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Experimental Assessment of Human-Robot Teaming for Multi-Step
Remote Manipulation with Expert Operators

CLAUDIA PÉREZ-D’ARPINO∗,Massachusetts Institute of Technology, USA

REBECCA P. KHURSHID2,Massachusetts Institute of Technology, USA

JULIE A. SHAH,Massachusetts Institute of Technology, USA

Remote robot manipulation with human control enables applications where safety and environmental constraints are adverse

to humans (e.g. underwater, space robotics and disaster response) or the complexity of the task demands human-level

cognition and dexterity (e.g. robotic surgery and manufacturing). These systems typically use direct teleoperation at the

motion level, and are usually limited to low-DOF arms and 2D perception. Improving dexterity and situational awareness

demands new interaction and planning worklows. We explore the use of human-robot teaming through teleautonomy with

assisted planning for remote control of a dual-arm dexterous robot for multi-step manipulation, and conduct a within-subjects

experimental assessment (n=12 expert users) to compare it with direct teleoperation with an imitation controller with 2D and

3D perception, as well as teleoperation through a teleautonomy interface. The proposed assisted planning approach achieves

task times comparable with direct teleoperation while improving other objective and subjective metrics, including re-grasps,

collisions, and TLX workload. Assisted planning in the teleautonomy interface achieves faster task execution, and removes

a signiicant interaction with the operator’s expertise level, resulting in a performance equalizer across users. Our study

protocol, metrics and models for statistical analysis might also serve as a general benchmarking framework in teleoperation

domains. Accompanying video and reference R code: https://people.csail.mit.edu/cdarpino/THRIteleop/

CCS Concepts: · Computer systems organization→ Robotics; · Computing methodologies→ Robotic planning; ·

Human-centered computing→ User studies; Interaction paradigms.

Additional Key Words and Phrases: Teleoperation, Shared Autonomy, Manipulation, Human-Robot Collaboration, Bench-

marking

1 INTRODUCTION

Remotely controlling a robot in a distant environment have been a key enabler of robotics in real-world applica-

tions where, in addition to navigation and inspection, it is required to interact with the environment in order to

change its state. Telemanipulation is particularly relevant in environments where adverse circumstances make it

challenging or impossible for humans to be present. Leveraging worklows for human-robot teaming in these

situations, by strategically combining human control with the advantages of autonomous systems, have the

potential to improve the overall task performance in robotic manipulation, by achieving faster task completion

times and higher manipulation dexterity and precision. Examples of important needs for these improvements are
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Fig. 1. Robot hardware used during the user study. Let : Imitation Controller (IC), a passive device used for teleoperation.
Right : Robot for bimanual manipulation, including two 7-DoF arms, 2 grippers and on-board 2D&3D sensing. The IC is a
scaled kinematic replica of the robot, enabling direct teleoperation (A & B) by commanding the robot to follow the joint
angles of the IC on-line. For the teleautonomy conditions (C & D), the robot is commanded from a computer-based user
interface.

found in a wide variety of applications, such as disaster response, explosive ordnance disposal (EOD) [3] [24],

space robotics (robotic arm Canadarm on the ISS), underwater robotics (underwater manipulation for inspection

[19]), and medical applications (surgical robotics [27], teleoperation with Da Vinci robot).

The development, evaluation and benchmarking of teleoperation technologies in these challenging domains

tend to require operators with advanced domain expertise (knowledge particular to the application) and formal

training (expertise in the use of the interfaces, devices, and methods developed and tested for the domain).

These domains are also typically subject to constrained resources, such as limited time, in-situ deployment, and

irreparable damage in case of failure. Altogether, these technical challenges require the development of new

technologies that seamlessly integrate human collaboration into the robotic system for augmented perception,

planning and control, as well as appropiate benchmarking methods.

In this paper, we present insights from a user study and benchmarking protocol speciically designed for

experimentally assessing the performance of teleoperation methods under realistic ield conditions. We perform a

within-subjects study with an expert population with ample domain expertise, comparing four telemanipulation

frameworks, ranging from direct teleoperation to a human-robot teaming framework with assisted planning.

Speciically, we benchmark the following four approaches:

Condition A: Direct teleoperation + 2D perception,

Condition B: Condition A augmented with 3D perception,

Condition C: Teleautonomy interface teleoperation + 2D&3D perception, and

Condition D: Condition C augmented with assisted planning.

The conditions we compare comprise a full software/hardware stack. The robot used is MIT’s Optimus [29]

(Fig. 1(Right)), a dual-arm manipulator (Highly Dexterous Manipulation System (by ��2) with two 3-ingers hands

(by Robotiq) and a sensor suite with a Hokuyo sensor (Multisense SL by Carnegie Robotics). The study uses

14-DoF in the arms (7-DoF per arm). The direct teleoperation conditions use an Imitation Controller as input

device, depicted in Figure 1 (left). The accompanying video shows the conditions and tasks tested in the study.

We conducted a rigorous statistical analysis of the data collected during the study, and our indings indicate

that incorporating a human-robot teaming worklow has signiicant advantages over direct control. We also hope

this benchmarking protocol can serve as a guideline for other researchers conducting detailed evaluations of
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teleoperation and human-robot collaboration models and algorithms, including analysis targeted at understanding

the diferences between expertise groups. While the statistical analysis in every study must be carefully designed

to test the appropriate hypotheses, we make available our R code as a reference for guidance for teleoperation

and manipulation studies.

The results are consistent with previous indings in the literature [17] of faster execution times for direct

teleoperation (A) while exhibiting a similar trend in the trade-of between task time and accuracy for methods

that increase the level of robot assistance and interaction (B and C). We designed and deployed a human-robot

collaboration model based on an assisted planning technique [29] for Condition (D), to experimentally assess

the advantages of human-robot teaming, which resulted in task times in the range of those produced by direct

teleoperation while signiicantly improving accuracy, overcoming the aforementioned trade-of for the irst time

without expertly programmed sequences of motions. We also explore the interaction efects between the subject’s

expertise type and the interface being used and ind that while one teleautonomy method exhibits a signiicant

interaction, causing diferences in performance per expertise group (C), increasing the level of autonomy on the

robot’s side in a way that furthers the level of collaboration (D) overcomes the performance limit correlated with

the expertise level, potentially ofering a performance equalizer between domain experts with formal training in

diferent ields.

The paper is organized as follows. Section 2 covers related approaches. Section 3 describes our assisted planning

approach, and the worklow of each baseline condition is described in Section 4. The protocol details are presented

in Section 5, metrics and statistical models in Section 6, the results in Section 7, and the interpretation and analysis

in Section 8. Section 9 presents a summary and conclusions.

2 SURVEY OF RELATED APPROACHES

Robotic systems able to operate in ield conditions for real-world challenging applications are largely based on

joint-by-joint teleoperation using switches and joysticks for motion control and 2D camera views for perception

[4]. While direct teleoperation enables rapid deployment, this approach has circumscribed deployed systems to

the use of robotic arms with a low number of degrees of freedom (DoF), such as the Packbot robot [38]. Increased

dexterity based on a higher number of DoF faces scalability problems in terms of what is physically possible to

control from this type of interface. The scalability of direct teleoperation is also limited by decreasing performance

with the number of joints and instability as time delays increase. Superior levels of dexterity and situational

awareness require inding techniques that scale well with the increased workload associated with controlling a

higher number of DoF and with managing the information contained in richer perception feedback such as 3D

representations of the environment.

The 2012-2015 DARPA Robotics Challenge (DRC) [20] served a large testbed of multiple and competitive

approaches to remote robot operation on disaster-response scenarios emulating ield conditions. Multiple teams

deployed ielded systems [6] [18] [16] to conduct a remote robot through a series of mobility and manipulation

tasks inspired by challenges found during the response to the Fukushima nuclear accident in 2011, such as turning

a valve or opening a door [25][33]. These instances of telemanipulation systems range in the autonomy spectrum

from teleoperation, in which the human operator directly controls the movement of the remote robot or of

a model of the robot [36], to teleautonomy, in which the task is executed through an interaction worklow

between the human operator and the robotic system [39][28].

