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ABSTRACT

We elucidate the effect of non-extracting reflectors on the performance of wave energy converter (WEC) arrays. We consider an infinitely
periodic row of converters parallel to an infinitely periodic row of discrete axisymmetric reflectors (C-R arrays), and we study how the spatial
configuration affects energy extraction. Using a multiple-scattering algorithm for linear wave-array interactions, we conduct a series of simu-
lations of C-R arrays for a range of spatial configuration parameters, wavenumbers, and wave incident angles. We find that C-R arrays can
significantly increase energy extraction compared to a WEC array by itself. We offer a simplified theoretical model, based on the far-field
response of periodic rows in isolation, which shows that the large increases in energy extraction result from the constructive Bragg and Laue
interferences caused by wave interactions with the reflector row. For the pertinent case of incident waves of the WEC-resonant frequency, we
find that optimized C-R arrays can achieve energy extraction gains of Oð500%Þ. Remarkably, the optimal C-R array extracts more energy
than two rows of converters of optimal configuration even though the C-R array consists of only half as many WECs.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0155209

I. INTRODUCTION

Wave energy converter (WEC) arrays present a promising tech-
nological solution for large-scale wave energy extraction. This is in
large part due to their ability to harness favorable wave interactions
occurring within the array to extract more energy than what the same
number of converters in isolation would extract.1,2 In recent years,
with the impetus to move wind farms further offshore, there are incen-
tives to co-locate WEC arrays with these structures in order to share
logistics and infrastructure. While the economic and operational bene-
fits are established,3,4 the physics-based synergisms between wave and
wind farms have not been well studied. One such synergism is the pos-
sibility to harness the wave reflections from wind turbine platforms to
increase the energy extraction of the WEC array in its vicinity through
favorable wave interactions. Motivated by this, our interest here is the
physical mechanisms and magnitudes of possible wave energy extrac-
tion gains achieved by WEC arrays when operated in the vicinity of
other structures that consist of a large number of immersed, vertical,
axisymmetric elements.

Harnessing wave reflections is a well known approach to increase
energy extraction. In solar cells, for example, a backing mirror can
double the absorption of a semiconducting parallel slab by effectively
doubling its thickness, but much larger enhancements can be achieved
if the mirror is combined with random or periodic structures on the
surface of the semiconductor that further reflect waves.5,6 In WEC
arrays, an infinite vertical wall, such as a breakwater or a coastal cliff
face, can play a role of a mirror. Recently, hydrodynamic studies of
small WEC arrays (five bodies) in a limited number of configurations
in front of an infinite reflecting wall7,8 showed that the energy extrac-
tion gain can be significant. Similarly, an infinitely periodic row of
scatterers generally also reflects incident waves, so it could, in princi-
ple, lead to an increase in energy extraction of a WEC array placed in
its vicinity. Compared to using a reflecting mirror, however, employ-
ing a periodic row of scatterers as the reflecting structure leads to a
more complex performance, since the scattering characteristics of the
row are dependent on the incident wavenumber, the reflector type,
and their spatial configuration (periodicity). Furthermore, for
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sufficiently large wavenumbers, more than one reflected and transmit-
ted modes are present.9,10 In the water wave context, wave interactions
in infinitely periodic arrays of general scatterers11,12 or identical
WECs13–17 have been studied; heterogeneous arrays consisting of a
small, finite number of different WECs have also been studied.18

Wave interactions in hybrid WEC-reflector arrays, however, have not
been studied to date.

In this study, we investigate the energy extraction performance of
WEC arrays co-located with arrays of axisymmetric reflectors. For sim-
plicity and specificity, we focus on arrays that consist of a single infi-
nitely periodic row of WECs in the vicinity of (and parallel to) a single
infinitely periodic row of reflectors.We denote these as C-R arrays. We
consider reflectors (R) to have the same geometry as converters (C),
but whose overall scattering response is different due to the different
motion constraints, and consider different scenarios where the reflector
is fixed, freely heaving, or even extracting energy. We contrast the
behavior of such C-R arrays to that of isolated WEC arrays consisting
of a single periodic row of converters with a goal to understand the fun-
damental underlying physical mechanisms of the reflector-caused
energy extraction gain and the required conditions for it.

In Sec. II, we define in detail the converters, reflectors, and the
array configurations that we study. In Sec. III, we give a brief overview
of the linear multiple-scattering mathematical model that we employ.17

We conduct systematic computations of wave–array interactions to
quantify the energy extraction performance of C-R arrays as a function
of spatial configuration (Sec. IV). We find that optimized C-R array
configurations can extract significantly more energy, by as much as
Oð250%Þ over optimized isolated periodicWEC arrays, and as much as
Oð500%Þ compared to WECs operating in isolation. We offer a simpli-
fied theoretical model based on plane wave scattering (Sec. V), which
explains the underlying mechanisms responsible for the extrema in
energy extraction. The comparisons amongC-R arrays consisting of dif-
ferent reflector types and those of different periodicities of the two rows
are presented in Sec. VI. We show that increasing the reflector strength,
by either changing its type or increasing their number relative to that of
converters, further increases the energy extraction of C-R arrays.

II. PROBLEM DEFINITION

We study the hydrodynamic and energetic response of C-R
arrays in water of uniform depth h. A row of converters (C) and a row
of reflectors (R) are both periodic and parallel to each other, Fig. 1.

For simplicity, we consider identical WEC and reflector body
geometries.

We consider WECs oscillating in heave (only), connected to a
power takeoff (PTO) device with a linear force-velocity characteristic
b (extraction rate). The power extracted by the PTO is linearly propor-
tional to b. Specifically, we set the extraction rate b ¼ b� for all
WECs, where b� ¼ bðkrÞ is the optimal PTO extraction rate, which is
equal to the radiation damping b at the body resonant wavenumber
kr. The power P0 extracted by an isolated WEC with b ¼ b� is such
that the capture width W � P0=P achieves the theoretical maximum
krW ¼ 1 for monochromatic incident waves of wavenumber
k ¼ kr;

19 here, P � 1=2qgA2cg is the wave energy flux per unit length
of wavefront carried by the incident wave of amplitude A and group
velocity cg.

