
Enabling Accurate and High-Throughput
Kinetics Predictions via Message Passing Neural

Networks
by

Kevin A. Spiekermann
B.S. Chemical Engineering

University of California, San Diego (2018)

M.S. Chemical Engineering Practice
Massachusetts Institute of Technology (2021)

Submitted to the Department of Chemical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Chemical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© 2023 Kevin A. Spiekermann. This work is licensed under a CC BY-SA 2.0.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Chemical Engineering

August 10, 2023

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
William H. Green

Hoyt C. Hottel Professor in Chemical Engineering
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hadley D. Sikes

Esther and Harold E. Edgerton Professor in Chemical Engineering
Graduate Officer

https://creativecommons.org/licenses/by-sa/2.0/


2



Enabling Accurate and High-Throughput Kinetics Predictions via

Message Passing Neural Networks

by

Kevin A. Spiekermann

Submitted to the Department of Chemical Engineering
on August 10, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Chemical Engineering

Abstract

Quantitative estimates for kinetic properties, namely reaction barrier heights and reaction
energies, are essential for developing kinetic mechanisms, predicting reaction outcomes, and
optimizing chemical processes. While ab initio methods, such as quantum chemistry, can be
incredibly useful for providing accurate kinetic data, their high computational cost severely
limits their utility for large-scale applications. High-quality experimental data is often even
more rare, and such approaches are less amenable to exploring the vastness of chemical
space due to monetary cost, time, and safety considerations. Modern machine learning
(ML) techniques offer a promising option since they can quickly provide estimates to narrow
the search space for more expensive ab initio or experimental methods. Unfortunately, the
paucity of reliable quantitative chemical reaction data to train such models has presented a
major hindrance for these data-driven approaches.

Here, this thesis focuses on the intersection of ML and quantum chemistry with the goal
of enabling automatic high-fidelity predictions of kinetic parameters. The novel contributions
can be grouped into three main categories:

1. Large-scale dataset generation, with an emphasis on high-quality methods and reaction
diversity. Although much of the presented work studies reactions in the gas phase, this
thesis also contributes a large dataset calculated in many popular solvents.

2. Train various ML models to quickly predict accurate kinetic parameters, which avoids
the challenging task of finding transition state structures. Importantly, these mod-
els operate on simple input representations and hence are ideal for automated, high-
throughput applications.

3. Provide best-practice guidelines and an open-source software package to improve the
status quo of ML for chemistry research.

The contributions from this thesis, and from similar work, will be essential for modern high-
throughput workflows and the future of automated predictive chemistry.

Thesis Supervisor: William H. Green
Title: Hoyt C. Hottel Professor in Chemical Engineering
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Chapter 1

Introduction

Accurately predicting the time evolution of reacting chemical systems, as well as the yields
of various products and side products, has been one of the main goals of physical chem-
istry for more than 135 years [1, 2]. Detailed kinetic mechanisms aim to achieve this goal
by enumerating all relevant elementary reactions to make quantitative predictions for di-
verse chemical systems. A crucial step in developing a kinetic mechanism is to accurately
compute the thermochemical and kinetic parameters of the relevant species and reactions.
Historically, the field has relied on regressing these parameters from a relatively narrow set
of experimental measurements. Not only are experiments often time-consuming, expensive,
and have several safety considerations, the fitted parameters from this approach generally
results in poor extrapolation when trying to model new systems. Due to the impressive ac-
curacy of quantum mechanical (QM) methods and growth of compute power, it has become
possible to accurately compute rate coefficients for individual reactions using first principles
methods like transition state theory (TST) [3, 4], thus allowing the field of chemical kinetics
to begin transitioning from a post-dictive to predictive modeling approach that can better
extrapolate to new reaction conditions [5]. Indeed, computational approaches have enabled
successful generation of complex mechanisms whose predictions can give good agreement
with experimental measurements [6–15].

Although this progress is exciting, the QM workflow involves many steps for both the
stable species and transition state (TS), including conformer generation, geometry optimiza-
tion, frequency calculation, and refining the energy via accurate single-point calculation.
Furthermore, identifying a suitable TS geometry that can successfully optimize to a struc-
ture that passes an intrinsic reaction coordinate verification is a non-trivial task. Given that
each of these steps is computationally expensive, this workflow is poorly suited to provide
kinetic estimates for the tens of thousands of reactions that must often be considered during
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automatic mechanism generation [16]. In reality, it is common for only a small fraction of
the numerous rate coefficients in these mechanisms to be computed accurately, which can
make the predictions somewhat erratic. The vision of reliable predictive chemical kinetics
can only be realized if accurate rate coefficients can be calculated much more rapidly than
is possible today. Hence, it is prudent to explore how data-driven methods can accelerate
portions of this workflow to enable efficient identification of relevant low-barrier reactions.
Ideally, the predictions are already within an acceptable error tolerance, but, depending on
the application, it may be worth spending the compute time to calculate this much smaller
subset of reactions with very high accuracy. The goal of this thesis is to accelerate high-
throughput predictive chemistry via machine learning by providing accurate estimation of
parameters relevant in automated mechanism generation.

1.1 Automated Mechanism Generation for Quantitative

Predictive Chemistry

Detailed chemical reaction mechanisms help explain physical phenomena driven by chemical
kinetics and are recognized as a necessary tool for chemical selection and process optimiza-
tion. A reaction mechanism is a list of species and reactions, ideally elementary, along with
their thermochemical and kinetic parameters respectively; transport parameters may also be
necessary depending on the system and modeling approach. Together, these define a system
of ordinary differential equations that can be numerically integrated to simulate the time
evolution of the system. A schematic of this workflow is shown in Figure 1.1. This framework
is powerful as it allows researchers to explore these systems computationally, which should
be cheaper, faster, and safer in comparison to running experiments. With this increased un-
derstanding, kineticists can then offer guidance regarding how to manipulate these dynamics
to obtain a desired outcome.

There are two very important questions that must be answered in order to successfully
construct a kinetic model. First, how do we know which species and reactions are relevant to
the system of interest? Once those have been defined, how do we know what thermochemical
and kinetic values to use, which ultimately become coefficients in the system of equations?
This thesis will primarily focus on the second question. However, these questions are related
so it is informative to provide a brief overview for each.

Regarding the first task, mechanism development was historically a manual process that
required people with an expert understanding of the niche system to tediously enumerate all
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Figure 1.1. Schematic showing that integrating the differential equations that comprise a chemical
kinetic model yields the time evolution of the system. The plot on the right is taken from ref. [14].

of the relevant species and reactions. This approach is not only error-prone, but it also does
not scale well with larger systems or more complex chemistry. In recent decades, the devel-
opment of computational methods for building reaction mechanisms has helped transition
mechanism development to an automated procedure that leverages theoretical insight and
experimental data. Several software packages exist for generating reaction mechanisms auto-
matically, with examples including NETGEN [17, 18], Reaction [19], EXGAS [20], Genesys
[21], and the Reaction Mechanism Generator (RMG) [22, 23]. Since RMG has become the
most widely-used software, and it is also developed by our research group, portions of this
thesis are dedicated to improving RMG.

RMG is an open-source software that constructs kinetic models composed of elemen-
tary chemical reaction steps using domain knowledge of how molecules react. A schematic
overview of RMG’s mechanism generation workflow is shown in Figure 1.2. After identifying
a system of interest, RMG operates by taking the initial conditions (species concentrations,
temperature, and pressure) as input. From here, RMG relies on two main components to
generate the mechanism. The first component is RMG’s database, which stores thermody-
namic and kinetic values. If the database happens to have the value for the exact species
or reaction that is under consideration for the mechanism, then RMG will directly query
that value. However, more commonly, RMG uses simple data-driven estimators to quickly
estimate the values, which answers the second broad question raised earlier. For example, to
estimate thermodynamics, it uses Benson group additivity [24–26], which is a linear model for
adding enthalpies of formation of predefined groups to obtain the enthalpy of the molecule.
To estimate the kinetics, it uses decision trees [27]. These simple estimators are convenient
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since they can quickly provide predictions for tens of thousands of reactions that must often
be considered during automatic mechanism generation [16]. The second major component
of RMG is the flux based expansion algorithm [28]. At each iteration of mechanism gener-
ation, RMG simulates the set of species and reactions it has already chosen to include in
the model, referred to as the “core”. During this simulation, it calculates fluxes through a
set of reactions that are under consideration to enter the core, referred to as the “edge”. If
the flux toward a species in the edge is high enough, it is added to the core. This iterative
expansion will continue until the flux of all edge species is below the user defined tolerance.
Poor thermochemistry and kinetic estimation can cause model generation to miss relevant
chemical pathways, highlighting the connection between the two key questions raised earlier
as well as the crucial role of RMG database in providing good estimates. When all relevant
edge species have been added to the core, mechanism generation is finished, and the result-
ing kinetic model can be simulated (i.e., integrated with respect to time) with any popular
software, such as Chemkin [29], Cantera [30], or RMS [31].

Tolerance
Initial conditions (T, P, X)
Termination criteria (time, conversion, flux ratio)

Kinetic Model

User Input

Libraries with high accuracy values

Estimate 
thermodynamics

Estimate kinetics

Parameter Database Flux-Based Expansion Algorithm
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D E

FOld Core A
B
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Add highest flux species
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Figure 1.2. Schematic showing the high-level workflow used by RMG to create detailed kinetic
mechanisms that are used to simulate real chemical systems. After receiving input from a user,
RMG applies reaction templates to exhaustively enumerate a list of possible reactions, and the
corresponding thermochemical and kinetic parameters are estimated via RMG’s database. The flux-
based expansion algorithm is used to prioritize important (i.e., high-flux) reactions and iteratively
expand the mechanism until it satisfies the user-defined termination criteria. Some parameters in
the kinetic model must often be refined using the workflow shown in Figure 1.3. The final kinetic
model can be simulated to yield the time evolution of the chemical system.
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In theory, the resulting kinetic mechanism is complete and closely models the chemistry
for the chosen system. In reality, the accuracy of the predicted concentration profiles is rarely
satisfactory on the first try. While validating the kinetic model, it is common to identify
several parameters which were poorly estimated during mechanism generation and thus must
be refined. Model refinement involves updating RMG’s database, running RMG again with
these better values to obtain a new kinetic model, and likely iterating through this process
a few times. Although identifying key parameters for refinement via sensitivity analysis is
an automated process and many steps for refining thermochemical parameters have been
automated as well [32], obtaining new kinetic parameters involves a more complicated and
tedious workflow.

Historically, these parameters were regressed from experimental measurements. Today,
advances in compute power have increased the popularity of QM calculations. Figure 1.3
outlines the steps necessary to calculate updated kinetic parameters for a single reaction.
The workflow starts by embedding 3D structures–along with several conformers–for the reac-
tant(s) and product(s) via distance geometry methods [33] that are then cheaply minimized
with molecular mechanics force fields [34]. The lowest energy conformers given by molecular
mechanics are further optimized using quantum chemical methods. Next, these reactant
and product geometries are used to generate an initial guess for the transition state (TS)
structure, which is then optimized and verified with an intrinsic reaction coordinate (IRC)
calculation to confirm that the TS connects the corresponding reactant(s) and product(s)
[35]. The energies of the stable species and TS are re-computed at a highly accurate level
of theory (e.g., coupled-cluster which is commonly considered the gold standard in quantum
chemistry [36, 37]) with zero-point energy corrections to provide an accurate barrier height
and reaction energy. If the structures of interest are flexible with many rotatable bonds,
conformational effects must also be considered. This is commonly done by approximating
each hindered internal rotor as independent [38–40], but this approximation is often not ac-
curate enough and some treatment of the coupling between different rotors is then required
[41]. Methods that utilize multiple conformational minima for the reactant(s) and TS and
combine conformational effects with low frequency anharmonic torsional modes–such as the
multistructure methods developed by Truhlar and coworkers–have become popular alterna-
tives, but identifying enough relevant conformers can be quite challenging [42–45]. Finally,
the workflow culminates in calculating the partition functions, which canonical transition
state theory (TST) uses to estimate the high-pressure limit rate coefficient 𝑘∞(𝑇 ); the ef-
fects of symmetry and reaction path degeneracy, tunneling, and other corrections should be
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included as well [4, 46–48]. Although Figure 1.3, and most work in this thesis, focuses on the
gas-phase, if the reaction is carried out in solution, the free energies of each structure must
be corrected with an additional solvation free energy term [49], which is commonly computed
with either implicit [50], explicit [51], or hybrid [52, 53] solvation models; additional details
are discussed in Chapter 6.
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Figure 1.3. The conventional workflow for combining QM with TST to predict a high-pressure
limit rate coefficient for a single reaction is shown in the outer loop with dark purple arrows.
Since this workflow is computationally expensive, this thesis focuses on quickly providing accurate
estimates for barrier heights and reaction energies by using models that operate on simple input
representations, making them ideal for automated, high-throughput application. This schematic is
modified from ref. [54].

Despite the tremendous progress the field has made towards a predictive modeling ap-
proach, the process to obtain improved kinetic parameters for even a single reaction is un-
fortunately quite involved and computationally expensive, which continues to present many
challenges towards automation and high-throughput. For example, geometry optimization
and single-point energy refinement are essential steps in this workflow, yet they scale any-
where from 𝒪(𝑁4) for density functional methods with exchange correlation like B3LYP
[55–58] to 𝒪(𝑁7) for highly accurate CCSD(T) methods [59, 60], such that 𝑁 is the number
of basis functions. Considering multiple conformers is crucial because using high-energy con-
formers to calculate partition functions can lead to inaccurate rates. However, this results
in many more intensive calculations that each scale poorly with system size. The search for
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a 3D transition state (TS) structure is often time-consuming as well since automated saddle
point finders frequently have high failure rates so many geometries must often be provided
as initial guesses for the optimization to converge to a valid TS [61, 62].

Finally, this computational expense becomes especially daunting when thinking about
how tremendously large chemical space is and how many possible reactions might need to
be characterized. Even when considering just organic species comprised of the elements H,
C, N, O, S, and halogens, there exist at least 166 billion organic molecules with up to 17
heavy atoms [63]. For context, this size range is still very small as many modern medicines
and materials contain much larger molecules. The scope of possible unimolecular reactions
from this limited set is substantially larger since each molecule contains multiple reaction
sites and can participate in multiple reaction templates that can create radical species not
present in the original set. The number of possible reactions becomes immensely larger
when considering the combinatorial explosion that results from multi-molecule reactions
(e.g., 166 × 109 choose 2 is 1.37 × 1022). Given that the workflow from Figure 1.3 requires
millions of CPU hours to generate high-quality kinetics datasets with just 6,000 to 12,000
reactions, such as those presented in Chapter 6 and Chapter 3 respectively, exploring this
entire space via first-principles approaches is essentially impossible. It is imperative to
develop tools that can make predictions for a much larger magnitude of reactions in order
to achieve the grand vision of quantitative predictive chemistry.

