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ABSTRACT
Recent ubiquitous sensing technologies make it possible to capture
streaming digital data that reports aspects of a patient’s physiology,
behavior, and symptoms both quantitatively and in real time. As
a result, it may be possible to develop streaming disease readouts
that are more accurate and less obtrusive than relying on patient
and caregiver reports alone. This study investigates the feasibility
of leveraging physiological and behavioral signals extracted from
a radio frequency sensing device to characterize metrics indica-
tive of breathing, mobility, and sleep patterns. We investigate the
variations in these signals between individuals with Systemic Lu-
pus Erythematosus (SLE) and healthy participants in a 6-months
longitudinal, exploratory, in-home study involving 19 SLE and 28
healthy participants. Results show that many signals (e.g., breathing
rate, sleep efficiency, and gait speed) significantly distinguish SLE
and healthy participants and demonstrate the potential of using
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remote sensing as an unobtrusive low-burden tool to assess disease
symptoms continuously and in real time.
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1 INTRODUCTION
Chronic autoimmune diseases such as Systemic Lupus Erythemato-
sus (SLE) [20] are characterized by abnormal immune responses
that target various organs and tissues in the body. SLE in particular
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Figure 1: The proposed data processing pipeline.

can cause a wide range of symptoms such as pain, fatigue, and
sleep disturbance that impair quality of life [13, 17, 23, 28]. Current
methods to assess SLE symptoms are largely based on self-reported
measures [10, 15, 28] that suffer from various limitations such as
subjectivity, response bias and memory limitations in addition to
relying on active engagement of participants which was shown in
the literature to decrease over time [4, 6]. It is then important to
investigate other methods to address these limitations.

Technology innovations have transformed and enhanced mo-
mentary data collection in natural settings enabling researchers
to collect more detailed and accurate data in real-world environ-
ments. For instance, passive sensing can offer several advantages as
an alternative or complement to self-report measures such as rich
contextual information, longitudinal monitoring, objective data
and ecological validity [2, 3, 5, 9, 14, 25]. Passive sensing involves
collecting data about individuals’ behaviors, activities, and physi-
ological responses through sensors embedded in various devices,
such as smartphones, wearables, or environmental sensors [25].
Furthermore, non-contact sensing [16], which involves capturing
information about individuals without contact, is an emerging tech-
nology due to its non-invasiveness and convenience (e.g., no burden
related to charging the device) but its use in a clinical setting for
SLE subjects is under investigated. The goal of this study is to inves-
tigate the use of a non-contact sensing method using the Emerald
Radio Frequency (RF) sensor [1] to capture differences between

SLE and healthy participants in their homes. We propose to extract
meaningful features from Emerald signals and investigate how they
differ when compared between SLE and healthy participants. This
can help identify distinct patterns of activity and sleep parame-
ters in the home environment that are indicative of disease state
and could be used to better understand the impact of therapy on
patients’ daily lives. This work is important to inform future de-
velopment of remote symptoms monitoring through non-contact
sensing that could be use to assess disease trajectory and recovery
over time.

2 METHODS
In this study we investigate the use of non-contact sensing (Emer-
ald system) to remotely capture breathing, sleep and mobility in
a natural environment. The Emerald system consists of a general-
purpose wireless sensor that transmits radio frequency (RF) signals
and then captures their reflections. The Emerald sensor employs
frequency-modulated continuous-wave (FMCW) radar and anten-
nae arrays and receives reflections from nearby people [24]. The
high degree of water content in the human body ( 60%) facilitates
the reflection of the radio signals and modulates them with the per-
son’s movements [12, 29]. The Emerald RF sensor is manufactured
by Emerald Innovations, Inc. [1] and the dimensions of the sensor
are 30×35×5 cm (Figure 2).

2.1 Preprocessing
As depicted in Figure 1, the Emerald system processes the raw RF
signals, which is constituted of a Frequency Modulated Continuous
Wave (FMCW) chirp sweeping the frequencies from 5.4 Ghz to 7.2
Ghz. Details of how Emerald is extracting these signals can be found
in previous research [11, 12, 29]. Emerald’s system extracted breath-
ing signal at 5hz (body displacement due to breathing), breathing
rate every 30 seconds, sleep stages every 30 seconds (i.e., awake,
light, Rapid Eye Movement (REM), and deep sleep), and trajectory
data at 22hz. Time series of (x, y) coordinates of the subject when
they are moving within the range of the Emerald Device. Details
of how Emerald is extracting these signals can be found in pre-
vious research [11, 12, 29]. Note that because the Emerald sensor
placement was chosen to focus on sleep (2 to 3 meters from the
bed), measures of breathing are only captured during in-bed periods
while measures of mobility are related to movements in and around
the bed area

2.2 Feature Extraction
Our feature extraction engine processes Emerald’s breathing, sleep
stages and trajectory signals to extract meaningful features of
breathing, mobility, and sleep. A representative features set is pre-
sented in Table 1. Note that this is not an exhaustive list and that we
chose to only present few features (11 out of 33 extracted features)
due to the lack of space. A more established feature list will be
discussed in future works.

