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Abstract

The 4.8𝜎 excess of electron neutrino-like events reported by the MiniBooNE experi-
ment at Fermilab’s Booster Neutrino Beam (BNB) is one of the most significant and
longest standing anomalies in particle physics. This thesis covers a range of experi-
mental and theoretical efforts to elucidate the origin of the MiniBooNE low energy
excess (LEE). We begin with the follow-up MicroBooNE experiment, which took data
along the BNB from 2016 to 2021. The detailed images produced by the MicroBooNE
liquid argon time projection chamber enable a suite of measurements that each test a
different potential source of the MiniBooNE anomaly. This thesis specifically presents
MicroBooNE’s search for 𝜈𝑒 charged-current quasi-elastic (CCQE) interactions con-
sistent with two-body scattering. The two-body CCQE analysis uses a novel recon-
struction process, including a number of deep-learning based algorithms, to isolate a
sample of 𝜈𝑒 CCQE interaction candidates with 75% purity. The analysis rules out an
entirely 𝜈𝑒-based explanation of the MiniBooNE excess at the 2.4𝜎 confidence level.
We next perform a combined fit of MicroBooNE and MiniBooNE data to the popular
3+1 model; even after the MicroBooNE results, allowed regions in Δ𝑚2-sin2 2𝜃𝜇𝑒 pa-
rameter space exist at the 3𝜎 confidence level. This thesis also demonstrates that, due
to nuclear effects in the low-energy cross section behavior, the MicroBooNE data are
consistent with a 𝜈𝑒-based explanation of the MiniBooNE LEE at the < 2𝜎 confidence
level. Next, we investigate a phenomenological explanation of the MiniBooNE excess
involving both an eV-scale sterile neutrino and a dipole-coupled MeV-scale heavy neu-
tral lepton (HNL). It is shown that a 500 MeV HNL can accommodate the energy
and angular distributions of the LEE at the 2𝜎 confidence level while avoiding strin-
gent constraints derived from MINER𝜈A elastic scattering data. Finally, we discuss
the Coherent CAPTAIN-Mills (CCM) experiment–a 10-ton light-based liquid argon
detector at Los Alamos National Laboratory. The background rejection achieved
from a novel Cherenkov-based reconstruction algorithm will give CCM world-leading
sensitivity to a number of beyond-the-Standard Model physics scenarios, including
dipole-coupled HNLs.
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Chapter 1

Introduction

We begin with a brief primer on neutrinos, the surprises they have given physicists

throughout recent history, and the mysteries that remain today. Readers already

familiar with the mathematical details of massive neutrinos and the Standard Model

may wish to read only section 1.1 and section 1.4 before continuing.

1.1 A Brief History of the Neutrino

The first indication of what would come to be known as the neutrino came from

Wolfgang Pauli in 1930 [33]. Addressing the “radioactive ladies and gentlemen” of

Tübingen, Germany, he appealed to the existence of new electrically neutral particles

to save the law of energy conservation in nuclear beta decays. This idea was developed

further by Enrico Fermi in 1934, who calculated the transition probability for 𝛽-decay

with a neutrino in the final state [34]. Fermi’s theory represents the first study of the

weak interaction–the only Standard Model gauge group under which neutrinos are

charged.

As the name “weak interaction” suggests, neutrinos interact very feebly with parti-

cles in the Standard Model. Thus, it wasn’t until 1956 that the neutrino was observed

in an experimental setting for the first time. A team of scientists from Los Alamos Sci-

entific Laboratory, led by Frederick Reines and Clyde Cowan, detected a free neutrino

from a nuclear reactor via the inverse beta decay interaction (𝜈𝑒𝑝 → 𝑒+𝑛) [35, 36].
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Figure 1-1: Telegram from Fred Reines and Clyde Cowan informing Wolfgang Pauli
of their detection of neutrinos from a nuclear reactor.

Though it was not known at the time, they had detected electron antineutrinos (𝜈𝑒).

Electron (anti)neutrinos represent one of the three weak-flavor eigenstates neutrinos

can occupy in the Standard Model–specifically, the eigenstate that couples to the

𝑒± charged leptons through the charged-current weak interaction. Upon confirma-

tion of their discovery, Reines and Cowan sent the telegram shown in figure 1-1 to

Pauli, alerting him of the definitive existence of the neutral particles he proposed in

Tübingen.

Shortly after this, the phenomenon of neutrino oscillations–periodic transitions be-

tween different types of neutrinos–started to appear in the literature. In 1958, Bruno

Pontecorvo discussed the possibility of mixing between right-handed antineutrinos 𝜈𝑅
and “sterile” right-handed neutrinos 𝜈𝑅, in analogy with 𝐾0–𝐾̄0 mixing observed in

the quark sector [37]. A second possible source of neutrino oscillations came follow-

ing the 1962 experimental discovery of a second neutrino weak-flavor eigenstate–the

muon neutrino (𝜈𝜇) [38]. After this, the notion of mixing between neutrino flavor

and mass eigenstates was introduced by Ziro Maki, Masami Nakagawa, and Shoichi

Sakata [39]. In a 1967 paper [40], Pontecorvo introduced the possibility of vacuum

𝜈𝑒–𝜈𝜇 oscillations, even predicting a factor of two suppression in the total solar neu-

trino flux before such a deficit would actually be observed [41].

The aforementioned deficit, known as the “solar neutrino problem”, was estab-
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Figure 1-2: The deficit of the observed solar 𝜈𝑒 flux compared with the theoretical
expectation. The Homestake experiment is shown on the far left; follow-up solar
neutrino measurements confirming the deficit are also shown, including the 2002 SNO
result which brought forth a solution to the solar neutrino problem. Figure from
Ref. [1].

lished in 1968 through a now-famous experiment at the Homestake Mine in South

Dakota led by Raymond Davis [42]. Davis and his colleagues detected the capture of

electron neutrinos from the sun on 37Cl nuclei, allowing a measurement of the solar

𝜈𝑒 flux. Their result was about a factor of ∼ 1/3 lower than the leading prediction

from John Bachall [43]. This is shown in figure 1-2, including confirmations of the

deficit following the Homestake experiment. The solution was not a mistake in the

experimental measurement or theoretical prediction, as physicists expected at the

time; rather, it was a deficiency in our understanding of neutrinos. This was the first

piece of the puzzle that would eventually lead to the discovery of neutrino oscillations

and nonzero neutrino masses.

The next piece of the puzzle came from atmospheric neutrinos, i.e. neutrinos

coming from the decay of mesons created from the interactions of primary cosmic

rays in the atmosphere. Around the mid-1980s, two water Cherenkov detectors,

IMB-3 [44] and Kamiokande [45], began to measure the interactions of atmospheric

𝜈𝜇 and 𝜈𝑒 events (initially just as a background for their main physics goal, the search

for nucleon decay). The ratio of 𝜈𝜇 : 𝜈𝑒 interactions was found to be lower than the

theoretical expectation by a factor of ∼ 2/3 [46]. This was known as the “atmospheric

neutrino anomaly”. The source of this anomaly was not clear at the time; it could
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have been a deficit of muon neutrinos, an excess of electron neutrinos, or some of both.

Systematic issues in the flux prediction or muon identification were also suggested [46].

It was far from clear that neutrino oscillations could be responsible for the observed

deficit.

The solution to the atmospheric neutrino anomaly came from the Super-Kamiokande

(SuperK) experiment [47]. SuperK was a much larger version of the Kamiokande

detector, allowing the detection of higher energy muons (up to 𝐸𝜇 ∼ 5 GeV). Su-

perK also measured the up-down asymmetry of muon-like and electron-like events

in their detector, (𝑁up − 𝑁down)/(𝑁up + 𝑁down). Upward-going events have trav-

eled a much longer distance than downward-going events before reaching the SuperK

detector–thus positive detection of an asymmetry would be smoking-gun evidence

for a baseline-dependent effect like neutrino oscillations. This is precisely what Su-

perK observed [2]. As shown in figure 1-3, an up-down asymmetry is observed in the

muon-like channel, the magnitude of which increases with the observed muon momen-

tum. Such behavior is consistent with muon neutrino oscillations to a third flavor

eigenstate, 𝜈𝜏 (the mathematical details of neutrino oscillations will be described in

section 1.3). No such effect was observed in the electron-like channel. Thus, the at-

mospheric neutrino anomaly is a result of muon neutrino disappearance, specifically

coming from 𝜈𝜇 → 𝜈𝜏 oscillations.

The solution to the solar neutrino problem came in 2002 from the Sudbury Neu-

trino Observatory (SNO) [48]. The SNO experiment used a heavy water Cherenkov

detector, specifically relying on the use of deuterium target nuclei to be sensitive to

three different neutrino interactions,

𝜈𝑒 + 𝑑→ 𝑝+ 𝑝+ 𝑒− (CC),

𝜈𝑥 + 𝑑→ 𝑝+ 𝑛+ 𝜈𝑥 (NC),

𝜈𝑥 + 𝑒− → 𝜈𝑥 + 𝑒− (ES).

(1.1)

Charged-current (CC), neutral-current (NC), and elastic scattering (ES) interactions

were separated based on the visible energy and scattering angle of the final state
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particles. NC events were further separated by tagging the 6.25 MeV photon released

from neutron capture on deuterium. By measuring all three channels, SNO was able

to measure the 8B solar neutrino flux broken down into the 𝜈𝑒 and 𝜈𝜇,𝜏 components.

SNO’s 2002 result showed that the missing neutrinos from the Homestake experiment

were in fact showing up in the 𝜈𝜇,𝜏 component [3]. Figure 1-4 shows the flux of each

component as constrained by the measured CC, NC, and ES interaction rate. The

flavor transitions here come not from vacuum oscillations but rather from matter-

enhanced resonant behavior as neutrinos travel through the dense solar medium–a

phenomenon known as the MikheyevSmirnovWolfenstein (MSW) effect [49, 50]. The

MSW effect still, however, requires mixing between the neutrino flavor and mass

eigenstate as well as non-zero squared differences between the mass eigenstates. It

is worth noting here that the KamLAND reactor neutrino experiment was essential

in determining the oscillation parameters which led to the SNO observation [51].

Thus, the SNO solution to the solar neutrino problem and the SuperK solution to

the atmospheric neutrino anomaly were both evidence for the existence of neutrino

oscillations and thus non-zero neutrino masses. The collaborations shared the 2015

Nobel Prize in physics for this discovery [52,53].

Since SuperK and SNO, neutrino oscillations have been measured extensively by a

global program of reactor, accelerator, atmospheric, and solar neutrino experiments.

The mixing angle and mass-squared splittings of the three Standard Model neutrinos

have been measured to few-percent-level precision in most cases [54–56]. There are a

number of open questions in the standard three-neutrino mixing paradigm, including

the ordering of the three mass eigenstates and the value of the charge-parity-violating

complex phase 𝛿𝐶𝑃 . Though preliminary results exist on both fronts [54–58], defini-

tive answers to each will come from next-generation neutrino experiments, including

Hyper-K [59], DUNE [60] and JUNO [61].
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Figure 1-3: The up-down asymmetry measured in SuperK as a function of lepton
momentum, separated into 𝑒-like and 𝜇-like events as well as fully-contained (FC) and
partially-contained (PC) events. The dashed line indicates the best fit to 𝜈𝜇 → 𝜈𝜏
oscillations. Figure from Ref. [2].

Figure 1-4: Measurement of the solar 8B flux from the SNO collaboration, broken
down into the 𝜈𝑒 and 𝜈𝜇,𝜏 sub-components. Measurement of the CC, NC, and ES
channels show up as slices in the two-dimensional flux parameter space. Figure from
Ref. [3].
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1.2 Neutrinos in the Standard Model

The arguments and notation presented in this section follow closely from chapter 2

of Ref. [62].

The interactions of the known fundamental particles of our Universe are described

by a specific quantum field theory known as the Standard Model (SM). Above the

electroweak scale, there are three gauge groups contained within the SM:

• 𝑆𝑈(3)𝑐, which governs the gluon-mediated “strong interactions” of color-charged

fields.

• 𝑆𝑈(2)𝐿, one part of the “electro-weak interaction”, mediated by the 𝑊±
𝜇 and

𝑊 0
𝜇 vector bosons.

• 𝑈(1)𝑌 , the other part of the “electro-weak interaction”, mediated by the 𝐵𝜇

gauge boson.

After electro-weak symmetry breaking (EWSB) via the Higgs mechanism, the 𝑆𝑈(2)𝐿×

𝑈(1)𝑌 subgroup breaks down to 𝑈(1)𝑄, which describes the electromagnetic (EM)

interactions of charged fields mediated by the 𝐴𝜇 gauge boson, also known as the

photon.

Of the three fundamental interactions of the SM, neutrinos are only charged under

the weak 𝑆𝑈(2)𝐿 gauge group–they are singlets under the 𝑆𝑈(3)𝑐 and 𝑈(1)𝑄 gauge

groups. Thus, neutrinos only appear in the electro-weak part of the SM Lagrangian,

which is given by

ℒ =
𝑔√
2
(𝐽𝜇𝑊+

𝜇 + 𝐽𝜇†𝑊−
𝜇 ) +

𝑔

cos 𝜃𝑊
𝐾𝜇𝑍𝜇, (1.2)

where 𝑔 = 𝑒/ cos 𝜃𝑊 is the 𝑆𝑈(2)𝐿 gauge coupling of 𝑊𝜇 and Higgs field, 𝜃𝑊 is

the Weinberg angle describing the rotation that occurs during EWSB between the

neutral parts of the 𝑆𝑈(2)𝐿 and 𝑈(1)𝑌 gauge boson fields, and 𝑊±
𝜇 (𝑍𝜇) is the charged

(neutral) piece of 𝑆𝑈(2)𝐿 after EWSB. The currents coupled to 𝑊±
𝜇 and 𝑍𝜇 bosons
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are given by

𝐽𝜇 =
(︁
𝑢0 𝑐0 𝑡

0
)︁
𝛾𝜇𝑃𝐿

⎛⎜⎜⎜⎝
𝑑0

𝑠0

𝑏0

⎞⎟⎟⎟⎠+
(︁
𝜈𝑒 𝜈𝜇 𝜈𝜏

)︁
𝛾𝜇𝑃𝐿

⎛⎜⎜⎜⎝
𝑒

𝜇

𝜏

⎞⎟⎟⎟⎠
𝐾𝜇 =

∑︁
𝑓

𝑓𝛾𝜇[𝐼3𝐿𝑃𝐿 − sin2 𝜃𝑊𝑄𝑓 ]𝑓

=
∑︁
𝑞

[𝜖𝐿(𝑞)𝑞𝛾𝜇𝑃𝐿𝑞 + 𝜖𝑅(𝑞)𝑞𝛾𝜇𝑃𝑅𝑞]

+
1

2

∑︁
𝛼∈{𝑒,𝜇,𝜏}

[𝜈𝛼𝛾
𝜇𝑃𝐿𝜈𝛼 + ℓ𝛼𝛾𝜇(𝑔

𝛼
𝑉 − 𝛾5𝑔

𝛼
𝐴)ℓ𝛼],

(1.3)

where 𝑃𝑅(𝑃𝐿) = (1 ± 𝛾5)/2 is the projection operator onto the right-handed (left-

handed) chiral state, and the subscript 0 on the quark fields indicates that these are

the weak flavor eigenstates rather than the mass eigenstates. The first generation

coupling constants in 𝐾𝜇, which derive from the specified EM charge and 𝑆𝑈(2)𝐿

representation of each field, are given by

𝜖𝐿(𝑢) =
1

2
− 2

3
sin2 𝜃𝑊 𝜖𝑅(𝑢) = −2

3
sin2 𝜃𝑊

𝜖𝐿(𝑑) = −1

2
+

1

3
sin2 𝜃𝑊 𝜖𝑅(𝑑) =

1

3
sin2 𝜃𝑊

𝑔𝑒𝑉 = −1

2
+ 2 sin2 𝜃𝑊 𝑔𝑒𝐴 = −1

2
.

(1.4)

The Lagrangian in equation (1.2) can be used to calculate cross sections for the

various SM interactions of the neutrino. The first term describes the charged-current

interactions of neutrinos such as nuclear beta decay, while the second term describes

neutral current interactions such as 𝜈𝜇𝑒− elastic scattering. At energy scales below the

electro-weak scale, one can integrate out the 𝑊𝜇 and 𝑍𝜇 gauge bosons and describe

interactions in terms of the dimensional Fermi constant

𝐺𝐹 =
𝑔2

4
√
2𝑀2

𝑊

= 1.166× 10−5 GeV−2. (1.5)

The low-energy Lagrangian describing 4-fermion interactions can be derived from
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equation (1.2) as

ℒ4𝑓 =
−4𝐺𝐹√

2
[𝐽𝜇𝐽

𝜇† +𝐾𝜇𝐾
𝜇]. (1.6)

As an example, we consider low-energy neutrino electron elastic scattering (ES)

(𝜈𝑒− → 𝜈𝑒−). This is a purely leptonic process and is therefore relatively clean;

specifically, ES models do not need to account for the complex dynamics of the nu-

clear medium. The Feynman diagrams for the contributing interactions are shown in

figure 1-5. Both the charged-current (CC) and neutral-current (NC) diagrams con-

tribute to 𝜈𝑒𝑒− scattering, while only the NC diagram contributes to 𝜈𝜇,𝜏𝑒− scattering.

Using the Feynman rules associated with equation (1.6), one can calculate the cross

sections to be [62]

𝜎𝜈𝑒𝑒−→𝜈𝑒𝑒−(𝐸𝜈) =
𝐺2

𝐹𝑚𝑒𝐸𝜈

2𝜋

[︂
(2 sin2 𝜃𝑊 + 1)2 +

4

3
sin4 𝜃𝑊

]︂
≈ 0.9× 10−43

(︂
𝐸𝜈

10 MeV

)︂
cm2

𝜎𝜈𝜇,𝜏 𝑒−→𝜈𝜇,𝜏 𝑒−(𝐸𝜈) =
𝐺2

𝐹𝑚𝑒𝐸𝜈

2𝜋

[︂
(2 sin2 𝜃𝑊 − 1)2 +

4

3
sin4 𝜃𝑊

]︂
≈ 0.15× 10−43

(︂
𝐸𝜈

10 MeV

)︂
cm2,

(1.7)

which is valid for 𝐸𝜈 >> 𝑚𝑒. Similarly, one can calculate the cross section for

antineutrino electron ES (𝜈𝑒− → 𝜈𝑒−). The diagrams contributing for this process

are shown in figure 1-6, and the cross section is given by [62]

𝜎𝜈𝑒𝑒−→𝜈𝑒𝑒−(𝐸𝜈) =
𝐺2

𝐹𝑚𝑒𝐸𝜈

2𝜋

[︂
1

3
(2 sin2 𝜃𝑊 + 1)2 + 4 sin4 𝜃𝑊

]︂
≈ 0.378× 10−43

(︂
𝐸𝜈

10 MeV

)︂
cm2

𝜎𝜈𝜇,𝜏 𝑒−→𝜈𝜇,𝜏 𝑒−(𝐸𝜈) =
𝐺2

𝐹𝑚𝑒𝐸𝜈

2𝜋

[︂
1

3
(2 sin2 𝜃𝑊 − 1)2 + 4 sin4 𝜃𝑊

]︂
≈ 0.14× 10−43

(︂
𝐸𝜈

10 MeV

)︂
cm2.

(1.8)

We now turn to the interaction at the core of this thesis: neutrino-nucleon charged-

current quasi-elastic (CCQE) scattering. The relevant Feynman diagrams for this
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process are shown in figure 1-7. Unlike ES, models of CCQE do need to account for

the nuclear environment surrounding the target nucleon. As the final state nucleon

travels through the nuclear medium, it may scatter off of other nucleons and/or

produce additional mesons through a process known as final state interactions (FSIs).

As shown in figure 1-8, CCQE is dominant for 𝐸𝜈 . 1 GeV. Above this energy,

nucleon resonance processes start to take over, in which Delta resonances decay to

final state mesons. In the regime 𝐸𝜈 & 10 GeV, neutrinos start to undergo deep

inelastic scattering (DIS) off of the constituent quarks within the nucleon.

In order to calculate the CCQE cross section, one considers a theory containing

nucleon degrees of freedom. The original calculation for free nucleons (i.e., not bound

within a nucleus) was carried out by Llewellyn-Smith in 1972; the differential cross

section as a function of the squared four-momentum transfer 𝑄2 is given by [4, 63]

𝑑𝜎

𝑑𝑄2
=
𝐺2

𝐹𝑀
2|𝑉𝑢𝑑|2

8𝜋𝐸2
𝜈

[︂
𝐴± 𝑠− 𝑢

𝑀2
𝐵 +

(𝑠− 𝑢)2

𝑀4
𝐶

]︂
, (1.9)

where +(-) refers to (anti)neutrino scattering, 𝑀 is the nucleon mass, 𝑚 is the lepton

mass, (𝑠 − 𝑢) = 4𝑀𝐸𝜈 − 𝑄2 − 𝑚2, and 𝐴, 𝐵, and 𝐶 are functions of the vector,

axial-vector, and pseudoscalar form factors of the nucleon (see equations 58, 59, and

60 of Ref. [4] for complete expressions). These form factors describe the composite

nature of nucleons under interactions with different Lorentz structures.

For 𝐸𝜈 << 𝑀 , the 𝜈𝑒 CCQE cross section is approximately [62]

𝜎𝜈𝑒𝑛→𝑒−𝑝(𝐸𝜈) ≈
𝐺2

𝐹𝐸
2
𝜈

𝜋
(𝑔2𝑉 + 3𝑔2𝐴)

≈ 9.75× 10−42

[︂
𝐸𝜈

10 MeV

]︂2
cm2.

(1.10)

In the regime 𝐸𝜈 & 1 GeV, the 𝜈𝑒 and 𝜈𝜇 CCQE cross sections are no longer sup-

pressed by threshold effects and are thus the same, approximately 10−38 cm2 [4].

This cross section is significantly larger than the elastic scattering and lower energy

𝜈𝑒 CCQE cross sections and is the dominant neutrino interaction for many accelerator-

based neutrino experiments, including two at the heart of this thesis: MiniBooNE and
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𝜈 𝜈

𝑒− 𝑒−

𝑍

𝜈𝑒 𝑒−

𝑒− 𝜈𝑒

𝑊

Figure 1-5: Diagrams contributing to 𝜈𝑒− elastic scattering

𝜈 𝜈

𝑒− 𝑒−

𝑍

𝜈𝑒

𝑒− 𝑒−

𝜈𝑒

𝑊−

Figure 1-6: Diagrams contributing to 𝜈𝑒− elastic scattering

MicroBooNE. Finally, we note that the cross section for antineutrino CCQE tends to

be smaller; this will be important in chapter 6.

1.3 Massive Neutrinos

The arguments and notation presented in this section follow closely from section 2.5,

chapter 4, and chapter 5 of Ref. [62] as well as chapter 11 of Ref. [64].

Neutrinos are massless in the SM. To see this, we will exhaust the two possible

forms for a neutrino mass term in the SM Lagrangian: Dirac and Majorana. These

refer to the two possible fermionic spinor representations in which neutrinos can be

found. Dirac spinors in general have four complex components, or degrees of freedom,

while Majorana spinors have only two. The critical question is whether the right-

handed chiral projection of the neutrino field, 𝜈𝑅, is the same as 𝜈𝑅, the right-handed

chiral projection of the antineutrino field (Majorana case), or if it is a new degree of
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𝜈𝛼 ℓ𝛼

𝑛 𝑝

𝑊

𝜈𝛼 ℓ𝛼

𝑝 𝑛

𝑊

Figure 1-7: Diagrams contributing to neutrino-nucleon charged-current quasielastic
scattering

Figure 1-8: CC inclusive neutrino and antineutrino nucleon scattering cross sections
as a function of neutrino energy. Figure from Ref. [4].
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freedom (Dirac case).

The definition of a free Dirac fermion field is

𝜓(𝑥) =

∫︁
𝑑3𝑝√︀

(2𝜋)32𝐸𝑝

∑︁
𝑠=± 1

2

(︁
𝑓𝑠(p)𝑢𝑠(p)𝑒

−𝑖p·x + 𝑓𝑠
†
(p)𝑣𝑠(p)𝑒

𝑖p·x
)︁
, (1.11)

where 𝑓𝑠(p) annihilates a single particle of momentum p while 𝑓𝑠
† creates the corre-

sponding antiparticle state, and 𝑢𝑠(p) and 𝑣𝑠(p) are spinors with positive and negative

energy, respectively, satisfying the Dirac equations

(𝛾𝜇𝑝𝜇 −𝑚)𝑢𝑠(p) = 0

(𝛾𝜇𝑝𝜇 +𝑚)𝑣𝑠(p) = 0,
(1.12)

where 𝛾𝜇 are a set of Lorentz-indexed matrices satisfying {𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈 . There

are many possible representations for the 𝛾-matrices. We consider the Weyl basis, in

which [64]

𝛾𝜇 =

⎛⎝ 0 𝜎𝜇

𝜎𝜇 0

⎞⎠ , (1.13)

where 𝜎𝜇 = (1, 𝜎⃗), 𝜎𝜇 = (1,−𝜎⃗), and 𝜎⃗ = (𝜎1, 𝜎2, 𝜎3) are the Pauli matrices. This

representation is convenient for understanding the different chiral components of the

Dirac spinor 𝜓. The Lorentz generators 𝑆𝜇𝜈 ≡ 𝑖
4
[𝛾𝜇, 𝛾𝜈 ] become block diagonal, such

that we can write the Dirac spinor of equation (1.11) as a doublet of two-component

Weyl spinors with a different chiral nature,

𝜓 =

⎛⎝𝜓𝐿

𝜓𝑅

⎞⎠ , (1.14)

which transform under different irreducible representations of the Lorentz group [64].

Here 𝜓𝐿 and 𝜓𝑅 refer to the left-handed and right-handed Weyl spinor, respectively.

We can isolate the different chiral components of the Dirac spinor using the matrix
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𝛾5 ≡ 𝑖𝛾0𝛾1𝛾2𝛾3, which takes the form

𝛾5 =

⎛⎝−1 0

0 1

⎞⎠ (1.15)

in the Weyl basis. We can define projection operators 𝑃𝐿 = 1
2
(1 − 𝛾5) and 𝑃𝑅 =

1
2
(1 + 𝛾5) such that 𝑃𝐿𝜓 = 𝜓𝐿 and 𝑃𝑅𝜓𝑅. It is worth noting that while the behavior

of these projection operators is especially clear in the Weyl representation, they will

isolate the chiral components of 𝜓 in any representation of 𝛾𝜇.

Dirac mass terms couple left-handed and right-handed chiral states. To see this,

consider the Dirac equation in the Weyl basis, which takes the form [64]

(𝛾𝜇𝑝𝜇 −𝑚)𝜓 =

⎛⎝−𝑚 𝜎𝜇𝑝𝜇

𝜎𝜇𝑝𝜇 −𝑚

⎞⎠⎛⎝𝜓𝐿

𝜓𝑅

⎞⎠ = 0. (1.16)

It is evident that this matrix equation mixes the left-handed and right-handed com-

ponents of 𝜓. Dirac mass terms take the form 𝑚𝜓†
𝐿𝜓𝑅 and 𝑚𝜓†

𝑅𝜓𝐿, thus requiring

both chiral components. After EWSB, the non-neutrino fermions in the SM acquire

a Dirac mass from their interactions with the Higgs field. Neutrinos, however, do not

have a right-handed chiral state in the SM; therefore, the SM cannot include a Dirac

mass term for neutrinos.

Now we turn to the Majorana mass term. The expression for a Majorana field is

the same as equation (1.11), subject to a condition relating particles and antiparticles.

We see that the expression for 𝜓*(𝑥) would involve 𝑓 †
𝑠 (p), which creates a particle

state, and 𝑓𝑠(p), which annihilates an antiparticle state. It turns out the relationship

𝜓(𝑥) = 𝜓*(𝑥) is not Lorentz invariant [62]. To remedy this, we must define the

conjugate Dirac field

𝜓𝐶(𝑥) ≡ 𝛾0𝐶𝜓
*(𝑥), (1.17)
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where the representation-dependent conjugation matrix 𝐶 is defined by the equation

𝛾0𝐶𝜎
*
𝜇𝜈 = −𝜎𝜇𝜈𝛾0𝐶,

𝜎𝜇𝜈 ≡ 𝑖

2
[𝛾𝜇, 𝛾𝜈 ].

(1.18)

In the Weyl representation, for example, 𝐶 = 𝑖𝛾2𝛾0. This requirement for 𝐶 ensures

that 𝜓𝐶(𝑥) transforms in the same way as 𝜓(𝑥) under the Lorentz group [62]. The

Lorentz-invariant Majorana condition specifically requires

𝜓(𝑥) = 𝑒𝑖𝜃𝜓𝐶(𝑥), (1.19)

where 𝜃 is an arbitrary phase, which we can take to be 𝜃 = 0. It is important to note

that this condition can only be satisfied for fields that carry no additive quantum

numbers [64].

In the Weyl basis, equation (1.19) relates the left-handed and right-handed com-

ponents of 𝜓(𝑥) such that [64]

𝜓(𝑥) =

⎛⎝ 𝜓𝐿

𝑖𝜎2𝜓
*
𝐿

⎞⎠ , (1.20)

where the number of degrees of freedom has been reduced from four to two. Since

𝑖𝜎2𝜓
*
𝐿 transforms like a right-handed spinor, we can now write mass terms of the form

𝑖𝑚𝜓†
𝐿𝜎2𝜓

*
𝐿 and 𝑖𝑚𝜓†

𝐿𝜎2𝜓
*
𝐿. These are Majorana mass terms. Note that they couple

the same chiral component of the fermion.

The impossibility of a neutrino Majorana mass term is a bit more nuanced. Ma-

jorana mass terms for neutrinos in the SM contain the bi-linear expression 𝜈𝑇𝐿𝜎2𝜈𝐿.

However, 𝜈𝐿 belongs to an 𝑆𝑈(2)𝐿 doublet in the SM, thus this Majorana mass term

transforms as a triplet under 𝑆𝑈(2)𝐿. It also breaks lepton number by two units,

hence it also violates baryon minus lepton number (𝐵 − 𝐿), which is conserved to

all orders of the SM gauge couplings [62]. Therefore, neutrinos also cannot have a

Majorana mass term in the SM.
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Despite these arguments, neutrino oscillations have given physicists definitive ev-

idence that at least two of the three SM neutrino masses are nonzero (as discussed in

section 1.1). This requires the presence of physics beyond the Standard Model (BSM).

The minimal extension of the SM which can accommodate nonzero neutrino masses

introduces additional right-handed neutrino states 𝑁𝑅 [62, 64]. These fields, which

are singlets under the SM gauge group, can generate both Dirac and Majorana mass

terms for neutrinos. The most general expression for the neutrino mass Lagrangian

is then

− ℒmass =
1

2

(︁
𝜈𝐿 𝑁𝐶

𝐿

)︁⎛⎝ 0 𝑀

𝑀𝑇 𝐵

⎞⎠⎛⎝𝜈𝐶𝑅
𝑁𝑅

⎞⎠+ h.c., (1.21)

where 𝑀 and 𝐵 are the Dirac and Majorana mass matrices of the neutrino sector,

respectively, and 𝜈𝐿 and 𝑁𝑅 are column vectors containing the left-handed and right-

handed projections of each neutrino generation.

In order to obtain the mass eigenstates of this theory, one must diagonalize the

mass matrix in equation (1.21). If we assume one generation of neutrinos, the eigen-

values of this mass matrix are

𝑚1,2 =
1

2
(
√
𝐵2 + 4𝑀2 ∓𝐵). (1.22)

In the limit 𝐵 >> 𝑀 , the eigenvalues are approximately given by

𝑚1 ≈
𝑀2

𝐵
, 𝑚2 ≈ 𝐵. (1.23)

This is the famous “seesaw mechanism” for neutrino mass generation [65]. One can

see that if 𝐵 is at roughly the GUT scale (1016 GeV) and 𝑀 is at roughly the electro-

weak scale (100 GeV), we see that 𝑚1 < 1 eV. This is the right order-of-magnitude

regime predicted by neutrino oscillation data and is consistent with existing upper

bounds on the neutrino mass from KATRIN [66]. Thus, this model is an elegant

explanation of the observed neutrino oscillation phenomenon, though experimental

confirmation of right-handed neutrino fields at the GUT scale is probably not feasible

for quite a long time.
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While we do not know the mechanism through which neutrinos acquire mass, it

is relevant to ask whether the resulting mass terms are Dirac or Majorana in nature.

An extensive worldwide experimental program is currently underway to answer this

question by searching for neutrino-less double beta decay, a rare decay process in

which a nucleus undergoes two simultaneous beta decays without emitting any neu-

trinos in the final state [67–69]. A positive observation would imply that neutrinos

are Majorana.

As discussed in section 1.1, perhaps the most famous consequence of massive

neutrinos is the phenomenon of neutrino oscillations [37, 39, 40]. This arises because

the three weak flavor eigenstates 𝜈𝛼 are not aligned with the three mass eigenstates

𝜈𝑖. The two bases are related by the unitary Pontecorvo–Maki–Nakagawa–Sakata

(PMNS) mixing matrix 𝑈𝛼𝑖,⎛⎜⎜⎜⎝
𝜈𝑒

𝜈𝜇

𝜈𝜏

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑈𝑒1 𝑈𝑒2 𝑈𝑒3

𝑈𝜇1 𝑈𝜇2 𝑈𝜇3

𝑈𝜏1 𝑈𝜏2 𝑈𝜏3

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝜈1

𝜈2

𝜈3

⎞⎟⎟⎟⎠ . (1.24)

As seen in equation (1.2), neutrinos interact in the weak flavor eigenstates 𝜈𝛼.

Thus, a neutrino a produced alongside a charged anti-lepton ℓ is in the state

|𝜈(𝑡 = 0)⟩ = |𝜈ℓ⟩ =
∑︁

𝑖∈{1,2,3}

𝑈ℓ𝑖 |𝜈𝑖⟩ . (1.25)

Neutrinos propagate, however, in their mass eigenstates. Each mass eigenstate 𝜈𝑖 is

associated with a mass 𝑚𝑖 and four-momentum (𝑝𝑖)𝜇 = (𝐸𝑖, 𝑝𝑖) satisfying the on-shell

requirement (𝑝𝑖)
2 = 𝑚2

𝑖 . Thus, after a time 𝑡, the neutrino will be in the state

|𝜈(𝑡)⟩ =
∑︁
𝑖

𝑒−𝑖𝑝𝑖·𝑥𝑈ℓ𝑖 |𝜈𝑖⟩ . (1.26)

The overlap with a different weak flavor eigenstate 𝜈ℓ′ ̸= 𝜈ℓ is non-trivial, given

45



by the expression

⟨𝜈ℓ′ |𝜈(𝑡)⟩ =
∑︁
𝑖,𝑗

⟨𝜈𝑗|𝑈 †
𝑗ℓ′𝑒

−𝑖𝑝𝑖·𝑥𝑈ℓ𝑖 |𝜈𝑖⟩

=
∑︁
𝑖

𝑒−𝑖𝑝𝑖·𝑥𝑈ℓ𝑖𝑈
*
ℓ′𝑖,

(1.27)

where we have invoked the orthonormality of the mass basis in the last line. The

probability of finding a neutrino in flavor eigenstate 𝜈ℓ′ given an initial 𝜈ℓ state is

then

𝑃𝜈ℓ→𝜈ℓ′
(𝑡) = | ⟨𝜈 ′ℓ|𝜈(𝑡)⟩ |2

=
∑︁
𝑖,𝑗

|𝑈ℓ𝑖𝑈
*
ℓ′𝑖𝑈

*
ℓ𝑗𝑈ℓ′𝑗|𝑒−𝑖(𝑝𝑖−𝑝𝑗)·𝑥+𝑖𝜑ℓℓ′𝑖𝑗 .

(1.28)

where 𝜑ℓℓ′𝑖𝑗 ≡ arg(UℓiU
*
ℓ′iU

*
ℓjUℓ′j).

We now make a simplifying assumption, in which all neutrino mass eigenstates

propagate with the same momentum, i.e. 𝑝𝑖 = 𝑝𝑗 ≡ 𝑝∀𝑖, 𝑗. This treatment is not nec-

essarily physical. However, for the parameters relevant to most laboratory neutrino

experiments, it leads to the same result as the correct but complicated full treat-

ment of the quantum mechanical neutrino wave packet [70]. Given this assumption

along with the approximation that 𝑚𝑖 << 𝑝𝑖 (which should hold for all existing and

near-future experiments), we can show

(𝑝𝑖 − 𝑝𝑗) · 𝑥 = (𝐸𝑖 − 𝐸𝑗)𝑡

=
(︁√︁

𝑝2 +𝑚2
𝑖 −

√︁
𝑝2 +𝑚2

𝑗

)︁
𝑡

≈
Δ𝑚2

𝑖𝑗𝑡

2|𝑝|
,

(1.29)

where Δ𝑚2
𝑖𝑗 = 𝑚2

𝑖 −𝑚2
𝑗 . Working in natural units (𝑐 = ~ = 1), we note that ultra-

relativistic neutrinos satisfy |𝑝| ≈ 𝐸 and 𝑡 ≈ 𝐿, where 𝐿 is the distance traveled by
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the neutrino. Taking only the real part of the exponential in equation (1.28), we have

𝑃𝜈ℓ→𝜈ℓ′
(𝑡) =

∑︁
𝑖,𝑗

|𝑈ℓ𝑖𝑈
*
ℓ′𝑖𝑈

*
ℓ𝑗𝑈ℓ′𝑗| cos

(︁Δ𝑚2
𝑖𝑗𝐿

2𝐸
− 𝜑ℓℓ′𝑖𝑗

)︁
. (1.30)

If we consider a two-neutrino paradigm, the unitary mixing matrix is real and can

be parameterized by a single “mixing angle” 𝜃,

𝑈 ≡

⎛⎝𝑈ℓ1 𝑈ℓ2

𝑈ℓ′1 𝑈ℓ′2

⎞⎠ =

⎛⎝ cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

⎞⎠ . (1.31)

In this scenario, summing over the two mass eigenstates as in equation (1.30) gives

𝑃𝜈ℓ→𝜈ℓ′
(𝑡) = sin2 2𝜃 sin2

(︁Δ𝑚2𝐿

4𝐸

)︁
. (1.32)

The extension to the standard three neutrino paradigm can be found in any text

on neutrino oscillations. We quote the result here. Three mass eigenstates lead

to two independent mass-squared splittings, Δ𝑚2
12 and Δ𝑚2

23. The mixing matrix in

equation (1.24) can be parameterized by three real mixing angles 𝜃𝑖𝑗 and one complex

CP-violating phase 𝛿,

𝑈 =

⎛⎜⎜⎜⎝
1 0 0

0 𝑐23 𝑠23

0 −𝑠23 𝑐23

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

𝑐13 0 𝑠13𝑒
−𝑖𝛿

0 1 0

−𝑠13𝑒𝑖𝛿 0 𝑐13

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

𝑐12 𝑠12 0

−𝑠12 𝑐12 0

0 0 1

⎞⎟⎟⎟⎠ (1.33)

where 𝑐𝑖𝑗 ≡ cos 𝜃𝑖𝑗 and 𝑠𝑖𝑗 ≡ sin 𝜃𝑖𝑗. The three mixing angles (𝜃12, 𝜃13, 𝜃23) and two

relevant mass squared splittings Δ𝑚2
12 and |Δ𝑚2

23| have been measured to a precision

of 𝒪(1%−10%) over the past two decades [54–56]. An extensive experimental program

is planned to measure 𝛿 to similar precision, as well as the neutrino hierarchy (i.e.,

the sign of Δ𝑚2
23) and the octant of 𝜃23 [71].
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1.4 Anomalies in the Neutrino Sector

Despite the success of the three-neutrino mixing paradigm, several anomalous results

have appeared. Perhaps the most famous of these is the excess of 𝜈𝑒 candidate events

observed by the Liquid Scintillator Neutrino Detector (LSND) experiment [5]. LSND

took data at Los Alamos Meson Physics Facility (LAMPF) from 1993-1998, observing

neutrino interactions from a high-intensity decay-at-rest (DAR) source. The LSND

detector was a 167-ton cylindrical tank of mineral oil that collected scintillation and

Cherenkov light produced in neutrino interactions. The LAMPF accelerator provided

a ∼ 1 mA beam of 798 MeV protons, which were then focused on a water or high-Z

target. This process created a large number of pions, which then decayed to produce

neutrinos. Most 𝜋− came to rest and were captured by nuclei in and around the target,

and the 𝜋+ → 𝜈𝑒𝑒
+ decay chain is helicity-suppressed due to the interplay between

angular momentum conservation and the left-chiral nature of the weak interaction.

Thus the dominant neutrino production process was 𝜋+ → 𝜈𝜇(𝜇
+ → 𝜈𝜇𝜈𝑒𝑒

+).

LSND looked specifically for 𝜈𝜇 → 𝜈𝑒 conversion using 𝜈𝜇 from 𝜇+ DAR. The 𝜈𝑒
events were observed via the inverse beta decay (IBD) process. This is a very clean

channel, as one can require a coincidence between the initial positron emission and

the subsequent neutron capture on hydrogen, which releases a characteristic 2.2 MeV

photon. The intrinsic 𝜈𝑒 flux, coming predominately from 𝜋− decay-in-flight (DIF),

was suppressed compared to intrinsic 𝜈𝜇 by a factor of ∼ 8 × 10−4. Any significant

excess of 𝜈𝑒 would be evidence for 𝜈𝜇 → 𝜈𝑒 oscillations. This is exactly what LSND

observed, as shown in figure 1-9. However, the neutrino energies 𝒪(30 MeV) and

baselines (𝒪(30 m) required a mass-squared-splitting of Δ𝑚2 ∼ 1 eV2. This is

larger than the measured values of Δ𝑚2
12 and |Δ𝑚2

23| by at least three orders of

magnitude–therefore, the LSND result cannot be explained by the standard three

neutrino oscillation paradigm. One must introduce a fourth neutrino to the SM

neutrinos in order to facilitate such oscillations. Measurements of the invisible width

of the 𝑍 boson forbid this neutrino from coupling to the weak force in the same way

as the three SM neutrinos [72]. Thus, this fourth neutrino is typically referred to as a
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Figure 1-9: The LSND excess of 𝜈𝑒 events on top of the predicted SM background
(green and red regions). The blue region indicates the best fit to 𝜈𝜇 → 𝜈𝑒 oscillations
via a sterile neutrino state. Figure from Ref. [5]

“sterile neutrino” (𝜈𝑠). The sterile neutrino paradigm will be introduced in more detail

in section 1.4 and discussed thoroughly throughout this thesis. The LSND anomaly

is currently under direct investigation by the follow-up JSNS2 experiment [73, 74],

which will use a gadolinium-loaded liquid scintillator detector [75] to measure IBD

interactions at the J-PARC Materials and Life Science Experimental Facility.

The Mini Booster Neutrino Experiment (MiniBooNE) was designed to follow up

on the LSND anomaly [76]. MiniBooNE took data at Fermilab’s Booster Neutrino

Beam (BNB) from 2002-2019, observing the interactions of neutrinos with energy 𝐸 ∼

500 MeV in an 800-metric-ton mineral oil (CH2) detector [15]. The Fermilab Booster

accelerates protons to a kinetic energy of 8 GeV, at which point they collide with the

beryllium target of the BNB. This produces a cascade of mesons, predominately pions.

The charged mesons are focused using a magnetic horn and decay in a 50 m decay

pipe; in the nominal “neutrino mode”, the magnetic field is generated to create a flux

of mostly muon neutrinos from 𝜋+ decay-in-flight [14]. The current in the magnetic

horns can be reversed to instead focus 𝜋− along the beamline, thus creating a beam
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of mostly muon antineutrinos–this is referred to as “antineutrino mode”. MiniBooNE

was situated at a baseline of 𝐿 ∼ 500 m from the BNB target, resulting in a similar

characteristic 𝐿/𝐸 as that of LSND, ≈ 1 m/MeV. By equation (1.30), this means

MiniBooNE would also be sensitive to oscillations at Δ𝑚2 ∼ 1 eV2.

In 2007, MiniBooNE began to report results from their flagship analysis: the

search for an excess of 𝜈𝑒 events in the BNB [76]. MiniBooNE relied primarily on the

reconstruction of Cherenkov light from charged final state particles to identify neu-

trino interactions. Thus, 𝜈𝑒 CC interactions would show up as a “fuzzy” Cherenkov

ring due to multiple scattering of the electron as well as the induced EM shower [77].

These fuzzy Cherenkov ring events are hereafter referred to as “electron-like” events.

Starting with the initial results [76,78], MiniBooNE has consistently observed an ex-

cess of electron-like events above their expected SM background, the significance of

which has grown over the 17-year data-taking campaign of the experiment [10]. Fig-

ure 2-5 shows the 4.8𝜎 MiniBooNE electron-like excess considering the total neutrino

mode dataset, corresponding to 18.75× 1020 protons-on-target (POT) [10]. A similar

excess was observed in the antineutrino mode dataset [79]. The as-yet-unexplained

MiniBooNE excess represents one of the most significant disagreements with the SM

to date.

Though the origin of the MiniBooNE excess remains unknown, neutrino physicists

have converged on a number of potential explanations. The most famous explana-

tion involves sterile neutrino-driven 𝜈𝜇 → 𝜈𝑒 oscillations consistent with the LSND

result (Δ𝑚2 ∼ 1 eV2). While this model can explain at least some of the Mini-

BooNE excess, the excess in the lowest energy region (𝐸𝜈 . 400 MeV) sits above

even the best-fit sterile neutrino solution. Due to the Cherenkov nature of the de-

tector, electrons and photons are essentially indistinguishable–both seed EM showers

which appear as fuzzy Cherenkov rings. Thus, the MiniBooNE excess could also come

from a mismodeled photon background. Though not the subject of this thesis, there

have been extensive experimental and theoretical efforts, both within and outside of

the MiniBooNE collaboration, to validate the MiniBooNE SM photon background

prediction [10, 80–82]. One can also consider BSM sources of electron-like events in
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Figure 1-10: The MiniBooNE electron-like channel data and SM background predic-
tion for the entire neutrino mode dataset, as a function of the reconstructed neutrino
energy.

MiniBooNE. Typical models introduce additional sources of photons and/or 𝑒+𝑒−

events in MiniBooNE through couplings to new dark sector particles. Resolution of

the LSND and MiniBooNE anomalies, often referred to as the short baseline (SBL)

anomalies, is a major goal within the particle physics community [83]. This the-

sis specifically investigates the MiniBooNE anomaly in further detail, covering both

experimental and phenomenological studies into the origin of the excess.

We now briefly touch on two additional classes of anomalies that have surfaced over

the years: the reactor antineutrino anomaly (RAA) and the gallium anomaly. The

RAA [8] is a ∼ 5% deficit in the total 𝜈𝑒 rate observed from nuclear reactors compared

to the theoretical expectation from the Huber-Mueller (HM) model [84,85]. The HM

model combines results using the summation method (summing the contributions of

all beta-decay branches in the reactor) and the conversion method (relying on older

measurements of the 𝜈𝑒 flux from the different fissionable isotopes in the reactor).

The data contributing to the RAA mostly come from reactor neutrino experiments

operating at baselines short enough that the effects of SM neutrino oscillations are

negligible. One can interpret the RAA as due to 𝜈𝑒 disappearance via oscillations

involving a sterile neutrino. Coincidentally, due to the relevant neutrino energies and

baselines, such a solution requires Δ𝑚2 & 1 eV2, similar to the LSND and MiniBooNE
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Figure 1-11: Data contributing to the reactor antineutrino anomaly, indicating the ∼
5% flux deficit observed by short-baseline reactor neutrino experiments. The red line
indicates the prediction incorporating SM neutrino oscillations only, while the blue
line shows an example prediction including a sterile neutrino. Figure from Ref. [6].

solution [6]. Figure 1-11 shows an overview of the RAA circa 2012, including the

suite of short baseline reactor experiments which observe a deficit with respect to

the HM model with SM neutrino oscillations (red line), as well as an example sterile

neutrino solution to the RAA (blue line). Recently, the reactor 𝜈𝑒 flux calculation

has been revisited by various groups, each of which improves upon some aspect of the

summation or conversion method used in the HM flux model [86–89]. The significance

of the RAA either diminishes or disappears in some of these models; however, these

improved models have difficulty removing the RAA while also explaining the “5-MeV

bump” observed by most short baseline reactor experiments with respect to the HM

model [89]. Thus, while the RAA story is quickly evolving, our understanding of

reactor neutrino fluxes is far from clear.

The gallium anomaly refers to a series of gallium-based detectors that have ob-

served a deficit of 𝜈𝑒 capture events on 71Ga with respect to the theoretical expec-

tation. The original harbingers of the anomaly, SAGE [90] and GALLEX [91], were

designed to measure solar neutrinos using the 71Ga𝜈𝑒 → 71Ge𝑒− capture process.

Each detector was calibrated using electron capture 𝜈𝑒 sources, including 51Cr and
37Ar. Combining all available calibration data across both experiments, the observed
71Ge production rate was lower than the expectation by a factor of 0.87 ± 0.05 [90].

Though the statistical significance of the anomaly was only modest (2 − 3𝜎), the

community was already beginning to interpret the anomaly as 𝜈𝑒 → 𝜈𝑠 transitions via

an eV-scale sterile neutrino [92]. A follow-up experiment to the SAGE and GALLEX

anomaly, BEST [9], released their first results in 2021. BEST placed a 3.414 MCi
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Figure 1-12: Data contributing to the gallium anomaly, indicating the ∼ 20% deficit
in the 71Ge production rate observed by SAGE, GALLEX, and BEST. Figure from
Ref. [7].

51Cr 𝜈𝑒 source at the center of two nested 71Ga volumes, each with a different average

distance from the source. The ratio of observed to the predicted 71Ge production

rate was 𝑅𝑖𝑛 = 0.79 ± 0.05 (𝑅𝑜𝑢𝑡 = 0.77 ± 0.05) for the inner (outer) volume, thus

reaffirming the gallium anomaly [9]. No evidence for a difference in the deficit be-

tween the inner and outer volumes was observed, which would have been a smoking

gun signature of a baseline-dependent effect like 𝜈𝑒 → 𝜈𝑠 oscillations. However, the

statistical significance of the gallium anomaly is now much stronger; the combined

SAGE, GALLEX, and BEST results give evidence for a deficit at the 5.0𝜎 level [7].

The datasets contributing to this anomaly are summarized in figure 1-12.

As alluded to above, the most common BSM interpretation of the SBL, reactor

antineutrino, and gallium anomalies is the “3+1 model”, which involves the addition

of a new neutrino state–the sterile neutrino–at the eV scale. The sterile neutrino

introduces a fourth weak interaction eigenstate 𝜈𝑠 and mass eigenstate 𝜈4 to the

53



standard three-neutrino mixing paradigm. Thus, equation (1.24) becomes

⎛⎜⎜⎜⎜⎜⎜⎝
𝜈𝑒

𝜈𝜇

𝜈𝜏

𝜈𝑠

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑈𝑒1 𝑈𝑒2 𝑈𝑒3 𝑈𝑒4

𝑈𝜇1 𝑈𝜇2 𝑈𝜇3 𝑈𝜇4

𝑈𝜏1 𝑈𝜏2 𝑈𝜏3 𝑈𝜏4

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
𝜈1

𝜈2

𝜈3

𝜈4

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.34)

As we are interested in an eV-scale sterile neutrino, the mass-squared splittings

between the three active neutrinos are smaller by at least 2-3 orders of magnitude

compared to their mass-squared splittings with the fourth mass eigenstate. This

means that the active neutrino mass splittings are negligible for short-baseline exper-

iments, i.e. those in which the argument of the second sin2 term in equation (1.32)

is small. Experiments contributing to the aforementioned anomalies all satisfy this

condition. Thus, when considering sterile neutrino explanations for these anomalies,

we can make the approximation

Δ𝑚2
41 ≈ Δ𝑚2

42 ≈ Δ𝑚2
43 ≡ Δ𝑚2, (1.35)

where we hereafter use Δ𝑚2 to refer to the mass-squared splitting of the fourth mass

eigenstate. This approximation holds regardless of the hierarchy of SM neutrino mass

eigenstates.

The experiments discussed in this thesis are sensitive only to (—)

𝜈𝑒 and (—)

𝜈𝜇 inter-

actions. The sterile neutrino can facilitate short-baseline oscillations between these

flavor states; the oscillation probability expressions, which can be derived using equa-

tion (1.30) within the 3+1 framework, are given by [93]

𝑃𝜈𝑒→𝜈𝑒 = 1− 4 sin2 2𝜃𝑒𝑒 sin
2(1.27Δ𝑚2𝐿/𝐸)

𝑃𝜈𝜇→𝜈𝜇 = 1− 4 sin2 2𝜃𝜇𝜇 sin
2(1.27Δ𝑚2𝐿/𝐸)

𝑃𝜈𝜇→𝜈𝑒 = 4 sin2 2𝜃𝜇𝑒 sin
2(1.27Δ𝑚2𝐿/𝐸),

(1.36)
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where Δ𝑚2, 𝐿, and 𝐸 are in units of eV2, km, and GeV, respectively, and

sin2 2𝜃𝑒𝑒 = 4(1− |𝑈𝑒4|2)|𝑈𝑒4|2

sin2 2𝜃𝜇𝜇 = 4(1− |𝑈𝜇4|2)|𝑈𝜇4|2

sin2 2𝜃𝜇𝑒 = 4|𝑈𝜇4|2|𝑈𝑒4|2.

(1.37)

The first expression in equation (1.36) can potentially explain the deficit of 𝜈𝑒
and 𝜈𝑒 events observed in the RAA and gallium anomaly, respectively. Though both

anomalies stem qualitatively from the same phenomenon– (—)

𝜈𝑒 disappearance at short

baseline–the gallium anomaly in general prefers a larger value of sin2 2𝜃𝑒𝑒 than the

RAA. This is evident in figure 1-13, which shows the regions in sin2 2𝜃𝑒𝑒–Δ𝑚2 param-

eter space preferred by the RAA and gallium anomalies, as well as global constraints

from other experiments. These constraints come from short-to-medium-baseline re-

actor experiments, including NEOS [94], RENO [95], and Daya Bay [96], as well

as very-short-baseline reactor experiments, including STEREO [97], DANSS [98],

and PROSPECT [99]. Each of these experiments searches for 𝜈𝑒 disappearance in a

reactor-flux-agnostic way: the former though comparisons of the reactor 𝜈𝑒 spectra

measured by different detectors [100], and the latter through the use of modular or

movable detectors capable of comparing 𝜈𝑒 interaction rates across different baselines.

The KATRIN experiment, which is sensitive to the neutrino mass via an extremely

precise measurement of the tritium beta spectrum endpoint, also places strong con-

straints on sin2 2𝜃𝑒𝑒 in the Δ𝑚2 & 10 eV2 region [101].

The second expression in equation (1.36) can potentially explain the SBL anoma-

lies. This is because both LSND and MiniBooNE operated at accelerator neutrino

sources for which the neutrino flux was generated mainly by charged pion decay [5,14];

thus, due to helicity suppression, the flavor composition was dominated muon-flavored

(anti)neutrinos. This means that even a small value of sin2 2𝜃𝜇𝑒 could generate an

observable level of (—)

𝜈𝑒 appearance on top of the SM (—)

𝜈𝑒 flux prediction. Figure 1-14

shows the allowed regions in sin2 2𝜃𝜇𝑒–Δ𝑚2 parameter space from LSND and Mini-

BooNE [10]. Strikingly, both anomalies generally prefer the same region of parameter
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Figure 1-13: Preferred regions in sin2 2𝜃𝑒𝑒–Δ𝑚2 parameter space to explain the
RAA [8] (green contour) and gallium anomaly [9] (blue regions). The total excluded
region from other experiments (grey region) is also shown. Figure from Ref. [9].

space. However, as the MiniBooNE excess tends to peak more sharply at lower ener-

gies, the 3+1 fit prefers lower values of Δ𝑚2 compared to the LSND result.

It is important to note that the fits performed in figure 1-14 account only for (—)

𝜈𝜇 →
(—)

𝜈𝑒 oscillations, ignoring any potential (—)

𝜈𝑒 or (—)

𝜈𝜇 disappearance in the SM background

prediction. This is a reasonable approximation, however, the inclusion of the latter

effects does indeed impact the MiniBooNE allowed regions. This effect was only

accounted for recently in Ref. [102], which is presented in section 5.3.1 of this thesis.

While there are indications of short baseline (—)

𝜈𝜇 → (—)

𝜈𝑒 appearance and (—)

𝜈𝑒 disap-

pearance in the global anomaly picture, direct observation of (—)

𝜈𝜇 disappearance via

the third expression in equation (1.36) remains elusive. Long baseline experiments

such as MINOS/MINOS+ [103,104] and CCFR84 [105] have searched for muon neu-

trino disappearance from an accelerator neutrino source. Additionally, the IceCube

experiment has searched for a sterile-induced matter resonance impacting muon neu-

trinos as they transit through the earth [106]. So far, no definitive evidence for (—)

𝜈𝜇

disappearance has been found (up to a ∼ 2𝜎 preference in the IceCube results [106]).

The lack of (—)

𝜈𝜇 disappearance introduces significant tension when one tries to fit
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Figure 1-14: Preferred regions in sin2 2𝜃𝜇𝑒–Δ𝑚2 parameter space to explain the LSND
anomaly [5] (filled contours) and MiniBooNE anomaly [10] (open contours). Figure
from Ref. [10].

global neutrino data within a consistent 3+1 model. This conclusion has been reached

by multiple 3+1 global fitting efforts [11, 12, 93]; figure 1-15 shows a representation

of the tension between appearance and disappearance experiments observed in global

fits. This tension persists even with the inclusion of the recent BEST result, which

prefers larger values of |𝑈𝑒4|2 (thus allowing lower values of |𝑈𝜇4|2 to fit the (—)

𝜈𝑒 ap-

pearance anomalies) [12]. Thus, the 3+1 model, while still an important benchmark

BSM scenario, has become disfavored as a solution to all observed anomalies in the

neutrino sector. The state of the sterile neutrino explanation of the SBL anomalies

is discussed in more detail throughout this thesis.

In recent years, neutrino physicists have begun to turn toward alternative ex-

planations of the anomalies, often involving dark sector particles with additional

interactions. Chapter 6 of this thesis covers one such explanation of the MiniBooNE

anomaly, involving heavy right-handed neutrinos with a transition magnetic moment

coupling to the active neutrinos.
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(a) From Ref. [11] (b) From Ref. [12]

Figure 1-15: Graphical representation of the tension observed in 3+1 global fits be-
tween different subsets of the experimental landscape. Figure 1-15a shows the tension
between 𝜈𝑒 appearance experiments and 𝜈𝑒/𝜈𝜇 disappearance experiments observed
in Ref. [11]. Figure 1-15b shows the tension between allowed regions from 𝜈𝑒 appear-
ance (lower right), 𝜈𝑒 disappearance (upper right), and 𝜈𝜇 disappearance (upper left)
experiments observed in Ref. [12], which includes the latest results from the BEST
experiment.
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Chapter 2

The MiniBooNE Experiment

This chapter is intended to give the reader an overview of the Mini Booster Neutrino

Experiment (MiniBooNE), specifically concerning the excess of electron-like events

observed by MiniBooNE in data taken between 2002–2019 at Fermilab’s Booster

Neutrino Beam (BNB). The MiniBooNE excess is at the center of this thesis; the

research presented here covers both experimental follow-up and theoretical interpre-

tations of this anomaly. Thus, the remaining chapters require a thorough discussion

of the MiniBooNE experiment and its most famous result.

2.1 Overview of MiniBooNE

MiniBooNE was originally designed as an experimental follow-up to the LSND excess

of 𝜈𝑒 events observed at the Los Alamos Meson Physics Facility (LAMPF) [5]. As

described in section 1.4, the LAMPF flux comprised mostly of 𝜈𝜇, which dominated

over the 𝜈𝑒 flux by three orders of magnitude [107]. Because of this, LSND was able

to perform a low-background search for the IBD interaction 𝜈𝑒𝑝→ 𝑒+𝑛. An excess of

IBD events was observed above the intrinsic 𝜈𝑒 flux prediction from the beam dump

source–this is known as the “LSND amonaly” [5].

The LSND anomaly has traditionally been interpreted as evidence for 𝜈𝜇 → 𝜈𝑒

oscillations at Δ𝑚2 ≈ 1 eV2. The LSND detector sat relatively close to the LAMPF

nuclear target; the characteristic length-to-energy ratio in the experiment was 𝐿/𝐸 ∼
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30 m/30 MeV. According to equation (1.32), in order to be sensitive to the oscillation-

based interpretation of the LSND anomaly, one must maintain the same ratio 𝐿/𝐸.

This was the design strategy of the MiniBooNE experiment, which observed the

interactions of neutrinos from the BNB with characteristic energy 𝐸𝜈 ∼ 500 MeV, at

a baseline of 𝐿 ∼ 500 m from the BNB beryllium target. The BNB produced mostly

𝜈𝜇 from pion decay-in-flight; thus, MiniBooNE searched for 𝜈𝜇 → 𝜈𝑒 oscillations in

the BNB at Δ𝑚2 ≈ 1 eV2.

2.1.1 The Booster Neutrino Beam

The BNB, which is still operational, follows the typical design of a neutrino beam-

line [107]. Protons are accelerated in a synchrotron up to a momentum of 8.89 GeV,

at which point they are kicked out of the synchrotron and interact within the Be tar-

get of the BNB, producing a cascade of secondary particles [14]. The charged mesons

in this cascade are then focused using a toroidal magnetic field from an aluminum

horn. By switching the direction of the current in the horn (and thus the direction of

the magnetic field), one can choose whether to focus positively-charged mesons and

de-focus negatively-charged mesons (“neutrino mode”), or vice-versa (“antineutrino

mode”). After focusing, charged mesons pass through a concrete collimator and enter

a 50-meter-long air-filled region where they decay to neutrinos. The neutrinos travel

through another 474 meters of bedrock before reaching the MiniBooNE detector. A

schematic depiction of this process is shown in figure 2-1.

The MiniBooNE flux is described in detail in Ref. [14]; we summarize the most

important details here. In neutrino (antineutrino) mode, the flux is dominated by

𝜈𝜇 (𝜈𝜇) from 𝜋+ (𝜋−) decay. Wrong-sign 𝜈𝜇 (𝜈𝜇), coming mostly from the decay

of oppositely-charged pions, contribute at the 5% (15%) level. Two and three-body

kaon decays also contribute to the 𝜈𝜇 and 𝜈𝜇 flux at the few-percent level. The BNB

also produces electron (anti)neutrinos, which represent < 1% of the total flux in both

neutrino and antineutrino mode. These come from two main sources: the decay of

the secondary muon produced in the original charged pion decay, which is dominant

for 𝐸𝜈 . 1 GeV, and two-body kaon decay, which is dominant for 𝐸𝜈 & 1 GeV. The
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BNB flux breakdown in neutrino and antineutrino mode are shown in figure 2-2.

The 𝜋± production rate from p-Be interactions has been measured by the HARP [108]

and BNL E910 [109] experiments. HARP took data at the BNB proton incident mo-

mentum (8.89 GeV/c) with a replica of the BNB beryllium target, while E910 took

data at varying incident proton momenta above and below the nominal BNB value.

These data were used to constrain a Sanford-Wang parameterization of the 𝜋± dif-

ferential production cross section in the BNB [110]. The charged and neutral kaon

production rates in p-Be were constrained by measurements from other experiments

at proton momenta around 8.89 GeV/c; the Feynman scaling hypothesis was used to

relate these measurements to the BNB proton momentum [14].

