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Abstract
Every two minutes, a luminous, millisecond-duration flash of radio light arrives at Earth from outside the Milky

Way. These elusive fast radio bursts (FRBs) last just a millisecond, and the vast majority are never detected again.

FRBs are powerful probes of dark matter and cosmological structure, and offer insights into magnetars: a rare

class of neutron stars which produce the strongest magnetic fields in the Universe. However, because FRBs

are so fleeting, the field is grappling with much simpler questions: How do magnetars emit FRBs? From what

galaxies (and redshifts) do FRBs originate?

Pinpointing FRBs to their host galaxies using the Canadian Hydrogen Intensity Mapping Experiment

(CHIME) is perhaps the single most promising path towards uncovering the mystery of FRBs. CHIME detects

about 700 FRBs per year, but lacks the resolution to pinpoint its bursts. Very-long baseline interferometry (VLBI)

is a solution which uses widely-separated telescopes to achieve high angular resolution, but this technique has

been limited to following up the small fraction of sources which repeat. In this thesis, I develop key technologies

to combine wide-field observations for FRB detection with high angular resolution for FRB localization in one

instrument, including high-bandwidth digital instrumentation, a stable reference clock for CHIME, and two

telescopes, observing in tandemwith CHIME over 3000-kilometer baselines. I wrote a VLBI correlator to analyze

data from the testbeds, and used the array to successfully pinpoint a one-off FRB with sub-arcsecond precision at

the time of detection. This sets the stage for CHIME Outriggers: three dedicated telescopes which will enhance

CHIME’s angular resolution to sub-arcsecond scales over CHIME’s entire field of view, pushing FRB science

into an era of plentiful and precise localizations.

I also develop a new way to use FRBs as probes of sub-solar mass primordial black holes. By exploiting

multi-path interference in gravitational lensing, I conducted a novel search for lensed FRBs. We find that some

FRBs exhibit plasma lensing (scintillation), which we attribute to the Milky Way’s interstellar medium, and use

our null search to place new constraints on extragalactic primordial black holes as dark matter.
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2.1 Interior of the baseband recorder backend. The baseband

recorder architecture features four server grade network cards

connected via a PCIeX16 slot to two CPU sockets, each of which

can access 512 gigabytes (GB) of RAM with low latency. While

awaiting a dump trigger from CHIME, our baseband recorder

runs a customversion of the kotekan software frameworkwhich

buffers 40 seconds of complex-valued baseband data for 256 of

the Pathfinder F-engine’s 1024 frequency channels. Four such

baseband recorders could process the 0.8 Tb/s of data com-

ing out of the Pathfinder, or an outrigger with similar data

throughput. A full parts list is provided in Appendix 2.6. . . . 38

2.2 CHIME waterfall plot for FRB 20191219F. At UTC 2019-12-

19T16:51:34, the detection of an FRB in CHIME triggered a

simultaneous dump of channelized voltage data at CHIME/FRB

and the CHIME Pathfinder. After nulling channels containing

radio frequency interference, we beamform the baseband data

at the optimum position calculated by the baseband pipeline,

and plot the flux of the burst as a function of time and frequency

in the 400-800 MHz band. . . . . . . . . . . . . . . . . . . . . . 40

2.3 Absolute magnitude of the temperature-normalized visibil-
ity between CHIME Pathfinder and CHIME/FRB, in both the
north-south and east-west polarizations, calculated and as a
function of time and frequency as in Eq. 2.2. The morphology

of the pulse as it appears in cross-correlation matches that de-

tected at CHIME/FRB, revealing the detection of FRB 20191219F

in cross-correlation between the two telescopes. . . . . . . . . 41

2.4 Top: Successful fringe fit for FRB FRB 20191021A. We plot the

slowly-varying phase!�%
1� of the CHIME–Pathfinder visibility as

a function of frequency in theNS andEWpolarizations. To guide

the eye, we bin over frequency channels with a resolution of 16

MHz, and overlay the corresponding best-fit delay model (solid

line). Bottom: Maximum likelihood "2 statistic as a function
of RA. The log-likelihood function (negative of Eq. 2.7) shows

a clear minimum at the best-fit position of the FRB. Though

we are fitting # ≈ 512 visibilities, systematic effects such as a

differential beam phase and confused calibrators prevent the "2

statistic from reaching its expected value of≈ 512 at itsminimum

in parameter space. In addition, we slightly underestimate the

thermal noise on the visibility, not taking into account the

increased system temperature when the transient is on. . . . . 43
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2.5 Sky maps of the four fields we observed, with a ‘+’ denoting
the approximate position of the pulsar/FRB, and bright NVSS

calibrators with (1.4��I > 1.5 Jy indicated with black dots. The

thick black lines denote the calibrator used to phase-reference

each pulsar/FRB. Contours denote the FWHM of the primary

beam of both telescopes [41] in the NS and EW polarizations

at 600 MHz. The vertical black bars denote the meridian at the

time of observation. . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Deviationof the localizedpositionsofB0329+54andB0355+54
from their true positions along the RA direction as calculated
by using different NVSS calibrators as delay centers. The
discrepancy in degrees is quantified as the coordinate offset

ΔRA × cos(DEC) and is plotted with 3� statistical error bars.

We compute localizations for the same pulsar using different

phase centers to study the effect of using different delay centers

on the same transient. The shaded gray band is drawn to guide

the eye and allows us to estimate the systematic localization

offset of the two FRBs, whose closest calibrators are 0.8 and 8

degrees away respectively. . . . . . . . . . . . . . . . . . . . . 46

3.1 Allan deviation of the CHIME GPS clock and the DRAO hy-

drogen maser. Blue: Allan deviation of the CHIME GPS clock

as measured with the clock stabilization system described in

Section 3.5. A total of 10 days of raw ADC data at 30 s cadence

were collected for the measurement. Dashed blue: expected

measurement error contribution to the Allan deviation obtained

from simulations of uncorrelated but time-dependent errors in

the range ∼ 4 − 20 ps rms (the range observed in the measured

delays). Dashed green: stability requirement from Equation 3.4

assuming white noise delay errors. Red: manufacturer-specified

Allan deviation of the DRAO maser. The CHIME GPS clock

does not meet the stability requirements for FRB VLBI, but the

DRAO maser does (Equation 3.4). . . . . . . . . . . . . . . . . 55

3.2 Maser signal path. The 10 MHz maser signal is transported

through ∼ 500 m of buried coaxial cable from the seismic vault

to one of the CHIME F-engine RF huts. There, themaser signal is

conditioned to a waveform that can be digitized by the CHIME

F-engine (see Section 3.5.2 for details). . . . . . . . . . . . . . . 57

3.3 Three examples of the behavior of the GPS clock delay on

timescales of a fewseconds asmeasuredby the clock stabilization

system with respect to the DRAO maser. The raw ADC data

cadence for this measurements was 40 ms. The measurement

errors are in the range ∼ 2 − 13 ps. The characteristic triangle

wave pattern is due to the algorithm that disciplines the crystal

oscillator in the GPS unit. The algorithm works by counting

the number of clock cycles between successive GPS PPS pulses

and adjusting the crystal’s temperature to ensure 10 million

counts between pulses. The size of the temperature tuning steps

changes depending on the tuning history of the oscillator. . . 59
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3.4 Comparison of the CHIME-Pathfinder relative clock delay in-

ferred via the clock stabilization system and interferometric

observations from a single transit of CygA. Top: relative clock

delay (in ns) as a function of time, as inferred from CygA

baseband data (blue), raw ADC maser data (red) and maser

baseband data (green). Bottom: difference between sky-based

and maser-based measurements of the relative clock delay (raw

ADCmaser data in red, baseband maser data in green), demon-

strating agreement between the two methods. The large error

bars for all but the last point in the raw ADC data analysis

(red) are due to current limitations of the Pathfinder raw ADC

acquisition system (see Section 4 for details). The error bar in

the last red point of the top plot (∼ 14 ps) is representative of

the expected accuracy of the clock stabilization system using

raw ADC data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Top: comparison of the CHIME-Pathfinder relative clock delay

inferred via the clock stabilization system (red) and interfero-

metric observations (blue) of frommultiple transits of CygA. For

each transit, we made five measurements of the relative clock

delay, spaced by one minute, for nine days in a row. Bottom:

difference between sky-based and maser-based measurements

of the relative clock delay. The two methods show excellent

agreement on short (minute) and long (many days) timescales.

This indicates that the clock stabilization system we have imple-

mented can track clock delay variations with better than ∼ 30 ps

rms level precision. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Top: measured delay variations of the rubidium oscillator tested

as a candidate reference clock for outriggers without a maser.

Bottom: measured Allan deviation of the Rb clock (blue), mea-

surement error (dashed blue), andmanufacturer-specified Allan

deviation of the Rb clock (green points) and the DRAO maser

(red points). The measured Allan deviation of the Rb clock

is consistent with the specification at intermediate and long

timescales. At short time scales the noise of the timing stabi-

lization system dominates the performance, but it is still small

(∼ 10 − 30 ps) compared to the clock timing error budget. This

confirms that the hardware of the clock stabilization system is

not a limitation for clockperformance inCHIME/FRBOutriggers. 66

3.7 Projected clock errors, �clk

� , of the Rb clock as function of the

time between calibrators ΔC20; from measured delay variations

and simulations of realistic timing calibration scenarios. This

metric represents an estimate of the largest clock timing error

for ΔC up to ∼ ΔC20;/2 (see Section 3.7 for details). The dashed

black horizontal line represents �clk

� = 200 ps. Even in the most

conservative scenario where we assume that all the calibra-

tors have SNR = 15 (solid green), the Rb clock timing errors

stay below 225 ps up to ΔC ∼ 10
3
s by interpolating between

timing solutions, meeting the requirements for FRB VLBI with

CHIME/FRB Outriggers. . . . . . . . . . . . . . . . . . . . . . 66
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4.23 Empirical measurements of delay residuals as a function of

time for an observing run in February-March 2021. Top: we

measure VLBI delays in single-pulse Crab data. compensating

only for geometric delays (black circles) and compensating for

geometric delays and the best-fit slant TEC in each observation

(red stars). Local clock corrections are computed at DRAO (blue

plusses) and at GBO (green crosses). It can be seen visually

that the local clock corrections roughly trace the measured

delays.Middle:We apply clock corrections to measure residual

delays.Uncorrected delay residuals (black and red, same as

top plot) are shown for comparison with the corrected delay

residuals after applying DRAO clock corrections (blue) and

both DRAO and GBO (green) clock corrections. Bottom: For
comparison with theory, we compare the residuals to expected

errors from the short-timescale jitter of the GPS clock at CHIME,

and the long-timescale relative drift of themasers at both stations. 93

5.1 Fringes on the NCP Source (NVSS J011732+892848), detected in

a ≈ 50 ms baseband dump at CHIME and KKO. . . . . . . . . 100

5.2 Correcting for a fractional sample delay across the band. Note
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CHIME-KKO data. Left: The fractional sample correction ap-

plied to a Crab giant pulse. Right: The fractional sample correc-
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5.4 Simulated fringe finding for a source located at some known

delay. Yellow: With the basic correlator (Eq. 5.18), sensitivity

is reduced at half-integer frame lags. Blue, Green, Red: With

more sophisticated correlators, this loss can be mitigated on

average. The “violin” contours reflect the distribution of S/N

ratios recovered with 128 injections at that delay with random

noise and signal realizations. The optimal ((/#2
) correlator is

least affected by segmentation loss. Applying this algorithm

to data from CHIME and the CHIME Pathfinder has thus far

yielded consistent results, with the caveat that we have not

tested our correlators at exactly half-frame integer lags where

the differences between correlators is most pronounced. . . . 111

5.5 A realization-by-realization comparison of the detection signal-

to-noise the signal-to-noise measured by each correlator variant

(labeled SNR) compared to the signal-to-noise measured by the
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lags, while the improvement is less pronounced for small delays. 112
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5.6 The empirical correlation function between neighboring frames

in CHIME x CHIME autocorrelation data, PF x PF autocorrela-

tion data, and CHIME x PF cross-correlation data, as produced

by various correlators. Top and middle: In CHIME x CHIME

and PF x PF autocorrelation data, we sum the autocorrelation

+:; over the frequency axis, and plot the result as a function

of ;, for the basic correlator (yellow). The correlations along

the integer lag axis ; are present at the ≈ 20% level, and are

in agreement with the autocorrelation of the PFB kernel as a

function of delay at those lags (black dotted). . . . . . . . . . 116

5.7 A high-level description of the various stages of FRB localiza-

tion. The solid arrows denote the various stages in our pipeline.

First, an initial guess of the FRB’s initial position is computed,

with sub-arcminute precision, from the CHIME/FRB beam-

former [38]. This allows for fringes to be found, and a coarse

localization within the synthesized beam refines the correlator

pointing. The data are re-correlated towards the new pointing,

which improves the correlation signal-to-noise. . . . . . . . . 122

6.1 VLBI Localization of FRB 20210603A. The 1� and 2� local-

ization contours, defined by an empirical estimate of our lo-

calization errors using Crab measurements, are overlaid on

a CFHT MegaCAM 6A8-band image of its host galaxy SDSS

J004105.82+211331.9. The nearly edge-on geometry of the host

galaxy is apparent. We use an arcsinh scaling of pixel values,

and allow the pixel colors to saturate in the bulge, to accentuate

the faint structure on the outskirts of the galaxy. The localization

and burst properties point towards a progenitor living deep in

the ionized disk of the galaxy. . . . . . . . . . . . . . . . . . . 141

6.2 Map of baselines formed between CHIME and ARO10 (CA)
and TONE (CT). The baselines span from Penticton, BC to

Algonquin, ON, and Green Bank, WV with lengths 1CA =

3074 km and 1CT = 3332 km. For our localization analysis, we

omit the 848 km baseline between ARO10 and TONE because

the FRBwas not sufficiently bright to be detected on that baseline. 142
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7.1 Top row: The phaseΩ)(x) corresponding to the lensing poten-

tial)(x , y) = 1

2

|x−y |2−ln(|G |), for three values ofΩ = 1 (heavily

diffracted), Ω = 5, Ω = 25. We fix the source at y = (1, 0) and
evaluate the phase as a function of position in the lens plane, vi-

sualized with a 2�-periodic colormap. To guide the eye, we have

drawn two circles centered on the loci of the image positions

x± evaluated in the geometric optics limit. The radii of the pairs

of circles are proportional to the flux magnification ratios �±,
and are scaled as 1/Ω. Top left: In the heavily-diffracted regime

(Ω = 1), the time delay between images is less than 2� radians.

The images are superimposed in the time domain within one

wavelength, and are rendered indistinguishable due to diffrac-

tion. Top center:As the frequency increases (Ω = 5), the images

are separated by more than one wavelength, and there are sev-

eral oscillations between the two stationary points of the lens.

The images are therefore no longer blended by diffraction; they

become distinguishable in both the time domain and the angular

domain. The interference leads to constructive and destructive

interference of the phase of the integrand when integrated over

the whole lens plane, and shows a simple sinusoidal functional

form when plotted againstΩ. Top right: In the high-frequency

limit (here shown as Ω = 25 for visualization purposes), the

two images in the time domain are very well-resolved. The total

magnification may be treated as a sum of discrete images – the

discrete stationary points of the lens potential – using geometric

optics.Middle/bottom rows: The saddle-point approximation

to the “plus”/“minus” image individually, for the same three

values ofΩ. It can be seen that the saddle-point approximation

works better and better for higher values ofΩ, as the relevant

parts of the integrand become increasingly confined around the

stationary points. Note that a second saddle point appears on

the right side of the bottom right panel; this is a image rendering

artifact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2 The transition from geometric to diffractive optics, as quantified

byΩ = 4�'B/�, as function of lens mass and observing wave-

length. Right half: At longer wavelengths, advances in instru-

mentation (e.g. wideband voltage recording in radio telescopes

and gravitational wave detectors) have enabled measurements

of the amplitude (coherent detection) instead of the flux (in-

coherent detection). Left half: At highΩ, the stationary-phase

approximation holds, and geometric/Eikonal optics applies. In

most scenarios, this is an excellent approximation. However, the

stationary-phase approximation breaks down for long wave-

lengths or shallow local minima in the time-delay potential,

(Ω � 1). In this regime lensing is referred to as diffractive, and

the unique frequency-dependence of diffractive lensing may be

observable. In theΩ � 1 regime, the lenses can be thought of

as being “too small” to impart any phase on the passing wave. 185
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7.3 A schematic depicting different regimes in gravitational lens-

ing as a function of Ω. Left red: When Ω ∼ 1, we are in the

diffractive or wave optics regime where the lensing is present

but suppressed (|� |2 → 1) for Ω << 1. Center blue: In the

eikonal regime, the interference fringe between the two images,

here represented as two amplitudes �+ and �−, is clearly visible.

The total magnification has a perfect sinusoidal dependence

(see Eq. 7.38) with a characteristic spectral oscillation scale of

1/�;4=B . Right black: Finally, at high frequencies, we enter the

geometric optics (traditional lensing) regime when the lens’s

resolving power is sufficiently great to resolve the finite extent of

the source. In this limit, the interference effects become washed

out, and the lensing magnification becomes achromatic. In this

limit the total flux magnification is the sum of the image flux

magnifications: |�+ |2 + |�− |2. . . . . . . . . . . . . . . . . . . . 185

7.4 A map of |� |2(Ω, -) for a point mass+external shear model

(Eq. 7.43), where the map coordinates - are the scaled source

plane coordinates y. Columns: From left to right, each column

corresponds toΩ = 100, 75, 50, 25. Rows: From top to bottom,

each row corresponds to � = 0.1, 0.3, 0.5. The caustic, at which

the geometric optics magnification diverges, is overlaid as a

white diamond on each map. Reproduced with permission

from source code used for [242]. . . . . . . . . . . . . . . . . . 191

7.5 In the eikonal limit, a lensed source remains coherent if the

spectral oscillations do not significantly change over the source’s

finite angular size, here shown as a blue patch. When the images

are well-separated, “rays” from the source traverse the lens

plane through the image positions x± calculated via geometric

optics. For the point-mass lens, one image passes outside the

Einstein ring at a transverse physical scale '�, and the other

passes inside the Einstein ring on the opposite side of the lens.

The interference fringes from lensing are present if the source

looks point-like as observed by an interferometer with a baseline

of Eq. 7.51 (i.e. a pair of antennas placed in the lens plane at the

apparent locations of the gravitational lens images in the lens

plane). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.6 Regimes of coherence in gravitational lensing. We plot the

apparent radius of the source against the observing wavelength

(ignoring redshift effects). Solid lines: If the lens mass is in

the eikonal limit, then the source must be below the solid lines

corresponding to Eq. 7.50.Dashed lines: In the diffractive/wave

optics regime, the source size must be below the dashed lines

corresponding to Eq. 7.56.We have roughly labeled the apparent

sizes of various sources and wavelengths at which they have

been observed in the various boxes [105, 109, 267]. . . . . . . . 194
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7.7 Top left:Frequency-dependent amplification |�wave(Ω, H)|2 spec-
trum of a compact, broadband radio sources as it transits behind

a point-mass lens of 5"⊗, � = 1 kpc with a minimum im-

pact parameter of H0 = 0.5. The amplification oscillates like

cos
2(Ω(�+ − �−)) as a function of frequency for large impact

parameters where the Eikonal optics (see Eq. 7.38) approxima-

tion does not break down. Top right: Fractional discrepancy
between |�wave(Ω, H)|2 and |�geo(Ω, H)|2 for the point-mass lens.

Diffractive effects distort the regular fringe pattern predicted

from geometric optics. Bottom left: The Fourier transform of

the top left panel along the frequency axis, also referred to as

the “secondary spectrum”. The arc tracks the instantaneous

lensing delay (�+(C)−�−(C)) as it changes throughout the transit.
Bottom right: The Fourier transform of the top right panel along

the frequency axis. Adapted with permission from [219]. . . . 198

7.8 The behavior of the magnification |� |2 taking into account

finite source size and wave optics effects near the Einstein ring

(H → 0). Top: The magnification map as a function of y near the

origin saturates at y ∼ 1/Ω at a magnification of �Ω. Bottom:
the magnification map for an on-axis source, now as a function

of source radius ΔH. . . . . . . . . . . . . . . . . . . . . . . . . 200

7.9 The lensing cross-section � for a minimum detectable ampli-

fication factor |� |2. Top: we plot several values of Ω as well as

the cross-section calculated in geometric optics. Bottom: the

ratio of �wave/�geo is well-approximated by a boxcar between

|� |2 = [1, 2�Ω] with a height of H = 3/2. The conclusion is

that interference effects enhances lensing cross-sections for high

magnifications by a factor of ≈ 3/2 while cutting off huge am-

plifications greater than ≈ �Ω. This result has the caveat that

Eq. 7.47 is used to approximate Eq. 7.42, which is an excellent

approximation forΩ & 1. . . . . . . . . . . . . . . . . . . . . . 203

8.1 Two examples of FRBs used in our search: an anomalous multi-

burst FRB (left) and a more common single-burst FRB (right).

We compute the intensity profile (gray lines in top left and top

right panels) by summing the power over all frequency channels

in the dynamic spectrum of each burst (bottom two panels).

The matched filter (black lines) is constructed by smoothing the

intensity profile of the brightest peak and enhances sensitivity,

while a translated copy (blue) serves as a null test. Channels not

recorded by the X-engine or contaminated by radio-frequency

interference (RFI) are indicated by the white bands in the dy-

namic spectrum. We define on-pulse (top panel, black line)

when the filter is centered on one FRB image (brighter burst

in the left panel, lone burst in the right panel) and off-pulse

(top panel, blue line) as when the filter contains no signal. Our

coherent search can distinguish whether the dimmer compo-

nents of multi-component FRBs (left) are images created by a

lens, and it can search for temporally-unresolved images within

apparently single-component FRBs (right). . . . . . . . . . . . 214
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8.2 Time-lag correlation of both telescope polarizations, shown on

a log-log scale. The on-pulse (black) is the time-lag correlation

of the matched filters aligned with the FRB in each polarization.

The off-pulse (blue) is the time-lag correlation with the matched

filtermoved to a region containing no burst. Telescope reflections

dominate at lag timescales< 300 ns (shaded in pink). Peaks from

PFB correlation leakage are visible at certain integer multiples

of 2.56 µs. A statistically significant correlation at any other

time-lags might be a gravitational lensing signature. . . . . . 219

8.3 A graphical representation of off-pulse spectra for both antenna

polarizations within one time-lag bin, and the vetoes that we use

to reject noise candidates. We show the joint distribution of �-
and �. (black points), within a time-lag bin, for off-pulse data

from one FRB event. The polarizations each follow a Gaussian

distribution (red) as highlighted by the top and right histograms.

The vetoed frame integer lags are the red crosses (condition 1,

see text). The 2D significance threshold (blue) indicates which

candidates are considered to be significant (condition 2), with

the largest excursion as quantified by its "2
value highlighted

as the green star. A 99% confidence region (green), derived

from the local 2D Gaussian distribution and the requirement

�- ≈ �. , indicates the region consistent with a gravitational

lens (polarization condition, see Sec. 8.8 and Tab. 8.2); the region

in which there are no candidates for this time-lag bin. . . . . . 220

8.4 The joint distribution of �- and �. (black points) for the on-pulse

realization for an FRB event with excess correlation present. The

criteria for a candidate are defined in Tab. 8.2. Left: A graphical

representation of the excursion significance not taking into

account correlations between feed polarizations. The candidate

event (green star) lies slightly outside the threshold contour

(blue) andwithin expected range of a gravitational lensing signal

(green region). Right: However, an improved estimate taking

into account polarization correlations, shows the significance of

the excess is consistent with the null hypothesis. . . . . . . . 221

8.5 Comparison of the time-lag spectrum for the on-pulse data

(black) to that of the off-pulse data (blue) for an event with a cor-

related polarization. Time-lags that contain telescope reflections

are indicated as the shaded purple region. There is evidence

of excess correlation structure compared to the instrumental

response extending to Ĉ < 1 ms. At larger time-lags, on-pulse

and off-pulse time-lag spectra become nearly identical. This ex-

cess structure appears across a broad range of time-lags, which

is inconsistent with the expectation for a single gravitationally

lensed image. . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
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8.6 A simulated gravitationally lensed FRB injected into telescope

noise data. The second image is injected at � = 1.53 ms and

with � = 0.1. The image itself is not visible by eye but the

second image is still detected by the search pipeline, shown in

Fig 8.7. Both images are dispersed to the same DM, have the PFB

channelization applied, and are then coherently dedispersed.

Channels not recorded by the X-engine or contaminated by

radio-frequency interference (RFI) are indicated by the white

bands in the dynamic spectrum. . . . . . . . . . . . . . . . . . 223

8.7 Simulated candidate detection with our selection criteria. The

injected image had � = 0.1 and the detection of the event can be

seen as the circled orange star in the expected region for lensing

(see section 8.7). The other candidates in the green region result

from trials which are correlated with the brightest candidate;

they either differ by < 5 ns (covariance introduced by masking

parts of the band), or exactly 2.56 µs (covariance introduced by

correlation leakage). The red crosses are integer multiples of

2.56 µs, which might be PFB inversion artifacts. The simulated

baseband data is shown in Fig 8.6. . . . . . . . . . . . . . . . . 224

8.8 Magnitude of the residuals between the input gravitational

lensing observable and the pipeline recovered values in frac-

tional error, for simulated gravitational lensing events. �Γ is the

fractional increase of the system temperature due to the second,

delayed image. Both the time delay (top) and relative magni-

fication (middle) are recovered by our pipeline when "2 & 40

and �Γ & 0.03. The "2
(bottom) is a normalized measure of

the height of the correlation peak in relation to the noise envi-

ronment of the associated time-lag bin. Black dots highlights

points that satisfy all our veto conditions while black crosses are

simulations that did not pass the veto conditions. The largest "2

observed from the off-pulse simulations is shown to represent

the largest noise excursion observed. At �Γ = 0.03 we indicate,

with a vertical line, where the lensing signal is classified as a

signal rather than a noise fluctuation. This validates our search

pipeline and confirms our ability to reliably recover lensing

parameters when their second images are sufficiently bright

compared to the noise. The average error in recovery of the

relative magnification, �, is ∼ 23%. . . . . . . . . . . . . . . . . 225

8.9 Histogram of #gauss,i (see Eq. 8.15), derived from the time-lag

spectrum of simulated lensed FRBs injected into real telescope

noise. The #gauss,i values are aggregated over all lag bins 8,

by taking the largest statistical excursion in each correlation

time-lag bin 8 for all simulated events with successive veto

conditions applied. There exists a lensing signature for every

event. On-pulse data (left) highlights the large tail resulting

from gravitational lensing. The off-pulse data (right) highlights

the false-positive rate from noise. Conditions are defined in

Tab. 8.2. The red bin contains all excursions with #gauss ≤ 10
−12

that satisfy both conditions. . . . . . . . . . . . . . . . . . . . . 226

21



8.10 The distribution collecting the smallest values of #gauss,8 (see

Eq. 8.15) observed (blue) in each time-lag bin for 172 FRB events.

The most significant excursion in the global distribution of the

on-pulse dataset lies farther below the threshold than the most

significant excursion in the off-pulse dataset. On-pulse data (left)

have more excursions which survive the vetoes than off-pulse

data (right). 3.0 % of on-pulse excursions compared to 2.0 % of

off-pulse excursions survive the significance condition (orange

hatched). After applying all three conditions (green), 0.8 % of

both on-pulse and off-pulse excursions remain (green filled).

Note the difference in x-axis scales from Fig. 8.9. There are also

no excursions with #gauss,8 smaller than the scale shown. . . . 228

8.11 A normalized cumulative histogram of #gauss,8 (see Eq. 8.15),

derived from the time-lag spectrum of 172 FRB events without

any veto conditions applied (corresponding to the blue distribu-

tions seen in Fig. 8.10). The #gauss,8 values are aggregated over

all time-lag bins, i. Gaussian (red) refers to sampling a Gaussian

distribution with the selection effects imposed by our pipeline.

We are biased and sensitive to any tail distributions, as that is

where we can identify any lensing signals. Our pipeline will

also observe any non-gaussianities, such as that from RFI and

diffractive scintillation, which would cause deviations from the

Gaussian expectation and could explain what is seen here. On-

pulse (black) and off-pulse (blue) are shown to be non-Gaussian

in their distribution of #gauss,8 . . . . . . . . . . . . . . . . . . . 229

8.12 Cumulative distribution of expected number of excursions,

#gauss,8 (see Eq. 8.15), observed for the largest statistical ex-

cursion, collected from each time-lag bin from all FRB events.

After applying the significance condition (orange hatched), the

on-pulse data (left) has 3.0% of excursions lying below the

threshold and off-pulse data (right) has 2.0% of excursions lying

below the threshold. The local significance threshold for every

time-lag bin was set at #gauss,8 = 0.01. After applying the sig-

nificance and polarization conditions (green), the on-pulse data

and the off-pulse data both have effectively 0.8% of excursions

that survive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

8.13 The time-lag spectrum of the outlier event, FRB20190624B,

(circled star) from Sec. 8.8. The excursion was assigned an

inappropriate probability due to the non-stationary noise en-

vironment within the time-lag bin. The on-pulse correlation

structure, likely from scintillation, of this burst extends to large

time scales (bottom). The logarithmic bin (top middle) contain-

ing the excursion overlaps the end of the correlation structure

while still being noise dominated within the bin. Had the bins

been chosen such that the excursion compared to the statistics of

the -64 to -16 bin (top right), it would not be significant. Hatched

region contains data not saved by the pipeline. . . . . . . . . . 231

9.1 The ACF of an FRB that exhibits scintillation. For each sub-band,

we have offset the y-axis by 0.2. . . . . . . . . . . . . . . . . . . 245
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9.2 An example of a power-law fit to the decorrelation bandwidths

measured in each sub-band. . . . . . . . . . . . . . . . . . . . 246

9.3 The empirical distribution of scintillation timescales compared

to NE2001 predictions. The gray line is the H = G line. Green

arrows represent upper/lower limits on scintillation based on

non-measurement of scintillation in this analysis and upper

limits based on the non-observation of a scattering tail. This

supports the interpretation of short scattering timescales in

FRBs as originating from the Milky Way [159]. . . . . . . . . . 247

10.1 Our schematic depiction of the lens plane, with coordinates

centered on the source’s unlensed position, and transverse

distancesmeasured in units of Einstein radii.We shade the delay

between images as a function of lens’s transverse position in the

lens plane (colored disk). A time-delay based detection search

space constrains possible lens positions to an annulus within

the plane. A flux-based detection threshold, parameterized

by �2

min
, further constrains the annulus’s outer boundary via

Eq. 10.5 (dotted boundaries). The lensing cross-section � can

be understood as the area of the annulus that satisfies both the

flux- and time-delay based detection thresholds (Eq. 10.8). . . 255

10.2 The expected lensing rate as a function of the lens mass for

the sightline toward FRB 20191219F. The height of the curve

can be interpreted as the Poisson rate of lensing events (i.e. the

probability that the FRB is lensed) assuming that all dark matter

is made up of compact lenses with mass"2 . For example, the

probability of seeing a statistically-significant lensing signal

if all the dark matter is composed of ∼ 10
−1"� black holes

is ≈ 0.6. We calculate this rate via two methods, shown by

the solid and dotted curves. Solid curve: sensitivity given by

the ACF �2(�)measured by our correlation algorithm. Dashed

curve: sensitivity given by a constant fiducial value of �2 = 10
−4
,

shown to illustrate the difference with the approach taken by

earlier work such as [106]. Color shading denotes the additive

contributions to the total probability from different time-delay

scales. Relative to the constant-�2
case, the reduced event rate at

short lags/low lens masses is because instrumental systematics

in the delay spectrum at short delay scales (≈ 100 ns) degrade

sensitivity. A similar reduction happens at long lags because of

the large trials factor at large delay values (see text). . . . . . . 258

10.3 The expected lensing event rate for our full sample of 114 FRB

events assuming that all dark matter is composed of PBHs with

mass "2 (i.e., that 5 = 1). Left: In the absence of plasma scat-

tering screens which cause decoherence, the predicted lensing
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In the presence of plasma screens, the level of decoherence is

sensitive to the screen’s effective distance from the FRB source

(different traces). This shows the impact of plasma scattering on

coherent FRB lensing constraints. . . . . . . . . . . . . . . . . 259
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10.4 A two-screen model for a coherently lensed FRB observed at

some central frequency �obs. The plasma lens is responsible for

the observed temporal broadening (�scatt,obs), produced by a

scattering screen of apparent size Aref. The gravitational lens,

modeled as a point mass with mass" and impact parameter 1,

can be thought of as a very long baseline interferometer with

baseline ∼ '� ∝
√
" observing at a frequency of �obs(1 + IL)

from the lens plane. When the scattering screen looks like a

point source (Eq. 10.20) to the gravitational lens, coherence is

maintained, and the observer can see an interference fringe. . 260

10.5 Left: 95% Constraints on PBHs as a function of scattering

screen distance corresponding to the optical depth calculated in

Fig. 10.3. We plot our fiducial (1 pc screen) model in red and sup-

press curves for screen distances of 10 and 100 pc because � < 3

under those assumptions. Right: A collection of microlensing

constraints on the fraction of dark matter composed of compact

objects (such as PBHs), 5 ("2), assuming amonochromatic mass

function peaked around"2 . We have shown Local Group PBH

constraints in blue (M: MACHO [397], EROS [328], OGLE [362],

Icarus [398]), and Local Universe constraints in red (SNe [354],

CHIME/FRB, this work). CHIME/FRB lensing constraints de-

pend on our two-screen scattering model, in which we have

assumed that the average FRB is scattered by a screen at an

effective distance of 1 pc, and our model for how DM correlates

with distance. In these constraints, we have used Eq. 10.22 to
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List of Tables

2.1 LocalizationofKnownPulsars andFastRadioBurstsDetected
by CHIME/FRB. We report the DM, nominal sky position, and

observing epoch during which we collected baseband data on

each source. For pulsars, the nominal RA and DEC (in degrees)

are taken from the ATNF catalog. For FRBs, we instead report

the nominal RA and DEC at which the FRB was detected by

CHIME/FRB’s real-time pipeline. We report the measured RA

from our localization pipeline with statistical uncertainties and

systematic offset of each source from its true position. For the

pulsars, the systematic offset is known, and for the FRBs, the

systematic offsets are extrapolated from those of pulsars (see

text and Fig. 2.6). We are unable to unambiguously identify a

single host galaxy with our current localization precision. . . . 44

24



2.2 Components used in the prototype baseband recorder for
CHIME/FRB Outriggers. The total cost of the recorder was

less than $20k USD in Spring 2019 and was dominated by the

cost of the high-density RAM. . . . . . . . . . . . . . . . . . . . 48

4.1 TONE parameters . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 TONE backend system . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 The total delay in VLBI fringestopping can be broken into three

parts: �:=(C�) = �0

:=
+ �1

:=
+ �′

:=
(C�), which are then applied to

the data from one station on each baseline – here, station A – to

compensate for the delay. . . . . . . . . . . . . . . . . . . . . . 103

6.1 Parameters associated with FRB 20210603A (upper half of
table) and its host galaxy (lower half). . . . . . . . . . . . . . 146

6.2 A summary of the properties of the CHIME [48], ARO10, and

TONE stations. The SEFD of ARO10 has been calculated with a

similar set of Crab GPs [62]. The SEFD and FoV of TONE have

been computed from a drift scan observation of Taurus-A [145]. 149

6.1 Priors set for SED modeling with Prospector. . . . . . . . . 161

8.1 Specifications of CHIME relevant to the gravitational lensing

search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8.2 Conditions for a candidate excursion to be considered as a

potential lensing event. Conditions are considered successively,

with each step acting only on excursions passing all previous

conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

25



26



Introduction and Roadmap

27



28



Introduction, Motivation, and
Personal Contribution 1

1.1 Introduction and Motivation

Fast radio bursts are bright, millisecond-duration radio transients origi-

nating from outside the Milky Way. Since the first FRB was discovered [1], [1]: Lorimer et al. (2007), “A Bright Mil-

lisecond Radio Burst of Extragalactic Ori-

gin”

their progenitors remain largely unknown, though some basic clues come

from the bursts themselves. The variability timescale of FRBs (10
−7 − 10

−2

s) indicate a compact emission region, and their luminosities (∼ 10
42

erg)

hint at a powerful central engine such as a newborn magnetar: a type of

neutron star with ∼ 10
14

G magnetic fields. In 2020, this basic picture was

confirmed when a Galactic magnetar emitted an FRB, which was detected

by the Canadian Hydrogen Intensity Mapping Experiment (CHIME) [2]. [2]: CHIME/FRB Collaboration et al.

(2020), “A bright millisecond-duration ra-

dio burst from a Galactic magnetar”

CHIME is a radio survey telescope whose wide field of view has allowed

it to discover 1000 FRBs per year since early 2019: 10× faster than other

telescopes combined.

The young magnetar scenario has recently been challenged by several

observations enabled by high-precision localization. Roughly 5% of FRBs

emit repeat bursts, which permits high-precision localization using very

long baseline interferometry (VLBI), followed by high-resolution multi-

wavelength followup for this special class of FRBs. One FRB was localized

to a globular cluster in the nearby galaxy M81 [3, 4]. While globular clusters [3]: Bhardwaj et al. (2021), “A Nearby Re-

peating Fast Radio Burst in the Direction

of M81”

[4]: Kirsten et al. (2022), “A repeating fast

radio burst source in a globular cluster”

host many stars, they are gas-depleted “graveyards” which no longer form

the young, massive progenitors of magnetars. VLBI follow-up on a handful

of repeaters has enabled several case studies like M81, which reveal a

puzzling diversity of FRB host environments [5–7] which elude simplistic,
[5]: Marcote et al. (2017), “The Repeating

Fast Radio Burst FRB 121102 as Seen on

Milliarcsecond Angular Scales”

[6]: Tendulkar et al. (2021), “The 60 pc

Environment of FRB 20180916B”

[7]: Piro et al. (2021), “The fast radio burst

FRB 20201124A in a star-forming region:

Constraints to the progenitor and multi-

wavelength counterparts”

“one-size-fits-all” explanations for the origin of FRBs.

While these high-resolution case studies are puzzling, they represent

only the tip of the iceberg. Repeaters constitute only 5% of the observed FRB

population, and show nontrivial differences when compared to one-offs.

One-off FRBs have higher luminosities and more impulsive, broadband

pulse shapes than repeaters [8]. The distinction between repeaters and

[8]: Pleunis et al. (2021), “Fast Radio Burst

Morphology in the First CHIME/FRBCat-

alog”

non-repeaters does not reflect a mere lack of observations: it hints at a

different host environment, emission mechanism, or different population

entirely.

Studying the host environments of one-offs with high resolution is

a promising route to understanding the origins of FRBs. However, this

requires “single-pulse”VLBI localization performed at the time of detection,

rather than in targeted follow-up. The tradeoff between angular resolution

and field of view in traditional radio observatoriesmeans that existing VLBI

facilities like the European VLBI Network are poorly-suited to detecting

non-repeating FRBs. The converse is also true: CHIME’s widefield design

makes it an excellent FRB detector; however it lacks the resolution to

precisely localize its bursts to a host galaxy.
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1.2 Personal Contribution to the Work Presented
in this Thesis

Adding localization capabilities to the Canadian Hydrogen Intensity Map-

ping Experiment (CHIME) is perhaps the single most promising path

towards uncovering the mystery of FRBs. The first part of this thesis ( Chap-

ter 2-Chapter 6) are dedicating towards this goal of combining the wide

field of view needed for detecting FRBs with the high angular resolution

of VLBI in a single instrument: CHIME/FRB Outriggers, which is poised

to define the course of FRB science for the next decade.

Doing VLBI is naturally a collaborative effort. Therefore, I have chosen

to organize the chapters in this thesis as a collection of first- and second-

author papers in which I have made substantial contributions and which I

feel are representative of the quality of my own research work. Chapter

7-Chapter 10 concern my research into interstellar optics as applied to FRBs,

which are among the most point-like sources of electromagnetic waves

observable. In the next decade, FRB lensing could potentially provide

exquisite laboratories for studying cosmology, black holes, and interstellar

optics.

In Chapter 2, I designed a high-bandwidth digital backend for trig-

gered VLBI on single pulse transients, wrote software for it, and deployed

it at the CHIME Pathfinder. Juan Mena-Parra guided me in doing #2

calibration of the Pathfinder, re-commissioned the Pathfinder’s analog and

F-engine system, and wrote software for the #2
calibration and flagging

of bad frequencies and channels, and fixed the many blunders I made in

my code early on. In the end, I operated the CHIME-Pathfinder system

and collected baseband data on which I performed all of the localization

analysis. I wrote all of the text and am the lead author on this paper, which

is published in the Astronomical Journal.

In Chapter 3, Juan and I developed a dual-clock readout scheme for

CHIME/FRB Outriggers. As part of this effort, I used the Pathfinder to

collect simultaneous Cygnus A baseband dumps in tandem with CHIME.

These measurements were a crucial part of validating the clock measure-

ments we made at each site – we were able to show that Juan’s clock

measurements agreed with the clock drifts that I measured in sky data.

After the completion of this paper, I re-visited the analysis pipeline that

produced clock corrections, and re-wrote it, and deployed it at two other

CHIME Outrigger stations (TONE and now KKO). I wrote several sections

of the paper and made several figures for the paper, and am second author

on this paper, which is published in the Astronomical Journal.

Chapter 4 is an instrumentation paper describing TONE, an 8-dish

instrument we used as a testbed for CHIME/FRB Outriggers located at

Green Bank Observatory. Pranav Sanghavi and Kevin Bandura designed

and built the instrument from the groundup.My contributionwas adapting

my original digital backend design for the Pathfinder and building the

recording backend for TONE. I wrote all of the array calibration software,

adapting it from CHIME, including a beamformer for observations with
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phased TONE. I adapted the clock readout system from Chapter 4 for the

TONE site, and used Crab giant pulses caught by TONE to use CHIME and

TONE together in VLBI. My VLBI analysis featured at the end of the paper

demonstrates that at the current level of calibration (daily, single pulse

VLBI), ≈ 200 m
′′
astrometry could easily be achieved. I wrote or heavily

edited most of this paper, which is in preparation for submission to the

Journal of Astronomical Instrumentation.

InChapter 5, I describe theVLBI correlatorwhich Iwrote forCHIME/FRB

Outriggers, which I used at TONE and which is now being routinely used

on CHIME/FRB Outriggers data from KKO. I describe novel algorithms for

delay compensation and correlation which I developed and implemented,

as well as a slew of calibration methods that we have developed to calibrate

out instrumental and ionospheric effects, which are dominant at CHIME

frequencies. Shion Andrew and I worked closely on developing the final

delay compensation algorithm, and Kiyo Masui implemented simulations

correlation algorithms which I derived for correlating baseband data. I am

the lead author on this paper, which is in preparation for submission to

the Astrophysical Journal.

Chapter 6 is the scientific focus of this thesis. It describes a key

milestone in CHIME/FRB Outriggers, which makes use of all of the

aforementioned hardware and techniques described in Chapters 1-4: Using

CHIME, TONE, andARO10 (another outrigger testbed located atAlgonquin

Radio Observatory commissioned by Tomas Cassanelli), I performed the

first localization of an FRB using triggered VLBI at the time of detection. I

robustly pinpointed to a host galaxy at I = 0.177 with a final localization

ellipse of ≈ 0.2′′ × 2
′′
, and used Crab pulses detected before and after the

FRB to characterize the full array’s localization accuracy. Pranav Sanghavi

and Tomas Cassanelli managed the collection of data at the TONE and

ARO10 sites respectively.Mohit Bhardwaj followed up the host galaxy using

the Canada-France-Hawaii Telescope, and Savannah Cary carried out the

reduction of the optical images and spectra undermy supervision, aswell as

the measurements of the clock corrections used for calibrating the CHIME-

ARO10-TONE array. Ryan Mckinven measured the rotation measure of

the burst, and Daniela Breitman measured its scattering timescale. Using

these burst properties, I interpreted the progenitor of the FRB as being

consistent with a neutron star deep in the ionized disk of its host galaxy. I

wrote the bulk of the paper text, and am corresponding/second author

(equal contribution with Tomas Cassanelli and Pranav Sanghavi) on this

paper, which is in preparation for re-submission to Nature.

In Chapter 7, I begin a foray into the interface of interstellar optics

and FRBs. For this paper, I summarized and re-derived in detail many

of the canonical results in gravitational lensing in the scalar wave optics

approximation, produced all the figures, and wrote the vast majority of

the text. Prasenjit Saha and Dylan Jow assisted in the writing process, and

others provided comments on the text. It is currently under review at

Springer Space Science Reviews.

In Chapter 8, Zarif Kader and I designed a search algorithm for

coherently-lensed FRBs. I wrote several versions of the PFB dechanneliza-
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tion algorithm before Zarif designed the final algorithm described in this

paper. I wrote several stages of the search pipeline, including pre-processing

code that did matched-filtering of the FRB voltage data and narrowband

RFI flagging. We identified interstellar scintillation as an astrophysical

background which appeared in our search. I wrote or heavily edited the

paper text, and am second author (equal contribution with Zarif Kader) on

this paper, which is published in Physical Review D.

In Chapter 9, I followed up on the scintillation events which we

identified in Chapter 8 with my undergraduate thesis student Eve Schoen,

who performed all the analysis under my guidance. I wrote pre-processing

code to process the baseband data for Eve, who then wrote the code

measuring scintillation bandwidths and fitting power laws to the �−4

frequency dependence of the scintillation bandwidth. She made the plots

which appear in this thesis, and I wrote the whole paper. I am second

author on this paper, which was led by Eve and appears as an un-refereed

Research Note of the American Astronomical Society (RNAAS).

In Chapter 10, I used the coherent lensing search pipeline to constrain

the abundance of primordial black holes. This code worked with the search

output of Chapter 8, and used the inferred angular sizes of all 117 FRBs

involved in our search. I developed a two-screen model to analyze the

propagation effects at work in a lensed FRB system; this two-screen model

was used to quantify the decoherence due to angular broadening of the

FRBs due to source-local scattering. I was the lead author of this paper

(equal contribution with Zarif Kader), which is published in Physical Review
D.
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2.1 Abstract and Statement of Contribution

We demonstrate the blind interferometric detection and localization of

two fast radio bursts (FRBs) with sub-arcminute precision on the 400-m

baseline between the Canadian Hydrogen Intensity Mapping Experiment

(CHIME) and the CHIME Pathfinder. In the same spirit as very long base-

line interferometry (VLBI), the telescopes were synchronized to separate

clocks, and the channelized voltage (herein referred to as "baseband") data

were saved to disk with correlation performed offline. The simultaneous

wide field of view and high sensitivity required for blind FRB searches

implies a high data rate—6.5 terabits per second (Tb/s) for CHIME and 0.8

Tb/s for the Pathfinder. Since such high data rates cannot be continuously

saved, we buffer data from both telescopes locally in memory for ≈ 40 s,

and write to disk upon receipt of a low-latency trigger from the CHIME

Fast Radio Burst Instrument (CHIME/FRB). The ≈ 200 deg
2
field of view

of the two telescopes allows us to use in-field calibrators to synchronize

the two telescopes without needing either separate calibrator observations

or an atomic timing standard. In addition to our FRB observations, we

analyze bright single pulses from the pulsars B0329+54 and B0355+54 to

characterize systematic localization errors. Our results demonstrate the

successful implementation of key software, triggering, and calibration chal-

lenges for CHIME/FRB Outriggers: cylindrical VLBI outrigger telescopes

which, along with the CHIME telescope, will localize thousands of single

FRB events with sufficient precision to unambiguously associate a host

galaxy with each burst.

For this paper, I designed the backend, wrote software for it, and

deployed it at the CHIME Pathfinder. Juan Mena-Parra guided me in doing

#2
calibration of the Pathfinder, re-commissioned the Pathfinder’s analog

and F-engine system, andwrote software for the#2
calibration andflagging

of bad frequencies and channels, and fixed the many blunders I made in

my code early on. In the end, I operated the CHIME-Pathfinder system and

oversaw the collection of baseband dumps on which I performed all of the

localization analysis. The author list is as follows:

Calvin Leung, JuanMena-Parra, Kiyoshi Masui, Kevin Bandura, Mohit

Bhardwaj, P.J. Boyle, Charanjot Brar, Mathieu Bruneault, Tomas Cassanelli,

Davor Cubranic, Jane F. Kaczmarek, Victoria Kaspi, TomLandecker, Daniele

Michilli, NikolaMilutinovic, Chitrang Patel, Ziggy Pleunis,Mubdi Rahman,

Andre Renard, Pranav Sanghavi, Ingrid H. Stairs, Paul Scholz, Keith

Vanderlinde
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2.2 Introduction

Fast radio bursts (FRBs; [1, 9]) are brief (∼ms), usually nonrepeating radio[1]: Lorimer et al. (2007), “A Bright Mil-

lisecond Radio Burst of Extragalactic Ori-

gin”

[9]: Thornton et al. (2013), “A Population

of Fast Radio Bursts at Cosmological Dis-

tances”

transient events with dispersion measures in excess of that predicted by

the electron column density of the Milky Way. Currently, their progenitors

and production mechanism are unknown but their high luminosity and

impulsive nature have generated significant interest in the astrophysics

community [10]. In addition, due to their cosmological distances [9], FRB[10]: Platts et al. (2019), “A living theory

catalogue for fast radio bursts”
pulses are strongly dispersed by the ionized intergalactic medium and

have the potential to probe the large-scale structure of the universe [11–13].[11]: McQuinn (2014), “Locating the “Miss-

ing” Baryons with Extragalactic Disper-

sion Measure Estimates”

[12]: Masui et al. (2015), “Dispersion Dis-

tance and the Matter Distribution of the

Universe in Dispersion Space”

[13]: Macquart et al. (2020), “A census of

baryons in the Universe from localized

fast radio bursts”

The vastmajority of FRBs are not observed to emitmultiple bursts [14]
∗
,

[14]: Petroff et al. (2016), “FRBCAT: The

Fast Radio Burst Catalogue”

and the handful of known repeaters are observed to do so stochastically

with the notable exceptions of FRB 180916.J0158+65 [15] and possibly FRB

[15]: CHIME/FRB Collaboration et al.

(2020), “Periodic activity from a fast radio

burst source”

121102 [16, 17]. This unpredictabilitymakes localization and followup studies

[16]: Zhang et al. (2018), “Fast Radio Burst

121102 Pulse Detection and Periodicity: A

Machine Learning Approach”

[17]: Rajwade et al. (2020), “Possible peri-

odic activity in the repeating FRB 121102”

extremely challenging. Since the serendipitous detection of the first FRB in

2007 [1], two repeating FRBs have been studied with very long baseline

interferometry (VLBI): FRB 121102 [5, 18], with optical followup performed

[5]: Marcote et al. (2017), “The Repeating

Fast Radio Burst FRB 121102 as Seen on

Milliarcsecond Angular Scales”

[18]: Chatterjee et al. (2017), “A direct lo-

calization of a fast radio burst and its host”

by Tendulkar [19]; and FRB 180906.J0158+65 [20]. The localization of seven

[19]: Tendulkar et al. (2017), “The Host

Galaxy and Redshift of the Repeating Fast

Radio Burst FRB 121102”

[20]: Marcote et al. (2020), “A repeat-

ing fast radio burst source localized to

a nearby spiral galaxy”

others with sufficient precision to identify their respective host galaxies

at redshifts between I = 0.1 − 0.6 (180924 [21], 181112 [22], 190523 [23],

[21]: Bannister et al. (2019), “A single fast

radio burst localized to a massive galaxy

at cosmological distance”

[22]: Prochaska et al. (2019), “The low

density and magnetization of a massive

galaxy halo exposed by a fast radio burst”

[23]: Ravi et al. (2019), “A fast radio burst

localized to a massive galaxy”

190102, 190608, 190611, and 190711 [13]) demonstrated a modern-Universe

measurement ofΩ1 using FRBs, including the so-called “missing baryons”.

This measurement is consistent with that of [24], experimentally evaluating

[24]: Aghanim et al. (2018), “Planck 2018

results. VI. Cosmological parameters”

the possibility of using localized FRBs as cosmological probes [13].

Having detected over seven-hundred FRBs in its first year of opera-

tion [25], the Canadian Hydrogen Intensity Mapping Experiment/FRB

[25]: Fonseca et al. (2020), “Nine New

Repeating Fast Radio Burst Sources from

CHIME/FRB”

Project ([26]) has opened up a window for population-level studies of the

properties of FRBs [2, 15, 25, 27–29]. However, CHIME/FRB’s real-time

localization pipeline, which has a precision of arcminutes, does not yet

always allow for unambiguous identification of an FRB’s host galaxy. For

very bright FRBs with very low dispersion measure (DM), it is some-

times possible to identify a host by imposing a prior on the host galaxy’s

maximum redshift.

To routinely pinpoint the host galaxy of FRBs detected byCHIME/FRB,

the CHIME/FRB collaboration is developing CHIME/FRB Outriggers, a

set of cylindrical telescopes at distances of one hundred to several thousand

kilometers from the CHIME telescope. Along with CHIME, the Outriggers

will perform a blind VLBI survey to localize thousands of FRBs with 50

milliarcsecond precision. To our knowledge, there has only been one previ-

ous attempt to blindly localize FRBs with VLBI. V-FASTR was a campaign

to search for FRBs in archival data taken by the Very Long Baseline Ar-

ray [30–32]. None was found, highlighting the difficulty of detecting FRBs

[30]: Wayth et al. (2011), “V-FASTR: The

VLBA Fast Radio Transients Experiment”

[31]: Burke-Spolaor et al. (2016), “Limits

on Fast Radio Bursts from Four Years of

the V-FASTR Experiment”

[32]: Wagstaff et al. (2016), “A Machine

Learning Classifier for Fast Radio Burst

Detection at the VLBA”

with traditional radio telescopes. In contrast, the CHIME/FRB Outriggers

program will combine CHIME/FRB’s high discovery rate with the local-

ization precision afforded by continental baselines, allowing astronomers

to conduct detailed population-level studies of FRB host environments.

∗
See http://frbcat.org/ for the latest statistics on repeat bursts from known FRB sources.
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We report here on the development of a voltage recording backend as

a testbed for CHIME/FRB Outriggers that was deployed on the CHIME

Pathfinder, itself a reduced-scale testbed for the CHIME telescope [33]. [33]: Bandura et al. (2014), “Canadian Hy-

drogen Intensity Mapping Experiment

(CHIME) pathfinder”

We demonstrate a synoptic VLBI calibration technique for CHIME/FRB

outriggers, and demonstrate the performance of our technique on auto-

matically triggered single-pulse detections of the bright pulsars B0329+54

and B0355+54. We also localize two FRBs detected during two observing

campaigns using CHIME and the Pathfinder in October and December

2019. Our east-west baseline allows for localization of each source in the

RA direction on the sky with arcsecond-level statistical uncertainties for

bright FRBs.

2.3 Instrumentation

CHIME [33] is a beamforming [34] interferometer located at the Dominion [33]: Bandura et al. (2014), “Canadian Hy-

drogen Intensity Mapping Experiment

(CHIME) pathfinder”

[34]: Ng et al. (2017), “CHIME FRB: An ap-

plication of FFT beamforming for a radio

telescope”

Radio Astrophysical Observatory (DRAO) near Penticton, British Columbia,

Canada. It consists of four stationary 20-m × 100-m parabolic cylindrical

reflectors oriented north-south, each of which houses 256 dual-polarization

feeds which are uniformly spaced on the focal line of each reflector. Op-

erating as a phased array over the frequency range 400 to 800 MHz, each

reflector has a primary beam of 2.6 to 1.3 degrees East-West, directable

to any north-south direction from horizon to horizon, with north-south

beamwidth increased by the cosecant of zenith angle.

The telescope backend is built with an FX correlator architecture. The

first correlator stage, the F-engine, digitizes the analog voltage inputs and

spectrally divides the incoming data into 1024 frequency channels over

the 400− 800 MHz frequency band using a polyphase filter bank [35]. [35]: Bandura et al. (2016), “ICE-Based

Custom Full-Mesh Network for the

CHIME High Bandwidth Radio Astron-

omy Correlator”

It is synchronized to a GPS-disciplined ovenized crystal oscillator. The

channelized voltage data, hereafter referred to as “baseband” data, are

passed to the second stage of the correlator (the X-engine) [36] at 4 real + 4
[36]: Denman et al. (2020), “AGPU Spatial

Processing System for CHIME”
imaginary bit depth, for all 1024 frequencies and 2048 signal chains, every

2.56µs, for an overall rate of 6.5 Tb/s. In addition to performing real-time

processing, the X-engine buffers the baseband data in memory in a 36-s

long ring buffer. If the real-time FRB search pipeline [26] detects an FRB

candidate, the ring buffer saves the appropriate ≈ 100 ms segment of data

to disk, with the exact duration being determined by the uncertainty in the

dispersion measure (DM) estimated by the real-time searc pipeline.

The CHIME Pathfinder was built prior to CHIME and is used for

ongoing technology development for projects such as CHIME/FRB Outrig-

gers. It has approximately one eighth of the collecting area of CHIME and

operates on an independent clock. The effective baseline of Pathfinder is

approximately 385.42 m due East, 50.43 due South, and 5.17 m lower than

that of CHIME. It consists of two 20-m × 40-m cylinders which have the

same field of view as CHIME, and have 64 dual-polarization antennas per

cylinder for a total of 256 correlator input channels. The Pathfinder shares

the same F-engine architecture as CHIME, and runs on an independent

GPS-disciplined crystal oscillator from that of CHIME. However, in contrast

to a full FX correlator, the Pathfinder F-engine feeds baseband data to a
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Figure 2.1: Interior of the baseband
recorder backend.The baseband recorder

architecture features four server grade net-

work cards connected via a PCIeX16 slot

to two CPU sockets, each of which can ac-

cess 512 gigabytes (GB) of RAM with low

latency. While awaiting a dump trigger

fromCHIME, our baseband recorder runs

a custom version of the kotekan software

framework which buffers 40 seconds of

complex-valued baseband data for 256 of

the Pathfinder F-engine’s 1024 frequency

channels. Four such baseband recorders

could process the 0.8 Tb/s of data coming

out of the Pathfinder, or an outrigger with

similar data throughput. A full parts list

is provided in Appendix 2.6.

baseband recorder backend. This backend, shown in Fig. 2.1, was built to

demonstrate the technique of triggered VLBI observations for CHIME/FRB

Outriggers. Using four server-grade network cards which each provide 80

Gb/s of bandwidth, the recorder stores baseband data in RAM for a quarter

of CHIME/FRB’s 1024 frequency channels, spaced approximately evenly

across the band, at an input data rate of 204.8 gigabits per second (Gb/s)

(for details, see Appendix 2.6). Our ring buffer architecture is implemented

in kotekan†, a flexible and efficient software framework written in C++ for

real-time data processing for digital radio astronomy [37].[37]: Recnik et al. (2015), “An Efficient

Real-Time Data Pipeline for the CHIME

Pathfinder Radio Telescope X-engine”

2.4 Interferometric Localization

2.4.1 Detection at CHIME

CHIME/FRB features a real-time processing pipeline which coarsely esti-

mates the DM, time of arrival, and signal-to-noise ratio of dispersed radio

transients [26]. Upon detecting a sufficiently bright transient, a classification

algorithm filters out false positives from radio frequency interference and

known pulsars. Successful classification of a dispersed radio transient as

an FRB triggers the dump of ≈ 100ms of baseband data to disk at both

telescopes with subsecond latency.

Prior to data transfer and cross correlation, the baseband data from just

the CHIME/FRB instrument are processed to estimate the FRB’s dispersion

† https://github.com/kotekan/kotekan
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measure and sky position. This is done by beamforming baseband data

from CHIME/FRB’s 2048 correlator inputs towards a grid of sky positions

around the detection position, calculating the signal-to-noise ratio of the

burst detection in each beam, and then fitting a 2D Gaussian model to

the resulting intensity map of the signal. Finally, we perform coherent

dedispersion to the optimal dispersion measure maximizing the burst

signal-to-noise ratio and form a tied-array beam to the refined coordinates

provided by this so-called “baseband pipeline” [38]. From here on we [38]: Michilli et al. (2020), “An analysis

pipeline for CHIME/FRB full-array base-

band data”

denote the beamformed baseband data from CHIME as ���1C . Here, �

stands for CHIME, while � represents the frequency channel (#� = 1024)

ranging from 400-800 MHz. The integer 1 is the “beam number”, reflecting

the fact that a single dump of full-array baseband data can be beamformed

to multiple sky positions in both polarizations (north-south and east-west,

hereafter NS and EW); 1 ranges from 1, 2, . . . , #1 where #1 = 2#? and

where #? is the number of unique sky positions. Finally, C is the time

index, measured in units of 2.56µs. We calculate the flux as a function

of frequency channel, polarization, and time block, albeit a lower time

resolution indexed by ):

(��1) =
C=)+C8=C∑
C=)

|���1C |
2.

Setting the integration time C8=C = 40.96µs yields the plots in Fig. 2.2.

2.4.2 FRB Cross Correlation Pipeline

Our cross correlation pipeline picks up where the baseband pipeline leaves

off. Due to the reduced sensitivity of the Pathfinder, we only cross-correlate

the baseband data from bright FRBs.We calculate beamformed baseband at

both telescopes (���1C and �
%
�1C), and divide the baseband data into segments

of 40.96µs. For each segment we calculate the complex temperature-

normalized visibility +�%
�1) as a function of frequency, polarization/beam,

and time block ) as we did previously for the flux.

+�%
�1) =

∑C=)+C8=C
C=)

���1C�
%
�1C√∑C′=)+C8=C

C′=) | |���1C′ | |2
∑C′′=)+C8=C
C′′=) | |�%�1C′′ | |2

(2.1)

The quantity+�%
�1) , like the baseband data, is complex-valued. For geometric

delays shorter than 2.56µs the information about the geometric delay is

completely encoded in the phase of the numerator of+�%
�1) . The denominator

ensures that increasing the system temperature (i.e. scaling any of the ��1C
by a constant factor) does not affect |+�%

�1) |. Hence, |+�%
�1) | as plotted in

Fig. 2.3 measures the strength of the cross-correlation independently of the

system temperature. The morphological similarity of |+�%
�1) | in Fig. 2.3 and

(�1) in Fig. 2.2 allows us to unambiguously interpret our cross-correlated

baseband data as a genuine FRB detection. We cross-correlate the NS

polarizations and EW polarizations at both telescopes separately; since the

two telescopes’ polarization axes differ by only ≈ 2 degrees, this approach

is close to optimal. While the above visibilities are sufficient for assessing a

39



Figure 2.2: CHIME waterfall plot
for FRB 20191219F. At UTC 2019-12-

19T16:51:34, the detection of an FRB in

CHIME triggered a simultaneous dumpof

channelized voltage data at CHIME/FRB

and the CHIME Pathfinder. After nulling

channels containing radio frequency inter-

ference, we beamform the baseband data

at the optimum position calculated by the

baseband pipeline, and plot the flux of the

burst as a function of time and frequency

in the 400-800 MHz band.

detection, for astrometric precision it necessary to minimize the uncertainty

on the phase of the visibility. To do this, we formed a set of visibilities in

which we integrated over the entire ≈ 100 ms baseband dump to reduce

statistical uncertainty of the visibility phase. In addition, for the beamswith

pulsed emission, we perform the integration with the help of a real-valued

time-domain matched filter, ℎC , constructed from the pulse’s intensity

profile as detected in CHIME autocorrelation (i.e. the curves shown in the

top panel of Fig. 2.2).

+�%
�1 =

∑
C �

�
�1C ℎC�

%
�1C√∑

C′ | |���1C′ | |2
∑
C′′ | |�%�1C′′ | |2

(2.2)

The filter is normalized to have 〈ℎC〉 = 0 and 〈ℎ2

C 〉 = 1. The former constraint

enables optimal rejection of steady sources of correlated voltage signals

other than the pulse of interest, and the latter constraint ensures that the

noise variance of the data is preserved.

2.4.3 Synoptic Calibration Technique

Our calibration technique fundamentally relies on in-field steady sources

to keep the two telescope backends synchronized over the ∼ 10 second

duration of the dispersed burst. Each array only needs to be individually

synchronized once per day during the transit of a bright radio calibrator,

to re-compensate for the slow thermal expansion of cables between the
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Figure 2.3: Absolute magnitude of
the temperature-normalized visibility
between CHIME Pathfinder and
CHIME/FRB, in both the north-south
and east-west polarizations, calculated
and as a function of time and frequency
as in Eq. 2.2. The morphology of the

pulse as it appears in cross-correlation

matches that detected at CHIME/FRB,

revealing the detection of FRB 20191219F

in cross-correlation between the two

telescopes.

antennas and the correlator. However, since CHIME and the Pathfinder

are each synchronized to independent ovenized crystal oscillator clocks,

the time difference between the two arrays jitters on timescales of minutes.

Clock jitter and differences in the telescopes’ analog chains introduce an

unknown instrumental phase between the two telescopes which must be

calibrated near or during the time of observation.

To solve for the instrumental phase, we used the fact that the primary

beams of CHIME and Pathfinder completely overlap and that their large

size virtually guarantees that there will be ∼ 5 − 10 bright NVSS [39] [39]: Condon et al. (1998), “The NRAO

VLA Sky Survey”
calibrators ((1.4��I > 1.5 Jy) detectable with a high signal-to-noise ratio

in 100 ms of integration time. For each observation, we selected seven of

the brightest NVSS calibrators within 1.8 degrees from the local meridian.

In total, we formed 16 beams from each triggered baseband dataset: one

per polarization (north-south and east-west) per source (one transient

and seven steady-source calibrators) towards catalogued positions of the

calibrators as well as our initial estimate of the transient’s position from the

CHIME/FRB baseband pipeline. We calculated the visibility between the

two telescopes as a function of beam and frequency as described in Eq. 2.2

and we fit a delay model.

2.4.4 Delay Model

For each formed beam (indexed by 1) and each frequency channel (indexed

by �), our general delay model (more generally, a phase model) can be
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written as:

Φ8�1 = )8� + ®D 8(C) · =̂1 +
 Δ�"(=̂1)

�
(2.3)

where )8� is a free function representing the instrumental phase for the

8th telescope, ®D 8(C) is the (time dependent) position of the 8th telescope,

=̂1 is the sky position of a source in the 1th formed beam, and where

the dispersive delay due to the ionosphere is a free function Δ�"(=̂1)
and where the dispersion measure constant is taken to be  = 1/(2.41 ×
10
−4) sMHz

2
pc
−1

cm
3
. This simple model takes into account the time-

variable geometric delay and ionospheric delays; for simplicity we neglect

small corrections such as tidal deformation that become necessary over long

baselines. From here on, we suppress the time dependence of the telescope

positions ®D 8(C). Also, since CHIME and Pathfinder are approximately co-

located, the ionospheric delay only varies as a function of sky angle (=̂1)

and not of position (®D 8).

While Eq. 2.3 could in principle be fitted directly to the visibilities

with a least-squares algorithm, in practice it is helpful to slow down, or

“fringestop”, the rapid phase variation of the visibility versus frequency to

no more than a few radians over the telescope bandwidth using fiducial

estimates for ®D 8 and =̂1 . This improves the robustness and convergence of

the fit especially in the presence of noise. We denote these estimates with

an additional subscript 0. First, we remove the geometric delay due to the

nominal baseline (®D�
0
− ®D%

0
), an estimate which is accurate to within a meter.

We calculated the (uncalibrated) visibilities +�%
�1 , reducing our dataset to

a set of ∼ 10
4
complex numbers, one per frequency channel per formed

beam. The phase of the uncalibrated visibilities after fringestopping can be

modeled as

)�%�1 = Φ
�
�1 −Φ

%
�1 = )�%� + (®D� − ®D%) · =̂1 − (®D�0 − ®D%0 ) · =̂1,0 (2.4)

where )�%� represents the differential instrumental phase between CHIME

and Pathfinder, where (®D� − ®D%) is the true baseline, where =̂1 are the true

positions, and where the last term encodes our fringestopping using nomi-

nal estimates of the sky positions and baseline. Note that the ionosphere

term in Eq. 2.3 is identical for each telescope and does not appear in Eq. 2.4.

Since the differential instrumental phase is independent of sky pointing,

we designate two reference beams (�) to use as phase references for the

NS and EW polarizations of the telescope. We remove the differential

instrumental phase by calculating V�1 ≡ +�1/+��. We define ��1 to be the

uncertainty on V�1 , and denote the amplitude and phase of V�1 as ��1 and

!�1 ≡ )�1 − )�� respectively.

2.4.5 Fringe Fitting

After applying this calibration procedure, the phase of the fringestopped

and calibrated visibilities which we fit to our delay model is

!�%�1 = (®D
� − ®D%) · (=̂1 − =̂�) − (®D�

0
− ®D%

0
) · (=̂1,0 − =̂�,0) (2.5)
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Figure 2.4: Top: Successful fringe fit
for FRB FRB 20191021A. We plot the

slowly-varying phase !�%
1�

of the CHIME–

Pathfinder visibility as a function of fre-

quency in the NS and EW polarizations.

To guide the eye, we bin over frequency

channels with a resolution of 16 MHz,

and overlay the corresponding best-fit de-

lay model (solid line). Bottom:Maximum
likelihood "2 statistic as a function of
RA. The log-likelihood function (negative

of Eq. 2.7) shows a clear minimum at the

best-fit position of the FRB. Though we

are fitting # ≈ 512 visibilities, systematic

effects such as a differential beam phase

and confused calibrators prevent the "2

statistic from reaching its expected value

of ≈ 512 at its minimum in parameter

space. In addition, we slightly underesti-

mate the thermal noise on the visibility,

not taking into account the increased sys-

tem temperature when the transient is

on.

With a good guess of the baseline offset, Eq. 2.5 varies slowly as a

function of frequency and can be fitted to extract sky localizations and

baseline information, as shown in Fig. 2.4. First, using ∼ 10 auxiliary

100 ms snapshots similar to those shown in Fig. 2.5, each targeting ≈ 7

sufficiently-bright NVSS calibrators (for which =̂1 = =̂1,0) at a wide range of

sky positions, we determine the remaining baseline offset �®D ≡ (®D� − ®D%)−
(®D�

0
− ®D%

0
). Next, fixing �®D, we can determine the unknown sources’ offsets

from their nominal positions, denoted by �=̂1 ≡ =̂1 − =̂1,0. Note that our

approximately east-west baseline make us insensitive to the declination of

sources in the sky, and that the sky positions of sources we are observing

(all close to the local meridian) make our data insensitive to east-west

baseline errors.

The parameters �®D and �=̂1 are estimated bymaximizing the likelihood

Lusing an expression that does not dependon the intrinsic emission spectra

of any of the sources. Since only the phase of the visibility is sensitive to

astrometric quantities, we can analytically marginalize over the amplitude

��1 of the calibrated visibilities without losing phase information. We

suppress the superscript in Eq. 2.5, treating it as a free function !1� of

sky positions and baseline parameters which we collectively refer to as

�. Assuming a uniform prior and applying Bayes’s theorem we can write

the posterior distribution of � with a "2
maximum likelihood estimator.

Integrating over the amplitude of the visibility ��1 simplifies our full "2
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likelihood to its form in Eq. 2.7.

%(�|V�1) ∝%(V�1 |�)

∝ exp

(
−1

2

∑
�1

| |V�1 − ��1 exp(8!�1(�))| |2

�2

�1

)
∝ exp

(
−1

2

∑
�1

Im[V�1 exp(−8!�1(�))/��1]2
)
. (2.6)

logL∝ − 1

2

∑
�,1

Im[V�1 exp(−8!�1(�)/��1]2.) (2.7)

Intuitively, this can be understood as follows. If the delay model

allows us to perfectly derotate the V�1 to the real axis of the complex

plane, the imaginary part of V�1 , normalized by its standard deviation, will

be minimized and will be a zero-mean, unit-variance Gaussian random

variable. Hence, the sum of squares follows a "2
distribution with #1 ×#�

degrees of freedom, and minimizing "2
allows us to recover the best

fit parameters � without ever explicitly fitting any spectra. Our FRB

localizations are summarized in Table 2.1.

Statistical uncertainties are estimated by jack-knifing our data over

frequencies: we can divide our calibrated visibilities V�1 into 9 different

“frequency combs”, spaced evenly across our band. By leaving out one

comb at a time and repeating our "2
analysis, we can inspect the resulting

likelihood curves and reject frequency-local RFI, which would show up

as a discrepancy between different jack-knifed realizations of our analysis.

We estimate the statistical error on our localizations using our jack-knifed

samples in accordance with [40].[40]: McIntosh (2016), “The Jackknife Esti-

mation Method”

Table 2.1: Localization of Known Pulsars and Fast Radio Bursts Detected by CHIME/FRB. We report the DM, nominal sky position, and

observing epoch during which we collected baseband data on each source. For pulsars, the nominal RA and DEC (in degrees) are taken from

the ATNF catalog. For FRBs, we instead report the nominal RA and DEC at which the FRB was detected by CHIME/FRB’s real-time pipeline.

We report the measured RA from our localization pipeline with statistical uncertainties and systematic offset of each source from its true

position. For the pulsars, the systematic offset is known, and for the FRBs, the systematic offsets are extrapolated from those of pulsars (see

text and Fig. 2.6). We are unable to unambiguously identify a single host galaxy with our current localization precision.

Source DM RA (nominal) DEC (nominal) Epoch (MJD) RA (measured) ± Stat Offset (deg)

PSR B0329+54 26.776 53.24770 54.57860 58772.412 53.24538 ± 0.00017 −0.00232

PSR B0329+54 59032.701 53.25361 ± 0.00029 0.00591

PSR B0329+54 59034.696 53.25339 ± 0.00021 0.00568

PSR B0355+54 57.142 59.72391 54.2205 59033.713 59.72725 ± 0.00101 0.00334

FRB 20191021A 388.659 124.92 46.39 58777.595 124.92521 ± 0.00044 ± ∼ 0.005

FRB 20191219F 464.560 225.92 85.44 58836.702 226.56408 ± 0.00694 ± ∼ 0.05

2.4.6 Systematic Errors

Over short baselines, most radio sources remain unresolved and there is

no shortage of calibration sources in the sky. While our database of NVSS

sources serves as an abundant calibrator network, it also means that the

probability of having two sourceswithin a formedbeam (FWHM∼ 0.3deg2

)

is non-negligible. While we filtered out bright calibrator candidates that
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Figure 2.5: Sky maps of the four fields
we observed, with a ‘+’ denoting the ap-

proximatepositionof thepulsar/FRB, and

bright NVSS calibrators with (
1.4��I >

1.5 Jy indicated with black dots. The thick

black lines denote the calibrator used to

phase-reference each pulsar/FRB. Con-

tours denote the FWHM of the primary

beam of both telescopes [41] in the NS

and EW polarizations at 600 MHz. The

vertical black bars denote the meridian at

the time of observation.

are too close to each other, we are forced to assume that the remaining

calibrators are true point sources. For example, we cannot eliminate the

possibility that the emission of sources at low frequencies (400-800 MHz)

is offset from the catalogued survey position at 1.4 GHz. Angular offsets of

the calibrator’s emission region from its catalog position would severely

impact our measurements in two major ways.

First, astrometric discrepancies for sources used as a delay center could

directly lead to localization errors, creating a systematic offset in the

measured RA. This effect should be smaller than the formed beam size

and should be independent of the calibrator’s angular distance from the

transient of interest.

The more serious impact of astrometric discrepancies is on baseline

determination. Eq. 2.5 implies that an inaccurate determination of the

baseline translates to a systematic localization offset proportional to the

on-sky distance between the target of interest (=̂1) and the delay center

(=̂�).

To quantify the systematic offsets in our RA measurements, we con-

ducted triggered observations of pulsars, which are also summarized

in Table 2.1. We added rules to the event classifier in the real time FRB

detection pipeline to allow bright pulses from known pulsars to trigger

a baseband dump, in the same way that an FRB would. In this way, we

collected baseband data for three bright single pulses from PSR B0329+54

and one from PSR B0355+54, and localized the pulsars as if they were FRBs.

We estimated the systematic errors in our localization analysis using the

discrepancy between our results and the pulsars’ known position, corrected

for their proper motion.

We phase reference the pulsar position to the 7 in-beam NVSS calibra-

tors, whose sky positions are as far as 60 degrees away from the pulsar.

We plot the astrometric localization error against the angular distance
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Figure 2.6:Deviation of the localized po-
sitions of B0329+54 and B0355+54 from
their true positions along the RA di-
rection as calculated by using different
NVSS calibrators as delay centers. The
discrepancy in degrees is quantified as the

coordinate offset ΔRA × cos(DEC) and is

plotted with 3� statistical error bars. We

compute localizations for the same pulsar

using different phase centers to study the

effect of using different delay centers on

the same transient. The shaded gray band

is drawn to guide the eye and allows us to

estimate the systematic localization offset

of the two FRBs, whose closest calibrators

are 0.8 and 8 degrees away respectively.

between the pulsar and the delay center in Fig. 2.6. We find that the astro-

metric discrepancy is roughly linearly proportional to the on-sky distance

to the calibrator, and that using the nearest on-sky calibrator minimizes

discrepancies from the catalogued positions of pulsars even with truly

simultaneous phased-array observations through the same ionosphere. We

attribute this discrepancy chiefly to a static baseline determination error

corresponding to time delays of less than a nanosecond. To estimate the

magnitude of systematic uncertainty in our FRB localizations, we find the

intersection of the upper edge of the shaded area in Fig. 2.6 with the on-sky

distance to the nearest calibrator to each FRB.

In addition to an unknown static baseline error, the effective phase

center of a beamforming telescope drifts slightly every day. The effective

phase center position is the centroid of active antenna positions weighted

by their sensitivity, and the centroid drifts from day to day on the order of

∼ cm because a slightly different set of antennas are flagged (i.e. nulled)

every day due to factors like rain causing increased noise in certain antennas.

We take this effect into account during tied-array beamforming, but the

current baseline positions are not yet constrained at a level to measure this

day-to-day drift in astronomical data. Using a larger sample of pulsars at a

wide range of declinations for baseline determination, not just validation,

will reduce our systematic error floor and improve our ability to phase

reference our observations to calibrators far away on the sky.

2.5 Discussion and Conclusion

We have developed baseband recording hardware and software capable

of handling the high data rate of wideband, multi-element radio interfer-

ometers such as CHIME for VLBI observations (Section 6.6.1). Also, we

have demonstrated a calibration technique that exploits CHIME’s wide
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field of view to localize several radio transients detected by CHIME/FRB

and the CHIME Pathfinder in the same spirit as VLBI (Section 2.4). In an

automatically triggered≈ 100 ms duration baseband capture at CHIME and

Pathfinder, we can simultaneously detect a single FRB in cross correlation

between CHIME and Pathfinder, as well as multiple calibrators for phase

referencing our telescopes.

We have developed efficient maximum likelihood estimators to per-

form fringe fitting in the absence of knowledge about the FRB spec-

trum(Section 2.4.5), and have localized FRB 20191021A and FRB 20191219F

with statistical uncertainties of 1.6 and 25 arcseconds respectively along

one direction in the sky (Table 2.1). Using single pulses from bright pulsars

we have characterized the systematic errors on our FRB localizations (18

arcseconds and 3 arcminutes respectively) which are dominated by errors

in baseline determination using NVSS calibrators (Section 2.4.6).

Eventually, CHIME/FRB Outriggers will include stations at baselines

of thousands of kilometers to achieve an astrometric precision of ∼ 50

milliarcseconds. This precision is roughly matched to that of the best

optical telescopes, and will allow for detailed followup studies of FRB host

environments within their host galaxies. To achieve our goal, we anticipate

a very different set of challenges from those presented here. Over long

baselines, the ionospheric phase shift can vary by as much as ΔDM ∼ 10
−5

(corresponding to a time delay of ∼ 200 ns as a function of sky position

at sub-gigahertz frequencies). Achieving high astrometric precision will

require removing this effect with observations of calibration sources close

to the FRB on the sky. The relatively uncharted territory of low-frequency

VLBI calibrators poses a major challenge for scaling CHIME/FRB VLBI

observations to continental baselines.

One option is to use bright pulsars for phase referencing observations

with CHIME/FRB Outriggers, especially for hour angles close to the

Galactic planewherepulsars aremost abundant. Pulsars have the advantage

of being transient and compact point sources, helping to eliminate confusion

noise and the effect of uncertain calibrator morphology on our astrometric

precision. Though the astrometric positions of some pulsars are known at

the 10−20 milliarcsecond level, including less precisely localized pulsars in

the calibrator network of CHIME/FRB Outriggers will improve astrometric

localizations of those pulsars as observations accumulate over time.

For hour angles where pulsars are sparse, phase referencing after the

real-time detection of an FRB can be done by using a dense network of

steady-source VLBI calibrators all over the northern sky, particularly near

the celestial pole in the constant-coverage area of CHIME’s primary beam.

Following pioneering low-frequency VLBI surveys by [42] and [43], [42]: Garrett et al. (2005), “Deep VLBI

Imaging of Faint Radio Sources in the

NOAO Bootes Field”

[43]: Lenc et al. (2008), “A Deep, High-

Resolution Survey of the Low-Frequency

Radio Sky”

the advent of the International LOFAR Telescope has made systematic

surveys of the low-frequency sky possible. The LOFAR Snapshot Calibrator

Survey [44] has demonstrated that high quality, compact VLBI calibrators

[44]: Moldón et al. (2015), “The LOFAR

long baseline snapshot calibrator survey”

at low frequencies tend to be bright at 328 MHz (( = 0.1 − 1 Jy) and have a

flat low-frequency spectrum. Recent results from the ongoing LOFAR Long-

Baseline Calibrator Survey (LBCS) [45] project the density of high-quality

[45]: Jackson et al. (2016), “LBCS: The LO-

FAR Long-Baseline Calibrator Survey”

VLBI calibrators over long baselines to be∼ 1 deg
−2

. While the LBCS covers
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even lower frequencies than those relevant for CHIME/FRB Outriggers, an

understanding of promising low-frequency calibrators on long baselines

will be crucial for future VLBI observing campaigns with CHIME/FRB

Outriggers. The instrumentation and analysis techniques developed in this

paper, combinedwith a dense network of pulsars or compact low-frequency

VLBI calibrators, will pave the way for transformative studies of FRB host

environments and of the intergalactic medium over long baselines with

CHIME/FRB Outriggers.

2.6 Appendix: Baseband Recorder Parts List

Our recorder uses 1 terabyte of RAM to buffer approximately 40 seconds

of baseband data corresponding to dispersion measures of up to ≈ 2000

pc / cm
3
upon receiving a trigger from CHIME/FRB’s real-time detection

pipeline. A photograph of the inside of the node is shown in Fig. 2.1,

and a full parts list is given in Table 2.2. Future recorders may feature an

auxiliary buffer or GPUs for real-time beamforming capabilities [34], which[34]: Ng et al. (2017), “CHIME FRB: An ap-

plication of FFT beamforming for a radio

telescope”

will facilitate longer integration times on fainter calibrators, though this

technical capability is not necessary for our bright calibrators.

Table 2.2: Components used in the prototype baseband recorder for CHIME/FRB Outriggers. The total cost of the recorder was less than

$20k USD in Spring 2019 and was dominated by the cost of the high-density RAM.

Parts Part Number Specifications (each)

Motherboard 1× TYAN Tempest EX S7100-EX 4× PCIeX16, 3× PCIeX8, 2 sockets

CPU 2× Intel Xeon Silver 4116 12 cores (hyperthreaded) × 2.10 GHz

RAM 8× HYNIX HMAA8GR7A2R4N-VN 128 GB

Network 4× Silicom PE 31640G2QI71/QX4 2 × 4×10GbE
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3.1 Abstract and Statement of Contribution

The Canadian Hydrogen Intensity Mapping Experiment (CHIME) has

emerged as the prime telescope for detecting fast radio bursts (FRBs).