2.2.1 Breathing. To characterize breathing patterns, we extracted
daily average and standard deviation of breathing rates to inves-
tigate if breathing rate and variations in breathing differ between
the two cohorts.
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Signal Feature Description

Breathing AVG breathing rate Average breathing rate
SD breathing rate Standard deviation of breathing rate

Mobility
AVG speed Average gait speed
SD speed Standard deviation of gait speed
Traveled distance Total traveled distance within the field of view of the Emerald sensor

Sleep
Duration of sleep stages Time spent awake, in light, deep, or REM sleep
Sleep efficiency The amount of time the participants spend asleep while in bed
Entropy of sleep stages Sample entropy of sleep stages

Table 1: Features characterizing breathing, mobility, and sleep patterns extracted on a daily level then averaged across the
6-month

Figure 2: (Left) Emerald RF Sensor. The sensor was mounted
on a bedroom wall within typically 2-3 meters of the bed.
(Right) An ankle accelerometer was worn for the first 14-30
days of the study to associate the RF signals with the study
participants.

2.2.2 Mobility. Because it has been demonstrated in the literature
that physical activity levels can correlate with SLE symptoms [20,
22], we chose to extract average and standard deviation of speed
captured in participants’ trajectories in the bedroom area. We also
measured the total daily in-room traveled distance from trajectory
data to characterize activity levels.

2.2.3 Sleep. We extracted multiple features to represent sleep qual-
ity including sleep efficiency which represents the amount of time
the participants spend asleep while in bed [18]. It is calculated by
dividing the amount of time spent asleep (light, REM, and deep) by
the total amount of time in bed (higher values indicate better sleep
quality). Furthermore, we measure the time spent in every sleep
stage (i.e., awake, light, rapid eyemovement (REM), and deep stages)
in minutes per day. We also measured the complexity of sleep cycles
using sample entropy [19]. It is defined as the probability that two
matching sleep stage series will continue to match at the next stage
segment. A match is defined as two segments having corresponding
data points within a certain small range, described by the tolerance
factor r [27]. When two matching series do not continue to match
in the following segment, the sample entropy increases, hence a
higher sample entropy reflects that the sleep stage segment is less
predictable, i.e., indicates a higher variability of the sleep stage
signal. Our approach for measuring sample entropy is as follows:
(1) we first attribute a numerical value to each sleep cycle (1=awake,
2=REM, 3=light, 4=deep), (2) create time series of sleep stages with
no repetitions (e.g., a typical awake, REM, light, deep transition

would look like this: 1-2-3-4 regardless of how many seconds they
spend in a given stage), and finally (3) measure the sample entropy
using the following formula: 𝑆𝑎𝑚𝐸𝑛 = −𝑙𝑜𝑔(𝐶 (𝑚 + 1, 𝑟 )/𝐶 (𝑚, 𝑟 ))
where: m is the length of the pattern or template (set to 1), r is the
tolerance threshold (the maximum allowable difference between
data points for them to be considered similar and is set to 20% of
the standard deviation (SD) of the sleep stages, 𝐶 (𝑚, 𝑟 ) represents
the number of similar m-length template matches found in the data,
and log denotes the natural logarithm.

2.3 Statistical Analysis
To analyze the difference between SLE and healthy participants, we
average the daily features for each participant over the course of
the study and we perform a Welch’s t-test [8] while correcting for
multiple comparisons using the Bonferroni correction method [26].
Effect size is estimated using Hedges’ g value [7, 21]. As reported
in the literature [7], 0.15, 0.40, and 0.75 are used as thresholds to
interpret small, medium, and large effects.

3 STUDY DESIGN
N=47 participants (1 male, 46 female), aged 48 on average (SD=
10.5) were recruited in a 6-month, prospective, non-interventional,
exploratory study for digital measure data profiling in healthy
(N=28) and SLE (N=19) participants. Healthy participants were
demographic matched to the disease cohort. The study did not re-
strict or introduce any medical interventions including medications.
Participants were 38% white, 38% black or African American, 15%
Asian, 2% multiple, and 6% chose not to report their ethnicity. Note
that this data is a subset of a larger dataset including other cohorts,
other measures such as actigraphy data and patient reported data
measures of health-related quality of life. The Emerald RF sensor
was mounted on a bedroom wall (placed approximately 1.15 meters
from the floor) on the side of the bed on which the participant
sleeps typically within 2 to 3 meters of the bed, and the sensor did
not require the participant to interact with it. In some cases, the
wall was not suitable for mounting and the sensor was mounted on
a portable stand instead (see Figure 2). Study participants agreed to
sleep on a consistent side of the bed with no other people allowed
on their side of the bed and no pets allowed in the bedroom for
the duration of the study to ensure the algorithms can accurately
quantify sleep, breathing, and trajectory. The exact layout of the
bedroom as well as the Emerald sensor location were recorded for
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Figure 3: Results describing differences in breathing (in blue), mobility (in green), and sleep (in magenta) between SLE and
healthy participants. A summary statistic is presented in each sub-figure and a template for the summary is presented in the
top of the figure.