Here, the goal of this thesis is to use machine learning (ML) as a tool to directly predict
barrier heights and reaction energies as it is convenient for users to obtain both reaction
properties from a single model. The main aspiration is to create a symbiotic relationship
in which modern ML models can quickly screen through a multitude of reactions so that
compute hours from the expensive QM workflow are only used when necessary. Important
properties of these models include avoiding the challenging task of finding TS structures and
operating on simple input representations that do not require expensive QM calculations and
conformer searches. Such properties make these models ideal for automated high-throughput
screening of large regions of reaction space. Example applications include estimating barrier
heights during the automated generation of kinetic models, identifying relevant low-barrier
reactions produced from an automated enumeration, and offering substantial speedup when
refining existing kinetic models. These models are also relevant to inverse molecular design
i.e., the task of designing molecules with specific properties. Once a target molecule has been
identified, the synthesis route will likely involve many competing reactions, and these models
can predict the relevant kinetic properties. Given that all known chemistry is dwarfed by
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the vastness of chemical space, most of which still remains unexplored [63–65], these models
will satisfy an essential need by providing easy access to accurate kinetic predictions that
will encourage further progress towards quantitative predictive chemistry.

1.2 Thesis Overview

This thesis has made several novel contributions towards the field of chemical kinetics. After
Chapter 2 provides some basic background information regarding the methods and tools used
in this thesis, the following chapters detail the original research in detail. Since quantitative
chemical reaction data are often difficult to find, and high-quality datasets are especially
rare, this thesis creates two kinetic datasets. The values for species thermochemistry and
reaction properties from these datasets are extremely valuable by themselves for developing
detailed kinetic mechanisms and predicting reaction outcomes. They also present several
opportunities to benchmark the accuracy of other quantum chemical methods and evaluate
various machine learning approaches to accelerate and automate steps in the traditional
quantum chemistry workflow to calculate kinetic parameters. This thesis presents results
for each of these tasks. Finally, this thesis provides guidelines for best practices in machine
learning as well as an open-source software package, both of which can help improve the
status quo of machine learning for chemistry. A summary of each chapter is given below.

Chapter 3 addresses the current paucity of quantitative chemical reaction data by creating
the largest open-source high-quality kinetics database with atom-mapped reactions and tran-
sition state geometries. The CCSD(T)-F12a/cc-pVDZ-F12//𝜔B97X-D3/def2-TZVP level of
theory is used to obtain highly accurate single-point energy values for nearly 22,000 unique
stable species and transition states. This work reports the results from these quantum chem-
istry calculations and extracts the barrier heights and reaction enthalpies to create a kinetics
dataset of nearly 12,000 elementary gas-phase organic reactions, whose species contain the
elements H, C, N, and O. This work also reports accurate transition state theory rate coef-
ficients 𝑘∞(𝑇 ) between 300 K and 2000 K and the corresponding Arrhenius parameters for
a subset of rigid reactions. This dataset provides a foundation for this thesis, as well as for
the broader kinetics community, since it provides opportunities to evaluate the best ways to
represent reactions and predict kinetic parameters. This data should accelerate development
of automated and reliable methods for quantitative reaction prediction.

Chapter 4 offers several significant improvements to the Reaction Mechanism Genera-
tor (RMG) database. The RMG database consists of curated datasets and estimators to
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quickly predict the tens of thousands of parameters necessary for automatically constructing
a wide variety of chemical kinetic mechanisms. Here, I integrate values from Chapter 3 into
this open-source database. Contributions include frequency scaling factors, atom energy
corrections, bond additivity corrections, and a new thermodynamics library, all of which
will improve species thermochemistry. Several high-quality training reactions are added as
well, which result in significant improvements to many kinetic estimators within the RMG
database. Altogether, these updates should improve RMG’s reliability when automatically
generating kinetic mechanisms.

Chapter 5 trains a directed message passing neural network to predict the high-quality
barrier heights and reaction enthalpies calculated at CCSD(T)-F12a/cc-pVDZ-F12//𝜔B97X-
D3/def2-TZVP from Chapter 3. Utilizing both the forward and reverse reactions gives over
20,000 diverse gas-phase reactions as training data. Our model uses 75% fewer parameters
compared to previously published models trained on the same data, an improved reaction
representation, and proper data splits to accurately estimate performance on unseen reac-
tions. Using information from only the reactant and product, our model quickly predicts
barrier heights with a testing MAE of 2.6 kcal mol−1 relative to the coupled-cluster data,
which is comparable in accuracy to a good DFT calculation. Consistent with several previous
studies, our results show that learned representations from graphs outperform traditional ML
approaches (e.g., support vector regression, random forest, extreme gradient boosting, and
multi-layer perceptron). Further, our results show that future modeling efforts to estimate
reaction properties would significantly benefit from fine-tuning calibration using a transfer
learning technique. This model is anticipated to offer substantial time savings and improve
quantitative kinetic predictions for small molecule gas-phase chemistry.

Chapter 6 is conceptually similar to Chapter 5, but focuses on two important contribu-
tions for the field of solvated kinetics. First, a novel dataset of nearly 6,000 elementary radical
reactions is created using the M06-2X/def2-QZVP//B3LYP-D3(BJ)/def2-TZVP level of the-
ory in the gas phase. A conformer search is done for each species using TPSS/def2-TZVP
in the COSMO phase to account for generic solvent effects. Solvation effects are treated
using the BP-TZVP procedure from COSMO-RS, giving access to the Gibbs free energies of
activation and of reaction for these radical reactions in 40 popular solvents. These balanced
reactions involve the elements H, C, N, O, and S, contain up to 19 heavy atoms, and have
canonical atom-mapped SMILES. All transition states are verified by an intrinsic reaction
coordinate calculation. The second contribution is training a deep graph network to quickly
estimate the Gibbs free energy of activation and of reaction in both gas and solution phase
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using only the SMILES of the reactant, product, and solvent. To properly measure perfor-
mance, results are reported for both interpolative and extrapolative data splits (i.e., random
and K-Means clustering of reactant substructures respectively). Performance is also com-
pared to several baseline models. Accounting for both the forward and reverse reactions, as
well as data augmentation, leads to approximately half a million entries to train the model,
which achieves a mean absolute error of 3.00 kcal mol−1 for the Gibbs free energy of activa-
tion in solution in the test set when using extrapolation-based splits. Our results corroborate
existing literature that shows learned representations from graphs typically outperform tra-
ditional ML approaches within the field of chemical kinetics. This model should accelerate
predictions for high-throughput screening to quickly identify relevant reactions in solution,
and the new dataset will serve as a benchmark for future studies.

Chapter 7 continues to address the data scarcity within chemical kinetics by enumerating
750 million canonical atom-mapped reaction SMILES. These reactions involve the elements
H, C, N, and O and contain molecules with up to 11 heavy (non-hydrogen) atoms that par-
ticipate in 22 popular reaction templates from the Reaction Mechanism Generator, thus this
dataset is named RMG-DB-11. This dataset is used to pre-train both a deep graph network
and a language model that the kinetics community can fine-tune on various downstream tasks
focused on gas-phase kinetics. I also present a new dataset of barrier heights for 1,100 radi-
cal reactions calculated at CCSD(T)-F12a/cc-pVDZ-F12//𝜔B97X-D3/def2-TZVP, which is
used to fine-tune the models. I also fine-tune using the gas-phase dataset of barrier heights
for 6,000 reactions from Chapter 6 calculated at M06-2X/def2-QZVP//B3LYP-D3(BJ)/def2-
TZVP. The specific results in this chapter indicate that graph networks outperform for pre-
dicting barrier heights. However, identifying learned reaction representations that generalize
well remains a grand challenge for computational kinetics so future work should continue to
explore this further. RMG-DB-11 should push the field to create foundation models that
ultimately accelerate and improve kinetic predictions for small molecule chemistry.

While the previous chapters focused on an in-depth analysis of one specific dataset or a
specific goal of predicting barrier heights, the next two chapters transition to discuss more
fundamental and widespread issues within the field of ML for chemistry. I then directly pro-
vide guidelines and a software package that can help improve the status quo. Chapter 8 offers
a broad perspective on what constitutes best practices for creating useful ML models. The
discussion focuses within the field of chemical kinetics, but the principals are generalizable to
other fields as well. Overall, I present three aspects that are essential for researchers to con-
sider when constructing ML models: (1) Are the model’s prediction targets and associated

30



errors sufficient for practical applications? (2) Does the model prioritize user-friendly inputs
so it is practical for others to integrate into prediction workflows? (3) Does the analysis
report performance on both interpolative and more challenging extrapolative data splits so
users have a realistic idea of the likely errors in the model’s predictions? Altogether, these
criteria should improve the quality of published models in the literature and encourage more
rigorous analysis that enables better scientific progress.

Chapter 9 expands on the third main idea from Chapter 8, namely using well-thought-out
data splits to properly analyze model performance. Critical to the use of ML is the process
of splitting datasets into training, validation, and testing subsets that are used to develop
and evaluate models. Common practice in the literature is to assign these subsets randomly,
partly because this approach is computationally fast and efficient and also because this is
often the only option conveniently provided in popular packages like sklearn. However,
random splitting only measures a model’s capacity to interpolate. Testing errors reported
from models trained on random data splits may be overly optimistic if given new data that
is dissimilar to the scope of the training set; thus, there is a growing need to easily mea-
sure performance for extrapolation tasks. To address this issue, a new open-source Python
package called astartes is created, which implements many similarity- and distance-based
algorithms to partition data for either interpolation tasks or more challenging extrapolation
tasks. The examples in this chapter focus on use-cases within cheminformatics. However,
our package operates on arbitrary vector inputs; its principals are generalizable to other ML
domains as well, and it can be easily integrated into existing workflows.

Finally, Chapter 10 summarizes the key contributions of the thesis and discusses several
recommendations for future work related to the field of automated chemical kinetics and
machine learning applied to chemistry.
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Chapter 2

Background

The following sections provide a brief overview of the methods relevant to this thesis. The
first section discusses some basics of computational chemistry, which is necessary to explain
and predict chemical properties and reactivity. The next section provides a brief introduction
to machine learning, specifically graph neural networks, which are the primary model archi-
tecture used throughout this thesis to accelerate portions of the workflow from Figure 1.3.

2.1 Computational Chemistry

Although experimental techniques are crucial to obtaining reliable thermodynamic and ki-
netic data, these approaches can be expensive, time-consuming, and have several safety
considerations. Furthermore, studying reactive intermediates experimentally can be pro-
hibitively difficult. With these limitations in mind, first-principle approaches can be another
useful method of obtaining thermodynamic and kinetic data that is needed to construct
kinetic models and understand chemical systems. This thesis uses quantum chemistry to
calculate the geometry, vibrational frequency, and energy of chemical species. Only a brief
overview of these techniques is presented here. Additional detail regarding thermodynamics
and statistical mechanics can be found in several textbooks [1–8].

2.1.1 Quantum Mechanics

The primary goal of quantum chemistry is to describe the molecular properties of a chemical
system. This involves solving the time-independent Schrödinger equation:

𝐻̂Ψ(𝑟⃗, 𝑅⃗) = 𝐸Ψ(𝑟⃗, 𝑅⃗) (2.1)
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such that 𝐻̂ is the Hamiltonian operator, which is often separated into terms for the kinetic
and potential energy for the individual nuclei and electrons, along with terms for their
interactions. Ψ is wavefunction of the system, 𝑟⃗ and 𝑅⃗ are the positions of electrons and
nuclei respectively, and 𝐸 is the total energy of the system, which is also an eigenvalue. The
physical interpretation of the wavefunction comes from the quantity |Ψ|2, which relates to
the probability of finding a particle in a given volume.

Equation (2.1) can only be solved analytically for very simple systems (e.g., those with
only 1 electron). Analytical solutions for multiple electron systems are not possible, so ob-
taining information for larger systems requires approximations as well as numerical methods.
The first assumption is the Born-Oppenheimer approximation, which allows us to treat the
nuclear and electronic wavefunctions independently. The rational for this is that nuclei are
much heavier than electrons, so nuclei effectively appear as stationary particles relative to
the much faster moving electrons. Many computational quantum chemistry softwares uti-
lize this approximation to solve the electronic Schrödinger Equation, with the nuclei-nuclei
potential energy term added in at the very end.

Several methods have been used to obtain approximate numerical solutions to the Schröd-
inger Equation. One approach is to use wavefunction-based methods, such as Hartree-Fock
(HF) [9, 10], which constructs an initial trial wavefunction using Slater determinants to
satisfy the antisymmetric constraint of electrons and uses a variational approach to solve
Equation (2.1). This invokes the independent particle model, in which the electrons are
modelled as a combination of the various one-electron wavefunctions. Rigorously, the motion
of each individual electron is correlated to all others. However, a key approximation in HF
is the mean field approximation, which instead allows each electron to behave as if it sees an
average potential of all the other electrons and omits correlation between the electrons. Still,
the mean field approximation can cause substantial errors, so several post-HF methods have
been developed to incorporate correlation effects. Examples include Møller-Plesset (MP)
perturbation theory [11] and coupled-cluster (CC) theory [12]. Although CC is commonly
considered the gold standard for quantum chemistry methods due its close agreement with
experiment values [13, 14], it is practically only feasible for relatively small molecules (e.g.,
about 20 non-hydrogen atoms or fewer) due to its steep scaling of 𝒪(𝑁7), such that 𝑁 is
the number of basis functions.

More recently, density functional theory (DFT) [15] has emerged as another popular
approach for solving the the Schrödinger Equation. In contrast to wavefunction-based meth-
ods, DFT centers around the electron probability density, whose integral determines the
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probability of finding any electrons within a defined volume element. The merit in this
approach stems from Hohenberg and Kohn [16] proving that electron density can be used
to derive ground-state properties of a molecule. Additionally, numerous studies have shown
that DFT strikes a favorable balance between computational cost and accuracy, which has
helped establish its popularity within computational chemistry [17, 18].

2.1.2 Statistical Thermodynamics

Crucial to modeling chemical systems is obtaining thermochemical data, such as enthalpy,
entropy, Gibbs free energy, and heat capacities. Statistical thermodynamics provides the
framework to accomplish this by transforming microscopic quantities, like the electronic
energy, vibrations, and geometry obtained via quantum chemistry, to these relevant macro-
scopic properties. The key concept of statistical mechanics is to treat molecules as a collection
of microscopic states. The probability of being in these states depends on the energy re-
quired to access these states–and hence the temperature of the system–and is ultimately
described by a Boltzmann distribution, which allows us to calculate the partition function
of a molecule

𝑞(𝑉, 𝑇 ) =
𝑁∑︁

𝑖=1

𝑔𝑖 exp

(︂
− 𝜀𝑖
𝑘𝐵𝑇

)︂
(2.2)

such that 𝑉 is the volume, 𝑇 is the temperature, 𝜀𝑖 is the energy associated with each
microscopic state which is determined via quantum chemistry throughout this thesis but
could also be determined experimentally, 𝑔𝑖 is the degeneracy of each state, 𝑁 is the number
of energy levels, and 𝑘𝐵 is the Boltzmann constant.

Determining the molecular partition function typically requires strong assumptions. The
first being the ideal gas law, which assumes individual particles have no interactions and
hence are independent. The second is the rigid rotor harmonic oscillator (RRHO) approx-
imation, which states that the modes of motion–translational, vibrational, rotational, and
electronic–that contribute to the partition function are independent of one another. Thus,
the energy of a molecule at state 𝑖 is given by the sum of each mode:

𝜀𝑖 = 𝜀𝑇𝑖 + 𝜀𝑉𝑖 + 𝜀𝑅𝑖 + 𝜀𝐸𝑖 (2.3)

The RRHO approximation results in a relatively simple way to derive the molecular parti-
tion function and gives reasonably accurate results. Substituting Equation (2.3) into Equa-

39



tion (2.2) gives an expression for the total molecular partition function:

𝑞 = 𝑞𝑇 𝑞𝑉 𝑞𝑅𝑞𝐸 (2.4)

Definitions of the individual partition functions for each mode, as well as derivations of
thermodynamic properties from the molecular partition function, are detailed in several
textbooks [1–8].

