node.) Label Vo the common

consists of the cycle

node of LN1 and L

LNp and LMq' Starting from Vo lay out the 1links L

M1 and label Vx the common node of

Ni

of A, orienting them in the positive or negative direction of the one
dimensional space according to the sign of the integers Ni' Denote
this path of links as path P. Repeat the process with Ac, also
starting from Vo, and denote this path as path Q.

Since:

Su [Ni] = SU [N.]

M1 to p Mi1 to o'l
then, after laying out A and A% as explained, we arrive at the
same point through paths P and Q, namely at the position of Vx.
We have then a valid one dimensional configuration for the network.

To show that the ordering of the links (i.e. the assigmment of the

distance measurements) in the cycle is irrelevant define a "Transfer"

operation on link LNi (LMi) as follows:

Transfer of LNi:
Remove link LNi from the set A.

Remove integer Ni from the set S.

Relabel sets A and S as A1 and S1 respectively.

22




Bring together the end points of LNi in path P. (Hence the
position of the last node in P is changed by an amount -Ni.)

Add link L,. to the set AC.

Ni
Add integer -Ni to the set sC.

Relabel sets A® and S® as A1° and S1e

respectively.

Insert link LNi in path Q (anywhere) so that it contributes

an amount -Ni to the position of the end node of Q.

In a Transfer operation we start with sets A, S, their complements,
and a cycle network with paths P and Q of equal length (signed
length). After the Transfer of link LNi we end up with sets

A their complements, and the paths P and Q for the

S

1’ ‘I’

resulting cycle still have equal length since they were both altered
by the same amount. (Further, the 1lay out of the links in the
resulting paths is also consistent with the integers in A1,

S

1! and their complements so S1 and S.Ic is a valid

Partition for the problem.)

Thus, with Transfer operations we can turn the original cycle
network into another cycle network with arbitrary link ordering and a

valid 1-dimensional configuration would still be found.

Now, suppose we have a NO instance of PARTITION. If there were a
valid 1-dimensional configuration for the network we could arrive at a
valid Partition for the PARTITION problem (a contradiction) in the
following way.

Choose any two vertices of the network as VO and Vx. Obtain

23



the corresponding sets A1, A1c, S1, S1°, say,

from the paths P and Q defined by V_ and Vx. The union of the

0

sets S1 and S ¢ contains integers whose magnitude is the

1
same as in the set {C1""’Cn} but may possibly have the
wrong sign for some of these integers. Using Transfer operations we

can turn A,, A, s1,s1° into A, A%, s, sC,

17
such that all integers have the signs corresponding to the instance of
PARTITION given. Since a Transfer operation will change the sign of
the integer associated with the 1link Transferred and results in a
valid configuration (for the new cycle network that is produced) we

can always achieve the signs desired for any integer and have a valid

configuration. And since paths P and Q will thus have equal length.
SUMS[Cj] = SUMge [cj]

Sets S and S® constitute a valid Partition contradicting the
assumption that we have a NO instance.
Hence if we have a NO instance of PARTITION there cannot be a valid

1-dimensional configuration for the cycle network described.

Even though the problem of reflections is NP-complete we have
tried to avoid some of the combinatorial features of IPLS by
expressing the PL problem as a nonlinear optimization problem. In
such an approach there is no need to maintain an initial set of items
in a data base to implement a graph search. Also the iteration
algorithm does not keep track of all possible configurations. The
problem itself however remains NP-complete but the performance of the

algorithm in typical situations might be improved. Such an approach
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would also have greater applicability since no equivalent to a set of
welding rules is needed a priori. We seek then to study if an
iterative method for the optimization problem is capable of obtaining
a solution for instances of the PL problem provided one exists.

The equations involved in the problem are quadratic. We produce
an arbitrary assignment of positions to the nodes in the network and
define a cost function which compares distances in this assignment
with the distance information available for the problem. An iterative
descent (minimization) method is then used to converge to the

solution.

Our research is principally centered on investigating the nature
and characteristics of the cost function. We have also explored the
effect that measurement errors on the distances have on the solution

found through the minimization method.

Note that the results arrived at by a Position Location algorithm
apply to the network as it was when the distance measurements were
made. We have formulated the problem in this thesis in terms of a
static network for simplicity. The results of an algorithm would also
apply if the network configuration varies slowly with respect to the
processing time of the algorithm. We have not attempted to analyse

the effect of a network with mobile nodes.

1.3 IHESIS OUTLINE

The present chapter is an introduction to the Position Location

problem and a review of related work.
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Chapter 2 defines most of the basic terms referred to in this
thesis. It leads to the definition of "frame", which will model the
information available for processing, and to that of "infinitesimal
displacement” of a frame which is the basis for characterizing the
"rigidity"™ of a frame. The possible nature of the solutions for a
given problem are considered and a formal statement of the problem is
given. The chapter also contains an overview of the results available
relating the topology of the problem to the rigidity of the frame
associated with it.

