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ABSTRACT
As research and deployment of AI grows, the computational
burden to support and sustain its progress inevitably does
too. To train or fine-tune state-of-the-art models in NLP,
computer vision, etc., some form of AI hardware accelera-
tion is virtually a requirement. Recent large language models
require considerable resources to train and deploy, result-
ing in significant energy usage, potential carbon emissions,
and massive demand for GPUs and other hardware accel-
erators. However, this surge carries large implications for
energy sustainability at the HPC/datacenter level. In this
paper, we study the effects of power-capping GPUs at a
research supercomputing center on GPU temperature and
power draw; we show significant decreases in both temper-
ature and power draw, reducing power consumption and
potentially improving hardware life-span, with minimal im-
pact on job performance. To our knowledge, our work is the
first to conduct and make available a detailed analysis of the
effects of GPU power-capping at the supercomputing scale.
We hope our work will inspire HPCs/datacenters to further
explore, evaluate, and communicate the impact of power-
capping AI hardware accelerators for more sustainable AI.
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1 INTRODUCTION
Recent advances in the capabilities AI systems have delivered
stunning achievements ranging from realistic natural lan-
guage generation to facilitating drug discovery and winning
complex, strategic games—but not without cost. For exam-
ple, training large-scale NLP models can emit CO2 amounts
commensurate with the lifetime emission of up to five cars
[21]. Many of these models are commonly characterized by
having hundreds of millions of parameters or even more
(e.g., GPT-4, Stable Diffusion) sometimes requiring weeks to
months [17, 20, 23, 26] of training on specialized hardware
and petabytes of data to realize such impressive performance.
At the same time, these large-scale models are also seeing
widespread adoption and application from commercial usage
to non-traditional domains such as information retrieval and
drug discovery. If current trends continue, these models will
require ever-growing resources in the form of training data,
compute resources, time, and energy.
Along with training on large datasets, deploying models

can also require significant energy consumption. Models
like GPT-3/4 that power applications such as ChatGPT and
existing search engines can be a massive source of energy
use as millions of users use these tools daily. While large
language models (LLMs) are currently attracting significant
amounts of attention, considerable resources are also used to
power training and inference of various machine/deep learn-
ing systems in other domains with applications in object
recognition, recommendation engines, autonomous driving,
bio-informatics, etc. The race towards realizing further ad-
vances in AI has also spurred many large, key players to
construct new AI research supercomputing centers [1] with
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massive amounts of compute and storage geared towards en-
abling ever larger computational workloads for AI research.
The overall AI research ecosystem itself can also induce a
considerable carbon footprint aside from compute in the
form of travel (to/from conferences), concentration of con-
ference deadlines in warmer months, and more [28].

At the core of these intensive resource needs is the issue of
sustainability: these systems will not only continue to grow
in complexity and dimensionality to achieve increasingly
impressive milestones, but they will also see increasing pro-
liferation and adoption across various domains. These factors
can increasingly impact the climate, stressing the sustainabil-
ity of energy sources, as well as other resources, as the power
needs and carbon emissions of these systems grow. Therefore,
finding ways to enable optimal trade-offs between perfor-
mance, efficiency, and sustainability becomes a question of
first-order importance for the climate and the sustainability
of continued AI development. Substantial progress has been
made in improving model efficiency through techniques like
model pruning [27], model distillation [9], model sparsifica-
tion [10], quantization [4], and data-centric approaches that
can enable model training on smaller representative datasets
[18]. However, many of these approaches rely primarily on a
reduction in the size of the model or data which can require
specialized knowledge or significant modifications to the
training/deployment process.
One potential path for academic HPC and commercial

cloud datacenter operators to reduce AI’s energy consump-
tion at scale is to leverage the ability to limit the power drawn
by the hardware itself. In this vision paper, we present em-
pirical observations and a statistical analysis of the effect of
power capping GPUs at an academic supercomputing center
where we deployed a 60% power cap on GPUs. We show
that limiting the power used by GPUs across the datacenter
has the potential to reduce GPU energy consumption at the
datacenter while also reducing operating temperatures. We
argue that power-capping should be adopted in data cen-
ters to help extend the lifetime of hardware, amortize the
embodied carbon of data centers, and more.