Previous work in the literature analyzes the performance of the teams during the DRC Finals in terms of

interaction methods, robot characteristics, control methods, and sensor fusion. Results indicated an increase in

performance with increased human robot interaction patterns in terms of balancing tasks between the operator

and the robot [28]. While the DRC competition was a state-of-the-art demonstration of the multiple approaches to

teleautonomy, and this detailed study found advantages in using human robot teaming strategies, the competition
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conditions made it diicult to conduct a controlled study. In particular, teams had diferent numbers of operators,

each with a diverse set of roles within each operational framework. In this paper, we sought to assess the task

performance in a controlled fashion with a single operator managing all aspects of robot operation.

In direct teleoperation, the robot moves simultaneously with the commanded motion using a ixed mapping

from the IC to the robot. Multiple human-robot collaboration models that build on the base of direct teleoperation

have been proposed and evaluated [32] [2] [34] [31] [13] [17] [5] [30]. In particular, the method of shared control

aims to improve the usability of teleoperation systems by continuously blending the input signal from the operator

with a signal produced by an autonomous system based on a prediction of the objective. This method has been

shown to increase task performance in a number of teleoperation settings [5] [23] [14] [22] [15], most commonly

in applications where the autonomous assistance is meant to be complementary to operators with some deicit in

operating the control interface [23].

Teleautonomy approaches are motivated by the idea of a division of labor between the operator and the

robotic system that maximizes their potentials, such as the ability of the robot to perform low-level perception

and motion planning, and the operator’s high-level task planning and scene understanding. This division of labor

is implemented through an interaction worklow that enables information to low between the two parts in order

to make planning and execution decisions, typically supervised by the human as the top-level decision maker.

The teleautonomy worklow is realized through a teleautonomy interface, which is a computer interface that

afords on-line interactions with a human operator for operations related to perception, planning, and control

while immersed in a 3D world that represents the environment of the robot. The most basic planning method

on the teleautonomy interface is based on teleoperation, in which the operator can specify the goal pose of the

joints or of the end efectors of the robot and the system computes the motion plan to achieve it.

One approach to increase the level of autonomy in the teleautonomy interface is assisted planning, in which

the robot has the ability to suggest motion plans to the operator automatically in an on-line fashion without the

operator indicating the goal explicitly. Taking advantage of the computation capabilities of the robot, it is possible

for the system to autonomously compute motion plans that accomplish the task, given that some information

about the goal and objects involved can be in the system a priori or can be obtained from the operator through

on-line queries. A irst generation of assisted planning systems in this context deployed during the DRC was

based on template-based instances of pre-scripted motion plans executed with supervision from the operators

[28]. For tasks known in advance, it is possible to program motions parametrized with respect to objects in the

scene and use the human operator in the loop to correctly instantiate these parameters in the scene [21].

A higher level of integration of the human robot team involves overcoming the need for an expert programmer

to design sophisticated sequences of parametrized motions in advance. Learning from demonstrations (LfD) is an

approach designed to enable robots to learn how to execute manipulation tasks from human demonstrations [1].

Integrating LfD into the system enables a new concept of operations in which a skilled domain expert, not a

programmer, can teach manipulation skills to the robot and then execute these tasks remotely in a teleautonomy

framework [29]. In previous work, multi-step manipulation tasks have been learned from a single human

demonstration using the algorithm C-LEARN [29]. This learning is done by leveraging accumulated knowledge

about how humans typically manipulate objects. Tasks are learned in terms of a sequence of steps and a set of

geometric constraints that deine each step. After the learning phase, the learned task representation is integrated

with the teleautonomy framework for human-in-the-loop execution. This strategy results in teleautonomy

with assisted planning, in which at task execution time, the robot can plan for each learned step and produce a

motion suggestion for the human operator. The motions can be generated for new instances of the same learned

task where the geometry (position and orientation) of the objects is diferent from the one in the demonstration.

Previous user studies in the ield of surgical robotics have found that teleoperation produces the fastest task

times [26] but not the highest accuracy results when compared to models of human-robot collaboration. The

user study in [17] compared the use of teleoperation, supervised control, traded control, and full autonomy in an
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inclusion segmentation task. Their results show faster task completion times for teleoperation versus the other

methods, while the metric of average force of palpation over the body (less force is desired) was the highest in

teleoperation. These previous studies indicate a trade-of between the task execution speed and the accuracy, as

measured by task-speciic metrics.

This study analyzes similar human-robot collaboration models with various degrees of autonomy, while

focusing on the following operational constraints: 1) multiple sequential manipulation steps are required; 2) steps

are geometrically constrained; 3) the perception feedback is limited to sensors on board the robot, as opposed

to specialized sensor systems mounted externally in a position tailored to the speciic task; and 4) tasks are

performed by domain experts.

3 ASSISTED PLANNING APPROACH

We seek to benchmark the use of teleautonomy with assisted planning versus other ieldable methods of

teleoperation with relevance for the domains of EOD and disaster response. Speciically, we assess the performance

of an assisted planning approach based on learned taskmodel using C-LEARN [29], a learning from demonstrations

method that enables learning multi-step manipulation skills. In this Section, we irst describe the general

collaborative worklow and later describe the principles of C-LEARN.

The abstraction of the collaboration worklow consists of combining input from both the robot’s planner and

the human guidance to create motion plans that can be veriied by the user in a 3D animation and approved

before robot execution (see Fig.2). This discrete plan-and-execute worklow provides enhanced safety for

high-risk applications, as the human operator is always aware of the planned movements in advance.

In this worklow (Fig.2), the robot starts in the current keyframe and computes a motion plan to reach the

following keyframe in the current scene; this motion plan is displayed to the human operator in the user interface.

The operator has the ability to review this plan and approve it for robot execution in a remote environment.

Otherwise, the operator can reject the plan and perform modiications by using end efector teleoperation in the

interface. Following this logic, the operator can proceed from keyframe to keyframe recommended by the robot

system, as illustrated by the green keyframes in Fig.3, or deviate from the robot’s plan for a number of keyframes

through teleoperation, as represented by the blue keyframes. In the latter case, it is still possible to return to the

sequence of suggestions from the learned model, as long as the topology of the task still corresponds to the task

learned originally.

For this Condition, we integrated a task representation learned through C-LEARN [29] into this collaborative

worklow (Fig.2). A C-LEARN task model is a generalizable representation learned from human demonstrations.

Fig. 2. Human-Robot collaboration model for teleautonomy. The robotic system computes suggested motions plans using a
learned task model. Our models were learned using C-LEARN [29], but the collaboration workflow is a general abstraction
compatible with any motion generative model that produces sequential discrete muti-step plans.

ACM Trans. Hum.-Robot Interact.
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Fig. 3. Workflow of planning and execution for a sequence of keyframes. The operator can accept a suggested motion plan
(green keyframes) or perform teleoperation (blue keyframes) and return to suggested plans.

It consists of a series of keyframes, each represented as a set of geometric constraints with respect to objects’

frames. These constraints are parameterized, and their speciic instances get computed on-line at inference time

once the robot receives perceptual input from the environment containing the task-relevant objects (lidar and

images). A simpliied illustration of a task model is shown in Fig.4. The illustrated task consists of picking up the

blue cylinder and dropping it inside the red bucket. A C-LEARN model consists of a set of ordered keyframes (1

to 5 in the example illustration) based on learned parameterized constraints, such as a constrained volume in

SE(3) with tolerance, axis orientation constraints (parallel, perpendicular). A C-LEARN keyframe corresponds to

a discrete step in Fig.3. Keyframes provide a planner with the necessary information to produce a motion plan

given a new topology-preserving scenario consisting in novel positions and orientations of the objects involved

in a task with known goal. The learning algorithm has tunable parameters as numerical thresholds related with

constraint identiication, which can afect the resulting models to be over- or under-constrained [29].