Chapter 3 defines two possible cost functions that could be
assigned to the problem. Each gives some insight into the effect of
the choice of cost function on the results derived. They have
interesting properties in terms of local convexity at solutions
(chapters 4 and 5). The expression for the gradient of the cost
function is derived next. It leads to a simple physical analogy which
helps to visualize the dynamics of the iterations and also suggests
the existence of inflexion points other than the global minima. By
construction we show that such inflexion points may exist and so the
cost functions may not be globally convex. Considerations on the
effect of these inflexion points on the descent method and possible
ways to overcome this problem are also presented.

Chapter 4 contains the derivation of the Hessian matrix of the
cost function (the matrix of second order partial derivatives ). This
matrix is necessary both for implementation of the descent method and,
principally, for theoretical treatment of the local convexity
properties of the cost function. The theoretical treatment of

"rigidity" is presented here because of its relationship with the
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convexity of the cost function at solution points. Steps necessary to
make the cost functions locally convex at the solutions, and their
meaning, are discussed. If these steps are taken, the Hessian matrix
at the global minima (the solutions) is found to be positive definite
for well posed problems. We also state the descent method in full at
this point since the relevant structures required have been derived.

Chapter 5 considers the effect of measurement errors (i.e.
erroneous distance information) on the solution found through the
descent method. We relate the errors induced in the positions found
for the nodes to the errors in the distance measurements given. Both
sets of errors are expressed as vectors and their relationship is
strongly related to the Hessian matrix of the cost function chosen.
The relationship is valid to a first order approximation and is
derived by considering a Taylor's series expansion of the gradient
around the modified solution of the problem. The relationship has an
interesting interpretation in terms of linear algebra which
corresponds to an intuitive view of the solution produced by the
descent algorithm when measurement errors are present.

Chapter 6 contains a synthesis of the results in the thesis and
the conclusions. It also includes suggestions for future research on

the problem.
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In this chapter we give the basic definitions to be wused in
treating the Position Location problem. We then state the PL problem
in a more rigorous way and give some considerations regarding the

topology of the problem. For a reference on graph theory see [B].

2.1 PRELIMINARY

Some basic definitions follow below:

R®: The n-dimensional vector space of real numbers.

i1+ The Euclidean norm of the vector ry in a given
i

Hr
vector space. We will denote by rij the vector difference
ri-rj.

G(V,E): An undirected graph. V is the finite set of vertices of
G(V,E). E is the finite set of edges of G(V,E). E={(i,j)} is a
subset of VxV. (i,j) and (j,i) denote the same edge of E.
G(V,E) has no self-loops, i.e. (i,i) is not an element of the set
E.

Kv: Let v be the number of elements in the set of vertices V, then Kv
is the graph G(V,E) where E is the set of edges containing all
possible edges for V. In graph theory language Kv is the
"complete graph" of v nodes.

d(i): The "degree number" of a vertex i. It equals the number of

vertices adjacent to 1i. The degree number of a graph G(V,E),

d(G), equals the maximum d(i) over the set of vertices V.
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k(G):

D(G)=

The "connectivity number" of a graph G(V,E). It equals the
minimum number of vertices that need to be removed from G(V,E) to
produce a disconnected graph or a trivial (isolated vertex)
graph. (e.g. the connectivity number of the complete graph Kv is
v-=1.) A graph G is "n-connected™ if k(G)2n.

{Dij: (i, j) element of E}: The "distance set vector"

associated with the graph G(V,E). It has exactly one component
corresponding to each edge of the graph. The components Dij
are positive real numbers. Two or more distinect components of
D(G) may have the same value. Note that the components of D(G)

are required to be non-zero. We sometimes refer to D(G) simply

as the distance set.

Q(V)={Pi}: A "realization" of the set of vertices V. {ri} is

M, (QC

a set of n-dimensional position vectors, one for each vertex i of
V in the R® vector space. A realization of the graph G(V,E)

is a realization of its set of vertices V. Let rij denote

the vector ri-rj, we say that Q(V) "is contained in" Y
dimensions if the set {rij:(i,j) element of E} spans Y
dimensions. Two realizations are equal if position vectors
corresponding to equal vertices are equal in both realizations.
A realization can be denoted by an augmented vector, the
"realization vector", listing all independent variables in the
system, namely the coordinates of the r; position vectors of

the realization. Because there is a one to one correspondence
between this vector and the realization it represents we use the
symbol Q(V) interchangeably.

V)): The measurement function. It maps a realization vector
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Q(V) onto a distance set vector associated with G(V,E) according

- | [}
to Di.- Hrp,=r ie

- . l
J i

Tn(G,D(G)): A "frame". JIf there exists a realization Q(V) which

is contained in R® such that MG(Q(V))= D(G) we denominate

the ensemble of G(V,E) and D(G) "a frame". Any realization Q(V)

such that MG(Q(V))= D(G) is termed "a compatible realization
of" Tn(G,D(G)) (or simply LFY realization of"

T_(6,D(G)) ).

Sometimes, when the meaning is clear, we suppress the subindex n

from the symbol Tn(G,D(G)). The same applies to the arguments in

D(G),Q(V),G(V,E) and T(G,D).

