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Abstract

X-ray microscopes have opened our collective eyes to the richness of nanoscale texture
in systems such as correlated and quantum materials. These microscopes draw their
power from the combination of short wavelengths, which provide high resolution, and
interaction with atomic resonances, which makes them sensitive to subtle changes
in electronic structure. However, x-ray microscopy remains an area where the main
limits are technological rather than fundamental. Therefore, major progress is still
possible with methodological improvements.

In the past twenty years, research has exploded into the use of coherent x-ray
light to improve the quality and resolution of x-ray microscopes. In many cases,
using coherent light makes it possible to remove the objective lens in a microscope,
replacing it with an algorithmic analysis of the direct scattering data. This can
increase the quality and resolution of the resulting quantitative images.

In this thesis, I present the results from a collection of projects aimed at using
coherent imaging methods to study the real-space texture of electronic phases of
matter with soft x-ray light. I first discuss the methods we developed and implemented
to counteract the experimental errors that we found to be ubiquitous in our data,
focusing on ptychography, the most commonly used lensless imaging method. Then,
I turn to the development of an entirely new single-shot lensless imaging method,
randomized probe imaging (RPI).

RPI has proven to be reliable and robust across a broad range of scenarios. The
remainder of the thesis is devoted to applications of RPI at a free electron laser and
a synchrotron. Also reported are further projects designed to improve the method,
as well as attempts to expand our understanding of the mechanisms behind it and its
limitations. I sincerely hope that the availability of RPI will help bring x-ray imaging
to a broader group of scientists and lead to a better understanding of the nanoscale
details of electronic texture.

Thesis Supervisor: Riccardo Comin
Title: Class of 1947 Career Development Associate Professor of Physics
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Chapter 1

Introduction

From Galileo’s discovery of the moons of Jupiter with the telescope [1], to Van

Leeuwenhoek’s discovery of the cellular nature of life with the light microscope [2], to

Rosalind Franklin’s first observation of the x-ray diffraction pattern of DNA [3], the

key to the discovery of many facets of nature has simply been the ability to see them.

Improving our ability to visualize the world around us has driven scientific progress

for as long as the concept of a scientific method has existed.

Advances in light microscopy made diffraction-limited spatial resolutions in the

hundreds of nanometers easily achievable, and the advent of the electron microscope

and scanning tunneling microscope allowed scientists to see down to the single-atom

level. Simultaneously, the growing importance of nanoscale phenomena to science and

engineering have made access to nanometer-level resolution increasingly important.

This progress in nanoscale engineering is now driving a massive transition in every

field of science, as the cost of computation falls and the computational power available

to the average scientist grows exponentially. Access to computation has supported

multiple recent revolutions in microscopy, from the advent of cryo-electron microscopy

[4] to the development of computed tomography [5].

However, yet another revolution in computational imaging is on the cusp of oc-

curring, after nearly 50 years of steady progress. This is the wholesale replacement of

lenses with a combination of coherent light and algorithmic analysis, under the name

of coherent lensless imaging. By 2010, the highest resolution lensless x-ray images
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were already well ahead of lens-based x-ray imaging methods [6]. In 2018, the same

thing happened for electron microscopy [7].

Coherent lensless imaging methods have become ubiquitous in imaging research,

but have not yet come into widespread use due the computational demands of the

phase retrieval algorithms needed to analyze the data. It is still cheaper and easier to

buy a good microscope than to pay for a cheap microscope, an expensive computer,

and the imaging expert needed to operate them both. However, this will change as the

price of computation drops further and data analysis programs mature. Furthermore,

lensless imaging methods measure both the absorption and phase delay imparted

on light as it traverses a sample, information which is not routinely accessed with

standard microscopy. Because of the quality and (eventual) cost advantages, it seems

likely that in ten or twenty years, every lab’s bench will have at least one microscope

driven by lensless imaging, enabling all kinds of new experiments.

1.1 X-ray Microscopy

As mentioned above, much of the original research into coherent lensless imaging

focused on applications in x-ray microscopy. This is because for x-ray microscopy the

gap between what is possible in principle and what is possible in practice has always

been especially large.

Regarding what is possible in principle: an efficient, diffraction-limited x-ray mi-

croscope with high numerical aperture could take images with sub-nanometer resolu-

tion, with sensitivity to chemical and electronic information through interaction with

atomic resonances. However, in practice the optics needed to build such a microscope

don’t exist. State-of-the-art optics cannot reach diffraction-limited performance for

resolutions beyond tens of nanometers, and rarely have a photon throughput above

10%.

Removing lenses from the equation gets rid of that limitation, and leaves only the

fundamental balance of imaging contrast with sample damage. As we will discuss

next, many fields of science can benefit from x-ray imaging, and the advances in
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resolution and efficiency that lensless imaging will make possible can have an impact

across all these fields.

The simplest and possibly most compelling use of an x-ray microscope is as a

miniature version of the x-ray projection cameras that are commonplace in medicine.

We get medical x-ray images taken when we want to see inside our bodies, because

the x-rays penetrate through us and reveal their inner structure. Similarly, we often

want to image, for example, buried structures in integrated circuits [8]. Visible light

will reflect off the top layers, and electrons are strongly absorbed by all materials,

but x-rays sail right through.

Furthermore, individual x-ray photons carry enough energy to ionize the core shell

electrons of atoms. Every atom has a related set of ionization energies that define the

threshold energies for this ionization process to occur. When the energy of an x-ray

matches one of these threshold energies, it interacts resonantly with the atom and

is scattered much more efficiently. Consequently, carefully selecting the wavelength

of the light within an x-ray microscope can highlight the locations of specific atomic

species.

Moreover, the detailed dependence of this interaction on the wavelength of the

incoming x-rays contains information about the electronic configuration of the atom

and its local environment. This can reveal chemical information such as the oxida-

tion state [9] and the spin polarization of the valence electrons [10]. Combined with

imaging, this makes it possible to study the spatial dependence of oxidation states

within the nanoparticles of a battery material[9], or take photographs of magnetiza-

tion domains in thin films [11]

Finally, the wavelength of x-ray light is short enough to diffract from the atomic

lattice in many materials. At atomic resonances, it is also possible to diffract off of

longer-scale perturbations of the electronic structure such as charge density waves,

spin waves, and antiferromagnetic order [10]. These subtle, spatially-modulated elec-

tronic orders are often extremely disordered at intermediate length scales down to

the nanoscale, full of strained regions and defects. High resolution imaging of the

diffraction can reveal the details of these nanoscale textures [12], providing one of
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the most powerful tools available for understanding their relationships to one another

and other causes of nanoscale heterogeneity.

Each of these areas benefits from the resolution and efficiency advantages afforded

by coherent lensless imaging, and depending on the specific application is either now

routinely accomplished with coherent methods or beginning to take advantage of their

benefits. The following chapter will discuss the obvious next question: What are these

methods, and how do they work?
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Chapter 2

Coherent Lensless Imaging

Coherent lensless imaging is a broad field encompassing many experimental methods,

so we begin by discussing the commonalities that bind the field. What ties all these

methods together is a reliance on coherent light. Coherent light, in the context of

this research field, is monochromatic light that can be fully described by a single,

time-independent, complex-valued vector electric field:

�⃗�(�⃗�, 𝑡) = Re
[︁
�⃗�0(�⃗�)𝑒

−𝑖𝜔𝑡
]︁
. (2.1)

Typically, a further approximation is introduced, that the light is uniformly po-

larized. In this case, only one polarization component �⃗� needs to be considered, and

we can write the electric field as

�⃗�(�⃗�, 𝑡) = �⃗�Re
[︀
𝜓(�⃗�)𝑒−𝑖𝜔𝑡

]︀
. (2.2)

In the remainder of this work, we will proceed from the above complex scalar

approximation for coherent light.

It might seem as though all monochromatic light should be coherent, and formally

that is true. However, the period of optical light is roughly a femtosecond, and mea-

surements can easily last for seconds. Consequently, optical light whose bandwidth
Δ𝐸
𝐸

is less than 10−15 will necessarily be stable over a period of seconds, but this is

far, far, far more monochromatic than we typically mean when we say "monochro-
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matic". For most coherent lensless imaging experiments, Δ𝐸
𝐸

< 10−4 is sufficient to

be practically indistinguishable from fully monochromatic light.

Most light sources are simply not stable on length scales of seconds. This is the

basic reason that most light, even monochromatic light, is incoherent. For example,

the filament in an incandescent light bulb is emitting light essentially randomly from

various locations along the filament, each location producing a different propagat-

ing electromagnetic field. Even after filtering the light by wavelength to produce a

"monochromatic" source, the resulting electric field will still vary dramatically over

most experimentally relevant timescales. Therefore we cannot simply assume it is

well described by one stationary state of the electric field, and have to resort to a

statistical description. Coherent light is light that is stable enough to not require a

statistical description.

The most recognizable property of coherent light is interference. This is typified

by the classic double-slit experiment, wherein a wavefield of coherent light passes

through two nearby slits of light. This light is then projected on a camera sensor.

The camera sensor measures the average power contained within the wavefield as a

function of the pixel location �⃗�,

I(�⃗�) =
1

2
|𝜓(�⃗�)|2. (2.3)

For the remainder of this thesis, we will omit the factor of 1
2
, as neither measured

intensity values nor scalar wavefields are tied to fundamental units in any of the

experiments we discuss.

The important thing to recognize is that the camera records the magnitude of the

wavefield, but not its phase. Still, the relative phase differences between the light

passing through the two slits generates a pattern of light and dark fringes in this

intensity image, as seen in Figure 2-1. In this way, interference between the light

emerging from the two slits turns phase information into intensity information.

The orientation and spacing of the fringes in this diffraction pattern is uniquely

determined by the spatial structure of the slits. In other words, even though we
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Figure 2-1: Classic Experiments with Coherence. (a) A visualization of the
double-slit experiment, where two neighboring slits produce a periodic pattern of
fringes. (b) A CDI experiment, where the pair of slits is replaced with an arbitrary
image. The diffraction pattern becomes much more complex, but in principle the
details of the image are still recoverable from the diffraction pattern alone. (c) A
visualization of a Fourier transform holography (FTH) experiment. The additional
reference hole introduces more fringes to the measured diffraction pattern, enabling
a one step reconstruction.

aren’t sensitive to the phase of the light impinging on the camera, we can still learn

almost everything there is to know about the structure that diffracted the light. This

hints at the essential question: how complicated can we make the pattern of slits,

dots, or whatever, before we can no longer figure out what the arrangement was from

the diffraction pattern alone? The answer turns out to be: with a few caveats, as

complicated as you want!

The idea is shown in Figure 2-1: one measures the diffracted intensity from an

object illuminated with coherent light, and then uses algorithms to figure out what

that object had to be. This idea is known as coherent diffraction imaging (CDI) and

is conceptually the simplest method in the world of coherent lensless imaging. We

will therefore turn to it first.
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2.1 Coherent Diffractive Imaging

If the screen is far enough away from the slit, the pattern of light projected on it

has an interesting property, within the paraxial approximation [13]. The magnitude

of the wavefield at the plane of the screen will be related to the magnitude of the

Fourier transform of the wavefield that emerged from the object.

|𝜓(𝑥, 𝑦; 𝑧)| ∝
⃒⃒⃒⃒∫︁

𝑑𝑥′𝑑𝑦′𝑒𝑖(𝑘𝑥𝑥
′+𝑘𝑦𝑦′)𝜓(𝑥′, 𝑦′, 0)

⃒⃒⃒⃒
(2.4)

𝑘𝑥 =
2𝜋

𝜆𝑧
𝑥

𝑘𝑦 =
2𝜋

𝜆𝑧
𝑦

This reformulates our problem as the recovery of an arbitrary complex-valued

image (the object) from the magnitude of its Fourier transform. On the face of it,

this sounds impossible. Surprisingly, this inverse problem nearly always has a unique

answer, up to a few trivial degeneracies such as a global phase factor 𝑒𝑖𝜑. The essential

condition is that the wavefield emerging from the object drops to 0 beyond some well-

defined finite region of space. This condition is known as the finite support constraint.

That this problem can be solved, and why, appears to first have been noted by

David Sayre in 1952 [14], a few years after Shannon’s work on the Nyquist-Shannon

theorem was published [15]. The critical detail is that a finitely supported function

has a Fourier transform that can be fully parameterized by discrete samples taken

at the Nyquist rate. Consequently, there is redundant information within the con-

tinuous electric field distribution at the detector plane, because the full continuous

distribution can be recovered from a sparsely spaced set of samples.

This excess information is not so redundant when we remove the phases and be-

gin to study the intensity distribution. Due to the convolution theorem, the intensity

pattern is the Fourier transform of the object function’s autocorrelation. This auto-

correlation is supported on a region with roughly twice the linear dimension of the

original object function’s support.
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This means that, to reconstruct the full distribution of diffracted intensity, we

need to sample it at most at twice the Nyquist rate of the complex-valued wavefield.

The information from these additional samples was redundant when we knew the

phases, but it is no longer redundant after we’ve lost them. This information hiding

in the additional sampling points is what makes phase retrieval possible, and also

why we need to ensure that the object function has finite support.

Of course, this is a plausibility argument, and we have not yet proven anything.

However, it is understood that in essentially every realistic case the phase retrieval

problem of CDI does indeed have a unique solution in the absence of noise [16] in

2 or higher dimensions. Furthermore, there are strong indications that the solution

remains reasonably well conditioned in the presence of noise [17].

The first practical algorithms for solving the phase retrieval problem of CDI were

developed by Fienup in the 1980s [18, 19], and CDI has been used for x-ray based

imaging starting in 1999 [20]. It continues to be used today, typically in situations

where the samples are naturally isolated, such as viruses [21] or soot particles [22].

Unfortunately, the stability and accuracy of the retrieval step has continued to

pose problems. It is rarely possible to obtain reliable reconstructions with a field

of view more than a few tens of pixels across, and the difficulty of finding a unique

solution increases as the images get larger. It is not entirely clear whether the issues

are related to the underlying structure of the problem or to the inadequacies of current

reconstruction algorithms. Nonetheless, these issues have led many researchers to

focus on alternate methods with more stability and reliability.

2.2 Holography

If CDI data were easy to analyze, then it would likely still be the go-to method

for x-ray based lensless experiments everywhere. However, as we have discussed, it

is often anything but easy to analyze. It is for this reason that Fourier transform

holography (FTH) [23] has become a popular alternative. The concept of FTH is

simple: drill a hole next to your sample, and measure the diffraction pattern directly,
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just like you would with CDI. The simple act of drilling the hole enables a simple,

direct reconstruction method to be used.

As discussed before, the intensity pattern is the Fourier transform of the spatial

autocorrelation of the object function with itself. If the reference hole drilled next

to the sample window is sufficiently far away, then this autocorrelation includes a

term for the cross-correlation between the object and reference, i.e. a slightly blurred

image of the sample. Simply taking the inverse Fourier transform of the diffraction

pattern is enough to recover this image [23].

This method, however, is limited in two significant ways. First, just like CDI,

it only works on small, isolated samples, and large samples need to be physically

masked off before they can be studied with FTH. Second, the resolution of the final

reconstruction is limited by the diameter of the reference hole, so it can’t be used for

the absolute highest resolution work.

These limitations have not stopped FTH from becoming a dominant method for

dynamic imaging of thin films [24, 25] and other structures that can easily be masked.

However, the frustration of dealing with limited sample sizes has led to the exploding

popularity of the method I will discuss next, ptychography.

2.3 Ptychography

While CDI and FTH are both single-frame methods that reconstruct an image from

a single exposure’s worth of data, ptychography fundamentally relies on collecting

multiple frames of data. This is a gift and a curse. A gift, because the multiple

frames of data expand the field of view and make it more reliable. A curse because it

can’t capture fast events with single flashes of light, and because precise mechanical

motion is needed to make it work.

The basic setup of a ptychography experiment is shown in Figure 2-2. Instead

of using a small, isolated or masked sample, a large extended sample interacts with

a (usually) focused beam of coherent light. The diffraction pattern formed by this

process would be difficult or impossible to analyze by CDI on its own, likely producing
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unstable results as discussed above.

Instead, a collection of typically hundreds or even thousands of diffraction pat-

terns is taken as the beam is scanned across the sample. Because the position of

the illuminated region in each diffraction pattern is different, each diffraction pattern

essentially contains information about the mutual interference within a different col-

lection of sample regions. Scanning with a small step, to ensure that each part of

the sample is included in a few different diffraction patterns (the overlap constraint),

creates highly redundant data which is amenable to a stable reconstruction.

The concept of ptychography appears to have first been discussed by Walter Hoppe

in a series of three 1969 papers [26–28]. However, because these papers have never

been translated to English, I am not personally familiar with the details of his pro-

posal. The name itself was coined by Hergel and Hoppe one year later [29]. By

1982, it had been recognized that scanning transmission electron microscopes were

very close to an ideal setup for taking ptychography data [30, 31]. This led to the

earliest experimental electron ptychography, led by John Rodenburg throughout the

1990s. This started with the proposal for Wigner distribution deconvolution [32], the

first ptychography algorithm still recognizable to modern researchers, and subsequent

demonstrations of the method with optical light [33] and electrons [34].

The first hints of modern ptychography appeared in 2004 when Faulkner and

Rodenburg began to build on CDI algorithms by designing and simulating the per-

formance of an iterative algorithm (rather than the earlier direct algorithm) for pty-

chography reconstructions [35]. The key advance here was the realization that the

diffraction patterns need not be sampled at the resolution of the final image. Previ-

ous algorithms had relied on this fine sampling to work, and removing that constraint

made ptychography much more practical. This was followed in 2008 by Manuel

Guizar-Sicairos and James Fienup’s work showing how the illumination and object

could be jointly retrieved [36], and the nearly simultaneous publication of an experi-

mental demonstration of the same idea with x-rays by a different group [37].

From there, the field burgeoned, and by the present day over a thousand studies

have been published, extending upon and using the principle of ptychography. A
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diverse collection of iterative algorithms for reconstructing ptychography data have

been proposed since 2008, including the extended Ptychographical Iterative Engine

(ePIE) [38], difference map [39], maximum-likelihood refinement [40], as well as many

variations that correct for sources of experimental error, which will be discussed more

in Chapter 3.

Although the details vary, nearly all the algorithms make the same set of basic

assumptions. The physical experiment is modeled as the interaction of a probe wave-

field P(𝑥, 𝑦) with a complex-valued object function O(𝑥, 𝑦), producing an exit wave

E(𝑥, 𝑦):

E(𝑥, 𝑦) = P(𝑥, 𝑦)O(𝑥, 𝑦). (2.5)

This model is derived from the linearity of light propagation and the assumption

of locality. Locality here means that the properties of the object at a point 𝑥, 𝑦 only

affect the wavefield at that point. This is a valid assumption when the object is thin,

and there is no opportunity for light at one point on the object to be scattered to a

different region of the object. The linearity of light propagation then constrains the

interaction to take on this form.

In less abstract terms, the object function is related to an integral through the

index of refraction of the sample:

O(𝑥, 𝑦) = exp

(︂
𝑖

∫︁ 𝑡

𝑧=0

𝑑𝑧 𝑛(𝑥, 𝑦, 𝑧) 𝑘

)︂
. (2.6)

The exit wave propagates to a detector, which is typically placed in the far field,

satisfying the Fraunhofer diffraction condition as encoded by Equation (2.4). This

diffraction is measured on an array of pixels, with some spacing between neighboring

pixels 𝑝 and some overall number of pixel 𝑀 ×𝑁 .

In physical reality, the probe, object, and exit wave are continuous functions of 𝑥

and 𝑦. However, to be represented computationally, they must be stored as 2D images,

sampled at a finite spacing and over a finite size. Usually, that spacing and size is

chosen so that the discrete Fourier transform of the 2D images maps, pixel-for-pixel,
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onto the detector image. This spacing is 𝜆𝑑
𝑀𝑝

.

The reconstruction algorithms operate on these discrete approximations. Gener-

ally, the algorithms begin with a sensible guess of the object and probe, say a uniform

object O(𝑥, 𝑦) = 1 and a probe that roughly matches the expected probe, such as the

focus of a known zone plate lens or an aperture with a particular shape and size.

From here, the diffracted intensity patterns at one or more probe positions are

simulated and compared to the measured data. Information from the measured data

is included, for example by replacing the simulated Fourier components of the exit

wave with the measured ones, or by calculating a gradient of a loss function. Then,

the exit wave is returned to real space, and another update is applied to bring the

guess of the object and probe more in line with this new information. This process is

continued until both the object and probe converge to stable values, producing both

a measurement of the sample’s properties and a measurement of the illumination’s

structure.

Because of its reliability and scalability, ptychography has become a workhorse

imaging method relied upon even by many non-experts for scientific investigations,

and is likely to become the standard method for x-ray microscopy in the near fu-

ture. However, the simplified discussion above misses a big part of the challenge of

ptychography—overcoming the gap between the simplified models and the real world.

In the next chapter, we will discuss in detail modern perspective on how to perform

reconstructions on ptychography data that take these issues into account explicitly.
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Figure 2-2: Ptychography. The basic concept behind ptychography. A small beam
of light, or probe, is scanned across a sample, or object. The diffraction patterns
that form on the detector are saved for each position, and the overlap between the
neighboring illuminated regions is used as an extra constraint to lead to more reliable
convergence.
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Chapter 3

Models for Phase Retrieval with

Automatic Differentiation

3.1 Introduction

One of the major problems facing coherent imaging methods is the difference between

the idealized settings that canonical algorithms rely on and the reality of a physical

experiment, with all its imperfections. A sizable literature has consequently sprung

up to deal with the various types of errors and imperfections that can exist in pty-

chography data. These corrections typically work by modeling the cause of the error

and recovering a set of parameters which characterize it in addition to the parameters

of interest.

Methods have been developed that extend most of the standard algorithms to cor-

rect for everything from inaccurate position information [41, 42] to partial coherence

[43]. However, combining these corrections is cumbersome, because it is not always

obvious how two different adjustments to the same base algorithm should be blended

together.