We consider three types of reflectors, distinguished by their
motion constraint—freely heaving reflectors (F), fixed reflectors (X),
and reflectors that are themselves converters (C). The reflector motion
constraint can be thought of as reflectors being connected to PTOs
with different b values—b¼ 0 for F-reflectors; b!1 for X-
reflectors; and b ¼ b� for C-reflectors. In this study, we consider the
WEC and reflector geometry to be that of a truncated vertical cylinder
of radius a=h ¼ 0:3 and draft H=h ¼ 0:2. The wavenumber-
dependent performance of this truncated vertical cylinder operating in
isolation as a WEC (C), as a freely oscillating body (F), and as a fixed
body (X) is given in Fig. 2.

To quantify the scattering strength of isolated devices, particu-
larly when acting as reflectors, we define a total scattering cross section
r. Analogously to the capture width, the scattering cross section of an
isolated scatterer can be interpreted as the equivalent crest-wise length
of a vertical wall that perfectly reflects the same amount of incident
wave energy as that scattered by the body into the far field.20

Traditionally, r is obtained for the diffraction problem only,21,22 and it
is a wavenumber-dependent characteristic of a body’s shape, not its
potential motion. Here, we generalize r to also account for the energy
carried to the far field by the waves radiated due to the body motion
(defined in mathematical terms in Sec. III). With this generalized defi-
nition, r of C, F, and X bodies is different, despite them having the
same geometry, Fig. 2(b). As the resonant wavenumber kr is such that
kra ¼ Oð1Þ for our geometry, the scattering at kr is strong,
r=2a ¼ Oð1Þ, for all reflector types, Fig. 2(b).

FIG. 1. Select spatial configurations of C-
R arrays [(red filled circle)¼WEC; (blue
filled circle)¼ reflector]. (a) C ! R array
with non-zero row shift s 6¼ 0 and reflector
periodicity factor �¼ dC /dR¼ 1; array
periodicity d ¼ dC ¼ dR. Number of bod-
ies per periodic cell N¼ 2, number of
WECs per periodic cell NC ¼ 1, number
of reflectors per periodic cell NR ¼ 1. (b)
C ! R array with s¼ 0 and �¼ 2;
N¼ 3, NC ¼ 1, NR ¼ 2. (c) R! C array
with s¼ 0 and � ¼ 1=3; N¼ 4,
NC ¼ 3; NR ¼ 1.
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Depending on the type of reflectors (R ¼ F, X, or C), we denote
C-R arrays as C-F, C-X, and C-C arrays, respectively. Where needed,
to distinguish the order of the two rows relative to the incident wave,
we also use the notations R! C (and C! R) for an array with the R-
row in front of (behind) the C-row. We use S-array to denote a single-
row periodic array and use the notation SF, SX, or SC to indicate its
constituent body type.

We focus on C-R arrays of periodicity d and inter-row spacing
dx, Fig. 1. We define dx relative to the R-row, with dx > 0 for R! C
arrays and dx < 0 for C ! R arrays. In general, there can be a non-
zero shift s between the two rows in the span-wise (y) direction. In a
C-R array, the periodicity of the WEC row is dC and that of the reflec-
tor row is dR. The periodicities can be equal dC ¼ dR ¼ d, or, in the
more general case, � � dC=dR 6¼ 1. For the overall C-R array to be
periodic, the reflector periodicity factor � must be a rational number,
with the resulting periodicity d of the C-R array being the lowest com-
mon multiple of dC and dR. The reflector periodicity factor can then
also be expressed as � ¼ NR=NC, where NR and NC are the resulting
numbers of reflectors andWECs within a periodic cell of periodicity d,
respectively. The total number of bodies in a periodic cell of a C-R
array is N ¼ NC þ NR � 2; if �¼ 1, N¼ 2. In this study, we only con-
sider C-R arrays where either NC or NR is equal to one.

A measure of energy extraction efficacy of a general WEC array
is the array gain q,

q ¼ P
NC � P0

; (1)

the ratio between the power P extracted by the array consisting of NC

WECs and the power P0 extracted by a single WEC operating in

isolation.1 This array gain quantifies the increase in energy extraction
due to wave interactions among the bodies in the array, and it is
strongly dependent on the spatial array configuration. This definition
of array gain also applies for C-R arrays, where it quantifies the gain in
energy extraction per periodic cell, with NC being the number of con-
verters in a periodic cell. In the special case of C-C arrays with � ¼ 1,
for example, the total extracted power P per periodic cell comes from
twice as manyWECs (NC ¼ 2) as in C-F or C-X (NC ¼ 1) arrays. The
array gain of different C-R array configurations is differentiated by a
subscript corresponding to the reflector type, e.g., qR for C-R arrays in
general, qF for C-F arrays. Among S-arrays (N¼ 1), only SC arrays are
energy extracting (N ¼ NC ¼ 1), and we denote their gain as qS .

Note that the incident energy flux per periodic cell Pd cos hI is
finite in infinitely periodic arrays, so it is theoretically possible to
extract 100% of it. For periodic arrays consisting only of axisymmetric
heaving WECs, 100% extraction requires NC > 1, as the optimal
SC-array can only extract 50% of the incident energy flux.13,17

However, while the total extracted energy generally increases with
increasing NC, it can come with diminishing returns per additional
WEC, resulting in a lower array gain. In fact, the maximum obtainable
gain of arrays consisting of NC infinitely periodic rows of optimal
heavingWECs diminishes with 1=NC.