2 PRIORWORK
The idea of power limiting hardware to realize energy effi-
ciency is not new and has been studied extensively. However,
to the best of our knowledge a significant amount of previous
work on studying the effect of power capping on hardware
performance has focused primarily on CPUs. For example,
[7] analyzed the effect of power caps on numerical applica-
tions and [15] developed a power capping architecture for
controlling the power consumption of large scale clusters.
[11] developed a power-aware algorithm to change CPU volt-
age and frequency to reduce power consumption while min-
imizing the impact on compute performance. [22] showed

that power capping resulted not only in lower hardware op-
erating temperatures but also had the effect of increasing the
mean time between failures. As GPUs have become widely
deployed for AI workloads, there has been a renewed interest
in studying the effect of power capping on GPU performance,
specifically with the goal of quantifying energy savings.

For example, [16] showed that pre-training the BERT [5]
model at 150W or 60% of peak power required 8.5% additional
compute time but saved 12.5% in energy consumed. Simi-
larly, [6] studied the performance of natural language mod-
els, computer vision models and graph neural networks and
showed that power limiting GPUs for AI workloads offers
an effective way for saving energy. Finally, [14] showed en-
ergy savings of at least 22% on two commonly used NVIDIA
GPU accelerators and also developed an optimizer for such
workloads. Meanwhile, other institutions have also experi-
mented with power capping GPUs in efforts to improve the
energy efficiency of their supercomputing resources; the Flat-
iron Institute [12] has experimented with lowering the peak
power GPUs of one of their clusters from 400W per GPU to
225W, saving energy while preserving 90% of performance.
However, these larger-scale experiments with power caps
and their effects, if performed, have not always been made
publicly available or received rigorous statistical analysis of
the results. Others [13] have examined the effects of power-
capping on a more limited scale, restricting their attention to
the effect of power-capping a single or handful of GPUs on
the efficiency and performance of a few deep vision models.
Finally, other works [2, 3] have taken a broader scope, ex-
amining themes such as flexible optimization of datacenters
in the face of climate change, renewable energy opportu-
nities, and the future implications of continued trends in
compute/carbon optimization.

3 DATA & METHODOLOGY
We conducted our experiments on the MIT Supercloud high-
performance computing (HPC) system [19]: a 7-petaflop het-
erogeneous system that consists of 224 Intel Xeon Gold 6284
nodes each with two NVIDIA Volta V100 GPUs with 32 GB
of RAM and 384 GB of system memory. Each node on the
system has two independent back-end fabrics: a 100 Gb/s
Intel Omnipath and a 25 Gb/s Ethernet interconnect using
Mellanox ConnectX-4 adapters with all servers connected to
a single, non-blocking Arista DCS-7516 Ethernet core switch.
The GPUs, Omnipath, and Ethernet cards are all connected to
PCIe slots that route directly to the Xeon processors without
any intermediary PCIe switches. The system also has 480
Intel Xeon Platinum 8260 nodes with 194 GB of RAM. This
system uses the Slurm scheduler for resource management.
Data was collected via Slurm for transparent, lightweight
and automated system monitoring. The scheduler provides
the ability to use a job prologue to start data collection and
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a job epilogue to terminate data collection at the end of a
job. All experiments exclusively used the 25 Gb/s Ethernet
interconnect and run exclusively on NVIDIA GPUs.

For each job that requested aGPU,we used the nvidia-smi
utility to collect fine-grained GPU utilization data on every
GPU allocated to a job. This monitoring data was collected
on a 100 ms interval. The data sample used for this analysis
was collected at a point shortly before system-wide imple-
mentation of power caps, consisting of a total of 123,204 GPU
jobs of which 19,676 were subject to power-caps and the re-
maining were not. Features include the job’s run-time and
the minimum, maximum, variance, average, and percentiles
of the job’s GPU utilization, GPU temperatures, power draw,
etc. over the job’s run time. We summarize the data used
in our analysis for some of the most relevant variables in
Table 1. Since each job is itself a multi-variate time-series
of different features relating to energy, utilization, etc., the
statistics in Table 1 are taken over the entirety of the job’s
runtime time series.