A recently popularized solution to this problem is automatic differentiation. As

we discuss below, using automatic differentiation-based algorithms makes it simple

to add many standard corrections to a ptychography algorithm. More importantly,

blending multiple corrections is much more straightforward within this framework,
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Figure 3-1: The flow of data in a generic automatic differentiation based algorithm
for ptychography

because one only needs to consider how to simulate the source of error—not how

to define an algorithm to recover it. As part of my thesis research, I developed

a library of correction models, some based on existing work and some original, to

enable ptychography reconstructions within the group.

3.2 Automatic Differentiation

Automatic differentiation is a computational method that traces the chain of math-

ematical operations occurring in a script or function. As it does this, it builds up

a secondary function capable of differentiating the output of the computation with

respect to the inputs [44]. This secondary function is defined using the same types

of primitives as the original function, and in simple cases can execute just as quickly.

Specifically: automatic differentiation is not a finite difference method. With auto-

matic differentiation, derivatives are computed exactly and analytically.

The fundamental idea essentially boils down to cleverly identifying a synergy

between the chain rule for differentiation and the structure of computer programs.

The method has been around in various forms since at least the 1960s [45]. Its

popularity has exploded in recent years because of its application to training deep

neural networks. As a result, many libraries for high-performance computing now

have comprehensive support for it.
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Automatic differentiation was first applied to ptychography in two studies from

2018 [46] and 2019 [47]. The basic concept is illustrated in Figure 3-1. First, a

set of parameters to be recovered from the data is defined. Then, a forward model

is written, in the form of a function that maps those parameters onto a simulated

set of diffraction patterns {Isim
𝑗 }. The prototypical forward model will be given in

Equations (3.1) - (3.3). Importantly, this function must be differentiable in its inputs

with respect to its outputs.

Next, an error metric or loss function ℒ is defined, which quantifies the difference

between the simulated and measured diffraction patterns. Many error metrics can be

used, but the most common are the negative log-likelihood function associated with

the dominant error model on the detector [40] or the euclidean distance between the

square-root intensities, i.e. Equation (3.4). This latter model is less mathematically

elegant, but empirically is robust to most detector noise models [40].

Finally, a gradient descent algorithm is used to find the minimum of this loss

function. The gradients themselves are calculated using automatic differentiation, and

many standard algorithms exist for converting these gradients into steps. With a well-

tuned step-size, even simple stochastic gradient descent [47] is sufficient. However,

tuning step sizes can quickly become difficult when error models are introduced. This

is because the new parameters, e.g., the detector background, can have gradients that

are orders of magnitude larger or smaller than the gradients of the object pixels.

In practice, the Adam algorithm [48] is used most frequently, and it is robust

across a wide range of settings, so long as care is taken to ensure that the parameters

being optimized over are of order unity. In many settings, second order quasi-Newton

algorithms like L-BFGS [49] also have good performance, and there has been recent

work exploring algorithms specifically designed for this setting [50].

The result of this cycle of steps is an easy to implement and flexible algorithm

because, in most cases, making an adjustment is as simple as updating the forward

model. In the following sections, we discuss a variety of forward models which account

for commonly encountered sources of error.
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Figure 3-2: A diagram showing the operation of the shift and clip function 𝒮. The
𝑀 × 𝑁 region in lavender is extracted from the larger object array O, at the shift
𝑚0, 𝑛0.

3.3 The basic forward model

The simplest forward model upon which all others are built simulates the diffracted

intensity pattern I sampled on a 𝑀×𝑁 pixel detector with pixel pitch 𝑝 at a distance

𝑑 from the sample. The simulation uses two complex-valued images, the object array

O and probe array P. The object and probe arrays are defined as sampling the

real-space structure of the sample and illumination, respectively, with a pixel pitch

of 𝜆𝑑
𝑀𝑝
× 𝜆𝑑

𝑁𝑝
, as described in Section 2.3. From these components, the diffraction from

each frame with index 𝑗 is simulated as follows:

E𝑗 = P𝒮(O; ⌊𝑥𝑗⌉, ⌊𝑦𝑗⌉) (3.1)

Ẽ𝑗 = ℱ{E𝑗} (3.2)

Isim
𝑗,𝑚𝑛 = |Ẽ𝑗,𝑚𝑛|2 (3.3)

ℒ =
∑︁
𝑗

∑︁
𝑚𝑛

[︂√︁
Isim
𝑗,𝑚𝑛 −

√︁
Imeas
𝑗,𝑚𝑛

]︂2
, (3.4)

where P is the probe array, whose dimensions 𝑀×𝑁 match the detector’s, and O

is the larger object array. ⌊𝑥⌉ refers to rounding 𝑥 to the nearest integer, and (𝑥𝑗, 𝑦𝑗)
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is specified in units of pixels. 𝒮(𝑂; ⌊𝑥𝑗⌉, ⌊𝑦𝑗⌉), the shift and clip function, extracts an

𝑀 ×𝑁 region of the object at the specified location:

𝒮(O;𝑚0, 𝑛0)𝑚𝑛 = O𝑚0+𝑚,𝑛0+𝑛, 𝑚 ∈ Z𝑀 , 𝑛 ∈ Z𝑁 . (3.5)

This operation is shown graphically in Figure 3-2. The 2D discrete Fourier trans-

form ℱ and inverse 2D discrete Fourier transform ℱ−1 are defined here as:

ℱ{A}𝑚𝑛 =
1√
𝑀𝑁

∑︁
𝜇𝜈

A𝜇𝜈𝑒
−2𝜋𝑖

(︂
(𝑚−⌊𝑀

2 ⌋)(𝜇−⌊𝑀
2 ⌋)

𝑀
+

(𝑛−⌊𝑁
2 ⌋)(𝜈−⌊𝑁

2 ⌋)
𝑁

)︂

ℱ−1{A}𝑚𝑛 =
1√
𝑀𝑁

∑︁
𝜇𝜈

A𝜇𝜈𝑒
2𝜋𝑖

(︂
(𝑚−⌊𝑀

2 ⌋)(𝜇−⌊𝑀
2 ⌋)

𝑀
+

(𝑛−⌊𝑁
2 ⌋)(𝜈−⌊𝑁

2 ⌋)
𝑁

)︂
.

This definition defines the origin of coordinates at the center of the image, rather

than at the corner of the image as is standard. This setting maps naturally onto the

physical model of light propagation, where the low-frequency data winds up on the

center of a physical detector.

Equations (3.1) - (3.4) define the basic mapping from the input parameters to the

single objective (loss) function we will attempt to minimize. Here I have broken it

out into four conceptual steps: the interaction model (3.1); propagation model (3.2);

measurement model (3.3); and loss model (3.4).

Separating out these stages of the model is worthwhile because many corrections

we will introduce only affect one or a few of the stages. For example, as we will

see in Section 3.6, introducing position correction only requires an update to the

interaction model. Similarly, introducing background estimation (Section 3.7) only

causes a change to the measurement model.

The following sections explore various corrections that account for ways in which

reality deviates from this simplified model, but it is important to note that this simple

model is already in many cases sufficient to obtain state-of-the-art reconstructions.
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As has been noted elsewhere, the gradients 𝜕ℒ
𝜕O𝑚𝑛

and 𝜕ℒ
𝜕P𝑚𝑛

are closely related to

the ptychographic iterative engine (PIE) [51] and extended PIE (ePIE) [38] update

steps [47], which are among the oldest and simplest algorithms for ptychography. The

ePIE algorithm has been used to produce some of the most impressive results in the

field, most recently the first successful modern-style electron ptychography [7]. Thus,

before we dive into a detailed discussion, it is important to remember the following

rule of thumb:

Adage 3.1

If your ptychography data doesn’t converge at all with ePIE, it probably won’t

converge with a fancy algorithm either.

With that said, introducing error corrections into the reconstruction algorithm can

improve the quality of the reconstruction significantly, and it is often worthwhile even

if the errors in question are small. However, these models, however comprehensive,

cannot turn bad data into good data. The existence of the error correction models is

not a license to take bad ptychography data.

3.4 Correction for incoherent illumination

Traditionally, ptychography and coherent diffraction imaging (CDI) assume that the

illumination on the object is fully coherent and monochromatic. This is a good

approximation for many sources of light, but is never truly realized in an actual

experiment. Common causes of a lack of perfect coherence include:

• Partially coherent light sources

• Vibrating optics

• Fly scans (collecting data with a continuously-moving probe)

• A lack of sufficiently high monochromaticity
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Luckily, all these sources of incoherence (with the exception of some of the effects

of non-monochromaticity [52]) can be treated using the same framework, which is

nowadays ubiquitous. This is the multi-mode model, which was first explored by

Pierre Thibault and Manuel Guizar-Sicairos [43].

E𝑘
𝑗 = P𝑘 · 𝒮 (𝑂; ⌊𝑥𝑗⌉, ⌊𝑦𝑗⌉) (3.6)

Ẽ
𝑘

𝑗 = ℱ{E𝑘
𝑗} (3.7)

Isim
𝑗,𝑛𝑚 =

𝐾∑︁
𝑘=1

|Ẽ𝑘

𝑗,𝑛𝑚|2 (3.8)

In this model, the illumination is defined by a set of 𝐾 wavefunctions 𝑃 𝑘, known

as coherent modes. Each mode interacts with the sample separately and propagates

to the detector separately, where their intensities add incoherently.

Conceptually, this refers to a time-varying illumination wandering through the

defined probe modes. From a fundamental optics perspective, this list of modes is

a truncated eigendecomposition of the mutual coherence function of the illuminated

light, as explored more in Appendix B.

Most ptychography algorithms have been extended to the multiple mode case,

including ePIE [43], difference map [43], maximum likelihood [43, 53], and automatic

differentiation [46].

In most implementations, mutual orthogonality of the probe modes is explicitly

enforced. However, in automatic differentiation, we typically allow the modes to be

non-orthogonal during reconstruction [46]. This doesn’t affect the validity of the

results, as any set of three non-orthogonal modes can always be converted to an

equivalent set of orthogonal modes.

The number of modes 𝐾 is related to the overall degree of coherence of the in-

coming light, and in fact fully incoherent light can be thought of as a probe with

many modes contributing meaningfully. A typical reconstruction from good quality

data and a coherent light source will have one or several dominant modes, followed by
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a rapidly decaying tail of weaker modes. One rarely sees reconstructions performed

with more than 10 modes, because if that many modes are really required, the light

is likely to be insufficiently coherent to produce strong speckle contrast.

3.5 Correction for unstable illumination

While the model above corrects for fluctuations in the illumination occurring faster

than the exposure timescale, it is also common to find that the illumination function

changes subtly between exposures. This can be due to slow vibration, drifts, the use

of an intrinsically unstable source such as a high harmonic generation (HHG) laser

[54] or free electron laser (FEL) [55], or the physical motion of optics.

In this case, we can relax the constraint that the probe at each exposure is precisely

the same as the probe at every other exposure. We can accomplish this elegantly

by recognizing that the multi-mode model described above is successful because, in

many cases, the illumination only "wanders" around a low-dimensional subspace of

dimension 𝐾. This suggests that we can allow the probe at each exposure to look like

any collection of 𝐾 modes, each mode consisting of a linear combination of modes

from a (potentially larger) subspace with dimension 𝐿 using the following model:

P𝑘
𝑗 =

∑︁
𝑙

𝛼𝑘𝑙𝑗 Ψ
𝑙. (3.9)

This model allows for each exposure to contain 𝐾 probe modes, and for the

probe to explore 𝐿 modes throughout the full data collection. It is closely related

to orthogonal probe relaxation ptychography (OPRP) [54], which defines an explicit

reconstruction algorithm for the case where 𝐾 = 1 but 𝐿 ̸= 1. It is also related to the

model explored in [55], where the authors force the matrix 𝛼𝑘𝑙𝑗 to be diagonal in 𝑘, 𝑙

for each frame 𝑗. Finally, if 𝛼𝑘𝑙𝑗 is set to the identity matrix for each 𝑗, the standard

multi-mode model for partially coherent light is recovered.
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3.6 Correction for position inaccuracy

With the possible exception of partial coherence, the most discussed source of error

in ptychography is inaccurate information about the position of the probe. This kind

of error is ubiquitous in real experiments and correcting for it pays off handsomely

because positioning errors do not degrade the quality of the diffraction patterns them-

selves. Simply put, if one only knew the actual positions, the dataset wouldn’t be

degraded at all. In fact, due to the raster grid pathology that affects data collected

from scan points on a Bravais lattice [56], sometimes a dataset with imprecise posi-

tions is better than it would have been if the probe had been placed accurately.

There are a variety of methods in common use for position correction, falling

broadly into two categories. The first category is exploration-based approaches, which

use an explicit method to generate suggested position updates between iterations.

The canonical example of a method in this realm is position annealing [41], which

generates a set of random trial positions and accepts the one that most improves the

loss metric. Another method uses the small offset present in the per-pattern probe

update to propose an update step for the position [57]

The methods in the second category use the diffraction patterns themselves to

determine the position update at each iteration, most popularly by calculating the

gradient of a loss function with respect to the probe positions, usually following a

calculation of the gradient done by hand [42]. However, in order for this gradient

to be well-defined, the interaction model must be differentiable in �⃗�, which Equation

(3.1) is manifestly not.

To rectify this, we need to introduce a method for shifting either the probe or the

object to subpixel accuracy. The natural choice is to apply a shift to the probe using

a linear phase ramp in the Fourier domain, as follows:

P′
𝑗,𝑚𝑛 = ℱ−1

{︂
exp

(︂
2𝜋𝑖

(︂
𝜇(𝑥𝑘 − ⌊𝑥𝑘⌉)

𝑀
+
𝜈(𝑦𝑘 − ⌊𝑦𝑘⌉)

𝑁

)︂)︂
ℱ{P}𝜇𝜈

}︂
(3.10)

This model selects the closest region of the object function 𝑂 to extract, and
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Figure 3-3: Role of Position Correction. An example showing the power of
position correction, using resonant soft x-ray reflection data collected at the Ni L3
edge from a thin film sample of NdNiO3. (a) The amplitude of the probe function, (b)
the amplitude of the object function, and (c) the phase of the object function, using
the nominal probe translations without position correction. (d), (e), and (f) the same,
but after including the position correction model in Equation (3.10). (g) the original
positions, and (h) the corrected ones. (i) comparison of the spectral signal-to-noise
ratio (SSNR) associated with the resulting object reconstructions.
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then performs a small subpixel shift of the probe to adjust the position to subpixel

accuracy. This method of performing the shift is equivalent to a sinc-interpolation

with periodic boundary conditions, an appropriate method for typical ptychography

probe functions because they often can be well approximated as band limited.

Although there are still discrete changes in the calculated exit wave when the

rounded positions ⌊𝑥𝑘⌉ and ⌊𝑦𝑘⌉ jump across a step, the forward model remains

differentiable because the rounding operation is not included in the computational

graph and the derivative is always well-posed when ⌊𝑥𝑘⌉ and ⌊𝑦𝑘⌉ are considered to

be fixed. As Figure 3-3 shows, this model can produce a dramatic improvement in

reconstruction quality on otherwise good data with positioning errors.

3.7 Corrections for other common errors

A variety of small, but common, sources of error plague many ptychography experi-

ments. Here we treat them simply:

3.7.1 Detector background

To offset a detector background, alter the measurement model:

Isim
𝑗,𝑚𝑛 = |Ẽ𝑗,𝑚𝑛|2 + B2

𝑚𝑛. (3.11)

The definition of the parameter B as the square-root of the background is a com-

mon trick used for non-negative parameters. The background is usually constrained

to be non-negative because negative backgrounds can produce negative simulated in-

tensities, causing issues for the standard mean-squared-amplitude-error loss model

and the Poisson negative log-likelihood metric.

3.7.2 Probe translation

It is often the case that the optics which produce the probe are scanned across the

sample, rather than the canonical situation of a sample scanning across a fixed beam.
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When this is the case, the diffraction pattern will shift slightly on the detector as the

probe moves. This becomes a genuine issue when the scanned field of view approaches

an appreciable fraction of the size of a detector pixel. Because pixels on most x-ray

detectors are a few tens of microns wide, this effect can start to be noticeable for scan

windows even as small as a few microns. This can be fixed by introducing a small

correction to the exit wave:

E′
𝑘,𝑚𝑛 = exp

(︂
2𝜋𝑖

(︂
𝑚(𝑥𝑘 − �̄�)

𝑀𝑑
+
𝑛(𝑦𝑘 − 𝑦)

𝑁𝑑

)︂)︂
E (3.12)

Where 𝑑 is the size of an individual pixel on the detector. This linear phase

ramp, applied to the exit wave in real space, creates a subpixel shift in the Fourier-

space wavefield at the detector plane. This is parallel to the same approach used to

introduce subpixel shifts to the probe’s position in real space. If uncorrected, this

effect will cause a quadratic phase structure to appear in the reconstruction, which

can start to degrade the quality of the reconstruction if the probe is large enough for

the phase curvature to make an appreciable difference at the per-diffraction-pattern

level.

3.7.3 Large probes

Sometimes, one is forced to use an illumination that doesn’t fit into the finite-sized

array that stores the probe function. In this case, it is possible to increase the size

of the probe array by simulating wavefields on a finer grid of pixels than the actual

sampling at the detector plane [58].

To introduce this into automatic differentiation, we create a probe with 𝑎𝑀 ×𝑎𝑁

pixels, and then simply modify the measurement model

I′sim𝑗;𝑚,𝑛 =
𝑎∑︁

𝜇,𝜈=1

Isim
𝑗;𝑎𝑚+𝜇,𝑎𝑛+𝜈 (3.13)

so that each pixel on the detector is compared to the sum of an 𝑎 × 𝑎 region of

the simulated wavefield at the detector plane. Running a reconstruction with this
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Figure 3-4: Further Small Corrections. A reconstruction from the same data used
in Figure 3-3, but including a correction for the detector saturation, doubling the size
of the simulated probe, and the unstable illumination model to allow for varying
illumination intensity. (a) The amplitude of the probe function, (b) the amplitude of
the object function, and (c) the phase of the object function.

forward model can then recover the structure of the probe over a larger area, at the

cost of setting up a more poorly conditioned inverse problem. An example of the

improvement in quality that can be achieved in a typical case is shown in Figure 3-4.

3.7.4 Superresolution

Sometimes the signal rate is so high, even out at the edge of the detector, that one has

hope of reconstructing the object to a higher resolution than the naïve pixel size in

the detector conjugate coordinate space [58]. This can be set up by simply simulating

Ẽ on a larger array than the actual detector images and cropping it when simulating

the intensities. This results in a correspondingly smaller pixel size in real space for

both the probe and object images. I used this method in the reconstructions from

the data in Chapter 5, due to the high signal rates.

However, caution needs to be taken because the high-frequency components may

not be actually constrained by the data. Specifically, the probe needs to contain

frequencies high enough to map the highest frequency components in the object back

to the detector field of view. This can be rephrased as a the traditional limitation

that
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NAtotal = NAdetector + NAillumination (3.14)

Usually, superresolution is a hopeless endeavor unless the signal is extraordinarily

high, and the high-frequency components will become dominated by noise before they

reach the ultimate limit. There’s also not much point to it, because simply moving

the detector closer to the sample will capture a higher numerical aperture. Perhaps in

some far-off future, numerical apertures for extreme ultraviolet (EUV) or soft x-ray

experiments will approach 1, and in that case super-resolution imaging may become

valuable.

3.7.5 Finite Pixels

When the diffracted wavefield imaged on the detector has structure on a length scale

near the pixel length scale, the effect of the finite pixel size can become relevant. The

naïve model simply assumes that each pixel is sampling an infinitely small region of

the wavefield at a particular location. In contrast, the physical pixel integrates over a

specifically shaped area, typically a square region with edge length equal to the pixel

pitch.

We can account for this difference explicitly by ensuring that we accurately sample

the intensity distribution at the detector plane, and then convolving that distribution

with a pixel shape function. Formally, this is accomplished with:

Ẽ𝑗 = ℱ{Pad(E,𝑀,𝑁)} (3.15)

Isim
𝑗 = |Ẽ𝑗|2 (3.16)

I′sim𝑗 = ℱ{H𝑚𝑛ℱ−1{I𝑗}𝑚𝑛} (3.17)

I′′sim𝑗;𝑚,𝑛 = I′𝑗;2𝑚,2𝑛. (3.18)

Where the function Pad(E,𝑀,𝑁) above pads the exit wave array with zeroes

to double its size. H𝑚𝑛 is defined as the Fourier transform of the pixel’s sensitivity
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function, which can be calculated analytically beforehand. For the simple case of a

square pixel with side length matching the pitch, this is:

H𝑚𝑛 = sinc(𝑚−𝑀) sinc(𝑛−𝑁), (3.19)

or, in other words, a pair of sinc functions that fall to their first zeroes right at the

edge of the simulated probe field of view. This correction is especially valuable—

although also especially computationally expensive—when using large probe that

already requires oversampling on the detector.

3.7.6 Saturation

Because of the large dynamic range present in typical ptychography datasets, detector

saturation is a perennial problem. Fortunately, provided that the saturated pixels

don’t affect their neighbors (as they, unfortunately, often do), it can be easily corrected

for with the following addition to the measurement model:

I′sim𝑗;𝑚𝑛 = min(Isim
𝑗;𝑛𝑚, 𝑠) (3.20)

Where 𝑠 refers to the saturation threshold. This model effectively prevents the

error term arising from any saturated pixels from propagating backward through to

the object gradients. This works remarkably well, but it does create the risk that if the

initial simulation is fully saturated, there will be no gradients propagated whatsoever

and the reconstruction will stagnate. For this reason, it is preferable to mask off

saturated pixel based on Imeas, but this trick will indeed work in a pinch. This model

was also included in the reconstructions feeding into Figure 3-4.
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Figure 3-5: Projection geometry. (a) The definition of the basis vectors for the var-
ious coordinate systems for stored arrays: detector, detector conjugate, and sample-
plane. (b) The geometry for transmission ptychography experiments. (c) The spec-
ular reflection geometry. (d) The general Bragg geometry, where the Bragg vector
need not be normal to the sample surface.