CHIME/FRB Outriggers will be a dedicated very-long-baseline interfer-

ometry (VLBI) instrument consisting of outrigger telescopes at continental

baselines working with CHIME and its specialized real-time transient-

search backend (CHIME/FRB) to detect and localize FRBs with 50 mas

precision. In this paper, we present a minimally invasive clock stabilization

system that effectively transfers the CHIME digital backend reference clock

from its original GPS-disciplined ovenized crystal oscillator to a passive

hydrogen maser. This enables us to combine the long-term stability and

absolute time tagging of the GPS clock with the short- and intermediate-

term stability of the maser to reduce the clock timing errors between VLBI

calibration observations. We validate the system with VLBI-style observa-

tions of Cygnus A over a 400 m baseline between CHIME and the CHIME

Pathfinder, demonstrating agreement between sky-based and maser-based

timing measurements at the 30 ps rms level on timescales ranging from

one minute to up to nine days, and meeting the stability requirements for

CHIME/FRB Outriggers. In addition, we present an alternate reference

clock solution for outrigger stations that lack the infrastructure to support

a passive hydrogen maser.

For this paper, I collected the simultaneous CygnusA baseband dumps

at CHIME and the Pathfinder, which were a crucial part of validating the

clock measurements we made at each site. After the completion of this

paper and its publication in the Astronomical Journal, I re-visited the

analysis pipeline that produced clock corrections, and re-wrote it with

Juan’s guidance, and deployed it at two other CHIME Outrigger stations

(TONE and KKO). The author list of this paper is as follows:

J.Mena-Parra,C. Leung, S.Cary,K.W.Masui, J. F.Kaczmarek,M.Amiri,

K. Bandura, P. J. Boyle, T. Cassanelli, J.-F. Cliche, M. Dobbs, V. M. Kaspi,

T. L. Landecker, A. Lanman, J. L. Sievers.

3.2 Introduction

Fast radio bursts (FRBs) [1] are transient pulses of radio light observed out [1]: Lorimer et al. (2007), “A Bright Mil-

lisecond Radio Burst of Extragalactic Ori-

gin”

to cosmological distances; both their origins and emission mechanisms

remain unclear. Even though thousands of FRB events occur over the full

sky every day [46, 47], their detection with traditional radio telescopes is

challenging due to the randomly occurring nature of the majority of bursts.
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With its unique design optimized for rapidwide-field observations and

a powerful real-time transient-search engine [26], the Canadian Hydrogen

Intensity Mapping Experiment [48] has become the leading facility for the

detection of FRBs, detecting over 500 FRBs [47] and 18new repeating sources

[25, 29, 49] in its first year of full operation. Such an unprecedented sample

of events with a single survey has enabled detailed studies of statistical

properties of the FRB population, such as fluence distribution and sky rate,

scattering time, dispersion measure distribution, spatial distribution, burst

morphology, and correlations with large-scale structure [8, 47, 50–52].[8]: Pleunis et al. (2021), “Fast Radio Burst

Morphology in the First CHIME/FRB

Catalog”

[47]: The CHIME/FRB Collaboration

et al. (2021), “The First CHIME/FRB Fast

Radio Burst Catalog”

[50]: Chawla et al. (2021), “Modeling Fast

Radio Burst Dispersion and Scattering

Properties in the First CHIME/FRB

Catalog”

[51]: Josephy et al. (2021), “No Evidence

for Galactic Latitude Dependence of the

Fast Radio Burst Sky Distribution”

[52]: Rafiei-Ravandi et al. (2021),

“CHIME/FRB Catalog 1 results: statistical

cross-correlations with large-scale

structure”

However, except for FRBs with low dispersion measure [3, 38, 53],

[3]: Bhardwaj et al. (2021), “A Nearby Re-

peating Fast Radio Burst in the Direction

of M81”

[38]: Michilli et al. (2020), “An analysis

pipeline for CHIME/FRB full-array base-

band data”

[53]: Bhardwaj et al. (2021), “A Local Uni-

verse Host for the Repeating Fast Radio

Burst FRB 20181030A”

CHIME/FRB’s arcminute localization precision is insufficient to localize

these bursts to their host galaxies, which is crucial to understanding their

nature and unlocking their potential as probes of the intergalactic medium

and large-scale structure. To overcome this limitation, the CHIME/FRB

collaboration is currently developing CHIME/FRB Outriggers, a program

to deploy CHIME-like outrigger telescopes at continental baseline dis-

tances. CHIME and the outriggers will form a dedicated very-long-baseline

interferometry (VLBI) network capable of detecting hundreds of FRBs each

year with subarcsecond localization precision in near real time, allowing

for the unique identification of FRB galaxy hosts and source environments.

Because VLBI localizes sources by precisely measuring the difference

in the arrival time of astronomical signals between independent telescopes

across far-separated sites, it is critical to use very stable local reference

signals (i.e., clocks) that allow the synchronization of VLBI stations with-

out losing coherence during observations and between calibrations. This

is particularly important for stationary telescopes like CHIME and the

outrigger stations that can only be calibrated when a bright radio source

transits through their field of view. The superior stability performance of

hydrogen masers on short and intermediate timescales makes them the

preferred option for VLBI applications [54–56]. Here, we present a hard-[54]: Matthews et al. (2018), “The ALMA

Phasing System: A Beamforming Capa-

bility for Ultra-high-resolution Science at

(Sub)Millimeter Wavelengths”

[55]: Event Horizon Telescope Collabora-

tion et al. (2019), “FirstM87 EventHorizon

Telescope Results. II. Array and Instru-

mentation”

[56]: Schmittberger et al. (2020), “A Re-

view of Contemporary Atomic Frequency

Standards”

ware and software clock stabilization solution for the CHIME telescope that

effectively transfers the reference clock from its original GPS-disciplined

crystal oscillator to a passive hydrogen maser during VLBI observations,

meeting the timing requirements for FRB VLBI with CHIME/FRB Outrig-

gers. Furthermore, this system can be implemented without interrupting

CHIME’s current observational campaign and without modifications to the

correlator or the data-analysis pipelines for cosmology and radio transient

science.

The paper is organized as follows: Section 3.3 describes the features

of the CHIME instrument that are relevant to its use as a VLBI station in

CHIME/FRB Outriggers. Section 3.4 discusses the CHIME/FRB Outrig-

gers clock stability requirements for FRB VLBI. Section 3.5 describes the

hardware and software of the stabilization system that transfers CHIME’s

reference clock to a passive hydrogen maser. Section 8.6 shows the results

of the suite of tests that validate the clock stabilization system with VLBI-

style observations between CHIME and the CHIME Pathfinder (an early

small-scale prototype of CHIME recently outfitted as an outrigger test

bed; [33, 57]. Section 3.7 presents an alternate clock solution for outrigger[33]: Bandura et al. (2014), “Canadian Hy-

drogen Intensity Mapping Experiment

(CHIME) pathfinder”

[57]: Leung et al. (2021), “A Synoptic VLBI

Technique for Localizing Nonrepeating

Fast Radio Bursts with CHIME/FRB”
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stations that do not have the infrastructure to support a hydrogen maser.

Section 3.8 presents the conclusions.

3.3 Instrument overview

A detailed description of the CHIME instrument and the CHIME/FRB

project is presented in [48] and [26]. In this section, we give a brief intro-

duction to these systems focused on the features that are relevant for FRB

VLBI. We also give an overview of CHIME/FRB Outriggers.

3.3.1 CHIME and CHIME/FRB

CHIME is ahybrid cylindrical transit interferometer located at theDominion

Radio Astrophysical Observatory (DRAO) near Penticton, B.C., Canada. It

consists of four 20m× 100m cylindrical reflectors oriented north-south and

instrumented with a total of 1024 dual-polarization feeds and low-noise

receivers operating in the 400-800 MHz band. The cylinders are fixed

with no moving parts, so CHIME operates as a drift-scan instrument that

surveys the northern half of the sky every day with an instantaneous field

of view of ∼ 120
◦
north-south by 2.5◦ − 1.3◦ east-west.

Although CHIME’s design was driven by its primary scientific goal to

probe the nature of dark energy by mapping the large-scale structure of

neutral hydrogen in the universe across the redshift range 0.8 ≤ I ≤ 2.5,

its combination of high sensitivity and large field of view also make it an

excellent instrument to study the radio transient sky. Thus, in its final stages

of commissioning, the CHIME correlator was upgraded with additional

hardware and software backends to perform additional real-time data

processing operations for pulsar timing and FRB science.

The correlator [35, 36] is an FX design (temporal Fourier transform [35]: Bandura et al. (2016), “ICE-Based

Custom Full-Mesh Network for the

CHIME High Bandwidth Radio Astron-

omy Correlator”

[36]: Denman et al. (2020), “AGPU Spatial

Processing System for CHIME”

before spatial cross-multiplication of data), where the F-engine digitizes

the 2048 analog inputs at 800 MSPS and separates the 400 MHz input

bandwidth into 1024 frequency channels with 390 kHz spectral resolution.

The F-engine also implements the corner-turn network that rearranges

the complex-valued channelized data (also known as “baseband”) before

sending it to the X-engine that computes a variety of data products for

the different real-time scientific backends: interferometric visibilities for

the hydrogen intensity mapping backend [48], dual-polarization tracking [48]: The CHIME Collaboration et al.

(2022), “An Overview of CHIME, the

Canadian Hydrogen Intensity Mapping

Experiment”

voltage beams for the pulsar monitoring backend [58], and high-frequency

[58]: CHIME/Pulsar Collaboration et al.

(2021), “The CHIME Pulsar Project: Sys-

tem Overview”

resolution power beams for the 21 cm absorption systems backend [59]

[59]: Yu et al. (2014), “Method for Direct

Measurement of Cosmic Acceleration by

21-cm Absorption Systems”

and for the CHIME/FRB backend that is triggered by highly dispersed

radio transients to search for FRBs in real time [26]. Additionally, a ∼36 s

long memory buffer in the X-engine stores baseband data (2.56 �s time

resolution, 390 kHz spectral resolution, and 4-bit real + 4-bit imaginary

bit depth for the 2048 correlator inputs) that can be saved to disk when

the CHIME/FRB search pipeline detects an FRB candidate, enabling

polarization and high-time resolution analysis of FRB events, as well as

subarcminute localization precision [38]. Eventually it will also enable [38]: Michilli et al. (2020), “An analysis

pipeline for CHIME/FRB full-array base-

band data”
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VLBI localization with CHIME/FRB Outriggers.

3.3.2 CHIME/FRB Outriggers

The scientific goal of CHIME/FRB Outriggers is to provide 50 mas localiza-

tion for nearly all CHIME-detected FRBswith subhour latency. This angular

resolution is sufficient to determine galaxy hosts and source environments

and is well matched to current best optical follow-up observations. To

this end, the CHIME/FRB collaboration is currently building outrigger

telescopes at distances ranging from hundreds to several thousands of

kilometers from DRAO. The outriggers will be small-scale versions of

CHIME, each with about one eighth of CHIME’s collecting area, the same

field of view, and tilted such that they monitor the same region of the sky

as CHIME.

In contrast to traditional VLBI that is typically performed for known

targets with small fields of view and manageable data rates, the random

nature of most FRBs requires the real-time processing of massive data

rates in order to detect and localize these events in blind searches with

wide fields of view. The baseband data rate of CHIME is 6.6 Tbit/s, while

that of each outrigger station will be 0.8 Tbit/s. Since such high data rates

cannot be continuously saved, the outriggers will adopt the triggered FRB

VLBI approach demonstrated in [57], where each station buffers its local

baseband data in memory and only writes it to disk upon receipt of a

trigger from the CHIME/FRB real-time search pipeline over internet links.

The local data of each station is then transmitted to a central facility where

the signals are correlated together such that the outriggers operate with

CHIME as an interferometric instrument with the angular resolution of a

telescope with an aperture of thousands of kilometers.

3.4 Clock stability requirements

Accurate timing is critical for VLBI since the localization of radio sources

is ultimately derived from the relative time of arrival of signals at the

telescope stations. By synthesizing the available frequency channels, it is

possible to obtain a statistical precision on the measured delay given by [60][60]: Rogers (1970), “Very Long Baseline

Interferometry with Large Effective Band-

width for Phase-Delay Measurements”

�stat

� =
1

2� · SNR · BWeff

(3.1)

where SNR is the signal-to-noise ratio of the VLBI event, and BWeff

is the effective bandwidth. For the CHIME/FRB detection threshold
1

1: The SNR inVLBI is related to the SNRat

CHIME as SNR/SNRCH =
√

2�O/�CH =

1/2 where �CH and �O are the collecting

areas of CHIME and the outrigger, respec-

tively, and the factor of

√
2 comes from the

difference in the detailed noise statistics of

a cross-correlation compared to an auto-

correlation [61]. While the CHIME/FRB

real-time detection pipeline has a detec-

tion threshold of ∼ 10 [38], the SNR rises

by ∼ 50% through the more detailed anal-

ysis of the saved baseband data. As such,

we take the floor on the CHIME detection

SNR to be SNRCH = 15.

and

bandwidth (BW), this corresponds to

�stat

� ≈
184 ps(

SNR

7.5

) (
BW

400 MHz

) . (3.2)
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For a VLBI baseline 1, a delay precision �� corresponds to a statistical

localization uncertainty

�� ≈
2

1
�� (3.3)

which gives �stat

� . 11 mas for a 1000 km baseline. However, the (relative)

delaymeasured by the interferometer includes not only the geometric delay

(which ultimately provides the source localization) but also additional

contributions that need to be accounted for, such as propagation though

the troposphere and ionosphere, baseline errors, drift between clocks of

different stations (clock timing errors), and other instrumental delays. In

practice, the localization uncertainty of CHIME/FRB Outriggers will be

limited by systematic errors due to uncompensated delay contributions and

particularly by errors in the determination of the dispersive delay due to the

ionosphere. Although the large observation bandwidth of the instrument

helps to mitigate this effect, it still represents the most important challenge

for system stability at CHIME frequencies.

Our simulations indicate that we can reliably localize FRB events to

50 mas which, for 1 = 1000 km, corresponds to a delay error budget of

�� ≈ 800 ps. Anticipating that the ionosphere will be the main contributor

to delay errors, the clock timing error specification
2
has been set to �clk

� . 2: This is not a hard upper limit but rather

a reasonable reference value that repre-

sents our goal to keep the clock timing

errors well below the 800 ps total timing

error budget.

200 ps.

Note that for blind FRB searches, this specification must be met

at all times. Indeed, it may not always be possible to find a calibrator

immediately after the detection of an FRB for phase referencing. An

additional complication is that stationary telescopes like CHIME and the

outriggers observe the sky as it transits through their field of view and

thus cannot slew toward favorable calibrators. Therefore, it is especially

important to have a reference clock that is reliable on the timescales required

to connect an FRB detection to a calibrator observation, potentially hours

later.

Although the list of steady radio sources potentially suitable for

calibrating low-frequency VLBI arrays with & 1000 km baselines has

significantly increased thanks to the ongoing LOw Frequency ARray

(LOFAR) Long-Baseline Calibrator Survey (LBCS) [44, 45], during its initial [44]: Moldón et al. (2015), “The LOFAR

long baseline snapshot calibrator survey”

[45]: Jackson et al. (2016), “LBCS: The LO-

FAR Long-Baseline Calibrator Survey”

stages CHIME/FRB Outriggers will adopt a more conservative strategy

relying mainly on bright pulsars for calibration. Pulsars are compact, can

be separated from the steady radio background in the time domain, and

are sufficiently abundant to be used as the primary sources for phase

referencing. Accordingly, the backend of each outrigger will also have the

ability to form tracking baseband beams for pulsar analysis and calibration.

Recently, [62] demonstrated the potential of pulsars as calibrators for

CHIME/FRB Outriggers through the triggered VLBI detection of an FRB

over a ∼ 3000 km baseline between CHIME and the Algonquin Radio

Observatory 10 m Telescope using PSR B0531+21 in the Crab nebula for

phase referencing.
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We estimate that an FRB detection can be phase-referenced to an

SNR & 15 pulsar
3
within less than ∼ 10

3
s. This timescale and the relative3: This represents the VLBI SNR after

coherent addition of the pulses within a

single pulsar transit.

clock timing error specification set the clock stability (Allan deviation)

requirement to

�H(10
3

s) . 2 · 10
−13 , (3.4)

As explained in Appendix 3.9, the Allan deviation is a measure of

stability commonly used in precision clocks and oscillators, with ΔC ·
�H(ΔC) roughly representing the rms of clock timing errors a time ΔC after

calibration. The specification in Equation 3.4 is typically obtained with

hydrogen masers. However, in Section 3.7 we show that even frequency

references that initially do not meet this requirement can be used as

reference clocks for the outriggers by interpolating timing solutions between

calibrators.

3.5 Clock Stabilization System

In this section, we discuss the considerations that led to the current clock

stabilization solution for CHIME, as well as the hardware and data analysis

for the maser signal.

3.5.1 Hardware/Software considerations

The CHIME F-engine is implemented using the ICE hardware, firmware,

and software framework [35] It consists of field programmable gate array

(FPGA)-based motherboards specialized to perform the data acquisition

and channelization of the 2048 CHIME analog inputs. The ICE mother-

boards are packaged in eight crates with custom backplanes that implement

the networking engine that reorganizes and sends the baseband data to

a dedicated graphics processing unit (GPU) cluster that performs the

X-engine operations. The outriggers will also use an ICE-based F-engine.

The data acquisition and signal processing of the F-engine are driven

by a single 10MHz clock signal provided by a Spectrum Instruments TM-4D

global positioning system (GPS)-disciplined ovenized crystal oscillator. The

GPS module also generates an inter-range instrumentation group (IRIG)-B

time-code signal internally synchronized to the clock and that is used by

the correlator to time stamp the data. A low-jitter distribution system sends

the clock and time signals to each ICE backplane and motherboard and is

ultimately used to generate the analog-to-digital converter (ADC) sampling

clocks. The time stamping process is implicit: The F-engine uses the IRIG-B

signal to synchronize the start of the data acquisition to an integer second

(up to the 10 ns resolution of the IRIG-B decoder in the FPGA firmware),

and it also tags each data frame with a frame counter value. The X-engine

time stamps the data by calculating the offset from the start time based on

the frame counter value and assuming a fixed 2.56 �s baseband sampling

time.

54



Figure 3.1 shows theAllandeviation of theCHIMEGPS clock (blue line)

as measured with the clock stabilization system described in Sections 3.5.2

and 3.5.3. The GPS disciplined crystal oscillator, being locked to a GPS time

reference determined by a vast network of atomic clocks, will eventually

surpass the stability performance of a single hydrogen maser on very

long timescales (ΔC & 10
6
s). On intermediate and long timescales (ΔC ∼

10
3 − 10

5
s), including the ones of interest for CHIME/FRB Outriggers, the

CHIME clock stability is dominated by white delay noise (�H(ΔC) ∝ 1/ΔC)
corresponding to ∼ 6 ns rms timing errors. While the coherence of this

frequency standard is sufficient for CHIME’s operations as a connected

interferometer and for all its backends, the high precision needed for FRB

VLBI requires the development of a more stable clock system.

Figure 3.1: Allan deviation of the CHIME

GPS clock and the DRAO hydrogenmaser.

Blue: Allan deviation of the CHIME GPS

clock as measured with the clock stabi-

lization system described in Section 3.5.

A total of 10 days of raw ADC data at

30 s cadence were collected for the mea-

surement. Dashed blue: expected mea-

surement error contribution to the Allan

deviation obtained from simulations of

uncorrelated but time-dependent errors

in the range ∼ 4− 20 ps rms (the range ob-

served in the measured delays). Dashed

green: stability requirement from Equa-

tion 3.4 assumingwhite noise delay errors.

Red: manufacturer-specified Allan devia-

tion of the DRAOmaser. The CHIME GPS

clock does not meet the stability require-

ments for FRB VLBI, but the DRAOmaser

does (Equation 3.4).

As a continuously tracking global navigation satellite system station

and as part of the Western Canada Deformation Array [WCDA, 63] and

the Canadian Active Control System [CACS
∗
; 64], DRAO is equipped

with an atomic frequency standard consisting of a T4Science pH Maser

1008 passive hydrogen maser owned and operated by Natural Resources

Canada (NRCan). The maser is installed in a seismic vault at the DRAO site

and has a primary output of 5 MHz (sine wave). It is directly connected to

a low-noise distribution amplifier in the same rack that serves as electrical

isolation for the maser and also derives multiple copies of the 10 MHz

reference signal (sine wave). NRCan has approved the use of two of those

signals for CHIME-related operations.

The manufacturer-specified Allan deviation of the DRAO maser is

shown in Figure 3.1 (red points). The maser clearly exceeds the stability

requirements for FRB VLBI with CHIME (Equation 3.4). Some of the

outrigger sites will also have access to hydrogenmaser frequency references

with similar performance.

Although in principle the ICE system can be operated with an IRIG-B

time signal that is not phase-locked to the 10 MHz reference clock (such as

an independent maser), an important restriction to using the maser as the

∗
http://cgrsc.ca/resources/geodetic-control-networks/canadian-active-control-system-

cacs
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master clock for the CHIME correlator is the fact that both the F-engine and

X-engine software and the scientific data analysis pipelines were developed

on the premise that the clock and IRIG-B signals are synced (e.g., to time

stamp the data), something that cannot be guaranteed if the two signals

are generated by independent systems (the maser and the GPS receiver).

Even if the relative drift between clock and time signals could be tracked,

both the correlator and data analysis pipelines would need to be updated

to implement this change. As such, we had to develop a clock stabilization

system that did not impact the normal operations of CHIME, its existing

real-time backends, and the other scientific teams.

3.5.2 Maser signal conditioning

The clock stabilization system designed for FRB VLBI with CHIME keeps

the current GPS-disciplined crystal oscillator as the master clock and

instead feeds the maser signal to one of the ICE ADC daughter boards

so it is digitized by the crystal-oscillator-driven F-engine. The data are

processed to monitor the variations in the phase of the sampled maser

signal, which correspond to variations in the relative delay between the

maser and the master clock. By using this information to correct phase

variations in the baseband data recorded at the time of an FRB detection,

the system effectively transfers the reference clock from the GPS disciplined

oscillator to the more stable maser signal during FRB observations. As

shown in Figure 3.1 (dashed blue line), the noise penalty associatedwith the

clock transfer operation is essentially white (�H(ΔC) ∝ 1/ΔC) on timescales

relevant for FRB VLBI and small (. 20 ps) compared to the total clock

timing error budget.

A block diagram of the maser signal path is shown in Figure 3.2. The

first point of access to the 10 MHzmaser signal is the low-noise distribution

amplifier within the seismic vault. From there, the signal is transported

through ∼ 500 m of buried coaxial cable to one of the two radio-frequency

(RF)-shielded huts that house the CHIME F-engine. We use the same type

(LMR-400) of low-loss coaxial cable used in the CHIME analog receivers

and whose thermal susceptibility has been extensively tested in the field.

At the RF hut, the cable interfaces with a ground block, and the signal

is then carried inside the RF room using standard SMA cables where it

is connected to an isolation transformer to refer the next stages to the

F-engine crate ground. One complication in the digitization of the maser

signal is that the ADC daughter boards that specialize the ICE system for

CHIME have a bandpass transfer function that strongly attenuates signals

below ∼ 100 MHz. For this reason, instead of feeding the maser signal

directly to an ADC daughter board, the signal is used to drive a low-noise

sine-to-square wave signal translator that generates 10 MHz harmonics

well into the CHIME band. The output of the translator is then filtered to

the CHIME band using the same band-defining filter amplifier (FLA) used

in the CHIME receivers [33, 48]. Finally, the FLA is connected directly to[33]: Bandura et al. (2014), “Canadian Hy-

drogen Intensity Mapping Experiment

(CHIME) pathfinder”

[48]: The CHIME Collaboration et al.

(2022), “An Overview of CHIME, the

Canadian Hydrogen Intensity Mapping

Experiment”

one of the correlator inputs where it is digitized at 800 MSPS with an 8-bit

ADC.
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Figure 3.2:Maser signal path. The 10MHz

maser signal is transported through ∼
500mof buried coaxial cable from the seis-

mic vault to one of the CHIME F-engine

RF huts. There, the maser signal is condi-

tioned to a waveform that can be digitized

by the CHIME F-engine (see Section 3.5.2

for details).

3.5.3 Clock stabilization pipeline

The FPGA within each ICE motherboard processes the data from its

digitizers using the custom CHIME F-engine firmware (for details, see [35]). [35]: Bandura et al. (2016), “ICE-Based

Custom Full-Mesh Network for the

CHIME High Bandwidth Radio Astron-

omy Correlator”

Briefly, the raw ADC data from each input are passed to the frequency

channelizer module as frames of 2048 8-bit samples. The channelizer forms

the baseband data by splitting the 400 MHz input bandwidth into 1024

frequency channels, each truncated to a 4-bit real + 4-bit imaginary complex

number. Additionally, a probe submodule within the channelizer can be

configured to periodically capture a subset of the raw ADC data that is

separately saved and typically used in CHIME for system monitoring.

By default, the CHIME F-engine software pipeline saves one raw ADC

frame (2.56 �s of data) from each input every 30 s, but this cadence can be

modified before starting a data acquisition. The clock stabilization pipeline

extracts the raw ADC frames from the maser input, Fourier transforms

each frame via a Fast Fourier Transform (FFT), and separates the frequency

channels corresponding to the harmonics of the 10 MHz signal in the

CHIME band. The quality of each harmonic is assessed based on its

signal-to-quantization-noise ratio and its susceptibility to spurious aliased

harmonics (relevant for harmonics near the edges of the CHIME band).

Low-quality harmonics are discarded.

Since the ADC that digitizes the maser signal uses the GPS clock

as the reference for sampling, the variations in the delay of the sampled

maser signal represent the delay variations of the GPS clock with respect

to the maser, the latter of which is more stable on short and intermediate

timescales. These delay variations Δ�(C) will induce phase variations

Δ)(C , �) in the maser harmonics of the form

Δ)(C , �) = 2��Δ�(C) (3.5)

where � is the harmonic frequency.

Since we are interested in the GPS clock delay variations relative to the

delay at the time of VLBI calibration, the phase of the maser harmonics is

initially referenced to the phase of a frame close to calibration time. Then for
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each frame, a line described by Equation 3.5 is fit to the phase as a function

of harmonic frequency to recover the GPS clock delay (relative to the maser)

as a function of time. The dominant component of the recovered delayΔ�(C)
is a slow linear drift as a function of time (∼ 50 ns/day) corresponding to a

constant offset of the maser frequency from 10 MHz. This linear trend is

removed from Δ�(C) since it is due to the maser frequency calibration and

not due to the instability of the GPS clock.

The captured rawADC frames are only a small fraction of the available

CHIME data; thus, the times at which GPS clock delay measurements

are available are not necessarily aligned with the times of a calibration

observation or an FRB detection. This means that the GPS clock delay time

stream must be interpolated in order to find the clock contribution to the

total delay measured in a VLBI observation. We use linear interpolation to

find the GPS clock delay at any arbitrary time, a method that is motivated

by the short timescale behavior of the clock delay variations. Figure 3.3

shows a few examples of the behavior of the GPS clock delay on timescales

of a few seconds as measured by the clock stabilization system. On these

timescales, the timing variations are dominated by the tuning jitter gener-

ated by the algorithm that disciplines the crystal oscillator. In essence, the

algorithmworks by counting the number of clock cycles between successive

GPS receiver pulse-per-second (PPS) pulses and adjusting the crystal’s

temperature to ensure 10 million counts between pulses. The size of the

temperature tuning steps is progressively reduced as the crystal oscillator

frequency approaches 10 MHz. As shown in Figure 3.3, this discipline

procedure gives a characteristic triangle-wave shape to the tuning jitter,

and although in a perfectly-tuned oscillator the transitions should occur

every second, in practice we observe that they can take longer. Thus, as

long as the GPS clock delay is sampled at cadences below ∼ 500 ms we can

track the tuning jitter features and a linear interpolation provides a good

approximation to the true delay at any time.

As the current version of the F-engine control software only allows

saving raw ADC data for all the correlator inputs at the time, raw ADC

data at cadences below 10 s cannot be saved during normal telescope

operations and are restricted to operations during times scheduled for

hardware maintenance and software upgrades. A modification to the

F-engine control software is ongoing to allow saving fast-cadence raw

ADC data for the maser input while keeping the default cadence for the

remaining correlator inputs, a change that does not impact the the normal

operations of the correlator and the data-analysis pipelines.

It is also possible to process baseband data directly to extract the maser

signal and measure the GPS clock delay variations. The operation is very

similar to that of raw ADC data, except that the maser data have already

been transformed to the frequency domain by the F-engine. Since in this

case most maser harmonics do not lie exactly in the center of a frequency

channel, the pipeline selects the closest F-engine frequency channel. Then

for each selected channel, it performs an additional channelization by using

an FFT along the time domain to isolate the harmonic frequency.

Although working with baseband data is logistically convenient in
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Figure 3.3: Three examples of the behav-

ior of the GPS clock delay on timescales

of a few seconds as measured by the

clock stabilization system with respect

to the DRAO maser. The raw ADC data

cadence for this measurements was 40 ms.

The measurement errors are in the range

∼ 2 − 13 ps. The characteristic triangle

wave pattern is due to the algorithm that

disciplines the crystal oscillator in theGPS

unit. The algorithmworks by counting the

number of clock cycles between successive

GPS PPS pulses and adjusting the crystal’s

temperature to ensure 10 million counts

between pulses. The size of the tempera-

ture tuning steps changes depending on

the tuning history of the oscillator.

cases where we need to test the performance of the clock stabilization

system (see Section 8.6), during regular operations the current system is

designed to work mostly with raw ADC data. This is mainly because a

baseband dump for an FRB event is typically collected in∼ 100ms segments

at different times for each frequency channel in order to account for the

dispersion delay of the transient, with a total event duration lasting tens

of seconds [38]. This leaves only a few megahertz of bandwidth available [38]: Michilli et al. (2020), “An analysis

pipeline for CHIME/FRB full-array base-

band data”

at any particular instant, making the monitoring of clock delay variations

more challenging. Furthermore, when using baseband dumps we still need

to rely on the continuously saved raw ADC data to track and correct the

long-timescale linear drift of the maser.

3.6 Validation of the clock stabilization system

We tested the reliability of clock stabilization system by installing it in

the Pathfinder telescope and comparing maser-based measurements of

the CHIME-Pathfinder relative clock drift to independent measurements

obtained from VLBI-style observations of steady radio sources.
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3.6.1 The Pathfinder as an outrigger

The Pathfinder is presented in detail in [33]. It is a small-scale prototype

of CHIME with identical design and field of view, and it has the same

collecting area of the outriggers under construction. The telescope is located

∼ 400 m from CHIME and was constructed before CHIME as a test bed for

technology development. With the same correlator architecture as CHIME,

the Pathfinder operates as an independent connected interferometer with

its own GPS-disciplined clock. Recently, [57] repurposed the Pathfinder

as an outrigger to demonstrate the feasibility of triggered FRB VLBI for

CHIME/FRB Outriggers. The Pathfinder correlator is now equipped with

a custom baseband data recorder capable of processing one quarter of

the CHIME band and programmed to write its local baseband data to

disk upon receipt of a trigger from CHIME/FRB. We also connected the

additional copy of the maser signal from the seismic vault to one of the

Pathfinder correlator inputs using a signal path identical to that of CHIME

and shown in Figure 3.2 (except for the transport cable which is longer for

the Pathfinder setup).

3.6.2 Comparison to interferometric observations

The clock stabilization system measures the delay variations of the CHIME

and Pathfinder clocks by processing the maser data from each telescope, as

described in Section 3.5. The delays from each clock are then interpolated

to the observation times so the relative clock drift can be tracked over

time
4
. An independent way to measure the CHIME-Pathfinder relative4: If the maser data comes from simul-

taneous baseband dumps instead of raw

ADC samples then clock delays from the

two telescopes can be directly compared

without interpolation.

clock delay is to interferometrically track a known point source over time

using both telescopes and their independently running backends. If we

properly account for all other contributions to the measured interferometric

delay (geometric, ionosphere, etc.) as the source transits through the field

of view of the two telescopes, then any residual delay should correspond to

the relative drift between the two clocks. If the clock stabilization system is

robust, its measurements should agree very closely with the interferometric

measurement, which we use as a standard.

Short timescale test

We used Cygnus-A (henceforth referred to as CygA) for the VLBI-style

observations since it is the brightest radio source seen by CHIME that

is unresolved on a CHIME-Pathfinder baseline. For the first test, we pro-

grammed the CHIME/FRB backend to trigger short baseband dumps

simultaneously for CHIME and the Pathfinder during a single CygA transit.

In this way, we collected seven 10 ms-long baseband dumps, spaced by

a minute, while the source was in the field of view. The observation was

carried out in 2020 November during a day scheduled for instrument

maintenance, so we were also able to collect raw ADCmaser data at 200 ms

cadence with the two telescopes.
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Since the telescopes are co-located, they experience a common iono-

sphere, suppressing relative ionospheric fluctuations (we see no evidence

for these in our observations). Thus, the residual delay in the interferometric

visibility after accounting for the geometric contribution gives a measure-

ment of the relative clock drift. The residual interferometric delays are

calculated using a procedure identical to that described in [57]. In summary,

each telescope is internally calibrated (to measure the directional response

of each antenna in the telescope array) using a separate observation of

a bright point source [48]. Then, for each telescope and baseband dump, [48]: The CHIME Collaboration et al.

(2022), “An Overview of CHIME, the

Canadian Hydrogen Intensity Mapping

Experiment”

the data are coherently summed over antennas to form a phased-array

voltage beam toward CygA. The beamformed data from CHIME and the

Pathfinder are then cross-correlated on a frequency-by-frequency basis to

form the complex visibility. The phase of each visibility is compensated for

the geometric delay. The variance of each visibility is found empirically by

splitting each baseband dump into short time segments, computing the

visibility for each segment, and calculating the variance over segments as a

function of frequency. The seven visibilities are phase-referenced to that

of the first baseband dump since we are only interested in changes of the

relative clock delay. Finally, the wideband fringe-fitting procedure to find

residual delay performs a least-mean-squares fit of a complex exponential

with linear phase and frequency-dependent amplitude to the measured

visibilities.

Figure 3.4: Comparison of the CHIME-

Pathfinder relative clock delay inferred

via the clock stabilization system and in-

terferometric observations from a single

transit of CygA. Top: relative clock de-

lay (in ns) as a function of time, as in-

ferred from CygA baseband data (blue),

raw ADC maser data (red) and maser

baseband data (green). Bottom: difference

between sky-based and maser-based mea-

surements of the relative clock delay (raw

ADC maser data in red, baseband maser

data in green), demonstrating agreement

between the two methods. The large er-

ror bars for all but the last point in the

raw ADC data analysis (red) are due to

current limitations of the Pathfinder raw

ADC acquisition system (see Section 4 for

details). The error bar in the last red point

of the top plot (∼ 14 ps) is representa-

tive of the expected accuracy of the clock

stabilization system using raw ADC data.

The top panel of Figure 3.4 shows the resulting comparison between

the CHIME-Pathfinder relative clock delays calculated from interferometric

observations (blue) and those found through the clock stabilization system

(from rawADCdata in red, from baseband data in green). The 1� error bars

are too small to be visible in the plot but they are in the range∼ 17−22 ps for

CygAmeasurements,∼ 14−238 ps for rawADCmaser datameasurements,

and ∼ 18 − 33 ps for baseband maser data measurements. Measurements
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with the clock stabilization system show excellent agreement with the sky.

This is further highlighted in the bottom panel of Figure 3.4 that shows

the difference between sky-based and maser-based measurements of the

relative clock delay (raw ADC maser data in red, baseband maser data in

green).

The large error bars for all but the last point in the raw ADC data

analysis (red) are dominated by the error in the measurements of the maser

delay at the Pathfinder. These can be traced back to current limitations of the

Pathfinder raw data acquisition system, which occasionally drops packets

when we collect raw ADC data at fast cadence for the reasons explained

in Section 3.5.3. This limitation will be solved in the next upgrade of the

F-engine control software. For the observation times that fell within sections

of missing Pathfinder raw ADC data (the longest of which was ∼ 80 s), the

delay values were obtained by performing a smoothing spline interpolation

based on the available measurements. To estimate the uncertainty in the

delay values obtained with this method, we analyzed a segment of the

delay time stream for which there were no gaps due to dropped packets,

∼ 10 minutes before the sky observations. The errors were found using a

procedure similar to the one used in Section 3.7 to evaluate the performance

of alternate reference clocks, where we introduce artificial gaps in the delay

time stream and analyze the statistics of an ensemble of interpolation

residuals. Only the raw ADC delays (red) for the last observation time

could be measured using the default interpolation for both telescopes (see

Section 3.5.3). The uncertainty for this measurement is ∼ 14 ps, and is

representative of the expected accuracy of the clock stabilization system

using raw ADC data.

Long timescale test

To test the performance of the clock stabilization system on long timescales

we collected fiveCygAbaseband dumps, each 10ms in duration, spaced one

minute apart, for nine days in a row for a total of 45 delay measurements.

The observations were carried out in 2021 April during normal CHIME

operations so we relied on baseband maser data for delay measurements

with the clock stabilization system for the reasons explained in Section 3.5.3.

Both interferometric and maser-based delays are calculated using the same

procedure as in the short timescale test described in Section 4, with the

visibilities phase-referenced to one of the observations on the fifth day.

The results of the long timescale test are shown in Figure 3.5. The

interferometric measurements agree with the maser-based measurements

at the ∼ 30 ps rms level, demonstrating that after correction with the clock

stabilization system the resulting reference clock is stable over timescales

of more than a week, and that the signal chain used to inject the maser

signal into the correlator is not a limitation for the system’s performance in

CHIME/FRB Outriggers.
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Figure 3.5: Top: comparison of the

CHIME-Pathfinder relative clock delay

inferred via the clock stabilization sys-

tem (red) and interferometric observa-

tions (blue) of from multiple transits of

CygA. For each transit, we made five

measurements of the relative clock de-

lay, spaced by one minute, for nine days

in a row. Bottom: difference between sky-

based and maser-based measurements of

the relative clock delay. The two meth-

ods show excellent agreement on short

(minute) and long (many days) timescales.

This indicates that the clock stabilization

system we have implemented can track

clock delay variations with better than

∼ 30 ps rms level precision.

3.7 A reference clock for outrigger stations
without a maser

The clock stabilization system allows us to inject external reference clock

signals into radio telescopes that share the CHIME correlator architecture.

In addition to its use in the new outriggers, the system enables reference

clocks to be swapped out at existing telescopes like CHIME and legacy

systems like the Pathfinder without making major changes to the software

framework or existing scientific backends, while expanding the telescopes’

capabilities to include VLBI.

Most outriggers will also have access to hydrogen maser frequency

references that can be used in the same way as CHIME (Section 3.5) to

meet the stability requirements for FRB VLBI. However, we still need

to address the possibility that certain outrigger stations may be built at

locations (e.g., greenfield land) that will lack the infrastructure to support

a hydrogen maser. In this scenario, alternate reference signals (e.g., from

rubidium microwave oscillators) can also be injected into the correlator

to track and compensate for GPS clock drifts. The performance of these

oscillators is inferior to that of a hydrogen maser, but they are still more

stable than the CHIME GPS clock on the timescales relevant for FRB VLBI.

They are also less expensive and more readily available than a maser.

Even if these frequency references can potentially be used directly as the

correlator master clock since they typically come in units that can provide

GPS disciplining as well as absolute time, it is still desirable to use them

separately as free-running clocks for short and intermediate timescale

observations. Not only are they inherently more stable than the primary

CHIME clock, but they are not subject to short-timescale tuning jitter when

not locked to GPS.
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Equation 3.4 provides a convenient way to determine whether an

off-the-shelf clock meets the requirements for FRB VLBI by simply reading

the �H(10
3
s) value from the unit’s data sheet. Passive hydrogen masers

meet and exceed this requirement. However, this specification was derived

from Equation 3.10, which assumes uncorrelated clock timing errors and

perfect calibration measurements. In practice, the actual clock timing errors

will depend on aspects not necessarily captured by this equation including

the detailed statistics of the delay variations, the methods used to estimated

them, the timing and accuracy of the calibration measurements, and the

technique that we use to inject the clock to our system. These aspects

become relevant when the frequency standard does not clearly exceed the

specification in Equation 3.4.

As part of the implementation of the clock stabilization system, [65][65]: Cary et al. (2021), “Evaluating and

Enhancing Candidate Clocking Systems

for CHIME/FRB VLBI Outriggers”

developed a software package with methods to determine the suitability

of precision clocks for VLBI with transit telescopes like CHIME/FRB

Outriggers. These methods take into account the details of the noise

processes that determine the stability of the clocks and simulate realistic

timing calibration scenarios. The basic input to the software is a time

stream that represents the delay variations as a function of time of the clock

under test. The delay time stream data can be either from measurements

or from simulations; in the latter case, the software provides tools to

generate time streams described by combinations of power-law noise

processes commonly observed in precision clocks and oscillators including

white phase modulation noise, white frequency modulation noise, flicker

frequency modulation noise, and random walk frequency modulation

noise [66]. Similarly, the software provides tools to generate delay time[66]: Allan (1987), “Time and Frequency

(Time-Domain) Characterization, Estima-

tion, and Prediction of Precision Clocks

and Oscillators”

streams from a set of Allan deviation measurements, which is convenient

for evaluating the performance of a clock based on its manufacturer

specifications. In this case, it is assumed that the delay variations are

described by a combination of power-law noise processes where the weight

of each noise component is found by fitting the Allan variance data to

a model consisting of a linear combination of the Allan variances of the

previously described noise processes.

A calibrator is parameterized by its observing time, number of clock

timing measurements, and SNR per transit. For example, for a calibrator

at the equator, the observing time with CHIME is ∼ 6 minute, and with

a ∼ 2 minute integration time we would have three delay measurements

per transit. The SNR determines the uncertainty in the calibration delay

measurements (see Equation 3.1). Given a timescaleΔC20; that represents the

maximum expected time separation between calibrators, themethodmasks

a random ΔC20;-long section of the delay time stream, interpolates using a

best-fit function determined from the available calibrationmeasurements at

each end of the masked section, and keeps the interpolation residuals. The

process is repeated a configurable number of times to obtain a statistical

ensemble of interpolation residual time streams, each of length
5 ∼ ΔC20; . As5: In practice, there is an additional over-

head equivalent to one integration.
the default metric of the stability of the clock atΔC20; timescales, themethod

uses the largest value of the ensemble standard deviation in the interval

[0,ΔC20;]. Other metrics of performance are available. Since throughout the

paper we have used the convention that ΔC represents the time between a
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calibration and an observation, this metric can be interpreted as an estimate

of the largest clock timing rms error for ΔC up to ∼ ΔC20;/2.

Different interpolation methods are available including linear fit,

smoothing spline, and nearest available calibrator. The fitting weights are

determined by the calibrator SNR and the level of the noise added by the

timing stabilization system.

As a candidate for outriggers without a maser, we evaluated the

performance of the EndRun Technologies Meridian II US-Rb rubidium

oscillator. The unit was installed in the Pathfinder RF room and connected

to a separate input of the correlator so we could test its performance

against the DRAOmaser under conditions comparable to those of a typical

outrigger. A signal conditioning chain identical to the maser was used

(signal translator + FLA). We collected ∼ 42 hr of raw ADC data at 1 s

cadence for both themaser and the Rb clock and used the clock stabilization

pipeline to extract the clock delay variations relative to the maser. The top

panel of Figure 3.6 shows the measured delay variations after removing the

slow linear drift component due to themaser (see Section 3.5.3). The bottom

panel shows the corresponding Allan deviation of the Rb clock (blue), the

measurement error (dashed blue), and the manufacturer-specified Allan

deviation of the Rb clock (green points) and the DRAO maser (red points).

For ΔC . 40 s the variations are dominated by the noise associated to the

timing stabilization system, which is in the range ∼ 10 − 30 ps and is small

compared to the ∼ 200 ps clock timing error budget. At longer time scales

the measured Allan deviation of the Rb oscillator is consistent with the

manufacturer specification. These results are also consistent with direct

Allan deviation measurements of the Rb oscillator performed with a phase

noise analyzer, confirming that the hardware of the stabilization system is

not a limitation for clock performance in CHIME/FRB Outriggers.

Note that if we rely only on themanufacturer-specifiedAllan deviation,

the Rb clock does not meet the requirement in Equation 3.4. This justifies

a more detailed analysis of the clock performance to determine whether

it can still be used as a frequency reference for the outriggers without a

maser.

The measured delay time stream was analyzed with the software

package described above and in [65] to evaluate the expected performance

of the Rb clock under different calibration conditions. The results are

shown in Figure 3.7. For the analysis, we assumed that the calibrator

observing time was 9 minutes (roughly the value at CHIME’s zenith) with

two integrations per observation. The best performance is obtained with

linear interpolation between calibrators. We tested calibrator SNRs of 10

(purple), 15 (green), 20 (red), and∞ (blue), with the latter representing the

case where the clock performance is not limited by calibration errors. For

comparison, we also show the projected clock timing errors for the DRAO

maser using synthetic data generated from the manufacturer-specified

Allan deviation with SNR = 15 (dashed green). Figure 3.7 shows that,

even in the most conservative scenario where we assume that all the

calibrators have SNR = 15, the Rb clock timing errors stay below 225 ps up

to ΔC ∼ 10
3
s by interpolating between timing solutions (solid green). This
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Figure 3.6: Top: measured delay varia-

tions of the rubidium oscillator tested

as a candidate reference clock for outrig-

gers without a maser. Bottom: measured

Allan deviation of the Rb clock (blue),

measurement error (dashed blue), and

manufacturer-specified Allan deviation

of the Rb clock (green points) and the

DRAO maser (red points). The measured

Allan deviation of the Rb clock is consis-

tent with the specification at intermediate

and long timescales. At short time scales

the noise of the timing stabilization sys-

tem dominates the performance, but it is

still small (∼ 10 − 30 ps) compared to the

clock timing error budget. This confirms

that the hardware of the clock stabiliza-

tion system is not a limitation for clock

performance in CHIME/FRB Outriggers.

clock timing error is still well below the total timing budget of ∼ 800 ps,

leaving enough room to handle ionospheric delay errors.

Figure 3.7: Projected clock errors, �clk� , of

the Rb clock as function of the time be-

tween calibratorsΔC20; frommeasured de-

lay variations and simulations of realistic

timing calibration scenarios. This metric

represents an estimate of the largest clock

timing error for ΔC up to ∼ ΔC20;/2 (see

Section 3.7 for details). The dashed black

horizontal line represents �clk� = 200 ps.

Even in the most conservative scenario

where we assume that all the calibrators

have SNR = 15 (solid green), the Rb clock

timing errors stay below 225 ps up to

ΔC ∼ 10
3
s by interpolating between tim-

ing solutions, meeting the requirements

for FRB VLBI with CHIME/FRB Outrig-

gers.

3.8 Conclusions

We developed a clock stabilization system for CHIME/FRB Outriggers that

allows synchronization of CHIME and outrigger stations at the ∼ 200 ps

level on short and long timescales. This meets the requirements for 50 mas

localization of FRBs detected with the CHIME/FRB real-time pipeline.
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Our proof-of-principle clock transfer has demonstrated that a variety of

different data products can be used for precise time transfer from an

external reference clocks into data acquisition backends using the ICE

framework. This method is minimally invasive to existing telescopes like

CHIME and the Pathfinder, expanding the capabilities of these instruments

to include VLBI without impacting their existing scientific backends. It

also allows for increased flexibility and modularity for future systems

such as those at CHIME outriggers. For outriggers that do not have the

infrastructure to support a hydrogen maser, we demonstrated that it is still

possible to meet the required clock stability specification by using alternate

reference clocks and interpolating timing solutions between calibrations.

3.9 Appendix: Clock stability and Allan
Deviation

On timescales of a second and larger, clock stabilities are usually quoted

in terms of the Allan variance, or its square-root the Allan deviation [67]. [67]: Allan (1966), “Statistics of atomic

frequency standards”
In this appendix, we show how the clock stability required for FRB VLBI

relates to the Allan deviation.

Let the “true” time be C, and the difference in seconds between what

our clock reads and the true time be G(C). In general, we will not knowwhat

the clock timing error G(C) is for all time, but for CHIME/FRB Outriggers

we will measure it whenever we do an on-sky calibration. If we calibrate at

two points in time, we naturally would like to predict the timing error at

the midpoint between the two calibrations. In particular, if the calibration

times are C and C + 2 · ΔC, then we want to estimate G(C + ΔC) given G(C)
and G(C + 2 · ΔC). The simplest assumption that we can make is that our

clock runs at a constant rate between C and C + 2 · ΔC, in which case our

prediction for G(C +ΔC)will be

[
G(C) + G(C + 2 · ΔC)

]
/2. The variance of the

timing error estimate halfway between the calibrations will then be:

〈[
G(C + ΔC) − G(C) + G(C + 2 · ΔC)

2

]
2

〉
=

1

4

〈[
G(C) − 2G(C + ΔC) + G(C + 2 · ΔC)

]
2

〉
.

(3.6)

The Allan variance is defined to be

�2

H(ΔC) ≡
1

2 · ΔC2

〈[
G(C) − 2G(C + ΔC) + G(C + 2 · ΔC)

]
2

〉
, (3.7)

so we can now relate our timing error variance halfway between the

calibrations directly to the Allan variance:

〈[
G(C + ΔC) − G(C) + G(C + 2 · ΔC)

2

]
2

〉
=
ΔC2

2

�2

H(ΔC). (3.8)
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In general, and up to factors of order unity, the variance of the timing

error will be determined by the product ΔC2 · �2

H(ΔC), so

�G(ΔC) ≈ ΔC · �H(ΔC). (3.9)

is typically used as an approximation to the standard deviation of the

clock timing error after a time ΔC [68–70]. In practice, the actual errors will[68]: Barnes et al. (1971), “Characterization

of Frequency Stability”

[69]: Kartaschoff (1979), “Computer Simu-

lation of the Conventional Clock Model”

[70]: Rogers et al. (1981), “Coherence limits

for very-long-baseline interferometry”

depend on the details of the prediction algorithm and the noise processes

that dominate the stability of the clock. For the particular case of white

timing noise, it follows from Equation 3.7 that

�,#
H (ΔC) =

√
3

�G
ΔC
. (3.10)

From Equation 3.7 the Allan deviation is dimensionless, so it is

telling us the fractional uncertainty in our clock between calibrations.

Quantitatively, if our pulsar calibrations are separated by 2 · ΔC = 2000 s,

and the limit on the differential timing residual at the midpoint is 200 ps

rms (Section 3.4), then our Allan deviation requirement is

�H(10
3

s) ≈
√

3

2

· 2 · 10
−10

s

10
3
s

≈ 2 · 10
−13. (3.11)
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4.1 Abstract and Statement of Contribution

The sensitivity and field of view of the Canadian Hydrogen Intensity

Mapping Experiment (CHIME) has enabled its fast radio burst (FRB)

backend to detect thousands of FRBs. However, the low angular resolution

of CHIME prevents it from localizing most FRBs to their host galaxies. Very

long baseline interferometry (VLBI) can readily provide the subarcsecond

resolution needed to localize many FRBs to their hosts. Thus we developed

TONE: an interferometric array of eight 6-m dishes to serve as a pathfinder

for the CHIME/FRB Outriggers project, which will use wide field-of-view

cylinders todetermine the skypositions for a large sample of FRBs, revealing

their positions within their host galaxies to subarcsecond precision. In

the meantime, TONE’s ∼3333 km baseline with CHIME proves to be an

excellent testbed for the development and characterization of single-pulse

VLBI techniques at the time of discovery. This work describes the TONE

instrument, its sensitivity, and its astrometric precision in single-pulse

VLBI.We believe that our astrometric errors are dominated by uncertainties

in the clock measurements which build up between successive Crab pulsar

calibrationswhich happen every≈ 24 h; thewider fields-of-view andhigher

sensitivity of the Outriggers will provide opportunities for higher-cadence

calibration. At present, CHIME-TONE localizations of the Crab pulsar

yield systematic localization errors of 0.1–0.2 arcsec – comparable to the

resolution afforded by state-of-the-art optical instruments (∼0.05 arcsec).

For this paper, I designed andbuilt the high-bandwidthdigital backend

for TONE, and modified existing code for real-time baseband buffering

and readout for the TONE array. I generalized existing offline pipelines for

1) the calibration of individual antennas, 2) tied-array beamforming, and 3)

clock measurements, and applied them to TONE data. Finally, I performed

the cross-talk measurement and all CHIME-TONE VLBI correlations and

measurements using an early version of the software described in Chapter

5. The author list of this paper is as follows:

Pranav Sanghavi, Calvin Leung, Kevin Bandura, Tomas Cassanelli,

Jane Kaczmarek, Victoria M. Kaspi, Kholoud Khairy, Adam Lanman,

Mattias Lazda, Kiyoshi W. Masui, Juan Mena, Daniele Michilli, Ue-Li Pen,

Jeffrey B. Peterson, Mubdi Rahman, Vishwangi Shah.

4.2 Introduction

Fast radio bursts (FRBs) are bright, millisecond-duration transients detected

at radio wavelengths [1]. Their dispersion measures (DMs) suggest an

extragalactic origin, and their characteristic radio luminosity is orders of

magnitude larger than those of other known radio transients.
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Since the first FRB was reported, hundreds of FRBs have been discov-

ered by instruments across the globe
∗
[71]. The majority of detections have

been made by the Canadian Hydrogen Intensity Mapping Experiment Fast

Radio Burst (CHIME/FRB) project [47]. A small (∼ 4%) fraction of detected

FRBs are seen to repeat [25, 27, 29, 49, 72]. At least two repeaters show

quasi-periodic activity [15, 17, 73].[15]: CHIME/FRB Collaboration et al.

(2020), “Periodic activity from a fast radio

burst source”

[17]: Rajwade et al. (2020), “Possible peri-

odic activity in the repeating FRB 121102”

[73]: Cruces et al. (2021), “Repeating be-

haviour of FRB 121102: periodicity,waiting

times, and energy distribution”

Follow-up studies of FRBs are limited and very challenging due to

the difficulty of associating FRBs with their host galaxies. While repeating

sources can in principle eventually be localized using traditional interfero-

metric techniques [18], precise sky localization has not been possible thus

[18]: Chatterjee et al. (2017), “A direct lo-

calization of a fast radio burst and its host”

far for the majority of one-off sources detected to date. This is because

CHIME/FRB has insufficient angular resolution to permit unambiguous

host galaxy identification for the vast majority of its detections. Although

some hosts can be identified for very bright FRBs with very low DM excess

by imposing a prior on the host galaxy’s maximum redshift [3, 53], too

few host galaxies have been identified to discern trends in host type or of

source location within the host [6, 7, 20, 74–83].

CHIME is a novel radio telescope now operating at the Dominion

Radio Astrophysical Observatory (DRAO) in Penticton, British Columbia,

Canada. It consists of four 20 m× 100 m fixed cylindrical reflectors oriented

in the north/south direction, each equipped with 256 dual-polarization

feeds sensitive in the range 400–800 MHz. The cylinders form a transit

interferometer with ∼200 deg
2

field of view that continuously surveys the

northern half of the sky
†
. The CHIME/FRB experiment is a specialized

backend that triggers on high-dispersion radio transients to search for FRBs

in real time [26, 34]. In some cases, CHIME/FRB is capable of localizing

FRBs with ∼1
′
precision using buffered raw voltage data that is saved

whenever an event is detected [38].

Very long baseline interferometry (VLBI) is a natural way to expand

upon CHIME/FRB’s localization capabilities. However, VLBI on one-off

FRBs is a challenging endeavor. The broad-band emission from FRBs

is, despite being confined to milliseconds, dispersed in time typically

over several seconds due to its propagation through cold plasma. Their

extremely long dispersive sweeps and unpredictable occurrence in time

and sky locationmake it challenging to localise these bursts with traditional

VLBI techniques of data acquisition and calibration. Traditional approaches

to VLBI for FRBs have been implemented albeit only for repeaters [4, 5,

20, 83]. A few apparently non-repeating FRBs, or ‘one offs’, have been[4]: Kirsten et al. (2022), “A repeating fast

radio burst source in a globular cluster”

[5]: Marcote et al. (2017), “The Repeating

Fast Radio Burst FRB 121102 as Seen on

Milliarcsecond Angular Scales”

[20]: Marcote et al. (2020), “A repeat-

ing fast radio burst source localized to

a nearby spiral galaxy”

[83]: Nimmo et al. (2022), “Milliarcsec-

ond Localization of the Repeating FRB

20201124A”

localized to their hosts using connected-element interferometers such as

the Australian Square Kilometer Array Pathfinder (ASKAP) [21], Deep

Synoptic Array-10 (DSA-10) [23], MeerKAT [84], and the Very Large Array

(VLA) [85]. Nevertheless, obtaining sub-arcsecond localizations of one-off

FRBs on a routine basis is still a major goal of the field which remains

elusive. The CHIME/FRB Outriggers project plans to fill in the gap of

precise localizations of one-off FRBs.

∗ https://www.herta-experiment.org/frbstats/
†
The CHIME primary beam actually covers declinations down to −11 deg
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TONE as an interferometric array is one of three pathfinders for the

CHIME/FRBOutriggers project whose aim is to demonstrate key hardware

and software instrumentation towards localizing FRBs using VLBI. The

CHIME Pathfinder telescope [33] – the precursor to CHIME – was re-

commissioned as a high-bandwidth data recorders and in-beam calibration

strategies, which was tested on a short baseline [57]. Additionally, we also

commissioned a single dish outrigger at the Algonquin Radio Observatory

(ARO) using the 10 meter dish (ARO10) [62] as a simple, single-dish long- [62]: Cassanelli et al. (2022), “Localizing

FRBs through VLBI with the Algonquin

Radio Observatory 10 m Telescope”

baseline outrigger. TONE combines the instrumentation challenges of

widefield, “large-N, low-D” interferometric telescopes with the calibration

challenges of VLBI on long baselines.

This paper is organized as follows. We describe the TONE array at

Green Bank Observatory in §16, its analog chain in §4.4 and the digital

system in §4.5. The performance of the array is discussed in §4.6. The

operations of the array are described in §4.7 leading to the first light and

finally beamforming VLBI cross-correlation and localization in §4.8. We

use Crab pulsar (PSR B0531+21) giant pulse data and VLBI to empirically

determine our systematic uncertainties in §4.9 before concluding in §4.10.

4.3 TONE

Figure 4.1: TONE: The array of dishes at the Green Bank Observatory with the Green Bank Telescope and the second 85–ft Green Bank

Interferometer dish in the background.

TONE (see Figure 4.1) was built with the primary goal of detecting

pulses from FRBs and localizing one-off pulses to sub-arcsecond accuracy

upon detection. A secondary goal was to demonstrate key aspects of the

hardware and software required for CHIME/FRB Outriggers. Additionally,

it has served as a testbed for technologies that may enable future “large-N,

low-D” instruments such as the Hydrogen Intensity and Real-time Analysis

eXperiment (HIRAX) [86, 87] and the Canadian Hydrogen Observatory [86]: Newburgh et al. (2016), “HIRAX: a

probe of dark energy and radio transients”

[87]: Crichton et al. (2022), “Hydrogen

Intensity and Real-Time Analysis Ex-

periment: 256-element array status and

overview”

and Radio-transient Detector (CHORD) [88].

[88]: Vanderlinde et al. (2019), “The Cana-

dian Hydrogen Observatory and Radio-

transient Detector (CHORD)”

TONE is located at the Green Bank Observatory in West Virginia near

the interferometer control building of the Green Bank interferometer. The

National Radio Quiet Zone provides an clean environment free of radio

frequency interference (RFI). Existing radio astronomical infrastructure

allows for resources such as buildings to house the backend, a gigabit fiber

internet link, and a copy of the Green Bank maser signal.
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CHIME-TONE VLBI works by operating each station as phased arrays,

and cross-correlating synthesized voltage beams from each station. The

diffraction limited angular resolution over the �km ∼ 3300 km baseline

between CHIME and TONE (see Figure 4.2) is �FWHM ∼ 2063 × �cm/�km ,

which at 400 MHz ≡ �cm = 75 cm gives �FWHM ∼ 50 mas. This precision is

sufficient to localize the majority of FRBs to within their host galaxies for

detailed follow-up of their environments [89].

Figure 4.2: Location of the CHIME and

TONE. The baseline distance between

CHIME and TONE is ≈3333 km.

3332.89 km

120°W 100°W 80°W 60°W

40°N

46°N

52°N

58°N
CHIME
TONE

Table 4.1: Instrumental parameters for

TONE.

Parameter Value
Number of Dishes 8

Frequency Range 400–800 MHz

Frequency Resolution 390 kHz, 1024 Channels

Dish Diameter 6 m

Dish focal ratio ( 5 /�) ∼ 0.4
Planned Layout 4 × 3 with 9.1 m spacing

Primary Beam FWHM 11–5°

The array was designed to have 12×6 m parabolic dishes arranged

in a regular close-packed rectangular pattern. Each dish is an aluminum

paraboloid reflector with an off-the-shelf steel frame which significantly

reduces the cost of the array. The receiver is at the prime focus of each dish.

We assembled 8 dishes in a rectangular grid, with the long axis oriented

along a line 60° from North. A schematic drawing and the final layout

of the dishes as seen from satellite imagery are shown in Figure 4.3. The

dishes are pointed at a positive hour angle towards the declination of the

Crab Nebula (hereafter, Taurus A) when it is at the meridian as viewed by

CHIME. We use Taurus A, as a primary calibrator to phase the antennas of

TONE. The Crab pulsar’s intermittent giant pulses are used as a calibrator

over the long baseline for astrometric calibration. The completed array is

shown in Figure 4.3.

72



(a) Satellite imagery of the TONE dishes Credit:

Bing Maps

6 m
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1

m
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North

(b) The red circle represent the commissioned

dishes.

Figure 4.3: Arrangement of the commissioned dishes. Two dishes were damaged in a wind storm and one redundant dish which was

outfitted with a slightly different analog chain was not chosen to be part of the final setup.

4.4 The Analog Chain

The analog chain (Figure 4.4) consists of a dual-polarization cloverleaf-

shaped dipole antennawith a full octave bandpass between 400 to 800 MHz

based on the same design as the CHIME antenna. The active balun antenna

has a low-noise amplifier in the antenna stem. The amplified signal is passed

via a coaxial cable to the radio frequency over fiber (RFoF) transmitter.

The signal is sent via fiber in buried conduits to the interferometer control

building into the digital backend where it is digitized.
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Figure 4.4: The analog chain of a single

dish of TONE. The signal collected by the

active feeds from each polarization is sent

over 25 or 50 feet of coaxial cables (not

all cables are the same length for all the

dishes – some are 25 feet and some 50

feet). The signal from the coaxial cables

is sent over 150 m of fiber optic cable to

an electromagnetic compliant rack inside

the interferometer control building using

a custom RFoF system. The receiver con-

verts the light back to an electrical signal

that is then digitized by the ICE boards.

4.4.1 Cloverleaf Antenna & Low Noise Amplifier

We use a dual-polarization cloverleaf feed (Figure 4.5) based on the design

that was developed for CHIME [90] andwhich was selected for HIRAX [87].

It is an active feed that consists of a balun that uses an Avago MGA-16116

dual amplifier, and the difference between the outputs is amplified using

a Mini-Circuits PSA4-5043+ amplifier. Each feed is mounted inside a

cylindrical can, which circularizes the beam and helps reduce crosstalk

between dishes. Each antenna-can assembly is mounted at the focus on

struts extending from the dish and a custom pyramid structure. The active
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antennas are powered by two central power supply units supplying ∼7 V

directly over copper electrical cables. The feeds are protected from the

elements by custom vacuum-formed plastic covers and neoprene seals.

Figure 4.5: The feed with the cloverleaf

antenna. The polarizations are aligned

with the printed letters on the feed i.e.,

rotated 45° from the slots. The LNA is in

the stem.

4.4.2 Radio Frequency over Fiber (RFoF) system

Signals received by each polarization of the feed are sent over coaxial cables

to a junction box at the pole below every dish. This is fed into a RFoF

transmittermodule (Figure 4.6). It is then band-limited to 400–800 MHz and

passed through an amplification stage before being intensity-modulated

on an optical carrier. 150 m of optical fibers carry these signals to the

digital backend server rack, where RFoF receivers convert the signals

back into electrical voltages. The RF signals are subsequently amplified

and filtered again before being passed to the ICE boards (see §4.5.1).

The transmitter contains a laser diode (AGX Technologies, FPMR3 series)

that is intensity-modulated by the incoming RF signal, and the receiver

contains a photodetector (AGX Technologies, PPDD series) that converts

the transmitted optical signal into radio frequency voltages. The RFoF

transmitter and receiver design is based on technology that was developed

for CHIME [91].[91]: Mena et al. (2013), “A Radio-

Frequency-over-Fiber link for large-array

radio astronomy applications”
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Figure 4.6: The RFoF transmitter, as seen

inside its electromagnetically-compliant

enclosure.

4.5 Digital system

Much like CHIME [26, 48], the TONE backend is operated with an FX

correlator architecture albeit without the “X” engine. In the “F” stage, a total

of 16 wideband analog signals from the analog chain in the 400–800 MHz

frequency band are alias-sampled at 800 Msps into the second Nyquist

zone by the analog to digital converters (ADCs) on the mezzanines of the

ICE boards.

4.5.1 ICE Boards

The F-engine for TONE consists of two ICE boards [35]. Each board is a

custom FPGA motherboard that makes use of a Xilinx Kintex-7 FPGA and

ARM-based co-processor. Each board processes 16 digitized inputs from 8

dual-polarization feeds. Since TONE consists of ≤ 8 antennas operating in

tandem, each board is fed an identical copy of the analog signals from the

RFoF receiver that have been split with simple resistive coaxial splitters.

The two boards both perform channelization of the data but serve different

purposes downstream. ICE Board 1 is used for VLBI with CHIME while

ICE Board 2 is used to operate TONE as an independent instrument.

Both ICE boards are controlled by a custom Python software, pychfpga‡,
which is used to communicate with and program the FPGA and the ARM

coprocessor. The ICE boards are both synchronized using a 10 MHz signal.

Absolute time is provided to each board in the IRIG–B format
§
from a

TM-4 GPS receiver
¶
.

The ICE boards receive and digitize the 16 incoming signals from the

RFoF system at a rate of 800 Msps with a dynamic range of 8 bits over

‡ https://bitbucket.org/winterlandcosmology/pychfpga/
§ https://www.wsmr.army.mil/RCCsite/Documents/200-16_IRIG_Serial_Time_Code_

Formats/200-16_IRIG_Serial_Time_Code_Formats.pdf
¶
AmodifiedTM4–D receiverwith the timedistribution systemdisconnected and removed [92]

https://www.spectruminstruments.net/products/tm4d/tm4d.html
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Figure 4.7: The flow diagram shows the

entire system as present in the electro-

magnetically compliant cabinet. The two

redundant ICE boards can be used inter-

changeably. ICE Board 1 is used as an F

engine for CHIME-TONEVLBI, digitizing

the sky inputs and maser input, and for-

warding all of the channelized voltages to

the recorder node over a high-bandwidth

network interface. ICE Board 2 is config-

ured as a full FX correlator for operat-

ing TONE independently of CHIME, com-

puting and sending full visibilities to the

recorder node via the switch.
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the full 400 MHz of bandwidth. Each board, when in use, saves a 2.56µs-

snapshot of this “pre-channelization” voltage data from each input every

second. These snapshots are sent over the gigabit network and written to

disk; we refer to this data stream as raw ADC data henceforth.

The data are then channelized by a polyphase filter bank and FFT-

based pipeline implemented on custom FPGA-based electronics, producing

complex voltages in 1024 frequency channels (each 390.625 kHz wide).

After the channelization, each FPGA performs the a real-time transpose, or

“corner-turn,” in so-called shuffle16mode. This arranges the 16 outgoing

data streams such that each network interface of the recorder node receives

data from each of the 16 inputs over a subset of the total bandwidth. The

network interface consists of two 40 GbE QSFP+ fiber links over 8 × 10

gigabit lanes sending 128 frequency channels in each lane.

ICE Board 1 channelizes data and passes it along to the baseband buffer

and recorder for VLBI. It also receives a 10 MHz sine wave distributed from

the Microsemi MHM 2010 Active Hydrogen Maser at Green Bank. The

10 MHz sine wave is fed to one of the inputs of ICE Board 1 to measure and

correct for jitter in the TM4 clock signal. ICE Board 2 receives no maser

signal, and performs a full correlation and integration. This is particularly

useful for observing transits of bright sources which are used as calibration

sources for TONE. In this so-called “correlator mode”, all visibilities are

sent over a gigabit link to the recorder node [93].

4.5.2 High-bandwidth VLBI Recorder

In a traditional digital radio telescope, the channelized, corner-turned

baseband data would be passed along via corner-turn to an X-engine
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which computes visibilities in real-time. The system design was strictly

constrained by the science case of saving baseband data to cross-correlate

for VLBI localization. As seen in Figure 4.7 the data from each ICE board

is sent via 2 × 40 GbE links to castanet, our high bandwidth recorder

node. In castanet, baseband data are continuously written in parallel to

a bank of high-density memory modules, which host a ∼40 s long ring

buffer. Upon a “trigger,” a 500 ms segment of the memory buffer, sliced

over time and frequency to follow the dispersive sweep, is dumped to disk.

The slicing and readout algorithms are implemented in kotekan[94]: a

high-performance real-time data processing software framework designed

for modern radio telescopes.

Parts Part Number Specifications
Motherboard TYAN Tempest EX S7100-

EX

4×PCIeX16, 3×PCIeX8, 2
sockets

CPU 1×Xeon Silver 4116 12 cores (hyperthreaded)

×2.1 GHz

Memory 4×HYNIX

HMAA8GR7A2R4N-

VN

128 GB

Network 2×Silicom PE

31640G2QI71/QX4

2 × 4×10 GbE

Table 4.2: Components of the digital back-

end. The recorder node was able to ac-

commodate 190 gigabits/s of bandwidth

corresponding to the full bandwidth of

all the inputs from both ICE boards, but

though the final configuration of TONE

did not use this full bandwidth.
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Figure 4.8: A picture of the digital

backend inside the electromagnetically-

compliant rack. From the top: The RFoF

receiver, the ICE boards, and the Recorder

node. The base of the rack holds power

supplies for the ICE boards and a gigabit

switch for the internal network.

4.6 Performance of the Telescope

4.6.1 Analog Chain

The characteristics of the analog chain were measured in the lab. We

measured the gain and noise figure of the low-noise amplifier (LNA).

The noise figure is the figure of merit of the degradation of the signal-

to-noise ratio (lower is better); both the gain and noise figure are shown

in Figure 4.10. The RFoF chain, the transmitter, and the receiver gain are

shown in Figure 4.11. The gain (or (21 parameter) of the entire analog chain

from the LNA to the RFoF chain is shown in Figure 4.12.

We assess the performance of the system using on sky data. We

characterize many aspects of the TONE analog chain by acquiring visibility

data of the Taurus A transit in the correlator mode from the ICE board and

analyze the cross-correlations. We assume that the dishes and receivers

are roughly similar and the beams have circular Gaussian symmetry. The

characteristics of each dish can be measured in the visibilities between two

dishes if we assume the dishes are similar. We use visibilities from the same

polarization of two feeds far away from each other (separated by at least

one dish between them) to prevent the effects of cross-talk between the

feeds and reflections. At each transit, at each frequency, the cross-relation

between the signals in the visibility data is fit to a Gaussian profile (with

free parameters of offset, amplitude, mean, and width). The amplitude
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Figure 4.9: The gain of the LNA. The solid

and dashed lines show the gains of the

two paths of the differential LNA.
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Figure 4.10: The noise figure of the LNA.

The red region shows the frequency of

operation of TONE.

is then calibrated to the flux from Taurus A [95]. The calibration factor [95]: Perley et al. (2017), “AnAccurate Flux

Density Scale from 50 MHz to 50 GHz”
is then scaled to the noise, i.e. the off-source sky, in the autocorrelation

visibilities to compute the system effective flux density (SEFD) is shown in

Figure 4.13. The width of the Gaussian is used to compute the full width

half maximum (�FWHM) at each frequency shown in Figure 4.14. The solid

angle of a Gaussian beam, Ω ≈ 1.113�2

FWHM
is then used to compute the

system temperature at each frequency )sys = (10
−26�2)/(2:BΩ) × SEFD [Jy]

shown in Figure 4.13. The mean of the fitted Gaussian corresponds to the

time of the transit through the bore-sight of the beam.We can thus estimate
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Figure 4.11:The gain in dB of theRFoF sys-

tem. The red region shows the frequency

of operation of TONE.

Figure 4.12: The gain in dB of the en-

tire analog chain from the LNA input

to the RFoF receiver output. The red re-

gion shows the frequency of operation of

TONE.
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the offset from the correct pointing at each frequency, as seen in Figure 4.14.

The pointing of the dishes’ structure is within a degree as limited by the

accuracy of compasses used to manually point the dishes and feeds. These

values of the system temperature, beam offsets, FWHMs, and SEFDs were

computed for several pairs of all active dishes in the data. They were found

to be similar for every dish. This measurement of the system temperature is

conservative since the data are affected by the Galaxy, spillover, the ground

and pointing offset.
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Figure 4.13: Left: System equivalent flux

density (SEFD) of a single dish. Right:
System temperature of a single dish. The

black and red data points trace the two

orthogonal polarizations of the feed. The

hump of higher SEFD and system temper-

ature between ∼550–650 MHz is partially

caused by the impedance mismatch and

the signal multipath effect of reflections

between the feed ground plane and dish.
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Figure 4.14: Left: The directional offset

of the beam bore-sight from the expected

pointing andRight: the full width halfmax

(FWHM) of the primary beam of a single

dish. The black and red data points trace

the two orthogonal polarizations of the

feed. The blue dashed line corresponds

to the FWHM of a parabolic dish. While

there is a small, frequency-dependent sys-

tematic offset between the two polariza-

tion, it is much smaller than the beam

width.

4.6.2 Timing

Our science goals requires us to maintain a highly-stable digital sampling

cadence and a precise sense of absolute time [96] over timescales of months.

This requires active stabilization of the GPS 10 MHz master clock, which in

turn introduces jitter on short timescales as seen in Figure 4.15. Information

about this jitter can be reconstructed on one-second timescales using the

raw ADC snapshots sent by ICE Board 1 since one of the ADC inputs is

fed a copy of the GBO maser signal. The Fourier transform of the time-

stream of the maser input is taken out of raw ADC data; the phase of the

alias-sampled 10 MHz channel encoding the frequency offset between the

maser and the GPS clock. The overlapping Allan deviation [67] of the GPS

clock measured against the reference maser is measured and shown in

Figure 4.16. This Allan deviation can be attributed to the GPS clock under

the assumption that the reference signal as distributed to TONE from the

active hydrogen maser does not change significantly over timescales of

several hours.

4.6.3 Array Calibration

As a check of the stability of the full signal chain, we measure the phases

and amplitudes of each antenna input referenced to a fixed input. These

so-called complex gains include static effects like differing cable lengths
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Figure 4.15: Top: A single frame raw ADC

data of the quantized 10 MHz maser sig-

nal as recorded by the ICE board ADC

sampled at 800 MSPS. Bottom: The devi-

ations (jitter) of the GPS 10 MHz clock

as measured against the maser 10 MHz

clock.
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Figure 4.16: The measured overlapping

Allan deviation of the TM-4 GPS unit.

This corresponds to an RMS of 6 ns under

the assumption of Gaussian timing fluc-

tuations, and is consistent with Figure 1

of [96].
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and phase delays from the analog electronics, as well as time-dependent

factors like temperature-induced fluctuations in the transmission cables.

Algorithms and infrastructure to calculate these complex gains, called

the “#2
-gain calibration”, have already been developed for CHIME [33,

37, 38]. We generalize several software frameworks to use the same basic[33]: Bandura et al. (2014), “Canadian Hy-

drogen Intensity Mapping Experiment

(CHIME) pathfinder”

[37]: Recnik et al. (2015), “An Efficient

Real-Time Data Pipeline for the CHIME

Pathfinder Radio Telescope X-engine”

[38]: Michilli et al. (2020), “An analysis

pipeline for CHIME/FRB full-array base-

band data”

#2
-gain calibration algorithms for TONE data. From a sequence of 500 ms

baseband dumps collected when Taurus A is in the TONE primary beam,

we calculate visibility matrices in each frequency channel for each of the

two groups of orthogonal antennas. This gives a total of 1024 matrices of

dimension 8×8 for each of the twopolarizationgroups.We clean eachmatrix

by zeroing its diagonal matrix, and deleting rows/columns corresponding

to antennas whose performance is out-of-family. We fringestop the cleaned

visibility matrix to correct for Taurus A being off-zenith, and perform a

eigendecomposition of the fringestopped matrix. The components of the

dominant eigenvector are the complex antenna gains for that frequency

channel/polarization group.
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These complex gains essentially represent the phasing that needs to

be applied to data from the dishes to form a beam directly at the zenith

i.e. compensating for the instrumental delays for each dish. Thus, we

unwrapped the phase of the complex gains as a function of frequency

by fitting for the delays � in ) = 2��8�, where �8 for 8 = 0, 1, . . . , 1023

refer to the central frequency of each channel. Computing the gains for

all the baseband data recorded for Taurus A, we get the delays shown

in Figure 4.17 referenced to the delay from the first day. The outliers, on

inspection, correspond to bad gain solutions computed from bad data with

RFI in the beam, bad weather, or the Sun in the beam. Within data from

one month, the standard deviation of the instrumental delays varies from

∼ 1.6 ns from the set of all gains computed and ∼ 0.064 ns from the set of

gains with the bad gains discarded (over all antennas).
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Figure 4.17: The characteristic instrumen-

tal delay of a typical analog signal from

one polarization of one antenna. Left: de-
lays relative to the first day after removing

outliers corresponding to “bad gains solu-

tions” due to RFI, bad weather, and with

the sun in the beam. Right: We plot the

full histogram of instrumental delays; bad

gains solutions correspond to histogram

entries at large delay values.

4.7 Operations

The system is fairly automated. It has worked almost uninterrupted for

months with the exception for a period from ∼ 3 months between July and

November 2021 when the power to the site had been disrupted due to a

failed transformer. Within a year of operations we have acquired data for

two high SNR FRBs. Operations involve checking if all services are working

and moving daily calibrator data off-site.

4.7.1 Diagnostics and Input Flagging

The feeds and the RFoF transmitters are not indoors and are prone to

physical movement from winds as well as daily weather changes. We

indirectly assess the health of the analog chain by measuring the level of

the recorded analog signal by computing the root mean square of the raw

ADC snapshots. We can compute the ADC count root mean square, which

is very low for a disabled input and very high, close to saturating all bins

in the presence of strong radio frequency interference (RFI). Additionally,

we computed the spectrum over time from snapshots and inspected it for

any tones due to errant analog chain oscillations. Plotting and visually

inspecting a histogram of raw ADC counts is another useful diagnostic

83



visualization wherein counts bins close to zero correspond to a disabled

input, a Gaussian distribution from random noise for a typical input, and a

Gaussian with steep edges at the highest bin numbers for saturated inputs

typically from a bright sine wave in the data from an oscillating input.

These checks are critical for determining inputs to include in interferometric

operations and for compliance with the radio-quiet zone site regulations at

the Green Bank Observatory.

Periodically, data fromeverydigital input are inspected for peculiar RFI

or analog electronics artifacts. Some combined signal “quicklooks" involve

computing the incoherent sum, i.e. the sum of the power of and discarding

predetermined "bad" inputs (see Figure 4.19). For meaningfully assessing

the data, RFI (typically caused by over-the-air television station broadcasts

and common band radio from vehicles passing by the observatory) needs

to be excised. Some of these RFI frequency bands are persistent and can be

visually flagged by inspecting several days of data. We automate this by

setting a threshold for the standard deviation of the noise computed using

the median absolute deviation for each frequency
‖
.

4.7.2 First light

TONE detected its first Crab giant pulse in a dump of data triggered by

CHIME in the baseband data dumped on February 10, 2021. The data

from a bright pulsar from February 18, 2021 are shown in Figure 4.18. The

incoherent sum of these data is shown in Figure 4.19.

4.7.3 Beamforming

To operate TONE as a phased array, we applied the gains calculated

earlier and apply phases to steer the synthesized beam away from the

zenith in offline data analysis. Similar to the array calibration (described

in §4.6.3), which is done separately for each polarization group, we form

beams using each polarization group separately. We use pipelines adapted

from CHIME [38] to form synthesized beams from the two polarization

groups: we denote the tied-array data as �1,2(�8 , C), where the 1, 2 denote

the two orthogonal polarization groups. Additionally, we implemented

a parallelized GPU-based beamformer for independent verification and

redundancy. In Figure 4.19, we compare the incoherently-summed power

‖
99.9% of random data are contained within three standard deviations of the mean. As the

signal from RFI is much stronger than the background noise, we expect it to fall outside the

standard Gaussian distribution. A simple RFI detector would detect signals above three

standard deviations from the mean as RFI. However, the mean and the standard deviations

skew towards outliers in the data. The more RFI is present, the larger the upper and lower

bounds will be, and this ends up with RFI not being identified. To mitigate this, we can use

the median absolute deviation as a statistic. It is calculated for a set of random variables -
as MAD = Median |- −"4380=(-)|. The MAD of normally distributed data can be used

to determine the standard deviation �- = 1.4826 ∗MAD. We can then use this standard

deviation �- as a metric for the RFI threshold to remove RFI or compute the median of the

MAD in every frequency channel. Any signal above this Median(MAD) can be classified as

RFI. This has been empirically demonstrated on many datasets from TONE. This method

removes RFI frequency channels where RFI dominated more than 50% of the channel and is

quite aggressive.
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Figure 4.18: Crab pulsar giant pulse from February 18, 2021. The 4 × 4 grid of panels shows the power of the incoherently-dedispersed data

at each frequency channel with time samples binned to 0.256 ms in the bottom subplot and a sum of all the frequency channels on the top.

Inputs 8,9 and 12 do not show data because they were determined to be bad (the respective feeds malfunctioning and sending no signal at

the time), while Input 13 was connected to the clock signal. The left two columns are grouped since the polarizations of the inputs are

aligned and the right column is the orthogonal polarization.
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from all antennas to the coherently-summed (beamformed) power using

data dumped from a bright Crab pulsar giant pulse observed on February

18, 2021. The signal-to-noise ratio of the Crab pulse between the two

waterfall plots increases by a factor of ≈
√
# for # = 6 (the number of

antennas combined). The same dataset can be used to map the point spread

function of the synthesized beam, which is shown in Figure 4.21.

Figure 4.19: Crab pulsar giant pulse

from February 18, 2021. Top row: The

incoherent sum over antennas. Bottom

row: The beamformed (coherently-added)

data. Each panel shows the power of the

incoherently-dedispersed data at each fre-

quency channel with time samples binned

to 0.256 ms. The left and right columns

correspond to the two orthogonal polar-

ization groups.

4.7.4 Crosstalk Characterization

In beamformed observations towards unpolarized sources, we can quantify

the level of crosstalk between the two orthogonal polarization groups of

the phased TONE array. We use off-pulse observations of Crab pulsar giant

pulses to form a beam pointing at Taurus A. The brightness of Taurus A

means that with ≈ 1 ms of data, it is possible to calculate with high fidelity

the complex cross-correlation coefficient between �1,2(�8 , C) to characterize

cross-talk within the feed groups. In the absence of cross-talk, we would

expect the complex cross-correlation coefficient A(�8) to be zero.