Fact 2.1: Tn(G,D) has uncountably many realizations in RP.

We can see this by noting that starting from any compatible

realization contained in R® any combination of the following
operations with respect to an arbitrary reference system in R®
yields another compatible realization:

1- Translation.

2- Rotation.

3= Reflection (of all points in Tn(G,D) through any

given proper surface in RY).

The Euclidean distance between any two points in R? remains

invariant under any of these operations [BRI].
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2.2 PLAC IS

The following definitions will help in the treatment of the
problem. We follow in part and try to remain consistent with the
literature (e.g. [L1,[Y T79]).

Consider a graph G(V,E). Let t be a discrete or continuous
variable. We define a "realization function" Q(V,t) of the variable t
whose values are realizations of V. We will assume that V is implied
in the realization and, for the definitions in this and the next
section, we will write simply Q(t). A realization function Q(t) can
be discrete or continuous. For simplicity in the definitions below,
whenever we refer to a continuous realization function Q(t) it is
assumed to be defined in the interval [0,T] of t, and when we refer to
a discrete realization function Q(t) it is assumed to be defined at

the two values of t given in the sequence {0,T}.

It will be wuseful to introduce the concept of Isometric
Transformation. An "Isometric Transformation" of R" is a function
of the parameter t, discrete or continuous, that maps R onto
itself and assigns, for every value of t, an image point p' to
every point p in R® such that for ail pairs of points p and r, the
Euclidean distance between the image points p' and r' equals

the Euclidean distance between p and r.

Euclidean distances are invariant under Isometric Transformations.
Translation and/or rotations are examples of Isometric
Transformations. Isometric Transformations are one to one, otherwise

Euclidean distances would not remain invariant for all pairs of points
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under the Isometric Transformation. Since Isometric Transformations

are also onto they are invertible transformations.

def 2.1: A "displacement of T(G,D)" is a realization function Q(t)

of t, continuous or discrete, such that

M.(Q(t)) = D(G)

for all values of t for which the realization function is

defined.

A displacement T(G,D) is a function whose values are realizations
compatible with T(G,D). This function defines a trajectory (for the
continuous case) or an assignment (for the discrete case) of positions
for the vertices of the frame, and for all values of t in which it is
defined the distances corresponding to every edge of the frame are

preserved.

def 2.2: A "small displacement of T(G,D)" is a continuous
differentiable realization function Q(t), defined in an interval

[0,T], such that
M;(a(t)) = D(G) + o(t)

where the term o(t) is a term such that the limit of the ratio

o(t)/t as t tends to zero equals zero.

Note that the values of a small displacement need not be compatible

with T(G,D). Hence a small displacement is not a displacement proper.
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def 2.3: A "trivial displacement of T(G,D)" is a displacement of
T(G,D), discrete or continuous, which could be generated by an

Isometric Transformation.

In a trivial displacement the trajectory (for the continuous case)
or the assigmment (for the discrete case) of positions for the
vertices of the frame would be the same as for some Isometric
Transformation. Definition 2.3 implies that the distance between any
two vertices in a frame are invariant under trivial displacements of

the frame.

Figure 2.1 illustrates examples of displacements.

Figure 2.1-a: trivial displacement

(translation plus rotation)

Figure 2.1-b: non-trivial displacement

(partial reflection)
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def 2.4: An "infinitesimal displacement of T(G,D)"™ is defined to be
the derivative with respect to t, evaluated at t=0, of a small

displacement.

For infinitesimally small values of t the loci of the vertices in a
small displacement tend to (infinitesimally small) vectors tangent to
the initial trajectory of the vertices in the small displacement.
Thus an infinitesimal displacement is equivalent to the assigmment of
a velocity vector to each vertex in the realization Q(0). Note that

an infinitesimal displacement is not a displacement.

def 2.5: Two realizations, Q1 and Q,, of T(G,D) are said to
be "equivalent™ if either one can be obtained from the other by

an Isometric Transformation.

Lemma 2.1: Let Q1(V) and QZ(V) be two realizations in
n-dimensions of the graph G(V,E). Let v be the number of vertices in
G(V,E). Then Q1(V) and Q2(V) are equivalent, for

Tn(G,D(G)), if and only if
M (Q)) = M (Q)

Note: Kv is the "complete graph" (defined in section 2.1). The
equation simply means that the distances between each possible pair of
vertices in one realization must equal the corresponding distances in

the other realization for they to be equivalent.

Proof':
Necessity:

Distances are invariant under Isometric Transformations. From
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definition 2.4, if Q.I and Q2 are equivalent they are related
by an Isometric Transformation. Hence the same measurement function
applied to both realizations gives the same distance set and the
equality becomes a necessity.