3.8 Corrections for the reflection and Bragg geome-

tries, as well as high NA

So far, we have considered ptychography data collected in transmission through a

sample that is perpendicular to the propagation direction of incoming light. It is

also possible to collect ptychography data in reflection mode [59, 60], and it is even

possible to collect ptychography from light scattered into a Bragg diffraction peak

[61, 62]. Bragg ptychography data is often reconstructed in 3 dimensions, but when

studying sufficiently thin films it is often possible to do a Bragg mode reconstruction

of a 2D object [63].

We can treat both the reflection and 2D Bragg cases with a common framework.

Without loss of generality, we consider a canonical scenario where the illuminating

light propagates along the positive 𝑧 axis, strikes a sample with surface normal vector
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𝑠, and reflects off at an angle 2𝜃 from the surface, as shown in Figure 3-5. This defines

an outward direction

�̂�out = [0, sin(2𝜃), cos(2𝜃)] (3.21)

We assume that the center of the detector is along a line defined by �̂�out, and the

detector face is perpendicular to �̂�out. This gives us the detector basis vectors (see

Figure 3-5):

𝐵det =

⎛⎜⎜⎜⎝
0 𝑝

𝑝 cos(2𝜃) 0

𝑝 sin(2𝜃) 0

⎞⎟⎟⎟⎠ =
(︁
𝑏1,det �⃗�1,det

)︁
. (3.22)

Our first task is to understand how an exit wave leaving the plane of the sample

will ultimately wind up propagating to the detector. We start by considering the

detector conjugate coordinate system parallel to the plane of the detector, shown in

blue in Figure 3-5. We find a square grid of points with basis:

𝐵conj =

⎛⎜⎜⎜⎝
0 𝜆𝑑

𝑀𝑝

𝜆𝑑
𝑀𝑝

cos(2𝜃) 0

𝜆𝑑
𝑀𝑝

sin(2𝜃) 0

⎞⎟⎟⎟⎠ =
(︁
𝑏1,conj �⃗�1,conj

)︁
. (3.23)

This is just the normal grid of points of spacing 𝜆𝑑
𝑀𝑝

, but tilted to stay parallel

to the detector plane. Any wavefield sampled at this plane will have the standard

Fourier transform relationship with the detector.

To zeroth order, we can approximate the diffraction from the tilted sample by

projecting the exit wave at the sample surface along �̂�out onto the detector conjugate

coordinate grid. This approximation becomes valid when the projection distance

required is less than the depth of focus corresponding to the detector’s numerical

aperture. Our task is now to find the sampling points at the sample plane that

project back onto the sampling points in the detector conjugate coordinate system.

We parameterize the sample basis as:
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𝐵sample =
(︁
𝑏1,sample �⃗�1,sample

)︁
. (3.24)

where �⃗�1,sample and �⃗�1,sample are related to the basis vectors �⃗�1,det and �⃗�2,det through

the projection shown in Figure 3-5. The projection is calculated by setting up a set

of linear equations. First, we know that the component of the projected vectors along

the surface normal direction is 0, so:

𝑠 · �⃗�𝑖,sample = 0 (3.25)

And secondly, we know that the re-projection of the sample-plane vectors back

onto the detector conjugate plane will recover the original detector conjugate coordi-

nate system:

(𝐼 − �̂�out ⊗ �̂�out)⃗𝑏𝑖,sample = �⃗�𝑖,conj (3.26)

Where ⊗ is the outer product. Combining these and solving with a pseudoinverse,

we find that:

�⃗�𝑖,sample = pinv

⎡⎣⎛⎝𝐼 − �̂�out ⊗ �̂�out

𝑠

⎞⎠⎤⎦⎛⎝�⃗�𝑖,conj

0

⎞⎠ , (3.27)

with pinv as the Moore-Penrose pseudoinverse.

To zeroth order, we can now store an object array related to the detector plane

through a discrete Fourier transform, just as we do with standard transmission pty-

chography. The only difference is that the meaning of the pixels has changed. Now,

each pixel refers to a specific location on the sample plane defined by the basis vectors

above.

When the depth of focus of the detector NA is sufficiently the only correction

which actually needs to be applied to account for the reflection or Bragg geometry is

the modified mapping between the sample translation in real-space coordinates and

the translation in pixel-space coordinates. If the translation occurs along the plane

of the sample, then the corrected mapping can be accomplished using the standard
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method of multiplying by the pseudoinverse of the basis vectors:

⎛⎝𝑥𝑗
𝑦𝑗

⎞⎠ = pinv[𝐵sample ]⃗𝑡𝑗. (3.28)

However, if the translations aren’t entirely within the plane of the sample, then

they first need to be projected into the plane of the sample:

�⃗�𝑖 = pinv

⎡⎣⎛⎝𝐼 − 𝑧 ⊗ 𝑧
𝑠

⎞⎠⎤⎦⎛⎝�⃗�𝑖
0

⎞⎠ . (3.29)

Here, as a reminder, the incoming light is defined to propagate along the positive

𝑧 direction.

In the simplest case, this geometric transformation is all that is needed to enable

Bragg mode ptychography. Helpfully, in the case of reflection-mode ptychography,

all the transformations cancel out. Consequently, in many cases a reflection-mode

ptychography dataset can be treated as though it were a transmission-mode dataset

with the motion along the 𝑦 axis inverted. In fact, the data shown in Figures 3-3 and

3-4 was taken in the specular reflection geometry with 2𝜃 = 114∘. The reconstructions

shown were run with no correction for the reflection geometry other than flipping the

vertical axis of the diffraction pattern images. This means that the images shown

in Figures 3-3 and 3-4 are actually images of the sample surface, viewed from the

perspective of the detector.

Using the projections described above, we could also transform these images into

the natural plane of the detector, as is done with the results in Figure 3-6. However,

those results include the correction for sample tilt below, which is needed when the

pure-projection approximation breaks down.

Because the sample and detector planes are no longer parallel, the calculation of

the diffraction patterns as the discrete Fourier transform of the real-space array can

quickly break down.

Specifically, each pixel on the diffraction pattern is still related to the inner product

of the object function with a complex exponential. However, the wavevectors sampled
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Figure 3-6: Reflection Geometry Correction. A reconstruction from the same
data used in Figure 3-3 and 3-4, but now also correcting for the probe propagation
with the optic translations, and the effect of the tilt between the sample and detector
planes. Note that, from this view, the square grid of gold lines on the sample appears
with the correct aspect ratio.

by the detector deviate from the perfect grid associated with the discrete Fourier

transform.

We can correct for this by explicitly calculating the points in Fourier space sampled

by the detector pixels, and then sampling the discrete Fourier transform at these

locations. The essential calculation is determining those points. A given detector

pixel at location (𝑚,𝑛), defined relative to the center of the detector, samples light

with the wavevector

�⃗�(𝑚,𝑛) =
2𝜋

𝜆

𝑑�̂�out +𝑚�⃗�1,det + 𝑛𝑏2,det

|𝑑�̂�out +𝑚�⃗�1,det + 𝑛𝑏2,det|
(3.30)

where 𝑑 is the sample-detector distance. However, these wavevectors have a prob-

lem, because they still contain the carrier frequency associated with light traveling

in the direction �̂�out. This ignores the fact that, when working in the reflection or

Bragg mode, there is a phase-matching process going on, either to satisfy the specu-

lar reflection condition or the Bragg condition. In other words, the sample has some

high frequency components which create the high-angle scattering we’re measuring,

we’re interested in the low frequency modulations around the central diffraction or

reflection wavevector.
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The simplest way to remove this carrier frequency is to simply subtract off the

frequency associated with �̂�out:

�⃗�′(𝑚,𝑛) = �⃗�(𝑚,𝑛)− 2𝜋

𝜆
�̂�out. (3.31)

Finally, we transform this back into the pixel-space basis of the Fourier transform

array. We can do this using multiplication with the appropriately scaled real-space

basis of the exit wave array:

𝑚out(𝑚,𝑛) =
𝑀

2𝜋
�⃗�1,sample · �⃗�′(𝑚,𝑛)

𝑛out(𝑚,𝑛) =
𝑁

2𝜋
�⃗�2,sample · �⃗�′(𝑚,𝑛). (3.32)

This sampling should ideally be done on the final simulated diffraction pattern,

and in practice a linear interpolation appears to be sufficient.

This correction is appropriate for both reflection-mode and Bragg-mode, but no-

tably it also is applicable to transmission-mode measurements. In this case, it natu-

rally corrects for the deviations from the paraxial approximation that occur with high

numerical aperture detectors. Consequently, this correction can also be dropped in

for transmission-mode ptychography to correct for the effects of high-NA detectors.
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Chapter 4

Single-frame far-field diffractive

imaging with randomized illumination

4.1 Preface

The following chapter is based on a publication that originally appeared in Optics

Express [64], modified to fit the format of this thesis. It also includes a new section

at the end with further discussion highlighting progress in our understanding since

the paper’s publication.

The paper was coauthored by myself, Kahraman Keskinbora, Umut T. Sanli,

Markus Weigand, and Riccardo Comin, copyright is held by Optica Publishing Group.

I initiated the line of inquiry, developed the reconstruction algorithm, performed the

optical experiment, designed all the optics, and analyzed the data for all experiments.

I was not responsible for the manufacturing of the x-ray optics, nor was I involved

in performing the x-ray experiment. See the published version [64] for full affiliation

and funding information.

4.2 Abstract

We introduce a single-frame diffractive imaging method called Randomized Probe

Imaging (RPI). In RPI, a sample is illuminated by a structured probe field containing
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speckles smaller than the sample’s typical feature size. Quantitative amplitude and

phase images are then reconstructed from the resulting far-field diffraction pattern.

The experimental geometry of RPI is straightforward to implement, requires no near-

field optics, and is applicable to extended samples. When the resulting data are

analyzed with a complimentary algorithm, reliable reconstructions which are robust

to missing data are achieved. To realize these benefits, a resolution limit associated

with the numerical aperture of the probe-forming optics is imposed. RPI therefore

offers an attractive modality for quantitative X-ray phase imaging when temporal

resolution and reliability are critical but spatial resolution in the tens of nanometers is

sufficient. We discuss the method, introduce a reconstruction algorithm, and present

two proof-of-concept experiments: one using visible light, and one using soft X-rays.

4.3 Introduction

Diffractive imaging refers to a collection of computational imaging techniques that re-

construct quantitative amplitude and phase images directly from diffraction patterns

[65, 66]. Twenty years after the first demonstrations, [20, 67–69] this methodology has

spurred a wave of technical and scientific innovations and motivated the development

of a new generation of advanced X-ray light sources. Today, diffractive imaging offers

unprecedented opportunities for quantitative phase imaging using both single-frame

and multi-frame methods.

In general, single-frame methods can perform time-resolved imaging of non-reproducible

dynamics but multi-frame methods are more flexible and reliable. The comparison

between Coherent Diffractive Imaging (CDI) and ptychography exemplifies this com-

promise. CDI, like most single-frame methods, uses small samples with a sharply

defined boundary. The boundary is typically imposed by an opaque mask deposited

on the sample [66]. This requirement ultimately restricts what systems can be studied

and predefines the field of view. In contrast, ptychography uses multiple diffraction

patterns from overlapping regions of a sample to improve the reconstruction’s relia-

bility and allow extended samples to be imaged [36–39, 51, 70, 71]. This trade-off has
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driven an enduring search for single-frame imaging methods which retain the reliabil-

ity and flexibility of ptychography. Here we implement an approach to tackling this

challenge which synthesizes two ingredients from different corners of the diffractive

imaging world.

The first ingredient is Band-Limited Random (BLR) illumination, a variety of

structured illumination which has been explored in the context of ptychographic

imaging [72–76]. Our choice to use this illumination arises from the longstanding

observation that the reliability of a phase retrieval problem is typically improved by

the presence of high-frequency phase structures [77]. This idea has led to a number

of proposed diffractive imaging methods which use randomized illumination [78–81]

or a quadratic phase ramp as in Fresnel CDI[82–84]. The concept of using random-

ized illumination is also closely related to Coherent Modulation Imaging (CMI) [85–

88], a method which imprints randomized high-frequency structures on the wavefield

with a mask placed downstream from the sample. In this work we point out that

there is strong reason to believe that, when the object function is band-limited to

a sufficiently low frequency, diffraction data resulting from many of these methods

can support a unique solution to the phase retrieval problem even without a finite

support constraint.

This observation leads naturally to the second ingredient, a band-limiting con-

straint applied to the object function during reconstruction. This constraint is loosely

inspired by single-shot ptychography algorithms [89–92]. In single shot ptychography,

an entire ptychography dataset is taken in a single frame by converging a grid of

probes onto the sample and imaging all the diffraction patterns simultaneously. To

avoid interference between neighboring diffraction patterns, the Fourier transform of

the object must fall to zero beyond some band-limiting frequency. To acknowledge

this band-limiting requirement on the underlying object function, single-shot pty-

chography algorithms explicitly impose a band-limiting constraint on the object via a

judicious choice of the pixel pitch in the object array. These algorithms can produce

remarkably robust reconstructions, with reliability in the same class as ptychography.

It therefore seems plausible that a similar constraint could also pay dividends when
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analyzing data arising from experiments, such as those discussed above, where the

diffraction data alone provides a particularly strong constraint when the object is

band-limited.

Randomized Probe Imaging (RPI) synthesizes these two ingredients by applying

a band-limiting constraint to diffraction data collected under BLR illumination. The

exact structure of the illumination is found with an initial ptychography scan used

for calibration. As we show, this combination provides enough information to solve

the phase retrieval problem without the need for either a finite support constraint

or multiple diffraction patterns. The result is a reliable single-frame (and therefore

potentially single-shot) technique which can be easily implemented at most ptychog-

raphy beamlines by simply replacing an optic. As a bonus, RPI is applicable to

extended samples and is robust to missing regions of data, such as those caused by

dead pixels or the presence of beamstops. RPI is therefore an attractive alternative

to holography, CDI, and CMI in a variety of situations, such as x-ray microscopy

applications where reliability is paramount, sample environments are bulky and a

resolution limit in the tens of nanometers is acceptable.

4.4 Randomized probe imaging

4.4.1 Basic Principles

The experimental geometry at the heart of RPI, outlined in Figure 4-1a, is the same

as a geometry commonly used for ptychography. In fact, the first step of any RPI

experiment is to collect a ptychography dataset to solve for the illumination wavefield.

A probe-forming diffractive hologram known as a Randomized Zone Plate (RZP)

focuses light of a wavelength 𝜆 to a focal spot over a focal distance 𝑓(𝜆). An Order

Selecting Aperture (OSA) is used in conjunction with a central beamstop on the

probe-forming optic to block all but the intended diffractive order from reaching the

sample.

The only nonstandard requirement in our geometry is the use of an RZP as the
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Figure 4-1: Conceptual Model. (a), A diagram outlining the experimental ge-
ometry. (b), A typical band-limited random focal spot in real space, with an inset
showing the details of the finely structured amplitude and phase. (c), The corre-
sponding representation in Fourier space. (d), The interaction model in real space,
where the incident light 𝑃 (𝑥, 𝑦) is multiplied by the object 𝑂(𝑥, 𝑦) to find the exit
wave. (e), The same interaction model in Fourier space, where the incident illumi-
nation’s Fourier transform 𝑃 (𝑘𝑥, 𝑘𝑦) is convolved with the Fourier transform of the
object �̃�(𝑘𝑥, 𝑘𝑦) to find the diffraction pattern.
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probe-forming optic in place of the traditional Fresnel zone plate or pinhole. As shown

in Figures 4-1b and 4-1c and further explored in Figure A-2, distortions in this zone

plate broaden the focal spot and fill it with speckles. The focal spot diameter can be

controlled over a wide range during the optic design process, as discussed in Appendix

A.2. The diameter of this speckle-filled focal spot ultimately determines the field of

view of the RPI reconstructions. The speckle size, related to the numerical aperture

of the zone plate, sets the resolution element. The effect of this randomized wavefield

on the final diffraction pattern is very similar to the effect of the phase modulator

used in CMI.

This BLR probe wavefield 𝑃 (𝑥, 𝑦) then interacts with a thin sample described

by an object function 𝑂(𝑥, 𝑦). The resulting exit wave 𝐸(𝑥, 𝑦) = 𝑃 (𝑥, 𝑦)𝑂(𝑥, 𝑦)

propagates into the far field where its intensity is imaged onto an area detector (Fig

4-1d). The goal of RPI is to reconstruct a discrete representation of the object

𝑂𝑖𝑗 = 𝑂(𝑖∆𝑥, 𝑗∆𝑥), using only the measured intensities 𝐼𝑖𝑗 = |�̃�(𝑖∆𝑘, 𝑗∆𝑘)|2 and

knowledge of the incident probe wavefield 𝑃𝑖𝑗. In this notation, �̃�(𝑘𝑥, 𝑘𝑦) refers to

ℱ{𝐸(𝑥, 𝑦)}, the Fourier transform of 𝐸(𝑥, 𝑦) and ∆𝑥, ∆𝑘 are step sizes in real space

and Fourier space, respectively.

To understand how a reconstruction of 𝑂𝑖𝑗 is possible from a single diffraction

pattern without the use of a finite support constraint, we consider the case where

𝑂(𝑥, 𝑦) is band-limited to a maximum frequency 𝑘𝑜 which is smaller than the highest

frequency contained in the probe 𝑘𝑝. As the visualization of this process in Figure

4-1e makes clear, when 𝑘𝑜 ≪ 𝑘𝑝, the final diffraction pattern will occupy a much

larger region of Fourier space than the object itself does. As a result, the measured

diffraction pattern can easily contain more measurements than there are indepen-

dent degrees of freedom in a band-limited object, leading to a potentially well-defined

inverse problem on the space of band-limited objects. This suggests the reconstruc-

tion strategy that we eventually pursue, where we impose an explicit band-limiting

constraint on the object in lieu of a finite support constraint.

We additionally note that the map between the complex-valued object and the

complex-valued wavefield at the detector plane is conveniently linear. As a result,
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the inverse problem can be expressed as a specific case of the generic phase retrieval

problem [93]. This connection lets us propose a limit on how high the band-limiting

frequency 𝑘𝑜 of the original object can be as compared to the probe’s maximum

frequency 𝑘𝑝 before the inverse problem becomes fundamentally unstable. We note

that for phase retrieval to be well posed, the number of intensity measurements (which

scales with the area of the diffraction pattern) must typically be greater than four

times the number of complex parameters in the object (which scales with the object’s

support in Fourier space) [94, 95]. In Appendix A.5, we show that in the context of our

reconstruction algorithm, this requirement limits the applicability of RPI to objects

with resolution ratios 𝑅 = 𝑘𝑜
𝑘𝑝

below approximately 0.94. Later, we demonstrate

experimentally that reconstructions on objects with at least 𝑅 ≤ 0.6 are feasible in

practice.

A practical advantage of this method is that the raw diffraction pattern itself

provides convincing evidence that the underlying object meets the band-limiting re-

quirement. This is because the diffraction pattern is derived from the convolution of

the Fourier representations of the object and probe. The speckles in the diffraction

pattern will therefore generically fill a region defined by the binary dilation of the

probe’s support in Fourier space with the object’s. As a result, for a BLR probe like

that shown in Figure 4-1c, 𝑘𝑝+𝑘𝑜 can be estimated as the highest frequency at which

the measured intensity remains above the noise floor. In other words, if the true ob-

ject does not satisfy the band-limiting requirement, the diffraction pattern itself will

almost always reveal this via diffracted intensity at frequencies which are simply too

high to be accessed by a sufficiently band-limited sample. This fact further suggests

that reconstructions of band-limited objects may benefit from randomized illumina-

tion even if no explicit band-limiting constraint is applied - as is the case in CMI.

This idea, and it’s limitations, are explored further in our numerical experiments.

Finally, a real-space view of the probe’s structure further motivates the use of

an explicit band-limiting constraint to perform reconstructions from RPI data. As

seen in Figure 4-1b, a fine mesh of zeros interpenetrates the BLR illumination - a

feature not shared with CMI modulators. Attempting to reconstruct an object at
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Figure 4-2: Reciprocal Space Diagram. The simulation geometry for our numer-
ical experiments, as viewed in Fourier space. The purple region shows the extent of
the probe function, bounded on the outside at a frequency 𝑘𝑝 and bounded on the
inside by the extent of the central beamstop, 𝑘𝑏𝑠. The orange region denotes the
band-limited object, and the region bounded in green shows the extent of the noise
introduced outside the band-limiting constraint. The grey shaded region is the extent
of the simulated detector “dead zone”.

a finer resolution than the speckle size will therefore inevitably lead to pixels in the

reconstructed object which are poorly constrained simply because they are weakly

illuminated. If we explicitly apply a band-limiting constraint with 𝑅 < 1, every pixel

in the object will be illuminated by at least one speckle. In this way, the band-

limiting constraint alleviates this issue of weakly constrained modes at the same time

as it dramatically improves the reliability of reconstructions. The limitations imposed

on RPI by this issue, and their relationship to the beamstop diameter, are explored

further in Appendix A.6.

4.4.2 Reconstruction Algorithm

Our reconstruction algorithm is based on Automatic Differentiation Ptychography [46,

47], using the forward model defined in Equation (4.1). This model incorporates the

band-limiting constraint by taking a low-resolution representation of the unknown

object, 𝑂′
𝑘𝑙, as input and using it in conjunction with a higher-resolution known

probe 𝑃𝑖𝑗 defined on the standard detector conjugate coordinate grid used in CDI
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and ptychography:

�̃�𝑖𝑗 = ℱ{𝑃𝑖𝑗ℱ−1{pad(ℱ{𝑂′
𝑘𝑙})}𝑖𝑗}. (4.1)

The first step in the model is to upsample the low-resolution object 𝑂′
𝑘𝑙 by padding

it with zeros in Fourier space. We then directly multiply the upsampled object by

𝑃𝑖𝑗, the high-resolution representation of the probe, and Fourier transform the result-

ing exit wave to propagate it to the detector plane. The size of the low-resolution

object array 𝑂′
𝑘𝑙 is chosen ahead of time based on the measured radius of the freely

propagated probe’s diffraction pattern and a target resolution ratio 𝑅𝑟𝑒𝑐.