Our analysis focuses primarily on the job-level hardware
utilization due to user privacy concerns. The HPC cluster
consists primarily of V100 GPUs and a very limited num-
ber of A100s. Given the shared nature of the cluster and its
heavy utilization, it is difficult to vary power-cap levels too
frequently due to disruption risks for users of the system, lim-
iting our ability to systematically experiment with a wider
range of power-capping levels across all GPUs. As users of
the HPC cluster can run highly diverse workloads, detailed
collection of data on specific jobs can also be difficult given
low user response-rates to surveys and our desire to protect
user privacy.

Metrics Time (minutes) Util. (%) Temp. (C) Power (W)

mean 595.08 31.79 39.66 69.58
s.d. 1794.42 31.81 10.14 43.75
min 1.02 0.00 18.95 21.89
25% 20.58 0.26 32.00 34.05
50% 145.36 24.84 37.43 53.99
75% 610.42 55.88 45.12 94.70
max 65023.47 100.00 81.99 237.33

Table 1: Summary statistics of selected features/variables
relevant to all the jobs analyzed in this paper. “s.d.” denotes
the sample standard deviation while 25%/50%/75% denote the
25th, 50th, and 75th percentiles, respectively. “Time” refers
to job runtime in minutes, “Util.” refers to GPU utilization as
a percentage, “Temp.” to temperature in Celsius, and “Power”
to power draw in Watts.

4 RESULTS
With power caps implemented on a system-wide level, we
empirically observed improvements in energy usage espe-
cially via reduced power draw and temperatures of these

GPUs. At the same time, we found minimal impact on job
performance under these caps in a way consistent with oth-
ers [6, 12, 16]. While power-capping naturally reduces power
draw by design, the aggregate effect system-wide in the con-
text of overall energy consumption is less clear; for instance,
if users notice job performance degradation fromGPU power-
caps, they may request additional GPU-jobs to compensate,
negating any energy savings from power-capping in the first
place (or even worsening energy consumption).

As such, a more rigorous treatment and analysis of these
effects on power draw and temperatures across jobs can
help determine how effective power capping is to a degree of
statistical certainty. Doing so can help informwhether power
capping produced significant changes, different from random
chance, in improving energy sustainability and whether the
magnitude of said change is sufficient to be worth such an
intervention (i.e., implementing power caps) in the first place.

4.1 An Empirical Analysis of Power
Capping

Figure 1 and Figure 3 provide a bird-eye’s view of our em-
pirical observations on GPU temperatures and power draw
between power-capped and un-capped jobs. Figure 1 shows
the distributions of GPU temperatures from jobs with and
without GPU power caps across a range of percentiles. The
underlying data contains statistics of individual jobs that
track features throughout each job’s run; for instance, these
include the highest and lowest GPU temperatures and power
draw of each job, average and percentiles of GPU utilization
rates of each job, etc.
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Figure 1: Distribution of GPU temperatures (Celsius) from
jobs with and without power capping. Shown here are the
empirical distribution of average temperatures as well as
distributions of temperatures of the 10th, 50th, and 90th
percentiles across individual jobs with and without power
caps. Note that the y-axis for frequency is on log scale.

In Figure 1, we see that the power-capped jobs have lower
GPU temperatures than those on un-capped jobs across the
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whole distribution—both lower on average temperatures as
well as lower temperatures across the 10th, 50th, and 90th
percentiles. We also see from Figure 2 that the variance or
standard deviation of GPU temperatures, on average, is also
lower on power capped jobs when compared against un-
capped ones. In Figure 3, we see a similar trend for GPU
power draw which we expect—power capping decreases
power draw across the distribution. However, we also see in
Figure 4 a decline in average variance of GPU power draw
with power-capped jobs. These changes—decreases in tem-
perature and power draw across the distribution along with
more stable behavior in temperature and power draw fluctu-
ations (i.e., less variance)—under GPU power-capping may
hold implications for prolonging the lifespan of GPUs and
sustainable hardware strategies in the operational manage-
ment of HPC/data-centers.
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Figure 2: Distribution of average standard deviation of GPU
temperatures from jobs with and without power capping.
Shown here are the distribution of average standard devia-
tion ofGPU temperatures of individual jobswith andwithout
power caps. We note that power-capped jobs show a smaller
and more stable range of temperature fluctuations than un-
capped jobs.