2.1.3 Transition State Theory

Transition state theory (TST) is a popular method to estimate rate coefficients of elementary
chemical reactions from properties derived using first-principle calculations, namely energies
calculated via quantum mechanics and partition functions calculated via statistical thermo-
dynamics. Several forms of TST have been developed over the years [19–23], so only a brief
summary is provided here.

TST relies on the concept of a phase space, which consists of all positions and momenta
of the molecular system. Within the TST framework, an elementary reaction is defined as
a minimum energy path connecting the reactants and products. Solving the Schrödinger
equation for many atomic configurations along this path allows construction of a potential
energy surface (PES). Reactants and products are stable species i.e., their potential energy
is a local minimum on the PES. A key assumption is that the reactants and products are
separated by a dividing surface, known as the transition state (TS). Mathematically, a TS
is a first-order saddle point on the PES, and identifying TS structures and calculating their
energies is essential for TST. Another assumption of TST is the no recrossing assumption
i.e., if a reactant obtains enough energy to cross this dividing surface, it will proceed to
forming the products. In reality, re-crossing occurs so the reactive flux is overestimated by
TST.

The final assumption made by TST is that the reactants are in equilibrium with the TS,
either on a fixed-temperature basis which is deemed canonical TST, or on a fixed-energy basis
which is deemed microcanonical TST. This thesis exclusively uses canonical TST, defined as

𝑘∞(𝑇 ) =
𝑘𝐵𝑇

ℎ

𝑞‡∏︀𝑁𝑟

𝑖 𝑞𝑟,𝑖
exp

(︃
− 𝐸‡

0

𝑘𝐵𝑇

)︃
(2.5)

where 𝑘∞(𝑇 ) is the high-pressure limit temperature-dependent rate coefficient, 𝑞‡ is the
partition function of the TS, 𝑞𝑟,𝑖 is the partition function of reactant 𝑖, 𝑁𝑟 is the number of
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reactants in the reaction, ℎ is Planck’s constant, and 𝐸‡
0 is the difference in the ground state

electronic energy between the TS and the reactant(s) at 0 K. The above expression is often
corrected for several factors, including quantum mechanical tunneling, symmetry factors of
the reaction, and the presence of optical isomers to yield

𝑘(𝑇 ) = 𝜅
𝑘𝐵𝑇

ℎ

𝜎‡
∏︀𝑁𝑟

𝑖 𝜎𝑟,𝑖

∏︀𝑁𝑟

𝑖 𝑚𝑟,𝑖

𝑚‡
𝑞‡∏︀𝑁𝑟

𝑖 𝑞𝑟,𝑖
exp

(︃
− 𝐸‡

0

𝑘𝐵𝑇

)︃
(2.6)

such that 𝜎‡ is the external symmetry factor of the TS, and 𝜎𝑟,𝑖 is the external symmetry
factors of reactant 𝑖, 𝑚‡ is the number of optical isomers of the TS, and 𝑚𝑟,𝑖 is the number
of optical isomers of reactant 𝑖. The tunneling correction factor 𝜅 accounts for the fact that
particles do not necessarily need to have a greater energy than the dividing surface, as they
can simply tunnel through the boundary.

2.2 Machine Learning

2.2.1 Overview

Machine learning (ML) models can be classified as discriminative or generative. Given
some training data 𝑥 and labels 𝑦, discriminative models learn the conditional probability
distribution 𝑝(𝑦|𝑥), which can then be used to predict the value of 𝑦 given a new example 𝑥.
This is also termed supervised learning since the labels are used to “supervise” the learning
process. Generative models learn the joint probability distribution 𝑝(𝑥, 𝑦), which can be
used to generate new examples of (𝑥, 𝑦). These methods are useful for unsupervised learning
tasks. This thesis focuses on using discriminative models. However, traditional unsupervised
methods are used to cluster the data that is subsequently used for training and evaluating
the discriminative models in Chapter 6 and Chapter 9; more broadly, the large amount of
unlabeled chemistry data presents several promising avenues to augment model performance,
which could be explored in future work.

Discriminative models can be used for either classification or regression tasks. The former
categorizes an input 𝑥 into one of many discrete output classes (e.g., binary classification
of whether a molecule is toxic), while the latter predicts a continuous output value (e.g.,
solubility or melting point). The prediction tasks in this thesis focus on regression. However,
quantitative structure-activity or structure-property relationship (QSAR or QSPR) have a
long history within the field of predictive chemistry [24–26].
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At a high-level, ML for chemistry workflows are comprised of two core components–
representation and model architecture–though this distinction often becomes less clear for
modern deep learning architectures. Section 2.2.5 will touch on this nuance in the context
of graph neural networks, but the general idea is similar for convolutional neural networks
and transformers. Regardless, molecules must first be converted into a machine-readable
vector representation that is then passed to the model. While there are many choices for the
representation and model architecture, the key concept for ML is that the model parameters
are “learned” (i.e., determined algorithmically via gradient descent) as opposed to being
manually determined by humans. This is described in the next section.

2.2.2 Backpropagation

At its core, ML is an optimization procedure with the goal of fitting a model to some
given data such that the model’s predictions minimize a loss function. Although there are
numerous optimization strategies, the most popular approach–particularly for deep learning–
is based upon stochastic gradient descent (SGD). Briefly, SGD randomly samples some
amount of data during training, performs a forward pass of the model to make a prediction,
and then calculates the gradient of the prediction with respect to the model’s parameters
Θ. Backpropagation, which is short for backward propagation of errors and is effectively an
application of the chain rule from calculus, along with automatic differentiation, are used
to automatically calculate these gradients. Finally, the model’s parameters are updated by
taking a step in the direction of the negative gradient using the following equation

Θ𝑖+1 = Θ𝑖 − 𝜂∇Θℒ(𝑦, 𝑦) (2.7)

such that Θ𝑖 are the model’s parameters at iteration 𝑖, 𝜂 is the learning rate (i.e., step-
size), ∇Θ is the gradient operator with respect to the model’s parameters, and ℒ is the loss
function, which depends on the predicted value(s) 𝑦 using the parameters from iteration 𝑖

and the corresponding true value(s) 𝑦 . Since this thesis focuses on regression tasks, namely
predicting barrier heights and reaction energies for use in quantitative chemical kinetics, the
loss function used in Equation (2.7) is taken to be the mean squared error (MSE):

MSE =
1

𝑛

𝑛∑︁

𝑗=𝑖

(𝑦𝑗 − 𝑦𝑗)
2 (2.8)
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such that 𝑛 is the number of samples, 𝑦𝑗 is the predicted value(s) for the 𝑗th sample, and 𝑦𝑗

is the corresponding true value(s) for the 𝑗th sample.

2.2.3 Featurization and Molecular Representation

The first step in many ML workflows is to create a fixed-length vector representation for
the input example 𝑥. While text representations, such as SMILES [27] or InChI [28], are
useful for efficiently storing information about the molecular structure in databases, these
must be converted into a numerical vector before being passed to the ML model. Even
language models that operate “directly on text” must first create a numeric representation
for each token in the string via an embedding layer. These representations are commonly
called “fingerprints” since ideally they can uniquely identify each molecule. Historically,
low-dimensional vectors were manually constructed using physically informed features e.g.,
molecular weight, melting point, boiling point, dipole moment, etc [29]. Since some of
these features require experimental measurements, obtaining feature vectors for hundreds of
compounds can be rather challenging so alternative methods are desired.

Gradually, the field shifted to representations that depend only on the molecular connec-
tivity. One simple approach is to use one-hot encoding to create a Boolean vector in which
each entry represents the presence or absence of a certain functional group or other feature,
though continuous representations are often more expressive in comparison to simple binary
representations. Many algorithmic fingerprint approaches effectively have a similar goal of
iteratively considering all substructures of a certain size and type. For example, extended-
connectivity fingerprints (ECFPs) [30] start by assigning each atom in the molecule a unique
integer identifier. Initially, these atom identifiers only represent information about the atom
itself and its attached bonds. This representation is updated by iterating over the neigh-
boring atoms, up to a specified number of bonds or radius, and finally applying a hashing
function to generate a binary representation. The Morgan circular fingerprint [31] is likely
the most popular variant, but many fingerprints exist with Avalon [32] and MACCS [33]
being just a few additional examples.

Molecular representations can also be based on 3D information. Bond lengths and atomic
partial charges are examples of features that can be calculated via quantum mechanics. The
Coulomb matrix is another popular choice that computes the pairwise distances between
each of the atoms and uses the product of their nuclear charges weighted by a function to
mask long-range effects as a variation of Coulomb’s Law [34, 35]. Many other similar repre-
sentations exist. For example, the bag-of-bonds takes Coulomb matrix terms and organizes
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the elements into atom-pairwise types [36]. SLATM [37, 38] and FCHL19 [39, 40] append
higher-order interaction terms (between triplets of atoms) with different potentials. SOAP
considers atoms in molecules according to their neighbouring atom density [41, 42]. However,
all of these 3D featurization approaches require a geometry optimization, which is often too
expensive to be reasonably considered for high-throughput applications.

2.2.4 Discriminative Architectures

Once a vector representation has been obtained, it is passed to a discriminative model
to make a prediction. Examples of traditional model architectures include support vector
machines, random forests, and kernel ridge regression, to name just a few. Another popular
example is the multilayer perceptron (MLP)–also referred to as a standard feed forward
neural network (FFNN) or simply a feed forward network (FFN) for short. First developed
in the 1950s [43], an FFN consists of an input layer, some number of hidden layers, and
an output layer. Today, the FFN has become an primary component of modern ML, such
that the term “deep” learning describes networks that have more hidden layers. Each layer
consists of several stacked perceptrons, also called “neurons” since the architecture is inspired
by the human brain. A single layer of an FFN receives an input vector of scalars x ∈ R𝑚 and
multiplies it by a learnable weight matrix W ∈ R𝑛 × 𝑚. Typically, a scalar offset b ∈ R𝑛 is
added as well. The result is passed through a nonlinear activation function, which gives the
model better expressivity and its theoretical capacity as a universal function approximator
[44]. Without this nonlinearity, a deep neural network would be equivalent to a single linear
operation, albeit with more computational expense. Mathematically, these operations can
be expressed as

h = 𝜑(Wx+ b) (2.9)

which produces the output vector h ∈ R𝑛.
The choice of discriminative model architecture depends on the task of interest and the

amount of available data. If working with relatively smaller datasets (e.g., fewer than 1,000
data points), traditional ML architectures may outperform neural networks [45]. In contrast,
deep learning typically outperforms when one has access to thousands of datapoints.
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2.2.5 Message Passing Neural Networks

Although many chemical prediction tasks still rely on pre-computed feature vectors that
condense molecular representations into 1D vectors, many molecules are inherently described
as graphical objects. Note that graph representations are not perfect as they often struggle
with stereochemistry and multi-haptic bonds, but in many cases, graph-based architectures
are a natural choice for molecular representation. I will loosely refer to these graph neural
networks (GNNs) as “2D” methods, simply because the schematic of a molecular graph–such
as that shown in Figure 2.1–is typically represented in two dimensions. However, it often
does not make sense to discuss dimensions with graph theory since coordinates (i.e., atomic
positions) are commonly not used when creating graph objects as input to GNNs.

The concept of message passing neural networks (MPNNs) was first formalized by Gilmer
et al. [46] by building upon work from Kipf and Welling [47]. MPNNs operate on molecules
by representing them as graphs 𝐺 = (𝑉,𝐸) with atoms corresponding to graph nodes or
vertices (𝑉 ) and covalent bonds corresponding to graph edges (𝐸) [48, 49]. Each atom and
bond is initially labeled with a corresponding feature vector, 𝑣 ∈ 𝑉 and 𝑒𝑢𝑣 ∈ 𝐸 respectively.
Example atomic features include its atomic symbol encoded as a one-hot vector as well as
its degree, formal charge, and atomic mass. Example bond features include its bond type,
the size of the ring if applicable, and whether the bond is aromatic. These features can be
computed using standard cheminformatics packages, such as RDKit [50] or OpenBabel [51].
Figure 2.1 shows the main components of an MPNN applied to chemical data.

The next step is to perform message passing to iteratively update these atom and bond
representations and propagate information throughout the graph. These updates are anal-
ogous to the procedure used by circular fingerprints described earlier. Several varieties of
MPNNs have been developed in recent years, each claiming to improve performance on a
set of chemical prediction tasks. The PyTorch Geometric [52] website compiles a list of sev-
eral graph update procedures, along with their associated paper, which contains additional
details for the interested reader. Despite their various nuances, the high-level goal is the
same: create a learned representation. To update an atom representation, all neighboring
atom and bond vectors undergo some matrix transformation–think of this as an FFN but
some MPNNs use more advanced update steps. These updated vectors are then aggregated
together, which entails a permutation invariant operation such as addition, averaging, or
max pooling. A similar procedure is used to create updated representations for the bonds.
This process is repeated for 𝑁 iterations, termed the depth of the MPNN. The value of 𝑁
controls how far the information propagates and is a hyperparameter that must be tuned
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during training. The FFN, and any other parameters used during the update steps, can be
shared for both the atom and bond update or they can be allowed to vary independently.
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Figure 2.1. Schematic overview of the steps within a message passing neural network. The first
step, shown in panel a), is to transform a molecule into an attributed graph with initial atom and
bond feature vectors. The next step, shown in panel b), is to perform 𝑁 iterations of message
passing to update the atom and bond representations using information from neighboring atoms
and bonds. Finally, panel c) shows that these updated representations can be used for various
property prediction tasks. For simplicity, only a subset of the atom and bond features are displayed
in pancel c).
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The final step is the readout phase, which uses the updated representations for down-
stream property prediction. If the task of interest is an atom- or bond-level property, the
updated atom or bond feature vectors can be directly passed through an FFN. If the task of
interest is a molecular property, a molecular representation must be constructed, typically
by aggregating the updated node representations together via mean or sum. The resulting
molecular representation is then passed through an FFN. Thus, MPNNs create learned rep-
resentations, which can be thought of as feature vectors that are customized for representing
the specific chemical task. As a broad generalization, the purpose of a GNN, and other
ML architectures such as a convolutional neural network or transformer block, is to create
a learned representation (of fixed length that matches the user-specified hidden dimension)
that is then passed to a FFN in the last step of the network to make a prediction. This goal
is somewhat analogous to the approach described in Section 2.2.3, and it is here where the
distinction between feature representations and model architectures can become blurred.

2.2.6 Directed MPNNs

Building on the formalization of MPNNs developed by Gilmer et al. [46], Yang et al. [53] in-
troduces message passing over directed edges rather than over nodes. This new architecture
is commonly referred to Chemprop. The representation of a directed edge 𝑢 − 𝑣 is created
by concatenating ℎ𝑢 with ℎ𝑣𝑢 and then calculating messages based on these directed edges,
which ultimately makes the D-MPNN architecture more expressive than traditional MPNNs.
As explained in the publication from Yang et al. [53], the directed messages help to resolve
“tottering” in which messages can oscillate back and forth between nodes, introducing addi-
tional noise in the hidden representation [54]. Gasteiger et al. [55] described the D-MPNN
architecture as message passing over the line graph of the original molecular graph, which
can be a helpful way of understanding the update steps.