We detect significant phase structure across the band within a single

transit of Taurus A, corresponding to a non-negligible level of cross-talk

between the two polarization groups.We use the data frommultiple transits

over a two-week period to demonstrate that the phase and amplitude of

the leakage are stable over time: we plot the phase and amplitude of the
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correlation coefficient A(�8) computed between the beamformed baseband

data from both polarization groups, which we define in Eq. 4.1 as

A(�8) =
∑
C �1(�8 , C)�2(�8 , C)√∑

C |�1(�8 , C)|2
√∑

C |�2(�8 , C)|2
. (4.1)

We show the data from individual days (faint black points) and from

the all the transits stacked or co-added (solid, black points) in Figure 4.20.

From the slope of the phase across the band (≈ 1 wrap across the band),

we can see that signals polarized along the direction of group 1 leak into

the group 2 signal path with a delay on the order of a nanosecond and that

the cross-polarization leakage is on the order of 50% at higher frequencies.

While this does not pose a problem for measuring VLBI delays and rates

– the most important components in VLBI localizations – leakage can

complicate measurements of the ionospheric phase residuals, which can

affect localizations at the sub-arcsecond level.
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Figure 4.20: The amplitude and phase of

the cross-correlation coefficient between

the two polarization groups as a function

of frequency, for individual transits of the

bright, unpolarized source TaurusA (faint

black points) and for the stacked transits

(solid). In the upper half of the band, ≈
50% of the power in XX and YY is highly

correlated due to cross-talk between the

two polarization groups. The impedance

mismatch at ∼ 550 − 650 MHz is evident

not only in the SEFD (see Figure 4.13) but

also as a highly unstable relative phase

between polarization groups.
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Figure 4.21: A map of the synthesized

beam of TONE. We plot, as a function of

pointing center ±2 deg around the Crab

pulsar’s true position (red plus), the SNR

of the Crab pulsar giant pulse signal

summed over all frequencies from the

February 18 giant pulse (see 4.19).
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4.8 Triggered VLBI Observations with CHIME

We correlate beamformed baseband data dumped from CHIME detections

of Crab giant pulses. Because of the relative orientation of the feeds in

TONE relative to those at CHIME is ≈ 30
◦
, we form circular polarizations

out of the data from the linear feeds at both stations. The relative phase

between the polarization groups at both stations varies spatially over the

primary beam in both telescopes, but this corresponds to a delay of . 1

ns and is stable over time (see Fig. 4.20). This is subdominant to current

clocking errors, which are the largest systematic errors for FRB localization.

Therefore, at this time,wedo not attempt to performpolarization calibration

to TONE autocorrelations or CHIME-TONE cross-correlations.

The VLBI correlation is performed as follows. For each frequency

channel of each beamformed baseband dump centered at frequency �8 , we

fringestop a short scan of data, compensating for the known delay towards

the position of the Crab pulsar as measured in [97] after compensating for[97]: Lobanov et al. (2011), “VLBI imaging

of a flare in the Crab nebula: more than

just a spot”

the Crab’s proper motion at the epoch of our observations:

J2000 = 83.6330379 �J2000 = 22.0145018

Here we report both the right ascension ( and �) in decimal degrees,

omitting error bars because our systematic errors dominate the astrometric

uncertainty from extrapolating the proper motion to the present epoch, as

well as the measurement uncertainty in that work. The start time of the data

differ from channel to channel, and the scans are centered on the pulse’s

fiducial TOA and fiducial DM at the central frequency of each channel. This

frequency-dependent gating in each channel essentially applies incoherent

dedispersion to each frequency channel, and reduces background noise.

It is possible to further concentrate the signal along the time axis since

the pulse width is shorter than the intra-channel smearing timescale. We

apply coherent dedispersion to data from both stations via the transfer

function exp(2�8�(Δ�)), where

�(Δ�) =  DMDMΔ�2

(�8 + Δ�)�2

8

.

Here,−195.3125 kHz ≤ Δ� < 195.3125 kHz refers to the difference between

the true frequency and �8 ,  DM = 4149.377 59 s MHz
2

pc
−1

cm
3
, and the

DM is the fiducial DM used to line up the pulse within its frequency-

dependent gate. It takes on values between 56.746–56.76 pc cm
−3

for all of

the pulses observed. The width of the gate is between 200–400µs, chosen

by inspecting each giant pulse’s morphology. We also correlate 12 off-pulse

gates to estimate the variance �2

8
as a function of frequency channel. The

cross-correlation visibilities resulting from this procedure are discussed

and analyzed in Sec. 4.8.1 and are shown in Figure 4.22.
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Figure 4.22: Cross-correlation visibilities for a sequence of Crab giant pulses, collected in February and March 2022. Rows labeled “S/N”

show the cross-correlation signal-to-noise ratio as quantified by Eq. 4.2, i.e. the absolute magnitude of the Fourier transform of the respective

visibility phases, which are shown in the rows labeled “Phase”. Black and red traces show before and after removing the best-fit TEC

correction, whose ! ∝ 1/� frequency dependence can be directly measured over our 400 − 800 MHz band (see data from e.g. 2021/02/20)

The cross-correlation S/N as a whole decreases over time (see bottom row), between successive manual repointings of the TONE dishes.
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4.8.1 Localization

As a first step towards localizing single pulses, we measure group delays

over the CHIME-TONE baseline using the phases in Sec. 4.8. As an initial

search for fringes, we divide +8 by �8 to perform signal-to-noise normaliza-

tion, and Fourier transform the visibilities over the frequency axis. This

corresponds to searching for delays by evaluating the cross-correlation

function �(�) over a range of [−1.28,+1.28) µs. We visually inspect the

phases by unwrapping the phases by the best-fit delay. The result wraps

slowly over the frequency band, and can be binned by a factor of 16 for

visualization.

If fringes are successfully found this way, the data are further analyzed.

Over a month of operations, we collected 13 sets of Crab fringes this way. To

compensate for the ionosphere, we perform a grid search over differential

slant TEC values between ΔDM ∈ [−10,+10) TEC units, corresponding to

a dispersion measure difference of ±3.2 × 10
−6

pc cm
−3

between stations.

The TEC values we measure all fall into this range. We optimize

�(�,ΔDM) =
�����∑
8

+8 exp(−2�8�8� −  DMΔDM/�)/�8

����� . (4.2)

over all values of �,ΔDM.

To calibrate our data, we first apply a delay correction of � = 0.473µs,

measured from 2021/02/18 data – our brightest Crab pulse – as our

reference point. The stability and magnitude of this large offset over several

months leads us to interpret the origin of this delay as the difference in

the analog cable lengths between TONE and CHIME. We are unaware

of other effects in our instruments which can induce delays of hundreds

of nanoseconds. Furthermore, the size of this effect is consistent with the

static delay expected from the instrumental cable lengths. This static delay

correction does not affect our planned analysis, which is only sensitive to

fluctuations in this delay over 24-hour timescales.

We next apply a phase shift to +8 corresponding to the value of ΔDM

that maximizes Eq. 4.2: !TEC

8
= 2� DMΔDM/�8 . This removes dispersive

(i.e. instrumental and ionospheric) delays; any remaining shifts are non-

dispersive. The effect of performing this correction on the phases can be

seen in the black (pre-correction) and red (post-correction) phase curves

shown in Figure 4.22. In the upper panel (labeled S/N), we have plotted �
as a function of � over a range of −0.04–+0.04µs. After correcting for the

ionospheric phase, it can be seen that the peak is, generally speaking, taller

and more symmetric; this is most evident in the data from 2021/02/18

(our brightest Crab pulse). In the lower panel (labeled “Phase”), the reason

for this improvement can be seen in visibility space: the curvature in the

visibilities as a function of frequency has been measured and removed (e.g.,

data from 2021/02/18 and 2021/02/22). After unwrapping a group delay,

the remaining phase residuals are more constant as a function of frequency,

resulting in the observed boost. Applying these best-fit TEC corrections

shifts the geometric delay by ∼ 10 ns.
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4.9 Empirical determination of localization error

To validate these multi-day Crab delay measurements, we plot both the

uncorrected and corrected delays in the top panel of Figure 4.23 as a

function of time in black and red respectively. To monitor changes over

time, we reference these two time series to zero at the TOA of the Crab

pulse measured on 18 February 2021, since it is the brightest pulse in our set,

and monitor deviations from this reference to characterize time-varying

systematic shifts.

The largest time-varying shifts after compensating for the ionosphere

are the local clock corrections from the TONE and CHIME stations. As

mentioned in Sec. 4.5.1, TONE’s primary clock is a Spectrum TM-4 unit

whose RMS deviation is ≈ 6 ns. The TM-4D unit at CHIME, however, has

a slightly worse performance, with an RMS deviation of ≈ 20 ns which

we attribute to an additional distribution amplifier in the signal chain

between the GPS receiver and the CHIME F-engine (not to be confused

with the distribution amplifier which distributes the maser itself in Figure 2

of [96]). To characterize clock-related contributions to the delay residuals,

we measure and plot the clock corrections at both the CHIME station

and TONE station using the pipeline described in [96]. If the only two

systematics present were the clocks and ionosphere, we would expect that

the VLBI delays, after correcting for the ionospheric fluctuations (“VLBI -

TEC” time series, shown in red in the top panel of Figure 4.23), exactly traces

the sum of the DRAO and GBO clock corrections, since only geometric

delays are applied in the VLBI correlator.

We apply the clock corrections from the VLBI-TEC time series (red

stars in the top panel of Figure 4.23), and find partial success. Subtracting

the larger contribution (the DRAO clock, blue crosses in the top panel

of Figure 4.23) from the VLBI-TEC time series gives residuals which

are significantly reduced from the delay residuals before applying this

correction (blue crosses in the middle panel of Figure 4.23). However, when

we further apply the TONE clock corrections (green X’s in the top panel of

Figure 4.23), the residuals (green X’s in the middle panel of Figure 4.23)

grow again.

The agreement of the blue, but not the green, delay residuals shows

that we have successfully applied the local clock correction at DRAObut not

the local clock correction at TONE. We note that even without applying the

TONE clock correction (i.e. using the Spectrum TM-4), our delay residuals

are on the order of ≈ 10 ns, which corresponds to an ≈ 200 mas single-

pulse localization. Our best explanation for this is that some additional

systematics are present in the TONE clock distribution pipeline which are

not yet understood.

We find these empirical residuals almost consistentwith the theoretical

expectation for the errors in our clocking system as a function of time

(bottom panel of Figure 4.23). To make this comparison, we model two

contributions to the delay residuals from the clock system: the jitter induced

over the 30 seconds between successive readouts of the CHIME maser,

as well as the long-term relative frequency drift between the two masers.
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These contributions are shown as blue and red traces in the bottom panel of

Figure 4.23. The short-term jitter is characterized by the Allan deviation of

the Spectrum TM-4D at CHIME as measured on 30-second timescales. The

relative frequency drift between the twomasers starts at zero, and increases

as more time elapses since the 18 February calibration. We estimate the size

of the relative frequency drift of the two masers by assuming that their

Allan variances are similar. We then add the Allan variance of a single

maser in quadrature with itself (i.e. multiplying the Allan deviation by√
2). The Allan deviation measurements we use are shown in Figure 1

of [96]; note that this does not include any effects of the signal chain used

to distribute the GBO maser signal from the GBO maser itself to TONE.

That signal chain includes an active RFoF transmitter and receiver system,

and may plausibly induce additional variations in the delay residuals on

shorter timescales than the intrinsic fluctuations in the actual maser.

We add the short-term jitter and the long-term drift contributions in

quadrature to estimate our 1� total error budget (black dotted line in the

bottompanel of Figure 4.23). On short timescales (. 30 s), we are dominated

by CHIME maser readout, while on longer timescales, the relative drift

between the oscillation frequencies of the two masers dominates (. 24 h).

On the longest timescales (≈ 2 weeks), we enter the regime where the

fact that the masers are drifting independently of each other becomes

significant (red line in the bottom panel of Figure 4.23).

In this regime (blue shaded area of Figure 4.23), it is more accurate to

use GPS clocking, since the clocks at both stations are actively synchronized

by GPS satellites. The absolute precision of GPS clocks is characterized

simply by a RMS deviation from true time. For TONE, the RMS deviation

is 3.4 ns (Figure 4.16). For CHIME, the RMS deviation is 6 ns (see Figure 1

of [96]). The delay residuals from using GPS clocking are therefore some-

what bracketed at 1� by the RMS of the GPS clocks added in quadrature

(≈ 7 ns).

For comparison with the data we shade a 2� error budget centered

at zero in the center panel of Figure 4.23. We use difxcalc11 to compute

3�/3 (where  is the right ascension) for a typical observing geometry to

translate our empirical delay residuals into empirical systematic astrometric

offsets. We conclude that on the TONE baseline, our best astrometric errors

from empirical data are on the order of 0.04 arcsec on short timescales,

which grow to 0.2 arcsec on long timescales due to the slow cadence of

VLBI calibration.
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Figure 4.23: Empirical measurements of delay residuals as a function of time for an observing run in February-March 2021. Top:we measure

VLBI delays in single-pulse Crab data. compensating only for geometric delays (black circles) and compensating for geometric delays and the

best-fit slant TEC in each observation (red stars). Local clock corrections are computed at DRAO (blue plusses) and at GBO (green crosses). It

can be seen visually that the local clock corrections roughly trace the measured delays. Middle: We apply clock corrections to measure

residual delays.Uncorrected delay residuals (black and red, same as top plot) are shown for comparison with the corrected delay residuals

after applying DRAO clock corrections (blue) and both DRAO and GBO (green) clock corrections. Bottom: For comparison with theory, we

compare the residuals to expected errors from the short-timescale jitter of the GPS clock at CHIME, and the long-timescale relative drift of

the masers at both stations.

4.10 Discussion and Conclusion

TONE, along with the other outrigger pathfinders ARO10 and the CHIME

pathfinder, are key precursors to the full CHIME/FRB Outriggers. The

three stations will be near Princeton/Allenby, British Columbia, Canada,

GBO, Green Bank, West Virginia, and Hat Creek Radio Observatory,

Hat Creek, California giving us ∼ 67 km, ∼ 3333 km, and ∼ 955 km

baselines respectively. The outrigger station at Princeton is a single 20 m
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wide and 40 m long cylindrical reflector with 64 CHIME-like cloverleaf

feeds and the outriggers at GBO and HCRO will consist of a single 20 m

wide and 64 m long cylindrical reflectors equipped with 128 CHIME like

cloverleaf antennas each. These sites are at various stages of construction

and commissioning at the time of writing. Our work on these pathfinders

has allowed us to determine and identify where we can improve our

systematic errors for VLBI.

The systematic localization error on the TONE baseline on 24-hour

timescales is dominated by the TONE clock and its distribution system.

Our estimate is grounded in empirical data, but it is possible that other

systematics creep in when doing VLBI on other sources besides Crab single

pulses. With the current setup, we are not able to explore the spatial depen-

dence of these systematic errors, since observations over the CHIME-TONE

baseline are essentially limited to single-pulse VLBI.While groundbreaking

advances have been made by LOFAR in low-frequency VLBI, the enormous

data rate of CHIME limits ourmaximum integration duration, whichmakes

it difficult to observe the faint VLBI calibrators identified by LOFAR [44,

98, 99]. The small collecting area and fixed pointing of TONE at a declina-

tion of 21
◦
further restricts our VLBI observations at present to extremely

bright, single-pulse observations, for which the Crab is essentially the only

source visible. We therefore reserve a treatment of spatially-dependent

astrometric systematics in widefield VLBI for future work. We have begun

to explore these on short baselines using the CHIME Pathfinder [57], but

the commissioning of CHIME/FRB Outriggers, whose large collecting

area and cylindrical telescope geometry will make a methodical study of

these systematics more possible. With that instrument, short integrations

of bright point sources and single pulses from bright pulsars can be used

to explore the spatial dependence of these systematics, providing a path

towards localizing a large sample of FRBs at the time of detection with

sub-arcsecond precision over the widest fields of view. This would allow

us to greatly improve upon the current systematic error. Additionally, the

Outriggers will have tracking beam capabilities. The longest period of time

without a pulsar in the CHIME beam is roughly ∼1 h; this will allowing for

more frequent calibrations than the day-long cadence we have explored in

this work.

The TONE and ARO10 pathfinders have since successfully detected an

FRB 20210603A in cross correlation [62] and we have been able to localize

the source to its host galaxy. This work is detailed in Cassanelli, Leung,

Sanghavi et. al. in prep., and is a milestone for CHIME/FRB Outriggers,

which are poised to localize hundreds of FRBs per year once they are fully

commissioned.
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5.1 Abstract and Statement of Contribution

Developing observational techniques for widefield observations is a major

theme in modern radio astronomy. Having a large field of view enables

cutting-edge science: from line-intensitymapping formeasuring large-scale

structure, and high-cadence monitoring of a large ensemble of pulsars for

the detection of gravitationalwaves from the early universe. Simultaneously,

a frontier in FRB science is in designing widefield instruments to detect

FRBs with high angular resolution to pinpoint them to their host galaxies

at the time of detection. Experiments like the Australian Square Kilometre

Array Pathfinder and the Deep Synoptic Array have already demonstrated

this capability using connected-element interferometry; the CHIME/FRB

Outriggers project will push this further using wide-field, cylindrical

outrigger telescopes and very long baseline interferometry at sub-gigahertz

frequencies to localize a large sample of FRBs with sub-arcsecond precision

over CHIME’s field of view. This paper describes the VLBI software

correlator and localization algorithms used for CHIME/FRB Outriggers.

To validate the software, we have tested the delay compensation and

correlation algorithms on a variety of datasets taken from the testbeds

for CHIME/FRB Outriggers: the CHIME Pathfinder, the ten-meter dish at

Algonquin Radio Observatory, and the TONE interferometer at Green Bank

Observatory, as well as with preliminary data from the first of the three

cylindrical Outriggers. While the calibration strategy for CHIME/FRB

Outriggers will become clearer once the landscape of compact calibrators

has been adequately surveyed at sub-GHz frequencies, we demonstrate

an extremely conservative calibration strategy which only relies on daily

pulsar observations for calibration. We use two single pulses from the Crab

pulsar, observed two days apart, to localize a third Crab pulse. Our position

agrees with the true position of the Crab at the sub-arcsecond level. At

the current level of precision, a similar localization of an FRB would be

sufficient to pinpoint it to within its host galaxy.

For this paper, I designed the entire software correlation algorithm:

delay compensation, transient gating/dedispersion, optimal correlators,

and visibility calibration software. I implemented most of the features de-

scribed in this paper in an offline VLBI correlator pipeline for CHIME/FRB

Outriggers, and the entirety of the calibration pipeline.

Shion Andrew and Kiyo Masui made improvements to the VLBI

correlator itself. Shion added the fractional sample correction to the delay

compensation step, and demonstrated the improvement in correlation

power on real data from CHIME and KKO. Kiyo Masui simulated the data

on which we benchmarked the different optimal correlators. I modified and

adapted his code and applied it to sky data from CHIME and the CHIME
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Pathfinder, which I initially collected and processed for Chapter 3 of this

thesis. As this paper has not been published yet, the author list is TBD.

5.2 Introduction - VLBI and Fast Radio Bursts

Very long baseline interferometry (VLBI) is a technique used to resolve

spatial structureswith thehighest angular resolutionspossible in astronomy.

It relies on the phase-coherent recording of incident electric fields at widely-

separated telescope stations, as well as exquisite and stable timing precision

at each telescope site. VLBI was first conducted between the Dominion

RadioAstrophysical Observatory andAlgonquin RadioObservatory (ARO)

andhas yielded historically pioneering studies of quasars and active galactic

nuclei [100]. Since then, VLBI at ever-higher observing frequencies has[100]: Broten et al. (1967), “Long Base Line

Interferometry: A New Technique”
pushed angular resolution frontier to the microarcsecond level, delivering

the world’s first direct images of the environment around the supermassive

black holes M87 and Sagittarius A
∗
and enabling unique tests of general

relativity and characterization of active galactic nuclei [101, 102].[101]: Event Horizon Telescope Collabora-

tion et al. (2019), “FirstM87 EventHorizon

Telescope Results. I. The Shadow of the

Supermassive Black Hole”

[102]: Blackburn et al. (2019), “EHT-HOPS

Pipeline for Millimeter VLBI Data Reduc-

tion”

Analysis of VLBI data revolves around VLBI correlators and the visi-

bility datasets they produce. VLBI correlators have advanced dramatically

over the years, from early hardware-based XF correlators which play

back magnetic tapes to modern FX correlators which run as parallelizable

software on ever-growing computer clusters. The increased flexibility of

software correlators has enabled additional VLBI capabilities, including

VLBI on transients, to be added over time. For example, DiFX , one of the

first widely-used FX correlators, includes features such as pulsar gating

and incoherent dedispersion, enabling VLBI to be performed on transient

sources [103]. These complex capabilities would be difficult to add into[103]: Deller et al. (2007), “DiFX: A Soft-

ware Correlator for Very Long Baseline In-

terferometry Using Multiprocessor Com-

puting Environments”

hardware correlators after their initial design.

An exciting frontier in radio astronomy instrumentation is using VLBI

to pinpoint, or localize, fast radio bursts (FRBs). FRBs are millisecond-

duration, highly-dispersed radio transients now known to lie at cosmo-

logical distances. They are of interest to the high-energy astrophysics

community due to their extreme luminosities and timescales, and as a

probe of neutron star physics. In addition, they are of growing interest to

the cosmology community due to their abundance [47] and potential as

cosmological tools through their compact, impulsive nature (advantageous

for gravitational lensing studies [104–110]) and extragalactic dispersion,

which can be used as a probe for the low-redshift baryonic content [13] and

distribution [52, 111].

Despite the significant interest in studying FRBs, due to their brief

duration and the fact that most bursts do not repeat, it is difficult to de-

tect FRBs, let alone perform VLBI on them with a network of telescopes.

Detecting large numbers of FRBs requires wide-field observational capabil-

ities – in contrast, VLBI has traditionally been narrow-field science, with

observations typically scheduled in advance and conducted on noteworthy

targets using single-dish telescopes. Combining FRB observations with

VLBI astrometry has therefore been a major challenge and observational
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goal of the field. From the discovery of the first FRB [1], it took a decade

before the first arcsecond-scale localization [18] pinpointed the FRB to a [18]: Chatterjee et al. (2017), “A direct lo-

calization of a fast radio burst and its host”
host galaxy, whose spectroscopic redshift [19] conclusively established the

[19]: Tendulkar et al. (2017), “The Host

Galaxy and Redshift of the Repeating Fast

Radio Burst FRB 121102”

extragalactic nature of the phenomenon. Only a handful of bursts have

been localized with VLBI, but almost every VLBI localization has helped to

uncover the origins of FRBs. These include the discovery of a persistent

radio source in the local environment following the VLBI localization of

FRB 20121102 [5], the VLBI localization of FRB 20180916 to a progenitor [5]: Marcote et al. (2017), “The Repeating

Fast Radio Burst FRB 121102 as Seen on

Milliarcsecond Angular Scales”

slightly offset from a knot of star formation within its host galaxy [20],

[20]: Marcote et al. (2020), “A repeat-

ing fast radio burst source localized to

a nearby spiral galaxy”

the localization of FRB 20190520 to a globular cluster in the nearby galaxy

M81 [4], and the localization of FRB 20201124A to a complex star-formating

[4]: Kirsten et al. (2022), “A repeating fast

radio burst source in a globular cluster”

site in its host [83, 112]. In the meantime, thousands of un-localized bursts

have been detected, owing to the large collecting area, widefield reflectors,

and massive digital beamforming capabilities of the FRB backend of the

Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB).

CHIME/FRB Outriggers is a set of three widefield single-cylinder

interferometers which will observe in tandem with CHIME. The k’niPatn
k’l⌣ stk’masqt Observatory (hereafter, KKO) consists of 1/16 of the col-

lecting area and number of feeds of CHIME (64 dual-polarization feeds;

500 m
2
), and is located 65 km from CHIME, while the other two cylinders

will have 1/8 the collecting area and number of feeds (128 dual-polarization

feeds; 1000 m
2
) of CHIME. and will be located on existing observatory

sites at Green Bank Observatory (GBO) and Hat Creek Radio Observatory

(HCRO) respectively. Each cylinder has a nominally-identical field of view

and the same frequency coverage as CHIME. The outriggerswill collectively

be used as widefield VLBI stations to localize a large fraction of FRBs at

the time of their detection by CHIME/FRB. The VLBI stations can deliver

kiloparsec- or even parsec- scale VLBI localizations within the host galaxy

at the time of detection. This has been achieved using CHIME/FRB and a

small testbed array of VLBI outriggers in [113]. [113]: Cassanelli et al. (2022), “A Fast Radio

Burst Localized atDetection to anEdge-on

Galaxy”The next generation of FRB surveys [88, 114, 115] are widefield inter-

[88]: Vanderlinde et al. (2019), “The Cana-

dian Hydrogen Observatory and Radio-

transient Detector (CHORD)”

[114]: Hallinan et al. (2019), “The DSA-

2000 – A Radio Survey Camera”

[115]: Lin et al. (2022), “BURSTT: Bustling

Universe Radio Survey Telescope in Tai-

wan”

ferometers which will build upon the widefield strategy of CHIME/FRB

to further advance the field. The combination of statistical power (from a

large sample amassed via widefield observations) with the rich insights

from multi-wavelength followup (enabled by precise localizations within

the host galaxy of FRBs) will revolutionize our understanding of FRBs and

unlock their full potential as cosmological probes.

Against the backdrop of exciting advances in FRB science made pos-

sible with widefield techniques, we present PyFX: a dedicated software

VLBI correlator and coda: a software package for performing VLBI cali-

bration on the visibilities produced by PyFX. PyFX is implemented almost

entirely in Python 3 (except for the standalone delaymodel difxcalc) using

commonly-used signal processing tools provided by numpy and scipy. We

believe that sacrificing performance in exchange for the transparency and

ease-of-use of popular Python bindings is a desirable tradeoff. It is possible

to optimize certain core parts of our pipeline for speed – for example, the

beamformer kernel is implemented in Cython at present – however, the

decreasing cost of computation reduces the need for speed, and in our use

case, the instantaneous field of view of CHIME means we will never track
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a source for more than ≈10 min at a time, which relaxes our performance

requirement compared to other experiments which aim to do Earth rotation

aperture synthesis. We hope that the transparency of PyFX can allow it

to serve as a starting point for future FRB experiments with coherent

localization capabilities, such as the proposed coherent all-sky monitor

BURSTT [115].

One major difference between our correlator framework and existing

software correlators, e.g. DiFX [103] and SFXC [116], arises from the different

assumptions that enter into the data format used to store the baseband data.

The popular VDIF [117] data format, for example, assumes that data are

recorded in every frequency channel synchronously. This is closely related

to the VDIF assumption that time is the slowest-varying index in baseband

recordings. This assumption is immediately violated by the FX correlator

architecture of CHIME: Immediately after digitization and channelization

by the F-Engine, the data undergo a corner-turn, which transposes the data

such that each of the 1024 frequency channels produced by the F-engine [26,

35, 48] are independently streamed, processed, and captured in parallel

on the 256 correlator nodes that make up the X-Engine of CHIME; each of

our 1024 frequency channels carries its own metadata (e.g. timestamps and

event IDs) in the real-time system [37]. This allows us to efficiently dump

mere milliseconds of data while following the long dispersive sweeps of

FRBs, which can exceed 10 s, providing dramatic data volume savings. The

drawback is that it is extremely difficult to accommodate this frequency-

dependent readout scheme within the VDIF framework. We therefore store

data and metadata in Hierarchical Data Format (hdf5) files, along with a

layer of abstraction provided by caput which facilitates slicing the data

along various axes for high-level data management, e.g. reading/writing

to disk in manageable quantities, and distributing the computations across

multiple compute nodes. The code is available on GitHub and is almost

completely written in Python 3. The visibilities produced by PyFXare stored

in a data structure built around the hdf5 framework, which can be readily

accessed via our package coda. It includes the ability to solve for and apply

phase/delay/rate/ionospheric corrections, station-based clock corrections

read in via an hdf5 file, and finally a single-pulse VLBI localization pipeline.

In Section 5.3, we present a high-level overview of the VLBI correlator

and localization pipeline. We show fringes collected from a variety of

bright sources on a variety of baselines, long and short, which validate

various aspects of the algorithms described in this paper. To push our

fringestopping algorithms to the limit, we observe ∼ 10
3
Jansky giant

pulses from the Crab pulsar on a 3300 km baseline. To test our frequency-

dependent gating, we observe an FRB whose dispersive delay lasts for

≈ 10 s in our band (∼ 10
5
times its intrinsic width; the Earth rotates by

≈ 23
′′
in this amount of time). To test our correlation algorithms without

the need for fringestopping, we use short observations of Cygnus A using

CHIME and the CHIME Pathfinder (a ≈ 400 m baseline).

In the remainder of this paper we describe our VLBI correlator, and

comment on calibration and localization methods. This involves compen-

sation of geometric delays as well as compensation of huge dispersive

delays (coherent dedispersion) – a facet of VLBI correlation unique to
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observations of FRBs and a handful of pulsars. In Section 5.5 we evaluate

a standard FFT algorithm for correlating data from FX correlators, and

identify segmentation loss as a significant reason for a sensitivity drop. We

apply the quadratic estimator formalism to develop an optimal correlation

algorithm for FX correlators and demonstrate mitigation of this sensitivity

drop on a test dataset. In Section 5.7 we outline an algorithm for localizing

single pulses from calibrated visibilities.

5.3 Validation of the VLBI Correlator and
Localization Pipeline

We demonstrate the ability to find fringes on a variety of bright sources

(a steady source, a pulsar, and a low- and high-DM FRB), using a variety

of stations with CHIME. We find fringes in cross-correlation with the

CHIME Pathfinder, the KKO Outrigger, CHIME with the single 10-meter

dish at Algonquin Radio Observatory (hereafter ARO10), and CHIME with

the phased TONE array at Green Bank. These measurements collectively

demonstrate the viability of our correlator for various types of observations

anticipated with CHIME/FRB Outriggers.

In this paper, we showcase the following observations:

1. CHIME-KKO pointing at the radio source NVSS J011732+892848

for ≈50 ms, whose brightness in our band is ≈ 5 Janskys [39, 118].

This tests our ability to conduct VLBI observations of steady sources

within the common field of view on the 65 km CHIME-KKO baseline

(Fig. 5.1). Since it is located very close to the North Celestial Pole, we

refer to this source hereafter simply as the “NCP Source.”

2. CHIME-PF pointing at Cygnus A for 10 ms – the 400 m baseline re-

moves the need for fringestopping; furthermore, the extreme bright-

ness of Cygnus A gives us a clean laboratory to test tweaks to our

correlation algorithm (Section 5.5).

3. CHIME-TONEandCHIME-ARO10 pointing at a Crab giant pulse (C3)

captured at both stations in a full-array baseband dump. This known

source demonstrates our most basic calibration strategy (daily single-

pulse VLBI), and tests our ability to combine multiple baselines.

4. CHIME-ARO10 pointing at FRB20211105A, during which the sunrise

terminator was between both stations. This FRB demonstrates our

ability to use our wide bandwidth to separate the ionosphere from

the geometric/clock delays.
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Figure 5.1: Fringes on the NCP Source

(NVSS J011732+892848), detected in a

≈ 50 ms baseband dump at CHIME and

KKO.
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5.4 difxcalc Delay Model

Before the data are correlated, the VLBI correlator must compensate for

known delays and, if necessary, gate the data. The delay compensation

is time-dependent and is done with respect to a reference time epoch

(the center of the observation duration) and with respect to a fixed sky

position often referred to as the phase center. However, we refer to it

hereafter as a pointing center to avoid confusing it for the centroid of

the telescope’s antenna elements, which is sometimes referred to in the

electrical engineering literature as an antenna phase center (e.g. [119, 120]).

Given a pointing center, the delay �̂�(C) between a station A and the

geocenter can be calculated. We use the same delay model as the popular

DiFX correlator, and lcorr, the correlator for the Large European Array for

Pulsars [121], as implemented in the standalone package difxcalc, which

computes these time-dependent delays between two stations (hereafter

referred to as stations A and B) as a function of topocentric time at station A,

which we denote with a superscript A (C�). difxcalcmodels the geometric

delay using data inputs including the JPL DE421 ephemeris, ocean loading

coefficients for each VLBI station, and amodel for wet and dry tropospheric

delays [122]. We use a Python wrapper (difxcalc-wrapper) to generate

a .calc file for a grid of multiple pointing centers and time values, and

read the delay polynomials in the resulting .im files into memory. For fast

evaluation, difxcalc-wrapper performs three-dimensional interpolation

of the delay polynomial over the R.A., Dec., and topocentric time axis using

three-dimensional cubic splines. The error induced by this interpolation is

by default on the order of 10 ps and can be further reduced by increasing

the sampling of the interpolation grid in difxcalc-wrapper.

Due to the rotationof theEarth (460 m s
−1

at the equator), the geocentric

delay changes over time at a fractional rate of | ¤�| < & ∼ 1.5 × 10
−6

for a

source at the horizon. In PyFX, we always work with the difference in the

geocentric delays between two stations, hereafter A and B. We define the

instantaneous baseline delay between stations A and B as

���(C�) = �̂�(C�) − �̂�(C�), (5.1)

where we have specified the time (equivalently, the Earth’s orientation

angle) using the topocentric time at station A (C�). In reality, we should

take into account the fact that between the arrival of the signal at station A

and B, the Earth has rotated ever so slightly further. However, this so-called

“retarded-baseline effect” manifests as a slowly-varying, periodic delay

residual of size . Ω'2

�
/22 ∼ 5 ns. Since this is a slowly-varying trend, it

gets calibrated out in our downstream analysis. For a fuller analysis of this

effect, we refer the reader to the Appendix of [123] and [124]. We defer [123]: Cohen et al. (1971), “Positions of

Radio Sources from Long-Baseline Inter-

ferometry”

[124]: Kaplan (1998), “High-Precision Al-

gorithms for Astrometry: A Comparison

of Two Approaches”

implementation of this correction and upgrades to the basic difxcalc delay

model to future upgrades of the correlator. Once the delaymodel is defined,

the data may be chunked into manageable segments, and known delays

can be compensated for prior to correlation.
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5.4.1 Chunking

The large data volumes required in VLBI means that the data usually

must be broken up systematically to fit the data in memory prior to

correlation. The most flexible data chunking scheme should accommodate

the natural ordering of the data on disk to optimize I/O efficiency. It

should also support specialized correlation modes for observations of

dispersed transients like pulsars and FRBs, which may need on/off gating

as a function of time and dedispersion before correlation. Finally, it should

break the correlation problem into embarassingly-parallel subproblems.

After all of the data is chunked, the correlation can then proceed in a loop

over frequencies, pointing centers, time chunks, and all four combinations

of polarization pairs.

In our ICE [35] and kotekan-based telescope architecture [37, 94], our

beamformed baseband (or voltage) data from some station S live on disk

as an array �(
:1<

. From slowest to fastest varying, : indexes frequency

channels, 1 indexes the beamformer pointing and polarization, and < is

the time axis. Our data ordering makes it most efficient to read segments

of data from one frequency channel at a time and correlate many such

segments, and to do so in series or in parallel over frequencies. We therefore

define a scan of data to be a regularly-sampled, time-contiguous subset

of baseband data �(
:1<

for a single frequency channel (value of :), both

beam polarizations, and many time values which is small enough to fit in

memory.

To fully specify the correlation jobwe define C(
:?=

, the absolute topocen-

tric start time of each scan with respect at station (, in frequency channel

:, for pointing ?, and as a function of scan number, which we index with

=. The duration of the scan at all stations is some total width F:?= as a

function of frequency :, pointing ?, and scan number =. Our datasets are

typically time-taggedwith absolute GPS timestamps from off-the-shelf GPS

modules, whose precision is 10 ns – sufficient for us to read in manageable

data volumes from disk when they are needed.

For a fixed station, C(
:?=

is allowed to be an arbitrary function of

time and frequency, so long as the the duration of each scan period is

long compared to the time resolution of the baseband data (for CHIME,

ΔC = 2.56µs), and short compared to the stability timescale (∼ 10 s) of the

GPS clock at the station (. This flexibility in C(
:?=

allows for complicated

correlation modes. Along the frequency direction, for example, we may

choose C(
:?=

to follow arbitrarily-long dispersive sweeps of fast transients

like FRBs by varying the start time as a function of :. Along the time axis, we

may choose to do VLBI on pulsars with on and off gates defined by intricate

pulsar timing models, by adding offsets along the = axis. This can be done

independently for each pointing ?. Under most practical circumstances,

we will be working in the regime where successive scans will be spaced

apart by . 20 s along the frequency axis, and by ∼ 1–1000 ms along the

time direction.

The absolute precision of C(
:?=

needs only to be better than the time
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resolution of the data (ΔC = 2.56µs). To calculate C(
:?=

at this level of

precision (i.e. ignoring retarded baseline effects), we choose a reference

station C, and define C�
:?=

to accommodate the type of observation (e.g.

steady source, single pulse, or pulsar gating) at that station
∗
. Then we

calculate

C(
:?=

= C�
:?=
+ �(�(C�

:?=
). (5.2)

Once C(
:?=

is defined, then for any baseline involving stations � and

�, we read in data between C�
:?=

and C�
:?=
+ F:?= , as well as C�

:?=
through

C�
:?=

1
. We compute baseline delays and evaluate the baseline delay at the 1: We actually read in a few extra millisec-

onds on each edge just to be safe.
topocentric time as measured by �. For that baseline, we apply delay

compensation to the data recorded at station A before correlating with

station B. Then, for every correlator pointing, we compensate for delays.

5.4.2 Delay Compensation

Compensating for delays in a VLBI correlator is most efficiently done in

several steps to account for the total geometric delay, which is large and

varies quickly as a function of time. For a scan on a baseline from Penticton

to Green Bank, for example, the delay can be ≈ 3 ms and can change at

a delay rate of & ≈ 1.5 × 10
−6

s/s. Every time a scan of data is read in (a

particular :), we apply delay compensation and correlation independently

in a loop over pointings for each = value: this is referred to as “multiple

pointing center” mode. For clarity, we suppress the pointing subscript (?)

in this and following sections. For our channelized baseband data, we do

delay compensation in three stages, which are summarized in Table 5.1.

First, we translate the scan, indexed by : and =, by some integer number of

frames, which takes care of the delay up to a rounding error whose size is

[−ΔC/2,ΔC/2) (first line of Table 5.1). Next, we apply a fractional sample

shift in each channel, which shifts the data by a fraction of a frame (second

line of Table 5.1). Finally, the time-varying part of the delay within the scan

(third line of Table 5.1) is compensated as a function of time by using the

narrowband approximation. By choosing short integration durations, we

can enforce that the time-varying part of the delay is sufficiently small that

the narrowband approximation is valid.

Table 5.1: The total delay in VLBI fringestopping can be broken into three parts: �:=(C�) = �0

:=
+ �1

:=
+ �′

:=
(C�), which are then applied to

the data from one station on each baseline – here, station A – to compensate for the delay.

Definition Description

�0

:=
= ΔC × round(�(C�

:=
)/ΔC) The delay at the start of the scan, rounded to

the nearest sample

�1

:=
=�(C�

:=
) − �0

:=
The rounding error in the previous,

�′
:=
(<) =�(C�

:=
+ <ΔC) − �0

:=
− �1

:=
The part of the delay which changes over

time (<).

∗
The reference station C could be chosen to be the geocenter. For VLBI on transients like

pulsars and FRBs, however, one station might stand out as a “burst finder” – for example,

Effelsberg in the EVN, or CHIME within the CHIME/FRB Outriggers array.

103



Conceptually, the first step is straightforward and basically consists of

rolling the data by some integer number of frames corresponding to the

baseline delay. It is worth noting that we choose to round the baseline delay

rather than the station delay (� rather than �̂) to avoid off-by-one edge

cases. For example, if �̂� = 0.4ΔC and �̂� = 0.6ΔC, rounding �̂� and �̂�

individually would result in an integer delay of round(�̂�) − round(�̂�) =
−1ΔC, and a fractional delay of +0.8ΔC, whereas working with the baseline

delays gives an integer delay of �0

:=
= round(�̂� − �̂�) = 0 and a fractional

delay of �1

:=
= −0.2ΔC. Small fractional delays (values near zero) are

desirable due to segmentation loss in correlators, which reduce signal

power by on the order of |�1

:=
/ΔC |. We will quantify this more precisely in

Sec. 5.5; see also Sec. 2.6.4 of [125].[125]: Romney (1995), “Theory of Correla-

tion in VLBI”

The second step is the correction of the fractional delay that remains

after rounding. The most suitable algorithm to do this depends on whether

the fractional delay �1

:=
is a significant fraction of the sampling time

ΔC. Modern connected-element radio interferometers with FX correlator

backends are designed to be in the small-fractional-delay limit. For example,

for CHIME’s channelization, Δ� = 390.625 kHz. The largest delay expected

across the physical size of CHIME is ≈ 300 ns. If a time delay �1

:=
is present

between two antennas within CHIME, then the residual phase gradient

across the channel bandwidth is 2�Δ��: this is shown in Fig. 5.2. Requiring

the residual phase to be ≤ 1 imposes a maximum time delay of ≈ 408 ns

across the instrument [126]. In this “small-fractional-delay” limit, we may

compensate for fractional delay efficiently by approximating the data �:<
as consisting of one sinusoidal waveform at the center of the channel �: .
Under this “narrow-band approximation,” timedelays (phase gradients) are

exactly equivalent to multiplicative phase shifts. Defining )′
:=
= 2��:�1

:=
,

the time-translated version of the data is the same as multiplying the data

by a phase: �:< ≈ exp(8)′
:=
)�:< . This saves computational cost compared

to performing a bona fide time translation.

However, in the context of VLBI, the fractional sample delay can be

thought of as uniformly distributed over the range [−ΔC/2,ΔC/2), since
the total delay is many orders of magnitude larger than ΔC. If the delay

compensation is applied in a baseline-by-baseline manner by calculating

the baseline delay, only one rounding operation is performed per baseline.

In this case, the fractional sample delay is just as likely to be 0 (best case;

no decorrelation at channel edges) as it is to be half a sample (worst case;

≈ 50% of power decorrelates). If left uncorrected, this fractional sample loss

reduces signal power by ∼ 25% on average
2
. If, on the other hand, delays2: In reality, it depends on the form of the

channelization window used.
are compensated on a station-by-station basis (with two round operations:

one for each station’s geocentric delay), the rounding error can cause a full

loss of correlated power: being off by up to half a sample at each station

can add up to being off by an entire sample (see [125] for more details).[125]: Romney (1995), “Theory of Correla-

tion in VLBI”

Thankfully, in any of these cases, it is possible to recover the decor-

related power by applying a bona fide time translation to the data. This

is referred to as the “fractional sample correction.” For each scan of data

between C(
:?=

and C(
:?=
+F:?= , we apply a fractional-sample time translation

by Fourier transforming over the time axis, applying a phase gradient, and

transforming back, before performing an overall phase shift of exp(2�8�:�)
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Figure 5.2:Correcting for a fractional sam-

ple delay across the band. Note that in

this illustration, the delay is a constant

(�1 = 20 ns) across the band, which is

resolved into nine channels; in PyFX the

fractional sample delay is calculated and

applied independently in each frequency

channel.

to reflect the fact that the carrier frequency is �: . Denoting the Fourier

transform from the time frame axis (<) to the intra-channel frequency (�)
axis as F�←< and its inverse as F<←�, we have

�:< = exp(2�8�:�)F<←�
(
F�←<(�:<) exp(2�8��)

)
(5.3)

Applying the fractional sample correction in the correlator causes

the visibility phases to shift slightly, while the peak height (quantified by

�B 5 (�), i.e. the FFT of the visibilities over the frequency axis) improves

by 10 − 20%. This is evident in Fig. 5.3, which show the visibility phases

obtainedwithout (blue) andwith (red) the addition of the fractional sample

correction.

Finally, after compensating for �0

:=
and �1

:=
, we need to also take into

account the fact that the delay changes at some steady rate. For our initial

compensation of �:= to be valid, we limit the duration of our scans F:?= ,

such that the delay does not change by more than ΔC/2 over the course of

the scan. This corresponds to a maximum scan duration of

F:?= ≤
2ΔC

4E4@
= 412 ms ×

(
ΔC

2.56µs

) (
430 m s

−1

E�@

)
(5.4)

where the factor of 4 arises from using the maximum relative velocity

between stations on Earth (doubling the Earth’s equatorial velocity), and

the requirement that the misalignment not exceed half a time sample.

The final part of the fringestopping is the phase rotation as a function
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Figure 5.3:Applying the fractional sample

correction to observations with CHIME-

KKO data. Left: The fractional sample

correction applied to a Crab giant pulse.

Right: The fractional sample correctioned

applied to the NCP Source.
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of time. The remaining delay �′
:=
(C�) is small (less than half a sample

over the course of the scan). Therefore, we can apply this delay using the

aforementioned narrowband approximation. The data �:< are multiplied

by a phase shift of exp(2�8�:�′:=(<)). Here we must use the narrowband

approximation since the delay changes over time, preventing us from going

into the frequency domain. The remaining decorrelation expected from

applying the narrowband approximation here is (� − �:)(���) ≤ 1/4 can

be reduced further by choosing a shorter scan length, and stacking the

visibilities produced after correlation. Integrations for periods longer than

this duration can be accomplished by stacking of visibilities; furthermore,

this scheme allows time-dependent clock corrections to be applied before

the stacking.

5.4.3 Gating on Transients

After fringestopping towards a fiducial position is completed on ��
:<

, we

might want to apply judicious gating to both ��
:<

and ��
:<

along the time

axis to remove noisy samples while preserving signal-dominated samples.

For highly dispersed transients such as FRBs, where the intra-channel

smearing may be significant, removing the intra-channel smearing is also

desirable.

Incoherent and/or coherent dedispersion is typically used to do this

and is readily available in widely-used VLBI correlators (DiFXand SFXC). If

the earth rotation through the dispersive sweep is taken into account in

each frequency channel, using incoherent dedispersion in a VLBI correlator

is equivalent to applying gating with gate start and end times offset by

some fiducial dispersive delay. Accordingly, in our formalism, we neglect

incoherent dedispersion, and instead we absorb the dispersive sweep into
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C(
:?=

by choosing C(
:?=

such that each frequency channel is offset by

Δ: =
 DMDM

�2

:

, (5.5)

where theproportionality constant DM = 4149.377 59 s MHz
2

pc
−1

cm
3

by convention [127, 128]. To give a sense for some numbers, consider the

CHIME observation band (# 5 = 1024, �: = 800, . . . ...400.390 625 MHz,

Δ 5 = 390.625 kHz) in which the largest number of FRBs has been reported

to date. The correlator turns on and off within a few milliseconds, but the

time at which the correlator turns on at the top of the band (i = 0, 800 MHz)

and the bottom of the band (k = 1023, 400.390 625 MHz) are offset in time

by

ΔC0.8 − ΔC0.4 = 19.3996 ms

(
DM

1 pc cm
−3

)
. (5.6)

Dispersion measures of 2000 pc cm
−3

have been observed in FRBs,

which causes Earth rotation over the dispersive sweep to be significant for

FRBs (and certain pulsars). If dedispersion is applied to align the burst to,

say, infinite frequency rather than frequency-dependent gating, the burst

is shifted in time by Δ: . We can estimate the magnitude of this effect on

finding fringes as follows. Within a channel of central frequency �: , the
phase residual over the band from not taking this into account is

!: = �:(�true − �applied) = &�:Δ: ≈
& DMDM

�:
(5.7)

where & ∼ 1.5 × 10
−6

is a conservative estimate for the delay rate due

to Earth rotation. We see that at sufficiently high frequencies, where the

DM delay is small, there is no difference between applying incoherent

dedispersion and frequency-dependent gating; however at high DM and

low frequencies, this is a large effect. Taylor expanding this about the

central frequency of the band covering �2 ± �/2 gives

(5.8)

≈ & DMDM

[
1

�2
− (�: − �2)

�2

2

+ (�: − �2)
2

�3

2

+ . . .
]

(5.9)

The first two terms in Taylor expansion will affect the astrometry and

must be compensated, but will not affect our ability to find fringes using

an FFT of the visibilities over the band. However, fringes will be lost if the

quadratic term becomes significant, i.e. exceeds 2� radians. For an FFT

over a total bandwidth �, the fringes will be degraded when
3
. 3: The numerical expression in Eq. 5.10, to

be conservative, assumes amaximal value

of the delay rate achievable on Earth – a

pair of stations at antipodes on the equator.

A realistic calculation would involve the

exact baseline geometry

2� . & DMDM

�2

�3

2

= 4.6

(
DM

1 pc cm
−3

) (
�

400 MHz

)
2
(

600 MHz

�2

)
3

(5.10)

So far, we have only discussed the effect of plasma dispersion across
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the whole dispersive sweep. In some circumstances, the intra-channel

smearing timescale is longer than the intrinsic pulse width. This happens

for low frequencies and high dispersion measures (e.g. FRBs and some

pulsars). In this regime, coherent dedispersion is typically used to resolve

pulse morphologies on shorter timescales than the intrachannel smearing

timescale of

�B<40A =
 DMDMΔ�

�3

:

= 0.75 ms×
(

DM

100 pc cm
−3

) (
0.6 GHz

�:

)
3
(

Δ�
390.625 kHz

)
(5.11)

Various forms of the coherent dedispersion kernel exist in the litera-

ture. [127] parameterize the effect of the interstellar/intergalactic medium,

whose electrons are non-relativistic
†
, as a phase-only transfer function

onto the data. The phase applied is by the ISM is !( 5 ) =  DMDM/ 5 where

5 is the physical frequency of the electromagnetic wave passing through

the ISM. Various flavors of dedispersion kernels in the literature remove

some, or all, of this phase in data analysis using an operation of the form

�:< = F<←�
(
(F�←<�:<) exp(−2�8�(�, �:)

)
(5.12)

for some suitably-chosen dedispersion kernel �, which is often written not

as a function of the total (sky) frequency 5 , but rather as a function of a

central frequency �: and the intra-channel frequency �, reflecting the fact

that data coming out of a telescope are channelized. Expanding 1/ 5 about
5 = �: we have

� =
 DMDM

5
=
 DMDM

�: + �
=  DMDM

[
1

�:
− �

�2

:

+ �2

�3

:

− �3

�4

:

. . .

]
.

(5.13)

Noting that the third and higher-order terms can be grouped as a geometric

series, � can be exactly represented as

�(�: , �) = �!(�:) + �C(�: , �) + �B(�: , �)
(5.14)

where

�!(DM, �:) =
 DMDM

�:
(5.15)

�C(DM, �: , �) = − DMDM

�

�2

:

(5.16)

�B(DM, �: , �) =  DMDM

�2

�2

:
(�: + �)

.

(5.17)

The three pieces of the kernel encode different operations. Note that for the

†
Plasma colder than the rest mass of the electron (. 6 × 10

9
K) are non-relativistic for our

purposes – this is true of most plasma in the universe

108



ith data channel, �! is simply an overall phase shift. If we are recording

only a single channel of data, or if we do not care about the relative phase

between channels with different values of : (e.g. when forming Stokes

I/Q/U/V), �! does not change the data. �C can be interpreted as the

familiar 5 −2
dispersive time delay. The Fourier shift theorem means that

applying �C translates the data along the time axis, since it is linear in the

“intra-channel” frequency �. �C is more frequently applied as “incoherent

dedispersion”: a translation of the data by some integer number of time

bins (i.e. the dispersive delay  DMDM/�2

:
is rounded to the nearest integer).

While lining up the data is common in some applications, e.g. pulse

morphology studies, it undesirable for in VLBI for the reasons in the

discussion surrounding Eq. 5.7.

Finally, �B is the part of the kernel which reverses the intrachannel

smearing. Since �B = 0 for � = 0 (corresponding to the center of the

channel), the data are de-smeared by phase-shifting the different frequency

components such that they are aligned with that of the central frequency

of the channel.

Whether �! , �C , and/or �B are used in dedispersion depends on the

scientific goals of the measurement. In VLBI, it does not matter whether we

apply�! or not, since it will cancel out when cross-correlation products are

formed (as long as the same fiducial DM is applied to the data at all stations).

�C coherently shifts the arrival time of the data to infinite frequency, which

is undesirable for taking into account the time dependence of the Earth

rotation. In the extreme case where the intrachannel smearing is larger

than the pulse width (true for high DMs and low frequencies), applying�B

– and only �B – to the data after it is fringestopped can narrow the duration

of the signal in time without changing the arrival time of the pulse relative

at the channel center (�:). In this way, gating after de-smearing (which

happens after delay compensation) can yield a large sensitivity boost by

reducing background noise.

To realize the potential sensitivity gain of de-smearing the data via �B ,

the scan must have a duration F:?= greater than that of the intra-channel

smearing, such that the sweep through the channel is fully captured
4
. 4: Actually, to fully avoid thewraparound

boundary condition artifacts imposed by

FFT correlation, we need double the scan

duration, since the dedispersion kernel

smears the artifacts out within �smear of

the data edges, so this is implemented as

F:?= ≥ 2�smear independently for each

pointing.

After fringestopping and dedispersion, we may then integrate over

a small fraction of F:?= , tuned to the de-smeared pulse width. We pa-

rameterize this as a ratio A:?= which is also set independently for every

frequency channel, pointing, and scan number. For a scan starting at

C�
:?=

and ending at C�
:?=
+ F:?= , we integrate the de-smeared data from

C�
:?=
+F:?=/2−A:?=F:?=/2 to C�:?=+F:?=/2+A:?=F:?=/2. Therefore, A:?= = 1

corresponds to all the data used in the final correlation (used e.g. for sources

which do not benefit from gating after de-smearing); A:?= = 1/2 means

that half of the data are used in the final correlation.

The combination of C�
:?=

, F:?= , A:?= , as well as Eq. 5.2 completely

determines any VLBI correlation to be done. By specifying these numbers

at the top level of a VLBI job, we allow for frequency-dependent gating,

frequency-dependent scan durations (useful for e.g. pulsars with long

scattering tails), gating with a pulsar timing model, and integration over
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some fraction of the scan within the correlator for tight gating around

highly-dispersed signals. Once C�
:?=

, F:?= , and A:?= are specified, the

correlation job can be parallelized over any of these axes
5
.5: Since our data are stored with fre-

quency as the slowest-varying index,

it makes the most sense to parallelize

over frequency, but the top-level code

in PyFXcan easily be modified to accept

different parallelization strategies.

5.5 Correlation of Fringestopped Data

Once the data are compensated for geometric delays, and once a scan of

data is selected, each channel of data at station A is correlatedwith station B.

If we are interested in lag-correlation for delays between [−0.5, 0.5) frames

(corresponding to -1.28 to 1.28µs), we multiply and sum the corresponding

baseband data as specified by C�
:?=
, F:?= , and A:?= in a loop over frequencies

:, pointings ?, and scans =. For a scan of duration F:?= , it is possible to

use an FFT to perform the correlation for all F:?= lags assuming periodic

boundary conditions. To reduce the data volume,we downselect the lag axis

within the correlator after each scan is correlated, saving a pre-determined

number (≈ 20) of integer 2.56µs lags for each baseline and pointing. For

telescopes which do not precisely record absolute time, a bright fringe may

show up at nonzero integer lag due to a clock offset, out to a maximum

offset of ±52µs; for a ≈ 3300 km baseline this delay range corresponds to a

field of view of ≈ 0.26
◦
on the sky – much larger than a typical pointing

error.

In a FX correlator, auto-correlation and cross-correlation visibilities as

a function of the integer delay are typically calculated via

+��
:;

=
∑
<

��
<:
��
<′: (5.18)

where ��
<:
, ��

<′: refer to the same frequency channel of data at stations A

andB respectively, andwhere the frame lag ; = <−<′. UsingEq. 5.18,which

we call the “basic” correlator, is good enough to find fringes. However, its

sensitivity is only optimal at exactly zero delay. Most of the total delay can

be removed via fringestopping, but if delays are not perfectly compensated,

there is a reduction in sensitivity. The worst case scenario is when the

uncompensated sub-integer delay is exactly half of a frame (1.28µs). In this

case, the fringe amplitude is reduced by ≈ 50%. This can easily happen for

sources whose sky locations are poorly determined
‡
.

Our goal for this Section is to perform simulations to illustrate this

effect in more detail, and present a series of drop-in replacements which

improve on the basic correlator, using the optimal quadratic estimator

technique commonly used in cosmological data analysis (see e.g. [129]).

We dub these replacements the 1/#2
correlator, the (/#2

correlator, and

the (/#2
search correlator, based on the types of correlations in the data

which are taken into account.

‡
The residual delay can usually be made to fall within 1.28µs of the true delay; in this

case the signal gets concentrated along the lag axis of +:; at, e.g.,; = 0. Occasionally, we

see ; = ±1 when the fractional sample correction is not applied or when the position is

poorly-determined.
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Figure 5.4: Simulated fringe finding for a

source located at some known delay. Yel-
low: With the basic correlator (Eq. 5.18),

sensitivity is reduced at half-integer frame

lags.Blue, Green, Red: Withmore sophis-

ticated correlators, this loss can be miti-

gated on average. The “violin” contours

reflect the distribution of S/N ratios re-

covered with 128 injections at that delay

with random noise and signal realizations.

The optimal ((/#2
) correlator is least af-

fected by segmentation loss.Applying this

algorithm to data from CHIME and the

CHIME Pathfinder has thus far yielded

consistent results, with the caveat that

we have not tested our correlators at ex-

actly half-frame integer lags where the

differences between correlators is most

pronounced.

In our simulations, we simulate two voltage timestreams (E�[9] and
E�[9]) consisting of noise and signal contributions, both of which are

modeled as Gaussian voltage fluctuations. In the “A” timestream we

inject a signal timestream and a noise realization whose average RMS

corresponds to 0.03 Jy and 1 Jy respectively. In the “B” timestream we

simulate an independent noise realization, injecting the same signal with

a relative delay �. Both timestreams are channelized via Eq. 5.41 with

a PFB parametrized by # = 256, a small-scale version of the CHIME

PFB (# = 2048). For each of 7 fractional delays equally spaced between

0 and ΔC, we repeat the simulation 64 times with different noise and

signal realizations. Correlating the data using the basic correlator yields

visibilities +:; . We recover the sub-frame part of the delay, �, by taking the

Fourier transform of the visibilities over the frequency axis, as shown in

Eq. 5.19.

�(�, ;) = F�←:+:; (5.19)
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Figure 5.5: A realization-by-realization comparison of the detection signal-to-noise the signal-to-noise measured by each correlator variant

(labeled SNR) compared to the signal-to-noise measured by the basic correlator. The black lines denote the line H = G. Each panel shows a

signal injected at a different fractional sample delay 0 ≤ 3/# ≤ 1. In most realizations of the data, the variants of the correlator improve

upon the basic one, especially at half-frame lags, while the improvement is less pronounced for small delays.

The signal strength of the correlation fringe and our estimate of the delay

is defined by taking the maximum value of � over all sub-frame lags (�)
and frame-lags (;):

( = max

�,;
�(�, ;) (5.20)

�max , ;max = argmax �(�, ;) (5.21)

The noise RMS can be calculated from the median absolute deviation of �
for (�, ;) far away from the maximum.

# = MAD(�(�, ;)) ∀|; − ;max | > 4. (5.22)

With these definitions, we calculate the detection signal-to-noise

metric (/# as a function of the sub-integer lag � at which the signal was

injected. Repeating the simulation 64 times for 7 different values of � gives

Fig. 5.4. The yellow bars show a kernel density estimate representing the

distribution of the 64 S/N measurements as a function of sub-integer lag;

the bars on each violin illustrate the minimum and maximum S/N ratios.

The reduction in S/N at half-frame lags is significant compared to when

the sub-integer lag falls at exactly an integer frame. The remaining violin

plots (aside from the yellow one) show the improved performance of the

more advanced variants of the basic correlator when aggregated over all

the realizations as a function of sub-integer delay. On a realization-by-

realization basis, the improved performance is evident in simulations; we

plot the S/Nmetric of each variant of the correlator against the basic S/N in

Fig. 5.5. We define the expressions for each of the replacement correlators,

providing a full derivation using the optimal quadratic estimator formalism

in Appendix 5.12. Each of these correlators are bilinear functions of the

baseband data which produce visibilities +:; . For starters, observe that the
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basic correlator can be written

+:; =
∑
<,<′

% ;<,<′�
�
<:
��
<′: (5.23)

where we choose % ;<,<′ = �(< − <′ − ;). We can replace the Kronecker

delta function with a more complicated form of % ;<,<′ . This accounts for

frame-to-frame correlations within �� and ��, and/or frame-to-frame

correlations between �� and ��. We show in Appendix 5.12 that in the

approximation that that all higher moments than the second moment

of the data vanish (i.e. the data are Gaussian), and that spectral leakage

is negligible (i.e. ignoring correlations between neighboring frequency

channels), designing the filter % ;<,<′ and then taking a Fourier transform

over the frequency axis is the optimal algorithm for measuring delays. We

would like to take into account two types of correlations between adjacent

time samples in our correlator. These correlations can all be described in

terms of  3<<′ , the delay-space autocorrelation of the PFB window function

,[@] defined in Appendix 5.12.

 3<<′ =
∑
@

,[@],[3 + #(< − <′) − @] (5.24)

One significant source of correlations is the correlations within the same

telescope at different integer lags. Since the noise autocorrelates at zero lag,

and since the noise is brighter than the signal, it accounts for most of the

covariance between adjacent frames from a single station – this can be seen

in the top two panels of Fig. 5.6. After deconvolving ��
<:

and ��
<:

using  0,

the data are correlated as before. This defines the 1/#2
correlator, named

because it compensates for noise covariance within each dataset, for both

datasets. Defining

�̂�
<:
= ( 0

<<′)−1��
<′: (5.25)

�̂�
<:
= ( 0

<<′)−1��
<′: , (5.26)

the 1/#2
correlator is defined by

+:; =
∑
<,<′

�̂�
<:
�̂�
<′:�(< − <

′ − ;). (5.27)

Another source of correlations arises from the signal itself, which correlates

between neighboring frames at different telescopes at some characteristic

delay. To compensate for the different delays at which the signal is observed,

we need to convolve data from one station to more closely match the signal

observed at the other. We define

�̃3�
<:
=  3<<′ �̂

�
<′: (5.28)
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which defines the (/#2
correlator:

+:; =
∑
<,<′

�̃�3
<:
�̂�
<′:�(< − <

′ − ;). (5.29)

Note that Eq. 5.29 presents a chicken-and-egg problem: to do the correlation

using �̃ requires that we already need to know a priori the total sub-

frame delay 3 in order to calculate the signal kernel  3<<′ . This involves

e.g. the relative lengths of cables and geometric delays which can be

tricky to disentangle. One way to get around this is to use the “search

(/#2
correlator,” which we implement by attempting to correlate the

data with a small number of trial delays 3 (for results involving the

search (/#2
correlator presented here, we search over four values: 3 =

0, #/4, #/2, 3#/4), and choosing the best set of visibilities produced over

the four trials. Not knowing the true delay means that at present, the search

(/#2
correlator makes the correlation step 4 times more costly.

We apply Eqs. 5.18, 5.27, 5.29 to a 10 ms baseband dump on the

bright quasar Cygnus A, and measure cross-correlation visibilities (+�%
:;

)

and auto-correlation visibilities (+��
:;

, +%%
:;

). We study the behavior of

the autocorrelation as a function of ; by summing +��
and +%%

over

the frequency axis, and normalize the height of the zero-lag peak to 1 to

normalize the covariance as a function of lag. From the top and middle

panels of Fig. 5.6, we see that the correlation betwen successive frames

within the same dataset is in good agreement with the delay-space PFB

kernel defined in Eq. 5.24, which is plotted as a function of the total delay

in Fig. 5.6. This suggests that the correlations between neighboring frames

in the same telescope dataset are dominated by contributions at zero lag

(arising e.g. from the system thermal noise correlating with itself).

The bottom panel of Fig. 5.6 shows the cross-correlation visibility,

which shows up at zero lag. Due to the geometric and cable delays between

CHIME and the Pathfinder, we evaluate the correlation between neighbor-

ing samples at nonzero lag by Fourier transforming the visibilities over

the frequency axis (Eq. 5.19) to obtain the fringe amplitude as a function

of integer delay (;) and sub-integer delay (�), and selecting the lag �<0G
which maximizes �(�, ;). We then plot �(�<0G , ;) holding � fixed at �<0G .
We see that with a reasonable choice of  3<<′ (3 = #/8) that we are able

to reduce the covariance between neighboring frames in different datasets
due to the signal being present in both, but that our kernel does a poor

job of modeling at larger lags. One reason for this could be that we are

attempting to take into account correlations arising from different signal

delays in beamformed data, and not on an antenna-by-antenna basis. Since

we have not attempted tomodel the subframe delay for every single antenna

individually (e.g. at the beamforming stage), a simplistic model for the

signal covariance between samples may be insufficient.

We also do not see an appreciable change in the cross-correlation S/N

between the different estimators in CHIME-Pathfinder visibilities; whether

this is related to our analysis procedure is unclear since the filter  3<<′ for

low values of 3 intrinsically does not boost the S/N appreciably. This can

be seen for the case of 3/# = 1/6 in Fig. 5.5. It could also be related to the
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presence of factors like narrowband RFI or cross-talk which appear in real

data but not in our simulations.

Regardless of which of these algorithms are used, at the end of the

correlation step, only ≈ 20 integer lags around zero delay are saved for

all frequencies and all integration periods. The rest of the off-lags are

discarded. This allows us to compress the data volume dramatically. We

choose this number taking several considerations into account. First and

foremost, wewant to reduce the data volume significantly. Second, wewant

to retain enough lags to estimate the uncertainty on the visibilities with

high fidelity. As a final consideration, we would like to retain the possibility

of going to high spectral resolution (e.g. for studying scintillation and

VLBI [130, 131], or nano-lensed FRBs [108, 109, 132]).
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Figure 5.6: The empirical correlation

function between neighboring frames in

CHIME x CHIME autocorrelation data,

PF x PF autocorrelation data, and CHIME

x PF cross-correlation data, as produced

by various correlators. Top and middle:
In CHIME x CHIME and PF x PF autocor-

relation data, we sum the autocorrelation

+:; over the frequency axis, and plot the

result as a function of ;, for the basic cor-
relator (yellow). The correlations along

the integer lag axis ; are present at the

≈ 20% level, and are in agreement with

the autocorrelation of the PFB kernel as

a function of delay at those lags (black

dotted).
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5.6 Calibration Methods

After visibilities are calculated, we need to calibrate out systematic phase

shifts from the instrument, from the clock, and the ionosphere. In general

this is a difficult problem for CHIME/FRBOutriggers, but wewill comment

on possible solutions to each problem.

Instrumental phases from the analog chain and the telescope optics

do not have a specified functional form over the band. We also need to

calibrate out instrumental delays
§
which arise from e.g. different cable

lengths at each station. Instrumental phases and delays are static for weeks

at the nanosecond level. The differential phase induced by the primary

beam of each telescope can be clearly seen in CHIME-KKO in preliminary

measurements from the NCP Source (see lower half of the band shown in

Fig. 5.1), which resides at a zenith angle of 40
◦
as a characteristic ripple on

30 MHz scales.

We also need to calibrate out clock jitter on timescales shorter than the

interval between calibrator and target observations. We have demonstrated

the ability to do that cleanly on≈ 0.2 ns precision on∼ 1000 s timescales [65,

96]. Measurements on the CHIME-KKO baseline are underway using the

NCP source, which is constantly in the field of view.

Finally, we need to separate the ionosphere from the clock. The

ionosphere varies which has a characteristic functional form ! ∝ 1/�which

allows separation from e.g. non-dispersive delays. Here, I say “calibrate”

because this in principle does not need calibration: with a sufficiently

wideband observation, it is possible to measure the 1/� dependence in

each observation. Our ability to do this is given by our ability to measure

the fringe “curvature” arising from the 1/� dependence as a function of

frequency. The ionosphere signal is the quadratic term in

!iono =
�TEC

5
≈ �TEC

�2
− �TECΔ�

�2

2︸     ︷︷     ︸
degenerate

+ �TECΔ�2

�3

2︸      ︷︷      ︸
ionospheric curvature!

. . . (5.30)

where we have Taylor expanded in Δ� about �2 , the central frequency of

the telescope, and where � = 1.344 263 3 × 10
−7

m
2
s
−1
. The quadratic term

is the first term in the Taylor expansion that is not degenerate with e.g.

sky location or non-dispersive delays. The precision with which we can

measure the ionosphere is

ΔTEC

Δ!
=

�3

2

�Δ�2

=


36.91 TEC/rad VLBA at 1410–1680 MHz [30]

29.9 TEC/rad EVN (Effelsberg) 1254–1510 MHz [83]

1.004 TEC/rad CHIME at 400–800 MHz [28]

0.42 TEC/rad LOFAR HBA (110–185 MHz) [133]

(5.31)

§
We distinguish between phases (which do not have a specified functional form over the band)

and delays, where the phase is ∝ �
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For a fixed brightness per unit bandwidth, this implies that wide-band,

low-frequency instruments such as LOFAR – and potentially CHIME – may

have the frequency coverage necessary to “self-calibrate” the directional

dependence of the ionosphere with the observation of an FRB.Whether this

pans out depends on the characteristic phase residual Δ! over the band,

which can be dominated by systematics (e.g. uncalibrated beam phases or

polarization leakage) or statistical errors. If it is limited by systematic errors,

then adding bandwidth does not help, but if it is limited by statistical

errors, then using many channels over the band helps to “centroid” the

average phase residual Δ!, and precision improves as

Δ! ∝ 1

(/#chan

√
#chan

∝ Δ�−1/2
(5.32)

where

√
#chan is the number of channels and S/N is the signal-to-noise

ratio in that channel.

5.7 Localization Methods

Wemay take several different schemes to calibrate the visibilities depending

on the datasets available to us. However, once the visibilities are calibrated,

the only remaining step is parameter estimation: we wish to estimate two

parameters (the RA and Dec) describing the FRB, which is a point source

for our intents and purposes. We denote the complex, calibrated visibilities

as V1: where 1 refers to the baseline, and : refers to the frequency channel,

and the scatter in this measurement to be isotropically distributed around

V1: in the complex plane such that the variance of the real and imaginary

component is �2

1:
/2.

5.7.1 Coarse Localization

We aim to fit V1: to a model prediction for the amplitude �1: and phase

%1: of the visibilities for all frequency channels and baselines present. One

rough, but extremely robust, way to do this is to interpret the residual

delays after calibration as purely geometric in origin. We can measure the

residual delays on each baseline �1<0G by maximizing the Fourier transform

of the visibilities at zero integer lag, and use the likelihood

logL� =
∑
1

(�1<0G − �1(n̂))2

2�2

1

(5.33)

where �1 has the interpretation of the systematic uncertainty on the delay

measured for each baseline. logL� is straightforward to calculate quickly,

requiring one delay model evaluation per baseline, and has the added

benefit that it is robust to bad correlator pointings: the logL� method

will point us in the correct direction when |�1<0G | < Δ�/2. This tolerance
corresponds to a pointing offset of ≈ 17

′′
for the longest (CHIME-GBO

baseline), and even larger for shorter baselines in the array.
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5.7.2 Fine Localization

The drawback of the L� method is that it does not separate the ionosphere

and geometric delays. However, once a better correlator pointing is estab-

lished via L�, the residual delays are reduced to a few nanoseconds. Over

this smaller field of view, we can use a brute-force grid search to fringe-fit

the visibilities with a model for the visibility phases that separates out the

ionosphere. Our model defines the phases

%1: = exp(2�8�:�1:(n̂) + 8�TEC1/�:) (5.34)

Note that Eq. 6.6 requires a separate delay model evaluation for each value

of : (typically ≈ 10
3
) per baseline, due to the delay rate accumulating

over duration of the dispersive sweep. This makes it more cumbersome

to evaluate this model on a large grid. Also, the visibility amplitudes

�1: remain unspecified: to avoid the complication of invoking additional

spectral information about the source into the localization, we would like

to remove the complication introduced by �1: from our fitting procedure.

There are several ways to do this. We start by writing down the likelihood

= −1

2

∑
1:

Re[V1:%1: − �1:]2
�2

1:,A40;

− 1

2

∑
1:

Im[V1:%1: − �1:]2
�2

1:,8<06

(5.35)

where �1: are the unknown amplitude parameters, and where
®� are our

parameters of interest (n̂ and TEC1 , which enter the likelihood through

%1: only).

There are at least twoways to eliminate the nuisance parameters�1: . One is

to assume a prior on each �1: and integrate them out, either analytically or

throughMarkov chainMonte Carlomethods. Another way is to analytically

maximize the likelihood over the nuisance parameters, resulting in a so-

called profile likelihood. We explore the estimators produced by both

methods. The first method involves using Eq. 5.35 to derive the posterior

probability via Bayes’s theorem:

%(®�|V1:) ∝
∫

3�:�(�:)L(V1: |�: , ®�) (5.36)

If an unbounded, uniform prior on �: is assumed (�(�:) = 1), then up to

a normalization constant,

log%(®�|V1:) = −
1

2

∑
1:

Im

[
V8%1:

�2

1:

]
2

(5.37)

We could insert more information about the amplitude into our fit by

using a Gaussian “prior” on �: driven by the data, which specifies |+: |
independent of the source’s position. Formally, any prior which depends on
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the data is not a valid prior, as the data are double-counted in the posterior.

We present this option mainly to contrast it against Eq. 5.37, illustrating

how sensitive the likelihood is to our assumptions on the amplitude, in

spite of the fact that the amplitude is completely orthogonal to the source’s

position.

log�(�:) = −
(|V1: | − �)2

2�2

bi,radial

(5.38)

then up to a normalization constant,

log%(®�|V1:) =
∑
1:

2|V1: |'4[V1:%1:] + '4[V1:%1:]2
�2

1:

. (5.39)

Another method to remove nuisance parameters instead of formally in-

tegrating over them is to “profile” the likelihood. We use a maximum-

likelihood estimate of the nuisance parameter to eliminate it from the

likelihood, resulting in a likelihood expression which is valid on a cer-

tain contour (or profile) of the full parameter space. In our situation, our

nuisance parameter �1: can be eliminated by substituting �1: = |V1: | in
Eq. 5.35, giving us the profile likelihood valid on the contour �1: = |V1: |.
This assumption says that the true spectrum �1: is well-approximated

by the spectrum |V1: | observed in the data. This is the same as assuming

that there is only one source which dominates the visibilities. To see this,

consider a single unresolved source present in our visibilities +1: , which

we model as �1:%1: . In this approximation the spectrum of the source

can be estimated directly from the amplitude information in the data

via �1: = |V1: |. In the presence of two sources at different delays with

amplitudes �1

1:
and �2

1:
, and phases %1

1:
and %2

1:
, this is no longer true.

The observed visibility amplitudes reflect the superposition of both sources

visible in the correlator pointing: V1: = �1

1:
%1

1:
+ �2

1:
%2

1:
. To measure

the spectra of the individual sources from |V1: | requires eliminating the

interference term in |V1: | = |�1

1:
%1

1:
+ �2

1:
%2

1:
|; we defer this investigation

to future work.

Since our observations of single pulses are certainly in the single

source dominated regime, we use the profile likelihood with �1: = |V1: |,
which leads to the following estimator:

log%(®�|V1:) =
∑
1:

|V1: |
�2

1:

'4[V1:%1:] (5.40)

5.8 Implementation of our VLBI Localization
Pipeline

A high-level flowchart of our VLBI localization pipeline is shown in Fig. 5.7.

Our data processing begins locally at each station, where individual

antennas are combined hierarchically into one effective single dish, before
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the tied-array (or “single-beam”) data produced by the local beamformers

is correlated at a central site to produce visibilities for VLBI calibration

and localization. For more details about the intra-station beamforming, we

encourage the reader to reference [134] for a theoretical treatment and [38]

for an overview of baseband_analysis framework as operating on CHIME.

1. Form tied-array beams at each station: We begin (in the upper left

circle in Fig. 5.7) with an initial guess of the position, referred to

hereafter as n̂0. This position needs to be correct at the arcminute

level, and can be calculated from a catalog or using the CHIME/FRB

baseband pipeline, which can localize single pulses to sub-arcminute

precision in the right ascension (R.A.) and declination (Dec.) direc-

tions using baseband data from each antenna of CHIME. At each

station, we form a tied-array synthesized beam in the direction of n̂0

to produce “singlebeam” baseband data (lower middle of Fig. 5.7).

2. Form coarse visibilities towards n̂0: After the data are chunked (see

Sec. 5.4.1), the delays are compensated (Sec. 5.4.2) and the correlation

can be performed for all frequencies, baselines, pointings, and time

windows. If necessary, coherent dedispersion may be applied to the

data via (�!). Discard large lags, except for ≈ 20 lags around zero

delay, which contains the VLBI fringe. This outputs on- and off-pulse

visibilities. Write the raw visibilities to an hdf5 file (See Sec. 5.5).

3. Perform delay-only fringe fit:Use coda to find fringes on the source

on a baseline-by-baseline basis, and estimate a total delay for each

baseline. Apply calibration solutions to the data. Assuming that

ionospheric curvature is negligible, we use delays on each baseline

to localize the burst to a single strip on the sky within the baseband

localization ellipse (upper middle of Fig. 5.7) and without taking into

account ionospheric information (see Sec. 5.7.1). Refer to this position

as n̂1.

4. Repeat (2)-(3), forming refined visibilities towards n̂1: Once the

residual delays are reduced using better correlator pointings, write

the visibilities to an hdf5 file for the final fringe fit.

5. Perform ionospheric fringe fit: After applying calibration solutions,

simultaneously fit for a non-dispersive and a dispersive time delay

in the visibilities. Combining the likelihood over all baselines gives

the final localization. If needed, steps (4) and (5) may be iteratively

repeated.

By default, we run the correlator with the following settings. We

operate the correlator in baseline mode, using instantaneous baseline

delays for delay compensation. We apply the fractional sample correction

to improve sensitivity, and at present,we use the naive correlation algorithm

defined in Eq. 5.18.Wewrite the visibilities to disk after an initial correlation.

We apply clock, delay, and rate corrections to the visibilities after correlation,

and after calculating a refined position using L�, we re-correlate and re-

calibrate the visibilities before running a L! localization.
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Figure 5.7: A high-level description of the various stages of FRB localization. The solid arrows denote the various stages in our pipeline. First,

an initial guess of the FRB’s initial position is computed, with sub-arcminute precision, from the CHIME/FRB beamformer [38]. This allows

for fringes to be found, and a coarse localization within the synthesized beam refines the correlator pointing. The data are re-correlated

towards the new pointing, which improves the correlation signal-to-noise.

5.9 Conclusion

Wehave only scratched the surface of the compact radio sky at 400-800 MHz

frequencies. This band is of particular interest because fast transients

like pulsars and FRBs remain bright and plentiful, as demonstrated by

CHIME/FRB. Further studies of the sky are needed to bridge the gap

between modern widefield VLBI surveys at high (2-8 GHz, see e.g. [135,

136] and low (110-190 MHz, see e.g. [45, 98, 99]) frequencies.

Towards this end, we have described a Python and hdf5-based VLBI

correlator, a set of tools to perform VLBI calibration on the output, and

an algorithm that localizes single pulses using calibrated visibilities. At

its core, the delay model is the same delay model used at the VLBA. Our

implementation of the correlator supports correlations in baseline mode,

andwidefield techniques such asmultiple phase centers and parallelization

over frequency channels and time. The input to the correlator is baseband

data in the singlebeam format, which is more flexible than VDIF and

allows for efficient real-time capture of highly-dispersed single pulses. The
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output lives on disk as an hdf5file, from which the data are read into

memory for calibration and single-pulse localization.

We have successfully applied our correlator to CHIME data [26, 48]

and its VLBI outriggers and testbeds [57, 62, 137]. However, our correlator

is designed with ICE-based instruments in mind, and should be readily

usable in HIRAX [86, 87] and CHORD [88]. In the near term, PyFXwill form

the basis of thousands of precise FRB localizations using CHIME/FRB

Outriggers. More broadly, we believe the Pythonic implementation of

our algorithms can make widefield VLBI techniques accessible to a large

number of astronomers, who may readily adapt our code to other telescope

architectures to enable a broader understanding of the sky as seen using

VLBI on the finest angular scales.

5.10 Appendix: HDF5 Baseband Data Format
Specification

An ideal data format to hold our baseband data would be easily inter-

pretable by end users andmanipulated with custom Python 3 analysis tools

as well as established VLBI correlators like DiFXand SFXC. Baseband data

produced by the full-array baseband systems on CHIME and its outrigger

telescopes are saved to hdf5 files, which are then processed by offline (and

later, real-time) beamformers using CHIME/FRB’s singlebeam format,

whose data ordering reflects CHIME’s FX correlator architecture. We intro-

duce the specification for singlebeam data. The singlebeam files can be

accessed through either h5py directly or specializedmethods in baseband_-

analysis. It is strongly recommended to use baseband_analysis to make

use of 1) Tools for chunking and parallelization over the frequency axis via

caput, 2) the offset encoding of raw baseband data, and 3) metadata which

keep track of sign flips in the complex conjugate convention taken by the

beamformer upstream, changing the sign convention when the data are

loaded into memory.

For hdf5 files loaded with either method, a complete singlebeam

file should have data and metadata attributes as described below. Bolded
refers to features that do not exist or are irrelevant for singlebeam files,

but which would be a natural way to extend the data format for the pulsar

beam data.

1. data.index_map : a dictionary for users to interpret the axes which

exist in the BBData dataset. The BBData dataset holds np.ndarrays

of data. Here is a list of axes, and metadata describing them:

I Frequency (#� ≤ 1024): data.index_map[‘freq’][‘centre’]

holds the center frequency of each PFB channel, in MHz. Simi-

larly, data.index_map[‘freq’][‘id’]Holds the frequency ID

of each frequency channel as an integer :. Themapping from fre-

quency IDs to frequencies (in MHz) is �: = 800− 0.390625:, for

: = 0 . . . 1023. Because every channel center and frequency ID

is specified, the frequency axis is not assumed to be continuous.
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I Array element (#4 ≤ 2048): data.index_map[‘input’][‘id’]

holds the serial numbers of each antenna used to form the

synthesized beam. This axis is no longer present in beamformed

baseband data, but the metadata still exist to inform the end

user which antennas were combined into a tied-array beam.

I Polarization/Pointing (#? is even): data.index_map[‘beam’]

is supposed to hold the information about where the beams are

formed. Currently it just holds integers 0, 1, ...2= − 1, where =

is the number of unique sky locations which are beamformed.

The pointings and antenna polarization (either ‘S’ or ‘E’) are

recorded in data[’tiedbeam_locations’][:]. It is possible to

do up to 10 pointings offline (see [57]), limited only by the size

of the singlebeam file produced.

I Time (#C ∼ 10
4
): data.index_map[‘time’][‘offset_fpga’]

holds the indexof everyFPGAframeafterdata[‘time0’][‘fpga_-

count’], such that for a particular element of baseband data in

array of shape (nfreq, ntime), the unix time at which the k,m

element was recorded is

data.ctime[‘time0‘][k] + 2.56e-6 * data.index_map[‘time’][‘fpga_offset’][m].

Only one record of the fpga_offset is recorded for all fre-

quency channels, since we do not want to record data.index_-

map[‘time’][‘fpga_offset’] independently for each channel

(which would double our data volume).

2. data[‘tiedbeam_baseband’] : array of shape (#� , #? , #C)

Holds the actual baseband data in an array of complex numbers.

The baseband data is flux-calibrated such that the mean of the

power obtained by squaring the data is in units of Janskys * 5 2

6>>3

where 56>>3 is the fraction of antennas that are not flagged. The

baseband data have an ambiguous complex conjugate convention.

