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Abstract: Motivated by questions related to the landscape of flux compactifications,
we combine new and existing techniques into a systematic, streamlined approach for
computing vertical fluxes and chiral matter multiplicities in 4D F-theory models. A
central feature of our approach is the conjecturally resolution-independent intersection
pairing of the vertical part of the integer middle cohomology of smooth elliptic Calabi–
Yau fourfolds, relevant for computing chiral indices and related aspects of 4D F-theory
flux vacua. We illustrate our approach by analyzing vertical flux backgrounds for F-
theory models with simple, simply-laced gauge groups and generic matter content, as
well as models with U(1) gauge factors. We explicitly analyze resolutions of these F-
theory models in which the elliptic fiber is realized as a cubic in P

2 over an arbitrary
(e.g., not necessarily toric) smooth base, and confirm the independence of the intersection
pairing of the vertical part of themiddle cohomology for the resolutionswe study. In each
model, we find that vertical flux backgrounds can produce nonzero multiplicities for a
spanning set of anomaly-free chiral matter field combinations, suggesting that F-theory
geometry imposes no additional linear constraints on allowed matter representations
beyond those implied by 4D anomaly cancellation.
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1. Introduction

F-theory [1–3] provides a powerful geometric framework for describing a large class
of supersymmetric string theory vacua. In particular, F-theory can be used to describe a
vast number of 4D N = 1 supergravity theories with gauge symmetries.

Because F-theory provides a uniquely broad nonperturbative perspective on the set
of supersymmetric string vacuum solutions, there are two rather fundamental questions
about this set that can be explored fruitfully within this particular branch of string theory.
First is the question of the extent to which F-theory, or string theory more generally, can
provide a UV description of any low-energy field theory that has no known obstruction
to coupling to quantum gravity; this question has been usefully framed as the problem of
delineating the swampland [4,5] of apparently consistent low-energy effective theories
of gravity not realized in string theory. Second is the question of how the gauge group,
chiral matter content, and other physical features of the observed Standard Model of
particle physics can be realized in string theory, and the extent to which this physics is
typical or requires extensive fine tuning.

There has been a great deal of work on each of these questions in the context of
F-theory over the last two decades (for some recent reviews see, e.g., [6,7]). However,
neither question has been answered definitively.

In this paper, we investigate some aspects of F-theory flux backgrounds that are
relevant for both of these questions. As part of our investigation, we bring together a
variety of methods (some known and some new) to frame a systematic approach for
characterizing chiral matter in broad classes of 4D F-theory models.

Many of the known methods we employ in our approach have been explored in
different threads of the literature, as there has been extensive research on understanding
how chiral matter arises from fluxes in 4D F-theory models. Chiral matter in F-theory
GUTmodels was described locally in [8–10], and amore systematic description in terms
of fluxes and global geometry was developed in [11–16], among others. Much of this
work is reviewed in [17];many of these papers compute themultiplicities of chiral matter
by identifying geometric “matter surfaces” (i.e. specific holomorphic four-cycles in the
elliptic Calabi–Yau fourfold) through which fluxes can be integrated to obtain the chiral
indices, whereas by contrast [16] and some related works [18,19] indirectly compute the
chiral indices by identifying fluxes through various holomorphic cycles with one-loop
Chern–Simons couplings in 3D (which can be interpreted as linear combinations of the
chiral indices). We follow the latter approach for explicit computations in this paper,
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though the resulting insights may shed light on some subtle aspects of the geometry of
matter surfaces.

Our approach for studying 4D F-theory vacua offers computational and conceptual
simplifications relevant for the two questions posed above. The computational simpli-
fication offered by our approach is that it combines the results of the previous work
cited above with the techniques of [20] (used for computing intersection numbers) into
a streamlined algorithm for analyzing chiral matter and vertical fluxes, which allows us
to easily survey large families of F-theory flux vacua. We demonstrate the utility of our
approach by analyzing numerous examples, some not previously studied in the literature,
of flux vacua in models with fixed gauge group G over arbitrary smooth threefold base.
Conceptually, our approach is simpler in that while previous work on chiral matter in
4D F-theory models has relied in an essential way upon specific choices of resolution
of the singularities in the Weierstrass model defining the F-theory compactification, in
this paper we take steps towards analyzing the chiral multiplicities, as well as the linear
constraints they satisfy, in terms of (conjecturally) resolution-independent geometric
structure intrinsic to the global elliptic Calabi–Yau fourfold.

The main resolution-independent structure that we make use of here is related to
the intersection pairing on a particular subgroup of the middle cohomology H4(X,Z)

of a smooth elliptic Calabi–Yau (CY) fourfold X resolving the singular Weierstrass
model. Specifically, we study the nondegenerate intersection pairing Mred acting on the
(“vertical”) cohomology subgroup H2,2

vert(X,Z) ⊂ H4(X,Z) generated by products of
divisors in X . The intersection pairing Mred can be obtained by assembling the quadru-
ple intersection numbers of X into a matrix M and removing its nullspace. While the
quadruple intersection numbers of divisors are not generally independent of the choice
of resolution X of the singular Weierstrass model, we find evidence that for all models
we study Mred (and hence implicitly M as well) is independent of the choice of X , up
to an integral change of basis. Since Mred encodes fluxes relevant for computing chiral
matter multiplicities, we highlight the importance of Mred as the primary geometric ob-
ject of interest for analyzing chiral matter and vertical flux backgrounds in a manifestly
resolution-independent manner. The apparent resolution-independence of Mred and M
suggests that this intersection structure is in some sense an intrinsicmathematical feature
of the singular elliptic CY fourfold that defines a 4D F-theory vacuum and may have
a direct interpretation in this geometric language as well as in type IIB string theory,
without any need for explicit resolution, although to our knowledge this statement has
not been proven in the mathematical literature. There is perhaps a useful analogy to be
made here: Just as the resolution-independent Dynkin diagram associated with a Ko-
daira singularity type encodes the resolution-invariant physics of the nonabelian gauge
algebra of an F-theory compactification, this (conjecturally) resolution-independent part
of the intersection structure encodes the resolution-invariant physics connecting vertical
fluxes and chiral matter.1

The set of tools that this analysis provides for exploring the landscape of 4D F-theory
flux vacua positions us to clarify aspects of the first question raised at the beginning
of the paper. While 4D anomaly cancellation is satisfied by all F-theory constructions

1 Note that other resolution-independent structures encoded in the intersection numbers of CY resolutions
have been identified in the context of F-theory and M-theory compactifications. For example, the combined
fiber diagrams (CFDs) of [21] appearing in non-flat resolutions of singular elliptic CY threefolds were shown
to bemanifestly flop-invariant. Furthermore, the intersection pairing between divisors and certain curve classes
in smooth CY threefolds was shown to have invariant Smith normal form in [22]. We thank S. Schafer-Nameki
for bringing these references to our attention.
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that have been studied2 and is expected to hold in all 4D N = 1 supergravity theories
that can be constructed in F-theory, it is unknown whether or not all anomaly-free
families of chiral matter can be realized in F-theory. Interestingly, it turns out that in all
cases we study this is indeed true, at least in the sense that for the most generic matter
representations associated with a given gauge group, fluxes are available that produce
combinations of massless chiral matter fields that span the linear space of anomaly-free
matter representations. More specifically, we find in all cases that we study that the
number of independent vertical flux backgrounds in Hvert

2,2 (X,Z) that lift to consistent
F-theory flux backgrounds with unbroken gauge group—equivalently, the rank of Mred
minus the number of constraints required to preserve 4D local Lorentz and full gauge
symmetry—is the same, and is in particular greater than or equal to the number of
allowed independent families of anomaly-free chiral matter. Part of this result is to be
expected: since the physics of any F-theory model is presumed resolution-invariant,
given the relationship between chiral multiplicities and vertical flux backgrounds, it
should follow that the number of independent vertical flux backgrounds corresponding
to independent families of chiral matter multiplets is also a resolution-invariant property
of the theory. Our results further suggest that this number is at least as large as the total
number of linearly-independent families allowed by 4D anomaly cancellation. Since
resolution-independence of the lattice pairing Mred also implies that M is resolution-
independent, it may be possible to characterize part of the nullspace of M in a canonical
manner that is related to the 4D anomaly cancellation conditions. Since the nullspace
of M restricted to the subspace of 4D symmetry-preserving fluxes can be identified
with the set of linear constraints (of which the 4D anomaly cancellation conditions
must necessarily be a subset), this potentially points to a more systematic method for
exploring possible swampland-like conditions obstructing the F-theory realization of
certain families of chiral matter multiplets, or showing that no such additional linear
conditions can exist, as we essentially conjecture here.

Regarding the second question raised at the beginning of this paper, one of the initial
motivations was to analyze chiral matter in the family of (SU(3)× SU(2)× U(1))/Z6
models found in [27]. This model has three independent families of generic chiral matter
fields that satisfy 4D anomaly cancellation, one of which corresponds to the matter
content of the Minimal Supersymmetric Standard Model (MSSM). This seems to be the
broadest class of F-theory models that have a tuned Standard Model–like gauge group,3

and which naturally includes Standard Model–like matter. One subclass of these models
arises naturally through a toric fiber (“F11”) construction [28], and has only the single
family of chiral matter fields associated with the MSSM; chiral matter in some Standard
Model–like F11 constructionswas recently intensively investigated in [29]. The approach
developed here gives us a means to check whether F-theory models of the more general
tuned (SU(3)× SU(2)×U(1))/Z6 type naturally contain chiral matter in the other two
allowed families, or whether these are forbidden by string geometry for some reason
and hence belong to the swampland. We find that indeed all three of the allowed chiral
matter types are allowed; we briefly summarize these results here and report further on
the details of this analysis in a forthcoming publication [30].

The structure of this paper is as follows: in Sect. 2, we give an overview of the main
ideas, technical contributions, and results of the paper; in Sects. 3 and 4, we explore two
complementary approaches to analyzing the set of cohomologically-distinct fluxes that

2 For example, analyses of such conditions were carried out in [23–26].
3 That is, a gauge group that is directly tuned in the Weierstrass model, as opposed to one that arises from

breaking a larger GUT group or that is imposed as a generic feature of the F-theory base geometry.
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preserve 4D local Lorentz and gauge symmetry, where the two approaches differ by the
order in which the symmetry constraints and equivalence relations in (co)homology are
imposed; Sect. 5 reviews the strategy we use for determining the precise relationship be-
tween chiral indices χr and vertical fluxes, which exploits their relationship to one-loop
Chern–Simons couplings appearing in the 3D low-energy effective action describing
the F-theory Coulomb branch; in Sect. 6, we use our approach to study various F-theory
models with simple gauge group Gna; in Sect. 7, we discuss the generalization of our
analysis tomodelswith gauge groupG = (Gna×U(1))/�, using the (SU(2)×U(1))/Z2
and (SU(3) × SU(2) × U(1))/Z6 models to illustrate various aspects of the analysis;
finally, Sect. 8 contains concluding remarks and future directions. A number of techni-
cal results related to e.g., anomaly cancellation, intersection theory, and resolutions of
singular Weierstrass models, are collected in the appendices.

2. Overview

In this section, we give an overview of the steps needed to systematically describe a class
of 4D F-theory models with a given gauge group and ultimately to compute the chiral
matter content from vertical fluxes using our approach. In particular, we try tomake clear
how various techniques in the existing literature are integrated into our approach, and
where this paper makes novel contributions. The current state of knowledge for many
parts of this analysis is reviewed in more detail in a transcription of Weigand’s excellent
TASI lectures [17].

We are interested in finding a general formulation of the chiral matter multiplicities
for a variety of F-theory constructions with different gauge groups, in a way that can be
expressed succinctly in termsof the geometry of the base of theF-theory compactification
and a choice of fluxes. In particular, for a given choice of gauge group and generic4

matter representations, we are interested in identifying closed form expressions for the
chiral matter multiplicities in a base-independent5 (and resolution-independent) fashion.
Expressions of this type have been found previously in the literature using related but
distinct combinations of techniques for various gauge groups, such as SU(5) [14], E6
[31], U(1)×U(1), (SU(5)×U(1)×U(1))/Z5 [32], and (SU(3)×SU(2)×U(1)2)/Z6
[23] (see also [33]).

At a very heuristic level, the analysis can be described as follows: for any spe-
cific choice of gauge group, it should be possible to identify a multi-parameter family
of Weierstrass models that describes F-theory models over an arbitrary base with that
gauge group and genericmatter. A resolution X of any of the correspondingCY fourfolds
gives rise to a well-defined set of intersection numbers, which can be organized into a
matrix M containing the intersection pairing Mred acting on the set of homology classes
Hvert
2,2 (X,Z). The intersection pairing is relevant for computing fluxes through certain

homology classes dubbed “matter surfaces” that encode the multiplicities of chiral mat-
ter fields. The chiral matter multiplicities that are fixed by the choice of gauge flux and
the intersection numbers can also be related directly to the 3D physics arising from a
circle reduction of the F-theory model. While the choice of resolution and its associated
intersection numbers are not unique, it should be possible in general to describe the
multiplicities of chiral matter fields in the 4D limit in a resolution-independent fashion
that depends only on the intersection structure of the compactification base and a choice

4 See Sect. 2.3 for a precise definition of the notion of “generic matter” in F-theory compactifications.
5 By “base-independent”, we mean in a manner that does not rely on a specific choice of base. Clearly, the

choice of base can change the physics of the F-theory vacuum.
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of fluxes in an appropriate basis. One of the key ingredients in this paper is the identi-
fication of a conjecturally resolution-independent piece of the intersection structure of
X , namely Mred, that is relevant for understanding the chiral multiplicities.

We now describe each of the steps in this procedure in a bit more detail, framing the
analysis of the remainder of the paper.

2.1. Selection of the base. The first step in choosing an F-theory compactification is the
choice of complex threefold base B. From the IIB string theory point of view, the 10D
IIB theory is compactified on B, which we take here to be a compact Kähler threefold.
Note that B need not be a CY manifold, i.e., the canonical class K of B need not be
trivial, though−K must be an effective class. The F-theory model [1–3] is described by
a Weierstrass model

y2 = x3 + f x + g, (2.1)

defining an elliptic CY fourfold X0 with base B, where f, g are sections of the line bun-
dles O(−4K ),O(−6K ), respectively. In general, the CY fourfold X0 has singularities
associated with loci in the base where the elliptic fiber degenerates. Degenerations over
codimension-one loci in the base are associated with the gauge group of the F-theory
model and degenerations over codimension-two loci are associatedwithmatter. F-theory
is frequently analyzed as a limit of M-theory on a smooth resolution X of X0, but the
physics should in principle be independent of resolution as discussed further in Sect. 2.4.

The number of possible bases B is quite large. The primary constraint is that B cannot
contain a divisor � (codimension-one algebraic surface) that has a normal bundle that
is so negative that ( f, g) need to vanish to orders (4, 6) on �. When such a divisor
exists, the singularity structure of the total space of the elliptic fibration goes beyond the
classification of Kodaira [34] and Néron [35]; there is no smooth CY resolution and the
resulting geometry lies at infinite distance in the moduli space of compactifications.6 A
large range of elliptic CY fourfolds have been studied in the literature, see, e.g., [36–38].
Restricting to the simple case of toric B, the number of possible bases has been shown
by explicit construction to be at least 10755 [39] and is estimated through Monte Carlo
analysis to be of order closer to 103000 [40]. Many of these bases have codimension-
two loci where ( f, g) vanish to orders (4, 6). These codimension-two loci are generally
associated with nonperturbative massless excitations in the low-energy 4D theory, see,
e.g., [41–43]; in 6D, such excitations are generally associated with a superconformal
sector in the theory [44,45], and while there are some parallel aspects of 4D F-theory
models [46] the structure of these sectors in four space-time dimensions is less well
understood.

Much of the detailed analysis of chiral matter in 4D F-theory models has been done
in the context of toric geometry. One advantage of toric bases is that there are many
powerful and simple tools for computing resolutions, intersection numbers, and other
relevant features of toric varieties that extend to many elliptic CY fourfolds over toric
bases that can be described as hypersurfaces in toric varieties. At least in the case of
elliptic CY threefolds with relatively large Hodge numbers over complex surface bases,
toric constructions seem to give a good representative sample of the set of possibili-
ties [47], although for 4D F-theory models with chiral matter, some features such as

6 Note that there can be higher-codimension (4, 6) singularities without a crepant (CY) resolution (see,
e.g., [36]); these geometries, however, lie at finite distance in moduli space and seem physically relevant as
F-theory compactifications.
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GUT breaking are not easily seen in purely toric contexts (see, e.g., [48,49]). Toric
geometry has been used with great efficacy in many examples in the literature, e.g.,
[28,50–52]. By contrast, our analysis employs resolution techniques developed to study
Weierstrass models defined over an arbitrary (toric or non-toric) base for certain gauge
group and matter structures—see, e.g., [53,54]. Resolutions of general classes of elliptic
fourfolds including non-toric constructions have also been considered in, e.g., [23,32],
using somewhat different approaches.

2.2. Non-degeneracy of the intersection pairing on the base. For any threefold base B,
there is a triple intersection form Dα · Dβ · Dγ on the space H2,2(B,Z) ∼= H1,1(B,Z)

of divisors on B. One feature of a general F-theory threefold base that we will use in
various places is the observation that for any such smooth B, the triple intersection
form is nondegenerate, in the sense that for any divisor A = AαDα , there exists some
D′, D′′ for which A · D′ · D′′ �= 0, so that there exists a curve C whose class is of the
form C = D′ · D′′ with C · A �= 0. For a toric base, this follows from the standard
result that the ring in intersection theory generated by the divisors (i.e., the Chow ring)
generates the full linear space of homology classes Hi,i (B,Z), combined with Poincaré
duality, which states that the space of curves H1,1(B,Z) is dual to the space of divisors
under the intersection product. More generally, the stated result follows from the hard
Lefschetz theorem (see, e.g., [55]), which asserts that J : H1,1(B,Q) → H2,2(B,Q)

is an isomorphism over Q for any compact Kähler manifold B, where J is a Kähler
class (equivalently, a cohomology class Poincaré dual to the pullback of the hyperplane
section in a projective realization of B when B is a smooth complex projective variety.)
This nondegeneracy plays a useful role in our analysis of the structure of fluxes and the
intersection numbers of CY fourfolds that can be realized as elliptic fibrations over B.

2.3. Weierstrass model: gauge group and matter content. A central feature of a 4D F-
theory model is the gauge group G realized in the effective 4D theory constructed by
compactifying F-theory on a Weierstrass model defined over a given threefold base B.
In general, G is encoded in the Kodaira type of the singularities in the elliptic fibration
over various divisors in B.

The gauge group G can arise either because it is forced from the geometry of B or
through explicit tuning of the Weierstrass model. In the first case, geometrically “non-
Higgsable” gauge group factors can arisewhen certain divisors in B have normal bundles
that are sufficiently negative that ( f, g) are forced to vanish to orders at least (1, 2) over
those divisors [56,57]. Virtually all of the large number of threefold bases that support
elliptic CY fourfolds have multiple non-Higgsable gauge group factors [39,40,58]. The
gauge group can also be tuned by choosing a Weierstrass model where f, g, and the
discriminant 	 = 4 f 3 + 27g2 vanish to the appropriate orders over a given divisor in B
necessary to guarantee a desired nonabelian gauge factor. U(1) gauge factors can also
be non-Higgsable [59–61] or tuned, and are subtler, as they rely on the global structure
of the Mordell–Weil group of rational sections.

The allowed matter content in a given theory depends on the more detailed structure
of singularities in the elliptic fibration over codimension-two loci in B. There is a natural
distinction in F-theory between “generic” matter content for given G, associated with
the simplest codimension-two singularity types, and more exotic matter representations
that can be realized through more complicated singularities. This notion of genericity
can be made precise in 6D, where generic matter content is associated with the branch
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of moduli space of the largest dimension for a fixed G and anomaly coefficients that
are not “too large” [62]. For given G, in general we expect that there is a universal
construction of a multi-parameter family of Weierstrass models that realize the full
geometric moduli space of elliptic CY varieties over an arbitrary base that realize G
and have generic matter content for that gauge group. Such “universal” G models were
studied in [27],7 where the universal (SU(3) × SU(2) × U(1))/Z6 Weierstrass model
with generic matter was constructed, and a moduli-counting argument was introduced
to check that a universalGmodel is fully parameterized; other universalGmodels with
generic matter representations include the Tate-tuned models with various nonabelian
gauge factors (see, e.g., [63]), and the Morrison–Park universal U(1) model [64]. In
general, the parameters of the universal Weierstrass construction for a given G include
discrete parameters associated with the divisor classes supporting the gauge factors and
continuous parameters associated with complex structure moduli of the associated X0.
These discrete parameters, along with the canonical class of the base, form what for us
will be the characteristic data of the F-theory model. While the definition of “generic”
matter representations ismost clear in 6D theories, the same representations are naturally
generic for 4D F-theory constructions in terms of the dimension of the geometric moduli
space and the complexity of the singularities; universal F-theorymodels with fixedG and
these generic matter representations such as the Tate-tuned and Morrison–Park models
take the same parameterized form in 6D and in 4D theories.

In this paper, we work with various universal G models with generic chiral matter
content in 4D, meaning that we consider multi-parameter Weierstrass models withG =
SU(N ),SO(4k + 2),E6, (SU(2)×U(1))/Z2 over arbitrary threefold bases B that need
not be toric. Note that even over toric B, only some universalGmodels have known toric
constructions with fibers that can be constructed torically as elliptic curves within toric
2D fibers. For example, some SU(N ) models can be constructed in this way torically,
and a subset of the universal (SU(3)×SU(2)×U(1))/Z6 models can be so constructed
torically, but not all.

In this paper we focus on the degrees of freedom of 4D F-theory models encoded in
theWeierstrassmodel through the axiodilaton of type IIB theory and the fluxes that come
from the 3-form field C3 in the M-theory picture. There can be additional degrees of
freedom such as “T-branes” [65] encoded in the world-volume dynamics of the 7-branes
of the IIB theory; in the analysis here we do not consider the matter or other structures
that these degrees of freedom may produce in the effective 4D N = 1 supergravity
theory.

2.4. Resolution and intersection numbers. As described above, we are interested in
general families ofWeierstrassmodelswith particular structures of codimension-one and
codimension-two singularities. Given aWeierstrass model in such a family, the standard
approach taken for understanding F-theory models is to resolve the singular Weierstrass
geometry into a smooth elliptic CY manifold and analyze the theory as a limit of M-
theory, see, e.g., [17,66].While this approach gives the best understoodway of analyzing
the physics of the resulting 4D F-theory model, the physics should be independent of the
specific resolution; indeed, from the nonperturbative type IIB point of view, the physics
should be well-defined directly in the context of the singular Weierstrass model. Note
further that there can be terminal singularities at higher (i.e., ≥ 2) codimension that do

7 In that paper these universal Weierstrass model constructions were referred to as “generic”; here we
change terminology to “universal” to avoid confusion with other uses of the term generic.
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not admit a CY resolution at all; inmany cases, these can be present without any apparent
significant effects on the resulting physical model [67,68]. One of the broad motivations
for the methods we explore in this paper is to find ways of characterizing the resolution-
independent aspects of the physics of 4Dchiralmatter.Given aWeierstrassmodel defined
by a singular elliptic CY fourfold, there are, in general, multiple distinct resolutions X
that preserve the CY structure of the singular fourfold. For most of the analysis here
we do not concern ourselves with terminal singularities or higher-codimension (4, 6)
loci where there is no “flat” resolution X respecting the elliptic structure (although, see
Sect. 2.9 for some further comments on codimension-three (4, 6) loci).8 Since simple and
manifestly resolution-independent methods are currently lacking for a complete analysis
of physics like chiral matter, we use specific resolutions for explicit calculations and try
to extract and identify the resolution-independent parts of the results.

One of the key features of a resolved CY fourfold X is the set of quadruple intersec-
tion numbers of divisors D̂I .9 Expanding an arbitrary set of divisors Ĉ, D̂, Ê, F̂ in an
appropriate basis D̂I , we may write

Ĉ · D̂ · Ê · F̂ = C I DJ EK FL(D̂I · D̂J · D̂K · D̂L). (2.2)

These intersection numbers can also describe aspects of the dual pairing associated
with Poincaré duality between divisors (codimension-one algebraic surfaces) and curves
(codimension three) in the fourfold, e.g., when a curve is realized as an intersection of
three divisors. As we discuss in further detail below, the quadruple intersection num-
bers of X are not in general resolution-independent, although some are resolution-
independent. A natural basis for the divisors in a fourfold with an elliptic fibration
structure is suggested through the Shioda–Tate–Wazir [71] formula

h1,1(X) = 1 + h1,1(B) + rkG, (2.3)

where the 1 comes from the zero section of the elliptic fibration, the second term comes
from pullbacks of divisors in the base to the total space of the elliptic fibration, and the
last term contains Cartan divisors of nonabelian gauge factors and additional sections
for the free abelian part of G. In view of this decomposition, and following standard
notation in the literature (e.g., [18]), we use the following conventions for indices I :

• I = 0 denotes the zero section
• I = a denotes a generating section associated to a non-Cartan U(1) gauge factor
• I = α denotes a divisor D̂α = π∗(Dα) realized as a pullback of a divisor in the
base

8 In this paper, when we refer to a CY fourfold X as a “resolution” of a singular Weierstrass model
X0 obtained by a sequence of blowups, we mean that X is at least a partial resolution that is smooth through
codimension-three loci in B (for elliptic fibrations whose geometry does not force tunings leading to additional
singular fibers beyond those suggested by the Weierstrass model), but may nonetheless contain singularities
over special codimension-three loci (i.e., points) in B. These codimension-three singularities do not affect
the results of our analysis, hence we ignore them and permit this abuse of terminology. Note that when B is
restricted to be a twofold B(2), these codimension-three singularities are absent; in the models we consider
here there are also no codimension-two terminal singularities, hence the resulting CY spaces X are in general
genuine resolutions over B(2). A comprehensive analysis of the network of genuine CY fourfold resolutions
(i.e., through codimension-three in B) using the physics of the low-energy effective 3DN = 2 description of
the F-theory Coulomb branch is presented in [69] (see also [70]); in [69], particular attention is given to the
geometry of the singular elliptic fibers over codimension-two and codimension-three loci.

9 We use hats to denote divisors in the fourfold X , as opposed to divisors in the base B; a glossary of
notation commonly used throughout the paper is given in Appendix J.
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• I = is denotes a Cartan divisor of a nonabelian factor Gs ⊂ G.

To make contact with the low-energy gauge theoretic description of the Coulomb branch
physics in the M-theory duality frame, we sometimes convert to the “physical” basis
D̂Ī = σ I

Ī
D̂I (see (B.5) for the definition of σ I

Ī
), where

• Ī = 0̄ denotes the U(1)KK divisor
• Ī = i = (ā, is) collectively denotes all other U(1) divisors.

Many of the intersection numbers are independent of resolution and are known for a
general smooth elliptically-fibered CY. For example [18], when D̂0 is a holomorphic
section and there are no abelian factors, one can use the fact that the quadruple intersec-
tion numbers of X can be pushed down to the base B10 to write

π∗(D̂4
0) = K 3, π∗(D̂0 · D̂α · D̂β · D̂γ ) = Dα · Dβ · Dγ . (2.4)

The above intersection numbers are clearly independent of the geometric properties of
the elliptic fibration, and only depend on the intersection numbers of the base. Other
intersection numbers, particularly those with three or four indices of type is or a, depend
not only on the matter content of the theory but also on the particular resolution; see
Appendix B for a more comprehensive discussion of the structure of these intersection
numbers for rather general classes of elliptic fibrations.

One issue that arises in certain situations, for instance whenG = (Gna×U(1)k)/�,
is that there may not be a holomorphic section of the Weierstrass model; this occurs, in
particular, when the section associated with the identity element of the Mordell–Weil
group intersects with one or more sections associated with generators of U(1) factors
over the discriminant locus. In some of these cases, the procedure of resolving the
singular CY geometry and analyzing various physical properties in the dual M-theory
frame on X is more easily accomplished in models in which the elliptic fiber is realized
as a general cubic in P2 rather than the usual Weierstrass model (e.g., the general cubic
is used to define the resolutions studied in [28].)

In this paper, we adapt the mathematical techniques of [20] to compute intersection
numbers of resolutions ofmodels inwhich the elliptic fiber is presented as a general cubic
in P

2. These mathematical techniques enable us to evaluate the quadruple intersection
numbers in terms of linear combinations of the triple intersection numbers of an arbitrary
base B, much in the same manner as described above:

π∗(D̂I · D̂J · D̂K · D̂L) = WI JK L = Wαβγ

I J K L Dα · Dβ · Dγ . (2.5)

With the aid of a symbolic computing tool, the action of the above map π∗ can easily
be used to compute intersection numbers (and other characteristic numbers11) of X in
terms of rational expressions involving divisor classes of the ambient fivefold in which

10 Strictly speaking, the intersection products D̂I · D̂J · D̂K · D̂L live in the Chow ring of the variety X (the
Chow ring encodes the intersection structure in a smooth algebraic variety; see Sect. 3.1 for further discussion).
However, since the pushforward is computed with respect to the canonical projection π : X → B, the resulting
intersection product π∗(D̂I · D̂J · D̂K · D̂L ) lives in the Chow ring of B. For simplicity of notation we are
often sloppy and omit explicit pushforward maps such as π∗ when the appropriate Chow ring is otherwise
clear from the context.
11 For example, the same methods have been used to compute the generating function of the Euler charac-

teristics of smooth (up to codimension two) elliptic n-folds resolving singular Weierstrass models with gauge
symmetry G; see [20] for further details.
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X is realized as a hypersurface.12 The techniques used to evaluate the pushforward map
π∗ are described in detail in Appendix E. Note that the physical results obtained from
a given resolutions X should, and do in the cases we analyze, match with the expected
physics from any other resolution, including the structure of the tensors Wαβγ

I J K L (see
Appendix B) appearing on the right hand side of Eq. (2.5).

2.5. Fluxes, consistency conditions, and linear algebra. In order to obtain a chiralmatter
spectrum in 4D, it is necessary to turn on a nontrivial flux background, which in the M-
theory duality frame corresponds to a nontrivial profile for the 4-form field strength dC3
whose key properties we now summarize.

2.5.1. Flux conditions It was argued in [72] that the cohomology class G = dC3 ∈
H4(X,R) satisfies a shifted quantization condition13

GZ = G − c2(X)

2
∈ H4(X,Z). (2.6)

To preserve supersymmetry, G must satisfy

G ∈ H2,2(X,R) ∩ H4(X,Z/2) (2.7)

along with the primitivity condition

J ∧ G = 0, (2.8)

where J is the Kähler form of X [73,74]. Finally, there is a tadpole condition [75–77]
requiring that the net number of M2-branes (which are dual to D3-branes in the F-theory
frame) is non-negative to ensure a stable vacuum,

NM2 = χ

24
− 1

2

∫
X
G ∧ G ∈ Z≥0, (2.9)

where χ = ∫
X c4 is the Euler characteristic of X ; the integrality of NM2 follows from

Eq. (2.6), as explained in [72].
Additional conditions must be imposed to ensure that G dualizes to a suitable F-

theory flux background. To preserve Poincaré symmetry, we require that the following
fluxes vanish: [77],

∫
S0α

G = 0,
∫
Sαβ

G = 0. (2.10)

Furthermore, to ensure that the flux background does not break the gauge symmetry G
in the 4D limit, it is necessary to impose the conditions (see, e.g., [8])

∫
Siα

G = 0, (2.11)

12 It should be possible to straightforwardly adapt these techniques to models in which the elliptic fiber is
realized as a complete intersection in Pn .
13 It turns out that c2 belongs to H2,2

vert(X,Z) as defined in Eq. (2.13).



Chiral Matter Multiplicities and Resolution-Independent Structure

where we emphasize that i collectively indexes all divisors dual to gauge U(1)s on the
F-theory Coulomb branch. Note that since G may be a half-integral cohomology class,
in principle it seems there could be circumstances under which no flux satisfies these
conditions; in all cases we have considered here, however, the integrals Eq. (2.10) and
Eq. (2.11) take integer values and the constraints can be satisfied, and this is likely always
true for the Poincaré symmetry constraints—in particular, the results of [78] show that
the fluxes appearing in Eq. (2.10) are always integer-valued for any G on a smooth
elliptic fourfold. We describe these conditions explicitly in some families of models
with gauge groups SU(2),SU(5) in Sect. 6.3 and Sect. 6.4.

2.5.2. Vertical fluxes and intersection pairing In addition to the usual Hodge decompo-
sition, the cohomology group H4(X) admits the finer orthogonal decomposition [49,79]

H4(X,C) = H2,2
vert(X,C)⊕ H2,2

rem(X,C)⊕ H4
hor(X,C). (2.12)

As in much of the previous literature, for the most part in this paper we focus on in-
tegral “vertical” fluxes, i.e., flux backgroundsG belonging to the subgroup H2,2

vert(X,R)∩
H4(X,Z) spannedbywedgeproducts of cohomologyclasses in H1,1(X),whereH1,1(X)

has a basis PD(D̂I ) of harmonic (1, 1)-forms on X dual to divisors D̂I .14 More pre-
cisely, for the purposes of this paper, we focus on fluxes belonging to the sublattice
H2,2
vert(X,Z) ⊂ H2,2(X,R) ∩ H4(X,Z), which we define as follows:

H2,2
vert(X,Z) := spanZ(H1,1(X,Z) ∧ H1,1(X,Z)), (2.13)

which is to say that a “vertical” class for us means a class belonging to the integer
linear span of forms PD(D̂I ) ∧ PD(D̂J ). Note that it is in principle possible for there
to exist integral vertical cohomology classes that do not lie in H2,2

vert(X,Z) as given by
this definition and therefore it is possible that our definition excludes some consistent
vertical flux backgrounds that could be included by permitting non-integer coefficients.

As reviewed in [17], vertical fluxes play a primary role in determining the chi-
ral matter content of a 4D F-theory compactification, and for the most part we ig-
nore components in H4

hor(X,C) ⊕ H2,2
rem(X,C) for flux backgrounds.15 Denoting by

�S the [h1,1(X)(h1,1(X) + 1)/2]-dimensional integral lattice spanned by the surfaces
SI J = D̂I ∩ D̂J (here treated as formally independent objects for each I J pair), we can
conveniently encode the flux integrals over vertical surfaces via the intersection pairing
matrix

M : �S ×�S → Z,

M(I J )(K L) = SI J · SK L =
∫
X
PD(SI J ) ∧ PD(SK L).

