STUDY OF LONG -RANGE POTENTIALS IN EXCITED STATES OF DIATOMIC
SODIUM USING MODULATED GAIN SPECTROSCOPY

by
GUNJIT CHAWLA

B.S., Virginia Commonwealth University
(1978)

SUBMITTED TO THE DEPARTMENT OF
CHEMISTRY IN PARTIAL
FULFILLMENT OF THE
REQUIREMENTS FOR THE
NDEGREE OF
DOCTOR OF PHILOSOPHY
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June (1985)

©Massachusetts Institute of Technology 1985

Signature of Author

Department of Chemistry
March 29 , 1985

Certified by
- e Robert W. Field

Thesis Supervisor

Accepted by

// Dietmar Seyferth
Chairman, Department Committee

MAY 30 1385

P I r P EI . S




This thesis has been examined by a committee of the Department of

Chemistry as follows:

Professor ;-
Robert W. Field, Thesis Supervisor
Professor e = e~ s et ey --v—L
David E. Pritchard
Professo&t : v \
SN T

James L. Kinsey, Chairman



STUDY OF LONG RANGE POTENTIALS IN EXCITED STATES OF DIATOMIC
SODIUM USING MODULATED GAIN SPECTROSCOPY
by
GUNJIT CHAWLA
Submitted to the Department of Chemistry
on March 29, 1985 in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy in
Chemistry

ABSTRACT

The long range intramolecular potentials of the Na, Alz) and Blp,
electronic states have been investigated by studying properties of the
high vibrational levels that they suppcrt. In the case of the Blnu
state, the long range potential possesses an intrinsic barrier to
dissociation. By measuring the ro-vibrational energies of all (v'=27-33)
quasibound vibrational levels and the rotation-dependent tunneling rates
(as obtained by linewidth measurements) of the last quasibound vibrational
Jevel, we have been able to characterize this barrier. Our studies show
that the barrier height Uy=369.5%3.9 cm-1, relative to the center of
gravity of the Na(3s)+Na(3p) atomic 1imit, and the barrier maximum is
located at Rp=6.85:0.02&. For the Alzz state, many vibrational levels
lying in the range of v'=43-105 have been investigated allowing us to
characterize the potential up to 96% of its dissociation limit
(corresponding to an outer internuclear separation of 10.7&) wusing an RKR

inversion procedure.



Accessing the high vibrational levels in the above electronic states
posed a particularly challenging problem due to their poor Franck-Condon
overlap with thermally populated levels of the Xlzg state. In order to

overcome this difficulty, we have developed a new technique called

Modulated Gain Spectroscopy.
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CHAPTER ONE

INTRODUCTION
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Understanding the nature of forces between atoms at large internu-
clear separations (generally for R > 58) has been an underlying theme in
many areas of physics and chemistry from the spectroscopy of diatomic
molecules near dissociationl-3 to atomic scattering processes?,5,
collision-induced, atomic line broadening®,7, gas transport propertie58
and even condensed phase propertiesg. Conversely, the parameters
characterizing the long range interatomic forces can be determined with
varying degrees of accuracy, by studying any of the above mentioned
processes. In this work we propose a method for studying the behavior of
long range interactions which has the advantage of being direct and
state-selective.

Our method is best illustrated with reference to Figure 1.1. The
figure illustrates why the properties of excited vibrational levels
strongly reflect the long range part of the interatomic potential.
Because molecules in high vibrational levels spend a large fraction of
their vibrational period in the vicinity of the outer (classical) turning
point (due to the very small slope of the outer potential wall at high
energies), the average value of any measured property of a molecule
excited to these vibrational states will be dominated by its value near
the outer part of the potential. Hence, measured properties of excited
vibrational levels can be used to infer about the behaviour of
interatomic potentials at large R.

The particular system considered in the present study consists of two
sodium atoms, one in its ground state (3s) 25 and the other in an excited
state (3p) 2P. Alkali atoms are particularly well-suited for such study
because they are theoretically simple to handle due to the possibility of

treating the effects of the core and valence electrons separately.



Figure 1.1

The interatomic potential of weakly bound KAr illustrates
the large probability amplitude of the vibrational wavefunction

near the outer turning point, for high v levels. (From Ref. 9) .
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Besides being theoretically tractable, the spectroscopy of these alkali
dimers is also very amenable to experimenta1 study. The fact that the
valence electrons in these systems are weakly bound (relative to
hydrogen) leads to large oscillator strengths and strong electronic
transitions in the visible part of the spectrurm. The widespread
availability of tunable dye lasers makes these electronic transitions
easily accessible.

The Na 3s + Na 3p interactions have been of interest to us because
they involve resonant interactions arising from the presence of an
electric-dipole allowed transition between the 3s and 3p states. This
resonance interaction leads to a long range potential which is dominated
by a dipole-dipole C3/R3 contribution. A potential varying as 1/R3
corresponds to 2 relatively slow variation of the interatomic potential
with R, and leads to a high density of vibrational states near the
dissociation limit for some molecular states of Nap like the Alz: state.
For the Algy state, the C3/R3 term is attractive. The C3/R3 term can
also be repulsive and in some cases produces the effect of a barrier to
dissociation, as in the Blm, state of Nap. Thus, studies of the Nap Alz:
and Blnu states can complement one another very well.

A second and more significant reason for studying the long range
potentials of one ¢ and one I molecular state is that this work could
lead to the determination of potentials for all other Nap molecular
states correlating to the 3s + 3p atomic limit. Herein lies a major
aspect of the appeal of long range theory. Since long range forces
between atoms depend on the isolated atomic properties, there exist

fundamental interrelationships between the C, terms (where the Cp's are

16
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coefficients of the R-3, R-6, R-8 terms in the R-N expansion of long
range potential energy) of different molecular states having the same
atomic 1imit10-12, These interrelations serve to unify the properties of
all molecular electronic states (at large R) arising from a given pair of
separated atom states: they can be exploited to determine the

behavior of many hitherto unobserved molecular potentials based upon
detailed experimental knowledge of a select few. (These interrela-
tionships are elaborated on in Chapter Three). As a by-product,

one can also make estimates of fundamental atomic properties, for
example, the static dipole polarizability from the Van der Waals Cg
coefficient.

Of the 24 ways in which two Na atoms one in the 3s state and the other
in the 3p state can combine, twelve are gerade {123, g, 325, 3ng} while
the other twelve are ungerade. Few of these molecular states have been
studied in detail or observed experimentally either because of the
different geometries of these excited states relative to the ground X 123
state (leading to poor Franck-Condon factors) or because of the
restrictive selection rules (rigorous g/ g and approximately good
singlet / triplet). We hoped to be able to characterize the long range
potentials of these twenty-four molecular states by studying the excited
vibrational levels of the A 1z: and B 1n: states., Since these two states
have been previously investigated near their potential minimum by several
groupsl3'17 (see Figure 1.2), extensions of their studies towards higher
energies should be relatively straighforward, at least in principle.

In actual fact, one is confronted with a major experimental difficulty

when attempting to study high lying vibrational levels. These levels



+
Figure 1.2 RKR potential curves for the Naj ground X 129 electronic state,
+
from Ref. 14, and the excited A lg, and B g, electronic
states, from Refs. 14-16. The dashed regions of the A and

B state potentials had not been observed prior to this work.

18
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Figure 1.3 For typical ground and excited state potentials, thermally
populated levels of the ground state (dots) generally allow access
to only the dotted regions of the upper state whereas highly
excited levels of the ground state (checkers) allow access to the
checkered, excited regions of the upper state (in this case, via

the inner turning point).
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22
usually have extremely small Franck-Condon factors with thermally
populated ground state levels and as a result are not accessible from the
lowest vibrational states. However, excited vibrational levels of the
ground electronic state generally can have quite Targe Franck-Condon
factors with the vibrational levels of interest (in the excited
electronic state), as illustrated in Figure 1.3. It therefore appeared
necessary to devise a scheme by which we could first selectively transfer
population in to the high v levels of the ground electronic state, and
then excite this population to the target levels., (It would in addition
be desirable for such a scheme to permit selective and sensitive
detection of these excitations.)

In this study, we propose and demonstrate the use of a new multistep
laser excitation technique that is expressly designed to meet the above
mentioned requirements, for the study of high lying vibrational levels.
It is called Modulated Gain Spectroscopy (MGS). A description of the
principles of MGS as well as some practical measures taken to implement
it are contained in Chapter Two. The usefulness of the technique is
demonstrated by the observation of many high lying vibrational levels, in
the range v=43-105, in the A 1zu state and all (rotationless) quasibound
levels, v=27-33, in the B 1Hu state of Nap. These results and the long
range potentials determined for these two electronic states are discussed

Chapters Four and Five.



CHAPTER TWO

EXPERIMENTAL
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2.1 Introduction

This chapter presents the principles of the Modulated Gain
Spectroscopy technique and some operational details of experiments
utilizing MGS to study the A 1z: and B lm, electronic states of Nap.
Sections two and three provide a description of the technique and an
overview of the experimental apparatus. Some design considerations of
the two key elements in the apparatus - the "heat pipe", used to generate
the Nap species, and the Nap optically pumped laser cavity - are
presented in further detail in sections four and five. Llastly, section
six describes the rich variety of signals that can be observed with the

MGS technique.

2.2 Principles of Modulated Gain Spectroscopy

Figure 1.3 portrays the typical problem encountered when studying
excited state long range potentials, or equivalently the high lying
vibrational levels: poor Franck-Condon factors for transitions out of
thermally populated levels of the ground state. The use of MGS
circumvents this problem and, in addition, provides a sensitive,
nonlinear means of detecting transitions to the target levels with
sub-Doppler resolution and greatly reduced spectral congestion.

The MGS technique is best illustrated by reference to Figure 2.1.
Three stepwise optical transitions allow access to high lying vibrational
levels of interest; the three lasers involved in the excitation scheme
are termed the PUMP, OPL, and PROBE lasers. The PUMP excites thermal
population in a level of the ground state preferentially into those
regions of the upper electronic state with which the initial level (type

1) has best vibrational overlap. The usual fate of the excited state



Fig. 2.1

MGS level diagram illustrating the PUMP » OPL » PROBE

sequence used to study levels of type 4.
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levels (type 2) thus populated by the PUMP is fluorescence into levels
(type 3) of the ground state with which they have favorable Franck-Condon
overlap. Therefore, a small fraction of the fluorescence from the type 2
levels consists of simple resonance fluorescence (via the inner turning
point) but a large fraction consists of red-shifted fluorescence (via the
outer turning point) due to the relative displacement of the upper state
towards larger R. Since the red emission terminates on levels of the
ground electronic state that are not thermally poﬁu]ated (type 3), the
system possesses a population inversion with respect to these Tevels.
Placing this inverted medium inside a laser cavity will cause it to lase
on those transitions on which it would normally fluoresce (which are
characterized by a population inversion). With the insertion of
frequency selective elements inside the laser cavity, one can force this
Optically Pumped Laser (OPL) to oscillate on a specific transition of
interest. Thus, the effect of the PUMP-OPL cycle is to transfer a
substantial fraction of thermal population from a single low-lying
vibrational lev2l to a selected high-lying vibrational level of the
ground electronic state. Once this level (type 3) is populated, a third
PROBE laser can excite the 4«3 transition with good Franck-Condon factors
and thus access the levels of interest (type 4).

When the PROBE is in resonance with a 4«3 transition, it removes
population from the lower OPL level, thus causing an increase in
population inversion on the OPL transition, and an increase in the OPL
intensity. Since each PROBE absorption is accompanied by a concommitant
increase in the OPL intensity, resonances excited by the PROBE can be
sensitively and selectively detected by monitoring differential increases

in the OPL intensity.

27



The MGS technique is, in some respects, very similar to Intracavity
Dye Laser Spectroscopy (IDLS).19520 In IDLS, the species under
jnvestigation and the dye laser are two physically distinct entities.
The absorption spectrum is obtained by placing an absorption cell within
a dye laser cavity and scanning the frequency of that dye laser. Each
sample absorption results in an increased loss experienced by the dye
laser system and therefore produces a decrease in the dye laser
intensity. These differential intensity changes as a function of
frequency provide a sensitive measure of the sample absorption spectrum.
In MGS, the species of interest and the laser are one and the same. An
external laser (the PROBE) excites the sample and in so doing, decreases
the losses of the OPL system thus producing an increase in the OPL
intensity. (The PROBE excitation rate reduces the losses since the small
collisional depopulation rate of the Tower OPL level normaliy limits the
maximum population inversion attainable). Both MGS and IDLS rely upon
small changes in intracavity losses causing large changes in the laser
output. Where the two methods differ is that IDLS utilizes additional
effects to enhance its overall sensitivity, such as multiple passes of
the exciting radiation and cavity mode competition of the dye laser. The
former effect does not play a role in MGS since the PROBE is usually weak
and almost completely absorbed after two passes; the latter effect does
not come into play since the OPL is intentionally operated on a single
longitudinal and transverse mode in order to minimize intensity
fluctuations (and thus maximize our ability to detect intensity changes
caused by PROBE absorptions).

In addition to the nonlinear sensitivity afforded by MGS, one also



achieves sub;Doppler resolution as weli as some spectral simplification.
The first feature arises because the narrow bandwidth PUMP (~2 MHz)
interacts with a narrow range of longitudinal velocity components in
level 1. This velocity selection is transferred to level 3 via the
PUMP-OPL cycle. However, partial velocity scrambling in level 3 by
collisions with atomic sodium at 1 Torr results in PROBE signals that are
typically ~350 MHz FWHM (still significantly Tess’than the Doppler width
of 1.5 GHz).

The second advantage, spectral simplification, arises for two
reasons. The first is common to all double and multiple resonance
schemes, namely only the lower OPL level has substantial population. The
second reason lies in the discrimination afforded by the method of
detecting PROBE coincidences: only those PROBE excdted transitions that
modulate the gain of the OPL appear as signals.l A1l other PROBE: u

excitations go undetected. . o .

-~

We will see in Section S1x that the PROBE can modula e the gain of A

the OPL by interacting with population in type 1, type 2 or type 3

levels. While the additional resonances 1ncrease the total number of MGS h

signals, they do not make it impossible to identify the various types of

MGS signals and in fact illustrate .the versati]ity of the MGS technique.

2.3 Experimental Overview - . L o Y
Figure 2,2 shows a schematic of the exper1menta1 apparatus. lSodium
dimer is generated in a 2" d1ameter "heat p1pe" wh1ch is operated at .
_460°C with 1 torr of helium. The part1a1 pressure of Naj under these
cond1t1ons 1s 25 mtorr21 ‘ The 160 Watt input power to the "heat p1pe"“

produces a 30 cm Tong Na/Naz isothermal vapor zone. The princlpTes and'

N

N
Vo '

‘g

29



Figure 2.2

Experimental set-up.

BRF denotes Birefringent Filter; TE denotes Thin Etalon; 0C
denotes Output Coupler; A denotes Aperture. Not shown is
the frequency calibration method for the PUMP and PROBE dye

lasers, which involves the simultaneous recording of

:a) PUMP (and PROBE) excited Ip excitation spectrum for

absolute frequency determination,22 and b) transmission

fringes of PUMP (and PROBE) through a 300 MHz FSR

. Fabry-Perot, for frequency interpolation and scan linearity

checks.
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operating characteristics of the "heat pipe" will be described in
section four.

The "heat pipe" is placed inside one leg of a figure-eight shaped
resonator which makes up the OPL cavity. The ring resonator is defined
by two R=300 cm dichroic reflectors (>99.9% reflectivity at 800nm and 60%
transmissivity at 400 -650nm) located at opposite ends of the “"heat pipe"
and two flat high reflectors which complete the ring. A ring resonator
is chosen to avoid optical feedback of the PUMP radiation into the pump
laser which can cause both frequency and amplitude instability in the
PUMP (and therefore the OPL); the particular geometry of the resonator is
designed to accommodate three factors:

1) a 1 meter long heat pipe assembly,

2) the stability criteria of Gaussian resonator modes, and

3) minimized astigmatism of the cavity (i.e. astigmatism resulting
from mirrors used in oblique reflection). Some characteristics of the
resonator modes supported by the OPL cavity will be discussed in Section
Five,

The PUMP laser (Coherent 699-21 c.w. ring dye) is typically operated
with either Rhodamine 6G or DCM laser dye and possesses a frequency
stabilized linewidth of ~2 MHz., The PUMP radiation propagates through
one of the dichroic reflectors of the OPL cavity into the heat pipe. The
TEMgg mode of the PUMP beam is matched to the fundamental Gaussian mode
of the OPL cavity by a telescopic arrangement consisting of an R=200 cm
reflector (represented by a lens in Figure 2.2) in series with one of the
R=300 cm dichroic reflectors of the OPL resonator. (See Section 2.5 D
for further detail). Typica! PUMP power density is 15 W/cm? at the OPL

beam waist, wg~0.05 cm, located in the middle of the heat pipe.
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When the PUMP excites a 2«1 transition, several 2-3 OPL transitions
can be above lasing threshold. Using two frequency selective elements
within the OPL cavity, a single OPL line is selected .rom all lasing
transitions sharing the same upper OPL level. A 3-plate quartz
birefringent filter selects a particular vibrational band (typical ground
state vibrational separations are ~80 cm‘l) and a 0.5mm thin etalon (30%
R at 800nm) selects a particular rotational line (typical PR line
separations are 4-6 cm-1for J~10). The traveling wave supported by the
OPL ring cavity encourages all excited molecules to contribute to the
gain of a single mode; therefore, oscillation on a single longitudinal
cavity mode is achieved without any selecting elements. Two 2mm diameter
irises located at opposite ends of the heat pipe enforce oscillation on
the fundamental transverse mode. The intensity and spectral
characteristics of the OPL are monitored by a photodiode and a 7.5 GHz
FSR (Finnesse ~250) Tropel model 240 spectrum analyzer; both elements are
Jocated after the 2% T output coupler of the OPL cavity.

It should be noted here that the OPL copropagates with the PUMP
owing to a direction-dependent, Raman contribution to the gain23-25,
which is present in addition to the isotropic, population-inversion
(between type 2 and 3 levels) mechanism. For the "folded" PUMP-OPL
scheme, the Raman gain linewidth is sub-Doppler when the OPL copropagates
(with the PUMP) and completely Doppler broadened when the OPL counter-
propagates. Since an equal number of excited molecules can contribute to
gain in either direction (i.e. the integrated gain is the same for both
directions), the forward Raman gain lineshape is narrow and large while
the backward gain lineshape is broad and small. Hence the Nap OPL

exhibits unidirectional oscillation, along the direction of the PUMP.
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The PROBE (Coherent CR699-29 c.w. ring) is.computer automated for
wide spectral range frequency scans and is operated with Rhodamine 6G or
Coumarin 540 laser dye. It is mode-matched to the OPL cavity in a
fashion similar to the PUMP and for convenience, counter-propagates
with respect to the PUMP through the second dichroic reflector of the OPL
cavity. A 1 KHz mechanical chopper modulates the intensity of the PROBE;
the differential change in OPL intensity accompanying a PROBE absorption
is detected at this modulation frequency by a Keithley Model 840 phase
sensitive detector.