4.2 Hypothesis Testing & Inference
We also attempt to quantify the effect size of reduced GPU
temperature and power draw more rigorously. The empirical
distributions show support for the hypothesis that, from the
samples collected for our analysis, GPU power capping is
associated with lower GPU temperatures and lower GPU
power draw on average. To help determine how significant
these temperature/power differences are between power-
capped and un-capped jobs and how likely these conclusions
extend beyond our data sample, we use hypothesis testing
to assess the degree to which reductions in temperature and
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Figure 3: Distribution of GPU power draw (Watts) from
jobs with and without power capping. Shown here are the
distribution of average temperatures as well as distributions
of temperatures of the 10th, 50th, and 90th percentiles across
individual jobs with and without power caps.
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Figure 4: Distribution of average standard deviation of GPU
power draw from jobs with and without power capping.
Shown here are the distribution of average standard devi-
ation of GPU temperatures of individual jobs with and with-
out power caps.

power draw from power capping are meaningfully different
from random chance.

To do so, we employ a one-sided Welch’s t-test with non-
equal variance [25] to determine the statistical significance
and likelihood that there exists a difference between the
means of two groups (capping vs. no capping). If power-
capping does induce meaningful reductions in temperature
and power draw, then we would see evidence from our data
that rejects the null hypothesis of capping having no effect.

We define 𝑌1 as the sample mean of the outcome variable
for power-capped jobs and 𝑌0 as the sample mean outcome
for un-capped jobs. For instance, 𝑌1 can be the average GPU
temperature (or power draw) of power-capped jobs and 𝑌0
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the same quantity but for un-capped jobs. The null hypothe-
sis𝐻0 is our “no effect” hypothesis, which represents the pos-
sibility that power-capping produces no significant effect on
outcome variables (e.g., temperature) relative to un-capped
jobs so that outcomes between capping vs. no capping are
roughly equal. The alternative hypothesis 𝐻𝛼 represents the
possibility that outcomes under power-capping are smaller
than under no capping (e.g., lower power draw, temperature).
Formally, we can represent our hypothesis test as follows:

𝐻0 : 𝑌1 = 𝑌0, 𝐻𝛼 : 𝑌1 < 𝑌0 (1)

Put differently, given the data/sample on hand, we want
to see how likely the null hypothesis is true (no difference
between the capped and un-capped group so the outcomes
are roughly the same) when put against our alternative hy-
pothesis 𝐻𝛼 : that the average outcome (GPU temperature,
power draw) of the power capped group is less than the un-
capped. In Table 2, we see that differences in GPU power
draw and temperatures are statistically significant between
power-capped and uncapped jobs across the distribution: in
other words, our null hypothesis of no effect between capped
and un-capped jobs is likely false (i.e., the probability of ob-
serving the data we do if the null hypothesis—no significant
difference between capped and uncapped jobs—were true is
less than 0.01%). As such, the observed decrease in both GPU
power draw and temperature across the entire distribution
in power-capped jobs are highly significant, statistically and
economically.