(2.14)

In the second line above, · indicates the intersection pairing on homology. As we explain
in more detail in Sect. 3.1, M can thus be viewed as an integral bilinear form on vectors

14 Note that when c2(X) is not even, G is a half-integer class; we neglect this refinement in our notation in
various places, essentially restricting to the simplified cases where c2(x) is even, except when it is directly
relevant to the discussion.
15 The possibility that Poincaré duality and the inclusion of fluxes in H4

hor(X,C)⊕ H2,2
rem(X,C) may give a

broader class of possible matter multiplicities is explored in Sect. 2.8, and more specifically in the case of the
SU(5) model with generic matter in Sect. 6.4.
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φ = φ I J SI J ∈ �S , giving �S the structure of an integral lattice.16 Following [16], we
define the fluxes

I J =
∫
SI J

G =
∫
X
G ∧ PD(SI J ) = M(I J )(K L)φ

K L , (2.15)

where φ ∈ �S represents the components of the Poincaré dual of the flux background G
expanded in a collection of classes SI J . Throughout the paper, we refer to φ as a “flux
background”. (Note that when c2(X) is not even, the possible values of φ are shifted
appropriately by a half-integer lattice element PD(c2(X)/2) ∈ �S/2.) In terms of the
above notation, the symmetry constraints (2.10) and (2.11) can be expressed as

Iα = 0, (2.16)

where we note that for vertical fluxes the above conditions are both necessary and
sufficient to preserve 4D gauge symmetry and local Lorentz symmetry. The fluxes I J
can be written as linear functions of the flux backgrounds φ I J , with coefficients given by
the pushforwards of the intersection numbers of divisors of X . In explicit computations
we can for certain resolutions ofGmodels (defined over arbitrary B) formally solve the
equations Eq. (2.16) for a subset of the φs, so that the nonzero s that encode the chiral
matter multiplicities are again linear functions of the remaining φs with coefficients that
are polynomial functions of the intersection numbers.

Imposing the symmetry constraints is equivalent to restricting the flux background
φ I J to lie in a sublattice �C ⊂ �S . For a given resolution X , the sublattice �C can be
viewed as the lattice of φ I J whose image under M is the sublattice of I J satisfying
(2.16), which in turn encodes the multiplicities of 4D chiral matter, as we review in more
detail in the following subsection. We emphasize that while the intersection numbers
entering the matrix M are generically resolution-dependent, we expect that the allowed
chiral multiplicities must be resolution-independent, consistent with the expectation that
every set of M-theory vacua defined by a set of distinct resolutions X lifts to a common
set of F-theory vacua on a singular elliptic CY fourfold X0.

What we have described above is essentially the standard perspective on analyzing
chiral matter in 4D F-theory flux vacua. We now discuss a complementary perspective
that illuminates additional aspects of the analysis.We begin with the observation that not
all the cycles SI J are independent in homology [23,24]. This implies that M generically
has a nontrivial nullspace, where the elements of the nullspace represent equivalence
relations in homology, and hence the rank of the matrix M is equal to the dimension
hvert2,2 (X) of Hvert

2,2 (X,Z). We denote by Mred the nondegenerate intersection pairing

Mred : Hvert
2,2 (X,Z)× Hvert

2,2 (X,Z)→ Z, (2.17)

where we describe Mred explicitly as a matrix by restricting the action of the matrix
M to the quotient of �S by the nullspace, which projects �S to the quotient lattice
Hvert
2,2 (X,Z).
While the reduced matrix Mred produces the same results for the multiplicities of

chiralmatter asM does in the procedure described above,Mred is a simple and useful tool
for analyzing various aspects of fluxes and chiral matter (e.g. the number of independent

16 While sometimes physicists refer to any subgroup of Rn that is isomorphic to Z
n as a lattice without

reference to any associated bilinear form, throughout this paper we reserve the term lattice for a free abelian
group of finite rank with a symmetric bilinear form. A standard reference for mathematical properties of
lattices is [89].
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families of chiral matter combinations can in principle be inferred from the rank of Mred,
without having to explicitly compute chiral indices.) Furthermore, we provide evidence
suggesting that while the full set of quadruple intersection numbers are not in general
resolution-independent, Mred is independent of the choice of X up to a change of basis.
Among other things, this implies that Mred makes the resolution-invariance of the chiral
matter multiplicities manifest in terms of a canonical subspace of homology classes that
parametrize the space of vertical fluxes lifting to consistent F-theory flux backgrounds.
Since the dimension of the null space of M is just (h1,1(X)(h1,1(X) + 1)/2)− hvert2,2 (X),
resolution-independence ofMred also implies resolution-independence (up to an integral
change of basis) of M ; this argument is spelled out more explicitly in Sect. 4.2 and
Appendix H. Previous work [23] has implemented the quotient by the nullspace taking
�S to Hvert

2,2 (X) in explicit resolutions by using methods related to the Stanley-Reisner
ideal; here we carry out this quotient directly on the matrix M computed for various G
models defined over arbitrary B. To our knowledge, the observation that Mred and M are
resolution-invariant has not been made previously either in the mathematics or physics
literature.

Both the symmetry constraints and the projection into nontrivial homology classes
have a simple geometric interpretation, and it is clear that the composition of these two
operations in either order leads to the same sublattice equipped with a nondegenerate
bilinear form. Given the original lattice �S with bilinear form M , the constraints (2.10)
and (2.11) restrict φ to the sublattice �C . If dim(�S) = m and there are k (non-null)
constraints, then dim(�C ) = m − k. Imposing the homological equivalence relation
φ ∼ ψ ⇔ M(φ − ψ) = 0 (i.e., quotienting out �C by the nullspace V of M , which
satisfies V ⊂ �C ) gives us the lattice of independent vertical flux backgrounds �phys =
�C/∼, with the nondegenerate bilinear form Mphys that is the restriction of MC to
�C/∼. We can describe this procedure explicitly in a given basis for �S . In particular,
if we define an m × (m − k) matrix C to have columns given by a set of generators of
the lattice �C ⊂ �S , then C : Zm−k → �S describes a lattice embedding of Zm−k into
�C ⊂ �S , and MC := C tMC is the restriction of M to �C that results from imposing
the symmetry constraints, expressed in a natural basis for�C . The resulting form of MC
plays an important role in our analysis, although with the simplest choice of coordinates
there are some subtleties with integrality conditions that we discuss in more detail in
Sect. 2.8 and Sect. 3.2. Alternatively, we can first impose the homological equivalence
relation on M , leading to the reduced intersection pairing matrix Mred, and then impose
the symmetry constraints. The preferred order in which to perform these two operations
depends on the circumstances. Nevertheless, these two operations lead to the same result
when both are performed either over Z (more generally, over R), so the analysis can
be carried out in either order—see Fig. 1. Sections4 and 3 essentially describe different
perspectives on our analysis that arise from performing these two different orders of
operation.

Each of these two approaches has value for understanding the structure of chiral
matter multiplicities; explicit computation of MC in many cases provides an efficient
method to compute the chiral indices as a function of the characteristic data, while the
structure of Mred gives us insight into resolution-independence and the discretization
structure of allowed chiral matter multiplicities.

To maintain clear control of the discrete quantization of allowed fluxes , some
care is needed. While every integer quantized choice of flux background φ ∈ �S must
correspond to an integer vertical flux background G by Poincaré duality, in some cir-
cumstances (i.e., when non-vertical fluxes are included) there may exist quantized flux
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ΛS ΛC

Hvert
2,2 (X,Z) Λphys

Fig. 1. Our approach to analyzing vertical fluxes and chiral matter involves the interplay of two commuting
operations on the lattice of vertical flux backgrounds �S spanned by the vertical cycles SI J = D̂I ∩ D̂J .
One operation is the restriction of the �S to the sublattice �C of backgrounds satisfying the symmetry
constraints (2.10) and (2.11) necessary to preserve 4D local Lorentz and gauge symmetry. The other operation
is the restriction of �S to the vertical homology Hvert

2,2 (X,Z) by quotienting �S by homologically trivial
cycles. Performed in either order, the composition of these two operations lead to the same sublattice �phys of
consistent F-theory flux backgrounds that preserve gauge symmetries in the low-energy effective 4D N = 1
description of the F-theory compactification. We present evidence suggesting that Hvert

2,2 (X,Z) equipped with
its symmetric bilinear form Mred is resolution-independent up to an integer change of basis

backgrounds G that give rise to more general fractional choices of φ. We restrict atten-
tion in our analysis primarily to fluxes corresponding to integrally quantized φ ∈ �S
(except for the possible half-integer shift from c2(X)/2), though we discuss in some
places the possibility of more general fluxes, which may in turn lead to a larger set of
possible chiral matter multiplicities. These issues are discussed further in Sect. 2.8.

2.6. Chiral matter multiplicities. The by now standard result in the F-theory literature
[13–16,80] is that for any complex representation r of the gauge group G, the chiral
index is

χr = nr − nr∗ =
∫
Sr
G, (2.18)

where the homology class Sr ∈ H4(X,Z) is a “matter surface”. For local F-theory
matter, it is expected [14,81,82] that any cycle belonging to the class Sr is topologically
the fibration of an irreducible component Cw of the elliptic fibers (where w ∈ r is any
weight) over an irreducible codimension-two component (i.e., a “matter curve”, not to be
confusedwith amatter surface)Cr ⊂ {	(2) = 0}of the discriminant locus {	 = 0} ⊂ B,
associated to the local matter transforming in the quaternionic representation r = r⊕ r∗.
In practice the flux of G through Sr is computed by way of Poincaré duality, i.e.

∫
Sr
G =

∫
X
G ∧ PD(Sr), (2.19)

and hence the analysis of vertical flux backgrounds we describe depends crucially on
being able to identify an appropriate cohomology class PD(Sr) dual to Sr (note that
the choice of PD(Sr) in general may depend on the choice of resolution X ). With one
exception [13], in all known examples PD(Sr) can be characterized as an element of
H2,2
vert(X) [17] (or equivalently Sr ∈ Hvert

2,2 (X).) However, the precise definition is subtle
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and it is unclear that Sr always has non-trivial components in H2,2
vert(X); see Appendix G

for a discussion about this subtlety in the context of certain resolutions of the SU(5)
model. Our default assumption in this paper is that Sr always contains a non-trivial
component in Hvert

2,2 (X,Z). Note that in cases we study where c2(X) is not an even class
and hence (because of Eq. (2.6)) the flux G is a half-integer class in cohomology, the
chiral indices Eq. (2.18) nonetheless take integer values. This is presumably guaranteed
for all physically allowed configurations though we do not know of a complete proof.

As discussed above, the fiber of Sr is a curve Cw that an M2-brane wraps leading
to 3D matter characterized by BPS central charges C · D̂i = wi (here D̂i are Cartan
divisors associated to U(1) gauge factors characterizing the low-energy physics and
wi are the Dynkin coefficients of the weight w). Thus by Poincaré duality, we can
construct in homology the class C associated with a particle labeled by any weight
of any representation; note that to utilize Poincaré duality in this context one must
project out, e.g., the fiber and zero section, as described in [83]. We describe an explicit
example of a matter curve and some related quantization subtleties in the simple case
of SU(2) in Sect. 6.3. Unfortunately, however, there is no universal approach known to
explicitly construct Sr in homology simply from topological and representation theoretic
considerations, without using a specific resolution. The issue is that, as reviewed in [17],
the image of Sr in �C does not simply contain components of the form Siα = D̂i ∩ D̂α;
indeed, these must be projected out to preserve gauge invariance. Rather, the image of Sr
in �C must also include components in the Si j directions (as demonstrated explicitly by
Eq. (4.8)), and since the intersection properties of the classes Si j in general may depend
on the choice of X , it follows that the precise form of Sr is not known from first principles
in a resolution-independent fashion. While the approach described in this paper does not
rely on explicit computation of the matter surfaces, we remark that despite the apparent
resolution dependence of Sr, the resolution independence of Mred suggests that there
exists a natural description of Hvert

2,2 (X,Z) in terms of which the vertical components of
the matter surfaces for any given anomaly-free combination of representations realized
in F-theory can be characterized in a resolution-independent fashion.

Before addressing the explicit computation of chiral matter indices, we recall that, as
described above, after both imposing the symmetry conditions and quotienting by the
homology relations encoded in the nullspace of M , we are left with a set of indepen-
dent flux backgrounds φ, associated with a nontrivial (rkMphys)-dimensional sublattice
Mphys�phys ⊂ M�S that for a given X encodes the 4D chiral matter multiplicities χr.
Thus, even without explicitly computing Sr, we can expect in such cases for there to be
an m-dimensional space of χr (where m ≤ rkMphys) that can be realized by turning on
different combinations of φ I J . Since F-theory constructions are expected to always be
consistent at low energies, these combinations of χr should always satisfy 4D anomaly
cancellation. Therefore, we expect that the rank of Mphys, or equivalently the rank of
Mred minus the number of independent constraints in (2.16), places an upper bound on
the number of linearly independent combinations of chiral matter fields available in the
theory.

As is evident from the above discussion, to explicitly compute χr one must either
identify Sr, or proceed by more indirect means. Here we proceed in the latter fashion
and follow a strategy similar to that of [19] (see also [32,84]), which exploits the follow-
ing relationship between the set of I J satisfying the symmetry constraints and linear
combinations of χr given by 3D one-loop Chern–Simons couplings appearing on the
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Coulomb branch of the 4D F-theory vacuum compactified on a circle:

 Ī J̄ = −3D
Ī J̄

, Ī = 0̄, i (2.20)

where

 Ī J̄ := σ I
Ī
σ J
J̄
I J . (2.21)

(Recall that the index 0̄ denotes the abelian Kaluza–Klein gauge field associated to the
compact circle and we use the index i to collectively denote all other U(1) gauge fields;
see (B.5) for the precise definition of σ I

Ī
.) In the above equation the couplings 3D

Ī J̄
,

which receive contributions from integrating out all massive fermions on the Coulomb
branch, can be expressed as linear combinations

3D
i j = x ri jχr, x ri j ∈ Q. (2.22)

For every resolution that satisfies our default assumption that each matter surface has
a vertical component, the above linear system can be inverted, which allows us to then
write an explicit formula

χr = xi jr 3D
i j . (2.23)

We expect the set of allowed chiral multiplicities χr that can be realized for integer
flux backgrounds φi j to be independent of the choice of resolution X , up to a choice of
basis for φi j .

2.7. Linear constraints and anomaly cancellations. The anomaly conditions for any 4D
theory are linear relations on χr (these conditions are reviewed in Appendix A). There
are also linear relations that automatically hold on I J by virtue of the nullspace of
M . Connections between the anomaly relations and these geometric conditions were
identified in [24] (see also [25,85]). Our finding here is that, in all cases we consider, the
linear relations on 3D

i j imposed by the nullspace conditions and symmetry constraints
are precisely the same as the anomaly conditions, so that not only does geometry encode
the anomaly conditions, but there are also no further linear constraints coming from
F-theory on the set of allowed chiral multiplicities, and thus fluxes exist that can turn
on all anomaly-allowed combinations of chiral matter fields in all the cases we explore.
(Note that this statement regards linear constraints on families of allowed chiral matter.
Tadpole constraints will, of course, impose a bound on the magnitude of the number of
families for any given linear combination of allowed chiral matter fields.)

In general, the linear constraints that hold on the fluxes I J for an F-theory back-
ground where the 4D gauge group is unbroken (and hence equal to the geometric gauge
group G) are the union of those that come from the nullspace of M and the constraints
(2.16). It is helpful to consider how this set of constraints arises in the two approaches
characterized in Fig. 1. When the nullspace of M is quotiented out first, giving Mred,
and then the constraints are imposed, it is clear that the constraints listed above are pre-
cisely the constraints on the resulting s that can arise. The situation is slightly subtler,
however, when the constraints are imposed first. In particular, the signature of the inner
product matrix M is not generally semi-definite, so in principle there can be vectors of
vanishing norm that are not null vectors of M . If one of the constraints (2.16) can be
described as wMφ for a vector w of this type, then when the constraints are imposed
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first the matrix MC could have additional null vectors beyond those associated with ho-
mological equivalence in �S ; this would occur when the vector w also lies in �C . The
subsequent quotient by homologically trivial cycles (i.e., null vectors of M) does not
remove such null vectors from MC . Nonetheless, any such vector would still correspond
to a linear combination of the nullspace and symmetry constraints.17 While this situation
does not arise in practice in any of the models we analyze here, we do not have any way
of strictly ruling it out, particularly for models with one or more U(1) factors, so this
possibility must be kept in mind throughout the analysis.

2.8. Quantization of fluxes and matter multiplicities. One thorny issue, which has not
been fully resolved to our knowledge anywhere in the literature, is the precise quan-
tization condition on the fluxes and the consequent constraints on the multiplicities of
chiral matter. Even in the most well-understood SU(5) F-theory GUT constructions, this
question is left open in analyses of which we are aware. Note that this question arises
whether or not there are issues related to the shifted quantization condition Eq. (2.6).

We do not fully resolve this quantization issue here but we do shed some light on the
question and provide a set of sufficient conditions for matter with certain multiplicities
to exist. In the basis for �S given by the surfaces SI J , the coefficients φ I J are always
integers for purely vertical fluxes (or in some cases half-integers, when c2(X) is not
even)18, so that the lattice vectors φ live in the lattice Hvert

2,2 (X,Z) = �S/ ∼ obtained by
quotienting out homologically trivial φ. However, a basic observation is that the matrix
Mred that gives an inner product on this space (and which maps φ to some corresponding
) does not in general have determinant equal to ±1, so that the possible values of 

that can be realized generically imply a nontrivial quantization on possible chiral matter
multiplicities induced by vertical fluxes. Furthermore, the symmetry constraints (2.10)
and (2.11) impose further constraints on the allowed values of φ and hence the resulting
nonzero  and associated chiral multiplicities may be subject to additional quantization
constraints.

More explicitly, in many situations such as that of a purely nonabelian gauge group,
the condition that certain s must vanish, needed to preserve local Lorentz and gauge
symmetry of the 4D theory, can be written schematically in the form

(
0

′′
)
=

(
M ′ Q
QT M ′′

)(
φ′
φ′′

)
, (2.24)

so we have

M ′φ′ + Qφ′′ = 0. (2.25)

In the basis for �S given by the surfaces SI J , the coefficients φ I J comprising φ′, φ′′
are always integers. When the matrix M ′ has a non-unit determinant, we can think of

17 A simple proof of this statement can be made as follows: assume without loss of generality that M has no
nullspace, and the constraints are of the form w = wMφ = 0 for w ∈ W , and �C is the orthocomplement
W⊥ of the set of constraints W . Then any null vector u ∈ �C of MC satisfies uMCφ = uMφ = 0 for
any φ ∈ W⊥. But then u ∈ (W⊥)⊥ = W , so u is a constraint vector. A similar proof follows when M has
nontrivial nullspace, though u can also have a component then in this nullspace.
18 For the most part we frame the discussion in terms of cases where c2(X) is an even class, so that the

quantization issue of Eq. (2.6) leavesG as an integer cohomology class; it should be kept in mind however that
when c2(X) is not an even class, some of the flux background parametersmust be half-integer, i.e.φ I J ∈ Z+ 1

2 .
We consider explicit examples of this in Sect. 6.4.
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the image of M ′ acting on vectors φ′ in Z
k as a k-dimensional lattice �′. We can solve

the equation (2.25) for integer values of φ′ if and only if Qφ′′ ∈ �′. This gives a
quantization condition on the flux coefficients φ′′ that is both necessary and sufficient
to have an integer solution for φ′. Thus, we can determine a condition on φ, and hence
on the nonzero s that parameterize the chiral matter, which is sufficient to guarantee
the existence of an allowed flux background in Hvert

2,2 (X,Z). As we see in the more
explicit analyses of Sect. 6, in cases of a simple gauge group likeG = SU(N ), this kind
of analysis leads to a natural understanding of the quantization condition on the fluxes
from the appearance of the Cartan matrix ofG in the role of at least a block of the matrix
M ′. The story is somewhat more complicated in the presence of U(1) factors.

The analysis just summarized focuses only on vertical fluxes. From Poincaré duality
of H2,2(X,C), we know that there must exist a flux so that

∫
S G = 1 for any primitive

element S in H2,2(X,Z). As mentioned above, however, the intersection form is not in
general unimodular on H2,2

vert(X,Z). Thus, a complete analysis of the set of possible chiral
matter multiplicities available may require including flux backgrounds with components
in H2,2

rem(X,Z)⊕ H4
hor(X,Z) and/or fractional coefficients in terms of the basis PD(SI J )

for H2,2
vert(X)—see Fig. 2 for an illustration of this point. This is discussed in more detail

in the case of SU(5) in Sect. 6.4. Flux backgrounds with such fractional coefficients
have been analyzed previously in, e.g., [29]. In that context, in the notation of this
paper, fractional values of φ are considered and the necessary constraints that Mφ

gives integer values (i.e. that G integrated over any surface in Hvert
2,2 (X) is integral)

are imposed. However, not all such fractional values of φ necessarily correspond to
allowed fluxes. As an example of this point, consider the self-dual lattice defined by
the symmetric bilinear form diag(2, 2). This lattice consists of all vectors (x, y) with
x, y ∈ Z/2, x+ y ∈ Z. The vector (1/2, 0) has integer inner product with the elements of
a non-unimodular basis (1, 0), (0, 1), but it is not an element of the given self-dual lattice.
For similar reasons, the conditions that Mφ is integral are not by themselves sufficient
to guarantee that φ is an integer homology class. This question is further complicated by
the lack of understanding of the components of φ in H rem

2,2 (X,Z)⊕ Hhor
4 (X,Z). Thus,

it is difficult to ascertain exactly which fractional values of φ correspond to vectors in
the unimodular lattice H4(X,Z). We discuss this further in some specific examples in
Sect. 6.3 and Sect. 6.4.When Hvert

2,2 (X,Z) = H4(X,Z)∩H2,2(X,R), and φ is allowed to
be a general element of H4(X,Z), then the unimodularity of H4(X,Z) implies that the
proper conditions for the vertical component φvert are that it should lie in the dual lattice
to Hvert

2,2 (X,Z) and also in the constrained lattice �C , but is not subject to any further
apparent constraints. This does not, however, imply that even in this case any chiral
multiplicity is possible, without further information about whether the matter surface
has components in H2,2

rem(X,Z)⊕ H4
hor(X,Z); we leave a more detailed investigation of

these integrality conditions to future work.

2.9. Codimension-three (4, 6) loci. ManyF-theory geometries contain (4, 6) (or higher)
singularities in the elliptic fibration over codimension-three loci in the base [41,58]; these
are often associated with non-flat fibers in the resolution [70]. In this paper, we focus
on geometries without codimension-three (4, 6) singular loci in the elliptic fibration.
We note that we have also analyzed a variety of situations, such as universal models
with gauge groups G = SU(N ≥ 7),SO(N ≥ 12),E7 and other cases that do have
codimension-three (4, 6) loci, where we find that there is an additional allowed flux
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Hvert
2,2 (X)

Hhor
4 (X) ⊕ Hrem

2,2 (X)

(12 ,
1
2)

(1,0( )0, 0)

Fig. 2. Toy example of a possible realization of H4(X,Z) as an integral unimodular lattice (note that we
implicitly include the shift by c2/2), where we take the bilinear pairing to be Mred ⊕ M⊥red = diag(2, 2). In

this example we denote lattice vectors by (φ, ψ), with φ ∈ Hvert
2,2 (X), ψ ∈ Hhor

4 (X) ⊕ H rem
2,2 (X). As can

be seen by requiring the inner product 2φ2 + 2ψ2 to take integer values, the restriction of (φ, ψ) to (φ, 0)
(represented by blue dots in the above graph) requires φ ∈ Hvert

2,2 (X,Z) ∼= Z to preserve the integrality of

the lattice, i.e. φ ∈ 1
2Z is forbidden. However, there exist lattice vectors with ψ �= 0 for which φ ∈ 1

2Z, for

instance the vector ( 12 , 1
2 ) represented by the red dot in the above graph. This example shows that vertical

flux backgrounds φ with rational coefficients φ I J ∈ Q, which preserve the integrality of both the lattice and
chiral indices, could in principle exist

background parameter and the rank of Mred is larger than expected from the 4D anomaly
cancellation conditions. A more detailed analysis of these models is left for future work.

2.10. Summary of new results. We summarize here the main results of the paper:

• We show, byway of example, that the pushforward technology of [20] can be used to
easily compute the vertical fluxes of resolutions of singular Weierstrass models with
any nonabelian gauge symmetry subgroup over an arbitrary smooth base. We also
show that U(1) gauge factors can be incorporated into the analysis in a manner that
depends explicitly on the intersections of the associated height pairing divisors with
the curve classes of the base. We present an explicit expression for the vertical fluxes
in terms of the pushforwards of the intersection numbers of the resolved elliptic CY
fourfold to the base; in the special case of a purely nonabelian gauge group, these
intersection numbers only depend on the intersections of the canonical class of the
base and the classes of the gauge divisors wrapped by seven-branes whose gauge
bundles correspond to the simple factors of the F-theory gauge group.
• Wefind that the reduced intersection pairingMred on the verticalmiddle cohomology
H2,2
vert(X,Z) is independent of resolution (up to a change of basis) in all cases we

consider explicitly. We furthermore show that this resolution-independence holds
for all F-theory models with nonabelian gauge symmetry and generic matter, when
the physically-relevant Mphys is resolution invariant and obeys certain compatibility
conditions related to the weight lattice of the gauge algebra. We conjecture that the
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resolution-independence of Mred (and hence also of the full matrix M including the
nullspace built from vertical cycles) holds more generally for F-theory models with
arbitrary gauge groups, including those with U(1) factors, and give some explicit
examples supporting this conjecture.
• Exploiting M-theory/F-theory duality, we match 3D Chern–Simons couplings with
the vertical fluxes to obtain the chiral matter multiplicities associated to various
examples of universal G models, some not previously studied in the literature. In
particular we study low rank examples of models with simple, simply laced gauge
group and generic matter (see Table 1), as well as the universal (SU(2)× U(1))/Z2
model.
• We find that in all cases we study, the number of independent vertical fluxes re-
maining after imposing constraints necessary to preserve local Lorentz and gauge
symmetry in 4D—equivalently, the rank of the nondegenerate intersection pairing of
the vertical cohomology of the resolved elliptic CY fourfold with integer coefficients,
minus the number of independent symmetry constraints—is greater than or equal to
the number of allowed independent families of 4D chiral matter multiplicities plus
the number of non-minimal codimension-three singularities in the F-theory base. In
all these cases, allowed fluxes produce matter combinations that span the linear space
of anomaly-free matter representations.19

3. Fluxes Preserving 4D Local Lorentz and Gauge Symmetry

Sections 3 and 4 present two different perspectives on the relation between flux back-
grounds φ I J and fluxes I J corresponding to the two paths from the upper left to the
lower right of the commuting diagram in Fig. 1. In this section, we describe the sublattice
of flux backgrounds �C ⊂ �S , which is the preimage of the lattice of fluxes M�S pre-
serving 4D local Lorentz and gauge symmetry. The matrix elements of the inner product
matrix MC on the constrained space depend on the pushforwards WI JK L of quadruple
intersection numbers of a smooth elliptic CY fourfold X resolving a Weierstrass model
with gauge symmetry G = (Gna × U(1))/� (cases with additional U(1) factors are a
straightforward generalization of the results presented here.) Note that in this section
and the next, we do not concern ourselves with the shifted quantization condition (2.6)
but simply treat �S as an integral lattice, with the understanding that sometimes this
quantization condition gives an overall half-integer shift that must be incorporated in
specific contexts.

In Sect. 3.1 we review the relationship between vertical fluxes I J and intersection
numbers of the types of smooth ellipticCY fourfolds X withwhichwe concern ourselves.
Section3.2 presents an explicit expression for MC that is valid in most of the cases we
consider. In Sect. 3.3 we discuss further the relationship between the nullspace of MC
and linear constraints on I J , along with the relationship of these constraints to 4D
anomaly cancellation.

3.1. Computing vertical fluxes with intersection theory. Given a smooth CY fourfold X
and a basis of divisors D̂I where I = 0, 1, α, is (we take I = a = 1 to be the only index,
if there is one, denoting a U(1) section—see the discussion immediately below (2.3) for

19 The resolutions we study of models with codimension-three (4, 6) loci are non-flat fibrations in which the
fibers over the (4, 6) loci contain a Kähler surface as an irreducible component. See the comments in Sect. 2.9
for further discussion.



Chiral Matter Multiplicities and Resolution-Independent Structure

more details about the index structure), we may expand a vertical flux background
G ∈ H2,2

vert(X,Z) in a basis of wedge products of (1, 1)-forms dual to divisors, PD(D̂I ),
where ‘PD’ denotes the Poincaré dual.20 In our analysis here we formally work in the
Chow ring, which exhibits the intersection properties of elements of (co)homology that
have a description in terms of algebraic subvarieties. The reason for this is that the
pushforward technology that we use, which is described in more detail in Appendix B,
is defined with respect to the Chow ring. For the purposes of the analysis here, however,
the only elements of the Chow ring that concern us are the classes of divisors D̂I and
their intersections SI J = D̂I ∩ D̂J ∈ �S , which can be understood directly as elements
of the homology groups H3,3(X,Z) and H2,2(X,Z) respectively.

As described in (2.15), the integrals of a flux backgroundG over the cycles of vertical
surfaces can be evaluated in terms of intersection products of D̂I

I J =
∫
SI J

G =
∫
X
G ∧ PD(SI J ) = φK L SK L · SI J = φK L D̂K · D̂L · D̂I · D̂J ,

(3.1)

and so we may parametrize a candidate vertical flux G in terms of its Poincaré dual class
φ in the Chow ring of X as φ = φ I J SI J , leading to the more succinct expression

I J = φ · SI J . (3.2)

This correspondence between integrals over cycles and intersection products implies
that the intersection pairing matrix M : �S × �S → Z can be described as a matrix
with indices given by pairs I J , where the matrix elements are expressed in terms of
quadruple intersection numbers,

M(I J )(K L) = SI J · SK L . (3.3)

Thus, essentially every computation relevant for determining the multiplicities of chiral
matter can be characterized in terms of linear algebra and performed using intersection
theory.

In what follows, we assume that the smooth fourfold X is a resolution of a singular
Weierstrass model belonging to a family defined by the characteristic data (K , �s,W01),
where K is the canonical class of B,�s is the class of the gauge divisor in B associated to
the nonabelian gauge subalgebra gs andW01 is the class of the pushforward π∗(D̂0 · D̂1)

of the intersection of the zero and generating sections. We moreover assume that the
resolved elliptic CY fourfold π : X → B can be realized as a hypersurface inside
an ambient fivefold that is the blowup of a P

2 bundle. These assumptions allow us to
evaluate the quadruple intersection numbers explicitly by computing their pushforward
to the Chow ring of the base B,

π∗(D̂I · D̂J · D̂K · DL) = WI JK L = Wαβγ

I J K L Dα · Dβ · Dγ , (3.4)

where the right side of the above equation can be expressed as a linear combination
of triple intersection products of the classes of the characteristic data (K , �s,W01).

20 Lefshetz’s theorem on (1,1)-classes applied to projective varieties such as X guarantees that given a basis
of divisors D̂I there always corresponds a Poincaré dual basis of harmonic (1, 1) forms PD(D̂I )—see e.g.
[86] for a related discussion.
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Furthermore, since X is an elliptic fibration, for certain multi-indices I J K L the push-
forwardsWI JK L have additional structure that remains applicable for all known crepant
resolutions. For convenience we suppress the explicit pushforward map π∗ when the
appropriate ring is otherwise clear from the context. See Appendix B for additional
mathematical details about the pushforward map π∗ and the structure of the intersection
numbers.

3.2. Explicit solutions of the symmetry constraints. The main result of this subsection
is an explicit expression for the matrix MC and the resulting possible fluxesI J that are
the integrals of flux backgrounds φ I J restricted to live in the sublattice �C satisfying
the symmetry constraints (2.10) and (2.11).

We now sketch the essential features of the computation; the details of this derivation
can be found inAppendixC.Aswe have seen, the symmetry constraints (2.10) and (2.11)
imply Iα = 0. By ordering I J so that those that Iα are listed first and likewise
for φ Iα , as a matrix equation the symmetry constraints take the schematic form (2.24),
which we reproduce here for convenience:

(
0

′′
)
=

(
M ′ Q
QT M ′′

) (
φ′
φ′′

)
. (3.5)

In solving the symmetry constraints (2.10) and (2.11) it is often convenient to eliminate
(when possible) the parameters φ Iα , whose indices match those of the Iα , which we
require to vanish. We sometimes refer to objects carrying indices Î Ĵ (i.e., pairs I J for
which I, J �= α) as “distinctive”, and all others choices of index Iα as “non-distinctive”.
For example, in the abovematrix equation, φ′′ and′′ have distinctive indices. However,
even when we cannot solve for all non-distinctive φ parameters explicitly, we neverthe-
less sometimes denote by ′′ the set of fluxes obeying the symmetry constraints. Note
also that even when we can solve for all the non-distinctive φ parameters it is sometimes
useful to solve for a different set of φs; see, e.g., Eq. (7.14).