Since increases of the OPL output intensity serve to detect the
PROBE absorptions, the OPL intensity fluctuations when the PROBE is tuned
off a 4«3 resonance sets the lower limit for the MGS detection
sensitivity. The dominant source of intensity fluctuations is frequency
fluctuations of the OPL arising, for example, from acoustic vibrations of
mirrors and temperature or pressure variations causing refractive index
changes within the cavity.

The very sensitive dependence of the frequency on refractive index,
n, or mirror separation, %, cannot be overemphasized. It is seen to
change according to

v = mc/ng
(2.1)

. Av/v = -[ag/8 + an/n]

1f, for example, one wished to keep a laser operating at 3.75x1014 Hz
stable to within 1 MHz, it would be necessary to require its mirror
separation of 2.34 meters be kept constant to + 6.2 nm. Compensating

such small changes in the resonator length necessitates electronic



stabilization control.

To reduce large amplitude vibrations, the OPL cavity rests upon a
vibration-isolated steel table and is housed in a simple box. It is then
frequency stabilized to the peak of its own gain profile. This is
accomplished in the following manner. The cavity frequency is modulated
over a 15 MHz optical bandwidth at a frequency of 420 Hz. Since the
laser intensity depends on the location of the cavity mode frequency
relative to the optically pumped Nap the gain pro%i]e, the frequency
modulation results in an intensity modulation. This modulation is
detected by a phase sensitive detector (PSD), whose output is
proportional to the first derivative of the gain profile when the PSD is
tuned to 420 Hz. Thus, the PSD output provides the magnitude and sign of
the error signal needed to tune the cavity frequency to the center of the
gain profile. When the PSD is placed in a servo loop, the system
equilibrates to zero PSD output voltage (i.e. the peak of the OPL gain
profile). Figure 2.3 shows how the magnitude and sign of the error
signal (PSD output voltage) depend on the slope of the gain profile,
dI/dv, and to the phase of the intensity modulation relative to the
reference.

The servo loop locking circuitry26 consists of a Burleigh PZT stack
attached to a flat high reflector of the OPL resonator, a PAR HR-8 phase
sensitive detector tuned to 420 Hz, an integrator-amplifier error circuit
and a Spectra-Physics Model 481 Dye Laser Etalon Controller for high
voltage amplification. The typical time response of the servo loop is
~50 msec. The stabilized effective linewidth is <15 MHz; the associated

intensity variation is <5%. However, in a 1 msec window (the relevant
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Figure 2.3 Schematic of how the magnitude and phase of the OPL intensity

modulation depend on the location of the OPL cavity mode

beneath its gain profile.
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Figure 2.4 Block diagram of the servo loop
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Figure 2.5 A-~1 cm-1 PROBE scan, with t~100 msec, shows (a) the main,
in-phase MGS signal and (b) extraneous, out-of-phase signals,
which arise from PUMP-OPL-PROBE schemes different from that of

Figure 2.1. (discussed in section six).
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time scale since we detect at the 1 KHz PROBE modulation frequency), the
OPL intensity variation is <0.05%.
Figure 2.5 shows an MGS signal which corresponds to a 2% intensity
change. We have observed MGS signals spanning a three order-of-magnitude
dynamic range (0.1%-100% change in OPL intensity) for probe transitions

with Franck-Condon factors from ~10-4 to 10-1,

2.4 Heat Pipe

In order to operate the Nap optically pumped laser with minimal
intensity fluctuations, it is essential to be able to generate the metal
vapor in a controlled manner for long periods of time with minimal
turbulence. A heat pipe is a standard method of generating metal vapors
with well-defined densities, temperatures, and optical path 1ength527'29.
The following sections outline the general principles of a gas-controlled
heat pipe and the workings of the particular Nap heat pipe used in our

experiments.

A. Principles of Operation

A heat pipe is a device characterized by a very high thermal
conductance. The basis for the large thermal transmissivity of this
device is that the latent heat of vaporization of a liquid is transported
throughout by continual evaporation and condensation of that fluid. The
heat pipe used in this work consists of a metal pipe whose central
portion is enclosed in an oven and both end portions are enclosed in
water-cooled jackets. A fine wire mesh lines the inner walls of the pipe
and forms the wick structure that plays a crucial role in the operation

of the heat pipe. Brewster windows are attached to both ends of the



pipe. The metal to be studied is the working fTﬁid of the heat pipe.“

The basic principles of operation are best described Qith reference
to Figure 2.6a, which shows the distribution of workihg fluid within the
wick structure. When the central portion of the pipe is heated, the
metal melts and wets the wick. With further heating, the liquid
evaporates to produce that vapor pressure that is in equilibrium with the
temperature of the pipe. The saturated vapor diffuses towards the cooler
ends of the tube, where the vapor pressure is lower, and condenses into a
liquid. In the condenser region, the liquid tends to flood the wick
thereby producing a large radius of curvature of the meniscus. In the
evaporator region, the liquid recedes into the wick thereby greatly
reducing the radius of curvature of the meniscus. It is the difference
in the radii of curvature of the menisci in the two regions that enables
the wick to act as a capillary and return the 1liquid to the heated
portions of the tube. Thus the flow of two phases of the working fluid,
following evaporation and condensation, completely circulates the fluid
and leads to near-isothermal conditions within the pipe.

Normally, the temperature at which a heat pipe operates is dictated
by the power input and the temperature of the condenser. By introducing
an inert, noncondensing gas into the system, one can control the
pressure, and hence temperature, independently of these external factors.
Furthermore, one can operate the heat pipe in a self-regulating mode as
is shown below. The underlying principle here is that the presence of
the noncondensing gas severely inhibits the condensation of the metal
vapor in the region that is occupied by the inert gas. Before start-up,

the inert gas fills the pipe. During normal operation, the motion of the
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Figure 2.6 (a) Distribution of liquid in a heat pipe, and
(b) use of an inert gas to control the temperature and

pressure of metal vapor in the heat pipe.
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metal vapor "pumps" this inert gas towards the condenser region, thus
completely separating the metal vapor and inert gas zones. A steady-
state condition is reached when the vapor pressure of the metal becomes
equal to the pressure of the inert gas, and the metal/inert gas interface
is located near the condenser region (see Figure 2.6b).

It is the mobility of this interface that is primarily responsible
for the temperature stability of the gas-controlled heat pipe. 1f, for
example, there occurs an increase in input power, it would cause an
increase in vapor pressure, which in turn would tend to compress the
noncondensing gas and uncover a larger surface of the condenser. This
larger cold surface would serve to dissipate the increased heat input.
Similarly, a reduction in input power will cause a decrease in vapor
pressure and allow the inert gas to expand towards the evaporator region.
This movement will expose less of the condenser region to the metal vapor
and thus produce a smaller heat sink to compensate for the lower heat |
input. The overall effect of the inert gas is to control passively the
length of the condenser region in contact with the metal vapor, thus
minimizing the temperature response of the heat pipe to variations in
jnput power (i.e. input power changes map into changes in the length of
the metal vapor zone rather than changes in its pressure).

To summarize, there are four principal advantages to the generation
of metal vapors in heat pipes. First, the entire vapor zone is at a
uniform pressure and temperature since the evaporation and condensation
processes take place at almost identical temperatures. Second,

gas-controlled heat pipes allow the use of an inert gas to sensitively
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control the pressure (and hence temperature) of the metal vapor. Third,
the inert gas prevents the metal from condensing on the end windows and
further acts as transparent layer to optical radiation. Fourth, the
continuous evaporatﬁon and condensation of the metal serves to distill

out (into the condenser region) any impurities.

B. Construction and Operation

The heat pipe used in these experiments is constructed from a 2 inch
0.d., type 304, stainless steel pipe with 1/16 inch wall and is ~19
inches long. The wick is constructed from three layers of 100 mesh type
303 stainless steel that is ~17 inches long. Before sodium is added, the
heat pipe is baked overnight under vacuum at ~500°C in order to clean the
mesh. Typically, 20 grams of reagent grade sodium is used in the pipe.

Power to the heat pipe is supplied by resistive heating of a 1/8
inch o.d. nichrome wire (encased in a stainless steel sheath) brazed to
the pipe. Adjacent loops of the wire are separated by -1 inch and the
helix extends over ~12 inches. The temperature of the pipe is monitored
by three chromel-alumel thermocouples spot welded along various portions
of the pipe.

In order to test for heat pipe operation, one of the end windows was
replaced by a ~10 inch long, 1/8 inch o.d. chromel-alumel thermocouple
(protected by a stainless steel sheath) which was inserted through an
o-ring fitting. In this configuration, the thermocouple could be moved
jn and out of the vapor zone so as to measure the axial temperature
profile for various heater powers and inert gas pressures. Simultaneous

readings were made with the external thermocouples.



Figure 2.7 Axial temperature profiles of the Naj heat pipe at three

different input powers.
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Figure 2.7 shows the measured temperature profiles for a series of
input powers, starting from ~80 Watts for which the heat pipe is
underpowered, to ~160 Watts for which the flat temperature profiles with
sharp edges are evidence of proper heat pipe operation. The onset of
"heat piping" is indicated by a lack of dependence of the pipe
temperature on heater power; a true heat pipe mode is indicated by a
uniform temperature profile with a reasonably well-defined metal/inert
gas boundary.

After the heat pipe was tested, the thermocouple was replaced by the
end window. The heat pipe was operated at low pressures {~1 Torr) so
that the PROBE excitation rate could compete effectively with the
collisional depopulation rate in order to maximize the probe-induced
change in the OPL output intensity. (Extended operation at pressure
lower than 1 Torr was not possible since significant condensation of the
metal occured in the cold regions of the pipe.)

2.5 OPL Cavity

Having discussed some aspects of heat pipe operation, let us now
consider some particulars of the Nap OPL cavity. The radii of curvature
and the relative separation of the four reflectors making up the OPL
resonator are chosen so as to produce stable resonator modes, with a beam
waist of 0.05 cm located within the heat pipe, and a Rayleigh range of -1
meter. This section is concerned with the calculation of the sizes and
locations of the beam waists for the passive, four mirror OPL cavity. To
prepare the groundwork for this calculation, we will recapitulate the
ABCD transfer matrix formalism for Gaussian beam propagatior and

transformation by lenses30,
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A. Gaussian Beams

Use of ray (i.e. "geometric" as opposed to "physical") optics to
describe the propagation of light is valid only in the limit that the
wavelength, x>0, Geometric optics is further lacking in that it only
predicts which resonator configurations are stable, but it gives no
information concerning the behavior of stable cavity modes. In order to
determine the shapes of thess modes, one must consider the effects of
diffraction as the radiation field propagates in a resonator.

The paraxial formulation of diffraction is generally an adequate
description of radiation typically encountered in lasers. In this limit,
one deals with radiation fields propagating along the z direction whose
intensity profile, |U(x,y,z)|2, for a given z, varies slowly along the x

and y directions. This leads to the paraxial wave equation

2 _ sop OV
= i2k ¥

Vtransversew (2.5)

b

which is the central equation for Gaussian beams. The solution to the

above equation can be shown to be a modified plane wave, described by the

following eguation,

U(x,y»2) = 9(xy,2) e K2 (2.6)

Expressed more fully,

¥ = 90 Hm(/-fx/w(z))}in(/—z‘)'/w(z)) X

_(x24+y2
90 yp=(XEryS), y AMPLITUDE
w(z) w?(z) FACTOR
24y2
exp{-ik(x +y )} N RADIAL
2R(z) PHASE
exp{~i[kz-(men+1)tan-1(22)]) LONGITUDINAL

NG PHASE (2.7a)
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where

w2(z) = wp2 [1+(¥—2)21

TWO

R(z) = z [1+(1935)2] (2.7b)
AZ

The various parameters are illustrated in Figures 2.8 a) and b) and
interpreted as follows:

w(z) is the beam radius where the field amplitude drops to 1/e of
its peak value at r=0;

R(z) is the radius of curvature of the wavefront (surface of
constant phase);

Hy(y) is the nth Hermite polynomial in the variable vy;

m,n are the number of transverse modes.

It is useful to interpret physically the three terms in Equation
(2.7a). The first describes the Gaussian radial variation of the
amplitude of the field and shows how this changes when the beam diffracts
as it propagates along the z direction. Figure 2.8b shows this spreading
of the beam from its minimum radius of wg at z=0. The second factor, the
radial phase factor, indicates the shape of the wave front. We note that
the curvature at the center of the wavefront changes as a Gaussian beam

propagates since

R(z) = z [1+(29)2]  where zg = mwp2/2 : (2.8)
Z

For example, when z>>zg the beam appears to originate from z=0. However,
as z+0, the center of curvature of the phase front recedes until, at z=0,

the center of curvature is at infinity and the wavefront is planar. (A



Figure 2.8 Illustration of (a) the Gaussian intensity profile of a laser

beam propagating along the z axis, and (b) its diffraction

from the beam waist, wg. (c) is with reference to Equation

(2.10).
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planar wavefront is an alternate definition of the z=0 plane where the
beam has a minimum radius.) The third factor in Equation 2.7a is simply
the change in phase of the wave along the direction of propagation.

With this description of Gaussian beams, we can now describe their
transformations as they propagate through lenses. In order to represent
succinctly the characteristics of a Gaussian beam, the parameters w and R

are combined in a complex beam parameter, q(z), which is defined as

D S (2.9)
a(z) R(z) 1wl(z)

The propagation of a beam through free space between points zj and zp can

be expressed, in terms of q, as

q(zp) = a(z1) + zp-z31. (2.10)

Equation 2.10 is formally the same as the relationship between wavefronts
of spherical waves at zj and zp: R(zp) = R(z1) + (z2 - z1), as is obvious
from Figure 2.8c. Similarly, the radius of curvature of a Gaussian beam
transforms in the same way as for spherical waves when propagating through
a thin lens of focal length, f,

= 1

1 _1

R, - Ry (2.11)

—h|

where Ry and Ry are the radii of curvature directly before and after the
lens. Since the beam diameters are unaltered by the lens, that is. wi=wp,

we get the transformation of q through a lens

1 .1 1 (2.12)
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Application of Equations 2.10 and 2.12 allows one to trace Gaussian beams
through any combination of elements which can be broken down into

equivalent sequence of thin lenses and free space.

B. ABCD Matrices

A systematic procedure for tracing Gaussian beams, which employs
Equations 2.10 and 2.12, involves the ABCD ray transfer matrices30, These
same matrices appear in ray optics and express the linear reiationships
(arising from the paraxial approximation) between the position x; and slope
xl' of a ray in the input plane of a lens and the corresponding parameters

xo and xz' in the output plane of the lens:

G20 = Lol - (2.13)

These ABCD matrices can also be used to represent the transformation of

a Gaussian beam characterized by the parameter q,

Ag,+B
qp = —— , (2.14)

Cq1+D
where the elements of the ABCD matrix reflect the properties of the optical
medium through which the beam propagates. For example, C = —1/f, where f
is the focal length of the optic.

Let us illustrate this formalism for beams in laser cavities. The
resonant modes of a cavity are those Gaussian beams for which the amplitude
and phase of the field repeats itself after one complete pass.
Self-consistency in the longitudinal phase defines the allowed frequencies
of the stable modes, while self-consistency in the amplitude and radial

phase defines the shape of the mode. We will see that, given a Trequency,
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a mode is completely characterized by the size and location of its beam
waist. For confined Gaussian beams, we require that qp=q; (the second
cycle equals the first cycle through the cavity); therefore, Equation

(2.14) becomes

q = (Aq+B)/Cq+D

or 1/q = {D-A + [(A-D)2 + 4BCc]1/2}/28 .
where the ABCD elements now represent the properties of the resonator
structure as a unit. Using the fact30 that AD-BC=1, the two roots of the

above equation are found to be

1_D-A + i [4-(A+D)2]1/2 (2.15)
q 2B 2B

and, from the definition of q,
R(z) = 2B/D-A (2.16)

2
wd(z) = (B2 B%
T 4-(A+D)?2
Let us apply (2.10)-(2.16) to the example shown in Figure 2.9. The
ABCD matrix for this structure is the ordered product of matrices
representing the propagation of a beam a distance d, followed by
reflection off a mirror of radius Ry, etc. The ABCD matrix elements

allow one to determine R and w, at the starting point, by using equations

(2.16):
R(z) = Rp
dR»2(Ry-d 2.17
) = yz ——2tud) (217)

n  (Rp-d)(Rj+Rp-d)

‘Notice that the phase front of the resonator mode exactly matches the

curvature of the mirror, Ro.
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We now determine the location, zg, and size, wp, of the beam
waist. Let us take the waist to be at the origin. Since the phase front
is planar at the waist, q is purely imaginary; therefore, Equation (2.10)
gives

q(zg) = a(z1) - 71
thus z1 = Re{q(z1)} . (2.18)

Since q(z1) is given by R{z7) and w(z1) as determined in Equation (2.17),

z1 is found to be

21 = d(d-Rp) . (2.19)
2d-R1-Rp

We can now substitute zq and q(z;) back into Equation (2.18) and thus

determine q(zg) and, in turn, wgp:

wpl= () [d(Rl-d)(R?'d)(R1+R?'Ql]1{2 (2.20)
m (Ry+Rp-2d)2

Another method for determining wg and zg from the ABCD elements is with

the following relations:

2. A, _ [4-(AD)2]1/2
T 2C

wQ
(2.21)
29 = (A-D)/2C

Starting from a knowledge of the beam waist, one can determinae the

properties of the beam anywhere in the cavity with Equations 2.7b,

C. OPL Resonator Mode

We proceed in exactly the same fashion as in the example of Figure
2.9 to determine the properties of modes supported by the Nap OPL cavity
of Figure 2.10. This cavity possess two beam waists; their

characteristics are as follows:
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wg(1) (midpoint of heat pipe) = 0.0579 cm
wg(2) (midpoint of two flat high reflectors) = 0.0527 cm

w (at M, and Mz) = 0.0629 cm
R (at Ml) = 243.4 cm
R (at MZ) = 393.2 cm

The two waists can be thought to arise from the two unfolded cavity
configurations shown in Figure 2.10; the first configuration has an
effective focal length of 136 cm (therefore C = -7.34 x 10'3) and the
second has 113 cm focal length (therefore C = -8.86 X 10‘3). The 134 cm
longer arm between M; and My is intentionally made as short as possible in
order to minimize the size of the beam waist within the heat pipe and thus
maximize the PUMP power density. The astigmatism produced by the 15°
oblique angle of reflection causes only ~0.5% distortion the size of the
beam waists.