The C-LEARN method irst builds a library of motions containing multiple modes for reaching and grasping

objects with simple shapes, such as cylinders and boxes. This library is later bootstrapped to acquire a multi-step

task model from a single demonstration of a full task. The learned task models used during the user study were

learned in advance using data from human demonstrations. These models were learned from seven demonstrations

per mode for the library of motions, and one multi-step demonstration per task (Task 1, 2 or 3 in our study).

We selected C-LEARN because (1) the keyframe-based representation made it directly suitable to be integrated

into the collaboration worklow, (2) it was designed for tasks with geometric constraints, as is the case for many

tasks in our domains of interest, (3) it provides an interpretable and veriiable task model. These were design

choices made in our previous work [29]. Alternatively, future developments of other learning techniques that use

a discrete task model in the form of keyframe could be integrated in a similar manner.

While a system with this task model could theoretically be deployed autonomously, in practice, a high task

success rate requires a human operator in the loop. This need is due to the accumulated errors from on-line

perception (pose estimation, occlusions, etc), task-level planning capabilities, partial observability (only on-board

Fig. 4. Illustration of a keyframe-based task sequence. The representation based on keyframes results in a parameterized
flexible task model, whose sequence of steps can be instantiated in new scenes as a function of object poses.
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sensors) and the need to respond to uncertain outcomes in the real world that are better discerned by the human

operator.

Note that this paper evaluates the performance of this interaction worklow that uses a learned task model,

but not the capabilities of C-LEARN as a learning model. It is challenging to perfectly disentangle the efects

of the collaboration worklow itself versus the contributions of the underlying task model. On one hand, the

collaboration worklow doesn’t depend on how the underlying task model was built (inner-workings of the

learning algorithm), as long as the learned representation can be it into the worklow. On the other hand, the

quality of the underlying task model directly impacts the performance of the collaboration worklow, as providing

feasible and correct motion suggestions is one of the principles that enables improving task performance, and

the frequency of usable suggestions increases for better task models. Taking this into account, we believe the

insights regarding the performance improvements ofered by assisted planning vs teleoperation would remain

even if changing the underlying learning model, as long as the model is at least of similar quality (i.e. equivalent

likelihood of generating feasible and correct motion plans) as the models we tested.

4 CONDITIONS

In order to experimentally assess the contributions of assisted planning with C-LEARN, we conduct the user

study covering a range of methods representative of ieldable teleoperation techniques with increasing levels of

autonomy and enhanced perception. The set up for each condition is summarized in Figure 5. Examples of the

interface worklow, robot task execution and OCU room are shown in the accompanying video for all conditions.

Conditions A and B (Figure 5) are based on direct teleoperation using an imitation controller (IC) device

(Figure 1 Left). The IC is a passive device whose structure is a scaled kinematic replica of the robot, which enables

motion of the IC to be directly mapped to robot motion. We explore the use of the IC with two variants of

perception: (A) 2D perception and (B) 2D+3D perception, in which 3D perception consists of a view as described

in Figure 5. 2D Perception provides the following four 2D camera live views: one camera mounted on each

wrist of the robot, one on the base, and one on the head.

Conditions C and D are based on the teleautonomy interface, depicted in the screen views in Figure 5(c)(d).

We use the interface Director [21], an open-source user interface developed to pilot the Atlas robot in the DARPA

Robotics Challenge (DRC) Finals. Through this interface, the operator has access to a 3D representation of the robot

model and the robot’s environment (Figure 5). This 3D representation is displayed in a 2D monitor, similarly to

the 3D environment used in video games or other robot interfaces such as RVIZ from the Robot Operating System

(ROS). In the teleautonomy interface, we experiment with the following two planning worklows. Condition C

is based in end-efector teleoperation, in which the operator indicates the desired pose of the end efectors of

the robot by either manually dragging the virtual robot’s hands or by positioning virtual loating hands within

the 3D view in the interface. Condition D uses assisted planning based on C-LEARN[29], in which the system

displays to the operator a series of suggestions of motion plans automatically.

During motion execution in all methods, the low-level controller of the robot used position control in joint

angles space. The robot arms were connected to constant power in all runs to avoid the possibility of performance

diferences due to decreasing battery levels during the course of the study.

4.1 (Condition A) IC-based direct teleoperation + 2D perception:

During IC-based direct teleoperation, the operator manipulates the Imitation Controller device (IC) (Figure 1).

Joint angles from the IC are mapped directly to joint angles in the real robot, which executes the commanded

motion simultaneously with the IC. 2D Perception provides the following four 2D camera live views: one camera

mounted on each wrist of the robot, one on the base, and one on the head. Joint angles are streamed from the IC

ACM Trans. Hum.-Robot Interact.
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Fig. 5. View of the Operator Control Unit (OCU) room (let column), and the content displayed on the computer monitor for
each condition (right column):
Condition A: IC-based direct teleoperation + 2D perception;
Condition B: Condition A augmented with 3D perception;
Condition C: Teleautonomy interface teleoperation + 2D&3D perception;
Condition D: Condition C augmented with assisted planning.
The operator had no direct line of sight with the robot in any condition, and the situational awareness of the operator is
restricted to the perception feedback provided through the system. 2D perception is provided by four camera feeds located
on the top of the screen, and 3D perception is provided by the rendering of a 3D robot model, 3D point clouds, and rendered
3D virtual objects from pose estimation. The user interface is based on Director [21].

ACM Trans. Hum.-Robot Interact.
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to the robot at 10 Hz, and camera feed is streamed from the robot to the OCU screen at 15 frames per second

(fps). A view of the interface is shown in Figure 5(a).

This condition provides a ield benchmark, as it uses similar perception as in the systems ielded today for

real operations. In terms of the input device for teleoperation, ield operations use switches and joysticks to

control individual joints, but this methodology is used with three or four degrees of freedom (DoF) only. Similar

to the Imitation Controller, a Joystick device allows either position or velocity-based end efector control, but we

acknowledge that this method does not scale well with number of DoF, making the comparison unfair when using

a high DOF robot. We choose an IC as it provides an augmented sense of the position of the entire arms, enabling

the user to directly perform modiications per joint if desired (this could be done with a joystick but would

require mode change per joint). The IC allows human teleop on both end efector and joint space simultaneously,

an advantage that can be useful for high DoF arms, by enabling control of all joints or simply moving the end

efector of the IC and leaving all the IC joints accommodate accordingly.

4.2 (Condition B) Condition A augmented with 3D perception:

This condition consists of the same IC-based teleoperation implementation as in condition A, with the addition

of 3D perception. In addition to the live 2D views available in Condition A, 3D perception provides a live view

of the 3D point cloud being sensed by a rotating Hokuyo mounted on the head of the robot, and a visualization

of the robot model from sensed joint angles.

4.3 (Condition C) Teleautonomy interface teleoperation + 2D&3D perception

The teleautonomy interface enables the operator to command the robot through end efector teleoperation.

Unlike IC-based direct teleoperation, where the robot moves simultaneously with the motion of the IC input

device, teleautonomy has a two-step worklow of planning and execution. Motion plans are irst composed on

the interface and are executed on the real robot only after approval. The worklow for this condition is shown in

Figure 6.

The current state of the robot and the environment is represented on the 3D view. The operator speciies

a desired goal position and orientation of the end efectors of the robot. The goal can be speciied by either

dragging the hands of the robot on the interface or by locating a loating hand. After the goal is speciied, the

system automatically computes a motion plan for moving from its current coniguration to a coniguration that

satisies the requested end efector pose. The system produces a 3D animation of the computed motion plan,

which is shown overlapped with the 3D representation of the environment. The animation can be re-played by

the operator as many times as needed. The operator approves or rejects the motion plan. If approved, the motion

plan is sent to the robot for execution.

4.4 (Condition D) Condition C augmented with assisted planning:

This condition focuses on assisted planning, in which the robot automatically suggests a sequence of motion

plans to the operator. The worklow is illustrated in Figure 7. Given a start state, the operator clicks a button to

obtain the next motion suggestion. The suggestion is previewed in animation, in the same fashion as in condition

C. If the operator approves, the motion plan is sent to the robot for execution. This worklow illustrated in

Figure 7. Additionally, the operator is free to recur to the end efector teleoperation worklow (C) at any moment.