Sufficiency:

Let ri denote the position vector of vertex i (i in V) for

realization Q1 and Py the position vector for the same vertex
i in realization Q2. Let <ri,rj> = denote the usual inner
product of vectors ri and rj in the finite dimensional vector
space where Q1 and Q2 are defined. Choose any vertex k of V

and consider the two sets of vectors G1 and G2 defined as:

: j in V}

G, = . = P,- :
{xJ PPy

G, = {yj PPy ¢ J din v}

Then G1 and G2 both contain a common vector, namely:
X, =y, = O-vector
From the condition MKV(Q1) = MKV(QZ) we have

Hies o= i, s

iJ iJ

<r = <pij’pi'> for all i,j in V

13°F13” j

by definition of MG(Q) and of the graph Kv (complete graph).

This implies that:

<xij’xij> = <yij’yij> for all i,j in V
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since X..=Dr..=D.. = Y..
Hence,

<xi,xi> - 2<xi,xj> + <xj,xj>

for all i,j in V

but since <xi,xi> <xik’xik>

<Yik’yik> = <yjle>

then <xi,xj> = <yi,yj> for all i,j in V
Now, for two sequences of vectors S1={x1,...,xn} and

Sz={y1,...,yn} defined in the same inner product space , a

necessary and sufficient condition for a linear Isometric

Transformation U to exist, such that U(xi) =¥y i=1,..0,m, is

that the sequences S1 and S, have the same "Gramian" [H].

The Gramian for a sequence of vectors {q1,...,qn} is defined

as the n by n matrix whose i,j entry is given by <qi,q.>,

J

i’j=1’.n-,nn

Hence, our inner product conditions on sets G1 and G2 stated

above are necessary and sufficient conditions for a linear Isometric

Transformation U: Rn->Rn to exist such that
U(x. = .o

3 =7
But,

U(xj) =z U(rj-rk) = U(rj)-U(rk) =y, = p-fpk
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for all j in V. Hence a valid Isometric Transformation T:
Rn->Rn, non-linear in general, such that T(rj) = pj
for all j in V is:

T(rjlg U(rj)-U(rk)+pk , kinV

Hence, realization Q2 can be obtained from Q1 by the
Isometric Transformation T and, from definition 2.4, they are

equivalent.

def 2.6: A "Position", Pi’ of a frame is a class (a set) of

mutually equivalent realizations of the frame.

Clearly each realization of a frame must belong to at least one
Position of that frame. Note that from lemma 2.1 each possible
realization of a frame belongs to only one Position of that frame.
Subscript i is used to identify different possible Positions of the

same frame. The set of all Positions of a frame is denoted by P.

2.3 RIGIDITY

The definition in this section classify frames according to the
nature of the displacements they admits. Again we have followed and
tried to remain consistent with existing literature (e.g. [Y 791, [Y

811).

def 2.7: A frame Tn(G,D) is "rigid™ 4if all its differentiable

continuous displacements are trivial displacements.
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As a special case of rigid frame we have the following definition.

def 2.8: A frame Tn(G,D) is "completely rigid"™ if all its

displacements, discrete or continuous, are trivial displacements.

A completely rigid frame has a unique Position since all its
displacements are trivial and hence obtainable from an Isometric
Transformation. Thus all its realizations are mutually equivalent.
Conversely, if a frame has a unique Position then it is completely
rigid.
def 2.9: A frame Tn(G,D) is M"loose" if it admits non-trivial

differentiable continuous displacements.

Note that the dimension n of T(G,D) should be specified when
refering to its rigidity and possible Positions. It could be the case
that from a given pair G(V,E) , D(G) we can obtain a rigid frame if
n-dimensional but a loose frame if (n+1)-dimensional. Consider as an

example the cycle graph of Figure 2.2 in 1 and 2 dimensions as shown.

2 3
2 =4
lr——-.——-o———gq | 4
. 1
5> -
cycle in 1-D cycle in 2-D

Figure 2.2: rigid frame in n-dimensions and loose frame (n+1)

(same underlying graph and distance vector)
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def 2.10: A frame Tn(G,D) is "infinitesimally rigid" if for all
its infinitesimal displacements the associated small

displacements are trivial displacements.

The property in definition 2.10 is particularly important. It is
a local property and very relevant to an important characterization of
rigidity. We treat this topic in chapter 4 since it is closely

related to the analysis of the descent algorithm under study.

Note that, for a given dimension, infinitesimal rigidity of a
frame also implies rigidity, as follows.

A1l small displacements  are continuous and differentiable
(definition 2.2). To each small displacement there is an associated
infinitesimal displacement (definition 2.4). From definition 2.10, if
a frame is infinitesimally rigid all its small displacements are
trivial displacements.

Since any differentiable continuous displacement is a small
displacement in the interval [0,T] (with o(t)=0 ), then all
differentiable continuous displacements of the frame are trivial

displacements. Hence, by definition 2.7, the frame is rigid.

We can extend the notion of rigidity. Because to every
realization Q(V) of a graph G(V,E) there corresponds exactly one frame
(whose distance set is specified by M,(Q) ) definitions 2.7 to
2.10 can also be applied to realizations of a graph. For example, we
can say that a realization of some graph is rigid if the corresponding

frame is rigid.
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2.4 MODEL AND PROBLEM STATEMENT

From the definition of Position (definition 2.6) we see that the
reference system used to express the realizations is irrelevant. This

captures the nature of the PRN Position Location problem.