In cases for which the matrix block M ′ is nondegenerate we can solve the equation
(2.24) for the non-distinctive φ′ parameters in terms of the distinctive φ′′ parameters,
giving

φ′ = −(M ′)−1Qφ′′. (3.6)

When | det M ′| = 1, there is an integer solution in φ′ for any φ′′. When | det M ′| >

1, however, the integrality condition imposed on φ′′ by requiring that the symmetry
constraints be solved over Z is subtler, as discussed in Sect. 2.8. In some cases, such as
imposing the constraints on Mred after removing null vectors for a purely nonabelian
group, the corresponding matrix M ′ in the non-distinctive directions is non-degenerate
and invertible, and this procedure of solving for theφ′ fluxbackgrounds can be performed
exactly as in Eq. (3.6). In other cases, in particular when we consider the constraints
directly onM andnull vectors still are included among theφs, thematrixM ′ is degenerate
and cannot be inverted. In many such cases we can impose the constraints by simply
using the pseudoinverse ofM ′ for (M ′)−1, which for a symmetricmatrix basicallymeans
taking the inverse on the orthocomplement of the null space and the zero matrix on the
null space. This is equivalent to simply removing the null space and then taking the
inverse. Note that this works when the null vectors of M ′ are also null vectors of M .
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We can use this more general sense of Eq. (3.6) to write an expression for the restric-
tion of M to �C ⊂ �S when M ′ is nondegenerate and thus invertible on the orthocom-
plement of the null space. In the following we denote by (M ′)−1 the pseudoinverse of
M ′. In particular, as outlined in Sect. 2.5.2 we can define the m × (m − k) matrix

C =
(−(M ′)−1Q

Idm−k

)
, (3.7)

which defines an embedding of Zm−k associated with the m − k distinctive directions
into a rational extension of the full lattice �S , C : Zm−k → �C (Q) ⊂ �S(Q). Note
that null directions in M ′ are associated with constraints that are automatically satisfied,
so the corresponding combinations of φ′ vanish, in accord with the definition of the
pseudoinverse. As discussed in Sect. 2.8, when det M ′ = ±1 (for the non-null part of
M ′) this map gives a one-to-one correspondence between Zm−k and �C ; otherwise, the
domain of C must be taken to be the subset domC = C−1(�C ). In general, given such
a mapping C , we can give an explicit description of the the inner product form

MC = C tMC = M ′′ − Qt(M ′)−1Q, (3.8)

which gives the intersection pairing of flux backgrounds in the constrained space �C as
parameterized by φ′′, recalling that in some situations there may be additional discrete
constraints on the φ′′ values allowed for a valid flux background. We analyze these
integrality conditions in more detail for nonabelian gauge groups in Sect. 6.2.2, and for
specific examples in Sects. 6 and 7.1. In much of the discussion, however, we elide this
subtlety.

Carrying this description slightly further, we can also define an m × m matrix

P = (0m×k C) , (3.9)

which is idempotent (P2 = P) and gives by right multiplication of the matrix M

MP = P tMP =
(
0 0
0 MC

)
. (3.10)

This extends the embedding map C to be defined on all of �S , where the extra (non-
distinctive) parameters are essentially thrown out in themap, which becomes a projector;
this form of MC will be useful in some places. In particular note that the s that result
from the action of MP on a given set of φs satisfying the constraint equations span the
set of possible vertical fluxes. Recalling that Mphys can be defined as the inner product
on �C/∼ after taking the quotient by homologically trivial cycles, we have

rkMphys = rkMC . (3.11)

This rank corresponds to the number of linearly independent families of allowed fluxes.
We present now a formal expression for the matrix elements of MC in the case of a

gauge groupG = (Gna×U(1))/� for generic characteristic data. This set of expressions
is valid whenever M ′ is nondegenerate and invertible (or pseudo-invertible, using null
vectors of M ′ that are also null vectors of M). This condition always holds when G is
purely nonabelian and the F-theory geometry admits a holomorphic zero section, and is
true inmost situationswehave consideredwith simple bases and/or generic characteristic
data when the gauge group contains U(1) factors. As shown in the example in Sect. 7.1.3,
however, there are some cases where M ′ is degenerate even after removing null vectors
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in the non-distinctive directions; in such situations we can still analyze the spectrum by
solving for a different set of φs, but the formulae given here do not apply in this form.

The fluxes satisfying the symmetry constraints take the form21

 Î Ĵ = MC ( Î Ĵ )(K̂ L̂)
φ K̂ L̂ . (3.12)

In the above equation, the matrix elements of MC can be expressed as

MC ( Î Ĵ )(K̂ L̂)
= MCna ( Î Ĵ )(K̂ L̂)

− MCna ( Î Ĵ )(1α)
M+(1α)(1β)

Cna
MCna (1β)(K̂ L̂)

, (3.13)

where MCna = C t
naMCna is the restriction of M to the sublattice �Cna of backgrounds

only satisfying the purely nonabelian constraints isα = 0. The components of MCna

are

MCna (I J )(K L) = WI JK L −WI J |is ·Wis | js′WKLjs′

−W0I J ·WKL −WI J ·W0K L

+W00 ·WI J ·WKL

(3.14)

where in particular

MCna (1α)(K L) = Dα ·W1̄K L

= Dα · (−W1|ks′′W
ks′′ |is Wis K L +W1I J −W0K L + (W00 −W01) ·WKL)

(3.15)

MCna (1α)(1β) = Dα · Dβ ·W1̄1̄

= Dα · Dβ · (−W1|ks′′W
ks′′ |is W1is + 2(W00 −W01)) (3.16)

and M+(1α)(1β)
Cna

is the inverse of MCna (1α)(1β).
The structure of the various pushforwards WI J is explained in more detail in Ap-

pendix B; for example in Eq. (3.16), W1̄1̄ is equal to (minus) the height pairing divisor
associated to the U(1). For a purely nonabelian gauge group, there are no indices of the
form (1α), the second term in Eq. (3.13) can be dropped, and MC = MCna from Eq.
(3.14). The fact that the restriction of M ′ (see Eq. (2.24)) to the nonabelian part of the
theory (i.e., taking all indices Iα except 1α) contains a non-trivial invertible submatrix
for generic characteristic data over arbitrary B can be deduced from the explicit form of
the components of M ′, which are all resolution-independent, as discussed in more detail
in Sect. 4.3.

The presence of a U(1) factor introduces additional complications, as we now de-
scribe in more detail. The submatrix M+(1α)(1β)

Cna
is generically the inverse of the matrix

MCna (1α)(1β) = [[W1̄1̄ · Dα · Dβ ]].22 For bases with h1,1(B) not too large relative to

h1,1(W1̄1̄
23 and generic characteristic data, this matrix is invertible. When MCna(1α)(1β)

21 Hatted indices are of type Î = 0, 1, is , i.e., a restriction of the usual indices to the case I �= α.
22 Barred (“physical”) indices are of type Ī = 0̄, 1̄, α, is . In the basis D̂Ī , D̂0̄ is the KK U(1) divisor and

D̂1̄ is the abelian U(1) divisor (i.e., the image of the generating section under the Shioda map), whereas in the

basis D̂I , D̂0 is simply the zero section and D̂1 is the generating section. The matrices σ I
Î
in (B.5) and their

inverses can be used to convert between these two bases.
23 Since W1̄1̄) is the class of a surface in B, whenever h1,1(W1̄1̄) < h1,1(B) the matrix [[W1̄1̄ · Dα · Dβ ]]

will be singular.
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is not invertible, however, the expression (3.13) is no longer valid; in such cases a further
analysis must be done, which often involves solving for a different set of φ compo-
nents, though the essentially the same procedure (i.e. solving the symmetry constraints
Iα = 0 by eliminating certain components of φ) still works. An explicit example of
this type of situation is illustrated in Sect. 7.1.3. We expect that while some null vectors
of MCna(1α)(1β) can be dealt with by solving some of the constraints 1α = 0 for other

φs, this can be done for at most the total number of parameters φ Î Ĵ , 12 (rkG+2)(rkG+1).
Null vectors of MCna(1α)(1β) that cannot be treated in this manner, i.e., by solving for

other φ Î Ĵ , should correspond to extra null vectors of M . It is also possible that even in
the cases where null vectors of MCna(1α)(1β) can be treated by solving for parameters

φ Î Ĵ , this may increase the number of null vectors of M and decrease the number of
independent possible fluxes  (since rkM = dim M − nullityM is equal to the number
of independent flux backgrounds plus the number of independent constraints, so that an
increase in the number of null vectors corresponds either to a decrease in the number
of independent constraints or a decrease in the number of independent fluxes); we have
not encountered any explicit examples where this behavior occurs, though we have not
attempted to systematically construct such examples. We explore the detailed structure
of null vectors of M in more detail in Sect. 4.

Note that the analysis here can in general lose information about the integer quanti-
zation on the φs, since in principle the inverse matrices Wis | js′ and M+(1α)(1β)

Cna
may be

rational and not integer valued. We address these issues more explicitly in Sect. 4 in the
context of the analysis where the nullspace is removed first to give the reduced matrix
Mred.

3.3. Homology relations and anomaly cancellation. As discussed in Sect. 2.7, the null
vectors of MC , considered as elements of �C ⊂ �S , encode the full set of F-theory
constraints on the possible vertical fluxes I J , which must include at least the anomaly
cancellation conditions but in principle may impose stronger constraints. (See [24] for
a closely related discussion about anomalies in F-theory.) When we can explicitly solve
for a subset of the φ variables and write an expression for MC in terms of the remaining
variables, such as is done in terms of the distinctive parameters φ′′ in the preceding sec-
tion, we can gain explicit information that is relevant for understanding 4D chiral matter
multiplicities—in particular, the nullspace of such anMC contains complete information
about the linear constraints satisfied by the F-theory fluxes, as we now explain in more
detail. This approach to understanding the number of independent families of chiral
matter available in universal F-theory models for a given G complements the related
analysis of this question using Mred as discussed in the following section. In the remain-
der of this discussion we assume that we have an explicit description of MC in terms of a
subset of the flux degrees of freedom, as realized concretely in the preceding subsection
in cases where M ′ is (pseudo-)invertible, so that in this subspace ′′ = MCφ′′ and the
remaining s vanish.

Notice that since MC is symmetric, any null vector ν satisfying MCν = νtMC = 0
must also satisfy νt′′ = νtMCφ′′ = 0. Thus, identifying the nullspace of MC is
equivalent to identifying the linear constraints that must be satisfied by the fluxes ′′.
This can be accomplished in all purely nonabelian models admitting a resolution with
a holomorphic zero section by using the explicit expression for the nontrivial matrix
elements of MC given in (3.14).
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The physical significance of the nullspace equations νt′′ = 0 is that they are the
complete set of linear conditions thatmust be obeyedby the symmetry constrainedfluxes;
provided it is possible to express the chiral multiplicities as rational linear combinations
of fluxes as in (2.23), this further implies that the nullspace equations lead to the full
set of linear constraints that must be obeyed by the chiral matter multiplicities. Since all
allowed F-theory models are by assumption consistent with 4D anomaly cancellation,
the nullspace equations include as a subset the linear 4D anomaly constraints.

This observation has immediate applications to the question of whether or not F-
theory geometry imposes additional linear constraints on chiral matter multiplicities
beyond those associated with 4D anomaly cancellation, as the nullspace equations can
easily be recovered from (3.14). When G is purely nonabelian and the corresponding
resolution admits a holomorphic zero section, the fact that (3.14) is true for arbitrary
base B implies that the linear constraints on the chiral multiplicities can in principle be
read off for all G models in full generality, provided a resolution X can be identified
such that the chiral indices can be expressed in terms of the vertical fluxes ′′. In Sect. 6
we make extensive use of this structure to confirm that for all universal G models of
this type that we study, F-theory geometry imposes no additional linear constraints on
the chiral multiplicities of matter charged underG beyond the 4D anomaly cancellation
constraints; we also find this to be true for all models we study with U(1) gauge factors,
as discussed in Sect. 7.

For models with a U(1) gauge factor, some additional care is needed since, as ex-
plained towards the end of Sect. 3.2, it does not seem possible to easily compute a fully
general form for the nullspace of MC for a model with U(1) gauge factors over an ar-
bitrary base. Nevertheless, in many circumstances it does appear possible to first solve
for �Cna , then further restrict �Cna to the sublattice �Cna ∩ {φ1α = 0}, for which the
remaining symmetry constraints 1α = 0 can be solved over arbitrary B without mod-
ifying the nullspace equations νt′′ = 0. The basic idea here is that as long as there
exists a linearly independent subset of null vectors of M that span the S1α directions,
setting φ1α = 0 for all α will not reduce the rank of the set of s that are realized by
acting with M on �C , and hence will not change the nullspace equations νt′′ = 0
that encode linear constraints on the matter multiplicities. We expect that generically
the null vectors should have this property, and while we cannot prove that this is always
the case we have not encountered any instances where this does not hold. Thus, we
can often simplify the analysis of the linear constraints from null vectors by restricting
to background fluxes satisfying φ1α = 0. (Note, however, that even though we do not
expect this to modify the number of linear constraints, this strategy will not keep track
of the precise lattice of allowed fluxes, for reasons similar to the analysis following Eq.
(H.6).) With the restriction to �Cna ∩ {φ1α = 0}, the U(1) symmetry constraints take
the form

MCna(1α)( Î Ĵ )
φ Î Ĵ = 0 . (3.17)

In this case, the expressions for the symmetry constrained fluxes induced by flux back-
grounds restricted to the sublattice φ1α = 0 only depend polynomially on triple inter-
sections of the characteristic data since setting φ1α = 0 eliminates dependence on the
matrix W1̄1̄ · Dα · Dβ ; therefore we can again compute the symmetry-preserving fluxes
in terms of the characteristic data without committing to a specific choice of B. Pro-
vided there are null vectors with components spanning the S1α directions as described
above, we can then easily determine the linear constraints in this simpler setting with
the understanding that the same constraints apply to the unrestricted fluxes as well, at
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least for generic characteristic data. We do not attempt to specify the precise conditions
under which this is true; rather, we simply note that we have yet to identify any coun-
terexamples, i.e., any specific models with more restrictive linear constraints among the
fluxes (when φ1α �= 0) than those implied by anomaly cancellation. We give an explicit
example of this type of analysis in Sect. 7.1.

4. Reduced Intersection Pairing

In the previous section we explained how to restrict the lattice of vertical flux back-
grounds �S to the sublattice �C of vertical M-theory flux backgrounds that lift to
consistent F-theory flux backgrounds compatible with unbroken 4D local Lorentz and
gauge symmetry G. Specifically, we showed how to compute the symmetric bilinear
form matrix MC on �C so that the symmetry constrained fluxes ′′ can be realized
explicitly as elements of the lattice MC�C .

In this section, we present a complementary approach, namely first quotienting out
the nullspace of M to get the reduced inner product matrix Mred, and then imposing
Iα = 0. The conceptual advantage of this approach centers on the observation that
Mred (equivalently, the lattice Hvert

2,2 (X,Z), equipped with the intersection pairing Mred)
appears to be independent of the choice of resolution X . It is also slightly easier in this
approach to keep track of the integer quantization on the fluxes. Furthermore, Mred may
be used to consider F-theory models with flux backgrounds that break part of the gauge
symmetry, though we do not explore such configurations here.

In Sect. 4.1, we briefly describe how to obtain the vertical cohomology as a lattice
quotient, Hvert

2,2 (X,Z) = �S/∼, with some details of this analysis relegated to Ap-
pendix H. In Sect. 4.2, we summarize the evidence suggesting that Mred is independent
of the choice of resolution up to an integral change of basis. Although we are unable
to produce a completely general expression for Mred, in Sects. 4.3 and 4.4 we describe
the nullspace of the intersection pairing M in as much detail as we are able for various
G models, and we defer specific examples to Sects. 6 and 7. Section4.5 presents an
immediate physical application of the invariance of Mred.

4.1. Nullspace quotient and integrality structure. Considered as an abstract lattice quo-
tient, the integrality structure of �red := �S/∼ is automatically respected and the
quantization condition on flux backgrounds φ ∈ �red is clear—it is simply the condition
that �red only contains integral elements. It is not always completely straightforward,
however, starting from a given matrix M and associated nullspace, to compute an integer
basis for �red = Hvert

2,2 (X,Z) and the associated symmetric bilinear form Mred explic-
itly. For example, when the nullspace of an integer matrix describing the bilinear form
on a lattice is determined, any null vector that contains a unit entry in some coordinate
I J can be modded out by simply removing that vector. If there are no obvious unit
entries, however, the projection to integer homology is less transparent, and typically
one must identify an appropriate basis for the quotient lattice. A general methodology
for performing this quotient and determining the resulting inner product matrix Mred is
described in Appendix H. In general, this will require a choice of basis vectors for �red
that have multiple nonzero components in the original basis for �S . In all the cases we
have studied explicitly, it is possible to identify a subset of the basis vectors of �S that
form a good basis for �red; while we have not tried to prove that this is always possible
it simplifies the analysis in the cases where this works.
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4.2. Resolution independence. Thequotient of the lattice�S by the nullspace ofM gives
the lattice of vertical classes Hvert

2,2 (X,Z). The restriction of the intersection pairing on
M gives a nondegenerate symmetric bilinear form Mred that maps pairs of elements of
Hvert
2,2 (X,Z) to Z. An intriguing feature of Mred is that in all examples we study, Mred

appears to be independent of the choice of resolution X up to an integer change of
basis. It is thus tempting to conjecture that given any two resolutions X, X̃ of a singu-
lar Weierstrass model with corresponding nondegenerate intersection pairing matrices
(resp.) Mred, M̃red, there exists a matrix U such that

M̃red = U tMredU , U ∈ GL(h2,2vert(X),Z) , (4.1)

where h2,2vert(X) = h2,2vert(X̃). Note that since GL(n,Z) is a group, everyU must be invert-
ible and therefore detU = ±1. While we have not checked the resolution-independence
of Mred for every possible resolution of every G model we study, nor for all choices
of characteristic data (K , �s,W01), for all cases in which we compute the matrices
Mred, M̃red explicitly, we find that there is indeed an invertible integer matrixU satisfy-
ing Eq. (4.1).

We remark that it would be desirable to be able to determine whether or not two
lattices Hvert

2,2 (X,Z), Hvert
2,2 (X̃ ,Z) are equivalent up to a change of basis as in Eq. (4.1)

by comparing invariants such as the determinant, signature, and rank, whichmust clearly
be equal whenever the two are in fact equivalent. However, to the authors’ knowledge,
there does not exist a general classification of (non-degenerate) lattices of arbitrary
signature in terms of easily-computable invariants such as these.24 It is also tempting to
attempt to check equivalence over the reals—since Mred is symmetric, Sylvester’s law
of inertia implies that any two intersection pairing matrices with these common features
are congruent to one another via an invertible real (not necessarily integer) matrix U .
However, this is not enough to show that U is an integral matrix, so to show that Mred

and M̃red are equivalent it appears necessary to explicitly compute a matrixU satisfying
M̃red = U tMredU and confirm that it is a unimodular matrix, which can quickly become
a cumbersome task for lattices of large rank. It is for these reasons that we content
ourselves to provide evidence that various pairing matrices are equivalent, rather than
attempting a conclusive proof.

When Mred, M̃red are related by an integer change of basisU , it furthermore follows
that the associated degenerate matrices M, M̃ are also related by an integer change of

24 Likewise, one might hope that lattices can be classified and compared in terms of their automorphism
groups. Abstractly, the automorphism group of a lattice (see, e.g., [87]) is defined to be the set of linear
isometries that map the lattice to itself and preserve the inner product. There are multiple, equivalent ways
to explicitly identify matrix representatives of automorphisms of the lattice Hvert

2,2 (X,Z). One method is

to consider all elements U ∈ GL(h2,2vert(X),Z) that act trivially by congruence, i.e., the group of U such
that U tMredU = Mred. Equivalently, giving an embedding of Hvert

2,2 (X,Z) into R
n,m (where n + m =

h2,2vert(X)), it is possible to represent the elements of the automorphism group using orthogonal matrices
O ∈ O(n,m;Z), as follows: Suppose that V is a matrix of generators of Hvert

2,2 (X,Z), i.e., the matrix satisfying

V t In,mV = Mred, where In,m is a diagonal matrix comprising n 1s and m −1s. Then, a matrix O satisfying
O t In,mO is additionally an element of the automorphism group iff OV = VU , for someU ∈ GL(n +m,Z).
It is straightforward to verify that both representations are equivalent, since by assumption U tMredU =
(VU )t In,mVU = V tO t In,mOV = Mred. While it is in principle possible to determine the automorphism
group using either construction, to the authors’ knowledge, there is no known algorithm for computing the
automorphism group of a general lattice of arbitrary signature (although algorithms have been proposed for
special cases—see, e.g., [88]), and hence we do not attempt to compute lattice automorphism groups in this
paper.
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basis. This can be seen by first putting each of the M matrices in the canonical form
(H.1) with Mred in the upper left block, as described in Appendix H, and then using a
linear transformation with U in the upper left block and the identity in the remaining
part of the matrix to relate the two canonical forms of M, M̃ .

In purely nonabelian casesG = Gna =∏
s Gs , a general form for a matrixU relating

two different versions of Mred can be constructed explicitly provided that we make the
physically natural assumption that Mphys is the same for both resolutions; we carry out
this analysis in Appendix D. As discussed in more detail in Sect. 4.3.3, the resultingU is
only constrained to be rational and not integral from these considerations, and a certain
compatibility condition is required forU to be integral. In all cases we have considered,
however, we have found an integral U of this form. In more general models with U(1)
gauge factors and rational zero sections, we do not know of such an explicit construction
ofU ; nevertheless, a similar structure should hold in those cases, and for specific choices
of characteristic data it still appears to be true that Mred is independent of the specific
choice of X as we illustrate in the context of the (SU(2)× U(1))/Z2 model in Sect. 7.

If Mred is indeed resolution independent, this further suggests that the vertical co-
homology H2,2

vert(X,Z) of any elliptic CY fourfold X resolving a singular Weierstrass
model with gauge symmetryG is in some sense a mathematical invariant characterizing
properties of the singular locus of X0.

4.3. Purely nonabelian gauge groups. Before discussing the more general case includ-
ing a U(1) gauge factor, we study some properties of the nullspace of the intersection
pairing M that hold in the situation that the gauge group is purely nonabelian,

G = Gna =
∏
s

Gs, (4.2)

and the zero section is holomorphic.

4.3.1. Null space structure of M with purely nonabelian gauge group When the group
G is purely nonabelian, the intersection pairing M between pairs of vertical cycles S00,
S0α , S0is , Sαβ , Sαis , Sis jt can be expressed as

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

K 3 [K 2 · Dα] 0 [K · Dα · Dβ ] 0 0
[K 2 · Dα′ ] [[K · Dα · Dα′ ]] 0 [[Dα · Dα′ · Dβ ]] 0 0

0 0 0 0 0 0
[K · Dα′ · Dβ ′ ] [[Dα · Dα′ · Dβ ′ ]] 0 0 0 [[Wα′β ′is jt ]]

0 0 0 0 [[Wα′αi ′
s′ is
]] [[Wα′i ′

s′ is jt
]

0 0 0 [[Wαβi ′
s′ j
′
t ′
]] [[Wαis i ′s′ j

′
t ′
]] [[Wi ′

s′ j
′
t ′ is jt

]]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.3)

(Above, single brackets [·] denote a sub-vector and double brackets [[·]] denote a sub-
matrix; moreover, unprimed free indices correspond to rows while primed free indices
correspond to columns.) Note that, as described in more detail in Appendix B, the only
intersection numbers in Eq. (4.3) that are resolution-dependent are those that contain at
least three indices of type I = is ; the values in the upper left are all included explicitly,
and we have

Wαβis jt = Dα · Dβ ·Wis jt = Wis | jt Dα · Dβ ·�s = −δst Dα · Dβ ·�sκ
(s)
i j , (4.4)
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where

κ
(s)
i j = −Wis | js (4.5)

is the inverse Killing metric of the gauge factor s = t (which is equal to the Cartan
matrix for ADE groups) and �s is the divisor supporting that gauge factor.

The nullspace of M is the set of solutions to the equation

M(I J )(K L)ν
K L = 0 . (4.6)

Some elements of the nullspace correspond to linear combinations of intersections Sαβ

that are trivial in the base homology.25 From the conditions of Poincaré duality on the
base and nondegeneracy of the triple intersection product as discussed in Sect. 2.2, the
number of independent homology classes represented by Sαβ and S0α are both equal to
h2,2(B) = h1,1(B); null directions associated with trivial homology classes in the linear
space of Sαβ can thus be removed, though for notational simplicity we continue to use
the same symbol Sαβ for the reduced basis. Similarly, there are (linear combinations of)
intersections Sαis that correspond to trivial classes Dα · �s in the base. In general, the
number of independent nontrivial classes Sαis is at most h1,1(�s), but may be smaller.
All these null vectors depend only on the geometry of the base.

After removing the nullspace elements associated with the base geometry, which are
independent of resolution, we can proceed further by solving explicitly for more general
nullspace elements; we find that additional elements of the nullspace are generated by
the vectors

ν〈0〉 = (1,−[K α], 0, 0, 0, 0)
ν〈i ′

s′ 〉 = (0, 0, [δ jt
i ′
s′
], 0, 0, 0)

νC〈a〉 = ν
i ′
s′ j
′
t ′

C〈a〉 (0, [Wα
i ′
s′ j
′
t ′
], 0,−[Wα

i ′
s′ j
′
t ′
K β ],−[Wku |k′u′Wα

i ′
s′ j
′
t ′ |k′u′

], [δkulvi ′
s′ j
′
t ′
]) ,

(4.7)

where the expression in parentheses in the third line above may be viewed as the com-
ponents of a basis of symmetry-constrained 4-cycles SCis jt = CSis jt ∈ �C ⊂ �S given
by

SCis jt = Wα
is jt (S0α − K β Sαβ)−Wkv |luWα

is jt |lu Sαkv + Sis jt , (4.8)

which satisfy

SCis jt · SCkulv = Sis jt · SCkulv = MC(is jt )(kulv), (4.9)

and ν
is jt
C〈a〉 are the coefficients of null vectors MC , i.e.

0 = ν
i ′
s′ j
′
t ′

C〈a〉 (W
α
kulv K

βWi ′
s′ | j ′t ′ −Wmw |k′u′Wα

kulv |k′u′
Wβ

mwi ′s′ | j ′t ′
+Wαβ

kulv i ′s′ | j ′t ′
) (4.10)

or equivalently

0 = ν
i ′
s′ j
′
t ′

C〈a〉MC(kulv)(i ′s′ j
′
t ′ )

. (4.11)

25 For example, when B = (P1)×3 with classes Hi , i = 1, 2, 3 corresponding to points in the three factors
crossed with F0 ∼= P

1 × P
1 from the other two factors, the only nontrivial intersection is H1 · H2 · H3 = 1,

and the curves Hi ∩ Hi are trivial in homology.
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In the above expression we have used the fact that the expression in parentheses in Eq.
(4.10) is MC in the special case of a purely nonabelian gauge group and holomorphic
zero section—see (3.14) and note hereW00 = K . The above computation shows the null
vectors of MC are, in these cases, in one-to-one correspondence with the null vectors of
M (note that in this situation the subtlety of zero-norm null vectors of MC described in
the second paragraph of Sect. 2.7 does not arise since in the notation of Eq. (3.7), the sub-
matrix M ′ restricted to the non-distinctive parameters φ Iα is invertible after removing
the null vectors that depend on the base geometry, as well as those from the first two
rows of Eq. (4.7)). In principle the appearance of the inverse matrix Wk|k′ in the third
set of vectors (4.7) may mean that even when (4.10) is satisfied for all νi jC〈a〉, these null
vectors are rational with integer ν

i j
C〈a〉, so that the i j fluxes cannot simply be projected

out, as discussed in Sect. 4.1. In all cases we have examined explicitly, however, the
entries are integer despite the presence of the inverse matrix; we suspect that this occurs
generally, though we have not tried to prove this statement.

As discussed in Sect. 3.3, the structure of the nullspace elements corresponds with
constraints on the fluxesI J . In particular, the property M = M t implies that the above
nullspace equations must also be satisfied by the fluxes:

SK L · SI J ν I J = 0 �⇒ I Jν
I J = ν I J SI J · SK LφK L = 0 . (4.12)

The linear relations on fluxes coming from the first two classes of null vectors in Eq.
(4.7), namely

I Jν
I J〈0〉 = 00 − K α0α = 0, I Jν

I J
〈i ′
s′ 〉
= 0i ′

s′
= 0 (4.13)

are true in the special case of a holomorphic zero section; see, e.g., [18]. The possible

coefficients ν
i ′
s′ j
′
t ′

C〈a〉 appearing in the third linear condition

i ′
s′ j
′
t ′
ν
i ′
s′ j
′
t ′

C〈a〉 = φkulv MC(kulv)(i ′s′ j
′
t ′ )

ν
i ′
s′ j
′
t ′

C〈a〉 = 0 (4.14)

can be determined in any given situation by explicitly identifying the nullspace vectors
of the form in the last line in Eq. (4.7). In cases where there are no constraints on these
coefficients, these conditions force all fluxes i j to vanish and there is no chiral matter.

While in principle for any base and characteristic data the nullspace of the intersection
matrixM is straightforward to compute directly, because of the relation (4.11), the struc-
ture of the constrained matrix MC studied in the previous section can be used to analyze
the nullspace of M in many cases. In some cases, for the purposes of practical computa-
tion, this analysis can be simplified when rows/columns of MC vanish identically. The
subset of indices i ′s′ j

′
t ′ for which MC(kulv)(i ′

s′ j
′
t ′ )
= 0 vanishes for all kulv are indices for

which the coefficients ν
i ′
s′ j
′
t ′

C〈a〉 can be set equal to unity. In these cases, the appearance of
the Kronecker delta function in explicit coefficients of SCi ′

s′ j
′
t ′
given in Eq. (4.7) indicates

that the basis elements Si ′
s′ j
′
t ′
are redundant and may be removed from the generating set.

On the other hand, the subset of indices i ′s′ j
′
t ′ for which MC(kulv)(i ′s′ j

′
t ′ )

does not vanish
for all kulv are those for which nontrivial elements can be found spanning the nullspace
of MC by taking appropriate linear combinations of SCi ′

s′ j
′
t ′
. Removing these primitive

directions from the lattice�C completes the nullspace quotient and leaves behind a basis
of homologically nontrivial cycles spanning�C/ ∼. Since MC can be used to indirectly
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define these remaining elements via Eq. (4.11), it follows that explicitly computing MC
automatically determines Mred; we elaborate on this point in Sect. 4.3.3.

We next examine the structure of Mred in the context of specific models with purely
nonabelian gauge symmetry.

4.3.2. Nonabelian groups without chiral matter Let us first assume that all of the vectors
SCi ′

s′ j
′
t ′
appearing in the third class of vectors listed in Eq. (4.7) are null vectors; i.e.,

the expression in parentheses in (4.10) vanishes identically for all coefficients ν
i ′
s′ j
′
t ′

C ,
so that SCi ′

s′ j
′
t ′
= 0 in homology. We can then use the null vectors to eliminate the

(rkGna)
2 + rkGna + 1 redundant elements S00, S0is , Sis jt to form a basis consisting of

the at most h1,1(B)(h1,1(B) + rkGna + 1) classes S0α, Sαβ, Sαis . (Since there may exist
additional null vectors, in addition to S0α we keep only homologically nontrivial basis
elements among Sαβ, Sαis , and hence the total number basis elements may be less than
h1,1(B)(h1,1(B)+rkGna+1).) This reduces the intersectionmatrixM to the intersection
pairing

Mred = [[Dα · Dα′ ]] ⊗
⎛
⎝ K [Dβ ] 0
[Dβ ′ ] 0 0
0 0 [[Wi ′

s′ is
]]

⎞
⎠ , (4.15)

where the Kronecker product ⊗ in the above expression is understood to imply the
intersection product · component-wise. Note that the integrality condition on flux back-
grounds in H2,2

vert(X,Z) is preserved through the projection to this basis when all the
components in the vectors appearing in Eq. (4.7) are integer, which as discussed above
occurs in all the cases we have studied. The pairing Mred is manifestly independent
of any choice of resolution X with a holomorphic zero section, since in such cases
Wi ′

s′ is
= δs′sκ

(s)
i ′i �s and the characteristic data K , �s remains unchanged.

Since the intersection pairing on B is nondegenerate, as discussed in Sect. 2.2, and we
have explicitly removed null combinations of Sαis ,Mred is manifestly nondegenerate and
resolution-independent. It follows immediately that the symmetry constraints (2.10) and
(2.11) 0α = αβ = αis = 0 force all independent fluxes to vanish. Stated different,
the symmetry constraints together with Eq. (4.14) imply is jt = 0. Hence there are
no nontrivial fluxes in these cases, and consequently no chiral matter in the resulting
4D F-theory models, as assumed. We give explicit examples of systems of this kind in
Sect. 6, in particular for the groups G = SU(N < 5).

4.3.3. Nonabelian groups with chiral matter Next we consider the case that the ex-
pression in parentheses in Eq. (4.10) is non-vanishing for some non-empty subset of
indices i ′s′ j

′
t ′ . This implies that there are allowed nontrivial flux backgrounds φ and cor-

responding fluxes ; however, not all of the nonzero fluxes is jt are independent in
MC�C . We can remove all null vectors and project φ = φ I J SI J onto a basis of surfaces
S0α, Sαβ, Sαis , S jt ku (again keeping only homologically non-trivial Sαβ, Sαis ), leading
to the intersection pairing

Mred =

⎛
⎜⎜⎝
[[Dα′ · K · Dα]] [[Dα′ · Dα · Dβ ]] 0 0
[[Dα′ · Dβ ′ · Dα]] 0 0 [[Wα′β ′ jt ku ]]

0 0 [[Wα′i ′
s′αis
]] [[Wα′i ′

s′ jt ku
]]

0 [[Wj ′
t ′k
′
u′αβ ]] [[Wj ′

t ′k
′
u′αis
]] [[Wj ′

t ′k
′
u′ jt ku

]]

⎞
⎟⎟⎠ , (4.16)



Chiral Matter Multiplicities and Resolution-Independent Structure

where we keep in mind that only a linearly independent subset of the (rkGna)(rkGna +
1)/2 possible 4-cycles S jt ku is represented in the above expression for Mred. In principle
this choice of a subset of the basis elementsmaynot be compatiblewith the integral lattice
structure through the projection, but as mentioned above this kind of issue does not occur
for any of the cases we have considered explicitly and we can always choose such a basis
in these cases. The specific set of independent fluxes of the form is jt (equivalently, the
set of independent 4-cycles of the form Sis jt ) depends on the characteristic data of the
resolution X , and hence we cannot be more precise at this point without specifying the
characteristic data of the elliptic fibration, although we expect that for every F-theory
model the number of independent fluxes is independent of resolution. Nevertheless,
we can see clearly that imposing the symmetry conditions on the reduced intersection
pairing Mred leaves behind a subset of independent fluxes in the “pure Cartan” (i.e.
Sis jt ) directions that parametrize the combinations of 4D chiral indices realized by the
F-theory compactification. We give more explicit examples of systems of this kind in
Sect. 6, see in particular Table 1.