17

We also note that the PTO extraction rate b ¼ b�, while optimal
for a WEC in isolation, is not, in general, optimal for the same WECs
operating as a part of an array. In WEC arrays, the optimal b is, in
general, different for every WEC in an array (or within a periodic cell),
and it is dependent on the spatial array configuration. For simplicity
and consistency, we keep b ¼ b� for WECs in all array configurations.
We particularly focus on body resonant wavenumber kr in Secs. IV
and VI to showcase the efficacy of wave interaction-caused energy
extraction gain q over the already best-case-scenario, optimal
performance of isolated WECs. Consequently, the obtained values of
qR in Secs. IV and VI could be larger if b of WECs were set to
configuration-dependent optimal values.

III. MATHEMATICAL MODEL

We apply an exact multiple scattering wave-body interaction
model in the context of linearized potential theory. This method was
introduced in Ref. 23 and expanded for periodic arrays of general bod-
ies in Ref. 17. For completeness, we summarize it here for the present
application.

We consider linear incident waves of angular frequency x, wave-
number k, amplitude A (kA� 1, dispersion relation x2 ¼ gktanhkh),
and incident angle hI. We consider a three-dimensional, time-har-
monic potential U ¼ Reð/ e�ixtÞ, where / is the time-independent,
complex-valued potential and i is the imaginary unit. For linear
wave–multi-body interactions, the potential / can be expressed as

/ ¼ /I þ
X
j

/S
j þ Vj/

R
j

� �
¼ /I

p þ /S
p þ Vp/

R
p ; (2)

where /I is the ambient incident wave potential,
P

j is the summation
over all bodies in the array, and /S

j and /R
j are the scattered and unit-

velocity radiated wave potentials associated with body Bj, respectively.
The complex heave velocity amplitude of Bj is Vj; if Bj is fixed, Vj¼ 0.
Focusing on a particular body Bp; / can be further rewritten in terms
of the total incident wave potential /I

p on Bp, where /I
p is the sum of

the ambient incident wave on Bp and the scattered and radiated waves

FIG. 2. Performance of an isolated truncated cylinder (radius a=h ¼ 0:3, draft
H=h ¼ 0:2) operating as a WEC (C), a freely oscillating body (F), and a fixed body
(X). The vertical dashed line marks the body resonant wavenumber kr. (a) Non-
dimensional capture width kW; (b) total scattering cross section r; (c) heave ampli-
tude jX j.
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from other bodies Bj; j 6¼ p. The boundary conditions applied on the
wetted surfacesp of every body Bp in the array are

@/I
p

@n
¼ �

@/S
p

@n
; x 2sp; 8p; (3)

@/R
p

@n
¼ nz; x 2sp; 8p : (4)

In (4), nz is the vertical component of the unit normal onsp.
In order to separate the individual body hydrodynamic response

from the array-related hydrodynamic interactions, we restrict the
potential / to be defined in the fluid domain d ¼ d0n[p dp. Here,
d0 is the infinite domain bounded by the bottom and the free surface,
and dp is the finite fluid domain beneath each body Bp in the array,
Fig. 3(a). The governing equation for / in d is the Helmholtz equa-
tion @2x/þ @2y/ 6 j2/ ¼ 0, where the plus sign corresponds to the
propagating wave solution, with j � k; and the minus sign corre-
sponds to the evanescent wave solutions, where j � km, m> 0 satisfy
the evanescent wave dispersion relation x2 ¼ �gkm tan kmh.

In the cylindrical coordinate system ðrp; #p; zÞ centered at Bp,
Fig. 3(b), the potentials in (2) can be expanded into partial waves as

/I
p ¼

X1
m¼0

X1
n¼�1

dpm;nInðkmrpÞein#pwmðzÞ ;

/S
p ¼

X1
m¼0

X1
n¼�1

cpm;nKnðkmrpÞein#pwmðzÞ ;

/R
p ¼

X1
m¼0

X1
n¼�1

.pm;nKnðkmrpÞein#pwmðzÞ ;

(5)

where dpm;n; c
p
m;n, and .pm;n are the complex partial wave amplitudes.

Here, In and Kn are modified Bessel functions of the first and the sec-
ond kind, respectively; wmðzÞ is the orthonormal depth function. To
facilitate expressing both propagating (m¼ 0) and evanescent (m> 0)
partial waves with the same functions in Eq. (5), we define k0 � �ik
and use the well-known identities Knð�ikÞ ¼ p

2 i
nþ1Hð1Þn ðkÞ and

Inð�ikÞ ¼ i�nJnðkÞ.24 Here, Hð1Þn is the Hankel function of the first
kind, which describes the outwardly propagating waves, and Jn is the
Bessel function of the first kind.

The partial amplitudes cpm;n and d
p
m;n depend on the array config-

uration C and need to be solved for. The unit-velocity radiated partial
wave amplitudes .pm;n are known, as determined from the radiation
problem for Bp in isolation (the heave velocity Vp is unknown). We
use .pm;n from an analytic solution25 for /R

p of a heaving truncated cyl-
inder in d0ndp. The incident partial wave amplitudes dpm;n are the
sum of the known incident ambient partial wave amplitude

dI;pm;n ¼ ð�1Þ
neikRp cos ðhI�apÞe�inhI (6)

at Bp and the contributions of the scattered and radiated waves cjm;n of
bodies Bj expressed in the Bp coordinate system. For compactness, we

collect dpm;n; d
I;p
m;n; c

p
m;n, and .pm;n into vector forms dp; dI

p; cp, and .p,
respectively.