Consider a PRN in n-dimensions. A distance measurement process
generates, conceptually, a graph G(V,E), whose edges stand for the
existence of a measurement, and a distance set vector D(G) specifying
the measured distances. Assuming exact measurements and since the PRN
exists in Euclidean space, there will be at least one class of
realizations compatible with D(G) and hence the information generated
does constitute a frame Tn(G,D).

The measurement process corresponds to a measurement function
MG(Q), where G specifies which measurements are present and Q is
the realization vector specifying the position of the nodes in the
network. The value of NE(Q) is the distance set vector D(G) and
the process results in a frame Tn(G,D).

If measurements are inexact a modified distance set D'(G) is
produced and two situations are possible: There exist some
realization compatible with D', in which case the result of the
process is a modified frame, or else there exist no realization
compatible with D'. In this last case we refer to the information
produced as a "pseudo-frame" since there is no Position for it in

Euclidean Space.

The effect of measurement errors is considered in chapter 5. We

will state the problem here assuming exact measurements. First we
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state a strict version of the problen.

The strict PL problem could be stated as follows:
INPUT: A frame Tn(G,D).
QUESTION 1: 1Is Tn(G,D) completely rigid ?.

QUESTION 2: If it is find a realization of Tn(G,D).

If the answer to QUESTION 1 is YES and the realization found for
QUESTION 2 is Q0 then we are able to find the distance between any
two nodes of the network since complete rigidity implies that all
realizations of the frame are equivalent and from lemma 2.1,
MKV(Q0)=MKV(Q)’ where Q specifies the positions of the
nodes in the network. This capability would be a desirable feature in

PRNs.

We can relax the problem statement for greater generality. A
relaxed PL problem could be stated as follows:
INPUT: A frame Tn(G,D).
QUESTION 1: Is Tn(G,D) rigid ?.
QUESTION 2: If it is find a realization for each of the possible

Positions.

The relaxed version of the problem is useful since a rigid frame
which is not completely rigid may still represent valuable position

information.

2.5 IOPOLOGY
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Deciding for the rigidity of a given frame is of relevance to the
PL problem. As would be expected the topology of the graph underlying
the problem is closely related to this property. Some trivial
examples: if the underlying graph is disconnected the frame is loose;
iff the wunderlying graph corresponds to a cycle of more than three
edges the frame is loose for two or higher dimensions; if the
underlying graph corresponds to a triangle the frame is completely

rigid.

In fact it is easy to show that all frames whose underlying graph
is complete are completely rigid:
Let realizations Qi and Qj be any two realizations of
Tn(G,D).
If G is a complete graph then,
M.(Q,) = D(G) = MG(Q;;)
which by lemma 2.1 implies that Qi is equivalent to Qj and so

Tn(G,D) has a unique Position. Hence it is completely rigid.

Topology however is not enough to characterize rigidity in
general. Figures 2.3-a and 2.3-b show two realizations for
2-dimensional frames of equal topology but different distance sets
(note that one edge is hidden in Figure 2.3-b). The first case
corresponds to a rigid frame with two possible Positions and the
second to a completely rigid frame. In this section we state more
precisely the role of topology on the problem by presenting some of
the most important results available in the literature regarding the

relationship between topology and rigidity.
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3
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|
1 ! ¢
Figure 2.3-a Figure 2.3-b
Rigid, 2 Positions Rigid, 1 Position

(both frames have equal topology; one edge is hidden in 2.3-b)

To express the role of topology we will require the concept of
connectivity (section 2.1) and theorem 2.1 (from Gluck [Gl]). His
theorem was originally stated for 3 dimensions but can be generalized
to n dimensions [AR]. We have adapted it to our definitions. This

theorem will be discussed in greater detail in chapter 4 (see also [Y

811).

Theorem 2.1: Let G(V,E) be a graph of v vertices. Let the position
vectors of the vertices in a realization of G(V,E) be R", and
identify the space of all possible realization vectors with R%,

Then if there is a frame Tn(G,Do) which is infinitesimally
rigid, the set of frames T(G,D) (with D=D(G) arbitrary), of n
dimensions or less, which are infinitesimally rigid corresponds to an

open and dense set of realization vectors in R,
Proof: See section 4.3
Theorem 2.1 implies that if there is a frame for G which is

infinitesimally rigid then those frames of G which are not
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infinitesimally rigid correspond to realization vectors in R
belonging to a =zero probability measure set with respect to a Borel

probability measure absolutely continuous to the Lebesgue measure.

A topological characterization of infinitesimal rigidity is thus
useful and meaningful. Specially since infinitesimal rigidity implies
rigidity. We can speak of graphs with "rigid topology" meaning a
graph for which loose frames correspond to degenerate situations in
the sense of Theorem 2.1. The information available in such
degenerate cases is simply not enough for the problem to have a
solution. Figures 2.4=c illustrates one such situation. The
explanation to Figures 2.4 is at the end of this section but for
clarity we have referred to them here. The discussion below refers

then to the typical case, i.e. excluding degenerate situations.

def 2,11: A graph is n-rigid if n-dimensional frames corresponding to
this graph are infinitesimally rigid with probability one in the sense

of theorem 2.1.