To perform a reconstruction, we start with an initial guess of the object function

and use Equation (4.1) to simulate the corresponding diffraction pattern. Next, we

calculate the normalized mean squared error between the measured diffraction ampli-

tudes and a simulated diffraction pattern (including a known detector background):

𝐿 =
1∑︀
𝑖𝑗 𝐼𝑖𝑗

∑︁
𝑖𝑗

(︂√︁
|�̃�𝑖𝑗|2 +𝐵𝑖𝑗 −

√︀
𝐼𝑖𝑗

)︂2

. (4.2)

The quantity 𝐿 is referred to as the diffraction loss. We then use automatic

differentiation to calculate the Wirtinger derivative of 𝐿 with respect to 𝑂′
𝑘𝑙 and feed

those derivatives into an update for the object guess 𝑂′
𝑘𝑙 using the Adam algorithm

[48]. This process is repeated iteratively until the object converges. Remarkably,

we were able to use the same set of algorithmic parameters across all our numerical

experiments as well as both experimental demonstrations, indicating the robustness

of this reconstruction method to variations in experimental conditions.

Finally, we note that because the forward model simply defines a special case

of the generic phase retrieval problem, other phase retrieval algorithms originally

designed for geometries such as CDI and CMI can likely be modified to include a band-

limiting constraint without affecting their validity. Potentially applicable families

of algorithms include those designed to solve the generic phase retrieval problem,

such as Wirtinger Flow [96] and SketchyGCM [97]. In addition, algorithms such

as hybrid input-output [18] and difference map [98] that focus on finding solutions
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Figure 4-3: Numerical Results. (a), The dependence of failure probability of a
reconstruction on the true object’s resolution ratio 𝑅 for various 𝑘𝑝 in pixels. (b),
The dependence of failure probability on the resolution ratio 𝑅𝑟𝑒𝑐 of the applied band-
limiting constraint, for diffraction from underlying objects with various 𝑅. (c)-(e),
The dependence of the median image RMS error 𝜖 (Eq. (4.3)) on (c), the ratio
of power outside the band-limiting constraint to power inside; (d), the number of
photons per illuminated pixel in the reconstructed object; and (e), the size of the
cross-shaped dead region. (f), The dependence of the normalized diffraction RMS
loss 𝐿 (Eq. (4.2)) and the normalized image RMS error 𝜖 (Eq. (4.3)) on the error in
the assumed propagation state of the probe.

within the intersection of constraint sets are likely to be applicable, with the sets in

this case generated by the band-limiting and detector intensity constraints. Although

we pursued an Automatic Differentiation based approach here to provide the most

flexibility while exploring this concept, it is likely the case that the use of tailored

reconstruction algorithms such as these, designed specifically with the phase retrieval

problem in mind, will lead to significant gains in computational efficiency.
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4.5 Results

4.5.1 Numerical Results

Although the previous discussion demonstrates that RPI is valid for sufficiently small

𝑘𝑜, the precise region of parameter space where the inverse problem is well posed re-

mains poorly defined. We therefore performed a collection of numerical experiments

to clarify under what circumstances RPI reconstructions succeed, as well as to un-

derstand the impact of various noise sources on the quality and reliability of RPI

reconstructions.

In the following numerical experiments, we used an implementation of our recon-

struction algorithm developed in PyTorch [99], which is available from the authors

upon request. All object guesses were initialized with Gaussian random real and

imaginary parts, 𝜎 = 1. The Adam reconstructions used 𝛼 = 0.4, 𝛽1 = 0.9, and

𝛽2 = 0.999. For each reconstruction, 1000 epochs of Adam were run, lowering 𝛼 by

a factor of 0.1 whenever the diffraction loss 𝐿 (Eq. (4.2)) failed to improve after 10

iterations. Reconstructions were ended early if the loss fell below 1 × 10−9 or 𝛼 fell

below 1 × 10−4. The reported object error in each case is calculated from a region

of the reconstructed object which falls entirely within the illuminated region. All

reconstructions were run with a full detector, i.e. 𝑘𝑚 = 0 from Figure 4-2, except

those designed to uncover the impact of a finite missing region. In addition, unless

otherwise noted, the beamstop diameter in Fourier space 𝑘𝑏𝑠 is set to half the probe

extent 𝑘𝑝, a typical choice which leads to good separation of diffraction orders in most

common experimental geometries.

We first determined the maximum achievable resolution ratio 𝑅 = 𝑘𝑜
𝑘𝑝

in a noise-

free experiment. To do this, we simulated diffraction from random objects with

Gaussian-distributed real and imaginary parts, band-limited to different resolution

ratios 𝑅. BLR illumination with 𝑘𝑝 = {100, 150, 200} pixels was used in the geom-

etry described in Figure 4-2 and 1000 RPI reconstructions were attempted for each

diffraction pattern, using a target resolution ratio 𝑅𝑟𝑒𝑐 = 𝑅. Information on typical

reconstruction results and the full set of parameters are found in Appendix A.1. We
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monitored the success of reconstructions using the normalized Root Mean Squared

(RMS) error 𝜖 of the reconstructed images 𝑅𝑘𝑙 as compared to the ground truth 𝑂′
𝑘𝑙:

𝜖 =
1√︁∑︀
|𝑂′|2𝑘𝑙

√︁∑︁
|𝑂′

𝑘𝑙 − 𝛾𝑅𝑘𝑙|2, (4.3)

𝛾 =

∑︀
𝑂′
𝑘𝑙𝑅

†
𝑘𝑙∑︀

|𝑅𝑘𝑙|2
, (4.4)

where 𝑅†
𝑘𝑙 represents the complex conjugate of 𝑅𝑘𝑙. We find that reconstructions

typically converge to machine precision or entirely fail within the allotted number of

iterations, as seen in Figure A-1. We therefore classify a reconstruction as successful

when 𝜖 < 0.1% and unsuccessful otherwise. As shown in Figure 4-3a, when 𝑅 < 0.4,

the reconstructions are virtually guaranteed to succeed, whereas when 𝑅 > 0.6, our

algorithm becomes almost completely ineffectual. This should be compared to the

theoretical limit of 𝑅 ≈ 0.94.

We next considered how tight the band-limiting constraint needs to be, compared

to the true band-limited frequency of the underlying object. This is a critical question

because it addresses the extent to which reconstructions can succeed on data from

band-limited objects, even if a loose band-limiting constraint (or no constraint) is

applied. This is relevant because of the close connections between the data generated

in RPI experiments and data arising from experiments, such as CMI, that also make

use of high-frequency randomized phase structures. Viewed from the lens of RPI,

CMI reconstructions of objects with band-limited spectra are analogous to RPI re-

constructions where no band-limiting constraint has been applied. Despite that, the

reconstruction may still benefit - particularly because the band-limited nature of the

object is hinted at by the diffraction pattern itself. In this way, information about the

object’s support in Fourier space could potentially be available to the reconstruction

algorithm implicitly, through the intensity constraint at the detector plane.

To separate the value of the explicitly imposed band-limiting constraint from the

effect of the band-limiting frequency of the underlying object, we simulated diffraction
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from a set of ground truth objects which were band-limited to 𝑅 = {0.3, 0.35, 0.4}.

We next ran reconstructions with the reconstructed object band-limited to values

of 𝑅𝑟𝑒𝑐 ranging from the true 𝑅 of the original object up to 𝑅𝑟𝑒𝑐 ≈ 1.25. We then

considered the success or failure of each reconstruction using the same criteria as

above. The results in Figure 4-3b show that, especially for objects with a low 𝑅, the

band-limiting constraint can be significantly relaxed without affecting the reliability of

the reconstructions. However, especially for objects with higher values of 𝑅, relaxing

the constraint too far leads to a quickly increasing probability of failure.

This experiment supports the view that from a practical standpoint, the band-

limiting constraint has a clear impact on the reliability of actual reconstructions. It

also suggests that once the maximum stable resolution ratio is determined for a par-

ticular experimental system, it is safe to run all reconstructions on that system at the

maximum resolution. Finally, it indicates that under favorable enough circumstances

it is possible to perform RPI reconstructions using only the band-limiting constraint

naturally imposed by the discretization of the detector conjugate coordinate space.

This provides a strong link with CMI and provides an alternate perspective on the

mechanism underlying CMI reconstructions.

We next considered the robustness of RPI to objects which contain some spectral

weight beyond the band-limiting constraint imposed by the reconstruction algorithm.

To do this, we divided reciprocal space into one zone within the band-limiting fre-

quency 𝑘𝑜 = 𝑅𝑘𝑝 and a second zone extending to 𝑘𝑝 (Fig 4-2). We then simulated

diffraction from randomly generated objects normalized such that the power in the

outer zone was a specified fraction of that within the inner one. Reconstructions

were performed with 𝑅𝑟𝑒𝑐 = 𝑅, and the ground truth was taken as the low-resolution

representation of the object consisting of only frequency components within the band-

limiting constraint. The results in Figure 4-3c demonstrate that even if the band-

limiting constraint is not perfectly satisfied, for many applications the resulting error

is tolerable provided the object’s dominant length scale is above the pixel size of the

low resolution object.

We then studied how efficiently RPI uses the information in shot noise limited
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experiments. We compared the RMS error from a series of reconstructions against

the number of simulated photons per illuminated pixel in the low-resolution object.

We find that information starts to be extracted at signal levels close to 10 photons

per pixel, with the normalized RMS error 𝜖 falling below 1% by the time signal levels

reach 20, 000 photons per pixel (Fig 4-3d).

We subsequently examined the impact of missing data - for example, due to dam-

aged regions or missing regions in a segmented detector. We modeled this situation

by masking off a cross-shaped region of pixels of width 𝑘𝑚 (Fig 4-2) representing a

typical detector dead zone. We then performed reconstructions at several resolution

ratios 𝑅 while varying 𝑘𝑚. The results confirm that the major effect of missing data

is simply to lower the maximum stable resolution ratio 𝑅 (Fig 4-3e). This behavior

is similar to that of CMI as described in [85], but contrasts with traditional CDI and

FCDI, where missing data lead to poorly constrained regions of Fourier space and

real space, respectively, as discussed in [100].

Finally, we investigated the effect of poor alignment between the object plane and

the plane at which 𝑃 (𝑥, 𝑦) is known. We find that, when no correction is applied to

account for the probe’s propagation, reconstructions succeed within roughly 2 depths

of focus (DOF = 𝜆
2NA2 ) (Fig 4-3f). Furthermore, within this region the observable

diffraction loss 𝐿 is correlated with the true RMS error 𝜖 of the underlying image.

This means that calibration of the probe defocus state is possible from each individual

diffraction pattern, removing the need for precise shot-to-shot alignment.

4.5.2 Optical Experiment

To empirically validate RPI, we performed an experiment with a 532 nm laser (Thor-

labs CPS532) in a table-top setup. The experimental apparatus, shown in Figure

4-4a, is a rough scale model of a typical scanning transmission X-ray microscope.

The initial coherent wavefront was prepared using a beam expander with a 5 𝜇m

spatial filter. This light then illuminates a 2 cm diameter RZP (Fig 4-4b) prepared

via photolithography of a chrome-on-glass photomask. The RZP focused the light to

a 4 mm diameter spot at a focal distance of 33 cm, using a design generated via the
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Figure 4-4: Optical Demonstration. (a), A top-down view of our optical test
bench. (b), A section of the design pattern for the diffractive optic used in this
experiment. (c), The amplitude of the incident probe, retrieved via ptychography.
(d), A detailed view of the amplitude and phase of the recovered probe. (e), A
segment of the square root of the measured diffraction pattern on the detector, in√

ADU. Inset shows a further magnified region. (f), The amplitude of the test
object, retrieved via ptychography. (g), The same test object’s amplitude, retrieved
from a single diffraction pattern via RPI. The dotted line shows the radius at which
the pitch of the Siemens star matches the resolution calculated via FRC. (h), The
amplitude of an RPI reconstruction from the same object after it was intentionally
moved from the probe focus. (i), The Fourier ring correlation calculated between the
ptychography and RPI reconstructions. All reconstructed amplitudes are reported in
arbitrary units.
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“ZP0” method described in [75] and discussed in Appendix A.2. Higher diffractive

orders were removed through the combination of a 1 cm beamstop integrated into the

RZP and an iris placed approximately 2 cm upstream from the sample acting as an

OSA. The diameter of the iris was set to the smallest diameter at which no change

in the freely-propagated first order diffraction pattern could be detected. A Siemens

star test target was scanned through this focal spot to provide ptychography and RPI

data.

The diffraction pattern was imaged on a monochrome camera (Thorlabs DCC1545M)

with 5 𝜇m pixels in a 2𝑓 geometry using an achromatic doublet (Thorlabs AC254-

150-A) with a 50 mm focal length. The freely propagated probe fills roughly 2
3

of the

detector in this geometry. For the calibration ptychography scan, we collected a 20x20

grid of diffraction patterns in 200 𝜇m steps (Figs 4-4c-4-4f). Ptychography was per-

formed on this data using Automatic Differentiation ptychography with a background

correction, and the retrieved background was input into the RPI reconstructions.

We then performed an RPI reconstruction using a single diffraction pattern that

was withheld from the calibration ptychography grid. The RPI reconstruction (Fig

4-4g) was performed using a 400x400 pixel object, corresponding to 𝑅𝑟𝑒𝑐 ≈ 0.6 and a

pixel size of 12.8 𝜇m. The parameters for the reconstruction algorithm were chosen

to match those used in our numerical experiments, with the best result from a pool

of 20 random initializations reported in each case. The final single-frame full-pitch

resolution of 31 𝜇m was calculated via a Fourier Ring Correlation (FRC) (Fig 4-

4i) between the RPI and ptychographic reconstructions at a threshold signal to noise

ratio of 1 [101], as discussed in Appendix A.3. This shows that studies of objects with

resolution ratios of 𝑅 > 0.5 are possible in real experiments, with actual resolution

nearly reaching the limit imposed by the band-limiting constraint.

Finally, to demonstrate the robustness of RPI we waited 4 hours, power-cycled the

illuminating laser, and defocused the probe by several millimeters before collecting

an additional diffraction pattern. We then performed an ensemble of RPI reconstruc-

tions with computationally defocused probes and choose the result with minimum

diffraction error. The retrieved defocus corresponded to a shift of the sample by 3.4
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mm along the propagation direction, roughly 12 times the depth of focus of the zone

plate. This reconstruction (Fig 4-4h) converged successfully but was found to have a

slightly degraded full-pitch resolution of 35 𝜇m.

These experiments show that RPI is straightforward to implement in a typical

ptychography geometry. In addition, we show that the illumination function can be

chosen to fill a high proportion of the natural detector conjugate space - in this case,

almost 80%, without major issues. In other words, although the reconstructed object’s

resolution is lowered by the need to measure a larger region in Fourier space than that

occupied by the band-limited object, there is a corresponding increase in the field of

view because the requirement to sample the intensity distribution in Fourier space

at the Nyquist rate (typically referred to as “oversampling” in the CDI literature) is

relaxed. This leads to a final space-bandwidth product of the reconstructed object

which is roughly equivalent to that of a standard CDI experiment using the same

detector geometry.

4.5.3 Soft X-ray Experiment

Subsequently, we performed an experiment at the MAXYMUS beamline of BESSY

II to demonstrate that RPI is applicable to X-ray microscopy. A 60 𝜇m diameter

RZP was designed to focus 707 eV light to a 2.6 𝜇m diameter focal spot over a focal

length of 1.4 mm, with a numerical aperture of 0.021. Higher diffraction orders were

filtered using a 30 𝜇m beamstop on the RZP and a 15 𝜇m OSA placed less than 385

𝜇m upstream from the sample. Scattered light was collected on a 264 × 264 CCD

detector with 48 𝜇m pixels [102] placed 17 cm downstream from the sample.

We imaged a commercially available Siemens Star test sample (Carl Zeiss AG,

Germany) made of 180 nm thick Au with a minimum feature size of 30 nm, as well as

a ferromagnetic Fe/Gd multilayer prepared by sputtering 50 or 70 alternating layers

of 3.6 Å thick Fe and Gd. All imaging was done at the Fe 𝐿3-edge using circularly

polarized illumination from the third undulator harmonic. The exit slits were set to

35×35 𝜇m, and a 200 ms dwell time was used.

Typical raw diffraction patterns (Figs 4-5a, 4-5b) show many of the issues common
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Figure 4-5: Soft X-ray Demonstration. (a),(b), The square root of a diffraction
pattern from the Siemens Star and FeGd samples, in

√
ADU. (c),(d), The probe

as reconstructed from the Siemens Star and FeGd ptychography. Inset shows the
detailed speckle structure. (e),(f), The amplitude and phase of the ptychographic
reconstruction of the Siemens Star. (g),(h), The amplitude and phase of an RPI re-
construction of a portion of the Siemens Star. (i) The amplitude of the ptychographic
reconstruction of FeGd, showing three ferromagnetic domains. (j), The amplitude of
an RPI reconstruction of a region of the Fe/Gd Sample. (k), The amplitude of an
RPI reconstruction from the same diffraction pattern, using the probe reconstructed
from the Siemens Star. (l), FRCs calculated for the various RPI reconstructions. All
amplitudes are reported in arbitrary units.
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to coherent X-ray scattering experiments. A strong zeroth-order component from the

zone plate is seen, which was masked off in our RPI reconstructions. The data also

reveals damaged regions on the optic and astigmatism is visible in the reconstructed

focal spots (Figs 4-5c, 4-5d). In addition, the ptychography reconstruction from the

Fe/Gd multilayer (Fig. 4-5i) is affected by raster grid pathology.

Despite these shortcomings, single-frame RPI reconstructions were successful on

both the Siemens star (Figs 4-5g, 4-5h) and Fe/Gd multilayer (Fig. 4-5j). The

reconstructions were obtained on a 70× 70 pixel object with a pixel pitch of 83 nm,

corresponding to 𝑅𝑟𝑒𝑐 ≈ 0.5. In both cases, the diffraction pattern used for RPI

was withheld from the calibration ptychography reconstruction. The resolution was

estimated via a FRC between the RPI and ptychography reconstructions (Fig. 4-5l).

We find that the Siemens star, which contains strong high-frequency components, is

reconstructed to the resolution of the pixel pitch at a signal-to-noise threshold of 1,

while the Fe/Gd sample is reconstructed at a full-pitch resolution of 510 nm.

As a final demonstration, we performed a RPI reconstruction of the FeGd sample

using a numerically propagated probe reconstructed from the Siemens star ptychog-

raphy data (Fig. 4-5k). We found that the probe’s focal spot had shifted in the

propagation direction by roughly 40 𝜇m between samples, roughly 20 times the depth

of focus of the zone plate. Ultimately, the retrieved full-pitch resolution of 420 nm

was actually negligibly improved.

These experiments again demonstrate the resiliency of RPI. Single-frame recon-

structions succeeded despite serious aberrations in the optics and typical data quality

issues. We also showed that the calibration ptychography and RPI reconstructions

can be performed on different samples, with potential consequences for the ultimate

resolution achieved. Therefore, only one X-ray pulse is required to interact with the

sample of interest, potentially enabling “diffract before destroy” experiments.
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4.6 Discussion

We have demonstrated a method for single-frame quantitative lensless amplitude and

phase imaging that is reliable, straightforward to implement, robust to missing data,

and applicable to extended samples. As a result, RPI complements and extends on

many existing diffractive and traditional imaging methods. We therefore envision a

variety of scenarios where RPI can become a valuable addition to the experimentalist’s

arsenal of techniques.

The most immediate use case we envision for RPI is as an alternative to off-axis

holography, particularly in the soft X-ray regime. We note that while the resolution

limits for both off-axis holography and RPI are comparable, in off-axis holography

the signal rate diminishes as the size of the reference hole shrinks. Because RPI can

make much more efficient use of the available flux, it is a preferable option for many

experiments which would otherwise be performed using soft X-ray off-axis holography.

As a bonus, because RPI doesn’t require the deposition of a mask or the drilling of

a reference hole, it is possible to study many systems with RPI which could not be

prepared as samples appropriate for soft X-ray holography.

RPI may also have value as an alternative to Transmission X-ray Microscopy

(TXM), which it has two major advantages over. First, RPI uses every photon that

hits the sample, while transmission X-ray microscopy uses an inefficient X-ray optic

between the sample and detector. As light sources get brighter and brighter, sample

damage thresholds increasingly limit the resolution of X-ray imaging experiments.

In such a situation, moving an inefficient optic from downstream to upstream of

the sample can be extremely valuable. The second advantage is that, whereas optical

defects lead to aberrations in TXM images, all such aberrations are naturally corrected

for in RPI during the probe calibration step. This could potentially lead to cheaper

optics, larger optics, or even higher resolution optics than could be produced for a

TXM experiment.

Similarly, RPI is an attractive alternative to CMI in many situations. Impor-

tantly, the experimental setup for RPI obviates the need for downstream optics in
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the sample’s near-field region. This enables experiments in bulkier sample environ-

ments and removes a challenging alignment step. In addition, the RZP concentrates

incident light onto the sample, allowing for much brighter illumination at the sample

than can be achieved in a pinhole-based CMI geometry. The trade-off is the inevitable

resolution limit that results from the truly band-limited nature of BLR illumination.

A second valuable application of RPI is as a complementary imaging method at

transmission ptychography beamlines. In such a setup, users could switch between a

high spatial resolution mode (ptychography) and a high time resolution mode (RPI)

at will. This has obvious value - for example, allowing researchers to explore several

regions of interest before commencing a dynamic imaging study, or making it possible

to quickly study damage mechanisms in a material using RPI before commencing a

static ptychography measurement. Although the large beam waist would prevent

researchers from collecting fluorescence maps along with ptychography data, in many

situations this trade-off would be valuable.

A third application of RPI is as a unique time-resolved quantitative imaging

method for studying unpatterned thin films with soft X-rays in the reflection and

Bragg geometries. Currently, no single-frame techniques exist for this kind of study.

Because RPI is reference-free but much more reliable on highly textured samples, it

is particularly well suited to this type of experiment provided that the sample itself

is thin enough to ensure that the full angular frequency spectrum of the illumination

can be diffracted.

Last, we propose a few avenues for improvement of RPI. First, our algorithm is

tailored for flexibility. As a result, there are almost certainly gains in computational

efficiency to be realized by porting other phase retrieval algorithms to this context.