There are two noteworthy points which distinguish the OPL resonator
mode from the example of Figure 2.9. First, there are no beam waists (or
planar phase fronts) located at either of the two flat mirrors of the OPL
cavity. This is not surprising since the ring resonator supports traveling
waves and, like the free propagation of traveling waves through lenses,
the wavefront curvature need not coincide with the mirror curvature
(unlike the case of standing waves - see Equation (2.17)). Second, the
resonance frequency condition is different for traveling waves than for
standing waves. The longitudinal phase of the field must repeat itself

after one complete pass for all cavities, i.e.,



Figure 2.9 The ABCD matrix elements for a standing-wave resonator.
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Figure 2.10 The ABCD matrix elements for the Nap OPL cavity.
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Figure 2.11 Trace 1 shows the I, fluorescence excited by the PUMP Taser;
trace 2 shows two Nap OPL transitions and the cavity mode

structure within each Doppler-broadened transition.
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A¢ = 2nk where k is an integer (not to be confused with the wave

propagation constant)

- &z | (m+n+1)tan-1( AZ ) (2.22)
A TWQ

from Equation 2.7a. In a standing wave resonator, an additional boundary
condition is imposed: there must be nodes at the mirror surfaces. This
leads to the more stringent requirement that the longitudiral phase
difference be nk between any two mirrors. Thus,

v = kc/2d
for the fundamental transverse mode. In traveling wave resonators, where
the fields are not retro-reflected back on themselves, the round trip 2ak
phase shift of Equation (2.22) leads to the frequency condition

v = ke/D
where D is the total length of the cavity.

The 234 cm round trip length of the OPL cavity produces a
longitudinal mode separation of 128 MHz. An example of the OPL cavity
mode structure, observed as a function of PUMP frequency, is shown in

Figure 2.11.

D. Mode-Matching of Resonators

The preceeding section gives the mode structure of the Nap OPL
resonator. Optirmum coupling of the PUMP (and PROBE) radiation into the
OPL cavity is accomplished by matching the Gaussian mode of the ring dye
lasers (that provide the PUMP and PROBE radiation) with the resonator
mode of the OPL. The resonator mode of the CR699 cavity is
characterized by the sizes and locations of its beam waists; the three

beam waists are calculated3l and shown in Figure 2.12,
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The transformation of the dye laser beam (whose output propagates
from waist #3 located 13.6 cm from its output coupler) so that it
overlaps with waist #1 of the OPL cavity is accomplished by a thin lens
placed between the two optical structures, as illustrated in Figure 2.13.

The focal length and placement of this lens must satisfy the equations

dy = f =81 [f2 . f;2]1/2
w2
(2.23)
dp = f 92 [£2 - 21"/,

wl

where fg = mwiwa/A

and dj and dy are the distances of the lens from the OPL beam waist,
w], and the dye laser beam waist, wp.

Equations (2.23) can be derived in the following manner. Consider
the two general resonators of Figure 2.13a with beam waists wj and wp.
We require that the Gaussian beam with parameter q; = ix/nwlz at the
waist of resonator 1 transform into a beam with parameter qp = in/mwp? at
the waist of resonator 2 after traversing the lens of focal length f.
This means that dy, d and f for the lens must satisfy the condition:

dp didp
qp _ Aqp + B (1 - #9)ag + (dy+dp - —7)
“Cqy ¥ D0 i v
it ~(Fay + (1 - )

Substituting qj and qp into the above equation and equating the real and

imaginary parts gives

d1-f  4p2
17 - @1 and  (dy-f)(dp-f) = f2 - fg2.

dp-f w22
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Solving for the two unknowns dj and dp gives the matching formulas of
Equations (2.23).
Equations (2.23) tell us that any Tens with a focal Tength f>fg can
be used to perform the transformation. For an OPL beam waist
wy = 0,057 cm, a dye laser beam waist wp = 0.03 cm, and the dye laser
A ~B6000A, the focal length of the lens must be greater than 98.5 cm. A
beam-steering high reflector with R = 200 cm (f = 100 cm) is used as the
mode-matching lens. Its placement is given by either of the two
solutions below [(a) satisfies the "+" solution and (b) satisfies the "-"
solution of Equations (2.23)]:
(a) d; = 130 cm  and dp = 110 cm
or (2.24)
(b) dj = 83 cm and dp = 90 cm,

where dq and dj are, respectively, the distances of the OPL and dye laser

bean waists from the lens.

If the PUMP radiation were coupled into the OPL through a flat
reflector of the OPL cavity, then the distances given above would refer
to the separation of the OPL and dye laser beam waists from the surface
of the focusing lens. However, the PUMP is coupled through one of the
R = 300 cm reflectors of the OPL cavity. This changes the meaning of the
above distances so that they now refer to the principal planes of the
"thick lens" formed by the f = 100 cm lens and the f = 150 cm
(R = 300 cm) reflector. When these two elements aire separated by 100 cm
(thus possessing an effective f = 100 cm), the two principal planes are
located as shown in Figure 2.13b. We found the distances given by
Equation (2.24a) to be the more practial ones to use. Figure 2.13b shows

that the actual distance dj between the OPL beam waist and the principal
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Figure 2.12 The size and location of the three beam waists in the CR699

dye laser.
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Figure 2.13 Mode-matching of the

RN

CR-699 dye laser and the Nap OPL.
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plane hy is 20 cm larger than the prescribed 130 cm. While this causes

some coupling loss, it still allows adequate mode-matching of the PUMP

and OPL resonators.

2.6 Variety of MGS Signals

Throughout this thesis, we are concerned with a small class of MGS
signals that correspond to the PUMP-OPL-PROBE excitation scheme of Figure
2.1, in which the PROBE laser excites population from the lower Nap OPL
Tevel to the vibrational levels of either the Alz: or Blp, states and
thus alters the gain of the OPL system. In general, the PROBE laser can
change the OPL gain by interacting with population in anyone of the three
levels participating in the PUMP-OPL scheme. Some examples of the
resulting MGS signals observed are shown in Figures 2.14.

We used two key features of these MGS signals to provide guidelines
to their identity - the phase, relative to the PROBE amplitude
modulation, and the fullwidth., Consider, for example, the excitation
schemes of type A or B where the PROBE removes population from
respectively the upper OPL level or the Tower PUMP Tevel. The OPL
intensity decreases that occur concommitantly with these PROBE
excitations are phase shifted by = with respect to the reference. Thus
these types of MGS signals are easily distinguished from those in-phase
signals corresponding to the excitation scheme of Figure 2.1. The type A
and B signals can be distinguished from each other by their different
linewidths. The nearly Doppler-broadened fullwidth (~1.5 GHz) of the
type B signal is due to the thermal axial velocity distribution in the
lower PUMP level whereas the 300-400 MHz fullwidth of the type A signal

js due to the narrow velocity spread in the upper OPL level that is
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prepared by the narrow bandwidth PUMP. We note that collisional
satellites arising from PROBE interaction with rotational levels
collisionally coupled to the Tower PUMP or upper OPL level are also
observed. (The maximum aAJ=8 at 1 torr).

Opposite to the type A scheme, the PROBE can also excite population
into the upper OPL level from thermally populated levels of the ground
state. The resulting in-phase MGS signals are observed to be Doppler-
broadened. |

We finally note one additional mechanism whereby the PROBE can
modulate the gain of the OPL. When the OPL frequency coincides with a
molecular transition frequency and is partially absorbed by thermal
population, then self-absorption is clearly a loss mechanism for the OPL
system. Reducing this Toss will result in an increase of the OPL
intensity. Shown in Figure 2.14, as a type C signal, is an example of
the in-phase MGS signal observed when the PROBE laser excites that

thermal population that is absorbing the OPL radiation.



Figure 2.14 Examples of various types of MGS signals.
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CHAPTER THREE

OVERVIEW OF VAN DER WAALS COEFFICIENTS
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3.1 Introduction

This chapter provides a basic perspective on the interrelationships
existing between C, coeffecients (of the R-" terms in long range
potential expansions) for molecular states dissociating to the same
atomic limit. Some attention is given to the origin and consequences of
the degeneracy present in the Na (2s) + Na (2P) atomic limit, which gives
rise to the Nao A 1z: and B lm, molecular states considered in this
thesis. We begin with a general treatment of electrostatic interactions
between two non-overlapping arbitrary charge distributions, since the
essential behavior of long range potentials is determined by such

interactions between separated atoms.

3.2 Multipole Expansions

For the sake of generality, let us begin by considering the
electrostatic interaction energy between two distinct and arbitrary
charge distributions, A and B. The treatment that follows is largely
standard and can be found in references 32, 33; it is included here
because it is central to the understanding of the R-l power series
expansion of long-range potential energies. The interaction energy, W,
between A and B can be viewed as the interaction of the charge density of

B, pg(x), with the effective potential of A at the site of system B, ¢p,
W= [ pp(x)ea(x) d3x (3.1)

where the integration is performed over the coordinates of charge
distribution B. Before examining the interaction between two charge
distributions, let us first examine the potential generated by one

arbitrary charge distribution, at some point ¥ outside the distribution.
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For a point charge e located at 7', the electrostatic potential at
> . .
r is given by
o(F) = e/|F-F'| . (3.2)
Similarly for a distribution with charge density o(7'), the electrostatic

potential at * is given by

k4]
o(F) = | P—P—;)— d3r' ., (3.3)
[P-r" |
Using the law of cosines (see Figure 3.1la), we can rearrange 1/|F—?'| in
the following manner,
1 - = 1 = _._..___i._______
|F-F | [(F_;.)ZJI/Z [r2-2rr'c059+r'2]1/2
_ 1
- I 1
r[1- 2 + cose + (7—)2]1/2 (3.4)

Examination of (3.4) shows that it has the form of the generating
function, (1-2xt+t2)-1/2, for the Legendre polynomials, Py(x).
Therefore, if the potential is measured at a point, ?, well outside the

the distribution, 7', then equation (3.4) can be expanded to yield

1 = l-2(5—)RP£(coso), r' <r (3.5)
[

Further, by making use of the spherical harmonic addition theorem,

(see Figure 3.1b), we get
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Figure 3.1 Coordinate Systems a) and b) for Equations (3.3) and (3.6)

respectively.

81



(A]

> N

82



83

Table 3.1 Spherical components of the first three multipole moments
(from Ref. 32). .

q 1is the total charge,

1 3

> 3 -
p = f d’x' p(r') is the dipole moment,

_'\/—;ivrfdax' (x'-1y') p(F")
[3 . .
"B (Pyiry)

q:= "l%r 'f d3x' r' cos §' p(r')

3

4t Pz 2

3 -
Qij =J‘ a~x' (3x;_x3-r'25”) p(r') is the quadrupole moment tensor

j Sx' ' 2sin’e 7210 (1
EE f a3x' x'-1y") 2o ")
=“1lz‘\/E (Qq1-21Q;,-Qy)
J_ j‘ a>x' r'2sin 8' cos g' e i p(x")
=-ﬁ;fdw(fdfh'ﬂ?)
=- “1‘«/1:5 Q)3-1Qy3)
% /;; [ %' 123 cos 20'-1) @)

-;-/;rj‘f' @Bz' 2% oFh)

=E«/ZTT Q33 »
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<%
Py(cose) = %, ) Y (e'h0")¥5(000) (3.6)

1 1
e S L AIORDE- S AU )
- ,m

The effective potential at T now becomes

o g Yg(8,6)
o(F) =& § I L A (3.8)
2:0 m="9, 22"'1 2 r‘“’l
where
3
ay = [ VG (6%se") Frhe(r) adx . (3.9)

The representation of the potential, ¢(:), in Equation (3.8) in terms of
5 multipole expansion allows one to identify clearly the separate
contributions of each multipole, q:, to the total potential. It is
readily seen that the potential created by each multipole has a very
different angular distribution and dependence on r, in the sense that the
potential generated by terms with larger £ has a more complicated angular
distribution and decays more rapidly with increasing r. The various
multipole moments correspond physically to the total charge, qg, the

the dipole moment, qT, the quadrupole moment, qg, and so on. These low
These low order moments are evaluated in Table 3.1. A useful mnemonic
for the generation of a multipole moment of order 2% s to start with two
multipoles of the next lowest order, 2%-1, that have opposite signs, and
displace one from the other by some distance. For example, a dipole can
be created by taking two point charges of opposite sign and separating
them by some distance; a quadrupole can be created by taking two dipoles

of opposite sign and displacing them in either one of two orthogonal
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directions to yield a linear or square quadrupole; etc..
When substituting the low order moments of Table 3.1 into Equation

(3.8), the potential can be reexpressed in the more familiar form,

XqiX5
1 J + eee (3.10)

o(F) =L + BT+ 2y 0y
r r3 2 i3 rd
Knowing the properties of the potential set up by an arbitrary
charge distribution, we can address our original problem of determining
the interaction energy between two charge distributions, as given by
Equation (3.1). If we assume that the effective potential of distribution
A, ¢p, does not vary rapidly over the volume of distribution B, then we

can expand ¢p in a Taylor series

+eee  (3.11)

iX;

0 2
oA(x) = op(0) + 3 2¢A(0) Xj + %T ) } 3%4a(0) X
©

PRES 9X§3Xj

The expansion is about the origin of distribution B; therefore, the xi's
and xj‘s refer to the coordinates of B. Since the electric field is

) > >
given by Ep=-V¢n,

3Ep; (0)

ax1

oa(x) = oa(0) - x-EA %-2 Y XjXj *oeee (3.12)
LN

>
The electric field, Ep, external to distribution A must obey

VeEp = 0 (3.13)

>
since Ep is produced by sources outside the region of interest, B.

Therefore, we can subtract {1/6 r2($-EA)} from the third term in

Equation (3.12) thereby obtaining



> > ) ) 3Ep; (0)
oa(x) = ¢a(0) - x-Ep(0) - E-X Y (3xixj-r 61j}—g;7 + eee . (3.18)
iJ 1
Substituting the definitions of the multipole moments of distribution B
into the above equation, we find the interaction energy, W, between

distributions A and B to be

BEAj

X

Foeee . (3.15)

1
W = qpop - Pp-EA -

1

Z (Qij)B
N

Notice the characteristic manner in which the multipoles of B
interact with the electric field of A: the charge with the potential,
the dipole with the electric field, the quadrupole with the gradient of
the electric field, etc.; the 2¢th multipole interacts with the (g-1)th
snatial derivative of an external electric field.

As an example of the applicability of equation (3.15), consider the
interaction of the two dipoles, 51 and 52. The interaction energy, Wqd,

must be of the form

>
de = - pl'Epz . (3.16)

Since Ep2= - 3¢p2 and ®p2=(52-F)/r3, from equation (3.10), we have

, » Bort
Epy= - V=37
= - L33 - Bt
r3 r3
3r

- -5 ) - (BN
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> >
wae = P1tP2  3(B1-T)(B2eF)
. dd 5
e o r r
> > I ~
_ P1°Pp - 3(B1er)(Poer) (3.17)

r3
We see that dipole 51 interacting with the electric field of dipole ;2
has an R-3 energy dependence. It can be shown in a similar fashion
that dipole Bl interacting with the electric field of quadrupole 65 has
an R-% energy dependence; a charge qp interacting with the potential of a
dipole Pp has an R-2 energy dependence; a quadrupole ] interacting with
the gradient of the electric field set up by quadrupole ﬁz has an R-2
energy dependence, etc. Thus the electrostatic interaction energy W(A-B)
of two arbitrary charge distributions A and B can be represented by a
power series in R-1, and the coefficients of the various orders of rR-1
reflect the magnitudes and relative orientations of the multipoles of

distributions A and B.

3.3 Llong Range Potentials

The preceding discussion of electrostatic interactions is important
to any discussion of long range potentials: it is essentially the
multipolar interactions between separated atoms A and B that are
responsible for the long range behaviour of internuclear potentials of
the diatomic molecule, AB. In the long range limit, where there is
necligible ovelap of atomic wavefunctions and the magnitude of the
electrostatic interaction energy is significantly less than the energy
difference between states of thé separated atom, the following

perturbation theoretic approach is appropriate.
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The basis functions consist of products of separated atom wavefunctions
and the multipolar interactions are treated as perturbations on the
zero-order system (which consists of two noninteracting atoms at infinite
separation). The resulting first and second order corrections to the
energy generally provide a compiete description of the long range
portions of the potentials of various molecular states of the AB

molecule, 34-37

A. First-Order Corrections

let us begin by considering the first-order contribution to the long
range potential energy of the heteronuclear diatomic molecule AB, formed
from the combination of atom A in state 0 and atom B in state 1. The
zero-order energy and wavefunction are, respectively, E(0) = £h, * B,
and |y0> = |Ag>|B1>. For two neutral atoms, the leading electrostatic
interaction is of the dipole-dipole form, W4q; therefore, the first-order

correction to the energy, with Wyqq acting as the perturbation, is

(1)
E = <AgB1|Wdq|AgB1> .

Choosing the internuclear axis of the AB molecule as the z direction, we

can express Wqq of Equation 3.17 as

Ux ux, *touy wy o - 2uz nz .

2
Thus E(1) = §§{<A0|XA|A0><81|XB|81> + <Ag|yalAg><B1|yg(B1>
- 2<A0|ZA|A0><81|ZB|BI)} . (3.19)

(1
We see that E )=0 for this case since x,y,z have odd parity whereas the

(nondegenerate) atomic states |Ap> and |B1> have well defined parities.



As a result, the leading first-order correction (lowest order R-N term) to
the interatomic potential energies usually arises when the perturbation is
a quadrupole-quadrupole interaction (i.e. when both atomic states of A and
B are characterized by J » 1, or non-S states).

In view of the above statement (that there are no first-order energy
contributions to atomic interactions when one of the atoms is in an
S-state), let us examine the paradox posed by the Na(3s) and Na (3p)
interactions which do possess first-order contributions. This particular
combination of atoms exhibits this unique behavior for two reasons:

a) There exists an energy degeneracy in this homonuclear system
composed of atoms in different electronic states. Therefore, the total
energy of the Nap system remains unchanged when the state of excitation is
interchanged between the sodium atoms. In other words, if we Tabel one
sodium atom A and the other B, then E(Ag + Bp) = E(Ap + Bg).

b) The two atomic states are connected by an electric-dipole
transition.

Consequently, the first-order energy corrections are of the dipole-dipole
form, C3/R3. This will be shown below using degenerate perturbation
theory.

The following heuristic argument helps us to visualize the
first-order dipole-dipole interaction. When the two sodium atoms are near
one another, thev can exchange their state of excitation with the
simultaneous absorption and emission of photons at the frequency of the
2p5>25 transition. (They are, in essence, exactly matched oscillators
capable of resonantly driving each other). When the atoms interchange

their excitation, the charge distribution at each atom oscillates between
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the 3s and 3p states. The resulting transition dipole moments set up at
each atom can interact with one another in the same fashion as two
classical dipoles, with an R-3 energy dependence.

We can formally obtain a C3/R3 first-order correction using
degenerate perturbation theory. For purposes of clarity, let us label
one sodium atom A and the other B. The states of atoms A and B can be
specified in zero-order (that is, in the absence of A-B interaction,
where A and B have spherically symmetric potentials) by their orbital
angular momentum L, and the projection of L on the AB internuclear axis,
A. The six degenerate zero-order wave functions, denoted by

IAL’AX>lBL’BA>’ are

[As,0>|Bp,1> |Aps1>|Bs,0>
|As,0>|Bp,0> |Ap,0>[Bg,0> {3.20)
|As,0>|Bp,=-1> |Aps-1>[Bs,0> .