While it is not obvious that (4.16) is resolution independent, as shown in Appendix D,
with some natural physical assumptions (essentially that Mphys is the same for the two
resolutions) we can determine an explicit form for a change of basis matrix U that
converts between two different presentations ofMred associated to any pair of resolutions
X, X̃ for which Mphys, M̃phys are related by an integral linear transformation M̃phys =
U t

pMphysUp. The transformation U has the schematic form

U =
(
1 u
0 Up

)
, (4.17)

where u may contain rational parts with a denominator of det κ . As discussed in Ap-
pendix D, U is an integral matrix when a certain compatibility condition is satisfied
between the off-diagonal blocks on the lowest row and rightmost column of the two pre-
senations of Mred, for an allowed choice of equivalenceUp (which has an ambiguity up
to automorphisms of Mphys). In all cases we have analyzed this compatibility condition
is satisfied for someUp, and the resultingU is an integer change of basis, but we do not
have a complete proof that this is generally the case.

In a related fashion, there is a transformation of the form (4.17) that takes Mred to a
canonical product form

Mcp
red = U tMredU =

⎛
⎜⎜⎝
[[Dα′ · K · Dα]] [[Dα′ · Dα · Dβ ]] 0 0
[[Dα′ · Dβ ′ · Dα]] 0 0 0

0 0 [[Wα′i ′
s′αis
]] 0

0 0 0 Mphys/(det κ)2

⎞
⎟⎟⎠ ,

(4.18)

wherewe simply use the upper right components ofU to transform away the off-diagonal
bottom row and right column of Eq. (4.16). This inner product matrix must be treated
with respect to the lattice �cp = U−1Zn , which is not in general an integer lattice in
this case. This form is, however, useful since the symmetry constraints can be solved
trivially by setting all components except the last of the flux background φ ∈ �cp to
vanish; an explicit example of this is illustrated in Sect. 6.4.3. The appearance of det κ in
the bottom right component comes from the fact that in general the off-diagonal values
of U , associated with this transformation to the canonical product form in Eq. (4.18),
are rational with denominator det κ , and �phys = ((det κ)Z)m , as discussed further in
Appendix D.
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4.4. Gauge groups with a U(1) factor. For the more general case of Weierstrass models
with gauge group G = (Gna × U(1))/�, we find in practice it is typically easier to
compute resolutions of physically-equivalent singular models in which the elliptic fiber
is realized as a general cubic inP2, see, e.g., [28]. Thesemodels generically admit rational
(as opposed to holomorphic) sections associated to U(1)KK,U(1) and consequently the
structure of the pushforwards of quadruple intersection numbers involving the divisors
D̂0, D̂1 are not known in full generality as is the case inmodelswith a single holomorphic
zero section. For example, in these cases

W000γ �= K 2 · Dγ , W0000 �= K 3 (4.19)

and so on. This unfortunately complicates the computation of Mred as our incomplete
understanding of intersection products involving D̂0, D̂1 makes the solutions to the
nullspace equations unclear, and thus at present we are unable to present even a formal
general expression for Mred for models with U(1) factors over arbitrary B with arbitrary
characteristic data. Nevertheless, we can follow the procedure to construct Mred outlined
in Sect. 4.1 for any specific B andG, and we find in all examples we have considered that
Mred is also resolution independent for models with a U(1) gauge factor—see Sect. 7
for some examples. It is natural to conjecture that this is generally the case although a
more complete proof is clearly desirable.

4.5. Dimension of �phys. One immediate application of the conjectural resolution in-
variance of Mred is for understanding the number of independent F-theory vertical flux
backgrounds and fluxes that can arise in a given model. After computing Mred, one can
impose the symmetry constraints in order to further restrict the lattice Hvert

2,2 (X,Z) to the
sublattice �phys of independent F-theory flux backgrounds; the restriction of the action
of Mred to �phys can be expressed as a matrix Mphys.

The number of independent fluxes  subject to the symmetry constraints is equal
to rkMphys. While in principle, as discussed in Sect. 2.7, Mphys can have null vectors
associated with constraints characterized by zero-norm non-null elements of �S , we
have not encountered any situations where this occurs. Indeed, this is impossible in
purely nonabelian theories since all non-distinctive flux background parameters φ′ are
determined by the constraints as linear functions of the φ′′ as in Eq. (3.6). We suspect,
but have not proven, that this also does not happen in theories with U(1) factors. When
there are no such null vectors of Mphys, then we have

rkMphys = dim�phys = # independent fluxes

= rkMred − # independent constraints . (4.20)

Thenumber of independent constraints is atmost the number of basis elements S0α, Sαβ, Sαi ,
i.e., h1,1(B) + 1

2h
1,1(B)(h1,1(B) + 1 + 2rkG), but in general can be smaller when there

are homologically trivial cycles Sαβ, Sαi as discussed in Sect. 4.3.1. This number must
be resolution-independent and can be identified directly from the structure of Mred and
the geometry of B.

All 4D F-theory models with generic matter that we have studied have the property
that the rank of Mphys is greater than or equal to the number of independent realized
families of chiral matter multiplicities:

rkMphys ≥ # of families of 4D chiral matter multiplets realized in F-theory. (4.21)
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The fact that rkMphys is at least equal to the number of independent chiral matter multi-
plicities seems to follow from the assumption that all matter surfaces Sr have a non-trivial
vertical component. We have furthermore found in all of these cases that the number
of independent families of chiral matter multiplicities realized in F-theory matches the
number of independent families satisfying 4D anomaly cancellation.We know of no nat-
ural geometric reason why this should always be true; the observation that in all cases
considered this holds can be thought of as a statement regarding the absence of swamp-
land type models in which entire families of anomaly-free 4D supergravity theories
would lack an F-theory realization.

If it is indeed true thatMred is resolution-independent andmoreover that the number of
independent families of chiral matter is bounded above by the rank of Mphys, computing
Mred may serve as an efficient strategy for scanning the F-theory landscape for vacua
that impose stronger constraints than 4D anomaly cancellation without requiring the
additional step of identifying the matter surfaces Sr.

5. Computing Chiral Indices

In Sect. 3 and Sect. 4 we gave a prescription for computing the lattice of vertical F-theory
flux backgrounds for G models with gauge group G = (Gna × U(1))/� and chiral
matter transforming in representation ⊕r⊕nr . Here, we review a method to compute the
multiplicities

χr =
∫
Sr
G = nr − nr∗ (5.1)

of the 4D chiral matter representations r in terms of the fluxes ′′, without explicit
knowledge of the matter surface Sr.

Section 5.1 reviews the relationship [16] (see also [18,19]) between Chern–Simons
couplings appearing in the low-energy effective 3DN = 2 supergravity action describ-
ing M-theory compactified on a CY fourfold in a nontrivial flux background G, and the
vertical fluxes

∫
SI J

G = I J . In Sect. 5.2, we explain how to compute the chiral indices
by solving the linear system obtained by matching the vertical fluxes to one loop exact
field theoretic expressions for CS couplings appearing in the 3D N = 2 supergravity
action, using a similar strategy to that used in [32].

5.1. 3D Chern–Simons terms and M-theory fluxes. The key step in our analysis that
enables us to determine the chiral indices χr in terms of vertical fluxes without explicit
knowledge of the matter surfaces Sr is the identification [16,18]

 Ī J̄ = −3D
Ī J̄

, Ī = 0̄, i . (5.2)

On the right hand side of the above equation, 3D
Ī J̄

are Chern–Simons (CS) couplings
that characterize the 3D effective action describing M-theory compactified on X at low
energies (recall that the index Ī = 0̄ denotes the KK U (1), see Eq. (B.5)).

The identification (5.2) holds for all M-theory compactifications on CY fourfolds
X with nontrivial flux backgrounds G, and follows from the dimensional reduction of
11D supergravity on X . In the special case that X is a resolution of a singular elliptic
CY fourfold, M-theory/F-theory duality implies that the low-energy effective 3D theory
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is a Kaluza–Klein (KK) theory equivalent to a circle compactification of the 4D N =
1 supergravity theory describing a flux compactification of F-theory on the singular
fourfold. Because of this duality, the one-loop exact quantum dynamics on the F-theory
Coulomb branch gets mapped to the classical dynamics of M-theory; in particular, this
means that the contributions of massive fermions on the F-theory Coulomb branch are
captured by classical CS couplings 3D

Ī J̄
.

Concretely, given a collection of real Coulomb branch moduli ϕ corresponding to the
holonomies of Cartan U(1) gauge fields around the KK circle, the F-theory Coulomb
branch is characterized by a collection of massive BPS hyperinos, with masses given by

mhyp = nmKK + ϕ · w, n ∈ Z, ϕ · w = ϕiwi , i = 1, . . . , rkG, (5.3)

wherewi maybe regarded as theDynkin coefficients of aweight in a basis of fundamental
weights, associated with the charges (under U(1)rkG) of each hyperino on the Coulomb
branch. In terms of the Cartan charges (n, wi ) above, the one-loop exact CS couplings
are given by [19]

3D
i j =

∑
w

( 12 + �|rKKϕ · w|�) sign(ϕ · w)wiw j ,

3D
0̄i
=

∑
w

( 1
12 + 1

2�|rKKϕ · w|�(�|rKKϕ · w|� + 1))wi ,

3D
0̄0̄
=

∑
w

1
6�|rKKϕ · w|�(�|rKKϕ · w|� + 1)(2�|rKKϕ · w|� + 1),

(5.4)

where rKK := 1/mKK is the KK radius.
The sign and floor functions in the above expressions encode the dependence of the

CS couplings on the phase of the vector multiplet moduli space parametrized by the
Coulomb branch moduli ϕi and KK modulus mKK; we return to the issue of explicitly
evaluating these functions shortly. For now, we point out that the CS couplings can be
expressed as linear combinations of the chiral indices χr by making the replacement
�w → ∑

r nr
∑

w∈r (where nr is the multiplicity of each type of representation r ap-
pearing in the 4D spectrum and we only sum over each distinct representation r once)
and using the fact that the summands are odd under r → r∗. Combining Eq. (5.2) and
Eq. (5.4), we may thus write

0̄0̄ = x r
0̄0̄

χr, 0̄i = x r
0̄i

χr, i j = x ri jχr, (5.5)

and under our assumption that all matter surfaces have components in SI J 26 it is possible
to invert the coefficients x ri j so that

χr = xi jr i j = xi jr SCi j · Sklφkl = Sr · φ, (5.6)

where on the right hand side of the above equation we have used the fact that the matter
surfaces are given by

Sr = xi jr SCi j (5.7)

and SCi j are defined in Eq. (4.8).

26 See Appendix G for a possible counterexample to this assumption.
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5.2. Computing 3D Chern–Simons terms using triple intersection numbers. The ex-
plicit expressions for 3D

Ī J̄
given in the previous subsection depend on the values of

the moduli-dependent functions sign(ϕ · w) and �|rKKϕ · w|� as input. These func-
tions partially characterize the field theoretic regime (i.e., the “phase”) of the F-theory
Coulomb branch described by the 3D KK theory, or in geometric terms the regime of
the Kähler moduli space to which the resolution X corresponds. The Coulomb branch
phase can in principle be computed geometrically by studying the fibers of X over the
codimension-two components of the discriminant locus in the base B, which carry local
matter transforming in the representation r = r ⊕ r∗.

Unfortunately, this procedure is often delicate and sometimes difficult to carry out
systematically, so we instead use an alternative approach that relies on the assumption
that the hypermultiplet representations characterizing the gauge sector of a 6D super-
gravity theory can be recovered from a 5D KK theory, at least for representations r
that correspond to local matter in the F-theory geometry. In particular, we exploit the
fact that the matter representations are encoded in codimension-two components of the
discriminant locus in the base B(2) of an elliptic CY threefold to extract the phase of the
Coulomb branch from the triple intersections of Cartan divisors D̂i . Closely following
the strategy described in [32], we now explain in detail how to use this trick to compute
the sign and floor functions appearing in the field theoretic expressions for the 3D CS
couplings in the previous subsection.

Recall that in the case of M-theory compactified on an elliptic CY threefold X (3),
M-theory/F-theory duality (similar to the case of a CY fourfold) identifies the triple
intersection numbers with one-loop quantum corrected CS couplings in 5D,

D̂Ī · D̂J̄ · D̂K̄ = k5D
Ī J̄ K̄

, Ī = 0̄, i , (5.8)

where field theoretic expressions analogous to Eq. (5.4) have also been worked out for
the 5D one-loop CS couplings [90] (see also [91–93]):

k5Di jk = −
∑
w

(�|rKKϕ · w|� + 1
2 ) sign(ϕ · w)wiw jwk

k5D
0̄i j
= −

∑
w

( 1
12 + 1

2�|rKKϕ · w|�(�|rϕ · w|� + 1))wiw j

k5D
0̄0̄i
= −

∑
w

1
6�|rKKϕ · w|�(�|rKKϕ · w|� + 1)(2�|rKKϕ · w|� + 1) sign(ϕ · w)wi .

(5.9)

Importantly, the sign and floor functions appearing in (5.9) are the same as those in
(5.4), which means they can equally well be determined from the 5D CS couplings
provided the 5D and 3D CS couplings correspond to the same Coulomb branch phase
in an appropriate sense.

It turns out to be possible to determine the 5D CS terms from the types of (partial)
resolutions X we consider, as the sequences of blowups we use to obtain X for a givenG
model defined over a threefold base B can also be used to obtain resolutions X (3) of the
same G model defined over a twofold base B(2).27 Consequently, for a given G model

27 Recall that in our case we only consider resolutions of singularities through codimension-two sub-loci
of the discriminant locus in B. This is actually true for bases of arbitrary dimension, B(d), so long as the
sequence of blowups used to obtain a (partial) resolution is formally identical through codimension two. In
the case of a twofold (i.e. d = 2), this implies that the resulting threefold X (3) is a genuine resolution.
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and a common sequence of blowups resolving singularities through codimension two,
the triple intersection numbers of X (3) are closely related to the quadruple intersection
numbers WĪ J̄ K̄α of X . More precisely, the pushforwards WĪ J̄ K̄ are formally identical
to the pushforwards of the triple intersection numbers of X (3) to the base, with the key
difference that the pushforwardsWĪ J̄ K̄ are “promoted” fromnumbers to classes of curves
in the threefold base B. In the fourfold case, one then computes quadruple intersection
numbers involving three divisors carrying nonabelian Cartan indices by computing the
intersections of these classes with other divisors in the base, i.e., WĪ J̄ K̄ · Dα . One can
use this fact to make the formal identification

k5D
Ī J̄ K̄

→ WĪ J̄ K̄ (5.10)

provided we replace specific coefficients in the sums (5.9) with the intersection products
of classes of certain curves in B. If, as in the 4D case, we organize the expressions for the
CS couplings in (5.9) into sums over representations by making the replacement

∑
w →∑

R nR
∑

w∈R (where nR is the multiplicity of hypermultiplets in the 6D spectrum and
we only sum over each distinct quaternionic representation r once), then we simply need
to promote nr to the classes of matter curvesCr (matter curves are discussed in Sect. 2.6;
see also Appendix B for an explicit description of how Cr

28 appear in the expressions
for Wis jt ku .)

29

Alternatively, we could rephrase this discussion as indicating that the formal expres-
sions WĪ J̄ K̄ should match the triple intersection numbers that arise when the threefold
base B is instead “demoted” to a twofold B(2). Either way, the upshot is that the sign
and floor functions are captured by the terms WĪ J̄ K̄ , as is made clear by the matching
(5.10). Since the linear system (5.10) does not involve any undetermined parameters,
the system can be solved explicitly for the values of sign(ϕ ·w) and �|rKKϕ ·w|�. Thus,
we find that matching triple intersections with the low energy effective 5D physics of
M-theory compactified on an elliptic CY threefold X (3) allows us to circumvent the
task of computing the sign and floor functions directly from geometry, and we may
subsequently use these values as input for the 3D case.

We illustrate this procedure for the SU(2) model in Sect. 6.3.

6. Models with Simple Gauge Group

We apply our systematic approach for analyzing flux backgrounds described in the pre-
vious sections in several examples of models with simple nonabelian gauge groups,G =
Gna. In Sect. 6.1, we explain why the only simple G models with generic matter admit-
ting nontrivial chiral multiplicities are the simply-laced groupsGna = SU(N ),SO(4k +
2),E6, with N ≥ 5, k ≥ 2. Section6.2 describes the common features of the F-theory
fluxes ′′ for these models; the full set of results can be found in Table 1. We turn our
attention to specific examples in Sects. 6.3 to 6.7.

6.1. Chiral matter for simply-laced gauge groups. The groups SU(N ), N ≥ 5, SO(4k+
2), k ≥ 2, and E6 are precisely the compact simple Lie groups for which we expect a

28 Note that Cr are known for large classes of singular F-theory models [94] and (in contrast to Sr) are
manifestly resolution-independent.
29 The fact that the pushforward technology used to evaluate the intersection numbers does not rely explicitly

on the dimension of B is a key part of what makes it such an efficient computational tool for this purpose.
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one-dimensional family of anomaly-consistent chiral matter spectra with generic matter
in 4D; all other compact simple Lie groups have no chiral solutions to the anomaly
cancellation conditions with only generic matter representations. For reference, generic
matter in these models includes the following complex representations:

• SU(N ): fundamental and two-index antisymmetric;
• SO(4k + 2): spinor;
• E6: fundamental.

To see that these are the only gauge groups admitting chiral generic matter, note first
that the set of generic matter for a simple gauge group comprises three representations
if the group has an independent quartic Casimir and two representations otherwise (this
can be seen in the 6D context as coming from the fact that the anomaly cancellation
conditions depend on quadratic and quartic invariants of the gauge group). One of these
representations is always the adjoint, which is self-conjugate, and thus there are at most
two representations that can contribute chirally to the spectrum in any case. For groups
with an independent cubic Casimir, the number of independent chiralities is further
reduced by one by the 4D anomaly cancellation equations. One can then carry out a
case-by-case analysis of the compact simple Lie groups to determine the number of
independent chiralities in each case.

For SU(N ), N ≥ 5, there is an independent quartic Casimir, giving two complex
generic representations, and an independent cubic Casimir, reducing the number of
independent chiral families to one. For SU(2), every representation is self-conjugate;
for SU(3), there is an independent cubic Casimir but no independent quartic Casimir;
and for SU(4), there is an independent cubic Casimir and the two-index antisymmetric
representation is self-conjugate; thus, in all these cases, there are no chiral solutions. The
groupSO(N )only has complex representations for N = 4k+2,with only the spinor being
complex among generic matter representations, and has no independent cubic Casimir,
thus having a one-dimensional family of generic chiral spectra for these N . None of
the exceptional groups has an independent quartic Casimir, giving only one generic
representation other than the adjoint, and of these, only E6 has complex representations;
the E6 fundamental is complex, and E6 has no independent cubic Casimir, leaving a
one-dimensional family of generic chiral spectra.

Thus, we expect a one-dimensional family of chiral solutions for the simple gauge
groups SU(N ), N ≥ 5, SO(4k + 2), k ≥ 2, and E6, and no chiral solutions for all other
compact simple Lie groups.

6.2. Summary of F-theory fluxes for simple nonabelian models.

6.2.1. Fluxes in universal (simple) G models Universal G models with simple non-
abelian gauge symmetry can be described in F-theory using Tatemodels, i.e.,Weierstrass
models presented in Tate form [63]

y2z + a1xyz + a3yz
2 − (x3 + a2x

2z + a4xz
2 + a6z

3) = 0 (6.1)

with a choice of tuning

an = an,mnσ
mn , (6.2)
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which characterizes the sections an of the nth tensor power of the anticanonical bundle
of the base B in the vicinity of the gauge divisor σ = 0. Note that the divisor class of
σ = 0 is [σ ] = � and hence the divisor classes of the tuned sections are

[an,mn ] = n(−K )− mn� . (6.3)

In all nontrivial cases that we study without codimension-three (4, 6) singularities, and
excluding the case G = SO(11), we use the methods of Appendices E and F to show
there is a one-dimensional family of independent F-theory fluxes preserving the 4D
gauge group Gna that take the form

phys = φ� · [p(an,sn )] · [p′(an,sn )], φ ∈ Z , (6.4)

where in the above formula the bracketed expressions are the classes of polynomials p
of the sections an,sn that depend on the choice of gauge group. See Table 1 for results
for various groups Gna.

The physical significance and interpretation of the above results is perhaps more
transparent in the latticeMC�C of symmetry-constrainedfluxes. For example, consistent
with the argument in the previous subsection, that each model admits at most a one-
parameter family of chiralmultiplicities,wefind in each casewe study that the non-trivial
fluxes i j ∈ MC�C can be expressed as

i j = MC(i j)(kl)φ
kl ∝ �(φkl)

det κ
� · [p(an,sn )] · [p′(an,sn )] = χr, (6.5)

for some complex representation r andwhere �(φkl) is a linear combination of the param-
eters φkl whose precise form depends onG; here, sinceG is simply-laced, κi j = −Wi | j
is the Cartan matrix for G. Moreover, since rkMC = 1 and M t

C = MC , the coefficients
of the parameters φi j in the linear expressions �(φi j ) are identical to the proportionality
constants relating different nontrivial i j , it follows that straightforwardly that

klφ
kl = �(φi j )2

det κ
� · [p(an,sn )] · [p′(an,sn )] =

∫
X
G ∧ G, (6.6)

which is non-negative provided � · [p] · [p′] ≥ 0 30; this is consistent with the assertion
that G is self-dual [74], which in turn implies

∫
G ∧G = ∫

G ∧ ∗G = ∫ |G|2 ≥ 0; see
e.g. Equation (6.18) for a specific example of Eq. (6.6) in the context of the SU(5)model.
As we explain in Sect. 6.2.2, �(φi j )/ det κ is an integer and hence i j are manifestly
integer-valued.

6.2.2. Integrality conditions for symmetry preserving flux backgrounds Before proceed-
ing to examples, let us justify the integrality condition �(φi j )/ det κ ∈ Z, which ensures
that our expression (3.14) for MC(I J )(K L) leads to integer fluxes i j in (6.5). This
integrality condition is of course guaranteed, provided that the symmetry constraints
Iα = 0 are solved over Z (assuming φ I J ∈ Z), since M is an integer matrix, but
nevertheless for the sake of clarity we spell out explicitly how the integrality condition
propagates through to the final expressions in the case where the constraints are imposed

30 In order for Tate models to be consistent and not give rise to a larger gauge algebra, it is necessary that
the line bundles to which the an,sn appearing in the table are associated have non-empty spaces of sections.
Mathematically, this can be expressed as the requirement that the divisor classes [an,sn ] are effective; the
resulting intersection products are negative as long as these divisors are non-rigid.
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first and there is an additional quantization condition on the domain of the mapping C
defined in Eq. (3.7). This integrality condition is an explicit example of the type of
quantization constraint discussed earlier in Sect. 2.8 and Sect. 3.2.

To see how this works, we use the symmetry constraints to derive a condition on
the combination of intersection numbers and parameters in the numerator of (6.5). First
notice that the local Lorentz symmetry constraintαβ = 0 implies (see (C.6) and (C.7))
φ0γ = −φ00K γ + φi jκi j�

γ and φβγ = −φi jκi j K β�γ . Since these expressions are
polynomial in the distinctive parameters, it is evident that solving the constraints does
not impose any conditions on φi j . We thus turn our attention to the gauge symmetry
constraints αi = 0, which imply φβ jκi j�

γ = −φ jk	
β

RρR
i jk�

γ and for nonzero �γ

further imply

φβ jκi j = −φ jk	
β

RρR
i jk , (6.7)

where we note that ρr
i jk in the above equation is defined by the intersection numbers

Wi jk · Dα = ρr
i jkCr · Dα; see Eq. (B.9). Since φβ j is assumed to be an integral lattice

vector for every β, the right-hand side of the above equation must lie in the root lattice
of the group G. Comparing the above equation to the list of necessary and sufficient
conditions in Table 7 of Appendix I for a lattice vector to lie in the root lattice of a
simple Lie group, we obtain for each universal (simple and simply-laced) G model an
integrality condition of the form

	
β

RρR
i jkc

iφ jk

det κ
∈ Z , (6.8)

where the choice of coefficients ci depends on G. In all cases we study, we find that
	

β

RρR
i jkc

iφ jk ≡ Dβ�(φi j ) mod det κ , and hence for generic coefficients 	
β

RρR
i jk the

above condition reduces to

�(φi j )

det κ
∈ Z . (6.9)

The above integrality condition must be satisfied for any allowed set of integer fluxes φi j

that preserve 4D local Lorentz and gauge symmetry, guaranteeing that all chiral matter
indices (6.5) automatically take integer values. This is demonstrated explicitly in the
case of G = SU(5) in Sect. 6.4.

This analysis in general gives a sufficient condition, for each of the G models stud-
ied here, for the chiral matter spectrum to have certain multiplicities. As discussed in
Sect. 2.8, however, inclusion of fluxes in Hhor

4 (X,Z)⊕H rem
2,2 (X,Z)may permit a broader

set of possible chiral multiplicities.

6.3. SU(2) model. We now discuss explicit examples. We begin with a very simple
example that has been well studied in the literature, but which nevertheless illustrates
the issue of unimodularity of the intersection pairing Mred, namely the universal SU(2)
model. (For additional background about SU(N ) models and their resolutions, see Ap-
pendix F.1.) For G = SU(2), we find that the reduced intersection pairing Mred is
resolution-invariant and the constraints that local Lorentz and SU(2) symmetry are un-
broken in 4D forces all the flux backgrounds φ to vanish, so there are no nontrivial
vertical fluxes and no chiral matter. Identical conclusions follow for G = SU(3) and
SU(4).
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Table 1. F-theory fluxes for universal G models with arbitrary characteristic data

Kodaira
fiber G Δ(2) Θphys (Θ(4,6)) geometric

constraints

Is5 SU(5)
a41(a6,5a

2
1

−a3,2a4,3a1
+a2,1a

2
3,2)

φΣ · [a1] · [a6,5] χ5 + χ10 = 0

Is6 SU(6)
a41(a

2
1a6,6

−a1a3,3a4,3
−a24,3)

φΣ · [a1] · [a4,3] χ6 + 2χ15 = 0

Is6 SU(6)◦
a31(a6,6a

3
1

−a3,2a4,4a
2
1

+a2,2a
2
3,2a1

−a33,2)

(φΣ · [a1] · [a33,2]) χ6 = 0

Is7 SU(7)
a41(a

2
1a6,7

−a1a3,3a4,4
+a2,1a

2
3,3)

φΣ · [a1] · [a6,7]
(φ Σ · [a1] · [a2,1]) χ7 + 3χ21 = 0

Ins6 Sp(6)
a22(a2a

2
3,3

−a24,3
+4a2a6,6)

(?) —

I∗s1 SO(10) a32,1a
2
3,2 φΣ · [a2,1] · [a6,5] any χ16

I∗ns2 SO(11)
a22,1(4a2,1a6,5
−a24,3)

φΣ · [a2,1] · [a6,5] —

I∗s2 SO(12)
a22,1(4a2,1a6,5
−a24,3)

(φΣ · [a2,1] · [a24,3]) —

IV∗s E6 a43,2 φΣ · [a3,2] · [a6,5] any χ27

III∗ E7 a43,3 (φΣ · [a4,3] · [a6,5]) —
IV∗ns F4 a26,4 (?) —
I∗ns0 G2 4a34,2 + 27a26,3 0 —

(Partial) resolutions of these models are taken from [20]. The final column matches the linear 4D anomaly
conditions in all known examples.	(2) is the codimension-two component of the discriminant locus restricted
to the gauge divisor σ = 0. Models that admit 4D chiral matter are indicated in blue and satisfy phys = χr∗
(where χr∗ is the minimal chiral index), while models whose fluxes are proportional to some number of
codimension-three (4, 6) loci are indicated in red (note that the F4 and Sp(n)model fluxes appear to correspond
to (4, 6) points that have not been resolved, and hence for which the explicit form of the flux is still unknown.)
The SO-type groups listed above range from those of smallest rank that admit nontrivial flux to those of
largest rank for which the corresponding model does not have (4, 6) loci in codimension two; the same is
true of the Sp-type groups, with the caveat that none have been identified that admit nontrivial flux (note that
the bases of divisors and resolutions for the Ins2n and Ins2n+1 models appear to be identical.) The E8 model is
suppressed because it has codimension-two (4, 6) singularities for generic characteristic data. SU(N ) models
with N > 6 contain codimension-three (4, 6) points; however for SU(6)◦,SU(7) the geometric constraints
are stated under the restriction that the characteristic data are chosen to ensure that these points are absent,
noting that under analogous conditions a similar pattern of fluxes may persist for SU(N > 7). Note that the
SO(11) model flux does not correspond to chiral matter
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6.3.1. Absence of chiral matter The SU(2) model is characterized by an I2 Kodaira
singularity over the divisor � and has matter in the representations 2, 3 with weights

w2
+ = (1), w2− = (−1)

w3
+ = (2), w3

0 = (0), w3− = (−2) .
(6.10)

The unique resolution X1 → X0 admitting a holomorphic zero section consists of a
single blowup. In this case, there is a single SU(2) Cartan divisor D̂i whose nonzero
quadruple intersection numbers are (see Eq. (E.23) and above for details on how to
evaluate the pushforwards explicitly)

Wαβi i = Wii · Dα · Dβ = −2� · Dα · Dβ

Wαi i i = Wiii · Dα = 2� · (2K −�) · Dα

Wiiii = Wiiii = 2� · (−4K 2 + 2K ·� −�2) ,

(6.11)

with the remaining intersection numbers involving D̂i vanishing.
The SU(2) model provides a simple illustration of the procedure, discussed towards

the end of Sect. 5, for using low-energy effective 5D physics as a shortcut to determine
the values of the sign and floor functions appearing in the field theoretic expressions for
the 3D CS couplings. In this case, the floor functions vanish because the zero section is
holomorphic. Furthermore, matching the pushforwards of the above intersection num-
bers with the 5D CS couplings (where the multiplicities nR are replaced by the matter
curves CR) fixes the values of the sign functions to be sign(ϕ · wR±) = ±1. In detail,

k0̄i i = −
1

12

∑
w∈r

Cr

∑
i=±

(wr
i )
2

= − 1

12

[
1

2
� · (� + K )

(
22 + (−2)2

)
+ � · (−8K − 2�)

(
12 + (−1)2

)]

= (−2�) · (−1

2
K )

= W0̄i i (6.12)

kiii = −1

2

∑
w∈R

CR

∑
i=±

(wR
i )3sign(ϕ · wi )

= −1

2

[
1

2
� · (� + K )

(
23 − (−2)3

)
+ � · (−8K − 2�)

(
13 − (−1)3

)]

= 2� · (2K −�)

= Wiii . (6.13)

The matrix M from this resolution takes the form Eq. (4.3), where theW entries with
two or more i indices in the bottom right blocks are all even. Note also that the second
Chern class in the basis of Eq. (4.3) is given by c2(X) = (27, [−39K α], 0, [(c2(B))αβ +
11K αK β ], [7K α], 0); since for any any F-theory base the class c2(B)+K 2 is even [78],
it follows that the constrained fluxesIα are integral even when c2(X) is not even. Thus,
we can always remove the null vectors and impose the constraints by setting Iα = 0
without worrying about half-integer shifts.
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It is straightforward to verify that there is one null vector of the form νC〈a〉, so Mred
takes the resolution-independent form Eq. (4.15) and MC = Mphys = 0. It follows that
4D SU(2) models exist but do not admit chiral matter. This conclusion is well known
for F-theory models with a tuned SU(2) gauge invariance and is reviewed in [17]. This
result is consistent with expectations from 4D anomaly cancellation since the 2 of SU(2)
is a self-conjugate representation.

6.3.2. Unimodularity and integrality of the intersection pairing We pause briefly to il-
lustrate issues of unimodularity and integrality of the reduced intersection pairing Mred
in the context of the SU(2)model. Although the lattice H4(X,Z) is unimodular, the sim-
ple example of SU(2) illustrates that fact the intersection pairing acting on H2,2

vert(X1,Z)

is generically not unimodular since the absolute value of the determinant of Mred is
generically greater than one. As an example, for a gauge divisor � = H ⊂ B = P

3

where H is the hyperplane class, we find

Mred =
⎛
⎝−4 1 0

1 0 0
0 0 −2

⎞
⎠ , det Mred = 2 . (6.14)

While one might imagine that we have simply chosen the wrong basis for H2,2
vert(X1,Z),

the story is slightly subtler.
To further analyze the situation, we briefly digress to a related situation in the case

of 6D F-theory compactifications, focusing in particular on the parallel case where we
have a tuned SU(2) F-theory model over the base B = P

2. In this case, the triple
intersection numbers of the Cartan divisors D̂i have the related value Wiii = 2. Thus,
the intersection number of the Cartan divisor D̂i with the curve Cii = D̂i ∩ D̂i is
2. Unlike in the 4D case, the dimension of H4(X (3)) is equal to that of H2(X (3)) by
Poincaré duality, and again by Poincaré duality we know that there must be a curve C
satisfying C · D̂i = 1,C · D̂I �=i = 0 corresponding to a (possibly massive) state in the
fundamental representation of SU(2) (see [83] for a related discussion). Thus, in this
situation the curve Cii is not a primitive curve in H2(X (3),Z), but rather C = Cii/2 is
such a primitive curve and is Poincaré dual to D̂i .

This same story cannot hold, however, in the 4DSU(2)model.We do expect that there
is a matter surface S associated with matter in the fundamental representation of SU(2).
This surface cannot simply be identified with Sii/2, however, since the intersection of
that surface with itself under the matrix (6.14) is (1/2)× (−2)× (1/2) = −1/2. Thus,
the Poincaré dual of the surface Sii ∈ Hvert

2,2 (X1,Z) is not itself contained entirely in
Hvert
2,2 (X1,Z) and we see that the orthogonal decomposition (2.12) of H4(X1,Z) with

respect to the intersection pairing does not hold over Z.
As we discuss below in the context of SU(5) models with chiral matter, this point

indicates that the assumption φ I J ∈ Z may be too restrictive for our analysis to explore
all possible chiralities. Rather, it appears to be necessary to extend the analysis to account
for contributions from the orthogonal complement of Hvert

2,2 (X) in H4(X), which to our
knowledge has yet to be completely understood.