Figure 2-1: A schematic depiction of the BNB at Fermilab, including the downstream
MiniBooNE detector. Figure from Ref. [13].

Figure 2-2: Breakdown of the neutrino flux at the BNB in neutrino (left) and an-
tineutrino (right) mode. Figure from Ref. [14]

2.1.2 The MiniBooNE Detector

The MiniBooNE detector is an 818-ton, 6.1-meter-radius spherical volume filled with

mineral oil (approximately CH2) [15]. It was designed to measure the Cherenkov
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light produced from charged particles created in the charged-current interactions of

BNB neutrinos within the detector volume. To do this, the inner surface of the

sphere was instrumented with 1280 photo-multiplier tubes (PMTs), corresponding to

a photocathode coverage of 11.3%. An additional 240 PMTs were used to instrument

the surrounding veto region, which rejected cosmic muons and neutrino interactions

outside the detector volume with an efficiency of ∼ 99.99% [15]. Mineral oil was

chosen as the detector medium due to its high index of refraction (n=1.47), leading

to more Cherenkov light production by electrons traversing the detector volume.

The exact mineral oil mixture, Marcol 7, was selected by optimizing the behavior of

photons with wavelengths between 320 nm and 600 nm (e.g., requiring an extinction

length greater than 20 m) [15]. The detector was situated in a cylindrical vault just

below ground level, under ∼ 3 m of dirt. A schematic depiction of the MiniBooNE

detector is shown in figure 2-3.

The reconstruction of the final state from a neutrino interaction in MiniBooNE

relied on the detection of Cherenkov light. Specifically, the collaboration developed

reconstruction algorithms that turned the spatiotemporal distribution of photon hits

on the PMTs into kinematic information on each observable final state particle [77].

These algorithms used maximum likelihood estimators to estimate the starting loca-

tion, direction, and energy of final state particles using the observed photon hits in

each PMT, relying on the known transport properties of Cherenkov photons within

the detector medium. Cherenkov photons are emitted when a charged particle trav-

els faster than the speed of light in a medium, at an angle of cos 𝜃𝐶 = 1/𝑛𝛽 with

respect to the charged particle track. This results in a characteristic ring-like pat-

tern on the detector wall. Such Cherenkov rings formed the basis of the MiniBooNE

reconstruction algorithm.

There were two main classes for observable final state particles in MiniBooNE:

muon-like (𝜇-like) and electron-like (𝑒-like). Each elicits a different Cherenkov ring

pattern [77]. At MiniBooNE energies, muons are typically minimum-ionizing particles

and thus would appear as a uniform ring in the PMT array. The ring would be filled in

if the muon exits the detector volume before going below the Cherenkov threshold, and
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would be open otherwise. Electrons, on the other hand, undergo radiative processes

as they travel, emitting photons via the Bremsstrahlung process, which then undergo

pair-production to 𝑒+𝑒−, which then emit more photons, and so on. This process is

typically called an “electromagnetic (EM) shower”. The multiple constituent electrons

and positrons in this EM shower would result in a distorted Cherenkov ring in the

PMT array. Importantly, high energy photons also produced these distorted rings

after undergoing an initial pair-production interaction; thus, electrons and photons

were essentially indistinguishable in MiniBooNE and were both classified as 𝑒-like.

Another relevant final-state particle in MiniBooNE was the neutral pion, which could

be identified via two separate distorted Cherenkov rings via the 𝜋0 → 𝛾𝛾 decay. It

is also important to note that 𝜋0 events could be misclassified as 𝑒-like if one of the

photons was not reconstructed, which could happen if one of the photons escaped

the detector without pair producing or had energy below the detection threshold. A

schematic diagram of the detector signature of muons, electrons, and neutral pions

in MiniBooNE is shown in figure 2-4a.

A separate likelihood was calculated for three different final state particle hypothe-

ses: electron, muon, and neutron pion [77]. Ratios of these likelihoods were used to

distinguish one particle from another in MiniBooNE. As an example, we show the

separation of electron and muon events as characterized by the log-likelihood-ratio as

a function of reconstructed neutrino energy in figure 2-4b. This ratio was the main

selection tool in selecting 𝑒-like events for MiniBooNE’s flagship search for 𝜈𝜇 → 𝜈𝑒

oscillations in the BNB.

2.2 The MiniBooNE Low Energy Electron-Like Ex-

cess

As stated above, MiniBooNE was designed to test the LSND excess of 𝜈𝑒 events

discussed in section 1.4. To do this, MiniBooNE isolated a sample of 𝑒-like events

using the likelihood ratios described in the previous section [76]. This sample was
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Figure 2-3: The MiniBooNE detector situated in the cylindrical detector hall (left)
and an image of the interior of the MiniBooNE detector (right), showing the PMTs
in both the signal and veto regions. Figure from Ref. [15].

(a) From Ref. [76] (b) From Ref. [77]

Figure 2-4: Visual representations of particle identification in MiniBooNE. Figure 2-
4a shows a schematic representation of the detector signature from the three main
particle classes in MiniBooNE: muons, electrons, and neutral pions. Figure 2-4b
shows the MiniBooNE log-likelihood-ratio between the 𝑒-like and 𝜇-like hypothesis
as a function of reconstructed neutrino energy, considering both simulated 𝜈𝑒 CCQE
(top) and 𝜈𝜇 CCQE (bottom) interactions.
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optimized to select 𝜈𝑒 CCQE interactions within the detector while rejecting 𝜈𝜇 in-

teraction backgrounds, thus maximizing sensitivity to potential 𝜈𝜇 → 𝜈𝑒 oscillations

within the BNB. MiniBooNE’s flagship 𝑒-like analysis, which has remained stable over

the lifetime of the experiment, achieved a 𝜈𝑒 CCQE efficiency of ∼ 20% while rejecting

∼ 99.9% of 𝜈𝜇 backgrounds [10]. The full MiniBooNE dataset consists of 18.75×1020

(11.27 × 1020) protons-on-target (POT) in neutrino (antineutrino) mode collected

over 17 years of operation. In this dataset, the 𝑒-like analysis observes 2870 (478)

data events in neutrino (antineutrino) mode, compared to an SM prediction of 2309.4

(400.6) events [10]. Combining neutrino and antineutrino mode data, MiniBooNE

observes an excess of 638.0 ± 52.1 (stat.) ± 122.2 (sys.) 𝑒-like events, corresponding

to a Gaussian significance of 4.8𝜎 [10].

Figure 2-5 shows the reconstructed neutrino energy distribution of the MiniBooNE

𝑒-like excess in both neutrino and antineutrino mode. The stacked histogram corre-

sponds to the SM prediction from the NUANCE event generator [44], while the data

points correspond to the observed number of 𝑒-like events in each bin. The error

bars on the stacked histogram correspond to the systematic uncertainty on the SM

prediction, calculated within a covariance matrix formalism. The dominant sources of

systematic uncertainty include neutrino cross section modeling (derived largely using

MiniBooNE’s own cross section measurements [111–114]), nuclear effects, detector

response and optical modeling, and BNB flux estimation [10, 79]. The presented er-

ror in each bin of the 𝜈𝑒 and 𝜈𝑒 sample incorporates a constraint from MiniBooNE’s

dedicated 𝜈𝜇 and 𝜈𝜇 CCQE samples. The dashed line corresponds to the best fit of

the MiniBooNE excess to the 3+1 sterile neutrino model described in section 1.4. As

one can see, the excess in data events is strongest in the lowest energy bins; for this

reason, this anomaly is often referred to as the MiniBooNE low-energy excess (LEE).

As MiniBooNE used a Cherenkov detector, it was not sensitive to the final state

hadronic activity in a neutrino interaction. Thus, kinematic reconstruction of the

original neutrino relied entirely on the final state lepton. Under the assumption that

the neutrino underwent a CCQE interaction off of a nucleon at rest within the nucleus,
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the original neutrino energy is given by [111]

𝐸QE
𝜈 =

2(𝑀 ′
𝑛)𝐸ℓ − ((𝑀 ′

𝑛)
2 +𝑚2

ℓ −𝑀𝑝)

2[(𝑀 ′
𝑛)− 𝐸ℓ +

√︀
𝐸2

ℓ −𝑚2
ℓ cos 𝜃ℓ]

, (2.1)

where 𝐸ℓ is the total lepton energy, cos 𝜃ℓ is the lepton scattering angle, and 𝑀𝑛, 𝑀𝑝,

and 𝑚ℓ are the neutron, proton, and lepton mass, respectively. The adjusted neutron

energy is defined as 𝑀 ′
𝑛 ≡ 𝑀𝑛 − 𝐸𝐵, where 𝐸𝐵 is the nuclear binding energy of the

initial state neutron. An analogous relation exists for antineutrino energy reconstruc-

tion in a CCQE interaction [115]. This is the reconstructed energy definition used to

generate the histograms in figure 2-5.

Figure 2-6 shows the visible energy and cos 𝜃 distributions of the final state lepton

in MiniBooNE’s 𝑒-like neutrino mode sample. The visible energy distribution shows

the strongest discrepancy for softer lepton kinetic energies, as expected for a low-

energy excess. For the angular distribution, it is worth noting that while there is an

excess across the entire range, the largest deviation above the SM prediction comes

from the cos 𝜃 ∈ [0.9, 1.0] bin. The angular distribution of the MiniBooNE LEE is

an important piece of information for potential solutions to the anomaly–as we will

discuss throughout this thesis, BSM physics models often cannot explain the energy

and angular distributions of the MiniBooNE LEE simultaneously.

The green contributions to the stacked histograms of figure 2-5 represent the

interactions of intrinsic 𝜈𝑒 or 𝜈𝑒 in the BNB. At low energies, these events come mostly

from the decay of the secondary muon in the 𝜋+ → 𝜇+ or 𝜋− → 𝜇− decay chain,

while 𝜈𝑒 and 𝜈𝑒 from kaon decays start to contribute more at higher energies [14].

The red and brown contributions to the stacked histograms represent misidentified

photon backgrounds that are reconstructed as a single distorted Cherenkov ring. The

largest photon background comes from misidentified 𝜋0 created via 𝜈𝜇 and 𝜈𝜇 neutral-

current (NC) resonant scattering, in which the initial state nucleon is excited to a Δ

resonance before decaying to nucleon-pion pair. The 𝜋0 decay promptly to a pair of

photons, which should nominally appear as a pair of distorted Cherenkov rings as in

figure 2-4a. However, if one of the photons exits the detector before converting to
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an 𝑒+𝑒− pair, or if the original pion energy is distributed asymmetrically such that

the visible energy of one of the photons sits below the reconstruction threshold of

140 MeV [76], the 𝜋0 decay will be misidentified as an 𝑒-like event. An enhancement

of the NC 𝜋0 background in figure 2-5 could in principle explain the observed excess.

However, MiniBooNE constrained the rate of this NC 𝜋0 background in situ via

a measurement of the two-gamma invariant mass peak in well-reconstructed NC 𝜋0

events [10]. Additionally, the radial distribution of the excess peaks toward the center

of the detector, while misidentified NC 𝜋0 backgrounds happen more often toward

the edge of the detector, where it is more likely for a photon to escape before pair-

producing.

The next-largest photon background comes from rare Δ → 𝑁𝛾 decays in 𝜈𝜇 and

𝜈𝜇 NC resonant scattering interactions. As this process has never been observed

directly, it was not possible for MiniBooNE to constrain the Δ → 𝑁𝛾 event rate in

situ. It was instead constrained indirectly by the NC 𝜋0 two-gamma invariant mass

distribution [10]. A factor 3.18 enhancement in Δ → 𝑁𝛾 events could explain the

MiniBooNE LEE; however, this hypothesis has since been disfavored by recent results

from the MicroBooNE experiment [80]. The MicroBooNE experiment will be covered

in more detail in chapters 3 to 5.

MiniBooNE has also studied neutrino interactions outside the detector volume

which result in a single photon entering the detector (the “dirt” backgrounds in

figure 2-5). The timing distribution of the MiniBooNE 𝑒-like dataset suggests that

the excess comes primarily in time with the beam, while dirt background events are

often delayed by ∼ 10 ns [10]. This result disfavors an enhancement of external

neutrino interactions as an explanation of the MiniBooNE excess.

Therefore, the 4.8𝜎 MiniBooNE excess remains unexplained. Resolution of the

MiniBooNE LEE is one of the major goals of the neutrino community [83].

The MiniBooNE LEE is most commonly interpreted within the context of the

3+1 model introduced in section 1.4. This is primarily because the MiniBooNE

excess has historically been considered alongside the LSND excess, as both results

can be explained by short-baseline 𝜈𝜇 → 𝜈𝑒 and 𝜈𝜇 → 𝜈𝑒 appearance. Strikingly,
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(a) 𝜈𝑒 sample, from Ref. [10] (b) 𝜈𝑒 sample, from Ref. [79]

Figure 2-5: The 𝐸QE
𝜈 distribution of the MiniBooNE 𝑒-like excess in the total neutrino

mode (figure 2-5a) and antineutrino mode (figure 2-5b) datasets. The observation
and SM prediction in each bin are shown by the data points and colored histograms,
respectively.

(a) Lepton 𝐸vis distribution (b) Lepton cos 𝜃 distribution

Figure 2-6: The lepton visible energy (figure 2-6a) and cos 𝜃 (figure 2-6b) distributions
of the MiniBooNE 𝑒-like excess in the total neutrino mode dataset. The observation
and SM prediction in each bin are shown by the data points and colored histograms,
respectively. Figures from Ref. [10].

the MiniBooNE and LSND anomalies both prefer similar regions in sterile neutrino

parameter space, as shown in figure 1-14. This is further supported by figure 2-7,

which shows the rising nature of the MiniBooNE and LSND excesses as a function of

the ratio 𝐿/𝐸, behavior that is consistent with a sterile neutrino explanation.

There are, however, complications regarding a sterile neutrino explanation of the

MiniBooNE excess. The 3+1 model has difficulty reproducing the lowest energy

and lowest scattering angle region of the excess. Figure 2-6 shows that the best fit

3+1 prediction, indicated by the dotted line, still falls below the observed data in
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the lowest lepton 𝐸vis bin and highest lepton cos 𝜃 bin. Additionally, as discussed in

section 1.4, there is significant tension between the MiniBooNE and LSND observation

of 𝜈𝑒/𝜈𝑒 appearance and experiments searching for 𝜈𝑒/𝜈𝑒 and 𝜈𝜇/𝜈𝜇 disappearance.

Finally, the follow-up MicroBooNE experiment has not observed an excess of 𝜈𝑒 events

consistent with the expectation from the MiniBooNE LEE [116]. The MicroBooNE

𝜈𝑒 analysis is one of the main results of this thesis and will be explored in more detail

in chapters 4 and 5. While the non-observation of a MiniBooNE-like excess of 𝜈𝑒
events in the BNB does set constraints on 3 + 1 parameter space, it does not fully

exclude the MiniBooNE allowed regions [102]. This point will be discussed further in

chapter 5.

These complications with the eV-scale sterile neutrino interpretation of the Mini-

BooNE LEE have prompted the community to explore alternative explanations.

Many of these are relatively simple extensions beyond 3 + 1, such as 3 + 𝑁 mod-

els involving 𝑁 additional sterile neutrino states [93], decaying sterile neutrino mod-

els [117–119], and sterile neutrinos with altered dispersion relations from large ex-

tra dimensions [120–122]. Other explanations for the MiniBooNE LEE introduce

a number of new particle species prescribed with new interactions that create an

additional source of photons or 𝑒+𝑒− pairs in MiniBooNE. Such models include

heavy neutral leptons (HNLs) which decay to photons via a transition magnetic mo-

ment [27, 31, 123–135] and models with heavy neutrinos coupled to a “dark sector”

involving, for example, new vector or scalar mediators [136–146]. Chapter 6 of this

thesis explores one such explanation of MiniBooNE involving an HNL with a tran-

sition magnetic moment coupling to active neutrinos, which we hereby refer to as

a “neutrissimo”. Neutrissimo decays in MiniBooNE provide an additional source of

single photons which could explain the 𝑒-like excess [27,31].

Thus, there are many potential explanations for the MiniBooNE anomaly. Distin-

guishing between these explanations requires careful consideration of the kinematic

distributions of the MiniBooNE excess [31, 147]. Further, these models are often

subject to constraints from existing accelerator neutrino experiments, such as MIN-

ERvA and NA62 [139, 146]. A complete evaluation of constraints from existing data

69



Figure 2-7: The MiniBooNE and LSND excesses as a function of the ratio 𝐿/𝐸.
The MiniBooNE data is separated into neutrino and antineutrino mode. Figure from
Ref. [10].

is essential in determining the most viable models among the many proposed Mini-

BooNE explanations. The work presented in chapter 6 takes a step in this direction

by calculating constraints from MINERvA on the neutrissimo model.
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Chapter 3

The MicroBooNE Detector

In order to ascertain the nature of the MiniBooNE excess, one needs a detector capable

of providing more detailed event-by-event information than MiniBooNE’s Cherenkov

detector. This is the concept behind the MicroBooNE experiment. The MicroBooNE

detector is a large-scale liquid argon time projection chamber (LArTPC) with the abil-

ity to record high-resolution images of neutrino interactions. MicroBooNE recently

released its first results investigating the nature of the MiniBooNE excess [80, 116],

which will be presented in chapters 4 and 5. This chapter introduces the detector

that made this measurement possible.

3.1 Liquid Argon Time Projection Chamber

MicroBooNE used an 85-metric-ton fiducial volume LArTPC detector to observe the

interactions of neutrinos in the BNB [16, 148]. This makes MicroBooNE the first

𝒪(100 t) LArTPC operated in the United States. The idea for a LAr-based total

absorption detector originated in the 1970s [149]. The introduction of the LArTPC

detector concept came from Carlo Rubbia in 1977 [150], extending earlier work from

David Nygren [151] and Georges Charpak [152]. The first operational large-scale

LArTPC was the 500-metric-ton active volume ICARUS T600 detector [153], which

came online in 2010. ICARUS observed cosmic ray and neutrino interactions at

the Gran Sasso underground National Laboratory [154] and even set constraints on
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𝜈𝜇 → 𝜈𝑒 interpretations of the LSND and MiniBooNE anomalies using the CERN

to Gran Sasso neutrino beam [155]. On a smaller scale, the ArgoNeuT experiment

operated a 0.25-metric-ton LArTPC at Fermilab’s Neutrino Main Injector beamline

from 2009-2010, where it performed the first measurements of neutrino-argon cross

sections [156].

The MicroBooNE detector is situated 70 m downstream of the MiniBooNE detec-

tor along the BNB and operated from 2015 to 2021, observing a total of approximately

1.5×1021 POT [148]. MicroBooNE LArTPC data come in the form of high-resolution

three-dimensional images of the ionization energy deposited by final state charged

particles in neutrino interactions. The information contained in these images allows

for the event-by-event separation of photons and electrons–an essential capability for

determining the source of the MiniBooNE excess. MicroBooNE can also reconstruct

hadronic activity in the final state of the neutrino interaction, which helps further

distinguish between the possible sources of the MiniBooNE excess.

We begin with a brief overview of the MicroBooNE reconstruction procedure.

Charged-current neutrino interactions in the LAr volume produce charged particles

in the final state, which ionize argon atoms as they traverse the detector. Thus, each

charged particle leaves behind a trail of ionized electrons which, in theory, can drift

freely through the noble element detector medium without being captured. This drift

is controlled via an external electric field with strength |𝐸| ∼ 273 V/cm, accelerating

the ionized electrons to a final velocity 𝑣 ∼ 0.11 cm/𝜇s toward three anode wire

planes [148]. MicroBooNE employs a right-handed coordinate system, in which BNB

neutrinos travel along the 𝑧 direction, ionization electrons drift along the −𝑥̂ direction,

and 𝑦 represents the vertical direction [16]. The anode planes consist of two induction

planes and one collection plane, each containing a series of wires spaced 3 mm apart

and oriented at ±60∘ and 0∘ with respect to the 𝑦 direction for the induction and

collection planes, respectively. Each plane is biased such that ionization electrons drift

past the induction plane wires, generating a signal via induction, and terminate on the

collection plane wires, generating a signal via direct charge collection. The signals on

the anode wire planes allow for two-dimensional reconstruction of the charged particle
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trajectory in the 𝑦−𝑧 plane, transverse to the drift direction. The 𝑥̂ dimension of the

charged particle trajectory can be reconstructed using the arrival time of signals on the

anode wires in conjunction with the known drift time of the ionization electrons. In

order for this technique to work, one must know the initial time at which the charged

particle entered the detector. This can be established using either an external beam

trigger or an internal trigger from the light collection system, which operates on much

shorter time scales, 𝒪(ns), compared to characteristic electron drift times of 𝒪(ms).

A schematic of this process is shown in figure 3-1.

(a) (b)

Figure 3-1: Schematic depictions of the MicroBooNE LArTPC. Figure 3-1a shows the
detection process for charged particles from a neutrino interaction in a MicroBooNE-
like LArTPC. Figure 3-1b shows a cross-sectional view of the MicroBooNE detector
along the −𝑧 direction. Figures from Ref. [16].

3.1.1 Cryogenics

The MicroBooNE detector is relatively large–the LArTPC volume spans 2.6 m, 2.3 m,

and 10.4 m in the 𝑥̂, 𝑦, and 𝑧 direction, respectively [16]. Thus, ionization electrons

must drift through 𝒪(𝑚) of LAr before reaching the anode wire planes. Reconstruc-

tion of these ionization electrons requires careful control of the drift process. This is

the main objective of the MicroBooNE cryogenic system.

The LArTPC is housed within a larger cylindrical cryostat, which itself is sup-

ported by an argon purification system and nitrogen refrigeration system [16]. The
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purification system consists of two recirculation pumps and two filter skids that re-

move electronegative impurities from the LAr, mainly oxygen (O2) and water (H2O).

These impurities must be kept below the 100 parts-per-trillion O2-equivalent level in

order to maintain electron drift lengths of at least 2.5 m [16,157]. Additionally, the ni-

trogen contamination must be kept below 2 parts-per-million in order to maintain an

argon scintillation light attenuation length greater than the size of the detector [158].

Nitrogen cannot be appreciably removed from the argon via the purification system;

rather, the initial nitrogen contamination is fixed by the quality of the delivered ar-

gon, and additional contamination must be controlled by minimizing the atmosphere

leakage rate into the cryostat.

The nitrogen refrigeration system is designed to combat the heat load on the LAr

from the environment and electrical power systems, maintaining thermal homogeneity

throughout the active volume. It consists of two condensers, each designed to handle

a heat load of approximately 9.5 kW [16]. The temperature of the LAr volume must

be stable to ±0.1 K in order to keep the 𝑥̂ direction resolution of charged particle

tracks below 0.1% [16].

3.1.2 LArTPC Drift System

The drift system inside the LArTPC volume consists of three major subsystems: the

cathode plane, the field cage, and the three anode wire planes. The purpose of the

drift system is to maintain a uniform electric field throughout the active volume such

that ionization electrons are transported to the anode plane at a stable drift velocity.

The cathode consists of nine stainless steel sheets connected to a supporting frame

to form a single plane. Laser tracker measurements indicate that a majority of the

cathode plan is flat to within ±3 mm [16]. The cathode plane is kept at a negative

potential of approximately −70 kV via a high voltage feedthrough on the cryostat.

The field cage maintains a uniform electric field between the cathode plane and an-

ode planes. It consists of 64 stainless steel tubes wrapped around the LArTPC active

volume. A resistor divider chain connects each tube to its neighbor, sequentially

stepping the voltage from −70 kV to ground in 1.1 kV increments. The chain pro-
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vides a resistance of 250 MΩ between adjacent tubes such that the current flow is

approximately 4.4 𝜇A, much larger than the 𝒪(nA) current from signals on anode

plane wires [16]. Figure 3-2 shows the MicroBooNE cathode and field cage, as well

as a simulated map of the electric field within the LArTPC active volume.

Perhaps the most critical components of the MicroBooNE detector are the three

anode wire planes. The U and V induction planes contain 2400 wires each, while the Y

collection plane contains 3456 wires. As mentioned above, the U and V plane wires are

oriented at ±60∘ with respect to the vertical, while the Y plane is oriented vertically.

The U, V, and Y planes are biased at -200 V, 0 V, and +440 V, respectively, to ensure

termination of ionization electrons on the Y collection plane. Each wire is 150 𝜇m in

diameter and is spaced 3 mm from its neighbors. The planes themselves are spaced

3 mm from one another. The wires are held in place by wire carrier boards, which

house 16 wires each in the U and V planes and 32 wires in the Y plane. Each wire

is terminated using a semi-automated wrapping procedure around a 3 mm diameter

brass ferrule. On the wire carrier boards, each wire makes contact with a gold pin

that connects to the electronic read-out system. The anode planes are held in place

by a single stainless steel frame, which houses each wire carrier board via an array of

precision alignment pins. Wires are tested to withstand three times the nominal load

of 0.7 kg without breakage, both before and after placement onto the wire carrier

board. Figure 3-3a shows an image of a single Y plane wire carrier board with 32

mounted wires. An image of the fully-assembled MicroBooNE LArTPC is shown in

figure 3-3b, specifically highlighting the anode planes mounted on the stainless steel

frame.

3.1.3 Light Collection System

Liquid argon is a prolific scintillation medium due to its low cost, high scintillation

yield (𝒪(104) photons per MeV of deposited energy), and transparency to its own

scintillation light [158]. This last feature comes from the scintillation mechanism in

LAr: when argon atoms are ionized, they combine with one another to form singlet

and triplet excimer states. When these excimer states decay, they emit 128 nm
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(a) (b)

Figure 3-2: Figure 3-2a shows a close-up image of the cathode plane of the Micro-
BooNE LArTPC. The stainless steel field cage tubes can also be seen surrounding
the active volume. Figure 3-2b shows a cross-sectional map of the electric field at the
edge of the active volume, considering a cathode plane voltage of -128 kV. The legend
shows the field strength in units of V/m. Figures from Ref. [16].

(a) (b)

Figure 3-3: Figure 3-3a shows a photograph of a single wire carrier board with 32
mounted wires. Figure 3-3b shows the fully-assembled MicroBooNE LarTPC, high-
lighting the anode plane mounted on the stainless steel frame. Figures from Ref. [16].

photons which pass unattenuated through the surrounding atomic argon [159]. The

decay of the singlet (triplet) state happens on timescales of 𝒪(ns) (𝒪(𝜇s)) [160,161].
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Thus, scintillation light emission happens on much shorter timescales than the 𝒪(ms)

drift time of the ionization electrons.

The light collection system in MicroBooNE is designed to detect the scintilla-

tion photons produced in a neutrino interaction. It consists of 32 8-inch Hamma-

matsu R5912-02mod cryogenic PMTs situated behind an acrylic plate coated with

tetraphenyl butadiene (TPB) [16]. An image of one such PMT assembly is shown in

figure 3-5a. TPB is a wavelength shifter that absorbs the 128 nm argon scintillation

light and re-emits a photon in the visible range. The necessity of this procedure is

shown in figure 3-4, which demonstrates that, unlike direct LAr scintillation light,

TPB emission is well within the wavelength acceptance range of the PMTs.

When a photon hits the bi-alkali photocathode surface of an R5912-02mod PMT,

an electron is released via the photoelectric effect [162]–this electron is often referred

to as a “photoelectron” (p.e.). Each p.e. is focused toward a dynode chain–a series of

electrodes designed to produce a number 𝑛 > 1 electrons for each incident electron,

resulting in an avalanche of electrons by the final anode which can be read out in

the form of a current. The wavelength-dependent probability with which a given

p.e. enters the dynode chain is known as the “quantum efficiency“ of the PMT.

At the nominal operating temperature of 87 K, the MicroBooNE PMTs have an

average quantum efficiency of 15.3% [16]. Each PMT was tested in a liquid nitrogen

(77 K) cryogenic environment, in which the gain and rate of thermal emission (“dark

current”) of the PMT were measured as a function of the supplied high voltage (HV)

across the dynode chain [163]. The HV for each PMT was set to produce a gain of

3 × 107 at 77 K [16], corresponding to a dark current of 𝒪(kHz) [163]. The current

output from each PMT passed through preamp/shaper boards before being digitized

via an analog-to-digital converter (ADC) with a sampling rate of 64 MHz [16]. Thus,

light is collected in time ticks with a length of 15.625 ns [148].

The light collection system was critical in detecting activity in the detector coin-

cident with a beam spill, indicating the presence of a neutrino interaction. In order

to record a given event, at least 5 photoelectrons must have been detected across

all PMTs [148]. Additionally, a “common optical filter” was applied to reduce the
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non-neutrino trigger rate–this filter required at least one string of six time ticks with

greater than 20 photoelectrons detected during the 1.6 𝜇s beam spill window, and no

such strings of six time ticks in the 2 𝜇s prior to the beam spill. The spatiotemporal

distribution of light observed by the PMTs can also be used to augment the signal

from the wire planes. For example, the PMT signal from a cosmic muon which stops

in the detector and decays to a Michel electron is shown in figure 3-5b.

The scintillation light yield and detection efficiency in liquid argon are impacted

by a number of phenomena. Impurities can dissociate the argon excimers before they

have a chance to emit scintillation light. For example, O2 molecules in the LAr volume

can undergo a two-body collision with an argon excimer [164],

Ar*2 +O2 → 2Ar + O2. (3.1)

This interaction mainly decreases the decay probability of the longer-lived triplet

state. Because of this, measurements of the delayed scintillation lifetime in LAr are

sensitive to the concentration of impurities in the detector [16,160,164].

Scintillation light can also be absorbed by impurities within the detector. At con-

centrations of around 2 ppm, dissolved nitrogen will decrease the attenuation length of

128 nm scintillation light to around 30 m [158,165]. TPB emanation from the painted

acrylic plates can also lead to a bulk fluorescence effect within the liquid argon [166].

Additionally, Rayleigh scattering can deflect scintillation photons, diminishing the

detector’s capability to translate photon detection into spatial information regarding

the path of the original charged particle. The Rayleigh scattering length for 128 nm

photons in liquid argon has been measured to be approximately 55 cm [167]. Given

the size of the MicroBooNE detector, scintillation photons will undergo around five

Rayleigh scattering interactions on average before reaching a PMT.
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Figure 3-4: The LAr scintillation light spectrum, TPB ultra-violet absorption spec-
trum, TPB emission spectrum, PMT quantum efficiency, and PMT surface transmis-
sion efficiency as a function of photon wavelength. Figure from Ref. [17].

(a) (b)

Figure 3-5: Figure 3-5a shows a photograph of a single PMT system used in the
MicroBooNE detector. The acrylic window here has not yet been coated with TPB.
Figure 3-5b shows the PMT signal from a stopped cosmic muon (top) that decays to
a Michel (bottom). Figures from Ref. [16].

3.2 TPC Signal Processing

MicroBooNE has developed a custom cryogenic electronics system to amplify and

digitize the analog signal on each wire of the LArTPC [16]. The wire signals first

pass through front-end ASICs located on cryogenic motherboards attached directly to

the wire carrier boards on the LArTPC. Each ASIC amplifies and shapes the signal

from 16 wires–thus, 516 ASICs are needed to fully instrument the 8,256 readout

channels of the LArTPC. Cryogenic-tested cables carry signals from the ASICs to

intermediate amplifiers directly outside the cryostat, after which the signals travel
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through 20 m cables to the readout system. This system consists of 130 readout

modules, each containing 8 custom-designed 12-bit ADCs and a Front End Module

(FEM). Each ADC digitizes the signal from 8 wires at a rate of 16 MHz. The dynamic

range of the ADC is set to enable the detection both of a minimum-ionizing particle

far away from the anode planes and of a highly-ionizing-particle close to the anode

planes without saturation. The FEM uses a field-programmable gate array (FPGA)

to store and compress the digitized signals. Once a trigger is received, the FPGA

sends 4.8 ms of TPC data to the data acquisition (DAQ) system. The 4.8 ms window

is digitized into 9600 time ticks on each wire, with each time tick corresponding to

500 ns of integrated charge [148].

3.2.1 Noise Filtering

The MicroBooNE LArTPC underwent an initial engineering run from October 2015

to July 2016. Various sources of noise in the TPC were identified using data from

this run, all of which are described in detail in Ref. [18]. The frequency dependence

of the noise was studied to inform the creation of an offline noise filter.

Some of this noise is inherent to the electronics system, coming from the cold,

front-end ASIC or the two RC circuits in the intermediate amplifier and ADC board.

The gain and peaking time of the front-end ASIC are configurable from among four

pre-defined settings each, which determine the dynamic range and timing granular-

ity of the ASIC. This choice also fixes the level of irreducible noise in the ASIC,

comprised of multiple sources with different frequency dependence [18]. The timing

response of the RC circuits can distort large amplitude, long duration signals such as

a cosmic muon traveling parallel to a single wire. This effect can be corrected via a

deconvolution process [18].

The engineering run also revealed a number of excess noise sources above the

inherent electronics noise. The most prominent of these was low frequency (. 30 kHz)

noise from the low voltage regulators on the front-end ASICs. Harmonic noise was

also observed corresponding to the ripple frequency of the HV power supply for the

field cage. Offline filters were developed to subtract the noise induced from both of
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Figure 3-6: 2D displays of the signal from wires in one of the induction planes in a
single data event, before and after the application of the offline noise filters. Figure
from Ref. [18].

these sources. As shown in figure 3-6, these filters are able to remove most of the noise

in the wire planes while having minimal impact on the true signal from ionization

electrons. After the engineering run, hardware upgrades were made to the low voltage

regulators and the HV power supply which greatly reduced the excess noise in the

TPC readout signals. Even after these upgrades, the offline noise filters were still

applied to optimize the TPC noise level.

3.2.2 Deconvolution

Even after noise filtering, the signal from the TPC is a complex combination of a

number of factors: the ionization electron distribution, the induced current in each
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wire due to passing ionization electrons, and the response of the electronics system.

The signal must undergo deconvolution in order to obtain the quantity of physical

interest–the number of ionization electrons passing each wire as a function of time.

The signal processing algorithm designed to extract this information is described in

detail in Ref. [19] and validated using MicroBooNE data in Ref. [168]. We give a brief

overview of the algorithm here.

The measured signal 𝑀(𝑡) on a given wire is a convolution of the original signal

𝑆(𝑡′) and the detector response function 𝑅(𝑡, 𝑡′), which is intended to capture all the

factors impacting signal formation discussed above. This can be expressed by the

integral

𝑀(𝑡) =

∫︁ ∞

−∞
𝑅(𝑡, 𝑡′)𝑆(𝑡′)𝑑𝑡′. (3.2)

For a time-invariant detector response function 𝑅(𝑡, 𝑡′) = 𝑅(𝑡 − 𝑡′), one can express

this relationship in the frequency domain via a Fourier transform. In a realistic setup,

however, this treatment tends to amplify the effect of high-frequency components of

the inherent electronics noise. Typically one introduces a filter function 𝐹 (𝜔) to

suppress high frequency response, such that the original signal can be determined

from

𝑆(𝜔) =
𝑀(𝜔)

𝑅(𝜔)
𝐹 (𝜔). (3.3)

In this setup, one can consider 𝐹 (𝜔) as a replacement for the detector response

function.

The filter function used in MicroBooNE is inspired by the Weiner filter [169],

which is designed to optimize the signal-to-noise ratio while minimizing variance and

bias and the resulting 𝑆(𝜔). The exact Weiner filter is not applicable in the realistic

MicroBooNE setup, as it does not conserve the total number of ionization electrons

and can lead to non-local charge smearing due to suppression of low frequencies [19].

MicroBooNE instead constructs a Weiner filter 𝐹 (𝜔) from simulation, and then fits

the result to a functional form designed to preserve the normalization of the measured

signal and remove the unwanted low-frequency suppression behavior.

The procedure discussed so far only accounts for the signal generated in a given
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wire due to ionization electrons passing by that wire. In reality, electrons passing by

neighboring wires can also induce a current in a given wire. This is addressed by using

a two-dimensional (2D) deconvolution in both the time and wire dimensions rather

than the one-dimensional deconvolution in the time dimension introduced above.

An additional Weiner-inspired filter is constructed along the wire dimension when

performing 2D deconvolution. After the 2D deconvolution, the algorithm identifies a

region of interest (ROI) around each potential signal. These ROIs act as high-pass

filters which suppress low-frequency noise in the deconvolved signal while preventing

any non-local charge smearing.

The full deconvolution algorithm results in a robust reconstruction of the amount

of charge passing by or deposited on each wire of the LArTPC. Figure 3-7 shows the

U plane event display for a neutrino interaction candidate in MicroBooNE data after

the application of the deconvolution algorithm. After the 2D deconvolution, one can

clearly identify all of the charged particle tracks coming from the neutrino interaction

vertex. The shape of the deconvolved signal for wires in each plane matches closely

between data and simulation, as discussed in Ref. [168]. The signals produced by

the deconvolution algorithm are ready to be used by MicroBooNE physics analyses,

including the search for the MiniBooNE electron-like excess presented in chapters 4

and 5.
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Figure 3-7: A U plane event display of a candidate neutrino interaction in the Mi-
croBooNE data. The impact of the 1D and 2D deconvolution algorithms on the
post-noise-filtering signal is shown. Figure from Ref. [19].
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Chapter 4

The MicroBooNE Electron

Neutrino Analysis: Overview and

Selection

The MicroBooNE experiment was conceived to investigate the nature of the excess

of low-energy electron-like events observed by the MiniBooNE experiment, described

in detail in chapter 2. The MicroBooNE LArTPC, described in chapter 3, produces

high-resolution event displays of neutrino interactions which enable the separation of

events with electrons in the final state from those with photons. The collaboration

released its first results searching for a MiniBooNE-like excess of electromagnetic

events in October 2021. Four different analyses were performed, one focusing on

photons and three focusing on electrons. The photon analysis searched for an excess

of Δ → 𝑁𝛾 radiative decays [80]–the only SM photon background not constrained in

situ by MiniBooNE. The three electron analyses searched for an excess of 𝜈𝑒 charged-

current (CC) interactions, each with a different final state signal definition [116]. One

of the electron analyses, hereafter referred to as the “inclusive analysis”, isolated all 𝜈𝑒
CC interactions using the WireCell reconstruction framework [170]. Another electron

analysis, hereafter referred to as the “MiniBooNE-like analysis”, used the Pandora

reconstruction framework to isolate all 𝜈𝑒 CC interactions without pions in the final

state [171]. This chapter describes the “two-body CCQE analysis”, which used deep
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learning techniques to isolate charged-current quasi-elastic (CCQE) 𝜈𝑒 interactions

consistent with two-body scattering [148]. The results from this analysis are presented

in chapter 5. The two-body CCQE analysis represents much of my early work as a

graduate student.

Publications covered in this chapter for which I either held a leading role or made

major contributions: [116,148,172]

4.1 Dataset and Simulation

The results covered in this section come from the first 6.88× 1020 POT of BNB data

taken by the MicroBooNE experiment. These data were separated into three run

periods which spanned from 2016 to 2018: run 1 (1.75 × 1020 POT), run 2 (2.70 ×

1020 POT), and run 3 (2.43 × 1020 POT) [148]. Data from two more MicroBooNE

run periods exist on tape and are currently being processed by the collaboration,

corresponding to another roughly 5× 1020 POT. The entire dataset was taken during

nominal neutrino mode running conditions for the BNB, in which 8 GeV kinetic energy

protons from the Fermilab Booster strike the beryllium target to produce a cascade

of mesons, and the positively-charged mesons are focused and decay to produce a

beam of neutrinos. The BNB was described in detail in section 2.1.1. The intrinsic

𝜈𝑒 component of the beam, which makes up ∼ 0.5% of the total neutrino flux, can be

seen in figure 2-2.

The MicroBooNE simulation relies on the GENIE v3.00.06 [173–176] neutrino

event generator. MicroBooNE specifically employs the G18_10a_02_11a model,

which uses the Valencia CCQE and meson-exchange-current (MEC) models [177] as

well as a local Fermi gas model to describe the nuclear environment. GENIE models

the final state interactions (FSI) of particles produced in neutrino interactions with

the nuclear environment using the typical 𝐴2/3 scaling, including corrections from

nuclear binding energy [178] as well as Pauli blocking and the velocity dependence of

the nuclear mean field [179]. To improve the nuclear modeling of CCQE and MEC

interactions, MicroBooNE has developed a custom tune of the G18_10a_02_11a
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model using a 𝜈𝜇 CC0𝜋 cross section measurement from T2K [180,181]. This so-called

“MicroBooNE tune” was determined by performing a two-dimensional fit of the T2K

double-differential cross section data in muon momentum 𝑝𝜇 and angle cos 𝜃𝜇. The fit

adjusts four parameters related to the CCQE and MEC cross section models in GENIE

v3.00.06, resulting in a better fit to both T2K and MiniBooNE double-differential

cross section data (though discrepancies exist at lower muon momenta in the latter

case). The MicroBooNE tune is used for all three MicroBooNE 𝜈𝑒 analyses; it gives

better agreement with MicroBooNE 𝜈𝜇 data, which are essential for constraining the

𝜈𝑒 prediction in each analysis, and updates the predicted 𝜈𝑒 CCQE and MEC cross

sections on argon [180].

Electron scattering data can be used to evaluate the vector part of the vector-axial

neutrino-nucleus cross section models in event generators such as GENIE v3.00.06 [182,

183]. Earlier versions of GENIE were found to be in disagreement with electron

scattering data in the sub-GeV energy transfer regime [182]. Updates to the QE,

MEC, and Δ excitation models in GENIE improved agreement with the QE peak

and MEC-dominated dip region, though disagreements remain at higher momentum

transfers [183]. Dedicated electron scattering measurements using the CLAS detec-

tor at Jefferson Lab have also revealed biases in the GENIE-based reconstruction of

the incident electron energy, especially in the large final state transverse momentum

regime [184].

Particle propagation in the liquid argon detector is handled by the Geant4 toolkit

V10.3.03c [185], and the MicroBooNE TPC response is modeled using the general

LArSoft [186] package and the internal uboonecode package. The effect of cosmic

particles crossing the TPC during the readout window is modeled by overlaying off-

beam data on top of the simulated events. This is important, as around 20-30 cosmic

rays can cross the detector in a single event due to the long readout window and

near-surface location of the MicroBooNE detector [148].
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4.2 The Electron Low Energy Excess Template

The hypothesis studied in each of the three electron analyses is that the MiniBooNE

anomaly comes from an excess of 𝜈𝑒 interactions from the BNB. While such an excess

could come from 𝜈𝜇 → 𝜈𝑒 oscillations in a 3 + 1 model, this is not the only possible

source. For example, mismodeling of 𝜇+ decay-in-flight and 𝐾+ decay-at-rest in

the BNB [14] could lead to an enhancement of low energy 𝜈𝑒 compared with the

expectation.

MicroBooNE has elected to remain agnostic about possible sources of 𝜈𝑒 events for

its first results. To do this, the collaboration has developed an “electron low energy

excess (eLEE) model” by unfolding the MiniBooNE excess under a 𝜈𝑒 hypothesis [20,

148]. This is accomplished using the D’Agostini iterative unfolding procedure [187],

which updates a predicted distribution in true space using an observed distribution

in reconstructed space and a known detector response matrix connecting the two.

The algorithm relies on Bayes theorem to update the predicted distribution over a

specified number of iterations. A small number of iterations will give an unfolded

distribution biased toward the initial guess, while a larger number of iterations will

give an unfolded distribution that is more sensitive to statistical fluctuations in the

observed data [20]. For the eLEE model, the MiniBooNE observation as a function of

reconstructed neutrino energy, as shown in figure 2-5, is used to unfold the predicted

𝜈𝑒 interaction rate in MiniBooNE as a function of the true neutrino energy. This

procedure accounts for the detection efficiency; thus, the unfolded distribution can

be interpreted as the number of 𝜈𝑒 events that interact in MiniBooNE. One can take

the ratio of the unfolded MiniBooNE 𝜈𝑒 prediction to the nominal 𝜈𝑒 prediction from

the MiniBooNE Monte Carlo (MC), as shown in figure 4-1a. This gives a set of

binned weights as a function of the true 𝜈𝑒 energy, which can be applied to any BNB

MC sample of 𝜈𝑒 interactions to represent a MiniBooNE-like excess. These weights

constitute the MicroBooNE eLEE model of the MiniBooNE anomaly. Figure 4-1b

shows the actual eLEE model weights used in all three MicroBooNE 𝜈𝑒 analyses,

calculated using the first 12.84×1020 POT of the MiniBooNE neutrino mode dataset.
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A few comments are necessary regarding the unfolding procedure. First, the

number of iterations is a regularization parameter that must be selected by the user.

MicroBooNE used three iterations of the D’Agostini algorithm to produce the eLEE

model, a choice designed to minimize the variance and bias in the unfolded spec-

trum while remaining in good agreement with the MiniBooNE data, i.e. retaining

a 𝜒2 per degree-of-freedom less than 1 in the reconstructed distribution. While it is

true that these criteria select a unique choice for the number of iterations, the eLEE

model shown in figure 4-1b is not the unique unfolded distribution consistent with

the MiniBooNE excess. This point is discussed further in Ref. [188]. Additionally,

the eLEE model was developed before MiniBooNE had looked at any 𝜈𝑒 data in the

𝐸QE
𝜈 < 200 MeV region [79]. Thus, the unfolded 𝜈𝑒 prediction will lose events that

reconstruct below 200 MeV. It is also worth noting that while the MiniBooNE 𝑒-like

dataset is only sensitive in principle to 𝜈𝑒 CC interactions without pions in the fi-

nal state (as both charged and neutral pions are visible in a Cherenkov detector),

the eLEE model weights are applied to all 𝜈𝑒 CC interactions in MicroBooNE. The

impact of this choice is mitigated by the development of three different 𝜈𝑒 analyses

with an emphasis on different final states. If the MiniBooNE excess only exists in one

class of 𝜈𝑒 interactions, this should be evident when comparing results from all three

analyses. Finally, the eLEE model does not account for systematic uncertainties on

the MiniBooNE prediction. This is important, as MiniBooNE is a systematics-limited

experiment [10]. The eLEE model weights shown in figure 4-1b can be thought to

represent a “median” model of the MiniBooNE excess. One can scale the weights by

an overall factor, hereafter referred to as the “LEE signal strength” 𝑥LEE, to capture

the 21% statistical ⊕ systematic normalization uncertainty on the MiniBooNE pre-

diction. In chapter 5, we will cover results from a one-dimensional signal strength

scaling test.
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(a) From Ref. [20] (b)

Figure 4-1: Figure 4-1a shows the unfolded 𝜈𝑒 prediction in MiniBooNE calculated
using the first 6.46 × 1020 POT of neutrino mode data [20]. Figure 4-1b shows the
unfolded eLEE model weights derived from the first 12.84×1020 POT of MiniBooNE
neutrino mode data, which constitute the MicroBooNE eLEE model.

4.3 Philosophy Behind the Two-Body CCQE Anal-

ysis

The two-body CCQE analysis seeks to do what MiniBooNE could not–isolate a high-

purity sample of 𝜈𝑒 interactions with a low SM photon background, especially at low

energies. To do this, we have selected a very specific final state definition: 𝜈𝑒 CCQE

interactions with reconstructed kinematic variables that are consistent with two-body

scattering.

The 𝜈ℓ CCQE interaction channel is a simple two-body scattering process,

𝜈ℓ𝑛→ ℓ𝑝. (4.1)

It was chosen because CCQE is the dominant neutrino interaction at lower neutrino

energies, where the eLEE model weights in figure 4-1b are the highest. As shown

in figure 4-2, CCQE interactions comprise 77% of the 𝜈𝑒 CC interactions in Micro-

BooNE below 500 MeV [148]. Other interaction channels, such as meson exchange

current (MEC) and resonant (RES) scattering, become more significant at higher

90



neutrino energies. These channels are much more complicated than CCQE and thus

come with larger modeling uncertainties. MEC events involve pion exchange between

two nucleons and are thus sometimes referred to as “two-particle-two-hole” interac-

tions [189]. RES events involve the excitation of a nucleon to a Δ resonance which

will subsequently decay, most often to a pion and nucleon. CCQE events are also

easier to reconstruct; the original neutrino energy is simply the sum of the observed

electron and proton kinetic energies, up to smearing from nuclear effects. In MEC

and RES events, one must account for the kinetic energy of additional final state

protons and pions, and the potential existence of invisible final state neutrons makes

it more difficult to connect the total kinetic energy of the observed final state to the

initial neutrino energy. Thus, the relative simplicity of CCQE interactions is another

advantage of choosing such a signal definition.

The two-body CCQE analysis has developed a number of techniques to isolate

𝜈𝑒 CCQE events from other 𝜈𝑒 and 𝜈𝜇 interactions in MicroBooNE. The most basic

of these involves leveraging the clean 1𝑒1𝑝 final state topology of the signal events.

The left panel of figure 4-3 shows an example candidate 1𝑒1𝑝 event in MicroBooNE

data. One can clearly see the proton track and electron EM shower emanating from

the same vertex, presumably the location of the neutrino interaction in the LArTPC.

Our reconstruction algorithm takes advantage of this distinct “vee” shape, imposing

a strict requirement that exactly two “prongs” of charge (i.e., tracks or showers)

come from the same 3D-consistent interaction vertex. This process is augmented by

a powerful convolutional neural network to specifically find events with one track and

one shower, indicative of a 1𝑒1𝑝 final state. The reconstruction algorithm for this

analysis will be discussed in more detail in the next section.

We also rely on two-body kinematics to select 𝜈𝑒 CCQE interactions. In theory,

the observed 1𝑒1𝑝 final state from a 𝜈𝑒 CCQE interaction should obey kinematic

constraints imposed in a two-body scattering process. In a realistic MicroBooNE

scenario, the struck neutron lives within the argon nuclear medium and has non-zero

initial momentum. The final state proton must also travel through the argon nuclear

medium, in which it can undergo final state interactions that alter its momentum
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and/or create additional hadronic particles. In order to optimize our reconstruction

and minimize uncertainties, we are interested in events with minimal final state in-

teractions. We also want to remove backgrounds that will be especially inconsistent

with two-body kinematics, such as 𝜈𝑒 MEC events and 𝜈𝜇 events with a 𝜋0 in the

final state in which one of the photons is reconstructed alongside a proton track.

This is achieved by introducing variables to the analysis that are especially sensitive

to deviations from two-body kinematics. For example, the total transverse momen-

tum of the neutrino interaction (𝑝𝑇 ) will be further from zero for non-CCQE events.

Additionally, as shown in figure 4-4, the proton in a two-body CCQE scattering in-

teraction will always be forward-going. While nuclear effects can in principle break

this requirement in MicroBooNE, it is much more likely for a non-CCQE background

event to result in a backward-going proton than a true CCQE event. Therefore, we

explicitly require forward-going protons in this analysis. We can also consider the

Bjorken scaling variable

𝑥𝐵𝑗 =
𝑄2

2𝑝𝑝 · 𝑞
, (4.2)

where 𝑞2 = −𝑄2 is the four-momentum transfer and 𝑝𝑝 is the final state proton four-

momentum. In the case of quasi-elastic scattering, 𝑥𝐵𝑗 should be close to unity up

to nuclear effects [190], while it can significantly differ from unity for non-CCQE

backgrounds [148].

Finally, we can harness the full power of the LArTPC technology to reconstruct

the 𝜈𝑒 energy in multiple ways. For 𝜈𝑒 traveling along the 𝑧 axis of the detector, the

neutrino energy can be calculated from any of the following,

𝐸range
𝜈 = K𝑝 + Kℓ +𝑀ℓ +𝑀𝑝 − (𝑀𝑛 −𝐵), (4.3)

𝐸𝑄𝐸−𝑝
𝜈 =

(︂
1

2

)︂
2 · (𝑀𝑛 −𝐵) · 𝐸𝑝 − ((𝑀𝑛 −𝐵)2 +𝑀2

𝑝 −𝑀2
ℓ )

(𝑀𝑛 −𝐵)− 𝐸𝑝 +
√︁
(𝐸2

𝑝 −𝑀2
𝑝 ) · cos 𝜃𝑝

, (4.4)

𝐸𝑄𝐸−ℓ
𝜈 =

(︂
1

2

)︂
2 · (𝑀𝑛 −𝐵) · 𝐸ℓ − ((𝑀𝑛 −𝐵)2 +𝑀2

ℓ −𝑀2
𝑝 )

(𝑀𝑛 −𝐵)− 𝐸ℓ +
√︀

(𝐸2
ℓ −𝑀2

ℓ ) · cos 𝜃ℓ
, (4.5)

where 𝐾ℓ/𝑝 is the kinetic energy of the lepton or proton, 𝜃ℓ/𝑝 is the angle of the
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shower or track with respect to the 𝑧 axis, 𝑀ℓ/𝑝/𝑛 is the particle mass, and 𝐵 is the

average binding energy, which is around 40 MeV in argon [191]. For a true 𝜈𝑒 CCQE

interaction, all three of these formulae should yield a similar reconstructed neutrino

energy. To leverage this effect we define the “QE consistency” variable Δ𝑄𝐸 as

(Δ𝑄𝐸)2 ≡ (𝐸range
𝜈 − 𝐸𝑄𝐸−𝑝

𝜈 )2 + (𝐸range
𝜈 − 𝐸𝑄𝐸−ℓ

𝜈 )2 + (𝐸𝑄𝐸−ℓ
𝜈 − 𝐸𝑄𝐸−𝑝

𝜈 )2, (4.6)

which should be close to zero for CCQE events. To mitigate smearing from nuclear

effects, 𝐸𝑄𝐸−𝑝
𝜈 and 𝐸𝑄𝐸−ℓ

𝜈 are calculated in the rest frame of the struck nucleon. We

note here that equation (4.3) is the official reconstructed neutrino energy used for

this analysis; 𝐸𝜈 and 𝐸range
𝜈 are used interchangeably throughout this thesis.

Finally, it is worth mentioning that the two-body CCQE analysis also isolates a

control sample of 𝜈𝜇 CCQE interactions with a 1𝜇1𝑝 final state. The 1𝜇1𝑝 sample is

constructed analogously to the signal 1𝑒1𝑝 sample, though with around two orders of

magnitude more events (as 𝜈𝜇 comprise most of the BNB flux). This sample is used

to constrain the intrinsic 𝜈𝑒 prediction and uncertainties in the 1𝑒1𝑝 sample, as the

𝜈𝑒 and 𝜈𝜇 flux and cross section are highly correlated. We also make use of dedicated

𝜋0 and Michel electron samples, as will be discussed in section 4.4.3.

In summary, the goal of the analysis presented here is the isolation of clean

two-body 𝜈𝑒 CCQE interactions in MicroBooNE. The following sections explain how

we leverage the topological and kinematic patterns described above to identify such

events.

4.4 Reconstruction

We begin with a broad overview of the reconstruction chain for the two-body CCQE

analysis. An initial set of neutrino event candidates are identified by requiring suf-

ficient light detection in time with the beam trigger, as discussed in section 3.1.3.

These events are passed through the noise filter and deconvolution algorithm de-

scribed in section 3.2 and shown in figure 3-7. Additionally, a “good runs cut” is
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Figure 4-2: The expected distribution of 𝜈𝑒 interactions in MicroBooNE as a function
of the true 𝜈𝑒 energy. The dotted line shows the expectation from the MicroBooNE
eLEE model of the MiniBooNE excess discussed in section 4.2.

Figure 4-3: An example candidate 1𝑒1𝑝 data event in MicroBooNE, including the raw
LArTPC collection plane image (left) and the pixel labels assigned from SparseSSNet
(right).

employed to remove events during which the MicroBooNE detector response was es-

pecially noisy [148]. These steps are common to all MicroBooNE analyses. They

result in one event display per wire plane for every event, similar to the rightmost

panel of figure 3-7 and the left panel of figure 4-3. The color axis in the left panel of

figure 4-3 is given in “pixel intensity units” (PIU), which are defined as the integrated

charge in one wire over six 0.5 𝜇s time ticks [148]. Given the electron drift speed of

0.11 cm/𝜇s, this corresponds to a spatial extent of 0.33 cm along the drift direction.

The wire spacing is such that each pixel in the left panel of figure 4-3 represents a

0.3 cm × 0.33 cm 2D square in the detector.

94



Figure 4-4: The relationship between the final state lepton (left) and proton (right)
energy and scattering angle, for different neutrino energies, in 𝜈𝜇 (top) and 𝜈𝑒 (bot-
tom) CCQE scattering.

In the two-body CCQE analysis, these event displays are first passed through the

sparse semantic segmentation network (SparseSSNet) [21]. SparseSSNet is a custom

convolutional neural network (CNN) developed by the analysis team that labels the

active pixels in each event according to five different charge deposition hypotheses:

highly-ionizing particle (HIP), minimum-ionizing particle (MIP), EM activity, delta

electron, or Michel electron. For the purposes of this analysis, we group HIP and

MIP labels into the parent “track” label and EM activity, delta electrons, and Michel

electrons into the parent “shower” label. An example SparseSSNet label is shown in

the right panel of figure 4-3.

After going through SparseSSNet, the images are filtered for crossing cosmic in-

teractions using the WireCell charge-to-light matching algorithm [192, 193]. This

algorithm matches charge observed on the TPC to light observed by the PMTs to

identify regions of charge which are not coincident in time with the beam spill, pre-

sumably coming from cosmic rays. We can then mask these pixels to remove the bulk

of cosmic-related charge deposition. The cosmic-filtered SparseSSNet output is then

used as input to a vertex and track identification algorithm, which looks for a shower-
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like and track-like prong of charge coming from a given 3D vertex [24]. Track-like

prongs pass through a dedicated step of the algorithm that performs a step-by-step

3D reconstruction of the extent and direction of the track, which is then translated

into a range-based energy and angle estimation. The events are then passed through

a dedicated EM shower identification algorithm that identifies cones of shower-like

pixels pointing back to the neutrino interaction vertex and estimates the total visible

energy and angle of the shower. [172]. This algorithm has the capability of finding up

to two showers separated from the vertex, which is necessary for identifying events

with a 𝜋0 → 𝛾𝛾 decay.

After finding candidate neutrino vertices, we pass the event displays through the

multiple particle identification (MPID) CNN [22]. This network assigns five scores

to each image indicating the network’s confidence that the event contains a proton,

electron, muon, photon, or charged pion. The MPID scores are not used until the

final signal selection described in section 4.5.

At this point, the reconstruction chain has identified two-prong candidate events

and reconstructed the relevant lowest-level kinematic variables of each final state par-

ticle, i.e. the energy and direction. These kinematic variables are then combined to

calculate more complicated kinematic variables such as 𝑄2, 𝑝𝑇 , 𝑥𝐵𝑗, and the recon-

structed 𝜋0 mass (in the case of two-shower events), as well as the most important

variable in this analysis: the reconstructed neutrino energy 𝐸range
𝜈 , as defined in equa-

tion (4.3). The full suite of reconstructed kinematic variables used to define the 1𝑒1𝑝

and 1𝜇1𝑝 samples is given in table 4.1. These variables are used as input to the signal

selection described in section 4.5. The following subsections explain in more detail

the most important steps of the reconstruction procedure.

4.4.1 Convolutional Neural Networks in LArTPCs

As discussed above, The two-body CCQE analysis relies on two CNNs to assist in

reconstructing the MicroBooNE LArTPC images: SparseSSNet and MPID.

SparseSSNet is described in detail in Ref. [21]. The network uses a combination

of the U-Net [194] and ResNet [195] architectures. The U-Net uses an encoding step,
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in which the input image is downsampled to a smaller size, followed by a decoding

step, in which the encoded image is upsampled to the same dimensionality and size as

the original image. This second step is required to perform pixel-level labeling. The

ResNet architecture employs residual connections that improve the training perfor-

mance of deeper networks compared to regular CNNs [195]. SparseSSNet also makes

use of sparse submanifold convolutions [196], which perform better on semantic seg-

mentation tasks for sparse input data like LArTPC images (where very few pixels in

a given image have nonzero charge). The training sample is generated using the simu-

lation described in section 4.1; specifically, a random set of visible final state particles

are generated at randomly distributed locations within the detector. The network

performs considerably well on the nominal MicroBooNE BNB simulation sample, as

well as the dedicated intrinsic 𝜈𝑒 simulation sample, neither of which appeared in

the SparseSSNet training sample [21]. While SparseSSNet has not been statistically

evaluated against MicroBooNE data, hand scans of the network output on data event

displays do not reveal any bias in the network performance [21]. The performance

of an earlier iteration of SparseSSNet was evaluated using two data samples: Michel

electrons and 𝜈𝜇 CC 𝜋0 events [197]. Good agreement was observed between pixel la-

bels in data and simulation for both samples, and no significant differences were found

between network-labeled images and physicist-labeled images. Figure 4-5 shows the

SparseSSNet architecture as well as an example labeled image in the training dataset.

The MPID network is described in detail in Ref. [22]. It uses a standard CNN

architecture which takes as input a 2D LArTPC image cropped around the neutrino

interaction candidate vertex on a single wire plane and outputs five numbers repre-

senting different particle scores for protons, electrons, muons, photons, and charged

pions. The score is meant to represent the likelihood that a given particle exists in

the provided image. Two types of scores are generated: an “image” score, describing

the probability that the particle exists anywhere in the image, and the “interaction”

score, describing the probability that the particle is connected to the neutrino inter-

action vertex. The training sample is generated similarly to that of SparseSSNet;

random sets of particles are generated throughout the detector volume with energies
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in a range relevant to MicroBooNE. The MPID score distributions exhibit excellent

agreement between data and simulation in two different samples: 𝜈𝜇 CC 1𝜇1𝑝 events

and 𝜈𝜇 CC 𝜋0 events [22]. Figure 4-6 shows the MPID architecture as well as an

example simulated image with MPID image scores.

It is also worth briefly mentioning energy reconstruction in LArTPCs using CNNs.

My earliest work as a graduate student investigated the ability of the ResNet [195]

and Inception network [198] CNN models to reconstruct EM shower energies in Micro-

BooNE. Compared to the standard clustering-based shower reconstruction algorithm

described in section 4.4.3, the CNN method appeared to better handle EM showers

that passed through unresponsive wires in the MicroBooNE detector. Despite the

promise of the CNN method, it was not developed in time to be implemented in

the two-body CCQE analysis. Nevertheless, the MicroBooNE-specific network was

extended by an MIT undergraduate, Kiara Carloni, to enable a systematic study of

CNN-based EM shower energy reconstruction in a general LArTPC [23]. The corre-

sponding publication is included in Appendix A. Figure 4-7 shows the main takeaway

of this work: a CNN-based reconstruction method is significantly more robust to unre-

sponsive wires in the detector compared with a traditional EM shower reconstruction

algorithm, which employs a linear calibration between the total shower charge and

energy.

4.4.2 Vertex and Track Reconstruction

After running SparseSSNet and filtering cosmic-associated charge, the images are

passed through the vertex reconstruction algorithm described in Ref. [24]. In brief,

the algorithm looks for the characteristic “vee” shape of both 1𝑒1𝑝 signal events, as

shown in the left panel of figure 4-3, and 1𝜇1𝑝 control sample events. The algorithm

begins by isolating a sample of 2D vertex seeds (i.e., candidate neutrino interaction

locations) on each plane. This is done by clustering regions of charge and then apply-

ing two techniques–contour defect identification using a convex hull and intersection

identification using principal component analysis. The set of vertex seeds is reduced

to those that are consistent in the time dimension across all three planes. From each
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(a) (b)

Figure 4-5: Figure 4-5a shows a diagram of the SparseSSNet U-ResNet architecture.
Figure 4-5b shows the SparseSSNet pixel labels on a simulated image in the training
dataset. Figures from Ref. [21].

triplet of time-consistent vertex seeds on the three wire planes, a final 3D vertex is

found by minimizing an angular metric that represents the likelihood that two clusters

of charge emanate radially from that vertex location. Figure 4-8a shows an example

minimization of this angular metric, which involves calculating two different estimates

of the opening angle between the two prongs for a given vertex location. Simulation

studies indicate that this algorithm is able to reconstruct neutrino interaction vertices

to within less than 1 cm with an average efficiency of 56% [24].