Data that obeys the same complex conjugate convention as raw PFB

output from the F-engine also has the attribute data[‘tiedbeam_-

baseband‘].attrs[‘conjugate_beamform‘] = 1,whereasdata that

has the opposite convention (data processed prior to October 2020)

lacks this attribute.

3. data[‘time0’][‘ctime’] : array of shape (#�)
Holds the absolute start time of each baseband dump as a function

of frequency channel. Times are formatted as a UNIX timestamp in

seconds (since midnight on January 1 1970 in UTC time). Since the

baseband dumps start at a different time in each frequency channel,

ctime is recorded as a function of frequency channel, disciplined via

a GPS-disciplined crystal oscillator, to the nearest nanosecond. The

precision of ctime is ≈ 100 ns because it is stored as a float64.

4. data[‘time0’][‘ctime_offset’] : array of shape (#�)
For most applications using ctime alone is sufficient. However, since

a float64 cannot hold UNIX timestamps to nanosecond precision

(≈ 19 digits), a second float64 holds the last few relevant decimal

places of the full UNIX time in seconds. Because of the limita-

tions of a float64 it is often the case that ctime_offset is less
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than several hundreds of nanoseconds. data[‘time0’][‘ctime’]

and data[‘time0’][‘ctime_offset’] can be easily converted to

astropy.Time objects using the val2 keyword.

5. data[‘time0’][‘fpga_count’] : array of shape (#�)
Holds the FPGA frame count of each frequency channel, where the

zeroth frame is the correlator start time, as an unsigned int. Taken

together, ctime and ctime_offset and fpga_count can be used to

calculate the start time of the dump to within a nanosecond. This

calculation can be performed for each frequency channel, and the

results should be consistent to 1 × 10
−10

s.

6. data[‘tiedbeam_locations’][‘ra’,‘dec’, or ‘pol’] : array of

shape (#?)
Holds the sky locations and polarizations used to phase up the array.

7. data[‘tiedbeam_locations’][‘X_400MHz’,‘Y_400MHz’] : array of

shape (#?)
Holds the sky locations used to phase up the array; present in

offline beamformed data only. Translation from horizontal to celestial

coordinates is done via the beam_model package available on Github.

8. data[‘centroid’] Holds the position of the telescope’s effective

centroid, measured from (0,0,0) in local telescope coordinates, in

meters, measured in an Easting/Northing coordinate system, as

a function of frequency channel. This is a function of frequency

because the telescope’s centroid is a sensitivity-weighted average of

antenna positions (Post-beamforming). We do not use the frequency-

dependent position at present but the capability exists. differs from

the WGS84 datum, which historically uses the GRS80 geoid but was

slightly modified. Note that astropy uses WGS84 and not NAD83!

For more details on VLBI-precision positioning for CHIME, see
¶
.

5.11 HDF5 Visibilities Data Format Specification

CHIMEOutriggers will have a small number of stations collecting full-array

baseband dumps and forming multiple synthesized beams. Since each

baseline must be correlated and calibrated independently, we store each

baseline and each station as its own independent HDF5 group within a

VLBIViscontainer. Each station contains station-related metadata copied

from the singlebeam data and autocorrelation visibilities up to some

maximum lag, while each baseline holds baseline-related (e.g. calibration)

metadata and cross-correlation visibilities. For example, processing data

from CHIME and TONE would result in two autocorrelation HDF5 groups

(vis[‘chime’],vis[‘tone’],), and one cross-correlation HDF5 group

(vis[‘chime-tone’]).

The cross-correlationvisibilities, stored invis[‘chime-tone’][‘’vis’]

are packed in np.ndarrays of shape

(#� , #2 , #? , #? , #ℓ , #C)

¶ https://bao.chimenet.ca/doc/documents/1327
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The axes are as follows:

1. #� enumerates the number of frequency channels. Because fringe-

finding involves taking Fourier transforms over the frequency axis,

this is fixed to 1024 for now, and infilled with zeros where frequency

channels are corrupted by e.g. RFI.

2. #2 . 10 enumerates the number of correlation phase centers. Usually

one or several (< 10) phase centers will be used per beam, but

difxcalc supports up to 250. Currently, we can assign one phase

center per synthesized singlebeam pointing, whose beam width is

0.25 × 0.25 degrees).

3. #? ×#? indicates all possible combinations of antenna polarizations.

There are two antenna polarizations for each telescope, and they

will be labeled “south” and “east” to denote “parallel to the cylinder

axis” and “perpendicular to the cylinder axis” directions respectively.

Since CHIME/FRB Outriggers have co-aligned, dual-polarization

antennas, correlating in a linear basis is straightforward and removes

the need for polarization calibration.

4. #ℓ ∼ 20 indicates the number of integer time lags saved (in units

of 2.56µs). In principle, only a few (< 10) are needed, but it is not

difficult to compute and save roughly 20 integer lags, which also

allows for some frequency upchannelization if desired.

5. #C ∼ 10
1−4

for FRB baseband data enumerates the number of off-

pulses correlated in order to estimate the statistical error on the

on-pulse visibilities. However, for a 30-second long tracking beam

integration with thousands of short pulse windows centered on

individual pulsar pulses, #C can approach ≈ 10
4
for a long pulsar

integration.

We also save the following metadata. At the time of cross-correlation,

two singlebeam files are compressed into one visibility dataset. In addition

to the metadata in both inputted singlebeam files (as described above) we

will save...

1. Software metadata – github commit hash denoting what version of

the correlator produced the file.

2. vis[‘chime-tone’][‘time_a’] The topocentric start time of each

integration (on- and off-pulses) to nanosecond precision (see ctime

and ctime_offset in the previous section), as measured by UNIX

time at station “A” (the first in the group name, here, CHIME) as a

function of frequency channel and time.

3. vis[‘chime-tone’][‘vis’].attrs[‘station_a’,‘station_b’]:Astropy.EarthLocation

objects denoting the geocentric (X,Y,Z) positions of the stations fed

into difxcalc.

4. vis[‘chime-tone’][‘vis’].attrs[‘calibrated’] is a boolean at-

tribute denoting whether phase calibration has been applied to the

visibilities.

5. vis[‘chime-tone’][‘vis’].attrs[‘clock_jitter_corrected’,‘clock_-

drift_corrected’] Refer to whether one-second timescale clock

jitter (between the GPS and maser) has been calibrated out, and

weeks-long timescale clock drift (between masers at two stations) has

been calibrated out.
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6. vis[‘chime’][‘auto’][‘station’] alsoholdsAstropy.EarthLocation

objects denoting the geocentric (X,Y,Z) positions of the station.

7. All metadata stored in the BBData object, e.g. bbdata.index_map are

saved to the vis[‘chime’] object.

5.12 Appendix: Optimal Correlation Algorithm
for Channelized Baseband Data

In this Section, we improve on Eq. 5.18 using a model of the channelization

process. In CHIME, channelization is performed in real-time using a

polyphase filterbank (PFB) (see [138] for an introduction): a generalization

of a Fourier transformwhich increases temporal leakage to suppress spectral
leakage. This spreads out information between neighboring frames. In the

text, we demonstrated by simulation that using a more optimal correlator

improves sensitivity to point sources which occur at residual delays that

are not integer multiples of 2.56µs, particularly sources which fall at half-

integer (1.28µs) lags.More concretely, since delays can bemapped to angles

on the sky (with zero delay at zenith), this can be thought of as a way to

compensate for a loss of sensitivity experienced away from the pointing

center (and other pointings obtained from integer lags).

The mathematical operation performed by the PFB is to take raw

voltage data, sampled at a high rate (in CHIME, the raw ADC data are

sample from the sky at a rate of 800 Msps, or once every 1.25 ns), and turn

it into a dynamic spectrum with moderate time and frequency resolution
‖
.

The simplest way to form a dynamic spectrum with #//2 frequency

channels is to block the data into “frames” of length# (where# is even) and

for each frame of data, performa real to complex FFT,which returns (#//2+
1) spectral channels. The Nyquist frequency can be discarded, leaving us

with #//2 frequency channels. In CHIME, the raw voltages are sampled

from the sky at a rate of 800 Msps, or once every 1.25 ns. We choose # =

2048, leaving uswith a 1024 frequency channels of widthΔ� = 390.625 kHz.

The general channelization procedure can be represented mathematically

as the following linear operation, which transforms unchannelized voltage

data E[9] into channelized baseband data �<: . Here, 9 indexes the time

axis, : = 0, 1, . . . 1023 index frequency channels, and < denotes a “frame,”

a unit of time longer than 9 by a factor of 2# 5 .

�<: =
∞∑
9=0

,[9 − #<]E[9] exp(2�8 9:/#) (5.41)

‖
The frequency resolution of the dynamic spectrum is chosen to optimize the telescope for

certain science goals, e.g. the observation of 21-centimeter emission from neutral hydrogen

gas. This gas is Doppler-broadened, so one way to choose a reasonable spectral resolution is

by setting ΔE/2 ∼ Δ�/600 MHz (see, e.g. Sec. 5.4 of [139] for a review).
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with : labeling the frequency axis, in units of 390.625 kHz-wide channels

from : = 0 . . . 1023, and < labeling time, measured in 2.56µs-duration

frames. The window function is different for different channelization

methods. For the short-time Fourier Transform described above the PFB

window function is

,()�)[@] =
{

1 0 ≤ @ < #

0 else

(5.42)

One significant drawback of the STFT is that it induces spectral leakage

between frequency channels due to the rectangle-in-time windowing from

the blocking process. The idea of the PFB is to reduce spectral leakage by

extending the support of,[@] beyond 0 ≤ @ < # . In CHIME, we choose to

extend the PFB window by a factor of 4. The Fourier transform resolution

also increases by a factor of 4, but decimating over the frequency axis (i.e.

selecting one out of every four frequency channels) suppresses spectral

leakage very well. The end result is that we have negligible spectral leakage

but a significant amount of temporal leakage, since the voltage data in

some frame (a certain value of <) becomes correlated with its neighbors

within < − 3, < + 3.

,[@] =


sin

2

(
�@

4# − 1

)
90

(
�(@ − 2#)

#

)
0 ≤ @ < 4#

0 else

(5.43)

The basic problem of VLBI correlation is delay-finding to within a

sample or better, by correlating and integrating electric field samples into

slowly-varying visibilities. In a traditional XF correlator architecture where

we had access to each sample E[9], this would be trivial. However, the trend

towards FX correlation for modern radio interferometers adds a layer of

complexity to computing cross-correlations. While it is possible to treat

each channel of complex baseband data as an independent, narrowband

datastream, it is still desirable to access short delays, which can only be

measured by exploiting the phase relation between multiple channels

and synthesizing the visibilities. The conventional wisdom is to take a

Fourier transform over the frequency axis after correlating (Eq. 5.19). This

transforms the frequency axis of the visibilities into a delay axis which runs

over sub-frame delays ranging from [−0.5, 0.5) frames. Here, we show that

this FFT approach is optimal for delay-finding, using the optimal quadratic

estimator formalism. We further show that for data which are Gaussian

(i.e. data whose moments higher than the covariance vanish) correlators of

the form describd by Eq. 5.23 are optimal.

5.12.1 Quadratic Estimators

The reader might wonder why we use the machinery of the quadratic

estimator instead of inverting the PFB. Some methods indeed exist: [140]

performs correlation with the synthesis filter technique, designing a #-tap

long inverse filter for the PFB with the property that when it is convolved
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with basebanddata and Fourier transformed, it gives an accurate reconstruc-

tion of the original timestream. However, perfect reconstruction requires

a filter as long as the data stream itself, which can be computationally

infeasible. The fundamental fact about most PFBs is that the PFB operator

usually has singular values – note, for example, that the voltage waveform

corresponding to the Dirac comb (E[9] = ∑
< �(9 − <#)) gets mapped to

zero by Eq. 5.41 with,[@] defined as in Eq. 5.43. This means that some

information is fundamentally lost and cannot be recovered. These modes

could be regularized during PFB inversion with e.g. Wiener filtering, but

this calls into question whether artifacts are introduced by the regular-

ization. There are also more practical reasons which have to do with real

data: for example, not all frequencies will be available, or they will be

contaminated by RFI. In addition, for FRBs, we may not have access to the

full bandwidth simultanoeusly due to the dispersive sweep.

All these factors pose a considerable problem for PFB inversion, so

we proceed by designing our correlator around the PFB. [141] performs [141]: Morrison et al. (2020), “Performance

of Oversampled Polyphase Filterbank In-

version via Fourier Transform”

correlation on an oversampled PFB (one where the channels are not

decimated at the end of the FFT) by going into frequency space, and

extracting the central subbands of each PFB where the spectral response is

most uniform. The extracted subbands are concatenated together into a

spectrum, and the lag correlation function is calculatedbyFourier transform.

This approach works well for oversampled PFBs, where all the information

is preserved via the extra channels; unfortunately it is not applicable for

critically-sampled PFBs in which the channels are decimated and do not

overlap (hence losing redundancy). First, let’s review the optimal quadratic

estimator recipe for mapping of the cosmic microwave background. In

the CMB, the input is a skymap comprised of pixels G8 and the output of

the data analysis (the meat grinder) is the angular power spectrum �ℓ .

Tegmark makes the guess that the �ℓ is quadratic in the data: G8G 9 , using

the observation that 〈G8G 9〉 can be decomposed as follows:

〈G8G 9〉 = #8 9+
∑
ℓ

�ℓ%
ℓ
89 (5.44)

where 〈G8G 9〉 denotes the two point function of the data, #8 9 is the noise

covariance matrix, and a linear combination of basis functions %ℓ
89
whose

coefficients are the �ℓ ’s. The optimal estimator is

�ℓ =
1

2

�−1

ℓℓ ′[(G8(�
−1)8:%ℓ

′

:<
(�−1)<9G 9) − Tr[(�−1)?@%ℓ

′
@A] (5.45)

where G8/G 9 are the data, where (�−1)8: is the inverse covariance matrix

of the data, where %ℓ
′

:<
is a list of matrices, one for each value of ℓ , that is

symmetric in its two indices :, <.

�ℓℓ ′ is the Fisher matrix, and can be interpreted as

�ℓℓ ′ =
%2

lnL

3ℓ3ℓ ′
(5.46)
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To estimate �ℓℓ ′ we use

�ℓℓ ′ =
1

2

Tr[%ℓ89(�
−1)9:%ℓ

′

:;
(�−1);<] (5.47)

This gives us an ingredient list: to get an optimal quadratic estimate of

�ℓ , we need to compute the inverse covariance of the data �−1

8 9
, and a list

of matrices %ℓ
89
(these can be thought of as the gradient of the two-point

function with respect to the parameters to be estimated). The actual form

of the estimator is

(5.48)

�̂ℓ = (�ℓℓ
′)−1


∑
8 9:;

G8(�−1)8 9%ℓ
′

9:
(�−1):;G;

 (5.49)

In our case (baseband data correlation), we are interested in the

voltage autocorrelation function. Like the angular power spectrum, the

voltage autocorrelation function �(3) is a quadratic function–of the data.
Following [129], the delay cross-correlation function has the form

�̂3 = (�33′)−1


∑
8 9:;

�8(�−1)8 9%39:(�
−1):;�;

 (5.50)

Let’s find the form of the %3
9:

by writing the two-point function of

the data 〈�<:�<′:′〉 as in the left hand side of Eq. 5.44. We introduce the

knownmatched filter ℎ< and instrumental response (: (taking into account

missing frequencies). Letting the overline denote complex conjugation we

write

ℎ<(: 〈�<:�<′:′〉 =
∑
3

�3%3
<: <′:′ (5.51)

〈�<:�<′:′〉 =
∞,∞∑
9 , 9′=0

,[9 − #<],[9′ − #<′] exp(2�8(9: − 9′:′)/#)〈E[9]E[9′]〉

(5.52)
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We are summing over the 9 , 9′ square which has side length #". We

can change coordinates to a diagonal/anti-diagonal coordinate system by

defining

9 =
 + �

2

9′ =
 − �

2

(5.53)

〈�<:�<′:′〉 =
�=+#"∑
�=−#"

=#"−�∑
=�

,[ + �
2

− #<],[ − �
2

− #<′]

(5.54)

× exp(2�8
2#
(( + �): − ( − �):′)

(5.55)

×
〈
E

[
 + �

2

]
E

[
 − �

2

]〉
(5.56)

We can break up the exponential in this convenient coordinate system.

exp

(
2�8(: − :′)

2#

)
exp

(
2�8�(: + :′)

2#

)
← exp(2�8

2#
(( + �): − ( − �):′)

(5.57)

Since the data is assumed to be linear time invariant, we substitute

�3�(3 = �) ←
〈
E

[
 + �

2

]
E

[
 − �

2

]〉
(5.58)

Writing the whole thing again we get

〈�<:�<′:′〉 =
�=+#"∑
�=−#"

exp

(
2�8�(: + :′)

2#

) =#"−�∑
=�

,[ + �
2

− #<],[ − �
2

− #<′]

(5.59)

× exp

(
2�8(: − :′)

2#

)
(5.60)

×�3�(3 = �) (5.61)
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The Kronecker delta function and the sum over � hate each other and

challenge each other to a duel. They kill each other. We are left with a sum

over .

=

�=+#"∑
�=−#"

�3�(3 = �) exp

(
2�83(: + :′)

2#

) =#"−|3 |∑
=|3 |

,[ + 3
2

− #<],[ − 3
2

− #<′]

(5.62)

× exp

(
2�8(: − :′)

2#

)
(5.63)

This expression is finallly of the form G8G 9 =
∑
3 �

3%3
89
, which allows us to

identify the full expression for the gradient:

(5.64)

%3
<: <′:′ = exp

(
2�83(: + :′)

2#

) =#"−|3 |∑
=|3 |

,[ + 3
2

− #<],[ − 3
2

− #<′] exp

(
2�8(: − :′)

2#

)
(5.65)

A significant computational and conceptual simplification becomes possible

when we project %3
<: <′:′ → %3

<: <′:′�::′ . We can intepret this as the result

of only cross correlating each channel (:) with itself and not with others

(:′). This sensitivity hit is significant because in an oversampled PFB,

neighboring frequency channels overlap significantly and contain similar

information to one another. However, the reality is that in CHIME, we

throw away 3/4 of our frequency channels, keeping only 1 in 4 frequency

channels. When we do that, this projection is a good approximation to the

leaky truth.

%3
<: <′:′ = exp

(
2�8:3
#

) =#"−|3 |∑
=|3 |

,[ + 3
2

− #<],[ − 3
2

− #<′]

(5.66)

The sum over  is a sum over possible pairs of data points separated by

a delay 3. There are a total of #" − 2|3 | pairs, due to the finite duration

of the dataset (NM). If we define,[@] = 0 for @ ∉ [0, 4#], the limits of

the sum can be extended to infinity. Next, we approximate the sum by an

integral:

0=∞∑
0=−∞

,[ 0 + 3
2

− #<],[ 0 − 3
2

− #<′] ≈
∫ 0=∞

0=−∞
,[0],[0 + 3 − #(< − <′)] 30 ≡  (3 − #(< − <′))

(5.67)
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Substituting ′ =  − 3 − 2#<′ the limits become

′ = −2#<′ (5.68)

′ = (#" − 3) − 3 − 2#<′ (5.69)

%3
<: <′:′ = exp

(
2�8:3
#

) ′=#"−23−2#<′∑
′=−2#<′

,[′/2 + 3 + #(<′ − <)],[′/2] [@] =

=∞∑
=−∞

,[@ + ],[]

(5.70)

which defines the window function  (@, <′ − <) =  (@, < − <′).  
represents the convolution of the PFB window function with itself, as a

function of the sub-frame delay @ and the frame delay <′ − <. Going back

to Eq. 5.70 and substituting

 [3 + #(<′ − <)] =
=∞∑
=−∞

,[3 + #(<′ − <) + ],[]

(5.71)

allows us to write

%3
<: <′:′ = �::′ exp

(
2�8:3
#

)
 [3 + #(<′ − <)]

(5.72)

A nice property of  is that it is an even function in the quantity < − <′. If
we had used ′ =  + 3 − 2#< we would get

%3
<: <′:′ = �::′ exp

(
2�8:3
#

) ′=#("−2<)∑
′=2(3−#<)

,[′/2 − 3 − #(<′ − <)],[′/2]

(5.73)

which we recognize as

%3
<: <′:′ = �::′ exp

(
2�8:3
#

) ′=#("−2<)∑
′=2(3−#<)

 [−(3 + #(<′ − <))].

(5.74)

The other ingredient we need is the data covariance matrix. Since �<:
has zero mean, the covariance of �<: is

Cov(�<:) = 〈�<:�<′:′〉 =
∑
3

�3%3
<: <′:′ ≈ %

0

<: <′:′ (5.75)

because the autocorrelation will be dominated by the zero lag term. We

could add in more lags if we knew the channel mask function, but maybe

%0
is robust enough for now. The last intermediate product is writing down
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an expression for the Fisher matrix

�33′ =
1

2

Tr[%389(�−1)9:%3
′
:;
(�−1);<] (5.76)

where the complex conjugate forces the Fisher information needs to be

positive semidefinite, or else the likelihood function does not have a

maximum! In the limit that the covariance matrix is the identity, this

becomes

�33′ =
1

2

Tr[%389%3
′
9:
] (5.77)

expanding the indices we get

=
1

2

Tr[
∑
<′:′

%3
<: <′:′%

3′

<′:′ <′′:′′] (5.78)

To trace over a matrix is to set its indices equal, insert a delta function,

and sum over both indices. Tracing over <, <′′, :, :′′ means we impose

< = <′′ and : = :′′, putting in four sums.

=
1

2

∑
<,<′ ,<′′

∑
:,:′ ,:′′

[
�<<′′�::′′%

3
<: <′:′%

3′

<′:′ <′′:′′

]
(5.79)

=
1

2

∑
<,<′ ,<′′

�< <′′
∑
:,:′ ,:′′

�::′ exp

(
2�8:3
#

)
 [3 − #(< − <′)]

(5.80)

×�:′:′′ exp

(
−2�8:′3′

#

)
 [3′ − #(<′ − <′′)]

(5.81)

=
1

2

∑
<,<′ ,<′′

�< <′′
∑
:,:′ ,:′′

�::′ exp

(
2�8:3
#

)
 [3 − #(< − <′)]

(5.82)

×�:′:′′ exp

(
−2�8:′3′

#

)
 [3′ − #(<′ − <′′)]

(5.83)

Now, we start collapsing the sums. We can do the sum over :′′ and : by
collapsing the delta functions.

=
1

2

∑
:′

exp

(
2�8:′(3 − 3′)

#

) ∑
<,<′ ,<′′

�< <′′ [3 − #(< − <′)] [3′ − #(<′ − <′′)]

(5.84)
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We can also sum over :′ from 0 to # − 1. This gives the periodic Dirichlet

kernel in 3− 3′ (an analytic continuation of the #-periodic Kronecker delta

function.

∑
:′

exp

(
2�8:′(3 − 3′)

#

)
= �(3 − 3′) =

{
# 3 − 3′ = #Δ<
0 3 − 3′ ∈ ℤ

(5.85)

�33
′
=

1

2

�(3 = 3′)
∑

<,<′ ,<′′
�< <′′ [3 − #(< − <′)] [3′ − #(<′ − <′′)]

(5.86)

Now we sum over <′′

=
1

2

�(3 − 3′)
∑
<,<′

 [3 − #(< − <′)] [3′ − #(<′ − <)]

(5.87)

If we actually wrote out this enormous matrix �33
′
we would see that it is

quite sparse because of the Dirichlet kernel. Two lags, 3 and 3′, are only
coupled together if they differ by an integer number of frames. If we set

3 − 3′ = #Δ< (i.e. the values which are nonzero), then �(3 − 3′) = # and

this simplifies to

=
1

2

#
∑
<,<′

 [3′ + #(Δ< + <′ − <)] [3′ − #(<′ − <)]

(5.88)

This is a function only of Δ< and 3′. Letting"′′ = #(<′ − <)

=
1

2

#
∑
"′′
 [3′ + #Δ< +"′′)] [3′ −"′′] (5.89)

We see that the Fisher matrix depends on the integer lag that separates the

two delays. Since < and <′ are the frame indices of the datasets, we can

think of"′′ as the integer number of samples by which they are translated

and Δ< as the convolution variable

(5.90)

5.13 Appendix: Optimal Thermal Noise Scaling

To optimally weight the cross-correlation visibilities in our final fringe

fit where frequency channels are combined, we must weight the phase

of each visibility product by the standard deviation of the statistical

uncertainty in that channel. This requires a derivation closely related to the

radiometer equation for single-dish telescopes, but for interferometric cross-

correlations rather than single-station auto-correlations. In this section, we

derive the radiometer equation for interferometers, which shows how to
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calculate optimal weights for the data, with a four-parameter model for

our data. The first parameter is the number of time samples over whch we

integrate (#). The second parameter is the signal power, �2

(
. The third and

fourth parameters are noise powers �2

#,�
,�2

#,�
. Our data model is

38 ,� = 6�B8 + =8 ,� (5.91)

38 ,� = 6�B8 + =8 ,� (5.92)

where B8 , =8 ,�, =8 ,� are three sequences of independent,zero-mean Gaussian

random variables with 8 assuming values from 0, 1, . . . , # − 1, and whose

variances are �2

(
, �2

�
, and �2

�
respectively. The covariance of these variables

is

〈=8 ,�= 9 ,�〉 = �2

��8 9 (5.93)

〈=8 ,�= 9 ,�〉 = �2

��8 9 (5.94)

〈B8B 9〉 = �2

(�8 9 (5.95)

The familiar radiometer equation is obtained by calculating the one- and

two-point statistics of the autocorrelation visibilities. We define

+�� =
∑

8=0...#−1

38 ,�38 ,� (5.96)

+�� =
∑

8=0...#−1

38 ,�38 ,� (5.97)

Ex [+��] = #(62

��
2

( + �
2

�)
(5.98)

Ex [+��] = #(62

��
2

( + �
2

�)
(5.99)

+0A [+��] = 2#(62

��
2

( + �
2

�)
2

(5.100)

+0A [+��] = 2#(62

��
2

( + �
2

�)
2

(5.101)

Identifying the ratio 62

�
�2

(
/�2

�
as the brightness of the source (in units of

SEFDs) and defining the signal-to-noise ratio as below yields the radiometer

equation. Here, we use subscripts “on” and “off” to denote the cases �2

(
> 0

and �2

(
= 0 respectively.

S/N ≡ (�G[+��]|on − �G[+��]|off)/
√
+0A[+��]|off =

62

�
�2

(

�2

�

√
#/2 = )on

)off

√
Δ��

(5.102)

We continue by deriving the analogous equation for interferometers ob-

serving the same source. This will allow us to relate the covariance matrices

of the auto- and cross-correlation visibilities. Here, the relevant quantity is
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the cross-correlation visibility:

+�� =
∑

8=0...#−1

38 ,�38 ,� (5.103)

Ex [+��] = #6�6��2

( (5.104)

+0A [+��] = #
[
62

�6
2

��
4

( + (�
2

� + 6
2

��
2

()(�
2

� + 6
2

1
�2

()
]

(5.105)

If the astronomical signals are point-like, as viewed by our interferometer

(as expected for pulsars and FRBs), then all of the emitted flux should

correlate, as we have assumed in the above model. It is then convenient

to estimate the variance of the on-pulse visibility using autocorrelation

data products, even though (for FRBs) we typically only have one on-

pulse scan and several off-pulse scans. We may empirically determine

Var

[
+��,off

]
and use the auto-correlation data to scale the uncertainties to

the on-pulse dataset. The auto- and cross-correlation statistics are related

by the following theorem:

(5.106)

Theorem 5.13.1 The statistical variance associated with a single on-pulse
visibility measurement can be estimated from autocorrelation products

+0A
[
+��,on

]
+0A

[
+��,off

] = (+��,on −+��,off)(+��,on −+��,off) ++��,on+��,>=

+��,off+��,off

Theorem 5.13.2 Assuming �2

(
� �2

�
and �2

�
, the cross-correlation signal-to-

noise ratio is
S/NAB =

√
2 S/NAAS/NBB.
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6.1 Abstract and Statement of Contribution

Fast radio bursts (FRBs) are millisecond-duration, luminous radio tran-
sients of extragalactic origin. These events have been used to trace the
baryonic structure of the Universe [13] using their dispersion measure
(DM) assuming that the contribution from host galaxies can be reliably
estimated. However, contributions from the immediate environment of
an FRB may dominate the observed DM [142, 143], thus making red-
shift estimates challenging without a robust host galaxy association.
Furthermore, while at least one Galactic burst has been associated with
a magnetar [2, 144], other localized FRBs argue against magnetars as the
sole progenitor model [4, 6]. Precise localization within the host galaxy
can enable estimation of the host galaxy DM contribution and can dis-
criminate between progenitor models, a major goal of the field. Until
now, localizations on this spatial scale have only been carried out in
follow-up observations of repeating sources. Here we demonstrate the
localization of FRB 20210603A with very long baseline interferometry
(VLBI) on two baselines, using data collected only at the time of de-
tection. The systematic error, which dominates the uncertainties in our
localization, is . 51 mas on both of our baselines. We localize the burst
to SDSS J004105.82+211331.9, an edge-on galaxy at I ≈ 0.177, and detect
recent star formation in the kiloparsec-scale vicinity of the burst. The
localization, DM, Faraday rotation measure (RM), and temporal broad-
ening are consistent with an observed line-of-sight through the host
galactic disk, suggesting a progenitor coincident with the host galac-
tic plane. VLBI localizations of FRBs to within their host galaxies, like
that presented here, will constrain the origins and host environments
of one-off FRBs.

For this paper, submitted to Nature, I wrote a VLBI correlator, a

calibration and fringe-fitting software package, and completely overhauled

the clock corrections software package which we developed in Chapter 3.

On the hardware side, I designed and built the recorder backend based

on a design I had previously used for the CHIME Pathfinder in Chapter

2, well as real-time baseband recorder software to read out data from the

TONE array. I developed the VLBI calibration and localization algorithm,

which involved performing the VLBI calibration on each baseline, and

validated these calibration and localization algorithms on the Crab pulse.

Finally, I localized the FRB, and interpreted the properties of the burst in

the context of its host galaxy. On the optical side, I directly supervised

Savannah Cary, an undergraduate researcher in our group, whowas tasked

with characterizing the host galaxy, and interpreted her analysis.

The author list of this paper is as follows:

Tomas Cassanelli, Calvin Leung, Pranav Sanghavi, Juan Mena-Parra, C. L., T. C., and P. S. made equal contri-

butions to this paper, but C. L. was the

corresponding author.
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Savannah Cary, Ryan Mckinven, Mohit Bhardwaj, Kiyoshi W. Masui,

Daniele Michilli, Kevin Bandura, Shami Chatterjee, Jeffrey B. Peterson,

Jane Kaczmarek, Chitrang Patel, Mubdi Rahman, Kaitlyn Shin, Keith

Vanderlinde, Sabrina Berger, Charanjot Brar, Daniela Breitman, Pragya

Chawla, Matt Dobbs, Fengqiu Adam Dong, Emmanuel Fonseca, Bryan

M. Gaensler, Adaeze Ibik, Victoria M. Kaspi, Tom L. Landecker, Adam

E. Lanman, Mattias Lazda, Hsiu-Hsien Lin, Jing Luo, Bradley W. Meyers,

Nikola Milutinovic, Cherry Ng, Gavin Noble, Aaron B. Pearlman, Ue-Li

Pen, Emily Petroff, Ziggy Pleunis, Brendan Quine, Masoud Rafiei-Ravandi,

Andre Renard, Ketan R Sand, Eve Schoen, Paul Scholz, Kendrick M. Smith,

Ingrid Stairs, Shriharsh P. Tendulkar.

6.2 Introduction

FRB 20210603A, which we localize to the host galaxy in Fig. 6.1, was

initially detected by theCanadianHydrogen IntensityMappingExperiment

(CHIME), located at the Dominion Radio Astrophysical Observatory. The

CHIME/FRB instrument [26] searches for dispersed single pulses within

CHIME’s wide field of view. The detection of FRB 20210603A triggered

the recording of voltage data at CHIME [48], as well as at a 10-m dish at

Algonquin Radio Observatory (referred to as ARO10 hereafter) [62], and

TONE, a compact array of eight, six-meter dishes atGreenBankObservatory

(GBO)[145]. These three stations operate in tandem as a triggered very-long

baseline interferometry (VLBI) array observing between 400–800 MHz.

This ad-hoc VLBI array is dominated by east-west separations and

has a maximum baseline length of ∼3300 km (CHIME-TONE). Of the three

stations, only ARO10 is a traditional single-dish telescope. CHIME and

TONE are compact interferometric arrays consisting of 1024 and 8 dual-

polarisation antennas, respectively. All three stations observe the sky in

drift-scanmode. The primary beam of CHIME at 600 MHz is approximately

a ∼110°-long strip of width ∼2° oriented along the local meridian [26].

Simultaneously, ARO10 and TONE are pointed to shadow a portion of

the CHIME primary beam at a fixed declination (∼ + 22°). This common

field of view is chosen because it contains the Crab pulsar (PSR B0531+21),

which we use as an astrometric calibrator. Upon detection of a single

dispersed pulse such as an FRB or a giant pulse (GP) from the Crab pulsar,

CHIME/FRB forwards low-latency alerts over the internet to the TONE

and ARO10 systems, triggering a recording of buffered data to disk (see

Methods: CHIME/FRB). The current network and triggered observing

strategy serves as a pathfinder for CHIME/FRB Outriggers: three CHIME-

like telescopes located across the North America whose primary purpose

will be to perform triggered VLBI on FRBs [57, 62, 96].

Since CHIME and TONE are interferometers, we use beamforming

to combine multiple antennas within a single station into an effective

single-dish station [146]. Afterwards, we localize FRB 20210603A in VLBI

using the beamformed data. We calibrate cable delays for the antennas

within CHIME and TONE and phase them up towards the most precise

estimate of the FRB’s position available from CHIME alone, computed
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Figure 6.1: VLBI Localization of FRB
20210603A. The 1� and 2� localization

contours, defined by an empirical es-

timate of our localization errors using

Crab measurements, are overlaid on a

CFHT MegaCAM 6A8-band image of its

host galaxy SDSS J004105.82+211331.9.

The nearly edge-on geometry of the host

galaxy is apparent. We use an arcsinh scal-

ing of pixel values, and allow the pixel

colors to saturate in the bulge, to accen-

tuate the faint structure on the outskirts

of the galaxy. The localization and burst

properties point towards a progenitor liv-

ing deep in the ionized disk of the galaxy.

with the baseband localization pipeline (see Methods: Local calibration

and beamforming and [145, 147]), which we denote as n̂0.

After beamforming at CHIME and TONE to n̂0, we apply appropriate

geometric delays and phase rotations to each of the 1024 frequency channels.

Then, we correlate the delay-compensated baseband data on the CHIME-

ARO10 and CHIME-TONE baselines. We use a custom VLBI correlator to

coherently dedisperse the FRB to a fiducial DM (see Methods: Localization

analysis), and form on- and off-pulse visibilities. FRB 20210603A is detected

in CHIME autocorrelation, but not in autocorrelation at the other stations

(See Methods: Instrumentation and observations). In cross-correlation, the

FRB is detected on both the CHIME–ARO10 and CHIME–TONE baselines

with a signal-to-noise ratio (S/N) of ≈ 35 after coherently combining all

frequency channels.

Quantifying the systematic localization error of the full array is lo-

gistically difficult due to the fixed pointings of ARO10 and TONE, and

limited internet connectivity of the ARO10 station. Nevertheless, with each

baseline individually, we use a set of ≈ 10 Crab observations per base-

line to empirically estimate our localization uncertainties, which are about

0.2 arcsec×2 arcsec in the east-west and north-south directions respectively.
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Figure 6.2: Map of baselines formed be-
tween CHIME and ARO10 (CA) and
TONE (CT). The baselines span from Pen-

ticton, BC to Algonquin, ON, and Green

Bank, WV with lengths 1CA = 3074 km

and 1CT = 3332 km. For our localization

analysis, we omit the 848 km baseline be-

tween ARO10 and TONE because the FRB

was not sufficiently bright to be detected

on that baseline.

bCA

bCT

CHIME

ARO10

TONE

In addition, with both baselines operating simultaneously, we observe the

Crab pulsar around the epoch that the FRB is detected. This allows us to

derive a set of phase, delay, and delay-rate solutions to localize the FRB.

We validate our calibration solutions by using them to localize a single

Crab giant pulse (referred to as C3) detected one day after the FRB. The

discrepancy between the Crab’s true position and our Crab localization

falls well within our systematic uncertainty budget.

Finally, we apply the exact same calibration solutions to localize

the FRB. The derived coordinates of FRB 20210603A in the International

Celestial Reference Frame (ICRF) are Right Ascension (α) = 0ℎ41<05.774±
0.0192Band Declination (δ) = +21313<34.573 ± 1.08B. (Table 6.1). These

coordinates coincide with SDSS J004105.82+211331.9 [148], a disk galaxy

with a nearly edge-on orientation (see Figure 6.1).

6.3 The host galaxy of FRB 20210603A

We observed SDSS J004105.82+211331.9 with the Canada-France Hawaii-

Telescope (CFHT) MegaCam on 10 September 2021 using the wideband gri
filter [149]. Figure 6.1 shows the location of the FRB within the host galaxy.

In contrast to other FRB host galaxies that have been robustly identified so

far, this galaxy is viewed nearly edge-on; it has an inclination of (83 ± 3)°
(InclinationZoo, [150]). We determine the r-band half-light radius and

Galactic extinction-corrected apparent magnitude to be (8.2 ± 0.9)kpc and

17.90 ± 0.01, respectively, using photometric data provided by the Sloan

Digital Sky Survey (SDSS [148], see Methods: Host galaxy analysis).

Additionally, we acquired long-slit spectra with the Gemini Multi-

Object Spectrograph (GMOS [151]) on 2021 August 1
st
with the combination

of a R400 grating and a GG455 low-pass filter configured with a 1.5 arcsec

slit, covering the wavelength range from 4650–8900Å. A total of two 1200 s

exposures were taken on the same night but at two different central fre-

quencies, 665Å and 675Å, to have coverage in the GMOS-N detector chip
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gap, with 2 × 2 binning, providing a spatial scale of 0.002 92 pix
−1

and

an instrumental resolution of 4.66Å, sampled at 1.48Åpix
−1
. The seeing

condition was very good during the observation night with mean airmass

of 1.007. Fitting Gaussian line profiles to the H and N II lines (rest wave-

lengths of 6564.6Å and 6585.2Å) yields a redshift of I = 0.1772 ± 0.0001.

Assuming the Planck 2018 cosmology [24], this redshift implies a Galactic

extinction- and K-corrected absolute A-band magnitude of −22.03 ± 0.02.

The measured redshift of the galaxy implies an angular diameter dis-

tance of 639 Mpc and a transverse angular distance scale of 3.1 kpc arcsec
−1
.

Using these values, we measure a projected spatial offset for the FRB of

(7.2 ± 3.5)kpc from the host galactic centre along the host galactic plane.

This offset is consistent with the distribution of projected offsets measured

from a sample of both repeating and non-repeating FRBs localized by the

Australian SKA Pathfinder (ASKAP, see e.g., Figure 9 in [79]). Combining

Gemini spectroscopy data with archival photometry from the Two Micron

All Sky Survey (2MASS) [152] and the Wide-Field Infrared Space Explorer

(WISE) [153] extends our wavelength coverage redwards to 1 × 10
5
Å (see

Methods: Host galaxy analysis). We fit a spectral energy distribution (SED)

model to the combined spectral and photometric data using the Bayesian

SED-fitting package Prospector [154]. We estimate best-fit values and un-

certainties for the present-day stellarmass, mass-weighted age, V-band dust

extinction, and metallicity of our host galaxy using Markov-Chain Monte

Carlo (MCMC) posterior sampling [155]. The parameters determined by

Prospector and the star formation rate (SFR) are shown in Table 6.1. From

the H luminosity measured with Gemini data, we determine the galaxy’s

overall SFR (0.24 ± 0.06 M�yr
−1
) and note that a substantial fraction –

9–36 % of the total star formation, as traced by H flux – comes from the

kiloparsec-scale vicinity of the FRB (see Methods: Host galaxy analysis).

The detection of H emission is potentially a sign of recent (∼ 10 Myr) star

formation and young stellar populations. However, as with the case of FRB

20180916B [6], spatially-resolved spectroscopic studies of this galaxy are

needed to further constrain the age and nature of the progenitor.

6.4 Burst Properties of FRB 20210603A

Our localization allows a detailed accounting of contributions to the

observedDM,RM, and scattering (i.e., pulse broadening) in FRB 20210603A.

Our determination of the pulse dispersion and scattering, which we

measure as the frequency-dependent temporal broadening of the pulse,

are broadly consistent with a sightline passing almost directly through the

host galaxy’s disk. In this scenario, the FRB should experience enhanced

dispersion and pulse broadening due to the long line-of-sight path through

the host galaxy’s ionized disk. The geometry increases the path length

through the disk by a factor of csc

(
(7 ± 3)°

)
= 8 ± 3 compared to if the host

galaxy were oriented face-on.

We estimate the DM from the host galaxy halo, disk, and the FRB local

environment to be DM
r

host
= (302 ± 109)pc cm

−3
, where the superscript

denotes that DM
r

host
is defined in the host galaxy’s rest frame.We determine
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DM
r

host
by subtracting DM contributions from the Milky Way, the Milky

Way halo, and the intergalactic medium (IGM) from the measured DM (see

Methods: Dispersion and scattering analysis). We make a simple estimate

of the host galaxy disk and halo DM contributions by scaling the equivalent

Milky Way contributions to the stellar mass of the host galaxy. Our simple

model predicts DM
r

host
= (264 ± 97)pc cm

−3
for an FRB traveling out of

the host galaxy through its disk, and is consistent with the estimate from

the decomposition of the measured DM (see Methods: Dispersion and

scattering analysis).

We quantify the total pulse broadening in the FRB dynamic spectrum

by fitting a pulse model to the baseband data. The complex time-frequency

structure of themain burst requires three sub-pulse components, temporally

broadened by the same characteristic timescale, to obtain a robust fit to the

data (see Methods: Burst morphology and [156]). The best-fit scattering

timescale is �600 MHz = (155 ± 3)µs at a reference frequency of 600 MHz,

whereas the pulse broadening due to the Milky Way is expected to be

∼(1.0 ± 0.5)µs at that frequency [157, 158]. We conclude that the observed

pulse broadening is dominated by extragalactic contributions, likely in the

host galaxy rather than the Milky Way [159]. When scaled to the rest frame

and scattering geometry of the host galaxy, the pulse broadening implies a

scattering efficiency similar to a typical sight-line toward a pulsar through

a galactic disk with Milky Way-like density fluctuations (see Methods:

Dispersion and scattering analysis). In addition, this interpretation is

consistent with our measurement of the burst RM. After subtracting

Galactic and terrestrial contributions (RMMW ,RMiono; see Table 6.1), the

excess is RMexcess = (+198 ± 3) rad m
−2
. Since no intervening systems

(e.g., galaxy groups/clusters) are observed along this sightline, the RM

contribution from the IGM is likely negligible [160]. The excess RM could

be dominated by contributions from the host galaxy interstellar medium

(ISM), including the source’s local environment. These properties suggest

that the source of FRB 20210603A is located close to its galactic plane,

consistent with our localization.

6.5 Summary

We have used VLBI with widefield telescopes to localize an FRB at the

time of detection. We restrict the progenitor’s location to within the disk of

the galaxy SDSS J004105.82+211331.9: a lenticular galaxy with an almost

edge-on geometry. This represents a major observational step towards

localizing a large sample of FRBs at the time of the first detection. Prior

to this work, VLBI FRB localizations have only been achieved in targeted

followup of repeating sources. Such localizations have been to a mix of

star-forming regions [5, 143], locations offset from star formation [6], and

regions completely devoid of star formation [4]. This has cast doubt on

young progenitors being the universal origin of repeating FRBs. In the

case of FRB 20210603A, the H emission in the ∼3 kpc neighbourhood

of the FRB suggests recent star formation activity. This highlights the

need for high-resolution follow-up to discriminate between progenitor

144



models by assessing whether FRBs are spatially coincident with star-

forming regions[6]. The instruments and methods used here constitute

pathfinders for the CHIME/FRB Outriggers project, which will enable

VLBI localizations of large numbers of both repeating and non-repeating

sources [57, 62, 96]. Thus, a more complete picture of the diverse host

environments of FRBs, and how the environments correlate with other

burst properties, will soon be available.
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Table 6.1: Parameters associated with FRB 20210603A (upper half of table) and its host galaxy (lower half).

Parameter Value
Right Ascension α (ICRS) (10.274 058 ± 0.000 080)°,
Declination δ (ICRS) (21.226 270 ± 0.000 300)°
CHIME arrival time at (400 MHz) 2021-06-03 15:51:34.431652 UTC

Dispersion Measure, DM (500.147 ± 0.004)pc cm
−3

DM
†
MW-NE2001

(40 ± 8)pc cm
−3

DM
†
MW-halo

(30 ± 20)pc cm
−3

DMcosmic (172 ± 90)pc cm
−3

(DMhost)/(1 + I) = (DMhost-disk +DMhost-halo)/(1 + I) (257 ± 93)pc cm
−3

RM (−219.00 ± 0.01) rad m
−2

RM
†
MW

(−22.4 ± 0.3) rad m
−2

RM
†
iono

+1.4 rad m
−2

ΠL-800 MHz & 96 %

ΠL-400 MHz & 87 %

�scatt-600 MHz (155 ± 3)µs

�†
600 MHz-NE2001

1.02µs

Fluence (17.5 ± 3.0) Jy ms

Flux (29.9 ± 4.8) Jy
Specific Energy 1.6 × 10

31
erg/Hz

Specific Luminosity 2.8 × 10
34

erg

Pulse Width 220µs

Spectroscopic Redshift, I 0.1772 ± 0.0001

Photometric Redshift, I†
phot

0.1750 ± 0.0133

Inclination angle (83 ± 3)°
Present-day Stellar Mass, log(M★/M�) 10.93

+0.04

−0.04

Metallicity, log

(
Z/Z�

)
−0.22

+0.05

−0.04

Mass-weighted age 4.32
+0.73

−0.75
Gyr

Total Star Formation Rate (SFR) & 0.24 ± 0.06"�yr−1

Projected offset (10.6 ± 0.5)kpc

A-band Half-light Radius (8.2 ± 0.9)kpc

Absolute A-band magnitude −22.03 ± 0.02

E(B-V) 0.28

Parameters which are derived from external models or measurements are indi-

cated with daggers (I
phot

, DM, τ, and RMiono predictions [157, 158, 161–164]).
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6.6 Methods

6.6.1 Instrumentation and Observations

We use a VLBI network consisting of three stations: the Canadian Hy-

drogen Intensity Mapping Experiment (CHIME) at the Dominion Radio

Astrophysical Observatory (DRAO) [26], ARO10, a ten-meter single dish at

Algonquin Radio Observatory (ARO) [62], and TONE, a compact array of

eight six-meter dishes atGreenBankObservatory (GBO) [137]. CHIME/FRB

detected FRB 20210603A at 2021-06-03 15:51 UTC. In Extended Data Fig. 6.1

we show the Stokes-I dynamic spectrum of the beamformed data from

FRB 20210603A as observed at CHIME. Between August 2018 and May

2021, 35.6 hours of exposure were accumulated in the direction of FRB

20210603A; however only the burst reported here was detected. For VLBI

calibration and testing our localization procedure, we used several Crab

GPs captured at a cadence of one per day, which we refer to as C1-C4

respectively (see Extended Data Fig. 6.2).

CHIME/FRB

CHIME consists of four 20 m × 100 m cylindrical paraboloid reflectors ori-

entedwith the cylinder axis in theNorth-South direction [48]. Each cylinder

is fitted with 256 dual-linear-polarisation antennas that are sensitive in

the frequency range of 400–800 MHz. The 2048 analog signals from the

antennas are amplified and digitized at an array of 128 field programmable

gate array (FPGA) driven motherboards with mezzanine analog to digital

converters (ADCs) called ICE boards [35]. At each ICE board, raw voltages

are channelized with a polyphase filterbank (PFB) producing 1024 complex

channels with 2.56µs time resolution. We refer to the channelized and

time-tagged voltage data as raw baseband data (as opposed to beamformed

baseband data, see Methods: Local calibration and beamforming). These

data are sent to 256 GPU-based compute nodes comprising the X-Engine

correlator driven by the open-source kotekan∗ software [36, 94]. Here, the

spatial correlation is computed and polarisations are summed, forming

1024 (256-NS×4-EW) independent beams within the North-South primary

beam [34]. These beams are searched for FRBs in real-time using detection

pipelines designed for discovering radio transients. The real-time pipeline

and the baseband system collectively make up the CHIME/FRB instru-

ment [26, 147]. The baseband system uses a memory ring buffer system to

record (or ‘dump’) baseband data to disk. The ring buffer holds ∼35.5 s of

baseband data for subsequent capture by a detection trigger. On successful

detection of an FRB candidate by the real-time pipeline above an S/N

of 12, a trigger from the real-time pipeline saves a ∼100 ms snapshot of

data centred around the pulse at each frequency channel of the baseband

buffer. The latency between the time of arrival of a signal and the triggered

baseband recording is typically ∼14 s. The buffer can record the full band’s

worth of data when the dispersive sweep of the FRB does not exceed ∼20 s

(corresponding to a maximum DM of ∼1000 pc cm
−3
).

∗
The kotekan software repository: https://github.com/kotekan/kotekan.
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The outrigger triggering system involves asynchronous servers run-

ning at ARO10 and TONE. Each station sends a “heartbeat” to the

CHIME/FRB backend. The CHIME/FRB backend then registers each

outrigger with a heartbeat as an active outrigger. Upon detection by the

real-time pipeline of an FRB or a Crab pulsar giant pulse (GP)[165] in the

field of view (FoV) of TONE and ARO10, a trigger is sent to the active

outriggers. To prevent overwhelming the baseband readout system with

thousands of Crab pulsar GPs, we record Crab GPs triggers with a detection

S/N greater than 40 (near CHIME’s zenith) with a duty cycle of 1 %. This

results in a Crab GP dump rate of about once per day.

Algonquin Radio Observatory 10-m telescope

ARO10 is located at the Algonquin Radio Observatory in Algonquin Provin-

cial Park, Ontario. The CHIME-ARO10 baseline is over 1�� & 3000 km

(see Figure 6.2). The two analog signals from the polarizations of the

single CHIME cloverleaf feed [90] are digitized and acquired with a digital

infrastructure identical to that of CHIME and TONE except that the large

(∼24 h long) ring buffer is stored on hard disks. A complete description of

the radio frequency (RF) chain and the digital system is provided in [62].

The data at ARO10 exhibits a delay drift relative to DRAO amounting to

∼0.1µs day
−1
. This extra shift in addition to the ∼2 ms geometrical delay is

predictable and can be corrected (see Figure 15 of [62]).

TONE

TONE
†
is located at GBO near the Green Bank Interferometer Control

Building. TheCHIME-TONEbaseline is 1CT ≈ 3332 km long (see Figure 6.2).

TONE is an array of 6-m dishes placed in a regular 4x3 grid with 9.1 m

spacing with the shorter side aligned 60° off true north. Each dish is

oriented to observe the Crab pulsar at the same time as CHIME. Eight

dishes are deployed with feeds instrumented with active-balun dual-

polarised cloverleaf antennas [87, 90]. The 16 analog signals are each

transmitted over a radio-frequency-over-fiber (RFoF) system [91]. For this

work, 7 signals from one polarisation and 6 signals from the other were

used to synthesize a single beam for VLBI. The signals from the RFoF

receiver are digitized and channelized by an ICE board (in the same way

that was previously described for CHIME and ARO10). A TM-4 GPS clock

module [166] provides a 10 MHz clock and absolute time. Additionally, a

10 MHz maser signal is fed into the ICE board replacing one of the analog

inputs for post-hoc clock delay characterization [65, 96]. The digitized

and channelized voltages are sent via two 40 Gbit ethernet network links

over to the recording computer node. The recording node uses kotekan,

as it does at CHIME and ARO10, to create a ∼40 s buffer of the baseband

data [57]. The length of the buffer must accommodate both the latency

of the CHIME/FRB detection pipeline and the network in addition to

the science data. The baseband readout saves a ∼0.5 s slice of the buffer

around the pulse on the arrival of a trigger to disk for offline VLBI analysis.

†
Not an acronym.

148



Table 6.2: A summary of the properties of the CHIME [48], ARO10, and TONE stations. The SEFD of ARO10 has been calculated with a

similar set of Crab GPs [62]. The SEFD and FoV of TONE have been computed from a drift scan observation of Taurus-A [145].

Property CHIME ARO10 TONE
SEFDs (sys at +22 deg ∼40 kJy ∼1.7 kJy ∼20–40 kJy

Field of view (at 600 MHz) ∼110 deg N-S, 1.74 deg E-W 3.59 deg ∼6–11 deg

Processed frequency channels 1024 1024

Baseline length – 1CA = 3074 km 1CT = 3332 km

Longitude (deg) −119.6237 −78.0701 −79.8452

Latitude (deg) 49.3207 45.9556 38.4293

Taurus A is used as a calibrator to phase the antennas within TONE for

beamforming (see Methods: Local calibration and beamforming).

See [145] for a detailed description of the system and its performance.

6.6.2 Clock Calibration

There exist timing errors intrinsic to the digital backends at each station,

which are locked to different clocks with varying degrees of stability.

The severity of timing errors depends on the type of clock used at each

station and varies from unit to unit. Timing errors are characterized in

terms of the Allan deviation (�(ΔC)) as a function of timescale ΔC (This

includes a previously-published sequence of Crab pulses e.g., the time

to the nearest synchronization) [96]. The CHIME digital system is locked

to a single 10 MHz clock signal provided by a GPS-disciplined, oven-

controlled crystal oscillator. While sufficient for the operations of CHIME

as a stand-alone telescope, this clock does not meet the stringent stability

requirements for VLBI with CHIME/FRB Outriggers. To overcome this

limitation, we sample the more stable passive hydrogen maser during

FRB VLBI observations [96] on a regular cadence. This minimally-invasive

clocking system was developed as part of the effort to expand CHIME’s

capabilities to include VLBI with CHIME/FRB Outriggers. It works by

digitizing the signal from an external maser using one of the inputs of

the GPS-clock-driven ICE board. We read out a 2.56µs snapshot of maser

data at a cadence of once every ΔCGPS,C = 30 s at CHIME. The data readout

from the maser are processed offline to measure the drift of the GPS

clock between calibrator observations. A similar readout system records a

10 MHz clock at TONE at a cadence of ΔCGPS,T = 1 s. In contrast, the digital

system of ARO10 is directly clocked by an actively-stabilized hydrogen

maser.

At CHIME and TONE, observations are referenced to the maser by

interpolating between the maser readouts directly before and after the

observation. The slow cadence ofmaser readout at these stations induces an

interpolation error of size �GPS(ΔCsync)×ΔCsync when transferring time from

the local GPS clocks to the local maser [65, 96]. Referencing all observations

to the maser at each station is necessary to take advantage of the maser’s

stability on∼hour timescales. We use the maser to bridge theΔCC2,FRB ≈ 4 h

gap between the observation of FRB 20210603A and C2. This introduces

an additional timing deviation of size �maser,C(ΔCC2,FRB) × ΔCC2,FRB.
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The total clock errors include the slow, stochastic wandering of the

masers over ΔCC2,FRB as well as the interpolation required by the maser

readout systems. We add these contributions in quadrature for both

baselines (denoted CA for CHIME-ARO10 and CT for CHIME-TONE):

�2

�,CA
=

(
�GPS(ΔCGPS,C) × ΔCGPS,C

)
2 +

(
�maser,C(ΔCC2,FRB) × ΔCC2,FRB

)
2

+
(
�maser,A(ΔCC2,FRB) × ΔCC2,FRB

)
2

(6.1)

�2

�,CT
=

(
�GPS(ΔCGPS,C) × ΔCGPS,C

)
2 +

(
�maser,C(ΔCC2,FRB) × ΔCC2,FRB

)
2

+
(
�GPS(ΔCGPS,T) × ΔCGPS,T

)
2 +

(
�maser,T(ΔCC2,FRB) × ΔCC2,FRB

)
2

(6.2)

Plugging in numbers reveals that GPS clock errors on each baseline con-

tribute to the astrometric error budget at the ≈ 2 ns level, and at present

cannot explain the magnitude of our systematic errors.

6.6.3 Local Calibration and Beamforming

CHIME has 1024 antennas, and TONE has 8 antennas. It is infeasible to

correlate such a large number of antennas as independent VLBI stations.

To reduce the computational burden of correlating such a large array, we

coherently add, or beamform, the raw baseband data from the antennas

within each station to combione the multiple low-sensitivity antennas

from a single station into a high-sensitivity equivalent single dish using

beamforming. Later, the beamformed data are combined during VLBI

correlation.

Beamforming requires independent measurements of the individual

sensitivities and delays for each antenna, i.e., complex-valued gains which

contain both amplitude and phase information. At CHIME, the infrastruc-

ture to calculate these so-called “#2
-gains” and a tied-array beamformer

have already been developed [48]. We generalized several of CHIME’s

software frameworks [33, 37, 147], to use the same basic #2
-gain calibration

algorithms [41] at TONE. First, the visibility matrix from all #2
pairs of

antennas at the correlator is calculated when a bright point source (Tau-

rus A for TONE) dominates the field of view. In the single-source limit,

the visibility matrix has a rank-1 eigendecomposition; the non-singular

eigenvector and eigenvalue encode a combination of geometric delays

and instrumental gains and delays. Once the gains are characterized, they

are used to beamform the raw baseband data from CHIME and TONE

towards the best-known positions of the Crab and the FRB provided by

the baseband pipeline, which we refer to as n̂0. The synthesized beam at

CHIME is∼1 arcmin wide, and the synthesize beam at TONE is∼0.5°wide.

Since the FRB’s true position is well within a synthesized-beamwidth away

from n̂0, our final sensitivity only depends weakly on n̂0.
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6.6.4 VLBI Correlation

After beamforming is completed at each station, the beamformed baseband

data are correlated with a custom VLBI correlator. We use the standalone

delay model implemented in difxcalc to calculate geometric delays to-

wards the fiducial sky location n̂0 of each source. For Crab pulses, we use

the VLBI position of the Crab pulsar [97] extrapolated using its proper

motion to the epoch of our observations:

n̂0 = (83.633 037 9°, 22.014 501°) , (6.3)

Including the pulsar position error (�n̂) and the proper motion (-) error
(�-) extrapolated over ≈ 10 yr from recent Crab pulsar astrometry [97],

we sum the absolute position error at the archival observing epoch and

the uncertainty in the proper motion, scaled by the time between our

observations (∼10 yr), in quadrature for the RA and DEC components

individually. The uncertainties in the Crab position propagate into equally-

sized positional uncertainties of the FRB; however these are subdominant

compared to our systematics, so we do not quote them above. For the

FRB, we use the best-fit position derived from a CHIME-only baseband

localization (n0 = (10.2717, 21.226)). This is precise to within an arcminute;

nevertheless, we find strong fringes on the FRB pointing at this position

using the following correlation algorithm.

From each pointing, we calculate and compensate the data for time-

varying geometric delays. The total delay is broken into an integer number

of 2.56µs frames and a sub-frame (or sub-integer) component ranging

from -1.28 to +1.28µs. The integer shift is applied to the data via an

array shift, and the sub-integer shift is applied by a phase rotation to

each 2.56µs frame. Applying the integer shift and time-dependent phase

rotation is equivalent to Lorentz boosting each outrigger station into the

same (CHIME’s) reference frame.

Each of the 1024 frequency channels of data is then de-smeared by

a coherent dedispersion kernel [167]. While several conventions may be

used (see e.g., Eq. 5.17 in [127]), we use the following kernel in our VLBI

correlator:

�(�) = exp

(
2�i:DMDM

�2

2�2

:
(�: + �)

)
. (6.4)

In Eq. (6.4), we take :DM = 4149.377 59 s MHz
2

pc
−1

cm
3
(for consistency

with previous conventions in the pulsar community [127, 128]), and

the fiducial DM of the FRB is taken to be (500.147 ± 0.004)pc cm
−3
. We

choose this dedispersion kernel in order to avoid introducing delays into

each frequency channel (i.e. it preserves times of arrival at the central

frequency of each channel). The chosen DM adequately de-smears the

pulse within each frequency channel. This concentrates the signal into

a narrow temporal duration to maximize the correlation S/N. The ar-

gument � ∈ [−195.3125 kHz,+195.3125 kHz] indicates the offset from

the reference �: , chosen to be the centre of each frequency channel:

�: ∈ [800.0, 799.609 375, ..., 400.390 625]MHz.
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After the delay compensation towards the fiducial sky position n̂0 =

(α0 , δ0) and coherent dedispersion, we form visibilities for each frequency

channel (indexed by :) independently on both long baselines involving

CHIME (1CA and 1CT, hereafter indexedby 8) bymultiplying and integrating

the complex baseband data. To reject noise and RFI, we integrate only

∼100µs of data on either side of the pulse in each of 1024 frequency

channels. This produces 1024 complex visibilities per baseline which are

used for localization (hereafter referred to as + [8 , :]). We integrate 13

other windows of the same duration in the same dataset but shifted to

off-pulse times to estimate the statistical uncertainties on the visibilities.

The statistical uncertainties are hereafter referred to as � [8 , :].

6.6.5 VLBI Calibration and Empirical Localization Error
Budget

The complex visibilities + [8 , :] must be phase-calibrated prior to the

localization analysis. We calibrate the visibilities with phase, delay, and

rate corrections derived from our Crab pulses before performing our final

localization analysis. In an ideal setup,wewould systematically characterize

localization errors in the CHIME-ARO10-TONE array as a function of sky

pointing and time separation and perform end-to-end localization of known

pulsars as a checks of our localization. However, our ability to do so is

limited due to logistical factors at each station. Perhaps most logistically

difficult is the extremely limited internet access to the ARO10 site, which

fundamentally limits the data that can practically be read out from the

ARO10 site. At TONE, frequent misalignment of the dishes due to high

wind conditions requires manual repointing and recalibration of the array,

which frequently interrupts observations. Therefore, the only data available

for characterizing the full CHIME-ARO10-TONE array around the time

the FRB is observed are a sequence of triggered baseband dumps from

the Crab pulsar collected in May-June 2021, simultaneous with CHIME,

occurring a cadence of about 1 per day, at each station. We enumerate these

Crab pulses as C1-C4. Waterfall plots of these pulses, in addition to the

FRB, are shown in Extended Data Fig. 6.2.

Within the constraints of these limited data, we perform the following

steps for VLBI calibration. From C2, the closest Crab pulse in time to the

FRB, we calculate instrumental phase and delay solutions for all baselines,

and apply them to all observations on all baselines. The phase and delay

solutions remove static instrumental cable delays and phase shifts, and

suppress unwanted astrometric shifts related to baseline offsets towards

the declination of the Crab.

In addition to the phase and delay calibration, a large rate correction

(∼0.1µs day
−1
) is needed for the CHIME-ARO10 baseline [62]. Upon

removal of the CHIME-ARO10 clock rate, our delay residuals plotted in

Extended Data Fig. 6.10, are bounded by ±15 ns on both baselines. In

that Figure we also include all of the delay residuals from historical data

available on each baseline individually, calibrated similarly (i.e., with a

clock rate correction for CHIME-ARO10 and with no significant clock rate
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correction detected for the CHIME-TONE). For CHIME-ARO10, we show

a previously-published dataset of 10 Crab pulses from October 2020. For

CHIME-TONE data [137], we use a previously-unpublished dataset of

11 Crab pulses from February-March 2021. The delay residuals for these

archival samples, as well as from the Crab pulses measured in May-June

2021 when both baselines were operational, are bounded by ±15 ns. We

therefore adopt 1� systematic localization uncertainties corresponding to

±15 ns for each baseline henceforth. As a final note we observe a weak

trend in the CHIME-TONE delay residuals around the time that the FRB

is detected. Whether it reflects a CHIME-TONE clock rate correction or a

randomfluctuation in theCHIME-TONEdelays is unclear. For transparency,

we therefore leave it uncompensated in Extended Data Fig. 6.10 (but we do

attempt to model it out in our calibration procedure).

6.6.6 Crab Localization

In addition to quantifying delay errors on each baseline individually using

Crab pulses, we perform an independent, end-to-end cross-check of the

delay and rate solutions derived for the FRB using C3. This the only Crab

pulse remaining which is detected at all stations and baselines which we

have not used to obtain delay and rate solutions; we use it here as an

independent check of our delay and rate solutions and of our localization

procedure, which combines data from both baselines.

To localize C3, we calibrate C3 visibilities for both baselines using

the aforementioned delay and phase solutions from C2. In addition, on

the CHIME-ARO10 baseline we apply the clock rate measured from C1

and C2. To model the short-term trend seen in the CHIME-TONE delay

residuals, we apply a clock rate correction to CHIME-TONE data measured

from C2 and C4 (since the TONE correlator restarted between C1 and C2).

Removing this trend changes the CHIME-TONE fringes by ≈ 1 ns, but this

is insignificant within the systematic error budget of 15 ns.

We refer to the visibilities calibrated this way as V[8 , :] (not to be

confused with the un-calibrated visibilities + [8 , :]), where 8 denotes the

baseline (either CA or CT) and : denotes our 1024 independent frequency

channels. In addition to the correlation start times in each channel C0 [8 , :],
and the baseline vectors bCA, bCT, we use V[8 , :] to localize C3 to an

inferred position n̂ relative to the fiducial sky position (n0) used to correlate

C3.

Several approaches to localizing single pulses been taken in the

literature [57, 62, 83], reflecting the significant challenge of astrometry with

sparse DE-coverage. For example, the traditional method of making a dirty

map of a small field and using traditional aperture synthesis algorithms

to de-convolve the instrumental response is not well-suited to the present

VLBI network with its extremely sparse coverage of the DE-plane. We

have found that one robust method (though formally, it is statistically not

optimal) is to translate the residual delay on each baseline into a localization
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contour on the sky. The residual delay on the i
th
baseline �max

8
is found on

each baseline by maximizing

�B 5 (�,ΔDM) =
�����∑
:

V[8 , :] exp(−8)[8 , :])/�[8 , :]
����� (6.5)

where

)[8 , :] = 2�(�:�8 +  DMΔDM8/�:) (6.6)

over a grid of � and ΔDM values. This estimator attempts to model the

dominant components of the visibility phases into contribution which

is linear in frequency and includes geometric and ionospheric parts

(3)/3�: = 2�(�8 −  DMΔDM8/�2

:
)) and quadratic/higher-order correc-

tions (32)/3�2

:
= 2� DMΔDM8/�3

:
, etc.). Maximizing this estimator over

different values of � andΔDM8 uses the higher-order corrections tomeasure

the ionospheric phase shift. The ionospheric contribution is removed at all

orders by applying exp(−2�8 
DM/�: to the visibilities from that baseline.

Taking the Fourier transform of the ionosphere-corrected visibilities (see

top panels of Extended Data Fig. 6.4) yields a sharpened peak at �max

8
: the

geometric delay remaining after removing the ionospheric phase and delay.

From �max

8
we calculate

logL� =
∑

8=CA,CT

(�max

8
− �8(n))2

2�2

�
(6.7)

where the delay model evaluated on the i
th
baseline �8 is evaluated for a

grid of sky positions n to infer a maximum-likelihood position of C3 of

n = (83.633053
◦ , 22.014539

◦). We draw a �� = 15 ns error contour around

this best-fit position in Extended Data Fig. 6.7, which easily encloses the

Crab’s true position.

This delay-based localization, while robust, does not simultaneously

separate any residual ionospheric delays from geometric delays. We per-

formed a full fit of Eq. 6.6 to the ≈ 1024 visibility phases in each frequency

channel on each of the two baselines simultaneously, computing the likeli-

hood

logL! ∝
∑

8=CA,CT

1023∑
:=0

|V[8 , :]|Re[V[8 , :] exp(−i) [8 , :])]
� [8 , :]2 .

(6.8)

Unlike the delay-based likelihood, which takes in the delays �8 , the phase-
based likelihood L! uses the visibilities in each channel directly, whose

amplitude is weighted by the signal strength and the inverse variance

(|V[8 , :]|/�[8 , :]2). MaximizingL! solves for the model parameters whose

corresponding phases exp(−i) [8 , :] remove the slow fringing seen in

V[8 , :].

Since the likelihood is highlymultimodal,we resort to using a sequence

of 4-dimensional grid searches over (, �,ΔDMCA ,ΔDMCT), using a prior

which is uniform over a 1 arcmin × 1 arcmin rectangle centred on the best

fit position using L�. The resulting posterior is shown in Figure 6.8, and

the best-fit model is overlaid over the calibrated visibilities in Extended
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Data Figure 6.4. Both the L! and L� methods give us answers within

≈ 0.2 arcsec of the true position of the Crab.

6.6.7 FRB Localization

We apply to the FRB visibilities the same calibration solutions used to

localize C3. Since the L� estimator is more robust, we first localize the

FRB first using the L� estimator to n = (10.2740561, 21.22624104). The L�

position is offset from the baseband position by 8 arcsec in the RA direction

and ≈ −1.3 arcsec in the declination direction. To refine our phases, we

recorrelate the FRB towards this refined position before attempting a

fringe fit using L!. The fringe fit yields the maximum-likelihood position

n = (10.27405831524288, 21.226270189262042).

Possible Error Sources

The largest known contribution to our systematic uncertainty (theoretical) is

the GPS clock error (see Methods: Clock calibration). Smaller contributions

include station positioning errors, the position of the Crab pulsar at

its current epoch, residual ionospheric fluctuations, and time-variable

instrumental errors. Station positioning errors arise from not knowing the

geocentric Earth location of each station to full precision, which comes from

time-varying drifts of the phase centre of the two interferometers (CHIME

and TONE). In addition, the ARO10 Earth location is poorly constrained.

The FRB localization error due to baseline offsets depends on the separation

between the FRB and the calibrator (in the case of Crab GP C2, 1.7°), the
elevation of the calibrator, and the uncertainty on the baseline vector (�1).

The ionosphere also introduces frequency-dependent delays, with a

maximum deviation �DM = 5 × 10
−8

pc cm
−3
. In addition to including the

ionosphere explicitly in the fringe fit, we insert an ionospheric contribution

of 1 × 10
−7

pc cm
−3

in the systematic budget to reflect the ionosphere’s

effects on the statistical contours aswell as the systematic bands in Figure 6.1.

The optical follow-up observations are performed relative to the FK5

reference frame (ICRS). Both systems are similar andwe expect a maximum

deviation from ICRF of & 1 mas at most [168, 169]. The effect produced by

different reference frames has not been included in our analysis.

Finally, we have included an empirical analysis from the two separated

baselines in Extended Data Fig. 6.10. Here we show the empirical timing

precision of the two baselines from observations CHIME-ARO10 2020, and

CHIME-TONE 2021.

6.6.8 Burst Morphology

FRB 20210603A has a broadband, main pulse of duration of ∼220µs, with

a signal-to-noise ratio of ∼136 as detected by the CHIME/FRB real-time

detection pipeline. In addition, two trailing emission components are
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visible in the data (Extended Data Fig. 6.1). Using the DM_phase algo-

rithm [170], we line up substructures in the dispersed pulse, yielding a

DM of (500.147 ± 0.004)pc cm
−3
. The DM is input to fitburst, which then

finds that the main burst (excluding the two trailing emission components)

can be described by three closely-spaced sub-bursts.

6.6.9 Dispersion and Scattering Analysis

In general the observed DM of an FRB can be split into four components

as,

DMFRB = DMMW−disk +DMMW-halo +DMcosmic +DMhost , (6.9)

whereDMMW-disk is the contributionof thediskof theMilkyWay,DMMW-halo

is that from the extended hot Galactic halo and DMcosmic is from the inter-

galacticmedium. TheDM contribution of the host, DMhost, is a combination

of the contributions from the interstellar medium (ISM) of the host galaxy

DMhost-disk, the halo of the host galaxy DMhost-halo and the contributions

from the source environment DMhost-env.

To interpret unknown contributions to the total DM, we subtract

known contributions from the total. The contribution from the Milky Way

disk estimated from the NE2001 model [157, 158] is DMMW-disk,NE2001 =

(40 ± 8)pc cm
−3‡

. We estimate the contribution of the Galactic halo to be

DMMW-halo = (30 ± 20)pc cm
−3

using the model described in [162]. We can

treat this estimate as conservative, and it can be as low as 6 pc cm
−3
[172].

The IGM contribution is estimated to be DMcosmic = (172 ± 90)pc cm
−3

[13],

where the range is due to cosmic variance in the Macquart relation out to

I ≈ 0.18 [163]. This leaves the contribution to the DM from the host galaxy

halo, disk, and the FRB local environment as DMhost = (257 ± 93)pc cm
−3
.

The large value ofDMhost is consistentwith a long line-of-sight traveled

through the host galaxy disk, resulting from the galaxy inclination angle.

We can estimate the DM contributions of the host galaxy disk and halo

by scaling the Milky Way’s properties. We assume the disk size (') scales

with the galaxy stellar mass M
★
as a power law ' ∝ (M★)� where for

simplicity we choose � ∼ 1/3. This value of � is close to the measured

value in the literature for galaxies with M
★ = 10

7 − 10
11

M�[173]. Thus

the galaxy size scales as

(
M

★/M★
MW

)
1/3

= (1.4 ± 0.3)1/3 = 1.12 ± 0.08,

where M
★ = (8.5 ± 0.8) ×10

10
M� and M

★
MW

= (6.1 ± 1.1) ×10
10

M� are the
present-day stellar masses of host galaxy and Milky Way [174] respectively.

Assuming the halo size also scales as

(
M

★/M★
MW

)
1/3

, the average Milky

Way halo DM contribution (43 ± 20)pc cm
−3

[162] can be scaled to estimate

DM
r

host-halo
= DMMW-halo × (M★/M★

MW
)1/3 = (48 ± 23)pc cm

−3
in the host

galaxy’s rest frame. Similarly, we can conservatively estimate the rest frame

DM due to the disk of the host galaxy, DM
r

host-disk
. A first approximation is

to assume that the FRB originates from close to themidplane of the disk, and

‡
The Milky disk contribution as determined by from the YMW16 electron density model [171]

is ∼31 pc cm
−3

which changes our budget by ∼10 pc cm
−3
.
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scale the DM contribution of the half-thickness of the MilkyWay (#⊥(∞) ≈
(24 ± 3)pc cm

−3
[175]) by a factor of csc

(
(7 ± 3)°

)
= 8 ± 3 to account for

the viewing geometry. We assume the electron density stays equivalent

to that of the Milky Way and scale for the host galaxy size. This yields

an estimate of DM
r

host-disk
= #⊥(∞) × csc

(
(7 ± 3)°

)
×

(
M

★/M★
MW

)
1/3

=

(193 ± 82)pc cm
−3

in the host galaxy rest frame.We can sum these estimates

of the DM
r

host-disk
and DM

r

host-halo
to give the DM in the observer’s frame as

DMhost = (DM
r

host-disk
+DM

r

host-halo
)/(1 + I) = (224 ± 82)pc cm

−3
which is

consistent with the observed DMhost. If the FRB is behind the galaxy, the

expected contribution from the host galactic disk could be increased by

up to a factor of 2 yielding (448 ± 164)pc cm
−3
; however, this possibility is

inconsistent with the observed DM excess.

The pulse broadening is measured to be �600 MHz = (155 ± 3)µs and

is consistent with expected contributions from the host galaxy disk. In

this scenario, the observed scattering and DM through the host disk

should be commensurate with known pulsar lines of sight through the

Milky Way at similar Galactic latitudes. We compare the FRB’s scattering

to archival measurements of Galactic pulsars as follows. First, we scale

�600 MHz to 1 GHz, and multiply by (1 + I)3 to account for time dilation

and the un-redshifted frequency at which the pulse is scattered. This gives

�proper,1 GHz = 45µs in the rest frame of the host galaxy. Further dividing

this by 3 converts the geometric weighting from that of extragalactic

(plane-wave) scattering to Galactic (spherical-wave) scattering [176]. Finally,

subtracting DMhost-halo from the observed DM excess in the host galaxy

rest frame yields DM
r

host-disk
= (254 ± 111)pc cm

−3
. We then calculate the

ratio of observables

�proper,1 GHz

3(DM
r

host−disk
)2 ≈ (4 ± 3) × 10

−7

ms pc
−2

cm
6 ∝ �̃�.

This ratio characterizes the efficiency of the scattering along the line of

sight. It is proportional to the product of the fluctuation parameter �̃

and an order-unity geometric factor �. The proportionality constant is

Γ(7/6)A2

4 2
3�−4

, where Γ(7/6) ≈ 0.9277, 2 is the speed of light, A4 = 2.8 fm is

the classical electron radius, and � is the frequency at which the scattering

is observed [177]. This proportionality constant captures the microphysics

and the frequency dependence of the scattering and relates it to the ratio

of observables. The bulk properties of the gas are captured by �̃, which

depends on the volume filling factor of gas cloudlets, the size distribution

of cloudlets doing the scattering, the size of the density variations within

a cloudlet, and the inner/outer scales of the turbulence [176]. For the

Milky Way’s disk, typical values of �̃ range from 0.001–1 pc
−2/3

km
−1/3

for

low-latitude sightlines, roughly corresponding to scattering-DM
2

ratios of

1 × 10
−8
–1 × 10

−5
ms pc

−2
cm

6
[176]. � can vary by an order of magnitude

because it depends on the relative position of the scattering media to the

source and observer, which is poorly constrained for extragalactic sources

of scattering. For example, for the geometry of a homogeneous scattering

medium between the FRB and the edge of the host galaxy and a distant

observer at infinity, � = 1. However, for a spiral arm of thickness ! ≈ 1 kpc

at a distance 3 ≈ 10 kpc in front of the FRB, � = !/3 ≈ 0.1. We observe
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that the host DM and scattering properties are consistent with those of a

FRB sightline through a host-galactic disk with Milky Way-like density

fluctuations. These properties are suggestive of a source close to the host

galaxy’s plane as opposed to an FRB progenitor significantly displaced

from the host galaxy’s disk.

Another interpretation is that theDMexcess and scattering are partially

contributed by the source’s local environment. The DM excess observed

is not extreme: it is only a factor of two greater than the median mea-

sured in population studies (DMhost ≈ 145 pc cm
−3

[178]). Furthermore, the

scattering timescale and low rotation measure are not outliers within the

diverse population of FRBs. In this scenario, the FRB could be produced by

a progenitor significantly displaced from the host galactic plane relative to

the electron scale height ((1.57 ± 0.15)kpc), reducing the host disk contri-

bution to a fraction of our estimate ((224 ± 82)pc cm
−3
). This displacement

would imply an old progenitor since young progenitors typically have low

scale heights, ∼30 pc and 100 pc, for young magnetars and massive stars

respectively [179, 180]).

6.6.10 Polarisation Analysis

The polarisation analysis follows a similar procedure to that previously

applied to other FRBs detected by CHIME/FRB [3, 25]. In particular, an

initial RM estimate is made by applying RM-synthesis [181, 182] to the

Stokes& and* data of the burst. This initial estimate is then further refined

through a judicious selection of time and frequency limits that optimize

the S/N of the polarised signal. We then apply a Stokes &*-fitting routine

that directly fits for the modulation between Stokes & and* from Faraday

rotation but is further extended to capture additional features in the Stokes

spectrum.

We analyse FRB 20210603A using the CHIME/FRB polarization

pipeline, identical to that recently employed on FRB 20191219F [183]. We

determine an RM = (−219.00 ± 0.01) rad m
−2

and find the lower limit

of the linear polarised fraction (ΠL) differs between the top (&96 % at

800 MHz) and the bottom of the CHIME band (&87 % at 400 MHz). This is

counteracted by a very small but changing circular polarised fraction that

becomes more significant at the bottom of the band. While this result may

reflect the intrinsic properties of the burst at the source or be an imprint

of some unknown propagation effect [184–186], it is also not possible to

rule out instrumental effects such as cross-polarisation between CHIME’s

orthogonal feeds. For this reason, we do not report on the circular polari-

sation and conservatively set ourΠL measurements as lower bounds (see

Table 6.1).

The Galactic RMMW = (−22.4 ± 0.3) rad m
−2

contribution can be esti-

mated from recent all-sky Faraday Sky maps [164]. The RM contribution

of Earth’s ionosphere, RMiono = +1.4 rad m
−2
, is determined from the

RMextract package
§
[161]. The uncertainty on this value is not provided,

§ https://github.com/lofar-astron/RMextract
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however, the variability in RMiono is expected to be . +1 rad m
−2

based on

observations of pulsars and repeating FRB sources.

Given that the Galactic pulsar population preferentially occupies the

Milky Way disk, this similarity, while not ruling out alternative scenarios,

is consistent with the notion that FRB 20210603A resides in or near the

disk component of its host galaxy. Extended Data Fig. 6.11 further explores

this analysis by locating our DMhost, RMhost and �scatt estimates of FRB

20210603Awithin the equivalent phase space of the Galactic pulsar sample.

Galactic pulsar data are obtained from the latest Australia Telescope

National Facility (ATNF) pulsar catalogue [187]
¶
using the psrqpy package

[188]
‖
. FRB 20210603A occupies a well sampled region of this phase space,

however, the distribution is also seen to be highly dependent on the Galactic

latitude.We estimate a quasi-latitude value for FRB 20210603A, determined

from a simple transformation of the inclination angle of the host galaxy

(i.e., 4° ≤ 90° − inclination angle ≤ 10°), and find that the average pulsar

properties of DM, RM and �scatt at this equivalent latitude agree well

with what is observed from FRB 20210603A. The agreement is further

improved by rescaling DM, RM to account for the larger disk mass of the

host galaxy relative to the Milky Way. This scaling factor corresponds to

the ratio of the disk mass of the host galaxy and Milky Way and is found

to be

(
M

★/M★
MW

)
1/3
=1.12 ± 0.08 (See Dispersion and Scattering analysis).

Such a result suggests that most of the observed DMhost, RMhost and �scatt
observed from FRB 20210603A can be supplied by the host galaxy ISMwith

little additional contribution needed from the source’s local environment.

6.6.11 Host Galaxy Analysis

Optical images of SDSS J004105.82+211331.9 were taken with the CFHT

MegaCam using the wide-band gri filter. The data were reduced using the

standard bias, dark, and flat corrections using the Elixir pipeline [189, 190].

Several exposures were combined using this filter to create an image with

a total exposure of 2500 s.

The half-light radius of the host galaxywas determined using the given

Petrosian radii fluxes provided by SDSS Data Release 12 [148] and Eq. 7 of

[191]. The half-light radius in the A-band using these values was found to

be (8.2 ± 0.9) kpc. Furthermore, the SDSS-provided apparent magnitude

in the A-band was corrected for Milky Way extinction using the model

from Fitzpatrick & Massa 2007 [192]; this gave us an absolute magnitude

of −22.03 ± 0.02 after k-corrections [193].

In addition to imaging, we conducted Gemini spectroscopic obser-

vations consisting of two 1000 s exposures, one centred at 6750Å and the

other centred at 6650Å. This wavelength offset was to account for the gap

between the detectors. The images were reduced using standard bias and

flat corrections, and combined using the Gemini IRAF/PyRAF package tools

[194, 195]. Using the same package, we also wavelength- and flux-calibrated

¶ http://www.atnf.csiro.au/research/pulsar/psrcat
‖ https://psrqpy.readthedocs.io/en/latest/
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the spectrum, and accounted for skylines and cosmic rays in the data. We

extract spectra with various aperture sizes along the galaxy. The redshift

was determined by extracting a spectrum from a 1 arcsec wide aperture

centred at the central coordinates of the host galaxy. Due to the edge-on

orientation of the galaxy, almost all of the galaxy’s light falls within the slit,

and the effect of slit corrections on the measured fluxes are negligible (see

Extended Data Fig. 6.5).