6.4. SU(5) model. The SU(5) model (see Appendix F.1) is the simplest example of a
universal SU(N ) model with chiral matter. The full set of resolutions of the SU(5) model
admitting a holomorphic zero section were worked out in [54] (see also [53,95]) and
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the chiral indices were computed for a subset of these resolutions in [16] using similar
methods to those described in this paper, as well as by other methods in e.g. [96,97].

The SU(5) model describes chiral matter in the fundamental (5) and two-index anti-
symmetric (10) representations. The 4D chiral anomaly cancellation condition requires
that

χ5 + χ10 = 0 . (6.15)

We begin by analyzing the model with a specific resolution, X4 → X0, which was
described as the toric ‘phase I’ resolution in [16] and as the resolution ‘B1,3’ in [54].
The signs associated to the central charges ofBPSparticles transforming in the (complex)
representations 5, 10 can be found in Table 3. In Sect. 6.4.3 we consider several other
resolutions and show explicitly that Mred is the same up to an integral choice of basis
for each of these resolutions.

6.4.1. Chiral matter multiplicities Plugging intersection numbers into (3.14) for the
specific resolution just mentioned, we learn that there are four nontrivial constrained
fluxes i j (Cartan divisors take indices i = 2, . . . , 5) that satisfy three linear relations,
in agreement with the solution described in [16]:

33 = −35 = −44 = 45 . (6.16)

In particular (compare also to [14]),

33 = �(φi j )

5
� · [a1] · [a6,5] = 1

5
(φ33 − φ35 − φ44 + φ45)� · K · (6K + 5�) .

(6.17)

Note that the proportionalities in Eq. (6.16) imply

φ3333 + φ3535 + φ4444 + φ4545 = (φ33 − φ35 − φ44 + φ45)33 = �(φi j )33 .

(6.18)

Comparing Eq. (6.16) to the one-loop 3D CS couplings, we learn that

χ5 = −33, χ10 = −44, (6.19)

and thus we recover the 4D anomaly cancellation equation (6.15). As explained in
Sect. 6.2.2, solving the the gauge symmetry constraints iα = 0 over Z ensures that the
flux (6.17) is integer-valued despite the factor of 5 in the denominator; we go through this
analysis in some detail here to illustrate this point. First note that a necessary and suffi-
cient condition for an integral vector vi to lie in the su(5) root lattice is (see Appendix I)
v2 + 2v3 + 3v4 + 4v5 ≡ 0 (mod 5), which is equivalent to the condition

− 2v2 + v3 + 4v4 + 2v5 ∈ 5Z. (6.20)

We can use this condition and the logic following (2.25) to determine a further con-
straint on the parameters φi j by noting that from (C.5) and (B.11), the gauge symmetry
constraints imply

d
αi = φβ j (Dβ · Dα ·�)κi j , (6.21)
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where the superscript ‘d’ indicates thatd
αi is the part ofαi that only depends explicitly

on the distinctive parameters φ Î Ĵ . It follows that d
αi lies in the tensor product of the

su(5) root lattice (for the i index) and the sublattice of H1,1 spanned by � ∩ Dα (for the
α index). Applying the linear combination from the condition (6.20) to the fluxes d

αi
we find

−2d
α2 + d

α3 + 4d
α4 + 2d

α5 = −(� · Dα) · K (φ33 − φ35 − φ44 + φ45) . (6.22)

and thus K (φ33 − φ35 − φ44 + φ45) must lie in 5H1,1(B,Z). This condition, which
is necessary to ensure that the full SU(5) gauge symmetry is preserved, is sufficient to
guarantee that the chiral matter multiplicities determined by the flux (6.17) are integer-
valued. Note that for a generic base B, K is not 5 times an integral divisor, so the
parameters must typically satisfy the condition

(φ33 − φ35 − φ44 + φ45) ∈ 5Z . (6.23)

6.4.2. Flux quantization We illustrate the non-unimodularity of Mred and the quantiza-
tion of the parameters φi j in some further detail with a concrete one-parameter family
of SU(5) examples. Consider the case B = P

3, K = −4H, � = nH where H is the
hyperplane class of P3. Using the parametrization of the nullspace of MC given in (4.7)
along with the explicit results (6.16), we find that a suitable basis for Hvert

2,2 (X,Z) is
S0α, Sαα, Sαi , S35 (with the index α for the only base divisor) in terms of which the
intersection pairing is given by

Mred =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−4 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 −2n n 0 0 4n
0 0 n −2n n 0 −4n
0 0 0 n −2n n 4n
0 0 0 0 n −2n −4n
0 0 4n −4n 4n −4n −4n2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.24)

In this example, K is not 5 times an integer divisor, and the integrality condition (6.23)
follows from assuming that φ I J ∈ Z. This can be seen explicitly as follows: imposing
the local Lorentz and gauge symmetry constraints, one finds that the flux backgrounds
φαi can be solved for in terms of the flux backgrounds φi j

φα2 = 8

5
φ35, φα3 = −4

5
φ35, φα4 = 4

5
φ35, φα5 = −8

5
φ35 . (6.25)

The second Chern class for this class of models over P3 in the reduced basis for the
resolutionB1,3 is

c2(X4) = 2(n − 22)SH3 + 2(3n − 34)SH4 + 2(n − 20)SH5

+48S0H + 182SHH − 16SH2 + S35. (6.26)

Since all coefficients except that of S35 are even integers, we see that the proper shifted
lattice for allowed values of φ keeps all φ I J integral except φ35, which must take a
half-integral value.
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The above relations imply that for any nontrivial integer solution to these conditions
we have31

φ35 = 5

2
(2k + 1) ∈ 5

2
(2Z + 1) . (6.27)

The single flux spanning M�phys is then given by

35 = χ5 = 4

5
n(24− 5n)φ35 = 2n(24− 5n)(2k + 1) , (6.28)

so the chiral matter multiplicities are necessarily integral.
On the other hand, clearly unimodularity of Hvert

2,2 (X4,Z) is not satisfied as for any
n ≥ 1

det Mred = n5(20n − 96) �= ±1 . (6.29)

For example, for n = 1 the determinant is −76. This means that Poincaré duality
guarantees that there are flux backgrounds that are not of the simple form characterized
by (half-)integer φi j . This is parallel to the situation discussed for SU(2) models above
in Sect. 6.3.2. Taking for example the n = 1 case, as for SU(2) the elements of the dual
lattice to the lattice Hvert

2,2 (X4,Z) with inner product (6.24) do not have integer norms.
Thus, the Poincaré dual to e.g. the surface S33 must project to a fractional vector in
Hvert
2,2 (X4) and therefore must also contain a component of H rem

2,2 (X4)⊕ Hhor
4 (X4).

An interesting question, which to our knowledge is not addressed anywhere in the
literature and to which the answer seems unknown, is whether or not including such flux
backgrounds can produce chiral matter multiplicities that are more general than those
given by, e.g., Eq. (6.28).32 For example, for n = 1 the allowed chiral multiplicities
from this analysis should be 38, 114, . . .. Naively it might seem that Poincaré duality
would suggest that arbitrary integer matter multiplicities should be possible since there
is always an integral flux background in H4(X4,Z) that gives 33 = 1,αi = 0. It
may be, however, that the components of H4(X4,Z) that must be turned on for this
flux background Poincaré dual to S33 (recall the discussion of Poincaré duality and
its relation to flux quantization at the of Sect. 2.8) would break gauge invariance (as
discussed, e.g., in [49]) or some other necessary feature of the F-theory vacuum so
that such further chiral multiplicities would be ruled out. Appealing to a heterotic dual
description also does not immediately clarify this question, since (as demonstrated in
e.g. [16]) the chiral multiplicities achieved through the spectral cover constructionmatch
the F-theory chiral multiplicities coming from purely vertical flux backgrounds, though
it is possible that additional chiral multiplicities could be realized through more general
bundle constructions. We leave further investigation of these questions for future work.

31 Note that the quantization condition is insensitive to the fact that we eliminated the redundant homology
classes before imposing the Poincaré and gauge symmetry conditions. In particular, the homology relations
can be used to show that φ35, φ44, φ45 are each proportional to φ33, and these proportionality factors can be
used to convert (6.23) into a relation of the form (6.27).
32 As discussed in Sect. 2.8, some necessary conditions on fractional coefficients for flux backgrounds in
Hvert
2,2 (X,Z) have been considered in [29], but not all flux backgrounds satisfying these conditions need be

permissible.
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6.4.3. Resolution-independence of the reduced intersection pairing In this section we
demonstrate the resolution independenceofMred for the three resolutionsB1,3,B1,2,B2,1
described in [54]. In order to compute Mred for these three cases, we first write down
the symmetry constrained fluxes:

B1,3 : 33 = −44 = −35 = 45

B1,2 : 34 = −244 = −35 = 45

B2,1 : 23 = −233 = −24 = 34 .

(6.30)

The indices jk of the above fluxes determine the basis elements S0α, Sαβ, Sαi , S jk span-
ning Hvert

2,2 (X,Z) in each of these three resolutions. We illustrate this specifically in the
case B = P

3, � = nH , where H = Dα is the hyperplane class of P3. First, we compare
the resolutionsB1,3 andB1,2, for which a common basis is S0α, Sαβ, Sαi , S35. We find
(see (6.24))

Mred(B1,3) = Mred(B1,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 −2n n 0 0 4n
0 0 n −2n n 0 −4n
0 0 0 n −2n n 4n
0 0 0 0 n −2n −4n
0 0 4n −4n 4n −4n −4n2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.31)

i.e., the two intersection pairing matrices are identical for these two resolutions. On the other hand, to
compare the two resolutionsB1,2 andB2,1, we must use a different basis. A suitable basis in which
to compare Mred(B1,2), Mred(B2,1) is S0α, Sαβ, Sαi , S34, for which we find

Mred(B1,2) = Mred(B2,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4 1 0 0 0 0 0
1 0 0 0 0 0 n
0 0 −2n n 0 0 0
0 0 n −2n n 0 16n − 2n2

0 0 0 n −2n n 3n2 − 20n
0 0 0 0 n −2n 4n
0 n 0 16n − 2n2 3n2 − 20n 4n −6n3 + 72n2 − 224n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6.32)

Again, we find that for an appropriate choice of basis the intersection pairing matrices
are identical. This implies that were we to identify Mred for the resolutions B1,3 and
B2,1, we would be forced to identify a change of basis, from (6.31) to (6.32); the explicit
matrix U presented in (4.17) does the job for a particular choice of sign in Up = (±1):
solving for the undetermined coefficients in U we find that they take integer values
compatible with the congruence

Mred(B2,1) = U tMred(B1,3)U . (6.33)

A related change of basis illuminates further the question of flux quantization dis-
cussed in Sect. 6.4.2. As discussed in general in Sect. 4.3.3 and Appendix D, there is a
(non-integral) change of basis U of the form (4.17) from both of the forms (6.31) and
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(6.32) to a canonical product form (4.18), given here by

Mcp
red = U tMredU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−4 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 −2n n 0 0 0
0 0 n −2n n 0 0
0 0 0 n −2n n 0
0 0 0 0 n −2n 0
0 0 0 0 0 0 n(96− 20n)/5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (6.34)

Because U is non-integral in these cases, the lattice �cp of flux backgrounds on which
Eq. (6.34) acts is not Zn . On the other hand, the constraint equations simply set all but
the last of the flux background parameters to vanish. The non-integer elements of U
involve terms of the form m/5,m ∈ Z in the lowest row, and the set of physical flux
background parameters (0, . . . , 0, φ) ∈ �cp are thus constrained so φ ∈ 5(2Z + 1)/2,
analogous to the constraint (6.23).

From this analysis we see that the chiral multiplicity given by, e.g., χ5 = 35 is
χ5 = 2n(24 − 5n)(2k + 1), with k ∈ Z, in agreement with Eq. (6.28). We can relate
the canonical form (6.34) to the lattice �phys = Z, under which the intersection form
becomes Mphys = (5n(96 − 20n)). We expect on physical grounds that any valid F-
theory resolutions should give rise to the same physics and the same Mphys. Note that
while any two such resolutions would admit non-integer transformations U, V taking
Mred to the canonical form Eq. (6.34), this is not quite sufficient to prove that Mred are
the same in those two resolutions since there is no guarantee from what we have said
here thatUV−1 is an integer matrix, as discussed further in Sect. 4.3.3 and Appendix D.

It is also worth noting that Eq. (6.34) gives an example of the self-duality condition
as discussed in more general terms in Sect. 6.2.1. Namely, the SU(5) Weierstrass model
on P

3 is only consistently defined without enhancement when n ≤ 4, in which case
Mphys has a positive matrix entry and the flux background φ is self-dual.

6.5. SU(6) model. The SU(6) model describes chiral matter in the fundamental (6) and
two-index antisymmetric (15) representations. The 4D anomaly conditions give

χ6 + 2χ15 = 0. (6.35)

The signs of the BPS central charges associated to the fundamental and two-index
antisymmetric representations canbe found inTable 3. Plugging the intersection numbers
into (3.14), we find that the only nonzero fluxes i j (Cartan indices are i = 2, . . . , 6)
satisfy the linear relations

33 = −34 = 35 = 45 = −1

3
55 = −36 = 56 , (6.36)

where

33 = �(φi j )

6
� · [a1] · [a24,3]

= 1

6
(φ33 − φ34 + φ35 − φ36 + φ45 − 3φ55 + φ56)� · K · (8K + 6�) . (6.37)

Matching fluxes with the corresponding one-loop CS couplings implies 0 = 22 =
−χ6−2χ15, which, using Eq. (6.36), reproduces the 4D anomaly cancellation condition
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(6.35). Inverting the linear system arising from matching the fluxes with 3D one-loop
CS couplings, we find that the chiral indices can be expressed geometrically as

−χ6

2
= χ15 = 33 . (6.38)

Note that the gauge symmetry condition (2.11) implies, in an analogous fashion to the
G = SU(5) case,

2K α(φ33 − φ34 + φ35 − φ36 + φ45 − φ56) ∈ 6Z , (6.39)

ensuring that 33 ∈ Z.
For comparison, we also comment on the flux for an alternative Tate tuning [98]

(see also [99,100]) of the SU(6) model, denoted the SU(6)◦ model, that has matter
in the exotic three-index antisymmetric representation rather than the usual two-index
antisymmetric representation. Because the three-index antisymmetric representation is
self-conjugate, onewould naively expect the space of vertical F-theoryfluxes to be empty.
However, it turns out the SU(6)◦ model contains codimension-three (4, 6) singularities,
leading to a nontrivial flux presumably given by the integral of the flux background over
the surface component of the non-flat fiber visible at the (4, 6) point in the resolution
X5. See Table 1 for additional details.

6.6. SO(10) model. The SO(10) Tate model is characterized by a I∗split1 singularity over
a gauge divisor � and contains chiral matter in the spinor representation (16); the mul-
tiplicity of matter in this representation is unconstrained by anomalies. We label Cartan
divisors with indices i = 2, . . . , 6. The signs of the BPS central charges associated to
the spinor can be found in Table 5.

Using (3.14), we find that the F-theory fluxes satisfy the homology relations

22 = −24 = 25 = 44 = −46 = −55 = 1

2
66 (6.40)

where

22 = �(φi j )

4
· [a2,1] · [a6,5]

= 1

4
(φ22 − φ24 + φ25 + φ44 − φ46 − φ55 + 2φ66)� · (2K + �) · (6K + 5�) .

(6.41)

Matching with 3D one-loop CS terms, we find

χ16 = −22 . (6.42)

The gauge symmetry condition (2.11) implies

(2K + �)α(φ22 − φ24 + φ25 + φ44 − φ46 − φ55 + 2φ66) ∈ 4Z , (6.43)

hence 22 is integer-valued. We again find no linear constraints on the SO(10) chiral
spectrum other than those implied by anomaly cancellation.
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6.7. E6 model. Our final purely nonabelian example is G = E6, which is the only
exceptional group with complex representations and hence the only exceptional group
admitting chiral matter preserving the full gauge symmetry. The E6 Tate model is char-
acterized by a IV∗split singularity over gauge divisor � and contains chiral matter in the
fundamental (27) representation, with a multiplicity unconstrained by local anomalies.
Additional details about the resolution and corresponding signs of BPS central charges
can be found in Appendix F.4.

Computing intersection numbers and substituting their values into the expression in
(3.14), we find that the nontrivial constrained fluxes satisfy the homology relations

1

2
22 = −25 = −33 = 35 = −55 = 56 = −1

2
66 (6.44)

where

35 = �(φi j )

3
� · [a3,2] · [a6,5]

= 1

3
(2φ22 − φ25 − φ33 + φ35 − φ55 + φ56 − 2φ66)� · (3K + 2�) · (6K + 5�) .

(6.45)

Comparing with the corresponding 3D one-loop CS couplings, we find

χ27 = 35 , (6.46)

in agreement with, e.g., Eq. (4.12) in [31]. Note that the gauge symmetry conditions
(2.11) imply

�α(2φ22 − φ25 − φ33 + φ35 − φ55 + φ56 − 2φ66) ∈ 3Z , (6.47)

which ensures that 35 is integer-valued.33

7. Models with a U(1) Gauge Factor

We now turn to the more general case of models with gauge symmetry G = (Gna ×
U(1))/�. As discussed in previous sections, thesemodels are complicated by the fact that
the fluxes do not simply depend on the mutual triple intersections of the characteristic
data (K , �s,W01), but rather also depend on the intersection products of all divisors
Dα ∈ B with the height pairing divisor W1̄1̄ associated to the U(1) factor—this is a
reflection of the global geometric nature of U(1) gauge factors in F-theory, in contrast
to the local nature of nonabelian gauge factors Gs ⊂ Gna. One notable consequence is
that the nullspace of MC is not obviously computable for such models in a very general
way without explicitly specifying B. A possible workaround to this complication, as
discussed at the end of Sect. 3.3, is to further restrict to the sublattice �S ∩ {φ1α = 0};
we describe an example of this analysis in Sect. 7.1.1. In the rest of this section we focus
attention on specific bases B, where we can explicitly carry out the full flux analysis.

In Sect. 7.1 we analyze the (SU(2)×U(1))/Z2 model in detail. In Sect. 7.2, we briefly
summarize the results of the forthcoming paper [30] in which we use the methods of
this paper to analyze the universal (SU(3)× SU(2)× U(1))/Z6 model from [27].

33 Curiously, in the special case that �α ∈ 3Z the gauge symmetry condition does not appear to place any
special conditions on the parameters φi j .
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7.1. (SU(2) × U(1))/Z2 model. Perhaps the simplest example of a model with gauge
group G containing a U(1) gauge factor is the F6 model studied in [28], with G =
(SU(2) × U(1))/Z2 and matter transforming in the representations 11, 12, 2 1

2
, 2− 3

2
. A

related F-theory model was recently analyzed in [101].
The 4D anomaly cancellation conditions impose the constraints that the chiral matter

multiplicities must correspond to an integer multiple of the family

(χ11 , χ12 , χ2 1
2

, χ2
− 32

) = (2,−1,−3,−1). (7.1)

The characteristic data of this class of F-theory models consists of the canonical class K
and the two divisor classes S7, S9, in terms of which the SU(2) gauge divisor is given by
S8 = −K + S9 − S7. Explicitly, the singular F6 model X0 is realized as a hypersurface
in an ambient P2 bundle over arbitrary smooth base B, given by

s1u
3 + s2u

2v + s3uv2 + s4v
3 + s5u

2w + s6uvw + s7v
2w + s8uw2 = 0 (7.2)

where [u : v : w] are homogeneous coordinates of the ambient space fibers defined by
the hyperplane classes

[u] = H + K + S9, [v] = H − S7 + S9, [w] = H (7.3)

(note H is the hyperplane class of the fibers and K , S7, S9 are the pullbacks of the classes
K , S7, S9 in the base to the Chow ring of the ambient space) and the divisor classes of
the sections sm appearing the above hypersurface equation, namely Sm = [sm], are given
by

S1 = −3K − S7 − S9, S4 = 2S7 − S9 (7.4)

along with

S2 = 1

3
(2S1 + S4), S3 = 1

3
(S1 + 2S4), S5 = 1

2
(S1 + S8), S6 = 1

2
(S7 + S8).

(7.5)

For a good model with gauge group G = (SU(2)×U(1))/Z2, the characteristic data is
constrained so that the divisor classes S1, S4, S7, S8 are effective.34

7.1.1. Resolution, Chern–Simons terms, chiral index The resolution X2 → X0 de-
scribed in [28] entails a sequence of two blowups acting on the P

2 fibers so that the
resulting smooth model X2 may be viewed as a hypersurface in an ambient projective
bundle with fibers isomorphic to PF6 , i.e., the blowup of P

2 at two points. The hypersur-
face equation defining X2 can be computed systematically by exploiting the fact that to
every two-dimensional toric variety PFi is associated a canonically defined genus one
curve in PFi that can be realized as a a zero section of the anticanonical bundle.

In order to use the pushforward technology to compute intersection numbers and
other relevant characteristic numbers associated to X2, we regard the singular model X0
as a hypersurface of the ambient projective bundle Y0 = P(V ) → B, with P

2 fibers
described by Eq. (7.3). Combining this data with the classes of the generators of the

34 These divisor classes are associated with the vertices of the dual polytope of the toric fiber defining the
F6 model in [28].
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centers of the blowups comprising the resolution X2 → X0, it is straightforward to
explicitly compute the pushforwards of the intersection numbers in a suitable basis and
evaluate the geometric expressions for the fluxes using (3.14)–(3.16).

The computation of the 3D Chern–Simons terms following the strategy of match-
ing intersection numbers of the form WĪ J̄ K̄α to 5D Chern–Simons terms k5D

Ī J̄ K̄
(where

Ī , J̄ , K̄ = 0̄, 1̄, i) in this case is more involved due to the fact that the resolved model
X2 has a rational, as opposed to holomorphic, zero section. This is because one needs to
determine, in addition to the signs of the BPS central charges, the ratio of their magni-
tudes to the KKmodulusmKK. Fortunately there is a simple geometric computation one
can do to determine which particles (descending from M2 branes wrapping irreducible
holomorphic curves in the M-theory background) have nontrivial KK charge. Notice
that the pushforward of the intersection of the zero section and generating section is
given by

π∗(D̂0 · D̂1) = W01 = S7 . (7.6)

From the above expression we can infer that the primitive BPS particles in the rep-
resentation R′ carrying nontrivial KK charge must be associated to matter loci of the
schematic form

CR′ = S7 · (· · · ) . (7.7)

Exploiting the fact that the spectrum of the F6 model is known, we see that the classes
of the relevant matter loci fitting this criterion are

C2− 3
2
= S7 · (−K − S7 + S9), C12 = S7 · (2S7 − S9) . (7.8)

The above analysis implies that the BPS particles transforming in the representations
R′ = 2− 3

2
, 12 have nontrivial KK charge. It follows that these are the only particles for

which the KK mass is not larger than the Coulomb branch mass; we may therefore set
�|rKKϕ ·wR

i |� = 0 for all other representationsR. Utilizing this simplifying assumption,
we find a perfect match between the 5D Chern–Simons terms and the triple intersection
numbers involving precisely three Cartan divisors, provided we use the signs in Table 2
and set

�|rKKϕ · w
2− 3

2
+ |� = 1 (7.9)

where w
2− 3

2
+ = (− 3

2 , 1) is the highest weight.
While we have not found a way to determine a general form for the the nullspace

of MC for arbitrary characteristic data without specifying B, as discussed in Sect. 3.3
we can attempt to get a general picture of the nullspace by restricting to the sublattice
�S∩{φ1α = 0}. Combining the pushforwards of the intersection numbers with formulae
for the constrained fluxes in (3.14) to (3.16) reveals that after imposing the additional
restriction φ1α = 0, the fluxes satisfy (the SU(2) Cartan index is i = 2)

200 = −201 = 211 = 202 = 22 . (7.10)
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Continuing to work in the restricted case φ1α = 0, comparing the fluxes with the
corresponding 3D Chern–Simons theory shows that the multiplicity of chiral matter in
2− 3

2
is

2χ2
− 32
= 22 . (7.11)

We thus expect in general that F-theory models can realize the one-parameter family Eq.
(7.1) of anomaly-free chiral matter fields for this gauge group with generic matter. Since
in the unrestricted case φ1α �= 0 we cannot write down a completely general expression
for the fluxes without specifying B, we next turn our attention to specific examples.

7.1.2. Example: B = P
3 As a first simple example, we study the case B = P

3, K =
−4 H, S7 = s7H, S9 = s9H .Wedefinen = s9+4−s7 for convenience, andparameterize
the results in terms of n, s7 (the parameter n corresponds to the parameter s8 in the F6
Weierstrass model of [28], which as discussed above is the degree of the divisor class
S8 = nH associated with the SU(2) factor; the U(1) factor is associated with the height
pairing parameter h := −2W1̄1̄ ·H2 = 16+4s7−n). Such a model is defined for integer
values of n, s7 satisfying the conditions n, s7, 16−n−2s7 = 24−3n/2−h/2, 4+s7−n =
(h − 3n)/4 > 0; from these conditions we see that the height pairing also satisfies h =
16+4s7−n > 0. In this set of cases, the matrix MCna(1 H)(1 H) = (n−4s7−16) = −h/2
would fail to have an inversewhen n = 4s7+16, but this does not happen in the parameter
range of interest as the height pairing divisor is always positive/effective, so for these
models the matrix MCna(1α)(1β) is always invertible, making it possible in all cases
to solve for φ1H with this expression as a denominator. However, as we demonstrate
below, in this case the formal rational expression for the flux (which must take integer
values) is not an invariant property of the solution, but rather a feature of our choice
of solution. As an alternative, we can solve the equation 1 H = 0 by eliminating a
different flux background parameter so as to produce a polynomial expression for 22
that is manifestly integer-valued.

As discussed in Sect. 2.5, we can analyze this model by following one of two ap-
proaches: either we first impose the symmetry constraints and then study the nullspace
of MC in order to determine linear constraints on the fluxes, or we first quotient out the
nullspace of M and then impose the symmetry constraints. Despite producing identi-
cal results, both approaches have their respective unique advantages. In the following
discussion we briefly describe three versions of the calculation (two of which follow
the former approach, with the third version following the latter approach) in order to
illustrate the different aspects of the problem. In particular, the full set of constraints de-
termining the quantization of the number of chiral matter fields is clearest in the analysis
beginning with Mred in this class of examples, though this may not be the case for other
choices of G or B.

As stated more generally in Sect. 2.5.2, throughout the analysis of this section we
disregard the possible half-integer shift in φ that may be required when c2(X) is not
even; this can easily be incorporated, as described for the SU(5) model in Sect. 6.4.

Rational solution. Solving directly for φ1H gives

22 = χ2
− 32
= 2ns7(16− n − 2s7)(4 + s7 − n)

h
�(φ Î Ĵ )

�(φ Î Ĵ ) = φ00 − φ01 + φ02 + φ11 + 2φ22 ,

(7.12)
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As in the discussion above, this is well-defined since h > 0.
As for the purely nonabelian cases described previously, the symmetry constraints

and integer conditions on the flux backgrounds φ I J are sufficient to guarantee that this
expression is integer- (and even-)valued, although we have not identified as simple a
structure underlying this integrality as the group theoretic structure underlying e.g. the
combination of flux background parameters appearing in Eq. (6.23). In this case, the
symmetry constraints H2 = 0 imply additional conditions, including

2s7(4 + s7 − n)�(φ Î Ĵ ) ∈ hZ , (7.13)

which in turn implies that 22 is integer-valued, and is in fact an integer multiple of
n(16 − n − 2s7). The full set of constraints is seen most easily after imposing the
homology equivalence conditions on SI J , as discussed further below.

Polynomial solution. Alternatively, we can solve 1H = 0 in this case for the flux φ22,
which gives us the result

22 = χ2
− 32
= 2

3
(16− n − 2s7)(4− n + s7)�

′(φ I J )

�′(φ I J ) = φ1H + (s7 − 4)φ11 + nφ12 . (7.14)

In this analysis, the condition 1H = 0 implies that (16 − n + 4s7)�′(φ I J ) = 3ns7k
where k is an integer combination of fluxes, so generically we expect22 to be an integer
multiple of 2ns7(16− n − 2s7)(4− n + s7).

The two presentations of the chiral multiplicity (7.12) and (7.14)must give equivalent
answers after all quantization conditions are properly taken account of. The second
expression is simpler since only a factor of 3, and not the U(1) height pairing h, appears
in the denominator. On the other hand, the expression for � is simpler than that of �′ as
it does not depend on the characteristic data. For the full analysis of the quantization
conditions we now turn to the analysis using Mred.

Vertical homology and flux quantization. An important difference in resolutions only
admitting a rational zero section from those with a holomorphic zero section such as
those associated with the purely nonabelian groups studied in previous sections is that
solving the symmetry conditions (2.10) and (2.11) over the integers generically imposes
additional constraints on the parameters beyond those necessary to ensure integrality of
the solutions.

To complete the discussion of this simple example we describe the complete quanti-
zation condition following from the integrality of the fluxes φ I J . We can first explicitly
remove the nullspace of M by dropping the fluxes φ01, φ02, φ11, φ12, φ22, which each
appear with a coefficient of 1 in a nullspace vector with all other entries integer. With
this simplification, the matrix Mred in the basis S0H , SHH , SH2, S1H , S00 becomes

Mred =

⎛
⎜⎜⎜⎝

−4 1 0 s7 16− ns7
1 0 0 1 −4
0 0 −2n n −ns7
s7 1 n −4 s7(n − 4)

16− ns7 −4 −ns7 s7(n − 4) −64 + 12ns7 − n2s7 − ns27

⎞
⎟⎟⎟⎠ , (7.15)

and

det Mred = −n2s7(16− n − 2s7)(4− n + s7). (7.16)
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Table 2. Signs and Cartan charges associated to the BPS spectrum of the resolved F6 model with gauge group
G = (SU(2)× U(1))/Z2 analyzed in [28]

1 2

⎛
⎝

ϕ·w
|ϕ·w| w1 w2

+ 1 0
+ 2 0

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎝

ϕ·w
|ϕ·w| w1 w2

+ 1
2 1

− 1
2 −1

+ − 3
2 1

+ − 3
2 −1

⎞
⎟⎟⎟⎟⎟⎠

The Cartan charges are the Dynkin coefficients of the weights in the representations 11, 12, 2 1
2
, 2− 3

2
of SU(2)

and the signs correspond to the signs of the BPS central charges ϕ · w for a given choice of Coulomb branch
moduli ϕi

Note that the top left 4 × 4 block is resolution-invariant and the top left 3 × 3 block
corresponds to the generalization of (6.14) to arbitrary n. Given this form of the re-
duced matrix, we can directly solve the constraint equations 0H ,HH ,H2 = 0 for
φ0 H , φHH , φH2. The first two of these each can be described as an integer linear com-
bination of remaining fluxes, and the third can be solved as an integer whenever the flux
combination φ1 H − s7φ00 is even. The remaining equation 1H = 0 becomes

3ns7φ
00 = hφ1H . (7.17)

These are therefore the only nontrivial constraints on thesefluxes.With this simplification
for removing the nullspace, the parameters �, �′ become φ00, φ1H respectively.

From these constraints for any fixed values of n, s7 we can explicitly determine the
quantization of the chiral multiplicity encoded by 22. For example, when n is odd, h is
odd as well and the even parity constraint on φ1H − s7φ00 is automatically satisfied, so
when h and 3ns7 furthermore have no common divisors, it follows that 22 can be an
arbitrary integer multiple of 2ns7(16− n − 2s7)(4− n + s7), up to bounds determined
by the tadpole condition (and where, as noted above, to simplify the discussion we have
ignored possible half-integer shifts for non-even c2(X)).

As explicit examples, if n = s7 = 1 (h = 19), the chiral index will be a multiple of
2 × 13 × 4 = 104, and if n = 1, s7 = 4 (h = 43), the chiral index will be a multiple
of 392. If, however, e.g., n = 3, s7 = 2 (h = 21), then h has a common factor with
3ns7, in particular, 4 − n + s7 = 3, 16 − n − 2s7 = 9, and 22 can be any multiple of
81 (instead of 243), up to tadpole constraints. And when n = 4, s7 = 1 (h = 16), the
even parity constraint imposes the additional condition that φ1H must be even, so 22
is a multiple of 4ns7(16− n − 2s7)(4− n + s7) = 160.

7.1.3. Example: B = F̃n We next consider a one-parameter family of examples where
the F-theory base is taken to be aHirzebruch threefold, B = F̃n , in order to illustrate how
the submatrix MCna(1α)(1β) can fail to be invertible for certain choices of characteristic
data K , S7, S9. A Hirzebruch threefold is a generalization of a Hirzebruch surface Fn
(i.e., a P1 fibration over a P1 base) in which the base of the P1 fibration is taken to be P2

instead of P1. For our purposes, we simply need to know the intersection theory of F̃n .
To make an analogy, note that Hirzebruch Fn has two independent classes F, E , where
F is the class of the P

1 fiber (meaning that F is the divisor class of a point in the P
1

base) and E is the class of the P1 base (meaning that E is the divisor class of a point in
a P1 fiber). These two classes have the following intersection properties:

F2 = 0, F · E = 1, E2 = −n, n ∈ Z≥0. (7.18)
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The threefold F̃n similarly has two independent divisor classes D2 := F, D1 := E
satisfying

D3
2 = 0, D2

2 · D1 = 1, D2 · D2
1 = −n, D3

1 = n2, n ∈ Z≥0. (7.19)

Since F̃n is a toric variety, the canonical class K of F̃n is as usual given by minus the
sum of all divisors corresponding to one-dimensional cones of the toric fan:

K = −
∑

Dα = −(D2 + D2 + D2 + D1 + (D1 + nD2)) = −(3 + n)D2 − 2D1.