each participant. The data was compressed and transmitted after
encryption via Wi-Fi to a secure server for further storage and anal-
ysis. The participants were also asked to wear a small accelerometer
for 14 to 30 days at the beginning of the study (see Figure 2). Ac-
celerometer and bed layout data are used to create an algorithmic
filter that recognizes motion patterns from the RF signals. This filter
is used by the Emerald platform to remove irrelevant information
and retain only data specific to the participants.

4 RESULTS
4.1 Breathing
As presented in Figure 3, the average breathing rate was sig-
nificantly different between SLE (AVG=16.2 breaths/minute) and
healthy (AVG=14.67 breaths/minute) with SLE participants hav-
ing 1.6 breaths/minute higher than healthy participants (p=0.02,
Hedge’s g=-0.72) with a medium to large effect size. The standard
deviation of breathing rate was also found to be significantly differ-
ent with a large effect size (p<0.01, g=-0.85) indicating less stable
breathing for SLE participants. Note that we did not explore in this
work if breathing is mediated by another effect such as lower sleep
quality. This will be investigated in future work.

4.2 Mobility
SLE participants exhibited slower speed (p=0.06, g=0.54) and lower
standard deviation of speed (p=0.02, g=0.68). SLE participants were
also found to have a significantly higher total in-room traveled
distance (p=0.02, g=-0.76) where SLE participants were found to
have almost double in-room traveled distance than healthy par-
ticipants (see Figure 3). This may indicate that SLE participants

spent more time in their bedrooms due to the lack of ability to
perform other activities of daily living. It can also be due to more
frequent awakening at night. Further analysis of the spatiotemporal
distribution of trajectory data will be performed in future work to
further investigate these findings.

4.3 sleep
SLE participants had significantly lower sleep efficiency with a
medium to large effect size (p=0.04, g=0.65) with SLE participants
having 7% lower sleep efficiency than healthy participants. Looking
at time spent in different sleep stages, we can observe that there is
no statistical difference in time spent in deep (p=0.24) and light sleep
(p=0.74). However, SLE participants were found to have more awake
time in the order of 55 minutes on average higher than healthy
participants. They were also found to spend about 11 minutes less
in REM stage (p=0.05, g=0.58) per night (see Figure 3). The sample
entropy of sleep stages reveals a significant and large effect size
(p<0.001, g=1.05) with SLE participants having lower entropy than
healthy participants. Lower entropy indicates less complex sleep
stage trajectories. This is justified by the fact that SLE participants
spent less time on REM stage making the sleep stage traces look less
complex given most of the time, the sleep is alternating between
awake and light sleep instead of alternating between the four stages
(see Figure 3 where we record more time in awake and light stages
and less for deep and REM in SLE).

5 DISCUSSION AND CONCLUSION
This paper discussed the use of non-contact sensing to extract phys-
iological and behavioral signals that can characterize symptoms of
autoimmune diseases such as Systemic Lupus Erythematosus (SLE).
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We presented a set of features that represent breathing, mobility
and sleep patterns and explored how they differ between SLE and
healthy participants in a 6-months in-home study including 19 SLE
and 28 healthy participants. Results suggest that many features are
significantly different between the two cohorts. SLE participants
were found to have significantly higher breathing rates, slower gait
speed, and less steady gait patterns. SLE participants were also
found to have significantly less efficient sleep and were found to
have less REM sleep and being more awake when in bed indicating
poorer sleep quality than healthy participants. These results are
in line with previous research [2, 17] showing poor sleep quality
in SLE participants using actigraphy devices. When ranking the
features based on the absolute value of their effect size, we find
that the top three features that best separate SLE and healthy par-
ticipants are: (1) sample entropy of sleep stages (g=1.05,p<0.001),
(2) standard deviation of breathing (g=-0.85, p=0.01), and (3) in-
room traveled distance (g=-0.76,p<0.05). This potentially suggests
that breathing, mobility, and sleep are all dysregulated in SLE and
demonstrates the importance of multi-modal sensing at capturing
multiple dimensions of disease state. These findings are in line with
the known symptoms of SLE that can cause fatigue, fevers, pain
and swelling and that significantly impact the quality of life and
effect participants’ mobility and sleep quality [10, 15, 22, 23]. These
findings provide preliminary evidence of the utility of using passive
sensing and non-contact sensing to monitor disease activity of SLE.
Future work will explore how daily self-reported symptom mea-
sures correlate with the objective sensing features and investigate
how these signals can be combined together to provide a holistic
view of symptoms that can ultimately predict disease trajectory
remotely and continuously.
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