In this study, the motion recommendations are generated from a pre-learned model using C-LEARN [29]

(See Section 3). For the sake of uniformity, the pre-learned task models are the same for all participants, ruling

out performance diferences from the models themselves. While we reuse the same models, note that motion

suggestions are generated on-line by the model according to the current environment. Participants had not seen

in advance any motions that the robot would suggest for each task.

ACM Trans. Hum.-Robot Interact.
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Fig. 6. Workflow for end efector teleoperation in the teleautonomy interface. Available in conditions C and D.

Fig. 7. Workflow for assisted planning. Condition D.

Unlike IC-based teleoperation (conditions A and B), where there is simultaneous motion as the robot tracks

the IC commands, in the teleautonomy interface (conditions C and D), motion plans are irst elaborated and

previewed on the interface and then sent to the robot for execution upon approval from the operator. Both C

and D use the same optimization-based motion planner [6] [29], available in Drake [35], which uses the solver

SNOPT [7]. The diference depends on the source of the goal speciication (operator vs. automatic).

Note that Director is used for 3D perception on Conditions B, C and D. In B, Director afords only visualization,

while in C and D it afords visualization and interaction for robot control. In Condition C, the operator uses the

visualization of the sensor data (point cloud and virtual objects) as a reference to specify the desired position of

the end efectors. In assisted planning in D, the robot computes automatically the goal of the end efectors with
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respect to frames in the objects, which are obtained from the same perception subsystem. The perception-based

pose estimation of objects is the same in both conditions.

5 USER STUDY DESIGN AND PROTOCOL

A within-subjects study with an expert population in robot telemanipulation was conducted to evaluate the

performance of four interfaces in three manipulation tasks. We collected objective performance data during the

task executions and subjective performance and satisfaction metrics with a number of surveys. The study was

conducted over the course of two days per participant. This time permitted extensive training per condition and

frequent breaks. All participants executed three Tasks (T1, T2 and T3) in all four Conditions (A,B,C,D) during two

successful Trials of each task, for a total of 24 runs per participant, and 288 runs in the complete user study. Each

trial used the same initial pose of the robot and the same start position and orientation of the objects involved in

each task. Each participant followed the protocol outlined in Figure 8(middle). The study protocol and consent

form were approved by the Institutional Review Board of the Massachusetts Institute of Technology.

5.1 Participants and Assignment Method

The study was conducted with a total of 12 participants (11 males, 1 female, aged 24-41, M=30.83, SD=4.82),

recruited from an expert population with domain expertise and practical experience with remote robot

control. A summary of the self-reported expertise collected on the initial survey is presented in Figure 8(right).

The expertise level of the participants is divided in the following two groups:

ONR: 6 participants (5 males, 1 female, aged 30-41, M=34.17, SD=4.36) with domain expert knowledge in

the area of EOD. The ONR group was recruited in collaboration with the Oice of Naval Research (ONR).

In particular, 3 of the participants in this group are professional EOD technicians. This group has extensive

expertise in joint-by-joint teleoperation (primarily using switches and joysticks) of low-DOF robots (e.g.,

iRobot Packbot [38], Foster-Miller Talon) using 2D perception only (from on-board cameras). This group is

professionally trained to execute complex telemanipulation tasks under time pressure and safety concerns

as required in EOD.

DRC: 6 participants (6 males, aged 24-30, M=27.5, SD=2.35) with domain expertise in Robotics. The

DRC group was recruited from operators that participated in the DARPA Robotics Challenge (DRC). This

Fig. 8. Manipulation tasks (let). Study protocol flow diagram (middle). Participants’ information as self-reported in the
initial survey (right).
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group has experience in remote control of high-DOF robots (e.g., Atlas robot by Boston Dynamics), with 3D

perception through the user interface Director [21]. This group is trained to execute telemanipulation tasks

under time pressure as required for the DRC competition.

While both expertise groups have an average of over 200 hours of experience in remotely controlling robots,

they are diferent in terms of the types of interface they most commonly use. The ONR group is more experienced

with direct teleoperation devices, whereas the DRC group is more familiar with computer-interface based

teleoperation.

The order in which participants of each expertise group (DRC and ONR) experienced the four conditions

was selected using a 4x4 Latin square. For each group, 4 participants completed one 4x4 Latin square, and the 2

remaining were assigned a random row. The Latin squares of each expertise group were counter-balanced. A

manipulation check over task time showed no signiicance for the efect of the order in which conditions were

experienced (� = 0.34).

5.2 Tasks

In each condition (randomized), three tasks (Figure 8(left)) were executed in the same sequential order (not

randomized). We designed the tasks to be ordered in increasing order of diiculty, according to previous experi-

mentation, and to cover a variety of important manipulation skills: grasping, transport, precise positioning of

hands, constrained motion, bimanual manipulation, and reaching into conined spaces.

Task 1 (T1): Grasp the cylinder at the left, transport it, and release the cylinder inside a container. This

task requires only one arm.

Task 2 (T2): Grasp the handle at the right side to secure the box, grasp the cylinder at the left, and extract

the cylinder. This task requires dual arm manipulation with simultaneous contact with the same structure

and satisfaction of constraints in motion (cylinder extraction).

Task 3 (T3): Grasp the door handle (rope) at the left, open the cabinet (articulated object), release the

door handle, reach inside the cabinet at the right side, and push a button to turn on a light. This task requires

dual arm manipulation and reaching into a conined space.

5.3 Training

Participants were trained for each condition immediately before the test time in that condition. No time limit was

assigned for training sessions to enable participants to achieve the expected level of proiciency before proceeding

with the test tasks. All participants had a guided training session, during which the same instructor provided the

same sequence of technical instructions interleaved with practice time for each concept or technique involved.

Following the same sequence of instructions with all participants resulted in consistent training interaction and

timing across participants. After the guided training session, participants practiced using all capabilities in the

interface to execute a training task. Participants were allowed to proceed to the test session after being able to

execute the training task successfully without technical errors in the use of the interface and having expressed

feeling comfortable with it. The training task consisted of grasping, transporting, and releasing a cylinder over a

table. The task was practiced with both arms, and the objects were located so that motions had to take place in a

region of the workspace similar to the one used in the test tasks. During training, participants had available live

video feedback of the robot room from cameras external to the robot with the purpose of facilitating training.

6 METRICS AND STATISTICAL MODELS

We investigate and compare the performance of Conditions A, B, C and D through a number of objective and

subjective metrics. The metrics and statistical models used for analysis are summarized in Table 1 and described

below.
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Table 1. Metrics and statistical models

Metric Deinition Model

Total Task Time Total task time spans the time from the moment the operator takes
control of the interface to the moment the task is accomplished

GLME with Gamma distribution (logarithmic
link)

�� ∼�����+

(��������� ∗ ��������� )+

(��������� ∗���� )+

(���� ∗ ��������� )+

(1 |��� ����_�� )

(1)

Object of Interest
(OOI) Moved

Number of times (count) the robot moved the OOI (manipulation target)
outside the task instructions. For example, due to undesired displace-
ments during pushing or lifting.

GLME with Poisson distribution

�� ∼����� +���������+

��������� +����+

(1 |��� ����_�� )

(2)Collisions with
Other Objects

Number of times the robot came into unintended contact with objects
other than the OOI.

Collisions with OOI Number of times the robot came into unintended contact with the object
of interest.

Re-grasps Number of times the operator reattempted the same grasp. For example,
the operator commanded the hand to close with the intention of grasping
an object, but the hand closed in free space due to incorrect positioning
of the end efector and the grasp had to be re-attempted.

GLME with Poisson distribution

�� ∼����� +���������+

���������+

(1 |��� ����_�� )

(3)

Full Grasps Vs. Tip
Grasps

Every grasp was classiied into two categories. Full grasps are deined as
stable grasps where the object is in contact with the palm of the hand
and all three ingers achieved closure. A tip grasp is deined as a grasp
that held the object but failed to satisfy the full grasps conditions.