(7.20)

(Note that the above results can easily be derived by adapting the pushforward technology
described in Appendix E to the projectivization P(V ) → B(2) of a rank one vector
bundle V = L ⊕ OB(2) .) We expand the divisors Sm in the basis Dα , Sm = smαDα .
In terms of this basis of divisors, the constraints on the characteristic data for a good
(SU(2)× U(1))/Z2 model are then

(s71, s72) > (0, 0)

(s81, s82) > (0, 0)

(8− 2s71 − s81, 12 + 4n − 2s72 − s82) > (0, 0)

(2 + s71 − s81, 3 + n + s72 − s82) > (0, 0) , (7.21)

where a (Weil) divisor Sm is effective if smα ≥ 0 and either sm1 > 0 or sm2 > 0. Note
that when n > 3 there is a non-Higgsable gauge factor on the divisor D2, whichmay lead
to an enhancement of the gauge symmetry in the class of universal (SU(2)×U(1))/Z2
models.

In this family of examples, (minus) the height pairing divisor is then given by

W1̄1̄ =
1

2
S8 + 2(K − S7) =

(
−4− 2s71 +

s81
2

)
D1 +

(
−2(3 + n)− 2s72 +

s82
2

)
D2.

(7.22)

Combining the above expression forW1̄1̄ with the F̃n intersection numbers in Eq. (7.19)
we find

[[MCna(1α)(1β)]]
=

(
n2(4s71 − s81 + 4) + n(−4s72 + s82 − 12) n(−4s71 + s81 − 4) + 4s72 − s82 + 12
n(−4s71 + s81 − 4) + 4s72 − s82 + 12 4s71 − s81 + 8

)

(7.23)

from which it follows

det[[MCna(1α)(1β)]] = −1

2
(4(n + s72 + 3)− s82)(n(4s71 − s81 + 4)

−4(s72 + 3) + s82). (7.24)

Hence we see that if we choose the characteristic data such that

s82 =
{
12 + 4n + 4s72
12− 4n − 4ns71 + 4s72 + ns81

(7.25)
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the matrix MCna(1α)(1β) will be singular.
We now turn our attention to some specific choices of n ≤ 3 and look in particular for

flux compactifications on (SU(2)×U(1))/Z2 models with characteristic data satisfying
the special conditions Eq. (7.25) that lead to non-invertibility of MCna(1α)(1β).

Example: B = F̃0 ∼= P
2 × P

1. As a specific example, consider the case n = 0. The
matrix of intersection pairings with W1̄1̄ takes the form

[[MCna(1α)(1β)]] = −1

2

(
0 4s72 − s82 + 12

4s72 − s82 + 12 4s71 − s81 + 8

)
(7.26)

with det[[MCna(1α)(1β)]] = −(4s72− s82 +12)2/4. This matrix is always invertible since
12 + 4s72 − s82 > 12− 2s72 − s82 > 0.
Example: B = F̃3. As another specific example consider the case n = 3, for which

[[MCna(1α)(1β)]] = −1

2

(
3(12s71 − 4s72 − 3s81 + s82) −12s71 + 4s72 + 3s81 − s82
−12s71 + 4s72 + 3s81 − s82 4s71 − s81 + 8

)
.

(7.27)

Generically the determinant of this matrix is non-vanishing, but there is a family of
allowed choices of characteristic data for which the determinant vanishes. For example,
making the choices

S7 = S8 = −K ⇔ (s71, s72) = (s81, s82) = (2, 6) (7.28)

leads to a singular matrix. M does not develop any additional null vectors as a result of
the above specialization, so it is possible to fully solve the U(1) symmetry conditions by
eliminating distinctive parameters. In contrast to the previous specific example B = F̃0,
this choice for the characteristic data is not forbidden by the constraints described at the
beginning of this section and hence it appears that such a choice of parameters describes
a consistent F-theory flux vacuum in which the U(1) gauge symmetry can be preserved
in 4D in spite of MCna(1α)(1β) being singular; therefore, an explicit solution must include
at least one nontrivial flux background other than φ1β as in e.g. the polynomial solution
(7.14). This provides an explicit example of the kind of situation mentioned at the end
of Sect. 3.2.

7.1.4. Resolution independence of Mred We collect some evidence supporting the con-
jecture that Mred (and hence Hvert

2,2 (X,Z)) is also resolution independent in the the more
general setting of models with U(1) gauge factors. Here, we compare the resolution of
the (SU(2)×U(1))/Z2 model studied in the previous subsections, which we denote by
X2, and an alternative resolution X ′3 defined by the sequence of blowups

X ′3
(e2,s8|e3)−→ X ′2

(u,v|e2)−→ X ′1
(u,s4v+s7w|e1)−→ X0 (7.29)

where we follow the notation of [28].



Chiral Matter Multiplicities and Resolution-Independent Structure

For simplicity, let us specialize again to the case B = P
3, where we again denote the

SU(2) gauge divisor by S8 = nH . In a common basis S0H , SHH , SH2, S1H , S11 we find

Mred(X2) =

⎛
⎜⎜⎜⎜⎝

−4 1 0 s7 s7(s7 − n)

1 0 0 1 −4
0 0 −2n n −4n
s7 1 n −4 ns7 − s27 − 4s7 + 16

s7(s7 − n) −4 −4n ns7 − s27 − 4s7 + 16 −n2s7 + 3ns27 − 4ns7 − 2s37 + 32s7 − 64

⎞
⎟⎟⎟⎟⎠

Mred(X
′
3) =

⎛
⎜⎜⎜⎜⎝

−4 1 0 s7 s27
1 0 0 1 −4
0 0 −2n n −4n
s7 1 n −4 −ns7 − s27 − 4s7 + 16
s27 −4 −4n −ns7 − s27 − 4s7 + 16 −n2s7 − 3ns27 + 12ns7 − 2s37 + 32s7 − 64

⎞
⎟⎟⎟⎟⎠ .

(7.30)

These two matrices are related by a change of basis

Mred(X2) = U tMred(X
′
3)U, U =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
2s7 ns7 −s7 2(4− s7) 1

⎞
⎟⎟⎟⎠ . (7.31)

An analogous change of basis holds for other choices of base we have checked.

7.2. (SU(3)×SU(2)×U(1))/Z6 model. One of the initial motivations of this paper was
to analyze the 4Dmassless chiral spectrum of the universal (SU(3)×SU(2)×U(1))/Z6
model of [27]. This model is believed to be the most general F-theory model with
tuned (SU(3)× SU(2)×U(1))/Z6 gauge symmetry and generic matter spectrum, con-
sisting of the representations appearing in the MSSM as well as three additional “ex-
otic” matter representations. The gauge sector of the 4D N = 1 supergravity describ-
ing this theory at low energies admits three linearly independent families of anomaly
free combinations of chiral matter representations, so a flux compactification of the
(SU(3) × SU(2) × U(1))/Z6 F-theory model can be expected to yield at most three
independent combinations of chiral indices.

While the universal (SU(3) × SU(2) × U(1))/Z6 model can be defined by means
of a Weierstrass model, due to the presence of a U(1) gauge factor (much like the
(SU(2) × U(1))/Z2 model), for the purpose of computing a resolution it proves to be
more convenient to start with a construction of the singular F-theory background as a
hypersurface X0 of an ambient P2 bundle where the elliptic fiber of X0 is realized as a
general cubic in the P2 fibers of the ambient space. The hypersurface equation for X0
can be obtained by unHiggsing the U(1) model with charge q = 4 matter constructed in
[102]. The characteristic data of this model consists of the classes K , �2, �3,Y where
�m is the gauge divisor class of the nonabelian factor SU(m) and Y =: W01 pulls back to
the intersection of the (rational) zero and generating sections of a resolution of X0. One
special subclass of these models are those with Y = 0, which have only MSSM-type
matter and have been studied using the toric F11 fiber [28,29].

In a forthcoming publication [30], following the approach of this paper we present a
complete analysis of the lattice of 4D symmetry-preserving vertical fluxes and associ-
ated 4D chiral multiplicities of the universal (SU(3) × SU(2) × U(1))/Z6 model over
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an arbitrary threefold base B. Consistent with the emerging picture of the landscape of
F-theory vertical flux vacua described in this paper, one of the main results of [30] is that
all three families of chiral matter representations can be realized in F-theory—further
evidence suggesting that the linear constraints on 4D chiral matter multiplicities im-
posed by F-theory geometry coincide with the linear constraints implied by 4D anomaly
cancellation.

These results are found for arbitrary bases using the simplified analysis associated
with the restricted class of flux backgrounds φ1α = 0, as well as for specific bases using
the full analysis of Mred and keeping quantization conditions intact.

8. Conclusions and Future Directions

8.1. Summary of results. Wehave described a novel and coherent approach for analyzing
4D vertical flux compactifications in F-theory (that is, flux backgrounds belonging to
Hvert
2,2 (X,Z)) that preserve 4D local Lorentz and gauge symmetry. Our approach both

offers unique computational advantages, and sheds light on the geometric nature of
some of the resolution-invariant physics encoded in the singularities of the F-theory
background related to the 4D massless chiral spectrum that has so far proven difficult to
analyze directly in the type IIB duality frame.

One of the key elements of our analysis is the integral lattice of vertical 4-cycles,
with symmetric bilinear form given by the symmetric matrix of quadruple intersection
numbers of the smooth CY fourfold X interpreted as an intersection pairing on sur-
faces corresponding to the pairwise intersections of divisors. By Poincaré duality the
nondegenerate part of this lattice is equivalent to the lattice H2,2

vert(X,Z) of vertical flux
backgrounds. We conjecture that this lattice, along with its nondegenerate inner product
given by the matrix Mred, is a resolution-invariant structure for any singular elliptic CY
fourfold encoding an F-theory compactification. This conjecture seems natural from the
point of view of type IIB string geometry, and is satisfied by a wide range of explicit
examples that we have considered in this paper. The resolution-independence of Mred
also implies that the symmetric bilinear form M on the formal space of intersection sur-
faces SI J , which contains a nullspace corresponding to homologically trivial surfaces, is
resolution-independent. This further implies the existence of nontrivial relations among
the set of quadruple intersection numbers of the resolved CY fourfold, even though these
quadruple intersection numbers are not in general resolution-independent (i.e., equiva-
lent under an integral linear change of basis of the divisors.) Understanding the geometry
of this conjecture better and its ramifications for the intersection structure of singular
CY fourfolds is an interesting problem for further investigation.

The resolution-independence of M and Mred is a sufficient condition for the chiral
matter content of a given class of F-theory flux compactifications to be resolution-
invariant, but as far as we can tell is not directly provable from this geometric condition.
The structure of Mred we have studied here could be used to further study F-theory flux
compactifications both in situations where the geometric gauge group remains unbroken
in 4Dby the fluxes, which is the primary focus here, aswell for caseswhere the geometric
gauge group is broken by vertical fluxes, which seems like an interesting direction for
further research. In cases where the flux does not break the gauge group, additional
constraints are placed on the fluxes. Conceptually, the approach we have taken here to
studying such vacua involves the interplay between two operations applied to the formal
intersection pairing matrix M . The first of these two operations entails restricting to
a sublattice of flux backgrounds satisfying the constraints necessary and sufficient to
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preserve 4D local Lorentz and gauge symmetry. This operation is central to the standard
approach used in much of the previous literature to analyze vertical flux backgrounds
in F-theory; our methods for computing intersection numbers combined with the rigid
structure of the elliptic fibration enable us to write a formal expression for the elements
of this sublattice. In contrast, the second of these operations involves taking the quotient
of the lattice of vertical 4-cycles by homologically trivial cycles, the result of which is
the lattice of vertical homology classes Hvert

2,2 (X,Z) with inner product given by Mred.
While these two operations commute, studying the interplay between the two different
orders of these operations gives insight into the structure of the connection between
chiral matter and F-theory fluxes.

Computationally, the approach presented here is a synthesis of various techniques that
have appeared in the literature. Notably, we apply recently developed algebrogeometric
techniques for computing intersection numbers of divisors in smooth elliptically fibered
CY varieties to classes of resolutions that can more easily be obtained from geometric
constructions of singular F-theory backgrounds in which the elliptic fiber is realized as
a general cubic in P

2—this procedure therefore provides a means to analyze a broader
class of F-theory constructions than is encompassed by the usual Weierstrass model
construction. Moreover, since these techniques (like those used in [23,32]) express the
intersection numbers of divisors in terms of triple intersections of certain divisors in
the base of the elliptic fibration (i.e., the characteristic data), this approach can be used
to conveniently organize the landscape of F-theory vertical flux compactifications into
families of vacuawith fixed gauge symmetry andmatter representations over an arbitrary
base.

We have demonstrated the utility of this approach by analyzing vertical flux back-
grounds in numerous examples with simple gauge symmetry group and generic matter.
We have also analyzed several examples of models with a U(1) gauge factor, to illus-
trate the straightforward generalization of these methods to models with U(1) gauge
factors; in principle a similar analysis is possible for models with an arbitrary number of
U(1) factors. Of particular note among models with U(1) gauge factors is the universal
(SU(3)×SU(2)×U(1))/Z6 model [27] whose 4Dmassless chiral spectrumwe analyze
in a forthcoming publication [30] using the methods described in this paper. We find
in all examples that the linear constraints on the chiral matter multiplicities imposed
by F-theory geometry exactly match the 4D anomaly cancellation conditions, which
suggests that it may be possible to realize all anomaly-free combinations of 4D chiral
matter in F-theory, at least at the level of allowed linearly independent families of the
generic matter types for a given gauge group, although of course tadpole constraints
will impose a limit on the magnitude of the number of families possible in any given
direction, giving a finite bound on the set of allowed F-theory models.

8.2. Future directions. The existence of a resolution independent structure such as
Hvert
2,2 (X,Z) is consistent with the expectation that the kinematics of F-theory vacua

are captured entirely in the singular elliptic CY geometry encoded by the axiodilaton
over a general base in type IIB string theory. To our knowledge the conjecture that
Hvert
2,2 (X,Z) is resolution independent has not previously been explored in the literature

and would be useful to prove rigorously, as this points to several potential future avenues
of investigation related to the physics of F-theory flux compactifications:

• One of the outstanding challenges of F-theory is to give a complete and mathemat-
ically precise definition of this formulation of string theory. While this is often done
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by taking a limit of M-theory (see, e.g., [66,103]), a more intrinsic definition may
be possible from the point of view of type IIB string theory. The progress made here
in understanding the resolution-independent aspects of the singular elliptic fourfold
geometry X0 may help in better understanding how matter surfaces and chiral matter
may be formulated and computed directly from the type IIB point of view.
• From a mathematical point of view, the resolution-independence of Mred indicates
that there is some intrinsic meaning to the lattice H2,2

vert(X0,Z) of integral vertical
surfaces and their intersection form on the singular fourfold geometry X0. This is
particularly intriguing as the surfaces Si j most relevant for chiral matter in F-theory
flux vacua project to trivial surfaces in the base and thus are hidden in the singular
ellipticCYgiven by the F-theoryWeierstrassmodel.Developing a clearmathematical
picture of this aspect of intersection theory of singular complex fourfolds poses an
interesting challenge on the mathematical side.
• More concretely, the resolution-independence of H2,2

vert(X,Z) suggests that there
should be some way of directly computing the intersection matrix Mred without ex-
plicitly performing any blowups at all. While many of the intersection numbers that
form this matrix are resolution-independent, others are not, so identifying an orga-
nizing principle that would make possible a resolution-independent statement of the
form of this matrix would be a significant step forward for the intrinsic understanding
of singular F-theory flux vacua.
• We have focused in this paper on the intersection structure of CY fourfolds, which
is relevant for 4D F-theory vacua. We may speculate, however, that the analogous
homology group Hvert

2,2 (X (3),Z) for a CY threefold X (3) is also resolution-invariant.
It may be possible to prove this resolution-invariance in a more direct and explicit
way, and this may further shed light on the structure of Hvert

2,2 (X,Z) for a CY fourfold.
• While in this paper we have focused on fluxes that preserve the geometric gauge
group, so that the gauge invariance constraints Iα = 0 are all satisfied, it would
be interesting to study flux vacua in which this condition is weakened. In particular,
as discussed in e.g. [27], while direct tuning of the Standard Model gauge group in
F-theory is one way to get semi-realistic physics models, the bulk of the moduli space
of CY fourfolds, and apparently the vast majority of the flux vacua, are dominated by
bases that force large numbers of non-Higgsable gauge factors such as E6, E7, E8
(see e.g. [39,40,104]); for these bases it is difficult or impossible to tune the Standard
Model gauge group, but the group (SU(3) × SU(2) × U(1))/Z6 may be realized
by turning on fluxes that break the gauge symmetry. Some preliminary work in this
direction for E8 breaking was done in [105], but the methods developed here may
provide a very useful tool in more systematically pursuing this kind of analysis for
flux breaking of non-Higgsable groups like E6 and E7.
• Intriguingly, in all models we study we find that the symmetry-preserving fluxes
appear to depend on resolution-invariant linear combinations of triple intersections of
characteristic divisor classes in the base of the elliptic fibration, so that the minimum
magnitude of the fluxes appears to be controlled by certain numbers of special points
lying in the discriminant locus. Since the chiral indices themselves can be expressed
as linear combinations of the fluxes, this suggests that the chiral indices in some sense
“count” special points in the F-theory base. One very clear illustration of this idea
is given by (4, 6) points, as the symmetry-preserving fluxes in the models we have
studied receive contributions proportional to the numbers of (4, 6) points in the base.

More generally, in many cases the multiplicity of chiral matter in fixed representations
is proportional to the number of points in the base in the intersection of the associated
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matter curve and another characteristic divisor, suggesting some explicit direct connec-
tion between chiral matter fields and base geometry. While these observations are not
necessarily unique to our analysis, our computational methods have enabled us to sur-
vey a large enough number of examples to reveal patterns among different families of
models, see, e.g., the expressions for the fluxes in Table 1. Along these lines, it would be
interesting and quite useful to understand how to associate the chiral indices to certain
types of singularities visible directly from the F-theory limit, and it is possible that the
resolution independence of Hvert

2,2 (X,Z) will prove useful in this capacity.

• Another direction in which this work could naturally be extended involves the ques-
tion of whether or not all families of anomaly-free matter can be realized in F-theory.
In all the examples we have studied, of simple gauge groups and groups with a sin-
gle U(1) factor, we have found by considering both generic and specific choices
of base that F-theory imposes no linear constraints on the chiral matter multiplici-
ties beyond those expected by anomaly cancellation. This has implications for the
analysis of the “swampland,” suggesting that at the level of linear families of matter
F-theory naturally realizes the full set of possibilities that are consistent with low-
energy constraints. It would be good to check whether this continues to hold for more
complicated models with more abelian factors, or even to find some general principle
based on the resolution-invariance of Mred that can match the rank of this intersection
form with the number of expected families of chiral matter.
• At finer level of detail, there are questions related to the quantization and multiplic-
ities of chiral matter that could be explored further both mathematically and through
more concrete physicsmodels. Aswe have discussed here (see in particular Sect. 2.8),
the quantization conditions on matter from purely vertical fluxes may be weakened
when the other components of middle homology are incorporated and/or fractional
vertical flux coefficients are included, since by Poincaré duality there should be in
principle cycles with a single unit of flux through any primitive matter surface, even
though in general the determinant of Mred has magnitude greater than 1. Further anal-
ysis of the geometry and associated physics of these kinds of questions could help
elucidate more detailed swampland type questions regarding which precise multi-
plicities of matter can arise in given 4D supergravity models realized from F-theory.
• While in this paper we have focused on chiral matter in 4D theories, a full under-
standing of the low-energy physics of a given F-theory compactification also requires
understanding the vector-likematter. Thoughvector-likemattermultiplicities are sub-
tler than chiral matter, some recent progress has been made in this direction [82,106–
109]. It would be interesting to investigate whether there is resolution-independent
structure, analogous to that studied here, that can be used to describe such vector-like
multiplicities.
• Finally, we note that for a pair of CY fourfolds related by mirror symmetry, their
respective vertical and horizontal cohomologies are isomorphic [49,79]. In this paper
we restricted our focus to vertical flux backgrounds and did not attempt to explore the
space of horizontal fluxes associated to a given 4D F-theory model. However, a more
complete analysis of F-theory flux compactifications generically requires horizontal
fluxes to be included in the picture. If it turns out that the vertical homology of a given
CY fourfold is indeed resolution invariant, this would suggest that the corresponding
horizontal homology of the mirror CY fourfold is also an invariant structure across
certain regions of moduli space and may provide a strategy for studying horizontal
fluxes, which have received comparatively less attention in the literature, and which
may also give insight into the quantization issues mentioned above. The intersection
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form on the horizontal part of H4(X,Z) also plays an important role in recent work
that uses asymptotic Hodge theory to describe string vacua in large field limits [110,
111], and it would be interesting to understand if similar resolution-independent
structure is relevant there.
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A. 4D Anomaly Cancellation

We review anomaly cancellation in four dimensions, following primarily [19].
Consider a 4D N = 1 theory with gauge algebra of the form

g =
⊕
s

gs ⊕
⊕
ā

u(1)ā, (A.1)

with the gs being simple nonabelian gauge algebra factors, indexed by s, and with u(1)ā
being abelian gauge factors, indexed by ā. As we are only considering local gauge
anomalies, we need not specify the global structure of the gauge group G here. Matter
in chiral multiplets transforms in irreducible representations of the form

r =
⊗
s

rs ⊗
⊗
ā

qr,ā =: (r1, r2, . . . )(qr,1,qr,2,... ). (A.2)

In four dimensions, the gauge and gauge–gravitational mixed anomalies have contri-
butions from chiral Weyl fermions via the familiar triangle diagrams, and additionally
from Green–Schwarz tree-level diagrams exchanging U(1)-gauged scalar axion fields

http://creativecommons.org/licenses/by/4.0/
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ρα . The conditions for the anomaly to cancel reduce to3536

0 =
∑
rs

( ∏
s′ �=s

dim rs′
) trrs F3

s

trf F3
s

,

bα
s αā = 2λs

∑
rs

( ∏
s′ �=s

dim rs′
)
w

rs
ā
trrs F

2
s

trf F2
s

,

aααā = −1

4

∑
r

(dim r)wr
ā,

bα

āb̄
αc̄ + bα

āc̄αb̄ + bα

b̄c̄
αā = 2

∑
r

(dim r)wr
āw

r
b̄
wr
c̄, (A.3)

where αā is the gauging of the axion ρα under the abelian vector Aa associated with
the gauge factor u(1)ā ,

Dρα = dρα + αā A
ā, (A.4)

while the aα, bα
s , bα

āb̄
are anomaly coefficients that specify theGreen–Schwarz couplings

of ρα ,

SGS = −1

8

∫
2

λs
bα
s ραtrf(Fs ∧ Fs) + 2bα

āb̄
ραFā ∧ Fb̄ −

1

2
aαραtr(R ∧ R). (A.5)

Here, λs = 2c∨s /AAdjs , with c
∨
s the dual Coxeter number of gs .

B. Tensor Structures in Intersection Products of Divisors

This appendix is an overviewof various tensor structures characterizing the pushforwards
of intersection numbers of divisors in a resolution X of a singular elliptically fibered
CY variety defining an F-theory model with gauge groupG. Although the structures we
describe in this appendix are to our knowledge not rigorously proven, we expect them to
apply for the full class of CY fourfolds we describe in this paper (see below for a precise
statement of our assumptions about the type of CY manifold for which these structures
apply). Furthermore, these structures have been verified in a vast number of examples
of intersection products for resolutions of F-theory models studied in the literature. We
include relevant references where appropriate; however, since much of this structure has
been described in numerous places in the literature, we do not attempt to be exhaustive.
Note also that the explicit computations of intersection numbers that we carry out in this
paper using the techniques of Appendix E match with these general tensor structures
in all cases we have computed where the structure is known, and appear to extend to
other cases (e.g., 4-Cartan index intersection numbers) where the general structure is
not understood.

35 The symbol ‘trf’ denotes a trace taken over the field strength Fs transforming in the fundamental (i.e.
defining) representation f of the gauge factor gs (see Eq. (A.5)), and similarly for ‘trrs ’. Note also that the

traces over products of field strengths can be expressed as, e.g., trrs F
p
s =

∑
w∈rs

(∑
is ϕiswis

)p
.

36 Note that in F-theory flux compactifications with abelian gauge factors associated to rational sections
D̂ā , we must impose αā = 0 in order to ensure that the associated abelian gauge symmetry is not rendered
massive in the low energy effective 4D theory by the Stückelberg mechanism.
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Let X be a resolution of a singular elliptic CY n-fold X0 with canonical projection

π : X → B . (B.1)

For simplicity we assume that X0 has a rational zero section and an additional rational
section, although we stress that much of the structure described here is generalizable to
cases in which there are an arbitrary number of rational sections. Following the Shioda–
Tate–Wazir formula [112], we use the basis of divisors D̂I , where I = 0, a, α, is respec-
tively labels a choice of rational zero section, additional rational sections, pullbacks of
divisors in the base, and Cartan divisors (i.e., the irreducible components of the pullback
to X of the irreducible components �s of the discriminant locus {	 = 0} ⊂ B). For
simplicity, we assume that the intersections �s ∩ �s′ are pairwise transverse. We refer
to the divisor classes

�s, �s′ , . . . K = −c1(B), W0a := π∗(D̂0 · D̂a) (B.2)

as the characteristic data of X . Note that D̂ denotes a divisor class in the Chow ring
of X , whereas D denotes a divisor class in the Chow ring of B (and similarly for
higher codimension). Unless the distinction is otherwise unclear from the context, we
generically use the same symbol for both a divisor and its class in the Chow ring, and
moreover we typically do not explicitly indicate pullback maps. Repeated indices are
summed over when one index is raised and the other is lowered.

A convenient method for evaluating intersection numbers in the Chow ring of a
smooth elliptic variety X is to compute the pushforward π∗ of the intersection product
to the Chow ring of B, where π is defined in Eq. (B.1). This method is particularly useful
because the projection formula (see, e.g., [113])

f∗( f ∗(C) · D̂) = C · f∗(D̂) (B.3)

for classes37 C, D̂ and f an appropriate map implies that intersection products involving
divisors D̂α that are the pullbacks of divisors Dα in the base inherit the intersection
structure of Dα ⊂ B. Hence, we can anticipate the pushforwards of intersection products
to exhibit the general structure (for concreteness assume that X is a CY fourfold, i.e.,
n = 4)

D̂I · D̂J · D̂K · D̂L = WI JK L := Wαβγ

I J K L Dα · Dβ · Dγ

D̂α · D̂J · D̂K · D̂L = WJK L · Dα := Wβγ

J K L Dα · Dβ · Dγ

D̂α · D̂β · D̂K · D̂L = WKL · Dα · Dβ := W γ

K L Dα · Dβ · Dγ

D̂α · D̂β · D̂γ · D̂L = WL · Dα · Dβ · Dγ := WLDα · Dβ · Dγ ,

(B.4)

whereWI JK L ,WJK L ,WKL ,WL can be expressed as intersection products in the Chow
ring of B—note that these intersection products only involve the characteristic data
K , �s,W01.

To make contact with low-energy effective field theoretic descriptions of the low-
energy effective field theory describingM-theory compactified on X , we can change our

37 Note that D̂ is a divisor class in the Chow ring of the space in the preimage of the map f .
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basis of divisors to the “gauge” basis D̂Ī = σ J
Ī
D̂J defined by [18,93]

σ I
0̄
= (1, 0,−1

2
Wα

00, 0)
I

σ I
1̄
= (−1, 1,Wα

00 −Wα
01,−W1| js′W

js′ |is )I

σ I
J̄
= δ I

J̄
for J̄ �= 0, 1 .

(B.5)

By linearity, the fluxes in the gauge basis are then linear combinations of the fluxes in
the standard geometric basis. For example, D̂1̄ = σ I

1̄
D̂I is the image of the Shioda map

described in [64]. Using

(σ−1) Ī0 = (1, 0,
1

2
Wα

00, 0)
Ī

(σ−1) Ī1 = (1, 1,−1

2
Wα

00 +Wα
01,W1| js′W

js′ |is ) Ī

(σ−1) ĪJ = δ ĪJ for J �= 0, 1 .

(B.6)

one can invert the above linear transformation:

(σ−1) ĪJσ K
Ī
= δKJ , σ J

K̄
(σ−1) ĪJ = δ Ī

K̄
. (B.7)

We sometimes make the abuse of notation

Ī = i = (ā, is) (B.8)

to collectively denote all abelian gauge indices as opposed to distinguishing between
pure U(1) and nonabelian Cartan indices (note D̂ā := σ I

ā D̂I , where for our purposes we
need only consider a single generating section, i.e., a = 1.)

Throughout the paper we make extensive use of the fact that intersection numbers
of the form WI JK L where I, J, K , L �= 0, a, α exhibit special tensor structures. (Note
that various aspects of the structure of the pushforwards WI JK L have been pointed
out and used extensively in the string theory literature, see, e.g., Section 3 of [19] and
references therein.) In particular, it is useful to grade the intersection numbersWI JK L by
their number of nonabelian Cartan indices I = is , which corresponds to the number of
nonabelian Cartan divisors D̂is appearing in the expressionWI JK L = D̂I · D̂J · D̂K · D̂L .
We now summarize some features of these tensor structures:

• Four nonabelian Cartan indices.Without introducing specific assumptions about the
chiral matter content of the 4D theory engineered by X , a general characterization
of the four Cartan index tensor structure is to our knowledge presently unknown.
It may be possible to combine assumptions about 4D anomaly cancellation and the
existence of particular matter surfaces Sr to predict a subset of the Wi jkl .
• Three nonabelian Cartan indices. Intersection products involving three nonabelian
Cartan divisors in elliptically fibered CY manifolds have been the subject of a great
deal of string theory literature. For example, over a twofold base B(2), these inter-
section products are intersection numbers of a CY threefold X (3), and they encode
various aspects of the kinematics of 5D M-theory compactifications on X (3) dual to
the Coulomb branch of 6D F-theory compactifications on X (3)× S1. In our case (i.e.,
CY fourfolds X ), intersection products involving three Cartan divisors are divisor
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classes and hence push forward to divisor classes in B, but nonetheless carry much
of the same tensor structure as in the CY threefold case, as we now demonstrate.

Combining various results on the relationship between these intersection numbers and
the corresponding low-energy effective physics (see e.g. [85,90,93]) with known results
on the geometry ofmatter curvesCr for local matter arising from transverse intersections
of divisors in B [94], we can infer38 the following structure:

Wis js′ks′′ = ρ
Rss′
is js′ks′′CRss′

CRss′ = �s ·	Rss′ = �s · (aRss′ K + bRss′�s + cRss′�s′) ,
(B.9)

where aRss′ , bRss′ , cRss′ ∈ 1
2Z and Rss′ denotes a hypermultiplet representation trans-

forming under the product gauge group Gs × Gs′ (by convention Rss only transforms
under Gs). For a fixed gauge group and any of the generic matter types, the coefficients
aRss′ , bRss′ , cRss′ can be computed directly from the associated universal Weierstrass
model.
In the above expressions we sum over 5D N = 1 hypermultiplet39 representations

Rss′ , and ρ
Rss′
is js′ks′′ are triple intersection numbers that can be extracted from the pure

Cartan expression for the prepotential F of a 5D M-theory compactification (see [92]):

6FCartan = ϕisϕ js′ϕks′′Wis js′ks′′ = −
1

2

∑
Rss′

CRss′
∑

w∈Rss′
sign(ϕ · w)(wis′′ϕ

is′′ )3 .

(B.10)

For example, 	adjs = (�s + K )/2 and CRss′ = �s ·�s′ . In the above expression wl
are the components of the weight w in the basis of fundamental weights, i.e., the basis
canonically dual to simple coroots α∨i satisfying α∨i · w = wi . Note that Wis js′ks′′ ∝
∂φis ∂φ

js′ ∂φ
ks′′FCartan is manifestly resolution-dependent, since the right hand side of Eq.

(B.10) depends explicitly on sign(ϕ ·w), which in turn depends on the specific phase of
the Coulomb branch to which the intersection numbers correspond.
• Two nonabelian Cartan indices. For intersection numbers of the form Wis js′αβ =
Wis js′ · Dα · Dβ , we have the resolution-independent structure [19]

Wis js′ = Wis | js′�s = −δss′κ
(s)
i j �s , (B.11)

where Wis | js′ is (minus) the inverse Killing form40 associated to Gna and satisfies the
relation

Wis | js′W
js′ |ks′′ = δ

ks′′
is

. (B.12)

• One or fewer nonabelian Cartan indices. For intersectionnumbers of the formWisαβγ =
Wis Dα · Dβ · Dγ the tensor structure trivializes:

Wis = 0 . (B.13)

38 For instance, the most direct method to derive Eq. (B.9) is to match 5D 1-loop CS terms to intersec-
tion products involving three nonabelian Cartan divisors as in Eq. (5.8) and below, and then to identify the
“coefficients” CR as the classes of matter curves described in [94].
39 In this notation, R = r⊕ r∗ is a quaternionic representation, and hence sums over representations do not

distinguish between a complex representation r and its conjugate r∗.
40 The tensor κ(s)

i j is the inverse of the metric tensor of the simple Lie algebra gs ⊂ gna = ⊕sgs and appears,

e.g., in the 5D scalar kinetic term
∫

κ
(s)
i j dϕis ∧ ∗ dϕ js .
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Understanding these tensor structures turns out to be crucial for characterizing the general
form of the constrained fluxes for F-theory models with gauge group G = (U(1) ×
Gna)/�. In particular, the fact that Wis | jt can be inverted is crucial to the calculation in
Appendix C.

Note that we also make liberal use of the formal identity

Wis J K L = �s ·WJK L|is , (B.14)

of which the definition Wis js′ = �sWis | js′ in Eq. (B.11) is a special case. Finally, when
the zero section D̂0 (or any section, for that matter) is holomorphic, we have

W0000 = K 3 ,

W000α = K 2 · Dα ,

W00αβ = K · Dα · Dβ ,

W0αβγ = Dα · Dβ · Dγ .

(B.15)

C. Solution to the Symmetry Constraints

In this appendix we show that, given a resolution X of a singular fourfold X0 correspond-
ing to a 4D F-theory compactification with gauge symmetry G = (U(1) × Gna)/�,
flux backgrounds G that preserve the full Poincaré and gauge symmetry in the F-

theory limit can typically be parametrized entirely by distinctive parameters φ Î Ĵ , where
Î , Ĵ = 0, 1, is .