Variable 𝛼 = 1% 𝛼 = 0.1% 𝛼 = 0.01%

GPU Power Draw (Mean) ✓ ✓ ✓
GPU Power Draw (50th) ✓ ✓ ✓
GPU Power Draw (90th) ✓ ✓ ✓

GPU Temperature (Mean) ✓ ✓ ✓
GPU Temperature (50th) ✓ ✓ ✓
GPU Temperature (90th) ✓ ✓ ✓

Table 2: Results from a one-sided Welch’s t-test with non-
equal variance and Mann-Whitney U-test, testing whether
power capped jobs have lower temperature and power draw
than uncapped jobs on average, at the 50th percentile, and
the 90th percentile under different significance levels 𝛼 : 1%,
0.1%, and 0.01%. Differences in temperature and power draw
between power-capped and un-capped jobs are highly and
statistically significant with p-values virtually at zero. The
null hypothesis of no effect (i.e., no difference in average out-
comes between capped and uncapped jobs) can be rejected
with high likelihood—in other words, the alternative hypoth-
esis that power capping is associated with power draw and
temperature is very likely to be true even beyond our sample.

4.3 Average Treatment Effect (ATE)
Estimation

Hypothesis testing can be useful, but several issues can still
arise. First, because GPU power-cappingwas not instituted in
a randomly balanced way, potential selection bias can skew
our analysis. Secondly, although our hypothesis testing has
detected a significant difference between the two groups,
it does not fully address the question of how much of said
effect is attributable to, or caused by, power capping itself.
To address these issues, we attempt to estimate the average
treatment effect of power capping on GPU temperatures and
power draw via a causal inference approach that tries to
mitigate potential problems with bias and attribution.

One way to estimate the effects of power capping on out-
come variables like GPU power draw and GPU temperature
is through calculating an average treatment effect (ATE). The
ATE measures the average difference in outcomes between
groups/observations that have received some treatment (e.g.,
medication, policy change). The estimation of ATEs sees
widespread usage in evaluating policies, medical therapies,
product launches, and more. Here, we can consider the treat-
ment to be power capping; some jobs with GPUs are power-
capped (i.e., receiving the treatment) while others are not.
Within this framework, we may be interested in the ATE
of power capping GPUs on GPU temperatures and power
draw—in both the direction of the effect as well as its size and
statistical significance. Ideally, we hope that power capping
will decrease temperatures and power draw as a means of
improving energy sustainability. If the ATE is properly esti-
mated, negative, and statistically robust, then we can more
confidently conclude that the act of power capping induces
a decrease in temperature and power draw.
More formally, we define 𝑌1 = (𝑌 |𝑇 = 1) to be the re-

sponse of the treated group. Equivalently, 𝑌1 is the response
or outcome 𝑌 of the group that has received treatment 𝑇 ∈
{0, 1} where 𝑇 = 1 corresponds to having received treat-
ment/power capping and 𝑇 = 0 corresponds to no treat-
ment/capping. We can similarly define 𝑌0 = (𝑌 |𝑇 = 0) to
be the outcome of the group that did not receive treatment.
Finally, we can formally express the average treatment effect
as 𝐴𝑇𝐸 = E(𝑌 |𝑇 = 1) − E(𝑌 |𝑇 = 0) where E(·) is the ex-
pectation operator. In other words, we are interested in the
expected or average effect of the treatment by comparing
the outcome of the treated group with that of the untreated.
One common way [8] to estimate this is through linear

regression or ordinary least squares (OLS):

𝑌 = 𝛽0 + 𝛽1𝑇 + 𝜀 (2)

where 𝑌 is our response variable of interest (e.g., GPU
power draw or temperature), 𝑇 ∈ {0, 1} is a binary variable
indicating whether an observation received treatment (i.e.,
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power-capped), with one corresponding to having treatment
and zero to no treatment, and 𝜀 is a nuisance parameter that
accounts for noise or other variation not accounted for by
our model. Our parameter of interest 𝛽1 will be our estimate
of the ATE of power-capping on our response 𝑌 . To see this,
note that 𝐴𝑇𝐸 = E(𝑌 |𝑇 = 1) − E(𝑌 |𝑇 = 0) = 𝛽1 where the
first equality follows from the definition of the ATE and the
second equality follows from straight-forward calculation
by substituting Eq. 2 into the definition.
From the results in Table 3, we see that a direct estimate

of the effect of power-capping on GPU power draw and
temperatures are not only statistically significant from the p-
values, but also economically significant: power-capping can
reduce GPU power draw by 10.1 W and GPU temperature
by about 4.8 degrees Celsius on average.