After finding a neutrino vertex candidate, we perform a 3D reconstruction of the

prongs of charge emitted from the vertex [24]. An iterative stochastic algorithm iden-

tifies a set of 3D spatial points associated with each prong by building upon previous

points; these points comprise the track. This process is shown diagrammatically in

figure 4-8b. It is worth noting that the “tracks” at this stage can correspond to either

true tracks (HIPs and MIPs) or EM showers.

The 3D track can be projected onto each 2D plane. At this point, the SparseSSNet

labels on each plane are used to determine if the event is a “track-track” or “track-

shower” event. The latter case happens when greater than 20% of the pixels in a given

prong are labeled as shower pixels. In the “track-shower” case, the shower-like prong

is considered to be the electron while the track-like prong is the proton. Thus, these
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(a) (b)

Figure 4-6: Figure 4-6a shows a diagram of the MPID architecture. Figure 4-6b shows
the MPID image scores on an example simulated event. Figures from Ref. [22].

are candidate 1𝑒1𝑝 events. The “track-track” case corresponds to candidate 1𝜇1𝑝

event, where the shorter track is ascribed to the highly-ionizing proton. Electron EM

showers are not sufficiently reconstructed in this step and are left for a dedicated

shower reconstruction algorithm described in section 4.4.3. Muons and protons can,

however, be reconstructed at this stage. The polar and azimuth angles of each particle

can be determined from the direction of the associated track. The length of the tracks

is used in conjunction with the known stopping power of each particle in liquid argon

to determine the kinetic energy. Simulation studies of 1𝜇1𝑝 events suggest an angular

resolution of a few degrees and a kinetic energy resolution of a few percent [24].

It is also worth mentioning that two-prong events with an opening angle of less
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Figure 4-7: The fraction of EM showers reconstructed to within 5% of the true
deposited energy as a function of the fraction of unresponsive wires in the LArTPC
collection plane, considering three different methods. The ResNet and Inception
network significantly outperform the traditional linear calibration between charge
and energy. Figure from Ref. [23].

than 10∘ in any plane are rejected at this point. Thus, signal events in this analysis

consisted of well-separated leptons and protons.

(a) (b)

Figure 4-8: Figure 4-8a shows the angular metric that is minimized to find a 3D
neutrino vertex candidate. Figure 4-8b shows the iterative track reconstruction algo-
rithm, which relies on calculating distances (L1 and L2) and angles (𝜃 and 𝜑) with
respect to the previous point and the end of the track. Figures from Ref. [24].
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4.4.3 Publication: Electromagnetic shower reconstruction

and energy validation with Michel electrons and 𝜋0

samples for the deep-learning-based analyses in Mi-

croBooNE

As mentioned in the previous section, a dedicated algorithm is used to reconstruct

the EM showers coming from the neutrino interaction vertex. The algorithm is de-

scribed in detail in Ref. [172], which also covers a data-driven validation of the shower

reconstruction using dedicated 𝜋0 and Michel electron samples. A brief overview of

the shower reconstruction is as follows. We first mask out pixels in each plane for

which the SparseSSNet shower score is below a value of 0.5. Next, we attach a tri-

angle to the interaction vertex in each plane and optimize the direction, gap from

the vertex, opening angle, and length of the triangle to encapsulate as many shower

pixels as possible without becoming too large. We calculate the energy of the shower

by performing a linear calibration between the summed PIU in the collection plane

shower triangle and the simulated electron/photon energy. The collection plane is

used because it produces the most robust signals, as discussed in section 3.2. We

reconstruct 3D showers by looking for overlap in the time dimension between the

shower triangles on all three planes. This algorithm can be run a second time after

masking out the optimized triangle from the first pass, which is essential for isolating

a 𝜋0 sample.

This MicroBooNE publication was led by myself and Katie Mason, a graduate

student from Tufts University. Katie focused on the triangle-fitting procedure of the

shower reconstruction and the 𝜋0 mass peak fit, while I focused on the charge-to-

energy scaling of the shower reconstruction and the Michel energy spectrum fit. The

full JINST publication is included below. The most important result from this study

is shown in Figure 16 of the paper, which demonstrates good agreement between the

simulation-derived charge-to-energy scaling applied to EM showers in this analysis

and two standard candles: the 𝜋0 invariant mass peak and the cutoff of the Michel

electron energy distribution.
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Abstract: This article presents the reconstruction of the electromagnetic activity from electrons
and photons (showers) used in the MicroBooNE deep learning-based low energy electron search.
The reconstruction algorithm uses a combination of traditional and deep learning-based techniques
to estimate shower energies. We validate these predictions using two 𝜈𝜇-sourced data samples:
charged/neutral current interactions with final state neutral pions and charged current interactions
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in which the muon stops and decays within the detector producing a Michel electron. Both the
neutral pion sample and Michel electron sample demonstrate agreement between data and simulation.
Further, the absolute shower energy scale is shown to be consistent with the relevant physical constant
of each sample: the neutral pion mass peak and the Michel energy cutoff.

Keywords: Neutrino detectors; Noble liquid detectors (scintillation, ionization, double-phase);
Pattern recognition, cluster finding, calibration and fitting methods; Time projection Chambers
(TPC)
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1 Introduction

The primary goal of the MicroBooNE experiment is investigate the anomalous excess of electron-like
events observed in the MiniBooNE detector [1]. The anomaly is an excess of single electromagnetic
showers with a peak shower energy in the 200-500 MeV observed in the MiniBooNE Cherenkov
detector. The anomaly is here referred to as the Low Energy Excess (LEE). The MicroBooNE
collaboration has developed several analyses designed to isolate LEE events, where event here
refers to one detector readout record. The reconstruction tools presented here make up the shower
reconstruction phase of the deep learning (DL)-based analysis [2]. A preliminary version of the
(DL)-based analysis utilized in this study can be seen in ref. [3]. This analysis isolates events with
1 electron and 1 proton (1𝑒1𝑝) in the final state. The neutrino energy is reconstructed as:

𝐸𝜈 = 𝐾𝑝 + 𝐾𝑒 + 𝑀𝑒 + 𝑀𝑝 − (𝑀𝑛 − 𝐵), (1.1)

where 𝐾 indicates kinetic energy, 𝑀 is mass, 𝐵 is nuclear binding energy, and 𝑒 and 𝑝 indices
indicate the electron and proton, respectively. The proton kinetic energy is reconstructed from the
length of the track and the known energy deposited per unit length in liquid argon [4]. This article
describes the reconstruction of the electron kinetic energy, which, for our 𝜈𝑒 signal of interest, ranges
from 35 MeV to 1200 MeV. Across this range, the topology of the deposited electron energy changes
from track-like at low energy to shower-like at high energy where photon radiation dominates. In
this article, all electron energy deposits will be called showers despite the variety of topologies. The
discussion will include both electrons and photons.

– 1 –
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This article reports the method of electromagnetic shower reconstruction used in the DL-based
analyses. The 𝜈𝑒 simulation-derived shower-charge-to-energy conversion value is presented in
section 3. We then use two low-energy samples to validate the shower reconstruction. The first
sample consists of photons produced by neutral pions (𝜋0) decays and is described in section 4. The
second sample consists of Michel electrons produced when a stopped muon from a 𝜈𝜇 charged current
(CC) interaction decays and is described in section 5. We provide data-simulation comparison plots
for each sample that we use to validate the relative shower energy scale between data and simulation.
The use of the 𝜈𝑒 simulation-derived energy calculation is then further verified on data by measuring
the agreement of data and simulation with two well-measured physical quantities: the 𝜋0 invariant
mass and the cutoff of the Michel energy spectrum.

2 Preliminary reconstruction of events in the deep learning analysis

The MicroBooNE detector is a 2.6 m×2.3 m×10.4 m Liquid Argon (LAr) Time Projection Chamber
(TPC) filled with 85 metric tons of LAr [5]. The ionization electrons produced by charged particles
in the event drift with a velocity of 0.1098 cm/μs through an applied potential of −70 kV to three wire
planes [6]. The orientation of wires in the induction planes,𝑈 and 𝑉 , are +60◦ and −60◦ relative to
vertical. The collection plane, 𝑌 , has vertical wires. The wire spacing in all planes is 0.3 cm. The
detector also contains a light collection system made up of 32 photomultiplier tubes that are used
for triggering and initial event selection. The light collection system is not leveraged in the shower
reconstruction work presented here.

The studies in this article use MicroBooNE data taken from 2016 to 2018 which were recorded
over three run periods with 1.75 × 1020 protons-on-target (POT) in Run 1, 2.70 × 1020 POT in Run 2
and 2.43 × 1020 POT in Run 3. There are various Monte Carlo (MC) simulation samples that are
used to build the reconstruction algorithm. The simulated neutrino events are overlaid with off-beam
cosmic muon data. These “overlay samples” are used throughout the rest of this article. They contain
all types of simulated neutrino events expected in the given POT. There are three samples of this
type, one corresponding to cosmic information collected in each of the three MicroBooNE data runs
used in the study which corresponds to 6.67 × 1020 total POT. Additionally, for the 𝜋0 study we
incorporate a specialized overlay sample containing a larger number of events with a 𝜋0 that decays
to two photons in the final state (high POT 𝜋0 sample). The incorporation of this sample allows for a
reduction of the statistical uncertainty on the simulation. For the Michel study, we incorporate an
overlay sample of neutrino events interacting outside of the MicroBooNE detector, as muons from
these external 𝜈𝜇 CC interactions which enter the detector, come to a stop, and then decay provide
an additional source of Michel electrons.

Various final state topologies occur at the neutrino energies observed in MicroBooNE. Those
relevant to the DL-based LEE analysis have two particles attached to a vertex: 1𝑒1𝑝 and 1𝜇1𝑝
events from 𝜈𝑒 and 𝜈𝜇 charged-current quasi-elastic or meson exchange current scattering, other
types of 𝜈𝜇 induced events with only two particles reconstructed at the vertex (such as 𝜋0 events
with disconnected photons), and cosmic ray muons. The first steps of the “low level reconstruction”
is to isolate the two-particle-vertices of interest. The methods have been described elsewhere [3, 4];
we briefly review them here.

– 2 –
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Preparation for reconstruction begins with algorithms to tag and discard the charge associated
with the cosmic rays [7, 8]. Next the waveform data from the wires in each plane are converted
to “images” which are two-dimensional distributions with wire number along the 𝑥 axis and drift
time along the 𝑦 axis. The intensity of each image “pixel” is given by the integrated reconstructed
charge waveform from six 0.5 μs TPC time increments after applying noise-filtering [9] and signal
processing [10, 11]. The six 0.5 μs TPC time increments is comparable to the 3 mm wire spacing
after accounting for the electron drift velocity. The intensity of each pixel is referred to as “Q
(charge)” in this article. An example event display of this data format is shown in figure 1 (a). The
event display shown is of the collection plane (𝑌 plane) of a simulated CC 𝜋0 event which passes
the shower reconstruction stage. The z-axis represents the charge (𝑄) at each (wire,time) pixel.
To make the deposited charge more clear in the display, 𝑄 has been given a maximum value of
100. In the event shown, the image is cropped centering at the neutrino interaction vertex. Shower
reconstruction is also shown which will be discussed in section 3.

Any charge tagged as associated with a cosmic ray is removed at this stage. The𝑈, 𝑉 , and 𝑌
images are then passed into the deep learning convolutional neural net, called “SparseSSnet,”which
is a semantic segmentation algorithm that labels pixels as track-like or shower-like [12]. Figure 1 (b)
shows the SparseSSNet shower scores of the same event as (a) with the track-like particles masked out.

The next step is to identify a “two particle” vertex, followed by 3D reconstruction of each particle.
This process is described in detail for the 1𝜇1𝑝 sample in ref. [4], and the 1𝑒1𝑝 reconstruction follows
similar steps. In short, the vertex algorithm searches for a characteristic “vee” shape where two
particles meet at a vertex identifying cases where the particles are longer than 3 cm and the opening
angle in at least one plane is greater than 10◦. Based on the SparseSSnet pixel tagging, the vee may
be formed of a “track-track” pair or a “shower-track” pair [12]. For any given vertex, more than one
vee may be found if there are more than two particles emitted from the interaction point. Also, more
than one vertex may be found at different points in the same event. An important example of this,
used in this article, is the case of 1𝜇1𝑝 final state in which the muon decays to a Michel electron.
This results in one vertex at the interaction point and another at the decay point. Because vertices are
also found on cosmic rays, particularly those that stop and decay, many vertices are identified in any
given event. All are passed to 3D reconstruction. At this stage in the reconstruction, multiple vertices
can be reconstructed in each event. In later selections, a single vertex from the event will be chosen.

3D reconstruction of track-like objects (primarily protons and muons) is described in detail
in ref. [4] and summarized here. The algorithm begins at the reconstructed vertex and follows
ionization trails outward in 3D, clustering the charge into “prongs.” A prong is defined here as a
collection of continuous charge, but it need not be a single line of charge. The prong may comprise
connected branches of charge as will be the case for electromagnetic showers. Each prong is assumed
to come from one particle. In the case where two prongs are identified, we identify the proton as the
prong having the higher average pixel-based ionization density.

A fiducial volume containment requirement is enforced on all prongs. This requirement uses
the distance of a prong from the edge of the detector as the minimal distance from all the prong’s 3D
points to a detector edge. It is required that either the distance of both prongs is > 5 cm from the
edge or else that the combined distance of both prongs is > 15 cm from the edge.

In order to associate a prong with the SparseSSnet identified pixels, the 3D prong is projected
onto the 2D images described above. The pixels in this projection are then matched to the prong.

– 3 –
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(a) Q Image (b) SparseSSNet Shower Image

Figure 1. Event displays of a simulated CC 𝜋0 event. (a) shows the raw Q image and (b) shows the
SparseSSNet shower score with track-like particles masked out. In both (a) and (b) the leading reconstructed
photon is represented by the red triangle and the sub-leading reconstructed photon (shower 2) is represented
by the magenta triangle.

The kinetic energies of track-like prongs are calculated using the track lengths. The direction of
track-like particles is also reconstructed as described in ref. [4]. Energy deposits from electrons and
photons will suffer gaps due to radiated photons which the 3D track reconstruction cannot handle.
Shower-like prongs therefore need a seperate reconstruction as described in section 3.

3 Electromagnetic shower energy reconstruction

The electromagnetic shower reconstruction algorithm is run to find any associated shower particles
and reconstruct their kinetic energies once a candidate vertex is isolated. The method described
here builds on a previous MicroBooNE shower reconstruction described in ref. [13]. The algorithm
described retains many vital features of the previous version, especially the use of a semantic
segmentation neural network for pixel labeling. Important updates have been added including many
simplifications of the algorithm made possible by the improved SparseSSnet.

The first step of the reconstruction is to mask the image to only use the pixels identified as
shower by SparseSSNet. SparseSSNet outputs a value for each pixel indicating how likely it is that
the pixel is part of a shower. This value, called shower score, falls between 0.0 and 1.0 where 1.0
indicates a shower-like pixel. Pixels with a shower score of > 0.5 and intensity > 10𝑄 (charge)
counts are kept, all other pixels are masked out for the rest of the shower reconstruction. A threshold
of 10𝑄 is used to remove wire noise. This cut is standard among all tools used in this analysis. The
value was chosen based on the distribution of 𝑄 from minimum ionizing particles (MIPs),which
peaks at ≈ 40𝑄. A template isosceles triangle is then placed with its apex at the reconstructed vertex
position, pointing in the positive wire direction. The triangle is optimized to choose the shower
direction, length, and opening angle for which the triangle contains the most pixels with non-zero
charge. These parameters each start at the minimum value shown in table 1. In order to allow for

– 4 –
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showers that are detached from the vertex, a gap parameter is introduced allowing the triangle to
start further from the vertex.

Once a first shower candidate has been found by the reconstruction algorithm, the pixels found
in the shower are masked out. If the total amount of charge remaining passing the cuts of a shower
score of > 0.5 and intensity > 10𝑄(charge) is > 5000𝑄, the second shower algorithm is run on the
masked image. The total range of allowed values for each of the template triangle parameters is
shown in table 1. In this table “first shower” refers to the shower found in the first pass of the shower
reconstruction which is aimed at finding showers near the reconstructed vertex. “Second shower”
refers to the shower found on the second run of the algorithm and has expanded parameters to search
for detached showers as described in the following paragraphs. The parameters in each case are
optimized sequentially in the order of direction, gap size, opening angle, and length.

Table 1. Range of parameters for the shower reconstruction algorithm. Parameters are changed in the second
shower search to allow for the capture of showers detached from the vertex.

Minimum value Maximum value
Direction 0 degrees 360 degrees
Opening angle 17 degrees 75 degrees
Length (first shower) 3 cm 35 cm
Length (second shower) 3 cm 60 cm
Gap Size (first shower) 0 cm 17 cm
Gap Size (second shower) 0 cm 90 cm

Figure 1 shows an example display demonstrating the 2D shower reconstruction on a simulated
CC 𝜋0 event. The SparseSSNet shower-like particles are shown in (b) with the track-like particles
masked out. The final optimized showers are shown in red (first shower) and magenta (second
shower). In this example, the algorithm found the proper gap of the first shower, but not the second
shower. This is acceptable as gap size is not a value that is utilized in any other part of the DL
analysis. The reconstructed energy of each shower is also reported. Energy reconstruction of
electromagnetic showers is a crucial component of the LEE analysis this work supports, which is
designed to measure electrons from CC neutrino interactions over a broad energy range from 35 to
1200 MeV. This analysis aims to develop and validate a energy reconstruction procedure for showers
in this broad energy range. To determine the energy of each shower, the charge of all shower pixels
enclosed in the 𝑌 -view triangle is integrated. This total shower charge will hereby be denoted by
𝑄sh. We use the 𝑌 -view, which is the collection plane, because it has the highest signal-to-noise
ratio of the three planes [9].

To convert the reconstructed charge to energy, the 𝑄sh in a sample of simulated events is
compared to the generated energy of the electrons in the events. A 𝑄sh-to-MeV conversion line is
determined as described below and shown in figure 2. As the focus of the larger analysis is 1𝑒1𝑝
events, a sample of simulated 1𝑒1𝑝 events are used. The simulated electron energy is plotted versus
the reconstructed 𝑌 -view total shower charge sum for events in a 𝜈𝑒 simulation sample selected by
the MicroBooNE DL-based 1𝑒1𝑝 analysis. In each vertical bin, the peak is found with the help of
a Gaussian distribution (represented by the black points in figure 2). The edge bins which have
smaller statistics are excluded. Two examples of the Gaussian fits are shown in figure 3.While the

– 5 –
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Gaussian fits capture the bulk of simulated events well, one can see a tail in each distribution out
to higher simulated electron energies which is not captured by the Gaussian. This is expected, as
these tails correspond to electron showers which are not fully reconstructed (i.e., showers which pass
through unresponsive wires or exit the active volume). The points are then fit to a line. The slope of
this line is used for the 𝑄sh-to-MeV conversion and is referred to in the rest of this article as 𝑚𝑒− .
While a Gaussian is not a perfect fit to the data in, the use of 𝑚𝑒− , derived from these points, will be
validated in section 4 and section 5. The resulting equation is:

Electron: 𝐸 [MeV] = (1.26 ± 0.01 × 10−2) ×𝑄sh [𝑄 Counts]. (3.1)

where the error corresponds to the uncertainty on the linear fit, which represents the statistical error
on the simulated electron sample used for the fit.

Figure 2. Simulated electron energy vs 𝑄sh for a sample of generated 1𝑒1𝑝 events. The linear fit is used in
the shower energy calculation.

Various detector effects could cause this fit value to change. Specifically the amount of detected
energy will depend on the position, amount of energy deposited, and the orientation of the particle’s
trajectory with respect to the wires [10, 11, 14]. Additionally, the value of 𝑚𝑒− derived here assumes
good argon purity and could be affected by periods of low purity. Potential systematic uncertainty
could be introduced by these effects. The results shown in section 6 give an estimate of the size of
the detector effect.

Using this shower energy calculation, we look at the energy resolution for a sample of simulated
CC 𝜈𝑒 events containing an electron and no final state 𝜋0. This isolates electrons from photons
which will be discussed further in section 4.1. The following selection criteria are used:

– 6 –
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Figure 3. Example distributions of simulated electron energies (solid lines) and corresponding Gaussian
distributions (dashed lines) within two different shower charge sum ranges. The peaks of the Gaussian fits are
used to generate the black points in figure 2.

1. Reconstructed vertex is less than 5 cm from simulated neutrino interaction vertex;

2. One simulated electron contained in event;

3. No final state 𝜋0;

4. One reconstructed shower; and

5. 1e1p Boosted Decision Tree (BDT) score is greater than 0.7 [3].

The energy resolution, defined here as:

𝐸res =
𝐸reco − 𝐸sim

𝐸sim
(3.2)

for this sample of simulated events is seen in figure 4. The mean is at −0.07 and the RMS is 0.22.
The shower energy reconstruction presented here will be utilized and validated in section 4 and

section 5. As stated earlier, the shower energy is calculated using a MicroBooNE simulation sample
comprising of simulated neutrino events overlay with off-beam cosmic ray data. It is therefore
notable that the energy calculated with this sample works well when applied to data samples as

– 7 –
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Figure 4. The energy resolution for a sample of simulated electrons as described by eq. (3.2). The 𝑦 axis has
the raw number of simulated events without scaling. The dashed vertical line is included at 𝐸res = 0.0 for
reference.

shown in the next sections. It will be seen that the 𝜋0 and Michel 𝑒− samples both have good
data/simulation agreement using eq. (3.1). A further test is done for each sample that finds the
charge-to-energy conversion factor that gives the best agreement to known physical values (the 𝜋0

rest mass and the Michel electron spectrum cutoff). This test shows great data/simulation agreement
with each sample. The results are also comparable to 𝑚𝑒− given in eq. (3.1), even at different energy
scales, validating the use of this linear conversion factor.

4 Neutral pion sample

The first sample used to analyze the performance of the shower reconstruction is a sample of
𝜋0 events. The identification and reconstruction of 𝜋0 events is presented. This is followed by
both a verification of the 𝑄sh-to-MeV conversion value (𝑚𝑒−) agreement to data and simulation,
and a verification of agreement between data and simulation which is accomplished by using a
well-measured physical quantity: the 𝜋0 invariant mass (135 MeV).

4.1 Identification and reconstruction

The reconstruction of 𝜋0 events relies on the shower reconstruction described in section 3 and
introduces 3D shower reconstruction. The starting point is either a track-track or track-shower
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vertex. The shower reconstruction is then applied as discussed above, centering on clusters of
electromagnetic charge, but not requiring that the charge be attached to the starting vertex. This
leads to the bulk of 𝜋0 events selected for this analysis matching two specific topologies. The most
prevalent 𝜋0 topology in this study is from charge current (CC)𝜋0 where the scattered muon and the
proton from the Δ decay form the vertex, and there are two disconnected electromagnetic showers
from 𝜋0 decays. The second is from neutral current (NC)𝜋0 where one photon converted within the
0.3 cm wire spacing and thus forms a vertex with the proton, while the second photon is displaced
from the vertex. As a result, contributions to the 𝜋0 selection discussed here will come from NC𝜋0

and CC𝜋0, as well as CC𝜋− and CC𝜋+ events where the 𝜋+/𝜋− undergoes charge exchange within
the nucleus.

To fully calculate the kinematics of the 𝜋0 event we must determine both the energy and the
3D angle of the electromagnetic showers. This is essential for reconstructing the 𝜋0 invariant mass
— a useful quantity to test the shower reconstruction described in section 3. In order to cluster a
full 3D shower, the 2D projections on the different wire planes are compared for overlap in time.
The overlap fraction is defined as the fraction of shower pixels in the collection plane shower that
overlap in time with shower pixels from a 2D shower in another plane, in which the𝑈 and 𝑉 planes
are considered separately. If the overlap fraction is > 0.5 in either or both planes, the pixels that
overlap between the collection plane shower and the shower in another plane with the highest overlap
fraction are used to calculate a cluster of 3D shower points. The direction is found by using the
calculated center of the 3D point cluster and the event vertex.

This 3D reconstruction leads to what is referred to as the “𝜋0 pre-selection cuts”. These are
requirements that are necessary in order to reconstruct two 3D showers.

1. Vertex passes fiducial volume containment requirement (described in section 2);

2. Two collection plane showers, each with reconstructed energy greater than 35 MeV;

3. Both collection plane showers have an overlap fraction with a shower in another plane greater
than 0.5;

4. If a collection plane shower matches with showers in both the𝑈 and 𝑉 planes, the one with
the highest overlap fraction is chosen; and

5. The two collection plane showers cannot match to the same shower in another plane.

After the “𝜋0 pre-selection cuts” have been applied, a substantial number of selected events have
showers that are mis-reconstructed. The sample also contains a large number of backgrounds such
as cosmic muons. To improve the selection, the following requirements are introduced that reduce
mis-reconstruction and remove backgrounds. These are referred to as “box cuts” as they are hard
cuts designed to remove background events at the tails of the distributions of various variables.

One of the variables used in these “box cuts” is a Δ mass test variable. This value is calculated
for all those events passing the “𝜋0 pre-selection cuts”. The 4-vector of the reconstructed showers are
used along with the 4-vector of the proton-like prong. The reconstruction of the proton-like prong is
discussed in ref. [4]. These three objects are assumed to have come from a Δ decay and are therefore
used to reconstruct a Δ rest mass. The tails of this distribution are comprised of mis-reconstructed
𝜋0 events and cosmic muon backgrounds which allows for another box cut. The box cuts are then:
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1. Reconstructed 𝜋0 mass is less than 400 MeV;

2. Reconstructed energy of the leading photon is greater than 80 MeV;

3. The charge sum of all pixels (both track and shower) within 2 cm of the vertex is greater than
250 Q counts;

4. Leading shower reconstructed angle w.r.t. beam direction is less than 1.5 radians;

5. The angle between the two photons is less than 2.5 radians; and

6. Δ mass test variable is between 1000 and 1400 MeV.

Here, “leading photon” refers to the simulated photon with the highest energy. The reconstructed
leading shower is the shower with the highest 𝑄sh. An additional requirement on the 1e1p Boosted
Decision Tree (BDT) of < 0.7 is further added at this stage to maintain blindness to the LEE for this
study as required by the MicroBooNE blindness procedure [3]. This BDT is used to select events with
one electron and one proton, so this is a relatively small cut that is a flat ≈ 3% effect. Events above
this threshold may be mis-reconstructed 1e1p events to which we are currently maintaining blindness.

Using the shower energy calculation from the electron sample on both electron and photon
showers assumes that the energy of both shower types is reconstructed the same way. To demonstrate
that this is valid, the same simulated energy vs 𝑄sh plot and fit is performed on two samples of
photons: leading and sub-leading photons from a sample of simulated CC𝜋0 events. To ensure this
fit is performed only over well-reconstructed events, the 𝜋0 selection box cuts are applied. The
results are shown in figure 5. The resulting fit equations are:

Leading Photon: 𝐸 [MeV] = (1.25 ± 0.02 × 10−2) ×𝑄sh [𝑄 Counts]. (4.1)
Sub-leading Photon: 𝐸 [MeV] = (1.20 ± 0.02 × 10−2) ×𝑄sh [𝑄 Counts]. (4.2)

It is seen from the fit results that the leading photon fit very closely matches the electron fit
as expected while the sub-leading photon fit does not match as closely. This is due to the worse
reconstruction in the sub-leading photon. Therefore, the reconstruction uses the charge-to-energy
(𝑄sh-to-MeV) conversion value found for the simulation electron sample, 𝑚𝑒− .

For the purpose of studying this sample, Monte Carlo simulation has been broken into various
categories. “NC 𝜋0” are neutral current 𝜋0 events with a well reconstructed vertex, which is a
vertex within 5 cm of the true generated vertex. “CC 𝜋0” are defined similarly for charged current
𝜋0. “Offvtx 𝜋0” are 𝜋0 events with poorly reconstructed vertices. Here, off-vertex means that the
reconstructed vertex is further than 5 cm from a true generated neutrino vertex. “Non 𝜋0” events are
broken into on and off vertex as well. 𝜈𝑒 events are all events that originated from a 𝜈𝑒. Cosmic
background events also remain after selection.

Simulated energy resolution of the photons is presented in figure 6, where resolution is defined
in eq. (3.2). This plot is made using the specialized high POT simulation sample of containing only
events with a 𝜋0 in the final state. For the purpose of scaling the different samples and background
contributions, the events are POT scaled to match the total data exposure. This distributions in this
plot have all of the 𝜋0 selection cuts applied. The energy resolution is shown separately for leading
(highest energy) photon and sub-leading photon.
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(a) Leading Photon (b) Sub-leading Photon

Figure 5. Simulated photon energy vs 𝑄sh for a sample of generated CC 𝜋0 events with the 𝜋0 selection
applied. The best fit is shown for this sample as well as the best fit from the electron fit. (a): leading photon,
(b): sub-leading photon.

(a) Leading Photon (b) Sub-leading Photon

Figure 6. The energy resolution for each of the decay photon in the selected 𝜋0 sample. The leading photon is
shown in (a) and the sub-leading photon is shown in (b). The events have been scaled to match the total data POT
of 6.67×1020. Resolution is defined in eq. (3.2). The dashed vertical line is included at 𝐸res = 0.0 for reference.

Table 2 shows the mean and RMS of the distributions shown in figure 6. Both the leading and
sub-leading photon 𝐸res mean is close to zero. The leading photon has a smaller RMS than the
sub-leading photon, which is more broad and has a larger tail. The resolution of photons from 𝜋0 is
worse than that seen in the electrons, but they have similar bias as indicated by the mean. There are
two main causes for the difference between leading and sub-leading photons. The first is that the
sub-leading photon is generally the lower energy of the two. Failing to reconstruct a small number
of pixels will have a larger effect on a lower energy shower which has fewer true shower pixels
associated with it. The other cause are events where the leading and sub-leading shower are close
together. Part of the sub-leading shower is reconstructed as part of the other shower as the leading
shower is prioritized. Of these two sub-leading photon reconstruction failure modes, the first is
dominant. Some of the other mis-reconstructed photons in both the leading and sub-leading plot are
caused by mistakes in SparseSSNet, overlapping cosmic rays that were not removed properly, and
unresponsive wires in the collection plane.
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Table 2. Characterization of the resolution distributions shown in figure 4, figure 6, and figure 8.

Mean 𝐸sim Mean 𝐸res RMS of 𝐸res

Electron 744.8 MeV −0.07 0.22
Leading Photon 230.3 MeV −0.07 0.36
Sub-leading Photon 98.8 MeV 0.04 0.69

Mean 𝜃sim Mean 𝜃res RMS of 𝜃res

Between two photons 54.1◦ 0.05 0.50

Figure 7 shows a data to MC simulation comparison of the reconstructed photon energies in the
𝜋0 sample. The uncertainty bars on the simulation distribution represent the statistical uncertainty.
The total number of simulation events has been scaled to match the total number of data events.
This plot uses both the MicroBooNE overlay simulation samples combined with the high POT
𝜋0 simulation sample and data as described in section 3. The spectra seen in this figure are at
higher reconstructed energies than the Michel 𝑒− in section 5 and closely mirror the shower energy
scale of the MiniBooNE LEE. The 𝜒2 which is reported in the caption of this plot is a combined
Neumann-Pearson (CNP) 𝜒2 [15]. The 𝜒2

CNP is defined as:

𝜒2
CNP =

∑︁
𝑖



(𝜇𝑖 − 𝑀𝑖)2

3
1/𝑀𝑖+2/𝜇𝑖

𝑀𝑖 ≠ 0

(𝜇𝑖 − 𝑀𝑖)2

𝜇𝑖
2

𝑀𝑖 = 0

(4.3)

where 𝜇𝑖 and 𝑀𝑖 are the number of predicted and observed events in a given bin.

(a) Leading Photon (b) Sub-leading Photon

Figure 7. The reconstructed photon energies for events passing all selection cuts. The leading photon is
shown in (a) and the sub-leading photon is shown in (b). The MC simulation samples have been normalized
to the total number of data events. The data events are shown by black points. The number of events in each
category is shown in the legend in parenthesises. The 𝜒2

CNP/19(dof) = 1.267 with a p-value of 0.193 for the
leading shower and the 𝜒2

CNP/19(dof) = 0.973 with a p-value of 0.491 for the sub-leading shower.
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Figure 8 shows the resolution of 𝜃. 𝜃 is the opening angle between the two showers, either
simulated or reconstructed, used in the 𝜋0 mass reconstruction. The opening angle resolution is
defined as:

𝜃res =
𝜃reco − 𝜃sim

𝜃sim
. (4.4)

This figure uses the same simulation sample with the same selection requirements as figure 6. The
distribution is characterized in table 2. The mean is close to zero indicating little bias.

Figure 8. The opening angle (𝜃) resolution of the decay photons in the selected 𝜋0 sample. The events have
been scaled to match total data POT of 6.67 × 1020. Resolution is defined in eq. (4.4).The dashed vertical line
is included at 𝜃res = 0.0 for reference.

The 𝜋0 rest mass can now be reconstructed using the following equation:

𝑀0
𝜋 =

√︄
4 sin2

(
𝜃

2

)
(𝐸1) (𝐸2) (4.5)

where 𝐸1 is the leading photon energy and 𝐸2 is the sub-leading photon energy. The result of this
reconstruction is shown in figure 9. As in figure 7, the total number of simulation events has been
scaled to match the total number of data events. The distributions of both data and simulation peak
around 135 MeV, which is the accepted 𝜋0 rest mass.

4.2 Validation of agreement between simulation, data, and true rest mass

The 𝜋0 sample is next used to verify the agreement in data and simulation of the shower energy
scale using the known 𝜋0 invariant mass 𝑀𝜋0 . Test points are found representing the best-fit of
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Figure 9. The calculated 𝜋0 mass for events passing all selection cuts. The MC simulation samples have been
normalized to total number of data events. The data events are shown by black points. The number of events
in each category is shown in the legend in parenthesises. The 𝜒2

CNP/19(dof) = 0.976 with a p-value of 0.486
for the MC prediction.

the 𝑄sh-to-MeV conversion factor (𝑚) to 𝑀𝜋0 = 135 [MeV/𝑐2]. This is done for a sample of each
simulation and data. The goal for each is to find the value of 𝑚 that yields a 𝜋0 mass distribution
that peaks closest to the true value of 135 [MeV/𝑐2]. This value of 𝑚 is then compared between data
and simulation and to the electron 𝑚𝑒− value found in section 3.

To find the optimal 𝑚, the following 𝜒2 formula is minimized:

𝜒2 =
∑︁
𝑖

©­­«
(
135[MeV/𝑐2] − 𝑀 𝑖

𝜋0

)
𝑑𝑀

ª®®¬
2

. (4.6)

where 𝑖 is each 𝜋0 event in the given sample, 𝑑𝑀 is 29.8 [MeV/𝑐2] based on the width of a Gaussian
fit to the good simulation 𝜋0 distribution (the NC 𝜋0 and CC 𝜋0 categories in figure 9). 𝑀 𝑖

𝜋0

represents the 𝜋0 mass and is given in this case by:

𝑀 𝑖

𝜋0 =

√︄
4 sin2

(
𝜃

2

)
(𝑚 × (𝑄sh)1) (𝑚 × (𝑄sh)2) (4.7)

where 𝑄sh is the reconstructed shower charge and 𝜃 is the reconstructed opening angle between the
two showers. The same 𝜒2 formula is minimized for both MC simulation and data. The 1-𝜎 range is
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calculated on these fit points by looking at the range of 𝑚 values for each data and simulation which
give a 𝜒2 value satisfying the Wilks’ theorem condition |𝜒2(𝑚) − min𝑚 [𝜒2(𝑚)] | < 1 [16]. The 𝜒2

distributions can be found in figure 10. The resulting values can be seen in the first two rows of
table 3. Excellent agreement is seen between the data and the simulation best fit points indicating
that the simulation derived shower conversion factor is valid to use on data.

(a) Fit to all selected MC simulation events (b) Fit to selected data events

(c) Fit to good selected MC simulation events

Figure 10. Total 𝜒2 vs. 𝑚 distributions for all MC simulation (a), data (b), and good MC simulation (c) that
pass the 𝜋0 selection criteria.

Another important consideration is how closely the best fit 𝑚 values derived here match 𝑚𝑒−

in eq. (3.1). The best fit value of 𝑚 derived from the 𝜋0 sample has the potential to be affected by
many factors. The largest of these factors is the amount of background events selected. The 𝜋0

selection presented in section 4.1 contains many background events, which should not necessarily
reconstruct as a 𝜋0 mass of 135 [MeV/𝑐2]. To account for this background in simulation a second
fit is performed only using good simulation events. In this instance good simulation is defined as
simulated events that pass all 𝜋0 cuts, have a simulated final state 𝜋0, and have a reconstructed vertex
within 5 cm of the true simulated neutrino interaction vertex. These are the only types of events in
the selection which should result in a reconstructed 𝜋0 mass of 135 MeV. A further cut of 𝜋0 mass
< 200 MeV is added to prevent mis-reconstructed events from having a large effect on the 𝜒2.

To account for the background events in data, the optimal 𝑚 found previously is shifted by
the same amount that the MC 𝑚 is shifted when backgrounds are included (7.11 × 10−4) as seen
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the last two rows in table 3. Data (un-shifted) are the results from minimizing eq. (4.6) over all
data points. Data (shifted) shows the data points applying the shift found by comparing the fit over
all simulation to the fit over good simulation. This shift retains the excellent data and simulation
agreement. The result on data only differs by 1.6% from the value seen in eq. (3.1). This indicates
that, at the photon energy scale seen in the 𝜋0 sample, the charge-to-energy conversion factor is valid.
Data and simulation agreement of these results and agreement to eq. (3.1) is discussed further in
section 6 and examined in combination with the results from the Michel 𝑒− sample.

Table 3. The best value of 𝑚 (MeV/𝑄sh) for each data and MC simulation sample and the range found using
Wilks’s theorem. Results are shown before accounting for background (top two rows) and after (bottom
two rows).

Sample 𝑚 [MeV/Q] 𝑚 range 𝜒2/NDF
All MC 1.159 × 10−2 [1.156 × 10−2, 1.160 × 10−2] 25310.3/9473 = 2.7
Data (un-shifted) 1.165 × 10−2 [1.159 × 10−2, 1.170 × 10−2] 5984.7/1973 = 3.0
Good MC 1.230 × 10−2 [1.225 × 10−2, 1.234 × 10−2] 4694.9/3039 = 1.5
Data (shifted) 1.236 × 10−2 [1.230 × 10−2, 1.241 × 10−2] 5984.7/1973 = 3.0

5 Michel electron sample

The second sample used to validate the shower energy reconstruction consists of Michel electrons
from decays of 𝜈𝜇-sourced stopped muons in the detector. This is the first time a Michel sample
has been reconstructed in a LArTPC which is dominated by Michels from 𝜈𝜇 interactions. As in
section 4, we begin by describing the event selection criteria for this sample. Next, we examine the
data/simulation agreement in the Michel shower energy spectrum. Finally, we assess the agreement
of the Michel sample with the physical Michel cutoff of 𝑚𝜇/2 = 52.8 MeV through a fit procedure.
The data and MC simulation results of this fit agree, validating the use of the 𝜈𝑒 simulation-derived
𝑄sh-to-MeV on data. Both the data and 𝜈𝑒 simulation fits also show consistency between the
simulation-derived 𝑄sh-to-MeV conversion value validating the absolute shower energy scale of the
DL-based analysis in the low energy region (. 50 MeV).

5.1 Identification and reconstruction

The Michel electron sample has been chosen in order to validate the reconstructed energy scale of
lower-energy electrons, slightly below the energy scale of electrons in the low-energy excess search.
Previous work has been performed in MicroBooNE using a larger sample than presented here, as
seen in ref. [17]. The study presented here uses a different selection and is designed to test the
reconstruction of showers used in the DL low-energy excess search. However, as shown below, our
results are consistent with those shown in [17] in both the reconstructed Michel energy spectrum
and corresponding energy resolution.

Muon-Michel vertices are identified through the following requirements:

1. Two prongs at the vertex;

2. Long prong track-length > 100 cm (candidate muon);
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3. Short prong track-length < 30 cm (candidate Michel);

4. Long track consists of < 20% SparseSSNet shower-like pixels (candidate muon);

5. Short track consists of > 80% SparseSSNet shower-like pixels (candidate Michel); and

6. 𝜙𝜇 < 0.5 radians.

where 𝜙𝜇 is the azimuthal angle of the muon with respect to the horizontal plane, where 𝜙𝜇 = 0.5 rad
corresponds to downward-going muons. Lastly, in events with more than one selected vertex, we
keep only the first vertex. This strategy was chosen as it does not bias the Michel energy spectrum.

Figure 11. 𝜙𝜇 distribution for selected events in both data and MC simulation, corresponding to ≈ 5.3 × 1019

POT. The selection cut requiring 𝜙𝜇 < 0.5 radians is indicated by the dotted line. The MC simulation samples
have been normalized to total number of data events. The data events are shown by black points. The number
of events in each category is shown in the legend in parenthesises. The uncertainty bars here are statistical
only. The 𝜒2

CNP/9(dof) = 0.822 with a p-value of 0.596 for the MC prediction.

There are two types of Michel electrons that are isolated before the selection. The first are
Michels in neutrino events, which can be compared between simulation and data. The second
are Michel electrons from stopped cosmic muons. As our simulation samples contain simulated
neutrino events overlaid with cosmic data, all of the Michels from stopped cosmic muons come from
actual data. Therefore, the only Michels that are truly simulated are those on simulated neutrino
events. It is important for these studies to be certain that the Michels in the simulation sample do not
come from the stopped cosmic muons. This ensures we are comparing Michels in neutrino events
from data to simulated Michels. This is achieved by the final requirement on the muon polar angle
𝜙𝜇, which removes a majority of the predominately downward-going cosmic muons as shown in
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figure 11. As discussed in section 2, the DL vertices search for the intersection of two “prongs”.
A muon decay into a Michel electron forms this pattern and is therefore often reconstructed at the
initial vertex stage of the event reconstruction.

For Michel electrons in events passing these cuts, the electromagnetic shower reconstruction
algorithm from section 3 is applied to find 𝑄sh. This is then converted to a shower energy via
eq. (3.1). Figure 12 shows the shower energy distribution for Michel electrons in both data and
simulation. Note that data here come from an open beam data set of corresponding to ≈ 5.3 × 1019

POT. The simulated events are broken into various categories to indicate which type of event caused
the muon. The majority of events come from 𝜈𝜇 interactions within the active detector volume.
Some events from cosmic muons and muons from 𝜈𝜇 interactions outside the active volume remain
in the sample.

Figure 12. Electron energy distribution for Michels in both data and MC simulation after all selection
criteria have been applied, corresponding to ≈ 5.3 × 1019 POT. The MC simulation samples have been
normalized to total number of data events. The data events are shown by black points. The number of events
in each category is shown in the legend in parenthesises. The uncertainty bars here are statistical only. The
𝜒2

CNP/9(dof) = 0.608 with a p-value of 0.857 for the MC prediction.

One can see that the high-end tails for the shower energy distribution in both data and simulation
fall off around 60 MeV as expected. While not as sharp as the cut-off in ref. [17], the results are
consistent. The high energy tail above the true value of 52.8 MeV likely is due to over estimation of
shower energy reconstruction seen in figure 4. The shower energies of this sample are much lower
than those seen in the 𝜋0 sample. The good data/simulation agreement within statistical uncertainty
indicates that the shower algorithm performs well down to low energies. This agreement will be
quantified further in the next sections.
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5.2 Validation of agreement between simulation, data, and true Michel cutoff

We now perform a validation of the absolute shower energy scale and analyze the data/simulation
agreement with the Michel sample analogous to the 𝜋0 study described in section 4.2. In the case of
the Michel cross-check, we fit the 𝑄sh (reconstructed shower charge) spectrum shown in figure 13 to
the following five-parameter function:

𝑓

(
𝑥 =

𝑄sh
𝑄cutoff

;𝜎, 𝑁
)
= 𝑁

∫ 1

0
(3𝑦2 − 2𝑦3) 1

√
2𝜋𝜎2

exp
−(𝑥 − 𝑦)2

2𝜎2 𝑑𝑦 (5.1)

where:

𝜎 = 𝑦

√︄
𝑟2

1 +
𝑟2

2
𝑦𝑄cutoff

+
(

𝑟3
𝑦𝑄cutoff

)2
. (5.2)

Here, 𝑓 (𝑥) represents a parameterization of the true Michel spectrum convoluted with a
Gaussian representing charge resolution [18]. 𝑁 is a floating normalization parameter, and
{𝑟1, 𝑟2, 𝑟3} represent contributions to the charge resolution corresponding to a constant noise term,
a statistical charge-counting term, and a Gaussian noise term, respectively. 𝑄cutoff represents the
cutoff of the Michel shower energy spectrum, which, after the 𝑄sh-to-MeV conversion, should
correspond to the Michel energy cutoff of 𝑚𝜇/2 ≈ 52.8 MeV. The integration over the variable 𝑦
represents a scan over the simulated shower charge spectrum. The expression is invariant under∫ 1
0 𝐼 (𝑦)𝑑𝑦 → 𝑄−1

cutoff

∫ 𝑄cutoff
0 𝐼 (𝑄∗

sh/𝑄cutoff)𝑑𝑄∗
sh, where 𝐼 (. . . ) represents the integrand in eq. (5.1).

We first fit 𝑓 (𝑥) to the Michel spectrum in data and simulation by varying all five parameters
𝑄cutoff , 𝑁, 𝑟1, 𝑟2, 𝑟3. This is done by minimizing the 𝜒2:

𝜒2(𝑄cutoff , 𝑁, 𝑟1, 𝑟2, 𝑟3) =
∑︁
𝑖

( (𝑂𝑖 − 𝑓 (𝑥 = (𝑄sh)𝑖
𝑄cutoff

; 𝑁, 𝑟1, 𝑟2, 𝑟3)
𝜎i,stat.

)2
(5.3)

where 𝑂𝑖 is the number of observed Michel events in 𝑄sh bin 𝑖 and 𝜎i,stat. =
√
𝑂𝑖 is the Poisson

error. There are 12 shower charge bins ranging from 0–6000 counts in this fit. Figure 14 shows
2D confidence regions for 𝑄cutoff versus the different resolution parameters. They are calculated
by fixing the remaining three parameters at their best fit values and using Wilks’s theorem for two
free parameters. As shown in figure 14, the fit generally prefers a large contribution from the flat
resolution term 𝑟1. In data, one can see that the 1𝜎 𝑟1 contour prefers a fractional resolution of ≈ 0.3,
while the 1𝜎 𝑟2 and 𝑟3 contours are both consistent with zero. In simulation, the 1𝜎 𝑟1 contour
prefers a fractional resolution of ≈ 0.25. The 1𝜎 𝑟3 contour is consistent with zero, but the 1𝜎 𝑟2

contour prefers a value of ≈ 13 [Q counts]1/2. This turns out to be a similar contribution when
compared to the flat 𝑟1 term. A near-flat energy resolution for Michel showers is consistent with
previous MicroBooNE work [17].

Next, the parameters {𝑁, 𝑟1, 𝑟2, 𝑟3} are fixed at the minimum 𝜒2 values (respectively for
data/simulation) and a 𝜒2 scan over 𝑄cutoff is performed, this time only including the tail of the 𝑄sh

spectrum (𝑄sh > 3000 Q counts). The purpose of this one-dimensional scan is to obtain the 𝜒2

minimum and corresponding 1𝜎 interval on 𝑄cutoff using Wilks’s theorem for one fit parameter [16].
Figure 13 shows the observed Michel shower charge spectra in data and simulation along with their
respective best fits from the 1D scan. Figure 15 shows 𝜒2 as a function of 𝑄cutoff . The Wilks’s
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Figure 13. Top: Michel shower charge sum spectrum in data and MC simulation along with the corresponding
best fit to eq. (5.1) (allowing only 𝑄cutoff to vary in the fit). This sample corresponds to ≈ 5.3 × 1019 POT.
Bottom Ratio of the data/simulation to the corresponding fit. The MC simulation and fit result here have been
normalized to match the data.

theorem 1𝜎 interval on𝑄cutoff corresponds to the points for which 𝜒2(𝑄cutoff) −min{𝜒2;𝑄cutoff} ≤ 1.
In order to get the charge to energy conversion factor 𝑚 from 𝑄cutoff , 𝑚 = 52.8 MeV

𝑄cutoff
. The best fit

and 1𝜎 intervals for 𝑚 are given in table 4 along with the 𝜒2/NDF of the best fit. One can see
excellent agreement between data and simulation, demonstrating the consistency of the shower
reconstruction. Note that the 1𝜎 interval on 𝑄cutoff is larger in data than in simulation — this is
because the statistical error on the data Michel sample is larger than that on the simulated Michel
sample. The data/simulation agreement and consistency with eq. (3.1) demonstrated by this study
are discussed further in section 6 in combination with the results from the 𝜋0 sample.

Table 4. The best fit values and 1𝜎 ranges (via Wilks’ theorem) for 𝑚 along the 𝜒2/NDF of that fit given by
eq. (5.3) for both data and MC simulation. The fit here is the one-dimensional scan over 𝑄cutoff transformed
into 𝑚 as described in the text.

Sample 𝑚 [MeV/Q] 𝑚 range 𝜒2/NDF
Data 1.341 × 10−2 [1.282 × 10−2, 1.401 × 10−2] 2.17/6 = 0.4
MC 1.308 × 10−2 [1.279 × 10−2, 1.334 × 10−2] 2.73/6 = 0.5
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(a) (b)

(c) (d)

(e) (f)

Figure 14. Two-dimensional confidence regions for each resolution parameter in eq. (5.1) vs. 𝑄cutoff . 1𝜎, 2𝜎,
and 3𝜎 regions are shown by red, green, and blue curves, respectively. The confidence regions for (a), (c), and
(e) come the fit to data while those in (b), (d), and (f) come from the fit to simulation (MC). The units of each
parameter in the plots are as follows: 𝑄cutoff [Q counts], 𝑟1 [dimensionless], 𝑟2 [Q counts]1/2, 𝑟3 [Q counts].
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(a) (b)

Figure 15. 𝜒2 from (5.3) as a function of𝑄cutoff , for data (a) and MC simulation (b). This sample corresponds
to ≈ 5.3 × 1019 POT. The 1𝜎 allowed regions from Wilks’ theorem are shown in shaded regions below each
curve.

6 Combined validation of reconstructed shower energy

Both the data/simulation agreement of the shower reconstruction and the absolute scale of the 𝜈𝑒
simulation-derived 𝑄sh-to-MeV conversion are validated using our two samples by utilizing the 𝜋0

invariant mass of ≈ 135 MeV and the Michel electron spectrum cut-off at ≈ 52.8 MeV. As described
in sections 4.2 and 5.2, we have obtained comparison points separately for data and simulation in
each sample. These points are shown with statistical uncertainties in figure 16. The 𝑄sh-to-MeV
conversion factor or 𝑚 values found in section 3 for electrons, leading photons, and sub-leading
photons are shown by shaded bands in figure 16. In principle, one expects agreement between
the points and the electron and leading photon calibration line. The 1𝜎 ranges in the 𝑚 value
from both the data/simulation Michel cutoff study and the data/simulation 𝜋0 mass study agree
well with the best-fit 𝑚 values from simulated electrons and leading photons. Agreement with
the sub-leading photon line is not necessarily expected because of the reconstruction failure cases
discussed previously.

Table 5 shows the agreement of data and MC simulation for each point, as well as the agreement
of each data and simulation point to the electron best fit value from eq. (3.1). It is seen here that the
best fit 𝑚 values agree between data and simulation for each sample. This validates the use of the
same simulation-derived 𝑄sh-to-MeV conversion value (𝑚𝑒−) for both data and simulation. While
the best fit 𝑚 values for each sample do not exactly match 𝑚𝑒− within statistical uncertainty, there are
factors that may affect this value. These include: detector response modeling, sub-leading photon
reconstruction in the 𝜋0 sample, and backgrounds in the Michel 𝑒− sample. Therefore, the 2-6%
difference gives an estimate of the scale of the possible data to simulation bias on the shower energy
reconstruction. This size effect is acceptable for use in the DL LEE investigation. The < 6.5%
difference between each (𝑚MC, 𝑚Data) and 𝑚𝑒− gives the scale of the detector systematic uncertainty
in this reconstruction process.

In addition, as shown in figure 7 and figure 12, the showers found in the two samples are at
different energy ranges. The assumption has been made in this analysis that the 𝑄sh-to-MeV factor
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Figure 16. The data and MC simulation points from each the 𝜋0 sample and the Michel 𝑒− sample are
compared with the 𝑄sh-to-MeV electron calibration line used in the DL analysis from eq. (3.1). The
𝑄sh-to-MeV photon calibration lines (eq. (4.1) and eq. (4.2)) are also included for reference. The shaded
regions represent the statistical uncertainty of this given calibration line.

Table 5. Data and MC simulation best fit 𝑚 values from each sample and comparison to the charge-to-energy
conversion factor from eq. (3.1) (𝑄sh − 𝑡𝑜 − 𝑀𝑒𝑉 = 𝑚𝑒− = 1.26 ± 0.01 × 10−2). Uncertainties in ratios are
calculated from the 1𝜎 range of each value. The background adjusted values are used for the 𝜋0 sample.

Sample 𝑚MC [MeV/Q] 𝑚Data [MeV/Q] 𝑚Data/𝑚MC 𝑚MC/𝑚𝑒− 𝑚Data/𝑚𝑒−

𝜋0 1.230+0.004
−0.006 × 10−2 1.236+0.005

−0.006 × 10−2 1.005+0.006
−0.006 0.984+0.009

−0.009 0.979+0.008
−0.009

Michel 𝑒− 1.31+0.03
−0.02 × 10−2 1.34+0.06

−0.06 × 10−2 1.025+0.051
−0.049 1.038+0.022

−0.024 1.064+0.048
−0.048

does not change with shower energy. The samples cover the range of values of interest for the DL
1e1p analysis. We conclude that the 𝑄sh-to-MeV value given in eq. (3.1) is valid for EM showers in
both data and simulation at the energy ranges and precision relevant for the MicroBooNE LEE search.

7 Conclusions

This article has reported the updated method of electromagnetic shower reconstruction for the Mi-
croBooNE DL-based LEE analysis. Two samples that allow us to validate our shower reconstruction
have been presented: photons produced by the decay 𝜋0s, and Michel electrons produced when a
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𝜈𝜇-sourced stopped muon decays. The reconstruction and selection for each sample was described.
The samples show good data/simulation agreement. The shower energy calculation uses a MC 𝜈𝑒

simulation-derived 𝑄sh-to-MeV conversion factor. The absolute scale of the conversion factor, as
well as its application to EM showers in both data and simulations, is validated using the 𝜋0 invariant
mass of ≈135 MeV and the Michel electron cut-off at ≈53 MeV. Excellent data/simulation agreement
is seen in this study. The 𝑄sh-to-MeV conversion value used in the DL-based analysis is shown to be
consistent with both of these physical quantities. The results we present here form the foundation for
the MicroBooNE LEE DL-based analysis of 1𝑒1𝑝 events that will be released in the future.
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4.5 1𝑒1𝑝 Event Selection

The signal events for this analysis, 1𝑒1𝑝 events consistent with two-body CCQE scat-

tering, are isolated using a series of cuts on kinematic, topological, and MPID-based

variables as well as an ensemble of boosted decision trees (BDTs). The 1𝑒1𝑝 signal se-

lection represents one of my main projects within the MicroBooNE experiment. This

section covers in detail the requirements which define the 1𝑒1𝑝 sample. The 1𝜇1𝑝

control sample is isolated analogously to the 1𝑒1𝑝 sample and will not be covered in

this thesis, though more information can be found in Ref. [148].

4.5.1 Basic Data Selection Criteria

We first apply a series of basic “precuts” meant to remove poorly reconstructed events

and obvious backgrounds. We begin with the collection of “track-shower” vertices

selected by the algorithm described in section 4.4.2, which represent candidate 1𝑒1𝑝

events. We remove any vertices that are within 10 cm of the TPC edges or within

a region of unresponsive wires between 700 < 𝑧 [cm] < 740. This cut defines the

fiducial volume. We also require that the minimal distance of either the track or the

shower to the edge of the TPC is greater than 15 cm. In the case that both prongs

are reconstructed close to an edge, we instead require that the distance of each is

greater than 5 cm, which helps retain neutrino interactions that begin near the edge

of the fiducial volume. Events in the 1𝑒1𝑝 are further required to be outside of an

inefficient region of the U-plane.

We also employ a cut requiring the reconstructed shower energy of the candidate

electron to be consistent between the three planes. Even though we rely on the col-

lection plane for the official shower energy estimation, this cut is helpful in removing

events that would not lead to a consistent 3D picture of the shower. An example of

such an event is shown in figure 4-9. The cut specifically employed in this analysis is√︀
(𝐸𝑈

𝑒 − 𝐸𝑉
𝑒 )

2 + (𝐸𝑈
𝑒 − 𝐸𝑌

𝑒 )
2 + (𝐸𝑉

𝑒 − 𝐸𝑌
𝑒 )

2

𝐸𝑌
𝑒

< 2, (4.7)
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Figure 4-9: An example of an event that fails the shower energy consistency cut,
because the EM shower passes through an unresponsive region of the collection plane.

where 𝐸[𝑈,𝑉,𝑌 ]
𝑒 denote the reconstructed electron candidate energy on the 𝑈 , 𝑉 , and 𝑌

plane, respectively. Figure 4-10a shows the distribution of the fractional consistency

variable (left-hand side of equation (4.7)) for events above and below a 1𝑒1𝑝 BDT

score cutoff of 0.7, where the BDT here is an older iteration of the final BDT ensemble

used in this analysis. As can be seen, signal-like events (with a higher BDT score)

tend to have lower fractional consistency values compared to background-like events

(with a lower BDT score). The upper bound of 2 in equation (4.7) was chosen to

retain ∼ 95% of signal-like events while rejecting ∼ 20% of background-like events,

as shown in figure 4-10b.

Next, we make cuts on the reconstructed neutrino energy (200 < 𝐸𝜈 [MeV] <

1200), electron kinetic energy (𝐾𝑒 > 35 MeV), and proton kinetic energy (𝐾𝑝 >

50 MeV). We also require a forward-going proton and an opening angle between the

electron and proton greater than 0.5 rad. Finally, we require that the event can be

boosted to the rest frame of the nucleon using the 𝑝𝑇𝑓𝑒𝑟𝑚𝑖 and 𝑝𝑧𝑓𝑒𝑟𝑚𝑖 variables defined

in table 4.1.

4.5.2 Boosted Decision Tree Ensemble

The next stage of the 1𝑒1𝑝 selection uses an ensemble of BDTs to identify signal-

like events in MicroBooNE. This is the most powerful cut used in the 1𝑒1𝑝 analysis.

The ensemble consists of 20 BDTs each trained using the XGBoost gradient-boosting

algorithm [199]. Each BDT takes as input a set of 19 kinematic variables, such as

the reconstructed energies and angles of the electron and proton, and 4 topological

variables related to the observed charge, such as the fraction of SparseSSNet-labeled
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(a) (b)

Figure 4-10: Figure 4-10a shows the distribution of the fractional shower energy
consistency variable for events with an old 1𝑒1𝑝 BDT score above/below 0.7. Figure 4-
10b shows the efficiency with which events above/below the old 1𝑒1𝑝 BDT cutoff pass
the fractional consistency cut as a function of the chosen upper bound.

shower pixels in the event. The full suite of variables used to train the 1𝑒1𝑝 and 1𝜇1𝑝

BDTs is shown in table 4.2. Each BDT itself consists of a collection of regression

trees which each assign a continuous score to an event based on a set of decision rules

developed using the input variables; the assigned BDT score of the event is given by

the sum over the collection [199]. BDTs are trained via gradient-based optimization

of an objective function that includes a regularization term to penalize overfitting.

A different ensemble is generated for each of the three run periods, as the detector

response changed slightly between them. Thus, there are 60 total BDTs trained

for the 1𝑒1𝑝 analysis. The BDTs are trained using the MicroBooNE MC samples,

including the nominal (𝜈𝜇-dominated) BNB sample as well as dedicated intrinsic 𝜈𝑒,

𝜋0, and cosmic samples. The signal for the training sample is defined as true 𝜈𝑒

CCQE interactions with one electron and one proton in the final state. We further

restrict to well-reconstructed events for which the vertex is reconstructed with 5 cm

of the true vertex and the neutrino energy within 20% of the true value. Only non-𝜈𝑒
CCQE 1𝑒1𝑝 events are explicitly classified as background. Each BDT in an ensemble

is trained using a randomly-selected half of the MC sample for the given run period.

Figure 4-11 shows the F score distribution for each variable in one of the 1𝑒1𝑝 BDTs

from the ensemble for each run period. The F score represents the number of times

each variable is used across all trees in the BDT; thus, it can be thought of as a
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measure of the importance of each variable.

The 1𝑒1𝑝 score for an event is evaluated by calculating the average BDT score

across the ensemble. This reduces the dependence of the ensemble score on the specific

training sample of any single BDT. Ensemble-based methods have been shown to

reduce variance on the output likelihood variable compared to a single classifier [200].

When computing the average score for events in the MicroBooNE MC sample, we omit

BDTs for which the event appeared in that BDT’s training sample. It is extremely

unlikely (𝑝 = 2−20) for an event to appear in the training sample of all BDTs in

an ensemble; thus, we can use the BDT ensemble to isolate a 1𝑒1𝑝 signal sample

prediction from the MicroBooNE MC without throwing away any events. The score

is normalized to the range [0,1], where higher scores indicate a higher signal likelihood.

We show the distribution of the ensemble-averaged 1𝑒1𝑝 BDT score in figure 4-12,

which shows that true 𝜈𝑒 CCQE events tend to peak toward 1 while all other events

peak toward 0. Signal events are required to have an average score greater than 0.95,

which was chosen to optimize sensitivity to the eLEE model described in section 4.2.

We have performed a series of tests of the robustness of the BDT ensemble method.

We first examined the signal selection power of a BDT ensemble trained on simulated

events from a given run period when used to infer the signal likelihood of simulated

events from a different run period. This is useful for two reasons. For one, it provides

a method for testing the ensemble on events that were in neither the training nor

the validation sample of the constituent BDTs. Testing on a sample independent of

the validation sample is important because the BDT training was halted when the

classification error on the validation set didn’t improve after 50 training iterations. It

also tests the impact of removing training events from the MC prediction. When using

the BDT ensemble of a given run period to evaluate the signal likelihood of events

from the same run period, one must remove events that appeared in the training

sample of each constituent BDT. In this study we use the BDT ensemble trained on

run period 2 to evaluate simulated 𝜈𝑒 events from run period 3 and vice versa, so one

does not need to remove training events.

Figure 4-13 shows the results of this run period swap study. As one can see, the
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differences between the selection using the correct and incorrect run period ensemble

are small. The correct run period performs slightly better, as expected due to small

differences in the detector status specific to each run period. However, the relatively

small change in 𝜈𝑒 selection efficiency suggests that the BDT ensemble is able to

perform well on simulated events that do not appear in either the training or validation

sample of constituent BDTs. One can interpret the loss in performance shown in

figure 4-13 as a bound on the potential impact of applying the BDT ensemble to

events that are not in the training or validation samples of the entire ensemble. The

drop in performance is < 10% over most of the energy range–an effect which is smaller

than our systematic error before the 𝜈𝜇 constraint described in chapter 5 (∼ 15%)

and much smaller than the statistical error in each reconstructed neutrino energy bin

after the final selection (∼ 50%).