Our starting point is the unconstrained expression for a flux I J , which can be
split into terms that depend separately on distinctive and non-distinctive parameters as
follows:

I J = d
I J + φ0βW0β I J + φ1βW1β I J + φβγ Wβγ I J + φβks′′Wβks′′ I J . (C.1)

The termd
I J in the above expression only depends explicitly on distinctive parameters.

Our goal is to explicitly constrain the above expression to lie a subspace in which
the symmetry constraints (2.10) and (2.11) are satisfied, by solving for the non-distinctive
parameters in terms of the distinctive parameters. To see how this works, we separate
the local Lorentz and gauge symmetry constraints41 into distinctive and non-distinctive
contributions, leading to the following linear system42

0 = 0α = d
0α + φ0βW0β0α + φ1βW1β0α + φβγ Wβγ 0α , (C.2)

0 = 1α = d
1α + φ0βW0β1α + φ1βW1β1α + φβγ Wβγ 1α + φβ js′Wβ js′1α , (C.3)

0 = αβ = d
αβ + φ0γ W0γαβ + φ1γ W1γαβ , (C.4)

0 = αis = d
αis + φ1βW1βαis + φβ js′Wβ js′αis . (C.5)

41 For generic characteristic data, the set of fluxes Iα are linearly independent. However, for some special
choices of characteristic data it is possible for certain linear combinations of the fluxes to vanish, say να IIα =
0, indicating the existence of additional null vectors for the intersection matrix M . In such cases, some of the
constraints become redundant; in practice we drop these redundant constraints so that we only solve a linearly
independent subset Iα = 0.
42 Note thatWαβγ δ = 0 by definition. Moreover, we assume the (unproven) propertyWαβγ is := Wαβ0is =

0 for the smooth fourfolds X we consider.
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There are 3+2 h1,1(B)+h1,1(B)2+2rkGna+h1,1(B)rkGna+(rkGna)
2 parametersφ I J in

total. Since the number of independent constraints is 2h1,1(B)+h1,1(B)2+rkGnah1,1(B),
subtracting this number from the number of independent parameters φ I J generically
leaves behind 3 + 2rkGna + (rkGna)

2 independent parameters, precisely equal to the

number of distinctive parameters φ Î Ĵ . Thus our task can be reduced to solving the above
linear system in such a way that the non-distinctive terms in Eq. (C.1) are replaced by
linear combinations of the terms d

0α,d
1α,d

αβ,d
αis

.
We now derive an explicit algebraic expression for the symmetry-constrained

fluxes. First, observe that φβ js′′′�s′′′ · Dα · Dβ = Wis′ | js′′′φβks′′Wβks′′αis′ , so that the
final set of terms in Eq. (C.3) are given by φβ js′Wβ js′1α = W1| js′ (φ

β js′�s′ · Dα · Dβ) =
W1| js′W

is′′′ | js′φβks′′Wβks′′αis′′′ . This allows us to replace the final set of terms in Eq. (C.3)
with the first two sets of terms on the right-hand side of Eq. (C.5). Next, by observing
that W0 = W1 = 1 and W00 = W11 = K , as well as W01βγ = Wα

01W0αβγ , we able to
use the constraint (C.4) to eliminate the first two sets of non-distinctive terms from the
linear combination (0α +1α)/2. Finally, the linear combination (0α −1α)/2 can
be used to simplify the resulting expressions as well as constrain the parameters φ1α . In
summary we find that the symmetry constraints can be re-expressed as

φ0γ W0αβγ = −d
αβ − φ1γ W0αβγ (C.6)

φβγ W0αβγ = −d
0α +Wβ

00
d
αβ + (Wβ

00 −Wβ
01)φ

1γ W0αβγ (C.7)

φβ js′Wβ js′αis = −d
αis − φ1βW1βαis (C.8)

W1| js′W
js′ |isφβks′′Wβks′′αis = −d

1α + d
0α + (Wβ

01 −Wβ
00)

d
αβ

+ 2(Wβ
01 −Wβ

00)φ
1γ W0αβγ . (C.9)

The equations (C.8) and (C.9) can be combined to recover the U(1) gauge symmetry
constraint equations,

φ I JW1̄I J · Dα = (φ1βW1̄1β + φ K̂ L̂W1̄K̂ L̂) · Dα = 1̄α = σ J
1̄

Jα = 0 (C.10)

where in the above equation (compare to Eq. (B.5))

W1̄K L = −W1|ks′′W
ks′′ |is Wis K L +W1K L −W0K L + (W00 −W01) ·WKL . (C.11)

Using Eqs. (C.6) to (C.9) to eliminate all dependence on non-distinctive parameters, we
find that the symmetry-constrained fluxes  Î Ĵ = MC( Î Ĵ )(K L)

φK L are defined by

MC ( Î Ĵ )(K̂ L̂)
= MCna ( Î Ĵ )(K̂ L̂)

− MCna ( Î Ĵ )(1α)
M+(1α)(1β)

Cna
MCna (1β)(K̂ L̂)

, (C.12)

where MCna = C t
naMCna is the restriction of M to the sublattice �Cna of backgrounds

only satisfying the purely nonabelian constraints isα = 0. The components of MCna

are

MCna (I J )(K L) = WI JK L −WI J |is ·Wis | js′WKLjs′ −W0I J ·WKL −WI J ·W0K L

+W00 ·WI J ·WKL

(C.13)
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where in particular

MCna (1α)(K L) = Dα ·W1̄K L

= Dα · (−W1|ks′′W
ks′′ |is Wis K L +W1I J −W0K L + (W00 −W01) ·WKL)

(C.14)

MCna (1α)(1β) = Dα · Dβ ·W1̄1̄

= Dα · Dβ · (−W1|ks′′W
ks′′ |is W1is + 2(W00 −W01)) . (C.15)

Note that W1̄1̄ is equal to (minus) the height pairing divisor associated to the factor

U(1) ⊂ G, and that M+(1α)(1β)
Cna

is the inverse (when it exists) of MCna(1α)(1β).

D. Resolution-Independence of Mred in Nonabelian Models

In this appendix we show that the matrices Mred associated with different resolutions can
be related through a basis change U when a physically-motivated condition is satisfied.
This does not completely prove thatMred is resolution-independent; in particular,U may
in general be rational, although in all cases we have considered the change of basis is
integral, and we suspect but have not proven that this is always the case.

Given a singular F-theory model characterized by a nonabelian groupG = Gna =∏
s Gs and matter spectrum⊕r⊕nr , we consider the set of possible F-theory resolutions

for which the chiral indices can be expressed as linear combinations of the fluxes,
χr = xis jtr is jt , i.e., those resolutions where the matter surfaces for all chiral matter
representations contain a vertical component. (Thus for this analysis we ignore the
potential existence of unusual resolutions, such as those described in Appendix G, for
which a subset of the matter surfaces do not contain a vertical component). We make the
assumption that, for each pair of resolutions of the same singular geometry, the resulting
Mphys is the same up to a choice of integral basis. While we do not have a general proof
that this must always be the case it is not much stronger than the statement that the set
of allowed flux backgrounds and chiral multiplicities are the same for both resolutions,
which we expect on physical grounds since the physics of any F-theory model should
be resolution-invariant.43

Consider a pair of resolutions X, X̃ satisfying this criterion. For simplicity we
assume that the gauge group has a single nonabelian factor G, though a very similar
analysis can be carried out for groups with multiple nonabelian factors. For each of
these resolutions, we consider again the general form of Mred (4.16), namely

Mred =

⎛
⎜⎜⎝
[[Dα′ · K · Dα]] [[Dα′ · Dα · Dβ ]] 0 0
[[Dα′ · Dβ ′ · Dα]] 0 0 [[Wα′β ′ jt ku ]]

0 0 [[Wα′i ′
s′αis
]] [[Wα′i ′

s′ jt ku
]]

0 [[Wj ′
t ′k
′
u′αβ ]] [[Wj ′

t ′k
′
u′αis
]] [[Wj ′

t ′k
′
u′ jt ku

]]

⎞
⎟⎟⎠ , (D.1)

where we recall that unprimed indices denote columns and primed indices denote rows.
This matrix generally has the schematic structure

Mred =
(
M ′ Q
Qt M ′′

)
, (D.2)

43 This does not rule out the possibility of situations where, despite the fact that the fluxes for two resolutions
are the same, the intersection pairings on their respective lattices of flux backgrounds differ (e.g. Mphys =
(4), (1) and χr = 1, 4.) However, we have not encountered such situations in any of the F-theory models we
have studied.
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where M ′ takes the form (4.15) and is non-degenerate and thus invertible. We can then
carry out a change of basis using the matrix

U1 =
(
Id u1
0 Id

)
, (D.3)

namely

U t
1MredU1 =

(
M ′ 0
0 M ′′1

)
, (D.4)

where explicitly u1 = −(M ′)−1Q and M ′′1 = M ′′ − ut1M
′u1. Note that u1, and hence

U1 are generically rational since (M ′)−1 contains a factor of det κ in the denominator
as discussed abstractly in Sect. 2.8 and more explicitly in Sect. 6.2.2. Because M ′ is
non-degenerate, the symmetry constraints are imposed by simply setting the first set
of coordinates to vanish. Thus, M ′′1 is essentially Mphys. The subtlety here is that since
(M ′)−1 has a denominator of det κ , in most cases, like the example described explicitly
in Sect. 6.4.3, we have

M ′′1 = Mphys/(det κ)2. (D.5)

In such a situation, the condition that the change of basis Eq. (D.3) gives an integer vector
means that M ′′1 only acts on the sublattice of vectors φ′′ such that u1φ′′ is integer-valued
in all components.

From this analysis we can now immediately see that the equivalence of Mphys
between the two resolutions allows us to relate the forms of Mred. Assuming that Eq.
(D.5) holds for both the resolutions X, X̃ , and that the resultingMphys are related through
an integral linear transformation

M̃phys = U t
pMphysUp, (D.6)

we have

M̃red = U tMredU, (D.7)

where

U = U1

(
Id 0
0 Up

)
Ũ−11 =

(
1 u1Up − ũ1
0 Up

)
. (D.8)

Note that the matrixUp used in Eq. (D.6) is not uniquely defined, and has an ambiguity
up to the set of automorphisms of the lattice Mphys. Thus, we have a number of candidate
transformationsU of the form Eq. (D.8). As an explicit class of examples note that even
if Mphys = M̃phys and both matrices are diagonal with distinct eigenvalues, the matrix
Up may be any diagonal matrix composed of elements ±1.

This argument is almost enough to prove that the two forms of Mred are equivalent
under an integral linear change of basis, whenever the Mphys forms are equivalent. The
possible obstructions to this result of resolution-independence of Mred are related to the
rational form of u1, ũ1. In general, we expect both u1 and ũ1 to have rational terms
with a denominator of det κ . The fractional parts need to cancel for Eq. (D.8) to be
an integer transformation. This implies a certain compatibility condition, whereby the
elements of Mred lie in the weight lattice but not the root lattice of G. Because there is
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some ambiguity in the choice of Up, as mentioned above, for there to be an integral U
satisfying Eq. (D.8), only one of the possible Up choices needs to satisfy this necessary
compatibility condition. In all cases we have considered this condition is satisfied for at
least one choice of Up, and the resulting U is an integral change of basis that explicitly
demonstrates the resolution-invariance of Mred for the resolutions we have studied.
We do not have a general proof that this must always occur, but note that even if this
compatibility condition is not satisfied, Eq. (D.7) still holds for the matrix U defined in
Eq. (D.8). Finally, note that there could also be a subtlety if in one of the resolutions
the denominator in Eq. (D.5) is cancelled but not in the other resolution, although it is
difficult to imagine a circumstance where the resulting Mphys would still match.We have
not encountered any such situations.

The analysis presented here assumes a single nonabelian gauge factor. This argu-
ment can easily be generalized to multiple nonabelian gauge factors. For theories with
an abelian factor, the story is less clear as we do not have as general a way of understand-
ing Mred, and there are potential issues with the invertibility of the part of the matrix
analogous to M ′. Nonetheless, we suspect that a similar approach will shed light on the
resolution-independence of theories with more general gauge groups.

Note that when the matrices Mred associated with two different resolutions are
related by an integral change of basis, the same is also true for the general intersection
matrices M associated with the two resolutions. This follows since, as discussed in
Appendix H, in each case there is an integral transformation putting M in the form
Eq. (H.1), so composing these transformations with the appropriate integral U on the
subspace containing Mred gives an integral transformation relating the two versions of
M .

E. Pushforward Formulae

In this Appendix we describe some details of the computational approach we use to
evaluate intersection products of divisor classes in resolutions of singular elliptically
fibered projective varieties over a smooth base B, X → B. Since it is in practice rather
cumbersome to compute intersection products of divisors in blowups of elliptically
fibered spaces like X directly (i.e. in the Chow ring of X ), we circumvent this difficulty
by pushing these intersection products down to the Chow ring of B (see [113], Remark
3.2.4, p. 55), where the intersection form is by assumption known explicitly.

The computational methods we describe here are essentially a simple and straight-
forward adaptation of the formulae presented in [20] (see also [114] for related discus-
sions of pushforward formulas, as well as [115,116] for more recent work that uses
pushforward formulas to compute various characteristic numbers of elliptic fibrations).
Many of the foundational results in intersection theory, algebraic and complex geometry
upon which these formulae are based can be found in classic texts such as [55,113].

E.1. Pushforward maps for resolutions of singular elliptic fibrations. The pushforward
maps we describe in this appendix can be realized explicitly as a composition of push-
forward maps associated to two types of projection maps:

Canonical projection of the elliptic fibration. The first type of projection map is the
canonical projection of the singular elliptic fibration, X0 → B. We can determine
the pushforward �∗ associated to this projection by exploiting the fact that the singular
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elliptic varieties X0 we consider this paper are all realized as hypersurfaces inside an
ambient projective bundle, Y0, which can be viewed as the projectivization of a direct
sum of line bundles La → B,

Y0 = P(V )
�→ B, V = ⊕3

a=1La . (E.1)

Since V is a direct sum of (complex) line bundles, standard results in complex geometry
imply that the total Chern class is given by

c(V ) =
∏
a

(1 + La) �⇒ La = c1(La). (E.2)

The above characterization of Y0 as the projectivization of a direct sum of line bundles
provides sufficient information for us to specify all types of divisors of Y0 in which we
are interested. The different types of divisors are as follows: One type of divisor we wish
to consider is the pullback Dα of a divisor Dα (which lives in the Chow ring of B) to
the Chow ring of Y0. Of particular importance is a special subset of the divisor classes,
namely the first Chern classes c1(La) = La = f (Dα) (here, f is an unspecified linear
function of certain divisors we refer to characteristic data of the elliptic CY X0, which
can themselves be expressed as linear combinations of the pullbacks Dα .) The second
type of divisor class we consider is H := c1(OY0(1)) whereOY0(1) is the twisting sheaf
(i.e. the dual of the tautological line bundle) associated to the projectivization of V . It
turns out that all characteristic classes of X0 can be associated to formal power series
of the classes H, Dα , hence our first goal is to explain how to compute intersection
numbers of these divisor classes by pushing them forward to the Chow ring of B via the
map �∗; since the divisors Dα are pullbacks of divisor classes living in the Chow ring
of B, this task reduces to computing pushforwards of intersection products of the class
H , as we now describe.

Given a formal power series Q̃(t) = Q̃ntn , one can derive an explicit expression
for the pushforward of Q̃(H) to the Chow ring of B by exploiting well known properties
of the total Segre class s(V ) = c(V )−1. In particular, we use the fact that (see Chapter
3 of [113])

�∗
1

1− H
= s(V ) =

∏
a

1

1 + La
, (E.3)
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along with the degree of the map � , to obtain the formula44

�∗ Q̃(H) = lim
tc→Lc

3∑
a=1

Q(−ta)∏
b �=a(ta − tb)

. (E.4)

In the above equation ta are distinct formal variables and (setting Q̃n = � ∗Qn) the
power series Q̃(t) = � ∗Qi ti implicitly defines Q(t) = Qi ti via the projection formula
Eq. (B.3). Observe that Eq. (E.4) is a simple adaptation of the derivation in Theorem
1.11 of [20] to the case where the line bundlesLa are all distinct. Note that we present
the right hand side of Eq. (E.4) as a limit to accommodate special cases where La = Lb
for some subset of the first Chern classes La .

Although in the above discussion we have assumed that the line bundles La are
generically all distinct, it is important to keep in mind that the scaling symmetry of
the projectivization of the bundle V implies that P(V ) ∼= P(V ⊗I ) where I is any
invertible line bundle. In particular, without loss of generality we may set I = L −1

c
and reduce to the standard case

P(V ) ∼= P(L ⊕L ′ ⊕ O) , (E.5)

which in turn brings the formula Eq. (E.4) into contact with equivalent formulae that have
appeared in related literature on elliptic fibrations—see for example (7.3) in Lemma 2.8
of [117]. The above standard form is as specific as we can be about the choice of line bun-
dlesL ,L ′ while still accommodating the full scope of G models we wish to describe.
For example, models that include U(1) gauge factors such as the (SU(2) × U(1))/Z2
model of Sect. 7.1 typically haveL �= L ′. Nonetheless in some cases we can specialize
further in order to obtain more succinct formulae that are in practice easier to implement.
One possibility entails specializing further to the case L = pL′′, L′ = p′L′′ where p, p′
are non-negative integers, for which it is possible to obtain even simpler expressions for
Eq. (E.4). A notable set of examples of this specialization are the Tate models, for which
L = −2K , L′ = −3K ; in these cases Eq. (E.4) reduces to the formula presented at the
beginning of Theorem 1.11 in [20].

44 In more detail, we expand both sides of the pushforward identity

�∗
1

1− H
= 1∏3

a=1(1 + La)

as formal power series, and then (using the fact that � is a degree two map, hence �∗1 = �∗H = 0)
match terms of equal degree to obtain a general relation of the form �∗H p = f p(La) that can be applied to
any formal power series term-by-term in the expansion Q̃(H) =∑∞

p=0 �∗QpH p . Explicitly, we make the
substitutions H → εH, La → εta so that

∞∑
n=0

�∗(Hn)εn = 1∏3
a=1(1 + εta)

=
∞∑
n=0

sn(−t1,−t2,−t3)εn =
∞∑
n=0

⎛
⎝ 3∑
a=1

(−ta)n+2∏
b �=a(ta − tb)

⎞
⎠ εn

where sn(−t1,−t2,−t3) are totally symmetric polynomials of degree n in the three variables−ta . Note that the
right hand side of the above equation makes use of the identity sn(t1, . . . , td ) =∑d

a=1 tn+d−1a
∏

b �=a 1
ta−tb ,

see Lemma 1.10 of [20], although for fixed d the result above can easily be obtained by computing a partial
fraction decomposition of the expression 1∏

a (1+εta )
. We then match theO(ε) terms and re-sum the resulting

formal power series to obtain the succinct expression inside the limit on the right hand side of Eq. (E.4).
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Blowdowns. We now turn to the second type of projection map, namely the projection
associated to a blowup (i.e. the blowdown). The elliptic fibrations X0 we study are
typically singular and in practice require a resolution X → X0 implemented by sequence
of blowups in order for the intersection products of divisors to be well-defined and
calculable. We specifically consider blowups of the form

Xi+1
(gi+1,1,...,gi+1,ni+1 |ei+1)−→ Xi (E.6)

where the notation (gi+1,1, . . . , gi+1,ni+1 |ei+1) is shorthand for the blowup Yi+1 → Yi
of the ambient space Yi along the center {gi+1,1 = · · · = gi+1,ni+1 = 0} ⊂ Yi with
exceptional divisor ei+1 = 0, and Xi+1 ⊂ Yi+1 is the proper transform of Xi under the
blowup. Importantly, note that we must restrict to blowups where the centers gi are (at
most) linear polynomials in the homogeneous coordinates of the ambient space of the
fiber. We abuse notation and make the replacements

gi, j → ei gi, j (E.7)

to implement the i th blowup. Each blowup (chosen appropriately) introduces a new
divisor class

Ei = [ei ] (E.8)

and thus it is desirable to be able to compute pushforwards of formal multivariate power
series depending on the classes Ei (again, as was the case with the first type of push-
forward map �∗ described above, the projection formula Eq. (B.3) implies that we are
free to ignore divisor classes that are pullbacks and simply focus on the action of the
pushforward map fi on classes Ei ). Fortunately, there is a similar formula to Eq. (E.4),
derived by an analogous procedure, that can be used to compute pushforwards fi+1∗—
we refer the interested reader to Section 3.1 of [20] for details of the derivation. Given

a blowup Yi+1
fi+1→ Yi along the center gi+1,1 = · · · = gi+1,ni+1 = 0 and a formal power

series Q̃(Ei+1) in the Chow ring of Yi+1, the pushforward of Q̃ to the Chow ring of Yi
is given by (see [20], Theorem 1.8)

fi+1∗ Q̃(Ei+1) =
ni+1∑
k=1

Q(gi+1,k)Mk, Mk =
ni+1∏
m=1
m �=k

gi+1,m
gi+1,m − gi+1,k

(E.9)

where in the above formula ni+1 is the number of generators of the center of the (i +1)th
blowup and we assume gi+1,k = [gi+1,k] are all distinct.

Equations (E.4) and (E.9) can be composed to compute the pushforward of any
intersection product in the Chow ring of X to the Chow ring of B. We briefly sketch how
this computation works in practice before presenting some explicit examples. Recall that
the resolutions we study in this paper are hypersurfaces X ⊂ Y inside ambient projective
(in fact, toric) bundles Y equipped with the projection π : Y → B. In such cases, the
divisors of X can be realized concretely as the restriction of divisors in the Chow ring
of Y to the hypersurface X , namely

D̂I = D̂ I ∩ X, D̂ I = �I (H, Ei ) (E.10)
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where �I is a linear polynomial and X is the divisor class of the resolved hypersurface
X ⊂ Y . For example, a quadruple intersection product takes the form

D̂I · D̂J · D̂K · D̂L = D̂ I · D̂ I · D̂ I · D̂ I · X̂ =: Q̃(Ei , H, Dα), (E.11)

where · in the middle expression above (i.e. on the right hand side of the first equality)
should be understood as the intersection product in the Chow ring of Y , and Q̃ on the
far right hand side should be viewed as a formal power series in the Chow ring of Y .
Assuming that the resolution X → X0 is obtained by means of a sequence of, say r
blowups, the pushforward π∗ of the projection π : X → B can be viewed as shorthand
for a composition of pushforwards,

π∗ = �∗ ◦ f1∗ ◦ · · · ◦ f(r−1)∗ ◦ fr∗ , (E.12)

where the first pushforward f∗r maps the expression from the Chow ring of Yr to the
Chow ring of Yr−1, the second pushforward maps the resulting expression to the Chow
ring of Yr−2, and so on.

Ultimately, all of the characteristic classes of X in which we are interested can be
expressed as formal power series in the Chow ring of Y . For example, the total Chern
class c(X) is given by

c(X) =
⎛
⎝∏

i

(1 + Ei ) ·
ni∏
j=1

(1 + gi, j − Ei )

(1 + gi, j )

⎞
⎠ · c(Y0)

1 + X
∩ X . (E.13)

where in the above expression

c(Y0) =
∏
k

(1 + H + Lk) · c(B) (E.14)

andwe recall that Lk is defined in Eq. (E.1). The Chern polynomial ct (X) = 1+c1(X)t+
c2(X)t2 + · · · can be used to extract terms of different degree from the above expression,
either in the Chow ring of Y or (after computing the pushforward) in the Chow ring of
B.

E.2. Example: SU(2) model. We illustrate the pushforward technology by way of an
example, namely the SU(2)model (this is the N = 2 case of the SU(N ) Tate models de-
scribed in Appendix F.1). Although this example has already been worked out explicitly
in [20], we reproduce some of the details here in order to clarify our particular choice
of notation.

The Weierstrass equation defining the singular SU(2) model X0 is

y2z + a1xyz + a3,1σ yz = x3 + a2,1σ x
2 + a4,1σ xz

2 + a6,2σ
2z3 = 0 . (E.15)

We resolve this model by means of the blowup

X1
(x,y,σ |e1)−→ X0 , (E.16)

meaning that we make the replacements

x → e1x, y→ e1y, σ → e1σ . (E.17)
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Factoring out two powers of e1 from Weierstrass equation of the total transform (i.e.,
subtracting two copies of the exceptional divisor), we see that the proper transform
X1 ⊂ Y1 is described by

y2z + a1xyz + e1a3,1σ yz = e1x
3 + e1a2,1σ x

2 + a4,1σ xz
2 + a6,2σ

2z3 = 0 . (E.18)

The divisor class of the proper transform X1 in the Chow ring of Y1 is

X1 = 3H − 6K − E1 . (E.19)

The sole Cartan divisor of X1 is

D̂i = E1 ∩ X1 . (E.20)

We use the pushforward technology described at the beginning of this section to
compute the quadruple intersection number Wiiii . The first step is to evaluate the push-
forward of Wiiii to the Chow ring of X0, which we denote explicitly by f1∗ (here we
indicate the pushforward and pullback maps explicitly, keeping in mind that �∗ is the
pullback of the projection � : X0 → B):

f1∗(D̂4
i ) = f1∗(E4

1 · X1)

= f1∗( f ∗1 (3H − 6� ∗K ) · E4
1 − E5

1)

= (3H − 6� ∗K ) · f1∗(E1)
4 − f1∗(E1)

5

= (3H − 6� ∗K ) ·
3∑

k=1
g41,k ·

3∏
m=1
m �=k

g1,m
g1,m − g1,k

−
3∑

k=1
g51,k ·

3∏
m=1
m �=k

g1,m
g1,m − g1,k

=: Q̃(H) .

(E.21)

In the above expression g1,k are the classes of the generators of the blowup center:

g1,1 = [e1x] = H − 2� ∗K
g1,2 = [e1y] = H − 3� ∗K
g1,3 = [e1σ ] = � ∗� .

(E.22)

Thus far, we have computed the pushforward of the quadruple intersection Wiiii to the
Chow ring of X0. In order to compute the pushforward of Wiiii to the base, we now
expand Q̃(H) as a formal power series in the variable H (with coefficients consisting
of polynomials in the classes � ∗K ,� ∗�) and evaluate the pushforward of each power
of H to the Chow ring of B using the formula Eq. (E.4). We do not include details
of this computation here as it is completely analogous to the pushforward computation
illustrated above in Eq. (E.21). In the end, we obtain

Wiiii = 2� · (−4K 2 + 2K ·� −�2) . (E.23)
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F. Resolutions of Some Tate Models

The Tate form of the Weierstrass model X0 is defined by the hypersurface equation

y2z + a1xyz + a3yz
2 − (x3 + a2x

2z + a4xz
2 + a6z

3) = 0 (F.1)

in the ambient projective bundle Y0 = P(V ) → B with P
2 fibers parametrized by

homogeneous coordinates [x : y : z]. Tate tunings of simple nonabelian gauge groups
G = SU(N ),SO(4k + 2),E6 are characterized by Kodaira singularities of (resp.) types
IsplitN , I∗split2k−3, IV∗split over the codimension-one locus � ⊂ B. Since the main feature of
such models is the existence of a particular type of Kodaira singularity in codimension-
one, the divisor class� together with the canonical class K are sufficient to characterize
the features of the elliptic fibration X in which we are primarily interested, and most
other relevant mathematical quantities can be defined in terms of K and � (or their dual
line bundles). In particular, the divisor classes

[an] = −nK (F.2)

and the classes of the divisors x, y, z = 0 in the ambient space Y0 are given by45

[x] = H − 2K

[y] = H − 3K

[z] = H
(F.3)

where H = c1(OP(V )(1)) denotes the hyperplane class of the fibers of Y0 and K is the
pullback of the canonical class K . This implies that the divisor class of the zero locus
of the Weierstrass equation is

X0 = 3H − 6K . (F.4)

Note that X0 is equipped with a holomorphic zero section x = z = 0.
Our aim is to compute intersection numbers of divisors in resolutions X → X0

of the singular model defined by (F.1). There is a vast literature on crepant resolutions
of CY singularities in the context of F-theory compactifications analyzed from various
perspectives; see, e.g., [69,70,118,119] for more comprehensive explorations of the
networks of possible resolutions associated to the F-theory Coulomb branch. As noted in
Footnote 8, our resolutions are in general only partial resolutions in thatwe do not attempt
to resolve all singular fibers that appear over codimension-three loci universally in certain
Tate models, nor dowe consider cases where additional tunings leading to singular fibers
over loci of codimension two (or higher) in the base are forced by the specific choice
of singular elliptic fibration. The resolutions we study are composed of a sequence of
blowups of the ambient space Y0 of the form (E.6); these blowups restrict to blowups
of various loci on the CY hypersurface X0. To carry out the computation of intersection
numbers, we select both a basis of divisors for the resolved space, D̂I=0,α,i ⊂ X , and a
basis of divisors H, Dα, Ei ⊂ Y for the proper transform Y of the ambient space under
the sequence of blowups, where Ei is the class of the exceptional divisor associated to
the i th blowup Yi → Yi−1. We now present some specific examples.

45 We use bold symbols to denote divisor classes in the Chow ring of the ambient space.
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F.1. SU(N) model. F-theory models with SU(N ) gauge group have been the subject of
much attention in the literature, especially low rank examples [53,54,70,95,120,121].
Apart from special exceptions such as SU(6) with three-index antisymmetric matter,
SU(N )models inF-theory are characterized by a IsplitN singularity over� = {σ = 0} ⊂ B
and can be realized explicitly using a Weierstrass model

y2z + a1xyz + a3yz
2 − (x3 + a2x

2z + a4xz
2 + a6z

3) = 0 (F.5)

together with the Tate tuning

IsplitN : a1 = a1, a2 = a2,1σ, a3,� N2 �σ
� N2 �, a4,� N2 �σ

� N2 �, a6 = a6,Nσ N .

(F.6)

These models have a holomorphic zero section x = z = 0, and contain matter in the
adjoint, fundamental (N), and two-index antisymmetric (N (N − 1)/2) representations.
The discriminant locus takes the form

	 = σ N (	(2) +O(σ )), 	(2) = −a41 pN , (F.7)

where the polynomial pN is defined to be

pN =
⎧⎨
⎩
−a2

4,� N2 �
+O(a1) N even

a2,1a23,� N2 �
+O(a1) N odd.

(F.8)

Thus, the fundamental and antisymmetric matter multiplets are localized on (resp.) the
codimension-two loci σ = pN = 0, σ = a1 = 0, whose divisor classes in the Chow
ring of B are

CN =
{

� · (−8K − N�), N �= 3
� · (−9K − 3�), N = 3

, C 1
2 N (N−1) = � · (−K ) . (F.9)

We primarily study the family of resolutions XN−1 → X0 realized in [121] by the
sequence of blowups

XN−1
(∗,eN−2|eN−1)−→ · · · (x,e2|e3)−→ X2

(y,e1|e2)−→ X1
(x,y,σ |e1)−→ X0, ∗ =

{
x (N even)
y (N odd)

.

(F.10)

See (E.6) and the discussion immediately below for an explanation of the notation used
to indicate blowupmaps in the above equation. The class of the holomorphic zero section
is

D̂0 = H
3
∩ XN−1 . (F.11)

Let D̂i denote the Cartan divisors of XN−1. Using the fact that Ei = {ei = 0} is the
class of the exceptional divisor of the i th blowup in the ambient space Yi , we may write
[121]

D̂i =

⎧⎪⎨
⎪⎩

(E2i−1 − E2i ) ∩ XN−1 i < � N2 �
EN−1 ∩ XN−1 i = � N2 �
(E2N−2i − E2N−2i+1) ∩ XN−1 i > � N2 �.

(F.12)
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The Cartan divisors correspond to simple coroots of SU(N ), in a basis where the nonzero
pushforwards π∗(D̂i · D̂ j ) = Wi | j� are given by

[[Wi j ]] = [[π∗(D̂i · D̂ j )]] = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1
−1 2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2 −1
−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (F.13)

corresponding to the usual presentation of the SU(N ) Cartan matrix.
The signs and Dynkin coefficients of the weights in the fundamental and anti-

symmetric representations of SU(5) and SU(6), needed to compute the field theoretic
expressions for the 3D Chern–Simons terms associated to these models, are given in
Table 3.46

F.2. SU(6)◦ model. The exotic SU(6) Tate tuning is

a1 = a1 , a2 = a2,2σ
2 , a3 = a3, N2 −1σ

N
2 −1 , a4 = a4, N2 +1

σ
N
2 +1 , a6 = a6,Nσ N

(F.14)

for N even and where σ = 0 is the codimension-one locus in the base over which there is
a IsplitN singularity.We study the resolution X5 → X0 obtained by the following sequence
of blowups:

X5
(y,e4|e5)−→ X4

(y,e3|e4)−→ X3
(x,e2|e3)−→ X2

(y,e1|e2)−→ X1
(x,y,σ |e1)−→ X0 . (F.15)

The signs to which the above resolution corresponds are given in Table 4. The classes
of the Cartan divisors D̂i=2,...,6 are

D̂2 = (E1 − E2) ∩ X5 ,

D̂3 = (E3 − E4) ∩ X5 ,

D̂4 = (E4 − E5) ∩ X5 ,

D̂5 = E5 ∩ X5 ,

D̂6 = (E2 − E3) ∩ X5 .