The first-order energies and eigenfunctions can be obtained by
diagonalizing the 6x6 Hamiltonian matrix that is formed in the basis of
the above wave functions. Rather than proceeding with a brute force
solution of the secular equation, det(H-xaij) = 0 , we instead prefer to
reduce this 6x6 matrix using the symmetry properties of the molecular
system. The cylindrical symmetry of a diatomic molecule implies that
[L,,H]=0. Therefore, the matrix elements of the perturbation that are
off-diagonal in A (where A = Ap + Ap) are zero. This immediately allows
us to reduce the 6x6 matrix to a block-diagonal form, consisting of three

2x2 blocks, where each block has the same A:



lo1> 10> 00> [00> [0-1> |-10>

<01| 0 *

<10| * 0

<00| 0 *

H(1) = (3.21)

<00| * 0

<0-1] 0 *

<-10| * 0

Here, |0-1> is used to represent symbolically |Ag,0>|Bp,-1>, and likewise
for the other wave functions. The asterisks denote nonzero matrix
elements. The above matrix can be further reduced by using the g/u
inversion symmetry of homonuclear diatomic molecules. Since [i,H] = 0,
there exist eigenfunctions of H which are also simultaneous
eigenfunctions of the g/u symmetry operator i. Use of this symmetry
label completely diagonalizes the the perturbation matrix of Equation
(3.21). The resulting first-order eigenfunctions, labelled as ¢ML,1
(where the two subscripts refer to #A and the symmetry of the linear

combination) are listed below:

W a1z (Jons10) el = UVZ (01-]105)
wé}l - 1//Z (]00>+]005) ¢812 = 1/YZ (]00>-]00>) (3.22)
w5i2+ = 1VZ (]0-1>+]-105) wE}Z_ = 1/VZ2 (]0-1>-]-105) .

Symmetric and antisymmetric linear combinations correspond to u and ¢

symmetry, respectively. The first-order energies associated with the



above symmetry-adapted wave functions, for a dipole-dipole perturbation

(Equation (3.18)), are

E(1) = <p(1)|Hgqle(1)>
. 1 1
<. E§,Z = +C3/R3 E§,Z = -C3/R3
1 1
Eé,l = -2C3/R3 Eé,l = +2C3/R3 (3.23)
1 1
ESIZ+ = +C3/R3 Eglz_ = -C3 R3
where C3 = e2|<s|x|py>|2. (3.24)

We can label the molecular states corresponding to each of the above
eigenfunctions. The electronic states of homonuclear diatomic molecules

are denoted by

where A is the projection of the electronic orbital angular momentum

along the internuclear axis,
A= M

Since the range of possible values of A is |ap*rgl,e<+.[xp-Ap|, two atoms
in S and P states can combine to give , A=z or I ( M_ = O or x1). A >0
states are doubly degenerate. The left superscript, 25+1, refers to the
multiplicity of the total spin, S. For two spin one-half atoms, S=0 or
1, singlets or triplets. The right superscript, + or -, is determined by

the sign of the molecular electronic wave function upon reflection in a
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plane passing through both nuclei. Thus, a combination of like atoms in
+ +
25 and 2p states produces the singlet states, {lzg, lzy, lmg, Imy} and
. + +

the triplet states {3tq, 3zy, 3ng, 3my}.

Let us first consider the singlet states. There are a total of six
such states; recall from Equation (3.22) that there are six
first-order eigenfunctions. A molecular state assignment for each
eigenfunction is very straightforward and is shown in Table 3.2. It is
seen that these symmetry-adapted wave functions, having the appropriate
symmetry labels for a diatomic molecule, diagonalize the perturbation

Hamiltonian (Equation (3.21)) to yield:

- 1

H(1)= £y (3.25)

-

In the above matrix, nt and n- refer to symmetric and antisymmetric
combinations of the M| = +1 and M| = -1 states.

We noted earlier that the (2S+2P) limit also produces triplet
states. Since we are considering long-range atomic interactions, overlap
and electron exchange effects are assumed to be negligible. As a result
the singlet and triplet states within each of the four pairs -(125, 32:),
(lng, 3ny)s (lmy, 3Hg), (123, 323) - have identical forms for the
long-range potentials. These are illustrated in Figure 3.2.

Let us momentarily digress in order to show that this specific
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Table 3.2 First-order energies and wave functions for the Na (3s) +

Na (3p) atomic 1imit. [01> + |10> denotes |AsBpm_1+ |Ap . Bs>.

m=1
The last column is a schematic representation of the

orientation of transition dipole moments when the atoms

combine to form each molecular state.

State Symmetry-Adapted Wave Function Energy Transition Dipoles
+ —
lzg 1/v2 (100> - |00>) +2C3/R3 - -
ln, 1/¥2 (|01, + |105)
+C4/R3
— 3 I I
1/v2 (]0-1> + |-10>)
1p 12 (Jo1> - |10>
g / ‘ (| | ) -C3/R3 I
1/¥2 (]0-1> - |-10>) I
+ —
1z, 1/vZ (|00> + |00>) -2C3/R3 - -




Figure 3.2 The R-3 behavior of the molecular potentials of Nap near the
Na 3s (2S) + Na 3p (2P) asymptote. The short dashed lines
refer to the (2S1/p + 2P3/3) and (2Sy/p + 2P1/p) limits; the
Tong dashed line refers to the degeneracy-weighted average of

these two limits. (From Ref. 12).
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pairing of singlets and triplets at Tong range fs reasonable. It can be
explained quite simply as follows. The zereo-order wavefunctions of
Equation (3.20) are not properly symmetrized to account for the
indistinguishability of idenmtical electrons. (The results that folTowed
are nevertheless still valid). To fllustrate the fdentical behavior of

certaim singlet and triplet states, at Targe R, Tet us now symmetrize

o

W

¥ As(1)Bp(2) with respect to electron exchange. Applying

(1

I+

Pi2)/ 2 to y°, where Pyp s the permutation operator of electrons
1 and 2, we get:
(2)-1Z (Ag(1)Bp(2) + As(2)Bp(1)),

where the symmetric combimation corresponds to a singlet state and the

antisymmetric to triplet states. Now applying (1 + i)/¥ 2 to the above
wavefunction, where 7 is the inversion operator, we get the final result:
(2)-1 [Ag(1)Bp(2) = Ag(2)Bp(1)] + [Bs(1)Ap(2) = Bs(2)Ap(1)],

where the antisymmetric combimation (outside the square brackets)

corresponds to a gerade state and the symmetric combination to an ungerade

state. Therefore, the four combimations for a givem & value are

[ + 1-0L + 3 = lag

[ + 3+ + 3 = Iny

[ - 1-0 -3 = 34 (3.26)
[ - 3+0 -1 = 3ay.
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We wish to show that in the long range limit, the following is true:
AaglHadltng> = BaylHaql3ny> -

+
Consider the 329 state. Since A = 0, the non-zero part of the dipole-
dipole perturbaticn matrix element (Equation (3.18)) for this state
involves the -2up up /R3 term. Since pp and ug do not act on the spin
z 2

coordinates, only the four matrix eiements indicated below are nonzero:

';§<As(1)3p(2) - As(2)Bp(1) - Bs(1)Ap(2) + Bs(2)Ap(1)] waup

|As(1)Bp(2) - As(2)Bp(1) - Bs(1)Ap(2) + Bs(2)Ap(1)> .

+
Thus, the first-order energy correction for the 329 state is

E(1) = =2 |<Ag|uplAp>]2
R3

since A and B are, in fact, like atoms. By inspection of Equation (3.26),
+
we can see that the lg, state also has this correction energy (i.e. (1)

. 3 +
is the same for both “rg5 anrd 1zu).

wr +

In summary, we see that the Na(2S) + Na(2P) atomic limit has the
unique feature of giving rise to one first-order correction, the C3/R3
term. From Equation (3.24), the C3 coefficient was seen to be
proportional to the square of the transition dipole moment for the
Na 2P « 25 D-line transition. With the definition of the oscillator

strength, fpg, for the transition |¢nd><[¢0>,

2
2mwng | <o, [ulog]
. , (3.27)

fho =
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we see that the C3 coefficient is proportional to the oscillator strength
of the D-lines. Thus, a determination of the C3/R3 contribution to the
long range molecular potential (for any of the above-mentioned molecular
states) allows one to rigorously determine an atomic property of

fundamental importance, the 3p«3s oscillator strength,

B. Second Order Corrections

For a more accurate description of long range potentials, one must
also account for energy corrections arising from second-order terms in
the multipolar perturbation. Consider first the dipole-dipole
perturbation on the general AB systemn composed of two unlike atoms A and
B in, respectively, the s and p states. The second order correction is:

<AsBp [Hdd | A Bj><AiBj |Hdd | AsBp

g(2) - ) —— _— (3.28)
i (Ep -Ep,) + (Eg -Ep.)
i#zs Jj#p 1
<AcB + -2 A:B:>|2
1y |<As plquuex HAMB, uBzuBZl B>
R6 ;5 ; Epn -Ep. ) + (Eg -E

where the indices of the primed-summation i,j refer to all zero-order
electronic states of A and B except [Ag>|Bp>. Since the sum runs over
all atomic states of even and odd parity, the second-order energy
correction is nonzero. Similarly, perturbations corresponding to dipole-
quadrupole, quadrupole-quadrupole, dipole-octupole (and so on)
interactions between atoms A and B also make second-order energy

corrections and form a series with even powers of R, i.€.,

£(2) = cg/R6 + Cg/R8 + Cig/RID + eev . (3.29)
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The terms of Equation (3.29) are often referred to as dispersion
contributions. The dispersion form of the second-order corrections
becomes evident with the following approximation to Equation (3.28). If
the various energy differences in the sum of Equation (3.28) are replaced

by a mean energy difference (Unsold's approximation3?d),

) JL . 1 -1, (3.30)
T (Ep_-En.)+(Ep 'EBj) (Ep_-Ep.)+(Eg -Eg.) E
and if we use the closure relation in Equation (3.28) we get:
£(2) =;% {1§ CAsBy W[ 1353 [W[AgBp> — |<AsBp[H[AgBy>|2)
= %{<w2> - W21 . (3.31)

Notice that the above equation has the form of the variance, or mean
square deviations, of the energy; hence the name attributed to second-
order energy corrections, "dispersion energies".

In order to gain insight into the Cg (and other second-order)
coefficients, let us note that Equation (3.28) is very similar to the

product of the static dipole polarizabilities of atoms A and B:

|<As |ualAi><Bp|up|B;>|2

O‘ASO‘B =4 2'
P ij (EAS'EAi) (EBp‘EBj)

If Equation (3.30) is substituted into Equation (3.28), then one can

directly relate Cg to the polarizabilities (London's formula38):

Ce = apapw/4 (3.32)
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where & = 2EpsEg/(aEp+aEg). That the molecular Cg coefficient is
proportional to the dipole polarizabilities of the atoms is a reasonable
outcome. The physical basis of the second-order corrections lies in the
mutual distortion of the atomic wave functions, when each atom is in the
vicinity of the other; a measure of the ease of distortion is given by
the polarizability. By similar arguments, the Cg coefficient is
proportional to the dipole and quadrupole polarizabilities of both atoms.
We would expect the Cg term to be different for the £ and I
molecular states of AB, with a larger Cg for the £ st. - than the T
state. This difference has its origin in the anisotropic polarizability
of the p state and is considered below. It can be seen from Figure 3.3
that CgZ samples polarizability of the sz orbital and Cgl*t (or Cgl)
samples the polarizability of the Bpx(or pr) orbital. Of course, both
Cg coefficients sample the Ag polarizability but because of the spherical
symmetry of the s state, a(Ag) does not affect the Cq anisotropy. We can
show the degree of Cg anisotropy by expressing a(Bpx) and a(sz) in terms
of the two unique components of the p state polarizability, ay and aj.
(ay and o) are defined as the polarizabilities produced by an electric
field applied parallel and perpendicular to the orientation of the p

orbital). Rewriting Wgq of Equation (3.17) as

Had = ZA-EB:(1-3RR)/R3,

We get for the second-order energy:
| <As|uplAi>|2|<Bp|ug|B;> |2 :(1-3RR)?

E(Z) = —-—1 E'
R 19 E E E E \

Using Unsold's approximation as pefore and the definition of the



polarizability, we get for the Cg coefficient:

R

Ce = apap : (1-3&&)2

XX 1

ap ayy 1
azz 4
B

where ﬁ lies along the z axis of the molecule. For a I~state, ayy=ay and

[}3

ayx=azz=a ; for a I state, azz=oy and ayx=ayy=a - Therefore, from the

above equation, we get:
z
C6 ~ GA(4GH+2dl)B (3.33)
- I+
C6 = Cg ~ aploy+boy)

Since ay > 2a;, we see that Cg > Cg.

Equation (3.33) can be obtained by an intuitive line of reasoning as
well. Figure (3.3) shows that the electric field that polarizes the p
orbital of atom B originates from the "instantaneous dipoles" of atom A.
Momentary fluctuations in the charge distribution of atom A cause
instantaneous dipoles (in atom A) in the x, y and z directions. Notice
that a dipole (of atom A) along the z direction is able to cause fourfold
greater polarization (of atom B) than a dipole in the x or y direction
[azz~i<-2quuBZ>|2 whereas axx~|<quuBX>|2]. Since the x, y and z
dipoles of atom A (in the spherically symmetric s state) occur with equal
probability, one simply adds the contributions made by each of these to
determine the total polarization of atom B. Thus, we obtain Equations
(3.33).

Two significant conclusions can be drawn from Equation (3.33).

Firstly, experimentally determined Cg coefficients for one £ and one I
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Figure 3.3 Different polarizabilities of the Bp orbital in ¢ and I

molecular states of the molecule AB.
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molecular state (correlating to the same 3s+3p atomic 1imit) can be
combined to determine o and «; for the 3p state, thus completely
characterizing the p state polarizability. (This is of course assuming
knowledge of an o for the s state.) Secondly, knowledge of the Na 3p
state polarizability allows one to determine Cg coefficients for those
molecular states of Nap that dissociate into two Na(3p) atoms. For
example,

Ce(z) = 202 + 4a2
(1)

(A) = 5al2 + a"2

R

’

alz + 5a"al

In addition, the 3p state polarizability provides information relevant to
the Cg terms of other Nap molecular states, dissociating to Na(3p) +

Na (other) limits as well as heteronuclear diatomic molecular states
containing Na(3p).

It should be emphasized that the above-mentioned relationships
between the molecular Cg coefficient and the atomic dipole
polarizabilities are based upon Unsold's approximation. Errors
associated with this approximation should be insignificant when
determining Cg anisotropies. 1In addition, since there appear to be
reliable methods for determining w in Equation (3.32) based on oscillator
strength sum ru]es;40 one should also be able to make reasonable
estimates of Cg coefficients from polarizahilities, and vice-versa.

We conclude this section by determining the anisotropy of the Cg
coefficient for the © and I molecular states of Nap, in a different
manner from that shown above. This exercise is useful because it allows
the Cg term for both states to be expressed in terms of a common matrix

element (Equation (3.37)). From Equation (3.31) we see that the



orientation dependence of Cg is determined primarily by <H§d>. The
resonance term, <Hdd>2, is relatively negligible. The anisotropy of
<Hdd2> depends upon the angular factors of only the following matrix
elements:

2

<Hdd

4
> = %g (xfo<xgylacyRocyBr+aczr<zd
+ 2<XpYA>SXBYR>-A<XAZA><XRZR>-4<ypZA><YRZR> } (3.34)

where <xA2> and <x32> denote the expectation value of x2 for atom A in
the s state and atom B in the p state. Using the Wigner-Eckart theorem

we find for atom B:

x2> = <y2> = 2/5¢r2>
}oa= 2l (3.35)
<z2> = 1/5¢r2>
and
<x2y = <y2> = 1/5¢r2>
<z2> = 3/5¢r2> o0

where <r2> is a radial integral of r2 for the Na 3p state. For atom A in

the spherically symmetric s state,

<22>

1]
[}
1}

x2> = <y2> 1/3<r2>

and (3.36)
<xy> yz> {xz>

n
o

Combining Equations (3.34)-(3.36), we get a measure of the anisotropy of
CHg2>,
8 for My =1 (1)
> = et <r2y <r2y { (3.37)
156 A~ 7B % :
14 for M =0 (z)

2

<Hdd

107



We see that the Cg coefficient for r states is a factor of 1.75
larger than that for 1 states. This approximate ratio is in very good
agreement (to within 5%) with that ratio determined from Bukta and
Meath's4l accurate values of Cg for the H(1ls) + H(2p) atomic limit.
These and other C, coefficients for the molecular states of Hp
dissociating to this limit are reproduced in Table 3.3. Table 3.4 shows
various theoretical estimates of the C, coefficients for molecular states
of Na, dissociating to the Na(3s) + Na(3p) limit. It is seen that the Cg
anisotropy of 1.55 among these molecular states agrees poorly with the

factor of 1.75 predicted by Equation (3.37).

C. Thirq¢0rder Corrections

It should be noted that the resonance degeneracy of the Na(3s) +
Na(3p) atomic Timit leads to a third-order energy correction involving an
R-1 term of relatively low order; the Hgq perturbation leads to a Cg/R?
term. Therefore, the long-range interaction potential takes the form

(1) (2) (2) . (3) (2)
c c c c
3 ,% .t % 0
n3 RO RS ) r10

where the superscript on each C, coefficient indicates the order of the
perturbation giving rise to that term. The R-9, R-10, and higher terms
generally make negligible contributions to the total energy of the system
at large R. Therefore, the potentials for the Alz: and Blm, states
considered in this thesis are represented by terms up to and including

R-8, in the above R-1 expansion.
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Table 3.4 Calculated values of the C, coefficients (in atomic units)

for molecular states of Nap correlating with Na(3s) + Na(3p) atomic

limit: First row from Vigne-Maeder,42 second row from Bussery12

and third row from Konowalow and Rosenkrantz.43

State Cs3 Ce Cg Co C10
+
155 +12.51 -4164 -2.078(6) +2.830(5) -3.043(8)
g
+12.95 -4144 -1.128
+
[ *
4
+
1y -12.51 -4164 -6.775(5) -2.830(5) -8.771(7)
4 u
-12.95 -4144 -1.036
3§ -13.3 -5800
\
4
Ing -6.255 -2686 -8.229(4) -5.978(4)  -2.402(6)
s -6.48 -2669 -3.582
3n, -6.85 -2900
\
1, +6.255 -2686 -2.100(5) +5.978(4)  -2.045(7)
+6.48 -2669 +4,438(4)
31 +6.86 -2100
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CHAPTER FOUR

THE Nap Blm, STATE



4.1 Introduction

The Tong ramge potential of the Nap B lm, state has stimulated much
interest because of its characteristic barrier te dissociation. This
barrier is thought to arise from the combined effect of twe competing
forces. At large imternuclear separations when Na(3s) and Na(3p) atoms
combine to form the B lm, state, they must be oriented so that the 3p«3s
tramsition dipele moments set up im each atom are parallel to one another
and perpendicular to the axis of approach. The interaction of these
tramsition dipele moments gives rise to a repulsive C3[R3 interaction
energy which deminates the character of the potential at Teng range. As
the fnter-atomic distance is reduced and the charge distributions of
the atoms overlap, attractive electrom-exchange interactions begin to
contribute to the potential emergy. The resultant of these two inter-
actions produces a barrier (at about 7). Because the barrier rises
several hunmdred wave numbers above the dissociation lTimit, it is able to

support several quasi-bound vibratiomal levels. The Towest three quasi-

bound Tewels, w=27-29, have been previously ebserved by Kusch and Hessell#,

A characteristic property of these quasibound levels is their
ability to tunmel through the barrier. We hoped to study the variation
of tummelimg Tifetimes with energy for all of the quasibound Tevels and
invert this imformationm to yield the Jocation of the barrier maximum and
the shape of the barrier's outer wall. The emergy Tevels themselves
would, im additiom, extend our kmowledge of the potential well, with the
inrer wall of the potential barrier (outer wall of the potential well)
beimg of greatest imterest.