Next, we investigated the impact of using only a subset of the BDTs in the en-

semble to calculate the average BDT score of an event. This is relevant because we

omit BDTs that contained a given MC event in the training sample when calculating

the average BDT score for that event. However, this analysis uses all 20 BDTs in

the ensemble to calculate the average BDT score of events in the data. Therefore, to

verify that comparisons between data and simulation are robust, one needs to ensure

that removing BDTs from the ensemble does not significantly bias the average score

calculation.

To this end, consider 𝑆𝑛 to be the 1𝑒1𝑝 BDT ensemble average score after removing

𝑛 BDTs from the ensemble. For events in data, the BDT score is 𝑆0 while for simulated

events, the BDT score is 𝑆𝑛 for some 𝑛 ∈ {1, ..., 20}. Figure 4-14 shows the fractional

difference (𝑆𝑛 − 𝑆0)/𝑆0 as a function of the number of omitted BDTs 𝑛 over signal-

like (BDT score > 0.95) events in the simulation from run period 2 and run period

3, respectively. As in the previous study, in order to avoid bias from BDT training

we use the BDT ensemble trained on run period 2 to evaluate the signal likelihood of

simulation events from run period 3 and vice versa. The data points and error bars in

figure 4-14 indicate the average and standard deviation of the fractional difference over

the simulation sample, respectively. The red histograms show the actual distribution
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of omitted BDTs over the simulation from each run period. One can see that the

average BDT score does not exhibit significant bias upon removing BDTs from the

calculation. Also, the standard deviation of the fractional difference only becomes

larger than 1% when removing & 17 BDTs from the calculation. This only happens

for << 1% of simulated events, as expected.

(a) Run 1 (b) Run 2 (c) Run 3

Figure 4-11: The F score of each variable for one of the 1𝑒1𝑝 BDTs in the ensemble
from run 1, run2, and run 3.

(a) (b)

Figure 4-12: Figure 4-12a and figure 4-12b show the MC distribution of the 1𝑒1𝑝
BDT ensemble average score over all three run periods for the full [0,1] range and
zoomed in to the [0.95,1] range, respectively.

4.5.3 Particle Identification Cuts

Finally, we employ a series of particle-identification requirements to clean up the

remaining backgrounds that survive the 1𝑒1𝑝 BDT ensemble cut. The first of these

is a cut on the invariant 𝜋0 mass. If the shower reconstruction algorithm described

in section 4.4.3 is able to identify a second EM shower, the reconstructed 𝑀𝜋0 must
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(a) (b)

Figure 4-13: Figure 4-13a and figure 4-13b show the predicted 𝜈𝑒 event rate in run
period 2 and run period 3, respectively, using both the run period 2 ensemble and
the run period 3 ensemble.

(a) (b)

Figure 4-14: Figure 4-14a and figure 4-14b show the fractional difference in average
BDT score (𝑆𝑛 − 𝑆0)/𝑆0 as a function of the number of omitted BDTs 𝑛 over the
simulation from run period 2 and run period 3, respectively. The red histogram shows
the actual distribution of the number of omitted BDTs over the run period 2 and run
period 3 simulation samples, respectively. Scores are calculated using the run period
3 and run period 2 BDT ensemble, respectively.

be less than 50 MeV. Another cut requires the ratio of the MPID 𝛾 and 𝑒− image

scores to be less than 2. This helps remove remaining 𝜋0 events that survive the 𝑀𝜋0

cut. We also require the MPID muon interaction score to be less than 0.2, which

helps remove 𝜈𝜇 CC𝜋0 events where the muon gets mistaken for a proton. This last

cut is only applied for events in which 𝐸𝑒− > 100 MeV, as MPID tends to assign low

electron scores and high muon scores to true electrons below 100 MeV, as shown in

figure 4-15. This is because electrons stop radiating below this energy, becoming more

track-like and thus difficult to distinguish from muons. The specific values used for
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the cuts described here were chosen by optimizing the signal-to-background ratio in

the 1𝑒1𝑝 sample. Finally, if an event has more than one reconstructed neutrino vertex

candidate passing all selection criteria, we keep only the vertex with the highest 1𝑒1𝑝

ensemble BDT score.

(a) (b)

Figure 4-15: Figure 4-15a and figure 4-15b show the MPID electron and muon score,
respectively, as a function of the reconstructed electron energy in intrinsic 𝜈𝑒 MC
events.

4.5.4 The Final 1𝑒1𝑝 Sample

The requirements described throughout this section define the 1𝑒1𝑝 sample; they are

summarized and compared with those in the 1𝜇1𝑝 sample in table 4.3. This results

in a highly-pure 1𝑒1𝑝 signal sample–75% of events are true 𝜈𝑒 CCQE interactions.

Figure 4-16 shows the predicted 𝐸range
𝜈 distribution for this sample, including the

prediction from the eLEE model. This figure also shows the systematic uncertainty

and non-𝜈𝑒 background prediction, which will be discussed further in chapter 5. The

neutrino energy distribution in figure 4-16 forms the basis of the statistical results

discussed in chapter 5.

The neutrino energy resolution is 16.5% for selected 1𝑒1𝑝 events, as shown in

figure 4-17. This figure also indicates a slightly higher rate of events with under-

predicted neutrino energy, owing mainly to showers and tracks that pass through

unresponsive regions of the detector. Figure 4-18 reports the signal efficiency and

total number of 𝜈𝑒 CCQE events in this sample after applying each of the three sets
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of cuts. The efficiency peaks at lower neutrino energies ∼ 300 MeV, which is optimal

for testing the eLEE model. Note that these efficiencies in figure 4-18a are reported

with respect to all identified vertices. If we include the effect of the vertex algorithm,

the average efficiency for retaining signal events in the 1𝑒1𝑝 sample is 6.6% [148].

This is by design–in choosing a very exclusive signal definition, we optimize for a

high-purity sample at the price of lower efficiency.

Figure 4-16: The 𝐸range
𝜈 distribution for the 1𝑒1𝑝 signal sample, showing only the

predicted event rate from the MC. The prediction from the eLEE model is shown in
the dashed blue line.

(a) (b)

Figure 4-17: Figure 4-17a shows the distribution of the fractional error on the neutrino
energy for MC events in the 1𝑒1𝑝 signal sample, restricted to 200 < 𝐸Range

𝜈 [MeV] <
1200. Figure 4-17b shows the 2D distribution of fractional error as a function of the
true neutrino energy.
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(a) (b)

Figure 4-18: Figure 4-18a shows the post-vertex-identification efficiency of true 𝜈𝑒
CCQE selection for subsequent stages of the 1𝑒1𝑝 cuts. Figure 4-18b shows the true
𝜈𝑒 CCQE event rates over the full run 1-3 dataset after subsequent stages of the 1𝑒1𝑝
cuts.
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Variable Used in 1𝜇1𝑝 BDT Used in 1𝑒1𝑝 BDT
Variables Used in BDTs, Based on Ionization

Charge within 5 cm of vertex Yes Yes
Shower charge in event image /
shower charge clustered as electron No Yes
Proton shower fraction No Yes
Electron shower fraction No Yes

Variables Used in BDTs, Related to Energy Measurements
Neutrino Energy Yes Yes
Energy of electromagnetic shower No Yes
Lepton length Yes Yes
Proton length No Yes
𝑝𝑧 − 𝐸𝜈 No Yes

Variables Used in BDTs, Related to 2-Body Scattering Consistency
Bjorken’s 𝑥 Yes * Yes *
Bjorken’s 𝑦 Yes * Yes *
QE Consistency Yes * Yes *
𝑄0 Yes Yes
𝑄3 Yes Yes

Variables Used in BDTs, Related to Transverse Momentum
𝛼𝑇 Yes Yes
Event 𝑝𝑇 Yes Yes
Event 𝑝𝑇/𝑝 (“PTrat") Yes Yes
𝜑𝑇 Yes No

Variables Used in BDTs, Related to Angles
Proton 𝜑 Yes Yes
Proton 𝜃 Yes Yes
Lepton 𝜑 Yes Yes
Lepton 𝜃 Yes Yes
𝜑𝑝 − 𝜑ℓ Yes Yes
𝜃𝑝 + 𝜃𝑒 No Yes

Variables Useful for Comparison, Not Used in Either BDT
𝜂 (Normalized average ionization difference) No No
Opening Angle No No
𝑥 Vertex No No
𝑦 Vertex No No
𝑧 Vertex No No

Table 4.2: The suite of variables used to isolate and analyze the 1𝑒1𝑝 and 1𝜇1𝑝
samples. Variables used in the BDT ensemble for each sample are specified. The
“*” character indicates that the variable is calculated in the rest frame of the struck
nucleon. The mathematical definitions of many of these variables appear in Table 4.1.
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Chapter 5

The MicroBooNE Electron

Neutrino Analysis: Results and

Discussion

This chapter presents the first results from the two-body CCQE analysis described

in chapter 4. They come from data taken during the first three MicroBooNE run

periods, corresponding to 6.67 × 1020 POT after data quality cuts. The signal data

were examined for the first time in Summer 2021 and presented to the community in

October 2021 [148]. The results from the two-body CCQE analysis were accompanied

by results from the inclusive [170] and MiniBooNE-like [171] 𝜈𝑒 analyses. All three

MicroBooNE 𝜈𝑒 analyses are summarized in Ref. [116].

This chapter focuses on the statistical results from the 𝜈𝑒 two-body CCQE anal-

ysis. We cover the background prediction, systematic error evaluation, 𝜈𝜇 1𝜇1𝑝 con-

straint procedure, and blinded analysis approach in detail. We then discuss the series

of statistical tests performed using our 1𝑒1𝑝 signal sample. We close with a discus-

sion of the MicroBooNE results, including a presentation of two non-MicroBooNE

publications examining the implications of the MicroBooNE data under two different

explanations of the MiniBooNE LEE: 3 + 1 oscillations and excess 𝜈𝑒 interactions.

Publications covered in this chapter for which I either held a leading role or made

major contributions: [102,116,148,201]
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5.1 First Results from the Two-Body CCQE Anal-

ysis

The two-body CCQE analysis observed 25 events across data from the first three run

periods. This is in good agreement with the total prediction in the 200− 1200 MeV

range, which is 27.4 ± 3.8sys ± 5.2stat before the 1𝜇1𝑝 constraint discussed in sec-

tion 5.1.3 [148]. One of these events is shown in figure 5-1, including both pixel

intensity images from the TPC readout and SparseSSNet pixel-labeled images on

all three planes. Event displays for the remaining 24 selected events are included in

Appendix B. The 𝐸range
𝜈 distribution of these events is shown in figure 5-2, where

the prediction is given both in terms of the underlying interaction type and the final

state event topology. The 1𝑒1𝑝 BDT ensemble average score distribution is shown

in figure 5-3. Figure 5-4 shows the distributions of four more interesting variables:

𝐸𝑒, 𝐸𝑝, 𝜃𝑒, and 𝐸𝑄𝐸−ℓ
𝜈 . A full suite of data-prediction comparisons in 36 variables

is provided in the Supplemental Material for Ref. [148], including those described in

table 4.1 and those used to train the BDT ensembles.

One can see clearly in figure 5-2 that no excess of 𝜈𝑒 1𝑒1𝑝 candidate events is

observed at low energy in the two-body CCQE analysis. Instead, we observe a slight

deficit compared to even the nominal prediction at low energies, in conflict with the

eLEE model represented by the blue dashed line. This is a trend that is observed

across all three 𝜈𝑒 analyses in MicroBooNE [116]. The extent to which we agree or

disagree with the eLEE model will be discussed further in section 5.2.

One might also notice an apparent excess of data events in the 800-900 MeV bin

in figure 5-2. This appears to be a statistical fluctuation; other kinematic variables do

not exhibit such an excess of events, including the closely related 𝐸𝑄𝐸−ℓ
𝜈 distribution

shown in figure 5-4d. If this were a systematic effect rather than a fluctuation, one

would expect similar behavior in the distributions of other variables. While these

statements will be quantified further in section 5.2, it is useful to include such a

qualitative discussion at this point.

The following subsections discuss the details behind our prediction in the 𝐸𝜈
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distribution. It is important to note that while we have already shown the observed

data in our signal channel, the procedures outlined in the following subsections were

frozen before examining this dataset. Specifically, we followed the blinded analysis

approach outlined in section 5.1.4 to avoid biasing our selection.

Figure 5-1: Top: pixel intensity (color scale is in PIU as defined in section 4.4);
Bottom: SparseSSNet labels; Left to Right: U, V, Y, planes. The white circle
indicates the reconstructed vertex. The horizontal axis corresponds to the wire plane
direction and the vertical axis corresponds to the electron drift direction, which is
measured using the arrival time of charge on the wires.

5.1.1 Background Estimation

In table 5.1 we give a breakdown of the MC events in the “background” category

of figures 5-3 and 5-4 by their interaction channel and event topology. The “off-

vertex” label in this table refers to events for which the reconstructed neutrino vertex

is further than 5 cm away from the true neutrino vertex. These events can happen

when a cosmic muon track happens to cross a photon shower from a 𝜋0 decay, or a

muon decays to a Michel electron; in both cases, the muon is mistaken for a proton.

Table 5.1 indicates that 𝜈𝜇 resonant 𝜋0 events are the most common background
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(a) (b)

Figure 5-2: The 1𝑒1𝑝 sample 𝐸𝜈 distribution, comparing data (black points) to the
unconstrained prediction (stacked histogram) in the 200 < 𝐸𝜈 < 1200MeV region.
The eLEE model prediction is represented by the dashed blue line. The prediction
is presented in terms of both interaction type (figure 5-2a) and final state topology
(figure 5-2b).

Figure 5-3: Average 1𝑒1𝑝 BDT ensemble score distribution comparing data to the
unconstrained prediction.

interaction channel, followed by off-vertex events. One can also see that events with

a 𝜋0 in the final state are the dominant background topology.

There are not many MC events to inform the numbers reported in table 5.1. The

tools developed for this analysis produce a highly pure 𝜈𝑒 CCQE sample, resulting

in a low-statistics simulation sample for assessing the non-𝜈𝑒 background to the 1𝑒1𝑝

signal. This is apparent in the fluctuations of the background prediction in figures 5-3

and 5-4. In order to obtain a more robust prediction of this background, we have

elected to leverage information on the energy distribution of non-𝜈𝑒 background events
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(a) (b)

(c) (d)

Figure 5-4: Comparison between data and unconstrained prediction in the 𝐸𝑒 (fig-
ure 5-4a), 𝐸𝑝 (figure 5-4b), 𝜃𝑒 (figure 5-4c), and 𝐸𝑄𝐸−ℓ

𝜈 (figure 5-4d) distributions of
the 1𝑒1𝑝 sample.

at a loose BDT score cutoff of 0.7 and extrapolate this to our signal cutoff of 0.95.

This is accomplished by fitting a parameterized Landau+linear probability density

function (PDF) to the background energy distribution at the loose cutoff and scaling

this prediction to the signal cutoff. As most of these backgrounds come from 𝜈𝜇

interactions, this is referred to as the 𝜈𝜇 background fit.

The Landau+linear shape is motivated empirically by the observation of a rise

in the background rate toward the lowest energies (. 500MeV) and a smaller rise

toward the highest energies (& 800MeV), both for the loose BDT score cutoff and the

signal cutoff, as shown by the blue points in figure 5-5. The Landau portion of the fit

is additionally motivated by the observation that a majority of 𝜈𝜇 background events

contain a 𝜋0 in the final state, for which one of the decay photons is misinterpreted

as an electron shower. The reconstructed neutrino energy of these events is governed
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predominately by the energy of this photon, which has a tail extending to higher

energies caused by pions with high momentum in the lab frame. This tail is a char-

acteristic feature of the Landau function. The output of the fit and resulting error

are used in place of the raw prediction and statistical error for the 𝜈𝜇 backgrounds in

this analysis. We note here that the simulated 𝜈𝜇 events with a 𝜋0 in the final state

are weighted according to the observation in our dedicated 𝜋0 sample. The method

for calculating these weights is described in Ref. [148].

The predicted background spectrum in each reconstructed neutrino energy bin

𝑓(𝐸𝑖) is generated by integrating the Landau+linear PDF 𝑝(𝐸) within that bin.

Specifically,

𝑝(𝐸) = exp

[︂
−(𝐸 ′ + 𝑒−𝐸′

)

2

]︂
+ 𝑎𝐸,

𝐸 ′ = (𝐸 − 𝜇)/𝜎,

𝑓(𝐸𝑖) =

∫︁ 𝐸𝑖+𝛿𝐸𝑖

𝐸𝑖−𝛿𝐸𝑖

𝑝(𝐸)𝑑𝐸,

(5.1)

where 𝜇 and 𝜎 are the center and width of the Moyal approximation of the Landau

function [202], 𝑎 is the linear slope parameter, 𝐸𝑖 is the center of the i’th energy bin,

and 𝛿𝐸𝑖 is half of the bin width. The Landau+linear fit is carried out using only

shape information at a loose BDT score cutoff of 0.7. In order to get the overall

normalization, we fit the BDT score distribution of the backgrounds to a linear PDF

𝑝(𝑥), which we can integrate to get the total expected number of background events

𝑓(𝑥) for a given BDT score cutoff 𝑥,

𝑝(𝑥) = 𝑚𝑥+ 𝑏 𝑓(𝑥) =

∫︁ 1

𝑥

𝑝(𝑥)𝑑𝑥, (5.2)

where 𝑚 and 𝑏 are the slope and bias parameters for the BDT score distribution,

respectively. The resulting shape+normalization fit for the background distribution

at the loose BDT cutoff of 0.7 and signal cutoff of 0.95 are shown in Fig. 5-5. One

can see that the fit agrees with the raw MC prediction within statistical error in both

cases and that the error on the fit is generally reduced compared to the simulation
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statistical error.

The errors on the fits in Fig. 5-5 are obtained by simulating pseudo-experiments

according to the covariance matrix of the fit parameters. This is accomplished effi-

ciently using Cholesky decomposition [203]. The overall normalization error on the

background rate at a given BDT score cutoff is calculated using the error on the

linear fit to the BDT score distribution of background events. For the Landau+linear

fit, we generate a shape-only covariance matrix for the 𝜈𝜇 backgrounds in the nom-

inal reconstructed neutrino energy bins. The overall normalization error has been

added as a fully-correlated contribution to each bin of the shape-only 𝐸𝜈 covariance

matrix. The uncorrelated uncertainty from the fit, given by the square root of the

diagonal entries of the full (shape ⊕ normalization) covariance matrix, is indicated by

the orange band in Fig. 5-5. This covariance matrix replaces the nominal statistical

uncertainty on the simulated background, given by the quadrature sum of weights in

each 𝐸𝜈 bin, which is indicated by the shaded blue band in Fig. 5-5.

The performance of the fit is evaluated on data by examining events slightly below

the signal region, with a BDT score in the range [0.7, 0.95]. These events are shown

in Fig. 5-6. The raw MC prediction is given by the stacked histogram, while the

prediction incorporating the 𝜈𝜇 background fit on top of the simulated 𝜈𝑒 prediction

is given by the red line. The data agree well with both predictions, indicating the

consistency of the fit method presented here with both the observed and MC-predicted

background rate.

5.1.2 Evaluation of Systematic Uncertainties

There are five main sources of systematic uncertainty in this analysis, related to the

beam flux, neutrino-nucleus cross section modeling, hadron re-interaction modeling,

detector simulation, and finite statistics in the MC-based prediction. These are han-

dled within a covariance matrix formalism. For each binned distribution, the diagonal

entries of the covariance matrix contain the variance in each bin, while the off-diagonal

entries contain the covariance between different bins. Thus, the covariance matrix is

also symmetric. The use of a covariance matrix is essential for encoding correlations
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Interaction Channel Predicted Rate
𝜈𝜇 resonant 𝜋0 1.26
𝜈𝜇 resonant 𝜋± 0.21
𝜈𝜇 CCQE 0.14
𝜈𝜇 other 0.19

Off-vertex 0.93
Event Topology Predicted Rate

1𝜇𝑁𝜋0 0.57
0𝜇𝑁𝜋0 1.09
1𝜇1𝑝 0.14

Off-vertex 0.93

Table 5.1: Breakdown of MC events in the “background” category of figures 5-3
and 5-4 over the range 200 < 𝐸𝜈 < 1200MeV. The events are partitioned both by the
interaction channel and the event topology.

(a) (b)

Figure 5-5: The fit to the 𝜈𝜇 background distribution to the 1𝑒1𝑝 analysis. The
shape fit is performed at a loose BDT score cutoff of 0.7 (figure 5-5a) and scaled
to the signal cutoff of 0.95 (figure 5-5b). Blue points represent the prediction from
the simulation, with error bars representing the Gaussian approximation of the sta-
tistical error (quadrature sum of event weights). The orange line and corresponding
shaded region represent prediction and uncertainty, respectively, coming from the
Landau+linear fit.

between binned distributions of selected events in the 1𝑒1𝑝 and 1𝜇1𝑝 samples, which

is relevant for the constraint procedure described in section 5.1.3. The total covari-

ance matrix for a given distribution is simply the element-wise sum of the covariance

matrices for each source of systematic uncertainty. A few definitions will be helpful

for our discussion here; given a covariance matrix 𝑀𝑖𝑗 and binned prediction 𝑁𝑖, the

fractional covariance matrix is given by 𝐹𝑖𝑗 ≡𝑀𝑖𝑗/(𝑁𝑖𝑁𝑗) and the correlation matrix
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Figure 5-6: The data and MC prediction for events with a 1𝑒1𝑝 BDT score inside
[0.7, 0.95]. Good agreement is observed between data and prediction. The prediction
incorporating the Landau+linear background fit is shown by the red line.

is given by 𝜌𝑖𝑗 ≡ 𝑀𝑖𝑗/
√︀
𝑀𝑖𝑖𝑀𝑖𝑗. The correlation matrix is meant to capture the

degree of correlation between two bins normalized within the range [−1, 1], where

diagonal entries are 1 by construction.

The flux, cross section, and re-interaction uncertainties are evaluated using a

reweighting method, in which event weights are modified according to tunable pa-

rameters. Variations in the distributions of reconstructed variables are used to de-

termine the associated covariance matrix. The detector systematic covariance matrix

is evaluated using a dedicated set of simulation samples that each alter the detector

response in a different way. These alterations to the detector response are derived

using cosmic muon data; the full procedure is described in detail in Ref. [204].

Flux uncertainties are related to hadron production in the target, secondary

hadron interactions, and focusing efficiency of the BNB magnetic horn. Neutrino

events are reweighted according to the species and momentum of the parent me-

son [14, 205]. The largest flux uncertainty comes from 𝜋+ production in the target.

The flux uncertainties are also highly correlated between the 1𝑒1𝑝 and 1𝜇1𝑝 samples,

as they both come predominately from the same meson decay chain, 𝜋+ → 𝜈𝜇(𝜇
+ →

𝑒+𝜈𝑒𝜈𝜇).

The cross section covariance matrix is calculated using both interaction-specific
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reweightable parameters and FSI-related reweightable parameters in GENIE v3.00.06.

Thus, each MC event is reweighted according to its interaction channel and any fi-

nal state particles which underwent FSI. The full suite of reweightable parameters

is described in Ref. [180]. We also evaluate uncertainties related to the difference

between the 𝜈𝑒 CCQE and 𝜈𝜇 CCQE cross sections [206]. The largest cross section

uncertainties come from CCQE-related parameters, which is expected given our signal

definition, and FSI-related parameters. FSI uncertainties are especially important in

this analysis, as FSI can cause 𝜈𝑒 CCQE events to deviate from two-body scattering

kinematics and also cause non-𝜈𝑒 CCQE events to look more consistent with two-

body scattering. Both CCQE-related and FSI-related effects impact the 1𝑒1𝑝 and

1𝜇1𝑝 samples similarly and thus are at least partially addressed by the constraint

procedure in section 5.1.3.

Hadron re-interaction uncertainties describe the scattering of final state protons

and 𝜋± off of argon nuclei. The covariance matrix is calculated by reweighting events

according to Geant4 truth-level information about the hadron trajectory [207]. These

uncertainties are a small effect in this analysis.

The detector systematic covariance matrix is calculated using a set of dedicated

simulation samples that vary certain aspects of the detector response. These include

the amplitude and width of TPC signals as a function of the 𝑥 and (𝑦, 𝑧) positions as

well the directions 𝜃𝑋𝑍 and 𝜃𝑌 𝑍 of the charged particle; the electron-ion recombination

rate; the electric field map in the TPC; and the light yield, attenuation, and Rayleigh

scattering length. As these samples are computationally expensive to generate, we are

not left with many MC events with which to construct a covariance matrix. Thus,

we rely on kernel density estimation [208, 209] to smooth the predictions in each

detector variation sample. This procedure does not work for the 𝜈𝜇 backgrounds to

the 1𝑒1𝑝 analysis since we are especially starved for MC statistics here, as discussed in

section 5.1.1. We instead assign a conservative uncorrelated 20% fractional detector

systematic uncertainty on these events, based on the extent of differences in the total

rate of selected background events in the detector variation samples.

The variance due to finite MC statistics is simply given by the quadrature sum
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of event weights in each bin. These uncertainties are uncorrelated and give a diago-

nal covariance matrix. The exception is finite MC statistics uncertainties on the 𝜈𝜇
backgrounds in the 1𝑒1𝑝 analysis, which are calculated using the procedure described

in section 5.1.1.

Finally, we note that to evaluate the reweightable systematic uncertainties on the

𝜈𝜇 backgrounds to the 1𝑒1𝑝 analysis, we use the selected MC events to calculate a

fractional covariance matrix, which is then scaled by the parameterized background

prediction derived in section 5.1.1. When performing the constraint in section 5.1.3,

we do not consider off-diagonal systematic uncertainties between 𝜈𝜇 backgrounds in

the 1𝑒1𝑝 sample and bins in the 1𝜇1𝑝 sample, as it is not straightforward to compute

this correlation.

The fractional uncertainty in each bin of the 𝐸range
𝜈 distribution in the 1𝑒1𝑝 and

1𝜇1𝑝 samples is shown in figure 5-7. These correspond to the square root of the

diagonal entries of the total systematic covariance matrix calculated from all sources

described above, divided by the predicted event rate in each bin. In the 1𝑒1𝑝 sample,

flux, cross section, and detector uncertainties dominate at low energies while detector

uncertainties dominate at high energies. The joint 1𝑒1𝑝 and 1𝜇1𝑝 covariance and

correlation matrices are shown in figure 5-8. The large off-block-diagonal correlations

between the 1𝑒1𝑝 and 1𝜇1𝑝 samples will be exploited in section 5.1.3.

(a) (b)

Figure 5-7: The uncertainty in each bin of the 𝐸range
𝜈 distribution of the 1𝑒1𝑝 (figure 5-

7a) and 1𝜇1𝑝 (figure 5-7b) samples.
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(a) (b)

Figure 5-8: The joint covariance (figure 5-8a) and correlation (figure 5-8b) matrices
for the 𝐸range

𝜈 distribution of the 1𝑒1𝑝 and 1𝜇1𝑝 samples.

5.1.3 Constraint from the 1𝜇1𝑝 Sample

As alluded to thus far, we use the observation in the 1𝜇1𝑝 control sample to constrain

the prediction and uncertainties in the 1𝑒1𝑝 signal sample. We rely on the conditional

covariance method, which has also been used by the MiniBooNE collaboration [76].

We perform the constraint in the 𝐸range
𝜈 distribution of each sample. Let us represent

the joint covariance matrix between both samples shown in figure 5-8a as

𝑀 =

⎛⎝𝑀 𝑒𝑒 𝑀 𝑒𝜇

𝑀𝜇𝑒 𝑀𝜇𝜇

⎞⎠ . (5.3)

Given a measurement 𝑑𝜇 and prediction 𝜇𝜇 in the 1𝜇1𝑝 channel, the constrained

prediction 𝜇𝑒,const and covariance matrix 𝑀 𝑒𝑒,const are given by [170]

𝜇𝑒,const = 𝜇𝑒 +𝑀 𝑒𝜇 · (𝑀𝜇𝜇)−1 · (𝑑𝜇 − 𝜇𝜇),

𝑀 𝑒𝑒,const =𝑀 𝑒𝑒 −𝑀 𝑒𝜇 · (𝑀𝜇𝜇)−1 ·𝑀𝜇𝑒,
(5.4)

where 𝜇𝑒 is the nominal prediction in the 1𝑒1𝑝 channel before the constraint.

Figure 5-9 shows the comparison between data and prediction in the 1𝜇1𝑝 𝐸range
𝜈

distribution. This observation is used as input to the constraint procedure in equa-

tion (5.4). The diagonal uncertainties in the 1𝑒1𝑝 𝐸range
𝜈 distribution are reduced by
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up to a factor of ∼ 2 across most bins, as shown in figure 5-10. In figure 5-11 we

compare observed data to the final constrained prediction and uncertainties in the

1𝑒1𝑝 𝐸range
𝜈 distribution. As can be seen, the constraint procedure slightly increases

the 1𝑒1𝑝 prediction at lower 𝐸range
𝜈 values, though this is not a large effect. The result

shown in figure 5-11 forms the basis of the statistical tests discussed in section 5.2.

Figure 5-9: The 𝐸range
𝜈 distribution in the 1𝜇1𝑝 channel, comparing data to the MC

prediction.

Figure 5-10: Fractional systematic uncertainty in the 1𝑒1𝑝 𝐸range
𝜈 distribution before

and after the 1𝜇1𝑝 constraint.
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Figure 5-11: Comparison between data and prediction in the 1𝑒1𝑝 𝐸range
𝜈 distribution

after applying the 1𝜇1𝑝 constraint procedure.

5.1.4 Blinded Analysis Approach

Here we briefly cover the blind analysis procedure and related cross-checks performed

before examining data in the 1𝑒1𝑝 signal sample. The main strategy here was to

use a sequential unblinding approach. Data were first examined for events with a

low BDT score (< 0.7) or a high reconstructed neutrino energy (> 700 MeV). Next,

we examined data with a medium BDT score (within [0.7, 0.95]) or medium energy

(500−700 MeV). Only after establishing good agreement between data and prediction

in all of these samples were potential signal events first examined, where signal events

are defined to have a 1𝑒1𝑝 BDT score greater than 0.95 and reconstructed neutrino

energy below 500 MeV. This sequence was chosen because sensitivity to the eLEE

model is minimized at lower BDT scores and higher neutrino energies. Moving on

to each subsequent stage required signoff from the entire MicroBooNE collaboration.

Figure 5-12 shows the comparison between data and prediction in the 1𝑒1𝑝 BDT

ensemble average score distribution for this “medium BDT score” sample. Figure 5-6

is another example of one of the “medium BDT score” plots.

We also explored a sample that made a number of cuts on kinematic variables in

order to mimic the 1𝑒1𝑝 BDT ensemble cut. As humans are poorer optimizes than

BDTs, this sample contained a much larger rate of 𝜈𝜇 background events compared
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to the official signal selection. Good agreement between data and prediction was

observed across all variables explored within this sample, thus giving confidence in

the MC description of backgrounds to the 1𝑒1𝑝 signal sample.

Finally, before any 𝜈𝑒 analysis was able to look at data in their signal sample, we

each had to pass a series of fake data tests. In these tests, five different data-like

MC samples were generated with various unknown alterations to the nominal MC.

These included, for example, the presence of a large 𝜈𝑒 eLEE signal and alterations

to underlying cross section models. All three 𝜈𝑒 analyses ran through the statistical

results presented in section 5.2 for each fake data sample. In all cases, the statistical

conclusions determined from each fake dataset were consistent with the truth-level in-

jected events. At this point, the 𝜈𝑒 analyses (including the two-body CCQE analysis)

were ready to move on to the real signal dataset.

Figure 5-12: Comparison between data and prediction in the 1𝑒1𝑝 BDT ensemble
average score distribution within the range [0.7, 0.95].

5.2 Statistical Interpretation

We perform three different statistical tests of the eLEE model: a 𝜒2 goodness-of-

fit test, a Δ𝜒2 two-hypothesis test, and a signal strength scaling test. We use the
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combined Neyman-Pearson (CNP) chi-square test statistic [210],

𝜒2
CNP = (𝑑− 𝜇⃗)𝑇 (𝑀 stat

CNP +𝑀 sys)−1(𝑑− 𝜇⃗), (5.5)

where 𝑑 and 𝜇⃗ are the observation and prediction for a particular distribution, 𝑀 sys

is the systematic covariance matrix described in section 5.1.2, and

(𝑀 stat
CNP)𝑖𝑗 ≡

3𝛿𝑖𝑗
1
𝑑𝑖
+ 2

𝜇𝑖

. (5.6)

This formulation of the statistical error is meant to more closely approximate the

Poisson likelihood, which is important given the low-statistics nature of the 1𝑒1𝑝

analysis. Unlike the Poisson likelihood, the CNP chi-square test statistic is compat-

ible with the covariance matrix formalism developed for our systematic uncertainty

treatment.

All statistical tests use the constrained 1𝑒1𝑝 prediction and uncertainties shown

in figure 5-11 when comparing to the 25 observed data events. We define two distinct

hypotheses which we will refer to in the following discussion: 𝐻0, the prediction

without the eLEE model, considering only intrinsic 𝜈𝑒 events and non-𝜈𝑒 backgrounds

(i.e. the stacked histogram in figure 5-11); and 𝐻1, the prediction including the

eLEE model (i.e. the dashed blue line in figure 5-11). Throughout this section, we

report probabilities, or 𝑝-values, calculated using the following frequentist method.

To test the distribution of a specific variable under a given hypothesis, 105 pseudo-

experiments are generated by sampling the multivariate distribution defined by the

prediction and covariance matrix of the hypothesis. This gives a predicted rate in

each bin of the distribution; we use this to sample from a Poisson distribution to get

an integer number of “observed” events in each bin. We calculate the desired test

statistic for each pseudo-experiment to build up the probability distribution of that

test statistic, which incorporates both systematic and statistical uncertainties. Then,

we can compare the observed value of the test statistic in the real dataset to the

calculated probability distribution to determine the probability of observing a more
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extreme value–this defines the 𝑝-value.

5.2.1 Goodness of Fit

For the first test, we evaluate the goodness of fit in the 1𝑒1𝑝 sample for 𝐻0 and

𝐻1 using the 𝜒2
CNP test statistic. This is done both before and after the 1𝜇1𝑝

constraint. We also consider the goodness-of-fit in both the full analysis range,

200 < 𝐸range
𝜈 [MeV] < 1200, and the low energy region 200 < 𝐸range

𝜈 [MeV] < 500,

where the eLEE model prediction is highest. Table 5.2 shows the 𝜒2
CNP per degree-

of-freedom (DOF) for each of these scenarios, as well as the corresponding 𝑝-values

calculated via the frequentist method described above.

The first thing to note there is significant tension with 𝐻1, especially after the

1𝜇1𝑝 constraint, as indicated by the low 𝑝-values. This is true both over the full

analysis energy range and in the low energy range. After the constraint, there is

greater than 3𝜎 tension between 𝐻1 and the observed data across the full energy

range.

There is also disagreement between 𝐻0 and the observed data, though not to

the same level as the 𝐻1 case. Over the full analysis energy range, the 𝑝-values in

table 5.2 indicate 2.1𝜎 (2.4𝜎) tension between 𝐻0 and the data before (after) the 1𝜇1𝑝

constraint. This seems to come from two sources: the deficit in data compared to

prediction below 500 MeV in figure 5-11, and the excess in the 800-900 MeV bin in

figure 5-11. The first of these is possibly a real effect–similar low-energy deficits are

observed by all three 𝜈𝑒 analyses [116]. It is also observed in the 𝐸𝑄𝐸−ℓ
𝜈 distribution

in figure 5-4d and is therefore not likely to be related to proton misreconstruction.

Our Michel electron sample covered in section 4.4.3 indicates robust modeling of

low-energy electron showers, so this is also unlikely to be the culprit. The excess

in the 800-900 MeV bin, however, appears to be a statistical fluctuation. The other

variables examined in this analysis all show good agreement between data and MC

and do not have similar narrow excesses. For instance, the 𝐸𝑒, 𝐸𝑝, 𝜃𝑒, and 𝐸𝑄𝐸−ℓ
𝜈

distributions in figure 5-4 have a 𝜒2
CNP/DOF (𝑝-value) of 10.68/10 (0.42), 5.77/10

(0.80), 10.19/10 (0.48), and 11.46/10 (0.52), respectively. The 𝜒2
CNP/DOF and 𝑝-
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value of all 36 variables examined in this analysis are reported in the Supplemental

Material of Ref. [148].

Nominal Predictions

Range 𝐻0 𝐻1

𝜒2
CNP/DOF 𝑝-value 𝜒2

CNP/DOF 𝑝-value
200–500 MeV 6.06/3 0.138 8.30/3 0.053
200–1200 MeV 23.02/10 0.024 25.37/10 0.014

Constrained Predictions

Range 𝐻0 𝐻1

𝜒2
CNP/DOF 𝑝-value 𝜒2

CNP/DOF 𝑝-value
200–500 MeV 7.91/3 0.075 17.3/3 0.002
200–1200 MeV 25.28/10 0.014 36.35/10 5.0× 10−4

Table 5.2: Results from goodness-of-fit tests comparing observed 1𝑒1𝑝 data to the 𝐻0

and 𝐻1 predictions, reported via the 𝜒2
CNP test statistic and the frequentist 𝑝-value.

The top half of the table considers the nominal prediction and uncertainties before
the 1𝜇1𝑝 constraint described in section 5.1.3, while the bottom half considers the
post-constraint prediction and uncertainties.

5.2.2 Two Hypothesis Test

The next test we perform is a two-hypothesis Δ𝜒2 test between 𝐻0 and 𝐻1. Specifi-

cally, we use the test statistic

Δ𝜒2 = 𝜒2
CNP,𝐻0

− 𝜒2
CNP,𝐻1

. (5.7)

Thus, a positive (negative) value indicates better agreement with 𝐻1 (𝐻0). For this

test, we consider the post-1𝜇1𝑝-constraint prediction and errors for the 1𝑒1𝑝 sample.

Figure 5-13 shows the distribution of this test statistic under both hypotheses, gener-

ated using the frequentist method described above. As expected, the 𝐻0 distribution

peaks below zero while the 𝐻1 distribution peaks above zero. These distributions

can be used to determine the one-sided exclusion sensitivity of each hypothesis in the

two-body CCQE analysis. If we denote the median Δ𝜒2 value under 𝐻1 as (Δ𝜒2)med
𝐻1

,

the probability of 𝐻0 generating a larger Δ𝜒2 than (Δ𝜒2)med
𝐻1

is 0.003. This corre-

sponds to an 𝐻0 exclusion sensitivity of 2.7𝜎. Conversely, if we define (Δ𝜒2)med
𝐻0

in
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an analogous way, the probability of 𝐻1 generating a smaller Δ𝜒2 than (Δ𝜒2)med
𝐻0

is

0.017, corresponding to an 𝐻1 exclusion sensitivity of 2.1𝜎.

As shown in figure 5-13, the observed data result in a test statistic of Δ𝜒2 =

−11.08. The probability of observing a smaller Δ𝜒2 under 𝐻0 and 𝐻1 is 0.020 and

1.6 × 10−4, respectively, corresponding to a Gaussian significance of 2.1𝜎 and 3.6𝜎.

Thus, the data exhibits mild tension with 𝐻0 and significant tension with 𝐻1. A

similar conclusion was reached for the goodness-of-fit test; the tension with 𝐻0 likely

comes from the same sources discussed in section 5.2.1. Due to the fact that non-

negligible tension is observed with respect to both hypotheses, we report our exclusion

significance for 𝐻1 using the CL𝑠 method [211,212]. The CL𝑠 test statistic is defined

as

CL𝑠 =
𝑝𝐻1

𝑝𝐻0

, (5.8)

where CL𝑠 = 0.008 for our observed data. Using this method, we reject 𝐻1 in favor

of 𝐻0 with a Gaussian significance of 2.4𝜎.

Figure 5-13: Distributions of the Δ𝜒2 test statistic defined in equation (5.7) for 𝐻0

(red) and 𝐻1 (blue), calculated by generating 105 pseudo-experiments under each
hypothesis. The Δ𝜒2 value of the data is also shown.
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5.2.3 Signal Strength Scaling Test

The final statistical test we perform on our 1𝑒1𝑝 dataset is a one-parameter signal

strength scaling test. Specifically, we multiply by the eLEE weights in figure 4-

1b by an overall normalization factor 𝑥LEE which can vary within [0,∞]. In this

construction, 𝑥LEE = 0 corresponds to 𝐻0 and 𝑥LEE = 1 corresponds to 𝐻1. We can

use the Feldman-Cousins procedure [25] along with the test statistic

Δ𝜒2(𝑥LEE) = 𝜒2
CNP(𝑥LEE)− min

𝑥LEE∈[0,∞]
{𝜒2

CNP(𝑥LEE)} (5.9)

to determine confidence intervals on 𝑥LEE. We can use the Asimov dataset, in which

the observation is exactly the predicted value in each bin, to determine the sensitivity

to each hypothesis in this test. Under 𝐻0, the expected upper bound on 𝑥LEE at the

90% (2𝜎) confidence level is 0.75 (0.98). Under 𝐻1, the expected confidence interval

at the 1𝜎 (2𝜎) confidence level is [0.53, 1.66] ([0.28, 2.67]), and the expected sensitivity

to rule out 𝑥LEE = 0 is 2.8𝜎.

Figure 5-14 shows the confidence intervals on 𝑥LEE derived from the observed

data. The best-fit value is 𝑥LEE = 0, which is expected given the deficit in data at

the lowest neutrino energies where the eLEE model weights are the largest. The 90%

(2𝜎) upper bound on 𝑥LEE is 0.25 (0.38). These upper bounds are stronger than the

expected confidence intervals under 𝐻0, which is mainly due to the aforementioned

deficit at low neutrino energies.

5.3 Discussion and Outlook

The observation in the 1𝑒1𝑝 signal channel of the two-body CCQE analysis is inconsis-

tent with a MiniBooNE-like excess of 𝜈𝑒 CCQE interactions. Under a two-hypothesis

test, we rule out the nominal eLEE model (𝐻1) at the 2.4𝜎 using the CL𝑠 method.

We can set an upper bound on the signal strength scaling parameter 𝑥LEE of 0.38 at

the 2𝜎 level.

This is consistent with the results from all three MicroBooNE 𝜈𝑒 analyses [116].
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Figure 5-14: Confidence intervals on 𝑥LEE calculating using the Feldman-Cousins pro-
cedure. The solid and dotted lines indicate the confidence level with which a given
𝑥LEE is disfavored, calculated using the Feldman-Cousins method [25] and Wilks the-
orem [26], respectively. The MiniBooNE statistical and systematic errors are shown
as a band around 𝑥LEE = 1.

As shown in figure 5-15a, three of the four signal channels from the three 𝜈𝑒 analyses

observe a deficit of selected events at the lowest neutrino energies, where the eLEE

model is supposed to peak. The exception is the 1𝑒0𝑝0𝜋 channel from the MiniBooNE-

like sample; however, this is the least sensitive of the four channels, as it is dominated

by non-𝜈𝑒 backgrounds. Figure 5-15b shows the results from the signal strength

scaling test in all four channels. With the exception of the 1𝑒0𝑝0𝜋 channel, all analyses

rule out 𝑥LEE = 1 at greater than the 2𝜎 confidence level. The most sensitive analyses

observe an upper bound 𝑥LEE . 0.5 at the 2𝜎 confidence level.

The first MicroBooNE results also included a search for Δ → 𝑁𝛾 decays as an

explanation for the MiniBooNE excess. The analysis did not observe an excess of

Δ → 𝑁𝛾 candidate events and ruled out the required enhancement to explain the

MiniBooNE anomaly at the 95% confidence level. The full details of this analysis can

be found in Ref. [80].

Thus, the MicroBooNE results disfavor both an enhancement of 𝜈𝑒 CC interac-
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tions and Δ → 𝑁𝛾 decays as the sole explanation of the MiniBooNE excess. Potential

explanations of the MiniBooNE anomaly must now remain consistent with these Mi-

croBooNE results. One promising avenue involves dark sector models which produce

a photon or 𝑒+𝑒− pair in the MiniBooNE detector. Such event signatures have not yet

been explored by MicroBooNE, though this work is in progress. Crefch:neutrissimos

explores a photon-based explanation of MiniBooNE, involving the decay of a heavy

neutral lepton to a single photon via a transition magnetic moment. The theoretical

and experimental neutrino physics communities are actively working to develop inno-

vative models to explain the MiniBooNE LEE and equally innovative measurements

to test those models.

The following subsections close with two projects I co-led with various collab-

orators to follow up on the state of the MiniBooNE excess after the MicroBooNE

results. The first examines the 3+1 model simultaneously in MiniBooNE and Micro-

BooNE [102]. The second explores the implications of a 𝜈𝑒-based MiniBooNE LEE

for the MicroBooNE results [201].

(a) (b)

Figure 5-15: Figure 5-15a shows the observation compared to the nominal (𝐻0) pre-
diction in all four signal channels from the three MicroBooNE 𝜈𝑒 analyses, including
statistical errors on the data points and systematic errors on the prediction. The
eLEE prediction (𝐻1) is also indicated by the red line. Figure 5-15b shows the ob-
served 1𝜎 and 2𝜎 confidence intervals on 𝑥LEE from all four signal channels. The 2𝜎
expected sensitivity of each channel is shown in red.
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5.3.1 Publication: MiniBooNE and MicroBooNE Combined

Fit to a 3 + 1 Sterile Neutrino Scenario

The initial results from the MicroBooNE 𝜈𝑒 analyses did not explicitly test short-

baseline 𝜈𝜇 → 𝜈𝑒 oscillations from the 3 + 1 model. Shortly after the MicroBooNE

results came out, two studies appeared assessing the sensitivity of the MicroBooNE

𝜈𝑒 analyses to the 3 + 1 model [188, 213]. Following up on this, the MiniBooNE

collaboration released the first combined fit to a 3 + 1 model using MicroBooNE

and MiniBooNE data [102]. This study was led by myself and Austin Schneider.

The full Physical Review Letters publication is included below. We considered the

two-body CCQE and inclusive MicroBooNE 𝜈𝑒 analyses, as these placed the most

stringent constraints on the eLEE model and provided data releases with the requisite

detail to perform a 3 + 1 fit [116]. The most important result from this study is

Figure 2, which indicates that there are still allowed regions in 3+1 parameter space

at the 3𝜎 confidence level in the MiniBooNE-MicroBooNE combined fit. This was

also the first MiniBooNE analysis to account for all three oscillation probabilities in

equation (1.36): 𝜈𝑒 appearance, 𝜈𝜇 disappearance, and 𝜈𝑒 disappearance. Previous

3 + 1 fits to MiniBooNE data have only considered 𝜈𝑒 appearance, as this is the

dominant effect in the electron-like channel. However, 𝜈𝑒 and 𝜈𝜇 disappearance can

have a non-negligible impact on the intrinsic 𝜈𝑒 and misidentified 𝜈𝜇 background rate

in the MiniBooNE electron-like prediction. The 𝜈𝑒 disappearance probability is also

important when considering MicroBooNE data, as the prediction in each MicroBooNE

𝜈𝑒 analysis is dominated by intrinsic 𝜈𝑒 interactions [148, 170]. MicroBooNE has

since released official constraints on the 3 + 1 model using data from the inclusive 𝜈𝑒
analysis [214]–these constraints are consistent with our implementation.
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This Letter presents the results from the MiniBooNE experiment within a full “3þ 1” scenario where
one sterile neutrino is introduced to the three-active-neutrino picture. In addition to electron-neutrino
appearance at short baselines, this scenario also allows for disappearance of the muon-neutrino and
electron-neutrino fluxes in the Booster Neutrino Beam, which is shared by the MicroBooNE experiment.
We present the 3þ 1 fit to the MiniBooNE electron-(anti)neutrino and muon-(anti)neutrino data alone and
in combination with MicroBooNE electron-neutrino data. The best-fit parameters of the combined fit with
the exclusive charged-current quasielastic analysis (inclusive analysis) are Δm2 ¼ 0.209 eV2ð0.033 eV2Þ,
jUe4j2¼0.016ð0.500Þ, jUμ4j2¼0.500ð0.500Þ, and sin2ð2θμeÞ¼0.0316ð1.0Þ. Comparing the no-oscillation

scenario to the 3þ 1 model, the data prefer the 3þ 1 model with a Δχ2=d:o:f: ¼ 24.7=3ð17.3=3Þ, a
4.3σð3.4σÞ preference assuming the asymptotic approximation given by Wilks’s theorem.

DOI: 10.1103/PhysRevLett.129.201801

Introduction.—The MiniBooNE low-energy excess
(LEE) is a long-standing anomaly in neutrino physics.
This excess of electronlike events was observed in the
muon-neutrino dominated flux from the Booster Neutrino
Beam (BNB), and is most significant between 200 and
600 MeV in reconstructed neutrino energy. Initially

reported in 2007 [1], the excess reached a significance
of 4.8σ in the energy range 200 < EQE

ν < 1250 MeV with
the full MiniBooNE ν and ν̄ dataset [2]. We note that this
significance is derived from a direct comparison between
MiniBooNE data and the Standard Model (SM) prediction
and is thus independent of any physics model, including the
3þ 1 model explored in this Letter. A wide range of
explanations for the excess have been put forward, but the
initial, and still most-referenced, new physics explanations
invoke νμ → νe oscillations.
The BNB flux is produced through 8 GeV protons

impinging on a beryllium target that is located inside a
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magnetic focusing horn, which can reverse polarity to run
in neutrino or antineutrino mode, followed by a 50 m
meson decay pipe. The MiniBooNE detector, which is a
450 ton fiducial mass, mineral-oil-based Cherenkov detec-
tor, is located 541 m downstream of the beryllium target.
The detector is sensitive to neutrinos with energies between
100 MeV and 3 GeV. This combination of energy and
baseline makes MiniBooNE an ideal experiment to probe
the appearance of electron neutrinos from νμ → νe oscil-
lations in a mass-squared splitting region greater than
1 × 10−2 eV2. The full dataset taken in a series of runs
between 2002 and 2019 yields a 1σ allowed region in Δm2

between 0.04 and 0.4 eV2, with mixing angles varying
from 1.0 to 0.01 [2].
These mass-squared splittings are more than an order of

magnitude larger than the splitting of atmospheric neutrino
oscillations, Δm2

atmos ≈ 2.5 × 10−3 eV2 [3]—associated
with the largest mass splitting in three neutrino oscillation
models. Therefore, to accommodate such oscillations, it is
necessary to postulate the existence of a fourth neutrinomass
and a fourth neutrino flavor that must be non-weakly-
interacting (or “sterile”) to avoid constraints from Z decay
[4]. In such a model, the sterile neutrino flavor and the
three active flavors are connected to a fourth mass state
through an extension of the Pontecorvo–Maki–Nakagawa–
Sakata mixing matrix. Such a model introduces a combina-
tion of three possible experimental signatures: (1) electron
flavor disappearance to other flavors, leading to fewer νe
events than expected (“νe → νe”), (2) muon flavor disap-
pearance to other flavors (“νμ → νμ”) reducing the νμ rate,
and (3) νμ → νe appearance, where an excess of νe events
would be observed. Past MiniBooNE νμ → νe appearance
analyses have assumed that the νe and νμ disappearance
effects were negligible. However, for the mass-squared
splitting and mixing angles we are concerned with, νe
disappearance can reduce the intrinsic νe background con-
tribution by up to 80%, and νμ disappearance can decrease
the νμ event rate by up to 80%. Neglecting these effects has
been considered to be an overly simplified approach.
External analyzers have investigated the difference between
this approach and an analysis with a full treatment of the
3þ 1 model [5–7] and have explored the effects other
nuclear models on these results [5]. In response to this, in
this Letter we expand the analyses of the full MiniBooNE
datasets and simulation samples to present the first full 3þ 1
sterile neutrino oscillation model by the collaboration.
In 2015, the MicroBooNE experiment joined the

MiniBooNE experiment as a user of the BNB beamline.
The MicroBooNE experiment was designed with the
primary goal of investigating the LEE by using the detailed
information from its liquid-argon time-projection chamber
(LArTPC) to distinguish between electron induced events
and photon induced events. This allows the rejection of
many misidentified backgrounds in the MiniBooNE data-
set. MicroBooNE has recently released results of a search

for a generic νe excess, assuming the median shape of the
MiniBooNE excess, in a strategy that is agnostic to
particular oscillation models. External analyses have
applied more focused studies, placing limits on νe dis-
appearance [8], expanding the MicroBooNE analysis to all
systematically allowed shapes of the MiniBooNE excess
[9], and considering how the MicroBooNE data constrain
the parameters of a 3þ 1 sterile neutrino model [9].
However, until now, there has been no MiniBooNE-
MicroBooNE combined analysis.
Because MiniBooNE and MicroBooNE share the same

beamline, we can use MiniBooNE tools to perform a
combined fit to the data of the two experiments. On the
other hand, because the detectors are substantially different,
the two experiments have complementary capabilities.
MicroBooNE is an 85 ton active mass LArTPC [10],
which allows for detailed reconstruction of neutrino inter-
actions that is not possible using the MiniBooNE
Cherenkov detector.
The MiniBooNE experiment has a large sample size, but

relatively high backgrounds from misidentification back-
grounds that dominate MiniBooNE’s electron-neutrino
sample. The MicroBooNE experiment uses a relatively
small detector, but can remove most misidentification
backgrounds [11]. The imaging capability of the LArTPC
has allowed the MicroBooNE experiment to select three νe
charged-current (CC) samples [12]: a high purity exclusive
sample of charged-current quasielastic (CCQE) interactions
[11], a semi-inclusive sample of pionless interactions [13],
and a fully inclusive sample [14]. The MicroBooNE data
allow for a clean test of the hypothesis that the MiniBooNE
excess events are due to νe CC interactions. We consider
only the CCQE and inclusive analyses, as the former has
the lowest systematic uncertainty and the latter has the
largest sample size. The CCQE analysis uses deep-learning-
based reconstruction, while the inclusive analysis uses wire-
cell-based reconstruction; thus they are hereafter identified
in figures and tables by the shorthand “DL” and “WC”,
respectively. In this Letter, we present the first MiniBooNE-
MicroBooNE combined fits to a 3þ 1 model.
Fit details.—The model of interest is a three-active plus

one-sterile neutrino model called 3þ 1. This model
expands the 3 × 3 neutrino mixing matrix to 4 × 4,

U3þ1 ¼

2
6664

Ue1 Ue2 Ue3 Ue4

Uμ1 Uμ2 Uμ3 Uμ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us2 Us3 Us4

3
7775: ð1Þ

In such a model, both νμ and νe disappearance is expected
to occur with the same Δm2 as the νμ → νe appearance
signal, as long as both Ue4 and Uμ4 are nonzero. The three
processes are related through their effective mixing angles,
which are expressed as
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sin2ð2θμμÞ ¼ 4ð1 − jUμ4j2ÞjUμ4j2;
sin2ð2θeeÞ ¼ 4ð1 − jUe4j2ÞjUe4j2;
sin2ð2θeμÞ ¼ 4jUe4j2jUμ4j2; ð2Þ

which appear within the oscillation probability formulas,

Pðνμ → νeÞ ¼ sin22θμesin2ðΔm2
41L=EÞ;

Pðνe → νeÞ ¼ 1 − sin22θeesin2ðΔm2
41L=EÞ;

Pðνμ → νμÞ ¼ 1 − sin22θμμsin2ðΔm2
41L=EÞ: ð3Þ

There are three physics parameters in the 3þ 1 model
relevant to these two experiments: the sterile mass split-
ting Δm2

4i ≡ Δm2 (where we assume degeneracy for
i ∈ f1; 2; 3g) and the two mixings of the new mass eigen-
state to the electron weak eigenstate jUe4j2 and muon
weak eigenstate jUμ4j2. Different combinations of these
parameters will induce different rates of νe appearance, as
well as νμ and νe disappearance in the MiniBooNE and
MicroBooNE detectors. In each case, the oscillation prob-
ability depends upon the true neutrino energyE and baseline
of each event L.
The oscillation prediction in MiniBooNE is determined

by a simple reweighting of the MiniBooNE νμ → νe
simulation using the oscillation formulas [Eqs. (3)]. This
direct method is not possible for the MicroBooNE analyses,
as only limited simulation information for each analysis is
available [15,16]. Instead, for MicroBooNE, we use the
MiniBooNE BNB simulation to obtain a ratio between the
nominal intrinsic νe background prediction and the νe
appearance prediction at the MicroBooNE baseline as a
function of true neutrino energy, using the BNB flux
prediction at the MicroBooNE location. This ratio, com-
bined with the intrinsic νe simulation provided by
MicroBooNE allows us to obtain a νe appearance predic-
tion in MicroBooNE. We use the same procedure to
account for νe disappearance in both analyses and νμ
disappearance in the inclusive analysis. We neglect νμ
disappearance in the MicroBooNE 1e1p CCQE prediction,
as the νμ background contamination in MicroBooNE’s
1e1p analysis is subdominant and the simulation informa-
tion for the νμ contribution is not provided by
MicroBooNE. In the MicroBooNE inclusive analysis, we
consider only four of the seven channels: the νe and νμ CC
fully contained (FC) and partially contained (PC) samples.
This is because energy reconstruction information is not
provided for the remaining three π0-based samples. We
also note that νμ → ντ neutral-current backgrounds in
MiniBooNE’s electron-neutrino measurement are not
included in the prediction; however, this effect is expected
to be small. An example of this oscillation prediction is
shown in Fig. 1.

For the MiniBooNE likelihood, we compare the fixed
observation to the theoretical expectation with a multivari-
ate normal distribution that includes systematic uncertain-
ties, Poisson statistical uncertainties on the expectation, and
finite Monte Carlo statistical uncertainties. With the large
MiniBooNE sample size, the multivariate normal distribu-
tion is a reasonable approximation for the likelihood. The
MiniBooNE systematic errors of this analysis remain the
same as in [2], with one exception. The correlated sys-
tematic errors from uncertainties in the MiniBooNE optical
model are limited to the three principal components of the
corresponding covariance matrix with the largest eigenval-
ues, and the remaining optical model errors are assumed to
be uncorrelated with no covariance among energy bins. For
each MicroBooNE analysis, we use a Poisson-derived
likelihood that accounts for finite Monte Carlo size [17];
additionally, the expectation in each bin is treated as a
nuisance parameter that is constrained by the systematics
covariance matrix [15,16]. The total likelihood is then
composed of these two experimental likelihoods; for more
details see S1 of the Supplemental Material.. We note that,
although the same beamline simulation is used to derive
systematic uncertainties for both experiments, because of
technical limitations the fit presented here accounts for
these uncertainties as if they were uncorrelated between the
two experiments. The inclusion of information from the νμ
samples of both MiniBooNE and MicroBooNE indirectly
constrains the νe predictions of the two experiments in a
correlated manner. This is handled directly for the inclusive
analysis, as the νμ CC FC-PC samples are included in the fit
(accounting for νμ appearance). For the CCQE analysis, we
allow the MicroBooNE νμ 1μ1p measurement to constrain
the MicroBooNE νe 1e1p prediction and uncertainties, and
do not account for oscillations in MicroBooNE’s νμ 1μ1p
prediction. Ignoring νμ disappearance in MicroBooNE’s
CCQE analysis is a reasonable assumption for small Uμ4

given the limited sample size from this analysis.
Results.—With the methods described in the preceding

section, we can examine theMiniBooNELEE in the context
of a 3þ 1 sterile neutrino model, both with the MiniBooNE
data alone and together with the MicroBooNE electron-
neutrino data.We show the no-oscillation SMprediction as a
dashed purple line in Fig. 1. In the SM case, theMiniBooNE
prediction lies substantially below the data in the electron-
neutrino channel. For the MicroBooNE CCQE analysis, the
data lie scattered above and below the SM prediction, in part
due to the small sample size. For theMicroBooNE inclusive
analysis, the data lie below the SMprediction across most of
the energy range. The disparity between the data and SM
prediction in MiniBooNE shows the inability of the SM to
accommodate the MiniBooNE low-energy excess in the
electron-neutrino data, while remaining in agreement with
the MiniBooNE muon-neutrino data.
In contrast to the SM, the 3þ 1 oscillation model

provides the additional freedom necessary to potentially
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better accommodate the MiniBooNE muon-neutrino
data and low-energy excess within systematic errors. In
the 3þ 1 scenario, we expect νμ → νe oscillations to
increase the prediction in the electron-neutrino channels
of both experiments, while νe disappearance will reduce the
intrinsic electron-neutrino backgrounds, and νμ disappear-
ance will reduce the muon-neutrino prediction as well as
the contribution of misidentified events in the electron-
neutrino observable channel. The prediction for the best-fit
3þ 1 scenario across both experiments is shown in Fig. 1,
separated by component, experiment, and observable
channel. Figure 1(a) compares the MiniBooNE uncon-
strained muon-neutrino and antineutrino prediction to
observed data, where the crosses denote the unconstrained
3þ 1 prediction and the dashed line denotes the uncon-
strained SM prediction; here the 3þ 1 prediction is
approximately 4% lower than the SM prediction in the
bin with the largest expectation. Figure 1(b) compares the
MiniBooNE electron-neutrino and antineutrino prediction

to data; the prediction and errors are shown after being
constrained by the muon-neutrino data for the 3þ 1 and
SM scenarios in purple, whereas the unconstrained 3þ 1
prediction is shown by the stacked histogram. The best-fit
electron-neutrino 3þ 1 oscillation prediction is approxi-
mately 15% lower in the lowest energy bin than that
reported for the best fit in the two-neutrino oscillation
analysis [2].
While the best-fit 3þ 1 scenario is preferred to the no-

oscillation scenario, it still cannot perfectly describe
MiniBooNE’s low-energy excess, especially at the lowest
energies. This is consistent with the recent MicroBooNE
results, which indicate that the low-energy excess cannot be
explained entirely by electron neutrinos [12]. This is also
consistent with previous MiniBooNE studies indicating a
forward-peaked angular distribution of the low-energy
excess [2].
The best-fit 3þ 1 parameters and the Δχ2 between

the SM and 3þ 1 scenarios are given in Table I.