The equation of motion of a non-fixed body Bp, expressed in
terms of the complex heave amplitude Xp, is

ApðxÞ � Xp ¼ Fpðx; CÞ; (7)

where Ap is the conventional, frequency-dependent body dynamics
matrix,17,21 and Fpðx; CÞ is the configuration-dependent diffraction
force on Bp; the size of the linear system equals the number of degrees
of freedom of Bp. The diffraction force can be expressed in terms of

the amplitudes of the scattered waves as Fpðx; CÞ ¼ F̂T
p �cp, where

F̂pðxÞ is the diffraction force transfer matrix known from the dif-

fraction problem of isolated Bp [ð�ÞT denotes a matrix transpose].
The amplitude of the radiated waves due to the velocity amplitude
Vp ¼ �ixXp can be expressed in terms of the scattered wave ampli-

tudes cp as .p � Vp ¼ Hp � cp, where HpðxÞ ¼ �ix.pA
�1
p F̂T

p is the
radiation transfer matrix of Bp, which can be calculated for a body in
isolation. In addition to frequency, Hp depends only on the body
shape and its PTO, and it is non-zero only if Bp is free to oscillate. For
the present problem, we only consider bodies oscillating in heave, so
Ap; Xp; Vp, and Fp reduce to scalars and F̂p to a vector. Due to the
differences in PTO connection, b contained in Ap; Hp is different for
C, F, and X bodies. As the body geometries considered here are trun-
cated vertical cylinders, we use analytical expressions for hydrody-
namic quantities related to the performance of bodies in isolation—
from Ref. 25 for added mass and radiation damping that are contained
in Ap and from Ref. 26 for F̂p.

The partial wave amplitudes cp and dp for every Bp in the array
are related through the diffraction boundary condition (3). The rela-
tionship can be expressed in terms of a linear system cp ¼ Tp � dp,
where the frequency-dependent scattering transfer matrix TpðxÞ has
to be obtained from the diffraction problem on an isolated body for
each body geometry type.27 As all bodies in the present problem are
truncated cylinders, we use an analytical solution for the scattered
wave amplitudes.26

Enforcing the diffraction boundary condition on every Bp in the
array leads to a linear system for the unknown amplitudes
cp; p ¼ 1;…;N ,

XN
j¼1

djp � Tj ð1� djpÞSjp þ Qjp
� �TðIþHjÞ

h i
cj ¼ TpdI

p : (8)

Here, N is the number of bodies in a periodic cell, djp is the Kronecker
delta, and I is the identity matrix. The effect of array configuration is

FIG. 3. (a) Side view of the domain; incident wave of amplitude A, wavenumber k.
(b) Coordinate systems and the relative position vector Rjp decomposition for two
bodies Bj and Bp within the same periodic cell. (b) Decomposition of the relative
position vector R^̊p for bodies B^̊ and Bp, which are in different periodic cells.
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expressed through matrices Sjp and Qjp. The separation matrix Sjp
depends only on the relative positions of the bodies in the array, and it
arises from expressing /S

j in the coordinate system of Bp through the
Graf addition theorem27

KnðkmrjÞein#j ¼
X1
l¼�1

Sjpm;n;l IlðkmrpÞ e
il#p ; rp < Rjp : (9)

Here, Sjpm;n;l ¼ ð�1Þ
l Kn�lðkmRjpÞ eiðn�lÞajp are the elements of Sjp;

Rjp is the distance between bodies Bj and Bp, and ajp is the angle
between them, Fig. 3(b). Similarly, the periodicity matrix Qjp encodes
the equivalent coordinate system transformations between bodies B^̊

and Bp in different periodic cells, Fig. 3(c), with elements17

Qjp
m;n;l ¼ ð�1Þ

l
X1

B ¼ �1;
B 6¼ 0

Kn�lðkmR^̊pÞeiðn�lÞa^̊peikd sin hI : (10)

The method we use to calculate the infinite sums over all periodic cells
in Qjp

m;n;l is given in the Appendix.
To solve (8), we limit the order of partial waves to jnj 	 Np, and

truncate the number of evanescent waves tom 	 M. The resulting lin-
ear system (8) is of size NMt � NMt, whereMt ¼ ð2Np þ 1ÞðM þ 1Þ,
and the vectors cp, dI

p are of lengthMt. Except for the error introduced
by the truncation, the solution to system (8) is, in principle, exact in
the context of the linearized potential flow. We truncate the partial
wave decompositions to Np ¼ 5 and M¼ 2, which give converged
results for the analyses presented in this study [error oð10�2Þ]. As a
further check, we compare our results for select configurations of infi-
nitely periodic arrays with the results for large, but finite arrays of
equivalent configurations (consisting of 20 cells).

The power extracted by a body Bj oscillating with Xj can be cal-
culated as

Pj ¼ 1=2bx2jXjj2 ¼ cj
þXjcj; (11)

where Xj is the PTO-dependent, real, symmetric power transfer
matrix

Xj ¼ 1=2bx2F̂jðA�1j Þ
þA�1j F̂j

þ (12)

of Bj [ð�Þþ denotes a Hermitian transpose]. If a body is fixed or freely
oscillating, Pj¼ 0. The total extracted power by an array is
P ¼

PN
j¼1 Pj.

The free surface far away from a periodic array can be expressed
solely in terms of outwardly propagating scattered plane waves (or
modes). The transmitted modes, complex amplitude Aþm, propagate at
an angle hm, jhmj 	 p=2, while the reflected modes, complex ampli-
tude A�m, propagate at angle p� hm. The propagation angle hm is
determined from the diffraction grating equation28

sin hm ¼ sin hI þm
2p
kd
; m 2M; (13)

whereMðhI; kdÞ ¼ fm : j sin hmj 	 1;m 2 Zg is the set of all indices
of the propagating modes in the far field. For an array with periodicity
d, the critical wavenumbers ðkdÞcrm at which newmodes appear (known
as Rayleigh wavenumbers) are given by j sin hI þ 2pm=ðkdÞcrmj ¼ 1.
The complex amplitudesA6

m are given by17

A6
m ¼ 7

xp
g kd

1
cos hm

XN
j¼1

e7ikRj cos ðhm7ajÞ

�
X1

n¼�1
ð61Þncj0;n e6inhm ; m 2M : (14)

The amplitudes are related through the energy conservation
equation

X
m2M

jd0m þ Aþmj
2 þ jA�mj

2
� �

cos hm ¼ cos hI � D; (15)

where D � P=ðP � dÞ 	 cos hI accounts for the total power P
extracted by all the converters in the array; d0m is the Kronecker delta
function. At ðkdÞcrm, the wave energy is redistributed among the scat-
tered modes, resulting in an abrupt change in the behavior of bodies in
the array. This behavior is a manifestation of Rayleigh resonan-
ces.17,29,30 The energy conservation check (15) is performed in all our
calculations, and it is satisfied to oð10�8Þ.