GLME with binomial distribution (logarithmic
link)

�� ∼����� +���������+

��������� +����+

(1 |��� ����_�� )

(4)

NASA Task Load In-
dex (TLX)

Mental Demand, Physical Demand, Temporal Demand, Efort and TLX
Total Score as deined by the NASA Task Load IndeX [8], resulting in
seven scores in the continuous range 0-100 (bounded).

GLME with binomial distribution

�� ∼(��������� ∗ ��������� )+

(��������� ∗���� )+

(���� ∗ ��������� )+

(1 |��� ����_�� )+

(1 |���_�� )

(5)

HRI Metrics in Post-
Condition Survey

Likert Scale questions are grouped in six categories (see Table 2): Robot
teammate traits[9], Working Alliance ś Bond Subscale[12] [9], Working
Alliance ś Goal Subscale [12] [9], as well as custom metrics for Manipu-
lation, Perception, and Satisfaction. The response range is 1-7 (discrete),
and the model assumes the observed discrete numbers are a proxy for
the underlying continuous (and unbounded) scale.

Linear Mixed Efect Models

�� ∼(��������� ∗ ��������� )+

(��������� ∗���� )+

(���� ∗ ��������� )+

(1 |��� ����_�� )

(6)

Condition Ranking
in Post-Experiment
Survey

After completing the study, participants were asked to rank all condi-
tions according to their preferences regarding nine performance-related
aspects and one overall inal ranking

Ordinal cumulative link mixed model
�� ∼(��������� ∗ ��������� )+

(1 |��� ����_�� )
(7)

6.1 Independent variables (IV)

Condition (interfaces A, B, C and D as categorical variable); Task (Tasks T1, T2 and T3 as categorical variable);

Expertise (Expertise levels DRC and ONR as categorical variable); Trial (Trial number Trial 1 and Trial 2 as

categorical variable); SubjectID (Subject identiier 1 to 12 as categorical variable).
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6.2 Dependent variables (DV)

Objective metrics: Total Task Time, OOI moved, Collision with OOI, Collision with other objects, Full

Grasps Vs. Tip Grasps, Regraps).

Subjective metrics: seven TLX scores, seven HRI scores, ten inal Condition Rankings).

See Table 1 for the deinition of each metric.

6.3 Models

The efect of the IVs considered in this study on each DV is determined by itting a mixed efect model

individually for each DV. Each model included random efects of the factor SubjectID with a random intercept

(1|��� ������), to account for diferent responses per subject according to their baseline level. Each model tested

the ixed efects of Condition, Task, Expertise, Trial for main efects, simple efects, and 2-way interactions when

pertinent, as detailed below. Holm adjustment was applied to the models [11]. Table 1 describes each model 1 and

equation using the Wilkinson notation [37].

For Total Task Time, we hypothesized the following efects: main efect of Trial to account for the learning

efect of using the same interface in the same task during the two trials; 2-way interaction for (��������� ∗

���������) to account for time performance diferences in the same condition between participants from the

ONR and DRC groups; interaction for (��������� ∗����) to account for a given condition enabling a level of

dexterity in a speciic manipulation skill present in one task but not others that resulted in time performance

diferences; (���� ∗ ���������) to account for possible previous expertise causing a time performance diference

across diferent tasks. Three-way interactions were not hypothesized, and no signiicance was found when tested.

This model is represented in Eq.1 in Table 1.

The data of Total Task Time exhibited strong heteroscedasticity. We used a generalized linear mixed efect

model with a gamma distribution (logarithmic link) to account for this heteroscedasticity.

For all other objective metrics ś OOI moved, Collision with other objects, Collision with OOI (Eq.2

in Table 1), Re-graps (Eq.3 in Table 1), and Full/Tip Grasps (Eq.4 in Table 1) ś we hypothesized the main

efects of Trial for potential learning efects, Task to account for diferent geometries changing the likelihood of

diferent events, Condition to account for the interface, and Expertise to account for performance diferences due

to pre-existent skills. For the Re-grasps metric, the factor Task was removed due to non-convergence (Eq.3).

The metrics OOI moved, Collision with other objects, Collision with OOI (Eq.2), and Re-graps (Eq.3)

were itted individually using a generalized linear mixed efect (GLME) model with a Poisson distribution to

model counts. The metric Full/Tip Grasp was modeled with a generalized linear efect model with a binomial

distribution (logarithmic link), which enables use of the counts of Full and Tip Grasps to model the probability of

a Full grasp (Eq.4).

Since the objective metrics other than Time consider discrete events that occur sparsely during a task run,

it’s unlikely to observe signiicance for interaction terms from this data. Thus, two-way interactions were not

hypothesized and tested not signiicant when checked.

For theNASATask Load Index (TLX) [8], we hypothesize the existence of two-way interactions for the factors

Condition, Expertise and Task. Note that Trial is not a factor because the TLX questionnaire was administered

only after participants inished the second trial of each task. The model results in the equation Eq.5 in Table 1.

We it a generalized linear mixed model with a binomial distribution to each of the seven scores (range 0-100).

For the HRI Metrics in Post-Condition Survey (see questionnaire on Table 2), we it a linear mixed model

to each group with the equation Eq.6 in Table 1. We also report the Cronbach’s � measure of consistency for

each group.

1Statistical support was provided by the Institute for Quantitative Social Science, Harvard University.
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For the Condition Ranking in the in Post-Experiment Survey, we it an ordinal cumulative link mixed model

was it to each ranking question. We hypothesized a 2-way interaction of Condition and Expertise. Note that Task

and Trial are not factors for this model because this information was queried by the end of the user study. The

model uses the equation Eq.7 in Table 1.

Data analysis was performed using R (R version 3.4.2) using custom code and R packages lsmeans_2.25,

ordinal_2015.6-28, ggplot2_2.2.1, efects_4.0-0, optimx_2013.8.7, robustlmm_2.1-3, nlme_3.1-131, lattice_0.20-35,

lmerTest_2.0-33, car_2.1-5, lme4_1.1-14. No treatment for outliers was performed.

7 RESULTS OF THE STATISTICAL ANALYSIS

In this Section we present the key insights into the numerical results from the statistical analysis for all objective

and subjective metrics. Each result is identiied as �� to facilitate cross reference in the analysis presented in

Section 8.

Results for each metric are accompanied by a summary Figure that presents (1) a bar plot for the metric

response per condition (expected values listed numerically) with error bars (Standard Error); (2) tables with

the p-values from condition contrasts (e.g. ���������� vs ��������� � for the same factor level and ����������
vs ���������� across diferent levels), and (3) analysis of deviance table, indicating which model factors were

signiicant for main efects and interactions. Each plot shows an arrow indicating the ideal directionality of the

y-axis variable.

7.1 Objective Metrics

Total Task Time (See Fig.9)

How do Conditions A, B, C and D compare?

Table 2. HRI questions in post-condition survey

Robot Teammate Traits:
"The system was intelligent"
"The system was trustworthy"
"The system was committed to the task"

Working Alliance ś bond subscale:
"I felt physically uncomfortable using the system" (reverse)
"The system and I understand each other"
"The system and I respect each other"

Working Alliance ś goal subscale:
"The system perceives accurately what my goals are"
"The system does not understand what I am trying to accomplish" (reverse)
"The system and I are working towards mutually agreed upon goals"
"I ind the system’s actions confusing" (reverse)

Manipulation:
"How conident were you in your ability to move the robot’s arm to a desired location?"
"How well did the robot’s motion match your intended motion?"
"I was easily able to manipulate objects that were in close proximity to other objects"
"I was easily able to control the robot and objects held in free space"
"I was able to move the robot’s arm accurately and precisely"
"The robot did what I wanted"
"I was able to accomplish the task quickly"

Satisfaction:
"I was satisied by my performance"
"I would use this system the next time the task were to be completed"
"For this task, I would recommend to use this condition in the ield"
"How would you rate your overall experience"
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Fig. 9. Total Task Time. Top chart: Time per Condition per Task averaged over all Expertise and Trial levels. Botom chart:
Time per Condition per Expertise levels averaged over all Task and Trial levels. Error bars show the Standard Error (SE).
The tables summarize the p-values from condition contrasts next to the corresponding plot.
The Analysis of Deviance Table shows the significance of the factors in the model. The arrows show the ideal directional of
the y-axis variable. For example, faster task times are beter.