A similar reference could be made to locoseness of a graph.

Because of its practical importance (and tractability), existing
literature in the subject treats almost exclusively the problem of
infinitesimal rigidity in the 2-dimensional (2-d) case. The problem
of complete rigidity has received little or no coverage. We present
first an overview of the 2-d case, ¢trying to include complete

rigidity, and then comment on the n-d case.
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2.5.1 On complete rigidity.

The definition below will be useful. Let V be a set of vertices

and Q(V) be a realization of these vertices in a real m-vector space.

def 2.12: A set Vn+1 of n+1 vertices, subset of V, is "Maximally

Spanning" if the set Z.= {r,.: i,j in

0 ij } spans n

vn+1

dimensions.

Note: The definition arises from the following consideration.
For any set Vn+1 of n+1 vertices, the corresponding set Z0 (as
defined above) can span at most n-dimensions. To see this consider

any node i of Vn+1 and the set of vectors

Z1={ 23 AnV s J £ 1i}. Any vector r,, of

o can be expressed as a linear combination in the set 2

r‘Jl
2 1

(e.g- r =r

k1= -r

Hence the span of Z0 equals the

ki li)'

span of Z1. Since Z1 has n vectors then the span of Z1
can be at most n-dimensional. Hence Z0 can span at most
n-dimensions.

Finally, there will be instances of sets Vn+ for which the

1
corresponding set Zo will in fact achieve the maximal span of
n-dimensions; e.g. consider a situation, with n<m (m as defined
above), where the set Vn+1 consists of a vertex at the origin and
each of the remaining n vertices lie in a different orthogonal axis.

(For n>m it is not possible for a set Vn+ to be Maximally since

1

the space of realizations itself is only m-dimensional.)

Also note that if a set Vn+1 is Maximally Spanning then any set

Vk+1, subset of Vn+1’ is also Maximally Spanning. To see this

45

e e a1t e = 2w et e wtr e v emwe et . o amame e e ot = e,




assume that Vk+1 is not Maximally Spanning. Then its

corresponding set Zo={rij: i,j in Vk+1} could span at most
k-1 dimensions (or else it would be Maximally Spanning). If we add to

the set V the remaining n-k vertices of Vn+1 not already in

k+1

Vk+1 then the resulting set of vertices (Vn+1 itself) can span

at most n-1 dimensions since the added vertices could add at most n-k

dimensions to the span of Vk+1 (resulting in a total of n-1

dimensions at most).

lemma 2,3: Vn+1’ subset of V, is Maximally Spanning if and only

. P = .0 3
if for any vertex i in Vn+1 the set of vectors 22 {rJl 3

in Vn+1} spans n dimensions.

Proof':
Necessity: Suppose Vn_'_1 is Maximally Spanning. Then the set

Zo={r..: i,j in Vn+1} spans n dimensions (from definition

ji
2.12).

Take any vertex i of Vn+1, the set
Z1={Pji: j#i, j in Vn+1} is a basis for the affine space

defined by Vn+1 since Z1 is a set of n vectors and all other

vectors in Z0 are linear combinations of these. If Z1 is a

basis then Z2 spans n dimensions since Z1 is a subset of

ZZ'
Sufficiency: If 22 spans n dimensions so does Z0 (since
vectors in Zo are also linear combinations of 22), which means

that Vn is Maximally Spanning.

+1
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lemma 2.4: Let G(V,E) be a graph of v nodes. Let Q(V) be a
realization of G(V,E) contained in n~dimensions, n<v. Assume that
any set of n+1 vertices in Q(V) is Maximally Spanning.
Then a necessary condition for Q(V) to be completely rigid in
R" is
k(G) 2> n+1
Proof':
Let k=k(G) and assume k<n+1. Then, by definition, there exists a
set Vk (a "point-cut-set") of k vertices whose removal results in
a disconnected graph (the removal cannot result in a trivial graph
since v>n+1).
There must then be at least two subsets, V1 and V2, such
that the three sets V1, Vk, V2 are mutually disjoint.
Because of the Maximally Spanning assumption in the lemma, Vk
nust be Maximally Spanning and hence defines an affine
(k=1)-dimensional space, Sk-1 say.

By the same assumption, neither V. nor V2 can have vertices

1
in Sk-1' otherwise there would exist a set of k+1 vertices which
is not Maximally Spanning.

Hence, either V1 or V, could undergo a proper reflection

2

through Sk_1 which would not correspond to an Isometric
Transformation for the full graph but which would produce a new
realization compatible with the distance set vector. Thus the frame

associated with Q(V) would have more than one Position, i.e. Q(V)

would not be completely rigid.
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Lemma 2.4 can be made more general if we only required to be
Maximally Spanning sets those sets of k+1 vertices containing some

point-cut-set Vk as subsets.