The total scattering cross section r of an isolated body is defined
as

P � r ¼ �1=2qx Im
ð ð

S1

/o @/
o�

@r
dS; (16)

where the right-hand side represents the energy carried by the out-
wardly propagating waves through a virtual cylindrical surface S1 in
the far field ðr !1Þ; the potential of these waves is
/o ¼ /S þ V/R. The free surface amplitude of outwardly propagat-
ing waves in the far field (Knð�ikrÞ 


ffiffiffiffiffiffiffiffiffiffiffiffi
p=2kr

p
eiðkrþp=4Þ for r !1)

is Að#Þ ¼
P1

n¼�1 anein#, where an ¼ �ðp=2Þw0ð0Þ~c0;n and ~c0;n
are the components of the scattering wave coefficient vector ~c
¼ ðIþHÞTdI for a body in isolation. With these identities, expression
(16) reduces to

r ¼ w2
0ð0Þp2

k

X1
n¼�1

j~c0;nj2 ¼
4
k

X1
n¼�1

janj2 : (17)

Since this definition of r depends on radiated waves in addition to the
scattered ones, r is different for C, F, and X bodies, Fig. 2(b). If we
apply the conservation principle for energy carried by incident waves,
outwardly propagating waves and energy potentially being extracted
by the isolated body, and we use the definitions of r and the capture
widthW, we obtain

kW þ kr ¼ �4ReAðhIÞ; (18)

which is a generalization of the standard optical theorem for the dif-
fraction problem alone,21 now applicable to oscillating and energy
extracting bodies as well. In all our calculations on isolated bodies,
(18) is satisfied to oð10�8Þ.

IV. THE EFFECT OF REFLECTORS ON ARRAY GAIN

To analyze the effect of spatial configuration on the array gain,
we conduct a series of computations using the multiple scattering
model for a range of spatial configuration parameters, incident
wavenumbers k and angles hI. In this section, we present results for
normally incident waves hI ¼ 0, which capture the salient physics.
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In Sec. IVA, we establish the energy extraction and scattering perfor-
mance of S-arrays, which we use as a benchmark for comparison and
as a basis for explanation of C-R array performance. The energy
extraction performance of C-R arrays is presented in Sec. IVB.

A. Performance of S-arrays

The array gain qS of a single infinitely periodic row of converters
was previously studied for optimal point absorbers13,14 and for finite-
sized bodies.17 We present here the scattering response of S-arrays as a
function of periodicity d and body type; we reproduce the qS results as
a basis for comparison with and for the analysis of C-R arrays.

Through coherent wave interactions, the gain qS of a SC array
can reach large values (qS > 2), Fig. 4(a). At body-resonant wavenum-
ber kr, the maximum gain for optimal periodicity is qSðkrÞ � 2; it is
achieved for kd values below the first critical wavenumber
[krd < ðkdÞcr1 ], Fig. 4(b). Generally, between two critical wavenum-
bers, ðkdÞcrm and ðkdÞcrmþ1, the gain qS increases with kd before abruptly
dropping to zero at ðkdÞcrmþ1. The obtained values of qSðkrdÞ are lower
than maximum13 ~qS since the extraction rate b ¼ b� is not optimal in
an array setting, resulting in non-optimal motion of WECs. The differ-
ence between qSðkrdÞ and ~qSðkrdÞ, however, diminishes with krd,
except for krd just under critical wavenumbers ðkdÞcrm.

The scattering response of an S-array, characterized by the far-
field complex amplitudes Aþm and A�m, depends on the scattering cross
section r of the devices and also on the array periodicity d. The ampli-
tudes of the zeroth reflected mode jA�0 j of SF; SX, and SC arrays as a
function of periodicity d at kr are shown in Fig. 4(c). While r for each
device is independent of d, jA�0 j shows great variability. In general,
larger r is correlated with larger achievable values of jA�0 j. Notably, a
SF array of periodicity d ¼ d�F (denoted as S�F-array) achieves a perfect
reflection of the incident wave at kr (with jA�0 ðkrd�FÞj ffi 1), which is
significantly stronger than the reflection achieved by SX or SC arrays
at any other non-zero wavenumber. One can conjecture that the

S�F-array can significantly affect the performance of a WEC array at kr
if it is used as a reflector row.

B. Performance of C-R arrays

We now analyze the performance of C-R arrays as a function of
periodicity d and inter-row spacing dx. For clarity, we focus on unstag-
gered C-F arrays of equal periodicity (dC ¼ dR, row shift s¼ 0), which
capture the salient physics of interactions in C-R arrays.

The maximum gain qF of C-F arrays is significantly larger than
that achieved by S-arrays, Fig. 5(a). For example, two C-F array config-
urations (d=2a ¼ 3; dx=2a ¼ �2:75; d=2a ¼ 6, dx=2a ¼ 4:2)
achieve qF � 4 at kr, Fig. 5(a), compared to qSðkrÞ < 2 for SC arrays
with identical periodicities (cf. Fig. 4). The gain qF exhibits more
extrema than qS due to the additional wave interactions that occur in
C-F arrays.