(F.16)

46 Since a pair of irreps r, r∗ related by conjugation are characterized by the same partial ordering, a labeling
convention assigning indices to the weights of r automatically determines a identical convention for the
conjugate irrep r∗.
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Table 3. Signs and Cartan charges of the BPS particles associated to the representations N and N(N − 1)/2
in the SU(N ) model resolutions (F.10) for N = 5, 6

G N N(N − 1)/2

SU(5)

⎛
⎜⎜⎜⎜⎜⎝

ϕ·w
|ϕ·w| w2 w3 w4 w5
+ 1 0 0 0
+ −1 1 0 0
+ 0 −1 1 0
− 0 0 −1 1
− 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ·w
|ϕ·w| w2 w3 w4 w5
+ 0 1 0 0
+ 1 −1 1 0
+ −1 0 1 0
+ 1 0 −1 1
+ −1 1 −1 1
− 1 0 0 −1
− −1 1 0 −1
− 0 −1 0 1
− 0 −1 1 −1
− 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

SU(6)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ϕ·w
|ϕ·w| w2 w3 w4 w5 w6

+ 1 0 0 0 0
+ −1 1 0 0 0
+ 0 −1 1 0 0
− 0 0 −1 1 0
− 0 0 0 −1 1
− 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ·w
|ϕ·w| w2 w3 w4 w5 w6

+ 0 1 0 0 0
+ 1 −1 1 0 0
+ −1 0 1 0 0
+ 1 0 −1 1 0
+ −1 1 −1 1 0
+ 1 0 0 −1 1
+ −1 1 0 −1 1
+ 0 −1 0 1 0
− 1 0 0 0 −1
− −1 1 0 0 −1
− 0 −1 1 −1 1
− 0 −1 1 0 −1
− 0 0 −1 0 1
− 0 0 −1 1 −1
− 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The charges are the Dynkin wi coefficients of the weights w and the signs correspond to the signs of the BPS
central charges ϕ ·w for a given choice of Coulomb branch moduli ϕi . The indices i of the weights are chosen
to match the indices labeling the Cartan divisors D̂i in (F.12), which are associated to the simple coroots of
su(N )

Table 4. Signs and Cartan charges of the BPS particles associated to the weights of the 6 in the exotic SU(6)
model resolution (F.15)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ϕ·w
|ϕ·w| w2 w3 w4 w5 w6

+ 1 0 0 0 0
+ −1 1 0 0 0
+ 0 −1 1 0 0
+ 0 0 −1 1 0
− 0 0 0 −1 1
− 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The charges are the Dynkin coefficients of the weights of the 6 and the signs correspond to the signs of the
BPS central charges ϕ · w for a given choice of Coulomb branch moduli ϕi

F.3. SO(4k + 2) model. The SO(4k + 2) Tate model is characterized by a I∗split2k−3 Kodaira
singularity singularity over a gauge divisor � = {σ = 0} ⊂ B, and can be realized
explicitly using a Weierstrass model

y2z + a1xyz + a3yz
2 − (x3 + a2x

2z + a4xz
2 + a6z

3) = 0 (F.17)



Chiral Matter Multiplicities and Resolution-Independent Structure

together with the Tate tuning

I∗split2k−3 : a1 = a1,1σ, a2 = a2,1σ, a3,kσ
k, a4,k+1σ

k+1, a6 = a6,2k+1σ
2k+1 .

(F.18)

These models have matter in the adjoint, fundamental (4k + 2), and spinor (4k). The
discriminant locus takes the form

	 = σ 2k+3(	(2) +O(σ )), 	(2) = 16a32a
2
3 . (F.19)

The classes of the matter curves of the fundamental and spinor representations are

C4k+2 = � · (−3K − k�), C4k = � · (−2K −�) . (F.20)

We study the family of resolutions X2k+1 → X0 realized in [122] by the sequence of
blowups

X2k+1
(e2k−2,e2k−1|e2k+1)−→ X2k

(y,e2k−1|e2k )−→ X2k−1
(x,e2k−2|e2k−1)−→ · · ·

· · · (y,e1|e2)−→ X1
(x,y,σ |e1)−→ X0 .

(F.21)

The class of the holomorphic zero section is

D̂0 = H
3
∩ X2k+1 . (F.22)

Specifically, we restrict our attention to the specific case SO(10) (i.e., k = 2). For the
SO(10) model we choose the basis of Cartan divisors (i = 2, . . . , 6),

D̂2 = (−E1 + 2E2 − E3 − E5) ∩ X5

D̂3 = (E1 − E2) ∩ X5

D̂4 = E5 ∩ X5

D̂5 = E4 ∩ X5

D̂6 = (E3 − E4 − E5) ∩ X5

(F.23)

in which the Cartan matrix is represented as

[[Wi j ]] = [[π∗(D̂i · D̂ j )]] = −

⎛
⎜⎜⎜⎝

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 −1
0 0 −1 2 0
0 0 −1 0 2

⎞
⎟⎟⎟⎠ � . (F.24)
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Table 5. Signs and Cartan charges associated to BPS particles associated to theweights of the 16 in the SO(10)
model resolution (F.21)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ·w
|ϕ·w| w2 w3 w4 w5 w6

+ 0 0 0 0 1
+ 0 0 1 0 −1
+ 0 1 −1 1 0
+ 0 1 0 −1 0
+ 1 −1 0 1 0
+ −1 0 0 1 0
+ 1 −1 1 −1 0
− −1 0 1 −1 0
− 1 0 −1 0 1
− −1 1 −1 0 1
− 1 0 0 0 −1
− −1 1 0 0 −1
− 0 −1 0 0 1
− 0 −1 1 0 −1
− 0 0 −1 1 0
− 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The charges are the Dynkin coefficients of the weights of the 16 and the signs correspond to the signs of
the BPS central charges ϕ · w for given Coulomb branch moduli ϕi . The indices i of the weights are chosen
to match the indices labeling the Cartan divisors D̂i in (F.23), which are associated to the simple coroots of
so(10)

F.4. E6 model. The E6 Tate model X0 is characterized by a IV∗split singularity over
divisor � = {σ = 0} ⊂ B and can be defined by the following Weierstrass equation

y2z + a3,2σ
2yz2 − (x3 + a4,3σ

2xz2 + a6,5σ
5z3) = 0 . (F.25)

This model has a holomorphic zero section x = z = 0 and matter spectrum 27 ⊕ 78.
We study the resolution [20]

X6
(y,e4|e6)−→ X5

(y,e3|e5)−→ X4
(e2,e3|e4)−→ X3

(x,e2|e3)−→ X2
(y,e1|e2)−→ X1

(x,y,σ |e1)−→ X0 . (F.26)

The signs to which the above resolution corresponds are given in Table 6. Again, the no-
tation for the blowup maps in the above equation is explained in (E.6) and the discussion
immediately below. The class of the holomorphic zero section is

D̂0 = H
3
∩ XN−1 . (F.27)

The classes of the Cartan divisors D̂i=2,...,7 are

D̂2 = E5 ∩ X6

D̂3 = E6 ∩ X6

D̂4 = (−E1 + 2E2 − E3 − E4) ∩ X6

D̂5 = (E1 − 2E2 + E3 + 2E4 − E6) ∩ X6

D̂6 = (E3 − E4 − E5) ∩ X6

D̂7 = (E1 − E2) ∩ X6 .

(F.28)
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Table 6. Signs and Cartan charges associated to BPS particles associated to the weights of the 27 in the E6
model resolution (F.26)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ·w
|ϕ·w| w2 w3 w4 w5 w6 w7

+ 1 0 0 0 0 0
+ −1 1 0 0 0 0
+ 0 −1 1 0 0 0
+ 0 0 −1 1 0 1
+ 0 0 0 −1 1 1
+ 0 0 0 1 0 −1
+ 0 0 0 0 −1 1
+ 0 0 1 −1 1 −1
+ 0 0 1 0 −1 −1
+ 0 1 −1 0 1 0
+ 0 1 −1 1 −1 0
+ 1 −1 0 0 1 0
− −1 0 0 0 1 0
+ 0 1 0 −1 0 0
+ 1 −1 0 1 −1 0
− −1 0 0 1 −1 0
− 1 −1 1 −1 0 0
− −1 0 1 −1 0 0
− 1 0 −1 0 0 1
− −1 1 −1 0 0 1
− 1 0 0 0 0 −1
− −1 1 0 0 0 −1
− 0 −1 0 0 0 1
− 0 −1 1 0 0 −1
− 0 0 −1 1 0 0
− 0 0 0 −1 1 0
− 0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The charges are the Dynkin coefficients of the weights of the 27 and the signs correspond to the signs of the
BPS central charges ϕ ·w for given Coulomb branch moduli ϕi . The indices i of the weights are chosen to be
match the indices of the Cartan divisors D̂i in Eq. (F.28), which are associated to the simple coroots of e6

The above Cartan divisors are labeled such that

[[Wi j ]] = [[π∗(D̂i · D̂ j )]] = −

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎠

� . (F.29)

G. A Puzzle: SU(5) Model Resolutions

In this paper we restrict our attention to vertical M-theory flux backgrounds G ∈
H2,2
vert(X,Z) where X is an arbitrary smooth CY fourfold. In order for such backgrounds

to lift to consistent F-theory backgrounds, we require that X is a resolution of a singular
CY fourfold X0 and that G satisfies certain conditions both necessary and sufficient to
lift to an F-theory flux background.

Our procedure for computing the chiral indices χr is predicated on the assumption
that given anM-theory flux background X,G satisfying the above conditions, the full set
of chiral multiplicities χr can be extracted in the M-theory duality frame by identifying
an appropriate collection of matter surfaces Sr and computing integrals of the form
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χr =
∫
Sr
G. Although the equation χr =

∫
Sr
G is expected to hold true for general X and

G ∈ H2,2(X,R) ∩ H4(X,Z) lifting to consistent F-theory flux vacua, in our case the
restriction G ∈ H2,2

vert(X,Z) necessitates further assumptions about the matter surfaces,
namely that (recalling the orthogonal decomposition Eq. (2.12)) since a complete basis
of vertical fluxes is given by

i j =
∫
Si j

G, (G.1)

there exists a non-trivial choice of coefficients xi jr satisfying

χr = xi jr i j =
∫
xi jr SCi j

G (G.2)

for all r in the 4D spectrum. Equivalently, Eq. (2.12) suggests that our procedure only
yields a non-trivial answer for the chiral index χr provided the corresponding matter
surface Sr has components in the vertical homology Hvert

2,2 (X,Z):

Sr = xi jr SCi j = xi jr Si j + · · · , xi jr Si j �= 0 , (G.3)

where · · · indicates other components with indices I J �= i j . If no xi jr exist such that the
above equation is satisfied, this suggests Sr does not have any components in Hvert

2,2 (X,Z).
A useful test of these assumptions is to compute the full set of gauge symmetry-

preserving vertical fluxes all available resolutions of a givenGmodel; if the assumptions
are valid, then for any such resolution X it will always be possible to find such a choice
of xi jr , so that the chiral indices may be expressed as a sum overi j . One valuable model
for which the full set of resolutions (up to codimension-three singularities in the base
B) has been computed is the universal SU(5) model with generic matter [54].

Unfortunately, the pushforward technology used to compute quadruple intersection
numbers as described in this paper cannot be applied to all of these resolutions, so we
do not have a direct geometric computation of i j for the full network of resolutions of
the SU(5) model. However, the analysis of [54] not only includes explicit descriptions
of the resolutions, but also the Dynkin coefficients D̂i · Cw = wi of the matter curves
Cw whose volumes vol(Cw) = ϕ · w shrink to zero as a result of the flop transitions
connecting pairs of resolutions. Since we know for certain resolutions the field theoretic
expressions Eq. (5.4) for the fluxes i j = −3D

i j in terms of the Dynkin coefficients
wi and the signs of the BPS central charges ϕ · w (see e.g. Table 3), by starting with
the known collection of signs we can use the fact that the sign of a single central charge
ϕ · w flips as we move to an adjacent resolution, to determine the signs of the full set
of central charges in the adjacent resolution—in other words, we use the fact that the
signs of the central charges of a pair of resolutions related by a flop transition differ by
a single sign flip. In this manner, by flipping the signs of appropriate central charges as
we move around the graph in Appendix 3, we can determine the signs of all the SU(5)
resolutions, which in turn permits us to compute the field theoretic expressions for i j
for all SU(5) model resolutions, at least in principle.

At face value, simplyknowing thefield theoretic expressions3D
i j for all resolutions

of a given G model does not appear to be particularly illuminating, because it tells
us nothing about the corresponding geometric expressions for i j in the stringy UV
completion. Nevertheless, one reasonable assumption we can make is that 4D anomaly
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B1,3

B1,2

B3,2

B2,3

B2,1

B3,1

B1
3,2

B1
3,1

B2
3,1

B1
2,3

B1
1,3

B2
1,3

Fig. 3. Network of resolutions for the SU(5) Tate model, as presented in Figure 5 of [54] (see also Figure 6).
Each boxed node represents a particular resolution of the singular SU(5) model and each edge connecting a
pair of nodes indicates a flop transition between two resolutions. A flop transition between two resolutions
B,B′ is characterized by all curves belonging to a homology class C of B collapsing to zero volume and a
new curveC ′ being blown up whose volume inB′ is (formally) minus the volume ofC inB. In the context of
the SU(5)model the curve classes of interestCw correspond to weightsw transforming in some representation
of SU(5); in particular, the volume of such a curve is ϕiwi , wherewi are the Dynkin coefficients of the weight
w. The resolutions in red are those for which the 3D CS terms 3D

i j = 0

cancellation is satisfied and hence the chiral indices χr appearing in the field theoretic
expressions

3D
i j = x ri jχr (G.4)

may freely be constrained to obey 4D cancellation while remaining consistent with the
geometric expressions i j =

∫
Si j

G. This observation potentially leads to a puzzle:
Suppose there exists a resolution (equivalently, a collection of signs of central charges)
such that the coefficients x ri j are proportional to the coefficients of the pure gauge anomaly
condition for all i j . In such cases, for anomaly cancellation to be satisfied we must have
i j = 0 for all i j , and hence it appears our assumption about the matter surfaces having
non-trivial vertical components somehow fails.

In fact, this seems to be precisely the case for the two resolutionsB2
1,3,B

2
3,1 of the

SU(5) model. We can see this in the case ofB2
1,3 by following the procedure described

above. First note the signs appearing in Table 3 correspond to the resolution B1,3, for
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which we find

3D
22 = −χ5 − χ10

3D
23 =

1

2
(χ5 + χ10)

3D
33 = −χ5

3D
24 = 0

3D
34 =

1

2
(χ5 + χ10)

3D
44 = −χ10

3D
25 = 0

3D
35 = −χ10

3D
45 =

1

2
(χ10 − χ5)

3D
55 = χ5 + χ10

(G.5)

To go from the resolution B1,3 to B1
1,3, we must flip the sign of the central charge

corresponding to the weightw10 = (0,−1, 0, 1), which according to Table 3 is negative
and hence must become positive. Then, to go from the resolutionB1

1,3 to the resolution

B2
1,3, we must flip the sign of the central charge corresponding to the weight w5 =

(0, 0,−1, 1) from negative to positive. Computing 3D
i j , we find

3D
22 = −(χ5 + χ10)

3D
23 =

1

2
(χ5 + χ10)

3D
33 = −(χ5 + χ10)

3D
24 = 0

3D
34 =

1

2
(χ5 + χ10)

3D
44 = −(χ5 + χ10)

3D
25 = 0

3D
35 = 0

3D
45 =

1

2
(χ5 + χ10)

3D
55 = 0.

(G.6)

Comparing the above expressions to the anomaly cancellation condition χ5 + χ10 = 0,
we therefore expect i j = −3D

i j = 0 for all i j in the resolution B2
1,3. Analogous

results hold for B2
3,1.

One possible interpretation of the above computation is that 3D
i j = −i j = 0

and hence according to our above reasoning the matter surfaces Sr do not contain any
vertical components. This would in turn suggest that in general only a proper subset
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of possible resolutions can be used to access information about the 4D massless chiral
spectrum, given purely vertical flux backgrounds. If this conclusion is true, the resolu-
tionsB2

1,3,B
2
3,1 are counterexamples to the conjecture that Hvert

2,2 (X,Z) is a resolution-
independent structure and they furthermore contradict the assumption that all resolutions
can be used to compute the 4Dmassless chiral spectrum (at least for strictly vertical flux
backgrounds). On the other hand, since we do not currently have the means to compute
lattice of vertical fluxes forB2

1,3,B
2
3,1, it is possible that these resolutions exhibit some

unusual features that might explain why 3D
i j = 0. We leave a satisfactory explanation

of this puzzle to future work, although we stress that it is important to understand this as-
pect of the computation since the explanation could significantly affect key assumptions
underlying our analysis.

H. Reducing the Intersection Pairing Matrix

Wenowpresent the systematic approach to findingMred from the degenerate intersection
pairing matrix M . We seek to find a basis for the integral lattice defined by M such that
Mred is embedded as a submatrix and all other entries are zero, i.e., we wish to find a
unimodular matrix P ∈ GL(dim M,Z) such that

P tMP =
(
Mred 0
0 0

)
. (H.1)

If we have a (degenerate) basis matrix for M , i.e., a matrix B satisfying M = BtB
(which can be found using the Cholesky algorithm generalized to positive semidefinite
symmetric matrices), then this can be carried out using standard lattice reduction algo-
rithms such as the LLL algorithm [123,124]. However, although M defines an integral
lattice, there may be no integral basis B for this lattice, and so determining B can require
extracting square roots. In practice, onemaywish to avoid this due to issues with floating
point arithmetic.

An alternate approach is to begin by finding the LDLT decomposition of M , yield-
ing a lower unitriangular matrix L and a diagonal matrix D such that M = LDL t . (The
basis matrix B could then be found as B = √DL t , which can clearly introduce square
roots.) A basis satisfying our desired properties can be found by putting Bt in (row-style)
Hermite normal form H = UBt . Two basis matrices B and B ′ describe the same integral
lattice if and only if their transposes have the same Hermite normal form H , and thus the
transpose of the Hermite normal form H t itself serves as an appropriate choice of basis
matrix. From the definition of the basis matrix, we see then that P = U t provides us with
the congruence we were seeking. While we can put the potentially real-valued matrix B
into Hermite normal form using integer Gaussian elimination or a modification of the
LLL algorithm [125], the benefit of this approach is that using LDLT decomposition
allows us to find the appropriate U without needing to extract the square roots in B.
Specifically, the U that puts Bt into Hermite normal form is also the matrix that puts L
into Hermite normal form, H̃ = UL . Thus, the desired unimodular congruence matrix
P = U t can be found from the LDLT decomposition using only rational matrices.

To summarize, the desired unimodular congruence P can be found efficiently either
by using the LLL algorithm directly on the potentially real-valued basis matrix B (which
maybe found using theCholesky decomposition), or byfinding theLDLTdecomposition
M = LDL t and then using theLLLalgorithm tofind thematrixU putting L intoHermite
normal form and setting P = U t; the latter approach avoids ever introducing real-valued
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matrices.47 In Mathematica, we can implement the latter approach to find U simply as
Transpose@First@HermiteDecomposition[First@LDLT[mat]]],where
mat is the input matrix and LDLT is a user-defined function computing the LDLT de-
composition of mat and returning {L, D}.

As an example of this procedure, consider

M =
⎛
⎜⎝

9 0 −3 −21
0 9 −6 −42
−3 −6 5 35
−21 −42 35 245

⎞
⎟⎠ , (H.2)

which has two independent null vectors, (7, 14, 0, 3) and (1, 2, 3, 0). The LDLT decom-
position of this matrix is

M = LDL t, L =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
− 1

3 − 2
3 1 0

− 7
3 − 14

3 0 1

⎞
⎟⎟⎠ , D = diag(9, 9, 0, 0). (H.3)

The matrix L can be put into Hermite normal form via a unimodular matrix U as

H = UL , H =
⎛
⎜⎝

1
3

2
3 0 2

0 1 0 0
0 0 1 2
0 0 0 3

⎞
⎟⎠ , U =

⎛
⎜⎝
5 10 0 2
0 1 0 0
5 10 1 2
7 14 0 3

⎞
⎟⎠ . (H.4)

We find then that

UMU t =
⎛
⎜⎝
5 10 0 2
0 1 0 0
5 10 1 2
7 14 0 3

⎞
⎟⎠

⎛
⎜⎝

9 0 −3 −21
0 9 −6 −42
−3 −6 5 35
−21 −42 35 245

⎞
⎟⎠

⎛
⎜⎝

5 0 5 7
10 1 10 14
0 0 1 0
2 0 2 3

⎞
⎟⎠ =

⎛
⎜⎝
5 6 0 0
6 9 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ ,

(H.5)

as desired.
Although the method above provides a systematic approach to find Mred, for the

cases we consider in this paper the result can be easily read off by inspection. We now
briefly discuss two situations that one may encounter when carrying out this process:
in some cases, Mred cannot be found as a submatrix in M and so a nontrivial basis
change is required, and in some cases there may be rational (as opposed to integral)
components of the lattice coordinates at intermediate stages of the process, with the
final result nevertheless involving only integer values for the lattice coordinates. As an
example of the kind of issue that arises in the former case, consider the integral lattice
� = Z

2 with the symmetric bilinear form(
9 6
6 4

)
(H.6)

47 It is worth noting that while this approach does provide a systematic method to find Mred, which amounts
to finding a lattice basis for the null space of M , it does not provide a general method for checking if two
integral lattices are congruent to one another, as there is ambiguity in the determination of the basis matrix B
(or equivalently in using the LDLT decomposition). Specifically, there are in general multiple valid choices
of basis matrix B that span different integral lattices in Rn but nevertheless reproduce the same Gram matrix
M . Relating two lattices M, M ′ via the approach outlined here is thus sufficient but not necessary to prove
congruence over the integers.
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and null vector (2,−3). The quotient lattice�′ = �/∼with (x, y) ∼ (x+2n, y−3n) can
be described as a lattice Z with inner product (1), but this cannot be realized by simply
dropping one of the coordinates x or y; rather, the generator of the quotient lattice must
be a vector of the form (1,−1) + k(2,−3) (or its negative). As mentioned in the main
text, in all the cases we have considered, we find that it is possible to choose a proper
basis as a subset of the original basis vectors when the full nullspace is considered. At
intermediate steps to reach such a basis, however, we may find it useful to, e.g., project
out a null vector by dropping a coordinate in which the null vector has a non-unit value,
which naively would suggest fractional values for the coordinates in the reduced lattice,
but this generally is compensated by further nullspace vector removal. This is the second
issue raised above. As an example of this kind of procedure, consider a 4D lattice with
null vectors (7, 14, 0, 3) and (1, 2, 3, 0) (as is the case for the example (H.2)). If we
first project out the first of these vectors by dropping the fourth coordinate, we are left
with a lattice of points (x, y, z) where x, y may have non-integer parts m/3, 2m/3. We
can then, however, use the second null vector to drop the first coordinate, subtracting
a multiple m/3 of this vector from the lattice vectors with non-integer parts, and this
automatically removes the non-integer components from the second variable as well,
so that (y, z) are good coordinates for the quotient lattice.48 An example of a situation
where the more complicated kind of intermediate fractional lattice arises is described
explicitly in the case of the (SU(3) × SU(2) × U(1))/Z6 gauge group in a followup
paper that applies the methods developed here to universal Weierstrass models with that
gauge group. This kind of explicit computational approach for finding the reduced basis
is not essential in any way to our results but it makes the explicit analysis of various
cases easier. In general, the basis of the quotient lattice and the resulting Mred can always
be determined efficiently via the method described at the start of this section.

I. Condition to Lie in the Root Lattice

Here, we briefly discuss the conditions for an integer vector vi to lie in the root lattice of
a simple group Gna in the basis of fundamental weights. The constraints can be simply
summarized as

(C−t)i jv j ∈ Z
n, (I.1)

with Ci j the Cartan matrix and n the rank of Gna. This follows because the rows of Ci j
are precisely the roots of Gna expressed in the basis of fundamental weights, and so a
vector vi lies in the root lattice if and only if vi = (C t)i j u j for some integer vector u j .
Due to the appearance of the inverse Cartan matrix, the conditions following from Eq.
(I.1) are all modular congruence conditions mod detC ; note that detC is the order of
the center ofGna. Because vi must be an integer vector, these conditions can be reduced
to a single condition for all cases except Gna = SO(4k + 2), for which there are two
independent conditions mod Z2 (this is related to the fact that the center of SO(4k + 2)
is Z2 × Z2, rather than Z4). The conditions are summarized in Table 7.

48 In this simple case, this of course can also be seen easily by first projecting out the second null vector and
then recomputing the null vectors in the reduced space, so that the first null vector in (y, z, w) coordinates
becomes (0,−21, 3) indicating that (0,−7, 1) is also in that second partially reduced lattice. We have found
it simplest, however, in specific cases of interest to simply start with the list of null vectors of the original
matrix and go through intermediate non-integral lattice bases as described above.
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Table 7. List of modular congruence conditions that must be satisfied for an integer vector vi to lie in the root
lattice (in the basis of fundamental weights) for each of the compact simple Lie groups

Group Conditions
An

∑n
j=1 jv j ∈ (n + 1)Z

Bn
∑n

j=1 jv j ∈ 2Z
Cn vn ∈ 2Z
D2k

∑2k
j=1 jv j ∈ 2Z, v2k−1 + v2k ∈ 2Z

D2k+1 (2k − 1)v2k + (2k + 1)v2k+1 ∈ 4Z
E6

∑6
j=1 jv j ∈ 3Z

E7 v4 + v6 + v7 ∈ 2Z
E8 –
F4 –
G2 –
We use the conventions of [126] for the ordering of simple roots

J. Notation

Below is a list of notation commonly used throughout this document:

• X0 : Singular elliptic Calabi–Yau (CY) fourfold (i.e., complex dimension four)
defining the compactification space of a 4D F-theory model. For the more general
case of a n-fold where n �= 4, we write X (n)

0 .

• Y0 : Ambient fivefold projective bundle (i.e., a bundle over the base B in which
the fibers are projective spaces) in which the singular CY fourfold is realized as a
hypersurface, X0 ⊂ Y0.
• B : Threefold base of the singular elliptic CY fourfold, X0 → B. More generally,
when B is an (n − 1)-fold with n �= 4, we write B(n−1).
• Dα : Basis of primitive divisors of B. We use the same symbol to denote a divisor
and its class in the Chow ring.

• D · D′ : Intersection product of pair divisors D, D′.
• [x] : Class of the divisor x = 0 in the appropriate Chow ring. For products xy = 0,
we have [xy] = [x] + [y].
• K : Canonical divisor of B, K = K αDα .

• 	 : Discriminant of the Weierstrass equation. The locus 	 = 0 in B is the dis-
criminant locus, over which the elliptic fibers of X0 develop singularities.
• �s : The divisor class of the codimension-one locus σs = 0 in the base supporting
the simple gauge algebra gs , i.e., �s = [σs] = �α

s Dα .
• an : Sections of the anticanonical class, i.e., [an] = n(−K ). When the sections
are tuned to vanish over a gauge divisor σ = 0, we write an = an,mnσ

m with
[an,mn ] = n(−K )− mn�.

• 	(2) : Residual codimension-two components of the discriminant when restricted
to a particular codimension-one component. For example, for Tate models with a
simple gauge algebra over the codimension-one locus σ = 0 the discriminant can be
written 	 = σm(	(2) +O(σ )).
• X : Smooth elliptic CY fourfold X → X0 resolving the singular fourfold X0.
When the smooth fourfold is the result of an explicit finite sequence of blowups, we
write Xi to denote the proper transform of X0 under the i th blowup.
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• π : Canonical projection map from the smooth fourfold to the base, π : X → B.

• D̂I : Standard geometric basis of primitive divisors in X ,where the “hat” decoration

distinguishes divisors in X (more generally X (n)) from divisors in B (more generally
B(n−1)). For elliptic CY fourfolds, the indices I = 0, a, α, is label the zero section
D̂0, generating sections D̂a , the pullbacks of divisors D̂α = π∗Dα in the base B,
and Cartan divisors D̂is .

• D̂Î : Distinctive divisors, which exclude the pullbacks of base divisors, i.e., Î =
0, a, is .

• D̂Ī : Divisors in the “gauge” basis, D̂Ī = σ I
Ī
D̂I , where Ī = 0̄ is associated to

U(1)KK and Ī = 1̄ is associated to U(1) ⊂ G. In particular, D̂1̄ is the image of D̂1
under the Shioda map.

• σ I
Ī
: Change of basis matrix, from the standard geometric basis D̂I to the “gauge

field” basis D̂Ī . The inverse matrix is (σ−1) ĪI . See (B.5) and below.

• WI JK L : Pushforwardwith respect to the projectionπ of the quadruple intersection

product, i.e., WI JK L = π∗(D̂I · D̂J · D̂K · D̂L). Since the pushforward is evaluated
in the Chow ring of the base, we may write WI JK L = Wαβγ

I J K L Dα · Dβ · Dγ . See
Appendix B.
• WJK L|is : Factor in the intersection product Wis J K L = WJK L|is · �s . Note that

WJK L|is = Wαβ
J K L|is Dα · Dβ .

• k5D
Ī J̄ K̄

: 5D one-loop Chern–Simons coupling.

• 3D
Ī J̄

: 3D one-loop Chern–Simons coupling.

• Wis | js : (Minus the) elements of the inverse Killing form of the simple nonabelian

subalgebra gs , i.e., Wis | js = −κ
(s)
i j .

• κi j : Matrix elements of the inverse Killing form κ .

• W1̄1̄ : Minus the height pairing divisor in B associated to the U(1) gauge factor.

• [Aa] : A vector A whose components are Aa . Not to be confused with the class of
a divisor, as should hopefully be clear from the context.
• [[Aab]] : A matrix A whose elements are Aab.

• Y : Ambient fivefold bundle inwhich the resolution X is realized as a hypersurface,
X ⊂ Y . In practice, Y = Yi is the total transform of the ambient projective bundle
Y0 under a composition of blowups, fi : Yi−1 → Yi .
• D : Divisor in the ambient fivefold Y whose restriction to the hypersurface X is a
divisor in X , i.e., D = D ∩ X .
• ei : Local coordinate whose zero locus in Y is (the proper transform of) the excep-
tional divisor Ei .
• � : Canonical projection map from the ambient fivefold to the base, � : Y → B.

• G : F-theory gauge symmetry group encoded in the singularities of X0.
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• Gna : Nonabelian subgroup ofG.We abuse notation andwriteGna =∏
s Gs where

the index s labels the simple subgroups of Gna.
• g : Lie algebra of the gauge group, g = Lie(G).

• gna : Nonabelian subalgebra of g. Analogously, we write gna = ⊕sgs .

• r : Irreducible complex representation of the gauge symmetry group G.
• nr : Multiplicity of irreps r appearing in a representation, i.e., r ⊕ · · · ⊕ r = r⊕r.
• χr : Chiral multiplicity of matter representations r, i.e., χr = nr − nr∗ = −χr∗ .

• R : Quaternionic representation, R = r ⊕ r∗.
• CR : Class of the codimension-two locus in B over which localmatter transforming
in the representation r or r∗ is supported.Given a gaugedivisor�s ,CRs = �s ·(aRs K+
bRs�s) for some coefficients aRs , bRs ∈ Q.

• wr
i : Dynkin coefficients (i.e., coefficients in a basis of fundamental weights, which

are canonically dual to the simple coroots) of the weight wr of the representation r.

• ϕi : Real Coulomb branch moduli. Equivalently, these are the coefficients of a
scalar ϕ expanded in a basis of simple coroots. Since the simple coroots of an algebra
are canonically dual to the fundamental weights, given a weightwr, we have ϕ ·wr =
ϕiwr

i .

• H2,2
vert(X,Z) : Vertical cohomology subgroup of the orthogonal decomposition

H2,2(X,C) = H2,2
vert(X,C)⊕H4

hor(X,C)⊕H2,2
rem(X,C). Note that H2,2

vert(X,Z) is the
linear spanwith integer coefficients ofwedge products of the elements of H1,1(X,Z).
Given a basis of divisors D̂I , we write PD(SI J ) = PD(D̂I ) ∧ PD(D̂J ).

Equivalently, Hvert
2,2 (X,Z) is spanned by SI J modulo homological equivalence, φ ∼

ψ ⇔ M(φ − ψ) = 0. As a lattice, Hvert
2,2 (X,Z) = �S/∼.

• PD(D̂) : Poincaré dual of the divisor D̂.

• �S : Lattice of 4-cycles SI J = D̂I ∩ D̂J equipped with the bilinear form M .

• φ : Poincaré dual vertical flux background, φ = PD(G) ∈ �S . We frequently abuse
terminology and refer to φ as a flux background, rather than the Poincaré dual of a flux
background G.

• φ′ : “Non-distinctive” flux backgrounds, i.e., backgrounds spanning the directions
I J where I = α or J = α.
• φ′′ : “Distinctive” flux backgrounds, i.e., backgrounds spanning the directions I J
where I, J �= α.
• M : Intersection pairing M : �S × �S → Z . As a matrix, we write M(I J )(K L) =
(D̂I · D̂J ) · (D̂K · D̂L).
• I J : Integral of a vertical flux background over the cycle SI J , i.e.,I J =

∫
SI J

G =
φ · (D̂I · D̂J ) = M(I J )(K L)φ

K L .

• d
I J : The terms in the expansion of I J that only depend on distinctive flux back-

grounds, i.e., d
I J = M

(I J )(K̂ L̂)
φ K̂ L̂ .

• �C : The sublattice �C ⊂ �S of flux backgrounds φ satisfying the symmetry
constraints Iα = 0. See (2.10) and (2.11). We sometimes write �C ∼= P�S , where
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P is an idempotent matrix, when we can solve the symmetry constraints for all φ′ in
terms of φ′′.
• MC : Restriction of M to the sublattice �C ⊂ �S .

• MP : Restriction of the intersection pairing M to the sublattice �C via right action
of the idempotent matrix P , which is defined in certain circumstances, and simplifies
some computations. In these cases, MC can be written explicitly as a submatrix in

MP =
(
0
MC

)
that only acts on distinctive flux backgrounds φ′′ ⊂ �S , given the

embedding φ =
(

φ′
φ′′

)
Note the isomorphism MC�C ∼= MP�S , and furthermore that

(MP)t = P tM = MP .
• ν : Null vectors of M , i.e., Mν = 0. Equivalently, vectors satisfying I Jν

I J = 0 or
SI Jν I J = 0. Each independent ν represents a homological equivalence relation.
• Mred : “Reduced intersection pairing”, i.e., the restriction of the intersection pairing

M to Hvert
2,2 (X,Z) = �S/∼.

• �phys : Sublattice�phys ⊂ Hvert
2,2 (X,Z) = �S/∼offluxbackgrounds both satisfying

the symmetry constraints and quotiented by homological equivalence. We sometimes
write �phys = �C/∼.
• Mphys : Restriction of the intersection pairing M to �phys. Schematically, Mphys =
MC/∼.
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