Second, it is possible that algorithmic improvements can push 𝑅 closer to the theo-

retical limit, improving the potential resolution of RPI experiments. Third, modern

fabrication methods are capable of producing RZPs with higher numerical apertures

than that used in our proof-of-concept experiment, further improving resolution. Fi-

nally, we note that the spatial resolution is limited by the numerical aperture of the

optics, not the quality of the focal spot. This motivates the design of X-ray optics,
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such as those using higher diffraction orders, which are capable of generating BLR

radiation at higher numerical apertures than would be possible if aberrations were a

major concern.

4.7 Conclusion

We have demonstrated a reliable single-frame lensless X-ray imaging method that

can be easily commissioned anywhere ptychography is done. As a result, it makes

single-frame and time-resolved quantitative X-ray phase contrast imaging simpler,

more reliable, and more accessible. RPI is likely to be applicable in fields where

holography, TXM, 2D CDI, Fresnel CDI, ptychography, and X-ray photon correlation

spectroscopy are used. Because of its flexibility and robustness, it will potentially

enable a new generation of time-resolved studies on samples ranging from correlated

materials and magnetic devices to soft matter, biological systems, and beyond.

4.8 Postface

Following the publication of the paper, we made significant progress in randomized

probe imaging (RPI) reconstruction algorithms, developing an algorithm that rou-

tinely reconstructs noiseless data out to 𝑅 = 1 and, occasionally, beyond. This

highlights another area of progress. In the above analysis of the theoretical maxi-

mum resolution ratio 𝑅, we ignored the role of finite support in real space. Further

experience has made it evident that properly sampling the diffracted intensity at the

Nyquist frequency (instead of half the Nyqyist frequency as assumed above) gener-

ates additional measurements. This makes convergence theoretically possible even

when 𝑅 > 1. However, the inverse problem rapidly becomes ill-conditioned due to

illumination nonuniformity as 𝑅 passes through 1.

The upshot is that we can now confidently state that 𝑅 = 1 is a viable target for

generic implementations of RPI. Further detail regarding the algorithmic improve-

ments and improved understanding of oversampling is given in Chapter 6.
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Chapter 5

Single-Shot Randomized Probe

Imaging at a Free Electron Laser

Source

The following chapter is based on work intended for standalone publication. Flavio

Capotondi, Emanuele Pedersoli, Mattero Pancaldi, and Kahraman Keskinbora were

all deeply involved in the data collection, and Kahraman Keskinbora fabricated the

optics used for this experiment. Riccardo Comin was involved in a supervisory role.

5.1 Abstract

Nanoscale imaging with single free electron laser (FEL) pulses promises to revolu-

tionize our understanding of the dynamics of heterogeneous phases of matter. Short-

wavelength radiation can visualize structures on the nanoscale, while atomic reso-

nances give access to electronic degrees of freedom. Unfortunately, existing methods

for quantitative single-shot imaging at FELs sources struggle to image large areas

with nanoscale resolution, i.e. reach a high space-bandwidth product. We report on

an FEL-based implementation of a method, randomized probe imaging (RPI), that

addresses these difficulties in a scalable way. We demonstrate repeatable single-shot

reconstructions with a space-bandwidth product of 25,000 at a 400 nm full-pitch res-
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olution, free of visual artifacts. RPI’s well understood limitations promise an easy

path to further improvements along both axes, leading to revolutionary applications

in areas such as the study of shock physics, magnetic devices, and correlated electronic

materials.

5.2 Introduction

Since the first demonstration in 2006 [69], the femtosecond pulses of x-ray and extreme

ultraviolet (EUV) light produced by free electron lasers (FELs) have been used to

image an astonishing variety of phenomena. Researchers have used FELs to study

the morphology of metallic nanoparticles [22, 103, 104], soot [105, 106], stick figure

drawings [69, 107], helium nanodroplets [108], battery electrolytes [109], viruses [21,

110], organelles [111–113], and even whole bacterial cells [114–116]. Because the

flashes of light are quick enough to partially outrun the resulting damage, it is possible

to reach higher signal-to-noise ratios and higher resolution than could be achieved

using continuous wave illumination.

Hard x-ray FELs have enabled unprecedented visibility into the mechanical prop-

erties of matter undergoing rapid changes, by capturing snapshots of shock-wave

propagation [117–120], cavitation bubbles [121], liquid microjets [122], and explod-

ing liquid-filled capillaries [123]. The well-established interaction of hard x-rays with

matter means the images can act as a quantitative measurement of local sample

properties [121].

At lower energies, the resonant coupling of XUV and soft x-ray light to the elec-

tronic degrees of freedom has made it possible to study magnetism in thin films

[24, 25], including picosecond-scale dynamics [124]. At these wavelengths, single-shot

imaging [125] using FELs uniquely enables studies of non-repeatable dynamics.

This research frontier relies not only on the technical advancements behind FELs,

but also on computational lensless imaging methods [65] like coherent diffraction

imaging (CDI) [19, 20, 69]; Fourier transform holography (FTH) [23, 126] and its

derivatives [127–129]; in-line holography [130, 131] and Fresnel/keyhole CDI [83, 84];
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as well as single-shot ptychography [90, 132]. These methods use interference effects

to computationally reconstruct quantitative images of the absorption and phase delay

experienced by light as it traverses the sample.

Despite this progress a web of frustrating limitations hold back the computational

imaging methods these studies rely on. Of these methods, x-ray CDI can achieve

the highest resolution, better than 10 nm under ideal circumstances [22]. However,

CDI becomes unreliable as the space-bandwidth product of the imaged region grows

and the sample structure becomes more complex [110]. Reconstructions of large

samples will consequently often fail to converge, or worse, produce plausible-looking

but incorrect images.

At slightly lower resolutions in the tens of nanometers, both CDI and FTH can

be used, but due to the stability issues with CDI, methods based on FTH dominate.

Reference [110] exemplifies the lengths to which researchers will go to to introduce a

reference and avoid CDI’s stability issues. In this experiment, an entire second beam

of reference particles was aligned to intersect with a main beam of sample particles,

with data used only when a particle from both beams fell within the field of view.

Unfortunately, both FTH and CDI only work on isolated samples with typical

max dimensions of a few microns. To study extended samples such as bulk crystals

and thin films, a mask has to be lithographically patterned. This limits the field of

view to a predefined region of interest. In some cases, such preparation is not even

possible: consider the case of an exploding glass capillary [123]. Consequently, hard

x-ray experiments on larger-scale samples have turned to a third family of methods

that use diverging illumination to set up an effective Fresnel-regime propagation from

the sample to the detector. Depending on the details of the reconstruction algorithm

and the author’s predilection, methods in this family have been called in-line hologra-

phy [130, 131], near-field holography [121], propagation-based phase contrast imaging

[122], Fresnel CDI [84], and keyhole CDI [83].

These methods are easy to use and do not require sample masks. However, in every

FEL-based experiment of this kind performed to date, the analysis was stabilized by

assuming that the sample’s phase and optical density were linearly related [121–123,
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133]. This is not always a valid assumption, especially for samples which contain

multiple materials, and for images taken at longer wavelengths or near resonances. In

many cases the raw detector images were simply used without phase retrieval [118–

120, 134, 135] due to the difficulty of achieving a stable reconstruction.

Even when they are valid, it is well known that these methods are prone to

artifacts, which often present as lines running parallel to sharp edge features [122,

133]. The supplement to [122] highlights the additional susceptibility of this approach

to fixed pattern noise arising from a poorly characterized illumination. This has

precluded quantitative analysis of 2D results, and researchers have relied on dimension

reduction [121] or comparison to simulated data [136] when quantitative accuracy is

needed.

Consequently, there is an acute need for a fresh, versatile approach to quantitative

single-shot FEL imaging that is reliably free of artifacts, works on samples that are

not isolated, and works even when the region of interest is large and there is no

simple a priori relationship between the amplitude and phase channels. In this work,

we discuss how randomized probe imaging (RPI), a recently developed method for

quantitative single-frame imaging [64], can fill this niche. We implement RPI at an

FEL source for the first time, showcasing its potential to simplify quantitative phase

imaging and make it accessible to non-expert researchers.

5.3 Methods

At the DiProI beamline of the FERMI FEL [137], we illuminated an 800 µm diameter

gold on silicon nitride randomized zone plate (RZP) with an outer zone width of

200 nm (Figure 5-1) using 60 eV light. The optic design strategy is the same as

described in [64], and the optic was fabricated using focused ion beam lithography.

This formed a circular illumination spot on the sample with a diameter of 40 µm.

Using this focal spot, we took a 300-exposure ptychography scan on a 64-spoke

Siemens star test sample. The diffraction patterns were captured on a 2048 × 2048

CCD detector (Princeton Instruments MTE2048B) with 13.5 µm pixels placed 135mm

76



a) b) c)

Figure 5-1: Optics. (a) A zoomed out view, from a scanning electron microscope, of
an inner section of the zone plate. This images shows a Moire pattern generated by
the randomized zones and the scan pattern of the microscope. (b) A closeup view of
generic zones near the inner edge. (c) A closeup view of generic zones near the outer
edge.

downstream from the sample. The pixels were binned into 2 × 2 regions. Each ex-

posure captured approximately 6.9𝑒6 photons total. Accounting for absorption in

the sample and the detector quantum efficiency, this corresponds to an estimated

illumination fluence of 50 µJ cm−1.

The ptychography data was reconstructed using an automatic differentiation-

based superresolution reconstruction algorithm similar to the one described in [58],

with three probe modes. Following characterization of the object and probe, we

collected 128 further single-shot diffraction patterns from the same test target for

analysis with RPI.

The probe and detector background calibration extracted from the ptychography

reconstruction were used to perform RPI on all exposures from the subsequent single-

shot dataset. The reconstructions were performed on 650× 650 pixel objects with a

pixel size of 160 µm, a nominal resolution ratio 𝑅𝑟𝑒𝑐 = 1.25. An automatic differenti-

ation based algorithm with two object modes was used for these RPI reconstructions.

5.4 Results

We first characterized the reliability of the ptychography reconstructions of the struc-

tural test target, shown in Figure 5-2. As expected, the probe covers a roughly 40 µm
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Figure 5-2: Ptychography Calibration. (a) The amplitude of the top reconstructed
probe mode. (b) The amplitude and phase of the reconstructed Siemens star. (c)
Detailed views of two regions of the reconstruction. (d) The spectral signal-to-noise
ratio (SSNR) of the reconstructed object estimated via FRC. (e) The PCFRC of the
reconstructed probe.

diameter circular focal spot. The Fourier ring correlation (FRC) calculated between

two reconstructions, each using 50% of the exposures, indicated that the object was

reconstructed at the pixel-by-pixel level for a pixel pitch of of 73 nm. This corresponds

to a full-pitch resolution of 146 nm. The partially coherent Fourier ring correlation

(PCFRC) [138] of the probe indicated reliable reconstruction within the relevant fre-

quency band (Figure 5-2d). The normalized amplitude-minimized partially coherent

mean squared error (PCMSE) [138] between the two reconstructed probes was 3.34%,

suggesting that the accuracy of our single-frame RPI reconstructions will likely be

limited to a few percent, as our probe calibration is only reliable to that level.

The single-shot RPI reconstructions are shown in Figure 5-3. We compared each

single-shot RPI reconstruction with downsampled ptychography data using the FRC,

a.k.a. the Fourier cross resolution (FCR), because we are comparing a noisy signal to

an ostensible ground truth [139]. We then converted the FCR curves to SSNR [139], as

shown in Figure 5-3f. Comparison with the half-bit threshold of SSNR = 0.4142 [101],

commonly used to assess the resolution of lensless imaging data [77, 140–142], showed

than only two of 128 reconstructions failed to surpass a resolution of 400 nm, 𝑅 = 1.

We therefore claim a robust resolution of 400 nm, which corresponds to our target
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Figure 5-3: RPI Reconstruction. (a) A typical single-shot reconstruction. (b) A
closeup of the calibration ptychography reconstruction, downsampled to match the
resolution of RPI. (c) The same closeup regions of the single-shot RPI reconstruction,
for comparison. (d) The mean of 64 subsequent single-shot reconstructions. (e)
A circular cut from the single-shot and downsampled ptychography reconstruction,
extracted at the radius marked on (b-d). At this radius, the spokes have a periodicity
of 200 nm, or 𝑅 = 1. (f) The SSNR of the objects, estimated via the FRC.

RPI resolution ratio 𝑅 = 1. A sinc-interpolated linecut along an arc intersecting the

spokes at a 400 nm pitch (Figure 5-3e) confirms that structures at this resolution are

resolved.

The space-bandwidth product is the number of individually resolved resolution

elements within our reconstruction, defined as the product of the accessible area in

real space and reciprocal space:

SBP = 𝐴real𝐴Fourier = 𝜋2 𝑟
2

res2
. (5.1)

The uniformly illuminated 40 µm diameter focal spot and maximum resolved spa-

tial frequency of 2.5 cycles per µm result in a space-bandwidth product of 2.5× 104.

Aligning the stack of 200 RPI images to account for the shot-to-shot probe insta-

bility of roughly ±0.15 µm, we then studied how increased dose improved the SSNR

of the resulting reconstructions. The improvement in SSNR grows linearly (as ex-

pected for uncorrelated noise) as we combine the first 4 images, but then the growth

rapidly slows, although the signal strength continues to grow as we average more
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RPI reconstructions. This likely indicates that other effects, such as the presence

of unaccounted-for high frequency structures in the sample or issues with imperfect

image alignment, become relevant.

Crucially, we find that the synthesized high-dose images are visually free of imaging

artifacts. This contrasts with in-line holography, where even under bright illumination

conditions the resulting reconstructions reveal artifacts [120, 122]. Furthermore, the

visual quality of the single-shot images highlights that RPI handles noise gracefully,

producing noisy images rather than introducing artifacts on larger length scales that

could be mistaken for real features.

5.5 Discussion

The single-shot images we produced are on the Pareto frontier of resolution and space-

bandwidth product for quantitative phase imaging, with higher resolution than any

previously reported single-shot in-line holography reconstructions and a higher space-

bandwidth product than any work produced with CDI. Moreover, only one publication

has ever reported a quantitative single-shot FEL reconstruction of a decoupled phase

and amplitude object with a higher space-bandwidth product than we achieve here

[143].

There is also a clear path to improving the resolution of RPI at FELs, down to

the minimum outer-zone widths which x-ray zone plate optics can be manufactured

at. Synchrotron-based RPI has already achieved a resolution of 160 nm, and optics

with 25 nm zones can be bought commercially.

Equally important is RPI’s decoupling of the sample and experiment, allowing for

a clean separation of concerns between the user and the beamline scientists and not

forcing the user to become an expert at computational x-ray imaging. Furthermore,

because RPI doesn’t rely on sample sparsity, it is feasible to study complicated sam-

ples that are densely packed with relevant features. Finally, because the burden of

optic and algorithm design can be shared across most experiments and samples, it is

possible to maintain a setup that just "works like a camera" from the perspective of
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a user.

In conclusion, we have demonstrated that RPI is a practical choice for imaging

at FEL light sources, and compares favorably to a wide variety of methods across

a broad swath of parameter space. We expect that its simplicity and compatibility

with unmasked samples will make it an attractive option for many experiments that

otherwise would have used FTH, CDI, or in-line holography.
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Chapter 6

Further development of RPI

Following the publication of the paper describing randomized probe imaging (RPI)

[64], I pursued several projects to improve RPI. Primarily I worked to develop better

reconstruction algorithms and to improve the design process for randomized zone

plates (RZPs). This activity centered around beamline 7.0.1.2 of the advanced light

source (ALS), where I worked under two fellowships from April 2022 to April 2023.

In addition to developing improvements for RPI in general, I had a secondary goal to

create and improve a specific implementation of RPI at beamline 7.0.1.2 that can be

used by scientists who are not imaging specialists.

In this chapter, I report on the main products of this research. First, I discuss

an improvement to the reconstruction algorithm for RPI, which enabled it to work

at much higher resolution ratios 𝑅. Then, I discuss an alternate perspective on the

analysis of the maximum possible resolution ratio 𝑅, expanding on the discussion

in Appendix A.5. The new analysis accounts for the possibility of properly Nyquist

sampling the diffraction pattern. Next, I discuss an overhaul of the optic design

process that produces zone plates with much cleaner focal spots. Finally, I discuss

progress toward implementing RPI at the ALS. I show data from structural and

magnetic samples and explore the design of an entirely new algorithm for live RPI

reconstructions.
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6.1 Improving the algorithms

In reference [64], we identified one question for further research whose importance

dominated everything else: Can we push the practically achievable resolution ratio 𝑅

to its limiting value of ≈ 1?

Surprisingly, a very simple change to the algorithm achieved this goal, and beyond.

This is the introduction of multiple object modes into the forward model. These

additional modes are not needed to describe the final result, but introducing them

opens up new intermediate states through which the reconstruction can proceed.

This appears to help the reconstruction avoid stagnation, improving the maximum

achievable resolution even beyond 𝑅 = 1.

Formally, multiple modes are introduced by generalizing the basic interaction

model from (4.1) to:

𝐼𝑖𝑗 =

𝐿𝑝,𝐿𝑜∑︁
𝛼,𝛽=1

|�̃�𝛼,𝛽
𝑖𝑗 |2

�̃�𝛼,𝛽
𝑖𝑗 = ℱ{𝑃𝛼

𝑖𝑗ℱ−1{pad(ℱ{𝑂𝛽
𝑘𝑙})}𝑖𝑗}. (6.1)

Where 𝛼 indexes the modes of the probe (from 1 to 𝐿𝑝) and 𝛽 indexes the modes

of the object (from 1 to 𝐿𝑜).

This model is sketched in Figure 6-1 for the simple case of one probe mode. Typical

real-world objects consist of only a single mode. We enforce this constraint by adding

a small penalty to power contained within modes 2 to 𝐿𝑜 that slightly biases the

reconstruction toward the top mode:

Reg =
𝑚∑︁
𝛽=2

∑︁
𝑖,𝑗

𝛾|𝑂𝛽
𝑖𝑗|2. (6.2)

Here, 𝛾 is a parameter controlling the strength of the regularization. This param-

eter is set low enough to allow the reconstruction to explore multiple-mode configu-

rations, but high enough to push most of the power in the final reconstruction into
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P O1-L

Figure 6-1: Multi Mode Model. The RPI interaction is simulated between the
probe and multiple object functions O1−𝐿, and the resulting diffraction patterns are
added up at the detector plane. Typically, the final result can be captured by a single
mode, so the reconstruction is slightly biased toward first mode (outlined in red),
which is returned as the final result.

the first object mode.

Figure 6-2a shows the consequences of this change, using a simulation setup com-

parable to the simulation of Figure 4-3a. Pure random noise objects were created at

various resolution ratios 𝑅, with each pixel drawn from the complex normal distribu-

tion. 𝑘𝑝 was set to 50 pixels and reconstructions were attempted using 𝛾 = 0.001 and

500 iterations of L-BFGS. We used a probe with a diameter in real space of half the

detector conjugate field of view, as discussed in Section 6.2. The failure probability

was determined as a function of 𝑅, using reconstructions with 𝑅rec matched to the

true resolution ratio of the object. The single-mode reconstructions rapidly begin to

fail at a resolution ratio around 0.8 in this case, whereas the addition of even a single

extra mode leads to successful reconstructions with a probability over 50% even at

𝑅 = 1.2.

However, there is no free lunch, because the non-uniformity in the speckle-filled

illumination still causes issues at high resolution. Figure 6-2b shows the consequence

at high 𝑅: an increasing sensitivity to noise. This graph shows the result of 500

reconstructions per 𝑅 value, with simulated Poisson noise at 10, 000 photons per
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Figure 6-2: Numerical Tests. (a) The dependence of failure probability, defined as
the chance of a reconstruction resulting in > 1% RMSE, on resolution ratio, from 500
simulated reconstructions. (b) The RMSE of reconstructions with 10, 000 photons
per pixel in the reconstructed object, at various resolution ratios. Each resolution
ratio shows 500 individual reconstruction attempts.

reconstructed pixel. As 𝑅 increases, the root mean squared error (RMSE) of the

successful reconstructions increases. This suggests that the condition number of the

inverse problem is growing rapidly as 𝑅 increases.

By 𝑅 = 1.75, the per-pixel error in the final reconstructions is already 10× the

error resulting from data with the same per-output-pixel signal level using 𝑅 = 0.5.

This means that 100× as many photons would be needed to reach the same quality

level on the same object, and the results will become extremely sensitive to even

small systematic errors. Consequently, 𝑅 = 1 remains a practical choice for experi-

ment design, and there is not a major advantage to developing algorithms capable of

operation at significantly higher 𝑅.

The obvious questions at this point is, why does this work? First, I will note

that the introduction of multiple modes for object reconstructions is not new, and

in fact was discussed in detail by Pierre Thibault in his original paper on multi-

mode ptychography [43]. What has not been fully appreciated by the ptychography

community is the extent to which multi-mode reconstructions can be more stable,

even in situations where the true result is fully coherent.

This is because the introduction of multiple object modes has a close connection

to a convex relaxation of the generic phase retrieval problem known as PhaseLift

[93]. The standard formulation of phase retrieval considers minimization of the loss
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function ℒ under the constraint of perfect coherence. PhaseLift reformulates this as

the minimization of the rank of an incoherent object’s density matrix while enforcing

the measured Fourier transform magnitude. In other words, PhaseLift hunts for the

most coherent object that is still fully consistent with the measured data, rather than

hunting for the fully coherent object that is most consistent with the measured data.

The reformulated optimization problem not only produces the same result as the

original optimization problem in an idealized setting, but it is also convex [93] and

therefore comes with convergence guarantees. Roughly speaking, the lifted problem

is convex because the space of all object density matrices is much higher-dimensional

than the embedded manifold of fully coherent objects consistent with the measured

data. This embedding has the topology of a torus [144] and, in the space of density

matrices, forms a non-convex set. Although the final solution to the optimization

problem lies within this manifold, the relaxed problem achieves convexity by allowing

the iterates to move through the larger convex space.

We could then ask, how incoherent do we really need to let the object be if we want

to open up these new paths? In the case of the generic phase retrieval problem, the

answer turns out to be, not very incoherent! This issue was explored by [97], where

they found that even for large problems, a small (order unity) number of modes

suffices to enable robust reconstructions. This principle appears to extend to RPI.