FIG. 1. Comparison between data and prediction for each experiment, showing the prediction from both the SM and the 3þ 1 model.
(a)–(c) The MiniBooNE and MicroBooNE DL consider the 3þ 1 “Combination (DL)” fit parameters of Table I, while (d) the
MicroBooNE WC figure considers the “Combination (WC)” fit parameters. Black crosses show the observed data and statistical error,
and stacked histograms show the unconstrained prediction. The SM (3þ 1) prediction is represented as a dashed (solid) purple line. The
error bars on the MiniBooNE 3þ 1 prediction represent systematic uncertainty. (a) Unconstrained predictions and errors. (b) Predictions
and errors in purple after being constrained by the νμ þ ν̄μ data. (c),(d) Predictions after the allowed systematic variations have been fit to
data, and thus do not have systematic error bars shown.
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We obtain a best fit that includes substantial sterile-muon
mixing, with jUμ4j2 near 0.5, andmoderate sterile-electron
mixing, with jUe4j2 near 0.02, for both the MiniBooNE
only and the CCQE combined fit. For these fits, the best-fit
Δm2 is near 0.2 eV2 as well. The large sterile-muon
mixing at the best-fit point is in tension with constraints
on unitarity from some experiments in the neutrino sector
[18–20], although a substantial number of neutrino experi-
ments violate these constraints [21–25] as discussed in [8].
However, in this analysis, a broad region in parameter
space is allowed within the estimated 1σ confidence
region, as is visualized in Fig. 2, extending to regions
of parameter space that are not in tension with unitarity
constraints. The 1σ allowed region in Δm2 and sin2ð2θμeÞ
is similar to that reported in [2] and takes the form of a
diagonal band because theMiniBooNE LEE spans a broad
energy range and extends down to the 200 MeV boundary.
The inclusive search combined fit obtains a best fit at
maximal mixing, with a Δm2 of 0.033 eV2, compatible
with this diagonal band. The excess drives the allowed
values of sin2ð2θμeÞ, but large deviations from the best fit
in jUe4j2 and jUμ4j2 are allowed, provided the combination
produces enough νμ → νe appearance to describe the
excess. This freedom is present in part because the
systematic errors of the prediction allow large changes
to the muon-neutrino channel with little penalty, which in
turn provides only a weak constraint on jUμ4j2 through νμ
disappearance.
In both analyses, MicroBooNE’s electron-neutrino data

do not exhibit an excess at the lower end of their energy
spectrum, as MiniBooNE’s electron-neutrino data do, and
MicroBooNE overall observes a lower event rate than
predicted by the nominal no-oscillation model [12].
However, the data sample from MicroBooNE does not
have the statistical power needed to rule out a 3þ1 νμ → νe
explanation of the MiniBooNE low-energy excess. The
observed event rate from MicroBooNE’s νe CCQE 1e1p
analysis precludes very large νμ → νe appearance at values
ofΔm2 and sin2ð2θμeÞ higher than the MiniBooNE allowed
region. This manifests in Fig. 2 (top) as a small shift in
the allowed region to lower Δm2 and lower sin2ð2θμeÞ. In
Fig. 1(c), the best-fit 3þ 1 oscillation prediction increases
the expected number of events in a region where the
MicroBooNE CCQE analysis observes a deficit, suggesting
that the fit is primarily driven by the larger MiniBooNE

data sample, in line with our expectation. This is also true
for the MicroBooNE inclusive analysis, as shown in
Fig. 1(d). However, the inclusive analysis provides a
stronger constraint on νμ → νe appearance in general.
This manifests in Fig. 2 as (1) a more significant modi-
fication of the allowed regions for the combined fit and
(2) a smaller Δχ2 between the 3þ 1 best fit and the SM in
Table I, in comparison to the combined fit with the
MicroBooNE CCQE analysis. More details on the com-
bined fit with the inclusive analysis and MicroBooNE-only
constraints from both analyses can be found in S2 and S3 of
the Supplemental Material, respectively.
The 3þ 1 scenario is preferred over the no-oscillation

model in both the MiniBooNE-only and combined-fit
cases. In the MiniBooNE-only fit, we obtain a Δχ2 ¼
27.8 between the two models, whereas in the combined-fit
we obtain aΔχ2 ¼ 24.7 for 3 additional degrees of freedom
introduced in the fit. This is smaller than the Δχ2 ¼ 29

FIG. 2. The results of the MiniBooNE-only and combined fits
with MicroBooNE’s CCQE sample [11] (top) andMicroBooNE’s
inclusive sample [14] (bottom). The likelihood is obtained by
profiling over all parameters except Δm2 and sin2ð2θμeÞ. The two
best-fit points are shown as appropriately colored stars, and the
contours are obtained by comparing the profile-likelihood-ratio
test statistic to the asymptotic distribution provided by Wilks’s
theorem, assuming a difference of 2 degrees of freedom.

TABLE I. Summary of results. The Δχ2=d:o:f. in the last
column compares the 3þ 1 model to the no-oscillation model.

3þ 1 fit jUe4j2 jUμ4j2 Δm2 Δχ2/ d.o.f.

MiniBooNE only 0.021 0.500 0.191 27.8=3
Combination (DL) 0.016 0.500 0.209 24.7=3
Combination (WC) 0.500 0.500 0.033 17.3=3
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with 3 degrees of freedom reported in the two-neutrino
oscillation analysis [2], representing a drop in the signifi-
cance when disappearance effects are accounted for. If we
assume the asymptotic approximation to the test-statistic
distribution provided by Wilks’s theorem [26] with a
difference of 3 degrees of freedom between the models,
then we obtain p values of 4.09 × 10−6 and 1.77 × 10−5 in
favor of the 3þ 1 scenario for the MiniBooNE-only and
combined analyses, respectively. However, we expect the
true difference in degrees of freedom between the models to
be less than 3, based on both the degeneracy inherent in the
3þ 1 model and the smaller difference in degrees of
freedom observed in the two-neutrino MiniBooNE oscil-
lation study ([2], Sec. 5). A reduction in the difference in
degrees of freedom between the models would increase the
significance of these two statistical tests. Therefore, we
conservatively estimate that the MiniBooNE-only 3þ 1
model test prefers the 3þ 1 model to the SM at approx-
imately 4.6σ, and the addition of the MicroBooNE electron-
neutrino CCQE (inclusive) data reduces this significance to
approximately 4.3σ (3.4σ).
Conclusion.—This Letter has explored a full 3þ 1 sterile

neutrino oscillation model within the context of results from
the MiniBooNE and MicroBooNE experiments. In the
MiniBooNE electronlike analysis, we consider νμ → νe
appearance alongside both νe and νμ disappearance. In the
MicroBooNE CCQE analysis, we consider νe appearance
and νe disappearance. In theMicroBooNE inclusive analysis,
we consider νe appearance and both νe and νμ disappearance.
In an analysis of theMiniBooNE-only data, we find a best fit
to the 3þ 1 model of Δm2 ¼ 0.191 eV2, jUe4j2 ¼ 0.021,
jUμ4j2 ¼ 0.500, and sin2ð2θμeÞ ¼ 0.0417. A combined fit to
the MiniBooNE and MicroBooNE CCQE analyses finds a
best fit to the 3þ 1 model at oscillation parameters of
Δm2 ¼ 0.209 eV2, jUe4j2 ¼ 0.016, jUμ4j2 ¼ 0.500, and
sin2ð2θμeÞ ¼ 0.0316. A combined fit to the MiniBooNE
and MicroBooNE inclusive analyses finds a best fit to the
3þ 1model at oscillation parameters ofΔm2 ¼ 0.033 eV2,
jUe4j2 ¼ 0.500, jUμ4j2 ¼ 0.500, and sin2ð2θμeÞ ¼ 1.0. In
the MiniBooNE-only analysis, the 3þ 1 scenario is pre-
ferred over the no-oscillation case with a Δχ2=d:o:f: of
27.8=3, whereas in the combined analysiswithMicroBooNE
CCQE (inclusive) data, we obtain Δχ2=d:o:f: ¼
24.7=3ð17.3=3Þ. Although the 3þ 1 model is not a perfect
description of the low-energyMiniBooNE electron-neutrino
data, we find that a 3þ 1 sterile neutrino oscillation scenario
is a better description of the MiniBooNE data than the no-
oscillation scenario and is not in tension with MiniBooNE’s
muon-neutrino data. We also find that the MicroBooNE
electron-neutrino data do not rule out the allowed 3þ 1
interpretations for the MiniBooNE data, but do reduce the
significance of the result andmake only a small modification
to the allowed regions. We look forward to the inclusion of
additional data into this combined fit from the upcoming

short-baseline near detector and ICARUS experiments in
order to shed more light onto the 3þ 1 sterile neutrino
hypothesis [27].
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Supplemental Materials: MiniBooNE and MicroBooNE Combined Fit to a 3+1
Sterile Neutrino Scenario

S1. LIKELIHOOD

The physics parameters of the model are the mass squared splitting ∆m2, electron-sterile mixing |Ue4|2, and muon-

sterile mixing |Uµ4|2. The mixing parameters (|Ue4|2, |Uµ4|2) are allowed to vary between 0 and 1 while maintaining

unitarity of the mixing matrix through the condition |Ue4|2 + |Uµ4|2 ≤ 1. The additional nuisance parameters of the

model are the MicroBooNE per-bin systematic scalings αi. Here the set of physics parameters are denoted by θ⃗, and
the set of nuisance parameters denoted by η⃗. The combined MiniBooNE-MicroBooNE likelihood is the product the
two experimental likelihoods such that

L(θ⃗, η⃗|x⃗) = LMB(θ⃗|x⃗MB)× LuB(θ⃗, η⃗|x⃗uB),

where LMB is the MiniBooNE likelihood, LuB is the MicroBooNE likelihood, x⃗MB is collection of the MiniBooNE
data counts, x⃗uB is the collection of MicroBooNE data counts, and x⃗ = x⃗MB ∪ x⃗uB is the collection of all data counts.
The MiniBooNE likelihood is approximated as a multivariate normal distribution

LMB(θ⃗, η⃗|x⃗MB) = N (x⃗MB|µ⃗MB(θ⃗),ΣMB(θ⃗)),

where µ⃗MB is the predicted number of data counts in each bin, and ΣMB is the MiniBooNE covariance matrix. In
this case the MiniBooNE covariance matrix includes systematic errors, Poisson statistical errors, and Monte-Carlo
statistical errors. The MicroBooNE likelihood is given by

LuB(θ⃗, η⃗|x⃗uB) = N (α⃗|1,ΣuB)×
∏
i

LEff(αiµ
uB
i (θ⃗), σ2

i,mc(θ⃗, αi)|xi,uB),

where N (α⃗|1,ΣuB) is the multivariate normal prior on the MicroBooNE systematics scalings, ΣuB is the MicroBooNE
fractional covariance matrix, µi is the predicted number of data counts in each bin before systematic modifications,
and σ2

i,mc is the Monte-Carlo statistical error on the per-bin data count prediction after the systematics scalings have
been applied. The MicroBooNE fractional covariance matrix, ΣuB, is the constrained fractional covariance matrix
from [1, 2]. The likelihood LEff is a Poisson-based likelihood that accounts for finite Monte-Carlo sample errors, and
is described in [3]. The minimum − logL for each of the 3+1 fit scenarios described in the main text is given in
Table S1.

Datasets Included minη⃗{− logL} (no-oscillation model) minθ⃗,η⃗{− logL} (3+1 model)

MiniBooNE only 219.1 205.2
MiniBooNE + DL 251.0 238.7
MiniBooNE + WC 673.1 664.5

TABLE S1. Summary of the minimum negative-log-likelihood values for each of the 3+1 fit scenarios described in the main
text, including the result for both the no-oscillation and oscillation cases.

S2. COMBINED FIT WITH MICROBOONE INCLUSIVE ANALYSIS

In this section, we provide the predicted event event rate in the MiniBooNE νe+ ν̄e and νµ+ ν̄µ distributions, as well
as well as the MicroBooNE νe FC, νe PC, νµ FC and νµ PC distributions for the “Combination (WC)” best fit to the
3+1 model in Table I. Comparisons between data and prediction in each of these channels is shown in Figure S1. One
can see that the best-fit solution prefers negligible νµ disappearance while still allowing for enough νµ(ν̄µ) → νe(ν̄e)
appearance to explain most of the excess in the MiniBooNE νe + ν̄e channel. Additionally, the systematic pull terms
in the MicroBooNE analysis modify the prediction in the νµ FC and νµ PC channels to match the data, in contrast
to the central value prediction shown in Figure 21 of Ref. [4].
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FIG. S1. Comparison between data and prediction for each experiment, showing the prediction from both the SM and the 3+1
model, considering the 3+1 “Combination (WC)” fit parameters of Table I. See the caption of Figure 1 in the main text for a
description of the content of each subfigure.

S3. CONSTRAINTS FROM MICROBOONE DATA

In this section, we report the constraints in 3+1 parameter space derived from each of MicroBooNE samples
individually. Results from the CCQE (Inclusive) sample are shown in the left (right) plot of Figure S2. One can see
that the Inclusive sample sets a slightly stronger constraint than the CCQE sample.
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FIG. S2. Constraints in 3+1 parameter space from the MicroBooNE CCQE (left) and Inclusive (right) samples. See the caption
of Figure 2 in the main text for more details on the content shown in each plot. Note that the best fit point for the Inclusive
sample lies outside of the window shown here.
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5.3.2 Publication: Implications of MicroBooNEs low sen-

sitivity to electron antineutrino interactions in the

search for the MiniBooNE excess

The first MicroBooNE results indeed set strong limits on 𝜈𝑒 CC interactions as an

explanation for the entire MiniBooNE LEE. However, as pointed out in Ref. [201], this

conclusion changes if the MiniBooNE LEE comes instead from 𝜈𝑒 CC interactions.

This is driven mainly by differences in the low-energy suppression of 𝜈𝑒-nucleus and

𝜈𝑒-nucleus cross sections, coming from interference between the vector and axial form

factors as well as nucleon binding energy effects. Binding energy effects are especially

important in MicroBooNE–within a non-isoscalar nucleus like 40Ar, it takes more

energy for a 𝜈𝑒 to turn a proton into a neutron than it does for a 𝜈𝑒 to turn a neutron

into a proton. This is not necessarily the case in MiniBooNE, as 12C is an isoscalar

nucleus. This study was led by myself and Matheus Hostert. The full Physical Review

D publication can be found below. The most important results are shown in Figure 5

and Figure 6, which indicate that the MicroBooNE sensitivity to the MiniBooNE LEE

decreases as more of the excess is attributed to 𝜈𝑒 rather than 𝜈𝑒 CC interactions.

Specifically, the MicroBooNE data are consistent at the 2𝜎 confidence level with a

scenario in which the entire MiniBooNE LEE comes from 𝜈𝑒 interactions.
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The MicroBooNE experiment searched for an excess of electron-neutrinos in the Booster Neutrino
Beam (BNB), providing direct constraints on νe-interpretations of the MiniBooNE low-energy excess
(LEE). In this article, we show that if the MiniBooNE LEE is caused instead by an excess of ν̄e, then liquid
argon detectors, such as MicroBooNE, SBND, and ICARUS, would have poor sensitivity to it. This is due
to a strong suppression of ν̄e–40Ar cross sections in the low-energy region of the excess. The MicroBooNE
results are consistent at the 2σ CL with a scenario in which the MiniBooNE excess is sourced entirely by ν̄e
interactions. The opportune location of ANNIE, a Gd-loaded water Cherenkov detector, allows for a direct
search for a ν̄e flux excess in the BNB using inverse beta-decay events.

DOI: 10.1103/PhysRevD.107.092002

I. INTRODUCTION

The MiniBooNE Experiment at Fermi National
Accelerator Laboratory (Fermilab) used a 450 t fiducial
volume mineral-oil-based (CH2) Cherenkov detector to
search for the appearance of electronlike events in a beam
made predominantly of muon-flavor neutrinos. The beam,
produced in the Booster Neutrino Beamline (BNB),
resulted from 8.9 GeV total energy protons impinging
on a beryllium target, with charged mesons magnetically
focused toward the detector [1]. The polarity of the
magnet could be switched to allow either positively or
negatively charged mesons to be focused. The pions and
kaons decayed to mainly produce a muon-flavor flux of
neutrinos or antineutrinos, with low electron-flavor con-
tent, as discussed below. The beam traversed largely
undisturbed to reach the MiniBooNE detector located
541 m downstream. The analysis sought to isolate the
charged-current quasielastic (CCQE) scattering of neu-
trinos, νeþn→e−þp, or antineutrinos, ν̄eþp→eþþn.

In the MiniBooNE Cherenkov detector, both reactions
appear as single electromagneticlike Cherenkov rings.
During a series of runs from2002 to 2019, theMiniBooNE

experiment received 18.75 × 1020 (11.27 × 1020) protons on
target (POT) with the magnetic horn focusing positively
(negatively) charged mesons. An excess of 560.6� 119.6
(77.4� 28.5) electronlike events above the background from
intrinsic electron-flavor flux and misidentified muon-flavor
events was observed [2]. These low-energy excesses are
often referred to as the MiniBooNE “LEE” signal. The
community has engaged in a thorough search for misidenti-
fied particles that were not included in the analysis but has
not identified a conclusive explanation behind the full
excess [3–5]. This leads us to reconsider the flux that could
cause the LEE signature.
Because the detector is limited to identifying an electron-

like Cherenkov ring, it is not possible to identify the
neutrino versus antineutrino content of the LEE. Therefore,
under the assumption that the LEE is caused by an excess of
νe or ν̄e CCQE events in the detector, we can categorize the
possible explanations as follows (defining fν̄=ν to be the ν̄e
fractional contribution to the LEE in neutrino mode):
(1) Scenario 1: The excess is entirely due to νe inter-

actions in neutrino mode running, fν̄=ν ¼ 0, and
entirely ν̄e in antineutrino mode running. This fits
the classic model of sterile-enhanced νμ → νe neu-
trino oscillations.
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(2) Scenario 2: The excess arises from a flux of mixed
content. In this scenario, we assume the event rate of
the excess is evenly split into neutrino and anti-
neutrino events, fν̄=ν ¼ 0.5. In neutrino mode, this
hypothesis corresponds to a flux excess of antineu-
trinos that is larger and lower-energy than the flux
excess of neutrinos.

(3) Scenario 3: The excess is entirely due to ν̄e inter-
actions in neutrino and antineutrino mode running,
fν̄=ν ¼ 1.

Of these three possibilities, only Scenario 1 has been
thoroughly explored by the community [5]. While the two
experiments were situated in very different beams, we note
that an anomalous flux of antineutrinos in MiniBooNE
may also be compatible with the unexplained signal at the
LSND experiment. LSND operated with a liquid scintilla-
tor detector at the LANSCE spallation source and observed
a 3.8σ-significant excess of inverse beta decay (IBD) [6].
Because of the unique IBD signature, a positron accom-
panied by delayed neutron capture, the LSND excess favors
a ν̄e interpretation over a νe one.
Motivated by Scenario 1, the MicroBooNE Experiment

was proposed to run on the same Booster Neutrino
Beamline, 70 m upstream of the MiniBooNE detector,
using an 80 t fiducial volume liquid argon time projection
chamber (LArTPC). The LArTPC technology was selected
in 2006 to greatly reduce photon-electron misidentification
backgrounds that were thought, at the time, to be the best
explanation of the MiniBooNE anomaly [7]. However, as a
state-of-the-art detector, the cost per ton for the detector led
to a restricted size, and hence low statistics. The experiment
has published data taken from 2016–2018 totaling
6.9 × 1020 POT in neutrino mode. In principle, the
Oð1Þ cm vertex resolution of the MicroBooNE detector
[8] and its ability to detect protons allows for the separation
of νe þ n → e− þ p and ν̄e þ p → eþ þ n events, making
it ideal for testing mixed models like Scenarios 2 and 3.
Unfortunately, in practice, the argon target has a highly-
suppressed antineutrino interaction cross section in the
Eν̄ < 600 MeV range of interest for the LEE, as we explain
below. Thus, given the size of the detector and the length
of the run, MicroBooNE is much less sensitive to an
antineutrino component in the LEE.
MicroBooNE performed a model-agnostic search for the

MiniBooNE LEE [9], building a template of the excess
with respect to the Standard Model prediction from the
MiniBooNE neutrino-mode data. The LEE template was
derived by unfolding the difference between the central value
of the data and background predictions at MiniBooNE to an
excess of neutrinos in the beam.This process assumed that the
MiniBooNE LEE signal was entirely due to neutrino inter-
actions.The strategy to obtain the template and corresponding
constraint on it at MicroBooNE was the following [10]:
(1) The MiniBooNE Monte Carlo sample of true νe

charged-current (CC) interactions is used to construct

the response matrix Aiα ≡ PðReconstructed ij
generated in αÞ, where i refers to the reconstructed
energy bin ðEQE

ν Þi, and α refers to the true-energy
bin ðEtrue

ν Þα.
(2) The unfolded intrinsic νe CC interaction rate in true

energy space, uα, is obtained via the D’Agostini
iterative approach [11]. The regularization parameter
was chosen to (1) minimize the variance of the
unfolded spectra, (2)minimize the bias of the unfolded
spectra, and (3) produce an expected event rate in
reconstructed energy space, which is statistically
consistent with the observed MiniBooNE data.

(3) The ratio of the unfolded event rate uα and the
central value MiniBooNE Monte Carlo prediction
are taken as weights in true neutrino energy space,
which are then applied to true νe CC interactions in
the MicroBooNE simulation to produce the LEE
model prediction.

The two MicroBooNE analyses with the highest sensi-
tivity to the LEE were the Deep-Learning Based Analysis
(DL) [12] and the Wire-Cell Analysis (WC) [13]. In brief,
the DL analysis looked for an exclusive sample of νe CC
interactions with one electron and one proton in the final
state (1e1p). The reconstruction chain relied on two novel
LArTPC-specific deep learning algorithms, SparseSSNet [14]
and MPID [15], to isolate these 1e1p events. The kinematics
of the electron and proton were required to be consistent
with CC quasielastic scattering to reduce systematic
uncertainties on the interaction cross-section. This resulted
in a signal sample with a large signal-to-background ratio
but comparatively low statistics, with 25 events passing
the full selection. In the Eν=ν̄ < 400 MeV range, because
the DL analysis required a lepton-proton vertex, the
selected events were almost entirely due to neutrino
interactions rather than antineutrino interactions. The
energy distribution of DL-selected events was fit to the
Standard Model prediction plus the MiniBooNE-based
LEE model with floating normalization. Based on this
fit, the DL analysis limited the content of the MiniBooNE
LEE to < 38% νe interactions at 2σ. Since the DL analysis
is not sensitive to antineutrinos, this result implies that more
than 68% of the excess can be due to ν̄e or other unrelated
non-neutrino events.
The WC analysis looked for an inclusive sample of νe

CC interactions with one electron and anything else in the
final state (1eX). The namesake Wire-Cell algorithm [16]
was used to identify three-dimensional space points of
charge within each MicroBooNE image, which were then
clustered and analyzed using a series of pattern recognition
algorithms to isolate 1eX events. The WC analysis allowed
for single-lepton events as well as multiprong vertices.
Thus, in the Eν=ν̄ < 400 MeV range, soft- as well as hard-
scattering processes dominate. For WC, antineutrino events
could contribute, although the missing energy due to the
neutron would lead to an underestimate of the antineutrino
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energy. Fitting the Standard Model prediction plus the
MiniBooNE-based LEE model with floating normalization
to the WC selected events, MicroBooNE set a 2σ upper
limit of 50.2% electron-flavor content in the LEE [13]. In
quoting this result, the Collaboration assumed that the
Wire-Cell analysis is not sensitive to the portion of the
excess that is caused by sources other than an excess of
electron neutrinos.
In the remainder of this article, we explore how the

constraints above change when the assumption on the
neutrino-antineutrino composition of the LEE is allowed
to vary. While the design of the DL analysis makes it
insensitive to the content of antineutrinos in the LEE, it
can still, in principle, be observed by the WC analysis. As
we will show, however, due to the fact that antineutrino-
argon cross sections are much smaller than those of
antineutrino-CH2 for the LEE energies, the entire suite
of MicroBooNE analyses turns out to be significantly less
effective in constraining an excess of antineutrinos. This is
shown in Fig. 1, which indicates that the number of excess
events predicted in the lowest energy region of the WC
analysis decrease as the ν̄e content of the LEE increases
from Scenario 1 to Scenario 3.
The rest of this article proceeds as follows. First, in

Sec. II, we compare the neutrino versus antineutrino
interaction rates in the MiniBooNE and MicroBooNE
targets, CH2 and Ar, respectively. We then generalize the
unfolding of the MiniBooNE LEE to scenarios with a
mixture of neutrino and antineutrino fluxes in Sec. III.
We apply our procedure to three assumptions on the

neutrino-antineutrino composition of the LEE event rate:
100% νe, a 50%–50% mix, and 100% ν̄e. Finally, we
discuss the implications of these scenarios for the
MicroBooNE analyses in Sec. IV and discuss the next
steps in identifying sources of ν̄e in the MiniBooNE LEE
in Sec. V.

II. NEUTRINO AND ANTINEUTRINO
INTERACTIONS IN THE LEE

In this section, we discuss the interaction cross sections
for electron-neutrinos and electron-antineutrinos in the
target material of the MiniBooNE and MicroBooNE
detectors. Their impact in the MicroBooNE analyses is
discussed in Sec. IV.
At the fundamental level, the interaction cross sections of

neutrinos and antineutrinos are different due to the sign of
the axial-vector component. For CCQE scattering on free
nucleons, the difference can be expressed quite simply as

1

σ0

�
dσν

dy
−
dσν̄

dy

�
¼ y

�
1 −

y
2

�
ðF1 þ F2ÞFA; ð1Þ

where σ0 ≡ G2
FjVudj2MEν

π and y ¼ 1 − El=Eν is the inelastic-
ity parameter. In addition to the dependence on y, the above
expression has an implicit dependence on the kinematics
through the nucleon form factors Fi ≡ FiðQ2Þ, where
Q2 ¼ 2EνMy is the momentum exchange with the nucleon.
Equation (1) constitutes the interference between axial-
vector, FA ∝ gA, and vector pieces of the amplitude. This
interference is destructive for antineutrinos but constructive
for neutrinos. Interestingly, Eq. (1) leads to a preference for
lower momentum transfer and thus more forward scattering
angles of the final state lepton in the antineutrino case
compared to the neutrino case, a behavior that is in better
agreement with the forward-peaked nature of the
MiniBooNE excess [2].
For isoscalar targets, and in the absence of thresholds,

σν > σν̄. At high energies, the ratio asymptotes to a factor
of ∼1=2. At low energies, however, it can vary significantly
due to threshold, nuclear, and binding-energy effects.

A. Cross sections at MiniBooNE and MicroBooNE

The composition of the mineral oil in MiniBooNE
is CH2, providing six bound neutrons for neutrino CC
interactions, and six bound and two free protons for
antineutrino CC interactions. In MicroBooNE, the argon
nuclear targets provide 22 bound neutrons for neutrino CC
interactions and 18 bound protons for antineutrinos. These
nonisoscalar materials enhance the number of nucleon
targets for antineutrino CCQE at MiniBooNE by 33%
and suppress them at MicroBooNE by 10%.
However, an even stronger effect is at play in the energy

region of the LEE; the separation energy of protons and
neutrons inside the argon nucleus. As opposed to the

FIG. 1. The ratio between observed and predicted LEE events at
MicroBooNE in the three antineutrino-neutrino LEE scenarios.
The gray bands show the uncertainty in the prediction in the
absence of a LEE (x ¼ 0), and in red, we show the prediction
for the LEE with (x ¼ 1) in the three scenarios. From left to right,
we show Scenario 1 (fν̄=ν ¼ 0), Scenario 2 (fν̄=ν ¼ 1

2
), and

Scenario 3 (fν̄=ν ¼ 1). The fainter dashed gray lines represent
the LEE prediction for the two alternative templates of Ref. [17].
For the assumptions and methodology behind our analysis, see
Sec. III and the Appendix.
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isoscalar 12C nucleus, the nonisoscalar 40Ar nucleus con-
tains protons that are more strongly bound than neutrons,
and, therefore, require more energy to be knocked out by
the CC interactions of antineutrinos. This effect is impor-
tant at small neutrino energies, where the center-of-mass
energy is comparable with the nuclear binding energies. In
addition, the Pauli blocking of neutrons in argon is more
significant than in carbon due to its size.
We show a comparison of the total and exclusive cross

sections for neutrino and antineutrino cross sections on
carbon and argon in Fig. 2, obtained from GENIE v3.02.00

[18,19]. While this ratio is similar for argon and CH2 at
high energies, it is significantly different at lower energies,
varying by factors larger than two in the energy region of
the LEE. For the same event rate at MiniBooNE, this
implies that MicroBooNE would see fewer events if
antineutrinos induced those events rather than neutrinos.
Wehave elected to use GENIE v3.02.00, as it is themost up-to-

date GENIE public release at the time of this study. Other
versions do exist–for example, the CC0π MicroBooNE tune
of GENIE v3.00.06 presented in Ref. [20]. While it would
certainly be interesting to investigate the antineutrino hypoth-
esis within the context of the MicroBooNE GENIE tune, it is
not publicly available to our knowledge. Therefore, we rely
on GENIE v3.02.00 for this study and leave the consideration of
alternative neutrino event generators to future work.
To quantify the effect of an antineutrino component in the

LEE, we should also consider the kinematics of the neutrino-
and antineutrino-induced leptons. Since the interference term
between vector and axial components, shown in Eq. (1)
for CCQE, is proportional to the inelasticity parameter
y ¼ 1 − Ee=Eν, when it contributes constructively, it leads
to a preference for larger y, and, therefore, lower-energy
leptons. This is the case for neutrino-induced reactions.
In the case of antineutrinos, the interference is destructive,
leading to a preference for smaller y, and, therefore, higher-
energy leptons. As we show below, in the context of the
LEE, this implies that to reproduce the observed excess of
events in Scenarios 2 and 3, the flux excess of antineutrinos
would require a lower mean energy than the corresponding
flux excess of neutrinos in Scenario 1.
Note that this also implies that the impact of nuclear

physics on the total cross sections, especially the suppres-
sion of low-Q2 configurations, is different between neu-
trinos and antineutrinos. This dependence on the lepton
kinematics and hadronic energy means that the unfolding
procedure adopted by MicroBooNE ought to be modified
before applying it to the antineutrino hypothesis.

III. THE MiniBooNE UNFOLDING-BASED
TEMPLATE ANALYSIS

To unfold the MiniBooNE excess under antineutrino-
based explanations of the LEE, we follow the procedure

FIG. 2. The top and middle panels show the total νe and ν̄e
cross sections and their ratios for CH2 and 40Ar, respectively. The
CCQE and resonant cross sections are shown as dashed lines. In
the bottom panel, we show the ratio between the MiniBooNE and
MicroBooNE ν=ν̄ ratios. The blue region indicates the region of
the MiniBooNE LEE.
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outlined by the MicroBooNE Collaboration in Ref. [10].
Specifically, we use the D’Agostini iterative approach [11]
to unfold the observed MiniBooNE data, where the
prediction ukα in true energy bin α at iteration k is given by

ukα ¼
Xnr
i¼1

Mk−1
iα di; ð2Þ

where the sum goes over each of the nr reconstructed
energy bins, and di denotes the observed data in recon-
structed bin i. The matrix Mk

iα is defined by

Mk
iα ¼

Aiαukα
ϵα

Pnt
β¼1 Aiβukβ

; ð3Þ

where the response matrix Aiα is given by

Aiα ¼ Pðreconstructed in ijgenerated in αÞ; ð4Þ

and ϵα ≡P
i Aiα is the reconstruction efficiency in the

true-energy bin α.

A. Introducing an antineutrino component

The neutrino and antineutrino response matrices will
differ in MiniBooNE, as the dσ=dy distribution prefers
smaller (larger) values of y for neutrino (antineutrino)
CCQE scattering. We calculate the antineutrino response
matrix in MiniBooNE by simulating ν̄e charged-current
interactions in CH2 using GENIE v3.02.00. This formalism is
unable to account for the MiniBooNE reconstruction
efficiency; thus, we instead estimate Riα ≡ Aiα=ϵα.
As Cherenkov detectors are only sensitive to the final

state lepton, MiniBooNE uses EQE
ν (EQE

ν̄ ) to reconstruct
νe (ν̄e) energies, given by the expressions

EQE
ν ¼ 2ðM0

nÞEl − ððM0
nÞ2 þm2

l −M2
pÞ

2
h
ðM0

nÞ − El þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
l −m2

l

q
cos θl

i ; ð5Þ

EQE
ν̄ ¼ 2ðM0

pÞEl − ððM0
pÞ2 þm2

l −M2
nÞ

2
h
ðM0

pÞ − El þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
l −m2

l

q
cos θl

i : ð6Þ

Here,Mn andMp are the neutron and proton mass, El,ml,
and θl are the lepton energy, mass, and scattering angle,
and M0

ðn=pÞ ≡Mðn=pÞ − EB, where the nucleon binding
energy EB is fixed to 34 (30) MeV for neutrinos (anti-
neutrinos). It is important to emphasize that no matter the
origin of the underlying event (νe or ν̄e), interactions are
always reconstructed using EQE

ν (EQE
ν̄ ) for data taken in

neutrino (antineutrino) mode.
We consider only neutrino mode data in this study, as this

is directly comparable to the MicroBooNE neutrino mode
data. We approximate Riα by marginalizing over EQE;true

ν ,

using GENIE v3.02.00 to generate the truth-level final-state
kinematic distributions of the eþ which appear in Eq. (5).
The details of this calculation are given in Appendix A 1.
We separately approximate the ν̄e detection efficiency in
MiniBooNE by using the provided detection efficiency
as a function of electron energy [21]. The details of the
efficiency calculation are given in Appendix A 2.
Armed with our calculation for Riα ¼ Aiα=ϵα and ϵα, we

can perform the unfolding procedure using Eq. (3). This
produces a prediction for the antineutrino interaction rate
in MiniBooNE as a function of true antineutrino energy,
hereafter denoted uMB

α , which we will use to predict a signal
in MicroBooNE. In the top panel of Fig. 3, we show our
unfolded ν̄e prediction considering the first 6.46 × 1020

POT of MiniBooNE data—the same dataset used in
Ref. [10]. One can see that the unfolded ν̄e template peaks
at lower (anti)neutrino energy compared with the unfolded
νe template. In the bottom panel of Fig. 3, we refold the
unfolded excess templates back through the MiniBooNE
reconstruction. Both the neutrino and antineutrino

FIG. 3. In the top panel we show the intrinsic νe background
and the unfolded νe and ν̄e templates obtained via D’Agostini’s
unfolding method. The νe unfolding procedure begins with the
intrinsic νe event rate as an initial guess, while the ν̄e unfolding
procedure begins with a flat distribution in the true neutrino
energy. In the bottom panel, we show the refolded prediction in
MiniBooNE for both the unfolded νe hypothesis and unfolded ν̄e
plus intrinsic νe hypothesis, compared with the excess data for
6.46 × 1020 POT [10].
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re-folded predictions are in agreement with the
MiniBooNE data.
Once we have an unfolded ν̄e MiniBooNE prediction

uMB
α , we can fold that prediction into MicroBooNE. In

contrast with Fig. 3, here we use the 12.84 × 1020 POT
neutrino mode dataset presented in MiniBooNE’s 2018
result [22] for the unfolding process. This is the same
dataset used by the MicroBooNE Collaboration to calculate
their LEE template [13]. Note that the unfolded spectrum
represents the interaction rate inside MiniBooNE—thus,
we must scale by the ratio of cross sections in Ar and CH2

when going to MicroBooNE. The predicted MicroBooNE
event rate μμBi in Ereco

ν̄ bin i is given by

μμBi ¼
X
α

ϵαRiαuMB
α

σArððEtrue
ν̄ ÞαÞ

σCH2
ððEtrue

ν̄ ÞαÞ
; ð7Þ

where ϵα and Riα now denote the MicroBooNE ν̄e detection
efficiency and MicroBooNE response matrix, respectively.

The ν̄e response matrix calculation in MicroBooNE
is similar to theMiniBooNE calculation. Themain difference
is that MicroBooNE, being a LArTPC, is able to perform a
calorimetric energy reconstruction. The reconstructed energy
in MicroBooNE is given by ECal

ν ¼ P
jðTreco

j þmj þ BjÞ,
where Treco

j , mj, and Bj denote the observed kinetic energy,
rest mass, and binding energy associated with the jth
reconstructed final-state particle. The binding energy Bi is
taken to be 8.6 MeV for protons and zero for everything else.
In the case of ν̄e CCQE scattering, MicroBooNE will only
reconstruct the final state eþ. The reconstructed energy Ereco

ν̄

is then simplyECal;reco
ν̄ ¼ Treco

eþ þmeþ. Note that this will lead
to an underestimation bias in the reconstructed ν̄e energy
due to the invisible neutron. In order to calculate Riα in
MicroBooNE, we marginalize over the T true

eþ distribution
generated using GENIE v3.02.00. The details of this calculation
are given in Appendix A 1.
Evaluating the detection efficiency of ν̄e interactions in

MicroBooNE as a function of Eν̄e is more complicated than

FIG. 4. The MiniBooNE andMicroBooNE spectra in reconstructed neutrino energy. On the left panels, we show three different template
choices from Ref. [17] and their corresponding prediction at MicroBooNE, assuming no antineutrinos, fν̄=ν ¼ 0. On the right panels, we
show how the three different assumptions for the antineutrino composition of the excess impact the nominal template (T0) prediction in
MicroBooNE. In MiniBooNE, the three different scenarios of antineutrino compositions look exactly the same, by definition.
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the MiniBooNE case. MicroBooNE is not a spherically
symmetric detector, thus both the electron direction
and energy will impact the detection efficiency. The
MicroBooNE reconstruction also relies nontrivially on
hadronic information in addition to leptonic information
for its nominal νe analyses, including the inclusive analysis
studied here. Ignoring final state interactions, there will
be no hadronic information in ν̄e CCQE interactions. It is
also possible for νe CCQE interactions to occur without
hadronic activity if the energy of the final state proton is
below the reconstruction threshold; however, this is con-
siderably different than the ν̄e case, as the final state neutron
can carry away an arbitrary amount of energy without being
reconstructed. Given these complications, a detailed esti-
mation of the MicroBooNE ν̄e efficiency is out of the scope
of this paper. We instead conservatively assume the ν̄e
efficiency in MicroBooNE to be the same as the reported νe
efficiency for a given true (anti)neutrino energy. In a
realistic scenario, the ν̄e efficiency is likely smaller due
to the lack of hadronic information; thus, one can interpret
the MicroBooNE ν̄e prediction derived here as an
upper bound.

IV. THE IMPACT ON THE MiniBooNE
TEMPLATE ANALYSIS

The right panels of Fig. 4 show the prediction in
MicroBooNE under the three different hypotheses for
the antineutrino content in the LEE outlined in Sec. I:
Scenario 1 (fν̄=ν ¼ 0), Scenario 2 (fν̄=ν ¼ 1=2), and
Scenario 3 (fν̄=ν ¼ 1). As can be seen, the LEE template
prediction in MicroBooNE from the unfolded MiniBooNE
excess decreases in general with fν̄=ν, the antineutrino
fractional contribution to the excess. Thus, as expected,
MicroBooNE is less sensitive to antineutrino-based explan-
ations of the MiniBooNE excess. This is quantified in
Fig. 5, which shows the test statistic of the Wire-Cell
analysis, Δχ2μBðxÞ≡ χ2μBðxÞ − χ2μBðx ¼ 0Þ, as a function of
the signal strength scaling parameter x introduced in
Ref. [9]. As shown in Table I, the exclusion power drops
significantly as the predicted antineutrino content becomes
larger. Specifically, as fν̄=ν increases from 0 to 0.5, the
test statistic Δχ2μBðx ¼ 1.0Þ falls from 13.54 to 8.06. For
fν̄=ν ¼ 1.0, Δχ2μBðx ¼ 1.0Þ ¼ 3.82. At around x ¼ 0.2, the
fν̄=ν ¼ 1.0 case predicts a slightly negative Δχ2μB, implying
a minor improvement with respect to the nominal BNB
prediction. This is most likely caused by the small excess
observed in the lowest energy bin of the MicroBooNE
analysis, as shown in the lower-right panel of Fig. 4.
Assuming Wilks’ theorem [23] with one degree of

freedom, the critical Δχ2μB value at the 95.45% (2σ)
confidence level is Δχ2μB ¼ 4. We use this to calculate
2σ upper limits on the signal scaling parameter x in
Scenarios 1, 2, and 3, considering the test statistic

Δχ2μBðxÞ ¼ χ2ðxÞ −minxfχ2ðxÞg. These 2σ upper limits
are shown in Table I. From Table I, it is evident that
MicroBooNE is much less sensitive to Scenario 2 than
Scenario 1, and is essentially insensitive to Scenario 3.
In the left panels of Fig. 4, we show three different

templates for the MiniBooNE LEE: T0, T1, and T2.
Template T0 is the nominal unfolded template. Templates
T1 and T2, defined in Fig. 2 of Ref. [17], correspond to
the most and fewest number of excess events obtained in
the unfolding procedure while remaining consistent with the
MiniBooNE excess at p > 80%. In Fig. 6, we show the
Δχ2μB exclusion power of theMicroBooNE data as a function
of the antineutrino fraction of the MiniBooNE excess,
considering each template separately. Here, Δχ2μB is defined
with respect to the nominal BNB prediction, and we assume
the nominal signal strength scaling for each template,
i.e., x ¼ 1.0. From Fig. 6, one can clearly see that Δχ2μB
decreases rapidly as the f increases. This is quantified in
Table II, which reports the value of Δχ2μB for each template
under Scenario 1 (fν̄=ν ¼ 0), Scenario 2 (fν̄=ν ¼ 0.5), and
Scenario 3 (fν̄=ν ¼ 1.0). Note that the results for the nominal

FIG. 5. The MicroBooNE Δχ2 for the inclusive 1eX analysis as
a function of the signal strength x. The black solid line shows
the Δχ2 for the nominal template, following the calculation of
Ref. [17]. official MicroBooNE curve, shown in dashed black. In
solid green and violet lines, we show the corresponding curves
for Scenarios 2 and 3 for the neutrino-antineutrino fractions of the
LEE, respectively.

TABLE I. Statistical results from the MicroBooNE Wire-Cell
analysis on the signal strength scaling parameter x, considering
the three different scenarios outlined in Sec. I. Δχ2μBðx ¼ 1.0Þ is
reported with respect to the nominal BNB prediction, i.e., without
any additional MiniBooNE-like excess.

fν̄=ν ¼ 0.0 fν̄=ν ¼ 0.5 fν̄=ν ¼ 1.0

Δχ2μBðx ¼ 1.0Þ 13.54 8.06 3.82
2σ upper bound on x 0.49 0.69 1.01
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template (T0) are the same as those reported in Table I. Even
for the most optimistic case (T1), the exclusion power is
significantly suppressed for fν̄=ν ¼ 1.0.
We can define the test statisticΔχ2μBðfν̄=νÞ≡ χ2μBðfν̄=νÞ −

minfν̄=ν∈½0;1�fχ2μBðfν̄=νÞg to calculate the 2σ lower limit on
fν̄=ν for each template. These lower limits are also reported
in Table II; depending on the template they hover around
fν̄=ν ∼ 0.5. Thus if we take the MiniBooNE excess at face
value (i.e., restrict to x ¼ 1.0) and consider the nominal
template (T0), the MicroBooNE results require at least 55%
of the MiniBooNE excess come from ν̄e events at the 2σ
CL. Note that this statement relies on restricting ourselves
to x ¼ 1.0—as shown in Table I, χ2μBðx ¼ 1.0Þ − χ2μBðx ¼
0Þ ¼ 8.06 for fν̄=ν ¼ 0.5, meaning that there is just under
3σ tension with the no-excess hypothesis (x ¼ 0) when
attributing half of the MiniBooNE excess to ν̄e events.

So far, we have focused on the total 1eX sample, using
the 7-channel fit of Ref. [13]. However, as a consistency
check, the Wire-Cell analysis has also performed an
11-channel fit, separating νμ and νe CC events into samples
with and without final-state protons, 0pXπ and NpXπ.
Antineutrinos will contribute almost exclusively to the
0pXπ sample, making it a purer sample of ν̄e LEE events.
The total number of νeCC events is approximately even
between the two samples, namely 259 0pXπ and 298
NpXπ events. Given that the statistical and systematic
uncertainties are larger for the 0pXπ sample, and that
it does not observe a deficit of events like that of the
NpXπ sample (Ndata=Npred ¼ ð1.00� 0.08 stat� 0.21 sysÞ
versus Ndata=Npred¼ð0.86�0.06 stat�0.17 sysÞ), we do
not expect that an 11-channel fit would qualitatively change
our conclusions.

V. DISCUSSION

Our main finding is that explanations of the MiniBooNE
LEE involving a large contribution of wrong-sign electron-
antineutrinos, from new physics or mismodeling in the
experimental simulation, remain viable. The relative sup-
pression of antineutrino cross sections in argon, the target
material used by MicroBooNE, with respect to CH2, the
mineral oil target material used by MiniBooNE, means that
MicroBooNE is much less sensitive to a low-energy excess
of antineutrinos compared to neutrinos. This motivates new
strategies to measure the electron-antineutrino component
of the BNB.
The templates in the top panel of Fig. 3 unfolded under

the hypothesis of an antineutrino-induced LEE indicate a
flux excess that is even lower in energy than its neutrino-
induced LEE counterpart. As shown in Fig. 7, such an
excess would represent a significant deviation from the
BNB model prediction for the flux of intrinsic ν̄e in
neutrino mode [1]. While no source for such hypothetical
enhancement has been identified, this study provides a first
glimpse into its energy dependence and relative rate. In
what follows, we discuss the implication of these findings
for a few different antineutrino hypotheses.

A. The BNB model

The BNB flux model [1] predicts that the wrong-sign
electron-neutrinos constitute a total of 0.05% (0.2%) of the
total flux in neutrino (antineutrino) mode, arising primarily
from charged and neutral kaons as well as secondary
muons.1 An antineutrino explanation to the LEE requires
a 10 times larger flux of wrong-sign neutrinos than
predicted in the BNB model. Considering only the LEE
region, Eν < 600 MeV, it requires a 25 times larger flux.

FIG. 6. The MicroBooNE Δχ2 for the inclusive 1eX analysis as
a function of the antineutrino-neutrino fraction of the excess,
fν̄=ν. In black, we show the variation for the nominal template,
while in blue and pink, we repeat the same exercise for the two
templates shown in the left panels of Fig. 4.

TABLE II. Statistical results from the MicroBooNE Wire-Cell
analysis on the antineutrino fractional contribution to the Mini-
BooNE excess fν̄=ν, considering the three different templates
shown in the left panels of Fig. 4. For the first three rows,
Δχ2μBðfν̄=νÞ is calculated as in Fig. 6, while the last row considers
the Δχ2μBðfν̄=νÞ definition given in the text to calculate 2σ lower
limits on fν̄=ν, assuming Wilks’ theorem for 1 d.o.f.

Template T0 T1 T2

Using Δχ2μBðfν̄=νÞ ¼ χ2μBðfν̄=ν; x ¼ 1.0Þ − χ2μBðx ¼ 0Þ
Δχ2μBðfν̄=ν ¼ 1.0Þ 3.82 8.52 2.25

Δχ2μBðfν̄=ν ¼ 0.5Þ 8.06 15.74 4.57

Δχ2μBðfν̄=ν ¼ 0.0Þ 13.54 24.63 7.65

Using Δχ2μBðfν̄=νÞ ¼ χ2μBðfν̄=νÞ −minfν̄=ν∈½0;1�fχ2μBðfν̄=νÞg
2σ lower bound on fν̄=ν 0.55 0.72 0.24

1The chirally-suppressed π− → e−ν̄e (πþ → eþνe) decays
contribute at a much smaller fraction, namely 6.3 × 10−6

(1.6 × 10−5) of the total neutrino (antineutrino) mode flux.
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Below we address the implications of such an enhancement
under different hypotheses.

1. Wrong-sign pions

The early decays of forward-going wrong-sign pions
in the BNB, π− → μ−ν̄μ, also appears as a peak at
Eν ≲ 400 MeV. This process is associated with large
uncertainties due to the lack of π− production data in
the forward direction [1]. The question then arises—could a
large excess of wrong-sign pions in the low-energy region
explain the MiniBooNE LEE? The π− → ν̄e decays cannot
be the only source of the excess, as it would be accom-
panied by an enormous (lower-energy) flux of π− → ν̄μ,
exceeding the total neutrino flux below 600 MeV by more
than two orders of magnitude. Another new source of ν̄e
from wrong-sign pions are secondary muon decays, namely
π− → μ− → ν̄e. The BNB model predicts that neutrinos
from secondary muons correspond to a ∼0.2% fraction
of the neutrinos from the parent pion. To explain the LEE,
this would require a ∼500 times larger π− → ν̄μ flux, which
is, again, not realistic.

2. Secondary muons

Another logical possibility is that the primary neutrinos
from wrong-sign pions are correctly modeled, but the
subsequent decays of secondary muons are not. This
effect would have to account for a sizeable increase of
the average energy of secondary-muon neutrinos, and,
more importantly, would require a fiftyfold enhancement
of the fraction between μ− and π− neutrinos, bringing

it to 10%. Because of the short decay pipeline, it is difficult
to conceive of a scenario where so many forward-going
muons could contribute to the neutrino flux. A forward-
going muon produced at the target has a small probability
P ∼ 50 m=ðγμcτ0μÞ ∼ 7.5%=γμ of decaying before hitting the
beam absorber ∼50 m downstream. Here, γμ is the Lorentz
boost of the muon, which can range from γμ ¼ 2–10 in the
energy region of interest. While the muons can penetrate
the absorber and subsequent dirt, they will not all decay to
produce a forward-going ν̄e, so this possibility is also
unrealistic.

3. Associated muon-neutrinos

It is also reasonable to assume that a ν̄e excess could
be accompanied by a νμ or ν̄μ excess. The question of
whether this muon component can be observed is not
straightforward. In principle, such an excess could lead
to a higher rate of muons in MiniBooNE, modifying
the measured distribution of νμCC events. Because of the
different kinematics of neutrinos and antineutrinos, the
energy of a ν̄μ could be misreconstructed as a higher-
energy νμ. In addition, resonant and coherent charged-pion
production would also be modified. By studying CCπþ
production, MiniBooNE used this method to constrain the
wrong-sign νμ CCQE events in antineutrino mode [2].
In practice, however, a very low-energy flux excess like
that in Fig. 3 (top) would happen in a region close to the
kinematic threshold of muon and pion production. This
could exacerbate the excess in ν̄eCC events, where thresh-
old effects are not important. Elastic processes like
neutrino- and antineutrino-electron scattering would be
impacted, but this component makes up less than 2%
of the total number of electronlike events observed by
MiniBooNE [2]. Finally, we note that when the
MicroBooNE Wire-Cell inclusive 1eX sample is divided
into 0pXπ, and NpXπ events, a small excess of νμCC
0pXπ events is observed in the energy region of
0.3–1.1 GeV [13]. Because νμCC NpXπ events are in
good agreement with the Monte Carlo, this effect, if it
grows in significance, could be explained due to an excess
of ν̄μ in the BNB.
To conclude this section, we have found that the full ν̄e

excess shown Fig. 7 would require a significant deviation
from the BNB model presented in Ref. [1]. We remind the
reader that our discussion focused on neutrino mode only.
Since the origin of the excess in neutrino and antineutrino
modes are both unknown, the neutrino-to-antineutrino
ratio of the excess in each mode is, in principle, not
necessarily the same. For that reason, we do not derive
constraints on the excess in antineutrino mode using
MicroBooNE data, as the latter was obtained with the
beam in neutrino mode. We leave a detailed study of
possible anomalous sources of wrong-sign neutrinos in
each mode to future work.

FIG. 7. A smooth interpolation of the BNB neutrino fluxes in
FHC mode as a function of energy. In light blue, we highlight the
nominal prediction for the intrinsic ν̄e [1]. In orange, we show the
required excess ν̄e flux to explain the MiniBooNE low-energy
excess in Scenario 3, using the unfolded template of Fig. 3 (top).
The dashed line is the result using the analysis range,
Eν > 200 MeV. The dotted line in the Eν < 200 MeV region
shows an extrapolation of the unfolded template, assuming it
follows the same shape as the intrinsic ν̄e component.
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B. New physics

We now comment on a few possibilities for a beyond-
the-standard-model (BSM) origin of the ν̄e excess in
MiniBooNE. Neutrino-antineutrino oscillations νμ → ν̄e
can convert left-handed neutrinos into right-handed anti-
neutrinos [24]. However, they require a chirality flip and
are usually too small to be observable due to the smallness
of m2

ν=E2
ν. Large neutrino magnetic moments in strong

magnetic fields can also induce such oscillations through
spin-flip precession [25–27] but are not relevant for
short-baseline experiments. In general, ν → ν̄ oscillations
are constrained experimentally by solar neutrino experi-
ments [28–30] and by direct searches [31].
A ν̄e excess could also stem from exotic pion decays at the

target. For instance, the lepton-flavor- and lepton-number-
violating branching ratio for the pion, πþ → μþν̄e, could
produce ν̄e with the same energy spectrum as the neutrinos
from πþ → μþνμ. The best experimental limits on this decay
come from the BEBC detector, which sat in the wide-band
high-energy neutrino beam at CERN [31]. A dedicated
search finds Bðπþ→μþν̄eÞ<0.15% and Bðπþ → μþνeÞ <
0.8% at 90% CL. Precision tests of lepton-flavor universality
are also sensitive to this decay channel. Comparing the SM
prediction [32] with the experimental measurements [33–36]
of Re=μ ¼ Γðπþ → eþνÞ=Γðπþ → μþνÞ, we find

Γðπþ → μþν̄eÞ
Γðπþ → μþνμÞ

¼ ð0.20� 0.19Þ%; ð8Þ

providing stronger limits on the branching ratio, Bðπþ →
μþν̄eÞ < 0.50% at 90% CL. We note that this branching
ratio can also be constrained by the LSND experiment
using low-energy IBD events; in the energy of interest,
Eeþ < EπDAR

ν̄e
∼ 30 MeV, good agreement is found between

data and Monte Carlo. We leave a careful evaluation of this
limit for future work.
Light particles produced in the beam could be another

source of antineutrinos. Decaying light sterile neutrinos
can produce antineutrinos in two scenarios. If the sterile
neutrino is a Majorana particle, antineutrinos can be
produced in the decay ν4 → ν̄ϕ [37–40], where ϕ is a
neutrinophilic light scalar particle. If the sterile neutrino is a
Dirac particle, then the subsequent decays of the scalar
particle, ν4 → νðϕ → ν̄νÞ, can produce antineutrinos at a
fraction of 1∶2 [38,39]. Finally, lepton-number-charged
scalars, ϕ2, can lead to antineutrinos in the decay of
ν4 → ν̄ϕ2. In detection, the emission of ϕ2 can lead to
what is effectively an off shell antineutrino scattering
process, νμpþ → ϕ2ðν̄eÞ�pþ → ϕ2eþn. These explanations
of MiniBooNE, however, are excluded by solar antineu-
trino searches [41] and meson decays [42]. We note that a
decaying-sterile neutrino has been recently searched for by
the IceCube Neutrino Observatory, finding a preference for
decay [43]. Though the analysis uses invisible decay, it is

largely insensitive to the decay being visible or invisible
due to the steeply falling spectra as discussed in [38];
see [44] for a recent discussion of the latter scenario.

C. Future prospects

This study focuses specifically on the possibility of a ν̄e
excess in the BNB; thus, it is relevant to consider whether
future experiments along the BNB will be sensitive to
such an excess. MicroBooNE is part of the short baseline
neutrino program at Fermilab, which includes the upcom-
ing ICARUS and SBND experiments [45]. ICARUS
and SBND also use LArTPC detectors, so they too will
suffer from the ν̄e-Ar cross section suppression at low
energies. Of the SBN experiments, SBND in particular is
the most optimistic setup to search for a ν̄e excess. This is
because it will benefit from a tenfold enhancement in
event rate compared to MicroBooNE, as it is situated
closer to the BNB target [45]. Even so, assuming SBND
reconstruction efficiency is similar to MicroBooNE, a
factor of ∼10 enhancement in the backgrounds and excess
templates shown in the right panels of Fig. 4 will not
significantly improve the sensitivity to Scenario 3,
unless a substantial reduction of the backgrounds can
be achieved.
In view of the challenges in detecting antineutrinos in

LArTPC detectors along the BNB, we turn to a different
kind of detector for this measurement; the Accelerator
Neutrino Neutron Interaction Experiment (ANNIE).
ANNIE is a 26-ton water Cherenkov detector located at
100 m from the BNB target [46,47]. The water volume is
followed by a muon-range detector to allow the detection
of muon neutrino and antineutrino interactions. One of
the primary goals of ANNIE is to measure the neutron
multiplicity in CCQE interactions. For that, the detector is
doped with gadolinium, so that neutrons produced in
neutrino events can be detected via delayed ∼8 MeV
photons emitted in neutron-gadolinium capture.
While ANNIE has so far focused on muon events, the

detector can also measure inverse beta-decay events,
ν̄epþ → eþn. The signature is a single, low-energy posi-
tron Cherenkov ring with a delayed neutron capture. The
photo coverage of ANNIE phase-II, in particular, provides
the right environment for this measurement and can be used
on a search for a ν̄e interpretation of the LEE at the current
location of the detector. A detailed background study is
needed to estimate ANNIE’s sensitivity to the excess flux in
Fig. 7. Nevertheless, the addition of water-based liquid
scintillator in the detector volume, ANNIE phase-III, would
be a clear improvement to mitigate backgrounds [47].
Finally, because of the sheer magnitude of the excess of
ν̄e required by the MiniBooNE LEE and the lack of
information on its size below Eν < 200 MeV, ANNIE
can start to probe ν̄e-based explanations of the
MiniBooNE LEE even if it is unable to detect the intrinsic
ν̄e flux.
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VI. CONCLUSION

The MicroBooNE experiment has not found any evi-
dence for an electron-neutrino interpretation of the
MiniBooNE low-energy excess (LEE). In this article, we
show that this fact can be reconciled with the MiniBooNE
observation if the LEE is caused by electron-antineutrinos
instead. This is due to three main reasons: (i) two out of the
three MicroBooNE analyses have focused on single proton
final states, and these are rarely produced in antineutrino-
nucleus scattering; (ii) the energy of the initial ν̄e is
substantially under-reconstructed in MicroBooNE due to
the invisible final state neutron; and (iii) the antineutrino
cross sections per nucleon on 40Ar are suppressed
with respect to those in CH2, the nuclear targets in
MiniBooNE. The differences in total cross section are
due to the difference in the proton-to-neutron ratio (4∶3 at
MiniBooNE compared to 9∶10 at MicroBooNE), but, more
importantly, due to the larger size of the argon nucleus and
its nonisoscalar nature. Contrary to carbon, the proton
separation energy in argon is larger than that of neutrons,
requiring a larger energy transfer in ν̄ CCQE scattering.
As shown in the bottom panel of Fig. 2, this threshold effect
is particularly significant in the energy region of the
MiniBooNE LEE.
To quantify the impact of a ν̄e-interpretation of the LEE

on the latest MicroBooNE results, we followed Ref. [17]
and reproduced the results of the MicroBooNE Wire-Cell
template analysis [13]. Because antineutrinos do not
produce protons, we focused on the inclusive Wire-Cell
sample, which does not require a proton connected to the
neutrino interaction vertex. We then estimated new detector
response matrices under the assumption of electron-
antineutrino charged-current scattering and proceeded to
unfold the MiniBooNE LEE into a ν̄eLEE template, shown
in the top panel of Fig. 3. We checked that the unfolded
template reproduces the MiniBooNE LEE once folded back
into MiniBooNE with our response matrix, as shown in the
bottom panel of Fig. 3.
We showed that if the antineutrino to neutrino ratio of the

LEE event rate is 100% (fν̄=ν ¼ 1), then MicroBooNE’s
sensitivity is significantly reduced to less than 2σ (assum-
ing Wilks’ theorem), as much fewer LEE events are
expected in the detector. If the number of antineutrino-
induced LEE events is 50%, then MicroBooNE’s sensi-
tivity to the nominal template is reduced to less than 3σ CL
for the nominal LEE template. As pointed out in Ref. [17],
due to the large background systematic uncertainties in
MiniBooNE, choosing different templates with an excellent
fit to the LEE, pLEE

val > 90%, can have a significant impact
on MicroBooNE’s sensitivity. Using the best and worst-
case template choices from Ref. [17], if we take the
MiniBooNE excess at face value and require x ¼ 1.0 the
MicroBooNE data constrain the antineutrino-to-neutrino
fraction of the LEE event rate to be at least 0.72 for
template T1 (best-case scenario) and 0.24 for template T2

(worst-case scenario) at the 2σ CL, assuming Wilks’
theorem for 1 d.o.f.
The Deep-Learning analysis focused specifically on the

1e1p event topology, maximizing its sensitivity to electron-
neutrino CCQE events. While this analysis had the largest
purity, the requirement of a final state proton makes it
insensitive to antineutrinos, which can only produce a
proton through nuclear final state interactions. Finally, the
Pandora analysis focused on pionless topologies, separat-
ing them into 1e0πNp and 1e0π0p. While the latter does
not require a proton in the final state, it is also the least
sensitive and less pure of the analyses. It is also the only
one that observes a small excess of events. We can then
conclude that the choice of event topologies makes the
Pandora and Deep-Learning analyses insensitive to an
excess of ν̄e.
The other LArTPC detectors along the BNB, SBND, and

ICARUS, will face the same issues as MicroBooNE when
testing a ν̄e explanation of the MiniBooNE LEE, due to the
ν̄e-Ar cross section suppression at low energy. In principle,
the near detector of the SBN program, SBND, will observe
more antineutrino events but on top of a higher overall
event rate. In light of this, we have pointed out a different
possibility to directly search for ν̄e in the BNB using the
ANNIE detector. The phase-II of ANNIE is particularly
well-suited for the study of low-energy inverse beta decay.
The scattering of antineutrinos on free protons inside the
water-based Cherenkov detector produces a prompt posi-
tron signal followed by a delayed capture of neutrons on
gadolinium. A detailed study of the backgrounds is needed
to assess the final sensitivity of the experiment. Further
improvements would be possible with phase III, where the
separation of scintillation and Cherenkov light could be
achieved with a water-based liquid-scintillator volume.
A dedicated analysis at ANNIE can shed new light on
SM as well as BSM explanations of the MiniBooNE LEE,
targeting the BNB flux at energies of the LEE and below.
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APPENDIX: FURTHER DETAILS
ON THE ANALYSIS

This supplement to the main text is intended to provide
additional detail on the analysis, specifically concerning the
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calculation of the response matrices used to unfold
the MiniBooNE excess and obtain a ν̄e prediction in
MicroBooNE.

1. Response matrix calculation

To approximate Riα in MiniBooNE, we first calculate
the conditional probability density function (PDF)
PðEreco

ν̄ jEtrue
ν̄ Þ. We marginalize over EQE;true

ν , which, due

to nuclear effects and differences between the EQE
ν and EQE

ν̄
expressions, is not necessarily the same as the generated
antineutrino energy Etrue

ν̄ . We use GENIE v3.02.00 to discretely
approximate PðEQE;true

ν jEtrue
ν̄ Þ and use a Gaussian approxi-

mation for PðEQE;reco
ν jEQE;true

ν Þ. Note that since we are
considering MiniBooNE neutrino mode data, Ereco

ν̄ ≡
EQE;reco
ν . The full calculation of the conditional PDF is

PðEreco
ν̄ jEtrue

ν̄ Þ ¼
Z

∞

0

dEQE;true
ν PðEQE;reco

ν jEQE;true
ν ÞPðEQE;true

ν jEtrue
ν̄ Þ

¼
X

EQE;true
ν bins k

PGENIE
k ðEtrue

ν̄ Þ
Z ðEQE;true

ν Þhighk

ðEQE;true
ν Þlowk

dEQE;true
ν

exp
h
−ðEQE;reco

ν −EQE;true
ν Þ2

2ðσðEtrue
ν̄ ÞÞ2

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσðEtrue

ν̄ ÞÞ2
p

¼
X

EQE;true
ν bins k

PGENIE
k ðEtrue

ν̄ Þ 1
2

�
Erf

�ðEQE;true
ν Þhighk − EQE;reco

νffiffiffi
2

p
σðEtrue

ν̄ Þ

�
− Erf

�ðEQE;true
ν Þlowk − EQE;reco

νffiffiffi
2

p
σðEtrue

ν̄ Þ

��
; ðA1Þ

where Erf denotes the error function and we define
PGENIE
k ðEtrue

ν̄ Þ≡ PððEQE;true
ν ÞkjEtrue

ν̄ Þ to be the binned
EQE;true
ν probability distribution calculated via GENIE v3.02.00

for a given Etrue
ν̄ . In the third line, we convert the continuous

integral over EQE;true
ν to a discrete sum over the binned

PGENIE
kα distribution and explicitly show our Gaussian

approximation, where we consider a flat 17% energy

resolution, i.e., σðEtrue
ν̄ Þ ¼ 0.17Etrue

ν̄ . We also consider a flat
5% EQE

ν underestimation bias. This energy resolution and
bias are derived from the most recent MiniBooNE νe data
release [48]; for more details see Appendix A 2. In the fourth
line, we integrate the Gaussian within each EQE;true

ν bin k. We
can then approximate Riα by integrating PðEreco

ν̄ jEtrue
ν̄ Þ over

Ereco
ν̄ bin i and averaging over Etrue

ν̄ bin α,

Riα ¼
1

ðEtrue
ν̄ Þhighα − ðEtrue

ν̄ Þlowα

Z ðEtrue
ν̄ Þhighα

ðEtrue
ν̄ Þlowα

Z ðEreco
ν̄ Þhighi

ðEreco
ν̄ Þlowi

dEreco
ν̄ dEtrue

ν̄ PðEreco
ν̄ jEtrue

ν̄ Þ: ðA2Þ

The ν̄e response matrix in MicroBooNE begins with a
calculation similar to Eq. (A1). Due to the calorimetric
energy reconstruction used in the Wire-Cell analysis,
the calculation of the conditional PDF PðEreco

ν̄ jEtrue
ν̄ Þ in

MicroBooNE marginalizes over the true positron kinetic
energy,

PðEreco
ν̄ jEtrue

ν̄ Þ ¼
Z

∞

0

dT true
eþ PðECal;reco

ν̄ jT true
eþ ÞPðT true

eþ jEtrue
ν̄ Þ:

ðA3Þ

We perform the same procedure used for MiniBooNE to
approximate Riα in MicroBooNE, leveraging GENIE v3.02.00

to calculate PðT true
eþ jEtrue

ν̄ Þ and making a Gaussian approxi-

mation for PðECal;reco
ν̄ jT true

eþ Þ. Following Ref. [16], we
consider a flat 2% relative bias and 12% relative uncertainty
on the lepton kinetic energy. The MiniBooNE and
MicroBooNE ν̄e response matrices calculated using
Eqs. (A1)–(A3) are shown in Fig. 8. The significant

population of events below the Ereco
ν̄ ¼ Etrue

ν̄ line in the
MicroBooNE matrix indicates the underestimation bias
from the invisible neutron.