R1: D was signiicantly faster than C for all task (� < 0.0001) and expertise (� < 0.0001) groups.

R2: D total time is within a range comparable to teleoperation A and B with no signiicant diference

(Fig.9). The expected means follow the relation � < � < � for all tasks and expertise levels except for T3

where � > � with no signiicant diference (� = 0.6316).

R3: C took more time than A,B, and D for all tasks and expertise groups (� < 0.0001).
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Fig. 10. Objective metrics. Error bars show the Standard Error (SE). The tables summarize the p-values from condition
contrasts for each metric. The Analysis of Deviance Table shows the significance of the factors in the model.

R4: Expected mean time of A is lower than B for all task (�1,�2 : � < 0.0001;�3 : � = 0.0033) and

expertise levels (��� : � < 0.0001,��� : � = 0.0015).

How does Condition interact with Expertise and Task?

R5: The results show a signiicant two-way interaction forCondition*Expertise (�� (> �ℎ���) = 0.0009).

The bottom chart in Fig.9 shows the Task Time per Condition per Expertise levels, averaged over all Task and

Trial levels. C is the only condition that experimented a signiicant Task Time 2-way interaction between the

ONR and DRC expertise groups, taking and expected mean increase of 1.72 for the ONR group (� = 0.0035)

(Fig.9 bottom). This performance diference might be attributable to the previous experience in controlling

robots through a computer interface by the DRC group.

R6: However, while using the same computer interface as in C, condition D resulted in no signiicant

time diference between the two expertise groups (� = 0.3858) (Fig.9 bottom), providing evidence that
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Table 3. Significance of the model factors for the TLX Metrics

assisted planning makes complex interfaces more accessible to diferent training backgrounds. Similarly,

for direct teleoperation conditions A and B, Expertise resulted in no signiicant diferences in performance

(� : � = 0.0745;� : � = 0.5887).

R7: The results show signiicant two-way interactions for the pairs Condition*Task (�� (> �ℎ���) =

0.0046). The top chart in Fig.9 shows the Task Time per Condition per Task, averaged over all Expertise

and Trial levels. For interface conditions (C,D), total time followed �1 < �2(�, � : � < 0.0001), and

� 2 < � 3(� : � = 0.0059;� : � = 0.0191), while direct teleoperation conditions (A,B) resulted in � 1 < � 3(� :

� < 0.0001;� : � = 0.0044), and � 3 < � 2(� : � = 0.3433;� : � = 0.0665).

Is there a learning efect between trials of the same task?

R8: The second trial resulted in faster times than the irst trial when averaged across all expertise and

task levels � < 0.0001. We attribute this result to a learning efect on how to execute a particular task using a

particular interface. However, a manipulation check with respect to total task time showed that this learning

efect was not signiicant across conditions (� = 0.34), meaning the learning efect of task � with interface

� did not carry over to task � with interface � .

OOI-Moved, Collisions OOI, Collisions Other objects & Grasping (See Figure 10)

R9: In addition to Task Time, the rest of objective metrics showed beneits of using Condition D over the

other method. The expected rate of OOI-Moved decreased as� > � > � > � . The rate for D is signiicantly

lower than for both of the direct teleoperation (� : � = 0.0043;� : � = 0.0188). The rate of Collision-OOI

for D is signiicantly lower than all conditions (� : � = 0.0478;� : � = 0.0038;� : � = 0.0021). The rate of

Collisions-Others for interface condition D is signiicantly lower than both of the direct teleoperation

conditions and the other interface condition C (� : � = 0.0478;� : � = 0.0038;� : � = 0.0021). For the

grasping metrics, the expected re-grasp rate diference between A and B was not detectable (p=1.000),

whereas for interface conditions D had a smaller rate than C (� = 0.0423). The expected probability of a full

grasp (vs. tip grasp) follows the trend � > � > � > �, with D signiicantly higher than A (� = 0.0371).

7.2 Subjective Metrics

NASA Task Load Index (TLX) (See Figure 11 and Table. 3 )

How does the Total Score compare for conditions A, B, C and D?
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Fig. 11. Nasa TLX. Model fit for NASA TLX scores per expertise group.

R10: The expected TLX metrics score of D was signiicantly better than in conditions A, B and C for

both DRC and ONR expertise levels (see AD, BD and CD contrasts p-values in Figure 11).

Physical demand of IC-based direct teleoperation
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Table 4. Significance of the model factors for the HRI Metrics

R11: A and B resulted in signiicantly higher physical demand when compared to both computer-based

interfaces (C and D) for both expertise groups (� < 0.0001).

Interaction between Condition and Expertise

R12: A number of TLX metrics had a signiicant 2-way interaction. TLX Total Score (�� (> �ℎ���) =

0.024559): Both IC-based teleoperation conditions (A and B) had signiicant diferences between the DRC

and ONR groups (A: p=0.144; B: p=0.0267) with a better score in the ONR group, whereas the computer

interface conditions (C and D) did not result in signiicant diferences per expertise group. The expected

total score follows the relation � < � < � < � for the DRC group, and � < � < � < � for the ONR

group (a lower score is better). Frustration level had signiicantly better scores for the ONR group for all

conditions, as well as temporal demand, and performance (see Fig.11).

HRI Metrics in Post-Condition Survey (See Figure 12 and Table 4)

R13: The expected mean score of condition D is better than in all other conditions and expertise levels in

all the HRI metrics of the post-condition assessment, and participants rated D signiicantly better than the

other methods for a number of the HRI scales in the diferent expertise groups, as detailed in the contrast

p-values (AD, BD and CD) in Figure 12. The Cronbach’s � of each subscale is also reported in Figure 12,

with Robot Traits, Goal Subscale, Manipulation, and Satisfaction obtaining the highest values in the range

0.72 to 0.93.

Condition Ranking in Post-Experiment Survey (See Figure 13)

R14: The Cronbach’s � consistency measure among all requested rankings is 0.8694. In the ONR group,

the Overall inal ranking showed no signiicant diference between B and D (� = 0.4283), both of which

ranked better than A (� : � = 0.0003;� : � = 0.0638) and C (� : � < 0.0001;� : � = 0.0035). In the DRC

group, B, C and D had no signiicant diference, ranking better than A.

8 ANALYSIS AND DISCUSSION OF RESULTS

The monotonic trade-of between task time and motion accuracy as human-robot co-activity increases

can be reversed with assisted planning: The use of assisted planning in condition D resulted in total task

times comparable to both IC-based direct teleoperation conditions A and B for all tasks and expertise levels

(R2), whereas condition C resulted in signiicantly longer task times than all other conditions (R3). While D

times are comparable to A and B, all other objective metrics were improved by D (R9), showing an objective
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Fig. 12. HRI Metrics. Six Likert Scales (1-7 response range) from Post-condition survey. We fit a linear mixed model to each
group and report the p-values of the condition contrasts intra- and inter- expertise groups, as well as the Cronbach’s �
measure of consistency. Error bars show the Standard Errors.

improvement over the overall goal of the operator (to prioritize accuracy while minimizing task time). This result

has implications for the previous understanding of a monotonic trade-of between execution speed and motion

accuracy when moving from pure teleoperation to models of human-robot collaboration that increase the level of

co-activity according to the skills of each agent. In particular, assisted planning in D does in fact achieve task
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Fig. 13. Condition Rankings from Post-Experiment Survey. Error bars show the Standard Errors.

times comparable to teleoperation while improving accuracy (instead of improving accuracy at the cost of slower

task times).

Increased robot autonomy removes interaction efect of task time with expertise: Even though C and

D use the same computer interface, total task time in C had a signiicant 2-way interaction of task time with

expertise (DRC vs. ONR) that D did not exhibit (R5 and R6), indicating that the use of assisted planning resulted

in a performance equalizer between the two expertise groups. Task time in IC-based conditions A and B did not

experience signiicant variations for expertise groups, possibly due to the intuitiveness aforded by the IC. This

result has implications for the deployment of these systems in real high-intensity domains, where experts from

diferent ields often come together to work on a given situation.