At kr, large values of qFðkrÞ > 4 are, in fact, achieved by many
configurations, Fig. 5(b). Similar to those of SC arrays, the peak qF val-
ues correspond to configurations that are closer to ðkdÞcrmþ1 than to
ðkdÞcrm. Unlike those of SC arrays, though, the peak qF values do not
decrease with kd, indicating the importance of constructive interfer-
ences with higher scattered modes (jmj � 1) in C-R arrays. Although
there is a notable asymmetry in the strength of interferences between
the C! F and F! C configurations, the maximum values of qF are
comparable. A particularly revealing asymmetry can be observed for
d=2a ¼ 3 arrays, where C ! F configurations exhibit qF > 4 values,
while F ! C configurations exhibit consistently lower values
(qF � 0:5), Fig. 5(c). The asymmetry is due to the particularly strong
reflection from the F-reflector row for this d (identical to S�F-array),
with jA�0 j � 1 [Fig. 4(c)]. This results in high free-surface amplitudes
for the well-spaced C! F configurations, and overall low free-surface
amplitudes in F! C configurations since j1þ Aþ0 j � 0.

The large values of q are necessarily associated with an increase
in WEC motion amplitude. In S-, C-X, and C-F arrays, the motion

FIG. 4. Single-row periodic array perfor-
mance (S-array) in normal hI ¼ 0 inci-
dence. (a) Array gain qS of SC arrays of
two different configurations as a function
of wavenumber ka. (b) Array gain qS at
body resonant wavenumber kr as a func-
tion of periodicity d. Array gain of optimal
WECs13 ~qS is plotted for comparison. (c)
Amplitude of the reflected wave mode
jA�0 j at kr of SF; SX, and SC arrays as a
function of d.
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amplitudes of WECs are
ffiffiffi
q
p

times larger than that of isolated WECs.
As a result, the assumptions of linear wave-body interactions are
stretched or violated at these instances and the nonlinear effects can
become significant. However, even though the achieved values of q
might need correction due to the nonlinear effects, the linear results
presented here for the conditions that lead to high q values (and, con-
sequently, the array configurations for which they occur) likely hold.

V. A PHYSICAL ARGUMENT FOR THE PRESENCE
AND LOCATION OF EXTREMA IN THE ARRAY GAIN

The areas corresponding to C-R array configurations of high q-
values, Fig. 5(b), are criss-crossed by regions where q is significantly
lower. To elucidate these features in the q-values, we present a simple
physical argument based on the constructive and destructive interfer-
ences in the C-R arrays. We build the argument from a plane wave
interaction model based on the far-field response of S-arrays.

Consider a wavefield, far away from an S-array, that consists of
the superposed incident wave propagating at hI and a single scattered
plane wave mode of amplitude A6

m . The resulting wave envelope is an
undulating surface, generally periodic in both normal and span-wise
directions. A periodic row of converters, configured in such a way that
the position of each converter corresponds to a wave envelope peak,
should result in maximum energy extraction. Conversely, if the posi-
tion of each converter corresponds to a wave envelope trough, the
energy extraction is minimized. The locations of these envelope peaks
and troughs depend on the phase differences between interacting
plane waves, which can be determined from S-arrays alone and
depend on the array periodicity d. This implies that no near-field
interactions exist among the rows and that at most a single reflection
occurs at the reflector row. We are primarily interested here in

determining the configuration conditions that lead to the extrema of
gain, which are less affected by these assumptions.

Consider a wave incident at a C! R array, propagating in the hI
direction with kd < ðkdÞcr1 . The interaction between the incident wave
and the wave reflected from the R-row and propagating at p� hI, Fig.
6, results in an undulating free surface envelope whose generatrix is a
straight line parallel to the reflecting structure. We refer to this interac-
tion as Bragg interference. The minima of the envelope (i.e., destruc-
tive Bragg interferences) are located at

kdx cos hI ¼ npþ dB=2; n 2 Z; (19)

where dB is the periodicity-dependent phase function. Here,
dBðdÞ¼ argðA�0;Rð1þ Aþ0;CÞÞ stems from the phase shifts of the trans-
mitted wave occurring at the C-row and of the reflected wave at the R-
row. The additional subscript toA6

m refers to the row (C or R) at which
the phase shift occurs. Constructive interference, resulting in maxi-
mum q for a particular d, occurs for dB þ p. While (19) could explain
the Bragg-like features in R ! C arrays, the single-scattering model
does not technically apply for those configurations as there is no
reflected wave, to leading order, at the C-row with which the incident
wave can interfere.

The interaction between an incident wave and a higher scattered
mode A6

m ; jmj � 1, leads to an undulating wave envelope that is peri-
odic in the span-wise direction. When occurring in array configura-
tions in which the converters are located at the extrema of the wave
envelope, we refer to these interactions as Laue interferences.17 The
minima of the envelope resulting from destructive Laue interferences
between the incident wave and themth mode occur at

kdxðcos hI � cos hmÞ ¼ 2npþ dLm; n 2 Z : (20)

FIG. 5. Performance of C-F arrays. (a) Array gain qF as a function of wavenumber k for two different configurations (I: d=2a ¼ 3; dx=2a ¼ �2:75; II: d=2a ¼ 6,
dx=2a ¼ 4:2). The values of qF at body resonant wavenumber kr are marked with dots of matching color for each configuration. (b) Contour plot of qF at kr as a function of
periodicity d and inter-row spacing dx. The configurations I and II are marked with dots in corresponding color. (c) Array gain qF at kr as a function of dx for configurations of
two different periodicities d.
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The phase shift dLm of modem depends on the array configuration and
on periodicity d. For C ! R configurations, dLmðdÞ ¼ argðA�m;Rð1
þAþ0;CÞÞ; for R ! C configurations, dLmðdÞ ¼ argðAþm;Rð1þ Aþ0;RÞÞ.
Constructive Laue interferences occur at dLm þ p and correspond to
the maxima of the wave envelope.