2. Approximations in response matrices

To approximate the truth-level PDFs in Eqs. (A1)
and (A3), we use the latest version of the GENIE event
generator, GENIE v3.02.00 [18]. As the hypotheses presented
in this study attribute at least part of the MiniBooNE excess
to CC ν̄e scattering, we generate all charged-current ν̄e
interactions included in GENIE v3.02.00 in both CH2 and
Ar40. Truth-level distributions of final state variables
in these interactions are shown in Fig. 9, including the
positron kinetic energy Teþ, neutron kinetic energy Tn, and
positron scattering angle cos θeþ . We also show the truth-
level distribution of the energy reconstruction definition
for each experiment—EQE

ν for MiniBooNE and ECal
ν for

MicroBooNE. Note that in the MicroBooNE case, the ECal
ν

distribution matches the Teþ distribution, as the final state
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FIG. 9. Truth-level distributions of final state kinematic variables for ν̄e scattering in CH2 (left) and Ar40 (right), generated using
GENIE v3.02.00.

FIG. 8. MiniBooNE (top) and MicroBooNE (bottom) ν̄e response matrices Riα, calculated according to Appendix A 1. Reconstructed
energy binning in each matrix reflects the binning reported by each collaboration.
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neutron is invisible. In principle, final state protons and
charged pions generated in ν̄e scattering via interactions
within nuclear medium will also contribute to ECal

ν ; how-
ever, we have ignored this effect for the purposes of
this study.
The MiniBooNE energy resolution is approximated

using the latest νμ → νe Monte Carlo data release from
the MiniBooNE Collaboration [48]. In Fig. 10, we show a
2D histogram of the fractional error of each event,

F≡ EReco
ν − ETrue

ν

ETrue
ν

; ðA4Þ

as a function of the true neutrino energy. A profiled version
of this distribution is overlaid in black, where the data
points and error bars indicate the median and �1σ extent,
respectively, of the F distribution in each ETrue

ν bin. From
the median, one can see that MiniBooNE tends to con-
sistently underpredict the νe energy. The fractional uncer-
tainty on the neutrino energy is also relatively constant
across the relevant energy range, though it is not sym-
metric. This is shown in the right panel of Fig. 10, which
plots the upper and lower 1σ fractional uncertainty on the
neutrino energy as a function of ETrue

ν , as well as the
average of the two. It is apparent that the uncertainty on F is
relatively flat across the relevant true neutrino energy range.
One can see that for ETrue

ν < 750 MeV, the F distribution
has a larger extend above the median, while the opposite is
true for ETrue

ν > 750 MeV. While this is an interesting
effect, for the purpose of this study we approximate the
MiniBooNE Eν fractional uncertainty to be 17%—the
average value σF across the full neutrino energy range.
We also incorporate a 5% underprediction bias, which is the
median value of F across the full neutrino energy range.
In principle, ν̄e scattering will behave differently than νe
scattering in MiniBooNE, as the momentum transfer Q2

distribution and final state lepton kinematics differ between

the two. This effect is accounted for in the construction
of the response matrices for both MiniBooNE and
MicroBooNE—however, we ignore it when approximating
the MiniBooNE energy resolution, as it is a subdominant
effect here. The fractional uncertainty on positron EM
showers in MicroBooNE is taken to be 12% with a 2%
underprediction bias, as quoted in Ref. [16].
As mentioned in the main text, we use the provided

electron reconstruction efficiency ϵðEeþÞ in MiniBooNE
[21] to approximate the ν̄e reconstruction efficiency ϵα. As
MiniBooNE is a spherically symmetric detector that can
only reconstruct the final state lepton, the eþ energy is the
dominant effect in the (anti)neutrino detection efficiency.
Using GENIE v3.02.00, we can estimate PðEeþjEν̄Þ as shown
in Fig. 9 and thus approximate the lepton energy-averaged
detection efficiency,

ϵðEν̄Þ ¼
Z

∞

0

ϵðEeþÞPðEeþjEν̄ÞdEeþ : ðA5Þ

FIG. 11. MiniBooNE ν̄e detection efficiency as a function of
the true antineutrino energy.

FIG. 10. Left: 2D distribution of the fractional energy reconstruction error F as a function of the true neutrino energy. The black points
and error bars indicate the median and �1σ extent, respectively, of the F distribution in each ETrue

ν bin. Right: upper and lower
uncertainties on F as a function of the true neutrino energy. The average of the two is also shown.
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This efficiency is shown in Fig. 11. For reasons discussed in
the main text, we consider the ν̄e detection efficiency in
MicroBooNE to be the same as the νe detection efficiency
released by the Collaboration. This likely overestimates
the ν̄e rate in MicroBooNE, as the neutron created in ν̄e

CC interactions is not visible in the detector. This would
make our estimation of MicroBooNE’s sensitivity to a ν̄e-
generated excess artificially strong Thus, it is a conservative
assumption, given the conclusion of this paper–that
MicroBooNE is not sensitive to a ν̄e-generated excess.
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Chapter 6

Neutrissimos: Heavy Neutral

Leptons with a Dipole Moment

In this chapter, we discuss a phenomenological explanation of the MiniBooNE excess

involving both an eV-scale sterile neutrino and an MeV-scale heavy neutral lepton

(HNL) with an effective transition magnetic moment coupling to active neutrinos.

This “mixed model” was introduced in Ref. [27] and refined in Ref. [31]. The HNL in

this model is hereafter referred to as a “neutrissimo” [31], a term which has previously

been used to describe interacting HNLs in the literature [215,216].

We begin with a brief overview of the theoretical framework behind neutrissimos.

We then motivate the mixed model and discuss its implications for global neutrino ex-

periments. A robust evaluation of the neutrissimo signal in MiniBooNE is performed.

For a neutrissimo mass 𝑚𝒩 ∼ 500 MeV, single photons from visible neutrissimo decay

are shown to provide a reasonable explanation of the energy and angular distribu-

tions of the MiniBooNE excess. World-leading constraints on neutrissimos are derived

using elastic scattering data from the MINER𝜈A experiment [217–219]. While the

MINER𝜈A data exclude a large region of parameter space for 𝑚𝒩 = 𝒪(100 MeV),

they do not rule out the MiniBooNE solution at the 95% confidence level. The details

behind this analysis are given in Ref. [31]; the full published manuscript is included

in section 6.4.

Publications covered in this chapter for which I held a leading role: [27,31]
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6.1 Dipole-Portal Neutrissimos

The neutrissimo 𝒩 is a right-handed neutrino that couples to the active neutrinos

through a transition magnetic moment. This coupling is described by the dimension-

five dipole operator

ℒ𝐷 = 𝑑𝛼𝒩 𝜈𝛼𝜎𝜇𝜈𝐹
𝜇𝜈𝒩𝑅 + h.c., (6.1)

where 𝑑𝛼𝒩 is the dipole coupling between the right-handed neutrissimo 𝒩𝑅 and the

left-handed weak flavor eigenstate 𝜈𝛼, and 𝐹 𝜇𝜈 = 𝜕𝜇𝐴𝜈−𝜕𝜈𝐴𝜇 is the EM field strength

tensor. The dipole coupling has units of inverse energy, as equation (6.1) is an effective

operator. This means it is agnostic to the ultraviolet (UV) completion: the short-

distance physics generating the dipole coupling at a higher energy scale. Possible

UV completions for the dipole operator include (but are not limited to) 𝑆𝑈(2)𝐿 ×

𝑆𝑈(2)𝑅 theories [220], leptoquark models [81], and models introducing additional

Higgs multiplets or other charged scalars [221–224]. We will treat neutrissimos within

the effective field theory framework throughout this chapter. Figure 6-1 shows a

Feynman diagram of the effective operator in equation (6.1). It facilitates a number

of new interactions involving the neutrissimo, the most relevant of which are shown

in figure 6-2.

Equation (6.1) is only valid below the electroweak scale, as it does not respect

𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 gauge invariance. Before electroweak symmetry breaking (EWSB),

the dipole coupling is described by the gauge invariant dimension six operator

ℒ ⊃ 1

Λ2
𝐿𝛼
̃︀𝐻𝜎𝜇𝜈𝒩𝑅

(︀
𝐶𝛼

𝐵 𝐵𝜇𝜈 + 𝐶𝛼
𝑊 𝑊 𝑎

𝜇𝜈𝜎𝑎
)︀
+ h.c., (6.2)

where Λ is the UV completion scale, 𝐿𝛼 is the left-handed lepton 𝑆𝑈(2)𝐿 doublet,̃︀𝐻 = 𝑖𝜎2𝐻
* is the conjugate Higgs field, and 𝐶𝛼

𝐵 and 𝐶𝛼
𝑊 are the Wilson coefficients

for couplings to the 𝐵𝜇 and 𝑊𝜇 vector gauge bosons, respectively. The dipole coupling

in equation (6.1) after EWSB is then given by

𝑑𝛼𝒩 =
𝑣ℎ√
2Λ2

(𝐶𝛼
𝐵 cos 𝜃𝑊 + 𝐶𝛼

𝑊 sin 𝜃𝑊 ), (6.3)
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where 𝑣ℎ is the Higgs vacuum expectation value and 𝜃𝑊 is the Weinberg angle. Note

that couplings are also generated with the 𝑊 and 𝑍 bosons after EWSB, but interac-

tions involving these couplings are suppressed by 𝐺𝐹 and are thus not as important

as the photon coupling.

Transition magnetic moments between different neutrino species have been dis-

cussed extensively in the literature [81, 130, 223, 225–230]. The imprint of heavy

neutral leptons with transition magnetic moments in experimental data has received

particular attention [81, 123, 124, 126, 127, 130, 135, 231–240]. One potential compli-

cation of this model is that large transition magnetic moments often lead to large

Dirac masses 𝑚𝜈𝒩 for neutrinos [31,81,130]. This is because the photon line can typ-

ically be removed from figure 6-1, resulting in a contribution to the Dirac mass term

ℒ ⊃ 𝑚𝜈𝒩𝜈𝐿𝒩𝑅. Dipole coupling strengths of interest to MiniBooNE (𝑑 ∼ 10−6 GeV)

would generate Dirac mass contributions 𝑚𝜈𝒩 = 𝒪(MeV) [81]. Considering a neu-

trissimo mass 𝑚𝒩 ∼ 500 MeV, the typical seesaw relation of equation (1.23) would

predict active neutrino masses 𝑚𝜈 >> 1 eV, in conflict with existing limits. This can

be remedied by the inverse seesaw mechanism [241, 242], in which the smallness of

active neutrino masses comes from approximate lepton number conservation without

relying on large right-handed neutrino masses. [31, 81].

Another complication is the potential existence of mass mixing between the neu-

trissimo and the active neutrinos. This mixing is heuristically given by 𝑈𝛼𝒩 ∼

𝑚𝜈𝒩/𝑚𝒩 and is large even in the inverse seesaw mechanism [81]. If this operator is

not suppressed, the interactions of the neutrissimo are dominated by those involving

the 𝑊 and 𝑍 bosons. Any potential mass mixing would be subject to constraints from

accelerator neutrino experiments, which can be strong for 𝑚𝒩 = 𝒪(100 MeV) [243].

Specifically, searches for HNLs produced in kaon decay at T2K (using the ND280 near

detector) [244], E949 [245], and PS191 [246] set upper bounds on the muon-flavor

mixing of |𝑈𝜇𝒩 |2 ≤ 10−8 − 10−9 up to the kaon mass threshold of 𝑚𝒩 ∼ 400 MeV.

Within the range 400 ≤ 𝑚𝒩 [MeV] ≤ 2000, NuTeV is able to set upper bounds of

|𝑈𝜇𝒩 |2 ≤ 10−6 − 10−7 by searching for HNLs produced in 𝐷 meson decays.

In order to suppress mass mixing, the Dirac mass itself must be small compared

197



𝛾

𝜈𝐿 𝒩𝑅

Figure 6-1: Feynman diagram depicting the effective dipole operator of equa-
tion (6.1).

to the neutrissimo mass. One possible method to accomplish this is the approximate

horizontal 𝑆𝑈(2)𝐻 symmetry proposed by Voloshin [247]. The idea of an approxi-

mate 𝑆𝑈(2)𝐻 symmetry initially gained popularity as a means to enable the 𝜈𝑒 diago-

nal/transition magnetic moment solution to the solar neutrino problem [248–250]. For

the heavy neutral lepton case, we consider a scenario in which (𝜈𝐶𝐿 ,𝒩𝑅) transforms as

a doublet under 𝑆𝑈(2)𝐻 [81,224,251]. The antisymmetric nature of the dipole opera-

tor 𝜈𝛼𝜎𝜇𝜈𝐹 𝜇𝜈𝒩𝑅 in flavor space means that it transforms like a singlet under 𝑆𝑈(2)𝐻 ,

while the symmetric nature of the Dirac mass term makes it a triplet under 𝑆𝑈(2)𝐻 .

Thus, approximate 𝑆𝑈(2)𝐻 conservation will suppress the Dirac mass contribution

from the photon-less version of figure 6-1 while allowing for large contributions to the

transition magnetic moment. Though it is not clear the level of fine-tuning required

within this model to accommodate the MiniBooNE solution [224], we consider this

sufficient motivation to consider a scenario in which the mass mixing operator of the

heavy neutrino is negligible compared to the dipole operator. It is also worth pointing

out the leptoquark UV completion of the dipole operator proposed in Ref. [81], which

can naturally suppress the mass mixing of neutrissimos via an 𝑆𝑈(2)𝐻 symmetry

without the need for significant fine-tuning.

6.2 Overview of the Mixed Model

The mixed model consists of the eV-scale sterile neutrino described in section 1.4 and

the MeV-scale neutrissimo described above in section 6.1. This model is motivated by

198



π0
να
γ

N
(a)

να N
γ

N X
(b)

N
γ

να

(c)

Figure 6-2: New interactions involving the neutrissimo that are enabled by the dipole
operator in equation (6.1), including three-body 𝜋0 decay (figure 6-2a), Primakoff-like
upscattering (figure 6-2b), and neutrissimo decay (figure 6-2c).

the significant tension observed between appearance and disappearance experiments

in 3 + 1 global fits [11, 12, 93, 252], which comes from strong signals indicating 𝜈𝑒

appearance and 𝜈𝑒 disappearance coupled with the lack of such a signal in the 𝜈𝜇
disappearance channel. This tension is measured using the parameter goodness-of-fit

(PG) test [253], which uses the test statistic

𝜒2
𝑃𝐺 = 𝜒2

global − (𝜒2
app + 𝜒2

dis),

𝑁𝑃𝐺 = (𝑁app +𝑁dis)−𝑁global,
(6.4)

where 𝜒2
global, 𝜒2

app, and 𝜒2
dis are the total 𝜒2 at the 3+1 best-fit parameters for global,

appearance-only, and disappearance-only experiments, respectively. The number of

degrees-of-freedom 𝑁 is defined similarly. The probability that the appearance and

disappearance experiments come from the same underlying 3 + 1 model can be cal-

culated using the 𝜒2
𝑃𝐺 distribution for 𝑁𝑃𝐺 degrees-of-freedom.

This tension appears to be driven significantly by MiniBooNE data [12,27]. Within

the Harvard-Columbia-MIT global fit that existed at the time of Ref. [27], the PG

test tension decreased from 4.8𝜎 to 2.5𝜎 upon removing the MiniBooNE dataset. The

allowed regions in Δ𝑚2
41-sin2 2𝜃𝜇𝑒 parameter space for the global, appearance-only,

and disappearance-only experiments both before and after removing MiniBooNE are

shown in figure 6-3 and figure 6-4, respectively. One can see visually that there is

more overlap in the Δ𝑚2 dimension between the three different allowed regions after

removing MiniBooNE. This is likely because the MiniBooNE excess peaks strongly
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at low energies, an effect which is difficult to produce in the 3+1 model, as discussed

in section 2.2. The latest MiniBooNE 3 + 1 fits discussed in section 5.3.1 specifically

show that the oscillation hypothesis under-predicts the excess in the lowest bins of the

MiniBooNE electron-like dataset. This behavior drives the global fit to the Δ𝑚2
41 <

1 eV2 region, in contrast to the higher values (Δ𝑚2
41 & 1 eV2) preferred by the reactor

and gallium anomalies.

The global fit without MiniBooNE, shown in the leftmost panel of figure 6-4,

strongly prefers a solution at Δ𝑚2
41 ∼ 1 eV2 and 10−4 . sin2 2𝜃𝜇𝑒 . 10−3. The best

fit point is specifically at Δ𝑚2
41 = 1.3 eV2 and sin2 2𝜃𝜇𝑒 = 6.9×10−4. We take these as

our benchmark 3+1 parameters, which fix the 𝜈𝜇 → 𝜈𝑒 oscillation contribution to the

MiniBooNE electron-like channel. The oscillation prediction alone is not sufficient to

explain the MiniBooNE LEE; it can only accommodate ∼ 10% of the total excess

events and peaks at 𝐸𝜈 ∼ 600 MeV, inconsistent with the low-energy nature of the

MiniBooNE excess. However, the benefit of these specific oscillation parameters is

that they can explain LSND, reactor, and gallium data while remaining consistent

with null results from 𝜈𝜇 disappearance searches. The impact of different mixing

angles within the allowed region of the global fit without MiniBooNE is discussed

in Ref. [27], and the impact of the (larger) oscillation contribution predicted by the

MiniBooNE-MicroBooNE combined best fit [102] is discussed in Ref. [31].

The remaining majority of the MiniBooNE excess must then come from another

source. In the mixed model, we ascribe the bulk of the LEE to the visible decays

of neutrissimos. This model works well for MiniBooNE, as neutrissimos can be pro-

duced abundantly in the BNB through the first two diagrams in figure 6-2: Primakoff

upscattering 𝜈𝐴 → 𝒩𝐴 and the three-body decay 𝜋0 → 𝛾𝜈𝒩 . The third diagram,

neutrissimo decay 𝒩 → 𝜈𝛾, could then provide a source of extra photons in Mini-

BooNE. As discussed in chapter 2, these photons would show up in the electron-like

sample due to MiniBooNE’s reliance on Cherenkov rings for particle identification.

Models of heavy neutrino decay to single photons have been previously considered as

a solution to the MiniBooNE anomaly [123–135,254]. We extend upon these studies

by performing a robust analysis of the neutrissimo model in MiniBooNE within the
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Figure 6-3: 3 + 1 global fits including MiniBooNE, considering global (left),
appearance-only (middle), and disappearance-only (right) experiments. The allowed
regions in 3 + 1 parameter space at the 90%, 95%, and 99% confidence levels are
shown by the red, green, and blue points, respectively. The best-fit point is indicated
by the star.

Figure 6-4: 3+1 global fits without MiniBooNE, considering global (left), appearance-
only (middle), and disappearance-only (right) experiments. The allowed regions in
3 + 1 parameter space at the 90%, 95%, and 99% confidence levels are shown by the
red, green, and blue points, respectively. The best-fit point is indicated by the star.

context of the mixed model. This analysis is described in detail in the next section.

It turns out that compared to the 3+1 model, neutrissimo decays are more consistent

with the energy and angular distributions of the MiniBooNE excess. Thus there are

two distinct advantages of the mixed model: (1) it can provide an explanation for

other anomalies in the neutrino sector while relieving tension in global 3+ 1 fits, and

(2) it can provide a better explanation of the MiniBooNE excess itself.

6.3 Neutrissimos in MiniBooNE

The analysis presented in Ref. [27] used a custom simulation to estimate the single

photon event rate from neutrissimo decays in the MiniBooNE detector. The updated
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MiniBooNE analysis in Ref. [31] relied instead on the public LeptonInjector 1 soft-

ware package, which will be described in more detail in section 6.3.1. In Ref. [27]

we considered neutrissimo production via both 𝜋0 → 𝛾𝜈𝒩 decays and 𝜈𝐴 → 𝒩𝐴

Primakoff upscattering. The former process was estimated using the Sanford-Wang

parameterization of the 𝜋0 production rate at the BNB ] [14,110] and was found to be

negligible for the dipole parameters of interest to MiniBooNE. We therefore explic-

itly ignored this process, considering Primakoff upscattering as the sole neutrissimo

production mechanism.

The 𝜈𝛼𝐴 → 𝒩𝐴 upscattering rate was calculated using the differential cross

section with respect to the Mandelstam variable 𝑡 = 𝑄2 = (𝑝𝒩−𝑝𝜈)2 [27,130,232,255],

𝑑𝜎𝜈𝛼𝐴→𝒩𝐴

𝑑𝑡
=

2𝛼𝑑2𝛼
𝑀

[︂
𝐹 2
1 (𝑡)

(︁ 1

𝐸𝑟

− 1

𝐸𝜈

+𝑚2
𝒩
𝐸𝑟 − 2𝐸𝜈 −𝑀

4𝐸2
𝜈𝐸𝑟𝑀

+𝑚4
𝒩

𝐸𝑟 −𝑀

8𝐸2
𝜈𝐸

2
𝑟𝑀

2

)︁
+
𝐹 2
2 (𝑡)

4𝑀2

(︁2𝑀
𝐸2

𝜈

((2𝐸𝜈 − 𝐸𝑟)
2 − 2𝐸𝑟𝑀) +𝑚2

𝒩
𝐸𝑟 − 4𝐸𝜈

𝐸2
𝜈

+
𝑚4

𝒩
𝐸2

𝜈𝐸𝑟

)︁]︂
,

(6.5)

where 𝛼 is the fine structure constant, 𝑑 is the dipole coupling, 𝐸𝜈 is the SM neutrino

energy, 𝑚𝒩 is the mass of the heavy neutrino, 𝑀 is the target mass, 𝑡 = −(𝑝𝒩−𝑝𝜈)2 is

the momentum transfer, 𝐸𝑟 = −𝑡/2𝑀 is the target recoil energy, and 𝐹1/2(𝑡) are the

electric/magnetic target form factors, respectively. Note that the term proportional

to 𝐸𝑟𝑚
4
𝑁 in the 𝐹1 line only exists for spinless nuclei, and must be replaced for

nonzero spin nuclei [127]. In the case of coherent scattering off of a nucleus, 𝐹1

receives a 𝑍2 enhancement and is therefore dominant over 𝐹2. Thus, we explicitly

neglect the 𝐹2 term for this analysis. In Ref. [27], 𝐹1 was calculated using a dipole

parameterization. However, since the dipole approximation tends to underestimate

the cross section at high squared momentum transfer 𝑄2, Ref. [31] updated to the

Fourier-Bessel parameterization,

𝐹FB(𝑄) = 𝑍2𝑁
sin(𝑄𝑅)

𝑄𝑅

∑︁
𝑛

(−1)𝑛𝑎𝑛
𝑛2𝜋2 −𝑄2

, (6.6)

1github.com/Harvard-Neutrino/LeptonInjector
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where 𝑍 is the proton number of the struck nucleus, 𝑁 is a normalization fac-

tor ensuring 𝐹FB(0) = 1, and 𝑎𝑛 are coefficients obtained from nuclear scattering

data [256–259]. For the case of inelastic upscattering off of individual nuclei, we use

the nucleon electric and magnetic form factors discussed in the appendix of Ref. [27].

Inelastic upscattering exhibits only a linear enhancement in the number of protons

and neutrons, which suppresses its effect compared to the 𝑍2 enhancement of the

coherent upscattering cross section. Ref. [31] also includes contributions from the

sub-dominant helicity-conserving channel of both the elastic and inelastic upscatter-

ing cross sections.

The total upscattering cross section was obtained by integrating equation (6.5)

over the physical momentum transfer range [130]. The overall neutrissimo production

rate via upscattering in the BNB was then calculated using this cross section in

combination with the density of each nuclear and nucleon target available along the

BNB. These include nuclei in the bedrock and air between the BNB target and the

detector, as well as carbon and hydrogen nuclei in the detector itself. The bedrock

composition is defined in table 6.1 and is considered to have a density of 2.9 g/cm3.

Upscattering in the bedrock (detector) is more important for long-lived (short-lived)

neutrissimos. The kinematics of the outgoing neutrissimo were fixed by sampling a

momentum transfer 𝑡 according to equation (6.5), which consequently determines the

nuclear recoil energy 𝐸𝑟 = −𝑡/2𝑀 as well as the neutrissimo energy and scattering

angle [127],

𝐸𝒩 = 𝐸𝜈 − 𝐸𝑟,

cos(𝜃) =
𝐸𝜈 − 𝐸𝑟 −𝑀𝐸𝑟/𝐸𝜈 −𝑚2

𝒩/2𝐸𝜈√︀
𝐸2

𝜈 + 𝐸2
𝑟 − 2𝐸𝜈𝐸𝑟 −𝑚2

𝒩
.

(6.7)

One can rewrite equation (6.5) to isolate an overall 1/𝑡2 prefactor, indicating a pref-

erence for 𝑡 ≈ 0 and thus cos 𝜃 ≈ 1 for this process.

After neutrissimos are produced, they will decay via the process 𝒩 → 𝜈𝛾. The

decay width Γ and lab-frame decay length 𝐿decay of this process are given by [27,31,
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130]

Γ =
𝑑2𝑚3

𝒩
4𝜋

,

𝐿decay = 4𝜋
𝛽𝐸𝒩

𝑑2𝑚4
𝒩
,

(6.8)

where

𝑑 ≡
(︁∑︁

𝛼

|𝑑𝛼𝑁 |2
)︁
. (6.9)

Considering the dipole parameters preferred by the MiniBooNE excess, the typical

neutrissimo decay length at BNB energies is 𝐿 . 1 m. The probability of decaying

within the MiniBooNE detector is then

𝑃decay = exp

(︂
−𝐿enter

𝐿decay

)︂
− exp

(︂
−𝐿exit

𝐿decay

)︂
, (6.10)

where 𝐿enter and 𝐿exit are the distance along the neutrissimo path from the upscat-

tering location to the entrance and exit of the MiniBooNE detector, respectively.

Assume the neutrissimos are Dirac particles, their differential decay which is given

by [131,135]
𝑑Γ

𝑑 cos 𝜃
=

1

2
(1 + 𝛼 cos 𝜃), (6.11)

where 𝛼 = 1 (𝛼 = -1) for the decay of a right-handed (left-handed) heavy neutrino,

and vice versa for the antineutrino case.

In Ref. [27] and Ref. [31], we used the combination of the production rate from

equation (6.5) and the decay rate from equation (6.8) to compute the single photon

rate from neutrissimo decay in MiniBooNE.

6.3.1 Simulation in LeptonInjector

As stated above, Ref. [27] built a custom simulation to assess the neutrissimo model

in MiniBooNE. Ref. [31] instead performed the MiniBooNE simulation using the

LeptonInjector software package. LeptonInjector was originally developed within

the IceCube collaboration [260] to simulate the interactions of high-energy neutrinos
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Nucleus Z A Crust Mass Fraction Crust Atomic Fraction Nuclear Radius [MeV−1]
O 8 16 0.466 0.627 0.00218
Si 14 28 0.277 0.213 0.00252
Al 13 27 0.081 0.065 0.00247
Fe 26 56 0.05 0.019 0.00301
Ca 20 40 0.037 0.02 0.00281
K 19 39 0.027 0.015 0.00277
Na 11 23 0.026 0.024 0.00241
Mg 12 24 0.015 0.013 0.00247
Ti 22 48 0.004 0.002 0.0029
P 15 31 0.001 0.001 0.00257

Table 6.1: Relevant parameters of the ten most abundant nuclei in the Earth’s upper
crust according to [32]

within their detector; however, this version was not suitable to handle the neutrissimo

model out-of-the-box. A series of updates were made to LeptonInjector, led by

Austin Schneider and myself, in order to carry out the study described here. These

include (but are not limited to):

• Support for the input of total and differential cross section tables.

• Support for a wide variety of detector subsystem geometries, including extruded

polygons.

• Ability to simulate a tree of secondary interactions following the initial interac-

tion.

• Ability to calculate event weights for general interaction trees.

• Support for a combination of cross sections and decays as possible interactions

for a given particle.

• Support for a fiducialization requirement to improve the computational effi-

ciency.

The current version of LeptonInjector is suitable for general purpose studies of

particle interactions in a wide variety of detectors. It was presented at the March 2023

Coherent-CAPTAIN-Mills Workshop [261] and is publicly available on GitHub [262].
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While LeptonInjector is written in C++, the classes and methods are importable as

a library in Python [263].

We now briefly review the LeptonInjector-based MiniBooNE analysis presented

in Ref. [31]. Neutrinos are first injected along the beam axis with energies sampled

from the BNB flux [14]. The upscattering location is then sampled according to

the material-dependent interaction length along the neutrino path. The interaction

length in each material is calculated via upscattering cross section tables computed

using DarkNews [264]. In order to optimize the efficiency of the simulation, neutrinos

are required to undergo a Priamkoff upscattering interaction within three neutris-

simo decay lengths of the MiniBooNE detector. The kinematics of the neutrissimo

are fixed by sampling the differential cross section in equation (6.5), calculated in

tabular format using DarkNews. The decay location of the neutrissimo is then sam-

pled according to the lab frame decay length in equation (6.8). If the neutrissimo

path crosses the detector volume, it is required to decay within or just before the

detector, further optimizing the efficiency of the simulation. Once a photon is gen-

erated, we sample the pair-production location according to the radiation length of

each traversed material, which we use to perform a robust fiducialization cut. The

weight of each event is calculated by comparing the generation probability of each

sampled quantity (e.g. the energy/direction of the initial neutrino, the kinematics

of the produced neutrissimo/photon, and the upscattering/decay locations) to the

specified physical probability distribution. The flux units provided in Ref. [14] allow

us to compute event weights in units of POT−1.

Figure 6-5 shows a schematic depiction of the LeptonInjector neutrissimo sim-

ulation in MiniBooNE, which incorporates 541 m of bedrock, a 9 m-radius spherical

air-filled detector hall, and the 6.1 m-radius spherical mineral oil detector. The result

of this procedure is a robust Monte Carlo sample of single photons in MiniBooNE

from neutrissimo decay. The kinematic variables of each observable photon have been

carefully computed, and the detailed treatment of the geometry of the MiniBooNE

detector hall allows for a realistic estimation of the fiducialization requirement. While

the latter point is not necessarily vital for the relatively simple MiniBooNE detector,
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it is much more important when considering the complex MINER𝜈A detector for the

analysis discussed in section 6.4. The careful treatment of new physics models en-

abled by LeptonInjector is essential for differentiating between the many proposed

explanations of MiniBooNE, both when determining the preferred region in model

parameter space from MiniBooNE data and when determining constraints from other

experiments. This is one of the intended use cases motivating our recent public release

of LeptonInjector [262].

(a)

ν ! ν

γ γ

C

(b)

Figure 6-5: Schematic depiction of the neutrissimo model in MiniBooNE as simulated
using LeptonInjector. Figure 6-5a shows the simulation of Primkaoff upscattering
along the beamline, and figure 6-5b shows an example of upscattering, neutrissimo
decay and pair-production within the MiniBooNE detector.

6.3.2 Fits to the MiniBooNE Excess

After performing the procedure outlined in section 6.3.1, we down-weighted each

event according to a linear parameterization of the MiniBooNE photon detection ef-

ficiency [27, 265]. We also imposed a reconstruction threshold on the true photon

kinetic energy requiring 𝐸𝛾 > 140 MeV. The energy (angle) of the photon was

smeared according to a power-law (quadratic) fit to a MiniBooNE single electromag-

netic shower simulation sample [266]. The typical resolution in the energy (angular)
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distribution was 10% (3∘) for the photons generated in this model, consistent with

values reported by MiniBooNE [267].

After these steps, the simulated events could then be used to estimate the single

photon rate from neutrissimo decays in the 𝐸QE
𝜈 and cos 𝜃 distributions of Mini-

BooNE’s electron-like sample. We performed a separate fit to the MiniBooNE excess

in each distribution. After subtracting the SM prediction and the oscillation predic-

tion from the global fit without MiniBooNE, we calculated a 𝜒2 test statistic between

the data and the neutrissimo prediction throughout a grid of points in 𝑑𝜇𝒩 -𝑚𝒩 param-

eter space. For the 𝐸QE
𝜈 distribution, we used the MiniBooNE electron-like covariance

matrix provided in the data release [268] associated with Ref. [10]. The MiniBooNE

collaboration has not released any information regarding systematic uncertainty in

the cos 𝜃 distribution; therefore, we assign an uncorrelated fractional systematic un-

certainty of 13% in this distribution, consistent with the overall level in the 𝐸QE
𝜈

distribution. We compute confidence regions in neutrissimo parameter space using

the Δ𝜒2 test statistic, assuming Wilks’ theorem [26] for two degrees of freedom.

Figure 6-6 shows the 95% and 3𝜎 confidence level allowed regions in neutrissimo

parameter space from the MiniBooNE 𝐸QE
𝜈 and cos 𝜃 distributions. These allowed re-

gions come from Ref. [31], which is intended to supersede the results in Ref. [27]. This

is because Ref. [31] makes a number of improvements upon the analysis in Ref. [27],

including the use of a more robust nuclear electromagnetic form factor and a more

detailed simulation within LeptonInjector. One can see from figure 6-6 that the

energy and angular distributions of the MiniBooNE excess prefer different regions

of parameter space. This is because the angular distribution has a not-insignificant

component at large angles, −1 ≤ cos 𝜃 ≤ 0, as shown in figure 2-6b. Larger neutris-

simo masses are required to explain this region, as such neutrissimos will have a lower

Lorentz boost and thus result in a photon with broader lab-frame angles with respect

to the beamline. This is in contrast with the energy distribution, which prefers lower

neutrissimo masses such that the lower energy part of the BNB neutrino flux is not

kinematically forbidding from upscattering into a neutrissimo. The difference between

preferred regions of the energy and angular distributions in such visible heavy neu-
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trino decay models has been discussed previously in the literature [128,135]; however,

our study is the first comprehensive analysis of the compatibility of both distributions.

Our results in figure 6-6 indicate an overlap between the allowed regions of the 𝐸QE
𝜈

and cos 𝜃 allowed regions at the 95% C.L. Figure 6-7 shows comparisons between the

MiniBooNE excess in each distribution and the mixed model prediction, considering

the neutrissimo model indicated by the black star in figure 6-6, which is near this

95% C.L. overlap. One can see that the oscillation contribution to the MiniBooNE

LEE in this model is indeed small compared with the neutrissimo contribution. A

larger oscillation contribution might help explain the −1 ≤ cos 𝜃 ≤ 0 region of the

excess–this point is discussed further in section 6.4. That being said, the mixed model

does a better job of predicting the excess in the lowest-energy region. This can be

seen by comparing the compatibility between data and prediction in the first two bins

of figure 6-7a to that in figure 2-5a.

There are a number of existing constraints on the neutrissimo model in the 10 ≤

𝑚𝒩 [MeV] ≤ 1000 regime, as indicated by the grey regions in figure 6-6. These include

Super-Kamiokande [233,237], Borexino [233], Supernova 1987A [81,130], LSND [130],

CHARM-II [232], and NOMAD [231]. See section 6.4 for a more detailed discussion

on each constraint. We briefly note that the overlap in the 95% allowed regions in

MiniBooNE falls close to the NOMAD constraint derived in Ref. [231], which may

motivate a re-analysis of the NOMAD data.

Finally, we remind the reader that any explanation of MiniBooNE must be com-

patible not only with the energy and angular distributions of the excess but also with

the timing distribution [10]. Specifically, the new physics events cannot experience

time delays Δ𝑡 & 10 ns. This was studied within the context of the neutrissimo model

in Ref. [27]. As shown in figure 6-8, neutrissimos with 𝑚𝒩 ∼ 500 MeV have time

delays Δ𝑡 ∼ 1 ns, certainly within the constraint imposed by the MiniBooNE timing

distribution. This is because in the region of parameter space preferred by Mini-

BooNE, neutrissimos tend to be very short-lived and must therefore be produced via

upscattering off of nuclei in the detector. As such, the total travel time is dominated

by the original speed-of-light neutrino.
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through fits to the MiniBooNE excess in the 𝐸QE
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2𝜎 constraints on this model are indicated by the grey regions.
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Figure 6-7: Figure 6-7a and figure 6-7b show the 𝐸QE
𝜈 and cos 𝜃 distributions of the

MiniBooNE excess, respectively, compared with the prediction from the neutrissimo
model indicated by the black star in figure 6-6. The oscillation contribution from the
3 + 1 global fit without MiniBooNE is also shown.

210



−2 0 2 4
∆t [ns]

0

50

100

150

H
N

L
E

ve
nt

s
in

M
in

iB
oo

N
E

{d,mN} = {2.8× 10−7 GeV−1, 376 MeV}

Figure 6-8: The added time delay in MiniBooNE for a neutrissimo with the indicated
parameters, as calculated in Ref. [27].

6.4 Publication: Dipole-coupled neutrissimo ex-

planations of the MiniBooNE excess includ-

ing constraints from MINERvA data

We close this chapter with a presentation of Ref. [31]. The work was led by myself,

Matheus Hostert, and Austin Schneider. The full Physical Review D publication is

included below. As described in section 6.3, this study performed a more detailed

analysis of the mixed model described in section 6.2 as a solution to the MiniBooNE

excess. We also derived world-leading constraints on the neutrissimo model using

neutrino electron elastic scattering data from the MINER𝜈A experiment [217–219].

While these constraints are strong, they do not rule out the overlap in the 95%

C.L. allowed regions from the MiniBooNE energy and angular distributions shown

in figure 6-6. As shown in Figure 8 of the paper below, this is a result of the strict

kinematic cuts employed in the MINER𝜈A elastic scattering analysis. If these cuts are

relaxed, MINER𝜈A should be sensitive to the MiniBooNE neutrissimo solution in the

mixed model. The most important result from this study is given in Figure 10, which

shows the surviving parts of the MiniBooNE allowed regions in neutrissimo parameter

space after the MINER𝜈A constraints are incorporated. The dashed lines in the right
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panel indicate contours of constant number of neutrissimo decays in the MINER𝜈A

fiducial volume before any cuts are applied. One can see that MINER𝜈A should have

104 − 105 events before cuts within the MiniBooNE-preferred region of parameter

space. We also test the implications of weak-flavor-conserving UV-completions of the

dipole operator of equation (6.1), which predict 𝑑𝛼𝒩 ∝ 𝑚ℓ𝛼 and thus a large 𝑑𝜏 . This

scenario mostly alters the allowed regions and constraints in the lower mass region of

parameter space without impacting the MiniBooNE solution.

Note: while the published version of this article uses the phrase “heavy-neutral-

lepton” in the title, the authors prefer the arXiv title given above.
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We revisit models of heavy neutral leptons (neutrissimos) with transition magnetic moments as
explanations of the 4.8σ excess of electronlike events at MiniBooNE. We first reexamine the preferred
regions in the model parameter space to explain MiniBooNE, considering also potential contributions from
oscillations due to an eV-scale sterile neutrino. We then derive constraints on the model using neutrino-
electron elastic scattering data from MINERvA. To carry out these analyses, we have developed a detailed
Monte Carlo simulation of neutrissimo interactions within the MiniBooNE and MINERvA detectors using
the LeptonInjector framework. This simulation allows for a significantly more robust evaluation of
the neutrissimo model compared to previous studies in the literature—a necessary step in order to begin
making definitive statements about beyond the Standard Model explanations of the MiniBooNE excess. We
find that MINERvA rules out a large region of parameter space, but allowed solutions exist at the 2σ
confidence level. A dedicated MINERvA analysis would likely be able to probe the entire region of
preference of MiniBooNE in this model.

DOI: 10.1103/PhysRevD.107.055009

I. INTRODUCTION

Past, current, and future neutrino experiments offer
some of the most promising avenues for observing physics
beyond the Standard Model (BSM). The discovery of
neutrino oscillations, and thus nonzero neutrino mass, is
itself an indication of BSM physics [1,2], spurring a
decades-long oscillation experimental program spanning
orders of magnitude in energy and length scales [3–5]. A
nearly-consistent three-neutrino mixing paradigm has
emerged from this program; however, anomalous results
have also been observed. Two striking examples are the
excess of inverse-beta-decay events at the LSND detector
at the Los Alamos Neutrino Science Center [6] and the
excess of electronlike events observed by the MiniBooNE
(MB) experiment at the Fermilab Booster Neutrino Beam
(BNB) [7]. Determining the nature of these excesses is an
active frontier in neutrino physics [8] Historically, both

excesses have been interpreted within the context of a
3þ 1 model, in which one introduces an eV-scale sterile
neutrino facilitating short-baseline νμðν̄μÞ → νeðν̄eÞ oscil-
lations. However, models beyond the vanilla 3þ 1 sce-
nario may better accommodate these anomalies within the
global experimental landscape, including cosmology and
other neutrino oscillation experiments.
One such model considers MeV-scale heavy neutral

leptons (HNLs), or “neutrissimos” [9,10], with transition
magnetic moments, popularly known as the dipole portal to
HNLs [11–24]. Most recently, Ref. [23] showed that theMB
anomaly could be fitted with such a dipole portal extended
to include a mass-mixed eV-scale sterile neutrino. The
advantages of this model are twofold: (1) it provides a
better description of the low-energy, forward-angle part of
the MB excess compared to the 3þ 1 model alone, and
(2) reducing the oscillation-based contribution to the MB
excess alleviates tension in global fits to the 3þ 1 model
while retaining an explanation to the LSND anomaly.
For the main result of this paper, we derive constraints on

the dipole portal coupling using existing experimental
results from the MINERvA Collaboration. Specifically,
MINERvA has performed measurements of the neutrino-
electron elastic scattering (ν − e) rate for the purpose of
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constraining the NeutrinoMain Injector (NuMI) low-energy
(LE) and medium-energy (ME) neutrino fluxes [25–27].
Photons produced in the decay of the dipole-coupled
neutrino would mimic the single electromagnetic shower
morphology of electron-scattering (ES) events and would
therefore enter as a photonlike (large dE=dx) background in
the MINERvA analysis. In addition to deriving new con-
straints fromMINERvA, we improve upon the MiniBooNE
dipole model analysis performed in Ref. [23].
The analyses described in this article have been carried

out using a novel simulation developed within the
LeptonInjector framework [28]. This tool allows a
more robust description of neutrissimo interactions in
detector subsystems as well as the position and kinematics
of observable final state particles. This is an important
improvement over previous treatments in the literature, as
an accurate simulation of exotic BSM physics scenarios in
different neutrino detectors will be vital in determining the
nature of the MiniBooNE excess.
The rest of this article is organized as follows.

In Sec. II, we review the dipole-portal sterile neutrino
model in more detail. In Sec. III, we introduce the novel
LeptonInjector-based simulation developed for the
studies presented here. In Sec. IV, we refine the preferred
regions in dipole parameter space which explain the energy
and angular distributions of the MiniBooNE excess.
In Sec. V, we calculate constraints in dipole parameter
space derived from the MINERvA ES analysis. In Sec. VI,
we discuss existing and projected constraints on the dipole
model from current and future neutrino experiments.
Finally, in Sec. VII we discuss the outlook of this mixed
model of oscillation and decay as a solution to the
MiniBooNE anomaly in light of our derived MINERvA
constraints.

II. THE DIPOLE PORTAL

We introduce a right-handed neutrino N that couples to
the left-handed neutrino fields via a transition magnetic
moment. At the effective operator level, we have the
dimension-six dipole operators,

L ⊃
1

Λ2
Lα H̃ σμνN RðCα

BBμν þ Cα
WW

a
μνσaÞ þ H:c:; ð1Þ

where α is a flavor index, H̃ ¼ iσ2H�, Cα
B, and Cα

W are
Wilson coefficients and Λ is the new physics scale. After
electroweak symmetry breaking, the dipole operator gives
rise to the electromagnetic transition magnetic moment
of neutrinos,

L ⊃ dαN νασμνFμνN R þ H:c:; ð2Þ
where να corresponds to the neutrino Weak eigenstates
and Fμν to the electromagnetic field strength. The
dipole parameter is defined as dαN ¼ðvh=

ffiffiffi
2

p ÞðCα
WC

α
Bþ

Cα
WsWÞ=Λ2, where vh is the vacuum expectation value of

the SM Higgs. The other transition moments mediated by
the W and Z bosons will also be present, but their low-
energy effects are further suppressed by GF, and therefore
negligible in our region of interest.
The upscattering signature we are interested in at

MiniBooNE is initiated by muon neutrinos and antineutri-
nos, so in this work, we always consider the second-
generation coupling dμN . In UV completions of this operator
from one-loop diagrams, the size of the dipole coupling is
typically proportional to dαN ∼ ð1=16π2Þðmβ=m2

XÞ, where
mβ is the mass of some charged particle and X is some
heavy, charged scalar, for example. Under the assumption of
flavor-conserving interactions between SM neutrinos and
the new physics, onewould take β ¼ α and conclude that the
transition magnetic moment of the third-generation neutri-
nos is much larger. While this need not necessarily be the
case, it still provides enough motivation for us to consider
the third-generation coupling dτN , including the case

dτN
dμN

¼ mτ

mμ
; ð3Þ

and neglecting the first-generation couplings altogether.
We note that large neutrino magnetic moments

typically imply large Dirac masses for light neutrinos,
mDνLN R [29–31]. In models with heavy neutrinos, this
presents two challenges: (i) neutrino masses, schematically
given by mν ∼m2

D=M, may be too large, and (ii) mD will
generate large mixing between active and heavy neutrinos,
UαN ∼mD=M. Here,M stands for the heavy neutrino mass
scale. The first challenge is easily overcome in models like
the inverse-seesaw where lepton number is approximately
conserved and right-handed neutrino fields combine into
pseudo-Dirac N particles. In that case, mν is controlled by
the mass splitting between the Majorana neutrinos, which
may be parametrically small. This is also the case preferred
by the short-baseline phenomenology discussed below,
since the single-photons produced in the decays of Dirac
HNLs are less forward. The second challenge, however, is
not so easy to overcome. The mixing between active and
heavy neutrinos remains large even in inverse-seesaw
models and the parameter space in that case is strongly
constrained by laboratory limits on UαN . For instance,
decay-in-flight signatures at neutrino experiments, where
N is copiously produced in meson decays at the target, can
set limits as strong as jUαN j2 < Oð10−11Þ [32].
There are several models in the literature that can

suppress the Dirac mass in comparison with the magnetic
moment of neutrinos [33–39], but only to a certain extent
and not without fine tuning. We proceed assuming thatmD
is sufficiently small so as not to impact the phenomenol-
ogy, but note that depending on the amount of fine tuning,
bounds on the mixing angles jUαN j would also need to
be considered.
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In performing a fit to MiniBooNE data, we also include a
sterile neutrino, νs, which mixes with light neutrinos but
does not have transition magnetic moments with active
neutrinos. This sterile will be responsible for short-baseline
oscillations with Δm2

41 of Oð1 eV2Þ. We provide two
examples, the case of a global fit to short-baseline data
excluding MiniBooNE [23] and the case of a joint fit to only
MiniBooNE and the recent MicroBooNE CCQE-like analy-
sis [40]. It is also important that νs and the heaviest neutrino
do not mix, as otherwise N R would also mix with light
neutrinos via νs. In summary, our spectrum is defined as

νi ∼
X

α¼fe;μ;τ;sg
Uαiνα; for i ≤ 4 and ν5 ≡N ; ð4Þ

where the approximate symbol means that any additional
term contains very small mixing elements. In addition, this
mixing would result in a corresponding dipole coupling
dαsνασμνFμννs, which is strongly constrained by big bang
nucleosynthesis and stellar cooling. While the former may
be modified à la secret interactions, the latter is significantly
more robust and constrains dμs < 2 × 10−12μB [41].
The relevant interactions for this work are shown in

Fig. 1, which include Primakoff upscattering off of a
nuclear target νA → NA (left) and the radiative decay of
the heavier neutrino N → ναγ (right). Due to the photon
propagator, the scattering process is dominated by coherent
exchange with the nucleus, except at the largestmN values.
We include helicity-flipping upscattering, where the hel-
icity ofN is opposite to that of να, and helicity-conserving,
where they are the same. The latter is suppressed by the
typical energy of the process, m2

N =E2, and is only relevant
at the largest masses. To give an example, the cross section
for an incoming neutrino with energy Eνα ¼ 1 GeV upscat-
tering off of a carbon nucleus into a neutrissimo with mass
mN ¼ 50 MeV and dipole coupling dαN ¼ 10−6 GeV−1 is
σ ≈ 5 × 10−39 cm2 [18].
The rest frame decay width of the N is given by the

incoherent sum over all outgoing flavors,

ΓN→νγ ¼
�X

α

jdαN j2
�
m3

N

4π
: ð5Þ

Throughout this work, we will assume that eitherN or light
neutrinos are Dirac particles, such that the differential decay

rate is proportional to ð1� cos θÞ [19]. For the region of
dipole parameter space preferred by MiniBooNE [23], the
HNL has a lab frame decay length L ∼ 1–10 m for typical
MINERvA neutrino energies and L ≤ 1 m for typical
MiniBooNE neutrino energies. Thus, Primakoff upscatter-
ing near or within each detector is the most relevant
production mechanism in this region of parameter space.
For smaller HNL masses, decay lengths become longer and
upscattering in the dirt along the BNB and NuMI beamlines
becomes more important for MiniBooNE and MINERvA,
respectively.

III. SIMULATING NEUTRISSIMOS

In order to describe neutrissimo interactions in the
MiniBooNE and MINERvA detectors, we have developed
a custom simulation based in the LeptonInjector
framework [28]. The simulation begins by injecting neu-
trinos in MiniBooNE and MINERvA according the BNB
and NuMI beam profiles, respectively. For each neutrino, a
flight path is randomly selected within a cone surrounding
the detector. This path is then used to calculate intersections
with different components of the beamline, including bed-
rock between the target and detector as well as various
detector subsystems. An upscattering location is sampled
along this flight path according to the cross section in each
traversed material. The final state kinematics of the pro-
duced HNL are sampled according to the dσ=dy distribu-
tion, where y≡ ðEν − EN Þ=Eν in the lab frame [41]. See
the Appendix for more details on the upscattering cross
section used in this analysis. Next, a decay location is
sampled along the flight path of the HNL. The final state
kinematics of decay photon are sampled according to
dΓ=d cos θ ∝ ð1 − cos θÞ. We trace the flight path of the
photon through different materials until it converts to
an eþe− pair, which are assumed to reconstruct as a
single electromagnetic shower within the MiniBooNE
and MINERvA detectors.
The above procedure is easily generalizable to other BSM

scenarios and detector configurations. The user needs only
to provide (1) the flux of initial state particles (neutrinos in
this case), (2) the total and differential cross sections for the
relevant processes, and (3) the relevant detector geometry.
The flux and cross section can be input either as analytic
expressions or splines; LeptonInjector will interpolate
in the latter case. The detector geometry is set using a simple
configuration file in which the user instantiates any number
of volumes. LeptonInjector supports most simple
volumes as well as general extruded polygons—for exam-
ple, the nuclear targets in MINERvA shown in Fig. 2, which
are subsections of hexagonal prisms. LeptonInjector
will then generate user-specified initial state particles,
sample their interaction locations, and store the kinematics
and weights of the final state particles. The simulation is
set up to be as efficient as possible, such that most
generated events create an observable final state within

FIG. 1. N production from ν upscattering (left) and N decay
(right).
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the fiducial volume and are appropriately downweighted.
In the analysis presented here, we have tracked final state
particles until the production of an observable eþe− pair.
This strategy can be adapted for other BSM scenarios
which involve multiple interactions before the production
of an observable final state.
The simulation performed for the analysis presented here

gives a robust estimation of the eþe− event rate within the
fiducial volume of each experiment. Further, it provides an
accurate kinematic description of the photons which survive
fiducialization (namely, the photon energy and angle with
respect to the beamline). This is vital, as it will be shown
that the region in dipole parameter space preferred by the
MiniBooNE excess is highly sensitive to the kinematics of
the final state photon. Such an effect has been appreciated
by previous studies in the literature [11,24], but a compre-
hensive fit over the full dipole parameter space was not
attempted until Ref. [23]; the simulation described above
allows us to refine the fit from Ref. [23].
The simulation is also vital in order to properly assess the

ability of MINERvA to constrain the dipole solution to the
MiniBooNE excess. By leveraging our simulation, we will
show that the reconstruction efficiency for radiative HNL
decays in MINERvA varies by 3–4 orders of magnitude

across the parameter space. Previous calculations in the
literature have assumed a constant 10% reconstruction
efficiency for radiative HNL decays in MINERvA [42],
and have thus incorrectly concluded that MINERvA data
rules out the dipole-portal MiniBooNE solution. Further,
they do not simulate the complex subcomponents of the
MINERvA detector—this is an important step, as upscat-
tering in the high-Z nuclear targets just upstream of the
fiducial volume can contribute significantly to the single
shower sample for short-lived HNLs.
Thus, the LeptonInjector-based simulation per-

formed for this study is essential to evaluate the status of
the dipole-coupled neutrissimos as an explanation for the
MiniBooNE excess. As the community turns toward more
exotic BSM explanations of the MiniBooNE excess, it is
imperative that these models are evaluated within the
context of realistic detector descriptions. Our simulation
framework is the prefect tool for such a task; though
the version used in this article was developed specifically
to study neutrissimo interactions in MiniBooNE and
MINERvA, it can be adapted easily to accommodate
additional BSM scenarios and neutrino detectors.

IV. NEUTRISSIMOS AT MiniBooNE

TheMiniBooNE detector uses Cherenkov light to detect
final state particles produced in neutrino interactions. As
electrons and photons both produce electromagnetic
showers which show up as distorted Cherenkov rings in
the detector, the two particles are indistinguishable in
MiniBooNE. Thus, photons from the dipole model could
contribute to the MiniBooNE electronlike excess. In the
case of a nonzero effective dipole coupling, dμN , muon
neutrinos from Fermilab’s Booster Neutrino Beam will
undergo Primakoff upscattering into HNL states. This can
happen via photon exchange with nuclear targets both
within the dirt between the BNB target and the detector
and within the CH2 detector volume itself.

A. Simulation

As described in Sec. III, we use LeptonInjector
to simulate the production and decay of HNLs in
MiniBooNE [28]. A schematic depiction of this process
is shown in the top panel of Fig. 2. Muon neutrinos are
injected according to the BNB flux and allowed to
upscatter to HNLs along the 541 m baseline between
the BNB target and the detector or within the 818-ton CH2

detector itself. We describe the MiniBooNE detector as a
sphere of CH2 with a total radius of 6.1 m and a fiducial
radius of 5 m. The MiniBooNE detector sits within a
sphere of air with a radius of 9 m, meant to represent the
detector hall. To simulate the BNB, muon neutrinos
generated in LeptonInjector propagate through
541 m of dirt before reaching the MiniBooNE detector.
The neutrino upscattering and subsequent HNL decay are

FIG. 2. (Top) Schematic representation of HNL production via
upscattering and the subsequent HNL decay within the
MiniBooNE (left) and MINERvA (right) detectors. Detector
images have been adapted from Refs. [46,47]. (Bottom) Example
upscattering rates within two of the MINERvA nuclear targets as
simulated using LeptonInjector. The coherent enhancement
of the upscattering cross sections leads to a larger rate in the high-
Z components.
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simulated according to the proceudre outlined in Sec. III.
We parametrize the postfiducialization photon detection
efficiency as a linearly decreasing function of the true
photon kinetic energy [23]. We also impose a reconstruction
threshold on the photon kinetic energy of 140MeV [43]. We
also independently smear the reconstructed visible energy
and scattering angle of each photon according to the
resolution of each as a function of true photon kinetic
energy. The energy (angular) resolution comes from a
power-law (quadratic) fit to simulated single electromag-
netic shower events in MiniBooNE [44], with typical values
of 10% (3°) for photons from this model, consistent with
figures reported by the MiniBooNE Collaboration [45].

B. Analysis methodology

The dipole model has previously been studied
as a potential solution to the MiniBooNE anomaly
[11–18,22–24]. Specifically, we expand upon the study
performed in Ref. [23], which examined a mixed model
consisting of an eV-scale ν4 facilitating short-baseline νμ →
νe oscillations as well as an MeV-scale HNL decaying to a
photon via the dipole portal mechanism. Ref. [23] found a
preference for a dipole-coupled HNL with mN ∼ 400 MeV
and dμN ∼ 3 × 10−7 GeV−1.
We make a number of improvements to this analysis.

First, we make use of a more robust nuclear electromagnetic
form factor, implementing a data-driven Fourier-Bessel
function parametrization [48–50] with the data files made
available in Ref. [51]. This should be compared with the
simpler dipole parametrization, which overestimates the
differential cross sections at larger momentum exchange
(see the Appendix for more details). This has an impact on
the allowed regions at larger heavy neutrino masses, as the
form factor used in this study drops off much more quickly
at largerQ2. It also reduces the contribution from the dipole
model at large scattering angles, thereby making it difficult
to explain the backscattered lepton angular distribution of
the MiniBooNE excess. This effect has been pointed out in
previous studies of the dipole model in MiniBooNE [16].
In this work, we perform a more detailed analysis of the
dipole parameter space to determine whether solutions
exist which can accommodate both the energy and angular
distributions of the excess. The statistical treatment for
each distribution has been improved–we now consider
correlated systematic errors in the reconstructed EQE

ν

distribution from the provided covariance matrix (after
constraining with the covariance matrix for MiniBooNE’s
νμ dataset). We also introduce an uncorrelated systematic
error of 13% in the cos θ distribution, consistent with that
in the EQE

ν distribution.
We perform fits to the excess only in neutrino-mode data,

as MiniBooNE has collected about an order of magnitude
more events in this beam configuration compared to their
antineutrino-mode data. We use the simulated photon events

from the above procedure to perform two different spectral
analyses across dipole parameter space: one in the EQE

ν

distribution and one in the cos θ distribution. In both
cases, we calculate a χ2 test statistic comparing the dipole
model prediction to the remaining excess after subtracting
off the oscillation contribution from the MiniBooNE-less
global fit reported in Ref. [23]. In the EQE

ν fit, we use the
electronlike channel fractional covariance matrix provided
by theMiniBooNECollaboration after constraining with the
covariance matrix in the muonlike channel. No systematic
errors are provided for the cos θ distribution; therefore, as
mentioned above, we consider an uncorrelated fractional
systematic error of 13% in each bin of the cos θ prediction,
consistent with the level in the EQE

ν channel. Confidence
regions are drawn using aΔχ2 test statistic, assumingWilks’
theorem with two degrees of freedom [52].

C. Results

The result from the fit procedure described above is
shown in Fig. 3. One can see that it is difficult to explain
the EQE

ν and cos θ distributions through the same dipole-
coupled HNL, as the two distributions prefer different
regions of dipole parameter space. The preferred regions
overlap at the 2σ C.L., though some of this overlap region
is in tension with constraints derived from the NOMAD
single-photon analysis [53]. As stated above, the differ-
ence between this result and the result in Ref. [23] is driven
mainly by the updated form factor. This reduces the
Primakoff upscattering rate at large scattering angles,

FIG. 3. The 2σ and 3σ C.L. preferred regions to explain the
MiniBooNE anomaly in mass-coupling parameter space for a
dipole-coupled heavy neutral lepton. The pink (green) curves
correspond to results from fitting the EQE

ν (cos θ) distribution.
Dipole model fits are performed after subtracting the oscillation
component from a global fit to a 3þ 1 model excluding
MiniBooNE data [23]. In general, the energy and angular
distributions prefer different regions of parameter space, though
overlap exists at the 2σ − 3σ level.
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requiring the fit to push to larger N masses and dipole
couplings to explain this part of the MiniBooNE excess.
That being said, there is a region in parameter space for
d ∼ 10−6 GeV−1 andmN ∼ 0.5 GeVwhich is (1) within the
2σ allowed region for theEQE

ν distribution, (2) within the 2σ
allowed region for the cos θ distribution, and (3) not ruled
out by NOMAD’s single-photon search [53]. In Fig. 4 we
show EQE

ν and cos θ distributions for an example parameter
point in this region, located at d ¼ 1.25 × 10−6 GeV−1 and
mN ¼ 0.47 GeV. One can see that this model can describe
most of the excess except for the region at cos θ ≲ 0.
This situation might be improved when considering

alternative oscillation scenarios. The above fits assumed
the MiniBooNE-less global-fit result, which found a best-fit
solution at fΔm2 ≈ 1.3 eV2; sin2ð2θμeÞ ≈ 6.9 × 10−4g [23].
We now consider an alternative sterile neutrino hypothesis:

the result from the recent MiniBooNEþMicroBooNE
CCQE-like 3þ 1 combined fit performed by the Mini-
BooNE Collaboration [40].
The MiniBooNEþMicroBooNE CCQE-like 3þ 1

combined analysis found a best-fit solution at fΔm2 ≈
0.2 eV2; sin2ð2θμeÞ ≈ 0.03g [40]. This introduces a much
larger νμ → νe oscillation component in MiniBooNE.
Thus, the dipole model is primarily driven to explain the
lowest energy and most forward-angle portion of the excess.
A mild preference for a dipole-coupled heavy neutral
lepton is found at the 1σ level. As the dipole model is
no longer required to explain the broad-angle portion of the
MiniBooNE excess, the angular fit is able to accommodate a
large range of heavy neutrino masses while the energy fit
prefers lower heavy neutrino masses at mN ≲ 100 MeV.
The preferred regions in dipole parameter space under this
oscillation hypothesis are shown in Fig. 5. As a benchmark
point, we consider a solution at d ¼ 1.7 × 10−7 GeV−1 and
mN ¼ 0.08 GeV. As shown in Fig. 6, this benchmark point
can reasonably describe the EQE

ν and cos θ distributions of
the MiniBooNE excess.
One can also consider a nonzero transition magnetic

moment coupling between the N and the ντ flavor eigen-
state. This would open up the decay channel N → ντγ,
increasing the decay width by the ratio ðjdμN j2 þ jdμN j2Þ=
jdμN j2. This will have a more pronounced impact on the fit
in the lower HNL mass region of parameter space, as
lifetimes in the higher HNL mass region are sufficiently

FIG. 4. The EQE
ν (top) and cos θ distributions at the example

dipole model hypothesis indicated by the black star in Fig. 3.
The darker contribution in each stacked histogram corresponds to
the dipole model prediction, while the lighter contribution
corresponds to the oscillation contribution. The background-
subtracted MiniBooNE excess is indicated by the black data
points, with solid and dashed error bars indicating statistical and
statistical þ systematic errors, respectively.