The H and the redwards line of the N II doublet (rest wavelengths

of 6564.6Å and 6585.2Å) are some of the most detectable lines (Extended

Data Fig. 6.5). Other prominent lines are from Na and Mg absorption

(rest wavelengths of 5895.6Å and 5176.7Å). Fitting a linear combination

of Gaussian line profiles to the H and N II lines yields a redshift of

I = 0.1772 ± 0.0001. The uncertainty in the spectroscopic redshift is domi-

nated by the statistical uncertainties in the measured spectrum, which are

normalized such that the reduced-"2
of the residuals is 1.

To further characterize the galaxy, we combine our Gemini spectra

with archival 2MASS[152] and WISE photometry[153]. We use the spectral-

energy distribution (SED) fitting code Prospector to determine the stellar

mass, metallicity, and star formation history of the galaxy [154]. Our

modelling and analysis of this host galaxy closely follows a similar effort

for the repeater FRB 20181030A [53]. However, because the galaxy is nearly

edge-on, dust extinction in the host-galactic centre reddens the observed

emission. Therefore, we first correct the spectrum for extinction (see Eqs. 10

and 13 of [196]) due to its inclination of (83 ± 3)° [150].

Our best-fit model is overlaid on the spectral and photometric data

in Extended Data Fig. 6.6. It assumes a delay-τ star formation history

∝ C exp

(
−C/τ

)
, where τ is the characteristic decay time and C is the time

since the formation epoch of the galaxy. We set 5 free parameters: present-

day stellar mass, metallicity, τ, C, and the diffuse dust V-band optical depth

(referred to as “dust2” in Prospector), which accounts for the attenuation

of old stellar light.We use τ and C as determined by Prospector to calculate

the mass-weighted age of the galaxy. Additionally, we used a standard dust

attenuation model [197], and enabled nebular emission and dust emission

[198, 199].

Before sampling the likelihood, we choose reasonable priors for each

free parameter (Extended Data Table 6.1). We use Eq. 6 of [200] to obtain

an initial estimate of the galaxy’s mass, and to set a weak prior on the mass

range.

log
10
(M★/M�) = 1.097(6 − A) − 4.06 − 0.4("A − 4.97) − 0.19I, (6.10)

where 6 and A are the apparent magnitudes in the 6-band and A-band

filters, "A is the absolute magnitude in the A-band, and I is the redshift.

The prior on C was cut off at 12 Gyr because the age of the Universe at

I = 0.1772 ± 0.0001 is only ∼12 Gyr. The prior on Z/Z� and τ were set

according to recommendations in Prospector [154]. Using these priors,

we obtain the fit plotted in Extended Data Fig. 6.6 and list the results in

Table 6.1.
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Extended Data Table 6.1: Priors set for SED modeling with Prospector.

Parameter Prior [min,max]
log("★/"�) Present-day Stellar Mass Log Uniform [10, 12]
log

(
///�

)
Metallicity Top Hat [−2, .19]

C Time since formation (Gyr) Top Hat [0.1, 12]
τ Star formation characteristic decay rate (Gyr) Log Uniform [0.3, 15]
dust2 Diffuse dust V-band optical depth Top Hat [0, 3]

Finally, to determine the galaxy-integrated SFR, we extract a spectrum

with an aperture of 10 arcsec in diameter, encompassing all of the galaxy’s

light within our half-light radius of ∼2.5 arcsec. We calculate the total SFR

of the host galaxy using the intensity and line width of the H line [201]:

SFR = 7.9 × 10
−42

(
LH

erg s
−1

)
M�
yr

, (6.11)

where LH is the flux-derived luminosity of the H emission from our

Gemini data. To correct our luminosity measurement for extinction we

apply the inclination-angle dependent correction as well as the inclination-

independent correction, parameterized as dust2 in Prospector. The latter

quantifies the amount of V-band extinction of old stellar light in the host

galaxy. Optical reddening is characterized by using RV = AV/E(B-V), where

E(B-V) is the color index of the galaxy and AV is the extinction in the

V-band; this equation is thus the ratio of total to selective extinction in the

V-band [202]. The dust extinction is taken to be AV = 1.086 × dust2 [154,

203], where we take dust2 to be the best-fit value of 0.79. With an RV value

of 3.1 [202], we calculated E(B-V) to be 0.28. The H extinction coefficient

can be calculated using AH = RH× E(B-V) where we take RH = 2.45

[204]. The inclination-independent attenuation results in the H flux being

attenuated by a factor of exp(AH) = 1.97. Correcting the galaxy-integrated

H flux for extinction yielded a total SFR of 0.24 ± 0.06 M�yr
−1
. We may

also measure the SFR in the 3 kpc-scale vicinity of the burst. The dominant

systematic is the extent of dust extinction in the local vicinity of the FRB

(Extended Data Fig. 6.5), which may differ from the extinction averaged

over the galaxy. The local H-derived SFR is 0.02 M�yr
−1
, measured before

applying dust (1.97) and inclination-dependent (1.89) extinction corrections,

and 0.09 M�yr
−1

after applying both corrections. We conclude that the star

formation in the kiloparsec-scale vicinity of the FRB accounts for between

9 and 36% of the total star formation in the host galaxy – a substantial

fraction of the total.

6.6.12 Disk Chance Coincidence Probability

While FRB 20210603A was ostensibly localized to the disk of its host galaxy,

it is possible that the progenitor is actually a halo object (as in the case

of the globular cluster host of FRB 20200120E [4]) coincidentally aligned

with the disk in projection. The probability that this occurs by a chance

coincidence is the ratio of the solid angles subtended by the disk and halo.

The nearly edge-on disk can be approximated as an ellipse with semi-major
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and semi-minor axes of 15 and 2.7 arcsec respectively, while the halo can

be approximated as a circle of radius Avir ≈ M
★/M★

MW
Avir,MW. Taking the

Milky Way’s virial radius to be Avir,MW = ∼200 kpc [205] and scaling up

the host galaxy mass yields the host galaxy’s virial radius of ∼280 kpc. The

low chance coincidence probability of 10
−3

implies a robust association

with the disk and favors progenitor models involving disk populations

over halo populations.
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Extended Data Fig. 6.1: The Stokes-� dynamic spectrum of FRB 20210603A.We detect the

single pulse in autocorrelation at CHIME/FRB with a signal-to-noise ratio exceeding 100. The

data are shown at a time resolution of 25.6µs with pixel colours scaled to their 1–99 percentile

values. To remove dispersion, we use a DM derived by lining up three closely-overlapping

sub-burst components within the main pulse using fitburst [156]. In addition to the main

burst, fainter emission components occurring ∼12 ms and ∼18 ms afterwards are visible in

CHIME/FRB baseband data, but are neglected for VLBI localization. The faint dispersed

sweeps left and right of the main pulse are known instrumental artifacts from spectral

leakage. The masked regions correspond to RFI from cellular communication and television

transmission bands between 700–750 MHz and 600–650 MHz, respectively.
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ExtendedData Fig. 6.2: Dynamic spectra of all observations.At each VLBI station we record

five single pulses: Crab giant pulses whichwe refer to as C1-C4 in the several days surrounding

FRB 20210603A. Each row corresponds to a different VLBI station (CHIME at the Dominion

Radio Astrophysical Observatory, ARO10 at the Algonquin Radio Observatory, and TONE at

the Green Bank Observatory). Timestamps show site-local clocks aligned to within 2.56µs at

a reference frequency of 800 MHz. Though the FRB is too faint to be detected at the testbeds

alone, it is robustly detected in cross-correlation with CHIME. The intensity was adjusted by

normalizing its standard deviation and setting the color scale limits to the 1 and 99 percentile

values of the data. Waterfall plots are shown downsampled to a frequency resolution of

25 MHz and a time resolution of 25.6µs. The noisy radio frequency interference (RFI) channels

in 700–750 MHz correspond to the cellular communications bands and the RFI channels at

≈ 600 MHz frequencies correspond to television transmission bands. Symbols next to the

telescope label in each waterfall plot indicate what each Crab pulse was used for. We use

C2 on all baselines as a delay/phase calibrator, and C1 and C4 as rate calibrators for the

CHIME-ARO10 and CHIME-TONE baselines respectively. We localized C3 as an end-to-end

cross-check of our calibration solutions.
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Extended Data Fig. 6.3: Calibrated VLBI fringes on a single giant pulse of the Crab
pulsar (C3) as detected on the CHIME-ARO10 (left) and CHIME-TONE (right) baselines
respectively, which we localize to validate our VLBI calibration solutions. In each top

panel, we plot the time-lag cross-correlation function �(�) as a function of delay (ranging

from ±0.2µs), showing a detection S/N exceeding 50 on each baseline. In each bottom panel,

we plot the phase of the calibrated and fringestopped visibilities V[8 , :], binned to 1.6 MHz

resolution, with 1� phase errors plotted as �[8 , :]/V[8 , :]. We overlay the best-fit model

which localizes C3 using two different methods (see Methods: Crab Localization).
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Extended Data Fig. 6.4: Calibrated VLBI fringes on FRB 20210603A from the CHIME-
ARO10 (left) and CHIME-TONE (right) baselines respectively. Same as Fig. 6.4, but for the

FRB 20210603A.
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ExtendedData Fig. 6.5: Spatially resolved spectroscopy of the host galaxy.Middle and right:
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using CFHT MegaCAM and Gemini long-slit spectroscopy respectively. Pixel intensities are

scaled linearly and normalized to reduce the saturation evident in Figure 6.1. All spectra are
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−17
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. Two spectra are extracted from the

vicinity of the FRB (spectrum a), and the bulge of the galaxy (spectrum b, centered at 0). There

are an additional eleven spectra extracted from the FRB side of the galaxy (shown as positive

offsets), and from the opposite side of the galaxy (shown as negative offsets). Seven additional

spectra are extracted from the same side of the galaxy as the FRB at distances of 1–7 arcsec

away from the galactic center, and four additional spectra are extracted symmetrically from

the opposite side of the galaxy at distances of 1–4 arcsec from the galactic center (for example,

extracted at point c on the optical image). All spectra are extracted using an aperture size

of 1.5 arcsec × 1 arcsec. The thirteen spectra and Gaussian fits to the H and one of the

NII emission lines, are plotted here after correcting for Milky-Way extinction. Left: H flux

observed at varying distances from the galactic center, calculated from the spectra to the

right. Positive distances refer to H fluxes obtained on the FRB-originating side of the galaxy,

whereas negative distances represent H fluxes obtained on the opposite side of the galaxy.

Blue circles indicate a 2� H detection, and upside-down triangles represent a less than 2�
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bars represent the spectra extraction aperture size of 1 arcsec. The half light radius of the
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Extended Data Fig. 6.7: Localization of C3 as an independent, end-to-end cross check of
our array calibration. Due to the extremely sparse sampling of the DE-plane, we bypass

traditional imaging. We compare two methods: a delay-space "2
-minimization of the residual

delays left after calibration (+), and a visibility-space fitting of the fringes (×); the final

localization is compared to the true position of the Crab.

167



22.
0145222.
0145822.
0146422.
01470

D
ec

(d
eg

)

-5

-2
.5

0

2.5

5

∆
D
M

C
A
×

1
0
−

7
p

c
cm
−

3

83.
633035

83.
633050

83.
633065

83.
633080

R.A. (deg)

-5

-2
.5

0

2.5

5

∆
D
M

C
T
×

1
0
−

7
p

c
cm
−

3

22.
01452

22.
01458

22.
01464

22.
01470

Dec (deg)

-5
-2

.5 0
2.5 5

∆DMCA × 10−7pc cm−3

-5
-2

.5 0
2.5 5

∆DMCT × 10−7pc cm−3
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Extended Data Fig. 6.10: Delay residuals measured from the two separate baselines CHIME–

ARO10 (upper row) and CHIME–TONE (lower row) using all available data from 2020 and

2021, respectively. The graph shows the empirical uncertainty obtained by analysing earlier

data sets [62, 137]. Each point correspond to residual delays after applying delay and phase

corrections (CHIME-ARO10 is calibrated to 22-10-2020, and TONE is calibrated to 18-02-2021).

The extracted delays have all been compensated for clock errors and for a clock rate error on

the CHIME-ARO10 baseline.
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Extended Data Fig. 6.11: Comparison of propagation effects. A comparison of selected
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sample are shown for two different latitude ranges: 4° ≤ b ≤ 10° (blue) and b ≥ 20° (orange).
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estimates of equivalent quantities determined for FRB 20210603A, namely: DM
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, RM
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and �scatt. DM
host

, RM
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and �scatt estimates are in the source frame with �scatt referenced
at 1 GHz assuming a �scatt ∝ �−4.4

relation used by ATNF. The burst properties of FRB

20210603A (DM
host

, RM
host

and �scatt-1 GHz) are similar to that of low-latitude (4° ≤ b ≤ 10°)
Galactic pulsars.
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7.1 Abstract and Statement of Contribution

Interference effects in gravitational lensing have long been predicted, and

with thediscoveryofpopulations of compact transients suchas gravitational

wave events and fast radio bursts, may soon be observed. We present an

observer’s review of the relevant theory underlying interference effects

in gravitational lensing. Starting from the curved-spacetime scalar wave

equation, we derive the Fresnel-Kirchoff diffraction integral, and analyze it

in the eikonal and wave optics regimes. We answer the question of what

makes interference effects observable in some systems but not in others,

and how interference effects allow for complementary information to be

extracted from lensing systems as compared to traditional measurements.

We end by discussing how diffraction affects affect optical depth forecasts

and lensing near caustics, and how compact, low-frequency transients like

gravitational waves and fast radio bursts provide promising paths to open

up the frontier of interferometric gravitational lensing.

For this paper, I summarized and re-derived in detail many of the

canonical results in gravitational lensing in the scalar wave optics approxi-

mation, produced all the figures, and wrote the vast majority of the text.

Prasenjit Saha and Dylan Jow assisted in the writing process, and others

provided comments on the text. It is currently under review at Springer
Space Science Reviews. The author list of this paper is:

Calvin Leung, Dylan Jow, Prasenjit Saha, Liang Dai, Masamune Oguri,

Léon V. E. Koopmans.

7.2 Introduction

Gravitational lensing in the geometric optics approximation has enjoyed

immense success as a unique and precise probe of cosmology and astro-

physics. However, electromagnetic and gravitational radiation both obey

wave equations, have a wave-like nature, and interfere and diffract as

they propagate to Earth from the cosmos. Just how the first theoretical

predictions of gravitational lensing [206] were made decades before the

first observation of an Einstein ring [207], wave effects in gravitational [207]: Hewitt et al. (1988), “Unusual radio

source MG1131+0456: a possible Einstein

ring”

lensing were predicted long before there was any hope of detecting them.

Now, there is hope on multiple fronts: Lensed supernovae [208]

have already been detected. In principle, wave-mechanical effects should

be observable in the lensing of gravitational wave (GW) signals from

binary black holes [209], binary neutron stars [210], and even black hole-

neutron star mergers [211], as well as a large population of fast radio

bursts (FRBs) at low frequencies [156]. Growing observational efforts in
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these areas puts astronomers well on their way to detecting interference

effects in gravitational lensing. Measuring these interference effects enables

unique tests of gravity: for example, testing the equivalence principle tests

using precise measurements of time lags between electromagnetic and

gravitational-wave images [212]. It is also of interest from the perspective[212]: Takahashi (2017), “Arrival Time Dif-

ferences betweenGravitationalWaves and

Electromagnetic Signals due to Gravita-

tional Lensing”

of testing the foundations of quantum mechanics [213–216].

[213]: Miller et al. (1997), “Delayed-

Choice Experiments and Bohr’s Elemen-

tary Quantum Phenomenon”

[214]: Jacques et al. (2007), “Experimental

Realization of Wheeler’s Delayed-Choice

Gedanken Experiment”

[215]: Doyle et al. (2009), “Quantum Un-

certainty Considerations for Gravitational

Lens Interferometry”

[216]: Leung et al. (2018), “Astronomical

random numbers for quantum founda-

tions experiments”

Wave-mechanical effects in gravitational lensing also offer a significant

enhancement of gravitational lensing as an astrophysical tool. In traditional

lensing, only two numbers (the flux magnification and time delay) can be

measured, leading to difficult degeneracies in lensing-based inference: the

mass-sheet degeneracy is perhaps the best-known example [217, 218]. In

the wave-optics limit, much more information is present, since the flux

magnification, and potentially the phase of thewave,may both bemeasured

as a function of wavelength. In certain circumstances, time delays may also

be extracted interferometrically with dramatically-increased precision. As

an example, lensing of FRBs can allow for interferometric measurements of

lensing time delays. These time delays can be measured with a precision of

∼ 10
−9 − 10

−6
seconds: several orders of magnitude more precise than any

lensing delay (∼ 1 millisecond) inferred from measured FRB light curves

alone [107, 219].[107]: Wucknitz et al. (2021), “Cosmology

with gravitationally lensed repeating fast

radio bursts”

[219]: Jow et al. (2020), “Wave effects in

the microlensing of pulsars and FRBs by

point masses”

Wave-mechanical effects may also shed light on the emission physics

of compact objects (such as GWs and FRBs), by using gravitational lenses as

astrophysical-scale interferometers. This concept has been demonstrated in

the study of pulsar scattering in the ionized interstellar medium to resolve

the nanoarcsecond-scale emission region of the Crab pulsar [220]. The

observation of interference effects in gravitational lensing is a new frontier

in using lensing to learn about our universe.

The theory of interference effects in gravitational lensing was devel-

oped since as far back as 1973 [221–223]. Further developments have mainly

focused on GW lensing [224–230] and because of the relative simplicity[224]: Deguchi et al. (1986), “Wave effects

in gravitational lensing of electromagnetic

radiation”

[225]: Deguchi et al. (1986), “Diffraction

in Gravitational Lensing for Compact Ob-

jects of Low Mass”

[226]: Nakamura (1998), “Gravitational

Lensing of Gravitational Waves from In-

spiraling Binaries by a Point Mass Lens”

[227]: Nakamura et al. (1999), “Wave Op-

tics in Gravitational Lensing”

[228]: Baraldo et al. (1999), “Gravitation-

ally induced interference of gravitational

waves by a rotating massive object”

[229]: Takahashi et al. (2003), “Wave Ef-

fects in the Gravitational Lensing of Grav-

itational Waves from Chirping Binaries”

[230]: Macquart (2004), “Scattering of

gravitational radiation. Second order mo-

ments of the wave amplitude”

of the gravitational waveforms produced by compact binary coalescences,

and the low (kilohertz) emission frequencies at which interference effects

are most pronounced. However, wave-mechanical effects in lensing are of

growing importance at frequencies far higher than gravitational waves.

An early example was in using “femtolensing” to probe extremely low

mass scales by analyzing the spectra of gamma ray bursts (GRBs) [231–233]

More recently, various other applications using lensing to search for exotic

phenomena have had to contend with wave-mechanical effects, which

limit the reach of the search. Some examples include optical microlensing

searches for primordial black holes (PBHs; see e.g. [234], searches for

PBHs using lensed FRBs [108, 109, 132], searches for small-scale density

[108]: Kader (2022), “A High Time Reso-

lution Search for Gravitationally Lensed

Fast Radio Bursts using the CHIME tele-

scope”

[109]: Leung et al. (2022), “Constraining

Primordial Black Holes with Fast Radio

Burst Gravitational-Lens Interferometry”

[132]: Katz et al. (2020), “Looking for MA-

CHOs in the spectra of fast radio bursts”

perturbations in minihalos or e.g. axion dark matter [235, 236], and even

searching for lensing by cosmic strings [237].

In this review, we aim to present the fundamental concepts underlying

wave interference in gravitational lensing. We derive the Fresnel-Kirchhoff

integral from first principles (Sec. 7.3), and analyze it in two opposite

regimes. We first analyze the stationary-phase (a.k.a. Eikonal) regime in

Sec. 7.5. Then, we present some analytical solutions from the diffractive
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(a.k.a. wave optics) regime (Sec. 7.6) and comment on numerical solution

methods for this regime, in which the saddle-point approximation fails. We

discuss how the finite angular sizes of sources pose a challenge to detecting

interference effects (Sec. 7.7).

In anticipation of detections of wave-mechanical effects, we discuss

several observationally-relevant features of wave mechanics in lensing.

First, we discuss how the chromaticity of lensing in the wave optics regime

can be observed and used to significantly increase the information extracted

out of systems which exhibit wave optics effects (Sec. 7.8). We then discuss

the effect of diffraction near caustics (Sec. 7.9, 7.10) and talk about how

wave optics alters calculations of the lensing optical depth (Sec. 7.11) in

searches for exotic objects. We finally comment on how various compact

transients offer opportunities for detections in the future (Sec. 7.12).

7.3 The curved-spacetime scalar wave equation

Much of gravitational lensing is captured by the scalar wave equation in a

curved spacetime:

0 = 601∇0∇1). (7.1)

Scalar wave theory captures interference and diffraction phenomena in

gravitational lensing
1
, and is sufficient for analyzing most interference 1: but ignores e.g. polarization-dependent

effects.
phenomena in gravitational lensing. The starting point of scalarwave theory

is the Fresnel-Kirchoff integral, from which most lensing phenomena can

be derived. It requires a little bit of general relativity, but we will assume

the reader has little background in that area.

The formalism of gravitational lensing is similar to the Newtonian

dynamics of point masses orbiting in a potential. In the same way that the

external potential is fixed for point masses, we consider the dynamics of a

scalar field representing our wave, ), on a static background spacetime,

whose curvature is specifiedby themetric tensor 601 . In aweakgravitational

field
2
with only scalar degrees of freedom, the metric tensor can be written 2: Confusingly, “strong lensing", which

refers to the regime in lensing in which

multiple images arise, occurs mostly in

the weak-field limit; we will discuss the

strong-field limit briefly in Sec. 7.4.1

in terms of the gravitational potential as 600 = −(1 + 2*) and 688 = 1 − 2*

for 8 = 1, 2, 3, and where* is the Newtonian gravitational potential, and

where we use units in which 2 = 1 for now.

In Eq. 7.1,∇0 refers to the covariant derivative. The covariant derivative
needs to be expanded into partial differential equations using several

identities from general relativity. We introduce the notation 6 = det(601) =
600611622633

for our diagonal metric. Since scalars are Lorentz-invariant,

the covariant derivative of a scalar is the same as its partial derivative:

∇1) = %1). (7.2)

The analogous rule for (the covariant divergence of) a vector is
3

3: This in turn arises from an identity

for a contracted Christoffel symbol: Γ220 =

%0(
√−6)
√−6 ; see e.g. [238] (Exercise 7.7j) for

more details.

∇0+ 0 =
1√−6 %0(

√−6+ 0). (7.3)
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Eq. 7.3 implies

601∇0∇1) = ∇0(601∇1)) = ∇0(601%1)) (7.4)

=
1√−6 %0(

√−6601%1)) = 0. (7.5)

Eq. 7.5 is the wave equation often used as a starting point in studying

gravitational lensing inwave optics, e.g. [227, 230].We now expand the four

non-zero terms in* , since we are working the weak-field limit, |* | � 1;

this justifies neglecting terms of O(*2). Since the potential is static, the 00
term evaluates to

1√−6 %0(
√−6600%0)) = −

1

1 + 2*
%2

C ) ≈ (−1 + 2*)%2

C ). (7.6)

The 0 = 1 = 1 term is

1√−6 %1(
√−6611%1)) = )′′ + (−4)′*′ + 2)′′)*. (7.7)

where the primes denote %1 (the 0 = 1 = 2 and 0 = 1 = 3 terms are similar).

From dimensional arguments, *′ ∼ |* |/'B (the curvature scale of the

spacetime) and the scale of )′ ∼ 1/�, and )′′ ∼ 1/�2
. We are justified in

neglecting the )′*′ term of Eq. 7.7, which is smaller than the other two by

a factor of O(�/'B)4. The full equation is4: This is called the Eikonal approxima-

tion, from which we derive the equa-

tions of diffractive lensing. This should

not be confused with the Eikonal /

stationary-phase limit of the Fresnel-

Kirchhoff diffraction integral.

0 = (−1 + 2*)%2

0
) − (1 + 2*)

∑
8=1,2,3

%2

8 ) + O(*2) (7.8)

which can compactly be written as

0 = ∇2) − (1 − 4*)%2

C ) (7.9)

where the ∇ (without the indices) refers to the flat-space Laplacian. We

now have a standard PDE for which various solution approaches exist. For

a point-mass (or a point charge [239]), one solution taken by [223, 225]

is to substitute an ansatz of the form )(®A, C) = )̃(®A) exp(8$C). This gives
us a Schrödinger-like equation for a free particle in a Coulomb potential

+ = 4$* and whose “mass” is $/2:

−8%C) = −
1

$
∇2) + 4$*). (7.10)

We take an alternate approach using the Feynman path integral to derive

the Fresnel-Kirchhoff diffraction integral by summing over all possible

paths through the lens plane [227] [240]. Further simplifying Eq. 7.10 gives

another commonly-used starting point:

4$2* )̃ = (∇2 + $2))̃. (7.11)
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To solve this, we use the ansatz )̃(®A) = �(®A) exp(8:A)/A with Eq. 7.10, giving

4$2*� = −:2� + 28:%A� + %2

A� +
1

A2

∇2

�� + $
2�. (7.12)

In this equation, we have decomposed the spherical Laplacian into its radial

and angular parts:

∇2 =
1

A2

%

%A

(
A2

%

%A

)
+ ∇2

� (7.13)

Note that in the un-lensed case (* = 0), � = 1 solves Eq. 7.12 (assuming

$ = :). The ansatz also captures the free wave intensity decaying as A−2
.

Therefore, to an overall normalization constant which we define later, we

expect � to capture the interference pattern generated by lensing. �(®A) is
called the “amplification factor” of the wave amplitude (not the flux). The
characteristic transverse scale over � varies is estimated by considering a

spherical wave of wavelength � emanating from a point towards a plane

at some distance � � �. In the tangential (transverse) direction, � varies

over a characteristic scale '� =
√
�� (the Fresnel scale). Therefore %2

A� is

smaller than 28:%A� by a factor of O(
√
�/�) and can be neglected. Finally,

using $ = : yields Eq. 7.14, which can be thought of as the “flattened”

version of Eq. 7.10, where the propagation (radial) direction is collapsed. In

the flat-sky approximation, we can work in transverse coordinates q = A),

with ¤q = A ¤), and ∇2

@ =
1

A2

∇2

�.

8%A� = −
1

2$
∇2

@� + 2$*� (7.14)

Since Eq. 7.14 also resembles a Schrödinger equation, we may solve it using

the Feynman path integral. The classical Hamiltonian corresponding to

Eq. 7.14 governs transverse deflections of rays evolving over the propagation

path; the radius A from the waves’ origin plays the role of time in the

classical analogy. Hence, the evolution of the transverse trajectories of

rays is specified by q and ¤q. The conjugate momentum is p = <A ¤),
where the analogous “mass” (not to be confused with the actual mass

of the gravitational lens) < = $ and the classical potential is + = 2$* .

The Lagrangian corresponding to this Hamiltonian can be obtained by a

Legendre transform:

!(q , ¤q , A) = ¤q · (< ¤q) − �(q , p) = $

[
¤q

2

− 2*

]
(7.15)

where � =
p2

2<
++(A, q). Solutions to Eq. 7.14 can be written as an integral

over all possible ray trajectories q(A):

�($, ®A) =
∫

D[q(A)] exp

[
8

∫
!(q , ¤q , A) 3A

]
(7.16)
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The kinetic and potential terms in the Lagrangian correspond to the

geometric time delay (�geo) and the Shapiro time delay (�grav) in optics [241].[241]: Blandford et al. (1986), “Fermat’s

Principle, Caustics, and the Classification

of Gravitational Lens Images”

Putting the factors of 2 back in, the geometric term is

�̂geo =

∫
A2)(A)2

2

3A ≈ �!�(

2�!(2
|); − # |2. (7.17)

where ); and # are angles from the observer’s perspective, and where

we have approximated the paths as straight rays bent “instantly” once a

ray hits the lens plane (see Fig. 1 in [242]). This is the same as assuming[242]: Feldbrugge et al. (2020), “Gravita-

tional lensing of binary systems in wave

optics”

that far away from the lens plane, the index of refraction of the medium is

homogeneous enough such that rays travel in approximately straight lines.

The gravitational term is

�̂grav = −
2

23

∫
*(q , A) 3A. (7.18)

This equation integrates the gravitational potential along the line of sight

in the source frame. In the lens frame, we approximate this integral

by collapsing the gravitational potential over the I axis (the thin-lens

approximation). Defining the physical impact parameter b (= A;) from the

source’s perspective, and b = �!); from the observer’s perspective) we

define

#̂(b) = 2

23

∫
*(b + I ẑ) 3I ≈ −�̂grav. (7.19)

The approximations in Eq. 7.17 and 7.19 reduce the infinite-dimensional

Feynman path integral to the Fresnel-Kirchhoff diffraction integral:

�($, #) ∝
∫

32)l exp

{
8$

[
�!�(

2�!(2
|# − ); |2 − #̂(�!);)

]}
(7.20)

where $ is the observing frequency and # is the source’s angular position

with respect to the lens. In a cosmological context, the distances thus far

should be replaced by angular diameter distances, and $→ $(1 + I;).

At this point it is convenient to define a characteristic scale to measure

deflection angles. While any scale may be chosen, each lens model comes

with a different “natural” choice of the angular scale. For instance, the

angular scale is often chosen such that the dimensionless angular radius

of the Einstein ring is 1. For example, for a singular isothermal sphere

characterized by its velocity dispersion �, the deflection angle is a constant

and defines the angular scale �� by which to normalize Eq. 7.20:

�� = 4�
�2

22

�!(

�(
(7.21)

While the singular isothermal sphere is common in geometric optics,

its solution in wave optics is quite complicated. Instead, in wave optics, the

point mass model is much simpler andmore commonly analyzed. Wewrite

Eq. 7.20 in terms of dimensionless variables using a notional point-mass
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lens model.

�� =

√
4�"

22

�!(

�!�(
(7.22)

); → x�� (7.23)

#→ y�� (7.24)

#̂();) → #(x)�2

�

�!�(

�!(
(7.25)

$→ Ω
2�!(

�!�(�2

�

(7.26)

Note that

Ω = 4�"$/23 = 4�'B/� (7.27)

has a physical interpretation as the answer to the question: how large
is a wavelength relative to the Schwarzschild radius, 'B = 2�"/22? The

dimensionless frequency,Ω, therefore plays a crucial role in determining

whether geometric optics is a valid approximation. Eq. 7.20 becomes

�(Ω, y) = Ω

2�8

∫
32x exp(8Ω�(x , y)) (7.28)

where we have also introduced a normalization constant into �(Ω, y) such
that when #→ 0, �→ 1, and where the dimensionless delay is

�(x , y) =
|x − y |2

2

− #(x). (7.29)

Eqs. 7.28 and 7.29 are valid in the limit of weak gravity and small angular

deflections. However, this non-dimensionalization scheme is not restricted

to a point-mass lens. The constant" can be anything, but it is understood

to be some characteristic mass scale of the lens. Similarly �� need not be

the Einstein radius, but is understood to be some characteristic scale of

deflections.

7.4 Different Regimes in Wave Optical
Gravitational Lensing

Eq. 7.28 looks simple, but describes extremely diverse phenomena, in-

cluding all of standard (geometric optics-based) gravitational lensing

phenomena. This is because the complex-valued amplification � (not to

be confused for the positive-valued flux magnification from geometric

optics) carries both amplitude and phase information, the latter of which

can result in constructive and destructive interference. For an amplification

factor of �, the flux of the source gets magnified by |� |2, in analogy with

the Born rule from quantum mechanics. To extend the analogy, the overall

phase of � is arbitrary, as the choice of the origin of the source plane y
was arbitrary. However, we will see later that relative phase between the

different contributions to � (the Morse phase) can alter the observables.
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Just like in traditional geometric optics, we care about the image

positions, defined as stationary points of �(x , y) obtained by solving

%�

%x
= 0. (7.30)

However, in wave optics, we sum over all possible paths through the lens

plane: the resulting amplification is proportional to the size of the coherent

“patches,” or Fresnel zones, surrounding the stationary points in the lens

plane. The Fresnel zone is defined here as the patch surrounding each

stationary point in the lens plane for which the phase has not changed by

2�.

In the top rowof Fig. 7.1we illustrate the phase delay potentialΩ�(x , y)
modulo 2� over the lens plane for several values ofΩ. We hold a source

fixed at y
0
= (1, 0) (one Einstein radius away from the origin of the source

plane) for various choices ofΩ, with a point-mass lens (#(x) = log(|x |). To
compare the coherent patches with traditional geometric optics, we place

dotted circles centered at the two stationary points of �, at x = (G± , 0) for

G± =
H ±

√
H2 + 4

2

. (7.31)

The radii of the circles are chosen according to their geometric-optics

magnifications, and are scaled as 1/Ω to ensure that at highΩ, due to the

prefactor in Eq. 7.28, the flux magnification |� |2 stays constant.

The phase over the lens plane varies significantly as a function ofΩ,

suggesting that the amplification, and therefore the lens magnification, can

become frequency-dependent, unlike in traditional gravitational lensing,

where magnification ratios are completely achromatic.

This frequency dependence arises because Eq. 7.27 introduces a char-

acteristic length scale (the wave period), and therefore chromaticity, into

gravitational lensing. Lensing phenomenology can be classified depending

on whether the integral in Eq. 7.28 can be treated using the saddle-point

approximation near its stationary points.

The wisdom is thatΩ is the most relevant quantity; however we shall

see later (in Eq. 7.33) that it is really the productΩ�which sets the size of a

coherent patch in the lens plane around the individual stationary points of

�(x , y) [243, 244], where � is the determinant of the magnification matrix:[243]: Jow et al. (2022), “Regimes in

astrophysical lensing: refractive optics,

diffractive optics, and the Fresnel scale”

[244]: Berry (2021), “Scalings for

diffraction-decorated caustics in

gravitational lensing”

�01 =
%2�

%x0%x1
= 1 −

%2#

%x0%x1
. (7.32)

When the phase of the integrand varies rapidly (large values ofΩ�), the

individual stationary points are separable into discrete images on the sky

(and into discrete events in the time domain, for transient events). The first

Fresnel zone of each image is observationally separable from the others,

and they interfere with each other to form an oscillatory fringe pattern.

This is called the eikonal limit. When the observing frequency is so high

(extremely large values of Ω�) that the oscillations are washed out by
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summing over the finite extent of the source in the source plane, ordinary
geometric optics applies. This is the regime in which most gravitational

lensing observations have been conducted.

In this work, wemake the distinction between the Eikonal limit (i.e. the

stationary-phase approximation of Eq. 7.28) and geometric optics (which

we take to be the regime in which the Eikonal images are added together

incoherently at the observer). Some authors do not make this distinction

and simply refer to the Eikonal limit as geometric optics as well. [245] [245]: Grillo et al. (2018), “Wave asymp-

totics and their application to astrophysi-

cal plasma lensing”

distinguish the incoherent and coherent regimes as “zeroth" and “first-

order" geometric optics. We also note that the Eikonal limit of optics that

we refer to in this section is distinct from the Eikonal approximation used

in Sec. 7.3 in order to go from Eq. 7.5 to Eq.7.9.

For small values ofΩ�, the first Fresnel zones for each image blend

together. In this regime the images are inseparably blurred together on the

sky, and are separated by less than a period in the time domain. There are

still multiple stationary points of the time-delay potential, so the lensing is

still “strong lensing”, but it is impossible to associate a particular photon

to a particular image. For this reason, it is helpful to think of this regime as

a perturbation of the unlensed (� = 1) case. We will see that the lensing is

indeed suppressed in this limit.

To organize these limits, we consider possible values ofΩ and �. With

modern observational capabilities ranging from ground-based (and soon,

space-based) gravitational wave detectors to gamma-ray telescopes,Ω can

vary by 30 orders of magnitude for different lenses and wavelengths, and �

can vary from order unity to ∼ 10
3
in rare extreme-magnification scenarios.

Roughly speaking, we can focus onΩ, keeping in mind that �may play an

important role under circumstances where the stars align. Fig. 7.2 showsΩ

as a function of the mass scale of the lens and the wavelength of the source,

while Fig. 7.3 schematically depicts the spectrum of a lensed source as a

function ofΩ.

Within Fig. 7.2, we have also delineated a second boundary, which

denotes whether the radiation is detected incoherently (without phase

information, e.g.with a fluxdetector) or coherently (with phase information,

e.g. with an antenna). At long wavelengths (radio and gravitational waves),

it is possible with current technology to detect the phase of the radiation

field using electromagnetic/gravitational antennas. These situations where

we have access to the phase of the electromagnetic/gravitational field

are extremely powerful and enable qualitively different observations to

be carried out. For example, recording the field amplitude instead of the

intensity (voltages instead of light-curves) allows antennas to reachNyquist-

limited time resolution for resolving shorter lensing delays, regardless

of the flux variability timescale of the source. This is similar to radio

interferometry, where coherent voltage recording allows precise time-delay

measurements between different receivers even when the sources do not

exhibit time variability in their light curves. Improving time resolution

through coherent detectors and recording instrumentation therefore opens

up new phase space towards smaller time delays (corresponding to smaller

mass scales) in gravitational lensing.
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7.4.1 Beyond Scalar Wave Optics

These aforementioned regimes in scalar wave optics cover much of the

relevant phenomenology of interference effects in gravitational lensing.

From an observational standpoint, the eikonal and wave optics regimes are

still uncharted territory. Virtually all observations of gravitational lensing

thus far fall squarely in the geometric optics regime.

However, in an era of gravitational-wave observations from the ground

and from space, there are compelling reasons to push further theoretically.

Notably, we have worked with scalar waves in the weak gravity limit,

ignoring cases where* ∼ 1, for which Eq. 7.20 is not valid. Numerically

simulating wave propagation in strongly-curved spacetimes becomes nec-

essary and is an active area of research in general relativity [246, 247]. These[246]: Zenginoǧlu et al. (2012), “Caustic

echoes from a Schwarzschild black hole”

[247]: Yang et al. (2014), “Scalar Green

function of the Kerr spacetime”

numerical solutions of scalar wave propagation reveal rich phenomenology,

particularly near caustics. To give an idea of the phenomenology, [246]

[246]: Zenginoǧlu et al. (2012), “Caustic

echoes from a Schwarzschild black hole”

computes the Green’s function of Eq. 7.1 near the Schwarzchild radius of

the lens, and observe multipath propagation for integer numbers of cycles

around the photon ring. The observed “caustic echo” has a period in good

agreement with the light-crossing time of the photon ring [248].[248]: Stewart (1989), “Solutions of the

Wave Equation on a Schwarzschild Space-

Time with Localized Energy” Other aspects of lensing are not captured by the scalar theory, such

as polarization-dependent effects. Two examples from general relativity

are the gravitational Faraday rotation induced by rotating gravitational

potentials [249–252] and the gravitational spin-Hall effect, inwhichdifferent[249]: Ishihara et al. (1988), “Gravitational

Faraday rotation induced by a Kerr black

hole”

[250]: Nouri-Zonoz (1999), “Gravitoelec-

tromagnetic approach to the gravitational

Faraday rotation in stationary spacetimes”

[251]: Asada et al. (2000), “Can We See a

Rotating Gravitational Lens?”

[252]: Li et al. (2022), “Gravitational Fara-

day Rotation of gravitational waves by a

Kerr black hole”

polarizations of light traverse different trajectories through a gravitational

potential [253, 254].

[253]: Gosselin et al. (2007), “Spin Hall

effect of photons in a static gravitational

field”

[254]: Oancea et al. (2020), “Gravitational

spin Hall effect of light”

Note also that while the scalar wave formalism for both gravitational

and plasma lensing are effectively identical (the only difference being that

gravitational potentials are frequency independent, but plasma lensing

potentials have a ∼ 5 −2
dependence), magnetic fields in ionized plasma

cause different polarizations to experience different refractive indices in a

phenomenon known as birefringence [255]. Thus, while the scalar wave

[255]: Li et al. (2019), “Constraining mag-

netic fields through plasma lensing: appli-

cation to the Black Widow pulsar”

theory of gravitational lensing and plasma lensing share significant overlap,

notable differences arise in the vector propagation.

A final limitation is that we have so far limited our discussion to the

effects of scalar perturbations to the metric on the propagation of waves

through space-time. In general, metric perturbations may themselves have

vector and tensor components (e.g. gravitational waves). Gravitational

waves will induce additional time delays in the propagation of light from

background sources which may be observable (indeed, this is the basis

for pulsar timing array experiments). Gravitational waves themselves

may therefore lens coherent sources of radiation [256, 257] inducing[256]: Boyle et al. (2012), “Pulsar timing

arrays as imaging gravitational wave tele-

scopes: Angular resolution and source

(de)confusion”

[257]: Rahvar (2018), “Gravitational grat-

ing”

characteristic interference patterns; this is an under-explored and active

area of research. Polarization effects, such as the gravitational Faraday

rotation, may also be more pronounced in lensing by tensor and vector

perturbations, and may have observable impacts on CMB lensing [258].

[258]: Dai (2014), “Rotation of the Cosmic

Microwave Background Polarization from

Weak Gravitational Lensing”

However, in light of the complexity and magnitude of these effects, for

the remainder of this review paper, we will focus on scalar wave optics in

the aforementioned regimes: eikonal scalar optics, diffractive scalar optics,
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and the transition from coherent to incoherent (traditional) gravitational

lensing.
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Figure 7.1: Top row: The phase Ω)(x)
corresponding to the lensing potential

)(x , y) = 1

2

|x−y |2 − ln(|G |), for three val-
ues of Ω = 1 (heavily diffracted), Ω = 5,

Ω = 25. We fix the source at y = (1, 0)
and evaluate the phase as a function of

position in the lens plane, visualized with

a 2�-periodic colormap. To guide the eye,

we have drawn two circles centered on the

loci of the image positions x± evaluated in

the geometric optics limit. The radii of the

pairs of circles are proportional to the flux

magnification ratios �±, and are scaled

as 1/Ω. Top left: In the heavily-diffracted

regime (Ω = 1), the time delay between

images is less than 2� radians. The im-

ages are superimposed in the time do-

main within one wavelength, and are ren-

dered indistinguishable due to diffraction.

Top center: As the frequency increases

(Ω = 5), the images are separated bymore

than one wavelength, and there are sev-

eral oscillations between the two station-

ary points of the lens. The images are

therefore no longer blended by diffrac-

tion; they become distinguishable in both

the time domain and the angular do-

main. The interference leads to construc-

tive and destructive interference of the

phase of the integrand when integrated

over the whole lens plane, and shows a

simple sinusoidal functional form when

plotted againstΩ. Top right: In the high-

frequency limit (here shown asΩ = 25 for

visualization purposes), the two images

in the time domain are very well-resolved.

The total magnification may be treated as

a sum of discrete images – the discrete

stationary points of the lens potential –

using geometric optics. Middle/bottom
rows: The saddle-point approximation to

the “plus”/“minus” image individually,

for the same three values of Ω. It can be

seen that the saddle-point approximation

works better and better for higher values

ofΩ, as the relevant parts of the integrand

become increasingly confined around the

stationary points. Note that a second sad-

dle point appears on the right side of the

bottom right panel; this is a image render-

ing artifact.
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Figure 7.2: The transition from geomet-

ric to diffractive optics, as quantified by

Ω = 4�'B/�, as function of lens mass

and observing wavelength.Right half:At
longer wavelengths, advances in instru-

mentation (e.g. wideband voltage record-

ing in radio telescopes and gravitational

wave detectors) have enabled measure-

ments of the amplitude (coherent detec-

tion) instead of the flux (incoherent detec-

tion). Left half: At highΩ, the stationary-

phase approximation holds, and geomet-

ric/Eikonal optics applies. In most sce-

narios, this is an excellent approximation.

However, the stationary-phase approxi-

mation breaks down for longwavelengths

or shallow local minima in the time-delay

potential, (Ω � 1). In this regime lensing

is referred to as diffractive, and the unique

frequency-dependence of diffractive lens-

ing may be observable. In the Ω � 1

regime, the lenses can be thought of as

being “too small” to impart any phase on

the passing wave.

~1/𝜏lens
|F|2(Ω)

Ω large enough 
to resolve source

Ω~1

EikonalWave

Geometric

μ+ + μ-

1

Figure 7.3: A schematic depicting differ-

ent regimes in gravitational lensing as

a function of Ω. Left red: When Ω ∼ 1,

we are in the diffractive or wave optics

regime where the lensing is present but

suppressed (|� |2 → 1) forΩ << 1.Center
blue: In the eikonal regime, the interfer-

ence fringe between the two images, here

represented as two amplitudes �+ and �−,
is clearly visible. The total magnification

has a perfect sinusoidal dependence (see

Eq. 7.38) with a characteristic spectral os-

cillation scale of 1/�;4=B . Right black: Fi-
nally, at high frequencies, we enter the ge-

ometric optics (traditional lensing) regime

when the lens’s resolving power is suffi-

ciently great to resolve the finite extent of

the source. In this limit, the interference

effects become washed out, and the lens-

ing magnification becomes achromatic. In

this limit the total flux magnification is

the sum of the image flux magnifications:

|�+ |2 + |�− |2.
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7.5 Eikonal Optics

Lensing in eikonal optics is similar to treating the source as a plane wave

hitting an opaque screen with a set of well-separaged pinholes of negligible

size. Each pinhole’s size and phase relative to the other pinholes is set by

the traditionally-calculated flux magifications and time delays. To see this

mathematically, we simplify Eq. 7.28 using the saddle-point approximation.

Conceptually, this collapses the integral over the lens plane to a coherent

superposition of a small number of paths defined by the stationary points

of the lens potential. Taking the limit asΩ→∞ results in rapid oscillations

of the phase of the integrand as a function of x. In this limit, only the

stationary points of Ω�(G, H) as a function of G, which we index by 9,

contribute constructively to the integrand. These positions x 9 correspond
to the image positions as calculated with geometric optics. Near the 9Cℎ

stationary point, the time delay potential can be approximated by a Taylor

expansion:

�9(x , y) ≈ �(x 9) +
1

2

�
9

01
(x − x 9)0(x − x 9)1 + . . . (7.33)

where �
9

01
= %0%1�(x 9) is the inverse magnification matrix evaluated at the

9th image. In Fig. 7.1, we plot in the top row the phase Ω�(x , y)modulo

2�, and in the bottom two rows the saddle-point approximation of the

phase potential about each of the two stationary points. We approximate

the Fresnel-Kirchhoff integral as the coherent superposition of both of

these expansions. This is called the stationary-phase (or saddle-point)

approximation, which relies on the fact that contributions far away from

the stationary points cancel each other out.∫
32x exp(8Ω�(x)) ≈

∑
9

∫
32x exp(8Ω�9(x)) (7.34)

=
∑
9

exp(8Ω�(x 9))
∫

32x exp(8Ω� 9

01
(x − x 9)0(x − x 9)1/2) (7.35)

We evaluate the above expression analytically, being a sum of complex

Gaussian integrals. Since �
9

01
is a symmetric matrix, it is diagonalizable

via a rotation of x; we call its eigenvalues �
9

1
and �

9

2
. The Gaussian inte-

gral associated with each image contributes a factor of

2�8

Ω

√
�
9

1

√
�
9

2

. The

eigenvalues �
9

1
,�

9

2
may be both positive if the image is a minimum of

the time-delay potential, both negative if the image is a maximum of the

time-delay potential, or they may have different signs if the image is at a

saddle point of the potential. If we define �9 by

�−1

9 =

√
�
9

1

√
�
9

2
(7.36)
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the amplification becomes

�(Ω) =
∑
9

�9 exp(8Ω�(x 9) − 8�= 9). (7.37)

where = 9 = 0, 1/2, 1 keeps track of the extra factor of −8 arising from

the sign of the eigenvalues. This phase shift arises from the image parity

and is called the Morse phase; in the eikonal limit it is discretely-valued
5
. 5: However, this is not necessarily true in

the diffractive regime when the saddle-

point approximation breaks down – see

Appendix A of [243]

It has been known for decades in [227, 241] but only recently have the

[227]: Nakamura et al. (1999), “Wave Op-

tics in Gravitational Lensing”

[241]: Blandford et al. (1986), “Fermat’s

Principle, Caustics, and the Classification

of Gravitational Lens Images”

observational ramifications become observationally relevant, in particular

in the parameter space of gravitational-wave lensing [259, 260]. The overall

[259]: Dai et al. (2017), “On the wave-

forms of gravitationally lensed gravita-

tional waves”

[260]: Dai et al. (2020), “Search for Lensed

Gravitational Waves Including Morse

Phase Information: An Intriguing Can-

didate in O2”

Morse phase is not predicted by waveform models. In the specific setting

of gravitational waves generated by the nearly-circular inspirals of compact

binaries, an overall Morse phase shift of 180
◦
is degenerate with a 180

◦

orbital phase shift of the binary as long as we restrict our analysis to the

dominant quadrupole mode of the radiation. Orbital eccentricity or the

inclusion of higher-order modes in model waveforms can also break this

degeneracy [261, 262].

[261]: Janquart et al. (2021), “On the Identi-

fication of Individual Gravitational-wave

Image Types of a Lensed System Using

Higher-order Modes”

[262]: Ezquiaga et al. (2021), “Phase ef-

fects from strong gravitational lensing of

gravitational waves”

The relative Morse phase between two images of the same waveform

can be used to reduce backgrounds in searches for lensed GWs [260]. In

[260]: Dai et al. (2020), “Search for Lensed

Gravitational Waves Including Morse

Phase Information: An Intriguing Can-

didate in O2”

the time domain, a relative Morse phase of 180
◦
induces a sign flip of the

electromagnetic/gravitational waveform (Type II images; = 9 = 1) relative to

a Type I image. In the case of saddle points (Type III images; = 9 = 1/2), the
Morse phase applies a Hilbert transform to the unlensed waveform. This

latter distortion is non-trivial and leads to biases in parameter estimation

unless this is properly taken into account in search templates [263].

[263]: Vĳaykumar et al. (2022), “Detection

and parameter estimation challenges of

Type-II lensed binary black hole signals”

Interference effects are imprinted in not only the phase, but also the

amplitude information from a lensing event. Interference induces ripple-

like modulations of the intrinsic spectrum of a source. In this scenario,

knowing the intrinsic spectrum allows us to measure |� |2 as a function of

Ω. Expanding Eq. 7.37, we compute

|� |2 =
∑
9

|�9 |2 + 2

∑
9<:

�9�: cos(Ω(�(x 9) − �(x:)) − �(= 9 − =:)) (7.38)

where we recognize |�9 |2 = 1/det�
9

01
as the flux magnification of each

image present in geometric optics. Eikonal optics induces interference terms

which induce a ripple-like modulation, similar to pulsar scintillation, in the

spectrumof the observed source over a bandwidthΔΩ = 2�/(�(x 9)−�(x:)),
as shown in Fig. 7.3. These modulations are potentially quite detectable

due to the favorable scaling of Eikonal optics over geometric optics [219,

229]. To see this, consider a detector which detects the brightest image, [219]: Jow et al. (2020), “Wave effects in

the microlensing of pulsars and FRBs by

point masses”

[229]: Takahashi et al. (2003), “Wave Ef-

fects in the Gravitational Lensing of Grav-

itational Waves from Chirping Binaries”

which has magnification |�9 |2, and whose noise floor is expressed as some

fraction �2
of this: �2 |�9 |2. In geometric optics, the detectability of a dimmer

image : if it is distinguishable from the brighter one (e.g. has a large

angular separation on the sky) depends whether the ratio |�: |2/|�9 |2 ∼ �2
.

In Eikonal optics, however, an image : can be detected and spectrally

separated from image 9 using just the combined spectrum of both images.
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Thedetection ismade by searching for the interference term in the combined

spectrum, which induces sinusoidal modulations in the spectrum whose

size is |�9�: |/|�9 |2 ∼ �.

The Eikonal limit, or stationary-phase approximation, is a particularly

useful approximation because the behaviour of the stationary-phase points,

a.k.a. the images, is described by the richmathematics of catastrophe theory.

Catastrophe theory characterizes the topology of caustics, which are the

boundaries in parameter space at which the number of stationary-phase

points changes. The essence of what makes catastrophe theory so powerful

is the result that the topology of caustics can be classified by a small number

of “elementary catastrophes" [264]. The result is that lenses will behave[264]: Thom (1967), Structural Stability And
Morphogenesis

qualitatively similarly based onwhich elementary catastrophes characterize

the lenses, even though theymaydiffer significantly in functional form [265].[265]: Nye (1999), Natural focusing and fine
structure of light: caustics and wave disloca-
tions

While, technically, the Eikonal limit breaks down at caustics (at caustics,

two or more of the inverse magnification matrices are degenerate, leading

to formally infinite magnifications), the area of the region around the

caustic for which the Eikonal approximation fails goes to zero asΩ→∞.

Moreover, the full wave optics diffraction patterns of some of the elementary

catastrophes are known [266]. For example, as we will see in Sec. 7.10,[266]: Berry et al. (1980), “IV Catastro-

phe Optics: Morphologies of Caustics and

Their Diffraction Patterns”

the diffraction pattern near a fold catastrophe is given exactly by the Airy

function (see also [227]). Therefore, the known diffraction patterns near

[227]: Nakamura et al. (1999), “Wave Op-

tics in Gravitational Lensing”
caustics coupled with the Eikonal limit away from the caustics can provide

a full description of a generic lens. This approach is taken in [245].
[245]: Grillo et al. (2018), “Wave asymp-

totics and their application to astrophysi-

cal plasma lensing”

The effects mentioned so far – Morse phase shifts, spectral modulation

of the amplification factor, and favorable scaling of lensing cross-sections –

arise as generic interference phenomena present in Eikonal optics. Going

into the fully diffractive regime adds additional features which we will

discuss next.

7.6 Diffractive optics (Ω & 1)

In the case where Ω is not much greater than 1, Eq. 7.28 cannot be

simplified using the saddle-point approximation. For an axisymmetric lens,

the potential #(x) → #(G), and the amplification can be written as

�(Ω, H) = − 8Ω exp(8ΩH2/2) × (7.39)∫ ∞

0

3GG�0(ΩGH) exp

[
8Ω(G2/2 − #(G))

]
(7.40)

where �0 is the zeroth-order Bessel function. In certain cases this may be

computed analytically. For a point mass where#(G) = log(G) this simplifies
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to

�(Ω, H) = exp

�Ω4 + 8Ω2
(
ln

(
Ω

2

)) × (7.41)

Γ

(
1 − 8Ω

2

)
1�1

(
8Ω

2

, 1;

8ΩH2

2

)
. (7.42)

In this equation (see also Eq. 21 of [224], Eq. 2.16 [267] for slightly different [224]: Deguchi et al. (1986), “Wave effects

in gravitational lensing of electromagnetic

radiation”

[267]: Katz et al. (2018), “Femtolensing by

dark matter revisited”

forms), Γ is the gamma function and 1�1 is the hypergeometric function
6
.

6: Wolfram MathWorld: Hypergeometric

1�1

The point mass is the simplest analytical solution for the amplification

factor in wave optics in gravitational lensing. However, other analytical

solutions exist which we briefly mention: the solution for a Kerr (rotating)

black hole is very similar to that of the point mass; it includes a shift in

the point-mass lensing potential #(x) = log(G) − x · "
G2

, where the shift

® = =̂×®�/("'�) depends on the physical Einstein radius '� and the lens’s

angular momentum vector per unit mass
®�/" relative to the line-of-sight

unit vector =̂. The interference pattern is the same as that of Eq. 7.42, being

circularly-symmetric, albeit shifted by an angle  [228]. This is similar to [228]: Baraldo et al. (1999), “Gravitation-

ally induced interference of gravitational

waves by a rotating massive object”

the Sagnac effect for a rotating optical interferometer. Analytic solutions for

the singular isothermal sphere [268], an infinite cosmic string [269], and a

[268]: Matsunaga et al. (2006), “The fi-

nite source size effect and wave optics in

gravitational lensing”

[269]: Suyama et al. (2006), “Exact wave

propagation in a spacetime with a cosmic

string”

one-dimensional sinusoidal phase screen [270] are also known.

[270]: Beach et al. (1997), “Diffraction by a

sinusoidal phase screen”

Solutions to the diffraction integral beyond the analytical ones pre-

sented here are often computed numerically. However, this can be difficult

because the phase in integrals such as Eq. 7.28 oscillates faster for larger

values of the argument x. Some of the first numerical efforts based on

contour integration were developed for the calculation of femtolensing

spectra [271]; this method has also been applied successfully to gravita-
[271]: Ulmer et al. (1995), “Femtolensing:

Beyond the Semiclassical Approximation”tional waves [272]. Approximate methods using Eikonal optics [245] are

[272]: Mishra et al. (2021), “Gravitational

lensing of gravitational waves: effect of

microlens population in lensing galaxies”

[245]: Grillo et al. (2018), “Wave asymp-

totics and their application to astrophysi-

cal plasma lensing”

effective for large lensing phase shifts (Ω) � 1) and near caustics (see also

discussion of Sec. 1 of [273]). [245] also point out that the Fresnel integral

[273]: Jow et al. (2021), “Imaginary im-

ages and Stokes phenomena in the weak

plasma lensing of coherent sources”

[245]: Grillo et al. (2018), “Wave asymp-

totics and their application to astrophysi-

cal plasma lensing”

can be written as a convolution and evaluated via FFT. This performs well

near caustics, but requires the lens plane to be densely sampled with a

finite and regular two-dimensional grid fine enough to capture the details

of the oscillatory integrand.

More recently, Picard-Lefschetz theory has been used to assist in the

analysis and evaluation of Fresnel integrals [242, 243, 273–275]. These

[242]: Feldbrugge et al. (2020), “Gravita-

tional lensing of binary systems in wave

optics”

[243]: Jow et al. (2022), “Regimes in astro-

physical lensing: refractive optics, diffrac-

tive optics, and the Fresnel scale”

[273]: Jow et al. (2021), “Imaginary im-

ages and Stokes phenomena in the weak

plasma lensing of coherent sources”

[274]: Feldbrugge et al. (2019), “Oscilla-

tory path integrals for radio astronomy”

[275]: Shi et al. (2021), “Plasma microlens-

ing dynamic spectrum probing fine struc-

tures in the ionized interstellar medium”

methods essentially involve deforming the two lens plane integrals into a

set of carefully-chosen contours in the complex plane along which contour

integrals are non-oscillatory and absolutely convergent. One feature of

Picard-Lefschetz integration is that while it converges slowly for Ω ∼ 1,

performance improves as the integrands become more oscillatory (Ω � 1),

so it is complementary to many other techniques. A limitation is that the

lens phase function )(x) (e.g. )(x) = Ω�(x , y))must be able to be evaluated

when the domain is complexified from ℝ2 → ℂ2
. This is straightforward

for the broad class of rational functions (quotients of polynomials), which

have no branch cuts (also a desirable property) and a small number of

isolated poles. The point mass lens has #(G) = log(|G |)which does have a
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branch cut; in a follow-up work to [274], a technique to evaluate the isolated[274]: Feldbrugge et al. (2019), “Oscillatory

path integrals for radio astronomy”
and the binary point lens potentials by reparametrizing the radial integral

was reported [242]. However, well-known lens models like the singular[242]: Feldbrugge et al. (2020), “Gravita-

tional lensing of binary systems in wave

optics”

isothermal sphere (#(G) = |G |) have not yet been evaluated using this

method. Despite this limitation, the utility of Picard-Lefschetz theory is not

limited to its numerical application, but also includes its conceptual power.

By extending the analysis of optics into the complex plane, Picard-Lefschetz

theory gives a well-defined prescription for separating contributions to

the total observed flux from individual geometric images, even at low

frequencies. Picard-Lefschetz theory can be seen as a way to extend the

“discrete images” description from geometric optics lensing deep into the

wave regime. In this way, Picard-Lefschetz theory can conceptually bridge

the gap between these two regimes [243].[243]: Jow et al. (2022), “Regimes in astro-

physical lensing: refractive optics, diffrac-

tive optics, and the Fresnel scale”

In Fig. 7.4 we show several magnification maps, evaluated using the

Picard-Lefschetz method for several values ofΩ. The map coordinates - =
(�G , �H) are related to the source plane and observer plane coordinates (y

and y
obs

respectively) by - = y
�!

�(
+y

obs

�!(

�(
. This parametrization reflects

the symmetry of the source and the observer in optics: in gravitational

lensing we may think of fixing y
obs

= 0, and treat - as a source plane

coordinate, while in a laboratory diffraction experiment we may instead fix

y = 0 and observe the diffraction pattern on the observer’s screen, which

spans many values of y
obs

. The Fresnel integral evaluated is that of the

Chang-Refsdal lens [276], for which[276]: Chang et al. (1979), “Flux variations

ofQSO0957 + 561A, B and image splitting

by stars near the light path”

�(x , y) = 1

2

|x − -|2 − log(|x |) − �

2

(G2

1
− G2

2
) (7.43)

whose single free parameter � > 0 describes the external shear.

7.6.1 A useful analytical approximation

The point mass model is extremely useful, but in practice, hypergeometric

functions with complex arguments can be cumbersome to numerically

evaluate [277]. There is also a useful “semiclassical” approximation to[277]: Pearson et al. (2014), “Numerical

Methods for the Computation of the Con-

fluent and Gauss Hypergeometric Func-

tions”

Eq. 7.42 for situations when Ω � 1 but when the sinusoidal form of

Eq. 7.37 is too simple. Solving for the stationary points of

�(G) =G
2

2

− #(G) (7.44)

gives the geometric-optics image positions G� such that G� = #′(G�). To
second order in ΔG = G − G�,

�(G) = �(G�) +
1

2

(1 − #′′(G�))ΔG2 = �(G�) + (1 − �)ΔG2. (7.45)
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Figure 7.4: A map of |� |2(Ω, -) for a point mass+external shear model (Eq. 7.43), where the map coordinates - are the scaled source

plane coordinates y. Columns: From left to right, each column corresponds to Ω = 100, 75, 50, 25. Rows: From top to bottom, each row

corresponds to � = 0.1, 0.3, 0.5. The caustic, at which the geometric optics magnification diverges, is overlaid as a white diamond on each

map. Reproduced with permission from source code used for [242].

The region of the lens plane where the rays interfere constructively is

defined by

2� &(1 − #′′(G�))ΔG2Ω, (7.46)

and this domain has a width of ΔG ∼ (Ω|1 − #′′(G�)|)−1/2
. Within this

domain, the Bessel function argument of Eq. 7.40 changes byΩΔGH, and

outside this domain, it oscillates quickly. If H . Ω−1/2
, then 1 & ΩΔGH,

and the Bessel function does not change over the important range of the

integration. Pulling G�0(ΩGH) out of the integral sign leaves a Gaussian

integral from 0 to∞:

|�wave |2 ≈ �ΩG2

� |1 − #
′′(G�)|−1�2

0
(ΩGH) (7.47)

≤ �ΩG2

� |1 − #
′′(G�)|−1 = 2�ΩG2

� |1 − �(G�)|
−1

where we have used 2(1 − �(G�)) = 1 − #′′(G�). Note that this approx-

imation to the maximum magnification attainable in wave optics leaves

out a factor of 1 − exp(−�Ω) in the denominator which accounts for the
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suppression of waves asΩ→ 0.

7.7 Angular broadening/finite-size effects

So far, we have assumed a point-like source of monochromatic radiation

in the source plane. In reality, we observe radiation from a finite patch of

y-values in the source plane. In general, integrating over a finite patch of

the source plane washes out the chromatic interference patterns seen in

both the eikonal and wave optics regimes, e.g. Eqs. 7.38 and 7.42. This is the

main obstacle to observation of interference effects in gravitational lensing.

Before we dive into a deeper discussion of decoherence, it is worth

defining what type of coherence we care about. Under one definition,

“phase-coherence” is strictly a property of the emitted radiation, which can

be considered as a time series. If one can predict the field amplitude as a

function of time (or frequency, if one prefers the Fourier domain) with a

model, that source would be considered phase-coherent.

Gravitational waves are an excellent example of a phase-coherent

source by this definition. Given the time of the merger, it is possible to

write down a model for the strain amplitude as a function of time. The

reason this is possible is that the emitter is a simple binary system, and that

the emission region is much smaller than a GW wavelength. It is therefore

possible to coordinate the entire emission region at once.

Most electromagnetic waves emitted by astrophysical sources are

not phase-coherent. Quantitatively, this is because the transverse size of

virtually any astrophysical emission region is usually much larger than a

wavelength of electromagnetic radiation. This means that different patches

of the emission region cannot be causally connected, i.e. synchronized

to better than one wavelength. While individual emitters may be phase-

coherent (e.g. a single electron orbiting a field line emitting synchrotron

radiation is phase coherent), the fact that there exists an ensemble of

emitters, all radiating with some random phase with respect to each other,

means that the phase of the total time series is not predictable.

Source emission regions do not need their transverse sizes to smaller

than one wavelength (i.e. they do not need to be phase coherent) in order

for wave-mechanical features to be observed. The actual requirement on

the source size is much looser; it is a constraint on the angular coherence
of the source and involves the observer’s geometry in addition to the

emission physics. In the terminology of interferometry and interstellar

optics, this is similar to a source appearing “unresolved” when viewed

with a particular receiver setup or through an inhomogeneous medium

with a certain geometry.

Whether a source is angularly-coherent, or unresolved, depends the

apparent angular extent of the source. In some cases this corresponds

to the true size of the emission region. However, in the case of radio

waves, interstellar scattering can enlarge the apparent size of the source

via angular broadening. In addition, in areas of the source plane with
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Figure 7.5: In the eikonal limit, a lensed

source remains coherent if the spectral

oscillations do not significantly change

over the source’s finite angular size, here

shown as a blue patch. When the images

are well-separated, “rays” from the source

traverse the lens plane through the im-

age positions x± calculated via geometric

optics. For the point-mass lens, one im-

age passes outside the Einstein ring at

a transverse physical scale '� , and the

other passes inside the Einstein ring on

the opposite side of the lens. The inter-

ference fringes from lensing are present

if the source looks point-like as observed

by an interferometer with a baseline of

Eq. 7.51 (i.e. a pair of antennas placed in

the lens plane at the apparent locations of

the gravitational lens images in the lens

plane).

high magnifications (caustics), small displacements in the source plane

correspond to large changes in the image positions on the lens plane

(and therefore the lensing time delays). These effects all work to increase

the apparent angular size of the source. Astrophysical masers, however,

may have physical sizes which are larger than their apparent sizes [278], [278]: Goldreich et al. (1972), “Astrophysi-

cal Masers. I. Source Size and Saturation”
which have been observed to be inversely correlated with their isotropic

luminosities [279]. [279]: Johnston et al. (1997), “The Appar-

ent Sizes of the 62-61 E-Type Methanol

Masers in OMC-1”

We begin with a generic analysis of angular decoherence in the eikonal

and the wave optics regimes, and study specific cases later (point caustics

in Sec. 7.9 and briefly comment on the case of fold caustics in Sec. 7.10).

Our quantitative criteria for angular decoherence is whether the chromatic

oscillations (e.g. those depicted in Fig. 7.3) are washed out by integrating

over a finite patch of the source plane. We require the total phase across

the extent of the source to change by ≤ 1 radian, when viewed at a distance
through the gravitational lens. We find nontrivial differences by considering

this criteria in the Eikonal and the diffractive regimes.

In the Eikonal limit that the stationary points are well-separated into

discrete images 9 and :, there exists a well-defined time delay )9 − ): = )9:
which can be calculated for a point-like source at any location in the source

plane. We require that when integrating over a patch of radius Δy, changes
in )9: must be small. In other words, different patches of the source must

not experience different time delays; otherwise, we are averaging over

many fringe spacings in the spectrum as depicted in Fig. 7.3. Denoting y
as the displacement from the center of the source, and )9 and ): denote the

time delays of two distinct images generated by the gravitational lens. The

phase shift is

1 ≥ Δ! = Ω
%)9:

%H0
· y0 (7.48)

= Ω(x 9 − x:)0y0 . (7.49)
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Figure 7.6: Regimes of coherence in grav-

itational lensing. We plot the apparent

radius of the source against the observ-

ing wavelength (ignoring redshift effects).

Solid lines: If the lens mass is in the

eikonal limit, then the source must be

below the solid lines corresponding to

Eq. 7.50. Dashed lines: In the diffrac-

tive/wave optics regime, the source size

must be below the dashed lines corre-

sponding to Eq. 7.56. We have roughly la-

beled the apparent sizes of various sources

and wavelengths at which they have been

observed in the various boxes [105, 109,

267].
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Using Eq. 7.26 gives the width of the Fresnel zone:

ΔH .
1

��

�

2�(1 + I!)�img

. (7.50)

�img resembles the Rayleigh resolution limit for a radio interferometer

observing at a wavelength of �/(1 + I!) with baseline corresponding to

the physical scale of the image separation

�img =
�!�(

�!(
|) 9 − ): |, . (7.51)

This can be interpreted as the effective separation of two telescopes

located in the lens plane [280], at the geometric-optics positions of the[280]: Schneider (1983), “The mutual co-

herence of the images of gravitationally

lensed objects”

images, observing the source at a frequency of Ω(1 + I!), as shown in

Fig. 7.5. The exact form of the fall-off is studied in [268], and applied to

[268]: Matsunaga et al. (2006), “The fi-

nite source size effect and wave optics in

gravitational lensing”

the particular case of femtolensing in [232]. In the diffractive limit, where

[232]: Stanek et al. (1993), “Features in the

Spectra of Gamma-Ray Bursts”

the images in the time domain are separated by less than ≈ 1/Ω, the two

stationary points blend together coherently, i.e. they belong to the same

Fresnel zone (see e.g. the image positions denoted in the top left panel of

Fig. 7.1). Therefore, the criterion we derived in Eq. 7.50 treating the paths as

well-separated does not apply. In this regime, in the absence of a template

for the unlensed signal, it does not make sense to think of the two images

as well-separated, distinguishable paths through the lens plane, because

all parts of the lens plane within the first few Fresnel zones contribute

significantly to �(Ω, y).

If slightly different patches of the source have very different image

configurations, this could lead to very different time delays. One might

expect this effect to be small, but there are scenarios where this might

become significant. Near the Einstein ring caustic in a point-mass lens,

for example, small displacements in the source plane can lead to large

differences in the image positions.

Near the 9th stationary point of ), where 3)/3x = 0, we analyze the
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curvature of ) with respect to x:

Δ! = ΩΔ) =
1

2

Ω
%2)

%G0%G1
x0x1 = 1

2
Ω(� 9

01
)−1x0x1 (7.52)

where �
9

01
is the magnification matrix evaluated at the stationary point

9. Hence the allowable displacement on the image plane that causes a

one-radian phase change is defined by

1 ≥ Δ! = Ω�−1

01
x0x1 (7.53)

Now we equate x0 to the shift in the geometric-optics image for the source

whose extent is y2 . From the definition of the magnification matrix, we

have

x0 = �
9
02y2 (7.54)

Eq. 7.53 then becomes

1 ≥ Δ! = 1

2

Ω�23y2y3 . (7.55)

Substituting Eq. 7.26 gives our estimate of the Fresnel zone’s shortest axis,

if �max is the largest eigenvalue of �23:

ΔH .
1

�� |�max |

√
�

2�(1 + I!)�eff

(7.56)

where �eff =
�!�(

�!(
. Eq. 7.56 tells us that if the source size is on the

order of the Fresnel angular scale (

√
�/�eff), the pattern in Fig. 7.6 will

get washed out because the image positions shift significantly over the

source’s finite extent, yielding different delays relative to the lensing delay

evaluated towards the center of the source. Magnification plays a role

in that higher flux magnifications shrinks the Fresnel scale in the source

plane. We illustrate Eqs. 7.50 and 7.56 in Fig. 7.6, using 'BA2 ∼ ΔH���eff

and ignoring factors of 1 + I!. We see that Eq. 7.50 is the more stringent

condition that applies in most astrophysical situations, though for short

wavelengths and extreme magnification scenarios (e.g. proposals to use

the sun as a gravitational lens [281–283]), the latter may become relevant. [281]: Maccone (2010), “FOCAL mission

to 550 thru 1000 AU: Status review 2009”

[282]: Turyshev (2017), “Wave-theoretical

description of the solar gravitational lens”

[283]: Engeli et al. (2022), “Optical prop-

erties of the solar gravity lens”

7.8 Exploiting Chromaticity in Lensing

As illustrated in Fig. 7.3, one powerful feature of interference effects in

lensing is the introduction of an additional length scale (the wavelength)

into the problem. In the eikonal and wave optics regimes, the magnification

factor picks up an oscillatory dependence on the wavelength (throughΩ)

and geometry (through y). By observing the source over a wide enough

range of wavelengths to measure the spectral oscillations, more astrophysi-

cal information can be recovered than in the geometric-optics case alone.

One particularly interesting setup is a multi-messenger observation of

a lensed gravitational-wave + electromagnetic source. This would allow
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for exquisite measurements of wave optical effects, since due to their low

Ω, gravitational waves are potent probes of diffractive effects, while elec-

tromagnetic waves are typically in the eikonal or the geometric optics

regimes. Observing simultaneously-emitted low-frequency (gravitational)

images and high-frequency (electromagnetic) images can expose wave

optics effects such as modifications to the phase velocity of diffractively-

lensed images [212], though analyses of the causal “wavefront” [284, 285][212]: Takahashi (2017), “Arrival Time Dif-

ferences betweenGravitationalWaves and

Electromagnetic Signals due to Gravita-

tional Lensing”

[284]: Suyama (2020), “On Arrival Time

Difference Between Lensed Gravitational

Waves and Light”

[285]: Ezquiaga et al. (2020), “Apparent

superluminality of lensed gravitational

waves”

reveals that no violation of causality occurs, though an apparent violation

of causality may arise from incorrect separation of the observed image

superposition into individual images [286].

[286]: Tanaka et al. (2023), “Kramers-

Kronig relation in gravitational lensing”

Another example is using the chromaticity of the interference pattern

to break the mass-sheet degeneracy in the eikonal and the wave optics

regimes. [287] shows that the point mass can be disentangled from a mass

[287]: Cremonese et al. (2021), “Breaking

the mass-sheet degeneracy with gravita-

tional wave interference in lensed events”

sheet in both regimes using the spectral dependence of the amplification

factor (the oscillatory terms in Eq. 7.57 and Eq. 7.47, which encode infor-

mation about the mass scale"). In the diffractive limit, even though the

spectral dependence becomes more complex than in the simple eikonal

limit, the lensed images becomemore difficult to separate from one another

since their temporal separation is less than one wavelength.

In a similar vein, the chromatic oscillations can be used to directly

measure time delays in lensing in both the eikonal and diffractive limits.

This idea is applicable to various physical systems, e.g. in radio pulsar/fast

radio bursts lensed by sub-solar mass compact objects and planets [219][219]: Jow et al. (2020), “Wave effects in

the microlensing of pulsars and FRBs by

point masses”

and sub-Hertz gravitational waves generated by chirping binaries lensed by

∼ 10
8"� objects [229]. For example, consider amicrolensing scenariowhere

[229]: Takahashi et al. (2003), “Wave Ef-

fects in the Gravitational Lensing of Grav-

itational Waves from Chirping Binaries”

a transiting foreground lens with proper motion � achieves a minimum im-

pact parameter H0 at a time C0. In diffractive optics, the magnification varies

as a function of (C ,Ω, C� , H0 , C0), where C� ≈
1

�

√
'�/�eff ∝

√
"/�eff/� is

the Einstein crossing time of the lens. The lens mass enters through both

Ω and C�. In geometric optics, the magnification varies as a function of

(C , C� , H0 , C0) only (since there is no frequency dependence). Since the mass

dependence enters only through C� it is perfectly degenerate with the lens

distance �. Without an independent distance measurement, it is difficult

to measure the lensing mass in this situation.

These examples show that there is clearly additional information

encoded by the frequency dependence, it is helpful to conceptualize,

using a thought experiment, where the information really comes from.

Consider a delta-function electric-field pulse emitted by a source which

gets lensed and subsequently recorded by a detector which records the raw

electric field as a function of time. In this situation it would be possible

to simultaneously measure the magnification ratio from the light curves,

as well as the Shapiro delay (∼ 20�s × ("/"�)), which would give a

handle on the mass. By Nyquist’s theorem, the time resolution of the

Shapiro delay measurement is limited by the inverse bandwidth (1/Δ�)
of the detector. Larger bandwidths allow measuring �(Ω, H) for a wide

range ofΩ at a single value of H; this multi-frequency coverage allows the

mass to be constrained. As was shown earlier in Eq. 7.37, the oscillations

in �(Ω, H) vary on scales proportional to the inverse Shapiro delay. In
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a Fourier-transform sense, measuring light curves over a wide range of

wavelengths provides a new way to directly constrain the Shapiro time

delay, and therefore the mass scale. This is completely distinct from the

method of measuring the characteristic timescale of a lensing transit, which

indirectly probes the mass via long-term monitoring and measurement of

the Einstein crossing timescale and the relative velocities of the source and

observer.

These Shapiro delay measurements are not limited to hypothetical

delta-function pulses, or even astrophysical transients. Shapiro delay mea-

surements can bemade onnon-variable sources, if they are compact enough,

since the measurement uses fluctuations in the electric field rather than

the total power. However, the stringent size constraints on preserving the

interference fringes excludes most, if not all, currently known persistent

sources from this type of measurement. Transient sources from compact

objects are precisely those which are known to be sufficiently point-like

to realize the interferometric measurement of Shapiro delays using the

chromatic modulations of the dynamic spectrum.

In summary, using chromaticity to extract astrophysical information

from lens systems offers an interesting trade-off – the stringent requirements

for source compactness demand transients, which often do not repeat. For

these one-off transients, we have given up our ability to monitor the

Einstein crossing timescale for a one-time, interferometric measurement

of the Shapiro delay timescale free of uncertainties from estimating the

relative velocities of the source and lens. Using a lens model, the Shapiro

delay and the flux ratio completely determine the (redshifted) lens mass

and impact parameter (see also [288]). In the case of persistent emitters (e.g. [288]: Itoh et al. (2009), “Method to mea-

sure a relative transverse velocity of a

source-lens-observer system using gravi-

tational lensing of gravitational waves”

optical microlensing) or recurring transient events such as pulsar pulses,

measurement of a third quantity (the Einstein crossing timescale) can be

used to extract additional information (such as the relative motion of the

lens and the source).

Another way of understanding this tradeoff is by analogy to radio

scintillation (see e.g. [289, 290]). The interference pattern in Fig. 7.3 is similar [289]: Narayan (1992), “The Physics of

Pulsar Scintillation”

[290]: Goodman et al. (1987), “The effects

of caustics on scintillating radio sources”

to diffractive scintillation in pulsar astronomy, where inhomogeneous

plasma in front of a compact background source causes an intrinsically

featureless spectrum to exhibit stochastic ripples over some characteristic

bandwidth. Like in radio scintillation, the only sources which “twinkle”,

or scintillate, are not necessarily those which show intrinsic variability,

but those which appear compact and unresolved by the cosmic telescope

created by the plasma inhomogeneities: a star need not exhibit intrinsic

variations to twinkle in our atmosphere.

To push the analogy further, another manifestation of scintillation is

refractive scintillation, where the clumpy spectrum caused by diffractive

scintillation changes slowly over longer timescales as the inhomogeneities

drift with respect to the observer with some characteristic crossing time

(hours to days for scintillation of Galactic pulsars). Monitoring the dynamic

spectrum of a source over long timescales probes the motion of plasma

screens via scintillation (see e.g. [291]), similar to how one might measure [291]: Walker et al. (2004), “Interpretation

of parabolic arcs in pulsar secondary spec-

tra”

Einstein crossing timescales in lensing. Scintillation shows up as parabolic,
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Figure 7.7: Top left: Frequency-

dependent amplification |�wave(Ω, H)|2
spectrum of a compact, broadband

radio sources as it transits behind a

point-mass lens of 5"⊗ , � = 1 kpc

with a minimum impact parameter of

H0 = 0.5. The amplification oscillates

like cos
2(Ω(�+ − �−)) as a function of

frequency for large impact parameters

where the Eikonal optics (see Eq. 7.38)

approximation does not break down. Top
right: Fractional discrepancy between

|�wave(Ω, H)|2 and |�geo(Ω, H)|2 for the

point-mass lens. Diffractive effects distort

the regular fringe pattern predicted

from geometric optics. Bottom left: The
Fourier transform of the top left panel

along the frequency axis, also referred to

as the “secondary spectrum”. The arc

tracks the instantaneous lensing delay

(�+(C) − �−(C)) as it changes throughout
the transit. Bottom right: The Fourier

transform of the top right panel along the

frequency axis. Adapted with permission

from [219].
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arc-like features in the time-lag correlation function, estimated from the

Fourier transform of the source’s spectrum, when the time-lag correlation

function is concatenated over many days such that it has both a delay axis

(measuring timescales on the scale of the inverse bandwidth) and a time

axis (measuring timescales of days or weeks).

A drifting gravitational lens, or a collection of many gravitational

lenses drifting together, can similarly produce a parabolic arc in this space

(see lower panel of Fig. 7.7) as it crosses the lens. The effect of a collection of

moving lenses causing gravitational scintillation has been considered; [230][230]: Macquart (2004), “Scattering of

gravitational radiation. Second order mo-

ments of the wave amplitude”

derives analytical expressions for the phase perturbations sourced by

clumpy matter distributions; [292] considers the particular case of gravita-

[292]: Congedo et al. (2006), “Gravita-

tional Wave Scintillation by a Stellar Clus-

ter”

tional scintillation by stellar clusters in the Galactic center. [293] considers

[293]: Takahashi et al. (2005), “Scattering

of gravitational waves by the weak gravi-

tational fields of lens objects”

the validity of the Born approximation and the impact of chromatic (diffrac-

tive) effects in gravitational scintillation. Diffractive effects as a probe of a

clumpy matter distributions on small scales are considered in [294–297].

[294]: Takahashi (2006), “Amplitude and

Phase Fluctuations for Gravitational

Waves Propagating through Inhomoge-

neous Mass Distribution in the Universe”

[295]: Oguri et al. (2020), “Probing Dark

Low-mass Halos and Primordial Black

Holes with Frequency-dependent Gravi-

tational Lensing Dispersions of Gravita-

tional Waves”

[296]: Inamori et al. (2021), “Universal

Relation between the Variances of Dis-

tortions of Gravitational Waves owing to

Gravitational Lensing”

[297]: Oguri et al. (2022), “Amplitude and

phase fluctuations of gravitational waves

magnified by strong gravitational lens-

ing”

7.9 Finite magnifications near the Einstein ring

Having generically analyzed eikonal and wave optics and the transition to

incoherent (traditional) gravitational lensing, we can now turn to studying

more specific phenomena which arise in wave optics. One failure of

geometric optics is that for certain regions of the source plane,magnification

ratios become infinite. These regions are typically isolated points or one-

dimensional curves in the source plane where geometric-optics rays “cross”

and as such are regions where interference effects are most crucial. These

are caustics [298]: the most famous example of a caustic is the Einstein

[298]: Ohanian (1983), “The caustics of

gravitational ’lenses’”

ring for a point-mass lens. Rays emanating from the point caustic at y
0
= 0
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pierce the lens plane at a ring of points called the “critical curve” (here, the

critical curve is defined by |x0 | = 1) on their way to the observer.