Task diiculty interacts with interface type: Task diiculty for each task (T1, T2 and T3), as measured by
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Task Time, resulted in a diferent ordering for IC-based conditions (A and B) than for teleautonomy conditions (C

and D). The results show that task time followed the relation �1 < �2 < �3 in C and D, whereas it followed

� 1 < � 3 < � 2 in A and B (R7). This interaction indicates that diferent manipulation maneuvers present diferent

levels of diiculty in the computer interface than in teleoperation with the IC.

Total task time is heteroscedastic: The data on Total Task Time exhibited strong heteroscedasticity, which

shows that the variance of the total time increases as a function of increasing time. The inding of larger variability

for longer runs indicates diminishing performance predictability for longer runs, possibly due to supervening

circumstances in a particular task run or the dexterity of the operator.

Task learning efect doesn’t transfer across diferent interfaces: The main efect of Trial over task time

was signiicant (�����2 < �����1, � < 0.0001), showing a learning efect for a given task on a given condition (R8).

However, users did not become faster at a certain task as they repeated it in diferent conditions throughout the

course of the experiment (manipulation check (� = 0.34)).

The addition of 3D perception in teleoperation resulted in longer task times, while the expected

higher accuracy was not signiicant: The addition of 3D perception in IC-based direct teleoperation conditions

resulted in a total time increase in B with respect to A (R4). The expected beneits of the 3D perception on the

improvement of the other metrics related to manipulation accuracy did not result in signiicant changes in A

vs. B. TLX scores are favorable to A but not signiicantly, possibly due to the workload associated with the

management of the 3D view in B. Operators reported in the section for open comments that the addition of

the 3D view in teleoperation was very informative. However, this addition did not result in observable beneits,

possibly hindered by the complexity of adjusting the 3D view while operating the IC.

TLX metrics show a decrease in workload for assisted planning: Subjective metrics for task workload

(TLX) and human-robot collaboration are favorable to D in all categories (R10). Computer interfaces show

signiicantly lower physical demand than IC-based teleoperation conditions (� < 0.0001), also indicating that

other teleoperation approaches based on body motion should be evaluated in light of this metric.

9 CONCLUSIONS

This paper presents an experimental assessment of a human-robot teaming model based on assisted planning for

multi-step remote manipulation that leverages learned task models [29] to compute and suggest motion plans

to the operator. We compare this system with three established models: direct teleoperation with 2D and 3D

perception and teleoperation based on a 3D user interface. The study replicated real ield conditions as much as

possible; all aspects of the system were implemented end-to-end (perception, planning, controls, communications,

user interfaces), and no Wizard of Oz technique was used. The study was conducted with an expert population in

teleoperation of mobile manipulators. The following are three main results of the study: (1)Assisted planning

achieved task times comparable with direct teleoperation through an imitation controller, while improving task

time signiicantly over using the same interface without the assisted planning component. (2) Additionally, it

improved a number of objective (e.g. grasp quality, collisions, regrasp), subjective metrics (NASA TLX [8] and

HRI metrics [12] [9] [10]). (3) The use of end efector teleoperation through the 3D user interface had a signiicant

interaction with the previous expertise of the users. The addition of assisted planning (motion suggestions from

the robot), while using the same interface, removed this interaction, resulting in a performance equalizer across

users.
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There are limitations inherent to this assisted planning approach. The discrete nature of the planning-and-

execution worklow makes it suitable for quasi-static scenes and not for dynamic scenes, in which teleoperation

(if done without time delay) would still allow more lexibility. Similarly, using a pre-learned task model limits the

system to work with known tasks and objects, a challenge that could be further explored by using task models

that can adapt on-line to variations beyond novel positions and orientations. The results of this study strongly

support the advantages of assisted planning, validating the need for further research to increase the capabilities

of the underlying models to be more lexible, generalizable, and adaptive in an intuitive and on-line fashion.

Finally, the protocol design, tasks, metrics and statistical modelsmight serve as guidance for other benchmarking

studies in teleoperation and manipulation, whether it involves human users in the loop or comparison of machine

learning models for autonomous manipulation.

REFERENCES
[1] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A survey of robot learning from demonstration. Robotics

and Autonomous Systems 57, 5 (2009), 469 ś 483.

[2] Mark H. Burstein, Bolt Beranek, Newman Inc, and Drew V. Mcdermott. 1996. Issues in the development of human-computer mixed-

initiative planning. In Cognitive Technology. Elsevier, 285ś303.

[3] Daniel W Carruth and Cindy L Bethel. 2017. Challenges with the integration of robotics into tactical team operations. In Applied

Machine Intelligence and Informatics (SAMI), 2017 IEEE 15th International Symposium on. IEEE, 000027ś000032.

[4] Jessie YC Chen, Ellen C Haas, and Michael J Barnes. 2007. Human performance issues and user interface design for teleoperated robots.

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37, 6 (2007), 1231ś1245.

[5] Anca Dragan and Siddhartha Srinivasa. 2012. Formalizing Assistive Teleoperation. In Robotics: Science and Systems.

[6] Maurice Fallon, Scott Kuindersma, Sisir Karumanchi, Matthew Antone, Toby Schneider, Hongkai Dai, C. Pérez-D’Arpino, Robin Deits,

Matt DiCicco, Dehann Fourie, Twan Koolen, Pat Marion, Michael Posa, Andrés Valenzuela, Kuan-Ting Yu, Julie Shah, Karl Iagnemma,

Russ Tedrake, and Seth Teller. 2015. An Architecture for Online Afordance-based Perception and Whole-body Planning. Journal of

Field Robotics 32, 2 (2015), 229ś254.

[7] Philip E Gill, Walter Murray, and Michael A Saunders. 2002. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM

journal on optimization 12, 4 (2002), 979ś1006.

[8] Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical

research. Advances in psychology 52 (1988), 139ś183.

[9] Guy Hofman. 2013. Evaluating luency in human-robot collaboration. In International conference on human-robot interaction (HRI),

workshop on human robot collaboration, Vol. 381. 1ś8.

[10] Guy Hofman. 2019. Evaluating Fluency in HumanśRobot Collaboration. IEEE Transactions on Human-Machine Systems 49, 3 (2019),

209ś218.

[11] Sture Holm. 1979. A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics (1979), 65ś70.

[12] Adam O Horvath and Leslie S Greenberg. 1989. Development and validation of the Working Alliance Inventory. Journal of counseling

psychology 36, 2 (1989), 223.

[13] Siddarth Jain, Ali Farshchiansadegh, Alexander Broad, Farnaz Abdollahi, Ferdinando Mussa-Ivaldi, and Brenna Argall. 2015. Assistive

robotic manipulation through shared autonomy and a Body-Machine Interface. In Rehabilitation Robotics (ICORR), 2015 IEEE International

Conference on. 526ś531.

[14] Shervin Javdani, Siddhartha Srinivasa, and J. Andrew (Drew) Bagnell. 2015. Shared Autonomy via Hindsight Optimization. In Proceedings

of Robotics: Science and Systems. Rome, Italy.

[15] Hong Jun Jeon, Dylan Losey, and Dorsa Sadigh. 2020. Shared Autonomy with Learned Latent Actions. In Proceedings of Robotics: Science

and Systems (RSS).

[16] Matthew Johnson, Brandon Shrewsbury, Sylvain Bertrand, Duncan Calvert, Tingfan Wu, Daniel Duran, Douglas Stephen, Nathan

Mertins, John Carf, William Rifenburgh, Jesper Smith, Chris Schmidt-Wetekam, Davide Faconti, Alex Graber-Tilton, Nicolas Eyssette,

Tobias Meier, Igor Kalkov, Travis Craig, Nick Payton, Stephen McCrory, Georg Wiedebach, Brooke Layton, Peter Neuhaus, and Jerry

Pratt. 2017. Team IHMC’s Lessons Learned from the DARPA Robotics Challenge: Finding Data in the Rubble. Journal of Field Robotics

34, 2 (2017), 241ś261. https://doi.org/10.1002/rob.21674

[17] Kirsten E Kaplan, Kirk A Nichols, and Allison M Okamura. 2016. Toward human-robot collaboration in surgery: performance assessment

of human and robotic agents in an inclusion segmentation task. In Robotics and Automation (ICRA), 2016 IEEE International Conference

on. IEEE, 723ś729.