The conditions (19) and (20) in d–dx space result in a family of
interference lines (ILs) corresponding to the destructive Bragg and
Laue interferences. In C-F arrays, these ILs predict well the minima of
gain qF obtained through multiple-scattering simulations, Fig. 6. (For
clarity, the ILs are drawn only in kd-ranges in which they first appear;
technically they extend for kd !1 values. As the amplitude of the
plane modes diminishes with kd, the interactions are the strongest in
the first kd range.) The maxima of qF contained between the drawn
destructive ILs lie near the constructive ILs (not drawn). While the
conditions for Bragg and Laue interferences are determined by the
array configuration and the phase shift at the scattering structure, their
strength is governed by the amplitudes of the interacting modes. As
such, Bragg and Laue interferences are less noticeable when the inter-
fering scattered modes are not strong. Furthermore, this model applies
only to the first-order interactions; the fringes in qF that are not
explained by the drawn ILs are due to the higher-order interactions.
For example, the Bragg interferences, which are pronounced C ! F
arrays, exist in F! C arrays as well, although much less pronounced
due to the absence of the interaction between the first-order reflected
and incident waves.

VI. THE OPTIMAL PERFORMANCE OF GENERAL C-R
ARRAYS

So far, we have focused on canonical C-R array configurations
(dC ¼ dR, row shift s¼ 0, reflector periodicity factor �¼ 1) to eluci-
date the salient physics governing their behavior. We now also con-
sider generalized C-R array configurations (dC 6¼ dR, s 6¼ 0, and
R¼ F, X, or C) and present quantitative comparisons between the

optimal configurations for a range of incident angles hI at body reso-
nant kr. We present results for hI 2 ½0; 75�; the energy extracted by a
periodic array for hI ¼ 90 drops to zero. With this hI range, we also
capture the behavior of C-R arrays for hI > 90 by considering both C
! R and R! C arrays; the behavior of C-R arrays for�hI is captured
by considering symmetric values of row shift s around zero. For every
hI, we define q� as the maximal value of gain at kr achieved over all
possible spatial configurations (in d– or d–dx space) considered. For
clarity, we assign subscripts to q� to differentiate between the array
configuration considered—R (¼ F; X; C) or S. The main interest for
the present problem, finally, is how q�R compares with q�S .

The optimal canonical C-R arrays (s¼ 0, �¼ 1), as a result of
favorable wave interactions with the reflector row, achieve higher opti-
mal gain q�R over the optimal gain q�S of SC-arrays for all hI, Fig. 7(a).
C-F arrays are particularly effective as they achieve q�F ¼ 4:94 for
hI ¼ 0. The resulting gain due to the reflectors is QR � q�F=q

�
S � 2:5,

which is achieved in addition to the maximum array gain of the opti-
mal SC array. Note that here the comparison is being made between
the optimal configurations, which generally do not have identical peri-
odicity d. Remarkably, for the device shape we study here, the total
energy extracted by the optimal C-F array (NC ¼ 1) in normal inci-
dence is greater than the energy extracted by the optimal C-C arrays,
which consists of twice as many converters (NC ¼ 2), Fig. 7(a). (In
order to compare the absolute extracted power P of C-C arrays with
that of other C-R arrays in Fig. 7(a), we compare q�R to 2� q�C since
q�C is normalized by NC ¼ 2.) This indicates that adding reflectors to a
WEC array could lead to greater energy extraction than adding addi-
tional converters would. Generally, q� decreases with increasing hI for
all array configurations, consistent with the behavior of periodic WEC
arrays17 andWEC arrays with randomized spatial configurations.31,32

In general, a higher gain q�R is achieved for reflectors with a larger
total scattering cross section r. For example, q�F is significantly greater
than q�X for all hI at kr [Fig. 7(a)] since r of F-reflectors is significantly

FIG. 6. Single-scattering predictions of
Bragg and Laue interferences in C-F
arrays. Top: Sketches of the interference
mechanisms. Wavevectors of the interact-
ing plane waves are depicted in orange.
Bottom: Interference lines (ILs) of destruc-
tive Bragg (orange lines) and Laue (purple
lines) interferences for waves incident at
hI ¼ 0 and 15.
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greater than that of X-reflectors [Fig. 2(b)]. Since we consider here the
optimal q� values, the periodicity dependence of jA�0 j is not relevant
because the maximum jA�0 j values are correlated with r. For wave-
numbers where r of F- and X-reflectors are comparable, the resulting
optimal gains q�F and q�X are comparable as well; this is exemplified in
Fig. 7(b) for k ¼ 0:87 kr at which rF ¼ 0:85 rX [Fig. 2(b)].

The optimal gain q�R can be further increased by increasing the
scattering from the reflectors per WEC. Without altering the reflector
geometry, the scattering strength can be modified by changing the
periodicity dR of the reflectors, i.e., by changing the reflector periodic-
ity factor �. We consider here � 2 1=3; 1=2; 1; 2; 3f g, Fig. 7(c).
Doubling the number of reflectors per WEC (�¼ 2) increases the opti-
mal gain to q�F � 6:5 for normal incidence. A further increase to �¼ 3
does not improve q�F at hI ¼ 0, but it does improve it for other inci-
dence angles. Conversely, � < 1, i.e., a lower r per cell, results in con-
sistently lower q�F values.

Introducing a non-zero shift s between the two rows does not
improve the performance of C-R arrays in normal incidence, Fig. 7(d).
For intermediate 15� hI � 45 incidence, staggered (s 6¼ 0) C-F
arrays achieve larger q�F, but not as much as those with increased reflec-
tor scattering (e.g., for �¼ 3). The qualitatively similar results for vary-
ing s values indicate the robustness of gain enhancement in C-R arrays.