Response ATE p-value 95% CI

GPU Power Draw (Watts) −10.10 0.00 [−10.77,−9.44]
GPU Temperature (◦C) −4.78 0.00 [−4.93,−4.62]
Table 3: The average treatment effect (ATE) of power cap-
ping on average GPU power draw and temperature along
with their associated p-values and 95% confidence intervals.
A direct estimate of the treatment effect of power-capping
shows a size-able and statistically significant effect on reduc-
ing GPU power draw and temperature—reducing per job’s
power draw by about 10W and 4.8 degrees Celsius on average.
Values are estimated via OLS.

In Table 4, we repeat the same estimation procedure but
only for “efficient” jobs—which we define as those that have
an average GPU utilization above 70%. In other words, these
jobs are characterized as ones that use GPUs efficiently by
utilizing as much of the GPU as possible. The goal is to see
if these efficient jobs see different impacts from capping
relative to the capped cohort. Indeed, we see that the direct
estimation of these effects also show decreases in power
draw and temperature for GPUs for the average efficient
job: about 13.3 W and 7.5 degrees Celsius on average. The
effect of reduced temperature/power draw is higher for more
efficient jobs likely due to the fact that jobs with higher GPU
utilization will be impacted more from changes to the GPU
such as power capping.
However, since assignment of power-caps was not dis-

tributed randomly across jobs and GPUs, there is the risk
of selection bias and other confounding effects which may
mis-characterize the true effect of GPU power-capping on
GPU temperatures and power draw—as might be the case
with observational data. When the treatment is not randomly
assigned, estimating a causal effect requires caution espe-
cially around potentially confounding variables. We attempt
to mitigate these biases in our estimates in the next section.

Response ATE p-value 95% CI

GPU Power Draw (Watts) −13.30 0.000 [−14.61,−12.00]
GPU Temperature (◦C) −7.48 0.000 [−7.80,−7.17]
Table 4: The average treatment effect (ATE) of power capping
on average GPU power draw and temperature for “efficient”
jobs (defined as GPU utilization greater than 70%) along with
their associated p-values and 95% confidence intervals. A di-
rect estimate of the treatment effect of power-capping shows
a sizeable and statistically significant effect on reducing GPU
power draw and temperature—reducing per job’s power draw
by about -13Watts and 7.5 degrees Celsius on average. Values
are estimated via OLS.

4.4 Bias Mitigation & Matching for ATE
To try and mitigate the confounding effect of non-random
assignment of GPU power-capping in estimating its causal
effect on GPU temperatures and power draw, we also esti-
mate the ATE through matching and bias-adjusted matching
[8]. Matching attempts to address the potential biases of
non-random assignment through finding groups within the
data that contain both control and treatment group members.
These smaller groups are formed from observations that are
very similar to one another (i.e., similar covariate/feature
values) with the exception that some received treatment and
others do not. The idea is that by grouping observations
together this way, we can implicitly control for confounding
biases and instead focus on estimating the effect of the treat-
ment. Further bias-adjustments can also be made atop the
matching estimator for ATE to help reduce bias further.

More formally, we define our estimate of the average treat-
ment effect ( ˆ𝐴𝑇𝐸) through matching as:

ˆ𝐴𝑇𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

(2𝑇𝑖 − 1) (𝑌𝑖 − 𝑌𝑗,𝑚 (𝑖)) (3)

where 𝑇𝑖 ∈ {0, 1} again indicates the treatment of observa-
tion 𝑖 , 𝑁 is the total number of observations in our sample,
𝑌𝑖 is the response of observation 𝑖 (i.e., GPU power draw
or GPU temperature), and 𝑌𝑗,𝑚 (𝑖) represents the sample or
observation from the other treatment group𝑚 that is most
similar to 𝑌𝑖 from the matching. To find the closest matches
between observations in treatment and those in control, we
employ a 𝑘-nearest neighbors approach with 𝑘 = 1 and Eu-
clidean distance. We also estimate a bias-adjusted variant of
the matching ATE. From Table 5, we see that both estimates
of the ATE of GPU power-capping on GPU temperatures
and power draw still indicate that power-capping produces
sizable reductions in both power draw and temperature.