The outcome of this work is a simple and reliable algorithm for RPI reconstruc-

tions, which we have used nearly universally following the original publication. This

algorithm is also based on automatic differentiation, and therefore can be easily mod-

ified to account for common corrections, such as a reflection-mode geometry or pixel

oversampling on the detector. Its superior stability means that the limitation on

resolution is now nearly always determined by the point at which the noise in the

final reconstruction becomes intolerable. The only situation in which we have used

an alternate approach is for live reconstructions, described in section 6.6, where it is

preferable to use an explicit algorithm designed for speed at all costs is.
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6.2 Improved understanding of stability

Notably, the results in Figure 6-2 show reliable reconstructions occurring even beyond

the 𝑅 = 1 threshold defined in our original paper on RPI [64] as the theoretical limit.

What gives?

In the original paper, we considered a setup where the diffracted intensity pattern

of our object was sampled at half its Nyquist frequency. This is because we set the

object up without any finite support constraint, assuming that it filled the detector

conjugate coordinate space exactly. We used this setting to demonstrate clearly that

RPI does not rely on a finite support constraint, highlighting the difference between

RPI and coherent diffraction imaging (CDI). In doing so, though, we ignored an

important point: the illumination actually does provide a reasonably clean support

constraint, even if we don’t use it in the traditional way.

Although the exit wave does not have a pixel-level sharp cutoff (a requirement for

good CDI data), it is still true that the finite size of the illuminated region creates

the possibility of properly sampling the diffracted intensity at twice the Nyquist rate

of the wavefield, as discussed in Section 2.1.

Consequently, it must be recognized that both the expansion of the diffraction

pattern by convolution with the probe [64] and the "oversampling" in real space

achievable by properly sampling the diffracted intensity can contribute to the all-

important ratio of independent measurements to free parameters.

Here, I consider how the ratio of independent measurements to free parameters

varies both as a function of the resolution ratio 𝑅 in reciprocal space [64] and an

"overfilling ratio" in real-space, which I define as the ratio of the detector conjugate

field of view to the diameter of a circular RPI focal spot 𝐷 = 𝑑fov
𝑑spot

.

I quantify this measurement ratio as the ratio of the space-bandwidth product

[145, 146] of the measured intensity data to the space-bandwidth product of the

reconstructed complex-valued objects. The space-bandwidth product is a measure of

the number of independent parameters that can be encoded in a signal [145, 146], and

is calculated by multiplying the area the signal occupies in real and Fourier space.
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For this calculation, we consider the canonical case of a circular diffractive optic

producing a circular focal spot, producing data that is then analyzed using a square

detector with square pixels. For simplicity, we take the low resolution object to

be band-limited to a circular region in Fourier space, rather than a square region.

This deviates slightly from the typical practice of band-limiting to a square region of

Fourier space.

In this scenario, the space-bandwidth product of the signal to be reconstructed,

the object function O, is:

SPBobj = (
𝜋

4
𝑑2spot)(𝑅

2𝜋�⃗�2max). (6.3)

In this equation, 𝑑 is the focal spot’s diameter in real space and 𝑅 is the resolution

ratio. The space-bandwidth product of the measured real-valued intensity pattern is:

SPBData = overlap(𝑑spot, 𝑑fov)((𝑅 + 1)2𝜋�⃗�2max). (6.4)

overlap(𝑑spot, 𝑑fov) is defined as the area within the intersection of a circle of di-

ameter 2𝑑spot and a square field of view of side length 𝑑fov, as below:

overlap(𝑑spot, 𝑑fov) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑑2fov 𝑑fov ≤

√
2𝑑spot

𝜋𝑑2spot − 2(𝜃 − sin(𝜃))𝑑2spot

√
2𝑑spot < 𝑑fov ≤ 2𝑑spot

𝜋𝑑2spot 2𝑑spot < 𝑑fov

(6.5)

𝜃 = 2 cos−1

(︂
𝑑fov

2𝑑spot

)︂
(6.6)

The circle with diameter 2𝑑spot is the support of the exit wave’s autocorrelation,

which has twice the diameter of the focal spot.

The ratio of these two space-bandwidth products is shown in Figure 6-3, as a

function of 𝑅 and 𝐷. The 4𝑛 − 4 conjecture [95] suggests that in generic cases, the

ratio of measurements to complex-valued free parameters must be at least 4 in order

to support a unique solution in the noise-free case. This is therefore a reasonable
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Figure 6-3: Measurement Ratio. The dependence of the measurement ratio defined
in Equations (6.3) and (6.4) on the resolution ratio 𝑅 and overfilling ratio 𝐷. Note
that in the originally considered case with𝐷 = 1 the ratio drops below 4 at 𝑅 = 1, but
with higher oversampling ratios, enough measurements can be collected even when
𝑅 > 1.

lower limit for the amount of data needed to support a reconstruction in the best

case.

Just as in traditional CDI, once we acknowledge the presence of a finite support

constraint, reconstructions should be possible in principle out to any resolution. How-

ever, as we discussed in Section 6.1, noise becomes an issue at high 𝑅. Nonetheless, as

supported by the results in Figure 6-2, it is possible to capture routine reconstructions

at 𝑅 = 1.

These results change a few key aspects of how RPI should be understood. First,

there is not a sharp cutoff at 𝑅 = 1. Instead, the reconstructions gradually become

less well-posed as 𝑅 crosses through 1, rapidly producing noise-filled results as 𝑅

grows past 1. Second the key to enabling reliable work around 𝑅 = 1 is using focal

spots that are small enough to produce data that can be properly sampled. Therefore,

when designing optics for any experiment, it should be standard practice to work near

𝐷 = 2, rather than the originally proposed 𝐷 = 1.
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Adage 6.1

Design randomized zone plates so the detector conjugate field of view is twice the

focal spot diameter

6.3 Amplitude control for optic designs

One major issue that we encountered in our initial work with RPI was the difficulty

of confining the illumination’s power within a small, well-defined spot. The simple

design strategy we used [64] led to sharp-edged and even focal spots, but they were

surrounded by slowly decaying tails. These tails contained a significant amount of

power compared to the power within the focus, usually more than 10%. This raised

questions about the ability of 𝑅𝑃𝐼 to study samples with low contrast, because error

due to these tails would not disappear with increased photon dose. Figure 6-4 shows

the presence of these tails in an example focal spot with 𝑟 = 1 µm.

Ultimately, there are two distinct features in the optic that cause the tails. The

primary effect is due to phase vortices, which appear as fork dislocations in the

optic. Because the grating of the naïvely designed optic has a uniform efficiency

everywhere, the vortex core has a sharp discontinuity at its center. This causes

unintended scattering to high angles.

The secondary effect arises from the sharp inner and outer edges of the zone plate.

This discontinuity causes tails that decay with a power law in 𝑟. The resulting tails

are typically hidden by the effect of phase vortices in naïvely designed zone plates,

but become visible when the effect of the vortices is mitigated. A comparison between

synthesized focal spots with both kinds of tails is shown in Figure 6-4.

Both effects arise because the zone plate optics imperfectly synthesize the desired

wavefront at the optic plane, due to their inability to locally vary the amplitude of

the diffracted wavefield. Fixing this means introducing a method for varying the

efficiency of the optic locally. Several methods have been proposed previously to do

this, but the method most compatible with standard lithography-based fabrication is
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Figure 6-4: Focal Spot Tails. A comparison of demonstration focal spots simulated
using three optic designs. (a) Upper, A focal spot simulated with a typical binary
zone plate optic. Lower, the associated wavefield synthesized at the optic plane. (b)
A focal spot simulated from a zone plate that also captures the amplitude variation in
the target wavefield, removing discontinuities at vortex cores. (c) A focal spot from a
zone plate that is apodized to remove the sharp discontinuity at the outer and inner
edges of the optic
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to introduce a secondary diffraction grating whose efficiency modulates the primary

grating [75]—essentially, making the zones dashed lines instead of solid lines.

This method doesn’t require modifying the thickness of the zones and it doesn’t

sensitively depend on difficult-to-control parameters like the width of the zones. Our

method differs from this previously reported approach because we fixed the secondary

diffraction grating to the zone plate’s azimuthal direction. This keeps it always locally

perpendicular to the zones, improving the ease of manufacture of the optic. We

developed two methods to generate these gratings, discussed below.

Let us consider the problem of synthesizing an optic to match a target wavefield

Ψ(𝑥, 𝑦). The method we originally used, defined as 𝑍𝑃0 in [75], produces the binarized

optic:

𝐵(𝑥, 𝑦) =

⎧⎪⎨⎪⎩1 if 0 ≤ ∠Ψ(𝑥, 𝑦) < 𝜋

0 otherwise.
(6.7)

For the first new approach, we first generate an azimuthal grating with a desired

angular pitch 𝑃 , in zones/radian:

𝐺(𝑥, 𝑦) = 𝑃∠(𝑥+ 𝑖𝑦) mod 2𝜋 (6.8)

Next, we define a diffraction grating with a locally varying efficiency, based on

this azimuthal phase ramp:

𝐴(𝑥, 𝑦) =

⎧⎪⎨⎪⎩1 if 0 ≤ 𝐺(𝑥, 𝑦) < 2𝜋 |Ψ(𝑥,𝑦)|
max𝑥,𝑦(|Ψ(𝑥,𝑦)|)

0 otherwise.
(6.9)

This azimuthal diffraction grating has a duty cycle that is 100% when the target

wavefield is at its maximum intensity and 0% when the target wavefield’s intensity

passes through zero. The final zone plate design is:

𝐵2(𝑥, 𝑦) = 𝐴(𝑥, 𝑦)𝐵(𝑥, 𝑦) (6.10)
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Figure 6-5: Additional Diffraction Orders. Introducing a second grating perpen-
dicular to the main zone plate grating causes light to be diffracted into additional
orders. (a) The relevant diffraction orders caused by a simple grating of style 𝐵2.
Upper: Illustration of the naming convention. Lower: Diagram showing the location
of the resulting diffraction orders at the focal plane of an optic. (b) The relevant
diffraction orders caused by a centered rectangular grating of style 𝐵3. (c) caustics
of the beams generated by each diffraction order, at two typical values of the grat-
ing fraction. These caustics show the constraints on order selecting aperture (OSA)
placement and diameter.

This design method produces a zone plate that looks like the overlap between a

set of radial spokes and a traditional zone plate. To keep a relatively uniform pitch in

real space, the zone plate can be broken up into several radial regions with different

azimuthal gratings.

However, this design has a potential issue: the new grating will create diffraction

of its own which can pass through the order selecting aperture. Figure 6-5a diagrams

the relevant diffraction orders. Comparison with Figure 6-5b highlights the fact that

this issue could be alleviated slightly, given a fixed azimuthal pitch, by placing dashes

in a centered-rectangular lattice rather than a simple rectangular lattice.

We can accomplish this by slightly modifying the azimuthal grating above using

an "effective zone number." This is defined as the difference between the approximate

unwrapped phase of an ideal zone plate [147]
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𝑍𝑃 (𝑥, 𝑦) = 2𝜋
𝑥2 + 𝑦2

𝑓𝜆
(6.11)

and the desired, wrapped phase of the wavefield to synthesize:

𝑁(𝑥, 𝑦) =
1

2𝜋
(𝑍𝑃 (𝑥, 𝑦)− ∠Ψ(𝑥, 𝑦)). (6.12)

Both wavefields are calculated for the same focal distance 𝑓 and wavelength 𝜆.

This generates a value that locally increases by 1 with every zone, but globally varies

continuously as the zone placement shifts due to the distortions present in the ran-

domized zone plate. This is shown in Figure 6-6a. We can then generate the centered-

rectangular azimuthal grating as:

𝐶(𝑥, 𝑦) =

⎧⎪⎨⎪⎩1 if 0 ≤ 𝐺(𝑥, 𝑦) + 𝜋𝑁(𝑥, 𝑦) < 2𝜋 |Ψ(𝑥,𝑦)|
max𝑥,𝑦(|Ψ(𝑥,𝑦)|)

0 otherwise,
(6.13)

shown in Figure 6-6. The final zone plate design is then found as:

𝐵3(𝑥, 𝑦) = 𝐶(𝑥, 𝑦)𝐵(𝑥, 𝑦). (6.14)

The optics designated for work at beamline 7.0.1.2 of the ALS were designed using

this 𝐵3 method, and comparison between the focal spots shown in Figure 6-7 and

those reported in Chapter 4 shows the clear improvement possible as a result.

6.4 Deep-K Learning for RPI

One other direction we explored was the viability of using machine learning methods

to reconstruct 𝑅𝑃𝐼 data. I collaborated on this project with Zhen Guo and George

Barbastathis, who are experts in the use of machine learning to solve inverse problems

in imaging. We wrote a paper describing a hybrid machine learning and iterative

system for reconstructions of simple objects [148].

The framework built on the concept of an approximant, the output of a small,

95



+

<
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Figure 6-6: Alternating Style Gratings. A visualization of the zone plate design
process, from a section of a demonstration zone plate design. (a) Calculation of the
effective zone number. (b) Generation of the alternating azimuthal grating. (c) Use
of the alternating grating to vary the amplitude of the design beam.
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fixed number of iterations of an iterative algorithm [149, 150]. We then trained a neu-

ral network, in this case a U-net with attention layers, to map the noisy approximant

to an estimate of the underlying image. This process turned out to work surpris-

ingly well for simple phase objects whose structure could be well-described by a prior

distribution over natural images, outperforming iterative algorithms in low-light con-

ditions. However, we found that the utility of this approach was limited to weak

phase objects, and it struggled to reconstruct mixed amplitude and phase objects, as

well as objects containing phase singularities and other complicated phase textures.

This is an important direction for future work, and the outcome has clear value

in many situations where RPI can be used.

6.5 Development of RPI at ALS beamline 7.0.1.2

The nanosurveyor instrument at beamline 7.0.1.2 [142] is one of the world’s premier

ptychography beamlines. It is often used for spectroscopic measurements of battery

materials [9, 151] and magnetic nanostructures [152]. Because it was designed specif-

ically with ptychography in mind, it has high stability, good coherence, and a large,

fast detector (FastCCD, [153]). This makes it an ideal test-bed for RPI. Further-

more, its existing user community creates opportunities for RPI to be discovered by

scientists who are not experts in computational imaging.

Consequently, I designed a set of RZP optics for this beamline and developed

computational tools to enable straightforward analysis of RPI data at the beamline.

I then performed several experiments to test the reliability of both ptychography and

RPI with the newly designed optics and the computational systems.

6.5.1 Design and testing of optics

I produced a design for an optic with an outer zone width of 30 nm and a focal spot

with a 6.75 µm diameter. This zone plate used the design strategy 𝐵3 outlined in

section 6.3. The nominal design gives reconstructions at 𝑅 = 1 (60 nm full pitch

resolution) a space-bandwidth product of just over 30, 000, with 225 speckles across
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the field of view.

This design was sent to two organizations to be fabricated, Applied Nanotools

(Optic 1) and the Center for X-ray Optics (Optic 2) at Lawrence Berkeley Lab. We

then tested the optics on samples of gold nanoparticles with diameters of 100 nm and

40 nm dispersed on a Silicon Nitride membrane. Ptychography datasets were collected

to characterize the probe functions of the optics at 707 eV. The reconstructions from

data collected with Optic 1 are shown in Figure 6-7 and achieved a resolution of

21 nm over a field of view of nearly 10 µm. The quality and resolution of these results

reinforces the following adage:

Adage 6.2

Randomized zone plate optics are great for ptychography, too.

The optics have a slight astigmatism, possibly due to their mounting and possibly

due to the fabrication itself. This astigmatism would cause major blurring in scanning

transmission x-ray microscope (STXM) from a traditional zone plate, but causes

essentially no degradation in either ptychography or RPI imaging, as shown here.

Finally, I performed RPI on the same samples, with an example result shown

in Figure 6-8. These reconstructions, as expected, are noisier and lower resolution,

achieving only a full-pitch resolution of 190 nm. The results highlight the extent to

which RPI is a photon-hungry technique, requiring a high coherent flux. This photon

hungriness arises because RPI uses a single exposure to capture an entire full-field

image. This naturally requires more photons than are needed for one exposure from a

series of ptychography data, which can easily include hundreds or even thousands of

exposures. In this case, the ptychography reconstruction shown in Figure 6-7 included

data from 3, 843 exposures spaced out over a 5 µm × 5 µm field of view, compared

with 1 exposure for the RPI data.
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Figure 6-7: Gold Nanoparticles. Ptychography reconstruction of gold nanoparticles
on a SiN membrane, using a zone plate designed as described in section 6.3. (a) The
full reconstructed field of view, (b) A closeup of one section, showing the uniform
high quality of the reconstruction, (c) The reconstructed top probe mode, (d) Fourier
ring correlation (FRC) compared to a half-bit threshold and spectral signal-to-noise
ratio (SSNR) of the reconstruction, calculated via a 50/50 split of the data. The final
resolution at SSNR=0.5 was 21 nm full pitch.
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Figure 6-8: Gold Nanoparticle RPI. RPI reconstruction of gold nanoparticles on
a SiN membrane. (a) A RPI reconstruction. (b) A comparison between the RPI
reconstruction and the same region of a ptychography reconstruction downsampled
to the RPI pixel size of 36𝑛𝑚. (c) The SSNR calculated by comparing the RPI and
ptychography reconstructions on the window shown. The final achieved resolution at
SSNR= 0.5 was 190 nm full pitch.
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Figure 6-9: GdFe Film. Ptychography reconstructions of a thin film of GdFe with
circular dichroism. (a,b) Reconstructions with left- and right-hand circularly polar-
ized light. (c) The extracted amplitude of the structural component. (d) The real
part of the magnetic scattering factor, extracted according to Equation (6.16). (e)
Energy dependence of the magnetic signal.
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Figure 6-10: GdFe Film RPI. (a) Circular Dichroic RPI of a GdFe thin film at
various energies. Upper: the real part of the magnetic scattering factor, extracted
according to Equation (6.16). Lower: the imaginary part of the magnetic scattering
factor. (b) Linecuts from the region boxed in (a), showing the full energy dependence
in 0.1 eV steps.
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6.5.2 Spectroscopic Imaging of Magnetic Domains in GdFe

Next, I tested the value of RZP based ptychography and RPI for magnetic imaging.

To do this, I studied a GdFe(55nm)/Pt(3nm) film on Silicon Nitride, grown by Ales

Hrabec. Ptychographic imaging at the Fe L3 edge revealed strong magnetic contrast,

as seen in Figure 6-9. The magnetic contrast can be separated from the structural

contrast using the following model for circularly polarized light impinging upon a

sample with magnetization out of plane [154]:

O± = 𝑒±𝑓magOstruct (6.15)

Where O+ and O− are the object when viewed under circular left and right hand

polarized light. This model suggests a method of isolating the structural and magnetic

contributions from a measured circular dichroic pair of images:

𝑓mag =
1

2
(ln(O+)− ln(O−)) (6.16)

Ostruct = 𝑒
1
2
(ln(O+)+ln(O−)) (6.17)

The structural object is calculated by exponentiating a summed logarithm. This

preserves phase information that can be lost in direct multiplication followed by a

square root. An example of this process is shown in Figure 6-9c and 6-9d. It is

important to note that the magnetic scattering factor 𝑓mag is in general complex-

valued. It takes a form typical of any resonant process, where the phase shifts by 𝜋

radians through the resonance. This can be seen in the sparse energy-dependent set

of dichroic images in Figure 6-9e.

Naturally, these ptychography scans take a long time to run. Each image above

derives from 30× 30 images with 165ms long exposures, a total of roughly 2 minutes

30 seconds of acquisition time. Including the overhead for motor motion, each scan

took roughly 10 minutes of wall-clock time. Because of this, it is quite time-intensive

to collect a full spectroscopic scan of ptychographic x-ray images. For this, I turned
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to RPI.

I collected a densely spaced RPI scan over the Fe L3 edge, from 705 eV to 711 eV

in 0.1 eV steps, a total of 60 exposures and a total exposure time per polarization of

10 s. By wall-clock time, the scan took roughly 20 minutes, in this case because the

monochromator is not set up for continuous energy sweeps and dominates the time

required for a full spectroscopic scan.

6.6 Live analysis algorithm for RPI

Because RPI requires only one frame per reconstruction, it is possible to provide

nearly instantaneous feedback if the proper analysis systems are in place. In an ideal

situation, the reconstruction would proceed transparently, with a user seeing images

of their sample live as though they are using a normal microscope. To do this, we need

an algorithm that is significantly faster than the L-BFGS based algorithm described

in section 6.1 but still producing robust, interpretable images.

To this end, we implemented a conjugate-gradient based method which uses the

Fletcher-Reeves conjugate gradient algorithm [155] to determine update directions.

The major speedup comes from an estimate of the optimal step size using a fast, direct

calculation inspired by the procedure described in [53]. The algorithm is described

below and explicitly defined in Algorithms 6-1 and 6-2.

The global structure of the algorithm is to minimize the mean squared error (MSE)

of the simulated diffraction magnitudes when compared to the square root of the

measured intensities. This error metric is ubiquitous in the ptychography literature,

and can be derived as an approximation to the Poisson negative log-likelihood function

[40]. The first step in the algorithm is to calculate the gradient of this error metric

with respect to the object, in our case using automatic differentiation. This gradient

is then transformed into a search direction with the Fletcher-Reeves [155] algorithm

as laid out in Algorithm 6-1. This initial step takes roughly the same amount of time

as a full iteration of the basic automatic differentiation based algorithm.

The speedup comes from quickly choosing a near-optimal step size in this direction.
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Instead of doing an explicit line search, we expand the error metric explicitly to second

order. The first step is to abstract out the forward model, because the wavefield at

the detector plane is guaranteed to be linear in the object function:

Forward(P,O + S) = Forward(P,O) + Forward(P,S). (6.18)

This means that we can expand the error metric in the detector-plane wavefield.