The performance of C-R arrays in irregular seas is obtained by
integrating the array gain over the wave spectrum and possible direc-
tional spread. For very narrow-banded spectra with peak wavenumber
kp, the optimal spectral array gain is similar to q�RðkpÞ, but with the
increase in spectrum bandwidth, the optimal spectral array gain will
decrease. Due to the strength of constructive interferences and the
associated gain, the optimal C-R array configuration in irregular seas
is likely to be close to the optimal one for monochromatic seas at kp.
In directional seas (directional wave spreading function f ðhÞ,Ð
2p f dh ¼ 1), the directionally averaged gain hqi decreases as the
spread increases, with the upper bound31

hqi ¼
ð
2p
qðhÞf ðhÞ dh 	 2p

kW
max

h
f : (21)

For isotropic incidence (f ¼ 1=2p) on an array of optimally heaving
WECs, (21) simplifies to an equality hqi ¼ 1;31,33,34 in unidirectional
seas (f ¼ dðh� hIÞ, with d being the Dirac delta function), hqi ¼ qðhIÞ

is recovered. For practical purposes, the maximum deviation of the
incident angle from the mean wave direction on an infinitely periodic
array (or a large, but finite array near a shoreline) is significantly nar-
rower (jhj < 90), with f being strongly peaked around the mean wave
direction (such as in the commonly applicable cosine-2s distribution35),
so the upper bound on hqi is less restrictive.
VII. CONCLUSION

We investigate how the energy extraction of WEC arrays can be
increased by harnessing wave reflections from non-extracting reflec-
tors in their vicinity. For C-R arrays, periodic arrays with a row of
WECs parallel to a row of axisymmetric reflectors, we find that signifi-
cant energy extraction gains are achieved when (i) the total scattering
cross section r of the reflectors is large, (ii) the periodicity d is such
that the amplitude of the reflected modes is maximized, and (iii) the
spacing between the rows is such that the extraction is maximized by
utilizing the constructive Bragg or Laue interference. For R! C arrays
in particular, the conditions (i) and (ii) are modified in favor of maxi-
mizing transmitted modes, and the condition (iii) is primarily valid for
the constructive Laue interference.

For converter and reflector characteristics considered here, the
C-F array of optimal configuration achieves a gain of q�F � 5 for the
resonant wavenumber at normal incidence, which is roughly 2.5 times
greater than that of the optimal single-row WEC array. More remark-
ably, that particular C-F array extracts more energy than the optimal
C-C array, even though C-C arrays have twice as many converters.

While the quantitative values presented here are for the specific
body shape and PTO values we studied, the potential for large gain
increases in C-R arrays remains even if the WEC or the reflector
geometry, or the PTO are modified, as long as the scattering from
reflectors is strong. Furthermore, while we only considered here a sin-
gle row of converters parallel to a single row of reflectors, one can con-
jecture that reflectors can lead to a significant increase in energy
extraction in hybrid arrays of more complex spatial configurations as
well. Finally, the results presented here are strictly valid for linear
wave–body interactions. The achieved large values of gain associated
with optimal configurations might be affected when the nonlinear
effects and viscosity are taken into account, but the wave interaction
mechanisms that occur in these configurations likely hold.

FIG. 7. The maximum gain q� as a function of incident angle hI . Comparison of C-R arrays of different reflector types (dC ¼ dR, s¼ 0, �¼ 1) at (a) k ¼ kr and (b)
k ¼ 0:87kr . (c) The effect of reflector periodicity factor � on q�F of C-F arrays (s¼ 0) at kr . (d) The effect of row shift s on q�F of C-F arrays (�¼ 1) at kr .
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Our analysis has practical implications for the design and array
gains of WEC arrays that might be placed in the vicinity of existing
large offshore structures (whether natural or man-made). A special
case, for example, is an array of offshore wind turbine supporting
structures, which may be similar to what we considered. Even for
WEC arrays in isolation, the present results suggest the remarkable
possibility of cost reduction and increased energy extraction by replac-
ing select converters with (cheaper) non-extracting reflectors.
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Grgur Tokić: Conceptualization (equal); Formal analysis (lead);
Investigation (lead); Methodology (lead); Software (lead); Validation
(lead); Visualization (lead); Writing – original draft (lead); Writing –
review & editing (equal). Dick K. P. Yue: Conceptualization (equal);
Funding acquisition (lead); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APPENDIX: CALCULATION OF LATTICE SUMS

The infinite sum appearing in (10) captures the contributions
from the infinite number of bodies in a periodic array. For evanes-
cent waves (m> 0), the sum converges quickly and can be summed
directly, but the sum is notoriously slowly convergent for propagat-
ing wave m¼ 0 solutions36,37 and it needs a special treatment.

We can express an element Qjp
0;n;l of the periodicity matrix

defined in (10) as

ð�1ÞlQjp
0;n;l ¼

X1
B ¼ �1;
B 6¼ 0

Ql;B (A1)

with l � n� l. For large jBj ! 1; R^̊p ! djBj and a^̊p ! aB
¼ 7p=2 for B00, resulting in the limit

lim
jBj!1

Ql;B ¼ PBKlðk0djBjÞeilaB ¼ QSl;B; (A2)

where PB ¼ eikd sin hI . We can now use Kummer’s transformation36

of the original series

ð�1ÞlQjp
0;n;l ¼

X1
B ¼ �1;
B 6¼ 0

QSl;B þ
X1

B ¼ �1;
B 6¼ 0

Ql;B �QSl;B
� �

¼ ð�iÞlrl þ Ql; (A3)

where

rlðkd;hIÞ¼ il
X1

B¼�1;
B 6¼ 0

QSl;B¼
X1
B¼1

PBþð�1ÞlP�B
� �

Klðk0djBjÞ (A4)

is the standard Schl€omilch sum, for which rapidly convergent for-
mulations are known.36 With this transformation, the infinite sum
in the off-axis correction Ql term now converges more rapidly.

The Schl€omilch sum rl depends only on the periodicity and
not on the relative positions of the body in a periodic cell, so it can
be used for many configurations. For the case when the infinite sum
is for bodies along the same axis (i.e., Rjp¼ 0),
ð�1ÞlQjp

0;n;l ¼ ð�iÞ
lrn�l .
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