The infinite magnification of geometric optics lensing is removed by

two distinct effects: finite source size (only an infinitely small patch is

magnified infinitely), and diffraction [299, 300]. In other words, to truly [299]: Herlt et al. (1976), “Wave Optics

of the Spherical Gravitational Lens. Part

I: Diffraction of a Plane Electromagnetic

Wave by a Large Star”

[300]: Benson et al. (1979), “High-

intensification regions of gravitational

lenses.”

attain infinite magnification, one would need an infinitely-small point

source which radiates at an infinitely-short wavelength. In Fig. 7.8 we

calculate magnification maps for both a point source close to the caustic,

and a finite-sized source centered on the caustic, in the case of infinite and

finite frequency (geometric optics and wave optics respectively).

The magnification profiles in geometric optics and diffractive optics

can be computed as follows. In geometric optics the total magnification of

a point source at some impact parameter H is

|�geo |2 =
H2 + 2

H
√
H2 + 4

(7.57)

To obtain the finite-size result, we average Eq. 7.57 over a finite-sized top-hat

of radius ΔH > 0 in the source plane centered at H = 0. This gives a finite

total brightness. The amplification factor for a circular, on-axis source of

radius ΔH is

〈|�geo |2〉ΔH =
√

1 + 4

ΔH2

(7.58)

In wave optics, we repeat the top-hat averaging over the point-mass

magnification map derived from wave optics (Eq. 7.47). This yields

〈|�wave(Ω)|2〉ΔH =
�ΩG2

�
[�0(ΩG�ΔH)2 + �1(ΩG�ΔH)2]
|1 − #′′(G�)|

(7.59)

In Fig. 7.8, we plot Eqs. 7.57 and 7.47 in the top panel, and Eqs. 7.59 and 7.58

in the bottom panel. While both diffraction and finite source size effects

modify the behavior of |� |2 near H = 0, they have very different qualitatitive

features – even a tiny departure from a point source washes out the large

oscillations characteristic of diffractive optics. It is also evident that when

the source size is on the caustic, the finite source size solution deviates

considerably from the point source solution [234, 301]. The discrepancy [234]: Sugiyama et al. (2020), “On the

wave optics effect on primordial black

hole constraints from opticalmicrolensing

search”

[301]: Witt et al. (1994), “Can Lensed Stars

Be Regarded as Pointlike for Microlensing

by MACHOs?”

between using a point-source formula and the extended source matter

most when the source dimension ΔH . Ω−1
; this is most relevant for

gravitational waves, which have low values of Ω and have source sizes

. 100 km [105].

[105]: Oguri (2019), “Strong gravitational

lensing of explosive transients”
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Figure 7.8: The behavior of the magnifica-

tion |� |2 taking into account finite source

size and wave optics effects near the Ein-

stein ring (H → 0).Top:Themagnification

map as a function of y near the origin sat-

urates at y ∼ 1/Ω at a magnification of

�Ω. Bottom: the magnification map for

an on-axis source, now as a function of

source radius ΔH.
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7.10 Finite magnifications near fold caustics

The well-known Einstein ring is an example of a caustic: loci where the

geometric optics magnification diverges. Caustics may be isolated points

or one-dimensional curves in the source plane. Similar to the Einstein ring,

the infinite magnifications near “fold caustics” get regularized by finite

source size as well as diffraction. Here, following [227], we consider the [227]: Nakamura et al. (1999), “Wave Op-

tics in Gravitational Lensing”
Fresnel integral (Eq. 7.28) in the scenario where a source at y

0
lies directly

on the caustic. We expand the time-delay potential about a point x0 on the

critical curve. We can choose coordinate systems in both the source and

lens planes with unit vectors (ŷ
1
, ŷ

2
), (x̂1, x̂2). What does the time delay

potential look like near the critical curve in the neighborhood of x0? We can

begin with a third-order Taylor expansion about x0 and reason through

each term. Here, x = x − x0, and y = y − y
0
, and the indices 0, 1, 2 run

over the two dimensions of the lens plane.

�(x , y) − �(x0 , y) =
%�

%G0
xa +

1

2

%2�

%G0%G1
xaxb (7.60)

+ 1

6

%3�

%G0%G1%G2
xaxbxc (7.61)

The gradient of the potential is straightforward to evaluate at x0 and is −y.
Themagnification at x0 (det(�0

01
)) diverges if y = y

0
; one of the eigenvalues

of �0
(say, �1) is zero. The potential is therefore free of curvature along

the x̂1 direction (thought it has a slope of −H
1
). Along the x̂2 direction, the

curvature is 1−#22, where the subscripts in #22 refer to the two derivatives

taken (e.g. #22 = %2

G2

#).

�(x , y) − �(x0 , y) ≈ −x0 · y
0
+

1 − #22(x0)
2

G2

2
(7.62)

As we turn y→ y
0
, the first derivative term vanishes. This forms an image

at x0 whose magnification is roughly the size of the Fresnel zone (the

patch in the lens plane over which the phase changes by 2�; see Fig. 7.1

for visualization). Traversing the x̂2 direction (fixing G1 = 0), the second

derivative of the potential sets the width of the Fresnel zone as usual. Along

the x̂1 axis (fixing G2 = 0), since the potential has no second derivative, the

third derivative sets the extent of the Fresnel zone along the x̂G1 direction:

%2�/%G3

1
= −#111(x0). (7.63)
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If we define ? = (1 − #22(x0))−1
and @ = −2/#111(x0) > 0, the integrand is

a quadratic along the G2 direction and cubic along the G1 direction:

� =
Ω

2�8

∫
3G1 exp

8Ω
(
−G1H

1
+ G

3

1

3@

) × (7.64)

∫
3G2 exp

8Ω
(
−G2H

2
+ G

2

2

2?

) (7.65)

Taking �∗ = |? |@2/3Ω1/3
, . = @−1/3Ω−2/3

, and letting Ai denote the Airy

function, the amplification factor is

|� |2 = 2��∗Ai(−H
1
/.) (7.66)

The characteristic fringe spacingnear the fold caustic
7
is∼ . ∝ Ω−2/3

, which7: see also Wolfram MathWorld

has a weaker frequency dependence than the point caustic (∼ 1/Ω). [302][302]: Jaroszynski et al. (1995), “Diffraction

Effects in Microlensing of Q2237+0305”
discusses diffractive effects in caustic crossings at optical wavelengths, and

points out that it is possible to use the caustic crossing timescale to measure

the finite linear size of a source.

7.11 Modified lensing probabilities in wave
optics

Modifying the amplification factor’s dependence on the impact parameter

near the Einstein ring modifies any optical depth calculations for which the

observations are flux-limited. For forecasts and constraints, it is important

to characterize the conditions under which diffraction modifies the optical

depth relative to the standard case of geometric optics. One effect, discussed

previously in Sec. 7.5, is that interference terms, if they are not washed

out, are easier to detect than autocorrelation terms. With a search method

that utilizes spectral information, this leads to an increase in the optical

depth [108, 132, 219] which becomes significant when the source is much[108]: Kader (2022), “A High Time Reso-

lution Search for Gravitationally Lensed

Fast Radio Bursts using the CHIME tele-

scope”

[132]: Katz et al. (2020), “Looking for MA-

CHOs in the spectra of fast radio bursts”

[219]: Jow et al. (2020), “Wave effects in

the microlensing of pulsars and FRBs by

point masses”

brighter than the limiting flux threshold.

In Sec. 7.9, we discussed how the infinite magnifications in the point-

mass model which appear in geometric optics get regularized by wave

optics. One might initially suspect that this decreases the optical depth in a

wave optics calculation relative to the geometric-optics calculation, but the

reality is that it depends on the magnification scale [234], and the angular

[234]: Sugiyama et al. (2020), “On the

wave optics effect on primordial black

hole constraints from opticalmicrolensing

search”

motion of the source over the observation period. Diffraction eliminates

the possibility of chance alignments creating extremely high magnification

events (|� |2 & �Ω) [227, 303, 304], as can be seen by the flattening of the

[227]: Nakamura et al. (1999), “Wave Op-

tics in Gravitational Lensing”

[303]: Bontz et al. (1981), “A Diffraction

Limit on the Gravitational Lens Effect”

[304]: De Paolis et al. (2002), “A note on

gravitational wave lensing”

wave optics magnification curves at small H in the bottom panel of Fig. 7.8

(for compact sources, magnifications of up to |� |2 ≈ �Ω can be achieved).

However, for more modest amplification factors, the sidelobes of �(Ω, H)
contribute non-negligibly to the cross-section. Let us take a graphical

approach to understand this. Note the rapidly-varying oscillations in the
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Figure 7.9: The lensing cross-section �
for a minimum detectable amplification

factor |� |2. Top: we plot several values

of Ω as well as the cross-section calcu-

lated in geometric optics. Bottom: the ra-

tio of �wave/�geo is well-approximated by

a boxcar between |� |2 = [1, 2�Ω] with

a height of H = 3/2. The conclusion is

that interference effects enhances lensing

cross-sections for highmagnifications by a

factor of ≈ 3/2 while cutting off huge am-

plifications greater than ≈ �Ω. This result

has the caveat that Eq. 7.47 is used to ap-

proximate Eq. 7.42, which is an excellent

approximation forΩ & 1.

top panel of Fig. 7.8. In a typical optical depth calculation with a certain

sensitivity threshold |� |2
min

, we integrate over all H in the source plane

for which |�(H)|2 > |� |2
min

to obtain the optical depth �(> |�min |2). In the

geometric optics case, |�geo |2(H) is a decreasing function. Therefore, the

region of the source plane that counts towards the optical depth is a circle

of radius H∗ such that |�geo(H∗)|2 = |� |2
min

. Its area, the cross-section to

lensing, is �(> |�min |2) = �geo = �H2

∗ . In the wave optics case, it is not as

straightforward to calculate a thresholdvalue of H, because the amplification

factor is oscillatory, as seen in the top panel of Fig. 7.8. We numerically

evaluate Eq. 7.47 on a dense grid of points {H8}, checking for each H8
whether |�(H8)|2 > |�min |2 and accumulating 2�H8ΔH8 to �(> |�min |2) if
the magnification is above the threshold. Repeating this as a function of

|�min |2, for |�geo |2 (Eq. 7.57), as well as |�wave |2 (we use the approximation

in Eq. 7.47) allows us to calculate the optical depth in wave optics and in

geometric optics as a function of the sensitivity cutoff |�min |2; the ratio is

plotted in Fig. 7.9 (see also Appendix B of [305], which studies the effect of [305]: Sammons et al. (2022), “The Effect

of Gravitational Lensing on Fast Transient

Event Rates”

high magnification lensing events on fast transient luminosity functions).

Finally, for Ω . 1, the lensing is somewhat suppressed. This was

considered in the context of kilohertz gravitational waves, which do not

“feel” mass distributions smaller than ∼ 10
2"� [226]. The bad news is [226]: Nakamura (1998), “Gravitational

Lensing of Gravitational Waves from In-

spiraling Binaries by a Point Mass Lens”

that this limits the mass reach of searches for gravitational wave lensing.
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The good news is that existing search pipelines are reasonably sensitive to

diffractively-lensed gravitational waves, and that the subtle distortions due

to diffractive lensing will be detectable for louder events [306]. Moreover,[306]: Dai et al. (2018), “Detecting lensing-

induced diffraction in astrophysical gravi-

tational waves”

the chromaticity induces a mass scale dependence of the lensing effect. This

enables lensing magnifications to probe intervening density fluctuations

as a function of mass scale (i.e. the matter power spectrum) [294, 295] and[294]: Takahashi (2006), “Amplitude and

Phase Fluctuations for Gravitational

Waves Propagating through Inhomoge-

neous Mass Distribution in the Universe”

[295]: Oguri et al. (2020), “Probing Dark

Low-mass Halos and Primordial Black

Holes with Frequency-dependent Gravi-

tational Lensing Dispersions of Gravita-

tional Waves”

dark matter on dwarf galaxy scales [307, 308]. In addition, diffraction sup-

[307]: Gil Choi et al. (2021), “Small-scale

shear: Peeling off diffuse subhalos with

gravitational waves”

[308]: Guo et al. (2022), “Probing the na-

ture of darkmatter via gravitationalwaves

lensed by small dark matter halos”

presses the effect of microlensing on the measured magnification ratios of

gravitational waves macro-lensed by galaxies or clusters, unless the macro-

magnifications & 15 [272]. This can offer cleaner time-delay cosmography

[272]: Mishra et al. (2021), “Gravitational

lensing of gravitational waves: effect of

microlens population in lensing galaxies”

measurements and allow gravitational waves to be localized [309].

[309]: Cheung et al. (2021), “Stellar-mass

microlensing of gravitational waves”

Since �(Ω, y) is oscillatory as a function of Ω, the cross-section of

microlensing is higher at low frequencies. However, as the frequency

approachesΩ ≤ 1, no microlensing occurs (see next section). According to

Fig. 7.2, the reach of optical microlensing is also cut off at low masses due

to diffractive effects. These two effects lead to overestimating cross-sections

calculated in the geometric optics limit. Due to finite source size effects

(e.g. [301]) andwave effects, themaximummagnification is less than infinity

[301]: Witt et al. (1994), “Can Lensed Stars

Be Regarded as Pointlike for Microlensing

by MACHOs?”

but drops off more slowly. See e.g. Fig. 5 of [234] for a detailed study of the

[234]: Sugiyama et al. (2020), “On the

wave optics effect on primordial black

hole constraints from opticalmicrolensing

search”

effect of finite source size effect on the light curve of a transiting optical

source.

7.12 Observational prospects and discussion

We have presented a summary of the various aspects of interference in

gravitational lensing. In some ways, interference in gravitational lensing

makes lensing easier to detect. For example, in the Eikonal limit, the

presence of interference terms between images makes searching for the

interference termsmuchmore sensitive than searches for individual images:

one simply searches for a regular sinusoidal pattern in the spectrum whose

spacing allows for a direct measurement of the lensing time delay. For

diffractive optics with a point-mass lens, the sinusoidal pattern becomes

distorted at low frequencies as Ω tends to 1; the unique form of this

spectral distortion can break degeneraces in microlensing, allowing for a

measurement of the impact parameter and (redshifted) mass of the lens

simultaneously.

In addition, diffraction limits the maximum attainable magnification

near caustics, where interference effects become the most pronounced. We

find in diffractive lensing that extremely large magnifications near cusps

and folds are no longer possible, but that “sidelobes” in the magnification

pattern can boost the cross-section to lensing. We calculate this boost, and

find (in agreement with [305], which appeared while this manuscript was[305]: Sammons et al. (2022), “The Effect

of Gravitational Lensing on Fast Transient

Event Rates”

being prepared) that to a very good approximation, the lensing cross-

section is higher by a factor of 3/2 as compared to geometric optics for

large (1 << |� |2 < �Ω) magnifications.

Finally, we characterized the primary challenge to observing interfer-

ence in gravitational lensing: thepaucity of point-like, or angularly-coherent,
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sources of radiation. A true point source, even one that does not exhibit any

significant light curve variations, could be used to measure lensing delays

toNyquist-limited time resolution (nanoseconds at radio frequencies). Such

compact steady sources are not yet known, but compact transient sources
at cosmological distances such as supernovae and fast radio bursts could

be used. Gravitational waves from compact binary mergers observed by

current and upcoming ground- and space-based detectors are particularly

promising candidates for observing diffractive lensing.We comment briefly

on the different observational prospects here, but refer the reader to [105] [105]: Oguri (2019), “Strong gravitational

lensing of explosive transients”
for a comprehensive discussion of transient lensing.

In the field of lensed transients, supernovae have a head start since a

handful of lensed supernovae have already been discovered (e.g. [208]). [208]: Kelly et al. (2015), “Multiple images

of a highly magnified supernova formed

by an early-type cluster galaxy lens”

SinceΩ is large for optical and near-infrared supernovae, they can poten-

tially be extremely highly magnified [310]. However, according to Fig. 7.8,

supernovae photospheres are not sufficiently compact, except at cosmolog-

ical distances.

Gamma-ray bursts (GRBs) are among the most luminous and distant

transients known, leading to favorable lensing rates and femtolensing

searches over the last few decades [231], but because of the extremely

short wavelengths involved, their angular sizes are not negligible [232,

268, 301]. While the apparent size of the emission is dependent on the

beaming factor [267, 311], and can vary from burst to burst, most GRBs

are not point-like enough to observe the spectral features of femtolensing;

furthermore the range of lens sizes required to observe interference effects

in GRBs may not be astrophysical (see Fig. 7.2).

FRBs are extremely compact, but like active galactic nuclei, theymay be

angularly broadened [312, 313] into a “scattering disk” at the low (sub-GHz)

radio frequencies at which they are typically observed [132]. Nevertheless, [132]: Katz et al. (2020), “Looking for MA-

CHOs in the spectra of fast radio bursts”
angular coherence in the sense of Eq. 7.50 is preserved for sub-solar mass

lenses [108, 109]. Thebulk of FRBsdetected todate havebeen surveyedby the

Canadian Hydrogen Intensity Mapping Experiment at low (sub-gigahertz)

frequencies [156], but because of the strong frequency dependence of the

size of the scattering disk (' ∝ �2
), these FRBs are sensitive to angular

broadening by inhomogeneous plasma, which potentially washes out

interference fringes. This problem can be mitigated with FRBs surveyed at

even slightly higher frequencies by upcoming experiments like CHORD

and the DSA-2000 [88, 114]; these may enable observation of coherent

interference patterns in FRBs lensed by stars [314]. [314]: Connor et al. (2022), “Stellar

prospects for FRB gravitational lensing”

Perhaps the most promising way to detect diffractive effects is via grav-

itational wave detectors like LIGO [315], VIRGO [316], and KAGRA [317],

whose pristine sources are not contaminated by propagation effects, except

perhaps bymicrolenses near the images of amacro-lens [272]. Gravitational-

wave sources are extremely compact (∼ 100 km; see [105]), and searches

have already been designed and conducted in both the Eikonal and diffrac-

tive regimes [260, 318–320], though no candidates have been conclusively

confirmed. The observational challenge of GW lensing is that with the

current generation of gravitational wave detectors (LIGO, VIRGO, KA-

GRA, and GEO600), gravitational waves are difficult to localize to a host
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galaxy without an electromagnetic counterpart. However, rapid progress,

particularly in FRBs and gravitational-wave instruments, will soon lead to

detections of interference and diffractive effects in gravitational lensing, and

the creative application of lensing to unique measurements for astronomy

and fundamental physics.
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8.1 Abstract and Statement of Contribution

The gravitational field of compact objects, such as primordial black holes,

can create multiple images of background sources. For transients such

as fast radio bursts (FRBs), these multiple images can be resolved in the

time domain. Under certain circumstances, these images not only have

similar burst morphologies but are also phase-coherent at the electric field

level. With a novel dechannelization algorithm and a matched filtering

technique, we search for repeated copies of the same electric fieldwaveform

in observations of FRBs detected by the FRB backend of the Canadian

Hydrogen Mapping Intensity Experiment (CHIME). An interference fringe

from a coherent gravitational lensing signal will appear in the time-lag

domain as a statistically-significant peak in the time-lag autocorrelation

function. We calibrate our statistical significance using telescope data

containingnoFRB signal.Ourdataset consists of∼100-ms long recordings of

voltage data from 172 FRB events, dechannelized to 1.25-ns time resolution.

This coherent search algorithm allows us to search for gravitational lensing

signatures from compact objects in the mass range of 10
−4 − 10

4
M� . After

ruling out an anomalous candidate due to diffractive scintillation, we find

no significant detections of gravitational lensing in the 172 FRB events that

have been analyzed. In a companion work ( Chapter 10 of this thesis), we

interpret the constraints on dark matter from this search.

For this paper, I designed the search algorithm working closely with

Zarif Kader, who was then a Master’s student at McGill University. I wrote

several versions of the dechannelization algorithm before Zarif designed

the final algorithm described in this paper. I wrote the pre-processing code

that did matched-filtering of the FRB voltage data and rejected narrowband

RFI. Finally, I came up with the veto conditions which we used to reduce

our search background, and I conducted several of the early “pipeline runs”

applying the search algorithm to the full dataset. I closely worked with

Zarif to normalize the autocorrelator output into flux units – a nontrivial

task given the considerable complexity of the full pipeline. Zarif eventually

took over the “pipeline runs” (we ended up reprocessing the full dataset a

total of 8 times!) and took charge of the injection simulations, which he used

to characterize the sensitivity of the search. He characterized the outlier

which we eventually attributed to plasma lensing, and ran the statistical

tests searching for statistical excesses attributable from gravitational lensing.

The author list of this paper as it appears in Physical Review D is as follows:

Zarif Kader, Calvin Leung, Matt Dobbs, Kiyoshi W. Masui, Daniele Z. K. and C. L. contributed equally to this

work.
Michilli, Juan Mena-Parra, Ryan Mckinven, Cherry Ng, Kevin Bandura,

Mohit Bhardwaj, Charanjot Brar, Tomas Cassanelli, Pragya Chawla, Fengqiu

Adam Dong, Deborah Good, Victoria Kaspi, Adam E. Lanman, Hsiu-Hsien

Lin, Bradley W. Meyers, Aaron B. Pearlman, Ue-Li Pen, Emily Petroff,
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Ziggy Pleunis, Masoud Rafiei-Ravandi, Mubdi Rahman, Pranav Sanghavi,

Paul Scholz, Kaitlyn Shin, Seth Siegel, Kendrick M. Smith, Ingrid Stairs,

Shriharsh P. Tendulkar, Keith Vanderlinde, Dallas Wulf.

8.2 Introduction

In recent years, the observation of gravitational waves from mergers

of compact binaries [209] has renewed interest in the possibility that a

significant fraction of darkmatter is composed of dark compact objects [321],[321]: Laha (2018), “Lensing of fast radio

bursts: future constraints on primordial

black hole density with an extended mass

function and a new probe of exotic com-

pact fermion and boson stars”

such as primordial black holes (PBHs) [322–324]. Gravitational lensing

[322]: Khlopov (2010), “Primordial black

holes”

[323]: Carr et al. (2020), “Primordial Black

Holes as Dark Matter: Recent Develop-

ments”

[324]: Green et al. (2021), “Primordial

black holes as a dark matter candidate”

of transients like fast radio bursts (FRBs) [325] has emerged as one of the

cleanest ways to detect the presence of such dark compact objects [104,

132, 219, 326]. While the progenitor and emission mechanism of these

[104]: Muñoz et al. (2016), “Lensing of Fast

Radio Bursts as a Probe of Compact Dark

Matter”

[132]: Katz et al. (2020), “Looking for MA-

CHOs in the spectra of fast radio bursts”

[219]: Jow et al. (2020), “Wave effects in

the microlensing of pulsars and FRBs by

point masses”

[326]: Eichler (2017), “Nanolensed Fast

Radio Bursts”

millisecond long bursts are not yet well-understood, their cosmological

distance and abundancemake themparticularlywell-suited to time-domain

searches for gravitational lensing [104, 132, 219, 326]. In this paper, we

present a search pipeline for coherently detecting a gravitationally-lensed

FRB. The fundamental idea of the search is that propagation of the FRB

through the gravitational field of a foregroundmasswill coherently produce

multiple images of the FRB, resolvable in time domain as an interference

fringe.

Traditional searches for compact objects using gravitational lensing

such as the MACHO, EROS, and OGLE projects [327–329] monitor steady

[327]: Alcock et al. (2000), “The MACHO

Project: Microlensing Results from 5.7

Years of Large Magellanic Cloud Observa-

tions”

[328]: Tisserand et al. (2007), “Limits on

the Macho content of the Galactic Halo

from the EROS-2 Survey of theMagellanic

Clouds”

[329]: Wyrzykowski et al. (2011), “The

OGLE view of microlensing towards the

Magellanic Clouds - IV. OGLE-III SMC

data and final conclusions on MACHOs”

background sources on timescales of days to weeks and search for slow

modulations of the sources’ apparent brightness. These searches are able

to constrain the distribution of PBHs within the Local Group. FRBs, on

the other hand, have been localized to other galaxies (see e.g., [13, 18, 23]).

[13]: Macquart et al. (2020), “A census of

baryons in the Universe from localized

fast radio bursts”

[18]: Chatterjee et al. (2017), “A direct lo-

calization of a fast radio burst and its host”

[23]: Ravi et al. (2019), “A fast radio burst

localized to a massive galaxy”

Using FRBs as probes, it may be possible to constrain the cosmological

abundance rather than the local abundance of PBHs.

Unlike MACHO, EROS, or OGLE, our search detects lensing not

through the gradual brightening of a background star as a lens transits

in the foreground, but by the direct detection of a second image of the

same FRB in the time domain. This means that for similar lens masses,

we search for images on short timescales (nanoseconds to milliseconds).

To search for a putative second image, we auto-correlate the FRB’s phase-

preserving baseband data similar to how baseband data are correlated

in very long baseline interferometry (VLBI). We refer to this method

as “interferometric lensing”. Similar methods [330, 331] have had non-

[330]: Cho et al. (2020), “Spectropolarimet-

ric Analysis of FRB 181112 at Microsecond

Resolution: Implications for Fast Radio

Burst Emission Mechanism”

[331]: Farah et al. (2019), “Five new real-

time detections of fast radio bursts with

UTMOST”

detections of a gravitational lensing signature using a correlation method.

We seek to increase sensitivity to lensing detections by correlating with

a matched filter and searching by modeling the noise properties of the

system.

In this paper, we present a gravitational lensing search pipeline, and

apply it to 172 FRBs detected by the FRB instrument on the Canadian

Hydrogen Intensity Mapping Experiment [26]. We present constraints

[26]: CHIME/FRB Collaboration et al.

(2018), “The CHIME Fast Radio Burst

Project: System Overview”

on the abundance of PBHs that compose dark matter in a companion

paper [109].

[109]: Leung et al. (2022), “Constraining

Primordial Black Holes with Fast Radio

Burst Gravitational-Lens Interferometry”
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8.3 Gravitational Lensing Model

The phenomenology of gravitational microlensing is extremely rich, and

different search techniques are sensitive to different signatures of lensing. In

our time-domain search, as in previous works [104, 106, 132, 219, 326, 332–

334], we search for compact objects which can be modeled by the simplest

of lensmodels: a point-mass lens. In the point-massmodel, a pointmass"L

at a redshift IL lies at a transverse physical distance 1 = H'�("L , IL , IS)
from the direct line of sight. Here, H is the impact parameter measured

in units of '� (the Einstein radius), which in turn depends on IL and IS

(the lens and source redshifts respectively). In this simple model, all the

phenmenology is captured by two parameters: a characteristic delay �,

� =
4�"L(1 + IL)

23

©«1

2

H

√
H2 + 4 + ln

(
H +

√
H2 + 4

H −
√
H2 + 4

)ª®¬ , (8.1)

and a flux magnification ratio � = |�|2 (where � is the electric field

magnification ratio) which we take by convention to be 0 < |�| < 1, where

|�|2 =
H2 + 2 − H

√
H2 + 4

H2 + 2 + H
√
H2 + 4

. (8.2)

Equation 8.1 and 8.2 predict that the brighter image arrives before the

fainter one. It also allows us to translate the observables into the lens

properties: its redshifted mass"(1 + IL) and impact parameter 1.

The point lens model assumes the only propagation effect is grav-

itational lensing. Plasma lensing of FRBs [335] also induces multi-path [335]: Cordes et al. (2017), “Lensing of Fast

Radio Bursts by Plasma Structures in Host

Galaxies”

propagation, and scintillation and scattering of FRBs. This complicates the

search for gravitational lensing events. We describe the effect of scintillation

on our search in Sec. 8.8, and a two-screen model incorporating both

gravitational and scattering effects is provided in [109].

In principle, the multi-path propagation characteristic of gravitational

lensing is a purely geometric effect caused by differing path lengths

around the lens. The phase coherence of the electric field is preserved

by a gravitational lens. Hence, coherent algorithms for measuring time

delays, such as those used in VLBI, should be able to detect an FRB

that is coherently lensed by a foreground mass. Such a system would

have profound implications for studies of gravitational lensing. First, it

would be the most precise measurement of a gravitational lensing delay

ever made, by orders of magnitude [336]. Second, it would allow for the [336]: Li et al. (2018), “Strongly lensed

repeating fast radio bursts as precision

probes of the universe”

first observation of wave interference effects in gravitational lensing [219],

which are inaccessible in other systems where gravitational lensing is

traditionally studied due to large source sizes [105, 267]. Finally, it would [105]: Oguri (2019), “Strong gravitational

lensing of explosive transients”

[267]: Katz et al. (2018), “Femtolensing by

dark matter revisited”

open up the possibility of using coherently lensed FRBs as some of the

most exquisitely sensitive “interferometers” in the universe [107, 337, 338]

with the gravitational lens acting as an astronomical “beamsplitter.”
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8.3.1 Recovery of the Observables

In this Section, we outline how a gravitationally-lensed FRB can be detected

in the voltage timestream captured by a radio telescope. The details of the

derivation can be found in Appendix 8.10. First, we consider the scenario

where we have a gravitationally-lensed FRB. Our voltage timestream takes

the form,

+%(C) = (%(C) + �(%(C − �) + #%(C), (8.3)

where % indexes the two telescope polarizations (X and Y), (% is amplitude-

modulated white noise corresponding to the unlensed electric field signal

∗
, #% is stationary telescope noise, and � is the true time delay between the

two images. We seek to auto-correlate the voltage with itself to construct a

time-lag spectrum as a function of many trial time lags Ĉ,

�%(Ĉ) =
∑
C +%(C + Ĉ)+%(C),2

%
(C)√(∑

C +
2

%
(C + Ĉ),2

%
(C)

) (∑
C +

2

%
(C),2

%
(C)

) . (8.4)

In Eq. 8.4, the,2

%
(C) are matched filters: smooth, positive functions con-

structed from the light curve of the burst as measured in each telescope

polarization (Sec. 8.5.1). They are approximations to the optimal matched

filter, in which each time sample of +%(C) gets upweighted by its signal-

to-noise ratio (2

%
(C)/#2

%
(C). In our data, the noise is largely stationary, so

taking,2

%
(C) ∝ (2

%
(C) is close to optimal.

In general, to interpret the �%(Ĉ) produced by time-lag correlating

with a matched filter, there are two limiting cases: when the fainter image is

(a) outside the support of,2

%
(C), such that the filter is constructed without

any information about the image, and (b) inside the support of ,2

%
(C),

such that the filter model is affected by the image’s presence. We find

from numerical simulations, described in Sec. 8.6, that the uncertainty in

recovering � from �%(Ĉ) is dominated by the thermal noise in CHIME/FRB

data rather than the differences between scenario (a) and (b)
†
. Hence,

we neglect the complications arising from scenario (b), and present the

recovery of the lensing observables � and � from �%(Ĉ) in scenario (a). First,

we define the weighted unlensed fluence as

�% =
∑
C

(2

%(C),
2

%(C), (8.5)

and note that �% is translationally invariant in time. Additionally, we define

the weighted signal-to-noise ratio as

Γ =
�%∑

C #
2

%
(C),2

%
(C)
. (8.6)

∗
A gravitational lens magnifies both images, scaling each image’s waveforms by a constant.

The total observed flux is larger than the initial flux but it can be modeled as a scaled copy

of the intrinsic waveform.

†
The weighted unlensed fluence (Eq. 8.5) will be overestimated by a factor of (1 + �2), where

|& | < 0.1 in most realistic scenarios.
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At the lensing time delay, Ĉ = �,

�%(�) =
�Γ√

(Γ + 1)(�2Γ + 1)
. (8.7)

We can obtain

∑
C #

2

%
(C),2

%
(C), which is proportional to the system temper-

ature, from our off-pulse realizations and calculate Γ% . We can then recover

the value of � as

�2 =
�2

%
(�)(Γ + 1)

Γ2 − �2

%
(�)Γ2 − �2

%
(�)Γ

. (8.8)

We recover � from the associated time-lag of �. Then, we convert these

quantities into parameters of the lensing system. We obtain the normalized

impact parameter H as [104]

H =
√
|�| + |�|−1 − 2, (8.9)

and the redshift mass of the lens as

"L(1 + IL) =
23�
4�

©« H2
√
H2 + 4 − ln

(
H +

√
H2 + 4

H −
√
H2 + 4

)ª®¬
−1

. (8.10)

We note that with � and � alone, it is difficult to recover the actual mass of

the gravitational lens because it is degenerate with its own redshift. Only

the combination "L(1 + IL), also known as the “redshifted mass” (see,

e.g., [339]), can be estimated. For the remainder of this paper, we focus on [339]: Paynter et al. (2021), “Evidence for

an intermediate-mass black hole from a

gravitationally lensed gamma-ray burst”

the recovery and estimates for � and �.

8.4 CHIME

In this section, we provide a concise overview of CHIME [48], the FRB [48]: The CHIME Collaboration et al.

(2022), “An Overview of CHIME, the

Canadian Hydrogen Intensity Mapping

Experiment”

backend [26], and the baseband system [147], which records and stores

[147]: Michilli et al. (2021), “An Analysis

Pipeline for CHIME/FRB Full-array Base-

band Data”

the data used in our search. CHIME has no moving parts, and beams are

digitally formed and steered. It is located near Penticton, BritishColumbia at

the Dominion Radio Astrophysical Observatory (DRAO). CHIME consists

of four cylindrical paraboloidal reflectors which are each ≈100-m long

and 20-m wide. Each cylinder is populated with of 256 dual-polarization

antenna feeds, along an 80-m-long focal line with each feed spaced 30 cm

apart. The feeds are oriented such that the two polarizations are aligned

with the N-S and E-W cardinal directions. The dimensions of the telescope

are crucial for the lensing search, as signals can reflect and bounce along

the cylinder. This creates time-delayed images in the system that would be

indistinguishable from a time-delayed gravitationally lensed image. The

largest dimension is 100 m, therefore any detections at time-lags less than

100 m

2 = 330 ns are indistinguishable from instrumental echoes, which are

likely at such small time-lags.

Each antenna feed operateswithin a bandpass of 400-800MHz.Analog

signals from the feeds are digitized in the secondNyquist zone at a sampling

rate of 800 MHz with 8-bit accuracy [35]. The signal is channelized through [35]: Bandura et al. (2016), “ICE-Based

Custom Full-Mesh Network for the

CHIME High Bandwidth Radio Astron-

omy Correlator”
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Extended Data Table 8.1: Specifications
of CHIME relevant to the gravitational

lensing search.

Parameter Values

Collecting area 8000 m
2

Frequency range 400 —800 MHz

Polarization Orthogonal linear

E-W FOV 2.5◦ —1.3◦

N-S FOV ∼ 100
◦

Number of beams 1024

Beam width (FWHM) 40—20’

a Polyphase Filterbank (PFB, see Appendix 8.12 for details). This signal

processing chain turns the digitized voltage timestream, sampled every

1.25 ns, into 1024 frequency channels. Each channel is 390 kHz wide and

is centered at 58 = 400.390625, 400.78125, ...800.0 MHz. The channelized

complex data compose the dynamic spectrum which is sampled every

2.56 µs with 4 + 4 bit complex accuracy. This frequency-time data or

dynamic spectrum is referred to as baseband data. The signal processing

and channelization are done through a signal processing system referred

to as the F-engine [35]. For the gravitational lensing search, we seek to

invert the channelization and recover the higher time resolution voltage

timestream to search for smaller time delays.

The channelized data are passed from the F-engine to the X-engine:

256 computer nodes that process the voltage data in parallel over different

frequencies for various backends [26, 48, 58]. Using Fast Fourier Transform

(FFT) beamforming [34, 340], the X-engine forms a grid of 1024 beams[34]: Ng et al. (2017), “CHIME FRB: An

application of FFT beamforming for a ra-

dio telescope”

[340]: Masui et al. (2017), “Algorithms for

FFT Beamforming Radio Interferometers”

pointing towards a fixed set of azimuths and altitudes within CHIME’s

primary beam [26]. The CHIME Fast Radio Burst project (CHIME/FRB)

performs a real-time search for FRBs in each beam and once a candidate is

detected, the search backend triggers a raw baseband dump, saving the

data for offline analysis [26].

Our search relies on baseband data, which are calibrated and prepared

for scientific analysis through the baseband analysis pipeline [147]. There

are two steps which affect the gravitational lensing search: beamforming

and dedispersion.

First, once an FRB has been detected in one of the beams in the search

grid, the baseband analysis pipeline finds the best-fit location of the FRB in

the sky [147]. The baseband data from each antenna can be re-beamformed

towards the best-fit position by applying a phase shift to each antenna. This

points all of the antennas at the best-fit location of the FRB. The co-added

dynamic spectrum pointed to the best-fit location for each FRB is used in

the remainder of our analysis.

After beamforming, we de-disperse the data by applying the following

coherent de-dispersion kernel [167]:[167]: Hankins et al. (1975), “Pulsar Signal

Processing”

�( 5 + 58) = exp

(
−2�8:DMDM

5 2

5 2

8
( 5 + 58)

)
(8.11)

where the 58 are chosen to be the center frequency of each channel and the

DM is chosen to maximize the signal-to-noise ratio of the burst summed
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over all 1024 channels. Next, the entire band is dedispersed incoherently,

by shifting each channel by some integer multiple of 2.56µs to align neigh-

boring channels according to the chosen DM. These two steps sufficiently

compensate for interstellar dispersion for the purposes of our pipeline’s

successful operation
‡
.

Beyond the dispersive smearing of the pulse, we consider other prop-

agation effects which may have an influence on our pipeline’s sensitivity

and may require compensation. One effect that has been explored is the

possibility that the DMdiffers between the two images due to their different

propagation paths [330, 331]. However, the largest lensing delaywe consider [330]: Cho et al. (2020), “Spectropolarimet-

ric Analysis of FRB 181112 at Microsecond

Resolution: Implications for Fast Radio

Burst Emission Mechanism”

[331]: Farah et al. (2019), “Five new real-

time detections of fast radio bursts with

UTMOST”

is 100ms. The fractional difference in path length, considering the cosmolog-

ical travel times of FRB emission, is at most of order 100 ms/1 Gyr ∼ 10
−18

.

The fractional change in the DM arising from the two different paths is

therefore a negligible effect. Small-scale inhomogeneities between the two

paths may be relevant, but this matters most near the gravitational lens

plane, where the two image paths are maximally separated. The lens in

turn is most likely to be found at a significant distance from either the

source or the observer. If such plasma density fluctuations were present

at significant distances from either source or observer, we would observe

IGM-based scatter broadening in FRBs which would likely quench any

spectral scintillation. The observation of scintillation in many FRBs [159,

341, 342] provides evidence against the scattering originating from the

IGM or in the CGM of intervening galaxies. A similar argument applies for

differential Faraday rotation between the two images.

8.4.1 Dataset

We conducted our search using the baseband data of 172 FRB events

with 103 events from independent sight lines. The remaining events are

repeat bursts identified with one of the first 103 sources. 19 of these bursts

have been previously analyzed and are publicly available in [47], and the [47]: The CHIME/FRB Collaboration et al.

(2021), “The First CHIME/FRB Fast Radio

Burst Catalog”

remainder have not appeared in CHIME/FRB publications. Our search

algorithm uses baseband data, which is available for approximately 25%

of all bursts detected by CHIME/FRB. Baseband is dumped when the

burst’s signal-to-noise ratio (S/N) & 15 and DM < 1000 cm
−3
. In addition,

repeating FRB sources are over-represented in our sample relative to

all FRBs detected by CHIME/FRB due to CHIME/FRB’s data analysis

prioritization strategy. Depending on the steepness of the FRB luminosity

function, there might be a slight magnification bias which makes lensed

bursts over-represented in our sample [105]. With current numbers of FRBs,

however, this effect is too small to detect. We provide a table of all FRB

events used in this search in Appendix 8.11.

‡
There is an overall phase per frequency channel due to dispersion that remains uncorrected

(see [127] Eq. (5.17)); however this overall phase cancels out in time-lag auto-correlation.
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8.5 Search Algorithm

Our search algorithm for detecting gravitationally lensed images in the

CHIME/FRB baseband data from FRB events is comprised of five main

sections. In the following, we will outline the implementation of these

algorithms and their importance in detecting microlensing.

8.5.1 Matched Filter

Figure 8.1: Two examples of FRBs used

in our search: an anomalous multi-burst

FRB (left) and a more common single-

burst FRB (right). We compute the inten-

sity profile (gray lines in top left and top

right panels) by summing the power over

all frequency channels in the dynamic

spectrum of each burst (bottom two pan-

els). The matched filter (black lines) is

constructed by smoothing the intensity

profile of the brightest peak and enhances

sensitivity, while a translated copy (blue)

serves as anull test. Channels not recorded

by the X-engine or contaminated by radio-

frequency interference (RFI) are indicated

by the white bands in the dynamic spec-

trum.Wedefine on-pulse (top panel, black

line)when thefilter is centered onone FRB

image (brighter burst in the left panel, lone

burst in the right panel) and off-pulse (top

panel, blue line) aswhen the filter contains

no signal. Our coherent search can distin-

guishwhether the dimmer components of

multi-component FRBs (left) are images

created by a lens, and it can search for

temporally-unresolved images within ap-

parently single-component FRBs (right).

In order todetect gravitationally lensed signals in thevoltage timestream,

our search focuses on finding another copy of the same electric field wave-

form occurring at a delayed time. Since it could be buried in the noise, it

is desirable to use a time-domain matched filter to enhance our search’s

sensitivity. We begin with beamformed baseband data (also referred to as

the “dynamic wavefield” in the wave optics literature), dedispersed to a

signal-to-noise maximizing DM. To understand why this metric is chosen

to optimize the DM, it is helpful to consider the effect of choosing a slightly

different DM. This would cause in (1) a percent-level residual dispersive

smearingwithin each frequency channel, and (2) an uncompensated integer

time delay, in units of 2.56 µs, between neighboring channels. The effect of

(1) is a decrease in the signal-to-noise ratio of the FRB within each channel.

Similarly, the effect of (2) is that the burst is temporally smeared over the

frequency band. Both effects decrease the signal-to-noise ratio of the FRB

by temporally smearing some of the signal outside the support of the filter.

In the correlation search for lenses, less signal is correlated while the noise

contribution will remain the same. Eq. (8.7) quantifies the height of the

correlation peak as a function of Γ. In turn, Eq. 8.6 shows that if not enough

signal is concentrated within the support of,2

%
(C), then the correlation
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peak height will fall below the noise floor leading to a non-detection. Hence,

the optimal DM value for this pipeline is a “signal-to-noise maximizing”

DM, rather than, e.g., a DM that aligns temporal microstructures but results

in a broader pulse profile. To maximize sensitivity, we begin by coherently

dedispersing the beamformed baseband data to the DM that optimizes the

signal-to-noise summed over all frequency channels.

After the pulse is aligned across the band, we construct a matched

filter,%(C) in the time-lag domain following [57]. We begin by summing

the intensity over all frequency channels to obtain a pulse profile. This

intensity profile is then smoothed by convolving it with a Gaussian whose

width is set by some downsampling factor, chosen on a burst-by-burst basis

by the baseband pipeline [38]. When the intensity profile falls to the noise

floor, we set the filter value to zero outside this region.,%(C) is therefore
positive in some region, hereafter referred to as the “on-pulse” region, and

zero everywhere else (the “off-pulse” region(s)). In later parts of the search,

we use the off-pulse data as a null test. Additionally, we construct off-pulse

filters by translating,%(C) to time ranges at least five burst widths prior to

the FRB’s arrival. In the point-mass lens model, the dimmer image arrives

after the brighter one, so the data before the first burst are assumed to not

contain any lensed images. The FRB image might lie inside or outside the

on-pulse region.

Figure 8.1 shows the result of this process, where the matched filter

outlines the intensity profile generated from the dynamic spectrum. The

white bands spanning the time axis in the dynamic spectrum are frequency

channels that are persistently contaminated with radio-frequency inter-

ference (RFI) or frequencies processed by correlator nodes that were not

operational during the duration of the baseband dump. These channels

are masked as part of the baseband pipeline.

8.5.2 PFB Inversion

Inmodern FX correlators, a polyphase filterbank (PFB) is used to channelize

real-valued voltage timestream data into narrow-bandwidth channels of

complex-valued voltage data (see Appendix 8.12). We refer to the result as

baseband data; it is proportional to the underlyingwavefield and from base-

band data, quantities such as (intensity) dynamic spectra can be calculated.

This simplifies procedures like beamforming and dedispersion but reduces

the time resolution from that implied by the telescope bandwidth (1.25 ns)

to that implied by the channel bandwidths of 2.56 µs. To access timescales

finer than 2.56 µs, it is possible to dechannelize the data and approximately

invert the channelization from a dynamic spectrum back into a single

voltage timestream. This process can be thought of as turning CHIME into

one effective antenna recording voltage data at a time resolution of 1.25 ns

– CHIME’s native sampling rate.

We invert the PFB by considering the time domain to be periodic about

the total length of the baseband data, i.e. imposing a “circulant” boundary

and solving a system of linear equations. A derivation of the inversion can

be found in Appendix 8.12.1 and further details can be found in [108]. We [108]: Kader (2022), “A High Time Resolu-

tion Search forGravitationally Lensed Fast

Radio Bursts using the CHIME telescope”
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summarize the method to invert the PFB in the following computational

steps:

1. We take the baseband data represented as a complex array, V(:, <).
Here, : is the “channel” axis, which represents frequency in units

of 390 kHz per channel. < is the time axis (in units of frames, where

each frame has a duration of 2.56 µs).
2. The PFB can be thought of as a linear filter which applies a dif-

ferent frequency response for each sub-frame time offset <′ (<′ ∈
0, 1.25, ...2560 ns) and sub-channel frequency :′ where

:′ ∈ [−195.3125 kHz, ...,+195.3125 kHz).

The frequency response is time-dependent and has a period of 2.56

µs. This period is formed as the PFB is applied to digitized voltage

data every 2.56 µs. By imposing a circulant boundary on <, the PFB

operator is akin to a convolution and therefore easy to invert in <′,
:′ space using only Fourier transforms. In the language of linear

algebra, the PFB can be represented in <′, :′ space as a diagonal

operator and, <′ and :′ jointly specify a unique eigenmode of the

PFB. To transform the data into this space, we first apply a discrete

inverse Fourier transform to the channel axis. The frequency channel

axis is transformed to the sub-frame time axis (i.e., : → <′).
3. V(<′, <) is real-valued and solely in the time domain. This is a

timestreamwith the PFB filter convolved throughout. We deconvolve

the filter by first reconstructing the PFB filter in this domain.We place

the PFB window coefficients (a sinc-hamming window for CHIME)

at the start of a zero-padded array with the same dimensions as

V(<′, <), capturing both the sub-frame and frame information of

the filter.

4. The PFB is applied every 2.56 µs; we deconvolve it along the frame

(<) axis. We apply a discrete forward Fourier transform to the frame

axis to transform it to the sub-channel frequency axis (i.e., < → :′)
for both the zero-padded PFB filter and V(<′, <). The result is the
diagonal matrix Pc, which approximates the frequency response of

the PFB as a function of time <′ and sub-channel frequency :′.
5. The PFB is not perfectly invertible; therefore some elements of

Pc(<′, :′) (the PFB’s frequency response) are close to zero. Addition-

ally, voltage signals arrive at the correlator at different times, scram-

bling sub-frame structure. To mitigate this, we average Pc(<′, :′) over
all values of <′, 0, 1.25, 2.50, ...2560 ns. This averaging procedure

can be thought of as a way to average over unknown cable delays

incurred prior to digitization.

Pc(:′) =
1

2048

∑
<′

Pc(<′, :′)

then is independent of <′.
6. We divide the dataV(<′, :′) byPc(<′, :′), deconvolving the PFB filter

from the data. Note that this is an imperfect deconvolution because

of the averaging operation but gives more stationary autocorrelation
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functions as compared with Pc(<′, :′).
7. Finally, we perform a discrete inverse Fourier transform over the

sub-frame frequency axis to transform :′ back to <. Our data are

now represented as a function of the sub-frame time offset<′ and the

frame delay <. Flattening the array V(<, <′) results in V(< + <′), a
one dimensional function in the time-domain with a time resolution

of 1.25 ns. This represents a good approximation to the reconstructed

timestream that would be observed if CHIME were a single-dish

telescope pointed precisely in the direction of the FRB, with the

effects of dispersion removed.

In principle it is possible to invert the PFB before beamforming and

dedispersing the FRB signal. This is the better method if one wants to

accurately reconstruct the FRB in the time domain rather than the time-

lag domain. However, the phase introduced per frequency channel by

beamforming and dedispersion is not relevant for the purposes of our

gravitational lensing search, as this only introduces an overall phase error

per frequency channel in the dynamic spectrum. This overall phase error

is redundant when performing a time-lag auto-correlation as it would be

common to both images. Thephase betweenneighboring channels, however,

does affect the PFB inversion. Specifically, the PFB has a different frequency

response as a function of sub-integer delay. However, since the sub-frame

delay of each channel after summing over antennas is not straightforward

tomodel robustly, we instead average the PFB’s eigenspectrum as a function

of sub-integer delay.

There are inversion artifacts that appear at regularly-spaced intervals

in the time-lag domain, every integer multiple of 2.56 µs due to imperfect

inversion of the PFB. We refer to these artifacts as correlation leakage. In

real data, we are able to remove the correlation leakage for off-pulse data.

Unfortunately, this procedure is not able to completely remove correlation

leakage for some extremely bright FRBs. However, we are able to replicate

this feature by simulating similar bursts having similar widths, S/N ratios,

and DMs to the observed burst (Section 8.6). This correlation leakage is

understood and can be modeled exactly with our simulation framework.

If these correlation leakage features are present in data, we will always

find them at integer multiples of 2.56 µs in the time-lag domain. As the

locations of these correlation leakage spikes are known and they are able to

be replicated in simulations, we chose to account for this in our pipeline by

only searching for lensing correlations at lags corresponding to non-integer

multiples of a frame (2.56 µs). This reduces our exposure to lenses by about

1 part in 2048.

8.5.3 RFI Flagging

Narrowband RFI can cause false positives in our search. Therefore, it

is necessary to aggressively remove RFI. We apply RFI filtering at two

different stages in our pipeline. Our first flagging occurs before inverting

the channelization. This removes any strong narrowband RFI that auto-

correlates. We take the matched filter, move it to a region without any
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FRB signal, and perform our time-lag correlation (defined in section 8.5.4)

per frequency channel. We normalize all the frequency lag spectra by the

zero-lag peak and obtain the RMS per frequency channel. We calculate

the mean and standard deviation � across all frequency channels and flag

based on whether a channel is larger than 3-� from the mean. We move

the off-pulse to five different regions in total, repeating this process, in

order to generate a RFI mask from the sum of all the trials. The off-pulse

realizations should not contain any FRB signal but even in that scenario

a lensing signal would only exist at one frame delay and be common in

amplitude across all frequencies. This algorithm, which removes channels

that autocorrelate strongly with themselves across time-lag, should not

mask such a non-local signal.

Our second round of RFI flagging occurs after we generate the high

frequency resolution spectrum, which occurs after we have inverted the

PFB. Here, we flag by applying a median absolute deviation (MAD) filter

and masking any excursions in the spectra which exceed 3-�, where

� = 1.4826 × �"�� and where �"�� is the median absolute deviation

of the nearest 15 neighbors. We additionally remove the 2048 (out of 10
6

values) highest peaks in the frequency spectra to further ensure that there

are no outliers remaining. This is sufficient to removing all narrowband RFI

signals without removing a significant fraction of the FRB’s spectral content.

Because the lensing signal is non-local in frequency space, our narrowband

RFI flagging removes less than 1% of the lensing signal in a typical run. The

final RFI mask is the union of all frequencies flagged in both polarizations,

and results in a significant reduction in the non-Gaussian statistics in the

time-lag domain.

In order to claim a statistically significant excursion, we require a

thorough model of the underlying statistics of noise and other contami-

nations such as RFI, such that we can reject the null hypothesis. We use

the off-pulse realizations to capture the instantaneous noise environment

and sample the RFI conditions at the time of each event. We find this noise

follows Gaussian statistics in the time-lag domain with the largest source

of non-Gaussianity in the distribution of correlation values coming from

strong narrowband RFI. We find our RFI flagging method results in an

average removal ∼ 20% of the total bandwidth and is able to significantly

reduce non-Gaussian contributions.

8.5.4 Time-Lag Correlation

For our correlation algorithm, we implement Eq. 8.4 through FFTs. This

allows us to generate the time-lag spectrum using the discrete Fourier

transformed spectra of the reconstructed voltage timestream in a computa-

tionally efficient manner. We generate two time-lag correlation functions;

�-(Ĉ) and �.(Ĉ), one from each antenna polarization. For shorthand, we

introduce the vector,

®�(Ĉ) = [�-(Ĉ), �.(Ĉ)] . (8.12)
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Figure 8.2: Time-lag correlation of both

telescope polarizations, shown on a log-

log scale. The on-pulse (black) is the

time-lag correlation of the matched filters

aligned with the FRB in each polarization.

The off-pulse (blue) is the time-lag corre-

lation with the matched filter moved to a

region containing no burst. Telescope re-

flections dominate at lag timescales < 300

ns (shaded in pink). Peaks from PFB corre-

lation leakage are visible at certain integer

multiples of 2.56 µs. A statistically sig-

nificant correlation at any other time-lags

might be a gravitational lensing signature.

In principle, a statistically-significant outlier in the time-lag domain could

be interpreted as a signature of coherent gravitational lensing with some

time delay � and the relative image magnification ratio. We can convert the

independent antenna polarization components of
®�(Ĉ) correlation values

to the corresponding field amplitude ratios, giving ®�(Ĉ), using the square

root of Eq. 8.8 and conserving the sign of the components of
®�(Ĉ).

To assess the statistical properties of ®�(Ĉ), we generate off-pulse time-

lag spectra by shifting the matched filter to a region without the burst and

repeating the correlation. We average several off-pulse realizations into an

estimate of the mean off-pulse time-lag spectra, which we denote as ®��(Ĉ).
We also measure the standard deviation of off-pulse spectra realizations

from the mean time-lag spectrum, denoted as ®��(Ĉ). Our final data product

consists of ®��(Ĉ), ®��(Ĉ), and a single off-pulse realization left out of the

calculation of ®��(Ĉ).

Fig. 8.2 shows the time-lag spectrum of on-pulse data containing an

FRB (shown in black) and off-pulse data (shown in blue). The similarity

of the two curves reflects the fact that the telescope data are dominated

by thermal noise. We expect a coherent lensing event to appear as a peak

in the time-lag spectrum in both telescope polarizations, with the same

magnification ratio. One complication that arises is that at delays less than

∼ 300 ns, internal reflections within the telescope dominate the on-pulse

time-lag spectrum and can cause it to deviate from the off-pulse time-

lag spectrum, even in the absence of a lensed image. Additionally, the

frequency channel mask introduces spectral structure between ±2.56µs

for both on-pulse and off-pulse data. This leads to non-zero structure for

the time-lag spectrum.

In the absence of a detection, our measurements of |�|2 can still be

interpreted as an upper limit on the relativemagnification ratio as a function

of lag, presented in our companion paper [109].
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8.5.5 Outlier Detection

Figure 8.3: A graphical representation of

off-pulse spectra for both antenna polar-

izations within one time-lag bin, and the

vetoes that we use to reject noise candi-

dates.We show the joint distribution of �-
and �. (black points), within a time-lag

bin, for off-pulse data from one FRB event.

The polarizations each follow a Gaussian

distribution (red) as highlighted by the top

and right histograms. The vetoed frame

integer lags are the red crosses (condition

1, see text). The 2D significance thresh-

old (blue) indicates which candidates are

considered to be significant (condition 2),

with the largest excursion as quantified by

its "2
value highlighted as the green star.

A 99% confidence region (green), derived

from the local 2D Gaussian distribution

and the requirement �- ≈ �. , indicates
the region consistent with a gravitational

lens (polarization condition, see Sec. 8.8

and Tab. 8.2); the region in which there

are no candidates for this time-lag bin.

Lensing events are expected to be quite rare; optimistic estimates [104]

vary from 1 in 100 to 1 in 1000 FRB sightlines for our mass range of

interest. Detecting FRB lensing therefore requires a search through all

time-lags from a large sample of FRBs. Additionally, each ®�(Ĉ) contains
≈ 10

9
time-lags. It is difficult to search for lenses in such a large volume

of data. However, the data volume can be reduced. We use the fact that

instrumental reflections and frequencymasking dominate only over a short

range of time-lag scales. At short time-lag scales (| Ĉ | ≤ 4 × 2.56µs), these

systematics can significantly affect the distribution of time-lag spectrum

values. However, at larger time-lag scales (| Ĉ | > 4 × 2.56µs), the majority

of time-lag spectrum values can be modeled as realizations of a Gaussian

random variable. Therefore, we can divide the time-lag spectrum at large

time-lag scales into logarithmically-spaced bins. The bin edges are defined

by ±2.56µs × 4
8
for integer values of 8 = 0, 1, .... For large time-lag scales,

we characterize the statistics of each time-lag bin separately such that the

systematics and statistics of smaller time-lag bins likely do not affect those

of the larger time-lag bins and vice versa. Then, we save only the outliers

in each time-lag bin.

We quantify outliers as follows. For each time-lag bin we calculate

and save the mean over lags within a time-lag bin, denoted ®�8 (not to be

confused with the mean over off-pulse time-lag spectra ®��(Ĉ)). We also

calculate the 2 × 2 covariance matrix G8 from the time-lag spectrum values
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within that time-lag bin, for every lag bin. The matrix elements of G8 are

computed by empirically estimating the moments 〈�2

-
〉, 〈�2

.
〉, and 〈�-�.〉,

〈�-〉, and 〈�.〉 from the time-lag spectrum values within lag bin 8.

We find that the G8 differ significantly between the off-pulse and

on-pulse data. In particular, Fig. 8.3 shows that for off-pulse data, the X

and Y components of the time-lag spectrum vector ®�(Ĉ) can be modeled as

two independent Gaussian random variables. In contrast, for on-pulse data

(Fig. 8.4), the two spectra often exhibit a high degree of correlation between

polarizations. For instance, we see that the correlation between the two

polarizations form a tilted ellipse in Fig. 8.4. The source of the correlation

between polarizations is likely diffractive scintillation of the FRB. In Fig. 8.5,

we see that the excess correlation in the time-lag spectrum itself in the

on-pulse deviates significantly from the off-pulse/instrumental response

suggesting an astrophysical origin. When comparing the fine spectral

structure of the burst in a dynamic spectrum to the time-lag spectrum

(Fig. 8.5), we see a clear relationship between the frequency bandwidth

of all the sub-bursts and the width of the excess correlation structure in

our time-lag spectrum analysis. We interpret the excess in Fig. 8.5 as the

signature of diffractive scintillation as seen in the time-lag spectrum.

Figure 8.4: The joint distribution of �-
and �. (black points) for the on-pulse

realization for an FRB event with excess

correlation present. The criteria for a can-

didate are defined in Tab. 8.2. Left: A
graphical representation of the excursion

significance not taking into account cor-

relations between feed polarizations. The

candidate event (green star) lies slightly

outside the threshold contour (blue) and

within expected range of a gravitational

lensing signal (green region).Right:How-

ever, an improved estimate taking into

account polarization correlations, shows

the significance of the excess is consistent

with the null hypothesis.

A vector ®�(Ĉ) belonging to time-lag bin 8 has a "2
value of

"2 = (®�(Ĉ) − ®�8)) ·G−1

8 · (®�(Ĉ) − ®�8). (8.13)

To keep the data volume manageable, we keep the 2048 most significant

vectors, i.e. the vectors with the largest "2
values. We find that keeping the

2048 top candidates within each lag bin is sufficient to preserve the tails of

the distribution of vectors ®� in which a lensing signal may be present. In

this scheme, we keep a larger fraction of peaks at short time-lags than at

large time-lags. While this property may seem undesirable, the logarithmic

binning is natural for an unbiased search. The lensing time delay that we

expect to observe is proportional to the characteristic mass scale of the

lenses. Without a preferred mass scale over our mass range (10
−4 − 10

4"�),
all decades in mass (and therefore in time-lag) should be treated as equally

likely to produce a lensing event. From this perspective, the fact that a
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smaller fraction of time-lags are saved in larger bins can be thought of as a

look-elsewhere effect. At our fixed time resolution of 1.25 ns there are more

lag trials at larger lag scales.

We refer to the remaining set of vectors as an “excursion set” containing

≈ 2048 vectors, or “excursions,” per time-lag bin per burst. Any significant

lensing event should be part of the excursion set, and should stand out in

the excursion set. We analyze this possibility in Sec. 8.7. Alternatively, a

large number of sub-threshold lensing events, may still measurably distort

the distribution of excursions. This is considered in Sec. 8.8. To assess this

latter possibility, we also generate an excursion set for the off-pulse data.

Figure 8.5: Comparison of the time-lag

spectrum for the on-pulse data (black)

to that of the off-pulse data (blue) for an

eventwith a correlated polarization. Time-

lags that contain telescope reflections are

indicated as the shaded purple region.

There is evidence of excess correlation

structure compared to the instrumental

response extending to Ĉ < 1 ms. At larger

time-lags, on-pulse and off-pulse time-

lag spectra become nearly identical. This

excess structure appears across a broad

range of time-lags, which is inconsistent

with the expectation for a single gravita-

tionally lensed image.

8.6 Simulations

To checkwhether our pipeline can detect true gravitationally-lensed signals,

we inject a coherent gravitationally-lensed FRB signal into noise samples

from all the events in our dataset. The noise data is selected from a region

of baseband data without a detected FRB. This tests our search pipeline

in a realistic noise environment that includes RFI and frequency channel

masking.

Using this simulation framework,wemay test our selection criteria and

whether our pipeline recovers the parameters of the injected lensing event.

We simulate a high-resolution voltage timestream at 800 Megasamples per

second (the CHIME sampling rate) and simulate an FRB signal, which we

model as white noise modulated with a Gaussian-shaped pulse profile. We

do not consider any multi-path propagation effects other than the coherent

gravitational lensing signal. We synthesize a lensing event by delaying

the signal in time using Fourier methods and multiplying the signal by �
as in Eq. 8.3. Both signals are dispersed with the same DM. The signal is

sent through a PFB mimicking that of CHIME to channelize the voltage

timestream into baseband data. The signals are dedispersed with the true
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Figure 8.6: A simulated gravitationally

lensed FRB injected into telescope noise

data. The second image is injected at

� = 1.53 ms and with � = 0.1. The im-

age itself is not visible by eye but the

second image is still detected by the

search pipeline, shown in Fig 8.7. Both im-

ages are dispersed to the same DM, have

the PFB channelization applied, and are

then coherently dedispersed. Channels

not recorded by the X-engine or contam-

inated by radio-frequency interference

(RFI) are indicated by the white bands

in the dynamic spectrum.

DM and then injected into noise data. The noise data realizations are

constructed from the off-pulse region of FRB events captured by CHIME.

With this framework,we are able to capture instrumental effects andvalidate

the recovery of lensing signals in a realistic noise environment, which

includes effects such as masked channels, RFI, and telescope reflections.

In Fig. 8.6, we show the baseband data containing a simulated grav-

itationally lensed FRB injected into noise data recorded by CHIME. The

second, delayed image has a � = 1.53 ms with � = 0.1. In Fig. 8.7, we

show the simulated lensing event which passes all of our selection criteria

discussed in Sec. 8.7. We note that while the second image may not be

visible by eye and exist within the noise, that with the matched filter and

phase correlation, we are able to detect and recover the lensing signal.

For each noise dataset in our sample of FRBs, we randomly choose S/N

values between 9 and 30, a DMbetween 10 and 50 pc cm
−3
, and fix the pulse

width at 256 µs. Low DMs are chosen to reduce the computational cost

of manipulating extremely long data streams. The lensing parameters are

chosen as follows; we take a relative field amplitude ratio, � ∈ [0.001, 0.9),
and a lensing time delay, �, between 7 × 2.56 µs and 5000 × 2.56 µs. All

simulation parameter values are drawn from a flat distribution between the

ranges listed. In Fig. 8.8, we highlight how our pipeline is able to recover

the input lensing parameters as a function of �Γ, the fractional increase of
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Figure 8.7: Simulated candidate detection

with our selection criteria. The injected

image had � = 0.1 and the detection of

the event can be seen as the circled orange

star in the expected region for lensing (see

section 8.7). The other candidates in the

green region result from trials which are

correlated with the brightest candidate;

they either differ by < 5 ns (covariance in-

troduced bymaskingparts of the band), or

exactly 2.56 µs (covariance introduced by

correlation leakage). The red crosses are

integer multiples of 2.56 µs, which might

be PFB inversion artifacts. The simulated

baseband data is shown in Fig 8.6.

the system temperature due to the second, delayed image (see Eqs. 8.28

& 8.31). We additionally highlight the relationship of �Γ to "2
(Eq. 8.13),

where "2
is a standardized measurement of the height of the correlation

peak in relation to the noise statistics of the time-lag bin. The dashed line

at "2 = 43 is the largest "2
observed from the corresponding off-pulse

realizations and represents the noise floor. Excursions close to this line

are more likely to be noise fluctuations. We indicate a turnover point at

�Γ = 0.03 where the lensing signal is classified as a signal rather than a

noise fluctuation. We find the pipeline is able to detect the lensing signal

above these thresholds, indicated by the recovery of the time delay. For

these detected excursions, we find an average error of∼ 23% in the recovery

of the relative magnification. There are three reasons for this error.

First, we assume that the matched filter is a template of one image

rather than two images. This assumption fails strongly if the second image

is comparable in brightness to the first one and close in arrival time to the

first image such that the matched filter is constructed with the contribution

of both images. In this scenario, the estimate of the relative magnification

is incorrect as the unlensed fluence, � (Eq. 8.18), becomes (1 + �2)�. This
does not affect the constraints on PBHs as the contribution of one image is

approximate when �→ 0, near the noise floor. The other bound is known

physically, �→ 1 as �→ 0. For a real detection, this effect can be corrected

for after confirmation.

Second, the peak height is reduced by 13% on average as a result of

discretely sampling the phase delay between the two images at 1.25 ns.
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Figure 8.8: Magnitude of the residuals

between the input gravitational lensing

observable and the pipeline recovered

values in fractional error, for simulated

gravitational lensing events. �Γ is the frac-

tional increase of the system temperature

due to the second, delayed image. Both

the time delay (top) and relative mag-

nification (middle) are recovered by our

pipeline when "2 & 40 and �Γ & 0.03.

The "2
(bottom) is a normalized measure

of the height of the correlation peak in

relation to the noise environment of the

associated time-lag bin. Black dots high-

lights points that satisfy all our veto condi-

tions while black crosses are simulations

that did not pass the veto conditions. The

largest "2
observed from the off-pulse sim-

ulations is shown to represent the largest

noise excursion observed. At �Γ = 0.03

we indicate, with a vertical line, where

the lensing signal is classified as a signal

rather than a noise fluctuation. This val-

idates our search pipeline and confirms

our ability to reliably recover lensing pa-

rameters when their second images are

sufficiently bright compared to the noise.

The average error in recovery of the rela-

tive magnification, �, is ∼ 23%.

The arrival time between the two images is vanishingly unlikely to be an

integer multiple of 1.25 ns. The result of this effect is to generate a sinc

response rather than a delta function and smear power over neighbouring

samples. This effect can be accounted for in future work by considering

these neighbouring samples, however for this current work, this effect

results in an average error of 13% in the recovery of �.

Finally, we see a decoherence within the sub-frame separate from the

previous effect related to the PFB and our inversion method. This is similar

to the previous effect, as it relates to the phase delay between the two

images on the scale of 2.56 µs rather than 1.25 ns. We can fully characterize

this response, which is periodic every 2.56 µs, by empirically modelling it

through simulations. We then correct it for both the simulations and the

data. After correcting for this effect, our recovery of � is limited by noise

variance (a < 10% error).

As a final note, this simulation framework is only meant to test our

search pipeline and understand our sensitivity to gravitational lensing

parameters in real noise environments. Additional astrophysical effects,

such as the spatial distribution of PBHs in the large-scale structure along

the line of sight, could be added in future work.
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Figure 8.9: Histogram of #gauss,i (see

Eq. 8.15), derived from the time-lag spec-

trum of simulated lensed FRBs injected

into real telescope noise. The #gauss,i val-

ues are aggregated over all lag bins 8, by
taking the largest statistical excursion in

each correlation time-lag bin 8 for all sim-

ulated events with successive veto con-

ditions applied. There exists a lensing

signature for every event. On-pulse data

(left) highlights the large tail resulting

from gravitational lensing. The off-pulse

data (right) highlights the false-positive

rate from noise. Conditions are defined

in Tab. 8.2. The red bin contains all ex-

cursions with #gauss ≤ 10
−12

that satisfy

both conditions.

8.7 Veto Conditions

In order to label an individual excursion as a gravitational lensing event,

it must stand out as an outlier among the excursion set. We impose four

conditions to quantify this, which we summarize in Table 8.2. Briefly, we

require that the lensing event not occur at a frame boundary (close to an

integer multiple of 2.56µs), that it is unlikely to be a noise fluctuation, and

that the FRB is detected in both the X and Y time-lag spectra and that they

experience similar magnification ratios.

First, as discussed in Sec. 8.12, we do not consider excursions that

are within 0.625 ns (set by CHIME’s Nyquist limit) of an integer multiple

of, 2.56µs (our “delay” condition). Those excursions are likely to be non-

astrophysical PFB inversion artifacts. If the largest excursion corresponds

to an integer multiple of a frame, we disregard it and consider the next

largest excursion.

Second, for each lag bin, we can quantify whether the largest excursion

is likely to be a noise fluctuation, and discard excursions attributable to

noise (our “significance” condition). Since "2
values from noise fluctuations

follow a "2
distribution with two degrees of freedom (e.g. Fig 8.3), we

calculate the probability of obtaining an excursion at least as large as the

largest within that lag bin (whose significance we refer to as "2

max,8
.

?8 = %("2 ≥ "2

max,8) = 1 −
∫ "2

max,8

0

3G 5 (G; 2)

= exp(−"2

max,8/2) ,
(8.14)

where 5 ("2
; 2) denotes the probability density function for a "2

random

variable with two degrees of freedom, and where ?8 is the probability we

would obtain our candidate excursion due to noise. To account for the trials

factor #8 , the total number of time-lags in bin 8, we multiply ?8 by #8 to

get #gauss,8 ,

#gauss,8 = ?8#8 , (8.15)

which may be interpreted as the answer to the question, “How many

excursions of size "2

max,8
or larger are expected from lag bin 8?” If #gauss,8
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is O(1), then it is probable that the largest excursion in that lag bin was a

noise fluctuation. However, if #gauss,8 � 1, then it is more likely that the

excursion does not originate from statistical fluctuations in the time-lag

spectrum.

We set a threshold of #gauss,8 < 10
−2

and expect 1 in 10
2
lag bins to

contain an excursion that passes this criterion purely due to statistical fluc-

tuations. The threshold is visible as the blue ellipses in e.g., Figs. 8.3, 8.4, 8.7.

A low threshold value of #gauss,8 means that a false positive is unexpected

when only a single lag bin is considered. As more lag bins are considered,

including those from other bursts, the number of false positives will in-

crease with this choice of threshold. The number of false positives can be

estimated by tracking the total number of excursions from every lag bin

and every burst that pass all our conditions using off-pulse data.

Condition Description

Delay � ∉ # × 2.56µs± 0.625 ns

where # ∈ ℤ
Significance ®� has #gauss,8 < 0.01 in its

lag bin

Polarization |�- − �. | within 99
th
per-

centile in its lag bin

Extended Data Table 8.2: Conditions for
a candidate excursion to be considered as

a potential lensing event. Conditions are

considered successively, with each step

acting only on excursions passing all pre-

vious conditions.

Third, in the absence of noise, we would expect that a gravitational

lens would affect the two polarizations in precisely the same way (our

“polarization” condition). Hence, we expect �- = �. ; in the presence of

noise there will be some discrepancy from perfectly equal flux ratios. We

therefore require that the burst be detected in both telescope polarizations,

that is, Γ- > 1 and Γ. > 1 (Eq. (8.6) in Sec. 8.3.1). Then, for each lag bin,

we compute the difference in relative magnification ratio between the two

polarizations and consider this condition satisfied if |�.(Ĉ)−�-(Ĉ)| is within

the 99
th
percentile of the noise fluctuations within its bin.

Graphically, the region that is not excluded is represented as the green

band in e.g. Figs. 8.3, 8.4, 8.7. This condition effectively disqualifies faint

bursts where the detection is marginal in one of the telescope polarizations.

While it is possible to incorrectly disqualify bright bursts which are coinci-

dentally polarized along the other telescope polarization, it is much more

likely that the observed burst is intrinsically dim. In this case, a possible

lensing event would be even fainter and hard to robustly validate.

The final possibility for a candidate, once instrumental noise and

diffractive scintillation are ruled out, is that the candidate is due to gravita-

tional lensing.

The time-lag spectrum values can be used to obtain upper limits on

impact parameters, H, and redshifted mass,"L(1+ IL). This information is

used in our separate analysis that provides upper limits on the cosmological

abundance of compact objects [109].
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8.8 Detecting Lensing

In Sec. 8.7, we established our conditions for the detection of a candidate

excursion in a single time-lag bin. In this section, we apply those conditions

to excursion sets from every FRB event in our dataset to search for lensing

in our sample. We aggregate the largest #gauss,8 values from every lag

bin from every FRB into a “global” distribution of excursions. With the

global distribution, we can consider two questions: “Is there a single bright

lensing event that is a distinct outlier from all excursions?” and “Does

there lie a distribution of faint lensing events within our search data that

we might detect as a statistical excess?”.

Figure 8.10: The distribution collecting

the smallest values of#gauss,8 (see Eq. 8.15)

observed (blue) in each time-lag bin for

172 FRB events. The most significant ex-

cursion in the global distribution of the

on-pulse dataset lies farther below the

threshold than the most significant ex-

cursion in the off-pulse dataset. On-pulse

data (left) havemore excursionswhich sur-

vive the vetoes than off-pulse data (right).

3.0 % of on-pulse excursions compared to

2.0 % of off-pulse excursions survive the

significance condition (orange hatched).

After applying all three conditions (green),

0.8 % of both on-pulse and off-pulse ex-

cursions remain (green filled). Note the

difference in x-axis scales from Fig. 8.9.

There are also no excursions with #gauss,8

smaller than the scale shown.

Our search set included all the FRB events with available beamformed

baseband data and therefore contains no selection bias other than that bias

imposed by which some events are given processing priority. In the future,

the pipeline will become automated such that all baseband events will

have time-lag correlation data available. For each of our 172 FRB events, we

collect the associated probability of obtaining the largest excursion, #gauss,8 ,

from every time-lag bin. In Fig. 8.10, we show a histogram of these #gauss,8

values compiled from our search. One value of #gauss,8 for each time lag

bin for each of the 172 FRB events makes a total of 1905 excursions: in the

on-pulse distribution (left) and 1861 in the off-pulse distribution (right).

The discrepancy comes from the inclusion of both positive and negative

time-lag bins; off-pulse time-lag spectra are taken before the burst’s arrival,

where no lensing is expected. Since bursts may arrive close to the start of

the data acquisition, there are on average fewer negative time-lag bins than

for on-pulse spectra.

If#gauss,8 � 1 (i.e. that the small chance occurrence probability is low),

the corresponding � value is larger. #gauss,8 , therefore, acts as an indicator

for the detection of a lensing signal. If there exists any lensing signals, faint

or bright, they can be detected by comparing the on-pulse to the off-pulse

distribution. Any excess in the on-pulse data might be due to lensed FRB

events.

In Fig. 8.11, we show the normalized cumulative distribution of#gauss,8

for both on-pulse (black) and off-pulse (blue) and compare to a distribution

228



created by sampling fromaGaussiandistribution and including all selection

effects of our pipeline (red). Our pipeline creates logarithmic time-lag bins

and then selects the statistical excursion within that bin. If we sampled

from Gaussian noise, we would observe the red distribution in this figure.

However, it can be seen that both the on- and off-pulse distributions are

not Gaussian in nature. The discrepancy originates from non-Gaussianity

present in the tail distribution of telescope data.We are sensitive in detecting

any non-Gaussian tail distributions, such as RFI for off-pulse data and RFI

and diffractive scintillation for on-pulse data. As the search is expanded to

more events, the tail distribution can be properly sampled, modelled, and

accounted for such that the significance threshold can be accurately set. For

this work, we refer only to the expected number of excursions assuming

Gaussian sampling, #gauss,8 and assert that this is a metric for evaluating

the distributions, enough though the numeric values for #gauss,8 would

have the correct overall normalization for Gaussian distributions only.

Figure 8.11:A normalized cumulative his-

togram of #gauss,8 (see Eq. 8.15), derived

from the time-lag spectrum of 172 FRB

events without any veto conditions ap-

plied (corresponding to the blue distribu-

tions seen in Fig. 8.10). The #gauss,8 values

are aggregated over all time-lag bins, i.

Gaussian (red) refers to sampling a Gaus-

sian distribution with the selection effects

imposed by our pipeline. We are biased

and sensitive to any tail distributions, as

that is where we can identify any lensing

signals. Our pipeline will also observe any

non-gaussianities, such as that from RFI

and diffractive scintillation, which would

cause deviations from the Gaussian expec-

tation and could explain what is seen here.

On-pulse (black) and off-pulse (blue) are

shown to be non-Gaussian in their distri-

bution of #gauss,8 .

In the global distribution, we can visualize the successive application

of the candidate selection criteria in Table 8.2 and the resulting candidates

that survive each condition. First, no excursion lies at an integer multiple of

2.56 µs (delay condition); these events are not shown. Next, the covariance

matrices G8 are calculated from the remaining excursions and the black

dashed line indicates which excursions (those with #gauss,8 < 0.01) are

classified as significant (significance condition). The orange hatched part

of the histogram labels excursions that have a corresponding #gauss,8 lower

than this threshold value of 0.01. This choice is arbitrary but our results are

insensitive to small changes in the threshold. This can be seen in Fig. 8.12,

where the cumulative global distributions are shown. There is a deviation

between the tails of the on-pulse and off-pulse distributions but it does not

lie near the chosen threshold. Finally, the green part of the histogram refers
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to excursions that additionally have a magnification ratio that is consistent

between the two polarizations (Polarization condition). After all conditions

are considered, we see a single outlier event. This is a systematic outlier

whose origin we discuss in Sec. 8.8.1. Hence, we exclude it from further

analysis of the global distribution.

To check whether the on-pulse and off-pulse data are consistent with

being drawn from the sameunderlying probability distribution,we perform

several two-sample Kolmogorov-Smirnov (KS) tests. When comparing the

two distributions with only the delay condition applied, the KS test statistic

is � = 0.075; the associated ?-value is ? = 3 × 10
−5
. If we consider

only those excursions meeting the delay and significance conditions with

#gauss,8 < 0.01 (orange hatched) we obtain � = 0.16 and ? = 0.52. When

applying the delay, significance, and polarization conditions (green filled),

we obtain � = 0.53 and ? = 0.026. Of these three cases, we reject the null

hypothesis — that the on-pulse distribution is the same as the off-pulse

distribution — in the first and the last case.

We find the cumulative fraction of statistically-significant off-pulse

events is 2.0%. For on-pulse events we find this is 3.0%. The lack of excess

events in the tail of the off-pulse data suggests these on-pulse excursions

are not related to instrumental effects. However, these outliers are not

consistent with the gravitational lensing hypothesis, as after all conditions

are applied the cumulative fraction for both data sets is effectively the

same (0.8%). The origin of the excess is likely diffractive scintillation, not

gravitational lensing.

Figure 8.12: Cumulative distribution of

expected number of excursions, #gauss,8

(see Eq. 8.15), observed for the largest

statistical excursion, collected from each

time-lag bin from all FRB events. After ap-

plying the significance condition (orange

hatched), the on-pulse data (left) has 3.0%

of excursions lying below the threshold

and off-pulse data (right) has 2.0% of ex-

cursions lying below the threshold. The

local significance threshold for every time-

lag bin was set at #gauss,8 = 0.01. After

applying the significance and polarization

conditions (green), the on-pulse data and

the off-pulse data both have effectively

0.8% of excursions that survive.

We also propagate the simulations of Sec. 8.6 forward to show how

the presence of lensing might distort the global distribution. The resulting

simulated on-pulse and off-pulse distributions of #gauss,8 are shown in the

left and right panels of Fig. 8.9 respectively. After all our conditions are

applied, the remaining excursions are shown in green.

In the first scenario, the most probable lensing candidate is the one

with the smallest #gauss,8 . Its significance can be assessed by comparing the

smallest#gauss,8 value from the on-pulse to that of the off-pulse distribution.

In the latter (many, faint lensing events) scenario, when the null hypothesis

is be rejected, it is possible that the excess of low-#gauss,8 events originates

from many faint gravitational lensing events.
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8.8.1 The Outlier Event

Figure 8.13: The time-lag spectrum of the

outlier event, FRB20190624B, (circled star)

from Sec. 8.8. The excursion was assigned

an inappropriate probability due to the

non-stationary noise environment within

the time-lag bin. The on-pulse correlation

structure, likely from scintillation, of this

burst extends to large time scales (bot-

tom). The logarithmic bin (top middle)

containing the excursion overlaps the end

of the correlation structure while still be-

ing noise dominated within the bin. Had

the bins been chosen such that the excur-

sion compared to the statistics of the -64

to -16 bin (top right), it would not be sig-

nificant. Hatched region contains data not

saved by the pipeline.

From the comparison of the two distributions of all time-lag bin

excursions, shown in Fig. 8.10, we found one excursion in the on-pulse

distribution that survives our three veto criteria. The excursion has #4G? ∼
10
−8
, many orders of magnitude lower than the most significant excursion

in the off-pulse distribution satisfying the same criteria (see green bars in

Fig. 8.10).

However, the excursion is unusual for several reasons. First, it appears

at a negative time lag. This is not expected in the point-mass lensing model,

where the fainter image generically arrives after the brighter image. Second,

its statistical significance as quantified by #exp is likely overestimated. This

is due to our fixed binning scheme combined with the time-lag spectrum

for this burst being unusually non-stationary. Upon inspection of the

on-pulse time-lag spectrum for this event, the outlier was revealed to

be a false positive because the time-lag spectrum for this FRB event is

highly non-stationary as a function of time-lag. Fig. 8.13 shows the excess

correlation in the on-pulse time-lag spectrum compared to the off-pulse

time-lag spectrum. The -256 to -64 ×2.56µs bin contains the outlier, which

is highlighted as the circled star in Fig. 8.13. In Fig. 8.13, it is clear that the

candidate is comparable to the structure seen in the -64 to -16 ×2.56µs

bin, but since the bin edge almost exactly coincides with the extent of the

structure in the time-lag spectrum, just enough structure leaks into the the

-256 to -64 ×2.56µs bin from the -64 to -16 ×2.56µs bin to generate a false
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positive but not enough to significantly modify the G8 for the latter bin.

This is a shortcoming of the pipeline, which assumes that the statistics

of the time-lag spectrum values only change slowly as a function of lag.

However, Fig. 8.13 shows that diffractive scintillation changes the statistics

within lag bins in a way that changes rapidly as a function of lag. We

emphasize that this event is not representative of our sample of FRBs. Only

two FRB events, FRB20190417C and FRB20190624B, which includes the one

shown here, in our sample exhibit this 0.1-ms-scale excess correlation; this

represents an edge case rather than the standard for all our FRB events. We

leave a more systematic treatment of time-lag dependent noise variance

for future work.