For two dimensions 3-connectivity is a necessary condition for
complete rigidity for graphs of four or more vertices. By inspection,
graphs of less than four vertices must be complete to be completely
rigid in 2-d (otherwise they are loose); this is also a sufficient
condition. An example of a 3-connected graph whose realizations are

typically completely rigid is that of Figure 2.U4.
2.5.2 On sufficient conditions for rigidity.

A strong result presented by Lovasz and Yemini [LY] exists for the 2-d

case.

Theorem 2.2: Every 6-connected graph is 2-rigid. Also, if three
edges are deleted from a 6-connected graph the resulting graph is also

2-rigid.

Proof: see [LY]

The definition for 2-rigid graph is that of definition 2.11.

Hence note that rigidity here is in the sense of theorem 2.1.

The proof of theorem 2.2 is based on important results derived by
Laman [L] and because of their relevance we present them below.
v denotes the number of vertices of graph G

e denotes the number of edges in the graph G.
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1 ]
v',e are defined similarly for subgraph G of G.

Theorem 2.3: Every rigid 2-d frame T2(G,D) contains another
1 ]
subframe T2(G oD ), also rigid, with v vertices and exactly 2v-3

edges, (G' subgraph of G, D' subset of D).

Note that 2v is the number of independent variables in the system
and that 3 is equal to the number of degrees of freedom of an object

in 2 dimensions.

Theorem 2.4: Any rigid 2-d frame T2(G,D) with v vertices and
exactly 2v-3 edges has the following property:
If G(V,E) is a subgraph of G(V,E)  with
1 1 1]
E ={(i,j): (i,j) in E and i,j in V } and v >2 then

] |}
e <L2v =3.

Laman also shows that the conditions expressed by theorems 2.3
and 2.4 are sufficient conditions, in the sense of theorem 2.1, for

2-rigidity of a frame in two dimensions.

Theorem 2.3 says that every rigid frame (2-d) has a rigid "core"
(rigid subframe), with the same number of vertices as the original
frame, and that edges outside this core are not necessary for
rigidity. Theorem 2.4 implies that such a core has no subframe which
is rigid (since no subframe satisfies theorem 2.3), thus all edges in

the core are needed to make it rigid; there are no redundant edges.
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The proof of Theorem 2.2 uses these necessary and sufficient
conditions. Lovasz and Yemini also show that 6 is the lowest
sufficient connectivity number for 2-rigidity by constructing a class
of 5-connected graphs which can be shown to violate Laman's
conditions.

Regarding graphs of 6 or less nodes (which implies 5 or less
connectivity) it is conceivable, in the abscence of other
characterizations, to exhaustively test for 2-rigidity of topologies

suspected of being rigid.

2.5.3 On extension of rigidity conditions to n-dimensions.

It is clear that 1-connectivity implies rigidity in 1-d problems.
Despite efforts, a characterization of rigidity similar to Laman's
theorems for the 2-d case has not been found for the n-d case, and the
equivalent of Laman's result does not hold in 3-d [Y 81]. This makes
the search of sufficiency conditions for rigidity in 3-d even harder.
We are not aware of a topological characterization of rigidity for a

general number of dimensions.

2.5.4 Testing for connectivity:

The importance of connectivity to the PL problem is evidenced by
Theorem 2.2. Besides, connectivity of a graph can be tested for with
polynomial time algorithms. These algorithms use the fact that the
connectivity number of a graph is equal to the maximum number of
point-disjoint paths (i.e. no common vertices) between "any" two
vertices in the graph ([Hal,[B]). Application of the maximum flow

algorithm can then be used to find this maximum number of disjoint
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paths. Even's algorithm [T] is a particularly efficient one.

A connectivity test for rigidity would answer incorrectly if the
frame being tested has a rigid underlying graph but corresponds to a
degenerate case. A typical example is illustrated in Figure 2.4. The
example is shown for 2 dimensions. Figure 2.4-a just shows the
topology of the graph underlying the example. Figure 2.4-b shows a
frame with this topology which is rigid [L]. Figure 2.4-c shows a
degenerate situation for the topology, the perimeter of the frame
(Position A) corresponds to a regular hexagon; in this instance the
frame is in fact loose [L]. [L] gives the analytic function,for the

loci of the vertices, to move from Position A to B (Figure 2.l4-c).

Note the abscence of triangles in the topology. A system using

triangulation for example would not be suitable for this problem.
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Figure 2.4-a: topology

&0

Figure 2.4-b: realization of a rigid frame

Position A Position B

Figure 2.4-c: realization of a loose frame
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CHAPTER 3

Having explained and formally stated the problem we now propose

an approach for its solution.

Chapter 2 gave an overview of the tools available to answer
Question 1 of the PL problem: What is the nature of the solutions ?
(i.e. regarding rigidity.) We mentioned topological characterizations
for rigidity. Results available cover mainly the one and two
dimensional cases. In chapter 4 we will explain another
characterization of rigidity through the idea of "infinitesimal

rigidity" (definition 2.9).