Figure 4.1 shows the best estimate of the B state barrier prior to

this work.%4 It depicts the predicted height of -410 can-l relative to
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Figure 4.1 An estimate of the B state potential barrier, obtained by
merging the known RKR potentia]l4 (for v=0-29) for R<10.7
bohr, with an ab initio long-range potentia143, R>15 bohr.
Also shown in short dashes is the potential barrier predicted
by Konowalow and Rosenkrantz43. This figure is provided by

Stwalley%4,
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the Na (3s) + Na (3p) dissociation 1imit, and is expected to support
eight quasibound levels, v=27-34.

4,2 Presentation of Data

A1l quasibound (v'=27-33) and the last few bound (v'=24-26)
vibrational levels of the B state were observed using the technique of
Modulated Gain Spectroscopy. The following three excitation schemes were

used to access these levels (see Figure 2.1):

| PUMP
Alzf(v'=26,3') « Xlzg(v'=4,3")

(i) OPL +

Klpf(v'=39,0") > Blny(v'=24-27,9")
PROBE

pUMP
Alpt(vi=30,3") « Xlzg(v"=5,3")

(ii)  OPL + (4.1)

Xlgh(vi=44,9") » Blmy(v'=27-33,3")
PROBE

PUMP

Alsh(vi=34,3") « Xlig

g(vll=7,all)
(ii1)  OPL +
Xlzg(v'=50,0") »  Blmy(v'=33,0")
PROBE

In the above equations, J" denotes the thermally-populated rotational
+

level of the X 129 state which is the lower level of the PUMP laser

excited transition; J', J" and J' are determined by the rotational

selection rules for the PUMP (z<r), OPL (z+r), and PROBE (Imez)
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transitions (aJ=t1 for AA=0, and AJ=0,%1 when AA#0).  The different
excitation schemes were chosen so as to optimize the Franck-Condon
factors for the B«X PROBE transitions.

While a vibrational study of the B state is quite straightforward
(by utilizing a series of schemes like (i)-(iii)), it should be pointed
out that a rotational study, using a triple resonance excitation scheme,
is not altogether trivial and requires further consideration. For a
given J" that is prepared as the Tower level of the OPL transition, only
three rotational levels of the B state are accessible by the PROBE
(rJ=0,+1). Excitation into other levels of the Blnu state requires
preparation of a different Tower rotational level of the OPL. This, in
turn, requires excitation into yet another rotational level of the A
state by the PUMP. As a result, different preparative schemes are
necessary (different PUMP-OPL transitions) in order to access each new
set of three rotational levels (aJ=0,%1) of the B state.

A1l measured PROBE frequencies to the B state levels are accurate to
0.006 cm-l. This error is set by the calibration method used to
determine the frequency of the PROBE laser; a simultaneously recorded
excitation spectrum of I, is compared with lines in the Ip atlas of
Gerstenkorn and Luc,22 which are reported with 0,003 em-1 accuracy.

The error associated with the absolute energies of the observed Tavels
(relative to the minimum of the ground state) is not, however, uniformly
0.006 cm-1. The accuracy is somewhat poorer (~0.012 em-1) for v'=33,
J'=15-17 levels because these levels accessed with the third excitation
scheme (iii), had to be calibrated against the J'=14 term value which was

obtained via schemes (ii) and (iii). This was necessary because the v"=50
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ground state energy is not determined sufficiently accurately when
extrapolated from the molecular constants of Kusch and Hessel. The
measured vibration-rotation term values are listed in Table 4.1.

The tunneling lifetimes of the quasibound levels were determined from
the MGS linewidths. Pressure and power broadening of the PROBE
transitions (~150 MHz) and some residual inhomogeneous broadening (~200
MHz) together combine to place a ~350 MHz Tower bound on detectable
tunneling rates. This is illustrated by Figure 4.2. MGS Tinewidths
greater than 350 MHz were observed only for the rotational levels of the
last quasibound vibrational level, v=33. The lineshape fitting procedure
used and the resulting tunneling 1ifetimes for the J=3-17 levels of v=33
are discussed in Section four.

4.3 Analysis of Energy Levels

A. Pade Representation

In order to fit the observed term values to within their
experimental uncertainties, a rational fraction representation was
employed, with the near dissociation variable (vp-v) as the expansion
parameter45. vp refers to the vibrational index (generally noninteger) at
the dissociation limit; however, in the case of a barrier to
dissociation, vp refers to the vibrational index at the barrier maximum.
The overall energy level expression is

E(v.0) = 6(v) + B(v)[3(3+1)-1] + D(v)[I(3+1)-117 (4.2)
since for a 1l state, @2=1. The G(v) part is expressed by a ratio of
polynomials while the B(v) and D(v) parts are expressed by the exponential
of a simple polynomial:

6(v) = ET - (vp-v)™ [L/N] (4.3)



TABLE 4.1 Observed and calculated energy levels from the fitted parameters

of Table 4.2. All energies are in cn-l, & = 0.005 cm-1
v d Eobs Eobs-Ecalc v J Eobs Eobs-Ecalc
24 10 22844,899 -0.002 31 4 23271.912 -0.002
24 11 22846.948 0.000 31 5 23272.630 -0.002
24 12 22849.179 -0.002 31 6 23273.494 -0.001
31 7 23274.497 -0.9003
25 10 22918.086 0.004 31 8 23275.651 0.002
25 11 22920.082 0.004 31 9 23276.950 0.008
25 12 22922.258 0.003 31 10 23278.380 0.004
21 11 23279.956 0.001
26 10 22987.983 0.000 31 12 23281.666 -0.009
26 11 22989,927 0.001
26 12 22992.041 -0.002 32 4 23315.191 -0.005
32 5 23315.858 -0.004
27 10 23054.372 -0.008 32 6 23316.655 -0.003
27 11 23056.258 -0.006 32 7 23317.583 -0.005
27 12 23058.316 -0.002 32 8 23318.653 0.002
32 9 23319.852 0.009
28 10 23117.008 0.004 32 10 23321.177 0.009
28 11 23118.827 0.002 32 11 23322.633 0.008
28 12 23120.816 0.004 32 12 23324.215 0.003
32 13 23325.925 -0.004
29 4 23168.354 -0.004 32 14 23327.766 -0.008
29 5 23169.151 -0.002
29 6 23170.104 -0.005 33 3 23350.188 0.004
29 7 23171.222 -0.003 33 4 23350.653 0.002
29 8 23172.501 0.003 33 5 23351.244 0.008
29 9 23173.941 0.009 33 7 23352.742 -0.006
29 10 23175.532 0.008 33 8 23353.668 -0.009
29 11 23177.282 0.007 33 9 23354.711 -0.005
29 12 23179.188 0.002 33 10 23355.867 -0.001
29 13 23181.251 -0.004 33 11 23357.130 0.002
29 14 23183.476 -0.005 33 12 23358.501 0.003
33 13 23359.976 0.002
30 10 23229.514 0.002 33 14 23361.555 0.001
30 11 23231.184 0.000 33 15 23363.235 -0.004
30 12 23233.003 -0.006 33 16 23365.026 0.003
33 17 23366.905 -0.002
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Figure 4.2 Simulation of the expected line broadening, above the 350 MHz

lower limit, due to tunneling through the barrier.
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where EY is the barrier maximum, and

L
po+P1(vp-v) + «« + p(vp-v)

[L/N] = and
1+q1(vD-v) + eee + qN(vD-v)N
2B )
B(v) = (vp-v)™=2 X1 exp{ § aj(vp-v)'} (4.4)
i=1
ap
where X1 = e , and
in )
D(v) = (vD-v)m’4 Xo exp{ ¥ bj(vp-v)'} (4.5)
i=1
bo
where Xo = e .

In the above equations, m=2n/n-2, where n is the asymptotically dominant

power in the R-1 1ong-range expansion,

Tim V(R) = C,/R" (4.6)
vV

Notice that as v approaches vp, Equations (4.3)-(4.5) reduce to the

familiar Leroy-Bernstein, near-dissociation expressions47,

G(v) = et - (vp-v)™ Xp(n)
B(v) = (vp-v)™?2 X1(n) (4.7)
D(v) = (vp-v)™4 Xz(n)
where
Xm(n) = Xn(n)

{un(cn)z}l/n-z

and the X,(n) are known constants. Therefore, Equations (4.3)-(4.5)
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are expansions about the limiting, near-dissociation behavior. They have
been successfully used as compact representations for the energies of the
ground states of Ho and H;, and for the B 3ngu states of Brp and Ip. (The
leading term in the first case is C6/R5, in the second case C4/R4, and 1in
the third and fourth cases Cg/R®).

It has been implicitly assumed in the derivation of Equations (4.7)
(and therefore Equations (4.3)-(4.5)) that the long-range potential near
dissociation can be approximated by a single term, which closely
resembles the leading term in the R-1 expansion, i.e., Equation (4.6).
If various terms in the rR-1 expansion are not of the same sign, then this
approximation is not necessarily valid. This is the case for the B
state, where the leading term is a repulsive C3/R3 term. Under such
circumstances, the usual correspondences between the fitting parameters
(Xp(3),m) and the potential energy parameters (C3,6) are invalid. The
only physically relevant parameters in Equations (4.7) (and in Equations
(4.3)-(4.5)) are Et, vp and a local value of n (or m). This last
parameter should approach = (or 2) as one approaches the barrier, as
illustrated by the following argument. When V(R)~C,/R", then n is a

"Jocal" value as defined by

2 2
_ d V/dR - n+l (4.8)
dv/dR R

Since dV/dR=0 at the barrier maximum and both d2v/dR2 and R=Rpzrrier are
finite, the apparent value of n near the barrier is «; therefore, since
m=2n/n-2, m=2, Furthermore, the implications of an m=2 are that the B(v)
values are almost independent of v for levels near vp and the D(v) values
approach their limiting value of = at a rate of (vD-v)'2 (see

Equation (4.4)-(4.5)).
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With these expectations, we proceeded with a nonlinear least-squares
fit to the energy levels. Our algorithm consisted of the following
trial-and-error procedure. Since Equations (4.3)-(4.5) are not linear
functions of the parameters vp, m, {qi}, {aj} and {bj}, it is very
important to make judicious first guesses for these parameters. The
critical first step consisted of choosing'rea1istic starting values of vp
and m, holding these fixed parameters at these values, and adjusting the
(i+1) linear parameters, £t and {pij}. In this step the Pade expression
takes the [L/0] form. The second step involved varying (i+3) parameters,
where now vp and m were also adjustable. Third and further steps
incorporated additional nonlinear parameters, such as gqj or aj, one at a
time and involved adjusting all parameters in each step. In this manner,
we converged on a suitable Pade expression of the [2/2] form, with two
rotational parameters X; and aj, and one centrifugal distortion parameter
X2, which fitted our observed levels v=24-33 with a standard deviation of
0.005 cm-1, These parameters are given in Table 4.2.

The fitted value m-2.2 is in satisfactory agreement with the
expected value of m=2. The fitted value of EY provides an estimate of
the barrier height. Relative to the degeneracy-weighted average of the
two asymptotes {Na 35(251/2) + Na 3p(2P1/2)} and {Na 35(251/2) + Na

3p(2p3/2)},48 we get a value of the barrier height of
A = 379.3 2.3 cm-1 (4.10)

The 3¢ error is based upon the statistical uncertainty of the fitted gt
as well as the 1.0 cm-! uncertainty of the ground state dissociation
energy.49 The fitted vp=34.01 £0.03 does not uniquely determine the total

number of quasibound rotationless vibrational levels. We note however
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TABLE 4.2 Parameters in the term value fit to the observed
B state energy levels of Table 4.1. The quoted uncertainties
are lg. The number of digits in the constants is sufficient to

reproduce the calculated energy values to within 0.0005 cm-1,

et = 23369.5223 £ 0.4

vp = 34.013874 £ 0.03

m = 2.,1738232 + 0.004

pp = 56.857302 % 3.5

p; = 6.1442025 =+ 0.8

pp = 0.021936280 * 0.007

qp = 2.1053627 = 0.1

qp = 0.11633774 £ 0.02

Xy = 0.058112743 * 0.0002

a; = 7.0425655 * 0.6 - 10-3
Xp = 5.7922974 £ 0.4 - 10-®



TABLE 4.3 Parameters in the term value fit to calculated energies for

v=0-21 from Kusch and Hessel

v=24-33,

Quoted uncertainties are lo.

125

and to our observed energies for

gt

VD

PO
P1
P2
P3
P4
a1
42

ay
az
az
X2

"

(]

1}

1}

0.2336927943D+05
0.3399701070D+02
0.2165174468D+01
0.5795065166D+02
0.7422516977D+01
0.5364829078D-01
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TABLE 4.4 RKR turmimg points for the B lmu potential, based on the term

value parameters of Table 4.3.
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that if the value of m had been fixed at its predicted value of 2, then
the least-squares adjusted value of vp would have fallen below 34. We
will see in Section Six that the potential barrier predicted by the J-

dependent tunneling lifetimes of v=33 does not bound a v=34 level.

B. RKR Potential

We can also extend knowledge of the bound portion of the B state
potential from our observed data by using the RKR inversion procedure.
This requires representing our G(v)'s and B(v)'s and those of Kusch and
Hessel (for v=0-29) in a composite fashion. Since we did not have access
to their B«X frequencies, we calculated the energies for the v=0-21, J=1
and J=14 levels, based on the molecular constants of their analysis II.
These energies were then combined with ours (for v=24-33) and fit, using
Equations (4.2)-(4.5). The resulting [4/2] Pade, with four rotational
constants X1, aij-a3, and one distortion constant, Xp, is given in
Table 4.3.

Using these constants, the RKR potential of Table 4.4 was generated.
The outer turning points for the last few vibrational levels determine the
shape of the inner wall of the barrier. We will find the outer turning
point for v=33 especially important when determining the potential barrier

from the tunneling lifetimes (Section 4.6).

4,4 Analysis of MGS Lineshapes

From the line frequencies in the MGS spectrum, we were able to
determine several features of the barrier, such as the shape of its inner
wall, an approximate height of the barrier maximum, and an estimate of
the total number of quasibound vibrational levels supported by it.

Additional information about the barrier is contained in the linewidths



of the MGS spectrum. The linewidths can reflect the rate at which the
quasibound levels are tunneling.

To determine the lifetimes from the full-widths, it was necessary to
fit the spectral lines to their appropriate lineshape profiles. The
observed lineshapes contained contributions from two effects:

1) First, there are some out-of-phase (decreases in the OPL output

caused by other probe resonance schemes mentioned in Chapter Two)

which are superimposed on the in-phase B state signals and thus
distort the true line-shapes. This problem becomes more severe as
the quasibound level widths increase since the number of overlapping

out-of-phase signals increases (about 5 out-of-phase signals per 20

GHz); therfore, a simple graphical determination of the widths is

impossible, and

2) Secondly, we must account for those homogeneous and inhomogeneous
contributions to the MGS signal that are present in the absence of
tunneling (mentioned above); these must be deconvoluted out to give the
contribution made to the full-width by the tunneling rate alone.

Figure 4.3a) shows the observed intensity profile for a level that
does not exhibit any detectable tunneling. Superimposed on this signal
are the lineshape fits using pure Gaussian G(A,wg-w) and Lorentzian
L(T,wp-w) functions,

0 T/2n
(wp-w)2 + T2/4

L(wg-w,I') = 1 + Ip

(4.11)

2
G(wg-w,a) = Ip exp{—lﬂgﬁgﬂﬂl-} + Iy .
A

I is the peak intensity; T and a[2n2]1/2 are the full-width-at-half-

intensity for respectively the Lorentzian and Gaussian functions; wg is
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line-center frequency; Ip is the baseline. While both of these lineshape
fits were adequate around the peak of a line , they severely over- or
underestimated the decay of the wings. These inadequacies suggested the
use of a Voigt profile. The Voigt profile is a convolution of the

Lorentzian and Gaussian lineshapes, i.e.,
V(wg-wsI/a) = | Glug-wss) L{wg-w,T) dw , (4.12)
0

and is uniquely determined by the ratio, T/a.

Figure 4.3 b) shows a satisfactory Voigt fit to the same signal shown
in Figure 4.3 a). The Lorentzian and Gaussian full-widths for this signal
are determined to be 137+28 MHz and 286+22 MHz, respectively.

The radiative lifetimes of the B-state levels are typically 6-7 nsec
corresponding to natural linewidths of ~20 MHz. Homogeneous effects such
as pressure broadening (and power broadening) dominate the Lorentzian
linewidth, and arise primarily from collisions between Nas and Na at 1
Torr. The Gaussian linewidth of 286 MHz arises because the PROBE excites
a non-s-function axial velocity distribution in the lower OPL level. This
velocity spread is created primarily by a two-photon, Raman contribution
to the gain of the OPL23,

Line broadening above the ~350 MHz lower bound was observed for the
rotational levels of v=33 only. Let us now anticipate the two major
lineshape considerations for the broadened lines. Firstly, when the
1ifetime of the quasibound levels is dominated by tunneling through the
barrier, the MGS lines are expected to have a Lorentzian lineshape. This

can be seen from the following argument. For a given energy, E, the
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and Gaussian (---) lineshape fits to a

This MGS

Figure 4.3 (a) Lorentzian (—)

signal which does not exhibit tunneling broadening.

signal corresponds to excitation to the v=31, J=10 Tevel of

the B state.
(b) Voigt lineshape fit to the same signal.
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tunneling probability, P, is independent of time. (Its functionality

js discussed in the next section). In terms of the vibrational
frequency, w, and the tunneling probability, the rate of decay of excited
molecules is given by

dN/dt = -(wP)N
(4.13)

« + N =Ny exp(-wPt)
Thus the population decays exponentially with time and the Fourier
transform of N (i.e. the lineshape) is a Lorentzian.