ACM Trans. Hum.-Robot Interact.

https://doi.org/10.1002/rob.21674


Experimental Assessment of Human-Robot Teaming for Multi-Step Remote Manipulation with Expert Operators • 25

[18] Sisir Karumanchi, Kyle Edelberg, Ian Baldwin, Jeremy Nash, Jason Reid, Charles Bergh, John Leichty, Kalind Carpenter, Matthew Shekels,

Matthew Gildner, David Newill-Smith, Jason Carlton, John Koehler, Tatyana Dobreva, Matthew Frost, Paul Hebert, James Borders,

Jeremy Ma, Bertrand Douillard, Paul Backes, Brett Kennedy, Brian Satzinger, Chelsea Lau, Katie Byl, Krishna Shankar, and Joel Burdick.

2017. Team RoboSimian: Semi-autonomous Mobile Manipulation at the 2015 DARPA Robotics Challenge Finals. Journal of Field Robotics

34, 2 (2017), 305ś332. https://doi.org/10.1002/rob.21676

[19] O. Khatib, X. Yeh, G. Brantner, B. Soe, B. Kim, S. Ganguly, H. Stuart, S. Wang, M. Cutkosky, A. Edsinger, P. Mullins, M. Barham, C. R.

Voolstra, K. N. Salama, M. L’Hour, and V. Creuze. 2016. Ocean One: A Robotic Avatar for Oceanic Discovery. IEEE Robotics Automation

Magazine 23, 4, 20ś29.

[20] Eric Krotkov, Douglas Hackett, Larry Jackel, Michael Perschbacher, James Pippine, Jesse Strauss, Gill Pratt, and Christopher Orlowski.

2017. The DARPA Robotics Challenge Finals: Results and Perspectives. Journal of Field Robotics 34, 2 (2017), 229ś240. https:

//doi.org/10.1002/rob.21683

[21] Pat Marion, Maurice Fallon, Robin Deits, Andrés Valenzuela, C. Pérez-D’Arpino, Greg Izatt, Lucas Manuelli, Matt Antone, Hongkai Dai,

Twan Koolen, John Carter, Scott Kuindersma, and Russ Tedrake. 2017. Director: A User Interface Designed for Robot Operation with

Shared Autonomy. Journal of Field Robotics 34, 2 (2017), 262ś280.

[22] Negar Mehr, Roberto Horowitz, and Anca Dragan. 2016. Inferring and Assisting with Constraints in Shared Autonomy. In Conference on

Decision and Control (CDC).

[23] Katharina Muelling, Arun Venkatraman, Jean-Sebastien Valois, John Downey, Jefrey Weiss, Shervin Javdani, Martial Hebert, Andrew

Schwartz, Jennifer Collinger, and Andrew Bagnell. 2015. Autonomy Infused Teleoperation with Application to BCI Manipulation.

Proceedings of Robotics: Science and Systems.

[24] Robin R Murphy. 2004. Human-robot interaction in rescue robotics. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews) 34, 2 (2004), 138ś153.

[25] Keiji Nagatani, Seiga Kiribayashi, Yoshito Okada, Kazuki Otake, Kazuya Yoshida, Satoshi Tadokoro, Takeshi Nishimura, Tomoaki Yoshida,

Eiji Koyanagi, Mineo Fukushima, and Shinji Kawatsuma. 2013. Emergency response to the nuclear accident at the Fukushima Daiichi

Nuclear Power Plants using mobile rescue robots. Journal of Field Robotics 30, 1 (2013), 44ś63. http://dx.doi.org/10.1002/rob.21439

[26] Kirk A Nichols, Adithyavairavan Murali, Siddarth Sen, Ken Goldberg, and Allison M Okamura. 2015. Models of human-centered

automation in a debridement task. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE, 5784ś5789.

[27] Kirk A Nichols and Allison M Okamura. 2016. A framework for multilateral manipulation in surgical tasks. IEEE Transactions on

Automation Science and Engineering 13, 1 (2016), 68ś77.

[28] Adam Norton, Willard Ober, Lisa Baraniecki, Eric McCann, Jean Scholtz, David Shane, Anna Skinner, Robert Watson, and Holly Yanco.

2017. Analysis of humanśrobot interaction at the DARPA Robotics Challenge Finals. The International Journal of Robotics Research

(2017), 483ś513. Issue 5-7.

[29] Claudia Pérez-D’Arpino and Julie A. Shah. 2017. C-LEARN: Learning Geometric Constraints from Demonstrations for Multi-Step

Manipulation in Shared Autonomy. In IEEE ICRA 2017.

[30] Daniel Rakita, Bilge Mutlu, Michael Gleicher, and Laura M Hiatt. 2019. Shared control based bimanual robot manipulation. Science

Robotics 4, 30 (2019).

[31] Brennan Sellner, Frederik W Heger, Laura M Hiatt, Reid Simmons, and Sanjiv Singh. 2006. Coordinated multiagent teams and sliding

autonomy for large-scale assembly. Proc. IEEE 94, 7 (2006), 1425ś1444.

[32] Thomas B. Sheridan. 1992. Telerobotics, Automation, and Human Supervisory Control. MIT Press, Cambridge, MA, USA.

[33] Eliza Strickland. 2014. Fukushima’s next 40 years. IEEE Spectrum 51, 3 (2014), 46ś53.

[34] Milind Tambe, Paul Scerri, and David V Pynadath. 2002. Adjustable autonomy for the real world. Journal of Artiicial Intelligence

Research 17, 1 (2002), 171ś228.

[35] Russ Tedrake. 2014. Drake: A planning, control, and analysis toolbox for nonlinear dynamical systems. (2014). http://drake.mit.edu.

[36] David Whitney, Eric Rosen, Elizabeth Phillips, George Konidaris, and Stefanie Tellex. 2020. Comparing robot grasping teleoperation

across desktop and virtual reality with ROS reality. In Robotics Research. Springer, 335ś350.

[37] G. N. Wilkinson and C. E. Rogers. 1973. Symbolic Description of Factorial Models for Analysis of Variance. Applied Statistics 22, 3 (1973),

392ś399.

[38] Brian M. Yamauchi. 2004. PackBot: a versatile platform for military robotics. In Proc. SPIE 5422, Unmanned Ground Vehicle Technology,

Vol. 5422. 228ś237.

[39] Holly A Yanco, Adam Norton, Willard Ober, David Shane, Anna Skinner, and Jack Vice. 2015. Analysis of human-robot interaction at

the DARPA robotics challenge trials. Journal of Field Robotics 32, 3 (2015), 420ś444.

ACM Trans. Hum.-Robot Interact.

https://doi.org/10.1002/rob.21676
https://doi.org/10.1002/rob.21683
https://doi.org/10.1002/rob.21683
http://dx.doi.org/10.1002/rob.21439
http://drake.mit.edu

	Abstract
	1 Introduction
	2 Survey of Related Approaches
	3 Assisted Planning Approach
	4 Conditions
	4.1 (Condition A) IC-based direct teleoperation + 2D perception:
	4.2 (Condition B) Condition A augmented with 3D perception:
	4.3 (Condition C) Teleautonomy interface teleoperation + 2D&3D perception
	4.4 (Condition D) Condition C augmented with assisted planning:

	5 User Study Design and Protocol
	5.1 Participants and Assignment Method
	5.2 Tasks
	5.3 Training

	6 Metrics and Statistical Models
	6.1 Independent variables (IV)
	6.2 Dependent variables (DV)
	6.3 Models

	7 Results of the Statistical Analysis
	7.1 Objective Metrics
	7.2 Subjective Metrics

	8 Analysis and Discussion of Results
	9 Conclusions
	References