The second order expansion of the loss function in the direction ∆Ẽ with step size 𝛼

is:

ℒ =
∑︁

(
√

I− |Ẽ + 𝛼∆Ẽ|)2

=
∑︁

(
√

I−
√︁

(Ẽ + 𝛼∆Ẽ)(Ẽ + 𝛼∆Ẽ)†)2

=
∑︁(︃

√
I− |Ẽ|

√︃
1 + 𝛼

2Real[Ẽ(∆Ẽ)†]

|Ẽ|2
+ 𝛼2

|∆Ẽ|2

|Ẽ|2

)︃2

≈
∑︁(︃

D− 𝛼A− 𝛼2 |∆Ẽ|2

|Ẽ|
+ 𝛼2 A2

4|Ẽ|

)︃2

≈
∑︁

D2 − 2𝛼AD + 𝛼2A2 − 𝛼2D
4|∆Ẽ|2 −A2

2|Ẽ|
. (6.19)

Above, the sums are defined to run over all pixels, and D and A are defined as

in Algorithm 6-2. From this expansion, we can estimate the step size required to hit

the minimum of the loss function:

0 =
𝜕ℒ
𝜕𝛼

=
∑︁
−2AD + 𝛼

(︃
2A2 −D

4|∆Ẽ|2 −A2

|Ẽ|

)︃

𝛼 =

∑︀
AD∑︀
A2 (6.20)

This calculated step size is therefore a near-optimal step calculated in constant
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time. In practice, however, the final term in the denominator is typically dominated

by pixels where |Ẽ| is small, precisely the pixels where the Taylor series approximation

will perform the worst. Therefore, we remove this term, resulting in the estimated

step

𝛼 =

∑︀
AD∑︀

A2 −D4|ΔẼ|2−A2

2|Ẽ|

. (6.21)

This step is very stable in practice, and tends to either accurately estimate the

optimal step or slightly underestimate it. This bias toward small steps is preferable

to a bias toward large steps, as it makes instabilities unlikely. The final algorithms

are defined in Algorithms 6-1 and 6-2

Algorithm 6-1 The conjugate-gradient based algorithm for RPI
S−1 = 0
for 𝑖 ∈ [0, 𝑛iter) do

Ẽ𝑖 ← Forward(P,O𝑖) ◁ From Equation (4.1)
D𝑖 ←

√
I− |Ẽ𝑖|

∆O𝑖 ← −(
∑︀

D2
𝑖 ).backward() ◁ Calculate gradients with AD

S𝑖 ← ∆O𝑖 + (
∑︀
|∆O𝑖|2) / (

∑︀
|∆O𝑖−1|2) · S𝑖−1 ◁ Fletcher-Reeves CG Step

O𝑖+1 ← O𝑖 + EstimateOptimalStep(S𝑖, Ẽ𝑖,D𝑖)
end for

Algorithm 6-2 Estimate optimal step for an object function along a given direction
S← Desired step direction
Ẽ← Current simulated exit wavefield
D← Difference between simulated and target diffraction pattern magnitudes
function EstimateOptimalStep(S, Ẽ,D)

∆Ẽ← Forward(P,S)
A←

(︁
Real

[︁
Ẽ(∆Ẽ)†

]︁)︁
/
(︁
|Ẽ|
)︁

𝛼← (
∑︀

DA) /
(︀∑︀

A2
)︀

return 𝛼𝑖S
end function

A numerical experiment comparing a reconstruction of optical RPI data with the

fast algorithm to a reconstruction with the full algorithm is shown in Figure 6-11.

Both objects were set to 512 × 512 pixels, using 1000 × 1000 pixel detector images.

The full automatic differentiation algorithm used L-BFGS. Because no line search
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Figure 6-11: Fast RPI algorithm performance. (a) The normalized loss metric
(euclidean distance of magnitudes) as a function of time for reconstructions run on
optical data with the fast and full algorithms. (b) Dependence of the loss metric on
step size for the first ten iterations of the fast reconstruction. The first iteration is
highlighted in black. (c) The reconstructed object after 3 iterations, or 0.01 seconds,
showing that very fast reconstructions can still be valuable for transparency into the
experiment state.

is needed, the fast iterations can complete much faster (0.003 seconds per iteration,

vs 0.125 seconds for the starting iterations of L-BFGS). The difference in speed also

includes some specific optimizations to make each iteration compute faster.

At long times, the algorithm converges more slowly than L-BFGS, likely due to

the less sophisticated method of selecting the update direction. Further work could

address this, but the algorithm as it now exists provides sufficient quality for fast

visibility into an experiment’s state, and has proven useful at the beamline.
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Chapter 7

Outlook

Coherent lensless imaging is a rapidly growing field, full of exciting opportunities.

The work I explored in this thesis pulled at a few of these threads. In chapter

3, I discussed how automatic differentiation can be used to make custom, flexible

reconstruction algorithms tailored to specific experimental needs. This program of

research, aimed at developing easy and reliable algorithms for everyone’s needs, has

been underway for over a decade and will continue apace.

In chapter 4, I then discussed how several ideas that have been "in the air" can

be melded into an imaging method which is greater than the sum of its parts. The

method I define in that chapter, randomized probe imaging (RPI), has very different

limitations from traditional methods, making it an ideal option in many scenarios.

Its robustness and single-frame nature make it a natural match for experiments at

free electron lasers (FELs).

In chapter 5, I discussed exactly that, demonstrating how RPI can be imple-

mented in the unique environment of a FEL. This project showed how the large

space-bandwidth product of RPI reconstructions is unusual for single-shot imaging,

and how valuable this kind of imaging can be.

Finally, in chapter 6 I discussed a collection of small projects, primarily from the

final year of my degree work, that were designed to push the technical side of RPI

forward. This includes improved algorithms, a better understanding of the limits of

RPI, and improved designs for randomized zone plates (RZPs). This culminated in a
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discussion of the implementation of RPI at a beamline of the Advanced Light Source,

designed to make the method accessible to users.

7.1 A larger role for coherent imaging

One of the biggest drivers behind the growth of lensless imaging is the development

of FELs and fourth-generation synchrotron light sources, which produce nearly fully

coherent illumination. The first few fourth-generation synchrotrons have already

come online, and many synchrotron light sources will be undergoing upgrades in the

coming years.

These light sources typically don’t make more intense beams of x-rays, but a much

larger fraction of the light they produce is coherent. Making use of that coherence

has therefore become a significant goal, and lensless imaging is one of the best ways

to do that. This means that the balance is shifting ever faster in favor of coherent

imaging, and consequently coherent imaging methods that are a bit esoteric today

will become the gold standard for many kinds of imaging in the future.

Although the community hasn’t yet settled on a replacement for full-field trans-

mission x-ray microscopy, RPI is an ideal candidate. Developing full-field methods is

especially important because the brighter coherent beams can quickly become brighter

than they need to be for ptychography scans, which are limited by the mechanical

motion of a probe. The large footprint of the focused beams from RZP spread out

the flux and make it easier to image at low doses.

7.2 Bragg mode lensless imaging with soft x-rays

To date, very few experiments have found success using soft x-rays to study electronic

structure in the Bragg and reflection geometries. Nonetheless, this experiment is

particularly valuable because it can, in principle, measure the amplitude and phase of

electronic order parameters in a symmetry-broken material. For example, it is possible

to measure the antiferromagnetic order parameter in spin density wave material, or
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the local order parameter in a charge-density wave. Access to phase information

means that structures such as vortices and phase slips can be visualized directly, and

correlated with other physics that may be present in a sample.

These measurements have been hard to perform because very few sources of soft

x-ray light are bright enough to get a measurable signal from a coherent scattering

experiment. As the number of coherent soft x-ray synchrotron sources grows, more

opportunities will arise to develop this imaging method and slowly the community will

come to understand how to overcome the experimental difficulties facing their work.

Some methods will involve error correction models like those discussed in Chapter 3,

and others will involve changes to the beamlines and endstations. Continued work in

this direction is critical, because the ability to routinely study the mesoscale structure

of these subtle electronic correlations is critical to improving our understanding of

many classes of materials.

7.3 Applications of RPI

I am especially hopeful for the role that RPI will play in this research and other

fields. Following my year working at the Advanced Light Source, a setup now exists

to perform RPI experiments at beamline 7.0.1.2. This includes a randomized zone

plate that is well matched to the experimental geometry at transition metal l-edge

wavelengths. This setup has already proven useful for quantitative imaging over large

areas using ptychography, and with the soon-to-arrive upgrade to the Advanced Light

Source, the flux will become sufficient for high quality single-frame imaging.

Work is also underway to make reflection and Bragg mode imaging possible with

RPI at the Advanced Light Source, enabling fast imaging of the electronic order

parameters discussed above. Already, a strong research program exists to study

the direct scattered light emerging from these phases and extra information about

the correlation timescales. Upgrading these experiments to visualize the dynamics

directly in real space will unlock new kinds of insight. Achieving this goal involves

overcoming challenging technical hurdles, but the potential value is high. RPI is
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unique among reference-free single frame lensless imaging methods because it is robust

to complicated phase textures with phase vortices.

7.4 Variations on and extensions of RPI

The framework behind RPI can also be extended in a number of exciting ways beyond

simply applying the existing method to studies of new materials. One proposal I

have developed is a multi-frame RPI experiment. In this experiment, a single optic

produces multiple time-delayed randomized probes on the sample. The diffraction

from this time-delayed series of probes can be analyzed to generate a full movie of a

single event.

In the world of optical light, a number of fun possibilities exist for extending RPI.

One obvious direction is to add polarization dependence, where the speckled input

wavefield could contain a spatially varying polarization. This opens up the possibility

of extracting quantitative Jones matrix information from single exposures on moving

subjects, such as biological cells.

Another interesting direction would be to implement a Fourier-transformed version

of RPI, related to RPI in the same way that Fourier ptychography is related to

ptychography. Such a method could enforce a finite support constraint in real space

explicitly, using a pinhole, and perform the multiplication with a diffuser in the Fourier

plane, with the diffuser’s length scale chosen to be small enough to enable sufficient

oversampling in the ultimate real-space intensity measurement.

Surely other possible extensions exist that I have not yet considered, and the

process of exploring and developing this space is likely to lead to a rich and useful

program of research.

7.5 Conclusion

As more and more x-ray sources come online with perfect or near-perfect coherence,

the value of coherent lensless imaging will continue to grow. The work presented in
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this thesis constitutes a step forward for the practicality of these lensless imaging

methods, and will form a part of the foundation of work in this field moving into

the future. I sincerely hope that some of the concepts and methods explored in this

dissertation contribute to the developments of the future.
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Appendix A

Supplement to single-frame far-field

diffractive imaging with randomized

illumination

Abstract

In this supplement, we provide additional information that may be helpful for re-
searchers seeking to reproduce the results of the aforementioned paper. This includes
the full set of parameters used in our numerical experiments, an expanded explana-
tion of our zone plate design process, a discussion of the method used to calculate
the Fourier ring correlation curves reported in the main paper, and a description of
our fabrication method for the x-ray zone plate optics. In addition, we discuss our
calculation of the resolution limit for reconstructions, further discuss the effect of the
illumination intensity’s nonuniformity, and provide a set of design considerations for
RIP setups.

A.1 Numerical Experiment Parameters

We describe here the setup of our numerical experiments. Those interested in further

inspecting the details of the experiments are encouraged to contact the authors for

the original code.

In all cases, ideal BLR illumination was defined on an array with size larger than

2𝑘𝑝 × 2𝑘𝑝, where 𝑘𝑝 is the intended maximum probe frequency measured in pixels.
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Figure A-1: Typical Reconstruction. (a), (b) the amplitude and phase of a typical
random object. (c), a typical randomized probe used in the simulations. (d), The
magnitude of the difference between a completed noise-free RPI reconstruction and
the ground truth, with the central region from which error is reported marked in
white. (e) The progression of diffraction loss over time for 50 independently initialized
reconstructions on the same typical diffraction pattern. (f) The distribution of final
RMS error for all reconstructions reported in Figure 3a.
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To generate the illumination, a central circular region with a diameter 4
5

of the array

size is filled with uniform amplitude phase noise. This is then propagated into the

far-field via a 2D Fourier transform. The region in Fourier space within |𝑘| = 𝑘𝑝
2

is

set to zero, as is the region outside |𝑘| = 𝑘𝑝, leaving a ring in reciprocal space. This is

then propagated back into the near field to form an ideal BLR probe for simulation.

Before simulating diffraction from the objects, the probes were upsampled by

padding in Fourier space such that they are defined on an array of at least (2𝑘𝑝 +

2𝑘𝑜)× (2𝑘𝑝+2𝑘𝑜) pixels. This ensures that the multiplicative interaction between the

probe and object doesn’t lead to aliasing. We show the results of a typical ensemble

of reconstructions from a randomly generated object in A-1.

For the numerical experiments which discuss the impact of noise sources, all re-

constructions were performed on a probe with maximum frequency 𝑘𝑝 = 128 and a

band-limiting frequency of 𝑅 = 0.4. In each case, we performed reconstructions on

between 50 and 200 randomly generated images per noise level. The error is deter-

mined from a square central region of the reconstructions, with a side length half that

of the overall array, as shown in Figure S1d.

A.2 Design of Randomized Zone Plates

Our technique relies on illuminating a large region with highly speckled light con-

taining high frequency components. This illumination function was achieved with

diffractive optics that fill a clearly defined field of view with light whose intensity is

as uniform as possible. The field of view is chosen to have a sharp drop-off simply

so that the eventual reconstructions achieve comparable noise levels across the entire

field of view. Other approaches which, for example, lead to a Gaussian envelope on

the probe are equally applicable in principle, but lead to a less uniform noise profile

in the reconstruction.

To generate these diffractive optics, we start by simulating a discretized light field

that consists of uniform amplitude pure phase noise within a circular aperture whose

diameter matches the intended final field of view diameter. We then numerically
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Figure A-2: Optics Design. (a), The amplitude of the initial focal spot, filled with
randomly varying phase. (b), The phase of this focal spot, propagated to the plane
of the optic. (c), The binarized optic defined from this phase distribution. (d), The
focal spot simulated from this binarized optic.

propagate this light field to the plane of our diffractive optic, and record the phase

of the light field at each pixel. We generate a binarized optic with a specified outer

diameter and beamstop diameter from this phase field. The zones are defined by

setting all pixels with phase below a certain threshold to 0 and all other pixels to 1.

This process matches the simplest “ZP0” approach described in detail in [75]. This

design process is further outlined visually in Supplementary figure A-2. All zone

plates used in this paper used a beamstop with a diameter of half the outer zone

plate diameter.

A.3 Experimental Resolution Calculations

All reported resolutions were calculated via the Fourier Ring Correlation (FRC)[101]

method, by comparison with ptychography results captured from the same sample re-

gion. Although this is potentially an underestimate of the true resolution if (as we saw

in our reconstructions from FeGd samples) the ptychography itself exhibits patholo-

gies, we believe that it is a conservative estimate which addresses the fundamental

question of how RPI compares with ptychography.

In each case, we started by cutting out a region of the ptychography scan which

overlapped with a region of the RPI reconstruction entirely within the RPI field of

view. This ptychography cutout was then downsampled by extracting the central

region in Fourier space corresponding to the band-limiting constraint in the RPI
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reconstruction. Any linear phase ramps in the RPI reconstructions (arising when the

detector alignment shifts slightly between the calibration and RPI reconstructions)

were manually removed and the cropped images were apodized with a Hann window.

We then calculated a subpixel shift between the RPI and downsampled ptychography

reconstructions and shifted the ptychography reconstruction to overlap with the RPI

result. Finally, an FRC was calculated between the two images, excluding the outer

4 pixels to avoid artifacts from the circular shift of the ptychography reconstruction.

A.4 X-ray Optics Fabrication

The thin film stack was prepared by magnetron sputtering (Leica EM ACE 600, Ger-

many) of a 100 nm thick Au film on a 100 nm thick SiN membrane with a window size

of 500×500 𝜇m on a 200-𝜇m thick Si frame (Silson ltd, UK). The ion beam lithog-

raphy was done using a dualbeam focused ion beam instrument (Nova Nanolab 600,

FEI, Netherlands) with a pattern generator attachment (ELPHY MultiBeam, Raith

GmbH, Germany). The design bitmap pattern was converted to a dot map GDSII

stream file and used as input. The binarization, using a 0.15:0.85 line-to-space ratio,

resulted in a pattern that can be machined using a process that resembles a single-

pixel-single-pass process discussed in [156], and which resulted in the best pattern

quality. The 60-𝜇m wide computer-generated-hologram with 40-nm outermost width

was milled using a 30-kV Ga+ ion beam and 50-pA current (19 nm nominal beam

size) and 0.5-ms dwell time resulting in a dosage of 0.025 pC per dot.

A.5 Calculation of Resolution Limit

The theoretical limit on resolution is found by comparing the number of intensity

measurements contained in the diffraction pattern 𝑀 to the number of complex pa-

rameters in the object 𝑁 . It is generally believed that, in order for the phase retrieval

to be well posed, the number of intensity measurements must typically be greater than

four times the number of complex parameters in the object [94, 95]. This belief is
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conditioned on relatively weak assumptions regarding the diversity of information

contained within the individual measurements. We note that 𝑀 is proportional to

the area of the support of 𝑃 * �̃� (the diffraction patttern). In contrast, 𝑁 scales with

the support of �̃�, with the same constant of proportionality. In our test geometry,

we use a circular zone plate which fills a ring in reciprocal space 𝑘𝑝
2
< |𝑘| < 𝑘𝑝 with

random phase noise. The band-limiting constraint applied to the object, however, is

a square such that |𝑘𝑥| < 𝑘𝑜,|𝑘𝑦| < 𝑘𝑜.

For 𝑘𝑜 >
𝑘𝑝
2
, the support of 𝑃 * �̃� will be a rounded square covering an area of

𝐴𝐼 = 𝜋𝑘2𝑝 + 8𝑘𝑝𝑘𝑜 + 4𝑘2𝑜 . The support of �̃� will simply be 𝐴𝑂 = 4𝑘2𝑜 . We can solve

for the ratio, 𝑅 = 𝑘𝑜
𝑘𝑝

, such that 𝐴𝐼 = 4𝐴𝑂, finding 𝑅 ≈ 0.944. In our paper, we

chose to band-limit the object to a square region to allow for a simple computational

approach and a well-defined interpretation of the resulting images. In a potentially

more elegant reconstruction approach where the object is band-limited to a circular

region in Fourier space, one finds the simpler result that the reconstructions are

theoretically limited to 𝑅 = 1.

This result should be considered as a limit on the potential reconstruction resolu-

tion of RPI rather than an estimate of the likely achievable resolution. In order for the

reconstruction problem to be well posed at 𝑀 = 4𝑁 , the measurement vectors must

meet conditions which we do not guarantee. In addition, practical phase retrieval

algorithms typically require more stringent constraints on the ratio of measurements

to complex parameters to lead to convergence with high probability.

A.6 Illumination Uniformity

One issue which arises when using structured illumination is a variation in the in-

tensity of the light which interacts with each pixel of the low-resolution object. In

a shot-noise limited experiment, this naturally leads to higher uncertainty in the re-

construction of weakly illuminated pixels. Other noise sources which uniformly affect

the diffraction pattern are also expected to lead to higher errors in the reconstruction

of weakly illuminated pixels.
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Figure A-3: Illumination Uniformity. (a), The distribution of intensities over the
focal spot for 𝑅 = 0.6, 𝐵𝑆 = 0.5, with the region used to extract the PDFs outlined
in orange. (b) The intensity PDF arising from BLR light with 𝐵𝑆 = 0.5 at various
resolution ratios. (c) The ratio of various percentiles to the median flux as a function
of 𝑅 for 𝐵𝑆 = 0.5. (d), (e), (f), The dependence of the illumination PDF on the
beamstop diameter 𝐵𝑆 at 𝑅 = 0.4,𝑅 = 0.6, and 𝑅 = 0.8 respectively.

Conceptually, one can break the intensity variations into two distinct categories.

Most important are the high-frequency variations that manifest themselves in the

network of zeros interpenetrating the illumination. However, in addition to these

nodes between the speckles, the speckles themselves have nonuniform intensities. This

variation becomes important at high 𝑅 as the number of speckles per pixel decreases.

Additionally, at large beamstop diameters correlations between neighboring speckles

emerge. This reduces our ability to improve the uniformity by lowering 𝑅, because

the various speckles within a low-resolution pixel remain correlated with one another.

To inspect the extent of this issue in RPI, we generated many BLR probes with

𝑘𝑝 = 128 at a variety of beamstop diameters using the framework outlined in Sup-

plementary Section 1. The beamstop diameters are defined by 𝐵𝑆, the ratio of the

beamstop diameter to the optic diameter. Then, we ran the forward model on low-

resolution objects at a collection of resolution ratios 𝑅. For each pixel in the object,

we recorded the total diffracted intensity resulting from an object with that pixel set

to 1 and all others set to 0. This measures how sensitive the final diffraction pattern
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is to the complex free parameter associated with that pixel. We then studied the

distribution of resulting intensities arising from the pixels within the illuminated field

of view.

The results are presented in Figure A-3. We find several important trends. The

dominant trend is, as expected, an increase in the intensity variation with resolu-

tion ratio, 𝑅, at all beamstop diameters. In addition, illumination with a smaller

diameter beamstop leads to smaller deviations at low 𝑅. This is a result of the

beamstop-induced low-frequency intensity correlations. Nevertheless, we find that

the distribution of intensities remains relatively small in the region 𝑅 < 0.6 where

reconstructions are experimentally feasible. This remains true even when using a

beamstop with the extraordinarily large diameter of 5
6
.

In conclusion, the illumination non-uniformity is likely to become an increasingly

relevant issue if algorithmic improvements allow for numerically stable reconstruc-

tions at values of 𝑅 closer to 1. However, for currently feasible reconstruction ratios

and standard beamstop diameters, the variability in illumination is tolerable. To be

specific, at 𝑅 = 0.6 and 𝐵𝑆 = 0.5, 99.9% of all pixels are illuminated by light which

is at least 0.39 times as intense as the flux through the median pixel.

A.7 Application Recommendations

First, we discuss recommendations for ptychography beamlines interested in adding

a new zone plate to enable RPI. The most important parameter to consider is the nu-

merical aperture of the randomized zone plate. In cases where the numerical aperture

of the detector is large enough to enable reconstructions below a full pitch resolution

of 20 nm, the appropriate zone plate numerical aperture is likely to be “as high as

possible”, because it may not be practical to design a zone plate with a numerical

aperture large enough to fill the detector.