The second lineshape consideration for the broadened lines concerns
the out-of-phase signals which invariably overlap with this main
Lorentzian MGS signal. Since most of the out-of-phase signals arise from
the probe interacting with a thermal distribution of velocities in the
Tower pump level (see Chapter Two), they should be described by
predominantly Gaussian profiles. Therefore, the least-squares fitting
procedure for the tunneling-broadened lines consisted of assuming pure
Lorentzian lineshapes for the main signal and pure Gaussian lineshapes for
the superimposed out-of-phase resonances. The parameters typically varied
were the full-width, peak intensity, and line-center frequency for the
in-phase signal and for each out-of-phase signal, and the baseline (which
often could not be determined unambiguously by eye). The resultant
Lorentzian full-widths for the main, in-phase signal were then corrected
for the residual homogeneous contribution that is present in the absence
of tunneling, by subtracting ~150 MHz. Typical three-standard-deviation
uncertainties in the fitted linewidths were 1-2% of the linewidths.

Examples of the lineshape fits to the tunneling-broadened lines are shown
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Figure 4.4 Lineshape fits (— ) to tunneling-broadened signals. The
extracted Lorentzian lineshapes (---) give the tunneling
contribution to the full-widths. These are (a) J=4 with 1.88

GHz (b) J=10 with 2.96 GHz and (c) J=13 with 5.8 GHz.
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in Figures 4.4. The limiting accuracy of the fitted linewidths was not
determined by the statistical errors of the fit, but rather by two kinds
of errors introduced by the out-of-phase signals. The first error had its
origin in the fitted widths of the out-of-phase resonances, which tended
to be larger than the 1.5 GHz Doppler width (at T~460°C). The excess
linewidth was often due to an obvious overlap of two out-of-phase signals
which were not resolvable by the fit. In order to estimate what effect an
incomplete model for the out-of-phase signals might have on the main
signal widths, all fits were repeated with the out-of-phase widths held
fixed at 1.5 GHz. The resulting main signal widths differed from those
obtained in the first procedure (where each out-of-phase width was free to
vary) by ~3% for small J and 0-1% for higher J.

The second and more severe error in the linewidth determination arose
because different main signal widths were obtained when different
excitation schemes, leading to the same upper J, were used (i.e., either a
different lower laser level, v", or P- vs. R-excitation from the same v").
These differences ranged from 1% to 19% for the high J (3' = 11-17) Tlines.
Some of these deviations might be explained by the fact that in many of
the high J fits (J' > 13), where there were a large number of out-of-phase
signals, the number of least-squares adjustable parameters had to be
limited in the fitting procedure. Therefore the least critical parameter,
the baseline, was held fixed at a value which may not have been determined
accurately enough by eye.

Therefore, we quote a 3¢ uncertainty for the full-widths of 3% for
3 < J' < 10 lines and 6% for the J' > 10 lines. The 6% standard deviation
is an average of the standard deviations obtained for each excitation line

leading to the same upper J. For example,
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o(3=14) = {R13) ; o(P15) (4.14)

The resulting lifetimes are reported in Table 4.5

4.5 WKB Transmission Probability

The tunneling lifetimes of various rotational levels in v=33,
obtained from the lineshape fits, were used to determine the shape of the
potential barrier near the maximum. The model used assumed that the
tunneling rate is given by the product of the frequency with which the
molecule hits the barrier, w, times the probability of transmission per
collision, P. Thus,

T = 1/wP . (4.15)
The collisional frequency, w, is simply the J-dependent, vibrational
frequency and can be determined from Equations (4.2)-(4.5) by using the

definition,

w(v,0) = 2E(LI) (4.16)
oV

The probability, P, expressed in terms of the WKB phase integral, ¢, is

P(v,d) = [1 + exp(2¢)]-1 (4.17)
where

r
o(v,d) =2 [ {2ulu(r,9) - E(v,0)131/2 dr (4.18)
norg

and r¢,ry (which are also v and J dependent) are the inner and outer
classical turning points of the barrier (i.e where E(v,J) = U(r,J)). Since
the tunneling lifetimes, t, the energies, E(v,J), and the vibrational
frequencies, w(v,Jd), are known, the potential barrier, U(r,J) can be

determined.
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TABLE 4.5 J dependence of the tunneling lifetimes for the quasibound

139

level, v = 33. Also shown is the e/f parity of the particular

rotational level excited. The lifetimes are calculated from the

fitted full widths at half maximum, ApypM, using t = 1/2mAfyyM.

J' T (PS)

1

2

3 93.5 + 2.8
4 91.9 + 2.8
5 77.2 £ 2.3
5

7 74.4 = 2.2
8 70.5 £ 2.1
9 68.7 = 2.1
10 55.7 = 1,7
11 42.8 + 2.6
12 38.6 £ 2.3
13 28.0 = 1.7
14 25.1 £ 1.5
15 22.6 = 1.4
16 18.7 = 1.1
17 18.3 + 1,1

*J o= 1, 2, and 6 were not observed because we did not populate, via

any of the PUMP-OPL schemes, J" = 1-3 or 5-7 in the lower OPL level.



It is mot possible to imvert Equation (4.18) and obtain a closed form
expressiom for the potential barrier in terms of the J-dependent
lifetimes. Therefore, it is mecessary to adopt a functional form for the
barrier with some adjustable parameters. A least-squares optimization of
these parameters by a fit to the tunneling lifetimes then yields the shape
of the potential barrier, assuming that a reasonable representation for
the barrier has beem chosem.

Before discussing the fumctional form used and the subsequent fits,
let us first explainm why the tummeling probability of Equation {4.17) is
used instead of the more standard form, P = exp {(-2p). Equation (4.17)
has am extended ramge of validity mear the top of a barrier where the
standard form, P=exp(-2) tends to break down. The reason for the
breakdown cam be understno&‘frum the following line of reasoning. It is
well-kmown that the WKB approximation fails at a turning point. The
usual procedure takem to evercome this difficulty is to expand the
potential im a Taylor series about the turning point, rg, and retain only

terms Timear im (r-rg), i.e.
o

(e = Wrg) + 2L |(r-rg) + 1 2] (r-ro)2 : (4.19)
r=rg r=rg
This approximatiom becomes imcreasingly imaccurate as one approaches the
top of the barrier, at which the slope becomes zero. Thus, near the top
of the barrier, the quadratic term in the above Taylor series must be
retained (amd a parabolic barrier maximum is assumed). The exact
soﬂutioms of the Schrodinger equation, for this quadratic potential, can

be expressed im terms of parabolic cylinder functions30 (just as the

exact solutions for a linear potential are Airy functions). The
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- asymptotic forms of these parabolic cylinder functions are then matched
with the WKB solutions, which are valid away from the turning point.

(This is known as the Weber boundary condition.)30  The resulting WKB
solutions in the regions r < r¢ and r > ry yield the barrier transmission
probability given by Equation (4.17). For levels far below the top of the
barrier, exp(2¢)>>1, and the transmission approaches the more familiar
result, P = exp(-2¢). For levels very near the top, however, this simpler
result grossly overestimates the transmission. Figure 4.5 compares the
result of the modified WKB formula with that of P=e-2¢,

From Equations (4.15) -(4.18), what might we anticipate for the
variation of tunneling lifetimes vs. J? Note that there is a different
potential barrier for each J because of a different amount of centrifugal
energy associated with each J. Therefore, as J increases, the total
energy E(J) as well as the effective potential U(J) increase. This is
illustrated in Figure 4.6. At first thought, it is not obvious whether
one would expect the tunneling lifetimes (which are related to the area
enclosed by the potential and the energy level) to decrease steadily with
increasing J. However a closer study shows that, for a given vibrational
level, the tunneling lifetimes will decrease as J increases. The J

dependence of the lifetimes, from Equation (4.15), is given by

at/ad = =1 5 [(5P/3d)w + (3w/3Jd)P] . (4.20)

weP

We know that 3w/3J is negative and w and P are both positive; hence, we

need only determine the sign of 3aP/3J. From Equations (4.17-4.18),
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Figure 4,5 Comparison of transmission through a barrier with maximum Vg,
as predicted by Equation (4.17) (which is exact for a

parabolic barrier) and the usual WKB result. (From Ref. 50b).
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Figure 4.6 Variation of the effective potential, U(J), and the

rotational energy, E(J), with J.
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Figure 4.7 Observed tunneling lifetimes for the J=3-17 levels of v=33.
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9P/ad = -2 exp(20) « [1+ exp(22)]-2 « 38/3J

s0/od = & (7 (3U/3J - E/3J) 4

. 4,21
T re [2u(u - E)]L/2 (#.21

It is evident that the sign of 3P/3J is determined by the factor,
(aU/aJ-3E/3d), since ¢ is a positive quantity. Now, E(J) is given

approxfmately by E(J) = B[J(J+1)-1]; therefore

2
3E/3J = {2ILJRZ (4.22)
2u<r2>

where <r2> is evaluated over the inner and outer turning points of the

potential well. The effective potential is given by

)
U(d) = U+ —0— [J(J+1)-11 ;
J=0 2ur2

therefore,

2U/3d = jggglzﬁé (4.23)

2ur

where r2 is considered in the interval between the inner and outer turning

points of the potential barrier (i.e. betwen r( and ry). If we combine

Equations (4.22)-(4.23),

2
(3U/3d - 3E/3d) = B= (20+1)[ - L ] (4.24)
2u 2 b

we see that (3U/3J-3E/3Jd) is a negative quantity since r2, for the
potential barrier, is greater than <r2> for the potential well. That this
factor is negative implies 3P/3J is positive and in turn 31/3J is

negative; i.e., the tunneling lifetimes decrease with increasing J. These
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expectations are consistent with our observations; Figure 4.7 shows an

essentially monotonic decrease in lifetimes as J increases.

4.6 From Tunneling Lifetimes to Potential Barrier

The tunneling lifetimes can be inverted to yield the
shape of the potential barrier in the following manner. The least
squares fits of the lifetimes are performed using Equations (4.15)-(4.18)

with the following representation for the potential barrier:

C C C 2
U(r,d) = Dg + —3+ 64+ 8 4 pexp(-Br) + —B_[J(J+1)-1] (4.25)
€ 3 6 8 2
r r r 2ur
ZERO OF LONG-RANGE EXCHANGE  CENTRIFUGAL

ENERGY

The potential is described by a sum of long-range (r-"N terms) and
electron-exchange (Ae'Br) contributions for the following reason. Overlap
of the separated atom wave functions for the Na(3p)+Na(3s) atoms, is
considered negligible for interatomic separations greater than 9.2%;
therefore, in these regions only long-range contributions to the potential
need to be considered. We are interested in regions of the potential near
the barrier maximum, located at ~7&, where there is nonnegligible overlap.
The electron-exchange interactions between the two atoms that arise by
virtue of the overlap must therefore be accounted for. We represent
the exchange contribution by the phenomenological, exponential function of
r, with two parametrs A and B, For the lnu state, the exchange energy is
attractive and A is therefore negative.

Equation (4.25) should adequately represent the total potential
energy, which consists of the zero-order energy, De (E(O) of Chapter

Three) for the Na(3p) + Na(3s) atoms, and corrections to this energy from
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long-range and electron-exchange interactions. The centrifugal
contribution is important since we measure the J dependence of the
tunneling lifetimes.

In principle, {C3,Cg,Cg,A,B} can all be treated as parameters to be
least-squares determined from the tunneling lifetime fits. However, we
quickly found very high correlations between both (Cg,Cg) and the C3 term.
Therefore, the Cg and Cg coefficients were held fixed at the ab-initio
values of Bussery.l2 Initially, it was also not apparent whether the one
order-of-magnitude variation in the observed tunneling T1ifetimes was
sufficient to determine independently the C3 coefficient from the A and B
exchange parameters. As a result, two types of fits were performed: Fit
I, with three adjustable parameters {C3,A,B} and Fit I1I, with two adjust-
able parameters {A,B} where C3 was fixed at a value given by the experi-
mentally-determined Na D-lines oscillator strengths of Gaupp, et a1.51

In the course of these fits, we discovered that although the
tunneling lifetimes were sensitive to the height and shape of the barrier,
they were insensitive to the internuclear distance of the barrier maximum,
In order to determine a physically meaningful barrier, whose inner wall
joins smoothly onto the RKR-determined potential well, fits I and II were
performed to Equations (4.15)-(4.18) and (4.25), subject to the heavily
weighted datum,

U(ro) = Eg
where (Eqg,rg) are the energy and RKR outer turning point for the v=33, J=1
level (obtained from the RKR curve of Table 4.5). Figure 4.7 shows the
results of fits (1) and (II); both satisfactorily reproduce the
J-dependent lifetimes. The values of the barrier parameters from these

two fits are shown in Table 4.5.
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We can summarize the three major findings:

(1) Errors in the assumed values of Cg and Cg (+1% for Cg and £10%
for Cg) had inconsequential effects on the values of the
least-squares-adjusted parameters.

2) The C3 coefficient of fit I underestimates the fixed value of C3
used in fit II by ~9%. (We note that Gaupp, et al. oscillator
strength measurements are reported to 0.2% accuracy.) This
outcome is not clearly understood. Since the C3 coefficient is
positive and the exchange parameter A is negative, the
underestimated C3 coefficient of fit I leads to an overestimated
exchange energy, relative to that given by fit II.

3) While the two fits appropriated the C3/r3 and Aexp(-Br)
contributions to the potential energy differently, the height and
shape of the potential barrier (over the internuclear distances
sampled by the tunneling levels) predicted by both fits are
virtually the same.

Since fit II employs an accurate C3 coefficient, which properly predicts
the outer tail of the potential barrier, and this same fit satisfactorily
accounts for the observed variation of tunneling lifetimes, which reflect
the height and shape of the barrier near the maximum, we feel the results
of this fit II provide the better description of the overall B state
potential barrier (see Figure 4.8). Thus, the barrier height and position
are ‘

Upax = 369.5 * 3.9 em-1

Rmax = 6.85 + 0.02A

This result is substantially lower than previous works have suggested, as

shown in Table 4.6.
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Figure 4.8 Potential barrier of the B 1y, state obtained from the
tunneling lifetimes: (a) shows the internuclear separations
sampled by the v=33, J=3-17 tunneling levels and (b) shows
extended regions of the inner and outer walls of the potential

barrier. The inner wall is determined by the v=29-33, J=1 RKR

turning points.
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TABLE 4.6 B state potential barrier parameters (C3,A,B) obtained by using
Equation 4.25, and comparison of the resulting barrier height
and position with previous works. In Fits I and II of this
work, Dg=22990.247 cm-1, Cg=-1.286x107 cm-1 a6 and Cg=5.988x107

cm-1 A8,

C3x105 (cm-1) Ax109(cm-1) B(A-1) Up(cm=1) rm(A)

Fit I 1.825(72) -269(57) 1.861(35) 372(19)
Fit Il 2.0057 -11.01(19) 1.313(27) 369.5(3.9) 6.85
Stwalley?4 410 6.98
Konowalow

and 2.23 -8.87 1.37 518 6.40
Rosenkrantz43
Kusch and 480 -
Hessel
Demtroder

and 554(120) -

Stock13b




4.7 Alternate Method for Determining the Barrier Maximum

The determination of the barrier height in the previous section is
very much dependent on the assumed functional form of the barrier in
Equation (4.25). Fortunately, there is an alternate method for obtaining
the barrier height which does not require us to assume a functional form
for the barrier and thus allows for a self-consistency check on our
earlier results.

Starting from Equation (4.18), we see that when U(r,J) = E(v,J)
(i.e., the barrier maximum), the phase integral is zero. If we rearrange
Equation (4.17) such that the phase integral is a function of the

observed 1ifetimes,
_ 1 _1
¢ =5 en(-1+1/P) =N (-1+wT)

then we can plot ¢ vs. E (since w and t are known from the experiment).
The intercept of this curve with the energy axis gives us the barrier
maximum.

Near the top of the barrier, the phase integral should vary linearly
with E; therefore, a linear extrapolation to the intercept can be used.
The linear dependerze of & on E can easily be shown. In the region near
the maximum (of height Eg and location rg), the potential can be expanded
in a Taylor series, as in Equation (4.19), and approximated by the first

three terms to give an inverted parabolic barrier,

u(r) = Eg-a(r-rg)2 (4.27)
where

2
EO = U(f‘o); a = -.l..a_.y.
2 312 |r=rq
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Let us evaluate the phase integral of an energy level E through this

barrier:
r2
o = [ [Eg - a(r-rg)2 - E]J1/2 dr (4.28)
ri

where
En-E -
ri=rg- —Q-—a ]1/2 : r2=r0+[—-Q——E aE]]./Z

If we make the following change of variables,

x = r-rg; B2 = Eg:E

then Equation (4.28) becomes

_ 4B
o «va [ [B2-x2]1/2 dx
-B

|+B
o = (a)1/2(- X(82x2)1/2 + BZ gin-1(X))
2 2 B
-B
b (3)1/2.53 T o= (Eg-E)n , (4.29)
2 2(a)1/2

or the phase integral varies linearly with E.

This is not a surprising result since in the analogous problem of a
parabolic potential well, the same phase integral appears (except for a
factor of i), and it also varies linearly with E, as shown below. If we

combine
E= Eg+ ho(v+l/2) (for low V)

with the Bohr-Sommerfeld quantization condition,

r
20 « jrz [(E-U)11/2 dr « h(v+1/2)
1
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we have
h, E-E (E-Eq)
o « (=) (D) « = . (4.30)
2 ho w

Note the very similar forms of Equations (4.29) and (4.30). (Recall that
a « w2 from Equation (4.27)).

Let us now return to the problem of finding the barrier maximum., A
linear least-square fit of the phase integrals for the v=33, J=3-17 data
as a function of energy is shown in Figure 4.9; an extrapolation to the
intercept of the energy axis determines the barrier maximum to be
397.09 cm-1.

What this maximum actually corresponds to is the height of the
effective potential barrier for that value of J* where E(J*)=U(J*). In
order to extract a rotationless barrier maximum, one must know J* and the

value of r at the maximum, since

* * 2 * *
E(0*) = Unax(0%) = Upax(Jd=1) + 7ﬁ§2- [0*(3*+1)-11 .
max

We know E(J*) = 397.09 cm-1 from Figure 4.9; thus J* can be determined
from the parameters of Table 4.2; it is equal to 25.8. Unfortunately, we
must assume a location for the barrier maximum, rpax (which we can do from
the analysis of Section 4.6). We then get the height of the J=1 barrier
maximum to be 375.5 cm-1. This result is within 6 cm~l of the previous
result and thus provides us with an almost independent and satisfactory

verification of the earlier results.
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Figure 4.9 Phase integrals for the J=3-17 levels as a function of the
rotational energy. Extrapolation to the energy intercept
gives an effective barrier maximum U(J*)=37.74 cm-1 (or

379.09 cm-1 relative to the 3s + 3p atomic limit).
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CHAPTER FIVE
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THE Nap A lp, STATE
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5.1 Introduction

The Nap A 123 electronic state is characterized by a very
attractive, -2C3/R3, long range potential. As depicted in Table 3.2,
this behavior arises because the transition dipole moments in the
separated sodium atoms must lie parallel to each other and along the axis
of approach when the atoms combine to form. this molecular state. By
virtue of the slow R variation of the long range potential, the A state
is expected to support over 200 vibrational levels, with half of these
located ~300 cm-1 below the dissociation limit., Previous spectroscopic
investigations15:16 of the A state extend up to v=44, or 54% of the
potential well depth. We began our study with the highest of these

observed levels.