We also repeat our matching and bias-corrected matching
ATE estimates on efficient jobs to examine if power-capping
affected different types of jobs un-evenly. We implement the
same procedure as before but, in an attempt to estimate the
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Response ATE (Matching) Bias-Adj. ATE

GPU Power Draw (Watts) −4.56 −4.71
GPU Temperature (◦C) −2.60 −2.04

Table 5: The average treatment effect (ATE) of power capping
on average GPU power draw and temperature after matching
and bias-adjustments. Even after adjusting our estimates of
ATE in light of potential bias stemming from non-random
assignment of power-caps, we see that power caps still in-
duce a size-able effect on reducing GPU power draw and
temperature—a reduction of about 4.6 to 4.7 Watts and 2 to
2.6 degrees Celsius on average. Values are estimated via the
matching estimator and its bias-adjusted variant (Eq. 3).

Response ATE (Matching) Bias-Adj. ATE

GPU Power Draw (Watts) −10.43 −11.98
GPU Temperature (◦C) −5.02 −2.73

Table 6: The average treatment effect (ATE) of power capping
on average GPU power draw and temperature for “efficient”
jobs (defined as jobs with average GPU utilization greater
than 70%) after matching and with bias-adjustments. Even
after adjusting our estimates of ATE in light of potential bias
stemming from non-random assignment of power-caps, we
see that power caps still induce a size-able effect on reducing
GPU power draw and temperature—a reduction of about 10.4
to 12 Watts in power draw and about 2.7 to 5 degrees Celsius
on average. Values are estimated via the matching ATE esti-
mator and its bias-adjusted variant (Eq. 3).

effects of power-capping on more efficient jobs, we do so on
jobs whose GPU utilization exceed 70%. From Table 6, we see
that the effects are slightly more pronounced; a reduction of
about 10 to 12 Watts and 2.7 to 5 degrees on average.

4.5 Performance Impact
Having analyzed the effects of GPU power-capping on GPU
power draw and temperatures on the job-level, we briefly
examine the impact of power-capping on job performance.
In analyzing performance vs. energy trade-offs, we consider
a power-cap to be optimal if it reduces energy by at least 10%
but limits performance impact to single digits (i.e., < 10%).

4.5.1 Model Training. We first examine power capping im-
pacts on the performance of deep learning training jobs
where performance is measured in terms of speed or how
quickly training completes (i.e., the inverse of runtime; longer
runtime translates into slower speed and vice versa). These
training jobs are not only common, but almost always re-
quire GPUs as part of training. In Figure 5, we show the
effects of power-capping on training speed and energy for
three models (relative to no capping)—BERT (transformer-
based encoder), ResNet50 (convolutional neural network),
andDimeNet (graph neural network)—representative of three

common domains of deep learning: NLP, computer vision,
and graph learning, respectively.

Figure 5: Optimal power-capping GPUs can decrease energy
expenditure with minimal adverse impact on training speed.
Stricter power caps (100W) can further reduce energy but dis-
proportionately degrades training speed. Speed and energy
values are normalized to training speed and energy without
power capping (e.g., a value of 0.8 corresponds to a 20% de-
crease in speed/energy relative to no power caps).

Overall, we see that power caps can produce considerable
reductions in average training energy consumed for a va-
riety of deep learning model architectures/domains under
consideration with little to no impact on performance (i.e.,
training speed). Under the 200W cap, we see at least a 10%
reduction in energy across the board but only single-digit ad-
verse impacts (< 5%) on training speed with training speeds
close to speeds under no caps (values of 1.0).

More specifically, for BERT training under a 200W cap, we
see approximately a 15% reduction in energy but barely any
degradation in training speed. We also see similar results
for our graph neural network, DimeNet, and convolutional
neural network, ResNet50: the former sees about a 15-20%
decrease in energy and the latter sees about a 10% decrease. In
either case, we also see negligible adverse impact on training
speed relative to training speed without power capping.