2.2.7 3D MPNNs

Most of this thesis focuses on utilizing 2D MPNNs that rely in simple input representations
to avoid the computational expense from obtaining 3D geometries. However, comparing
the performance of 3D MPNNs with 2D MPNNs is an interesting research question, and
Chapter 5 offers preliminary results towards this goal. Further, some tasks, such as predicting
properties of different conformers, will obviously require information about the 3D structure
so 2D MPNNs would be insufficient in this case. The main distinction between 3D and 2D
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MPNNs is how graph edges are defined. While the latter typically use covalent bonds to
define edges, the former uses a radius cutoff (e.g., all neighboring atoms within 5 Å are defined
as connected); This former definition can create more edges than would be allowed by the
physical constraints based on the valence of each atom. Another important difference is that
for 3D MPNNs, the atomic featurization only includes the atom identity (atomic number),
which is then passed through an embedding layer to expand it to higher dimensions.

To give a brief history, the goal of many 3D MPNNs is to act as a neural force field
that can be used to predict energies and forces. However, this architecture can also be used
to predict other regression properties as well. One early example of 3D MPNNs is SchNet
[56], which uses learned convolutional filters that are a function of interatomic distances
expanded with radial basis functions for greater expressivity and applies skip connections
between node updates. PhysNet similarly considers interatomic distances [57]. Considering
that the potential energy of molecules depends on bond angles, directional message passing
neural network (DimeNet) builds on this by embedding distances and angles jointly using a
spherical 2D Fourier-Bessel basis that allows message transforms to occur in a rotationally
equivariant fashion [58]. DimeNet++ [59] leaves the core message passing unchanged, but
incorporates relatively minor updates to the architecture and training procedure–replacing
a bilinear layer with a Hadamard product, reducing the embedding size, using fewer hidden
layers, and reducing the batch size–that ultimately result in a model that is 8x faster and 10%
more accurate than the original DimeNet on the QM9 benchmark of equilibrium molecules
[60]. SphereNet [61] and GemNet [62] also incorporate torsions into their models.

2.2.8 MPNNs for Reactions

Fitting models to predict properties of reactions requires some extra design considerations
in comparison to property prediction of individual molecules. The most common approach
is to individually featurize both the reactant(s) and product(s). Although some papers use
features from the reactant and TS, identifying a TS geometry is often a challenging task that
is not well-suited for high-throughput. Thus, this discussion will focus on the former. The
core concept is to directly concatenate the feature vectors for the reactant(s) and product(s)
or use the difference of these vectors to give insight into what changes during the reaction.
This has been done with classical ML techniques for quite some time, with one example
coming from Schneider et al. [63].

When it comes to more modern ML models, such as MPNNs, the main idea of concate-
nating representations is the same, though there are some subtle differences regarding when
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the concatenation occurs in the model architecture. One strategy comes from Grambow et
al. [64] in which each reactant and product graph is passed through the same MPNN, whose
job is to create a learned representation for a molecule. The learned atomic representations
of the reactant are then subtracted from those of the product. The downstream architecture
is identical to before in which the resulting atomic representations are then aggregated into
a molecular (reaction) representation that is then passed to a standard FFN to predict the
property of interest. Another possible approach could be to perform the subtraction after
creating the aggregated molecular representation of the reactant(s) and product(s).

Another approach is to use the established condensed graph of reaction (CGR) rep-
resentation [65–67], which creates a superposition of the graphs for the reactant complex
and product complex. When using a CGR, only one graph is input to the MPNN. This
time, the concatenation and/or subtraction occurs before message passing since the initial
atom and bond features of the reactant and product complex are combined into one graph.
Conceptually, the main benefit of this strategy is that it removes disjoint graphs present
in multi-molecular reactions. For example, if a reaction creates two products, the CGR
would allow message passing to occur between all atoms, which should make it more ex-
pressive than the approach from Grambow et al. [64] in which messages can only be passed
between atoms within the same molecule (graph). This idea is supported by numerical re-
sults. As demonstrated by Heid and Green [68], CGR typically shows better performance,
so this representation is used throughout this thesis. This approach requires atom-mapped
reaction SMILES to compare the atoms and bonds between the reactant(s) and product(s)
(i.e., we must know which reactant atoms lead to the corresponding product atoms so the
concatenation or subtraction is done correctly).
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Chapter 3

High Accuracy Barrier Heights,

Enthalpies, and Rate Coefficients for

Chemical Reactions

Much of this work has previously appeared as Spiekermann, K. A.; Pattanaik, L.; Green, W.
H. High Accuracy Barrier Heights, Enthalpies, and Rate Coefficients for Chemical Reactions.
Sci. Data 2022, 9, 417 [link]. Lagnajit Pattanaik helped clean the data (e.g., update the
SMILES). All data is free and publicly accessible at https://zenodo.org/record/6618262.

3.1 Introduction

Detailed reaction mechanisms are valuable tools for analyzing and predicting physical phe-
nomena driven by chemical kinetics. Historically, kinetic model parameters were fit to a spe-
cific set of experimental results, which limited their generalizability to systems with different
temperatures, pressures, or initial compositions. In recent decades, the field of chemical
kinetics has transitioned from postdictive to predictive modeling approaches [1]. This shift
has been motivated by advances in compute power, which make it possible to predict many
kinetic parameters using ab initio calculations rather than relying on scarce experimental
data [2–13]. Our research group has long been interested in the automated generation of
kinetic models, which can simulate and predict the concentrations of all relevant species [14,
15]. Reliable datasets are essential for constructing such models with predictive power. A
small error of a few kcal mol−1 in the activation energy will lead to significant errors in
the final rate estimate, particularly at lower temperatures. Unfortunately, accurate barriers
are often known for fewer than 10% of the reactions in kinetic models [3–5, 11–13, 16, 17].
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To help address this paucity of data, here we present relatively accurate barriers for nearly
12,000 reactions.

Kinetic parameters are currently estimated using functional group and linear-free-energy
(LFER) methods, [18, 19], but machine learning models are much more flexible and have
broader scope. Indeed, machine learning has sparked an explosion of progress in physical and
organic chemistry, especially in the areas of automated synthesis planning [20, 21], targeted
molecular optimization [22, 23], and general property prediction [24, 25] from thermodynamic
[26, 27] and solvation parameters [28, 29] to full infrared spectra [30]. In situations where data
are plentiful, machine learning-based algorithms often provide excellent predictions and some
have successfully been applied to experiments [31]. When such data is lacking, researchers
generate their own datasets–both experimentally and computationally–to regress desired
properties from them [32–34]. In machine learning applied to chemistry, the community has
largely taken a model-driven approach, where significant effort has been devoted to refining
models on a few benchmark datasets [35, 36]. As a result, the community has delivered strong
architectures from advanced graph convolutional networks [37–39] to atomistic networks [40,
41]. Today, progress is limited primarily by the scarcity of large, diverse, and high-quality
datasets.

Here, we report a cleaned, high-quality dataset of reaction barriers, enthalpies, and tran-
sition state theory (TST) rate coefficients. We build upon the prior work from Grambow et
al. [42, 43] Briefly, their work used the single-ended growing string method [44] to automati-
cally identify thousands of transition states (TSs) and products from a given set of reactants.
Reactants were chosen by using all molecules with six or fewer heavy atoms from GDB-7 [45]
as well as randomly selecting some (∼430) molecules with seven heavy atoms; the molecules
contain H, C, N, and O atoms. Conformer searches were performed for the reactants by em-
bedding several hundred conformers for each molecule using RDKit [46] with the ETKDG
distance geometry method [47] and relaxing their geometries using the MMFF94 force field
implemented in RDKit. The lowest energy conformer was then optimized using Q-Chem [48]
at both the B97-D3/def2-mSVP level of theory with Becke-Johnson damping [49] and the
𝜔B97X-D3/def2-TZVP [50] level of theory. The reactant conformer was the starting point
for the growing string search. The highest energy point in the string was used as the initial
guess for a conventional saddle point search. Additional details can be found in the original
publication.

Our work brings the following advances. First, we clean the SMILES [51] reported in
Grambow et al. [42] The original publication treated all reactions with multiple products
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as containing one product complex, which does not conform well with traditional TST cal-
culations that expect partition functions for each species. Thus, we separate the products
from any product complex, recalculate the geometry optimization and frequency at either
B97-D3/def2-mSVP or 𝜔B97X-D3/def2-TZVP. Finally, we refine the single point energies for
each species using explicitly correlated coupled-cluster calculations, which are expected to
be much more accurate than the density functional theory methods [52–55]. We provide
the updated barrier heights and reaction enthalpies from our CCSD(T)-F12a/cc-pVDZ-
F12//𝜔B97X-D3/def2-TZVP calculations. Our higher-accuracy calculations improve the
RMSE of the barrier heights by approximately 5 kcal mol−1 relative to those calculated at
𝜔B97X-D3/def2-TZVP. We believe that the high-quality values in this dataset will accel-
erate development of automated and reliable methods for quantitative reaction prediction.
Finally, we also identify a subset of reactions with rigid species that do not require a con-
former search nor hindered-rotor treatment. The rigid-rotor harmonic oscillator (RRHO)
TST rate coefficients 𝑘∞(𝑇 ) and fitted Arrhenius parameters for this subset are reported
since these values should be accurate. We do not report 𝑘∞(𝑇 ) or Arrhenius parameters for
reactions involving flexible reactants or transition states since RRHO TST is not accurate
for these reactions.

3.2 Methods

3.2.1 Overview

Dataset refinement started by cleaning the SMILES from the original dataset [43] and filter-
ing reactions to those containing one reactant and at most three products. Next, product
complexes were separated into individual species, each of which was reoptimized at the re-
spective level of theory i.e., either B97-D3/def2-mSVP or 𝜔B97X-D3/def2-TZVP. The single
point energy of all species optimized at 𝜔B97X-D3/def2-TZVP was computed at CCSD(T)-
F12a/cc-pVDZ-F12. These energies were used to calculate updated barrier heights by adding
the zero-point energies (ZPEs) from the harmonic vibrational analysis to the reactant, prod-
uct, and TS energies and then computing the difference between the resulting TS and re-
actant energies. Similarly, enthalpies of reaction were calculated based on the difference
of the ZPE-corrected product and reactant energies; bond additivity corrections (BACs)
were added to each species. Finally, we identify a subset of reactions that contain rigid
species, calculate high-pressure limit TST rate coefficients, and report the fitted Arrhenius
parameters.
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3.2.2 Cleaning SMILES

The work from Grambow et al. [42] used the single-ended growing string method [44] to
generate a list of possible products from a given reactant. The input and output for the
growing string method are a set of three-dimensional coordinates to describe the molecule
or multi-molecule complex. Grambow et al. used Open Babel [56] to perceive connectivity
and generate a SMILES for the reactant and product from each set of three-dimensional
coordinates. However, in some cases, the bond-order and formal charges did not correspond
to the most representative resonance structure. Here, we update the SMILES by using RDKit
[46] to look for neighboring atoms with opposite formal charges, which often occurred between
nitrogen and carbon atoms. Some representative examples of the updated SMILES and their
impact on molecular structure are shown in Figure 3.1. Additionally, there were a handful
of reactions whose reactant was neutral, but whose product was positively charged. This
charge imbalance was likely due to Open Babel occasionally generating an incorrect SMILES
from the molecular coordinates. Here, we update the corresponding product SMILES to
conserve charge for the reaction i.e., added an electron to create a correct Lewis structure.
Representative examples are shown in Figure 3.2. Atom-mapping is preserved when updating
the SMILES.
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Figure 3.1. Representative examples of updating SMILES to correspond to the most representative
resonance structure. For convenience, the SMILES shown here omit atom-map numbers.
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Figure 3.2. Representative examples of updating SMILES to fix incorrect charge imbalances. For
convenience, the SMILES shown here omit atom-map numbers.

3.2.3 Reoptimizing Products

Of the reactions in the previously published dataset from Grambow et al. [42], approximately
30% contain two products and 2% contain three products. These were previously treated as
one product complex when using the growing string method as well as during subsequent
geometry optimization and frequency calculation. However, to obtain rate coefficients, con-
ventional canonical TST calculations expect partition functions for each individual species.
Here, we separate the complexes into individual products, reoptimize the geometries, and
recalculate the frequencies using Q-Chem 5.3.0 [48] for both the B97-D3/def2-mSVP and
𝜔B97X-D3/def2-TZVP datasets. The previously optimized geometries from the complex
are used as the initial guess for the new optimization. The exact same settings are used in
the input files as were used by Grambow et al.[42] during the original Q-Chem calculations.
This ensures that the separated products are run with the same method and basis set as well
as with identical convergence criteria as those used by their corresponding reactant and TS.

Consistent with the previous work, nearly all molecules are run in the singlet state and
use a spin-unrestricted ansatz. For example, the ground electronic state for methylene (CH2)
is a triplet, but because the TS for all reactions was computed at the singlet state, any CH2

products were also recalculated in the singlet state. However, upon splitting some products,
there are 49 reactions unique to the larger B97-D3 dataset whose product pairs were radicals;
these individual species were calculated in the doublet state since it was assumed that the
lone electron on each product had opposite spins to conserve the overall multiplicity for the
reaction. We verified that spin contamination was not a problem by confirming that the
average value of the total spin operator was between 0.75 and 0.77 for these species.

Note that reoptimizing the separated products and then summing their energy resulted in
a different product energy than that from the original product complex. In a few cases, this
changed the reaction enthalpy enough such that ∆H > ∆E0, which would cause the reverse
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reaction to have a negative barrier height. Although submerged barriers are possible, often
a large negative barrier height is reason to be suspicious. Thus, we remove any reaction
in which the explicitly correlated coupled-cluster reaction enthalpy was more than 10 kcal
mol−1 larger than the barrier height.

3.2.4 Refining Single Point Energies

A major accomplishment of this work is providing highly accurate kinetic parameters com-
puted at CCSD(T)-F12a/cc-pVDZ-F12//𝜔B97X-D3/def2-TZVP for a large and diverse set
of atom-mapped gas phase reactions. Although the 𝜔B97X-D3 method is more accurate for
predicting barrier heights than many other functionals [57], coupled-cluster CCSD(T) cal-
culations are commonly considered the gold-standard in quantum chemistry [58, 59]. Here,
we refine the single point energies of each species from the 𝜔B97X-D3/def2-TZVP dataset
using the explicitly correlated CCSD(T)-F12 method since previous literature has shown
that CCSD(T)-F12 can achieve similar accuracy to the standard CCSD(T) calculation while
using a much smaller basis set [6, 52–55, 60]. This is notable because both coupled-cluster
methods scale as 𝒪(𝑁7), such that 𝑁 is the number of orbitals [61], and so using a smaller
basis set offers substantial computational savings.