8.9 Final Remarks

In this paper, we have presented a phase-coherent search pipeline to detect

gravitational lensing of FRBs by compact objects of masses ∼ 10
−4

to

10
4"�. We have conducted a search in a sample of 172 FRBs observed

with CHIME. We have developed a comprehensive set of vetoes to classify

and flag possible gravitational lensing candidates. We found no significant

indications of a gravitational lensing signature for these events. Two bursts

in our sample show statistically-significant structures in their time-lag

spectra persistent in both telescope polarizations. One likely explanation

for this is diffractive scintillation, which has already been observed in some

FRBs [159, 341, 342]. A study of a handful of bursts exhibiting diffractive[159]: Masui et al. (2015), “Dense magne-

tized plasma associated with a fast radio

burst”

[341]: Macquart et al. (2019), “The Spectral

Properties of the Bright Fast Radio Burst

Population”

[342]: Schoen et al. (2021), “Scintillation

Timescales of Bright FRBs Detected by

CHIME/FRB”

scintillation with CHIME [342] has shown that the scintillation is largely

consistent with expectations from turbulent plasma in the Milky Way

as quantified by the NE2001 model [343]. This feature can be explained

by diffractive scintillation in that FRB. If the excess correlation is from

multi-path propagation through interstellar plasma it shows that many

FRBs maintain phase-coherence as they propagate to Earth. Future work

should characterize the feasibility of observing gravitational lensing even

in the presence of plasma-related multi-path propagation effects. In our

companion paper [109], we consider the constraints derived from our search

on primordial black holes along our line of sight. Together these papers

pioneer the use of coherent FRB lensing as a powerful cosmological tool.

8.10 Appendix: Correlation Algorithm

8.10.1 Time-lag Correlation

In this section, we derive the search algorithm and how the lensing signal

appears in the time-lag domain. Let us define the real-valued voltage

timestream, +(C), which contains the system noise, #(C), one FRB signal,

((C), and a gravitational image pair of the FRB signal, �((C − �),

+(C) = ((C) + �((C − �) + #(C). (8.16)
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We want to find the delayed echo of this FRB signal so let us construct

a matched filter,,(C), from the intensity profile of the burst,

,2(C) = :(2(C). (8.17)

Here we are considering the case where the FRB and its echo exist as

separate resolved images. We normalize,2(C) by choosing : such that the

weighted unlensed fluence of the FRB burst, �% , agrees with the fluence of

the burst in physical units.∫
3C,2

%(C)(
2

%(C) = �% . (8.18)

For the search, we seek to correlate the timestream with itself to find

the images. We can define the time-lag correlation as,

�′(Ĉ1 , Ĉ2) =
∫

3C+(C),(C − Ĉ1)+(C − Ĉ2),(C − Ĉ2). (8.19)

Here we create two templates to correlate,+(C− Ĉ2),(C− Ĉ2) and+(C),(C−
Ĉ1). We can change basis such that, C′ = C − Ĉ2,

�′(Ĉ1 , Ĉ2) =
∫

3C′+(C′ + Ĉ2),(C′ + Ĉ2 − Ĉ1)+(C′),(C′). (8.20)

Here we note the only non-zero contributions to this equation are when the

non-zero weights of,(C′) and,(C′+ Ĉ2− Ĉ1) overlap. We can then consider

Ĉ2 to span all possible time-lag values while Ĉ1 must be bound between

[Ĉ2 +), , Ĉ2 −), ], where ), is the filter width and any value outside these

bounds is exactly 0. For our search, however, it is not necessary to search

over two different time-lags, the other image will still be detected if we set

Ĉ2 = Ĉ1 and only have one time-lag Ĉ (which is bound between all possible

time-lags),

�′(Ĉ) =
∫

3C′+(C′ + Ĉ),2(C′)+(C′). (8.21)

Eq. 8.21 does not account for the noise variance such that, in the

time-lag domain, the noise is not stationary. This is an issue for the search

but is fixed by estimating the noise variance for every time-lag. If we

consider there to be two random variables, -1 = +(C′ + Ĉ),(C′), and,
-2 = +(C′),(C′), then the normalization of Eq. 8.21 is given by,

�(Ĉ) = �′(Ĉ)√
��2(Ĉ)

, (8.22)

where

��2(Ĉ) =
(∫

3C+2(C),2(C)
) (∫

3C+2(C + Ĉ),2(C)
)
. (8.23)

The two terms in Eq. 8.23 represent the variance as a function of time-lag for

random variables, -1 and -2. The term,

∫
3C+2(C),2(C), is a measurement
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of the variance of the quantity+(C),(C)while the term,

∫
3C+2(C+ Ĉ),2(C),

can be considered as a weighted rolling variance estimator. We can define

the time-lag correlation of the latter term as,

�2(Ĉ) =
∫

3C+2(C + Ĉ),2(C). (8.24)

and rewrite Eq. 8.23 as

��2(Ĉ) = �2(0)�2(Ĉ). (8.25)

Then the variance adjusted time-lag correlation is given by,

�(Ĉ) = �′(Ĉ)√
�2(0)�2(Ĉ)

, (8.26)

8.10.2 Observables in the time-lag domain

Before we compute terms, let us state the assumptions made for this search.

We assume the correlation between the signal and the system noise to

be negligible and the correlation between the system noise and itself to

also be negligible at non-zero time-lags. The system noise can correlate if

RFI is present, but we consider our RFI cleaning algorithims to remove all

significant correlating contributions. We will also focus on the case where

the two gravitational images exist as two images separated by a minimum

of the filter width.

Let us first consider the Ĉ = 0. Using equations, 8.21, 8.22, 8.25, and

8.16, we obtain

�(Ĉ = 0) =
∫
3C+2(C),2(C)∫
3C+2(C),2(C)

= 1. (8.27)

At the time-lag corresponding to the time delay between the gravita-

tional images, Ĉ = �, let us evaluate the components of Eq. 8.22 separately.

First, we use Eqs. 8.21, 8.16, and 8.18 to obtain

�′(Ĉ = �) = �

∫
3C(2(C),2(C) = ��, (8.28)

where all other terms are considered negligible; noise is assumed to not

correlate with the signal or other noise at non-zero time-lags. For the other

component in Eq. 8.22, we use equations 8.18, 8.16, and Eq. 8.25 to get

��2(Ĉ)(Ĉ = �) = (� + �2

# )(�
2� + �2

# ), (8.29)

where

�2

# =

∫
3C#2(C),2(C) =

∫
3C#2(C + �),2(C), (8.30)

as we assume the noise to be stationary. We can define a ratio, Γ, which is
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similar to a signal to noise ratio as,

Γ =
�

�2

#

. (8.31)

Then, the variance adjusted time-lag correlation, Eq. 8.22, at the lensing

delay is given by

�(Ĉ = �) = �Γ√
(Γ + 1)(�2Γ + 1)

. (8.32)

For our search algorithim, we compute the components of Eq. 8.22 sepa-

rately. Additionally, we can shift one of the voltage timestreams in Eq. 8.22

to region without any signal such that we only correlate the system noise,

defined as our off-pulse realization. We can compute Γ for every event

such that there is only one unknown and we can solve for the relative

magnification ratio,

�2 =
�(Ĉ = �)2(Γ + 1)

Γ2 − �(Ĉ = �)2Γ2 − �(Ĉ = �)2Γ
. (8.33)

8.11 Appendix: List of Bursts

All FRBs used in this search.We tabulate themeasured total DMof the burst,

as well as the expected DM contribution from theMilkyWay as determined

by the NE2001 electron-density model evaluated in the direction of the

FRB [343]. All DMs are given in units of pc cm
−3
. In [109], we use the [109]: Leung et al. (2022), “Constraining

Primordial Black Holes with Fast Radio

Burst Gravitational-Lens Interferometry”

fitburst DM, DMMW, and �scatt as inputs to our constraints on compact

objects. The total and NE2001 DM are used to infer the distance to each

FRB – a necessary ingredient to translate the results of this search into

constraints on compact darkmatter. In addition, we use �scatt to characterize

the plasma properties and any associated decoherence related to scattering

in the FRB’s host environment.

Burst Total DM

(pc cm
−3
)

DMNE2001

(pc cm
−3
)

�scatt

(ms)

FRB20190110C 222.08 36 0.28

FRB20190117A 393.22 48 2.22

FRB20190122C 689.97 30 < 0.1

FRB20190202B 464.88 70 0.08

FRB20190224D 752.89 55 0.01

FRB20190301A 459.79 82 2.08

FRB20190303B 193.50 47 1.61

FRB20190320B 489.51 38 0.08

FRB20190417C 320.28 123 0.57

FRB20190423D 496.68 67 5.16

FRB20190430C 400.41 102 0.04

FRB20190606A 552.65 32 1.60

FRB20190609A 316.71 58 12.13

FRB20190609C 479.87 113 0.31
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FRB20190621A 195.49 39 3.56

FRB20190624B 213.95 70 0.18

FRB20190625E 188.51 93 1.81

FRB20190628B 408.03 47 0.68

FRB20190708A 849.34 45 0.38

FRB20190712A 682.40 52 0.13

FRB20190715B 182.29 35 0.04

FRB20190722B 508.47 56 0.12

FRB20190804B 716.07 37 7.11

FRB20191018A 301.34 49 1.24

FRB20191020D 222.14 29 7.20

FRB20191024B 400.28 102 0.07

FRB20191025D 249.13 84 < 0.1

FRB20191029A 188.80 92 1.48

FRB20191104D 192.16 56 5.03

FRB20191106C 330.70 25 20.59

FRB20191107C 222.24 37 0.48

FRB20191113C 617.81 44 2.43

FRB20191114A 552.93 99 10.83

FRB20191116A 221.80 29 1.16

FRB20191215A 222.12 29 0.06

FRB20191219A 349.02 199 6.58

FRB20191219F 464.56 49 0.11

FRB20191223A 393.07 47 8.33

FRB20191223C 604.76 80 0.01

FRB20191225A 683.91 49 0.71

FRB20191231A 222.42 30 3.57

FRB20200104E 349.83 195 < 0.1

FRB20200109B 745.48 55 1.05

FRB20200112A 221.16 29 1.85

FRB20200112D 863.44 45 0.79

FRB20200118D 625.34 77 1.33

FRB20200120E 87.84 42 0.45

FRB20200120H 349.80 200 1.06

FRB20200122A 103.54 41 < 0.1

FRB20200122D 103.56 41 1.29

FRB20200122E 103.56 41 < 0.1

FRB20200122J 103.49 41 0.16

FRB20200124A 580.11 72 < 0.1

FRB20200127B 351.34 57 0.23

FRB20200128A 439.61 45 0.25

FRB20200203A 349.74 199 3.37

FRB20200204B 349.30 200 < 0.1

FRB20200204D 350.19 199 2.79

FRB20200204J 348.89 193 < 0.1

FRB20200204K 411.17 47 14.05

FRB20200207A 506.85 67 1.08

FRB20200212A 174.18 67 0.04

FRB20200219B 351.27 54 < 0.1

FRB20200220G 313.38 58 < 0.1
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FRB20200501A 469.51 51 6.56

FRB20200502A 412.10 47 1.78

FRB20200503B 674.19 51 7.12

FRB20200505B 760.81 37 0.34

FRB20200507A 166.92 51 0.44

FRB20200510A 290.92 40 0.09

FRB20200512A 349.63 104 7.17

FRB20200513A 349.20 104 1.64

FRB20200513B 579.72 72 3.12

FRB20200515A 523.26 43 14.48

FRB20200520B 351.41 54 0.19

FRB20200525A 471.35 38 0.34

FRB20200525C 339.63 34 0.36

FRB20200603B 295.08 42 2.68

FRB20200606A 723.34 47 8.22

FRB20200613A 348.95 104 0.63

FRB20200614A 348.79 104 1.27

FRB20200617A 475.73 61 1.18

FRB20200621C 364.26 34 4.77

FRB20200622A 223.01 29 11.21

FRB20200629C 363.79 43 0.64

FRB20200701A 625.23 77 0.23

FRB20200702C 201.28 46 5.41

FRB20200707A 218.04 84 0.07

FRB20200709C 363.56 43 1.75

FRB20200717A 337.98 135 1.27

FRB20200725B 302.35 50 1.39

FRB20200809G 221.85 29 2.75

FRB20200813D 190.80 53 0.03

FRB20200909A 221.22 29 < 0.1

FRB20200917A 883.48 74 0.73

FRB20200918A 314.44 26 0.12

FRB20200921A 465.25 31 0.23

FRB20200921B 1582.12 129 0.77

FRB20200930A 851.58 49 0.27

FRB20201008A 290.26 109 1.29

FRB20201015B 173.79 55 0.82

FRB20201017A 773.68 78 2.29

FRB20201030B 479.80 114 0.33

FRB20201031B 819.71 21 2.75

FRB20201125B 413.71 38 < 0.1

FRB20201128D 157.88 38 < 0.1

FRB20201129A 87.86 42 0.28

FRB20201203C 413.50 38 7.23

FRB20201204D 364.25 34 4.95

FRB20201205B 552.46 174 0.90

FRB20201219A 322.20 38 4.09

FRB20201225B 362.74 43 0.87

FRB20201225D 287.96 57 5.37

FRB20201228A 362.91 43 3.37
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FRB20201230B 256.13 144 0.05

FRB20210104B 1236.69 22 < 0.1

FRB20210105G 288.02 57 2.48

FRB20210111E 349.29 104 1.13

FRB20210113C 176.85 57 1.78

FRB20210114B 288.48 57 0.47

FRB20210115C 200.91 46 2.34

FRB20210117E 289.61 57 5.56

FRB20210118B 288.24 57 9.94

FRB20210119B 440.43 29 < 0.1

FRB20210122B 369.78 44 0.83

FRB20210127E 348.88 104 2.61

FRB20210130H 349.98 104 49.46

FRB20210130I 349.47 104 13.75

FRB20210131A 349.35 104 1.18

FRB20210203B 579.94 72 < 0.1

FRB20210203C 221.65 29 0.16

FRB20210206A 361.32 191 0.75

FRB20210207A 221.87 29 4.97

FRB20210209B 222.19 29 2.17

FRB20210209C 382.35 29 < 0.1

FRB20210211B 1090.02 76 4.46

FRB20210213A 482.40 46 0.05

FRB20210216B 301.50 50 < 0.1

FRB20210223A 531.01 43 0.99

FRB20210302A 349.44 104 5.85

FRB20210302C 221.32 29 2.60

FRB20210303B 349.26 104 < 0.1

FRB20210303F 510.06 51 4.41

FRB20210304A 348.90 104 < 0.1

FRB20210309D 134.07 32 0.50

FRB20210310A 135.50 20 1.55

FRB20210313B 414.00 38 1.59

FRB20210314A 413.72 38 < 0.1

FRB20210326B 413.82 38 < 0.1

FRB20210327A 415.92 140 15.40

FRB20210331A 417.48 140 11.61

FRB20210331C 414.66 149 14.13

FRB20210331D 415.19 140 11.17

FRB20210402B 349.86 193 < 0.1

FRB20210410C 301.97 50 0.74

FRB20210421E 87.76 42 0.24

FRB20210430G 87.76 41 0.14

FRB20210521C 349.11 104 3.67

FRB20210523A 348.84 199 1.65

FRB20210523C 532.14 41 0.87

FRB20210526B 382.39 29 4.57

FRB20210526D 411.86 131 10.66

FRB20210610B 694.91 50 < 0.1

FRB20210610C 876.40 21 6.72
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FRB20210612B 579.88 72 262.75

FRB20210624A 413.49 38 1.00

FRB20210625A 349.18 104 0.54

FRB20210711A 349.33 199 < 0.1

FRB20210712A 348.85 104 0.01

FRB20210810C 694.33 50 < 0.1

FRB20210814B 349.07 104 < 0.1

FRB20210814C 348.89 104 < 0.1

8.12 Appendix: Polyphase Filterbank

In this section, we will outline and formalize the PFB, whose main goal is to

reduce the spectral leakage when performing a Fast Fourier Transform. We

will formalize the PFB as a series of linear operators. The basic operations of

the PFB turn the voltages measured by the antennas into what is commonly

referred to as the wavefield, or simply as baseband data.

We start with our voltage timestream, v, which is sampled at a rate of

1.25 ns for CHIME. In general, a polyphase filterbank is constructed with

a number of taps, , where each tap takes an input of # samples from v.
For CHIME  = 4 and # = 2048. Each tap multiplies a set coefficient to

the input value. We refer to these filter coefficients as the PFB coeffients.

They are obtained from a pre-determined window function, which is a

sinc-hamming window for CHIME. The outputs from all four taps are

averaged together to produce an output of size # which we refer to as a

frame. The frame is Fourier transformed to produce a single frame of the

dynamic spectrum. Each frame is 2.56 µs in width. The process repeats

after the voltage timestream has shifted # samples, i.e., a shift of exactly

one frame. It is important to note that there is no reduction in the total

amount of data. Each output frame contains information from all four

input frames and all input frames are used four times, once for each tap.

We can represent each tap as a square matrix, W(i). The matrix has #

diagonal elements which are the PFB coefficients for that tap.

W(i) =

©«
,
(8)
1

0 · · · 0

0

. . .
. . .

...
...

. . .
. . . 0

0 · · · 0 ,
(8)
#

ª®®®®®®¬
; 8 ∈ [1, ] (8.34)

To consider how all  taps are averaged and how the PFB samples

every # samples we can construct the PFB projection matrix P which is a

band block diagonal Toeplitz matrix.
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P =

©«

W(1) · · · W() 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . . W()

...
. . .

. . .
. . .

. . .
...

0 · · · · · · · · · 0 W(1)

ª®®®®®®®®®®®®®®®¬

(8.35)

The application of the discrete Fourier transform per frame can be thought

of as the block diagonal matrix F where F(N) represents a discrete fourier
transform the size of a frame, # .

F(N) =

©«
F(N) 0 · · · 0

0

. . .
. . .

...
...

. . .
. . . 0

0 · · · 0 F(N)

ª®®®®®®¬
(8.36)

Then all the linear operators applied to a timestream can be thought

of as

V(:, ;) = F · P · V(<) . (8.37)

It is apparent that the PFB, by construction, introduces instrumental

correlations in the neighbouring two frames. These are instrumental cor-

relations that should appear at time delays of ±2.56 �B and ±2 × 2.56 �B.
When conducting the lensing search, we therefore seek to invert the PFB

to remove these systematic correlations and turn the beamformed and

coherently dedispersed dynamic spectrum back into a singular voltage

timestream sampling at 1.25 ns.

With Eq. 8.37, one can invert the PFB by solving the equation. There

does exist a problem in trying to solve this equation; while F is an invertible

matrix, P is not. P takes four frames of information to produce one and

there is not enough information in the channelized frame to invert this. One

approach to account for this issue is to use circulant or periodic boundaries.

8.12.1 Circulant Polyphase Filterbank Inversion

The main idea with circulant PFB inversion is to fill in the missing infor-

mation with the opposite ends of the dataset, making the whole dataset

cyclic or periodic, and by doing so having the eigenvectors of the PFB

be approximated by Fourier modes such that a Fourier transform would

diagonalize the circulant matrix and form the eigenbasis where we can
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invert the PFB from our dataset. Our circulant PFB matrix is Pc which for

 = 4 is:

Pc =

©«

W(1) · · · W() 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . . W()

W()
. . .

. . .
. . .

. . . W(−1)

...
. . .

. . .
. . .

. . .
...

W(2) · · · W() · · · 0 W(1)

ª®®®®®®®®®®®®®®®®®®¬

. (8.38)

This should work well for constructing an inverse assuming the noise

in the timestream is stochastically similar at both ends.

Next, we show how a Fourier transform diagonalizes the matrix Pc.

We define the circulant shift matrix C of size " ×", where " is the total

number of frames in the recorded dataset,

C =

©«

0 1 0 · · · · · · · · · · · · 0

0 0 1 0 · · · · · · · · · 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

...
. . .

. . . 1 0

0 · · · · · · · · · · · · 0 0 1

1 0 · · · · · · · · · · · · · · · 0

ª®®®®®®®®®®®®®®®®¬

. (8.39)

Then we can construct Pc as

Pc =
∑
8=1

(C)8−1 ⊗W(i) . (8.40)

Here ⊗ is the kronecker product that separates the dimensions of the

frames and the sub frames, (C)8−1
is the circulant shift matrix taken to the

power of 8 − 1, and W(i) is the corresponding 8-th tap.

The circulant shift matrices all share the same eigenvectors–complex

exponentials. The DFT matrix F(M), encoding a Fourier transform over the

frame axis, diagonalizes (C)8−1
. Then we can define

F′ = F(M) ⊗ 1 , (8.41)

where F′ represents the fourier transform over the frame axis for our dataset

with" representing the total number of frames.
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Starting from

Pc = F′−1F′(
∑
8=1

(C)8−1 ⊗W(i))F′−1F′ , (8.42)

we can find the circulant PFB is diagonalized as

Pc,d =
∑
8=1

(4−2�9 (8−1)
" 1) ⊗W(i) . (8.43)

Since W(i) is also diagonal and the kronecker product of two diagonal

matrices is a diagonal matrix, Pc can be diagonalized by F′ where the

diagonalized matrix is Pc,d. From this, we can invert the PFB by

vrec = F′−1 · (F′ · Pc · F′−1)−1 · F′ · vpfb . (8.44)

With Eq. 8.44, we have established a procedure to invert the PFB and

recover the voltage timestream from the baseband dump data at the system

sampling rate of CHIME. We are now able to search for gravitational time

delays at time resolutions of 1.25 ns and we have removed the PFB induced

correlations in our system.
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9.1 Abstract and Statement of Contribution

We describe a pipeline to measure scintillation in fast radio bursts (FRBs)

detected by CHIME/FRB in the 400-800 MHz band by analyzing the

frequency structure of the FRB’s spectrum. We use the pipeline to measure

the characteristic frequency bandwidths of scintillation between 4−100 kHz

in 12 FRBs corresponding to timescales of ∼2-40 �s for 10 FRBs detected by

CHIME/FRB. For the other two FRBs, we did not detect scintillation in the

region our analysis is sensitive. We compared the measured scintillation

timescales to the NE2001 predictions for the scintillation timescales from

the Milky Way. We find a strong correlation to be an indication that in most

instances, the observed scintillation of FRBs can be explained by the Milky

Way.

For this paper, my undergraduate thesis student Eve Schoen per-

formed all the analysis under my guidance. I designed the pipeline, and

wrote pre-processing code to clean the data for Eve, who wrote the code

measuring scintillation bandwidths and fitting power laws to the frequency

dependence. I wrote the entire paper, which appeared in the (un-refereed)

Research Notes of the American Astronomical Society (RNAAS). The

author list of this paper is:

Eve Schoen, Calvin Leung, Kiyoshi Masui, Daniele Michilli, Pragya

Chawla, Aaron B. Pearlman, Kaitlyn Shin, Ashley Stock.

9.2 Introduction

FRBs are a newclass of extragalacticmillisecond-duration radio transients [1,

344]. The unique design of the Canadian Hydrogen Intensity Mapping [1]: Lorimer et al. (2007), “A Bright Mil-

lisecond Radio Burst of Extragalactic Ori-

gin”

[344]: Petroff et al. (2019), “Fast radio

bursts”

Experiment (CHIME) has enabled CHIME/FRB [26] to advance the study

[26]: CHIME/FRB Collaboration et al.

(2018), “The CHIME Fast Radio Burst

Project: System Overview”

of FRBs as a population [47]. However, many key aspects of FRBs, including

[47]: The CHIME/FRB Collaboration et al.

(2021), “The First CHIME/FRB Fast Radio

Burst Catalog”

their host galaxies and progenitors, remain unclear.

Plasma lensing is a potent probe of the FRB’s host galaxy, the Milky

Way, and even the host environment of the FRB. Radio waves stochasti-

cally interfere as they propagate through inhomogeneities in a plasma,

introducing a characteristic plasma lensing timescale into radio emission.

Plasma lensing is readily detectable in fast radio transients, e.g. pulsars

and FRBs, and the measured timescale is sensitive to the lensing geometry

and plasma properties. Depending on whether the characteristic timescale

is longer or shorter than the instrumental time resolution (≈ 100µs for

CHIME/FRB), plasma lensing is observable in radio transients as either

temporal pulse broadening (“scattering”) with timescale � or as banded

structures in the spectrum of the signal (“scintillation”) on a characteristic
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scale called the decorrelation bandwidth, hereafter called �32 . In this work

we present measurements of decorrelation bandwidths from a sample of

bright FRBs using baseband data collected by CHIME/FRB [38].[38]: Michilli et al. (2020), “An analysis

pipeline for CHIME/FRB full-array base-

band data”

9.3 Selection Criteria

We selected 15 bright FRBs, three of which are taken from the CHIME/FRB

catalog, with the criteria that their signal-to-noise ratio as measured in a

dynamic spectrum by fitburst, a CHIME/FRB burst fitting script, was

above 70 [47]. We included 9 bursts from apparently non-repeating FRBs[47]: The CHIME/FRB Collaboration et al.

(2021), “The First CHIME/FRB Fast Radio

Burst Catalog”

and 3 bursts from FRBs sources observed to repeat. Of the bursts in our

sample, 4 have scattering tails reported to be shorter than 100µs—the

shortest scattering tail to which fitburst is sensitive.

9.4 Scintillation Pipeline

To measure the short (. 100µs) characteristic timescales in FRBs, it is possi-

ble tomeasure �32 by studying the fine-scale structure of the FRB’s spectrum.

Our pipeline uses beamformed voltage data from the CHIME/FRB base-

band system [38]. It rechannelizes baseband data to high spectral resolution

(24 kHz), calculates a spectrum, autocorrelates them, and fits a function to

find the decorrelation bandwidth. To do this, we coherently de-dispersed

each FRB to the dispersion measure (DM) that maximizes the height of

the pulse peak when summed over the 400 MHz bandwidth. Next, the

time window region where the FRB is present (the on-region henceforth)

is selected. Frequency channels with radio frequency interference (RFI)

are masked so that they do not contaminate the spectral structure of the

FRB. Finally, we decreased the time resolution and increased the frequency

resolution of the spectra by a factor of 16 (to 24 kHz resolution) by Fourier

transforming each frequency channel along the time axis. We square the

voltage data to obtain flux units, and then integrate over the time duration

of the FRB. We also sum both telescope polarizations to suppress the

contaminating effect of Faraday rotation on our signal.

To characterize statistical noise in our data, this process is repeated

for regions of noise before and after the FRB signal (off-pulse regions) of

the same duration as the FRB. We estimate the system temperature of the

telescope by subtracting the mean of ∼ 50 off-pulse spectra (〈(off(�)〉) from
the on-pulse spectrum ((on(�)). In addition, we perform a second round of

RFI cleaning by removing 3� outliers in the average of all off-pulse spectra.

Then we fit a spline to ((on(�) − 〈(off(�)〉) to create a smoothed spec-

trum, (̄(�). We divide by the smoothed spectrum to remove slowly-varying

(& 7 MHz) frequency structures present in the FRB and spectral structures

from the telescope’s primary beam. The spline has knots separated by 7

MHz, restricting the parameter space to scintillation bandwidths signif-

icantly smaller than that. Nevertheless, fine frequency structure due to
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& microsecond-scale Galactic scintillation is still present in the combina-

tion �on(�) =
(on(�) − 〈(off(�)〉

(̄(�)
− 1. To detect scintillation we calculate

the frequency autocorrelation functions (ACFs) of �on(�) at high spectral

resolution over CHIME’s operating range of 400-800 MHz. We define the

ACF at frequency channel lag Δ� as r(Δ�)where:

r(Δ�) = 1

#

∑
�

�(�)�(� + Δ�). (9.1)

The sum runs over the # pairs of points in the spectrum, indexed by �,
which are not flagged as RFI or zeroed out for other reasons. In addition to

correlating �on, the ACF is performed on several of the off-pulse spectra

by defining (̄
smooth/off

(�) as the smoothed version of (off(�) and �off(�) =
((off(�)/(̄smooth/off

(�)) − 1 for visual comparison.

9.5 Scintillation Bandwidth Analysis

To measure the frequency dependence of �32 , the ACF is computed in

40 MHz-wide subbands spanning the full 400 − 800 MHz bandwidth of

CHIME. The ACFs from each subband are shown in Fig. 9.1 for an FRB

which exhibits scintillation. To measure �32 for each subband, we fit to the

data the following model as in [159]: [159]: Masui et al. (2015), “Dense magne-

tized plasma associated with a fast radio

burst”r(Δ�) = <(
�32

1 MHz

)
2

+
(
Δ�

1 MHz

)
2

. (9.2)

Figure 9.1: The ACF of an FRB that ex-

hibits scintillation. For each sub-band, we

have offset the y-axis by 0.2.

The modulation index < can be interpreted as the contrast between

bright and dark scintles, where < = 1 corresponds to complete construc-

tive/destructive interference in bright/dark scintles, and < = 0 corre-

sponds to the absence of scintillation. If scintillation is the source of the
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observed frequency-domain correlations, the decorrelation bandwidth �32
is expected to follow a frequency-dependent power law:

�32(�) ∝
(

�
600 MHz

)
. (9.3)

TheMilkyWay exhibits density fluctuations consistent with the predictions

of turbulence, in which  ≈ 4. Fig. 9.2 shows the power law scaling (Eq. 9.3)

of the �32 from each subband shown on the left. This value of  is also used

to scale the NE2001 predictions for scintillation at 1 GHz to our central

frequency (600 MHz).

Figure 9.2: An example of a power-law

fit to the decorrelation bandwidths mea-

sured in each sub-band.

9.6 Results and Discussion

We have developed a pipeline to measure scintillation timescales for a

sample of 12 FRBs using CHIME/FRB baseband data. For bursts without

a measured scattering tail, our measurements constrain the total line-of-

sight plasma inhomogeneities for that FRB. In other cases where there

is a pulse broadening timescale, the decorrelation bandwidth defines a

second characteristic timescale. For these bursts, we plot in Fig. 9.3 the

shortest scattering timescale (measured as scintillation) against the NE2001

prediction for the Galactic scintillation timescale. We predict this timescale

using

� = �1/(2��32) (9.4)

where, under the assumption of Gaussian turbulence in the ISM, �1 =

1 [157]. The near one-to-one correlation suggests that the Milky Way[157]: Cordes et al. (2002), “NE2001.I. A

New Model for the Galactic Distribution

of Free Electrons and its Fluctuations”

accounts for most of the scintillation observed in this sample of FRBs.
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Figure 9.3: The empirical distribution

of scintillation timescales compared to

NE2001 predictions. The gray line is the

H = G line. Green arrows represent up-

per/lower limits on scintillation based on

non-measurement of scintillation in this

analysis and upper limits based on the

non-observation of a scattering tail. This

supports the interpretation of short scat-

tering timescales in FRBs as originating

from the Milky Way [159].
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10.1 Abstract and Statement of Contribution

Fast radio bursts (FRBs) represent an exciting frontier in the study of

gravitational lensing, due to their brightness, extragalactic nature, and

the compact, coherent characteristics of their emission. In a companion

work (Chapter 8 of this thesis), we use a novel interferometric method to

search for gravitationally lensed FRBs in the time domain using bursts

detected byCHIME/FRB. There,we dechannelize and autocorrelate electric

field data at a time resolution of 1.25 ns. This enables a search for FRBs

whose emission is coherently deflected by gravitational lensing around a

foreground compact object such as a primordial black hole (PBH). Here, we

use our non-detection of lensed FRBs to place novel constraints on the PBH

abundance outside the Local Group. We use a novel two-screen model to

take into account decoherence from scattering screens in our constraints.

Our constraints are subject to a single astrophysical model parameter –

the effective distance between an FRB source and the scattering screen,

for which we adopt a fiducial distance of 1 pc. We find that coherent FRB

lensing is a sensitive probe of sub-solar mass compact objects. Having

observed no lenses in 172 bursts from 114 independent sightlines through

the cosmic web, we constrain the fraction of dark matter made of compact

objects, such as PBHs, to be 5 . 0.8, if their masses are ∼ 10
−3"�.

For this paper, I developed the codewhich processed the autocorrelator

output of the coherent lensing search pipeline. This code implemented the

normalization and calculated the angular sizes of all the FRBs involved

on the basis of their scattering timescale. I wrote down the two-screen

model for the propagation effects at work in a lensed FRB system, and

used it to calculate and quantify the relevant optical depth to lensing on a

burst-by-burst basis. Finally, I wrote the entire paper. The author list of this

paper as it appears in Physical Review D is as follows:

Calvin Leung, Zarif Kader, Kiyoshi W. Masui, Matt Dobbs, Daniele C. L. and Z. K. contributed equally to this

work.
Michilli, Juan Mena-Parra, Ryan Mckinven, Cherry Ng, Kevin Bandura,

Mohit Bhardwaj, Charanjot Brar, Tomas Cassanelli, Pragya Chawla, Fengqiu

Adam Dong, Deborah Good, Victoria Kaspi, Adam E. Lanman, Hsiu-Hsien

Lin, Bradley W. Meyers, Aaron B. Pearlman, Ue-Li Pen, Emily Petroff,

Ziggy Pleunis, Masoud Rafiei-Ravandi, Mubdi Rahman, Pranav Sanghavi,

Paul Scholz, Kaitlyn Shin, Seth Siegel, Kendrick M. Smith, Ingrid Stairs,

Shriharsh P. Tendulkar, Keith Vanderlinde, Dallas Wulf.

10.2 Introduction

Gravitational lensing occurs when spatially-inhomogeneous distributions

of mass perturb spacetime and allow the light from background sources to
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take multiple paths on their way to the observer. Since serving as one of the

first historic confirmations of general relativity [345], gravitational lensing[345]: Dyson et al. (1920), “A Determi-

nation of the Deflection of Light by the

Sun’s Gravitational Field, from Observa-

tions Made at the Total Eclipse of May 29,

1919”

has become firmly established as a powerful tool for astrophysics and

cosmology. It has been used to measure the mass of galaxy clusters [346–

348], to probe the substructure of dark matter halos [349, 350], and as

an independent probe of �0 with time-delay cosmography [351, 352].

Using large, time-domain surveys, the frontier in gravitational lensing has

turned to searching for lensed transients such as supernovae [208, 353,

354], gamma-ray bursts (GRBs) [339, 355–357], gravitational waves [226,

358], and fast radio bursts (FRBs) [104, 106, 336, 359, 360]. These searches[104]: Muñoz et al. (2016), “Lensing of Fast

Radio Bursts as a Probe of Compact Dark

Matter”

[106]: Sammons et al. (2020), “First Con-

straints on Compact Dark Matter from

Fast Radio Burst Microstructure”

[336]: Li et al. (2018), “Strongly lensed

repeating fast radio bursts as precision

probes of the universe”

[359]: Farah et al. (2018), “FRB microstruc-

ture revealed by the real-time detection of

FRB170827”

[360]: Day et al. (2020), “High time res-

olution and polarization properties of

ASKAP-localized fast radio bursts”

can yield robust constraints on the abundance of dark compact objects such

as primordial black holes (PBHs) [104, 323, 324, 361].

[104]: Muñoz et al. (2016), “Lensing of Fast

Radio Bursts as a Probe of Compact Dark

Matter”

[323]: Carr et al. (2020), “Primordial Black

Holes as Dark Matter: Recent Develop-

ments”

[324]: Green et al. (2021), “Primordial

black holes as a dark matter candidate”

[361]: Mao (2012), “Astrophysical applica-

tions of gravitational microlensing”

PBHs may make up a large fraction of the dark matter, and could offer

new observational handles on early-universe inflationary physics [323,

324]. However they are notoriously difficult to probe since their mass

function is unknown and can span many orders of magnitude depending

on their formation and evolution history. One recent constraint on sub-solar

mass PBHs comes from the observation of an optical microlensing event

towards M31 [362]. While these constraints are stringent, they apply only

to PBHs along the line of sight towards M31. To constrain the cosmological

abundance of PBHs, more distant backlights must be used. The lack of

microlensed Type Ia supernovae in the local Universe implies that if

the PBH dark matter has a mass function peaked at some central mass

10
−2"� . "2 . 10

4"� , the fraction of dark matter within compact lenses

at low redshifts can be constrained to be 5 < 0.35 [354].

[354]: Zumalacárregui et al. (2018), “Lim-

its on Stellar-Mass Compact Objects as

Dark Matter from Gravitational Lensing

of Type Ia Supernovae”

In thiswork,weanalyze and interpret the results of a novel timedomain

search for lensed FRBs in a sample of bursts detected by the CHIME/FRB

experiment [26, 47]. FRBs [1, 325, 344] are millisecond-duration radio

transients whose brightness, compactness, and all-sky rate of ∼ 10
4
Gpc

−3

yr
−1

[105, 325, 363, 364] make them outstanding backlights for time-domain

[105]: Oguri (2019), “Strong gravitational

lensing of explosive transients”

[325]: Cordes et al. (2019), “Fast Radio

Bursts: An Extragalactic Enigma”

[363]: Lu et al. (2019), “Implications from

ASKAP Fast Radio Burst Statistics”

[364]: Ravi (2019), “The prevalence of re-

peating fast radio bursts”

lensing science.

Time-domain lensing searches typically look for multi-peak light

curves which arise from different lensing time delays and different magni-

fication ratios between images. Perhaps the most difficult question in any

time-domain search for lensed transients [339, 365–368] is: How can tem-

poral structure in transient light curves induced by gravitational lensing be

conclusively distinguished from intrinsically complex temporal structures?

In past searches, detailed statistical analysis of transient morphology in

multiple observing bands is often used to answer this question.

In our search we apply a coherent correlation algorithm, detailed

in a companion work [108], which breaks the degeneracy between pulse[108]: Kader (2022), “A High Time Resolu-

tion Search forGravitationally Lensed Fast

Radio Bursts using the CHIME telescope”

morphology and gravitational lensing. This uses the fact that gravitational

lensing coherently applies a delay between the two images, a measurable

effect in the wave field domain. Our coherent correlation algorithm is

similar to that used in very long baseline interferometry, which relies on the

presence of phase-preserving records of electric fielddata (hereafter referred

to as “baseband data”). We refer to this technique as FRB gravitational-

lens interferometry. In our search we dechannelize CHIME/FRB electric
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field data and autocorrelate it to search for coherently-delayed copies

of the same signal. Using electric field rather than intensity information

improves time-lag resolution from the variability timescale of the transient

(milliseconds) to the Nyquist limit of the telescope (nanoseconds). This

improves our ability to probe low-mass objects by orders of magnitude. Our

coherent search method improves sensitivity to fainter images compared

to incoherent methods, and gives access to shorter delay timescales (lower

mass scales). This complements the incoherent method of previous works

based on the intensity light curves [104, 106]. This allows us to constrain [104]: Muñoz et al. (2016), “Lensing of Fast

Radio Bursts as a Probe of Compact Dark

Matter”

[106]: Sammons et al. (2020), “First Con-

straints on Compact Dark Matter from

Fast Radio Burst Microstructure”

lensing delays of 10
−9 − 10

−1
sec, corresponding to PBHs in the mass range

of 10
−4−10

4"� . These coherent techniques open up the exciting possibility

for high time-resolution studies of FRB sources, observation of wave-optical

effects in gravitational lensing [132, 219, 226], and even so-called “real-time”

[132]: Katz et al. (2020), “Looking for MA-

CHOs in the spectra of fast radio bursts”

[219]: Jow et al. (2020), “Wave effects in

the microlensing of pulsars and FRBs by

point masses”

[226]: Nakamura (1998), “Gravitational

Lensing of Gravitational Waves from In-

spiraling Binaries by a Point Mass Lens”

cosmology [107, 326, 338, 369].

[107]: Wucknitz et al. (2021), “Cosmology

with gravitationally lensed repeating fast

radio bursts”

[326]: Eichler (2017), “Nanolensed Fast Ra-

dio Bursts”

[338]: Pearson et al. (2020), “Searching for

GravitationalWaveswith Strongly Lensed

Repeating Fast Radio Bursts”

[369]: Zitrin et al. (2018), “Observing Cos-

mological Processes in Real Time with

Repeating Fast Radio Bursts”

10.3 Search Description

The sensitivity of any microlensing search can be characterized by calculat-

ing the expected number of lensing events for given survey parameters.

The observed number of lensing events, :, is connected to the theoretical

lensing rate �, through Poisson statistics. The traditional formalism for

calculating � (also known as the lensing optical depth) was developed

for optical microlensing surveys [366, 370–372]. We briefly review the

[366]: Paczynski (1987), “Gravitational Mi-

crolensing and Gamma-Ray Bursts”

[370]: Paczynski (1986), “Gravitational Mi-

crolensing by the Galactic Halo”

[371]: Griest (1991), “GalacticMicrolensing

as a Method of Detecting Massive Com-

pact Halo Objects”

[372]: Griest et al. (1991), “Gravitational

Microlensing as a Method of Detecting

Disk Dark Matter and Faint Disk Stars”

traditional formalism and show how we extend it to handle a detailed

description of the sensitivity of our time-domain search.

Traditionally, three numbers quantify the sensitivity of a survey to grav-

itational lensing: the minimum and maximum delay timescales �min , �max

for which the survey is sensitive, as well as the minimum detectable flux

magnification ratio between the two images. Early work on FRB lensing

adapted this formalism for parameterizing time-domain surveys [104, 106,

321]. �min is typically set to the variability timescale of the transient, and

�max is taken to be the maximum lensing delay detectable in a given search

(often the duration of data capture).

For a lens to be detectable by a given search, the lensing delay must fall

between �min and �max, and the double image must be sufficiently bright

to be detected. The latter criterion is typically written as a constraint on

what flux ratios are detectable. If the flux ratio (often denoted �) is taken
by convention to be greater than 1 as in [104, 321], the flux criterion is

written as 1 < � < �max for some specified choice of �max. For example, some

works [104, 321] assume that lensing events are detectable when the dimmer

image is no more than 5 times dimmer than the main image, requiring that

1 < � < �max = 5. A more realistic criteria is that 1 < � < �max = 1/3×S/N,

where S/N refers to the signal-to-noise ratio at which the burst can be

detected in autocorrelation [106]. This captures the fact that for a brighter

burst, images with fainter flux ratios may be detected.

In our coherent search [108], we depart from this convention in two

ways. First, we refer to the ratio of the wavefield amplitudes between the two
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images as �, and the corresponding flux ratio as �2
. Second, we take the

reciprocal convention where the smaller of the two amplitudes is in the

numerator. All of our flux ratios are therefore less than 1. In this convention,

the search sensitivity can be expressed in the form �2

m8=
< �2 < 1. Our

search parameterizes the search sensitivity in a more detailed way than

previous works. Instead of assuming a constant threshold �2

min
, we allow

the threshold to vary as a function of delay: �2

min
(�) < �2 < 1, where � is

the trial delay over which we search for lenses. The motivation for this

parameterization comes from our novel search algorithm, which measures

�2

min
(�).

10.3.1 Search Data Products

We briefly review the details of our search algorithm here but refer the

reader to [108] for an in-depth discussion. The input data to the search is[108]: Kader (2022), “A High Time Resolu-

tion Search forGravitationally Lensed Fast

Radio Bursts using the CHIME telescope”

channelized baseband data, produced by forming a voltage beam towards

the best-fit sky position of the source [38]. We measure the time-lag

autocorrelation function (ACF) of the FRB by combining the baseband

data from 1024 frequency channels, each with a time resolution of 2.56µs,

into a single voltage time stream +%(C) with a time resolution of 1.25 ns

independently for the two polarizations of our telescope (% = -,.). +-(C)
and +.(C) represent the electric field projected onto the two telescope

polarizations. Then, each timestream is windowed by multiplying it by a

function,2

%
(C) ∝ S/NP(C), where S/NP[C] is proportional to the normalized

flux of the burst as detected in each telescope polarization over time [57].

We search for echoes by time-lag correlating the product,2

%
(C)+%(C) against

+%(C), shifted by many (∼ 10
8
) trial delays �. This yields two ACFs: �-(�)

and �.(�), which are converted into measurements of �-(�) and �.(�)
(see Appendix C of [108]). In � units, we measure �2

min
(�) as follows. We

define �%(�) as the mean of �(�), measured when the pulse is off. �%(�) has
the property that it differs from zero for |�| . 300 ns due to instrumental

reflections, seen even when the pulse is off. We therefore subtract this

background for short lags. Then, we have

�2

min
(�) = (�-(�) + �.(�))2 < 1. (10.1)

We allow �2
to vary as a function of � for the following reasons. First,

different systematics are present in the ACF of at different time delays. For

example, ∼kilohertz bandwidth radio-frequency interference (RFI) present

in our data is often relevant at millisecond delay scales, and less so at

shorter delays. Second, we experience a sensitivity drop for long time-lags

due to the look-elsewhere effect (see discussion in Ref. [108], Section IV).

Third, in the presence of a fixed amount of pulse broadening arising from

a scattering screen, we expect interferometric lensing to decohere more

easily for larger lens masses (and therefore larger time-lags) than at smaller

lenses and smaller lags (see Sec 10.6).
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10.4 Lensing Event Rate

To convert our search sensitivity into constraints on primordial black holes,

it is first necessary to define the conditions under which the alignment

of a lens with an FRB creates a detectable double image. This requires

assuming a lensmodel which specifies themass distributionwithin the lens

plane. Each distinct FRB source can then be thought of as an independent

“sightline”: a pencil beamwhose endpoints are at Earth and the FRB source,

and whose beam size is set by the Einstein radius. For each sightline

(indexed hereafter by 9), we integrate over different lensing geometries

(Sec. 10.4.1) to get the total lensing cross-section �8 9 , where 8 indexes possible

ranges of time-lags. Next, we must integrate over possible lens redshifts IL.

Doing this requires translating redshifts to cosmological distances through

�(I) = �0

√
Ω<(1 + I)3 +ΩΛ and the source redshift I(,9 , which must

be inferred for unlocalized FRBs (Sec. 10.4.2) from their DM. Finally, we

must integrate over the lens mass function 3=2/3" (Sec. 10.4.3), which

depends on 5 . The method is summarized by Eq. 10.2, which represents

the expected number of lensing events at time lags within some �8 and �8+1

for a sightline 9. We call this �8 9 (for the 8-th time-lag bin and the 9th FRB

source).

�8 9 ≡
∫ ∞

0

3"
3=2

3"

∫ I(,9

0

3IL

2(1 + IL)2
�(IL)

�8 9 . (10.2)

We sum over 8 and 9 to calculate the total event rate (Sec. 10.4.4); this allows

us to set upper limits on 5 , the fraction of dark matter that is made of

compact lenses such as PBHs.

10.4.1 Possible Lensing Geometries

In our search, we aim to detect multiple temporally-resolved FRB images

from a compact object acting as a lens. For compact objects, it is a good

approximation to use a point-mass lens model, which predicts two images

except in the edge case of an Einstein ring. We wish to integrate over

all possible geometries (parametrized by the different possible impact

parameters 1) which could produce a lensing event. To do so, we briefly

summarize the relationship between the astrophysical parameters (the lens

mass, redshift, and impact parameter) and the observables (the Shapiro

delay and the flux magnification ratio �2
) for the point lens model. We

introduce the dimensionless impact parameter H = 1/'�, where 1 is the

physical impact parameter of the source in the lens plane at the lens redshift

IL, and where '�(", IL , I() is the Einstein radius of a lens with some

mass " at redshift IL, magnifying an FRB at I( (see also Fig. 10.4). With

these definitions the differential Shapiro delay between images is given by

(see also [104])

� =
2'B(1 + IL)

2
6(H) (10.3)
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where 'B is the Schwarzschild radius of a putative lens of mass ", IL is

the lens redshift, and

6(H) = 1

2

(H
√
H2 + 4) + log

(√
H2 + 4 + H√
H2 + 4 − H

)
. (10.4)

We visualize Eq. 10.3 as a function of the lens position in the lens plane in

Fig. 10.1. For a given impact parameter H, the magnification ratio between

the two images is

H(�2) =
√√

�2 + 1/
√
�2 − 2. (10.5)

To detect a lens, we require that the dimmer image be bright enough to be

detected in voltage cross-correlation, and that the Shapiro delay between

images falls within the valid delay range over which we are sensitive. We

can express these criteria as upper and lower bounds on H, respectively. The

minimum impact parameter Hmin at which a lens is detectable is determined

by the minimum resolvable Shapiro delay between images (i.e. plugging

in �min in Eq. 10.3). The maximum impact parameter is a function of �2

only. Several flux thresholds are drawn in our depiction of the lens plane

Fig. 10.1. However, in our search, �2
varies as a function of lag. We partition

the full range of accessible delays (in our case, 10
−9 − 10

−1
seconds) into

logarithmically-spaced bins, indexed by 8, with boundaries �i < � < �i+1.

Within each logarithmically-spaced lag range [�i , �i+1) with corresponding

values of �2(�), we take

Hmin,8 = 6−1

(
2�i

2'B(1 + IL)

)
(10.6)

and

Hmax,8 9 = min

�∈(�i ,�i+1)

{
6−1

(
2�i+1

2'B(1 + IL)

)
, H(�2

9 (�))
}
. (10.7)

In Fig. 10.1 we plot the contribution of different delay timescales to the

lensing cross-section,whichmay be geometrically interpreted as an annulus

in the lens plane with boundaries Hmin,i and Hmax,ij due to detectability

(Eqs. 10.5,10.6,10.7). We see that smaller misalignments from 1 = 0 (the

center of the annulus) correspond to shorter Shapiro delays and larger

misalignments (1 >> '�) produce long delays and extreme flux ratios.

The area of the annulus is the cross-section to lensing:

�8 9 = �'2

�,9(H
2

max,i − H2

min,ij). (10.8)

10.4.2 Distance Inference

It is difficult to infer the distance of FRBs without independent redshift

measurements. One promising proxy for distance is the amount of dis-

persion in the dynamic spectrum of the FRB, accumulated as the FRB

passes through the intervening cold plasma of the intergalactic medium

(IGM) on its way towards the observer. The dispersion is quantified by
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Figure 10.1: Our schematic depiction of

the lens plane, with coordinates centered

on the source’s unlensed position, and

transverse distances measured in units

of Einstein radii. We shade the delay

between images as a function of lens’s

transverse position in the lens plane (col-

ored disk). A time-delay based detection

search space constrains possible lens po-

sitions to an annulus within the plane.

A flux-based detection threshold, param-

eterized by �2

min
, further constrains the

annulus’s outer boundary via Eq. 10.5

(dotted boundaries). The lensing cross-

section � can be understood as the area

of the annulus that satisfies both the flux-

and time-delay based detection thresh-

olds (Eq. 10.8).

the dispersion measure (DM) and is readily measurable, making this an

attractive approach.

However, inferring distances from DMs has many biases and uncer-

tainties, which depend on factors such as the FRB luminosity function, the

survey depth/field of view, the spectral index of the FRB emission, and

contributions to the DM which do not correlate with distance (e.g. local

environments or intervening haloes). When these effects are taken into

account, it has been shown that under certain circumstances, large DMs

are a poor proxy for distance – i.e., that the highest DM events in an FRB

survey may not be the most distant [178]. To minimize these biases, bursts [178]: James et al. (2021), “The z–DM dis-

tribution of fast radio bursts”
in our sample are not selected on the basis of properties like their DM or

brightness. Instead, we select bursts only on the criteria that baseband data

were collected and processed. For baseband data to be collected, the FRB

must have a minimum S/N of ≈ 15 to reduce the volume of false positives

collected; this threshold has varied between 12 and 20 over the course of

CHIME/FRB’s operation. In addition, detected FRBs have a maximum

DM of ≈ 1000 pc cm
−3
, which is imposed by the memory size of the ring

buffer within the CHIME correlator). This is a factor of 2-3 below the

highest-DM events observed by the CHIME/FRB instrument for which we

expect high-DM selection bias to dominate. The total amount of smearing

is quantified by DMobs and can be written as a sum of contributions from

the Milky Way (DMMW), the intergalactic medium (DMIGM(I()), and the

host galaxy (DMhost). as shown in Eq. 10.9. We determine I( by first solving

Eq. 10.9 for DMIGM, taking DMmw to be the NE2001 expectation along the

line of sight.

DMobs = DMmw +DMIGM(I() +DMhost(I() (10.9)
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We conservatively model DMhost as,

DMhost(I() =
117 pc cm

−3

1 + I(
. (10.10)

There are several reported values for the average DMhost in the litera-

ture; however, 117 pc cm
−3

is the median value favored by an analysis

of the luminosity function of CHIME-detected FRBs using CHIME/FRB

Catalog 1, after correcting for known selection effects [373]. This is con-[373]: Shin et al. (2023), “Inferring the

Energy and Distance Distributions of Fast

Radio Bursts Using the First CHIME/FRB

Catalog”

sistent with the value reported for ASKAP FRBs with a similar analysis

(145
+64

−60
pc cm

−3
) [178]. In principle, drawing from a distribution of DMhost

[178]: James et al. (2021), “The z–DM dis-

tribution of fast radio bursts”

values around the median CHIME/FRB value would be most realistic.

However, since intrinsic correlations between DMhost and other properties

(e.g. the FRB’s distance and brightness) are poorly constrained, we adopt

themedian value for all FRBs, and quantify uncertainties related to distance

determination by exploring two astrophysically-motivated scenarios (see

Sec. 10.8).

Once DMhost is assumed for each FRB, we can infer DMIGM. We invert

the Macquart relation [13] (Eq. 10.11) to determine the source redshift IS. In

Eq. 10.11, we have approximated the Universe’s chemical composition as

75%hydrogen and 25%heliumbymass, both completely ionized. This leads

to =4 ,0 = 0.875Ω1�2A8C/<? . Throughout this work, we assume a Planck

2018 [24] cosmology with �0 = 67.7 km s
−1

Mpc
−1

and (Ω< ,Ω1 ,ΩΛ) =
(0.30966, 0.04897, 0.68884).

DMIGM =

∫ I(

0

2=4 ,0(1 + I)
�0

√
Ω<(1 + I)3 +ΩΛ

3I (10.11)

10.4.3 Possible Lens Masses

The final integral in Eq. 10.2 is a marginalization over the unknown lens

mass function 3=2/3" which has units of comoving number density

(denoted =2) per unit mass. To constrain the abundance of compact lenses,

we must assume a mass function of objects which produce the lensing

events [374, 375]. For PBHs, [374] suggests modeling the PBH function as a[374]: Green (2016), “Microlensing and dy-

namical constraints on primordial black

hole dark matter with an extended mass

function”

[375]: Carr et al. (2017), “Primordial black

hole constraints for extended mass func-

tions”

log-normal distribution peaked at some value of log
10
("2/"�) and with

some logarithmic width � measured in decades. For simplicity, we first

consider the family of monochromatic mass functions (Eq. 10.12):

3=2

3"
=
�crit

"2
Ωc 5 ("2)�(" −"2). (10.12)

This family of functions is parameterized solely by their central mass

"2 , and have the property that if 5 ("2) = 1, the total mass density is

normalized to the cosmological dark matter density, i.e.,∫
3=2

3"
" 3" = �critΩc. (10.13)
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The cosmological dark matter density Ωc is fixed at Ωc = Ω< − Ω1 =

0.26069 [24]. In practice, different formation scenarios give rise to both quasi-

monochromatic (�/log("2/"�) ∼ 1) and broad (�/log
10
("2/"�) � 1)

mass functions [323, 375]. However, since Eq. 10.2 is linear in

3=2

3"
, and

since an extendedmass function is a linear superposition of delta functions,

it is straightforward to translate our calculation for delta functions to

extended PBH mass functions. This is necessary because extended PBH

mass functions allow certain inflationary scenarios to evade current PBH

constraints [374, 376]. [374]: Green (2016), “Microlensing and dy-

namical constraints on primordial black

hole dark matter with an extended mass

function”

[376]: Clesse et al. (2015), “Massive pri-

mordial black holes from hybrid inflation

as dark matter and the seeds of galaxies”

10.4.4 Combining Bursts

After calculating the optical depth, it is necessary to combine many sight-

lines due to the rarity of lensing events. Only a handful of lensed supernovae

have been conclusively detected [208, 353]; detailed estimates suggest that [208]: Kelly et al. (2015), “Multiple images

of a highly magnified supernova formed

by an early-type cluster galaxy lens”

[353]: Goobar et al. (2017), “iPTF16geu: A

multiply imaged, gravitationally lensed

type Ia supernova”

lensed FRBs are similarly rare [105]. The occurrence of lensing events in

lag range 8 in the direction of any single sightline 9 can be thought of as a

Poisson process with a low rate �8 9("2) � 1. Since independent Poisson

processes are additive, we define several event rates: the rate summed over

lag bins but not sightlines (� 9), the rate summed over sightlines but not

lag bins (�8), and the total event rate for the entire search summed over

sightlines and lag bins:

� =
∑
9

� 9 =
∑
8

�8 =
∑
8

∑
9

�8 9 . (10.14)

In Fig. 10.2, we visualize �8 9("2) (color shaded region) and its sum

� 9("2) (thick line) for the sightline towards FRB 20191219F [57]. We also

compare our lag-dependent �2

min
approach to the traditional approach

(using an arbitrarily-chosen constant value of �2

min
= 10

−4
) in Fig. 10.2.

Fig. 10.3 shows the analogous quantities for the entire search summed over

all sightlines 8. We visualize �8("2) (shaded region) and its sum �("2)
(thick line) in Fig. 10.3. In both Fig. 10.2 and Fig. 10.3, the color shading

denotes the differential contributions of different delay timescales to their

respective total rates.

A complication arises from repeating FRBs. Repeat bursts from the

same FRB source do not necessarily probe independent volumes of space.

For low-mass PBHs with small Einstein radii, the motion of an FRB source

(with respect to the Earth’s rest frame) may move the sightline by many

Einstein radii between successive bursts. If the lens and FRB do not reside in

the same galaxy halo, their relative transverse velocity E⊥ can be estimated

by the velocity dispersion of a typical galaxy cluster � ∼ 1000 km/s [377]. [377]: Girardi et al. (1993), “Velocity Dis-

persions in Galaxy Clusters”
If we estimate the lensing distance to be �!�!(/�( ∼ 1 Gpc, the time it

takes for the lens to move by one Einstein radius is

)� =
'�

E⊥
∼ 's�!�!(

�(�
= 14 yr

(
"

"�

)
1/2
. (10.15)
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Figure 10.2: The expected lensing rate as

a function of the lens mass for the sight-

line toward FRB 20191219F. The height of

the curve can be interpreted as the Pois-

son rate of lensing events (i.e. the prob-

ability that the FRB is lensed) assuming

that all dark matter is made up of com-

pact lenses with mass "2 . For example,

the probability of seeing a statistically-

significant lensing signal if all the dark

matter is composed of ∼ 10
−1"� black

holes is ≈ 0.6. We calculate this rate via

two methods, shown by the solid and dot-

ted curves. Solid curve: sensitivity given

by the ACF �2(�) measured by our cor-

relation algorithm. Dashed curve: sensi-

tivity given by a constant fiducial value

of �2 = 10
−4
, shown to illustrate the dif-

ference with the approach taken by ear-

lier work such as [106]. Color shading

denotes the additive contributions to the

total probability from different time-delay

scales. Relative to the constant-�2
case,

the reduced event rate at short lags/low

lens masses is because instrumental sys-

tematics in the delay spectrum at short

delay scales (≈ 100 ns) degrade sensitivity.

A similar reduction happens at long lags

because of the large trials factor at large

delay values (see text).

It is evident that for some masses in the range 10
−4 − 10

4"�, the crossing
time can be much shorter than the duration between two successive bursts

from the same source (on the order of weeks or months). In this case,

two repeat bursts illuminate disjoint sightlines through the cosmic web.

However, in the opposite limit, the transverse motion of the FRBmoves it by

only a small fraction of its Einstein radius between successive bursts. In this

case, repeat bursts from the same source illuminate the same microlensing

tube and cannot be counted independently in the total optical depth to

lensing. To be conservative, we take only the brightest burst from each

repeating FRB source for the best measurement of �2(�) along that sightline.

Combining information from repeat bursts is in principle possible by

e.g., stacking the measured ACF over many bursts [378]. However, at the[378]: Krochek et al. (2021), “Constraining

Primordial Black Hole Dark Matter with

CHIME Fast Radio Bursts”

nanosecond time resolution of our search, changes in the lensing delay

over time (a so-called “delay-rate”) must be taken into account to not wash

out the signal from the stacking procedure. Hence, we defer an optimal

treatment incorporating stacking to future work.
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Figure 10.3: The expected lensing event

rate for our full sample of 114 FRB events

assuming that all darkmatter is composed

of PBHs with mass "2 (i.e., that 5 = 1).

Left: In the absence of plasma scattering

screens which cause decoherence, the pre-

dicted lensing event rate extends over a

wide range of PBH masses. Right: In the

presence of plasma screens, the level of

decoherence is sensitive to the screen’s

effective distance from the FRB source

(different traces). This shows the impact

of plasma scattering on coherent FRB lens-

ing constraints.

10.5 Fundamental Limitations

While our interferometric method allows us to break the degeneracy

between pulse morphology and gravitational lensing, the lensing signal –

an interferometric fringe – is also fragile and demands careful consideration

of all possible sources of decoherence which could explain a non-detection.

Wave optics effects, finite source size, and scattering screens all may result

in a non-detection even when a lens is present.

When the Schwarzschild radius of the lens is smaller than the wave-

length of light, the light propagation is unaffected[219, 226, 227, 231]. This

imposes a low-mass sensitivity cutoff. For our observing frequencies we

are only sensitive when " > 1.5(1 + IL) × 10
−4"� [132]. To overcome

this, searches for FRB lensing should be conducted at higher observing

frequencies in order to probe very low-mass objects. A second important

consideration for our search is the effect of finite source size [219]. The astro- [219]: Jow et al. (2020), “Wave effects in

the microlensing of pulsars and FRBs by

point masses”

physics here are similar in spirit to femtolensing constraints fromGRBs [231,

379], which were thought to apply to black holes of" < 10
−13"�. How-

[231]: Gould (1992), “Femtolensing of

Gamma-Ray Bursters”

[379]: Nemiroff et al. (2001), “Limits on

the cosmological abundance of supermas-

sive compact objects from a millilensing

search in gamma-ray burst data”

ever, GRB emission from an extended source is angularly incoherent when

averaged over the size of the source, washing out the correlation signal

for all but the smallest GRBs emission regions [267]. The physics of this

[267]: Katz et al. (2018), “Femtolensing by

dark matter revisited”

effect is similar to very long baseline interferometry experiments which “re-

solve out” extended sources on sufficiently long baselines, suppressing the

cross-correlation fringes. This invalidates PBH constraints from coherent

femtolensing and one might wonder whether a similar concern applies to

coherent FRB lensing constraints. For our coherent lag-correlation pipeline

to detect a lensing event, the FRB emission region must appear as a point

source as viewed with the resolving power of the gravitational lens.

An intuitive estimate (ignoring redshift effects) goes as follows. If

the lens receives light of frequency �obs, its wavelength is 2/�obs. If the

lens is of size 'lens, the FRB emission does not appear pointlike (i.e. is

resolved) if 2/(�obs'lens) ∼ A4</�!( where A4< is the size of the emission

region, and �!( is the distance from the lens to the source. For a point

mass gravitational lens, 'lens can be approximated as the Einstein radius

'� =
√

2'B�!�!(/�( where 'B is the Schwarzschild radius and �! , �(

are the angular diameter distance to the lens and the source respectively.

Taking �!( , �! , and �( to be on the order of 1 Gpc and A4< = 3 × 10
8

m

(see below for justification of this choice), we conclude that a massive lens
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Figure 10.4: A two-screen model for a co-

herently lensed FRB observed at some

central frequency �
obs

. The plasma lens

is responsible for the observed tempo-

ral broadening (�
scatt,obs

), produced by

a scattering screen of apparent size A
ref
.

The gravitational lens, modeled as a point

mass with mass" and impact parameter

1, can be thought of as a very long baseline

interferometer with baseline ∼ '� ∝
√
"

observing at a frequency of �
obs
(1 + IL)

from the lens plane. When the scattering

screen looks like a point source (Eq. 10.20)

to the gravitational lens, coherence is

maintained, and the observer can see an

interference fringe.

is needed to resolve the source:" ∼ 3 × 10
4"�. This places a high-mass

cutoff on our lensing constraints. For smaller masses the emission region

will remain angularly coherent, unresolved by the gravitational lens. The

maximummass accessible scales as �−1

>1B
. From this consideration, observing

at lower frequencies is advantageous.

The size of the emission region can be estimated from the variability

timescale of the transient, and fortunately, FRBs have much shorter variabil-

ity timescales [330, 360] than GRBs. The association of an FRB-like radio[330]: Cho et al. (2020), “Spectropolarimet-

ric Analysis of FRB 181112 at Microsecond

Resolution: Implications for Fast Radio

Burst Emission Mechanism”

[360]: Day et al. (2020), “High time res-

olution and polarization properties of

ASKAP-localized fast radio bursts”

burst with the Galactic magnetar SGR 1935+2154 [2, 144] is very strong

[2]: CHIME/FRB Collaboration et al.

(2020), “A bright millisecond-duration ra-

dio burst from a Galactic magnetar”

[144]: Bochenek et al. (2020), “A fast radio

burst associated with a Galactic magne-

tar”

evidence for a compact origin for at least some extragalactic FRBs. Mecha-

nisms by which FRB emission is produced can be grouped into two broad

categories: “close-in” models in which the bursts are produced in the mag-

netosphere (at radii of hundreds of kilometers) and shockmodels where the

bursts are produced “far-out” from the central engine [380, 381]. The obser-

[380]: Metzger et al. (2019), “Fast radio

bursts as synchrotron maser emission

from decelerating relativistic blast waves”

[381]: Plotnikov et al. (2019), “The syn-

chrotron maser emission from relativistic

shocks in Fast Radio Bursts: 1D PIC simu-

lations of cold pair plasmas”

vation of diverse polarization properties including millisecond-variability

in the polarization angle [382], long-term evolution, and significant circular

[382]: Luo et al. (2020), “Diverse polariza-

tion angle swings from a repeating fast

radio burst source”

polarization [112] observed in a handful of FRBs tentatively challenge the

[112]: Xu et al. (2021), “A fast radio burst

source at a complex magnetised site in a

barred galaxy”

latter class of models, though it is still a matter of intense debate.

Theories where the burst is emitted from themagnetosphere [383–385]

[383]: Kumar et al. (2017), “Fast radio burst

source properties and curvature radiation

model”

[384]: Zhang (2017), “A Cosmic Comb

Model of Fast Radio Bursts”

[385]: Yang et al. (2018), “Bunching Co-

herent Curvature Radiation in Three-

dimensional Magnetic Field Geometry:

Application to Pulsars and Fast Radio

Bursts”

involve distances of hundreds of neutron star radii and are significantly

more compact than the synchrotron maser shock models. Shock models

involve Lorentz factors of Γ ∼ 10
2
[380, 381, 386]. For amillisecond-duration

FRB, this corresponds to emission region size of . 2 × 10
8Γ cm [311].

[311]: Khangulyan et al. (2022), “FastRadio

Bursts by High-frequency Synchrotron

Maser Emission Generated at the Reverse

Shock of a Powerful Magnetar Flare”

In any of these FRB emission scenarios, the apparent angular size of

the FRB emission region is quite compact. In the scenario where the FRB

emission looks like apoint source as resolvedbyaputative gravitational lens,

the rate shown in the left panel of Fig. 10.3 applies. However, observations

of pulsars and FRBs routinely indicate the presence of interstellar scattering

along the line of sight. Interstellar scattering increases the effective angular

size of apparent point sources at radio wavelengths, akin to atmospheric

seeing for optical observations. This will be the topic of the next section,

where we consider the effects of angular broadening due to scattering on

our results.
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10.6 Two-Screen Model for FRB Lensing

To quantify the effect of scattering from inhomogeneous plasma, we

construct a two-screen model involving a gravitational lens and a plasma

lens, or scattering screen. We will see that the scattering screen is crucial

to this analysis, and in the following subsections we describe how we

augment the point-lens model with a scattering screen (see Fig. 10.4). The

extent of the scattering depends not on the total density of the plasma but

rather on the fluctuations in the density about the mean. The plasma in

the Milky Way is known to exhibit a power-law distribution of density

fluctuations. The so-called “big power law in the sky” spans over 10 orders

of magnitude in length scale (see e.g. [387, 388]), and is responsible for [387]: Armstrong et al. (1995), “Electron

Density Power Spectrum in the Local In-

terstellar Medium”

[388]: Lee et al. (2019), “Interstellar turbu-

lence spectrum from in situ observations

of Voyager 1”

radio propagation effects such as the scattering and scintillation seen in

pulsars and other radio transients [289, 341, 342].

[289]: Narayan (1992), “The Physics of

Pulsar Scintillation”

[341]: Macquart et al. (2019), “The Spectral

Properties of the Bright Fast Radio Burst

Population”

[342]: Schoen et al. (2021), “Scintillation

Timescales of Bright FRBs Detected by

CHIME/FRB”

10.6.1 Thin Plasma Screen

The three-dimensional density fluctuations that cause scattering and scintil-

lation are oftenmodeledas a thin screenof two-dimensional electrondensity

inhomogeneities at some effective distance �(2,( from the source [127].

[127]: Lorimer et al. (2004), Handbook of
Pulsar Astronomy

For instance, in a single-screen model where �(2,( is the distance from

the screen to the source and �(2,$ is the distance from the screen to the

observer, the electric field amplitude can be expressed as a Fresnel integral

over the 2D screen plane coordinate ®� (see, e.g., [274]):

[274]: Feldbrugge et al. (2019), “Oscillatory

path integrals for radio astronomy”

�(�) =
∫

32 ®� exp(2�8�=(®�) /�)

× exp(2�8��2(�−1

(2,( + �
−1

(2,$)/2), (10.16)

where we assume  = 1/2.41 × 10
−4

cm
−3

pc MHz
−2

s
−1
, and represent

density fluctuations as an 2D scalar field �=(®�) (collapsed over the propa-

gation axis); these density fluctuations source phase fluctuations which are

amplified as �−1
at low frequencies.

It is evident that the effective distance (�−1

(2,(
+�−1

(2,$
)−1

, is dominated

by the smaller of the two distances. Since FRBs originate from dense local

environments within their host galaxies [50], the temporal broadening is [50]: Chawla et al. (2021), “Modeling Fast

Radio Burst Dispersion and Scattering

Properties in the First CHIME/FRB Cata-

log”

often assumed to originate in the host environment/galaxy. This is equiva-

lent to taking �eff = (�−1

(2,(
+�−1

(2,$
)−1 ≈ �(2,( . We use this approximation

for the remainder of this work, although we acknowledge that a complete

treatment may need to contend with multiple scattering screens in cases

where amount of scattering from the Milky Way and the host galaxy are

comparable [132].

While the path integral formalism is formally correct, it renders

performing accurate calculations difficult [274], and there are simpler [274]: Feldbrugge et al. (2019), “Oscillatory

path integrals for radio astronomy”
characterizations that succinctly capture the relevant physics. For example,

one can define the distance on the screen over which the RMS phase

fluctuation approaches 1 radian. This can be interpreted as the size of a

coherent spatial patch on the screen, and is referred to as Adiff [289]. A [289]: Narayan (1992), “The Physics of

Pulsar Scintillation”
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similar parameterization uses the fact that spatially inhomogeneous phase

shifts lead to angular deflections and thus multi-path propagation from

the screen to the observer. This leads to temporal pulse broadening over a

timescale

2�scatt ∼
A2

ref

2�(2,(
+

A2

ref

2�(2,$
(10.17)

where Aref � Adiff is the effective transverse size of the screen [132, 159].

We see in this picture that the scattering is symmetric under exchanging

�(2,( and �(2,$ , and again that is dominated by the shorter of the two

path lengths. Furthermore, the two pictures can be related by AdiffAref =

�eff2/(2��obs) [289], where �−1

eff
= �−1

(2,(
+ �−1

(2,$
. This geometric model is[289]: Narayan (1992), “The Physics of

Pulsar Scintillation”
a useful simplification because unlike Adiff or Aref, �scatt can be measured

for FRBs [8, 159] and allows us to use an observable to constrain the[8]: Pleunis et al. (2021), “Fast Radio Burst

Morphology in the First CHIME/FRBCat-

alog”

[159]: Masui et al. (2015), “Dense magne-

tized plasma associated with a fast radio

burst”

unknown scattering physics. Doing so eliminates one of the two model

parameters (Adiff); the only remaining astrophysical uncertainty associated

with scattering is the effective screen distance �eff, assumed to be �(2,(.

Using this picture, we estimate the FRB’s transverse size on the screen,

and find that it far exceeds the emission region’s intrinsic size (Sec. 10.5 of

∼2 × 10
10

cm).

Aref ∼
√

22�scatt�(2,( ∼ 10
13

cm

(
�(2,(

pc

�scatt

ms

)
1/2
. (10.18)

If the screen (of apparent size Aref) is not resolved by the gravitational lens,

coherence is preserved (Sec. 10.6.2). If the screen is too large, it will be

resolved by the gravitational lens. This may cause a drop in sensitivity

(Sec. 10.6.4).

10.6.2 Unresolved Screens

In the limit that the lensing screen is unresolved by the gravitational-

lens interferometer, the screen phase is the same in both “interferometer

paths” along which the light propagates to the observer. In this case, the

inhomogeneities on the plasma scattering screen can be arbitrarily strong.

The phase !(�) imparted to each path can vary rapidly, as long as their

difference is less than a radian. In the absence of cosmological redshift

effects, the condition for this (see Sec. 3.2 in [132]) is that[132]: Katz et al. (2020), “Looking for MA-

CHOs in the spectra of fast radio bursts”

2��obsAref(�(2,( , �scatt,obs, 9)'�/�! < 1. (10.19)

We modify this calculation for the case where the scattering is in the

host galaxy (�! → �!(). We also take into account that the observed

pulse broadening timescale �scatt,obs, 9 has experienced time dilation: in the

host frame where the scattering occurs, the pulse broadening timescale

is �scatt,obs, 9(1 + IS, 9)−1
. Finally, we note that the frequency of the radio

emission gets redshifted as it propagates from the source to the observer.

The phase is accumulated over the entire path length, but most of the phase

difference occurs in the vicinity of the lens; it is a good approximation to
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replace �obs → �obs(1 + IL). Eq. 10.19 with these modifications becomes

2��obsAref(�(2,( , �scatt,obs, 9)'�/�!( <

√
1 + IS, 9

1 + IL

. (10.20)

Eq. 10.20 is satisfied when either the gravitational lens has less re-

solving power (small '� or large �), or a small scattering screen. The

latter can be accomplished either by using bursts with a short scattering

timescale or some knowledge of the scattering screen’s distance from the

source, as shown in Eq. 10.18. Scattering timescales vary by 2-3 orders of

magnitude from burst to burst. Thereforewe enforce Eq. 10.20 for each burst

individually using the measured pulse broadening timescale �scatt,obs, 9 and

inferred redshift (I(,9) for each burst. We conservatively assume that all

the broadening originates in the source-local environment (i.e. we do not

attempt to subtract off theMilkyWay contribution to the pulse broadening).

Then, we assume several different values of �(2,( to calculate the screen

size. In the CHIME/FRB analysis pipeline, �scatt,8 is currently measured

at � = 600 MHz and is assumed to scale as �−4
[127]. However, it is cur- [127]: Lorimer et al. (2004), Handbook of

Pulsar Astronomy
rently measured with low-resolution intensity data which cannot resolve

scattering timescales . 100µs. As a result, ≈ 30 of our scattering timescale

measurements are upper limits [108]. We restrict the �8 9 integral in Eq. 10.2 [108]: Kader (2022), “A High Time Resolu-

tion Search forGravitationally Lensed Fast

Radio Bursts using the CHIME telescope”

to regions in the" − I! plane where Eq. 10.20 is satisfied. The resulting

lensing rate as a function of lens mass, for a variety of screen distances, is

plotted in the right panel of Fig. 10.3. It is evident that scattering screens

reduce our sensitivity to large time delays in the presence of scattering

screens far away from the source.

10.6.3 Screen’s Proximity to FRB Source

By constraining the scattering timescale for each burst, we have translated

the astrophysical uncertainties associated with decoherence into a single

parameter�eff ≈ �(2,( – the effective distance between the scattering screen

and the FRB. What is a representative median value of �(2,(, averaged

over a sample of CHIME-detected FRBs? We estimate this by considering

possible origins for the excess scattering in extragalactic FRBs compared

to Galactic pulsars, as established in [50]. One explanation is that FRBs [50]: Chawla et al. (2021), “Modeling Fast

Radio Burst Dispersion and Scattering

Properties in the First CHIME/FRB Cata-

log”

are scattered by dense clouds in the circumgalactic medium (CGM) of

intervening galaxies [389, 390]. In this case, the effective distance could

[389]: McCourt et al. (2018), “A character-

istic scale for cold gas”

[390]: Vedantham et al. (2019), “Radio

wave scattering by circumgalactic cool gas

clumps”

be on the order of 10–100 Mpc, and Eq. 10.18 implies that the source’s

apparent size (∼ Aref) would also be correspondingly large. However, there

is growing evidence that the excess scattering is not dominated by clouds

in the CGM.

First, if CGM scattering were an explanation for the excess scattering

present in the population of FRBs, the screen from the Milky Way would

resolve the angular broadening from the CGM, and scintillation would

not be regularly observed in FRBs. The observation of both scintillation

and scattering in FRB 110523 [159] indicates that the angular broadening

is unresolved by a Milky-Way screen, and leads to a direct constraint on

the scattering geometry for FRB 110523 of �(2,( . 44 kpc. While this is
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only a single example, further examples of FRBs with spectral structure

consistent with diffractive scintillation have been identified in ASKAP [341],[341]: Macquart et al. (2019), “The Spectral

Properties of the Bright Fast Radio Burst

Population”

UTMOST [359], and CHIME/FRB bursts [342].

[359]: Farah et al. (2018), “FRB microstruc-

ture revealed by the real-time detection of

FRB170827”

[342]: Schoen et al. (2021), “Scintillation

Timescales of Bright FRBs Detected by

CHIME/FRB”

Second, leading models of CGM scattering [390] assume that the

CGM efficiently scatters radio waves. This efficiency is quantified through

the fluctuation parameter �̃. Observationally, �̃ is proportional to the

ratio �/DM
2
, and depends on factors including the filling factor of the

gas, the size distribution of cloudlets within the gas, the size of density

fluctuations within those cloudlets, and the inner/outer scales of the

turbulence. While the Local Group may not be representative of the CGM

of intervening galaxies, measurements of �̃ from the Local Group [176][176]: Ocker et al. (2021), “Constraining

Galaxy Halos from the Dispersion and

Scattering of Fast Radio Bursts and Pul-

sars”

indicate empirically that �̃ is two orders of magnitude smaller than that

assumed by leading theories (�̃ ∼ 500 pc
−2/3

km
−1/3

, [390]) where the

CGM provides the observed anomalous scattering [50]. This significantly
[50]: Chawla et al. (2021), “Modeling Fast

Radio Burst Dispersion and Scattering

Properties in the First CHIME/FRB Cata-

log”

diminishes the possibility that the CGMof intervening galaxies can provide

the observed scattering.

Two remaining possibilities are that the scattering is provided by the

host galaxies or local environments of FRBs. Clues about the environments

surrounding FRB hosts for individual specimens [142, 159] as well as[142]: Michilli et al. (2018), “An extreme

magneto-ionic environment associated

with the fast radio burst source FRB

121102”

[159]: Masui et al. (2015), “Dense magne-

tized plasma associated with a fast radio

burst”

population studies [50] provide evidence that many, if not most, FRBs

[50]: Chawla et al. (2021), “Modeling Fast

Radio Burst Dispersion and Scattering

Properties in the First CHIME/FRB Cata-

log”

are associated with special regions of their host galaxies. This has been

directly confirmed with the VLBI localizations of FRB 20121102A [5] to

[5]: Marcote et al. (2017), “The Repeating

Fast Radio Burst FRB 121102 as Seen on

Milliarcsecond Angular Scales”

a star-forming region whose H- radius is ∼ 460 pc [391]. Similarly, FRB

[391]: (), “H Intensity Map of the

Repeating Fast Radio Burst FRB 121102

Host Galaxy from Subaru/Kyoto 3DII

AO-assisted Optical Integral-field Spec-

troscopy”

20180916B is only 250 pc away from (but not residing within) a 1.5 kpc-long,

V-shaped region of star formation in its host galaxy [6, 20]. The spatial

[6]: Tendulkar et al. (2021), “The 60 pc

Environment of FRB 20180916B”

[20]: Marcote et al. (2020), “A repeat-

ing fast radio burst source localized to

a nearby spiral galaxy”

association of a large fraction of precisely localized FRBs [78] with spiral

[78]: Mannings et al. (2021), “A High-

resolution View of Fast Radio Burst Host

Environments”

arms in their host galaxies and the random host galaxy inclination angles

robustly constrains the value of�(2,( , averaged over all bursts, to be at most

the disk thickness of a galaxy. While disk thicknesses may vary from those

measured from the Milky Way, the scale height of electron fluctuations

in the Milky Way is ≈ 750 pc [175], yielding �(2,( . 1 kpc. In addition, a

[175]:Ocker et al. (2020), “ElectronDensity

Structure of the Local Galactic Disk”

detailed population synthesis study investigating the DM and scattering

timescale distributions [50] provides tentative evidence for a significant

[50]: Chawla et al. (2021), “Modeling Fast

Radio Burst Dispersion and Scattering

Properties in the First CHIME/FRB Cata-

log”

contribution to the scattering from dense, small-scale clumps near the

unknown FRB central engine.

This is a very plausible hypothesis. We note that the Crab Nebula,

which dominates the temporal broadening observed in Crab pulses, has

a physical extent of ≈ 1.6 pc. Detailed studies of Crab scattering reveal

plasma screen structures located ≈ 2 pc away from the pulsar [392]. Pulsars

[392]: Backer et al. (2000), “A Plasma

Prism Model for an Anomalous Disper-

sion Event in the Crab Pulsar”

or magnetars with sufficient rotational/magnetic energy (i.e., those that

are young enough) to produce bursts luminous enough to be seen at a

cosmological distance (10
5
times brighter than a fiducial Crab giant pulse;

see [393]) could very well be, on average, embedded in similar or even

[393]: Cordes et al. (2016), “Supergiant

pulses from extragalactic neutron stars”

more compact host environments. The dense environment surrounding

a decades- or century-old magnetar which could produce an FRB [394]

[394]: Margalit et al. (2018), “A Concor-

dance Picture of FRB 121102 as a Flaring

Magnetar Embedded in aMagnetized Ion-

Electron Wind Nebula”

can easily host parsec-scale structures which explain the observed scatter-

broadening. In the rest of our analysis, we therefore assume a fiducial

screen position of ∼ 1 pc, though we also quote results for 0.1,10, and

100 pc.
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10.6.4 Resolved Screens

Until now we have only considered detecting coherent FRB lensing in sys-

tems where the scattering screen is unresolved. If the screen is resolved, our

signal, which is a peak in the measured time-lag autocorrelation function

of an FRB, may be washed out. This is similar in spirit to femtolensing PBH

constraints; however, we emphasize that a point source behind a scattering

screen is not equivalent to a bona fide incoherent extended source. The

former has a characteristic decorrelation bandwidth (Δ�bw) over which the

signal remains coherent, whereas the latter does not.

For this reason the signal can be recovered in certain circumstances.

Since we search for peaks in the ACF, we are most sensitive when peaks are

localized to one delay bin (�� < 1.25 ns). If the screen is resolved by the lens

the peak may be washed out among many (∼ �scatt/1.25 ns) trial delays.

This reduces sensitivity in a search based on finding peaks in the ACF.

Another way of saying this is that each subband in the dynamic spectrum

of bandwidth �342 (the decorrelation bandwidth of the FRB emission) will

have a different observed delay which is a sum of the gravitational lensing

delay and a frequency-dependent scattering screen delay. For voltage data

covering a bandwidth of �bw, the height of the lensing peak at �lens would

be suppressed by a factor of Δ�dec/Δ�bw. While our search has a wide

bandwidth Δ�bw = 400 MHz, it may the case that e.g., in a sub-banded

search, Δ�342 ≈ Δ�1F . The coherence would be maintained within each

sub-band and sub-bands could then be incoherently combined. At present,

however, we do not attempt to detect resolved coherent lensing, so we do

not include this regime in our present constraints. We defer working in the

limit of a resolved screen to future work.