FIG. 5. 1σ C.L. preferred and 2σ C.L. allowed regions with
regard to the MiniBooNE anomaly in mass-coupling parameter
space for a dipole-coupled heavy neutral lepton. The pink (green)
curves correspond to results from fitting the EQE

ν (cos θ) dis-
tribution. Dipole model fits are performed after subtracting the
oscillation component from the combined MiniBooNEþ
MicroBooNE CCQE-like 3þ 1 fit [40]. Mild preference for a
dipole-coupled heavy neutrino with mN ≲ 100 MeV is found at
the 1σ level.
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short such that introducing another decay channel does not
appreciably change the phenomenology.
As discussed in Sec. II, in some UV completions of the

dipole model, a natural scaling given by dτN =dμN ¼
mτ=mμ. The resulting preferred regions in dipole model
parameter space under this assumption are shown on the left
panel of Fig. 7. One can see that, compared with Fig. 3,
solutions explaining the EQE

ν distribution have opened at
lower dμN couplings formN ≲ 100 MeV.We also examine
the effect of large tau coupling dτN ¼ 1 × 10−5 GeV−1,
which is meant to capture the extent of flexibility introduced
into the dipole model when allowing for nonzero dτN . The
preferred regions for this case are shown in the right panel of
Fig. 7. For both cases, we consider an oscillation contribu-
tion given by the MiniBooNE-less global fit.

V. NEUTRISSIMOS AT MINERvA

Neutrino upscattering can also occur in the MINERvA
detector. We choose to study MINERvA for two main
reasons: (i) the NuMI beam is a higher-energy beam in
comparison with the BNB. This is specially true for
the medium-energy (ME) NuMI configuration, where
hEνi ≃ 7 GeV, but it is still the case for the low-energy
(LE) configuration, where hEνi ≃ 3 GeV. This allows us
to probe HNLs of larger masses. (ii) it is one of the
few accelerator experiments in the few GeV region to
have a dedicated neutrino-electron (ν − e) scattering
analysis. While measurements of this channel have been
performed with greater precision at experiments like
CHARM [54] and CHARM-II [55], LSND [56], reactors
[57], Borexino [58,59], and Super-Kamiokande [60], they
are not as well suited for the study of the MiniBooNE
explanations considered here, where HNLs have hundreds
of MeV in mass. With the exception of CHARM and

FIG. 7. Similar to Fig. 3, but considering the N → ντγ decay channel. On the left, we show the case with coupling dτN ¼
ðmτ=mμÞdμN and on the right we consider dτN ¼ 1 × 10−5 GeV−1 instead. Compared to Fig. 3, preferred regions in the lower HNL
mass region move to lower dμN values.

FIG. 6. Similar to Fig. 4. The EQE
ν (top) and cos θ (bottom)

distributions at the example dipole model hypothesis indicated
by the black star in Fig. 5. The oscillation component comes
from the combined MiniBooNEþMicroBooNE CCQE-like
3þ 1 fit [40].
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CHARM-II, the previous experiments operate at energies
below the HNL production threshold and are therefore not
sensitive to our region of interest. While we could also
consider CHARM and CHARM-II, we note that they
observe larger neutrino-induced backgrounds thanks to
the faster growth of the SM cross section with respect to
the dipole one. In addition, the HNLs would be produced
with a larger boost factor, and therefore escape more often.
In this work, we will consider three existing

measurements of the neutrino-electron cross section by
MINERvA [25–27]. The first was performed in the LE
configuration of the NuMI beam operating with a forward-
horn current (FHC), optimizing the number of neutrinos
produced. The last two were performed in the ME con-
figuration, one in FHC and the other in reverse-horn current
(RHC) mode, the latter optimizing the number of anti-
neutrinos. The ME RHC measurement, also the most
recent, is particularly sensitive due to the smaller antineu-
trino- and neutrino-induced backgrounds. Unlike the dipole
cross section, antineutrino-nucleus weak cross sections are
smaller than neutrino-nucleus cross sections.

A. Simulation

As described in Sec. III, we use LeptonInjector
[28] to simulate νA → NA upscattering inside as well as
outside the MINERvA detector. A schematic depiction of
this process is shown in the top panel of Fig. 2. We include
upscattering in the upstream dirt, in the surrounding air, in the
nuclear target planes (detailed below), in the plastic scintilla-
tor, as well as in the outermost electromagnetic calorimeter.
While most of these components are not part of the fiducial
volume for the ν − e analysis, they can significantly contrib-
ute to the signal rate due to the displaced decays of the HNLs.
For long-lived HNLs, upscattering in the dirt dominates the
signal rate, followed by the nuclear target planes, which
contain high-density materials like 208Pb and 56Fe. Detailed
modeling of the detector geometry and material composition
is necessary to correctly predict the contributions from these
different upscattering sites.Wedefine each nuclear target to be
a hexagonal prism with apothem 92 cm, matching that of the
tracker region [61], and z extent given by Table 4 of Ref. [47].
The six nuclear target planes are detailed in Table I. In the
bottom panel of Fig. 2, we show the positional distribution of
the upscattering rate within two of the MINERvA nuclear
targets as simulated using LeptonInjector [28].We also
consider upscattering within the electromagnetic calorimeter,
defined as a hexagonal prism surrounding the inner detector
with 107 cmapothem, andwithin the steel veto shield∼1 min
front of MINERvA [61]. The fiducial volume of MINERvA
for the ν − e analyses is assumed to be approximately the
same for both the LE and ME analyses and is defined as a
hexagon of 81 cm apothem with ∼2.8 m z extent inside the
plastic scintillator.
After production, we track the HNL’s path through the

detector and force a decay to occur before the end of

the fiducial volume; we then downweight the event by the
probability of decaying within the considered region. Each
decay produces a photon for which we physically sample a
pair-production location. Events that do not pair produce
within the fiducial volume are removed. This procedure
accounts for events where the HNL decays outside the
fiducial volume, but the photon conversion happens inside
of it. This effect is important for short-lived HNLs since the
rate of HNLs produced in the high-density lead planes can
significantly contribute to the signal rate even though they
are not contained in the fiducial volume.
The neutrino fluxes for the LE mode have been taken

from Ref. [62] and for the ME they have been digitized
from Ref. [63]. The total exposures used in the three ν − e
analyses are 3.43 × 1020 POT for LE-FHC, 1.16 × 1021

POT for ME-FHC, and 1.22 × 1021 POT for ME-RHC.
To reduce neutrino-induced backgrounds, MINERvA

applies an extensive list of selection cuts. To properly
estimate the resulting efficiency of these cuts in our HNL
signal, it is important to correctly model the reconstruction
of the energy and angle of the single photons. In the absence
of a full detector simulation, we proceed to approximate
the detector energy and angular resolutions as Gaussian
functions. For the energy resolution, we take σE=E ¼
5.9%=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E=GeV
p Þ þ 3.4% [25], while for the angular

resolution, we take an energy-independent angular resolu-
tion of σθ ¼ 0.7°, assumed to be isotropic in the shower’s

TABLE I. Specifications of the MINERvA nuclear targets as
implemented in LeptonInjector [28] for this analysis. Each
nuclear target is defined as a hexagonal prism with an apothem of
92 cm. Z positions and extents of each nuclear target have been
taken from Table 4 of Ref. [47]. The coordinate system is defined
such that z ¼ 0 corresponds to the front of the MINERvA
detector. We have confirmed that the fiducial mass (bounded
by an 85 cm apothem hexagon) of each nuclear target sub-
component matches the fiducial mass quoted in Table 4 of
Ref. [47]. The last column of this table refers to the mass of each
nuclear target subcomponent within the 92 cm apothem hexago-
nal prism.

Target z-location (cm) z-extent (cm) Mass (kg)

1-Fe 13.6 2.567 370
1-Pb 13.6 2.578 317

2-Fe 31.3 2.563 370
2-Pb 31.3 2.581 317

3-Fe 53.4 2.573 197
3-Pb 53.4 2.563 141
3-C 53.4 7.620 194

Water 89.5 18.06 530

4-Pb 125.6 0.795 263

5-Fe 138.9 1.289 186
5-Pb 138.9 1.317 162
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azimuthal angle.1 The angular resolution is implemented
by sampling a polar angle δθ from a Gaussian distribution
of standard deviation σθ, rotating the photon by δθ with
respect to its momentum, assigning it an azimuthal angle
φ from the uniform distribution ½0; 2π�, and finally rotating
the photon back to the laboratory frame by its original
polar angle θtrue.

B. Event selection

Now we discuss the most important signal selection
cuts. The analyses [25,26] make use of a long list of signal
selection cuts, designed to suppress as many neutrino-
nucleus scattering backgrounds as possible. The most
worrisome backgrounds include π0 production and νeCC
scattering. The former is particularly important for our
radiative decay signal, as it can give rise to coherent
single-photonlike signatures. Cuts related to the shower
radius and transversal as well as longitudinal profiles are
not implemented in our analysis but are expected to have

large acceptance due to our signal being a true single
photon (as opposed to two photons from π0 or from the
eþe− pairs considered in the new physics model of
Ref. [65]). The series of cuts are illustrated in Fig. 8,
where we show the acceptance of the cuts as a function of
the HNL mass. The selection acceptance is largely
independent of the dipole coupling.

FIG. 8. (Top) The predicted Eshθ
2
sh distribution before detector

smearing and signal selection for three choices of model
parameters at MINERvA. Bottom) The signal selection efficiency
of our analysis cuts, excluding the dE=dx cut, as a function of the
HNL mass.

FIG. 9. The dE=dX distribution of selected events for the three
MINERvA analyses. From top to bottom: LE FHC, ME FHC, and
ME RHC. The latter has the largest sensitivity due to the smaller
backgrounds. All distributions are shown post-MINERvA tune,
except for ME RHC, where it is shown before tuning.

1This is only an approximation, as the MINERvA detector is not
azimuthally symmetric. Nevertheless, the differences in resolution
in the X and Y planes are small [61,64] and neglected here.
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We start with the cut on the reconstructed shower
energy, Esh > 0.8 GeV. To suppress νeCC backgrounds,
a cut on the reconstructed momentum exchange
under the hypothesis of neutrino-nucleon quasielastic
scattering is also implemented. It is defined a sQ2

QE−reco ¼
2mnðEQE−reco

ν − EshÞ, with

EQE−reco
ν ¼ mnEsh −m2

e=2
mn − Esh þ pe cos θe

; ð6Þ

and the analysis requires Q2
QE−reco < 0.02 GeV2. We note

that for ν − e scattering this cut can be understood by the
following relation,

Q2
QE−reco ≃ ðEshθshÞ2 <

meEν

2
; ð7Þ

where we dropped higher-order terms in electron mass
and θsh. For neutrino-nucleus upscattering in the forward
direction (small θN ), two-body kinematics for an
infinitely heavy nucleus gives Q2

QE−reco ≃ ðEN θN Þ2 <
ðEνmA −m2

N Þ=2, which is a much looser constraint. In
addition, the decay of N introduces even more spread in
the angular distribution, so we can already expect the cut
on Q2

QE−reco to be very important.
The most stringent cut in the analysis; however, is in

Eshθ
2
sh, required it to be< 3.2 MeV rad2. The acceptance of

this selection varies from under 10−4 at high masses to
approximately 30% at the lowest masses. It is larger for
Majorana than Dirac HNLs, as Dirac HNLs are more likely
to produce backward-going photons. Finally, the last cut we

implement is the cut on the mean dE=dx of first four
scintillator planes, requiring dE=dx > 4.5 MeV=1.7 cm.
Figure 9 shows the dE=dx distributions of the SM back-
ground and HNL decay events, as well as a dashed line
representing the dE=dx cut. The acceptance of this cut is
the least-understood aspect of our analysis as we do not
have access to a full detector simulation. The shape of our
dE=dx > 4.5 MeV=1.7 cm distribution is assumed to be
identical to that of the coherent and diffractive π0 back-
grounds shown in Fig. 9. In this approximation, we find this
cut has an acceptance of 93% and 91% for FHC and RHC
modes, respectively.

C. Results

The final 95% C.L. constraints on the dipole model are
shown in Fig. 10. The MiniBooNE regions of preference
are also shown for comparison. At the lowest values of mN
where the HNLs are long lived, our constraints are less
sensitive to the MiniBooNE best-fit region than at higher
masses due to the larger HNL boost factors at MINERvA as
well as the smaller fiducial volume when compared to
MiniBooNE. For lifetimes longer than cτ0 ∼ 100 cm, the
event rate in both experiments is dominated by dirt
upscattering. For shorter lifetimes, the event rate is domi-
nated by upscattering within the detector itself.
One can see that the constraints fromMINERvA begin to

rule out disfavor regions of parameter space preferred by
MiniBooNE. However, the strongest MINERvA 2σ C.L.
limits presented, which come from the ME RHC meas-
urement and assume 30% uncertainty on the background
normalization, do not rule out the intersection of the 2σ

C.L. preferred regions from the MiniBooNE EQE
ν and cos θ

FIG. 10. (Left) MINERvA constraints in the dipole parameter space at 95% C.L. Solid lines show our nominal limits assuming a
ηbkg ¼ 30% Gaussian systematic uncertainty on the background normalization, and dashed ones show the constraints assuming an
inflated uncertainty of ηbkg ¼ 100% on the background. Regions of preference to explain MiniBooNE in the minimal dipole model are
also shown as filled contours at 95% C.L. Right) Contours of constant Nfid

N , the total number of new-physics photons that convert inside
the fiducial volume, overlaid on top of the same parameter space.

N.W. KAMP et al. PHYS. REV. D 107, 055009 (2023)

055009-10



distributions. This is because theN → νγ acceptance in the
MINERvA ES analysis decreases rapidly for larger HNL
masses, as shown in Fig. 8. In the right panel of Fig. 10, we
show contours of constant event rate from dipole-coupled
HNL decays in MINERvA. A dedicated single-shower
analysis improving the acceptance for larger HNL masses
would likely be sensitive to the entire region of parameter
space preferred by MiniBooNE.
In the left panel of Fig. 10, we also show conservative

constraints on this model assuming 100% uncertainty on
the background normalization. This is meant to address the
large scale factors (up to factors of ∼2) which have been
applied to the high dE=dx backgrounds in the official
MINERvA analysis [27]. These scale factors come from a
tuning procedure in kinematic sideband regions, a process
that could potentially wash out any signal from neutrissimo
decays. An optimal analysis would perform a joint fit to
both neutrissimo decays and SM high dE=dx backgrounds
to derive constraints (and potentially allowed regions) on
the neutrissimo model presented here; however, such an
analysis is out of the scope of this paper. We also note that
the MINERvA analysis does not include single-photon
backgrounds such as radiative Δð1232Þ decays and coher-
ent single photons. These components are expected to be
small in the energy region of Esh > 800 MeV [66,67], but
their inclusion can only make our limits stronger.
We also point out Ref. [68], in which the MINERvA

Collaboration investigated an excess in the high dE=dx
sideband region of a νe charged-current quasielastic
scattering sample. Using topological variables related to
the shower structure, MINERvA concluded that the excess
looked more like coherent or diffractive π0 production
than single photons. This might suggest that the scale
factors in Ref. [27] could also be attributed to additional
π0 events. However, the analysis presented here suggests
that MINERvA may have unique sensitivity to a

neutrissimo-based explanation of the MiniBooNE excess,
thus motivating a more careful separation of one and two
photon events in the high dE=dx region of the MINERvA
elastic scattering samples.
We also derive constraints considering nonzero dτN in

Figs. 11 and 12. As expected, this impacts the constraints
most significantly at lower HNL masses. For both dτN ¼
ðmτ=mμÞdμN and dτN ¼ ð100 TeVÞ−1 The MINERvA
constraints rule out a large chunk in the middle of the
region preferred by the MiniBooNE EQE

ν distribution. The
constraints do not change for mN ≳ 200 MeV, thus the 2σ
overlap between between the MiniBooNE EQE

ν and cos θ
distributions remains valid.

VI. DISCUSSION

A number of other existing and planned neutrino experi-
ments are sensitive to an MeV-scale dipole-coupled HNL.
Super-Kamiokande can look for single photon decays from
atmospheric neutrinos which upscatter into HNLs within the
Earth [69]. Similarly, one can look for single-photon decays
from neutrinos that upscatter into HNLs within the Earth
and propagate to a large-scale terrestrial detector such as
Super-Kamiokande or Borexino [70]. Constraints from
these searches are sensitive to longer-lived HNLs, with
typical masses ≲10 MeV (≲100 MeV) in the solar (atmos-
pheric) case. These constraints no longer apply for the two
cases of nonzero dτN which we consider in this work, as the
HNL lifetime will be too short to reach the detector.
Observed neutrino interactions from Supernova 1987A
can also be used to derive constraints on the dipole model,
as significant upscattering would enhance the stellar cooling
rate, decreasing the neutrino flux observed on Earth [18].
These constraints require the HNL to be sufficiently long-
lived that it can escape the stellar environment; thus, bounds

FIG. 11. Same as Fig. 10 but for the case where HNLs have a larger tau-neutrino dipole following an approximate scaling of UV
completions of the operator in Eq. (1), dτN ¼ mτ=mμ × dμN . The HNL is shorter-lived due to the additional decay N → ντγ.
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from Supernova 1987A also do not apply when we consider
nonzero dτN .
We also show constraints derived from the NOMAD

search for neutrino-induced single photons, recast as
bounds in this parameter space in Ref. [53]. We rescale
them, however, by an overall factor of

ffiffiffi
2

p
so as to reflect

the decay rate we derived in Eq. (5). In addition, we note
that these limits have been obtained with a much less
sophisticated simulation than the ones performed here and
that the signal was derived using only events in the
preshower detector of NOMAD. In Ref. [53], it is sug-
gested that stronger limits could be obtained by considering
upscattering locations beyond the preshower detector and
extended detector volumes where the HNL decay could
take place.
We also include the limit imposed by CHARM-II as

derived in Ref. [71]; however, we note that it was obtained
with a simplified procedure. The experimental precision on
the total neutrino-electron scattering cross section was used
to set limits on the total neutrino-electron upscattering
(νe → N e) cross sections. This is a reasonable assumption
at low values of mN , but potentially breaks down at values
close to the threshold due to differences in kinematics. A
similar constraint can be set using the LSND elastic
scattering measurement [18], though it is, in general, less
sensitive than the CHARM-II measurement. A robust
reevaluation of dipole model constraints from these elec-
tron scattering measurements is out of the scope of this
paper. In addition to scattering on electrons, CHARM-II
can provide new limits in the region of interest by
considering coherent neutrino-nucleus upscattering fol-
lowed by HNL decays into single photons [65]. The
sideband with large dE=dX and large values of Eθ2 can
be used to set limits, as proposed in [65], although we do
not expect them to be as sensitive due to larger backgrounds
and larger boosts.

One can also derive constraints in the dipole-coupled
HNLs from LEP through the eþe− → N νl, which can
proceed through either the γ or Z mediators [72]. However,
these constraints require a strong enhancement of the
mixing between the HNL and SM neutrino; as we consider
such a mixing to be negligible in this model, we do note
include constraints from LEP in our results.
We now discuss the potential for future constraints on

dipole-coupled HNLs from planned measurements. Just like
the MINERvA constraint derived in this work, a neutrino
elastic scattering measurement from the NOνA experiment
would be sensitive to the dipole model [73]. This is
especially true of the DUNE experiment, which has the
potential to make a high-statistics neutrino-electron scatter-
ing measurement [74]. This would be particularly advanta-
geous for the THEIA@DUNE configuration [75] due to its
low threshold and large volume. Dedicated searches at
neutrino experiments can further improve sensitivity to this
model. As discussed above, a MINERvA single-shower
analysis without a stringent Eθ2 cut could set much stronger
constraints. Experiments which measure CEνNS, such as
COHERENT, NUCLEUS, and Coherent CAPTAIN-Mills,
would also be sensitive to the dipole model by looking for
the coincidence of nuclear recoil from Primakoff upscatter-
ing and a single photon from the HNL decay [76]. These
experiments would be most sensitive to lower mass HNLs
with mN ≲ 10 MeV due to the lower energy of typical
neutrino sources for CEνNS experiments. Existing and
upcoming short baseline neutrino experiments, including
MicroBooNE and SBND, have the potential to be sensitive
to the neutrissimo model presented in this paper through a
dedicated search for single photon events [18]. Additionally,
neutrino telescopes like IceCube and KM3NeT could
perform searches for events with a double-bang topology
from the upscattering and decay of the HNL, reaching
sensitivities of dμN ∼ 10−7 GeV−1 for mN ≲ 1 GeV [71].

FIG. 12. Same as Fig. 10 but for the case where HNLs have a larger and fixed tau-neutrino dipole, dτN ¼ ð100 TeVÞ−1. The HNL is
shorter lived due to the additional decay N → ντγ.
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High-energy astrophysical tau neutrino observatories such
as TAMBO might also be sensitive to HNL decays from ντ
upscattering [77]. Projections for DUNE [78,79] estimate
that, in the absence of backgrounds, a search for events with
a double-bang morphology could reach dμN values as low
as Oð10−8 GeV−1Þ. Finally, nuclear emulsion and liquid
argon detectors at a future LHC Forward Physics Facility
will also be sensitive to transition magnetic moments
between HNLs and SM neutrinos [80].

VII. CONCLUSION

In this work, we have explored a mixed model compris-
ing an eV-scale sterile neutrino and an MeV-scale dipole-
coupled HNL. The former facilities oscillations at short
baselines, while the latter introduces the interactions shown
in Fig. 1. The dipole-coupled HNL provides an alternative
explanation of the MiniBooNE excess to the eV-scale
sterile neutrino. Thus one can remove MiniBooNE from
global 3þ 1 fits, reducing tension between appearance and
disappearance experiments while retaining an explanation
of the LSND anomaly [23]. We take the result of the
MiniBooNE-less 3þ 1 global fit as the oscillation con-
tribution to the MiniBooNE excess and attribute the
remaining excess to decays of the dipole-coupled HNL.
We find that spectral fits to the EQE

ν and cos θ distributions
prefer different regions of parameter space in general,
though solutions exist which are compatible with both
distributions at the 2σ confidence level.
We have also derived constraints on the dipole-coupled

HNL model using a MINERvA neutrino-electron elastic
scattering measurements [26,27,61]. We find that the most
sensitive ν − e scattering constraints are those obtained
with the NuMI medium-energy mode in antineutrino-
enhanced beam configuration. The constraints from anti-
neutrino-mode are especially strong due to a reduction in
backgrounds at high dE=dx, where we expect HNL decays
to contribute. As shown in Fig. 10, MINERvA can exclude
large regions of parameter space preferred by MiniBooNE,
but it does not fully exclude it. There are still allowed
MiniBooNE regions at the 2σ confidence level. The first is
at small mN values, where HNLs are long-lived and
MINERvA ’s small fiducial volume and larger energies
reduce the sensitivity. The second is at larger HNL masses,
where the stringent Eθ2 cuts reject most new physics events
where decay photons tend to have larger Eθ2. We note that a
dedicated search at MINERvA using the same fiducial
volume could significantly improve the signal efficiency in
this large-mass region, and would likely have much better
sensitivity, and potentially probe the entire MiniBooNE-
preferred region, as shown in the right panel of Fig. 10.
Nevertheless, as it stands, this mixed model of oscillations
and decay is not dead yet.
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APPENDIX: UPSCATTERING CROSS SECTION

The cross section for N production by neutrino upscat-
tering, να þ A → N þ A, has been computed several times
in the literature [41,81,82]. We note, however, that all
expressions we could find do not take into account the
polarization of the outgoing HNL. This effect is only
important when mN =E becomes appreciably large and we
find it to be a marginal effect in our calculations.
In the massless limit, a beam of left-handed polarized

neutrinos will always upscatter to right-handed polarized
HNLs, assuming the process takes place purely via the
transition magnetic moment. This follows from the chiral
structure of the vertex, νLσμνN R. However, in the massive
case, spin and helicity are not equivalent, and both helicity
states ofN can be produced. The helicity-flipping channel,
νh → N −h, typically dominates, while the helicity-
conserving case, νh → N h, will be suppressed by powers
of mN =E, vanishing in the massless limit. Here h ¼ �1
denotes the particle’s helicity and E is the typical energy
scale of the scattering process.
We have calculated both terms using the DarkNews

code [83], and show our results in Fig. 14. We show a
comparison of the upscattering cross section on Carbon-12
for a few choices of HNL masses for both coherent and
proton-elastic scattering regimes. Scattering on neutrons
proceeds only via the neutron magnetic moment and is
much smaller. We only include the proton-elastic contri-
bution for MiniBooNE, where the proton would be
invisible. This is a conservative approach when deriving
the MINERvA limits.
We also show the ratio between helicity-flipping

and helicity-conserving upscattering events inside the
MiniBooNE detector as a function of mN in Fig. 15.
The helicity-conserving part is a small correction, except at
the very largest HNL masses, where the rate is significantly
smaller due to the large energy threshold for upscattering.
Several model-independent nuclear form factor para-

metrizations can be found in the literature. One of them is
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the Fourier-Bessel parametrization, which models the
charge density in the nucleus as a series of Bessel functions
with a radial cutoff of R.

FFBðQÞ ¼ N ×
sinðQRÞ
QR

X
n

ð−1Þnan
n2π2 −Q2

; ðA1Þ

where 1=N ¼ P
nð−1Þnan=n2π2 is a normalization factor,

ensuring Fð0Þ ¼ 1. The coefficients an can be obtained
from experimental data, which is available for a series of
common nuclei [48–50]. We make use of the machine-
readable files provided by Ref. [51].
For nuclei where the nuclear data cannot be found, we

implement a Fermi-symmetrized Woods-Saxon form factor,

FIG. 14. Comparison between helicity-flipping and helicity-conserving cross sections for coherent neutrino upscattering on Carbon
(left) and free protons (right) for multiple values of the HNL mass mN .

FIG. 13. Comparison of the different nuclear form factors for 12C commonly used in the literature. The dipole form factor (dashed
blue) significantly overestimates the form factor at large values of the momentum exchange Q. In this paper, we use the Fourier-Bessel
parametrization (solid green) for nuclei for which nuclear data is available, otherwise, we implement the Fermi-symmetrized (FS)
Woods-Saxon parametrization (dotted yellow).

FIG. 15. The ratio between helicity-conserving and helicity-
flipping upscattering events on Carbon at MiniBooNE.
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FFS−WSðQÞ ¼ 3πa
r20 þ π2a2

aπcotanhðπQaÞ sinðQr0Þ − r0 cosðQr0Þ
Qr0 sinh ðπQaÞ ; ðA2Þ

where a ¼ 0.523 fm, r0 ¼ 1.03 × A1=3 fm. These form
factors correctly describe the finite nuclear radius and lead
to a strong suppression of coherent scattering for
Q≳ 200 GeV. They should be contrasted with the simpler
dipole parametrization

FDipðQÞ ¼ 1

1þ Q2

M2
D

: ðA3Þ

used in Ref. [23], with MD ¼ 1.18þ 0.83 � A1=3, and the
Helmz form factor

FHelmzðQÞ 3jj1ðQRÞj
QR

e−Q
2s2=2; ðA4Þ

with a ¼ 0.523 fm, s ¼ 0.9 fm, and R ¼ 3.9 fm.
We provide a comparison of the aforementioned nuclear

form factors in Fig. 13. It is evident that the dipole
parametrization overestimates the cross section at large
values of momentum exchange Q. The more sophisticated
form factors used in this work produce more forward
angular distributions at MiniBooNE than what was found
in the previous study of Ref. [23].
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Chapter 7

The Coherent CAPTAIN-Mills

Experiment

We now turn to the Coherent CAPTAIN-Mills (CCM) experiment at Los Alamos

National Laboratory (LANL). CCM uses a 10-ton cylindrical liquid argon detector to

observe the scintillation and Cherenkov light generated by the interactions of particles

produced at the Lujan beam dump facility [30]. CCM was originally designed to de-

tect 𝜈𝜇 produced by 𝜋+ decay-at-rest via coherent elastic neutrino-nucleus scattering

(CE𝜈NS) [269]. Given the baseline and neutrino energy accessible to the CCM detec-

tor, any deficit in this rate would be smoking-gun evidence for 𝜈𝜇 disappearance via a

sterile neutrino [30]. In order to realize this physics goal, CCM was built to maximize

photon yield and thus minimize the detection energy threshold. This setup makes

CCM an ideal detector to search for potential light dark matter (DM) particles pro-

duced in the Lujan beam dump, including 𝑈(1)′ vector-portal DM [30], leptophobic

vector-portal DM [270], and axion-like particles (ALPs) [271]. CCM120, a 120-PMT

prototype detector, completed a six-week engineering run in Fall 2019, which was used

to set constraints on these models. The full 200-PMT CCM200 detector is funded for

a three-year physics run at the Lujan facility, which began in Summer 2022. Results

from this dataset will set strong constraints on the DM models listed above as well

as a variety of additional beyond-the-Standard-Model (BSM) scenarios.

In this chapter, we discuss the projects within CCM in which I was involved
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during my time as a graduate student. These include the fabrication of veto PMT

assemblies for CCM200, the investigation of Cherenkov light detection as a powerful

background rejection technique in CCM, and the evaluation of CCM’s sensitivity to

the neutrissimo model from chapter 6.

7.1 The CCM Beamline and Detector

The CCM detector operates at the Lujan beam dump facility of the Los Alamos

Neutron Science Center (LANSCE) [272,273]. At LANSCE, protons are accelerated to

800 MeV in the proton storage ring and bunched before impinging vertically downward

on the Lujan tungsten target at a rate of 20 Hz. The bunches contain ∼ 3.1 × 1013

protons each and are delivered in a 280 ns triangular pulse. The beam spills occur at

a rate of 20 Hz, corresponding to a duty factor of ∼ 5× 10−6. This low duty factor is

essential for isolating prompt signal events from background, setting the Lujan facility

apart from similar beam dump sources. A cascade of particles is produced when

protons hit the tungsten target. The target is housed within a cylindrical target-

moderator-reflector-shield (TMRS) which provides immediate shielding around the

tungsten disks as well as moderators to control neutron output [28], as shown in

figure 7-1. The TMRS itself is surrounded by an additional 4 m of steel shielding.

Though the primary objective of the Lujan beam dump is neutron production, proton

collisions also create pions, electrons, photons, and potential DM particles. Neutrinos

are created via the 𝜋+ → 𝜈𝜇(𝜇
+ → 𝜈𝜇𝜈𝑒𝑒

+) decay chain, as 𝜋− dominantly capture on

nuclei instead of decaying. The total neutrino flux produced by the Lujan source for

each neutrino species in this decay chain is 4.74×105 𝜈/cm2/𝑠 at the CCM120 location

(20 m from the tungsten target). The 𝜋+ come to rest in the target before decaying,

leading to the neutrino energy distributions shown in figure 7-2a. Figure 7-2b shows

the timing profile of different particles produced in the beam dump at the CCM120

location. This timing distribution is essential for separating 𝜈𝜇 from 𝜋+ decay-at-rest

and speed-of-light DM particles in the prompt region from delayed non-relativistic

neutron backgrounds. This is the main strategy behind the CCM physics analyses.
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Figure 7-1: Schematic depiction of the Lujan TMRS Figure from Ref. [28].

(a) (b)

Figure 7-2: Figure 7-3a, from Ref. [29], shows the energy distribution of 𝜋+ decay-at-
rest neutrinos from the Lujan beam dump source. Figure 7-2b, from Ref. [30], shows
the timing distribution of particles produced in the Lujan beam dump source after
traveling through the TMRS.

The CCM detector is a 10-ton cylindrical volume of liquid argon 2.58 m diam-

eter and 2.25 m in height. CCM repurposes the cryostat used by the Cryogenic

Apparatus for Precision Tests of Argon Interactions with Neutrinos (CAPTAIN) ex-

periment [274]. In order to take advantage of the timing information discussed above,

CCM relies on the fast scintillation light produced when particles interact in the de-
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tector, which is emitted on a characteristic time scale of 𝒪(𝑛𝑠). Scintillation light

in liquid argon was discussed in section 3.1.3 within the context of the MicroBooNE

experiment. In order to collect this scintillation light, the CCM200 detector is in-

strumented with 200 8-inch Hamamatsu R5912-mod2 PMTs, the same used in the

MicroBooNE light collection system described in section 3.1.3. A schematic drawing

of this detector is shown in figure 7-3a. 80 PMTs are arranged uniformly on the top

and bottom of the detector, while 120 PMTs are arranged in five rows around the

barrel. The CCM120 engineering run only included the PMTs around the barrel.

80% of the PMTs are coated with TPB, which shifts the 128 nm argon wavelength

to the visible regime where it can be detected by the PMTs. Additionally, the walls

of the detector are covered in reflective foils that are evaporatively coated with TPB.

The remaining 20% of PMTs are not coated with TPB and are thus not sensitive to

the direct scintillation light produced in the detector. They are only able to observe

photons after they are re-emitted by a TPB-coated surface somewhere else in the

detector, either on another PMT or on the reflective foils. The presence of uncoated

PMTs breaks the degeneracy of the detector response to 128 nm light, helping deter-

mine the TPB properties during the calibration process. This point will be important

later in section 7.2. Figure 7-3b shows an image of the interior PMTs of the CCM200

detector, in which the dull (reflective) hemispheres correspond to coated (uncoated)

PMTs. The voltage output from each PMTs is carried through warm cables to a series

of CAEN VX1730 boards, which digitize the PMT signals at a rate of 500 MHz. While

the beam is running, the digitizers are triggered at a rate of 22.2 Hz, which includes

the beam trigger (20 Hz), random strobe trigger (1.1 Hz), and light-emitting-diode

(LED) trigger (1.1 Hz). For each trigger, 16 𝜇s of waveform data on each PMT are

saved.

CCM200 also houses an additional 40 veto PMTs outside of the fiducial volume

to identify and reject events that originate outside of the fiducial volume. These veto

PMTs observe light The CCM120 detector used only 28 veto PMTs, of which 5 were

the same 8-inch Hamamatsu R5912-mod2 PMTs used in the inner volume and 23

were 1-inch Hamamatsu PMTs. An additional 20 1-inch veto PMTs were assembled
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(a) (b)

Figure 7-3: Figure 7-3a shows a schematic 3D rendering of the CCM200 detector.
Figure 7-3b shows an image of the interior of the CCM200 detector.

and tested at MIT in Summer 2021. Each PMT was assembled into the mounts

shown in figure 7-4, which included an acrylic window in front of the photocathode

and a custom base circuit for reading out the PMT signal. The acrylic windows were

coated with a mixture comprising 1 g of TPB, 1 g of polystyrene, and 50 mL of (very

pungent) toluene. The PMTs were tested in a light-tight box with an LED, as shown

in figure 7-5. The LED was pulsed via a function generator at 1 V and 2 V, leading to

the average veto PMT response shown in section 7.1. The overshoot observed in these

waveforms came largely from the custom breadboard “splitter” circuit assembled for

this study, which separated transient PMT signals from high voltage. As the official

splitter circuit used by CCM is more robust to ringing, this response was deemed

sufficient for CCM200, and the 1-inch veto PMTs were shipped back to LANL.

CCM uses a variety of shielding between the target and detector to slow down

and absorb beam-related neutrons, the most prominent beam-related background at

the Lujan facility. This reduces the overall background rate and also separates beam-

related neutrons in time from prompt BSM signals. Figure 7-2b shows the timing

distributions of neutrons, 𝜋+ decay-at-rest neutrinos, and prompt DM from the Lu-

jan source after the 4 m of steel shielding surrounding the TMRS. The neutrons are
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Figure 7-4: Two of the veto PMT assemblies constructed at MIT, including the 1-inch
PMT, base circuit board, and TPB-coated acrylic window.

Figure 7-5: Section 7.1 shows one of the veto PMTs across from the LED in the
light-tight box. Section 7.1 shows the average response of the 20 veto PMTs to 1 V
(top) and 2 V (bottom) LED pulses.

pushed back further in time using additional shielding concrete, steel, and borated

polyethylene shielding. For the CCM120 run, 6 ft of concrete and 16 in. of steel

were placed immediately outside of the steel surrounding the TMRS. A 2 m-thick

234



wall of steel was constructed in ER2, the room housing the CCM detector. Three

additional walls of concrete bricks covered with borated polyethylene sheets were con-

structed around the front and sides of the CCM detector. The borated polyethylene

sheets were included to absorb neutrons that had been sufficiently slowed down by the

other shielding. An Eljen EJ-301 scintillation detector was deployed in a flight path

neighboring CCM to observe the time of the prompt gamma flash from the Lujan

source. Figure 7-6 shows the timing distribution of these photons compared to that

of neutrons measured in the CCM120 detector. The discrepancy between these dis-

tributions was used to determine a 190 ns background-free region of interest (ROI) in

which to look for prompt signals from neutrinos or BSM particles. The steady-state

background expectation in the ROI is taken from a beam-out-of-time measurement

before the ROI, which is about 22 times larger than the ROI itself [30].

A number of updates were made to the shielding for CCM200. A new larger wall

of concrete, steel, and borated polyethylene was constructed in ER1, and more steel

and concrete shielding was placed in ER2. Additionally, a steel and polyethylene roof

was constructed over CCM to suppress backgrounds entering the detector from above.

Preliminary estimates suggest the shielding upgrades have reduced backgrounds in

CCM200 by a factor of 7 compared with CCM120 [275].

CCM uses three different methods to calibrate the detector. The first of these

consists of two blue LEDs, which are used to determine the single photo-electron

(p.e.) response of each PMT, as measured in units of analog-to-digital-conversion

(ADC) counts. The PMTs are gain-matched in order to make the p.e.-to-ADC values

as similar as possible between them. These LEDs are operated continuously while

taking beam data in order to monitor changes in the single p.e. rate over time. CCM

also uses 57Co and 22Na radioactive sources, which emit 126 keV and 2.2 MeV photons,

respectively, to determine the energy scale of the detector. This is measured in units

of p.e./MeVee (electromagnetic equivalent)–a quenching factor must be considered

to determine the energy scale of the detector response to nuclear recoils [276, 277].

The sodium peak, which provided the more robust energy scale measurement, set

the energy scale of CCM120 to 15.1 ± 4.0 p.e./MeVee. Finally, a custom diode-
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pumped laser is used to determine the PMT response to 213 nm and 532 nm light.

The ability to operate at two different wavelengths is important for disentangling

the TPB response in CCM. Data from the radioactive sources and the laser were

compared with output from a Geant4 simulation of CCM120 in order to tune the

optical model of the detector, as described in Ref. [275].

During the operation of CCM120, the effective PMT quantum efficiency was about

a factor of two lower than the expectation from Hamamatsu. This was likely related

to the oxygen contamination, which was measured at the 2 ppm level in the CCM120

liquid argon. Such contamination can lead to a reduction of the scintillation light

produced in liquid argon by about a factor of two [164], similar to the apparent

reduction in quantum efficiency. In response to this, CCM200 will use a dedicated

oxygen filtration system adapted from the Mini-CAPTAIN experiment [278] to keep

the oxygen level below 100 ppb. Filtration is expected to increase the scintillation

light output by a factor of around three [275].

Figure 7-6: The timing distribution of photons from the Lujan source (solid black
line) compared with that of neutrons measured in CCM120 (dashed red line). Figure
from Ref. [30].
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7.2 Cherenkov Light Reconstruction

CCM relies predominantly on scintillation light to reconstruct particle interactions

in the detector. This is because liquid argon is a powerful scintillation medium, as

described in section 3.1.3. That being said, the identification of Cherenkov radiation

in CCM is a promising potential upgrade. Cherenkov radiation refers to the light

emitted by a charged particle as it travels faster than the speed of light in a given

medium [279]. The particle polarizes surrounding atoms as it moves through the

material, creating a cloud of electric dipoles. If 𝛽 > 𝑐/𝑛 (where 𝑛 is the wavelength-

dependent index of refraction), the dipoles are not arranged symmetrically around

the particle, resulting in a non-vanishing overall dipole moment. The time variation

of this dipole moment results in Cherenkov radiation. The light is emitted in a cone

with an opening angle of cos 𝜃𝐶 = 1/𝑛𝛽. The number of photons emitted per unit

length is given by [279]

𝑑𝑁

𝑑𝑥
= 2𝜋𝛼𝑧2

∫︁ 𝜆2

𝜆1

(︂
1− 1

(𝑛(𝜆)𝛽)2

)︂
𝑑𝜆

𝜆2
, (7.1)

where 𝑧 is the electric charge of the particle in units of the electron charge 𝑒, and

𝜆1 and 𝜆2 represent the photon wavelength range under consideration. From equa-

tion (7.1), one can see that the intensity of Cherenkov radiation peaks at lower wave-

lengths.

For liquid argon, 𝑛(𝜆 = 128 nm) ∼ 1.5 and decreases for larger wavelengths [167].

This means that only electrons satisfy the 𝛽 > 𝑐/𝑛 requirement at typical CCM

energies of 𝒪(10 MeV). Though they are neutral, photons in this energy regime

will produce Cherenkov light after undergoing pair production to an 𝑒+𝑒− final state.

Crossing cosmic muons will also produce Cherenkov light, though such events are rare

in the 1.6 𝜇s beam window and can be tagged by the veto region. Importantly, the

most prominent backgrounds in CCM–beam-related neutrons and low-energy photons

from radioactive impurities–will not produce Cherenkov light. In contrast, signals

from ALPs [271] and other BSM scenarios of interest to CCM [145] will produce

Cherenkov light via higher-energy electrons and photons in the final state. Thus,
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Cherenkov light identification is a promising method for rejecting backgrounds in

CCM and maximizing sensitivity to new physics. The directional nature of Cherenkov

light will also be helpful in requiring particles to originate from the tungsten target,

which is not possible using only isotropic scintillation light.

In order to determine the number of Cherenkov photons generated per unit length

traveled by a charged particle, one must perform the integration equation (7.1). To

do this, we use the parameterization of the liquid argon index of refraction given

in Ref. [167]. We fix 𝜆2 = 700 nm, as this is the upper bound on the detectable

wavelength range of the CCM PMTs. Figure 7-7a shows a numerical integration of

equation (7.1) for an electron (𝑧 = 1) as a function of 𝜆1. One can see that sensitivity

to lower wavelengths greatly increases the number of photons one can detect. This is

possible in CCM thanks to the use of TPB, which can covert the UV Cherenkov light

into the visible range, greatly increasing the number of Cherenkov photons detected

by each PMT. The cone angle as a function of the electron kinetic energy and photon

wavelength is shown in figure 7-7b, which is cos 𝜃𝐶 ≈ 0.8 over most of the parameter

space. This figure also indicates the threshold for Cherenkov emission; over most

photon wavelengths, Cherenkov light is produced for electron kinetic energies above

𝑇𝑒− ∼ 0.4 MeV.

A number of specialized studies have been performed investigating the detection of

Cherenkov light in scintillation detector mediums, including water-based liquid scin-

tillator [280,281], slow-fluor scintillator [282], and linear alkylbenzene [283]. Two full-

scale experiments have been able to perform a statistical measurement of Cherenkov

radiation in a scintillating medium: Borexino, observing elastic scattering of sub-MeV

solar 𝜈𝑒 in a large liquid scintillator detector [284], and ICARUS, observing cosmic

muons in a large liquid argon detector [285]. However, no large-scale scintillation ex-

periment has been able to observe Cherenkov light on an event-by-event basis. This

is because the Cherenkov light output is typically smaller than the scintillation light

output by around two orders of magnitude, which can be understood by comparing

the numbers in figure 7-7a to the 𝒪(104) scintillation photons per MeV produced in

liquid argon [158].
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Event-by-event detection of Cherenkov light might be possible in CCM for a few

reasons. First, liquid argon is transparent to UV light, which substantially increases

the number of detectable Cherenkov photons as shown in figure 7-7a. TPB-coated

PMTs can detect these UV Cherenkov photons by shifting them into the visible

range. The wavelength-shifting efficiency of TPB actually increases by a factor of

around two for 𝜆 ∼ 200 nm compared to 128 nm argon scintillation light [286],

potentially boosting the response of CCM PMTs to Cherenkov light. Second, the

singlet lifetime of argon excimers is approximately 8 ns [160], which is much slower

than the Cherenkov light emission timescale (< 1 ns) [287]. The 2 ns sampling time of

the CCM digitizers may allow for the separation in time of prompt Cherenkov photons

from the first scintillation photons. Finally, 20% of the PMTs in CCM are not coated

in TPB. This means they are only sensitive to scintillation photons after they have

been emitted from TPB somewhere else in the detector, delaying their arrival time in

these PMTs. In contrast, Cherenkov photons in the visible regime will indeed produce

signals on the uncoated PMTs. Though the larger UV component of the Cherenkov

spectrum will not be accessible, even just a few photoelectrons detected by uncoated

PMTs in the prompt time region would be a strong indication of Cherenkov light.

(a) (b)

Figure 7-7: Figure 7-7a shows the integration in equation (7.1) as a function of 𝜆1
for 𝜆2 = 700 nm and 𝑧 = 1. Figure 7-7b shows the Cherenkov cone angle cos 𝜃𝐶 for
an electron as a function of the photon wavelength and the electron kinetic energy.

239



7.2.1 Simulation-Based Sensitivity Estimation

In order to assess the sensitivity of CCM to Cherenkov light, we use the Geant4 sim-

ulation of CCM200 described in Ref. [275]. We inject electrons at the center of the

detector, traveling along the beam direction with kinetic energies of {1, 2, 3, 4, 5}MeV.

In addition to the usual scintillation light, Cherenkov light is emitted along the elec-

tron path within the 100 nm to 700 nm wavelength range. Both scintillation and

Cherenkov photons are subject to wavelength-dependent effects within the detector,

including absorption by impurities [164,165] and Rayleigh scattering [167]. The TPB

response in the simulation has not been carefully evaluated in the 200 ≤ 𝜆 [nm] ≤ 400

regime, so we have turned the TPB off for the purposes of this study. Instead, we

apply a time offset for coated PMTs reflecting the TPB emission, which is sampled

from an exponential with a time constant of 1.7 ns [288]. For both coated and un-

coated PMTs, we apply an additional time offset related to the rise time of the PMT

𝜏PMT, which is about 2.5 ns in CCM. This is sampled from a Gaussian with a mean

and width of 𝜏PMT/2. For each photon that hits a PMT surface, we apply a weight

reflecting the detection probability 𝑃det, which is calculated as

𝑃 uncoated
det = 𝑃PMT

𝑃 coated
det = 𝑃PMT𝑃TPB,

(7.2)

where 𝑃PMT reflects the PMT quantum efficiency and 𝑃TPB reflects the impact of

TPB absorption and re-emission on the detection probability. The former is given by

𝑃PMT = 0.15 for coated PMTs and

𝑃PMT =

⎧⎪⎨⎪⎩0.15 300 < 𝜆 [nm] < 650

0 otherwise

(7.3)

for uncoated PMTs, where 0.15 is the typical quantum efficiency of a cryogenic

PMT [275, 289]. This reflects the approximation that TPB makes the coated PMTs

sensitive to all photon wavelengths within 100 nm to 700 nm, while the uncoated

PMTs are only sensitive to the visible range [289]. The TPB transmission probability
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is approximated by

𝑃TPB = 𝑃abs𝑃geo𝑃vis,

𝑃abs =

⎧⎪⎨⎪⎩0.4 𝜆 < 200 nm

0.66 𝜆 > 200 nm

,

𝑃geo = 0.4,

𝑃vis =

⎧⎪⎨⎪⎩1.0 𝜆 < 400 nm

0.8 𝜆 > 400 nm

,

(7.4)

where 𝑃abs is a simple step function representation of the TPB absorption efficiency [286],

𝑃geo is a geometric efficiency reflecting the fact that TPB emits photons isotropically

off of the hemispherical PMT surface, and 𝑃vis reflects the tendency of TPB to absorb

visible light to some degree, as evidenced by its cloudy nature.

Using the setup described above, we simulate 104 electrons for each of the five

tested kinetic energies to generate average templates of the expected number of reg-

istered hits in each PMT. In figure 7-8 we show templates for electrons with kinetic

energies of 𝑇𝑒− = 1 MeV and 𝑇𝑒− = 5 MeV. Separate templates are shown including

all photons and only scintillation photons (i.e., without Cherenkov light). The po-

sitions of each PMT here can be thought of as an unfolding of the cylindrical CCM

detector, where the center of the image ((𝑥, 𝑦) = (0, 0) in the middle panel) corre-

sponds to the beam direction. Note that these templates only consider the first 8 ns

after the electron starts traveling through the detector, as this is the region in which

we expect Cherenkov light to stand out over scintillation light. This is indeed the

case; the PMTs in figures 7-8a and 7-8c see much more light than those in figures 7-8b

and 7-8d. This is especially true of the uncoated PMTs (dashed circles), which do

not suffer the TPB detection inefficiency captured by equation (7.4) nor the time de-

lay from TPB re-emission. The separation between the templates with and without

Chernekov light is more obvious for 𝑇𝑒− = 5 MeV than for 𝑇𝑒− = 1 MeV, indicating

that Chernekov light will be a stronger discriminator in the higher energy region. The
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directional nature of Cherenkov light is also clear here. While scintillation photons

are more-or-less isotropic, the event displays with Cherenkov photons included clearly

show detected p.e. clustered around the beam direction. Figure 7-9 shows example

event displays of the number of p.e. detected in each CCM PMT in a single simulated

electron event for both 𝑇𝑒− = 1 MeV and 𝑇𝑒− = 5 MeV.

We use these simulations to build up a template-based Poisson likelihood reflecting

the probability that a given event does or does not contain scintillation light. We

evaluate a separate Poisson likelihood in each PMT across five time bins of 2 ns

width each, which reflects the temporal sampling rate in CCM. The total likelihood

is given by

ℒall/scint =
∏︁

PMTs i

∏︁
time bins j

𝑃Poisson(𝑘𝑖𝑗|𝜇all/scint
𝑖𝑗 ), (7.5)

where 𝑃Poisson is the Poisson probability, 𝑘𝑖𝑗 is the observed number of p.e. in PMT

𝑖 and time bin 𝑗, and 𝜇all
𝑖𝑗 (𝜇scint

𝑖𝑗 ) is the prediction for the templates with (without)

Cherenkov light, as shown in figure 7-8. In the case that no events are predicted in

a given PMT 𝑖 and time bin 𝑗, we set 𝜇𝑖𝑗 = 10−4, reflecting an uncertainty of one

event over the 104 simulations. We can then use the detected p.e. in each simulation

to build distributions of the log-likelihood-ratio test statistic

Δ logℒ ≡ logℒall − logℒscint. (7.6)

In figure 7-10 we show distributions of this test statistic for 𝑇𝑒− = 1 MeV and

𝑇𝑒− = 5 MeV, both with and without Cherenkov light. Given the overall sign of

equation (7.6), Δ logℒ is larger when Cherenkov photons are included. This can be

seen in figure 7-10, as the distributions with Cherenkov photons included sit at higher

values of Δ logℒ compared to those without Cherenkov photons. The vertical line

in this plot indicates the lower bound on Δ logℒ that can reject 99% of scintillation-

only backgrounds, which can be thought of as, for example, beam-related neutrons

depositing as many scintillation photons as an electron with the specified kinetic en-

ergy. Figure 7-11 shows curves of the efficiency to retain events with Cherenkov rings

v.s. the rejection factor for events without Cherenkov rings, which are obtained by
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considering successively larger lower bounds on Δ logℒ. In the 𝑇𝑒− = 5 MeV case,

one can achieve a background rejection of 0.99 while retaining a signal efficiency of

0.99–thus, a Cherenkov likelihood cut has the potential to reduce backgrounds by

around two orders of magnitude for free.

Of course, a few caveats must be mentioned regarding this study. Most impor-

tantly, we have only constructed a likelihood for electrons of a few example kinetic

energies originating at the center of the detector and traveling along the beam di-

rection. A full Cherenkov likelihood will need to be a function of the particle vertex

(𝑥, 𝑦, 𝑧) and direction (𝜃, 𝜑) in addition to the particle energy. In order to properly

assess the background rejection power of a Cherenkov-based cut, one will need to

simulate neutrons in CCM using a realistic flux from the Lujan target after modera-

tion by the CCM shielding. Finally, a more realistic TPB model within Geant4 itself

will allow for a more robust prediction of the difference in coated and uncoated PMT

response to Chernekov light. That being said, the results from this simulation study

indicate the power of a Cherenkov reconstruction algorithm in CCM and suggest that

such a reconstruction is feasible for electrons with energies of a few MeV or greater.

Angular cuts based on the reconstructed direction of the Cherenkov cone will help

further reduce backgrounds by correlating events with the beam direction.

7.2.2 Identifying Cherenkov Light in Data

Having established the feasibility of a dedicated Cherenkov light reconstruction, we

now discuss the path toward realizing this in CCM data. Cherenkov reconstruction

requires a more detailed treatment of the timing information contained in PMT sig-

nals. The existing CCM reconstruction uses exponential smoothing, averaging, and

derivative filters to determine regions of each PMT waveform with potential activity.

A pulse is defined as a region in which the derivative goes below a given negative

threshold, then becomes positive, then relaxes below the positive threshold, as shown

in figure 7-12a. Figure 7-12b shows the identified pulses in an example CCM120 data

event using this technique. Each pulse is then approximated by a triangle with a

length and height given by the pulse length and absolute value of the integral of the
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(a) With Cherenkov photons; 𝑇𝑒− =
1 MeV

(b) Without Cherenkov photons; 𝑇𝑒− =
1 MeV

(c) With Cherenkov photons; 𝑇𝑒− =
5 MeV

(d) Without Cherenkov photons; 𝑇𝑒− =
5 MeV

Figure 7-8: Templates of the average number of p.e. detected in each CCM PMT
within the first 8 ns of an electron event. Different templates are shown for electron
kinetic energies of 𝑇𝑒− = 1 MeV and 𝑇𝑒− = 5 MeV, both with and without Cherenkov
photons. Coated (uncoated) PMTs are indicated by the solid (dashed) circles. Grey
PMTs indicate those which registered no hits within the first 8 ns across all simula-
tions. The dimensions on each axis are in units of cm.

waveform derivative over the pulse, respectively. Pulses were further required to be

at least 20 ns in length to reduce the impact of noise. While this method was suffi-

cient for the scintillation-based CCM120 analyses, which were mainly concerned with
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(a) 𝑇𝑒− = 1 MeV (b) 𝑇𝑒− = 5 MeV

Figure 7-9: Example event displays showing the total number of p.e. detected in
each CCM PMT within the first 8 ns of a single simulated electron event. Displays
are shown for electron kinetic energies of 𝑇𝑒− = 1 MeV and 𝑇𝑒− = 5 MeV. Coated
(uncoated) PMTs are indicated by the solid (dashed) circles. Grey PMTs indicate
those which registered no hits in the first 8 ns of this specific simulation.

(a) 𝑇𝑒− = 1 MeV (b) 𝑇𝑒− = 5 MeV

Figure 7-10: Distributions of the test statistic in equation (7.6) over all 104 simula-
tions, considering either all photons or scintillation photons only. Distributions are
shown for 𝑇𝑒− = 1 MeV and 𝑇𝑒− = 5 MeV. The vertical line indicates the lower
bound requirement which can reject 99% of scintillation-only backgrounds.

the many-p.e. scintillation pulse summed over all PMTs, identification of Cherenkov

light will require a new pulse-finding algorithm that treats single p.e. pulses more

carefully. It must also be able to retain pulses shorter than 20 ns to be sensitive to

the Cherenkov-dominated early time window studied in section 7.2.1.
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Figure 7-11: Curves of the efficiency to retain events with Cherenkov light (“Ring effi-
ciency”) v.s. the fraction of events without Cherenkov light that can be rejected (“No-
Ring Rejection Factor”), generated by considering successively larger lower bounds
on Δ logℒ. Different curves are shown for 𝑇𝑒− ∈ {1, 2, 3, 4, 5} MeV.

To address these issues, we have begun revamping the pulse-finding algorithm in

preparation for CCM200. This includes the use of a more realistic single p.e. template

to replace the triangle approximation. We use a parameterization of the single p.e.

waveform based on that used by the IceCube collaboration [290],

𝑤(𝑡) =
𝑐

[𝑒−(𝑡−𝑡0)/𝑏1 + 𝑒(𝑡−𝑡0)/𝑏2 ]8
, (7.7)

where 𝑐, 𝑡0, 𝑏1 and 𝑏2 are free parameters to be fit using data. To determine the

best-fit single p.e. template for each PMT, we begin by isolating candidate pulses

using the derivative filter in figure 7-12a. We restrict to candidate pulses with an

amplitude between 20 and 40 ADC counts, which corresponds roughly to the single

p.e. amplitude range in CCM. We fix two of the template parameters using the

observed peak amplitude 𝑤max and peak time 𝑡max for each candidate pulse,

𝑤max =
𝑐[︁(︁

𝑏1
𝑏2

)︁ 𝑏2
𝑏1+𝑏2 +

(︁
𝑏2
𝑏1

)︁ 𝑏1
𝑏1+𝑏2

]︁8 ,
𝑡max = 𝑡0 +

𝑏1𝑏2
𝑏1 + 𝑏+2

ln(𝑏2/𝑏1).

(7.8)
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Figure 7-13 shows the result of this template fit for candidate pulses on two different

PMTs in CCM200 beam data. The next step is to determine a robust single p.e.

template for each PMT in CCM200. These templates can then be used to unfold

the observed waveform on every PMT for a given event into a series of single p.e.

pulses at different times and with different amplitudes. Such a reconstruction will

help pick out an excess of single p.e. pulses in the early time window, which would

be an indication of Cherenkov light.

In order to inform the development of our Cherenkov reconstruction, we have

isolated a new data sample in CCM200: cosmic muons. These are useful for two

reasons: (1) downward-going cosmic muons will produce Cherenkov light along a

known direction, and (2) isotropic emission of Michel electrons from muon decay-at-

rest will help test the angular resolution of the Cherenkov reconstruction. Michel

electrons can also serve as an important calibration point for the scintillation-based

energy reconstruction, as they are emitted with a known energy distribution peaking

at 𝑚𝜇/2 [172]. To tag cosmic muons, we have assembled six pairs of CosmicWatch

detectors [291] on top of CCM. Each detector consists of a piece of plastic scintillator

and a silicon photomultiplier, which detects photons produced in the scintillator. Two

detectors can be stacked on top of one another and set to trigger on the coincident

observation of light between the pair, indicative of a crossing cosmic muon. Figure 7-

14a shows an image of the six CosmicWatch pairs on top of CCM. The detectors in

each pair are separated by approximately 6 in. of foam to ensure that crossing cosmic

muons are sufficiently downward-going to pass through the bottom of the detector.

We have set up a dedicated cosmic muon trigger in CCM200 that saves an event

whenever any of the six CosmicWatch pairs on top of CCM register a coincident

signal. A diagram of this trigger is shown in section 7.2.2.

The cosmic muon trigger became operational in Summer 2022 and can run con-

currently with the beam, strobe, and LED triggers. The total trigger rate is a bit

under 1 Hz, meaning that 𝒪(106) cosmic muons have already been collected over the

first few months of CCM200 data. Figure 7-15a shows the summed waveform across

all PMTs in CCM200 for a single cosmic muon trigger. One can also see a delayed
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signal from what is likely a Michel electron. Though we are still in the preliminary

phase of analyzing data from the cosmic muon trigger, we touch briefly on a promising

initial study of this dataset. This analysis examines the summed waveform in coated

and uncoated PMTs separately in the top half and bottom half of the barrel of the

detector. We look specifically at the initial rise time 𝑡0 of each summed waveform,

defined as the time tick at which the waveform passes 0.5% of its maximum value.

In the scintillation only case, the coated PMTs should see a signal earlier than the

uncoated PMTs (𝑡coated0 < 𝑡uncoated0 ), as only photons reflected from elsewhere in the

detector will register a p.e. on the uncoated PMTs. This difference should diminish

when Cherenkov light is involved, as both coated and uncoated PMTs will observe

Cherenkov light to some level. We set the threshold to 0.5% as this reflects roughly the

total number of Cherenkov photons generated by a crossing cosmic muon compared

to scintillation photons. Section 7.2.2 shows the distribution of 𝑡coated0 − 𝑡uncoated0 for

PMTs in the top and bottom of the barrel over ∼ 75 cosmic muon events. Given the

angle of the Chernekov cone emitted by a cosmic muon traveling downward along the

central axis of the detector, only PMTs in the bottom half of the barrel will observe

Cherenkov light. This is consistent with the distributions in section 7.2.2–the PMTs

in the upper half of the barrel peak at 𝑡coated0 − 𝑡uncoated0 ∼ −5 ns, while PMTs in the

lower half of the barrel peak around zero. Thus, the delay of the signal in uncoated

PMTs appears to disappear for PMTs sensitive to Cherenkov light. This is far from

a definitive detection of Cherenkov light in the CCM detector, as one would need to

carefully consider geometric effects in the CCM detector to predict 𝑡coated0 − 𝑡uncoated0

distributions with and without Cherenkov light. However, it is a promising initial

indication that Cherenkov reconstruction might be possible in CCM by leveraging

differences in the coated and uncoated PMT signals.

7.3 Neutrissimos in CCM

We close our CCM discussion with an investigation of the sensitivity of CCM200 to

the neutrissimo model of chapter 6. The idea of looking for dipole-coupled HNLs at
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(a) (b)

Figure 7-12: Figure 7-12a shows a schematic depiction of the derivative-based pulse
definition in the current CCM reconstruction. Figure 7-12b shows an example of this
pulse finder in a data event, from Ref. [30].

Figure 7-13: Two example waveforms from CCM200 beam data. The regions iden-
tified by the derivative filter are indicated in red and the result of the fit to equa-
tion (7.7) is indicated by the purple curves.

CE𝜈NS experiments has already been proposed in the literature [236]. The low energy

threshold of these experiments enables a powerful signal definition: the coincidence

of a nuclear recoil from upscattering (𝜈𝐴→ 𝒩𝐴) followed by a higher energy photon

from neutrissimo decay (𝒩 → 𝜈𝛾). In particular, the upcoming NUCLEUS experi-

ment is projected to have strong sensitivity to 𝑑𝑒𝒩 for 𝑚𝒩 . 10 MeV [236]. In this

section, we investigate whether CCM200 might also have sensitivity to neutrissimos

in the 𝑚𝒩 = 𝒪(10 MeV) regime. The important advantage of CCM200 is that it is
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(a)

Figure 7-14: Figure 7-14a shows an image of the six CosmicWatch pairs on top of the
CCM detector. Section 7.2.2 shows a schematic diagram of the cosmic muon trigger
in CCM200.

(a)

Figure 7-15: Figure 7-15a shows the summed waveform across all PMTs in CCM for
a single example cosmic muon trigger. The delayed signal from a Michel electron
can also be seen. Section 7.2.2 shows the difference in rise times between coated and
uncoated PMT signals in the top and bottom halves of the barrel of the detector
(labeled “sides-top” and “sides-bottom”, respectively), as described in the text.

already running; projected sensitivities derived here will become limits within a few

years.

The beam-dump source at Lujan is an ideal location to look for neutrissimos.