We next consider which basis set to use. Although triple-𝜁 and quadruple-𝜁 basis sets
have shown reaction energies within 1 kcal mol−1, many studies comparing basis sets use
about 100 molecules or fewer. Further, such studies often focus on small molecules containing
primarily three or four heavy atoms due to the steep scaling of coupled-cluster calculations.
The main exception to this generalization is the recent calculation of the 133,000 molecules
from QM9 [35] with the G4MP2 level of theory [62, 63]; however, that dataset only contains
stable species, while our dataset has approximately 12,000 TSs. Considering that our dataset
contains nearly 22,000 unique stable species and transition states, each containing up to
seven heavy atoms, we chose the cc-pVDZ-F12 basis set to accommodate the large number
of calculations while maintaining high accuracy. 15 reactions were also run with cc-pVTZ-
F12 to validate the double-𝜁 accuracy. For all coupled-cluster single point calculations, we
use the energy from CCSD(T)-F12a since both published literature [64] and the MOLPRO
documentation [65] conclude this method offers a better approximation to the complete
basis set limit for the double-𝜁 and triple-𝜁 basis sets. All calculations were run in parallel
using MOLPRO 2015.1 [65] on the National Energy Research Scientific Computing Center
(NERSC).
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3.2.5 Calculating Reaction Barrier Heights and Enthalpies

ZPEs from the harmonic vibrational analysis are added to the electronic energy for the reac-
tant, product, and TS. For all species, a scaling factor is applied to the computed harmonic
frequencies used to compute the ZPE; the scaling factor for B97-D3/def2-mSVP and for
𝜔B97X-D3/def2-TZVP are calculated as described by Alecu et al. [66] and found to be 1.014
and 0.984 respectively. Reaction barrier heights are computed by taking the difference of the
resulting TS and reactant energies. Similarly, enthalpies of reaction at 298 K are computed
by taking the difference of the resulting product and reactant energies. When calculating
the values for the coupled-cluster dataset, the CCSD(T)-F12a energies are used while the
ZPEs are taken from the 𝜔B97X-D3 calculation since this was the level of theory used for the
geometry optimization and vibrational analysis. Note that atom energy corrections (AECs)
and bond additivity corrections (BACs) are added to the enthalpy values for each species.
Although the AECs cancel out during the subtraction to obtain the reaction enthalpy since
all reactions are balanced, these corrections are important when comparing the ∆fH(298 K)
to experimental values as described in the technical validation. Corrections are not used
when computing reaction barriers. AECs are calculated by fitting the atomization energies
of 14 small molecules. The atomization energies come from CCCBDB [67] and all have un-
certainty values less than 0.2 kcal mol−1. Petersson type BACs [68] were fit using a set of
about 400 reference species with well-known heats of formation, primarily drawn from ATcT
[69] and CCCBDB [67]. The experimental uncertainty is at most 0.55 kcal mol−1, though
most values are much lower with the median being just 0.14 kcal mol−1. For more details
on the fitting procedure, see the Reaction Mechanism Generator (RMG) documentation at
https://reactionmechanismgenerator.github.io/RMG-Py/users/arkane/input.html

#atom-energy-fitting.

Calculating Rates

Automated Reaction Kinetics and Network Exploration (Arkane) is a software package for
computing thermodynamic properties and high-pressure limit rate coefficients using the re-
sults from quantum chemistry calculations. Thermodynamic properties are computed using
the RRHO approximation, while kinetic parameters are computed using conventional canon-
ical TST, also with RRHO. Arkane is developed and distributed as part of RMG-Py [14, 15].
All software is written in Python and provided as free, open source code under the terms of
the MIT License.
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We use Arkane to convert the single point energy from the quantum chemistry calculation
to the gas-phase reference state; by default atom and spin-orbit coupling energy corrections
are applied, but will cancel during the TST calculation. As before, the corresponding scaling
factor is applied to the ZPE for each species. Arkane uses RRHO TST with Eckart tunneling
correction to calculate the forward rate coefficient for a set of user-defined temperatures.
BACs are omitted when calculating the forward rate coefficient since BACs are not present
for the partial bonds in the TS. Arkane then uses a linear least-squares fitting to fit the list
of reciprocal temperatures and logarithm of the rate coefficients to an Arrhenius expression,
yielding the best approximation for the pre-exponential A-factor and the activation energy.
We use 50 linearly spaced points in the reciprocal temperature space between 300 K and
2000 K when obtaining the Arrhenius parameters.

3.3 Data Records

All data is free and publicly accessible on Zenodo [70]. Q-Chem output files are provided
for the 16,302 reactions at B97-D3/def2-mSVP and for the 11,926 reactions at 𝜔B97X-
D3/def2-TZVP level of theory. For convenience, these also include the original log files for
the reactant, TS, and non-reoptimized products from Grambow et al. [42] since they are
used to calculate barrier heights, enthalpies, and rate coefficients in this work. MOLPRO
output files from the single point calculations are provided for the 11,926 reactions at the
CCSD(T)-F12a/cc-pVDZ-F12 level of theory as well as for the 15 reactions calculated with
the triple-𝜁 basis. Information for each reaction is organized by the level of theory and stored
in a separate folder labeled as rxn######, such that ###### denotes the reaction number
padded with zeros. The numbering matches that from the originally published dataset
[43] to facilitate easy comparison. For the quantum chemistry calculations, each folder
contains the log files for the reactant, TS, and product as r######.log, ts######.log, and
p######.log respectively. An additional number is appended to the file names from the
separated products. For example, the log files for any reaction containing two products are
labeled as p######_0.log and p######_1.log.

The cleaned atom-mapped SMILES, as well as all values calculated in this work, are pro-
vided in the comma-separated values (csv) files b97d3.csv, wb97xd3.csv, ccsdtf12_dz.csv,
and ccsdtf12_tz.csv. The columns for the csv files are described in Table 3.1. The calcu-
lated TST rate coefficients and fitted Arrhenius parameters for the rigid species are provided
in ccsdtf12_dz_rigid.csv, whose columns are described in Table 3.2. The Arkane output
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files from TST calculations and Arrhenius parameter fitting are also provided. Each reaction
is again stored in a separate folder labeled as rxn######, which contains a rxn folder with
all information from the Arrhenius fitting. The kinetic information is stored in Chemkin
[71] file format. The list of 50 temperatures (K) used during Arrhenius fitting is provided in
arkane_temperatures.csv.

The improvement from fitting BACs at B97-D3/def2-mSVP, 𝜔B97X-D3/def2-TZVP,
CCSD(T)-F12a/cc-pVDZ-F12//𝜔B97X-D3/def2-TZVP, and CCSD(T)-F12a/cc-pVTZ-F12//
𝜔B97X-D3/def2-TZVP is contained in b97d3_def2msvp_BAC.csv,
wb97xd3_def2tzvp_BAC.csv, ccsdtf12_ccpvdzf12__wb97xd3_def2tzvp_BAC.csv, and
ccsdtf12_ccpvtzf12__wb97xd3_def2tzvp_BAC.csv respectively. The files contain the ex-
perimental and calculated enthalpies for the reference species from RMG-database used for
fitting. The atom and bond correction values are publicly stored on the RMG-database
GitHub, though they are also provided in fitted_corrections.pkl for convenience. Fur-
ther validation of the BACs at the double-𝜁 basis set is done by comparing to experimental
values from the Pedley [72] set since over half of these molecules are not in the RMG-database
training set used for fitting. The comparison is shown in
ccsdtf12_dz_vs_Pedley_experimental.csv.

Table 3.1. Description of the columns in the main comma-separated value files for each level of
theory.

Column

label

Description

idx Reaction index

rsmi Reactant SMILES

psmi Product SMILES

rinchi Reactant InChI

pinchi Product InChI

dE0 Barrier height
(︀
kcal mol−1

)︀

dHrxn298 Enthalpy of reaction
(︀
kcal mol−1

)︀

rmg_family RMG reaction family
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Table 3.2. Description of the columns in the comma-separated value file for rigid reactions.

Column

label

Description

idx Reaction index

rsmi Reactant SMILES

psmi Product SMILES

k(T0) to
k(T49)

50 columns with the calculated rate coefficient (s−1)

lnA Natural log of the fitted pre-exponential factor (s−1)

Ea Fitted activation energy
(︀
kcal mol−1

)︀

percent_error Average absolute percent error between the calculated and
fitted rate coefficients

3.4 Technical Validation

The published work from Grambow et al. [42] already performed several integrity checks,
such as ensuring that all TSs have exactly one imaginary frequency, whose atomic displace-
ments matched the bond changes occurring between the reactant and product. The authors
also removed any TS with an imaginary frequency less than 100 cm−1 in magnitude as
that typically corresponds to conformational changes. In this work, we ensure that mul-
tiplicity and charge are conserved for all reactions. As described in the methods section,
this is important when separating product complexes into individual product geometries for
reoptimization.

We next identify whether each reaction matches a reaction template from the RMG-
database. As shown in Figure 3.3, keto-enol is the most represented RMG template. How-
ever, due to the diversity of these reactions, the majority do not match any RMG template.
This is consistent with the previously published work [42], which chose to characterize the
reaction diversity by extracting general templates that do not necessarily match a template
from RMG-database. RMG-database is frequently updated, which includes occasionally
updating the reaction templates to be more broad or more specific. Thus, using reaction
templates from a different version of RMG-database may capture more or less reactions
for a given family (or even include different reaction families). To generate Figure 3.3 and
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Table 3.3, we used the AEC_BAC branch of RMG-database.
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Figure 3.3. Distribution of RMG reaction families present in the CCSD(T)-F12a/cc-pVDZ-F12
dataset.
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Table 3.3. RMG reaction templates present in the CCSD(T)-F12a/cc-pVDZ-F12 dataset.

RMG Reaction Family Template

ketoenol 3O 4R2R1R 2R 3O1R4R

Singlet_Carbene_Intra_Disproportionation 1C 2C 3H 1C 2C3H

1,3_Insertion_ROR
1R 2R4O R + 3R 1R 2R 4O3R R

Retroene

2R

1R
6H

5R

4R

3R
2R

1R
6H

5R

4R

3R

+

2+2_cycloaddition

1C

2R

3R

4R

1C

2R

3R

4R
+

1,2_Insertion_CO
2R 3R+ 2R 1C 3R1C 4O

4O

Intra_2+2_cycloaddition_Cd

1C

2C

3C

4C

1C

2C 4C

3C

Intra_ene_reaction

2C

1C
5C

4C

3C

6H

2C

1C
5C

4C

3C6H

1,3_NH3_elimination +3R 2R 4H 1NH23R 2R 1NH2

4H

1,2_Insertion_Carbene

1CH2 2R 3R+ 2R 1C 3R

H H

1+2_Cycloaddition
1R 2R 3R+

1R 2R

3R

1,3_Insertion_CO2
3R 4R1C O + 3R 1C

O

2O 2R2O

6_membered_central_C-C_shift

1C 2C 3C

4C5C6C

1C 2C 3C

4C5C6C

Diels_alder_addition

4R

5R
6R

2R

1R

3R
4R

5R
6R

2R

1R
3R

+
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To evaluate the improvement from applying the fitted atom and bond corrections to the
enthalpy values, we calculate the error relative to the high-quality reference set of about 400
molecules used for fitting. For the coupled-cluster data, the training mean absolute error
(MAE) and root mean squared error (RMSE) are 0.5 and 0.8 kcal mol−1 respectively. We
also compare the corrected enthalpy values to an external test set originally published by
Pedley [72] and compiled and verified by Narayanan et al. [62] to validate our enthalpy
calculation approach (CCSD(T)-F12a + AEC + BAC). This set, named the Pedley test set,
contains 459 species that have experimental uncertainty, defined as 95% confidence intervals
[73, 74], of less than 1 kcal mol−1. After removing 76 species common to both our reference
set and our coupled-cluster dataset (so as to exclude training species from our test set), we
measure the error of our corrected enthalpies against the Pedley test set. This evaluation
returns an MAE of 0.8 kcal mol−1 and RMSE of 1.2 kcal mol−1, indicating strong agreement
of our approach with high-quality experimental data.

To compare accuracy improvements from the coupled-cluster calculations in this work,
Table 3.4 shows the MAE and RMSE of the barrier height and reaction enthalpy relative
to the lower levels of theory. As expected, values from the 𝜔B97X-D3 dataset show less
deviation than those from the B97-D3 dataset, yet they are still several kcals away from the
explicitly correlated coupled-cluster values. The RMSE of 5 kcal mol−1 is significant since it
implies that rate coefficients calculated at 𝜔B97X-D3 differ on average by a factor of 12 at
1,000 K relative to those calculated at CCSD(T)-F12a; the difference increases substantially
to a factor of 4,000 at 300 K. It is interesting to note that the RMSE for barrier heights
reported here is more than twice as large as the RMSE reported in ref. [57]. However, this
previous analysis was done with 206 reactions from just a few reaction families, whereas the
data presented in Table 3.4 represent more than 10,000 reactions and a much more diverse
array of chemistry. Taking the barrier height RMSE of only RMG reaction families gives 8.0
and 3.8 kcal mol−1 for the B97-D3 and 𝜔B97X-D3 dataset respectively, both of which are
smaller deviations than that for the entire dataset. As seen in Figure 3.4, the barrier heights
calculated at DFT tended to be an overestimate relative to those calculated at CCSD(T)-
F12a/cc-pVTZ-F12//𝜔B97X-D3/def2-TZVP. On average, the difference is a few kcal mol−1,
though there are a minority of reactions in which the errors are larger. Further exploration
as to why this DFT functional gives such different values could be an area of future research.
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Table 3.4. Errors in kcal mol−1 for each level of theory relative to CCSD(T)-F12a/cc-pVDZ-
F12//𝜔B97X-D3/def2-TZVP.

Barrier Height Reaction Enthalpy

Level of Theory MAE RMSE MAE RMSE

B97-D3/def2-mSVP 7.0 8.5 3.5 4.8
𝜔B97X-D3/def2-TZVP 3.5 5.0 1.8 2.5
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Figure 3.4. Difference in barrier height calculated at CCSD(T)-F12a/cc-pVDZ-F12//𝜔B97X-
D3/def2-TZVP and 𝜔B97X-D3/def2-TZVP.

We next compare some of the coupled cluster values in our dataset to those from other
published works. For example, Dontgen et al. [75] reported ten keto-enol reactions cal-
culated at DLPNO-CCSD(T)/CBS//B3LYP-D3BJ/def2-TZVP. Two of their reactions (re-
actions 1 and 7) are also present in our dataset. For both reactions, the barrier heights
agree within 0.3 kcal mol−1. Balabin [76] calculated tautomerization reactions of triazoles
at CCSD(T)/CBS//MP2/aug-cc-pVT. For the reaction of 1H-1,2,3-triazole producing 2H-
1,2,3-triazole, they report a reaction enthalpy of -3.98 kcal mol−1 compared to our calculated
value of -3.96. Their reported barrier height for the reverse direction is 53.6 kcal mol−1 com-
pared to our value of 49.8 kcal mol−1, calculated by subtracting our reaction enthalpy from
our barrier height for the forward direction.

To further evaluate the improvement from the double-𝜁 single point calculations, we
also calculate some reactions at CCSD(T)-F12a/cc-pVTZ-F12//𝜔B97X-D3/def2-TZVP. The
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triple-𝜁 calculations required substantially more computational time and scratch space when
compared to the double-𝜁 calculations. Three reactions are sampled from each of the top
five most common RMG reaction families, shown in Figure 3.3. When looking at the distri-
bution of barrier heights within each family for the double-𝜁 basis set, the three reactions
are chosen to represent approximately the 25th, 50th, and 75th percentile. Table 3.5 and
Table 3.6 show the MAE and RMSE of the barrier height and reaction enthalpy respec-
tively from the different levels of theory with respect to the triple-𝜁 basis set. These trends
are consistent with other previous literature that emphasizes the high fidelity of explicitly
correlated coupled-cluster calculations, even with a double-𝜁 basis set [55, 60].