However, in a situation where it is possible to design such a zone plate with

a numerical aperture matched to a detector, we recommend choosing a zone plate

design which fills roughly 2
3

of the detector at the lowest commonly used energy. This
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is because RPI reconstructions are likely to be reliable out to a resolution ratio of

𝑅 ≈ 0.5. For a zone plate which fills 2
3

of a detector, the highest reconstructed object

frequencies at 𝑅 = 0.5 will be pushed exactly to the edge of the detector. One is

tempted to increase the filling of the detector, however there is an advantage to leaving

a portion of the detector unfilled. Because the high frequency components of an object

are typically much weaker than the low-frequency ones, overfilling a detector with a

high NA zone plate will swamp all the high frequency components with Poisson noise

from the intense low frequency region. The portion of the diffraction pattern beyond

the zone plate filling only includes high frequency components, and it is therefore

desirable to capture it on the detector.

In all cases, we recommend designing the zone plate such that its focal spot fills

roughly 80% of the detector conjugate coordinate space at the highest commonly used

energy. It may seem ideal to simply fill this space to get the most out of each pixel.

An obvious downside is that, as the real space oversampling decreases, the finite pixel

size on the detector leads to a reduced speckle contrast. In addition, including a

small region around the focal spot allows some room for the probe to be defocused

and therefore reduces the complexity of probe alignment. We finally note that, if a

large energy range is used at a beamline, it may be worthwhile to design a collection

of zone plates optimized for use at different energies.

We next discuss the issues that are relevant when designing a system from the

ground up with RPI in mind. First, and most obviously, one must have set of motors

capable of reliably scanning a test sample through the beam with accuracy high

enough for ptychography to succeed. Second, there is an incentive to use a detector

with as many pixels as possible. This is, unsurprisingly, because the space bandwidth

product of the final RPI reconstruction will be related to the number of pixels in

the detector. Fortunately, randomized zone plates lead to ptychography and RPI

reconstructions which are robust to missing data, so there are no major issues with

using segmented detectors to increase the pixel count.

If one is interested in the highest resolution imaging, it is prudent to design the

highest numerical aperture zone plate which is reasonable, and ensure that the de-
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tector can subtend a numerical aperture which is at least 3
2

times that. If one is

interested in capturing lower resolution images with a larger field of view, it may

be more appropriate to start by designing a detector geometry which leads to the

desired field of view before designing a zone plate to match that detector’s numerical

aperture. Finally, designing with beamline stability in mind is especially critical, be-

cause a well characterized beamline would (for example) enable energy or polarization

sweeps without the need for repeat calibration ptychography scans.
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Appendix B

Error Metrics for Partially Coherent

Wavefields

The following appendix is based on a publication which appeared in Optics Letters

[138], discussing the problem of comparing partially coherent wavefields with one

another. It is included below with modifications to fit the thesis formatting, and

followed by a discussion highlighting further progress in our understanding following

the publication of this paper.

The paper was coauthored by myself and Riccardo Comin. I was responsible for

initiating the line of inquiry and deriving the presented results. Copyright is held

by Optica Publishing Group. See the published version [138] for full affiliation and

funding info.

B.1 Abstract

Lensless imaging methods that account for partial coherence have become very com-

mon in the past decade. However, there are no metrics in use for comparing partially

coherent light fields, despite the widespread use of such metrics to compare fully co-

herent objects and wavefields. Here, we show how reformulating the mean squared

error and Fourier ring correlation in terms of quantum state fidelity naturally gener-

alizes them to partially coherent wavefields. These results fill an important gap in the

123



lensless imaging literature and will enable quantitative assessments of the reliability

and resolution of reconstructed partially coherent wavefields.

B.2 Body

When demonstrating a new imaging method or reconstruction algorithm, it is im-

portant to quantitatively study its accuracy and reliability. In the ptychography

literature, this is usually done by calculating a variation on the Mean Squared Er-

ror (MSE) [157] between reconstructed and ground truth objects, as a function of

noise level or other parameters. Because the signal quality in an image is typically

length-scale-dependent, it is also common to consider the resolution of an imaging

method, i.e. the smallest length scale at which the retrieved image is sufficiently

accurate. This is often accomplished with the Fourier Ring Correlation (FRC), which

[158] has the additional advantage that it can determine an empirical resolution from

experimental data even when the ground truth is not known.

However, because of two recent trends these practices are no longer always suf-

ficient. First, mixed state (or "multi-mode") ptychography methods have become

popular since their introduction in 2013 [43]. These methods treat the illumination

as an incoherent mixture of wavefields. In doing so, they account for the inevitable

presence of partial coherence due to, for example, the intrinsic properties of the source

[159–161] or physical motion of the sample [162–165].

Second, ptychography is now routinely used to characterize the probe itself, with

applications ranging from understanding the statistical source properties of syn-

chrotrons [166] and free electron lasers [55, 167, 168] to measuring the aberrations

of x-ray optics [169, 170]. Therefore, it has become important to place the veracity

of probes retrieved via mixed state ptychography on a firm footing. Because the the

traditional metrics (MSE and FRC) only apply to fully coherent light, though, they

can’t be used for this analysis.

Through a literature search we have identified two methods which have been used

to solve this problem and study the consistency of multi-mode probe reconstructions.
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The first, most common method is to plot the orthogonalized modes of the light fields

to be compared [43, 159–161, 164, 166–168]. This is a comprehensive overview, but

it can’t be used when quantitative comparison is required. It is often augmented

by a breakdown showing the relative power in each orthogonalized mode [162, 163,

165]. The mode breakdown can be used to generate quantitative comparisons, e.g.

comparing the global degree of coherence between reconstruction attempts [55], but

these metrics are insensitive to variations in the spatial structure of the probe modes.

The second, less common method is to compare each pair of orthogonalized probes

in series using a metric such as the normalized MSE [171]. This takes into account the

spatial structure of the probe, but it has the problem that the ordering of the modes

can be unstable. There is also no natural way to reduce this list of comparisons to a

single error metric, and it can’t compare light fields with different numbers of modes.

A metric which could avoid these pitfalls should satisfy a few basic requirements:

1. It should be independent of the representation used, e.g. the ordering or number

of modes.

2. It should be minimized only when comparing formally indistinguishable fields.

3. It should reduce to a metric already in widespread use when applied to coherent

wavefields.

The first condition is especially important because while the multi-mode expan-

sion is the most widespread, it is not the only way to treat partial coherence [172].

This, together with the second condition, implies that such a metric should have a

definition in terms of the density matrix 𝜌 = 𝜌(�⃗�, �⃗�′) [43], also known as the mutual

coherence function [173, 174]. This is because 𝜌 is the most general description of a

monochromatic partially coherent wavefield, which all other representations can be

rephrased in terms of.

However, to find a metric which meets condition 3 it will be helpful to link the den-

sity matrix representation to one defined explicitly in terms of coherent wavefields. We

do this by exploring a common model of partial coherence, as the consequence of av-

eraging over a time-varying coherent wavefield. Specifically, integrating the diffracted
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intensity from a time-varying wavefield |𝜓(𝑡)⟩ over a period of time 𝑇 is equivalent

to simulating that diffraction using the density matrix [43]

𝜌 =

∫︁ 𝑇

0

𝜌(𝑡) =

∫︁ 𝑇

0

𝑑𝑡 |𝜓(𝑡)⟩ ⟨𝜓(𝑡)| . (B.1)

Crucially, the time-dependent representation still describes a coherent wavefield,

but with an extra dimension (time). This suggests that we might be able to generalize

metrics from coherent to partially coherent wavefields by applying them in the time-

dependent representation.

Initially this seems like a fool’s errand because each density matrix 𝜌 corresponds

to infinitely many wavefields |𝜓(𝑡)⟩. However, there will still be a unique minimum,

corresponding to the best case which is consistent with the known information. In

the case of the MSE calculated between two wavefields |𝜓1(𝑡)⟩ and |𝜓2(𝑡)⟩, we can set

up the following minimization problem:

min
𝜓1,𝜓2

⟨𝜓1|𝜓1⟩+ ⟨𝜓2|𝜓2⟩ − 2Re [⟨𝜓1|𝜓2⟩] (B.2)

s.t. 𝜌𝑖 =

∫︁
𝑑𝑡 |𝜓𝑖(𝑡)⟩ ⟨𝜓𝑖(𝑡)| , 𝑖 ∈ {1, 2},

where the time-dependence is suppressed in the inner products to indicate that

they integrate over time as well as the spatial/pixel dimensions. The first two terms

are the traces (Tr) of 𝜌1 and 𝜌2 respectively, and do not depend on the choice of

|𝜓𝑖(𝑡)⟩. Further, because |𝜓1(𝑡)⟩ and |𝜓2(𝑡)⟩ have a global phase degree of freedom,

their overlap can be chosen real and non-negative. Therefore, (B.2) simplifies to

Tr(𝜌1) + Tr(𝜌2)− 2max
𝜓1,𝜓2

|⟨𝜓1|𝜓2⟩| (B.3)

With the maximization problem operating under the same constraints as (B.2).

Happily, this problem has a well known solution. In the language of quantum states,

|𝜓1(𝑡)⟩ and |𝜓2(𝑡)⟩ are purifications of the density matrices 𝜌1 and 𝜌2. A classic result

in quantum information is that the maximum overlap between the purifications of a
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pair of density matrices is equal to their square-root fidelity (F) [175, 176]:

F(𝜌1,𝜌2) = Tr

(︂√︁√
𝜌1𝜌2

√
𝜌1

)︂
= max

𝜓1,𝜓2

|⟨𝜓1|𝜓2⟩| (B.4)

Consequently, the solution to (B.2) (which we define as the partially coherent

MSE, PCMSE) can be written directly in terms of the density matrices:

PCMSE(𝜌1,𝜌2) = Tr(𝜌1) + Tr(𝜌2)− 2F(𝜌1,𝜌2). (B.5)

As required, this reduces to the MSE maximized over the phase degree of freedom

[157] when 𝜌1 and 𝜌2 represent pure states, and it depends only on the informa-

tion in the density matrix representation. But, does it satisfy condition 2? It is

straightforward to show that

0 ≤ F(𝜌1,𝜌2) ≤
√︀

Tr(𝜌1) Tr(𝜌2) (B.6)

with the upper equality achieved only when 𝜌1

Tr(𝜌1)
= 𝜌2

Tr(𝜌2)
and the lower equality

achieved only when 𝜌1𝜌2 = 0 (see supplement 1.1). Consequently,

0 ≤ PCMSE(𝜌1,𝜌2) ≤ Tr(𝜌1) + Tr(𝜌2) (B.7)

with the lower equality achieved only when 𝜌1 = 𝜌2. Not only does this metric

clearly satisfy condition 2, its bounds mirror those of the standard MSE. Conse-

quently, we can generalize the normalized MSE by normalizing to Tr(𝜌). It also is

worth noting that the minimization of the normalized PCMSE over a global amplitude

degree of freedom has an especially simple definition, which parallels that derived in

[157]:

min
𝑎

[︂
PCMSE(𝜌1, 𝑎𝜌2)

Tr(𝜌1)

]︂
= 1− F(𝜌1,𝜌2)

2

Tr(𝜌1) Tr(𝜌2)
. (B.8)

This form, which is just 1 minus the fidelity of the normalized density matrices,

is very useful in ptychography where the intensity ratio of two probe reconstructions

cannot always be determined.
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The PCMSE therefore seems like an ideal error metric, but based on the discussion

so far it remains completely impractical to calculate. This is because the density

matrices are usually so large that it is not even possible to hold them in memory, much

less calculate their square roots. To make it practical, we need a way to calculate

the PCMSE directly from the multi-mode representation. In this representation, an

𝑁 ×𝑀 matrix 𝜓 is stored, such that

𝜌 = 𝜓𝜓†. (B.9)

𝑁 is the number of pixels in the image, and 𝑀 is the number of modes, i.e. the

assumed maximum rank of 𝜌. There are, unsurprisingly, strong connections between

this expression and the time-dependent breakdown in (B.1). To start, we note that

Tr(𝜌) = Tr
(︀
𝜓†𝜓

)︀
, the sum of the integrated intensities of each mode. Perhaps more

surprisingly, the square root fidelity is also cheap to calculate,

F(𝜌1,𝜌2) = ||𝜓†
1𝜓2||* (B.10)

where ||||* is the nuclear norm, i.e. the sum of the singular values (see supplement

1.2). This form only requires a singular value decomposition of an 𝑀1 ×𝑀2 matrix.

As a result, calculating the PCMSE between two mixed state reconstructions can

be done in the same amount of time it would take to calculate the MSE between

𝑀1𝑀2 pairs of coherent wavefields. Finally, because this form does not rely on any

properties of 𝜓 other than (B.9) it still satisfies condition 1 - the two expansions need

not even have the same number of modes!

The derivations above constitute a complete framework for reducing the difference

between partially coherent wavefields to a single number. However, there is also a need

for metrics which can empirically assess the resolution of experimental results, i.e. an

extension of the FRC. In practice, FRCs are rarely used to characterize retrieved

probes, but it is our belief that as ptychography becomes a standard diagnostic of

illumination sources the need for frequency-dependent analysis of the reliability of

retrieved probe functions will grow.
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The coherent FRC is calculated by splitting each of two images into a set of

concentric rings in Fourier space, and calculating the correlation coefficient between

each pair of rings. This curve, as a function of spatial frequency, is used to determine

the length scale below which the images can no longer be considered reliable [101,

158]. We formalize this by defining a projection operator for each ring spanned by

frequencies 𝑘1 < 𝑘2 in Fourier space:

𝑃𝑘1,𝑘2 =

∫︁
𝑑2𝑘 |⃗𝑘⟩ ⟨�⃗�| 𝜃(|⃗𝑘| − 𝑘1)𝜃(𝑘2 − |⃗𝑘|). (B.11)

Here |⃗𝑘⟩ is a complex exponential at frequency �⃗� and 𝜃 is the Heaviside step

function. We can then define the FRC for coherent fields as

FRC(|𝜓1⟩ , |𝜓2⟩ ; 𝑘1, 𝑘2) =
⟨𝜓1|𝑃 |𝜓2⟩√︀

⟨𝜓1|𝑃 |𝜓1⟩ ⟨𝜓2|𝑃 |𝜓2⟩
, (B.12)

where the subscript 𝑘1, 𝑘2 is dropped from the projection operators for compact-

ness. We should quickly note that the FRC, as originally envisioned, is a real function

of real-valued fields which can be positive or negative. However, for complex-valued

fields, it is complex. Universally, what is reported in the ptychography literature is

the magnitude of the FRC, i.e. the maximum over a phase degree of freedom.

Generalizing this definition to density matrices in the vein of our earlier approach

means maximizing (B.12) over the space of all consistent purifications. This results

in a simple expression for the Partially Coherent FRC (PCFRC) as the normalized

Fidelity of the projected density matrices:

PCFRC(𝜌1,𝜌2; 𝑘1, 𝑘2) =
F(𝑃𝜌1𝑃 ,𝑃𝜌2𝑃 )√︀
Tr(𝑃𝜌1𝑃 ) Tr(𝑃𝜌2𝑃 )

. (B.13)

This is not surprising because the FRC is essentially a normalized overlap, and

the Fidelity is just the generalization of the overlap to mixed states. It is evident

from (B.6) that this expression is constrained between 0 and 1, just like the standard

FRC. In addition, because the projection operators are easy to implement in the

multi-mode framework, the PCFRC remains cheap to calculate, equivalent to the
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Figure B-1: Example use of the PCFRC and PCMSE to estimate the reliability of
a probe reconstruction. (a-c) and (d-f) are two three-mode probe reconstructions
from separate halves of a reference dataset from Chen et al. [160]. The probes are
shown in Fourier space to emphasize the connection with the PCFRC. (g) contains
the PCFRC between the two reconstructed partially coherent probes, compared to a
half-bit threshold [101].

cost of calculating 𝑀1𝑀2 coherent FRCs.

Finally, to demonstrate how these metrics perform in a typical case, in Figure B-1

we show a pair of reconstructed probes from two halves of the electron ptychography

dataset made publicly available by Chen et al. [160]. The reconstructions remain

nonzero up to a maximum frequency defined by the condenser’s aperture. This is

reflected in the PCFRC, which falls sharply from a high value near 1 within the

aperture to a low value near zero beyond it. The amplitude-minimized normalized

PCMSE is 0.101, indicating that although the reconstructions are visually similar, a

wavefield containing at least 10.1% of the power in the first probe would be needed

to map it onto the second probe.

In sum, we have generalized the MSE and FRC from coherent images to the space

of partially coherent wavefields by finding an analogy with the quantum state fidelity.
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The results reduce to simple expressions which are computationally cheap when the

density matrices are stored in the low rank multi-mode approximation. These metrics

address a major need in the coherent imaging community for quantitative analysis

of reconstructed partially coherent wavefields, and we hope they will find widespread

use as the computational study of partial coherence continues to expand.

B.3 Supplement

B.3.1 Bounds on Fidelity and PCMSE

For any two matrices with trace 1, the bound

0 ≤ F(𝜌1,𝜌2) ≤ 1

is well established [176], with equality only when 𝜌1 = 𝜌2. For any matrix 𝜌 with

arbitrary trace, the matrix 𝜌
Tr(𝜌)

has trace 1, so

0 ≤ F
(︂

𝜌1

Tr(𝜌1)
,
𝜌2

Tr(𝜌2)

)︂
≤ 1.

From the definition of the square-root fidelity F, it is clear that

F(𝑎𝜌1, 𝑏𝜌2) =
√
𝑎𝑏 F(𝜌1,𝜌2)

for scalar 𝑎, 𝑏. Therefore, we find

0 ≤ F(𝜌1,𝜌2) ≤
√︀

Tr(𝜌1) Tr(𝜌2).

Plugging this into the expression for the PCMSE, we find

Tr(𝜌1) + Tr(𝜌2) ≥ PCMSE(𝜌1,𝜌2) ≥ Tr(𝜌1) + Tr(𝜌2)− 2 *
√︀

Tr(𝜌1) Tr(𝜌2).

Finally, as a consequence of the AM-GM inequality
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Tr(𝜌1) + Tr(𝜌2) ≥ PCMSE(𝜌1,𝜌2) ≥ 0,

with the lower bound holding only when Tr(𝜌1) = Tr(𝜌2) and 𝜌1

Tr(𝜌1)
= 𝜌2

Tr(𝜌2)
, i.e.

𝜌1 = 𝜌2

B.3.2 Multi-mode expression for Fidelity

We expand the definition of fidelity using the multi-mode representation of 𝜌2:

F(𝜌1,𝜌2) = Tr

(︂√︁√
𝜌1𝜓2𝜓

†
2

√
𝜌1

)︂
Noting that √𝜌1 is Hermetian, we can see that this expression is equivalent to

F(𝜌1,𝜌2) = ||
√
𝜌1𝜓2||*

by the definition of the nuclear norm. However, it is also the case that

√
𝜌1 (
√
𝜌1)

† = 𝜌1 = 𝜓1𝜓
†
1

Therefore, there must exist a semi-unitary matrix 𝑈 satisfying 𝑈 †𝑈 = 𝐼 such

that

(
√
𝜌1) = (

√
𝜌1)

† = 𝑈 †𝜓†
1,

from [177] Theorem (7.3.11). Therefore,

F(𝜌1,𝜌2) = ||𝑈 †𝜓†
1𝜓2||* = ||𝜓†

1𝜓2||*,

due to the unitary invariance of the nuclear norm.

B.3.3 Comparing reconstructions with varying numbers of modes

Because the PCMSE and PCFRC allow for comparisons between reconstructions of

probe functions with different numbers of modes, we confirmed that comparisons

132



b)

a)

N
or
m
al
iz
ed
P
C
M
S
E

0.330

0.346

0.387

0.420

0.079

0.141

0.190

0.097

0.145 0.141

Figure B-2: Comparisons between reconstructions with varying numbers of modes.
(a) shows comparisons between each pair of reconstructions using the PCFRC.
(b) compares the same reconstructions using the amplitude-minimized normalized
PCMSE.
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perform as expected on typical experimental data. Therefore, we performed 5 recon-

structions on the full dataset from reference [160] which was used to generate Figure

1 of the main paper. The reconstructions were run with a varying number of modes

from 1 to 5.

In Figure B-2, we compare the partially coherent probes resulting from each recon-

struction using the amplitude-minimized normalized PCMSE and the PCFRC. The

results conform to our expectations. First, the introduction of even a single additional

mode causes a dramatic change in the reconstructed probe as measured by PCMSE.

This is expected because, in a two-mode reconstruction, the subdominant mode con-

tains significant power (23.5%). However, the mode-power breakdown hides the fact

that the dominant mode in the two-mode reconstruction also has a different spatial

structure from the single-mode result. This difference is captured by the normalized

PCMSE of 0.330, which is higher than the power fraction in the subdominant mode

due to the differing spatial structure of the two results.

Continuing on to higher modes, we find that the relative error introduced by each

additional mode decreases until the fourth mode is added, at which point it begins

to increase again. This is likely caused by higher order modes accumulating artifacts.

This effect is again hidden by the orthogonalized mode power breakdown. For exam-

ple, even though the fourth mode in a four-mode reconstruction only contains 5.1% of

the power, the normalized PCMSE between the three- and four-mode reconstructions

is nearly double at 0.97. This again indicates that the structure of the lower modes

has been modified to accommodate the additional mode, an effect which the PCMSE.

Finally, looking at the PCFRCs reveals more information about the spatial struc-

ture of these changes. Notably, the PCFRCs calculated between the one-mode and

remaining results show a dip near the edge of the probe’s Fourier space representation.

This region corresponds to the the edge of the aperture in the electron microscope’s

condenser. The dip is therefore quantifying our expectation that the effects of inco-

herence are magnified near the edges of the condenser aperture, a well known phe-

nomenon. As the number of modes increases, the edge of the PCFRC curve becomes

more defined. This indicates that although minor changes are occurring as each mode
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is added, the essential structure of the probe has been sufficiently captured.
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