Although stricter power caps can naturally reduce energy
expenditure further, they produce worse energy vs. perfor-
mance trade-offs. In Figure 5, we see that under the stricter
cap of 100W, training speed exhibits noticeable degradation
across all three models/domains. While we see about a larger
40% to 60% reduction in energy relative to no capping, we also
see a 30% to 40% reduction in training speed across the board.
In terms of finding a suitable or optimal power cap that best
balances performance against energy savings, we see that
there exist “sweet spots” that can produce relatively large
energy savings with minimal impact on job performance as
measured by training speed.

4.5.2 Model Inference. Though less commonly studied, in-
ference is receivingmore attention due to how large language
models (LLMs) conduct inference. Previous deep learning
model architectures typically perform inference via a single
pass of inputs: a batch of inputs go through the model once
to produce a batch of corresponding outputs. However, LLMs
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generate output auto-regressively where each preceding to-
ken is fed back into the model to produce the next token.
This semi-recursive property lends an additional layer of
complexity to LLMs in addition to their size, making them
an interesting subject of study.

Output Speed Energy
length (rel. to no cap) (rel. to no cap)

175W 150W 175W 150W

256 0.948 0.847 0.782 0.672
512 0.935 0.783 0.761 0.653
1024 0.926 0.782 0.761 0.654

Table 7: Effects of GPU power capping on LLaMA 65B in-
ference: This table shows the relative performance of the
LLaMA 65B model on output lengths of 256, 512, 1024 us-
ing four NVIDIA A100 GPUs. Results are shown for power
caps at 175W/150W and are relative to performance without
power caps (i.e., no caps = 1.0).

As such, we study LLaMA 65B [24], the largest variant of
one of Meta AI’s LLMs and how power-capping can impact
inference performance/energy. Given the significantmemory
requirements for this LLM, we use this opportunity to exam-
ine the potential effects with our limited number of A100s in
contrast to the V100s used for our earlier analyses. In Table
7, we see results similar to those on the V100s for model
training; capping at 175W produces a good trade-off that
reduces inference speed by only 5-8% but can reduce energy
by about 22-24% across all output lengths. Stricter capping at
150W reduces energy further, but by a diminishing amount
while also resulting in noticeable speed degradation.

5 CONCLUSION
We presented an analysis of the effects of power capping
GPUs at an HPC/datacenter scale. Our analysis shows a
reduction in GPU operating temperature and GPU energy
usage attributable to power capping. These reductions may
hold the potential to improve hardware reliability and in-
crease the mean time between failures; by increasing hard-
ware life, datacenter operators have the potential to reduce
the embodied carbon costs of hardware manufacturing and
deployment. In addition, providing HPC and cloud users
the ability to control the GPU power cap has the potential
to enable AI researchers and developers to actively make
a choice to reduce energy used for AI compute. In future
work, we hope to release more detailed analysis of even more
data to study the effects of power capping on power usage
effectiveness (PUE) and the longer-term impacts, behavioral
and otherwise, of power capping alongside additional factors
like variations external temperature and seasonality, weather,
system utilization, and more.

Several important questions nonetheless remain. For in-
stance, how do differences between academic HPC and com-
mercial cloud provider workloads impact the implementation
or effects of power-capping? On the system level, what job-
scheduler or multiplexing challenges exist for GPU power-
capping? With current GPU shortages, if power-capping
can help extend hardware lifetime, can commercial cloud
providers get more out of existing/older or heterogeneous
hardware? What savings, if any, are there in using a GPU
with an extended life-time due to power-capping versus pur-
chasing a new GPU? Another avenue that can build off of
our work is the development of dynamically adaptive GPU
power caps that can adjust power caps for scheduled jobs
based on different workload characteristics. An adaptive or
variable power-capping system may further improve the en-
ergy efficiency of HPC/datacenters by finding more precise
or optimal efficiency vs. performance trade-offs. We hope
our future work will continue to inform better strategies
to improve the sustainability of hardware accelerators and
other resources required by AI development.
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