Table 3.5. Barrier height errors
(︀
kcal mol−1

)︀
for each level of theory relative to CCSD(T)-F12a/cc-

pVTZ-F12 for sample reactions.
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Table 5. Barrier height errors
�
kcal mol�1� for each level of theory relative to CCSD(T)-F12a/cc-pVTZ-F12 for sample

reactions.

B97-D3/def2-mSVP wB97X-D3/def2-TZVP CCSD(T)-F12a/cc-pVDZ-F12

Reaction Family MAE RMSE MAE RMSE MAE RMSE

1,3 Insertion ROR 7.6 7.6 0.7 0.8 0.06 0.08
2+2 Cycloaddition 9.0 9.0 2.5 2.5 0.06 0.09
Keto-Enol 4.8 5.7 0.9 1.4 0.05 0.05
Retroene 14.7 15.1 1.4 1.5 0.24 0.24
Singlet Carbene
Intra Disproportionation 0.5 0.5 0.3 0.4 0.04 0.05

Overall 7.3 9.0 1.2 1.5 0.09 0.12

Table 6. Reaction enthalpy errors
�
kcal mol�1� for each level of theory relative to CCSD(T)-F12a/cc-pVTZ-F12 for sample
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Finally, Grambow et al. [42] already performed a conformer search for the reactants.
No additional conformer searching is done in this work. Instead, we identify rigid reactions
that do not require a conformer search and report the RRHO TST rate coefficients and
fitted Arrhenius parameters for this subset since the explicitly correlated coupled-cluster
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values should be quite reliable. Figure 3.5 summarizes the filtering workflow to identify rigid
reactions. We start by using RDKit’s Lipinski rotatable bond SMARTS to find reactions
whose reactant and product(s) do not have any rotatable bonds. Further, if any rings
are present, we filter molecules with only planar rings (either aromatic or 3-membered).
With these criteria, we identify a subset of reactions from the CCSD(T)-F12a/cc-pVDZ-
F12 dataset that contain rigid stable species. We next omit any reaction whose TS has a
positive frequency smaller than 100 cm−1 since this is a common threshold for distinguishing
conformational motions from vibrational modes that will be used in the rigid rotor harmonic
oscillator approximation [77–80]. As the last filtering step, we visually inspect the remaining
reactions to verify that RDKit correctly identified rigid species and also confirm that the TS
would not require a conformer search either; this left 105 rigid reactions. Two examples are
shown in Figure 3.6.

Number of Reactions Filtering Steps

~12,000 rxns

142 rxns

107 rxns

105 rxns

Identify reactions with rigid 

reactant and product/s

Omit reactions whose TS 

has |freq|<100 cm-1 

Visual inspection to 

confirm rigidty

Figure 3.5. Schematic workflow for identifying rigid reactions.
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Figure 3.6. Examples of rigid reactions a) rxn001645 b) rxn002603.
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To determine whether the fitted parameters give a good estimate of the rate coefficient
for these rigid reactions, we examine the average absolute percentage error between the
rate coefficient calculated from TST and the predicted rate coefficients using the fitted
parameters. The largest value is 233% i.e., about a factor of 3 error in the rate coefficient
which is often quite acceptable, though most reactions have a much lower error. For instance,
62 of these rigid reactions have average fitting errors below 20%; thus, the fitted A-factor
and activation energy should be very reliable for these reactions. Residuals from the least-
squares fit for reactions with the 25th and 75th percentile for average percentage error are
shown in Figure 3.7. For nearly all data points, the residuals are very close to zero. Lastly,
we searched for published experimental data to compare with our calculated values. Saito
et al. [81] studied isomerization of acetonitrile to methyl isocyanide at 1600–2100 K behind
reflected shock waves. They report 𝑘∞(𝑇 ) = 1013.5 exp(−260 kJ mol−1 / RT) s−1, which
agrees quite well with the A-factor of 1.14×1014 s−1 and Ea of 262 kJ mol−1 from our fitted
Arrhenius expression.
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a) b)

c) d)

Figure 3.7. Arkane fitting for rigid reactions corresponding to a) the 25th percentile (rxn001645)
and b) the 75th percentile (rxn002603) of average absolute percentage error from the CCSD(T)-
F12a/cc-pVDZ-F12 dataset. Residuals between the TST rate coefficients and those calculated from
the Arrhenius fit are shown in c) and d).

3.5 Usage Notes

Except for the commercial Q-Chem and MOLPRO quantum chemistry softwares, all code
necessary to reproduce the generated data is available on GitHub [82]. The repository
contains scripts, which should be run in the following order:

• Jupyter notebooks were used to identify potentially erroneous SMILES for the reac-
tants and products of both the B97-D3/def2-mSVP and 𝜔B97X-D3/def2-TZVP level
of theory. The suggested SMILES were manually inspected, utilizing the interactive
nature of Jupyter notebooks, to confirm that the change was chemically reasonable
and preserved the atom-mapping.

• create_qchem_input_files.py: Parses the original Q-Chem log files from Grambow
et al. [42] to separate product complexes into the individual Q-Chem input files for
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both the B97-D3/def2-mSVP and 𝜔B97X-D3/def2-TZVP levels of theory.

• create_molpro_input_files.py: Creates MOLPRO input files for the single point
calculations at CCSD(T)-F12a/cc-pVDZ-F12 using the reoptimized 𝜔B97X-D3/def2-
TZVP geometries.

• parse_barriers_enthalpies.py: Compiles the reactant and product SMILES into
comma-separated values files and parses the reaction barrier heights and enthalpies.

• get_enthalpies_corrected.py: Uses the atom and bond corrections from RMG-
database to obtain more accurate reaction enthalpies.

• identify_rmg_reactions.py: Identifies which reactions correspond to RMG reaction
templates.

• identify_rigid_species.py: Uses RDKit to identify reactions with rigid reactant
and product.

• run_arkane.py: Runs Arkane to obtain Arrhenius rate parameters for the rigid reac-
tions.

• parse_tst_rates.py: Parses the calculated rate coefficients from the Arkane output
files.

• parse_arrhenius_parameters.py: Parses the fitted A-factors and activation energies
from Arkane output files.

• calculate_percent_error.py: Calculates the average percent error between the rate
coefficients calculated from TST and those predicted using the fitted Arrhenius pa-
rameters.

3.6 Code Availability

The code used to generate this data is freely available on GitHub under the MIT license
[82]. Details on how to use the scripts to generate the data are provided in the Usage Notes.
Some of the scripts utilize helpful components of the Reaction Mechanism Generator, such
as RMG-Py, RMG-database, and the Automatic Rate Calculator (ARC) [83]. All related
software is open-source under the MIT license and freely accessible on GitHub. For RMG-Py,
checkout the qchem_parser branch, and for RMG-database, checkout AEC_BAC. The GitHub
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version commit string was ea2eb625fb1dcc6892ef6ddd5d7fdc96abf477e1 for ARC on the
main branch.

3.7 Follow-up Work to Refine the DFT Energies

Approximately 100 reactions (i.e., less than 1% of the data) from Figure 3.4 have ∆E0 which
differs by over 20 kcal mol−1 between CCSD(T)-F12a/cc-pVDZ-F12 and 𝜔B97X-D3/def2-
TZVP. This difference is much larger than expected. However, the source of these large error
was initially unclear as both Spiekermann et al. and Grambow et al. had performed several
validation checks, such as ensuring that all TSs have exactly one imaginary frequency, whose
atomic displacements matched the bond changes occurring between the reactant and product.
Any TS with an imaginary frequency less than 100 cm−1 in magnitude was removed as that
typically corresponds to conformational changes. Multiplicity and charge are conserved for
all reactions. And no species showed spin contamination or any numerical convergence errors.
Finally, the updated species enthalpies and reaction barriers showed strong agreement with
high-quality experimental data.

Still, the differences are large enough to warrant additional investigation. Thus, in col-
laboration with the Head-Gordon group at UC Berkeley, follow-up work has recalculated
the single-point energy of the TS and reactant for these reactions using updated settings.
All updated 𝜔B97X-D3/def2-TZVP single-point energy calculations are done using Q-Chem
[48]. The updated settings include the following changes:

1. The Geometric Direct Minimization (GDM) convergence algorithm is used because it
is known to be more robust than the Direct Inversion in the Iterative Subspace (DIIS)
algorithm used in the original work.

2. A spin-polarized initial guess is used by adding 10% of the lowest unoccupied molec-
ular orbital (LUMO) to the highest occupied molecular orbital (HOMO) to break
alpha/beta symmetry. This step is crucial to obtaining more accurate DFT energies.

The results of recalculating these 100 reactions is shown in Figure 3.8. The original
DFT values, which were calculated by Grambow et al. [42], differed substantially from
the CCSD(T)-F12a/cc-pVDZ-F12 values calculated by Spiekermann et al. [84]. However,
the updated DFT values show much smaller deviations. Further investigation into these
reactions is on-going.
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Figure 3.8. The difference between the barrier heights calculated at CCSD(T)-F12a/cc-pVDZ-
F12//𝜔B97X-D3/def2-TZVP relative to the original barrier heights calculated at 𝜔B97X-D3/def2-
TZVP by Grambow et al. [42] is shown in blue. The difference between the barrier heights calculated
at CCSD(T)-F12a/cc-pVDZ-F12//𝜔B97X-D3/def2-TZVP relative to the new barrier heights calcu-
lated at 𝜔B97X-D3/def2-TZVP in a collaboration with the Head-Gordon group is shown in orange.
Only 100 reactions with the biggest differences from Figure 3.4 are shown here.

Recently, I was able to recalculate the 𝜔B97X-D3/def2-TZVP single-point energies using
the updated settings for all reactants, TSs, and products of all reactions. As some aggregate
statistics for ∆E0, the MAE between the original DFT barriers and the updated DFT barriers
is just 0.83 kcal mol−1. The RMSE is 3.08 kcal mol−1 due to a few hundred outliers with
massive differences. 88% of the reactions have a new DFT barrier that is within 1 kcal mol−1

of the original DFT barrier i.e., these ∼10,500 reactions were already estimated quite well
so many compute hours were spent recalculating the single-point energies for only a small
improvement. 94% of the reactions have a new DFT barrier that is within 5 kcal mol−1 of
the original DFT barrier Approximately 10,600 reactions have an updated DFT barrier that
is within 6 kcal mol−1 of the CCSD(T)-F12 value.

Still, it is important to fix the values for the outlier reactions since the initial values
were so inaccurate that they impacted the overall statistics. Comparing Figure 3.9 below
with Figure 3.4 shows that the MAE between the DFT barrier heights and those calculated
using the explicitly correlated coupled cluster is lower by approximately 0.8 kcal mol−1. The
RMSE is lower by approximately 1.6 kcal mol−1.
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Figure 3.9. Difference in the barrier height calculated at CCSD(T)-F12a/cc-pVDZ-F12//𝜔B97X-
D3/def2-TZVP and 𝜔B97X-D3/def2-TZVP using the updated DFT settings.

Similar results are obtained when analyzing aggregate statistics for the reaction energy.
Here, the values do not include the BAC. The MAE between the original DFT enthalpy
and the updated DFT enthalpy is just 0.14 kcal mol−1. The RMSE is just 0.91 kcal mol−1.
96% of the reactions have a new DFT enthalpy that is within 1 kcal mol−1 of the original
DFT enthalpy. The number of outliers for reaction enthalpy was far less than those for the
barriers. i.e., there were more TSs that had issues than reactants or products. Comparing
Figure 3.10 with Figure 3.11 shows that the MAE between the DFT reaction energies and
those calculated using the explicitly correlated coupled cluster is lower by only 0.1 kcal mol−1.
The RMSE is lower by only 0.2 kcal mol−1.

78



40 30 20 10 0 10
HCCSD(T) F12 - Horiginal

B97X D3 (kcal mol 1)

0

500

1000

1500

2000

Co
un

t

MAE: 2.25
RMSE: 2.93
min: -41.81
max: 8.49

Figure 3.10. Difference in the reaction energy calculated at CCSD(T)-F12a/cc-pVDZ-
F12//𝜔B97X-D3/def2-TZVP and 𝜔B97X-D3/def2-TZVP using the original DFT settings.
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Figure 3.11. Difference in the reaction energy calculated at CCSD(T)-F12a/cc-pVDZ-
F12//𝜔B97X-D3/def2-TZVP and 𝜔B97X-D3/def2-TZVP using the updated DFT settings.

In conclusion, caution should be exercised with the subset of the data that initially
showed large discrepancies between the barrier heights calculated at 𝜔B97X-D3/def2-TZVP
vs. those calculated at CCSD(T)-F12a/cc-pVDZ-F12. The DFT energies for this specific
subset are likely not reliable. However, the explicitly correlated coupled cluster values should
be very accurate.
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Chapter 4

Improvements to RMG database

This work is adapted from Johnson, M. S. et al. RMG Database for Chemical Property
Prediction. J. Chem. Inf. Model. 2022, 62, 4906–4915 [link]. While the publication
offers a brief summary of all features related to our group’s Reaction Mechanism Gener-
ator (RMG) Database, such as thermodynamic group additivity as well as providing es-
timates for rate coefficients, liquid-phase diffusivity, and Lennard-Jones parameters, this
chapter provides a detailed description of the original contributions put forth by this the-
sis. All results have been integrated into RMG database and are publicly accessible at
https://github.com/ReactionMechanismGenerator/RMG-database.

4.1 Introduction

Detailed kinetic mechanisms allow improved understanding of the time evolution of many
important chemical processes. In many cases, to accurately represent the chemistry involved,
such mechanisms must include hundreds to thousands of species and tens of thousands of
reactions. The process for constructing a kinetic mechanism requires a rate coefficient for
each of these reactions. The rate for the reverse reaction must also be determined, either
by explicitly calculating a rate coefficient for the reverse reaction or by computing the equi-
librium constant of the reaction. For larger models, the latter is typically preferred: it
guarantees thermodynamic consistency, thermochemistry is easier to estimate than kinetics,
and there are typically far fewer species in a model than reactions. Several databases ex-
ist to query these values. One popular example is the National Institute of Standards and
Technology (NIST) [1], which archives experimental and quantum chemical rate coefficients
and thermodynamic properties. The NIST databases are very extensive, although the data
quality can be highly variable. While this makes NIST a great resource to search for param-
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eters, it also makes it not ideal for applications where there is no human in the loop. The
active thermochemical tables (ATcT) database provides high-accuracy values for a limited
number of species [2]. Many databases such as PriMe [3], ChemKED [4, 5], CloudFlame
[6, 7] and ReSpecTh [8] exist for storing experimental measurements that may be relevant.
The MolSSI QC Archive project is a quantum chemistry specific database intended to help
supply homogeneous data sets [9] while CCCBDB [10] has both experimental and computed
thermochemical data.

There are various ways of estimating thermochemical and kinetic parameters. By far the
most common method of estimating thermochemical parameters is the Benson type group
additivity method [11, 12], which is a linear model for adding enthalpies of formation of
predefined groups to obtain the enthalpy of the molecule. Implementations of this method
are used in THERM and Genesys [13, 14]. Graph convolutional neural network methods
have been emerging as a popular alternative since they are template-free and do not require
manual group definitions [15–17]. Kinetics estimators typically rely on either use of rate
rules to assign specific rates to reactions matching specific templates or on reaction group
additivity [18, 19]. Recent machine learning approaches using hierarchical decision trees
have also been found to be effective for predicting rate coefficients [20].