In chapters 3 and 4 we address Question 2 of the PL problem:
finding a solution when it exists. We will assume then that the input
frame is rigid. Chapter 1 mentioned the Incremental Position Location
System. We propose a different approach. Esentially we consider the
use of an iteration method to find the answer. A suitable cost
fﬁnetion will be defined and a descent method used to converge to the
solution. We investigate this method by analysing the nature of two

suitable cost functions.

Using a descent algorithm we expect to avoid in part some of the
combinatorial aspects of algorithms like IPLS and the complexity of an
analytic approach to the solution of the simultaneous nonlinear
(quadratic) equations inherent to the problem. The problem remains
NP-complete as mentioned in section 1.2.2 but we avoid the explicit

graph search and keeping track of possible reflections which are
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present in IPLS.

3.1 SPACE OF OPERATION FOR DESCENT METHOD

We consider the frame Tn(G,D) with graph G(V,E) and distance
set D(G). We will first explain some of the concepts to be used in
dealing with the PL problem and at the end of this section we include

an example which will hopefully clarify these ideas.

Our descent algorithm starts from an arbitrary initial
realization of G. This realization is represented by the realization
vector QO’ The independent variables consist of the vertex
coordinates. The algorithm uses the first and second order
derivatives of a cost function defined on these variables (section
3.2) to iterate towards a realization compatible with T. Several
methods of iteration exist for treating nonlinear optimization
problems. Simply stated, the kth step of iteration finds a
realization Qk using the equation

Q = Q.4 + £(Q_,) 3.1
where f(.) is a function specified by the method chosen (see section

4.8).

For a frame Tn(G,D) we will allow, in the algorithm,
realizations of G in m-dimensions, with m > n. Thus we define the
"space of operation" of the algorithm to be S+=Rm, m 2> n.
Conceptually, we have an arbitrary frame in S+, whose underlying
graph is also G, and which is gradually modified through equation 3.1

until a close approximation to the frame T is obtained.
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Since the Positions of T are contained in R" we find it
useful to define a "space of solutions", SO+, as the subspace
R" of S+, i.e. SO+=Rn. If the frame is rigid in
n and higher dimensions we can take special provisions to make the
possible solutions of the problem to be contained in SO+.
These provisions are discussed in section 4.5.

Note that rigidity of a frame may depend on the dimensions of the
space in which it is imbedded; Figure 2.2 showed an example of this.
Hence if the input frame T, which is rigid in n-dimensions by
assumption, is loose in the space of operation further provisions are

necessary to converge to S * so that the solution for the

0
problem is found. Again we defer mention of this topic to section

4.7.

Let m be the dimension of S* and v be the number of vertices
in G. Then, from the analysis point of view, a realization of G in
S* is an mv-vector Q. The components of Q are all the independent
variables in the system, namely each coordinate of each vertex in G.
Hence we define the vector space S=R™, It is in this space S
that the cost function is defined.
A given realization of G can be thought of as some frame in the
space of operations S* or as a point in the space S. We call S
the "function space". Finally, the nv-subspace of S corresponding to

the space of solutions is denoted by SO.

The simple example that follows helps to illustrate the
definitions given above.

Consider a 3-node network (PRN) in two dimensions and assume that
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the nodes are not collinear. A measurement process finds the
distances between all pairs of nodes and the information is presented
to an algorithm for solution:

The graph G(V,E) underlying the problem is a triangle.

The position of the nodes may be considered as a realization,
QA say, contained in 2-dimensions.

The distances obtained through the measurement process are given by
the vector DA= MG(QA).

The input to the algorithm is then the frame T2(G,DA).

The set P of Positions of T consists of 2-d realizations.

For a triangle there exists a unique Position. The Position
Location Algorithm may then operate conceptually in a 3-d space of
operation S+=R3, assigning 3-d posiftion vectors to the
vertices in G. With special provisions the iterations will converge
to a realization compatible with T and contained in the two

+_o2

dimensional subspace SO =R".

From the analysis point of view the algorithm starts with a 9-d
realization vector Q0 in the function space S=R9. It uses the
cost function and equation 3.1 to iterate to a realization vector
Qend in the space of solutions So. S0 is a 6-d subspace

of S where the solution is found.

Convergence of iteration methods in nonlinear optimization
depends on the nature of the cost function being used, particularly on
the behavior of the matrices of first and second order derivatives of

the cost function, i.e. the gradient and Hessian matrices
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respectively. The analysis of these matrices in our problem is a

major part of our research.

3.2 COST FUNCTION

Two choices of cost functions will be treated in this section.
They correspond to a natural way of comparing an arbitrary realization
of a graph with a given frame for that graph. Moreover, these cost
functions, as will be seen, lead to interesting structures for their
first and second order derivatives. Each of these cost functions
leads to similar analytical results but it is useful to present their
particular characteristics. Developing both of them serves to
illustrate what is fundamental to the problem and what is particular

to each of the cost functions.

Consider the frame Tn(G,D). Let Q denote a realization
vector of G and P denote the set of Positions of T. Assume that T is

rigid.

For a given realization vector Q we consider cost functions C(Q)
of type A and B (3.3.a and 3.3.b respectively). For the purpose of
explanation we