5.2 Presentation of Data

PUMP-OPL-PROBE excitation schemes similar to those shown for the
B lm, state [Equation (4.1)] were used to study different sets of
vibrational levels in the A state. The MGS spectrum consisted of a simple
vibrational progression with approximately equally intense P(11), R(11)
doublets per vibrational band, as is characteristic of a parallel band
system involving singlet states., The energies of the observed levels in
the range , v = 43-105, are listed in Table 5.1.

Rapidly decreasing Franck-Condon factors for the A«X transitions,
with increasing v', limited the accessibility of the highest observed
vibrational level to v' = 105. This cutoff in v' is to be expected since
the largest contribution to the highest v' A-X Franck-Condon factors
comes from vibrational overlap at the inner turning points. The

dominance of the contribution from the inner turning point can be easily
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TABLE 5.1 Observed energies (in cm-l) for the J=10,12 levels of v=43-105

+
in the A ly, state.

=43 J=10 E(v,J) =19 126.6750 v=76 J=10 E(v,J) =21 529.8608
=44 J=10 E(v,Jd) =19 212.8600 J =12 E(v,J) = 21 532.7956
Jd =12 E(V,J) =19 216.8420 v = 77 J=10 E(V,J) = 21 586.1511
J =12 E(v,J) =19302.1530  y _ 78 J:-10 E(v,J) =21 641.2848
J =12 E(v,J) =19636.3310 y _ 79 g-10 E(v.J) =21 695.2224
=50 J=10 E(v,J) = 19 713.9400 J =12 E(v,J) =21 698.0184
J=12 E(v,d) =19 717.7590 ¢ .80 J=10 E(v,J) =21 THT.9282
= 52 J =10 E(V,J) =19 87”.8060 J = 12 E(V,J) =21 750.7045
J =12 E(v,J) =19 878.5644  y _ g1 5. 10 E(v,J) =21 799.4150
=53 J =10 E(v,J) = 19 954,0863 J =12 Elv,J) =21 802. 1456
J=12 E(v,J) =19 957.7895  y _83 J-10 E(v,J) =21 898.6177
=54 J=10 E(v,J) = 20 032.3914 J =12 E(v,J) =21 901.2475
J=12 E(v,J) =20036.1039 v -8y g=10 E(v,J) =21 946.2739
= 55 J=10 E(v,J) =20 110,0668 J =12 E(v,J) = 21 948.8590
J =12 E(v,J) =20 113.7305 v -85 J=10 E(v,J) =21 992.6401
= 56 J =10 E(V,J) = 20 186.8546 J =12 E(V,J) =21 995,1722
J =12 E(v,J) =2019.571 y .86 J=12 E(v,J) =22 040.1632
=61 J=10 E(v,J) = 20 558.0470 v=8 J=10 E(v,J) =22 081.3725
J =12 E(v,J) =20 561.5330 J =12 E(v,J) = 22 083.7837
=62 J=10 E(v,J) =20629.6504 y .88 J=10 E(v,J) =22 123.7127
J =12 E(v,J) =20 633.1058 J =12 E(v,J) =22 126.0699
=63 J=10 E(v,J) =20700.507T v .89 J=10 E(v,J) =22 164.6899
J=12 Ev,J) =20 703.7076 J =12 Ev,J)) =22 166.9977
=64 J=10 E(v,J) = 20 770.0797 v =90 J=12 Ev,J) =22 206.5535
J=12 E(v,J) =20 7T73.4714 ¢ _ gy  j-10 E(v,Jd) = 22 349.0046
=65 J=10 E(v,J) =20 838.9372 J =12 E(v,J) =22 351.0315
J =12 E(v,J) = 20 842.2991 v = 95 J=10 E(v,J) = 22 381.7584
= 66 J =10 E(V,J) = 20 906.8250 J = 12 E(V,J) = 22 383.729u
J =12 E(v,J) = 20 910.1551 v=96 J=10 Ev,J) =22 413.1715
=67 J =10 E(v,J) = 20 973.7761 J =12 E(v,J) = 22 415.0874
J =12 Elv,J) =20 977.0810 ¢ _ 97 ;.10 E(v,J) =22 443.2524
J =12 E(v,J) =21042.9503 y _ 98 g-10 E(v,J) =22 472.0243
=69 J=10 E(v,J) =21 104.6575 J =12 E(v,J) = 22 U473.8340
J =12 E(v,J) =21107.8669 y .99 J-10 E(v,J) =22 499.5112
= 70 J =10 E(V,J) =21 168.5972 J =12 E(V,J) = 22 501.2664
J=12 Elv,J)) =21 171.7839 ¢ 100 J =10 E(v,J) = 22 525.7603
J=12 E(v,J) =21 2346433 ¢ 101 J=10 E(v,d =22 550.7795
=72 J=10 E(v,J) =21 293.3552 J =12 Ev,J) = 22 552.4088
J=12 E(v,J) =21 296.4590  y 102  g:10 E(v,J) =22 574.6130
J=12 E(v,J) =21357.1912 | 4103 J=-10 E(v,J) = 22 597.3037
=74 J =10 E(v,J) =21 413.8223 J=12 E(v,J) =22 598.8516
J =12 E(v,J) =21 416.8503 v =104 J =10 E(v,J) =22 618.8827
=75 J =10 E(v,J) =21 472.4027 J =12 Elv,J) = 22 620.3722
J =12 E(v,J) =21 475.3891 v =105 J =10 E(v,J) = 22 639.4021
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understood when one realizes that the equilibrium internuclear distance
for the A and X states are comparable (Rg' - 3.6& vs. Rg" ~ 3.1R) whereas
the outer potential walls for the two states are markedly different, with
the ground state's long range potential rising more steeply towards the
dissociation 1imit in comparison to the A state. It is a general
restriction that for an R-6 lower state (correlating with the Na 3s + Na
3s limit) and an attractive R-3 upper state (correlating with the Na 3s +
Na 3p limit), the high-v access will always be via the inner turning
points. A complete study of the A state long range potential would
require accessing the state via its outer turning point, where the
probability density of the vibrational wave function is a maximum.
Transitions via the outer turning point are possible only in emission
from higher lying excited states, which can also have slowly varying long
range potentials. This approach has been utilized by Barrow, et al.52 in
studying the long range potential of the (1) 1ng state (which correlates
with the Na 3s + Na 3p limit and, therefore, also possesses an R-3 outer
1imb like the A state). Their experiment involved exciting the (2) 123 <
X 123 transition, via the inner turning point, as illustrated in Figure
5.1. The upper state (2) 123 possesses a double minimum arising from an
avoided curve crossing between the (Na* + Na-) and (Na 3s + Na 4s) 1z:
states. The long range potential of the outer well varies in a Coulombic
R-1 manner because it correlates with the ionic limit. Therefore,
emission from the outer well of the upper state on the (2) 1z: > (1) g
transition, has large Franck-Condon factors to high vibrational levels of

the 1ng state and thus has allowed Barrow, et al. to characterize the

long range potential of the 1ng state up to ~15.8A.
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Figure 5.1 Excitation scheme used by Barrow, gz_gl.sz to access

the long range potential of the Nap (l)lng state.
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+
5.3 Alg, State RKR Potential

A primary objective in studying the Naj Alz; state was to obtain
jts complete intramolecular potential. The standard spectroscopic
procedure for determining intramolecular potentials is the
semi-classical, inversion method of Rydberg-Klein-Rees (RKR).53 It
relies upon a knowledge of G, and By for each vibrational level spanning
from v=0 up to the highest observed level. With these two properties
known at each vibrational level, the following f and g integrals can be
evaluated to determine the two turning points, ry and rp, for each level,

'
Vo,

v -
FLE(v')} ~ IO [E-G(v)] 1/2 dv ~ rp - ry

'
g{E(v')} - f; B(v)[E-G(v)]-I/Z dv -~ r{l - r}l

where ri and rp correspond respectively to the inner and outer turning
points. Thus, the RKR method generates a representation of the full
potential energy curve, point-by-point.

Since a smooth representation of the full (G,,By) data set is
required for an RKR analysis, it was necessary to merge our v=43-105 data
with the previous works of Kaminsky16 for v=19-44, and Kusch and Hesselld
for v=0-20. However, a comparison of our Gy's and B,'s for v=43 and 44
with Kaminsky's revealed some apparent inconsistencies: our G,'s were
~1.5 cm-1 too low while our By's were -9.9x10-4 cm-1 too high.

The possibility of a misassignment on our part of either the

vibrational or rotational quantum numbers seems highly unlikely. The
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" (w.J) identity of tne lower state im the MGS probe transition was firmly
established from the measured PUMP amd OPL frequencies. Therefore, the
firequency of the PROBE laser umambiguously determined the final state's v
and J assigmment.

The discrepancy betweem cur data and Kaminsky's prompted us to
redetermine the G,"s and By's for the v=13-44 range from Kaminsky's
observed A-X frequnemciesm. This imvolved determining a mew set of
Dumham polymemial coefficients, obtaimed by a least squares fit to the
followimg emergies:

(a) v=0-20, 3=0,3,5,7,10,--+,80, (33 rotatiomal levels per v) as

calculated from Kusch and Hessel's molecular constants,l®

(b) v=19-35, J=42 amd 44

=40-44, J=42 and 44 } as measured by Kaminsky.

=22-30, J=12 and 14
With 10 coefficients {¥yg-Yag» Yo1-¥31. Yo2» Y03}, we obtained a new set
of Dumham coefficients from those of Kamimsky. The resultimg RKR
potential dees mot have the G, and B, imcomsistemcies at v'=43 and 44
mentioned above.

Qur fFirst attempt at combimimg the above data sets a) and b) with
our observed data imvolved gemeratimg Dumham coefficients by a fit to
data sets (a) amd (b) and our v=43-68, J=<10 and J=12 only. With 12
coefficients {Yyp.5g» Yo1-41» Yo2» Y03} we were able to umiformly
describe this data set with a reasomable stamdard deviatiom of -0.027
an~l; these coefficients are shown im Table 5.2.

It was mot possible to represemt a larger ramge of vibrational-
rotatiomal data tham v=0-68 by ome set of Dumham coefficiemts. To

achieve a snooth represemtatiom of the full ramge of data, we took the

followimg series of steps.



First, for our data, the vibrational and rotational parts of E(v,dJ)
were separated by subtracting {ByJ(J+1) + DV[J(J+1)]2} from E(v,J). The
By values were determined from PR combination differences, with
De=3.8x10-7 cm-1 and Y2 = 4x10-9 cm-1; these were then fit to a sixth
order polynomial. The fitted B, values were used to determine the
vibrational energies, Gy, in order to avoid transferring the
"experimental noise" of B,'s to the vibrational energies. It became
important to account for the v-dependence of the centrifugal distortion,
Y12, especially for the higher v' levels. Neglecting the Yj2 results in
too low B+ values for the higher vibrational levels which, in turn,
causes the inner wall of the resulting RKR potential to bend towards
larger R. The estimated value of Yy, is based upon the ratio Ypp/Yip
from the X and B states of Nap. (It can be verified once the final
potential is constructed.)

Second, the resulting By' and Gy sets for our data are merged with
the lower v' data to form a complete set running from v'=0-105. For
vibrational levels lower than v'=43, the Gy' and By' values are obtained
from the calculated Dunham coefficients described previously. To assure
a smooth merge of these two parts (v'<43, v'>43), a spline program is
used. Third, the spline coefficients for v'=0-105 are then used to
generate the RKR potential curve of Table 5.3 and Figure 5.2. The
convergence criterion for the f and g integrals was set at 10-6,

The potential curve was tested by numerically solving the radial
Schrodinger equation for the eigenvalues. The calculated energies agree
satisfactorily with the observed energies, for the v'=43-105 J=10 and 12

levels, to -~0.03 cm-l,
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+
Figure 5.2 Intermolecular potential of the Naj Alzu state, from the

RKR-determined turning points of the v=0-105 levels.
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TABLE 5.3 RKR potential for the Nap Aly, state.

Ub549u1
WwoHlLbces
45029
Wasvouz
Usd e’
Vet 709
Ved3ug
17503

NN T L N
LA Ul o o L
CCEULNU~

~
(¢4
c

CCubOULC &
o
(o4

-esb N ESEUCUC O
U
o
~
¢

U.U8DY%00

Leczbid

'_“.‘*Ujs

1M10.0550
| BN ST IV
ToLvesusdb
17135.0309
T33%eL34Yy
134Q.JJLQ
Z0bB.Y0c%
VA B PR TN |
«250.044Y
«35b6.0577
edolUa3I?oy
PR YT S T |
2006 ladedt
Z1olebbE3
c8bUabY LY
29590305
JULLebEUY
3153.0478
Sc4va0l0G
S34L.4z43
Iv4U. 2711
,JJ&.HIHO
oo leBSHIN
3liCenbibtb
381&.0033
3%U3.Y 140
SYYu,ulcs
LUudd e a0
41 /3,535
420V 94bHY
434Y9.0130
Ly 00Us
4532ca bz
4008 £ 163

Donula oy

Tlo.oUio

Wueou01
Iud.75%0b
bUo « UY LY
W7.3541
TVtetYls
MU .YYHS
TU2ec%70
Tud.oU0b

Yt elhioe
I3.5403
Y. E40E
Yg.1437
Ye e 7312
Y2l s
Ytae3UoY
YU 5 34
Uvae0 /40
Y 1043
Sd. 408
87.0671
blLeY373
d0.cUcY
8o. 4631
su.?7Vlb

LMAN

T C U mEN
£o
L
u o
FoS

=N N N

3uv

LWl CO

CCCAa LU U\l

.

Sced

C 0 NONINININSIN SISO O
\J Catll b EF PO C iy, £C N
SN EFUSNUERNUTENIN O &

NNNNNNNNNNNBNNNNNNNNNLRN&UQU&QUQ

Z«00230 30
2.05527 1o
Z il 3750
Za03D0LTY
z 6270445

Z.ulob2Yu
2.6104017
L eDY554 277
2 038065 43

173

REALX

30033094
3.532E631
4.92074Y8
4.1900014
4. 1702648
Yoithtdlcl?

4.3022090
Q.JDTLDAJ
4.5707238
4.47010b05
4.5219441
GonTe2592
4.02137190
B.uoYalUSe
4.7to0Uud
4.76£9630
4.306b150
G4.8D30439
4,598 119¢c
4,94 21043
H.3350519
5.0256101
SeVU7 10223
5.11412706
S5.1503615
H. 1983504
DecsdU Y422
S5.2817475
5a3231977
Hasbudbilsu
5.405730
5.4468670
SJ4u7928Y
b.526953Y
5.5694575
S5.010Y59 4
50519794
5.6930240
5e734110¢&
S5.7751581%
5.8103510
S.6570b41
5.8Y309b8
594006258
5.95823W7
0.0241709



m@aoxuraWGQN&¢QQQ\hh¢QN@OOﬂﬂmﬂ%ao@UMWNfUUUUWNﬂ:#:F

m:uwacmmu¢mtwwa0waqow:uwdowmumw&wwacwchwcuwacwmqowcwwacwqu

COCOCOOLUT VLWL

b ) wd grd b ud

0.08541by
Ve LBHBIUL
0.0842407
0O.0830457
U. 0330457
«UB24400
bilbalL
12142

ceococccocococecoccocecco

U.0b07770
V0058904

O.vo011%us
U.loUlbol
V.059%654
QJD?1¢A5
0.057voub
0.055974%3
V.Ut 7Y9q
0.05370 10
UaU5262714
VeUb14773
OeudUs147
UelGYis5)
0.047%400
Ualdo 7471
0.U4dL4US
UeUb3ros
0.043 110
U.04878Y%07

4byca Yooy
4/ 790U
4Bouue. 1081

343, 0200
obzUa. 704y
S5497.5040
5975350 tlb
So4ue 1LS0
ST23.0b64Y
57Tvuassuu
LobYa lUbL
SAL4Ve 7531
00 11. 5539
bUoled4UbLS
LILUa3s3t
bl ltecYds
bZbb.3113
oo leo4duy
4 Jue 3655
thola.a1lo
boUds.84u7U
bbULe 3L
bOLOUaZLOUL
t7<¢0.U1Y90L
t7d4.0941
bblecectdlb
tdYs.v4/o
EYoa.b 19
MOV 9210
MoleT5£Y
711243540

550,078
15%53.0731
1629.2956
Tvous. 5509
foYueldlyn
T127.988%

4B UGS
27462712
Z0.3734
25 . 1452
23e 50008
22.8112
21.7U014
200300

1955.5565995599Y999949

')
C ~d
F il Vg
yc
CoJ
o N
U

u
~
o g
\C
-
(%

510212
Y4904
37093y
312272
248350
Tooo 70
1250067
bbb o
5007142
2.48949573
£elbby312Y
Z2.4857782
L4 T63539
2.4730400
Z.duTb308
2edbzldlh2
24577057
445290069
24457461
2.L44550,
2ed30Y

NANNNNNNRNNNN
Coerirccu cuou g

C

N

L]

L

[N

]

<
=S=OULUNEOCC
¢ QY. VIV FRLAT N
U C ot SN L ot

[ 3 I

Yvo7uLY

£+3069115
Z 3809450

NNNANN
e 8 0 0 8
Gl
O NN
NCAUQ
CECUNC
£ =rQ
UU i~
CUCNENY

Ze3032355
2.30VUY%0Ui
23587040
£e2200438
243545007
2.3525711
£.3506401
234071037
2.3409288
2.345745Y9
2.34344 53
Z.3415040
23403440

N
.

¢

o
v
(%4
94

- e apd mmd e

174

.00b62278
Ve TUOE5017
L.1517U120
0e TU3T780

[PV EYE VY]
0230175
ba3c38044
b.3678014
L.41224%6
Le45703uB
0.50.2493
LeS5479107
0.5940723
b.b407467
t.bo 79746
Cel/3574944
ce.l4 2391
b.08333564
c.8831a58

~AN
a2 \C A\

4944480
SHb7oidlo
s022H045
7.0890415
1.7574875
. 15411

NSNS

I R I N A R R I A A
S LCANOCUEWUNCELO
= LCENSNNO R C e la
QU The
(%
~
G

CCCCOUCOLUTU XA AT AT C O C I

9 9 8 0 9



5.4 Determination of C, Coefficients using Le Roy's Method.

In addition to determining the intramolecular potential for the
A 1z: state, we wished to determine the van der Waals coefficients
characterizing the A state potential at long range. Cur first attempt at
extracting these coefficients from the v=95-105 subset of observed data,
made use of the “deviations from the limiting near-dissociation
behaviour" method developed by lLe Roy.55 This method allows a direct
determination of the various Cp's from the observed vibrational and
rotational constants, w, and By, without an intermediate representation
of the data. Therefore, it appears to be a preferrable method of
analysis when compared to the more traditional procedure for obtaining Cp
coefficients from fits to RKR turning points. Furthermore, this method
allows for a more reliable estimate of the C,'s with reduced correlations,

as exemplified by Le Roy's application®0 to the B 3n0+ state of Ip.
u

A. Principles

In the following section we outline some of the important points on
which Le Roy's method is based. It is well known that the properties of
vibrational levels lying near dissociation can be described by a
potential obtained by retaining only the leading term in the long range

power series expansion in 1/r,
v(r) = D - Cy/r" (5.1)

The above single term description of the long range potential gives rise

to the following, familiar Le Roy-Bernstein distributions for wy and

BV :47
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o 0D - E(v)] (n+2/2n)

€
<
I

/n

- PlD - E(V)] (5.2)

o]
<
|

where K, and P, are functions of n, C,, and the reduced mass, u.