The Reaction Mechanism Generator (RMG) database [21] was primarily created to supply
the RMG software [22, 23] with good estimates for thermochemical and kinetic parameters.
It provides kineticists with easy access to estimates of the numerous parameters needed to
model and analyze kinetic systems. The database aggregates several curated thermochem-
istry and kinetic datasets that have been published in the literature. When possible, these
values will be directly queried from the RMG database and used during reaction mechanism
generation. However, more commonly, many species or reactions of interest are not directly
stored in the database so instead the RMG software relies on estimators to quickly make
predictions; these estimators are trained on data from the RMG database. These simple
data-driven estimators are convenient since they can quickly make predictions for the tens
of thousands (or even hundreds of thousands) of reactions that must commonly be consid-
ered during automatic mechanism generation. However, the accuracy of these estimations is
crucial because unlike in other mechanism construction methods, the decisions of whether or
not species and reactions are included in the resulting mechanism are directly based on their
estimated properties. Poor thermochemistry and kinetic estimation in RMG can therefore
cause model generation to miss the real chemical pathways in a kinetic system, highlighting
the important role the RMG database has in providing reasonable data estimation schemes.
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RMG has been a seminal contribution to the field of chemical kinetics. Still, one of the
main limitations for RMG is that many thermodynamic and kinetic parameters are poorly
estimated, which can cause RMG to sometimes generate models whose predicted concen-
tration profiles differ substantially from experimental data. Although the values in RMG
database are often of high-quality, most parameters in an RMG mechanism are estimated
and are often of lower-quality, particularly the kinetic parameters estimated from the deci-
sion trees. The first reason for these poor estimates is that many of the decision trees are
trained on a very limited dataset of ten or fewer reactions. As shown in Table 4.1, several
reaction families have fewer than 25 reactions to train the decision tree estimators, which
are then used to make predictions for hundreds to thousands of reactions during mechanism
generation. These estimators are likely extrapolating, so the quality of the rate estimates
is likely lower than we would prefer. Since the Arrhenius expression is sensitive to small
changes in the activation energy due to the exponential, especially at lower temperatures,
these errors can be substantial and cause RMG to explore unimportant reaction pathways
and possibly ignore relevant chemistry. The second contributing factor is that although a
few reaction families have several hundred or even up to 3,000 training reactions to train
the decision tree estimator as shown in Table 4.2, more than 70% of the values for these
training reactions come from a linear group additivity estimate rather than a reliable ex-
perimental value or from a high-quality quantum chemistry calculation used with transition
state theory (TST), either of which would have ideally gone through peer-review as well. In
summary, there is a pressing need to substantially improve the quality of the training data
and estimators within the RMG database.

89



Table 4.1. Number of training reactions for select RMG families.

RMG Reaction Family Num. Training Reactions

1+2 Cycloaddition 12
1,2 Insertion CO 7

1,2 Insertion Carbene 12
1,2 NH3 Elimination 4

1,3 Insertion CO2 8
1,3 Insertion ROR 22

1,3 NH3 Elimination 4
1,3 Sigmatropic Rearrangement 10

2+2 Cycloaddition 6
6 Membered Central C–C Shift 7

Birad R Recombination 7
Birad Recombination 8

CO Disproportionation 13
Diels Alder Addition 23

Intra 2+2 Cycloaddition Cd 2
Intra Disproportionation 2

Intra Diels Alder Monocyclic 2
Intra-ene Reaction 21

Singlet Carbene Intra Disproportionation 4
Intra OH Migration 8

Table 4.2. Percentage of training reactions for select RMG families whose rate coefficients come
from group additivity values (GAV).

RMG Reaction Family Num. Training Reactions % from GAV

H Abstraction 3,116 77.4%
R Addition MultipleBond 2,952 85.4%
Intra R Add Endocyclic 851 79.1%
Intra R Add Exocyclic 374 74.8%

Although software tools such as the Automated Rate Calculator (ARC) [24] and The
Tandem Tool (T3) [25] can be very helpful for refining and improving the parameters in
these kinetic mechanisms, it is also crucial to address these parameter estimation errors at
the source by substantially improving the thermodynamic and kinetic values that RMG uses
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during mechanism generation in the first place. As shown in Figure 3.3, about 1,000 reactions
match the RMG templates shown in Table 3.3, many of which also overlap with the sparse
families shown in Table 4.1. Here, I address these parameter errors by incorporating many of
these reactions and corresponding species thermochemistry into RMG database. Considering
that RMG database has around 8,000 training reactions in total and about 70% of these
values are from group additivity, adding high-quality calculations at the CCSD(T)-F12a/cc-
pVDZ-F12//𝜔B97X-D3/def2-TZVP level of theory and subsequently refitting the decision
tree estimators should dramatically improve RMG’s rate estimates and their extrapolation
capabilities to new reactions. The new thermodynamic library and updated decision trees
contributed through this work should improve RMG’s reliability and substantially improve
the automated generation of kinetic mechanisms for all future users.

4.2 Methods

Here, I describe the procedure for computing various corrections that are necessary to im-
prove the estimate of species thermochemistry, namely the frequency scaling factor, atom
energy corrections, and bond additivity corrections. This accurate thermochemistry infor-
mation for all reactant and product species is certainly useful by itself, but it is also used to
accurately estimate the rate coefficient for the reverse reaction to guarantee thermodynamic
consistency. Finally, this section describes the conformer search methodology as well as the
software utilized to perform statistical mechanics calculations to determine thermochemistry
and high-pressure limit rate coefficients.

4.2.1 Frequency Scaling Factor

The motivation for using a frequency scale factor is to reduce errors in the calculated har-
monic vibrational frequencies, fundamental frequencies, zero-point energies (ZPEs), and vi-
brational partition functions, which are ultimately used to calculate species thermochemistry.
Although calculating anharmonicity corrections is another plausible approach to improve ac-
curacy, this requires higher-order force constants and information about torsional barriers or
full potential energy surfaces, which are often unavailable (linear species cannot be treated
with perturbative approaches) or computationally intractable for larger species. Instead,
Alecu et al. [26] demonstrate that using a simple scaling factor is substantially more ac-
cessible while still yielding accurate results. In this chapter, the frequency scaling factor is
calculated for B97-D3/def2-mSVP and 𝜔B97X-D3/def2-TZVP levels of theory (LoT) using
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the method described by Alecu et al. [26].
Briefly, the optimal scale factor for the ZPE (𝜆ZPE) is obtained by minimizing the root-

mean-square deviation (RMSD) between a set of ZPEs computed from harmonic vibrational
frequencies at a given level of theory (𝜀G,input

vib𝑚
) and their experimentally determined counter-

parts (𝜀Gvib𝑚):

RMSD(ZPE) =

⎛
⎜⎜⎝

𝑀∑︀
𝑚=1

(︁
𝜆ZPE𝜀G,input

vib𝑚
− 𝜀Gvib𝑚

)︁2

𝑀

⎞
⎟⎟⎠

1/2

. (4.1)

Here, the number of molecules 𝑀 is 15 since the best estimates for the experimental ZPEs
(𝜀Gvib𝑚) are taken from the ZPE15 database, shown in Table 4.3, while 𝜀G,input

vib𝑚
is defined as:

𝜀G,input
vib𝑚

≡ ℎ𝑐

2

∑︁

𝑖

𝜔𝑖,𝑚 (4.2)

such that 𝜔𝑖,𝑚 is the computed harmonic frequency of mode 𝑖 of molecule 𝑚 in units of cm−1,
ℎ is Planck’s constant, and 𝑐 is the speed of light. The value of 𝜆ZPE which minimizes the
RMSD(ZPE) from Equation (4.1) is obtained analytically from

𝜆ZPE =

𝑀∑︀
𝑚=1

(︁
𝜀G,input
vib𝑚

𝜀Gvib𝑚

)︁

(︁
𝜀G,input
vib𝑚

)︁2 . (4.3)

Specifically, this approach explicitly calculates just the optimal scale factor for the ZPEs
(𝜆ZPE). The scale factors for the true harmonic frequencies (𝜆H) and fundamental frequencies
(𝜆F) can be subsequently obtained through the relationships

𝜆H = 𝛼H/ZPE𝜆ZPE (4.4)

𝜆F = 𝛼F/ZPE𝜆ZPE (4.5)

such that the proportionality constants 𝛼H/ZPE and 𝛼F/ZPE are called the universal scale
factor ratios since they should be independent of the electronic model chemistry and have
been determined to be 1.014 ± 0.002 and 0.974 ± 0.002 respectively based on a test set of
forty electronic model chemistries [26].
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Table 4.3. Experimental ZPEs in kcal mol−1 for the 15 molecules used for fitting frequency scaling
factors. The sources for the experimental values are listed in the footnote below the table.

Molecule ZPE (kcal mol−1)

C2H2 16.490a

CH4 27.710a

CO2 7.3a

CO 3.0929144a

F2 1.302a

H2CO 16.1a

H2O 13.26a

H2 6.231a

HCN 10.000a

HF 5.864a

N2O 6.770b

N2 3.3618a

NH3 21.200c

OH 5.2915a

Cl2 0.7983a

a Karl K. Irikura [27]
b Grev et al. [28]
c J. M. L. Martin [29]

The workflow put forth by Alecu et al. [26] has been incorporated into the Automated
Rate Calculator (ARC) software [24], which can automatically submit various electronic
structure calculations, including the frequency calculations required to calculate 𝜆ZPE. This
software was developed by Professor Dana and members for the Green Group at MIT and is
currently maintained by the Dana Group at the Technion. ARC is free and publicly available
on GitHub at https://github.com/ReactionMechanismGenerator/ARC. The Python package
FREQ developed by Yu et al. [30] could easily be integrated into other computational
workflows or serve as a stand-alone option to also calculate 𝜆ZPE.

4.2.2 Atom Energy Corrections

Atom Energy Corrections (AECs) are empirical corrections to systematic errors in quantum
chemistry calculations for each specific LoT that can be used to improve the accuracy of
species thermochemistry calculations. Specifically, AECs are corrections to the atomization
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energies associated with each atom in a molecule. These corrections are necessary because
atomization energies obtained from ab initio calculations are often not very accurate since
atoms and standard-state forms of some elements (e.g., graphite, O2

(︀
3Σ−

𝑔

)︀
have substantially

different electronic states than the closed-shell organic molecules studied in this chapter.
For a given molecule 𝑀 , the enthalpy of formation at 298 K, ∆fH(𝑀 , 298K), is defined

as the difference in enthalpy between the molecule and its constituents’ elemental states.
However, the electronic energy obtained from a quantum chemistry single point energy cal-
culation typically defines the zero of energy as charges separated at infinity. Thus, it is
necessary to define a thermocycle to calculate ∆fH(𝑀 , 298K). Starting at the top left of
Figure 4.1 and working clockwise around the outer loop, the first step is to subtract the
thermal contribution to enthalpy for the atoms reported by the Gaussian thermochemistry
whitepaper [31] and then add the enthalpy of formation to create the stoichiometric number
of atoms at 0K, ∆fH(𝐴, 298K). The next steps are to subtract the single point energies of the
atoms 𝐸𝐴

𝑆𝑃 (𝐸𝐴
𝑍𝑃𝐸 is 0 since individual atoms have no vibrational modes), add the calculated

electronic energy and ZPE for the molecule (𝐸𝑀
𝑆𝑃 and 𝐸𝑀

𝑍𝑃𝐸 respectively), and finally add
the thermal contribution for the molecule, which is calculated using rigid-rotor harmonic
oscillator (RRHO) approximation. In practice, calculating 𝐸𝐴

𝑆𝑃 often results in inaccurate
values so instead AECs are used and are fit to each level of theory. The RMG developers
acknowledge that the term “atom energy corrections” may be misleading since these values
are not corrections applied to 𝐸𝐴

𝑆𝑃 , but rather entirely replace 𝐸𝐴
𝑆𝑃 in the thermocycle. In

summary, the outer loop of this thermocycle has only one unknown, the AECs.
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Figure 4.1. Schematic diagram outlining the thermocycle used to calculate the enthalpy of for-
mation at 298K for a given molecule, ΔfH(𝑀 , 298K). In this work, 𝐸𝐴

𝑆𝑃 is replaced by AECs. The
calculated estimate for ΔfH(298K) can be further corrected by applying bond additivity corrections
as described in Section 4.2.3. This figure was designed by Dr. A. Mark Payne and is adapted from
his thesis.

The first step in determining the AECs is to perform a single point calculation for 16
small molecules: H2, N2, O2, S2, F2, Cl2, Br2, HF, HCl, HBr, H2S, H2O, CH4, NH3, ClCH3,
and the methyl radical ∙CH3. The AECs are then determined using linear least-squares
fitting to minimize the error in the calculated ∆fH(M, 298K) for these species. This set of
molecules was chosen because they have precisely known heats of formation; the experimental
atomization energies come from CCCBDB [10], and all have uncertainty values less than 0.2
kcal mol−1. Additionally, these molecules are small enough that there is no risk of converging
to the wrong conformer during the quantum chemistry calculation. To further minimize
errors from the chosen level of theory, experimental geometries are used for the single point
energy calculation, whose result is subsequently used for fitting. Note that for the CCSD(T)-
F12a values in this work, the AECs are calculated by fitting the atomization energies to 14
molecules from this set. This is because the cc-pVDZ-F12 and cc-pVTZ-F12 basis sets only
support the first three rows of the periodic table [32] so Br2 and HBr cannot be used during
the fitting procedure.

Although these corrections are crucial when comparing the computed ∆fH(298 K) to
experimental values, substantial residual error often remains if no further corrections, such
as bond additivity corrections, are applied. Additionally, the AECs cancel out during the
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subtraction to obtain reaction enthalpies and barrier heights since all reactions considered
here are balanced.

4.2.3 Bond Additivity Corrections

At most LoT, AECs alone are insufficient to estimate enthalpies of formation accurately
enough for most kinetics applications. Empirically, bond additivity corrections (BACs) are
required to further correct for errors in energies computed by electronic structure methods
and thus obtain accurate thermochemistry. BACs are fit using a set of approximately 400
species with well-known experimental enthalpies of formation, primarily drawn from ATcT
[33] and CCCBDB [10]. The experimental uncertainty is at most 0.55 kcal mol−1, though
most values are much lower with the median being just 0.14 kcal mol−1. This reference set
is stored within the RMG database. The full list of species can be found on GitHub at
https://github.com/ReactionMechanismGenerator/RMG-database/tree/main/input/refer
ence_sets/main.

Similar to AECs, BAC parameters are fit for each level of theory by minimizing the errors
between the enthalpy of formation, ∆fH(𝑀 , 298K), calculated from quantum chemistry (in-
cluding atom energy corrections) and the known experimental values for all reference species
in the database. The first step in obtaining BACs is to perform a geometry optimization
and frequency calculation for each species in the reference set at the desired level of theory.
Originally, the experimental geometry was used as the initial guess for an optimization and
frequency calculation with 𝜔B97M-V/def2-TZVPD in Q-Chem when previous group mem-
bers were calculating BACs for this level of theory. This density functional theory (DFT)
optimized geometry is stored in RMG database and is used as the initial guess for the DFT
optimizations with B97-D3/def2-mSVP and 𝜔B97X-D3/def2-TZVP in this work.