There is another way to circumvent the decoherence inflicted by

scattering screens. Decorrelation bandwidths (equivalently, the scattering

timescales) are highly frequency-dependent, and searches for FRBs lensing

at higher frequencies may exploit the steep frequency scaling of scattering

timescales to leverage this. Hence, it is very possible that even if the screen is

resolved at low frequencies, coherence is maintained at higher frequencies.

FRBs have been detected at frequencies down to 110 MHz [133, 395, 396] [133]: Pleunis et al. (2021), “LOFAR De-

tection of 110-188 MHz Emission and

Frequency-dependent Activity from FRB

20180916B”

[395]: Chawla et al. (2020), “Detection of

Repeating FRB 180916.J0158+65 Down to

Frequencies of 300 MHz”

[396]: Pastor-Marazuela et al. (2021),

“Chromatic periodic activity down to 120

megahertz in a fast radio burst”

and up to 8 GHz [142], making this a promising and straightforward

[142]: Michilli et al. (2018), “An extreme

magneto-ionic environment associated

with the fast radio burst source FRB

121102”

possibility.

10.7 Constraints

Having calculated the expected lensing rate �("2) first without and now,

with the effect of scattering screens (left and right panels of Fig. 10.3), we

aim to translate those rates into constraints on the PBH abundance. First, we

note that as a result of Eq. 10.12, all of our measurements of the lensing rate

have a simple linear dependence on 5 ("2), the fraction of the cosmological

cold dark matter density (Ωc�2A8C) that is composed of PBHs of mass"2 ,

assuming a mass function peaked around "2 . It is convenient to define

the function �1("2) as the lensing rate assuming 5 ("2) = 1; from here on

we can write the actual lensing rate as � = 5�1. In the remainder of this
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section, we will omit the"2 arguments for brevity, though 5 ,�, and �1 are

functions of"2 .

The exclusion limit can be thought of as an estimator 5̂ of the true

value 5 satisfying 5̂ > 5 with high probability. However, the estimator

depends on the mass function assumed. In our case, the mass function is

parameterized by a single parameter"2 , so 5̂ , like 5 , is a function of"2 .

To constrain compact dark matter, we may employ either a frequentist or

a Bayesian framework, which have different formalisms for calculating 5̂ .

The process of detecting lenses can be modeled as a Poisson process with

rate � = 5�1. Then the probability of observing : lensing events is

%(: |�) = 4−��:/:!. (10.21)

In a frequentist framework [362], the probability of getting our null

search result (: = 0 coherent lensing events in our sample) is

%(: = 0|�) = exp(− 5̂�1("2)). (10.22)

The inequality %(: = 0|�) < 0.05 constrains our false non-detection rate

and solving it sets 5̂ . If, for example, we made either : = 0 or : = 1

detections in our entire search, the left side of Eq. 10.22 would instead be

%(: = 0|�) + %(: = 1|�). We would instead solve the following inequality

for 5̂ :

exp(− 5̂�1)[1 + 5̂�1] < 0.05. (10.23)

In a Bayesian framework, the excluded region is defined instead by

the following condition:

0.05 > ?( 5 > 5̂ |: = 0) (10.24)

where : = 0 denotes non-detection of lensing. Informally Eq. 10.24 can be

thought of as the probability of being “wrong” about 5̂ , requiring that the

true value of 5 has only a 5% chance of being higher than our inferred

value 5̂ . We expand the right hand side of Eq. 10.24 in terms of the posterior

?( 5 |: = 0):

?( 5 > 5̂ |: = 0) =∫ ∞

5̂

?( 5 |: = 0) 35 .

which in turn can be re-written using Bayes’s theorem:

?( 5 |: = 0) ∝ ?(: = 0| 5 )?( 5 ).

The first factor on the right-hand side is simply the Poisson likelihood

?(: = 0| 5 ) = exp(− 5�1),
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and the second term is a prior on 5 which we take to be the uniform

distribution supported from 5 = 0 to some cutoff value �.

If we normalize ?( 5 |: = 0)we obtain

?( 5 |: = 0) = 4− 5�1

1 − 4−��1

which we substitute back into Eq. 10.24 to yield the Bayesian criteria for

the excluded region 5̂ :

0.05 =
4− 5̂�1 − 4−��1

1 − 4−��1

. (10.25)

Both criteria (Eq. 10.22, 10.25) are valid formulations, and they agree in the

limit that � → ∞. We use the frequentist method because it is the most

conservative and for consistency with existing constraints [362]. Our final

constraints are plotted in Fig. 10.5.

Our constraints are complementary to existing microlensing con-

straints on compact dark matter [323]. Conventional microlensing con- [323]: Carr et al. (2020), “Primordial Black

Holes as Dark Matter: Recent Develop-

ments”

straints (e.g., [362]) extend further in mass than the ones described here.

However, those constraints are from observations of M31 and thus are only

sensitive to compact objects in the local universe. In contrast, our long sight-

lines extend out to non-negligible redshifts where the dark matter density

is expected to approach its cosmological average value. The constraints

most similar to ours in the literature are those from Type Ia supernovae

microlensing [354]. However, due to our coherent search method, we [354]: Zumalacárregui et al. (2018), “Lim-

its on Stellar-Mass Compact Objects as

Dark Matter from Gravitational Lensing

of Type Ia Supernovae”

are sensitive to a lighter mass range with sensitivity approaching that

of [354]. We expect that with a larger sample of bursts from CHIME/FRB,

[354]: Zumalacárregui et al. (2018), “Lim-

its on Stellar-Mass Compact Objects as

Dark Matter from Gravitational Lensing

of Type Ia Supernovae”

our method will soon provide an independent probe with sensitivity to

extragalactic compact dark matter at masses inaccessible by other means.

10.8 Discussion and Conclusions

There are several limitations to the constraints presented here. First, they are

subject to the unknownuncertainties in inferring the redshift of an FRB from

its DM, where a large uncertainty arises from assuming a value of DMhost.

Several clues point toward a wide range of DMhost in the FRB population.

First, the recent VLBI localization and host identification of FRB 20190520B

has revealed its extremely large DMhost contribution of ≈ 900 pc cm
−3

[143]. [143]: Niu et al. (2021), “A repeating fast

radio burst in a dense environment with

a compact persistent radio source”

This means that for some FRBs, the distance determination in Eq. 10.9 is

unreliable. Independently, a statistically-significant spatial correlation has

been detected between I ∼ 0.4 galaxies in large optical surveys and FRBs

whose extragalactic DM & 785 pc cm
−3
. This can be interpreted as evidence

that an order-one fraction of such high-DM FRBs in the CHIME/FRB

Catalog have host DMs of ∼ 400 pc cm
−3

[52]. [52]: Rafiei-Ravandi et al. (2021),

“CHIME/FRB Catalog 1 results: statistical

cross-correlations with large-scale

structure”
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Figure 10.5: Left: 95% Constraints on

PBHs as a function of scattering screen dis-

tance corresponding to the optical depth

calculated in Fig. 10.3.We plot our fiducial

(1 pc screen) model in red and suppress

curves for screen distances of 10 and 100 pc

because � < 3 under those assumptions.

Right: A collection of microlensing con-

straints on the fraction of darkmatter com-

posed of compact objects (such as PBHs),

5 ("2), assuming a monochromatic mass

function peaked around "2 . We have

shown Local Group PBH constraints in

blue (M: MACHO [397], EROS [328],

OGLE [362], Icarus [398]), and Local

Universe constraints in red (SNe [354],

CHIME/FRB, this work). CHIME/FRB

lensing constraints depend on our two-

screen scattering model, in which we

have assumed that the average FRB is

scattered by a screen at an effective dis-

tance of 1 pc, and our model for how

DM correlates with distance. In these con-

straints, we have used Eq. 10.22 to define

the exclusion limit as a function of "2 .

Wave optics effects suppress our signal at

" . 1.5 × 10
−4"� and finite source size

suppresses our signal at" & 3 × 10
4"� .

This shows that coherent FRB lensing has

the potential to search new parameter

space for exotic compact objects such as

PBHs.

In light of these two lines of evidence, we have tested two extreme

scenarios to estimate the uncertainty on our constraints resulting from

distance determination. In one scenario, we assume that all three bursts in

our sample with large total DM (> 1000 pc cm
−3
) are similar to 20190520B.

This is conservative because to the best of our knowledge, FRBs like

20190520B are not representative of the population of FRBs detected by

CHIME/FRB. Like FRB 20121102A, the properties of FRB 20190520B (e.g.

rotation measure and host galaxy) are quite different from other FRBs

localized by ASKAP [13, 79, 143]. In this scenario, the total lensing rate

shown in Fig. 10.3 is reduced by≈ 15%. In another scenario, Ref. [52] implies[52]: Rafiei-Ravandi et al. (2021),

“CHIME/FRB Catalog 1 results: statistical

cross-correlations with large-scale

structure”

that some high-DMFRBs (DM &785 pc cm
−3
) have a large host contribution.

To conservatively model this scenario, we double the DMhost of all bursts in

our sample with DM > 500 pc cm
−3

FRBs from 117 to 234 pc cm
−3
. In this

scenario, the optical depth is reduced by ≈ 20%.

These two scenarios bracket the uncertainty in our optical depth

arising from DM-based distances. We emphasize that this uncertainty is a

short-term problem motivating a long-term solution: to localize and follow

up FRBs using upcoming instruments like CHIME/FRB Outriggers [57, 62,

96, 113] to directly obtain their host galaxies’ redshifts.

Second, our constraints are sensitive to the measured scattering

timescale of each burst, which we use to estimate the extent of the plasma

decoherence. At present, the most mature CHIME/FRB pipeline for mea-

suring burst scattering timescales (intensity fitburst) uses low-resolution

“intensity” data [26]. The intensity data’s time resolution limits its ability to[26]: CHIME/FRB Collaboration et al.

(2018), “The CHIME Fast Radio Burst

Project: System Overview”
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measure scattering tails with timescales shorter than ≈ 100µs. For bursts

where a scattering tail is not detected, an upper limit on the scattering of

100µs is adopted. This is a very conservative treatment given that nanosec-

ond timescales have been observed in at least one FRB [3, 4, 399]. In the [3]: Bhardwaj et al. (2021), “A Nearby Re-

peating Fast Radio Burst in the Direction

of M81”

[4]: Kirsten et al. (2022), “A repeating fast

radio burst source in a globular cluster”

[399]: Nimmo et al. (2021), “Burst

timescales and luminosities link young

pulsars and fast radio bursts”

future, adapting the fitburst analysis pipeline (described in detail in [47,

159]) to use CHIME/FRB baseband data would allow for a higher time

resolution of ≈ 2.56µs. More accurate estimates of the screen size will lead

to improved constraints.

Third, our search method assumes that the scattering screen is unre-

solved by the gravitational lens, and is insensitive to screens resolved by the

lens. Our calculations demonstrate that this region of parameter space corre-

sponds to solar-mass lenses, a mass range that has enjoyed renewed interest

due to the detection of gravitational waves from compact binary merg-

ers [209]. One way to access this mass range with FRB gravitational-lens [209]: Abbott et al. (2016), “Observation of

Gravitational Waves from a Binary Black

Hole Merger”

interferometry is by developing more sophisticated correlation algorithms

to extract a lensing signal from the data with knowledge of the properties

of the scattering screen, which may be measured from the data themselves.

Another is to change the observing frequency: though finite source size

is less of a hindrance at CHIME frequencies, both wave optics effects and

scattering screens are less of a problem at higher frequencies. This will

broaden the reach of a search at the low-mass end (∝ �−1
due to reduced

wave effects) and at the high-mass end (smaller Aref) because scattering

timescales are extremely frequency-dependent (∝ �−4).

The future of FRB gravitational-lens interferometry is bright. Over

3000 FRBs have been detected by CHIME; these will enable the expansion

of this sample by over an order of magnitude. In the future, FRBs will

be routinely localized; this will provide robust distance measurements.

Upcoming FRB surveys with localization capabilities such as the Canadian

Hydrogen Observatory and Radio-transient Detector (CHORD) [88] and [88]: Vanderlinde et al. (2019), “The Cana-

dian Hydrogen Observatory and Radio-

transient Detector (CHORD)”

the Deep Synoptic Array (DSA-2000) [114], will detect FRBs at an even

[114]:Hallinan et al. (2019), “TheDSA-2000

– A Radio Survey Camera”

higher rate, and access frequencies up to 1.5 GHz to better exploit the

favorable scalings of coherent FRB lensing at higher frequencies.

In conclusion, this work and its companion paper [108] have demon- [108]: Kader (2022), “A High Time Resolu-

tion Search forGravitationally Lensed Fast

Radio Bursts using the CHIME telescope”

strated a novel method of searching for coherently lensed FRBs, and have

demonstrated the ability of coherent FRB lensing to constrain the con-

stituents of the cosmological dark matter, e.g., primordial black holes. We

have quantified the amount of decoherence using a two-screen model

containing a gravitational lens plane and a plasma screen; we find that

the degree of decoherence is sensitive to the plasma screen geometry. The

reach of coherent FRB lensing is increased as the FRB looks increasingly

like a point source as viewed from the lens plane. This is quite possible:

in some cases FRB emission only involves small amounts of temporal

broadening [399]. In other cases, studies of FRB properties [142, 159], their [399]: Nimmo et al. (2021), “Burst

timescales and luminosities link young

pulsars and fast radio bursts”

host environments [6, 78] and population studies [50, 79] of large samples

of FRBs support progenitor theories involving young neutron stars [393,

394] with atypical scattering environments (i.e. more extreme and compact

than those of pulsars). Like in the case of GRB femtolensing [267], the finite

angular size of the FRB emission region imposes a fundamental high mass

sensitivity cutoff for coherent FRB lensing. On the opposite end of the mass
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range, wave optics effects complicate searches for compact objects whose

Schwarzschild radii are smaller than the wavelength of light used [132].

Despite these limitations, and the uncertainties due to scattering screens,

our present results establish the sensitivity of coherent FRB lensing as a

probe of sub-solar mass primordial black holes. They also strongly suggest

that it is promising to conduct future searches for coherent lensing at

higher observing frequencies, where scattering and wave optics effects are

reduced. More broadly, this work establishes the viability of using coherent

FRB lensing as a unique tool with broader applications in astrophysics and

cosmology.
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Conclusions and Future
Directions 11

11.1 Conclusions

In this thesis, I have laid the foundations for turning theCanadianHydrogen

Intensity Mapping Experiment – a massive, widefield interferometer – into

the core station of a VLBI arraywith the field of view and angular resolution

to localize an unprecedented sample of FRBs at the time of their detection.

With a variety of testbeds instruments, we have developed a “synoptic”

in-beam calibration strategy (Chapter 2), a high-precision clocking system

(Chapter 3), and commissioned TONE: a long-baseline outrigger testbed for

VLBI. With TONE we achieved a localization accuracy of ≈ 0.1 − 0.2 arcsec

using daily single-pulse astrometric calibration observations of the Crab

pulsar. Using CHIME, TONE and a 10-meter dish at Algonquin Radio

Observatory, I demonstrated the single-pulse VLBI localization of an FRB

with an accuracy of ≈ 0.2 × 2 arcsec, and performed an end-to-end check

of the algorithm and our calibration solutions using a Crab pulse dumped

at all three stations (Chapter 6).

11.2 A first view of the compact, sub-GHz sky in
VLBI

The work contained in this thesis is a major scientific milestone towards

realizing CHIME/FRB Outriggers. Our goal is to localize FRBs, but more

broadly, the construction of CHIME/FRB Outriggers opens up the possi-

bility of a broader campaign to map the compact radio sky at sub-GHz

frequencies. The widefield outriggers, once constructed, will have ≈ 200

square degree fields of view which allows us to do this very efficiently.

The reasons to pursue a survey of the compact, sub-GHz sky are

twofold. First, with such a survey, the latency between VLBI calibrations

can potentially be decreased severalfold from ∼ 24 h to ∼ 1 h. In light of

our current ≈ 200 marcsec systematic errors quantified in Chapter 4 and

demonstrated on an FRB in Chapter 6, a faster calibration cadence enabled

by a dedicated survey would decrease the systematic localization errors

towards our astrometric precision goal of 50 marcsec. The broader reason

to pursue the survey is that our knowledge of the compact radio sky at

our frequencies and spatial scales is simply absent from the literature. The

simplest questions, such as “what do compact radio sources look like at

400–800 MHz?” remain open questions in radio astronomy. CHIME/FRB

Outriggers can play an important role not only in furthering our under-

standing of FRBs, but also in providing a first look at the sky in our band.

This would trailblaze sub-GHz VLBI for future VLBI experiments targeting

our frequency band.
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Now that CHIME/FRB Outriggers are under construction, we are

on the cusp of opening up the sub-GHz sky: what should we expect?

One rough idea comes from International LOFAR VLBI, which reports a

calibrator abundance of 1 per square degree [44] at 150 MHz. The exact[44]: Moldón et al. (2015), “The LOFAR

long baseline snapshot calibrator survey”
scaling of this abundance to CHIME/FRBOutriggers baselines and CHIME

frequencies is unclear. On one hand, our baselines are slightly longer (by

a factor of ≈ 3), so we will resolve out more sources, and our frequencies

are higher by a factor of ≈ 4, for a ≈ 12-fold increase in angular resolution

compared to LOFAR. This probes radio emission on finer spatial scales

than those probed by LOFAR, and could therefore wash out VLBI fringes

if the radio emission at these frequencies is not sufficiently point-like.

On the other hand, our frequencies are a factor of 4 higher than that of

LOFAR, and higher-frequency emission from e.g. active galactic nuclei

tends to be more compact than lower-frequency emission. This is because

synchrotron radiation at higher frequencies corresponds to more energetic

(young) populations of electrons emitting synchrotron radiation in stronger

magnetic fields. Depending on the exact spatial morphology of these

emission regions and their spectral energy distribution, the bounty of

viable calibrators as observed by LOFAR may very well be similar at our

frequencies.

A systematic study from CHIME/FRB Outriggers will bridge the gap

between International LOFAR and recent attempts to conduct wide-field

calibrator surveys using the VLBA at 2–8 GHz [136]. Once the CHIME/FRB[136]: Petrov (2021), “TheWide-fieldVLBA

Calibrator Survey: WFCS”
Outriggers array is online, we will be efficiently survey the sky using

widefield snapshot techniques such as those developed in Chapter 2. With

a 1-second snapshot of the full field of view at each VLBI station, our

widefield techniques will allow for an efficient survey of the VLBI sky at

400–800 MHz at flux densities of≈ 300 mJy over≈ 200 °2
of sky. This would

produce the first-ever large calibrator catalog of compact, steady radio

sources at 400–800 MHz, and potentially tens or hundreds of calibrators per

snapshot, depending on their intrinsic brightness and compactness. Cross-

matching these calibratorswith high- and low-frequency radio surveys, and

perhaps obtaining precise positions with existing facilities like the VLBA,

will provide a fuller view of phenomena like active galactic nuclei and their

relationship to their host galaxies over the electromagnetic spectrum. It will

also lay the foundations for future surveys of the compact, low-frequency

radio sky.

11.3 Measuring the Intergalactic Medium and
Electron Acoustic Oscillations with Fast
Radio Bursts

The intergalactic medium (IGM) is a key ingredient in understanding the

origin and evolution of the galaxies that make up our universe, via its

connection to galactic feedback, which pumps hot, metal-rich gas processed

by stars back into the primordial reservoir [400]. Due to theoretical uncer-[400]: McQuinn (2016), “The Evolution of

the Intergalactic Medium”
tainties surrounding galactic feedback, the density, temperature, metallicity,
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and spatial distribution of the IGM are poorly understood at I ∼ 0 [401]. [401]: Bregman (2007), “The Search for the

Missing Baryons at Low Redshift”
Observational tracers of these baryons also fall short: “Stacking the light”

by aligning and co-adding X-ray maps on the positions of known galaxies

allows detection of gas within and around galaxies and rich clusters, but

this only probes the densest, hottest gas: ≈ 15% of the total. This is the

“missing baryons” problem: the remaining 85% is difficult to understand

theoretically due to multi-scale feedback processes, and is difficult to

observationally detect because it is lies in diffuse, extended structures.

Pushing existing stackingmethods to diffuse structures such as groups

andfilaments is possible but rifewith astrophysical uncertainties. [402] have [402]: Tanimura et al. (2020), “First de-

tection of stacked X-ray emission from

cosmic web filaments”

successfully “stacked light” to detect filaments, but the X-ray luminosity is

a highly uncertain tracer of the gas density. For example, it is sensitive to

metallicity of the gas, which depends on feedback history. The luminosity

is also sensitive to the gas ionization fraction, which is difficult to directly

measure, out of equilibrium on virial-radius scales, and sensitive to AGN

feedback [403]. Filaments have also been probed by “stacking the pressure” [403]: Suresh et al. (2017), “On the OVI

abundance in the circumgalactic medium

of low-redshift galaxies”

using thermal Sunyaev-Zeldovich (SZ) maps made from the CMB [404],

[404]: de Graaff et al. (2019), “Probing

the missing baryons with the Sunyaev-

Zel’dovich effect from filaments”

but inferring the density this way requires knowing the spatial temperature

profile of the filaments, which is taken from simulations, which can exhibit

large uncertainties. This uncertainty arises from choosing one of various

phenomenological “sub-grid” prescriptions, which are used tomodelmulti-

scale feedback processes [405]. Understanding the spatial distribution and [405]: Pandya et al. (2020), “First Results

from SMAUG: The Need for Preventative

Stellar Feedback and Improved Baryon

Cycling in Semianalytic Models of Galaxy

Formation”

properties of baryons would constrain galactic feedback and discriminate

between plausible sub-grid models for feedback in simulations [406].

[406]: Hopkins et al. (2014), “Galaxies

on FIRE (Feedback In Realistic Environ-

ments): stellar feedback explains cosmo-

logically inefficient star formation”

The dispersion of FRBs is a tracer of the ionized gas density which is

temperature- and metallicity-insensitive up to ≈ 5 × 10
9
K, making it an

extremely promising complement to existing probes. It is equally applicable

to the hot (10
7−8

K) baryons in clusters as well as the cooler (10
5−7

K) gas in

groups and filaments.

In the near future, it will be possible to stack FRBs on the positions

of low-redshift (I . 0.4) clusters [407]: a straightforward goal would be [407]: Wen et al. (2018), “A catalogue of

clusters of galaxies identified from all sky

surveys of 2MASS, WISE, and SuperCOS-

MOS”

to compare this method with mature probes of cluster gas profiles such

as X-ray light (e.g. [408]). The large angular size of clusters reduces the

[408]: Ettori et al. (2009), “The outer re-

gions of galaxy clusters: Chandra con-

straints on the X-ray surface brightness”

FRB localization requirement to arcseconds, and the DM excess from

clusters will be evident in single bursts: �DM & 300 pc cm
−3

for an impact

parameter . 1 Mpc from a 5 × 10
14"� cluster [409].

[409]: Prochaska et al. (2019), “Probing

Galactic haloes with fast radio bursts”An even more ambitious goal would be to use FRBs to make maps

of the ionized gas throughout the universe, and measure the cosmologi-

cal “electron acoustic oscillation” feature. Mapmaking algorithms could

turn catalogs of FRB redshifts, positions, and dispersion measures into

three-dimensional maps of electron inhomogeneities throughout the uni-

verse, perhaps with additional tracers (e.g. galaxy surveys) providing the

line-of-sight information initially. Towards this goal, a feedback loop of

cosmological baryon simulations and mock observations of FRBs would

be needed to validate map-making algorithms, similar to current efforts to

detect brightness fluctuations in the cosmological 21-centimeter signal.

The systematics in this measurement are most present on sub-galactic

scales. This includes the host contribution to the FRB’s total DM, or
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disentangling DM excesses from multiple intervening galaxy disks, which

depends on the density profiles of electrons as a function of galaxy type

and geometry. This might contain valuable information about baryonic

feedback processes in galaxies. At the end of the day, these maps could

be made using algorithms which preserve the power spectrum of density

fluctuations at the relevant scales.

In the far future, electron map-making might enable detection and

measurement of the baryon acoustic oscillation feature using line-of-sight

electrons. We would want to go wide and deep, using large collecting areas

to detect faint, distant FRBs with many intervening electrons, as well as

large, uniform sky coverage for an all-sky electron map. This measurement

would be the ultimate application of FRBs to cosmology, and a challenge

well-suited to the powerful line intensity-mapping instruments – such as

CHIME – which originally enabled their detection, characterization, and

localization.
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[246] Anıl Zenginoǧlu and Chad R. Galley. “Caustic echoes from a Schwarzschild black hole”. In: Phys. Rev. D
86.6, 064030 (Sept. 2012), p. 064030. doi: 10.1103/PhysRevD.86.064030 (cited on page 182).

[247] Huan Yang et al. “Scalar Green function of the Kerr spacetime”. In: Phys. Rev. D 89.6, 064014 (Mar. 2014),

p. 064014. doi: 10.1103/PhysRevD.89.064014 (cited on page 182).

[248] J. M. Stewart. “Solutions of the Wave Equation on a Schwarzschild Space-Time with Localized Energy”.

In: Proceedings of the Royal Society of London Series A 424.1866 (July 1989), pp. 239–244. doi: 10.1098/rspa.

1989.0078 (cited on page 182).

288

https://doi.org/10.1051/0004-6361:20034512
https://doi.org/10.1086/186279
https://doi.org/10.1086/186279
https://doi.org/10.1086/186946
https://doi.org/10.1086/173054
https://doi.org/10.1093/mnras/staa407
https://doi.org/10.3847/1538-4357/aa9575
https://doi.org/10.3847/1538-3881/ab5e83
https://doi.org/10.1086/164709
https://doi.org/10.1088/2040-8986/abfee1
https://doi.org/10.1103/PhysRevD.86.064030
https://doi.org/10.1103/PhysRevD.89.064014
https://doi.org/10.1098/rspa.1989.0078
https://doi.org/10.1098/rspa.1989.0078


[249] Hideki Ishihara, Masaaki Takahashi, and Akira Tomimatsu. “Gravitational Faraday rotation induced by

a Kerr black hole”. In: Phys. Rev. D 38.2 (July 1988), pp. 472–477. doi: 10.1103/PhysRevD.38.472 (cited

on page 182).

[250] Mohammad Nouri-Zonoz. “Gravitoelectromagnetic approach to the gravitational Faraday rotation in

stationary spacetimes”. In: Phys. Rev. D 60.2, 024013 (July 1999), p. 024013. doi: 10.1103/PhysRevD.60.

024013 (cited on page 182).

[251] H. Asada and M. Kasai. “Can We See a Rotating Gravitational Lens?” In: Progress of Theoretical Physics
104.1 (July 2000), pp. 95–102. doi: 10.1143/PTP.104.95 (cited on page 182).

[252] Zhao Li et al. “Gravitational Faraday Rotation of gravitational waves by a Kerr black hole”. In: J.
Cosmology Astropart. Phys. 2022.10, 095 (Oct. 2022), p. 095. doi: 10.1088/1475-7516/2022/10/095 (cited

on page 182).

[253] Pierre Gosselin, Alain Bérard, and Hervé Mohrbach. “Spin Hall effect of photons in a static gravitational

field”. In: Phys. Rev. D 75.8, 084035 (Apr. 2007), p. 084035. doi: 10.1103/PhysRevD.75.084035 (cited on

page 182).

[254] Marius A. Oancea et al. “Gravitational spin Hall effect of light”. In: Phys. Rev. D 102.2, 024075 (July 2020),

p. 024075. doi: 10.1103/PhysRevD.102.024075 (cited on page 182).

[255] Dongzi Li et al. “Constraining magnetic fields through plasma lensing: application to the Black Widow

pulsar”. In:MNRAS 484.4 (Apr. 2019), pp. 5723–5733. doi: 10.1093/mnras/stz374 (cited on page 182).

[256] Latham Boyle and Ue-Li Pen. “Pulsar timing arrays as imaging gravitational wave telescopes: Angular

resolution and source (de)confusion”. In: Phys. Rev. D 86.12, 124028 (Dec. 2012), p. 124028. doi: 10.1103/

PhysRevD.86.124028 (cited on page 182).

[257] Sohrab Rahvar. “Gravitational grating”. In:MNRAS 479.1 (Sept. 2018), pp. 406–414. doi: 10.1093/mnras/

sty1369 (cited on page 182).

[258] Liang Dai. “Rotation of the Cosmic Microwave Background Polarization from Weak Gravitational

Lensing”. In: Phys. Rev. Lett. 112.4, 041303 (Jan. 2014), p. 041303. doi: 10.1103/PhysRevLett.112.041303

(cited on page 182).

[259] Liang Dai and Tejaswi Venumadhav. “On the waveforms of gravitationally lensed gravitational waves”.

In: arXiv e-prints, arXiv:1702.04724 (Feb. 2017), arXiv:1702.04724 (cited on page 187).

[260] Liang Dai et al. “Search for Lensed Gravitational Waves Including Morse Phase Information: An

Intriguing Candidate in O2”. In: arXiv e-prints, arXiv:2007.12709 (July 2020), arXiv:2007.12709 (cited on

pages 187, 205).

[261] Justin Janquart et al. “On the Identification of Individual Gravitational-wave Image Types of a Lensed

SystemUsing Higher-order Modes”. In:ApJ 923.1, L1 (Dec. 2021), p. L1. doi: 10.3847/2041-8213/ac3bcf

(cited on page 187).

[262] Jose Maria Ezquiaga et al. “Phase effects from strong gravitational lensing of gravitational waves”.

In: Phys. Rev. D 103.6, 064047 (Mar. 2021), p. 064047. doi: 10.1103/PhysRevD.103.064047 (cited on

page 187).

[263] Aditya Vĳaykumar, Ajit Kumar Mehta, and Apratim Ganguly. “Detection and parameter estimation

challenges of Type-II lensed binary black hole signals”. In: arXiv e-prints, arXiv:2202.06334 (Feb. 2022),

arXiv:2202.06334 (cited on page 187).

[264] R. Thom. Structural Stability And Morphogenesis. CRC Press, 1967 (cited on page 188).

[265] J. F. Nye. Natural focusing and fine structure of light: caustics and wave dislocations. 1999 (cited on page 188).

[266] Michael V. Berry and Colin Upstill. “IV Catastrophe Optics: Morphologies of Caustics and Their

Diffraction Patterns”. In: Progress in Optics 18 (1980), pp. 257–346 (cited on page 188).

289

https://doi.org/10.1103/PhysRevD.38.472
https://doi.org/10.1103/PhysRevD.60.024013
https://doi.org/10.1103/PhysRevD.60.024013
https://doi.org/10.1143/PTP.104.95
https://doi.org/10.1088/1475-7516/2022/10/095
https://doi.org/10.1103/PhysRevD.75.084035
https://doi.org/10.1103/PhysRevD.102.024075
https://doi.org/10.1093/mnras/stz374
https://doi.org/10.1103/PhysRevD.86.124028
https://doi.org/10.1103/PhysRevD.86.124028
https://doi.org/10.1093/mnras/sty1369
https://doi.org/10.1093/mnras/sty1369
https://doi.org/10.1103/PhysRevLett.112.041303
https://doi.org/10.3847/2041-8213/ac3bcf
https://doi.org/10.1103/PhysRevD.103.064047


[267] Andrey Katz et al. “Femtolensing by dark matter revisited”. In: J. Cosmology Astropart. Phys. 2018.12, 005
(Dec. 2018), p. 005. doi: 10.1088/1475-7516/2018/12/005 (cited on pages 189, 194, 205, 209, 259, 269).

[268] Norihito Matsunaga and Kazuhiro Yamamoto. “The finite source size effect and wave optics in grav-

itational lensing”. In: J. Cosmology Astropart. Phys. 2006.1, 023 (Jan. 2006), p. 023. doi: 10.1088/1475-

7516/2006/01/023 (cited on pages 189, 194, 205).

[269] Teruaki Suyama, Takahiro Tanaka, and Ryuichi Takahashi. “Exact wave propagation in a spacetime with

a cosmic string”. In: Phys. Rev. D 73.2, 024026 (Jan. 2006), p. 024026. doi: 10.1103/PhysRevD.73.024026

(cited on page 189).

[270] Theodore L. Beach and Richard V. E. Lovelace. “Diffraction by a sinusoidal phase screen”. In: Radio
Science 32.3 (May 1997), pp. 913–921. doi: 10.1029/97RS00063 (cited on page 189).

[271] Andrew Ulmer and Jeremy Goodman. “Femtolensing: Beyond the Semiclassical Approximation”. In:

ApJ 442 (Mar. 1995), p. 67. doi: 10.1086/175422 (cited on page 189).

[272] Anuj Mishra et al. “Gravitational lensing of gravitational waves: effect of microlens population in

lensing galaxies”. In: MNRAS 508.4 (Dec. 2021), pp. 4869–4886. doi: 10.1093/mnras/stab2875 (cited on

pages 189, 204, 205).

[273] Dylan L. Jow et al. “Imaginary images and Stokes phenomena in the weak plasma lensing of coherent

sources”. In: MNRAS 507.4 (Nov. 2021), pp. 5390–5402. doi: 10.1093/mnras/stab2337 (cited on

page 189).

[274] Job Feldbrugge, Ue-Li Pen, and Neil Turok. “Oscillatory path integrals for radio astronomy”. In: arXiv
e-prints, arXiv:1909.04632 (Sept. 2019), arXiv:1909.04632 (cited on pages 189, 190, 261).

[275] Xun Shi and Zhu Xu. “Plasma microlensing dynamic spectrum probing fine structures in the ionized

interstellar medium”. In:MNRAS 506.4 (Oct. 2021), pp. 6039–6051. doi: 10.1093/mnras/stab2108 (cited

on page 189).

[276] K. Chang and S. Refsdal. “Flux variations of QSO 0957 + 561 A, B and image splitting by stars near the

light path”. In: Nature 282.5739 (Dec. 1979), pp. 561–564. doi: 10.1038/282561a0 (cited on page 190).

[277] John W. Pearson, Sheehan Olver, and Mason A. Porter. “Numerical Methods for the Computation of

the Confluent and Gauss Hypergeometric Functions”. In: arXiv e-prints, arXiv:1407.7786 (July 2014),

arXiv:1407.7786. doi: 10.48550/arXiv.1407.7786 (cited on page 190).

[278] Peter Goldreich and Douglas A. Keeley. “Astrophysical Masers. I. Source Size and Saturation”. In: ApJ
174 (June 1972), p. 517. doi: 10.1086/151514 (cited on page 193).

[279] K. J. Johnston et al. “The Apparent Sizes of the 62-61 E-Type Methanol Masers in OMC-1”. In: ApJ 490.2
(Dec. 1997), pp. 758–764. doi: 10.1086/304891 (cited on page 193).

[280] P. Schneider. “Themutual coherence of the images of gravitationally lensed objects”. In: Liege International
Astrophysical Colloquia. Ed. by Jean-Pierre Swings. Vol. 24. Liege International Astrophysical Colloquia.

June 1983, pp. 131–133 (cited on page 194).

[281] Claudio Maccone. “FOCAL mission to 550 thru 1000 AU: Status review 2009”. In: Acta Astronautica 67.5
(Sept. 2010), pp. 521–525. doi: 10.1016/j.actaastro.2010.03.013 (cited on page 195).

[282] Slava G. Turyshev. “Wave-theoretical description of the solar gravitational lens”. In: Phys. Rev. D 95.8,

084041 (Apr. 2017), p. 084041. doi: 10.1103/PhysRevD.95.084041 (cited on page 195).

[283] Sara Engeli and Prasenjit Saha. “Optical properties of the solar gravity lens”. In: MNRAS 516.4 (Nov.

2022), pp. 4679–4683. doi: 10.1093/mnras/stac2522 (cited on page 195).

[284] Teruaki Suyama. “On Arrival Time Difference Between Lensed Gravitational Waves and Light”. In: ApJ
896.1, 46 (June 2020), p. 46. doi: 10.3847/1538-4357/ab8d3f (cited on page 196).

[285] JoseMaria Ezquiaga,WayneHu, andMacarena Lagos. “Apparent superluminality of lensed gravitational

waves”. In: Phys. Rev. D 102.2, 023531 (July 2020), p. 023531. doi: 10.1103/PhysRevD.102.023531 (cited

on page 196).

290

https://doi.org/10.1088/1475-7516/2018/12/005
https://doi.org/10.1088/1475-7516/2006/01/023
https://doi.org/10.1088/1475-7516/2006/01/023
https://doi.org/10.1103/PhysRevD.73.024026
https://doi.org/10.1029/97RS00063
https://doi.org/10.1086/175422
https://doi.org/10.1093/mnras/stab2875
https://doi.org/10.1093/mnras/stab2337
https://doi.org/10.1093/mnras/stab2108
https://doi.org/10.1038/282561a0
https://doi.org/10.48550/arXiv.1407.7786
https://doi.org/10.1086/151514
https://doi.org/10.1086/304891
https://doi.org/10.1016/j.actaastro.2010.03.013
https://doi.org/10.1103/PhysRevD.95.084041
https://doi.org/10.1093/mnras/stac2522
https://doi.org/10.3847/1538-4357/ab8d3f
https://doi.org/10.1103/PhysRevD.102.023531


[286] So Tanaka and Teruaki Suyama. “Kramers-Kronig relation in gravitational lensing”. In: arXiv e-prints,
arXiv:2303.05650 (Mar. 2023), arXiv:2303.05650 (cited on page 196).

[287] P. Cremonese, J. M. Ezquiaga, and V. Salzano. “Breaking the mass-sheet degeneracy with gravitational

wave interference in lensed events”. In: Phys. Rev. D 104.2, 023503 (July 2021), p. 023503. doi: 10.1103/

PhysRevD.104.023503 (cited on page 196).

[288] Yousuke Itoh, Toshifumi Futamase, andMakotoHattori. “Method tomeasure a relative transverse velocity

of a source-lens-observer system using gravitational lensing of gravitational waves”. In: Phys. Rev. D
80.4, 044009 (Aug. 2009), p. 044009. doi: 10.1103/PhysRevD.80.044009 (cited on page 197).

[289] Ramesh Narayan. “The Physics of Pulsar Scintillation”. In: Philosophical Transactions of the Royal Society of
London Series A 341.1660 (Oct. 1992), pp. 151–165. doi: 10.1098/rsta.1992.0090 (cited on pages 197, 261,

262).

[290] Jeremy J. Goodman et al. “The effects of caustics on scintillating radio sources”. In:MNRAS 229 (Nov.

1987), pp. 73–102. doi: 10.1093/mnras/229.1.73 (cited on page 197).

[291] M. A. Walker et al. “Interpretation of parabolic arcs in pulsar secondary spectra”. In: MNRAS 354.1 (Oct.

2004), pp. 43–54. doi: 10.1111/j.1365-2966.2004.08159.x (cited on page 197).

[292] G. Congedo et al. “Gravitational Wave Scintillation by a Stellar Cluster”. In: International Journal of Modern
Physics D 15.11 (Jan. 2006), pp. 1937–1945. doi: 10.1142/S0218271806009248 (cited on page 198).

[293] Ryuichi Takahashi, Teruaki Suyama, and Shugo Michikoshi. “Scattering of gravitational waves by the

weak gravitational fields of lens objects”. In: A&A 438.1 (July 2005), pp. L5–L8. doi: 10.1051/0004-6361:

200500140 (cited on page 198).

[294] Ryuichi Takahashi. “Amplitude and Phase Fluctuations for Gravitational Waves Propagating through

Inhomogeneous Mass Distribution in the Universe”. In: ApJ 644.1 (June 2006), pp. 80–85. doi: 10.1086/

503323 (cited on pages 198, 204).

[295] Masamune Oguri and Ryuichi Takahashi. “Probing Dark Low-mass Halos and Primordial Black Holes

with Frequency-dependent Gravitational Lensing Dispersions of Gravitational Waves”. In: ApJ 901.1, 58
(Sept. 2020), p. 58. doi: 10.3847/1538-4357/abafab (cited on pages 198, 204).

[296] Makoto Inamori and Teruaki Suyama. “Universal Relation between the Variances of Distortions of

Gravitational Waves owing to Gravitational Lensing”. In: ApJ 918.2, L30 (Sept. 2021), p. L30. doi:

10.3847/2041-8213/ac2142 (cited on page 198).

[297] Masamune Oguri and Ryuichi Takahashi. “Amplitude and phase fluctuations of gravitational waves

magnified by strong gravitational lensing”. In: Phys. Rev. D 106.4, 043532 (Aug. 2022), p. 043532. doi:

10.1103/PhysRevD.106.043532 (cited on page 198).

[298] H. C. Ohanian. “The caustics of gravitational ’lenses’”. In: ApJ 271 (Aug. 1983), pp. 551–555. doi:

10.1086/161221 (cited on page 198).

[299] E. Herlt and H. Stephani. “Wave Optics of the Spherical Gravitational Lens. Part I: Diffraction of a Plane

Electromagnetic Wave by a Large Star”. In: International Journal of Theoretical Physics 15.1 (Jan. 1976),
pp. 45–65. doi: 10.1007/BF01807086 (cited on page 199).

[300] J. R. Benson and J. H. Cooke. “High-intensification regions of gravitational lenses.” In: ApJ 227 (Jan.

1979), pp. 360–363. doi: 10.1086/156739 (cited on page 199).

[301] Hans J. Witt and ShudeMao. “Can Lensed Stars Be Regarded as Pointlike for Microlensing byMACHOs?”

In: ApJ 430 (Aug. 1994), p. 505. doi: 10.1086/174426 (cited on pages 199, 204, 205).

[302] M. Jaroszynski and B. Paczynski. “Diffraction Effects in Microlensing of Q2237+0305”. In: ApJ 455 (Dec.

1995), p. 443. doi: 10.1086/176593 (cited on page 202).

[303] R. J. Bontz and M. P. Haugan. “A Diffraction Limit on the Gravitational Lens Effect”. In: Ap&SS 78.1

(Aug. 1981), pp. 199–210. doi: 10.1007/BF00654034 (cited on page 202).

291

https://doi.org/10.1103/PhysRevD.104.023503
https://doi.org/10.1103/PhysRevD.104.023503
https://doi.org/10.1103/PhysRevD.80.044009
https://doi.org/10.1098/rsta.1992.0090
https://doi.org/10.1093/mnras/229.1.73
https://doi.org/10.1111/j.1365-2966.2004.08159.x
https://doi.org/10.1142/S0218271806009248
https://doi.org/10.1051/0004-6361:200500140
https://doi.org/10.1051/0004-6361:200500140
https://doi.org/10.1086/503323
https://doi.org/10.1086/503323
https://doi.org/10.3847/1538-4357/abafab
https://doi.org/10.3847/2041-8213/ac2142
https://doi.org/10.1103/PhysRevD.106.043532
https://doi.org/10.1086/161221
https://doi.org/10.1007/BF01807086
https://doi.org/10.1086/156739
https://doi.org/10.1086/174426
https://doi.org/10.1086/176593
https://doi.org/10.1007/BF00654034


[304] F. De Paolis et al. “A note on gravitational wave lensing”. In: A&A 394 (Nov. 2002), pp. 749–752. doi:

10.1051/0004-6361:20021258 (cited on page 202).

[305] Mawson W. Sammons et al. “The Effect of Gravitational Lensing on Fast Transient Event Rates”. In:

MNRAS (Oct. 2022). doi: 10.1093/mnras/stac3013 (cited on pages 203, 204).

[306] Liang Dai et al. “Detecting lensing-induced diffraction in astrophysical gravitational waves”. In:

Phys. Rev. D 98.10, 104029 (Nov. 2018), p. 104029. doi: 10.1103/PhysRevD.98.104029 (cited on

page 204).

[307] Han Gil Choi, Chanung Park, and Sunghoon Jung. “Small-scale shear: Peeling off diffuse subhalos with

gravitational waves”. In: arXiv e-prints, arXiv:2103.08618 (Mar. 2021), arXiv:2103.08618 (cited on page 204).

[308] Xiao Guo and Youjun Lu. “Probing the nature of dark matter via gravitational waves lensed by small dark

matter halos”. In: Phys. Rev. D 106.2, 023018 (July 2022), p. 023018. doi: 10.1103/PhysRevD.106.023018

(cited on page 204).

[309] Mark H. Y. Cheung et al. “Stellar-mass microlensing of gravitational waves”. In: MNRAS 503.3 (May

2021), pp. 3326–3336. doi: 10.1093/mnras/stab579 (cited on page 204).

[310] J. M. Diego. “The Universe at extreme magnification”. In: A&A 625, A84 (May 2019), A84. doi: 10.1051/

0004-6361/201833670 (cited on page 205).

[311] D. Khangulyan, Maxim V. Barkov, and S. B. Popov. “Fast Radio Bursts by High-frequency Synchrotron

Maser Emission Generated at the Reverse Shock of a Powerful Magnetar Flare”. In: ApJ 927.1, 2 (Mar.

2022), p. 2. doi: 10.3847/1538-4357/ac4bdf (cited on pages 205, 260).

[312] B. J. Rickett. “Radio propagation through the turbulent interstellar plasma.” In: ARA&A 28.1 (Jan. 1990),

pp. 561–605. doi: 10.1146/annurev.aa.28.090190.003021 (cited on page 205).

[313] T. JosephW. Lazio et al. “Angular Broadening of Intraday Variable AGNs. II. Interstellar and Intergalactic

Scattering”. In: ApJ 672.1 (Jan. 2008), pp. 115–121. doi: 10.1086/520572 (cited on page 205).

[314] Liam Connor and Vikram Ravi. “Stellar prospects for FRB gravitational lensing”. In: arXiv e-prints,
arXiv:2206.14310 (June 2022), arXiv:2206.14310 (cited on page 205).

[315] LIGO Scientific Collaboration et al. “Advanced LIGO”. In: Classical and Quantum Gravity 32.7, 074001
(Apr. 2015), p. 074001. doi: 10.1088/0264-9381/32/7/074001 (cited on page 205).

[316] F. Acernese et al. “Advanced Virgo: a second-generation interferometric gravitational wave detector”. In:

Classical and Quantum Gravity 32.2, 024001 (Jan. 2015), p. 024001. doi: 10.1088/0264-9381/32/2/024001

(cited on page 205).

[317] Kagra Collaboration et al. “KAGRA: 2.5 generation interferometric gravitational wave detector”. In:

Nature Astronomy 3 (Jan. 2019), pp. 35–40. doi: 10.1038/s41550-018-0658-y (cited on page 205).

[318] K. Haris et al. “Identifying strongly lensed gravitational wave signals from binary black hole mergers”.

In: arXiv e-prints, arXiv:1807.07062 (July 2018), arXiv:1807.07062 (cited on page 205).

[319] O. A. Hannuksela et al. “Search for Gravitational Lensing Signatures in LIGO-Virgo Binary Black Hole

Events”. In: ApJ 874.1, L2 (Mar. 2019), p. L2. doi: 10.3847/2041-8213/ab0c0f (cited on page 205).

[320] R. Abbott et al. “Search for Lensing Signatures in the Gravitational-Wave Observations from the First

Half of LIGO-Virgo’s Third Observing Run”. In: ApJ 923.1, 14 (Dec. 2021), p. 14. doi: 10.3847/1538-

4357/ac23db (cited on page 205).

[321] Ranjan Laha. “Lensing of fast radio bursts: future constraints on primordial black hole density with

an extended mass function and a new probe of exotic compact fermion and boson stars”. In: arXiv
e-prints 102, arXiv:1812.11810 (2 Dec. 2018), arXiv:1812.11810. doi: 10.1103/PhysRevD.102.023016 (cited

on pages 208, 251).

[322] Maxim Yu. Khlopov. “Primordial black holes”. In: Research in Astronomy and Astrophysics 10.6 (June 2010),

pp. 495–528. doi: 10.1088/1674-4527/10/6/001 (cited on page 208).

292

https://doi.org/10.1051/0004-6361:20021258
https://doi.org/10.1093/mnras/stac3013
https://doi.org/10.1103/PhysRevD.98.104029
https://doi.org/10.1103/PhysRevD.106.023018
https://doi.org/10.1093/mnras/stab579
https://doi.org/10.1051/0004-6361/201833670
https://doi.org/10.1051/0004-6361/201833670
https://doi.org/10.3847/1538-4357/ac4bdf
https://doi.org/10.1146/annurev.aa.28.090190.003021
https://doi.org/10.1086/520572
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1038/s41550-018-0658-y
https://doi.org/10.3847/2041-8213/ab0c0f
https://doi.org/10.3847/1538-4357/ac23db
https://doi.org/10.3847/1538-4357/ac23db
https://doi.org/10.1103/PhysRevD.102.023016
https://doi.org/10.1088/1674-4527/10/6/001


[323] Bernard Carr and Florian Kühnel. “Primordial Black Holes as Dark Matter: Recent Developments”. In:

Annual Review of Nuclear and Particle Science 70 (Oct. 2020), pp. 355–394. doi: 10.1146/annurev-nucl-

050520-125911 (cited on pages 208, 250, 257, 267).

[324] Anne M. Green and Bradley J. Kavanagh. “Primordial black holes as a dark matter candidate”. In: Journal
of Physics G Nuclear Physics 48.4, 043001 (Apr. 2021), p. 043001. doi: 10.1088/1361-6471/abc534 (cited

on pages 208, 250).

[325] James M. Cordes and Shami Chatterjee. “Fast Radio Bursts: An Extragalactic Enigma”. In: ARA&A 57

(Aug. 2019), pp. 417–465. doi: 10.1146/annurev-astro-091918-104501 (cited on pages 208, 250).

[326] David Eichler. “Nanolensed Fast Radio Bursts”. In: ApJ 850.2, 159 (Dec. 2017), p. 159. doi: 10.3847/1538-

4357/aa8b70 (cited on pages 208, 209, 251).

[327] C. Alcock et al. “The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud

Observations”. In: ApJ 542.1 (Oct. 2000), pp. 281–307. doi: 10.1086/309512 (cited on page 208).

[328] P. Tisserand et al. “Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the

Magellanic Clouds”. In: A&A 469.2 (July 2007), pp. 387–404. doi: 10.1051/0004-6361:20066017 (cited

on pages 208, 268).

[329] L. Wyrzykowski et al. “The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-

III SMC data and final conclusions on MACHOs”. In: MNRAS 416.4 (Oct. 2011), pp. 2949–2961. doi:

10.1111/j.1365-2966.2011.19243.x (cited on page 208).

[330] Hyerin Cho et al. “Spectropolarimetric Analysis of FRB 181112 at Microsecond Resolution: Implications

for Fast Radio Burst Emission Mechanism”. In: ApJ 891.2, L38 (Mar. 2020), p. L38. doi: 10.3847/2041-

8213/ab7824 (cited on pages 208, 213, 260).

[331] W. Farah et al. “Five new real-time detections of fast radio bursts with UTMOST”. In: MNRAS 488.3

(Sept. 2019), pp. 2989–3002. doi: 10.1093/mnras/stz1748 (cited on pages 208, 213).

[332] Kai Liao et al. “Constraints on Compact Dark Matter with Fast Radio Burst Observations”. In: ApJ 896.1,
L11 (June 2020), p. L11. doi: 10.3847/2041-8213/ab963e (cited on page 209).

[333] Huan Zhou et al. “Search for Lensing Signatures from the Latest Fast Radio Burst Observations and

Constraints on the Abundance of Primordial Black Holes”. In: ApJ 928.2, 124 (Apr. 2022), p. 124. doi:

10.3847/1538-4357/ac510d (cited on page 209).

[334] Keren Krochek and Ely D. Kovetz. “Constraining primordial black hole dark matter with CHIME fast

radio bursts”. In: Phys. Rev. D 105.10, 103528 (May 2022), p. 103528. doi: 10.1103/PhysRevD.105.103528

(cited on page 209).

[335] J. M. Cordes et al. “Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies”. In: ApJ 842.1, 35
(June 2017), p. 35. doi: 10.3847/1538-4357/aa74da (cited on page 209).

[336] Zheng-Xiang Li et al. “Strongly lensed repeating fast radio bursts as precision probes of the universe”.

In: Nature Communications 9, 3833 (Sept. 2018), p. 3833. doi: 10.1038/s41467-018-06303-0 (cited on

pages 209, 250).

[337] Liang Dai and Wenbin Lu. “Probing Motion of Fast Radio Burst Sources by Timing Strongly Lensed

Repeaters”. In: ApJ 847.1, 19 (Sept. 2017), p. 19. doi: 10.3847/1538-4357/aa8873 (cited on page 209).

[338] Noah Pearson, Cynthia Trendafilova, and Joel Meyers. “Searching for Gravitational Waves with Strongly

Lensed Repeating Fast Radio Bursts”. In: arXiv e-prints, arXiv:2009.11252 (Sept. 2020), arXiv:2009.11252

(cited on pages 209, 251).

[339] James Paynter, Rachel Webster, and Eric Thrane. “Evidence for an intermediate-mass black hole from a

gravitationally lensed gamma-ray burst”. In: Nature Astronomy (Mar. 2021). doi: 10.1038/s41550-021-

01307-1 (cited on pages 211, 250).

[340] Kiyoshi W. Masui et al. “Algorithms for FFT Beamforming Radio Interferometers”. In: arXiv e-prints,
arXiv:1710.08591 (Oct. 2017), arXiv:1710.08591 (cited on page 212).

293

https://doi.org/10.1146/annurev-nucl-050520-125911
https://doi.org/10.1146/annurev-nucl-050520-125911
https://doi.org/10.1088/1361-6471/abc534
https://doi.org/10.1146/annurev-astro-091918-104501
https://doi.org/10.3847/1538-4357/aa8b70
https://doi.org/10.3847/1538-4357/aa8b70
https://doi.org/10.1086/309512
https://doi.org/10.1051/0004-6361:20066017
https://doi.org/10.1111/j.1365-2966.2011.19243.x
https://doi.org/10.3847/2041-8213/ab7824
https://doi.org/10.3847/2041-8213/ab7824
https://doi.org/10.1093/mnras/stz1748
https://doi.org/10.3847/2041-8213/ab963e
https://doi.org/10.3847/1538-4357/ac510d
https://doi.org/10.1103/PhysRevD.105.103528
https://doi.org/10.3847/1538-4357/aa74da
https://doi.org/10.1038/s41467-018-06303-0
https://doi.org/10.3847/1538-4357/aa8873
https://doi.org/10.1038/s41550-021-01307-1
https://doi.org/10.1038/s41550-021-01307-1


[341] J. -P. Macquart et al. “The Spectral Properties of the Bright Fast Radio Burst Population”. In: ApJ 872.2,
L19 (Feb. 2019), p. L19. doi: 10.3847/2041-8213/ab03d6 (cited on pages 213, 232, 261, 264).

[342] Eve Schoen et al. “Scintillation Timescales of Bright FRBs Detected by CHIME/FRB”. In: Research Notes of
the American Astronomical Society 5.11, 271 (Nov. 2021), p. 271. doi: 10.3847/2515-5172/ac3af9 (cited on

pages 213, 232, 261, 264).

[343] J. M. Cordes. “NE2001: A NewModel for the Galactic Electron Density and its Fluctuations”. In:Milky
Way Surveys: The Structure and Evolution of our Galaxy. Ed. by Dan Clemens, Ronak Shah, and Teresa

Brainerd. Vol. 317. Astronomical Society of the Pacific Conference Series. Dec. 2004, p. 211 (cited on

pages 232, 235).

[344] E. Petroff, J. W. T. Hessels, and D. R. Lorimer. “Fast radio bursts”. In: A&A Rev. 27.1, 4 (May 2019), p. 4.

doi: 10.1007/s00159-019-0116-6 (cited on pages 243, 250).

[345] F. W. Dyson, A. S. Eddington, and C. Davidson. “A Determination of the Deflection of Light by the

Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919”. In: Philosophical
Transactions of the Royal Society of London Series A 220 (Jan. 1920), pp. 291–333. doi: 10.1098/rsta.1920.

0009 (cited on page 250).

[346] F. Zwicky. “Nebulae as Gravitational Lenses”. In: Physical Review 51.4 (Feb. 1937), pp. 290–290. doi:

10.1103/PhysRev.51.290 (cited on page 250).

[347] D. Walsh, R. F. Carswell, and R. J. Weymann. “0957+561 A, B: twin quasistellar objects or gravitational

lens?” In: Nature 279 (May 1979), pp. 381–384. doi: 10.1038/279381a0 (cited on page 250).

[348] Henk Hoekstra et al. “Masses of Galaxy Clusters from Gravitational Lensing”. In: Space Sci. Rev. 177.1-4
(Aug. 2013), pp. 75–118. doi: 10.1007/s11214-013-9978-5 (cited on page 250).

[349] BenMoore et al. “Dark Matter Substructure within Galactic Halos”. In: ApJ 524.1 (Oct. 1999), pp. L19–L22.

doi: 10.1086/312287 (cited on page 250).

[350] Shude Mao and Peter Schneider. “Evidence for substructure in lens galaxies?” In:MNRAS 295.3 (Apr.

1998), pp. 587–594. doi: 10.1046/j.1365-8711.1998.01319.x (cited on page 250).

[351] S. Refsdal. “On the possibility of determining Hubble’s parameter and the masses of galaxies from the

gravitational lens effect”. In:MNRAS 128 (Jan. 1964), p. 307. doi: 10.1093/mnras/128.4.307 (cited on

page 250).

[352] SH Suyu et al. “Dissecting the gravitational lens B1608+ 656. II. Precision measurements of the Hubble

constant, spatial curvature, and the dark energy equation of state”. In: The Astrophysical Journal 711.1
(2010), p. 201 (cited on page 250).

[353] A. Goobar et al. “iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova”. In: Science
356.6335 (Apr. 2017), pp. 291–295. doi: 10.1126/science.aal2729 (cited on pages 250, 257).

[354] Miguel Zumalacárregui and Uroš Seljak. “Limits on Stellar-Mass Compact Objects as Dark Matter from

Gravitational Lensing of Type Ia Supernovae”. In: Phys. Rev. Lett. 121.14, 141101 (Oct. 2018), p. 141101. doi:

10.1103/PhysRevLett.121.141101 (cited on pages 250, 267, 268).

[355] Michael A. Nowak and Scott A. Grossman. “Can We Identify Lensed Gamma-Ray Bursts?” In: ApJ 435
(Nov. 1994), p. 557. doi: 10.1086/174837 (cited on page 250).

[356] Lingyuan Ji, Ely D. Kovetz, and Marc Kamionkowski. “Strong lensing of gamma ray bursts as a probe of

compact dark matter”. In: Phys. Rev. D 98.12, 123523 (Dec. 2018), p. 123523. doi: 10.1103/PhysRevD.98.

123523 (cited on page 250).

[357] Joachim Wambsganss. “A Method to Distinguish Two Gamma-Ray Bursts with Similar Time Profiles”.

In: ApJ 406 (Mar. 1993), p. 29. doi: 10.1086/172416 (cited on page 250).

[358] Ken K. Y. Ng et al. “Precise LIGO lensing rate predictions for binary black holes”. In: Phys. Rev. D 97.2,

023012 (Jan. 2018), p. 023012. doi: 10.1103/PhysRevD.97.023012 (cited on page 250).

294

https://doi.org/10.3847/2041-8213/ab03d6
https://doi.org/10.3847/2515-5172/ac3af9
https://doi.org/10.1007/s00159-019-0116-6
https://doi.org/10.1098/rsta.1920.0009
https://doi.org/10.1098/rsta.1920.0009
https://doi.org/10.1103/PhysRev.51.290
https://doi.org/10.1038/279381a0
https://doi.org/10.1007/s11214-013-9978-5
https://doi.org/10.1086/312287
https://doi.org/10.1046/j.1365-8711.1998.01319.x
https://doi.org/10.1093/mnras/128.4.307
https://doi.org/10.1126/science.aal2729
https://doi.org/10.1103/PhysRevLett.121.141101
https://doi.org/10.1086/174837
https://doi.org/10.1103/PhysRevD.98.123523
https://doi.org/10.1103/PhysRevD.98.123523
https://doi.org/10.1086/172416
https://doi.org/10.1103/PhysRevD.97.023012


[359] W. Farah et al. “FRB microstructure revealed by the real-time detection of FRB170827”. In: MNRAS 478.1

(July 2018), pp. 1209–1217. doi: 10.1093/mnras/sty1122 (cited on pages 250, 264).

[360] Cherie K. Day et al. “High time resolution and polarization properties of ASKAP-localized fast radio

bursts”. In:MNRAS 497.3 (Sept. 2020), pp. 3335–3350. doi: 10.1093/mnras/staa2138 (cited on pages 250,

260).

[361] Shude Mao. “Astrophysical applications of gravitational microlensing”. In: Research in Astronomy and
Astrophysics 12.8 (Aug. 2012), pp. 947–972. doi: 10.1088/1674-4527/12/8/005 (cited on page 250).

[362] Hiroko Niikura et al. “Microlensing constraints on primordial black holes with Subaru/HSCAndromeda

observations”. In: Nature Astronomy 3 (Apr. 2019), pp. 524–534. doi: 10.1038/s41550-019-0723-1 (cited

on pages 250, 266–268).

[363] Wenbin Lu and Anthony L. Piro. “Implications from ASKAP Fast Radio Burst Statistics”. In: ApJ 883.1,
40 (Sept. 2019), p. 40. doi: 10.3847/1538-4357/ab3796 (cited on page 250).

[364] Vikram Ravi. “The prevalence of repeating fast radio bursts”. In: Nature Astronomy 3 (July 2019), pp. 928–

931. doi: 10.1038/s41550-019-0831-y (cited on page 250).

[365] B. Paczynski. “Gamma-ray bursters at cosmological distances”. In: ApJ 308 (Sept. 1986), pp. L43–L46. doi:

10.1086/184740 (cited on page 250).

[366] Bohdan Paczynski. “Gravitational Microlensing and Gamma-Ray Bursts”. In: ApJ 317 (June 1987), p. L51.
doi: 10.1086/184911 (cited on pages 250, 251).

[367] O. S. Ougolnikov. “The search for possible mesolensing of cosmic gamma-ray bursts. Double and triple

bursts in BATSE catalogue”. In: arXiv e-prints, astro-ph/0111215 (Nov. 2001), astro–ph/0111215 (cited on

page 250).

[368] K. Hurley et al. “A Search for Gravitationally Lensed Gamma-Ray Bursts in the Data of the Interplanetary

Network and Konus-Wind”. In: ApJ 871.1, 121 (Jan. 2019), p. 121. doi: 10.3847/1538-4357/aaf645 (cited

on page 250).

[369] Adi Zitrin and David Eichler. “Observing Cosmological Processes in Real Time with Repeating Fast

Radio Bursts”. In: ApJ 866.2, 101 (Oct. 2018), p. 101. doi: 10.3847/1538-4357/aad6a2 (cited on page 251).

[370] B. Paczynski. “Gravitational Microlensing by the Galactic Halo”. In: ApJ 304 (May 1986), p. 1. doi:

10.1086/164140 (cited on page 251).

[371] Kim Griest. “Galactic Microlensing as a Method of Detecting Massive Compact Halo Objects”. In: ApJ
366 (Jan. 1991), p. 412. doi: 10.1086/169575 (cited on page 251).

[372] Kim Griest et al. “Gravitational Microlensing as a Method of Detecting Disk Dark Matter and Faint Disk

Stars”. In: ApJ 372 (May 1991), p. L79. doi: 10.1086/186028 (cited on page 251).

[373] Kaitlyn Shin et al. “Inferring the Energy and Distance Distributions of Fast Radio Bursts Using the First

CHIME/FRB Catalog”. In: ApJ 944.1, 105 (Feb. 2023), p. 105. doi: 10.3847/1538-4357/acaf06 (cited on

page 256).

[374] Anne M. Green. “Microlensing and dynamical constraints on primordial black hole dark matter with an

extended mass function”. In: Phys. Rev. D 94.6, 063530 (Sept. 2016), p. 063530. doi: 10.1103/PhysRevD.

94.063530 (cited on pages 256, 257).

[375] Bernard Carr et al. “Primordial black hole constraints for extended mass functions”. In: Phys. Rev. D 96.2,

023514 (July 2017), p. 023514. doi: 10.1103/PhysRevD.96.023514 (cited on pages 256, 257).

[376] Sébastien Clesse and Juan Garcia-Bellido. “Massive primordial black holes from hybrid inflation as

dark matter and the seeds of galaxies”. In: Phys. Rev. D 92.2, 023524 (July 2015), p. 023524. doi:

10.1103/PhysRevD.92.023524 (cited on page 257).

[377] M. Girardi et al. “Velocity Dispersions in Galaxy Clusters”. In: ApJ 404 (Feb. 1993), p. 38. doi: 10.1086/

172256 (cited on page 257).

295

https://doi.org/10.1093/mnras/sty1122
https://doi.org/10.1093/mnras/staa2138
https://doi.org/10.1088/1674-4527/12/8/005
https://doi.org/10.1038/s41550-019-0723-1
https://doi.org/10.3847/1538-4357/ab3796
https://doi.org/10.1038/s41550-019-0831-y
https://doi.org/10.1086/184740
https://doi.org/10.1086/184911
https://doi.org/10.3847/1538-4357/aaf645
https://doi.org/10.3847/1538-4357/aad6a2
https://doi.org/10.1086/164140
https://doi.org/10.1086/169575
https://doi.org/10.1086/186028
https://doi.org/10.3847/1538-4357/acaf06
https://doi.org/10.1103/PhysRevD.94.063530
https://doi.org/10.1103/PhysRevD.94.063530
https://doi.org/10.1103/PhysRevD.96.023514
https://doi.org/10.1103/PhysRevD.92.023524
https://doi.org/10.1086/172256
https://doi.org/10.1086/172256


[378] Keren Krochek and Ely D. Kovetz. “Constraining Primordial Black Hole Dark Matter with CHIME Fast

Radio Bursts”. In: arXiv e-prints, arXiv:2112.03721 (Dec. 2021), arXiv:2112.03721 (cited on page 258).

[379] Robert J. Nemiroff et al. “Limits on the cosmological abundance of supermassive compact objects

from a millilensing search in gamma-ray burst data”. In: Phys. Rev. Lett. 86.4 (Jan. 2001), p. 580. doi:

10.1103/PhysRevLett.86.580 (cited on page 259).

[380] Brian D. Metzger, Ben Margalit, and Lorenzo Sironi. “Fast radio bursts as synchrotron maser emission

from decelerating relativistic blast waves”. In:MNRAS 485.3 (May 2019), pp. 4091–4106. doi: 10.1093/

mnras/stz700 (cited on page 260).

[381] Illya Plotnikov and Lorenzo Sironi. “The synchrotron maser emission from relativistic shocks in Fast

Radio Bursts: 1D PIC simulations of cold pair plasmas”. In:MNRAS 485.3 (May 2019), pp. 3816–3833.

doi: 10.1093/mnras/stz640 (cited on page 260).

[382] R. Luo et al. “Diverse polarization angle swings from a repeating fast radio burst source”. In: Nature
586.7831 (Oct. 2020), pp. 693–696. doi: 10.1038/s41586-020-2827-2 (cited on page 260).

[383] Pawan Kumar, Wenbin Lu, and Mukul Bhattacharya. “Fast radio burst source properties and curvature

radiation model”. In:MNRAS 468.3 (July 2017), pp. 2726–2739. doi: 10.1093/mnras/stx665 (cited on

page 260).

[384] Bing Zhang. “A Cosmic Comb Model of Fast Radio Bursts”. In: ApJ 836.2, L32 (Feb. 2017), p. L32. doi:

10.3847/2041-8213/aa5ded (cited on page 260).

[385] Yuan-Pei Yang andBingZhang. “BunchingCoherent Curvature Radiation in Three-dimensionalMagnetic

Field Geometry: Application to Pulsars and Fast Radio Bursts”. In: ApJ 868.1, 31 (Nov. 2018), p. 31. doi:

10.3847/1538-4357/aae685 (cited on page 260).

[386] Eli Waxman. “On the Origin of Fast Radio Bursts (FRBs)”. In: ApJ 842.1, 34 (June 2017), p. 34. doi:

10.3847/1538-4357/aa713e (cited on page 260).

[387] J. W. Armstrong, B. J. Rickett, and S. R. Spangler. “Electron Density Power Spectrum in the Local

Interstellar Medium”. In: ApJ 443 (Apr. 1995), p. 209. doi: 10.1086/175515 (cited on page 261).

[388] K. H. Lee and L. C. Lee. “Interstellar turbulence spectrum from in situ observations of Voyager 1”. In:

Nature Astronomy 3 (Jan. 2019), pp. 154–159. doi: 10.1038/s41550-018-0650-6 (cited on page 261).

[389] Michael McCourt et al. “A characteristic scale for cold gas”. In: MNRAS 473.4 (Feb. 2018), pp. 5407–5431.

doi: 10.1093/mnras/stx2687 (cited on page 263).

[390] H. K. Vedantham and E. S. Phinney. “Radio wave scattering by circumgalactic cool gas clumps”. In:

MNRAS 483.1 (Feb. 2019), pp. 971–984. doi: 10.1093/mnras/sty2948 (cited on pages 263, 264).

[391] “H Intensity Map of the Repeating Fast Radio Burst FRB 121102 Host Galaxy from Subaru/Kyoto 3DII

AO-assisted Optical Integral-field Spectroscopy”. In: () (cited on page 264).

[392] D. C. Backer, T. Wong, and J. Valanju. “A Plasma Prism Model for an Anomalous Dispersion Event in

the Crab Pulsar”. In: ApJ 543.2 (Nov. 2000), pp. 740–753. doi: 10.1086/317150 (cited on page 264).

[393] J. M. Cordes and Ira Wasserman. “Supergiant pulses from extragalactic neutron stars”. In: MNRAS 457.1

(Mar. 2016), pp. 232–257. doi: 10.1093/mnras/stv2948 (cited on pages 264, 269).

[394] Ben Margalit and Brian D. Metzger. “A Concordance Picture of FRB 121102 as a Flaring Magnetar

Embedded in a Magnetized Ion-Electron Wind Nebula”. In: ApJ 868.1, L4 (Nov. 2018), p. L4. doi:

10.3847/2041-8213/aaedad (cited on pages 264, 269).

[395] P. Chawla et al. “Detection of Repeating FRB 180916.J0158+65 Down to Frequencies of 300 MHz”. In: ApJ
896.2, L41 (June 2020), p. L41. doi: 10.3847/2041-8213/ab96bf (cited on page 265).

[396] Inés Pastor-Marazuela et al. “Chromatic periodic activity down to 120 megahertz in a fast radio burst”.

In: Nature 596.7873 (Aug. 2021), pp. 505–508. doi: 10.1038/s41586-021-03724-8 (cited on page 265).

296

https://doi.org/10.1103/PhysRevLett.86.580
https://doi.org/10.1093/mnras/stz700
https://doi.org/10.1093/mnras/stz700
https://doi.org/10.1093/mnras/stz640
https://doi.org/10.1038/s41586-020-2827-2
https://doi.org/10.1093/mnras/stx665
https://doi.org/10.3847/2041-8213/aa5ded
https://doi.org/10.3847/1538-4357/aae685
https://doi.org/10.3847/1538-4357/aa713e
https://doi.org/10.1086/175515
https://doi.org/10.1038/s41550-018-0650-6
https://doi.org/10.1093/mnras/stx2687
https://doi.org/10.1093/mnras/sty2948
https://doi.org/10.1086/317150
https://doi.org/10.1093/mnras/stv2948
https://doi.org/10.3847/2041-8213/aaedad
https://doi.org/10.3847/2041-8213/ab96bf
https://doi.org/10.1038/s41586-021-03724-8


[397] C. Alcock et al. “MACHO Project Limits on Black Hole Dark Matter in the 1-30 MB>;0A Range”. In: ApJ
550.2 (Apr. 2001), pp. L169–L172. doi: 10.1086/319636 (cited on page 268).

[398] Masamune Oguri et al. “Understanding caustic crossings in giant arcs: Characteristic scales, event

rates, and constraints on compact dark matter”. In: Phys. Rev. D 97.2, 023518 (Jan. 2018), p. 023518. doi:

10.1103/PhysRevD.97.023518 (cited on page 268).

[399] K. Nimmo et al. “Burst timescales and luminosities link young pulsars and fast radio bursts”. In: arXiv
e-prints, arXiv:2105.11446 (May 2021), arXiv:2105.11446 (cited on page 269).

[400] MatthewMcQuinn. “The Evolution of the Intergalactic Medium”. In:ARA&A 54 (Sept. 2016), pp. 313–362.

doi: 10.1146/annurev-astro-082214-122355 (cited on page 272).

[401] Joel N. Bregman. “The Search for the Missing Baryons at Low Redshift”. In: ARA&A 45.1 (Sept. 2007),

pp. 221–259. doi: 10.1146/annurev.astro.45.051806.110619 (cited on page 273).

[402] H. Tanimura et al. “First detection of stacked X-ray emission from cosmic web filaments”. In: A&A 643,

L2 (Nov. 2020), p. L2. doi: 10.1051/0004-6361/202038521 (cited on page 273).

[403] Joshua Suresh et al. “On the OVI abundance in the circumgalactic medium of low-redshift galaxies”. In:

MNRAS 465.3 (Mar. 2017), pp. 2966–2982. doi: 10.1093/mnras/stw2499 (cited on page 273).

[404] Anna de Graaff et al. “Probing the missing baryons with the Sunyaev-Zel’dovich effect from filaments”.

In: A&A 624, A48 (Apr. 2019), A48. doi: 10.1051/0004-6361/201935159 (cited on page 273).

[405] Viraj Pandya et al. “First Results from SMAUG: The Need for Preventative Stellar Feedback and Improved

Baryon Cycling in Semianalytic Models of Galaxy Formation”. In: ApJ 905.1, 4 (Dec. 2020), p. 4. doi:

10.3847/1538-4357/abc3c1 (cited on page 273).

[406] Philip F. Hopkins et al. “Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback

explains cosmologically inefficient star formation”. In: MNRAS 445.1 (Nov. 2014), pp. 581–603. doi:

10.1093/mnras/stu1738 (cited on page 273).

[407] Z. L. Wen, J. L. Han, and F. Yang. “A catalogue of clusters of galaxies identified from all sky surveys of

2MASS, WISE, and SuperCOSMOS”. In:MNRAS 475.1 (Mar. 2018), pp. 343–352. doi: 10.1093/mnras/

stx3189 (cited on page 273).

[408] S. Ettori and I. Balestra. “The outer regions of galaxy clusters: Chandra constraints on the X-ray surface

brightness”. In: A&A 496.2 (Mar. 2009), pp. 343–349. doi: 10.1051/0004-6361:200811177 (cited on

page 273).

[409] J. Xavier Prochaska and Yong Zheng. “Probing Galactic haloes with fast radio bursts”. In: MNRAS 485.1

(May 2019), pp. 648–665. doi: 10.1093/mnras/stz261 (cited on page 273).

297

https://doi.org/10.1086/319636
https://doi.org/10.1103/PhysRevD.97.023518
https://doi.org/10.1146/annurev-astro-082214-122355
https://doi.org/10.1146/annurev.astro.45.051806.110619
https://doi.org/10.1051/0004-6361/202038521
https://doi.org/10.1093/mnras/stw2499
https://doi.org/10.1051/0004-6361/201935159
https://doi.org/10.3847/1538-4357/abc3c1
https://doi.org/10.1093/mnras/stu1738
https://doi.org/10.1093/mnras/stx3189
https://doi.org/10.1093/mnras/stx3189
https://doi.org/10.1051/0004-6361:200811177
https://doi.org/10.1093/mnras/stz261

	Localization and Lensing of Fast Radio Bursts using CHIME/FRB and its VLBI outriggers
	Acknowledgments
	Contents
	Introduction and Roadmap
	Introduction, Motivation, and Personal Contribution
	Introduction and Motivation

	Introduction and Motivation
	Personal Contribution to the Work Presented in this Thesis

	Personal Contribution to the Work Presented in this Thesis

	Localization of FRBs with Very Long Baseline Interferometry
	A Synoptic VLBI Technique for Localizing Fast Radio Bursts with CHIME/FRB
	Abstract and Statement of Contribution

	Abstract and Statement of Contribution
	Introduction

	Introduction
	Instrumentation

	Instrumentation
	Interferometric Localization

	Interferometric Localization
	Detection at CHIME
	FRB Cross Correlation Pipeline
	Synoptic Calibration Technique
	Delay Model
	Fringe Fitting
	Systematic Errors
	Discussion and Conclusion

	Discussion and Conclusion
	Appendix: Baseband Recorder Parts List

	Appendix: Baseband Recorder Parts List
	A Clock Stabilization System for CHIME/FRB Outriggers
	Abstract and Statement of Contribution

	Abstract and Statement of Contribution
	Introduction

	Introduction
	Instrument overview

	Instrument overview
	CHIME and CHIME/FRB
	CHIME/FRB Outriggers
	Clock stability requirements

	Clock stability requirements
	Clock Stabilization System

	Clock Stabilization System
	Hardware/Software considerations
	Maser signal conditioning
	Clock stabilization pipeline
	Validation of the clock stabilization system

	Validation of the clock stabilization system
	The Pathfinder as an outrigger
	Comparison to interferometric observations
	A reference clock for outrigger stations without a maser

	A reference clock for outrigger stations without a maser
	Conclusions

	Conclusions
	Appendix: Clock stability and Allan Deviation

	Appendix: Clock stability and Allan Deviation
	TONE: A CHIME/FRB Outrigger Pathfinder for localizations of Fast Radio Bursts using VLBI
	Abstract and Statement of Contribution

	Abstract and Statement of Contribution
	Introduction

	Introduction
	TONE

	TONE
	The Analog Chain

	The Analog Chain
	Cloverleaf Antenna & Low Noise Amplifier
	Radio Frequency over Fiber (RFoF) system
	Digital system

	Digital system
	ICE Boards
	High-bandwidth VLBI Recorder
	Performance of the Telescope

	Performance of the Telescope
	Analog Chain
	Timing
	Array Calibration
	Operations

	Operations
	Diagnostics and Input Flagging
	First light
	Beamforming
	Crosstalk Characterization
	Triggered VLBI Observations with CHIME

	Triggered VLBI Observations with CHIME
	Localization
	Empirical determination of localization error

	Empirical determination of localization error
	Discussion and Conclusion

	Discussion and Conclusion
	A Python- and HDF5-based VLBI Correlator for Widefield Transient VLBI
	Abstract and Statement of Contribution

	Abstract and Statement of Contribution
	Introduction - VLBI and Fast Radio Bursts

	Introduction - VLBI and Fast Radio Bursts
	Validation of the VLBI Correlator and Localization Pipeline

	Validation of the VLBI Correlator and Localization Pipeline
	difxcalc Delay Model

	difxcalc Delay Model
	Chunking
	Delay Compensation
	Gating on Transients
	Correlation of Fringestopped Data

	Correlation of Fringestopped Data
	Calibration Methods

	Calibration Methods
	Localization Methods

	Localization Methods
	Coarse Localization
	Fine Localization
	Implementation of our VLBI Localization Pipeline

	Implementation of our VLBI Localization Pipeline
	Conclusion

	Conclusion
	Appendix: HDF5 Baseband Data Format Specification

	Appendix: HDF5 Baseband Data Format Specification
	HDF5 Visibilities Data Format Specification

	HDF5 Visibilities Data Format Specification
	Appendix: Optimal Correlation Algorithm for Channelized Baseband Data

	Appendix: Optimal Correlation Algorithm for Channelized Baseband Data 
	Quadratic Estimators
	Appendix: Optimal Thermal Noise Scaling

	Appendix: Optimal Thermal Noise Scaling
	A fast radio burst localized at detection to a galactic disk using very long baseline interferometry
	Abstract and Statement of Contribution

	Abstract and Statement of Contribution
	Introduction

	Introduction
	The host galaxy of FRB 20210603A

	The host galaxy of FRB 20210603A
	Burst Properties of FRB 20210603A

	Burst Properties of FRB 20210603A
	Summary

	Summary
	Methods

	Methods
	Instrumentation and Observations
	Clock Calibration
	Local Calibration and Beamforming
	VLBI Correlation
	VLBI Calibration and Empirical Localization Error Budget
	Crab Localization
	FRB Localization
	Burst Morphology
	Dispersion and Scattering Analysis
	Polarisation Analysis
	Host Galaxy Analysis
	Disk Chance Coincidence Probability

	Gravitationally-Lensed FRBs as Cosmological Probes
	Interference and Decoherence in Gravitational Lensing
	Abstract and Statement of Contribution

	Abstract and Statement of Contribution
	Introduction

	Introduction
	The curved-spacetime scalar wave equation

	The curved-spacetime scalar wave equation
	Different Regimes in Wave Optical Gravitational Lensing

	Different Regimes in Wave Optical Gravitational Lensing
	Beyond Scalar Wave Optics
	Eikonal Optics

	Eikonal Optics
	Diffractive optics (1)

	Diffractive optics (1)
	A useful analytical approximation
	Angular broadening/finite-size effects

	Angular broadening/finite-size effects
	Exploiting Chromaticity in Lensing

	Exploiting Chromaticity in Lensing
	Finite magnifications near the Einstein ring

	Finite magnifications near the Einstein ring
	Finite magnifications near fold caustics

	Finite magnifications near fold caustics
	Modified lensing probabilities in wave optics

	Modified lensing probabilities in wave optics
	Observational prospects and discussion

	Observational prospects and discussion
	A High-Time Resolution Search for Compact Objects using Fast Radio Burst Gravitational Lens Interferometry with CHIME/FRB
	Abstract and Statement of Contribution

	Abstract and Statement of Contribution
	Introduction

	Introduction
	Gravitational Lensing Model

	Gravitational Lensing Model
	Recovery of the Observables
	CHIME

	CHIME
	Dataset
	Search Algorithm

	Search Algorithm
	Matched Filter
	PFB Inversion
	RFI Flagging
	Time-Lag Correlation
	Outlier Detection
	Simulations

	Simulations
	Veto Conditions

	Veto Conditions
	Detecting Lensing

	Detecting Lensing
	The Outlier Event
	Final Remarks

	Final Remarks
	Appendix: Correlation Algorithm

	Appendix: Correlation Algorithm
	Time-lag Correlation
	Observables in the time-lag domain
	Appendix: List of Bursts

	Appendix: List of Bursts
	Appendix: Polyphase Filterbank

	Appendix: Polyphase Filterbank
	Circulant Polyphase Filterbank Inversion
	Plasma Lensing: Scintillation Timescales of Bright FRBs Detected by CHIME
	Abstract and Statement of Contribution

	Abstract and Statement of Contribution
	Introduction

	Introduction
	Selection Criteria

	Selection Criteria
	Scintillation Pipeline

	Scintillation Pipeline
	Scintillation Bandwidth Analysis

	Scintillation Bandwidth Analysis
	Results and Discussion

	Results and Discussion
	Constraining Primordial Black Holes with Fast Radio Burst Gravitational-Lens Interferometry
	Abstract and Statement of Contribution

	Abstract and Statement of Contribution
	Introduction

	Introduction
	Search Description

	Search Description
	Search Data Products
	Lensing Event Rate

	Lensing Event Rate
	Possible Lensing Geometries
	Distance Inference
	Possible Lens Masses
	Combining Bursts
	Fundamental Limitations

	Fundamental Limitations
	Two-Screen Model for FRB Lensing

	Two-Screen Model for FRB Lensing
	Thin Plasma Screen
	Unresolved Screens
	Screen's Proximity to FRB Source
	Resolved Screens
	Constraints

	Constraints
	Discussion and Conclusions

	Discussion and Conclusions
	Conclusions and Future Directions
	Conclusions

	Conclusions
	A first view of the compact, sub-GHz sky in VLBI

	A first view of the compact, sub-GHz sky in VLBI
	Measuring the Intergalactic Medium and Electron Acoustic Oscillations with Fast Radio Bursts

	Measuring the Intergalactic Medium and Electron Acoustic Oscillations with Fast Radio Bursts

	Bibliography