The prompt 𝜈𝜇 flux at CCM’s location is 4.74 × 105 𝜈/cm2/𝑠 [30], corresponding to

roughly 3.76× 10−2 𝜈/POT. These neutrinos can undergo Primakoff upscattering in

the shielding around the target and along the flight path to the detector, creating a

flux of neutrissimos. These neutrissimos can decay within the CCM detector to pho-
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tons with 𝐸𝛾 ∼ 15 MeV, which is relatively high energy compared to the background

energy distribution [271]. A schematic depiction of this process is shown in figure 7-

16. In this section, we define the neutrissimo signal as a single high energy photon in

the detector. We do not evaluate our sensitivity to the coincidence channel discussed

in Ref. [236], as the energy threshold of CCM does not yet enable CE𝜈NS detection.

Additionally, though we only consider neutrissimo production via Primakoff upscat-

tering, neutrissimos can also be produced by the 𝜋0 → 𝛾(𝛾* → 𝜈𝒩 ) and 𝛾𝜈 → 𝒩

channels within the target. Careful consideration of these additional detection and

production channels may boost CCM’s sensitivity to neutrissimos, especially once the

energy threshold is sufficiently lowered to enable a CE𝜈NS search.

As we rely on monoenergetic 𝜈𝜇 with 𝐸𝜈 ∼ 30 MeV to undergo upscattering, we

are sensitive to neutrissimos with 𝑚𝒩 . 30 MeV. We simulate neutrissimo upscatter-

ing and decay using the updated LeptonInjector [262] simulation framework. The

public version of LeptonInjector includes a geometry file with a realistic description

of the CCM200 detector and the surrounding Lujan facility, including the shielding

shown in figure 7-16 and the TMRS shown in figure 7-1 as well as the concrete floor.

Monoenergetic muon neutrinos are injected as an isotropic point source originating

from the center of the lower tungsten target. We sample an upscattering location

along the flight path to CCM, considering only a cone surrounding the CCM detector

to improve the simulation efficiency. We then sample a neutrissimo decay location.

If the neutrissimo path crosses the CCM200 fiducial volume, its decay is required to

occur within this volume to further improve the simulation efficiency. We save the

four-momentum and physical event weight (in units of POT−1) for the final state

photon. By scaling to the expected CCM200 exposure of 2.25 × 1022 POT, we can

estimate the single photon event rate from neutrissimo decay in the total three-year

CCM200 dataset. This LeptonInjector-based CCM200 neutrissimo simulation was

presented to the public during the 2023 CCM Workshop [261].

To assess sensitivity, we consider the background estimation from the ALP search [271],

as this analysis used a similar electromagnetic final state signal definition. A sizable

reduction in the background rate is expected for CCM200 compared to CCM120; the
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improved shielding already gives about an order-of-magnitude improvement [275], and

the Cherenkov reconstruction simulation study described in section 7.2.1 suggests an

additional two orders of magnitude in background reduction for a 5 MeV electron.

In reporting results, we show a projected sensitivity range based on a background

reduction within [10−4, 10−2]. The exact background reduction achieved by CCM200

will depend on the performance of the final Cherenkov reconstruction and argon fil-

tration system as well as any improvements to the existing analysis cuts described

in Ref. [271]. We assume a neutrissimo detection efficiency of 1.0, which is consis-

tent with the expected ALP detection efficiency after CCM200 upgrades [275]. The

photon energies are smeared according to an energy resolution of 15%, such that the

prediction in each reconstructed energy bin 𝜇𝑖 is given by

𝜇𝑖 =

𝑁sim∑︁
𝑗=0

∫︁ 𝐸high
𝑖

𝐸low
𝑖

𝑤𝑗√︀
2𝜋(0.15𝐸𝑗)2

𝑒
−(𝐸−𝐸𝑗)

2

2(0.15𝐸𝑗)
2
𝑑𝐸, (7.9)

where 𝑁sim is the number of simulated photons, 𝐸low
𝑖 and 𝐸high

𝑖 are the boundaries of

reconstructed energy bin 𝑖, and 𝑤𝑗 and 𝐸𝑗 are the weight and energy of the 𝑗th sim-

ulated photon from LeptonInjector. This energy resolution is relatively consistent

with the CCM120 energy resolution at 𝐸𝛾 ∼ 20 MeV [275] and a safe assumption

once the updated Cherenkov reconstruction is in place.

We have run a series of simulations for neutrissimos with masses 𝑚𝒩 [MeV] ∈

[1, 28] and dipole couplings 𝑑𝜇𝒩 [GeV−1] ∈ [10−7, 10−5]. Figure 7-17 shows the ex-

pected energy distribution of neutrissimo decay signal events and background events

in CCM200 for 𝑚𝒩 = 20.35 MeV and 𝑑𝜇𝒩 = 3 × 10−7 GeV−1, considering a back-

ground reduction factor of 10−3. The single photons from neutrissimo decay peak at

𝐸𝛾 ∼ 20 MeV, as expected. We calculate the CCM200 sensitivity across parameter

space using the 𝜒2 test statistic,

𝜒2(𝑚𝒩 , 𝑑𝜇𝒩 ) =
∑︁
𝑖

(︂
𝜇𝑖(𝑚𝒩 , 𝑑𝜇𝒩 )

𝜎𝑖

)︂2

, (7.10)

where 𝜇𝑖(𝑚𝒩 , 𝑑𝜇𝒩 ) is the neutrissimo prediction in the 𝑖th reconstructed energy in
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and 𝜎𝑖 is the statistical ⊕ systematic error on the background, appropriately scaled

from Table 6.1 of Ref. [275]. We assume a 𝜒2 distribution with two degrees of free-

dom to draw projected sensitivities at the 95% confidence level (corresponding to a

critical value of 𝜒2 = 6.18). Figure 7-18a shows the preliminary projected CCM200

sensitivity to neutrissimo parameter space over the full three-year run. If we achieve

a background reduction factor closer to 10−4, CCM200 should be able to set world-

leading constraints on the 𝑑𝜇𝒩 dipole coupling for 𝑚𝒩 ∼ 20 MeV. As discussed in

section 6.4, flavor-conserving UV completions of the dipole operator predict larger

branching ratios for the decay 𝒩 → 𝜈𝜏𝛾. As the neutrissimo single photon rate in

CCM200 is primarily limited by the neutrissimo decay probability within the detec-

tor, CCM200 will be more sensitive to a scenario with such flavor-dependent dipole

couplings. In figure 7-18b we show a preliminary estimate of CCM200’s sensitivity to

the 𝑑𝜏𝒩 = 𝑑𝜇𝒩𝑚𝜏/𝑚𝜇 discussed in section 6.4. The full CCM200 dataset will exclude

a large region of the available parameter space in this flavor-dependent dipole model.

A few points are worth noting regarding these preliminary sensitivities. First,

while the LeptonInjector simulation of CCM200 provides a relatively precise ini-

tial estimate of the neutrissimo decay rate in the detector, the geometric description

of the Lujan facility will need to be verified before these sensitivities are ready for

publication. This is especially true considering the strong dependence of the neu-

trissimo event rate on the exact shielding configuration between the tungsten target

and the detector. That being said, any updates to the LeptonInjector CCM200 ge-

ometry made during this verification process are likely to be small and thus will not

drastically shift the sensitivities in figure 7-18. The sensitivity might also improve

after considering the additional neutrissimo production and detection mechanisms

discussed earlier: 𝜋0 → 𝛾𝜈𝒩 and 𝛾𝜈 → 𝒩 within the target, and nuclear recoil from

Primakoff upscattering within the detector. These are all possible to simulate within

LeptonInjector. The 𝜋0 and 𝛾 flux were calculated for the ALP analysis [271], and

nuclear recoil kinematics are already simulated within LeptonInjector. These chan-

nels will be carefully evaluated as the CCM200 neutrissimo analysis is prepared for

publication. Further improvements to CCM200’s sensitivity can be made for modified
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shielding configurations that introduce some amount of high-𝑍 material, such as lead

(𝑍 = 82), in order to benefit from the 𝑍2 coherent enhancement of the Primakoff

upscattering cross section [31]. Potential improved shielding configurations can and

will be studied within LeptonInjector.

One must also consider the timing distribution of the photons from neutrissimo

decay within the detector. CCM relies on strict timing cuts to remove neutron back-

grounds; thus, it is important to ensure that the added travel time of non-relativistic

neutrissimos does not push these photons outside of the CCM ROI. This is easily

studied within LeptonInjector, as the entire path of the neutrino and neutrissimo

is computed for each simulated event. Figure 7-19 shows the added time delay from

the neutrissimo flight path for 𝑚𝒩 = 20.35 MeV (note that the time delay does not

depend on the dipole coupling to first order). This is the most important neutrissimo

mass to check, as it corresponds to the strongest projected constraints in figure 7-18.

Two distinct populations can be seen at 5 ns and 26 ns, corresponding to upscatter-

ing in the shielding surrounding CCM and the TMRS, respectively. This suggests

characteristic time delays Δ𝑡 . 30 ns, which is comfortably within the 150 ns ROI of

the ALP analysis [271]. Thus, the CCM timing cuts should not be an issue for the

neutrissimo model.

The analysis presented here can in principle be used to set constraints using

CCM120 data. However, the signal efficiency of neutrissimo events must be more

carefully evaluated for this dataset. The CCM120 ALP analysis used a variety of

cuts on the event length, reconstructed radius, and PMT charge uniformity to remove

backgrounds. While the improvements made for CCM200 are likely to push the ALP

(and thus neutrissimo) selection efficiency to greater than 0.95, the CCM120 ALP

selection efficiency fell roughly within [0.2, 0.4] depending on the ALP energy [271].

Further, the CCM120 analysis used only the first 38 ns of each event to calculate

the reconstructed energy [271], which will have a nontrivial impact on the assumed

15% symmetric energy resolution. Finally, the shielding configuration was updated

between CCM120 and CCM200, and the CCM120 version is not currently modeled

in LeptonInjector. We will need to study the impact of all of these effects on single
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photon events before calculating CCM120 limits on the neutrissimo model.

The analysis presented in this section highlights the strong capability of CCM in

constraining BSM physics. The high-intensity beam dump at the Lujan center can

produce a significant number of potential BSM particles, while the extremely low

duty factor helps isolate these particles from SM backgrounds. The large size, good

energy resolution, and fast timing response of the CCM detector are well-suited for

measuring any potential interactions of these BSM particles. The neutrissimo model

discussed here is just one of many BSM scenarios on which CCM200 will place world-

leading constraints [30,145,270,271]. Additionally, the neutrissimo model specifically

emphasizes the significant impact that Chernekov light reconstruction will have on

CCM200 sensitivity to BSM interactions with electromagnetic final states (which also

occur in the ALP model).

Figure 7-16: Schematic depiction of prompt 𝜈𝜇 from 𝜋+ decay in the Lujan target
upscattering to neutrissimos within shielding along the path to CCM200 and decaying
to photons in the detector. The pink circle represents the TMRS shown in figure 7-1.
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Figure 7-17: Figure 7-17a shows the distribution of background and signal predic-
tion in CCM200 for 𝑚𝒩 = 20.35 MeV and 𝑑𝜇𝒩 = 3 × 10−7 GeV−1, considering a
background reduction factor of 10−3 compared to CCM120. Section 7.3 shows the
background-subtracted plot, with a red band indicating the expected statistical un-
certainty on the background.
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Figure 7-18: Figure 7-18a shows the expected sensitivity of CCM200 to the neu-
trissimo model, where the blue band corresponds to a background reduction factor
between 10−4 (“CCM200 Low Background”) and 10−2 (“CCM200 High Background”).
The MiniBooNE 𝐸QE

𝜈 allowed region (pink) and existing constraints (grey) come from
Ref [31]. Figure 7-18b shows the same plot, but considering 𝒩 → 𝜈𝜏𝛾 decays with
𝑑𝜏𝒩 = 𝑑𝜇𝒩𝑚𝜏/𝑚𝜇.
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Figure 7-19: The time delay of neutrissimo single photon decays with the CCM
detector for the indicated mass and coupling, as calculated using LeptonInjector.
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Chapter 8

Conclusions and Future Prospects

This thesis presents an array of experimental and phenomenological investigations

into the nature of the MiniBooNE low energy excess (LEE). The MiniBooNE LEE,

described in detail in chapter 2, refers to the 4.8𝜎 excess of electron-like neutrino in-

teractions observed by the MiniBooNE detector along the Booster Neutrino Beamline

(BNB) [10]. This is one of the most significant and longest-standing anomalies with

respect to the Standard Model (SM) of particle physics. The excess has remained

consistent over the full 17-year dataset, corresponding to 18.75× 1020 (11.27× 1020)

protons-on-target (POT) in neutrino (antineutrino) mode. Due to the nature of a

Cherenkov detector, MiniBooNE could not distinguish between electrons, photons,

or collimated 𝑒+𝑒− pairs–thus, any of these can contribute to the MiniBooNE LEE.

Though SM explanations of the excess have been investigated thoroughly, both inter-

nally within MiniBooNE [10] and by the external community [80, 81], no promising

SM candidates have emerged. Thus, the MiniBooNE LEE may be an indication of

beyond-the-SM (BSM) physics. The most common BSM interpretation of the Mini-

BooNE anomaly is the 3 + 1 model, which predicts 𝜈𝜇 → 𝜈𝑒 and 𝜈𝜇 → 𝜈𝑒 oscillations

at short baseline through an eV-scale sterile neutrino. This is an attractive solu-

tion as it would also explain the anomalous excess of 𝜈𝑒 interactions observed by the

LSND experiment, which was the original physics motivation behind the MiniBooNE

experiment.

The MicroBooNE experiment was conceived to follow up on the MiniBooNE LEE.
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MicroBooNE uses a liquid argon time projection chamber (LArTPC) detector [16],

described in detail in chapter 3, to observe the interactions of neutrinos along the

BNB. The detailed images of neutrino interactions produced by the LArTPC enable

the separation of events with electrons and photons in the final state, allowing a

suite of analyses looking for different explanations of the MiniBooNE excess. My

research within MicroBooNE focused on the “two-body CCQE analysis”: a search

for 𝜈𝑒 charged-current quasi-elastic (CCQE) interactions consistent with two-body

scattering kinematics [148]. This analysis is described in detail in chapter 4. It uses

a variety of techniques [24, 172], including several deep-learning-based methods [21,

22], to reconstruct and isolate signal events from backgrounds. The electromagnetic

shower reconstruction, which drives the reconstruction of the original neutrino energy,

is validated using two data-driven standard candles: the 𝜋0 invariant mass peak

and the Michel electron energy spectrum cutoff [172]. This study is presented in

section 4.4.3. The most powerful technique used in the signal selection leverages

an ensemble of boosted decision trees (BDTs) trained on a collection of variables

describing the topology and kinematics of candidate 𝜈𝑒 CCQE interactions. This

BDT ensemble is specifically tailored to select events consistent with a clean two-

body interaction, which helps reduce the impact of complicated nuclear effects on our

signal prediction.

The two-body CCQE analysis observed 25 events passing all signal selection re-

quirements in the first 6.67 × 1020 POT of BNB data [148]. The statistical results

from this dataset are presented in chapter 5. The two-body CCQE analysis does

not observe significant excess of 𝜈𝑒 CCQE events at the lowest energies consistent

with the MiniBooNE LEE. Using a two-hypothesis test and the CL𝑠 test statistic,

we are able to rule out the median expectation from the MiniBooNE excess at the

2.4𝜎 confidence level. A signal strength scaling test performed using the Feldman-

Cousins procedure sets an upper bound of 0.38 on the 𝜈𝑒 fractional contribution to

the MiniBooNE LEE at the 2𝜎 confidence level. The results obtained by our analysis

are consistent with the other two MicroBooNE 𝜈𝑒 analysis–no analysis observes a

significant low-energy excess of charged-current 𝜈𝑒 interactions like that predicted by
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the MiniBooNE LEE [116].

Two external follow-studies regarding the MicroBooNE results are presented. The

first of these is a combined fit of MicroBooNE and MiniBooNE data to the 3 + 1

model [102], presented in section 5.3.1. This study shows that despite the strong

constraints from MicroBooNE on 𝜈𝑒 interpretations of the MiniBooNE LEE, closed

contours in 3+1 parameter space still exist at the 3𝜎 confidence level in the combined

MiniBooNE-MicroBooNE fit. Thus, the MicroBooNE results do not definitively rule

out the 3 + 1 interpretation of the MiniBooNE excess. The second study, presented

in section 5.3.2, looked into the implications of a 𝜈𝑒 explanation of the MiniBooNE

excess [201]. Due to the isoscalar and non-isoscalar nature of the carbon and argon

nucleus, respectively, the 𝜈𝑒 cross section tends to be much more suppressed at low

energy in argon compared to carbon, while the same is not true for 𝜈𝑒 interactions.

Thus, MicroBooNE will be less sensitive to the MiniBooNE LEE if it comes from 𝜈𝑒

interactions. Ref. [201] shows that the MicroBooNE data are consistent at the 2𝜎

confidence level with a scenario in which the MiniBooNE excess is comprised entirely

of 𝜈𝑒 events.

In chapter 6 we discuss a mixed model comprising an eV-scale sterile neutrino

and an MeV-scale heavy neutral lepton with a dipole coupling to active neutrinos,

referred to as a neutrissimo 𝒩 [27, 31]. It is shown that this model can significantly

relax the internal tension in global 3 + 1 by explaining the bulk of the MiniBooNE

excess through neutrissimo decays to single photons. As discussed in section 6.3, the

neutrissimo with 𝑚𝒩 ∼ 500 MeV can simultaneously provide a good explanation to

the energy and angular distributions, which is not possible within the 3 + 1 model

alone. In Ref. [31], we have calculated world-leading constraints on the neutrissimo

model using the high 𝑑𝐸/𝑑𝑋 sideband of the MINER𝜈A elastic scattering analyses.

This study is presented in section 6.4. While the MINER𝜈A constraints are indeed

very strong in the 𝑚𝒩 = 𝒪(100 MeV) region, they do not rule out the MiniBooNE-

preferred region in neutrissimo parameter space at the 95% confidence level. This is

because the kinematic cuts in the MINER𝜈A analysis remove a majority of neutris-

simo events for 𝑚𝒩 ∼ 500 MeV. A dedicated MINER𝜈A analysis would likely be
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able to make a definitive statement on the neutrissimo explanation of the MiniBooNE

LEE.

Finally, we close with the Coherent CAPTAIN-Mills (CCM) experiment in chap-

ter 7. CCM uses a liquid argon detector at the Lujan proton beam dump facility of the

Los Alamos Neutron Science Center (LANSCE) to look for the interactions of poten-

tial beyond-the-Standard-Model (BSM) particles. The CCM detector uses an array

of photo-multiplier tubes (PMTs) to observe the scintillation light produced in these

interactions. CCM leverages the low duty factor of the Lujan beam dump to make

strict timing cuts on signals coming from the beam, isolating prompt signal events

corresponding to BSM particles from slower beam-related neutron backgrounds. This

strategy has allowed CCM to place strong limits on a wide variety of BSM scenarios,

including light vector-portal dark matter [30], leptophobic dark matter [270], and

axion-like-particles [271], using only data from a six-week 120-PMT engineering run.

The full 200-PMT detector, “CCM200”, started taking data in Summer 2022 for its

nominal three-year run at the Lujan facility. CCM200 will make a number of im-

provements upon the 120-PMT engineering run, including upgraded shielding and

the deployment of an argon filtration system, which will help set world-leading limits

on these models.

One of the most promising improvements is the development of a Cherenkov

light reconstruction algorithm, which can help separate BSM events with electromag-

netic final states from SM backgrounds. Section 7.2.1 presents a simulation-based

study that indicates the feasibility of Cherenkov reconstruction in CCM thanks to

the combination of PMTs coated and uncoated with wavelength-shifting tetraphenyl

butadiene. The study suggests that uncoated PMTs will be especially sensitive to

Cherenkov light in the visible regime for the first ∼ 10 ns of a given electromag-

netic event. Section 7.2.2 discusses some of the initial steps toward developing the

Cherenkov reconstruction in data, including the deployment of a dedicated cosmic

muon trigger and improvements to the CCM pulse finding algorithm. We discuss a

potential use-case for the Cherenkov reconstruction in section 7.3, which presents a

calculation of CCM200’s sensitivity to the neutrissimo model discussed above. Prelim-
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inary estimates suggest that CCM200 will be sensitive to new regions of neutrissimo

parameter space for 𝑚𝒩 ∼ 20 MeV over its full three-year dataset.

Neutrinos have never failed to surprise us. Since the first detection of neutrinos

in 1956, experimental anomalies like the solar neutrino problem and the atmospheric

neutrino anomaly have provided a guiding light toward a more complete understand-

ing of the “little neutral one”. The experimentally-established fact that neutrinos

have nonzero mass is not predicted by the Standard Model, and the comparatively

tiny neutrino mass with respect to other particles is a strong motivation for BSM

physics. Anomalies in short baseline neutrino experiments could very well be hinting

that the neutrino has secrets yet to reveal. This thesis takes a few concrete steps

along the path lit by the MiniBooNE anomaly. Only time–and clever experimental

analyses–will tell where this path leads.
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Appendix A

Publication: Convolutional neural

networks for shower energy

prediction in liquid argon time

projection chambers

My first research project as a graduate student involved the development of a convo-

lutional neural network for electromagnetic shower energy reconstruction in Micro-

BooNE. While the MicroBooNE network never saw the light of day, the network was

adapted for use in general LArTPC experiments by an MIT undergraduate student,

Kiara Carloni. Kiara led the study discussed in the JINST publication below [23]. I

served mainly as a mentor for this project, as it was extended from my early Micro-

BooNE work.
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1 Introduction

Liquid argon time projection chambers (LArTPCs) [1] consist of a large volume of liquid argon, a
drift region within the argon where a static electric field is maintained, and planes of anode wires
where charge is measured and collected. A charged particle traversing the detector will ionize the
liquid argon, leaving a trail of ionization electrons along its path. The static electric field is used
to drift these ionization electrons. The anode planes consist of a series of independent wires on
which the arriving charge is measured. This segmented readout provides two dimensional charge
information (per wire and per unit time) from each anode plane. Thus, the data coming from a given
anode plane can be thought of as an image, in which each “pixel” corresponds the amount of charge
measured on a single wire over a specified time interval. Figure 1 gives a schematic summarizing
the operational principle behind a LArTPC.

LArTPCs are an increasingly common detector technology used to measure neutrino inter-
actions [2–5]. At energies of O(100)MeV or greater, electrons and photons produced in such
interactions will undergo a chain of bremsstrahlung radiation (𝑒± → 𝑒±𝛾) and pair production
𝛾 → 𝑒+𝑒− known as an “electromagnetic shower”. Typical algorithms for the energy reconstruction

– 1 –
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of such electromagentic showers in LArTPCs have two main steps [6–9]. First, pixels are identified
in the anode planes that measured charge associated with the shower of interest. For example, this
can be done by finding a cone that contains the shower and computing the total charge within the
cone, excluding pixels with a low probability of being related to the shower [10]. Second, the total
charge is linearly mapped to the shower energy. These traditional clustering-based linear algorithms
are fast, straightforward, and accurate for most LArTPC shower events.

However, when a LArTPC detector has sections of unresponsive wires, a subset of a shower’s
charge will pass undetected and the linear algorithm will underpredict the shower’s energy. This
effect is more likely in higher energy showers, since their charge is spread over a larger area and has
a higher chance of passing through an region of unresponsive wires. In this case, the simple linear
mapping to shower energy has difficulty correcting for the missing charge simultaneously across
events of all energies, and events are often mis-reconstructed to lower energies.

A convolutional neural network (CNN) trained on a dataset with a substantial proportion of
unresponsive wires could learn to reconstruct the energy of events with high fractions of missing
charge. CNNs train kernels to recognize patterns within an image, and thus efficiently use their
parameters to extract information from very large image inputs. Visual features such as the shower
size, radial extent, and longitudinal structure contain information about the shower’s energy, so
neural networks trained to recognize these patterns can potentially correct for the nonlinear mapping
between charge and shower energy. Additionally, the position of unresponsive wires can be directly
provided as input to the neural network to enable even more accurate reconstruction.

This study investigates the energy reconstruction performance of CNN models with varied sizes,
architectures, training parameters, and inputs. We then compare the top CNN models’ performance
to that of traditional energy reconstruction methods under different detector conditions. We show
that the CNN method is able to address inefficiencies caused by unresponsive wires in LArTPCs and
reconstruct a larger fraction of imperfect events.

2 Methods

2.1 Dataset

We used the PILArNet public simulation pipeline [11] to generate simulated LArTPC images. We
assume a detector setup that includes three parallel anode planes with wires, spaced 3 mm apart,
oriented at 60° (U), −60° (V), and 0° (Y) with respect to the zenith. The PILArNet simulation
process first instantiates a collection of particles at a vertex with randomly distributed kinetic energies,
then tracks their charge deposition through the detector volume using GEANT4 [12]. The 3D charge
information is voxelized into 3mm length cubes and recorded, along with summary information
on every particle generated, in a sparse data file. Each pixel in PILArNet images has an intensity
value intended to represent the charge deposited in that region of the TPC. Hereafter we refer to this
intensity value as the charge “Q”. The PILArNet dataset is described in full in ref. [13].

The PILArNet procedure produces 3D voxel data for monodirectional electron showers. However,
a LArTPC reads out charge information projected onto the anode planes through the drift process,
and we are interested in showers of all orientations. To adapt the PILArNet dataset to our needs,
we rotate and project each shower event onto the anode planes to get a collection of isotropically

– 2 –
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Figure 1. Diagram showing the operational principle behind a LArTPC. Charged particles traverse the argon
volume, leaving a trail of ionization electrons which are drifted through an electric field to a series of wire
planes. Figure adapted from ref. [3]

oriented LArTPC events as they would be readout by the U, V, and Y anode planes. Every event
is assigned a random rotation, which is composed with a 60°, −60°, or 0° degree rotation in the
X-Y plane to get the three anode plane views. For each rotation applied to an event, the charge in
every input voxel is distributed to adjacent voxels in the rotated voxel grid with a weight inversely
proportional to the euclidean distance between voxel centers. This method is simple and preserves
the total charge in the image. Since the voxels are small, the particular choice of reapportionment
metric is not significant. Finally, the two dimensional anode plane images are created by summing
the charge from voxels along the axis perpendicular to the wire planes.

Our resulting simulated LArTPC images are comprised of 600 k single-electron shower events
of energies uniformly distributed between 0 and 1000 MeV with a uniform angular distribution.
Uniform distributions were chosen to minimize any energy based or angular bias of the predictors.
We divided our dataset into 400 k training events and 200 k validation events. Each event in the
samples contains three base 768 × 768 images, which are the U, V, and Y plane readouts. An
example event image is displayed in figure 2.

We further augment our base dataset by adding unresponsive wires. First, a set of unresponsive
wire chunks is placed randomly within the full extent of the anode planes with 20 k, 20 k, and 21.5 k
wires composing each plane (these dimensions match the planned size of the DUNE far detector [14]).
The unresponsive wire chunk lengths were randomly sampled to be consistent with typical ASIC
sizes in a LArTPC: most chunks were less than 20 wires long, and all were at most 70. The total
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Figure 2. An example electron shower event (dark purple) from our testing dataset. The locations of
unresponsive wires are marked by superimposed pink stripes.

fraction of unresponsive wires was fixed to 10 % for each plane, which is the magnitude reported by
a 2017 MicroBooNE analysis of noise features in their LArTPC [15]. We then assigned each event a
location within the detector volume and zeroed out all charge corresponding to unresponsive wires.

2.2 Clustering-based linear algorithm

The typical clustering algorithm approach to energy reconstruction identifies the shower of interest,
and linearly calibrates the charge associated with the shower to a shower energy. Our simulated
dataset contains only single electron shower events, with no background. Thus in our implementation
of the traditional energy reconstruction algorithm, we linearly map the total charge in the Y collection
plane image to a shower energy, bypassing the clustering step.

To find our linear mapping parameters, we first separate our event sample into 50 bins in
total-Y-plane-charge, each 20 Q wide. Within each total-charge bin the distribution of true shower
energies is fit to a Gaussian distribution. Any bins for which the Gaussian fit is sufficiently imprecise
are skipped: that is, the bins are skipped if the fit’s uncertainty on a parameter is greater than ten
times the parameter’s value. The remaining bins are interpreted as observations of the true shower
energy at specific total charges with corresponding errors. These data points are then used as input
to a least squares fit of the linear mapping between the binned shower charge and true shower energy.
On datasets with unresponsive wires, we found this procedure corrected for bias in all energy bins
over 60 MeV, but did not do so in bins below.

2.3 Convolutional neural networks

Different neural network architectures can be better suited for different problems. For this study,
we focused on two neural network architectures: the residual network [16] and the inception
network [17]. Each has found success in previous LArTPC deep learning projects [18, 19]

The residual network (ResNet [16]), introduced in 2015, was designed to allow deep layers in
the network to learn small adjustments to the final output easily. Its central structure is the residual
block, a network layer whose output is a sum of its input and a filtered “residual.” The original
authors suggested that because residual blocks make it easy for deep layers to implement an identity
map, very deep ResNets can converge more quickly to more accurate solutions.
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The first version of the inception network [17] was published in 2014 and designed as a wider,
rather than deeper, network. For the purposes of this paper we have labeled this architecture InceptNet.
Its fundamental structure is the inception block, which combines the results of convolutional filters of
various sizes into one output. Inception blocks are therefore suited to describing features of different
sizes simultaneously. The original authors suggested that such hybrid blocks could approximate
a sparse network structure by dense component calculations. Thus, this architecture might work
well for LArTPC images, which are sparse by nature. A variation of the inception network was
successfuly implemented for energy reconstruction by the NO𝜈A collaboration in 2019 [18].

The original authors of the inception network have since released three updated versions. These
updates employ new structural efficiencies to express the same operations in fewer calculations, and
thus can form even deeper networks. However, these architectures quickly grow too large for our
purposes, so for this paper we focus solely on the original version.

We implemented both the ResNet and InceptNet architectures according to the same general
structure as the original works. These are, respectively, depicted schematically in figures 3 and 4.
Each network has an initial gate, which scales down the image spatial dimensions and increases the
feature dimensions. The gate is then followed by a stack of convolutional layers, which constitute
the bulk of the network. For each architecture, we built models of four different sizes, “Small,”
“Medium,” “Large,” and “Huge,” by increasing the depth of this stack. Each network size has roughly
an order of magnitude more trainable parameters than the previous. We scaled architectures up
according to two main principles: first, by stacking on additional layers of the architecture’s basic
block, and second, by adjusting the feature map sizes throughout the network so that the number of
parameters in sequential layers increases gradually, the input image dimensions decrease gradually,
and the feature dimension increases. The exact implementation of each network layer is most likely
not significant [17]. Details of the four network sizes are given in appendix A, and figures 17
and 18. The quantitative properties of each model size, including the exact numbers of parameters,
are listed in table 1 and are discussed later in this work. The output of the convolutional layers is
collapsed into a vector by an average pool layer. This vector can then optionally be combined with
additional vector inputs, and is finally passed through a dense fully-connected layer, which outputs
the predicted energy.

The networks take as input a batch of layered images and vectors of additional information.
The primary inputs were the U, V, Y output planes of the LArTPC detector, and a three-component
vector containing the total recorded charge on each plane. We also investigated whether the networks
could utilize information about unresponsive wire placement. In one set of tests, we fed in images
with six channels: three base U, V, Y 768 × 768 pixel images, and three 768 × 768 images indicating
the locations of dead wires for the corresponding planes.

CNNs are trained using stochastic gradient descent to iteratively adjust the network’s weights
such that its performance is improved with respect to some loss function [20]. To reduce memory
costs associated with large image-based datasets, during optimization the training set is sampled in
smaller batches. The model’s weights are thus adjusted in a series of less-confident steps, rather than
one sure leap. The weight adjustment step for each batch can be further modified to incorporate
information about the previous adjustment: the parameters at batch 𝑡 + 1 are related to those at
batch 𝑡 by 𝑝𝑡+1 = 𝑝𝑡 − 𝑚 · 𝑢𝑡 + ℓ · 𝑔𝑡+1, where 𝑔𝑡+1 is the gradient for batch 𝑡 + 1, 𝑢𝑡 = 𝑝𝑡−1 − 𝑝𝑡 is
the adjustment factor for batch 𝑡, and ℓ, 𝑚 are fixed hyperparameters called the learning rate and
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ResNet Architecture:

General Structure:

Inputs

Avg. Pool

Tot. 
Charge

Energy

Dense

Res Layers

Max Pool (3x3, /2)

ReLU

7x7, /2, 16f
Gate:
reduces the 
input spatial 
dimensions, 
and increases 
the feature 
dimensions.

A convolutional filter with a 7x7 
kernel, outputting 16 feature 
channels. The spatial 
dimensions are halved using a 
stride of 2, indicated by “/2”.

Res Layers: stacked copies of 
the basic residual block, with 
varied number and feature sizes 
depending  on the 
architecture’s size.

Avg. Pool layer: averages over 
the spatial dimensions, 
producing a 1D vector output.

Fully-connected layer, taking 
as input the combination of 
the vector output of the 
convolutions, and additional 
vector inputs (such as the 
total charge in each input 
channel). 

Basic Residual Block:

3x3, 32f

Id.

Summation

Input

Output

3x3, 32f

“Shortcut” 
identity layer. 
Replaced with 
a 1x1, /2 
convolution if 
downsampling 
is needed. 

Two 3x3 
convolutions, with 
ReLU between.
Generally same 
padding is used to 
preserve spatial 
dimensions; if 
downsampling is 
needed, we use a 
stride of 2. 

Figure 3. The basic structure of a ResNet consists of a starting gate, a stack of residual layers, and then
a fully-connected layer which decodes vector output into a single energy prediction (left). Each residual
layer is formed out of stacks of the basic residual block (right) which transforms its input by adding a small
convolutional correction.

InceptionNet Architecture:

General Structure: Basic Inception Block:

Max Pool (3x3, /2)

Channels

Avg. Pool

Tot. 
Charge

Energy

Dense

Incept Layers

3x3, /2, 32f

ReLU

Max Pool (3x3, /2)

ReLU

7x7, /2, 16f
Gate:
This gate is larger 
than that for the 
ResNet models, 
and the spatial 
dimensions are 
reduced by a 
factor of 4. 

1x1, 16f

1x1, 16f

3x3, 32f

1x1, 4f

5x5, 32f 1x1, 16f

Max 
Pool

Concatenate

Input

Output

Inception Layers: 
stacked copies of 
the basic 
inception block

The input is passed 
separately through 
multiple 
convolutions with 
different kernel 
sizes. Same 
padding is used 
throughout, so the 
spatial dimensions 
are preserved.

The outputs of all 
the convolutions 
are then 
concatenated along 
the feature 
dimension.

Figure 4. The basic structure of our InceptionNet is similar to that of the ResNet, but includes a slightly larger
gate (left). Inception layers consist of stacks of the basic inception block, which concatenates the output of
convolutional filters of many different sizes (right). Concatenation is possible since all convolutional filters
use the same padding, and thus preserve spatial input dimensions.
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momentum respectively. We tested different loss functions to explore how they would affect the final
network performance at different energies.

We implemented and trained our networks using PyTorch’s software library [21], and we
optimized our weights using PyTorch’s stochastic gradient descent algorithm with an initial learning
rate of ℓ = 0.1 and a momentum factor 𝑚 = 0.5. Since we expected training to converge on some
local optimal weight configuration, we reduced our learning rate when performance improvements
plateaued: if for ten epochs the total loss did not decrease below 0.9999 times the best value, we
reduced the learning rate by a factor of 10.

Training was divided into epochs. In each epoch, the network learned from a randomized subset
of 160 k images from the 400 k event training dataset, and validated its results on a randomized subset
of 6 k images from the 200 k event testing dataset. Due to time and GPU memory constraints, we
trained all models for 100 epochs total. We then tested model performance using the trained parameters
from the 100th epoch, which were generally the most refined. We expect all the models would see
additional small performance gains if trained further, especially those using the Residual architecture.

3 Experiments and results

In this section, we compare the performances of the different networks described in the previous
section. In section 3.1, we examine the performance as a function of network size. Next, in
section 3.2, we compare networks trained using three different loss functions. In section 3.3, we
evaluate the network performance with and without including information on unresponsive wires.
Finally, in section 3.4, we compare the performance of the neural networks to that of a linear
reconstruction algorithm. See appendix B for more details on the studies described in this section.

3.1 Size comparison

The modular designs of the ResNet and InceptNet architectures imply that we must choose the size of
the network. In general, an increased number of training parameters will allow the network to capture
more complex structure. However, larger network sizes come with a substantial increase in the training
time and memory consumption, and so it is worth investigating the reconstruction performance as a
function of network size. Since LArTPC images are relatively sparse compared to other datasets like
photographic images, we expect that increasing the network size should have diminishing returns [18].

We tested models of four different sizes, “Small”, “Medium”, “Large”, and “Huge”, as described
in 2.3. Table 1 contains the quantitative properties of each size model. The number of parameters
scaled linearly with the space in memory required to store the model, and non-linearly with the
training and evaluation time needed per image.

All models were trained on training and evaluation sample datasets of 400 k and 200 k images
each, using the setup described above with a linear (L1) loss function. In this comparison, we used
the datasets with unresponsive wires for both training and testing. In order to use the memory of
our GPUs efficiently, we trained the huge model with a batch size of 64 images, and all the other
sizes 128. The loss curve for every model, depicted in figure 5, shows that substantial learning
occurs by epoch 40. After this point, the loss curves show slight improvements at about every ten
epochs, when the learning rate decreased. We expect training for additional epochs could yield small
additional performance improvements.
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Table 1. Quantitative properties of different-sized models. Each increase in model size corresponded to an
order of magnitude increase in the number of parameters.

Architecture Size Number of
Parameters [M]

Training
Time / Image [ms]

Validation
Time / Image [ms]

InceptNet Small 0.088 2.09 ± 0.05 0.60 ± 0.003
InceptNet Medium 0.915 2.71 ± 0.49 0.73 ± 0.002
InceptNet Large 5.798 4.53 ± 0.46 1.18 ± 0.002
InceptNet Huge 21.361 8.88 ± 0.68 2.25 ± 0.004
ResNet Small 0.082 2.50 ± 0.34 0.66 ± 0.002
ResNet Medium 0.705 3.51 ± 0.38 0.85 ± 0.0001
ResNet Large 4.378 4.61 ± 0.04 1.07 ± 0.0001
ResNet Huge 23.786 6.12 ± 0.80 1.44 ± 0.003
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Figure 5. The average training (solid) and testing (dashed) L1 loss per epoch, for the different sized InceptNet
(left) and ResNet (right) models. 10-epoch periodic dips in the training loss coincide with scheduled reductions
of the learning rate.

As one would expect, the uncertainty on the reconstructed energy decreases as the network size
increases. For the InceptNet Small, Medium, Large, and Huge models, the top 68 % of events have a
reconstructed energy within 3.96 %, 3.86 %, 3.15 % and 2.79 % of the true value respectively, and
for the corresponding ResNet models it is within 3.89 %, 3.48 %, 3.40 %, and 2.56 %.

Figure 6 depicts the performance of each model size as a function of the true shower energy. In
the upper plots, we see that the modes of the fractional error distributions are stable and close to zero
across all energies. Both the InceptNet and ResNet large models show an at least 1 % overprediction
bias at all energies. In the lower plots, we see that the widths of the distributions improve across all
energies with increasing model sizes. All models reconstruct the lowest energy bin, 0 − 100 MeV
much less precisely than higher energy bins.

The Large networks show a visible overprediction bias compared to the other sized networks
across all energy bins, and a slightly larger overall overprediction bias (0.7%, as opposed to 0.5% or
less). We did expect over prediction to be a more likely outcome than under, since for a large subset
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Figure 6. The mode and absolute 68th quantiles of the fractional reconstruction error, in each bucket of true
shower energy, for the InceptNet models (left) and the ResNet models (right).

of events, the models need to compensate for missing charge during reconstruction. Ideally, this
compensation would be regulated by factors such as large chunks of discontinuity in the shower
or the known presence of unresponsive wires, but it’s likely that a flat correction is also used. If
this were the case, then the error (mode and spread) would be worst in the lowest energy bin, which
is what we see in figure 6. We think it is unlikely that this bias is a feature of solely the Large
sized network. The size of this effect may be an accident of the final state parameters, and could be
corrected after additional epochs of training.

The Huge models produced the narrowest, most sharply peaked distribution across the full range
of energies. However, Huge models are computationally very expensive. Not only is the per-image
training time 150 − 200 % that of the Large models, but also the quadrupled model size limits the
maximum number of events that can be batched together, so the training procedure needs to cycle
smaller sets of events on and off the GPU. For other applications, the performance improvement
may be worth the extra cost in time and memory — for this study, the large models offer excellent
predictive power, with small variance in fractional error, for a reasonable cost.

3.2 Loss function comparison

For the next study, we compared the performance of networks trained with a linear (L1), fractional
(Frac.), and mean squared error (MSE) loss function. A linear loss function weights every event
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equally, while a squared error loss function weights outlier reconstructions more heavily. The
fractional loss function weights errors in low energy events more heavily, and using it to train models
could prioritize the performance in those events. Fractional loss was also used successfully by
the NO𝜈A collaboration [18]. For this comparison, we used the Large network size for both the
Inception and Residual architectures. We trained these models as described in section 2.3, with
batch sizes of 128 events.

The L1 and MSE loss functions perform similarly, but the L1 loss model has a narrower error
distribution across all energy ranges. Therefore, we conclude that the L1 loss function is slightly
more optimal than the MSE loss function. Training with the fractional error loss produced skewed
model predictions. In figure 7 we plotted the fractional reconstruction error for each evaluated
model. The Frac. distribution is peaked at an overprediction of around 5 %, and has a wide tail
of underpredictions extending beyond −40 %. The plots of the mode value and 68 % quantile as a
function of energy in figure 8 further show that this 5 % overprediction bias and large distribution
width extend throughout all true energy bins. This behavior when using the fractional loss function
is not entirely understood. It may be related to the specific interplay of the network architecture, loss
function, and training data.
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Figure 7. Histograms of the fractional error for the InceptNet models (left) and the ResNet models (right)
trained with the three different loss functions. The models trained with the L1 and MSE loss perform
comparably, but the fractional (Frac.) loss models underperform.

3.3 Network input comparison

We next investigate the importance of input information concerning unresponsive wires. In order to
investigate the neural networks’ ability to compensate for unresponsive wires in the detector, we
trained three groups of models on three different sets of information. The first group was trained on
an ideal dataset with no unresponsive wires. The second group was trained on a dataset with an
average of 10 % unresponsive wires in each plane (URW dataset), and was given information on the
locations of these wires. We marked the locations of responsive or unresponsive wires on each plane
with pixel values of zero or one respectively, and recorded these on a separate set of three planes per
event which were given as additional input to the neural network. The last group was trained on the
same dataset as the second, but was not given any wire information.
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Figure 8. The mode and absolute 68 % quantiles of the fractional reconstruction error, in each bucket of
true shower energy, for the InceptNet models (left) and the ResNet models (right) trained with different loss
functions.

We tried both the Inception and Residual architectures for this comparison, but used the results
from sections 3.1 and 3.2 to fix the model size to Large and the loss function to L1. All models were
trained on a set of 400 k images and validated on a set of 200 k, with a batch size of 128, for a total
of 100 epochs, as described in section 2.3.

We then tested the performance of these three groups of models on 200 k validation events in
both the ideal dataset and on the 10 % unresponsive dataset. Figure 9 the fractional error distribution
on the ideal dataset for the InceptNet and ResNet models of the three groups. All the models output
reconstructed energies which are within 2 % of the true values for greater than 68 % of all test
events. However, the models trained on the unresponsive wire datasets slightly overpredict the
energy. 49.8 % of the ideal InceptNet reconstructions are greater than the true energy, but 68.9 %
(62.3 %) of the informed (uninformed) unresponsive wire InceptNet reconstructions are greater
than the true energy. Similarly, 49.9 % of the ideal ResNet reconstructions are greater than the true
energy, but 71.2 % (71.4 %) of the informed (uninformed) unresponsive wire ResNet reconstructions
respectively are greater than the true energy.

Figure 10 shows the mode and 68% quantile of each network on the ideal dataset as a function
of true energy. The models trained on the unresponsive wire dataset are trained to compensate
for missing charge, so on an ideal dataset they overpredict slightly across all shower energies. We
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Figure 9. The fractional error of the InceptNet models (left) and ResNet models (right) trained on three
different input datasets, and evaluated on the validation dataset with ideal, no unresponsive wire images.
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Figure 10. The mode (above) and absolute 68 % quantiles (below) of the fractional reconstruction error, in
each bin of true shower energy, for the InceptNet models (left) and the ResNet models (right). These models
were trained on three different input datasets, and then tested on ideal events.
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expected this effect to be less significant in the model given wire location information as input, since
this information could regulate the compensation for missing charge. For the ResNet models, this
appears to be true: the 68% quantiles of the model trained without wire information are narrower
than those of the model trained with wire information across all shower energies. This is not clear
for the InceptNet models: the model trained without performs similarly, or slightly better than, the
InceptNet model trained with information.

Having considered the ideal case, we now turn to the performance of these networks on shower
events with unresponsive wires. Figure 11, like figure 9, shows the fractional error distribution for
the InceptNet and ResNet models of the three groups described above, considering now the URW
dataset instead of the ideal dataset. Additionally, we include a fourth class of models which were
trained with URW information, but tested without that information (i.e., the wire status input layers
are effectively null, incorrectly suggesting to the network that no dead wires exist in the image). The
Ideal models do not reconstruct this dataset well; they underpredict the true energy by more than
20 % in over 18 % of events. The models trained with URW information but tested without also do
not reconstruct well, and underpredict the true energy by more than 20 % in 14.9 % and 16.6 % of
events (for InceptNet and ResNet, correspondingly). This confirms that these models are taking
advantage of the URW information given to them.

Figure 12, like figure 10, shows the mode and 68% quantile of each network as a function of
true energy but again considering the URW dataset instead of the ideal datset. Both the InceptNet
and ResNet models trained and tested with URW information reconstruct shower energies with
much better accuracy than the other models across all shower energies. They reconstructed 68 % of
the test events to within 3.1 % and 3.4 %, respectively, and reconstructed 95 % of events to within
14.0 % and 16.0 % accuracy, respectively. This seems to come at the price of a slight tendency to
over-estimate shower energies, especially for low energy showers, as shown by the modes in figure 12.
However, the relative increase in the reconstruction accuracy compared to networks trained without
URW information significantly outweighs the apparent over-prediction bias.
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Figure 11. The fractional error of the InceptNet models (left) and ResNet models (right) trained on
three different input datasets, and evaluated on the validation dataset with unresponsive wires (URW). The
performance of the model trained with information on the URW locations, but tested without this information,
is plotted in purple-blue.
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Figure 12. The mode (above) and absolute 68 % quantiles (below) of the fractional reconstruction error, in
each bucket of true shower energy, for the InceptNet models (left) and the ResNet models (right). These
models were trained on three different input datasets, and then tested on URW events.

3.4 Comparison to the linear algorithm’s performance

Sections 3.1, 3.2, and 3.3 narrowed down the best-performing CNN models. In general, the “Large”
networks trained under an L1 loss function and provided unresponsive wire information appear to
perform optimally, especially on imperfect datasets. We now compare these candidates, implemented
in both the InceptNet and ResNet architectures, directly to the linear algorithm. In addition to this
comparison between the linear algorithm and neural networks in general, the tests performed in this
section are further used to distinguish the performance of the InceptNet and ResNet individually.

In figure 13, we compare the performance on ideal data of the InceptNet and ResNet models
trained on URW data and the linear algorithm fit to the same URW data. The linear algorithm,
even with suboptimal fit parameters, still produces an excellent reconstruction: the reconstructed
energy is overpredicted in 52.7 % of events, and 68 % of events have a reconstruction error within
1.99 %. The neural networks, trained on data with unresponsive wires, slightly over-estimate the
energies of these ideal showers: the reconstructed energy is overpredicted by the InceptNet and
ResNet models in 68.9 % and 71.2 % of events respectively. However, because the neural network
fractional error distributions are narrowly peaked, 68 % of events are reconstructed to within 1.43 %
and 1.52 %, respectively.

– 14 –



2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
0
2
0
2
2

In most energy bins, the neural networks are able to match the linear algorithm’s performance,
producing similarly sized confidence intervals and slightly larger modes. In the lowest energy bins,
the neural networks actually produce more accurate results, with a mode closer to zero and a smaller
confidence interval. While the linear algorithm’s calibration procedure sacrifices the fit in the lowest
energy bins to secure a good fit at the rest, the neural networks’ more flexible reconstruction produces
a better compromise overall.
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Figure 13. Left: the fractional reconstruction error histograms of the linear algorithm and the two CNNs,
tested on the ideal validation dataset. The CNNs were Large sized and trained using the L1 loss function on
data with unresponsive wires. The correction for missing charge due to unresponsive wires may be responsible
for the CNN’s overprediction bias on these ideal showers. Right: the mode (above) and absolute 68 % quantiles
(below) of the fractional reconstruction error for these same two neural networks and the linear algorithm.

For the more realistic dataset with unresponsive wires, the neural networks and the linear
algorithm offer different advantages. The performance of each on this dataset is compared in
figure 14. The fractional error distributions for the InceptNet and ResNet models are still slightly
asymmetric: 66.4 % and 56.9 % of events are overpredicted, respectively. The fractional error
distribution for the linear algorithm has a long tail of underpredictions, over-estimating the energy
of only 32.4 % of events (i.e. under-estimating the energy of 67.6 %). The linear algorithm can
provide very accurate reconstructions for a larger fraction of events: it reconstructs 18.4 % of the
total dataset to within 0.5 % error, while InceptNet and ResNet models manage 15.9 % and 15.5 %
of the total dataset, respectively. By the 1 % error cutoff, the neural networks just barely overpass
the linear algorithm: the linear algorithm reconstructs 29.6%, the InceptNet model 30.8%, and the
ResNet model 32.2% of the total dataset to within 1 % accuracy.

When considering reconstruction on the bulk of events, however, the neural networks are the better
choice. The InceptNet and ResNet models reconstructed 68 % of the test dataset to within 3.40 % and
3.15 % accuracy, respectively. The linear algorithm’s interval is more than double that: 68 % of events
are contained within 8.9 % fractional error. For 95 % of events, the fractional errors of the InceptNet
and ResNet reconstructions are within 14.91 % and 18.49 %, respectively, while the same bound for
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Figure 14. Left: the fractional reconstruction error histograms of the linear algorithm and the two CNNs,
tested on the validation dataset with unresponsive wires. The CNNs were Large sized and trained using the L1
loss function on data with unresponsive wires. Right: the mode (above) and absolute 68 % quantiles (below)
of the fractional reconstruction error for these same two neural networks and the linear algorithm. All three
plots demonstrate the CNNs’ robustness to unresponsive wire effects.

the linear algorithm reconstruction is 53 %. When the linear algorithm fails to reconstruct an event,
presumably because it passed through a dense region of unresponsive wires, it fails thoroughly.
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Figure 15. The absolute 68 % quantile of the fractional
error, plotted as a function of the percentage of unre-
sponsive wires affecting the Y plane of the input images.

For one-third of our test dataset, the electron
showers don’t pass through any unresponsive
wires in the Y-plane. On these events, the
linear algorithm is extremely accurate. On the
remaining two-thirds of events, however, its
performance declines much more significantly
than that of the neural networks. Figures 15
and 16 show this effect from two different points
of view. In figure 15 we show the 68 % quantile
of the absolute fractional error as a function
of the percentage of unresponsive wires in an
event. Events with more than 10 % unresponsive
wires are very poorly reconstructed by the linear
algorithm, and contribute heavily to the long
tail of the fractional error histogram. From
figure 15, one can see that events with at least

10 % unresponsive wires have energy resolution > 10 % in the linear algorithm, while the energy
resolution of the neural network models is considerable better in this regime. One can also see that
InceptNet appears to be more robust to larger URW fractions than ResNet. In figure 16 we plot
the percentage of events reconstructed to within 1 % and 5 % accuracy. Interestingly, for a URW
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fraction . 5 %, the linear algorithm and the ResNet algorithm reconstruct events to 1 % accuracy
than the InceptNet algorithm. This trend reverses for events with > 5 % unresponsive wires: the
InceptNet algorithm reconstructs more of these events to 1 % accuracy than the ResNet and linear
algorithms, though the ResNet algorithm still outperforms the linear algorithm in this regime. When
the error interval expands from 1 % to 5 %, both neural network architectures outperform the linear
algorithm, even on events with fewer than 5 % unresponsive wires in the Y-plane. As the URW
fraction increases, the neural networks are able to reconstruct a significantly higher fraction of events
to within 5 % accuracy compared with the linear algorithm. Thus, one can conclude that shower
energy reconstruction algorithms which use CNNs are considerably more robust to showers passing
with a large fraction of unresponsive wires compared to traditional linear calibration algorithms.

Additionally, the same trend is observed in the 5 % accuracy case when comparing the two
network architectures: the InceptNet algorithm outperforms the ResNet algorithm for large URW
fractions, while the ResNet algorithm performs better in the very small URW fraction regime (. 5 %
of wires). As the ResNet algorithm behaves more similarly than the InceptNet algorithm to the linear
algorithm, it may be striking a balance between peak precision and bulk accuracy.

Therefore, the optimal network architecture for reconstructing shower energies in a LArTPC
depends in general on the goal of the analysis and more specifically on the anticipated fraction of
unresponsive wires through which the showers travel.
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Figure 16. The percentage of events reconstructed to within 1 % (left) or 5 % (right) accuracy, as a function
of the percentage of unresponsive wires affecting the Y plane of the input images. The linear algorithm
reconstructs a larger fraction of almost-ideal events within the stricter 1 % cutoff than the CNNs, but a smaller
fraction of these events within the wider 5 % cutoff.

4 Conclusion

In this report, we studied the ability of CNN-based algorithms to reconstruct electromagnetic
shower energies in a LArTPC. Different classes of CNN algorithms were compared in their
ability to reconstruct showers accurately and with minimal bias across a range of energies. These
studies indicate that CNN-based shower energy reconstruction algorithms in a LArTPC are robust
against showers that pass through multiple chunks of unresponsive wires in the detector. Their
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competitiveness with typical clustering linear algorithms owes to the ability to reconstruct a larger
fraction of events with moderate amounts of missing charge to within reasonable (. 5 %) accuracy.
We found that CNNs could and did utilize information on the location of unresponsive wires to further
improve reconstruction efficiency. Additionally, we found that the InceptNet architecture is slightly
more robust than the ResNet architecture to showers that pass through larger fractions of unresponsive
wires, though the latter performs better than the former in cases of few unresponsive wires.

The performance of the clustering linear algorithm in these results was in one sense optimal:
since our simulated events had no background from non-shower charge depositions, there was no
inefficiency due to charge being miscategorised as shower or not. We therefore expect that on more
realistic datasets, the relative performance of the CNNs could further improve.

Larger CNNs, with more parameters, reconstructed the majority of events to within smaller
error. In addition, the loss curves over the training epochs of all our CNNs indicate that they
could still achieve slight further improvements with additional training time. Thus, the optimal
performance of the CNNs is constrained by cost considerations in memory and time. Still, the main
takeaway from this study is clear: CNN-based shower energy reconstruction algorithms in LArTPCs
show significant improvement over traditional linear reconstruction algorithms on showers that pass
through unresponsive regions of the detector.
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A Architecture details

Figures 17 and 18 schematically depict the convolutional layers of the Residual and Inception
networks at each scale.

B Further detail on the studies

In this section, we provide further quantitative detail on the different studies described throughout
this paper.

We first discuss the comparison between networks of different sizes, described in section 3.1.
The fractional reconstruction error distribution for each size model in table 1 is plotted in figure 19.
The widths of the distributions get narrower as the models increase in size, as expected. Table 2
reports additional quantitative information on these distributions. Specifically, we provide (1) the
fraction of events with over-estimated energies (expected to be ∼ 50% for an unbiased reconstruction),
(2) the most probable fractional error (expected to be ∼ 0% for an unbiased estimator), and (3) the
68% quantile for each fractional error distribution (i.e., the 1𝜎 uncertainty on the energy estimation).

We next consider the loss function comparison described in section 3.2. Additional quantitative
information concerning the fractional error distributions shown in figure 7 is provided in table 3.
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Figure 17. Larger Residual Networks were designed by composing more layers out of more basic residual
blocks.
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Figure 18. Larger Inception Networks were designed by adding more basic inception blocks to each layer,
and by increasing the output feature sizes of all convolutional filters throughout.
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This table confirms the conclusion in the main text; the model trained using an L1 loss function
performs slightly better than the model trained under an MSE loss function, while the model trained
with a fractional error loss function seems to significantly over-predict the energy of most showers.

In table 4 we provide additional quantitative information on the fractional error distributions in
figures 9 and 11. This table again confirms the conclusions in the main text; when estimating energies
of showers without URWs, the networks trained on events with URWs tend to over-predict compared
to the networks trained on ideal events. However, the networks trained on images with URWs
perform much better on events which also include URWs. This is especially true when information
on the URWs are provided as input to the networks. It is also clear that the networks trained with
input information on URW are making use of this information, as the prediction uncertainty (given
by 68% quantiles in table 4) increases when this input is removed.

Finally, we report in table 5 additional quantitative information of the fractional error distributions
shown in figure 13 and 14. This table considers the performance of the linear algorithm and the
neural networks on evaluation datasets simulating both ideal and imperfect detectors. As discussed
in section 3.4, one can see from the table that the neural network algorithms are in general more
robust to unresponsive wires introduced in the imperfect dataset.
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Figure 19. The normalized distributions of the fractional reconstruction error for the different sized InceptNet
(left) and ResNet (right) models.

C Systematic variation study

We also tested the robustness of the CNN models and the linear algorithm to noise in the data. We
applied noisy transformations to the input data, and tested the performance of the pre-trained models.
We found that all models had predictable performance declines.

C.1 Flat noise

The first test we tried was applying a flat 90% or 110% multiplier to all the charge in an image. This
will necessarily shift the pre-trained linear algorithm’s fractional error histogram by nearly the same
amount. In theory, a CNN could adjust for this flat noise by considering the length of a shower in
relation to its total charge. Additionally, in a dataset with background signals, the change in the
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Table 2. Quantitative properties of the fractional error histograms in figure 19. See text for a description of
the variables shown in each column.

Architecture Size % > 0 Mode
(% error)

68 % quantile
(% error)

InceptNet Small 50.2 0.52 3.96
InceptNet Medium 45.5 0.14 3.86
InceptNet Large 56.9 0.71 3.15
InceptNet Huge 47.6 0.25 2.79
ResNet Small 50.7 0.46 3.89
ResNet Medium 53.2 0.56 3.48
ResNet Large 66.4 0.78 3.40
ResNet Huge 47.1 0.32 2.56

Table 3. Quantitative properties of the fractional error histograms in figure 7.

Architecture Loss % > 0 Mode
(% error)

68 % quantile
(% error)

InceptNet L1 56.9 0.71 3.15
InceptNet Frac. 45.6 5.04 8.56
InceptNet MSE 59.8 0.95 3.25
ResNet L1 66.4 0.78 3.40
ResNet Frac. 45.5 6.07 8.46
ResNet MSE 61.4 0.89 4.23

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
(RecoE-TrueE)/TrueE

0

5

10

15

20

N
or

m
al

iz
ed

C
ou

nt

90 %

100 %

110 %

Linear fit 90 %

Linear fit 100 %

Linear fit 110 %

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
(RecoE-TrueE)/TrueE

0

5

10

15

20

25

N
or

m
al

iz
ed

C
ou

nt

90 %

100 %

110 %

Linear fit 90 %

Linear fit 100 %

Linear fit 110 %

Figure 20. Histograms of the fractional error on input events with a 90%, 100%, and 110% multiplier applied
to the pixel charge Q, for the InceptNet (left) and ResNet (right) models, compared to the linear fit.

background charge could serve as a reference point. However, our dataset had no background, and
our CNNs’ performance, plotted in figure 20 suffered the same bias shifts as the linear algorithm.
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Table 4. Quantitative properties of the fractional error histograms in figure 9 and figure 11

Architecture Training Data Testing Data % > 0 Mode
(% error)

68 % quantile
(% error)

InceptNet Ideal Ideal 49.8 0.36 1.05
InceptNet URW, no info Ideal 62.3 0.55 1.36
InceptNet URW Ideal 68.9 0.81 1.43
ResNet Ideal Ideal 49.9 0.37 1.05
ResNet URW, no info Ideal 71.4 0.57 1.97
ResNet URW Ideal 71.2 0.70 1.15
InceptNet Ideal URW 12.7 0.11 13.33
InceptNet URW, no info URW 46.3 0.33 3.90
InceptNet URW URW 56.9 0.71 3.14
InceptNet URW URW, no info 20.3 0.41 12.33
ResNet Ideal URW 12.7 0.11 13.33
ResNet URW, no info URW 60.5 0.35 4.87
ResNet URW URW 66.4 0.78 3.40
ResNet URW URW, no info 33.6 0.34 7.86

Table 5. Quantitative properties of the fractional error histograms in figure 13 and 14

Architecture Training Data Testing Data % > 0 Mode
(% error)

68 % quantile
(% error)

Linear URW Ideal 52.8 0.07 1.99
InceptNet URW Ideal 68.9 0.81 1.43
ResNet URW Ideal 71.2 0.70 1.52
Linear URW URW 32.4 0.89 8.92
InceptNet URW URW 56.9 0.71 3.15
ResNet URW URW 66.4 0.78 3.40

C.2 Gaussian per-wire noise

We also checked the models’ robustness under Gaussian noise on the detector wires. For this test,
we multiplied each wire (column) in the input images by a random value pulled from a Gaussian
distribution centered on 1 with width 0.1, and then evaluated the trained model’s performance on
this noisy dataset. We expected this kind of noise to increase the performance variance. This effect
is what we see in figure 21, where we plotted the resulting fractional error distribution.

On the dataset without noise, the linear algorithm predicts the top 68 % of shower energies
to within 10.1 %, and on that with noise it predicts them to within 16.5 %. The neural networks
perform a little better: on the dataset without and with respectively, the InceptNet model predicts
68 % of events to within 3.2 % and 11.5 %, while the ResNet model predicts them to within 3.4 %
and 11.6 %.
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Figure 21. Histograms of the fractional error on input events with Gaussian distributed per-wire noise, for the
InceptNet (left) and ResNet (right) models, compared to the linear fit.
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Appendix B

Signal Event Displays from the

Two-Body CCQE Analysis

Figure 5-1 in chapter 5 shows the event display for one of the 25 𝜈𝑒-candidate selected

events in the 1𝑒1𝑝 dataset. We provide the remaining 24 event displays in figure B-

1 to figure B-24, in ascending order in energy. The top row of each display shows

the pixel intensity image, while the bottom row shows the SparseSSNet pixel labels.

From left to right, the columns correspond to the U,V, and Y plane images.
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Figure B-1: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.

Figure B-2: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.
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Figure B-3: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.

Figure B-4: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.
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Figure B-5: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.

Figure B-6: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.
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Figure B-7: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.

Figure B-8: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.
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Figure B-9: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.

Figure B-10: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.
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Figure B-11: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.

Figure B-12: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.
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Figure B-13: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.

Figure B-14: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.
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Figure B-15: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.

Figure B-16: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.
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Figure B-17: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.

Figure B-18: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.
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Figure B-19: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.

Figure B-20: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.
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Figure B-21: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.

Figure B-22: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.
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Figure B-23: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.

Figure B-24: Top: pixel intensity; Bottom: SparseSSNet labels; Left to right: U, V,
Y, planes. The white circle indicates the reconstructed vertex.
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