As the binding energy of vibrational levels increases, their outer
turning points decrease; therefore, the higher order terms in the
potential expansion begin to make substantial contributions to the
overall potential energy . One important effect of the higher terms is
that they modify the form of the v-dependence of wy and By from their
near-dissociation limiting behavior of Equation (5.2). The parameter o
is used to express the deviations from limiting behavior. « is the ratio
of the contributions made by the higher terms relative to that of the

leading term in the long range expansion,

V(r) = D - Cp/rM - Cp/r™M, m>n
and
m (5.3)
oz lo/r2

where ro is the outer turning point. The deviations of observed wy and
By from limiting behavior correspond to a unique variation of the a's
(this is shown below). Once this variation of o is extracted, one
obtains the desired magnitudes of the C coefficients.

Figure 5.3 demonstrates how the deviations of the wy's and By's
from asymptotic behaviour can reveal the underlying C coefficients.
The data points v = 63-80 are for the B 3n0+ state of I, which
correlates with the I(2P3/5) + 1(2P1/2) limit. The dotted horizontal

line at y=1 represents the limit where the potential is well
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Figure 5.3 For Ip B3n0+ state, a comparison of the experimental wv/w: and

® u
By/By values (large dots) with the predictions made by various

representations of the long range potential:

........ (5)
=== (596)

-—— (5,6,8)

I (5,6,8,10)

From Le Roy.55
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characterized by the leading Cg r-5 term alone; the corresponding
limiting wy, and By values are denoted w: and B:. Contributions by the
C5r'5 term cause a negative deviation from limiting behavior for both the
wy and B, data set, with a substantially larger effect on the By's.
Inclusion of Cgr'8 and Clor‘lo terms influence the wy's and By's in
opposite directions and by varying amounts. Since the various C
coefficients affect wy and By in qualitatively very different ways, one
would expect a simultaneous fit of the (wy,By) data to be a sensitive
method by which to optimally separate the contributions of each term and
thereby determine accurate values of these coefficients.

In order to show the transparent and straightforward nature of the
technique, let us rederive the expressions relating the different
dependence of w, and B, on the parameter a. wy and B, are respectively

the inverse of the vibrational and rotational density of states.

oE/ov

Wy

_av/a[u(d+1)] (5.4)

= oE/[J(J+1)]
J=0 oVv/3E J=0

0
<
"

Using the Bohr-Sommerfeld quantization condition,
r2 1/2
h(v + 1/2) = 2 [ dr {2u[E(v) - V(r)]}
ri
we see that wy and By can be expressed as partial derivatives of the

above action integral through quantities av/sE and av/a[J(J+1)],



Fa -1/2
SV/3E = (VZa/h) [ " dr (E-V)
1
— 2 -1/2
av/ a[J(J+1)] = (V2u/h) jr dr (E-V) By (5.5)
1

2
where B, = 02 -2y .
2u

A useful and compact representation of wy and By, in terms of the

integral,

I,(E) = f:Z dr r-l(E-V)'l/2 (5.6)
now becomes

wy = 2mg/Ig(E)

By = 8215(E)/Ip(E) (5.7)
where

B = Eﬁzlzu]l/z .

Examination of the integrand of Equation (5.6) shows that the
largest contribution to the integral, for high vibrational levels, comes
from regions of r near the turning points rj and rp, where the integrand
becomes singular. Furthermore, since the potential becomes increasingly
anharmonic as the energies increase, the contribution from rp dominates.
These two considerations led Leroy to make the following approximations:

(i) Replace V(r) in Equation (5.6) by the long range form of the

potential, and
(i1) Set ry = 0.
Implementing the first of these, V(r) is represented by the two term

expression of Equation (5.3). Combining this with the following relation

E(v) =D - Cp/r? - Cp/r™
(v) /1 = o/
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where rp is the outer turning point of the vth vibrational Tevel, we get

S 2y L 2y,
E(v) - V(r) _"—3 [(r ) -11 + "2 [(r ) -1] (5.8)

If we make the following substitutions into the above equation,
m-n
o = Cp/Ch(ry) and x = r/rp

then Equation (5.8) transforms into
r2
() CE(v)-v(r)] = (x=N-1) + a(x"M-1)
n
Substituting this result into Equation (5.6), we get

1-24+n/2 1 2

- -1/2 I - 1/
I,(E) = (Cp) (ro2) I(rllrz) dx/x%{(x""-1)+a(x"M-1)}

(5.9)
Using the second approximation mentioned above and rearranging equation

(5.9), we get the desired expression:

L) = t(ep) " e E I 1 )
where
- 1 1/2
Tola) = (1+a) 12+(1-2)in [ dx/x2{(x"N-1)+a(x"M-1)} (5.10)
0

When «=0, we recover the limiting, near-dissociation expressions of

Equation (5.2). For example,

2ng/1g(E)

wy

2)/2 1/n _
ao-e1" 2y ong siey " T (a0

~ —
h

Kn
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Figure 5.4 Courtesy of Le Roy95.
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where Ty (a=0) is a simple ratio of gamma functions in the variables & and

n.
Equation (5.10) reveals two different ways in which the parameter o

(a measure of the relative contribution of higher order terms compared to
the leading term) can affect the Tg(a) integral (and in turn the wy's and
By's). The qualitatively different dependence of wy and By on the Ty(a)
integrals is due to these two different dependences of T;(a) on the
parameter a. Increasing the value of o causes the outer potential wall
to become more steep, thereby influencing the T@(a) integral in the two
ways shown in Figure 5.4a. First, it moves the outer turning points
toward larger values of r. This has the effect of increasing the value
of Tg(a) by the multiplicative factor, (1+a)1/2+(1—2)/n. The second
effect of the increased steepness of the outer wall is to produce a
larger difference between an energy level and the potential thereby
leading to a smaller integrand (or a reduced value of Tg(a)). The
presence of the x-2 factor in the'Tg(a) integral "weights" these two
opposing effects of az0 differently with respect to each other in the
To(a) and Tp(a) cases. Figure 5.4b shows the essentially flat profiles
of‘Tb(a) vS. a, which result from an almost complete cancellation of the
two effects, and the rapidly decreasing profiles of'Tz(a) vS. a, Which
result from a domination of the second effect over the first. We can now
see how the w,'s and B,'s (or the Tp(a) and Tp(a) integrals) provide
mutually complementary information about « and, in turn, the C

coefficients.

+
B. Application to the A 1y, State of Nas

Le Roy has made available to us a computer program which performs

nonlinear least squares fits of the obhserved (wy,By) data to the
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dissociation energy, D, and the various C coefficients. We attempted to
apply this method to the v=96-105 levels of the A state. The outer
turning points for this data set ranges from 9.364 to 10.74; therefore,
the properties of these vibrational levels should be predictable by Tong
range theory, which is appropriate for internuclear separations R > 9.2A.

When the long range potential is represented by the (3,6,8) three
term expansion, the observed wy's and By's could not be least squares
fitted, either as two independent data sets or aslone combined data set.
If one uses a (3,6) two term representation of the potential, one does
obtain convergence. However, the resulting C3 value is lower (by ~12%)
than that value determined from the experimental oscillator strength of
the Na D-lines5l, of 4.0114 x 105 cm-1a3. The fitted Cg value is also
lower (by ~31%) than the ab initio value of Busseryl2, of 1.9969 x 107
cm-1 26, The wv/mt and BV/B: values predicted by the ab initio Cg and Cg
values are illustrated in Figure 5.5 for both the two (3,6) and three
(3,6,8) term cases. The observed values of wv/w: and BV/B:, indicated by
dots, are seen to be poorly described by either the (3,6) or (3,6,8)
representation.

Our inability to extract the higher order C, coefficients may be
due to the very small relative contributions of the higher order terms
to the total potential energy. Table 5.4 shows that for v = 96 the
contribution made by the C6R'6 term is only 6% of the C3R'3 term.

(Notice that this is even smaller than the 10% relative contribution of
the C1oR-10 term in the (5,6,8,10) potential of the B state of Ip.)
Higher terms in the Naj potential Tike CgR~8 or CIOR‘lo also make small
relative contributions (1ike the CsR-6 term); therefore, extracting these

coefficients is equally difficult.
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+
Figure 5.5 For the Nap A lzu state, a comparison of the experimental
wv/w: and BV/B: values (large dots) with the predictions made
by various representations of the long range potential:

wvesvenes (3)
i (3’6)

- (3,638)



B, O.
3,

2k N\ ]
N\
RN N _
ST ~_ \
~<_ ~—
D ;__~~“\~\-'~_=-.._____~_,_L______ ..............
4
7
b /// -
7
s
//
8 a4 4
S
s
oS
S
6 e e -
e s
’ad yd i
v
/
4 1 1 ] | 1 1
3.5 3.0 <5 2.0 1.5 1.0 0.5 O

{ID-Gv)1/cm ty /"

0

187



TABLE 5.4 Comparison of the contributions made to the long range
potential energy by higher order R-N terms relative to the
leading R-N term.

and are shown for two vibrational levels in each system.

Relative contributions are given by the «'s,

SystemdsP v ro(v),A a1l o) a3
IpB3n 4+ 60 5.713 1.12 0.47 0.098
Oy 80 12.29 0.52 0.047  0.0022
+
Nap A 1z, 96 9.36 0.06 0.049
103 10.4 0.044  0.029 -
+
Ho B 1z, 32 6.34 0.091  0.05 -
38 19.9 0.003  0.0002 -

a8 For the Ip state under consideration, long range theory is valid for R>

5.54; for the Nap state shown, R>9.2A; for the Hp state shown, R>6.6A.

b Also note that for the (5,6,8,10) potential of Iz, a1=C4/Csras

a2=C8/C5r23, and a3=C10/C5r25; For the (3,6,8) potentials of Nap and

Ho, a1=C5/C3r23 and a2=C8/C3P5.
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In order to test the above hypothesis, we applied Le Roy's method to
the well-studied analogous state in Hp, the B 123 state. Since this state
correlates with the (H 1s + H 2p) limit, its long range potential is also
characterized by the (3,6,8,...) expansion, like the A 12: state of Nap.
Naimoka®? has observed the high lying vibrational levels, v=32-38, of the
Ho B state which extend up to within -1 cm-1 of the dissociation limit.
Least squares fits of the wy's and B,'s for these levels showed the same
symptomatic failures observed for the vibrational levels of the Nap A
state. A (3,6,8) representation of the potential yielded converged
results only for the v=35-38 subset; however, the fitted values of C3,
Cs» and Cg were substantially smaller than the accurate ab initio values
of KolosS8 (smaller by 69%, 19%, and 97% respectively). Grossly
underestimated values of C3 and Cg were also obtained when using a (3,6)
potential representation.

For both the A state of Nap and the B state of Hp, the small
contributions of the CgR-® and higher terms manifest themselves as small
values of the parameter o. The (somewhat deceptively) large deviations
of wy, and By, from limiting behavior appear only because the Ig(a)
integrals have a very sensitive dependence on o, near a=0, for
the (3,6) case, However, the actual contributions of the higher terms
are very small indeed. Therefore, we conclude that the deviations-from-
limiting-behavior technique seems to be applicable primarily to those
systems with (5,6,...) or (6,8,...) potentials, where the higher order
terms make a substantial (perhaps 10% or more) contribution to the total

potential energy of the system.
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5.5 Estimation of C, coefficients from RKR points

We attempted to obtain estimates of the C, long range coefficients
+
for the Nap Alp, state from the RKR-determined potential curve of Section

Three. Since the long-range potential, U(R), has the asymptotic form
U(R) = Dg + C3/R3 + Cg/RO + Cg/RE (5.11)

a plot of R5~[U(R)-DemC3/R3] versus R-2 should be linear with intercept Cg
and slope Cg. Figure 5.6a shows such a plot for the highest observed
vibrational levels, v=95-105, whose outer turning points span the range
R~9.2-10.7A. Although the plot shows reasonably linear behavior for the
last six levels, it gives the physically unreasonable result of a positive
Ce coefficient, Cg ~ +5.36x107 cm-1a0, A positive Cg would arise from an
overestimated slope (i.e. too large Cg coefficient).

The contributions made by each R-" term of Equation (5.11), based on
ab initio Cg and Cg values of Busseryl?, are tabulated in Table 5.5. Also
shown is the electron-exchange energy contribution to the potential, based
on the ab initio A and B values of Konowalow and Rosenkrantz?3, It is
seen that the attractive exchange effects persist to surprisingly large
values of R and makes contributions comparable to the attractive C5/R6 and
C8/R8 terms. If the exchange contribution is subtracted from U(R) and
R5-[U(R)-De-C3/R3-Aexp(-BR)] is plotted versus R-2, then we obtain more
reasonable values of Cg and Cg are obtained, as shown by Figure 5.6b.

The Cg coefficient thus obtained is tenfold smaller and the Cg coefficient
threefold larger than Bussery's values. We note that these Cg and Cg
results are essentially determined by the A and B exchange parameters and
are based on the assumption that exchange contributions to the potential

energy can be completely accounted for by the addition of an A exp(-BR)
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term to Equation (5.11). If the exchange contributions are indeed as
large as suggested by Table 5.5, then the initial assumption of
separability of the C5/R6, Cg/R8 and the exchange terms is of questionalbe
validity.

A first attempt at extracting the C3 coefficient from the v=95-104
data was also made by approxiamting the long range potential of Equation
(5.11) by the leading C3/R3 term only. The resulting Le Roy-Bernsteir

expression

)17 = (k)7 [De-E(v)]

where

34.5429
(1)1/2(c3)1/3

can be used to determine K3 (and in turn the C3 coefficient) from the
observed values of E(v) and AE(v). (Note that the C3 coefficient in the
above expression was implicitly assumed to be negative.) From the plot of
Figure 5.7 we obtained a C3=-2.80x105 cm-! a3, which is 30% smaller than
the accurate value of 4.0114x105 cm-1 &3, Evidently the long range
potential of the A state cannot be reasonably approximated by the leading
term in order to account for the observed data.

It appears that an extension of the A state vibrational data beyond
the highest presently observed level, v=105, is needed before further
manipulation of data to the end of determining C, coefficients can be

performed.
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Figure 5.6 a) Plot of R5[U(R)-D-C3/R3] versus R-2 for Nap A state using
RKR outer turning points for v=95-105. The resulting
Cg = + 5.36x107 cm-1 A6 and Cg = -6.2x10% cm-1 48,
b) Plot of RG[U(R)-D-C3/R3-Aexp(-BR)] versus R-2 for same
data set. The resulting Cg = -1.50x106 and Cg = -4.29x107

cm-1 &8,
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TABLE 5.5 Comparison of theoretically predicted long range and electron-
exchange contributions to the potential energy as a function of
internuclear separation, using Dg = 22990.247 cm-1, C3 =
-4.0114x105 cm-1 3, Cg = -1.9969x107 cm-1 a6, cg = -1.3984x107
cm-1 A8, A = -4.389x105 cm-1, B=1.092 &-l.

v R(v) E(v) - De C3/R3 Cg/RE Cg/R8  Aexp(-BR)
95 9.232 -613,.221 -509.875 -32.262 -26.510 -18.377
96 9.357 -581.677 -489.658 -29.754 -23.799 -16.026
97 9.487 -551.466 -469,737 -27.383 -21.304 -13.899
98 9.623 -522.559 -450.156 -25.147  -19.017 -11.985
99 9.764 -494,932 -430.929 -23.045 -16.927 -10.275

106 9.911 -468,559 -412.065 -21.072  -15.023 -8.753
101  10.063 -443.413 -393.599 -19.225 -13.294 -7.490
102 10,222 -419.453 -375.573 -17.505 -11.732 -6.232
103  10.386 -396.641 -358.062 -15.910 -10.329 -5.210
104  10.558 -374.940 -340.804 -14.414 -9.054 -4,316
105 10.729 -354.309 -324.824 -13.094 -7.966 -3.583
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+
Figure 5.7 Graphical determination of the C3 coefficient for the Naj Alz,

state.
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CHAPTER SIX
CONCLUSION
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The primary factor which enabled us to study the high lying
vibrational levels in the excited electronic states of Nap, the A 123 and
B 1nu states, was the sample-preparation capabilities of the MGS
excitation scheme. Using the MGS technique, we have observed the
energies of all quasibound levels in the Blnu state. Combining these
energies with the rotation-dependent tunneling rates observed for the
last quasibound level has allowed a determination of the B state potential
barrier near its maximum. In the A 1z: state, mahy vibrational levels in
the range v=43-105 have been observed and have led to a characterization
of the A state intramolecular potential up to 96% of its dissociation
1imit. Thus the initial objective set forth in the introduction of
characterizing the A and B state long range potentials has been achieved.

In addition to this primary goal, we had hoped to be able to reduce
the A and B state long range potentials into two sets of C, coefficients
(describing the long range behavior for each molecular state) and thereby
obtain the long range behavior of all molecular states correlating with
the Na(3s) + Na(3p) atomic limit. Such a reduction would also have
allowed us to make a reasonable estimate of two fundamental atomic
properties: the Na D-lines oscillator strength from the C3 coefficient
and the static dipole polarizabilities of the Na(2P) state from the Cg
coefficients. There already exist high accuracy measurements of these two
atomic properties®1,59; therefore, if the Cp coefficients could be
extracted from the long range potentials of Nap, we would have a check of
the resulting atomic properties.

However, the hope of breaking down the A and B molecular potentials

into their constituent C, coefficients was not completely successful.



The compound effect of a) the leading C3/R3 term dominating the potential
over a broad range of R and b) the large electron-exchange terms,
relative to higher order C,/R" terms, led to an inadequate determination
of the C, coefficients.

We hope the present results on the A and B state long range
potentials are useful to current theories of the photodissociation
processb2, Nap(X 123) + hv > Na(2S1/p) + Na(2P3/2,2P1/2), which proceeds
primarily via the A 123 and Blnu molecular states. Resonances in the
2P3/2 fine structure cross section (due to quasibound levels of the B
state) should depend very sensitively on the shape of the barrier; the
ratio of photodissociation cross sections for 2P3/2:2P1/2 atoms may
reflect the nonadiabatic interactions of the A and B states with other

molecular states at large R.
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