The RMG database stores two popular types of BACs. First, Petersson-type BACs [34]
apply a correction to ∆fH(298 K) for each bond type present in the 2D representation of
the molecule. These bond types are defined pairwise for every combination of elements
for all integer bond orders (e.g., C–H, C–C, C–O, C––C, etc). Previous RMG developers
chose the molecules in the reference set such that they would cover many of these pairwise
combinations. The total BAC value for a molecule 𝑀 is simply the summation of all bond
type instances

BAC(𝑀) =
𝐵∑︁

𝑏

𝑛𝑏𝐸𝑏 (4.6)
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such that 𝑛𝑏 is the number of bond type 𝑏 and 𝐸𝑏 is the associated energy correction for
that bond type. The total BAC value for the molecule can be applied to ∆fH(298 K).
Petersson-type BACs have a few potential shortcomings. First, this approach only considers
integer bond lengths; it does not treat aromatic bonds differently so aromatic species must
be represented by single and double bonds. As a related point, Petersson-type BACs do
not account for variability in bond length or for the neighboring atoms, both of which are
hypothesized to affect the contribution to the BAC to ∆fH(𝑀 , 298K). Finally, by limiting the
corrections to only explicitly encoded bond types, Petersson-type BACs may be sensitive to
the resonance structure chosen to represent the molecule. Petersson-type BACs are derived
using ordinary least-squares (OLS) fitting to minimize the difference between the reference
∆fH(𝑀 , 298K) and the calculated values.

The second type of BAC was developed by Anantharaman and Melius [35]. These Melius-
type BACs apply a correction based on bond distances from the 3D geometry of the opti-
mized structure and considers information about neighboring atoms. Note that although
Anantharaman and Melius refer to the method as “bond additivity correction”, there are no
parameters for specific bond types; however, we adopt their nomenclature for consistency in
the literature. The equations from their paper can be rearranged to more clearly show the
contributions from atom, bond, and molecule level corrections:

∆𝑓𝐻
∘
298(𝑀)−∆BAC

𝑓 𝐻∘
298(𝑀) =

∑︁

𝑎∈𝑀
Coratom(𝑎) +

∑︁

𝑏∈𝑀
Corbond (𝑏) + Cormolecule(𝑀) (4.7)

Coratom(𝑎) = 𝛼𝑎 (4.8)

Corbond(bond(𝑥, 𝑦)) =
√︀
𝛽𝑥𝛽𝑦 · 𝑒−𝜉𝑅𝑥𝑦

+
∑︁

𝑤∈𝑁(𝑥)∖𝑦
[𝛾𝑤 + 𝛾𝑥] +

∑︁

𝑧∈𝑁(𝑦)∖𝑧
[𝛾𝑧 + 𝛾𝑦] (4.9)

Cormolecule(𝑎) = 𝐾LoT ·
(︃
𝑆𝑀 −

∑︁

𝑎∈𝑀
𝑆𝑎

)︃
(4.10)

Fitting Melius-type BACs involves fitting three parameters (𝛼, 𝛽, 𝛾) per element per level
of theory as well as 𝐾LoT, which depends only on the level of theory; these fitted parameters
are denoted with a subscript. Variables with superscripts (e.g., 𝑆𝑀) are properties of the
atoms, bonds, or molecule, such as spin and bond distances. 𝜉 is a fixed parameter of
3 Å−1 as recommended by Anantharaman and Melius. As shown in Equation (4.8), the
atom corrections for molecule 𝑀 apply a correction (𝛼𝑎) based on the element of atom 𝑎.
Equation (4.9) shows the correction for a single bond between atoms 𝑥 and 𝑦, such that 𝑅𝑥𝑦

is the bond length in Å and the fitted parameters 𝛽 and 𝛾 are based on the elements. Note
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that this first term has a negative exponential dependence on bond distance i.e., the term
will be more significant for shorter distances common in unsaturated bonds. The second
and third term in Equation (4.9) sum over the neighbors of 𝑥 and 𝑦, respectively, so the
correction account for adjacent atoms. Finally, Equation (4.10) considers the spin of the
molecule 𝑆𝑀 and the spins of the atoms 𝑆𝑎. Since Equation (4.7) is non-linear in its fitted
parameters, a non-linear least-squares fitting was used. 10 iterations are performed using
different randomly-generated initial values for the parameters. The lowest value of this global
optimization determines the best value for the fitted parameters. RMG’s implementation
uses the least_squares function in scipy.optimize [36] with the Trust Region Reflective
method [37] and a 3-point method for calculating the Jacobian.

4.2.4 Conformer Search

The dataset from Chapter 3 is based on the geometries published by Grambow et al. [38], who
had performed a conformer search for the reactants. The conformer search was performed by
embedding several hundred conformers for each molecule using RDKit [39] with the ETKDG
distance geometry method [40] and relaxing their geometries using the MMFF94 force field
implemented in RDKit. The lowest energy conformer based on the MMFF94 energy was then
optimized using Q-Chem [41] at both the B97-D3/def2-mSVP level of theory with Becke-
Johnson damping [42] and the 𝜔B97X-D3/def2-TZVP [43] level of theory. The reactant
conformer was then used as the starting point for the growing string search. No conformer
search was done for the transition state or product(s) of each reaction, and no additional
conformer searching was done in Chapter 3.

Since only a subset of the reactions from Chapter 3 will be added to RMG database, a
conformer search is done for all reactants, transition states, and products discussed in this
chapter. The conformer search done here is also much more thorough and would require
enormous compute resources to complete for the entire dataset of nearly 12,000 reactions.
Here, the Automated Conformer Search (ACS) software tool was used to do conformer
searching. This software was developed by Haoyang (Oscar) Wu and Xiaorui Dong and is
made publicly available at https://github.com/oscarwumit/ACS.

The workflow for ACS starts from an initial geometry and then exhaustively rotates dihe-
drals to perform a thorough conformer search. Here, increments of 18∘ were chosen to create
a relatively fine grid, and the geometry that was previously optimized at 𝜔B97X-D3/def2-
TZVP was used the initial geometry. This approach should do a good job of identifying the
lowest energy conformer for molecules with ≤ 2 rotatable bonds. If a molecule has more than
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two rotors, ACS will rotate
(︀
𝑁
2

)︀
rotors, such that 𝑁 is the number of rotors. Although cou-

pling all rotors would be a more exhaustive search and give higher likelihood of identifying
the lowest energy conformer, such an approach would scale as

(︀
360∘

Number of increments

)︀𝑁 , which
leads to far too many initial conformer structures for even medium-size molecules. Thus,(︀
𝑁
2

)︀
presents a compromise between accuracy and computational expense.

The next step is to perform single point energy calculations using Psi4 [44] for each of
the generated structures to estimate the potential energy surface. Ideally, a relatively cheap
method would be used for this step. However, recent work has shown that MMFF9445–47

does a poor job of ranking the relative energies of different conformers.48 Although GFN2-
xTB49 single point energies show stronger agreement with accurate quantum calculations50

than MMFF94, this work chooses to place a very high priority on accuracy and thus uses
𝜔B97X-D3/def2-TZVP within Psi4 to calculate the energy of these un-optimized conformers.
This level of theory was chosen since it is the same level used for the subsequent optimization
and frequency calculations so this approach should avoid any mismatch that may be caused
by using a different level of theory. The next step is to take the structure the corresponds
to each local minima on this potential energy surface and use that as the initial guess for
optimization and frequency calculations, which are done with 𝜔B97X-D3/def2-TZVP in
Q-Chem. Finally, single point energy refinement is at CCSD(T)-F12a/cc-pVDZ-F12 with
Molpro for all unique conformers.

This chapter does not change the underlying workflow. However, I did perform various
software engineering tasks to automate this workflow so it could adequately handle the high-
throughput calculations required for this work. My modifications and scripts are free and
publicly available on the qchem_molpro branch. In general, this conformer search workflow
can find a lower energy conformer relative to the geometries published by Grambow et al. [38]
about 60% of the time, even for the reactants, which had previously undergone a conformer
search.

4.2.5 Computing Thermochemistry and Kinetics

The Automated Reaction Kinetics and Network Exploration (Arkane) software package is
used to compute thermochemistry and high-pressure limit rate coefficients using the results
from these quantum chemistry calculations [51]. 1D hindered rotor (HR) scans are performed
for the reactants, transition states, and products, at 𝜔B97X-D/def2-TZVP in Gaussian [52]
to improve the estimate of the partition function [53–55]. 1DHR scans are used to balance
accuracy and the immense computational cost of intense conformational search; future work
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could explore multidimensional torsion treatment or even more thorough conformer search-
ing methods, whose resulting conformers could be used with multi-structure TST [56–58].
Arkane uses RRHO TST with Eckart tunneling correction to calculate the forward rate co-
efficient for a set of user-defined temperatures. Here, I use 50 linearly spaced points in the
reciprocal temperature space between 300 K and 2000 K. Finally, Arkane uses a linear least-
squares fitting to fit the list of reciprocal temperatures and logarithm of the rate coefficients
to a 3-parameter Arrhenius expression,

𝑘 = 𝐴𝑇 𝑛𝑒
−𝐸𝑎
𝑅𝑇 (4.11)

yielding the best approximation for the pre-exponential A-factor, temperature exponential
𝑛, and the activation energy 𝐸𝑎. The individual species thermochemistry can be used to
compute the Gibbs free energy of a reaction, which is related to a reaction’s equilibrium
constant and allows for easy estimation of the reverse reaction’s rate coefficient. Additional
details about Arkane can be found in the corresponding publication [51].

4.3 Results

4.3.1 Frequency Scaling Factor

The harmonic frequency scaling factor was found to be 1.014 for B97-D3/def2-mSVP. For
𝜔B97X-D3/def2-TZVP, it was found to be 0.984. As a sanity check, these values are
similar to values stored in CCCBDB [10] for similar functionals as well as to calculated
values stored in RMG database. The harmonic frequency scaling factors calculated in
this work, as well as for many other LoT, are publicly available in RMG’s database at
RMG-database/input/quantum_corrections/data.py and on GitHub so others can bene-
fit from these results.

4.3.2 Atom Energy Corrections

The atom energy corrections resulting from the OLS fitting for two levels of DFT are
shown in Table 4.4. The results from the two explicitly correlated coupled cluster meth-
ods are shown in Table 4.5. All values are also publicly available in RMG’s database at
RMG-database/input/quantum_corrections/data.py and on GitHub. As a sanity check,
the AEC values for the LoT in this work are similar to AEC values for other LoT that are
already stored in RMG database.
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Table 4.4. Fitted AECs in Hartrees for two DFT methods from Q-Chem.

Atom Energy Correction (Hartree)

Atom B97-D3/def2-mSVP 𝜔B97X-D3/def2-TZVP

H -0.49516021903680546 -0.49991749801833063
C -37.833878658169624 -37.84993993601866
N -54.541699219144505 -54.58750889521559
O -75.01524900146931 -75.07402423801669
F -99.65948092488345 -99.7392410428872
S -397.97912317555034 -398.10051734579775

Cl -459.9963616463421 -460.1341841971797
Br -2575.1192984500663 -2574.175384284091

Table 4.5. Fitted AECs in Hartrees for two explicitly correlated coupled cluster levels of theory
from Molpro.

Atom Energy Correction (Hartree)

Atom CCSD(T)-F12a/cc-pVDZ-F12 CCSD(T)-F12a/cc-pVTZ-F12

H -0.50000836574607 -0.5003554055415579
C -37.784271457731904 -37.787690380768844
N -54.523156256858144 -54.52874573314225
O -74.99320041804718 -75.00314974528959
F -99.6511861642652 -99.6658140570029
S -397.6625539051389 -397.67549377693314

Cl -459.68886861844055 -459.70521576925796

4.3.3 Bond Additivity Corrections

The parameters for the Petersson-type BACs resulting from the OLS fitting for the two
DFT methods are shown in Table 4.6. The parameters for the two composite LoT at
explicitly correlated coupled cluster are shown in Table 4.7. The molecular correction
parameter for Melius-type BACs for all LoT is shown in Table 4.8. The atom, bond
length, and neighboring atom correction parameters for the four LoT are shown in Ta-
bles 4.9, 4.10, 4.11, and 4.12. All values are publicly available in RMG’s database at
RMG-database/input/quantum_corrections/data.py and on GitHub. The BAC values
reported here are similar to values for other LoT that are already stored in RMG database.
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Table 4.6. Petersson-type BACs in kcal mol−1 for two DFT methods from Q-Chem.Table 5. Fitted BACs in kcal mol�1 for two density functional theories from Q-Chem.

Bond Additivity Correction (kcal mol�1)

Atom B97-D3/def2-mSVP wB97X-D3/def2-TZVP

Br – Br 3.3184897418778894 2.849979178650586
Br – C -0.6447457118766096 0.7381762723415655

Br – Cl 2.5458979359916487 1.4764289266543953
Br – F 3.9321266497717513 2.7336108440861704
Br – H 3.1450731163630294 2.621866526877559
Br – O -7.328960869354291 -2.5532834764130006
C ––– C -19.75782127331025 -7.92496166307853
C ––– N -7.499027151749764 -3.864663093893819
C ––– O -18.475225675145023 -7.484067031104203
C – C -6.498460645920902 -1.0817871087375186

C – Cl -1.9238440096546874 -0.5732704243120552
C – F -1.9747353079897023 1.3719540592946495
C – H 0.01729290032079855 0.07704003746021679
C – N -1.7433898062480928 0.5919032459443995
C – O -3.8525377364775215 -1.2626115105817743
C – S -5.419539134610862 -1.2805399168193157
C –– C -12.998063133432941 -3.890848609981227
C –– N -5.027572638791928 -1.5036825315665
C –– O -6.801076987753849 -2.9505302757552596
C –– S -5.654222632762431 -3.7136643912288623

Cl – Cl 1.3452682321784095 0.136962629607007
Cl – F 3.491738723755338 1.043801519750975
Cl – H 0.8075310212109841 0.3209061926667829
Cl – N 11.423744786147633 1.254243872961764
Cl – O 5.488334623555848 -1.2050377287736824
Cl – S -3.0170592756249057 -0.353190509282856
F – F 5.002957678305598 1.2363169265407195
F – H -8.586384858108858 -1.4703521420571022
F – O 4.485916714230829 -0.008583994665357622
F – S -4.159578702518104 0.3093056813192921

H – H 8.526122583518188 0.16749830148486178
H – N 1.2169107867656828 0.7806156486742294
H – O -3.8567427899343043 -1.2446586747155781
H – S 1.8235600781274208 1.186472823080999
N ––– N 2.7964223466789293 -0.15105524935670453
N – N 5.170147621733188 3.437416216021716
N – O 3.5592924696925587 1.4467328418363092
N –– N 8.731292427600357 2.786466016509395
N –– O 5.09080676349987 -2.389849264267907
O – O 2.565372397566582 -2.27124059610634
O – S -8.578422244244877 -2.6554640707366945
O –– O 1.3114212140745158 -9.840434624890442
O –– S -14.229024507889747 -3.470457647257026
S – S -4.258008825508542 -1.3273180651577856
S –– S -3.631460853989999 -6.864453512935457
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Table 4.7. Petersson-type BACs in kcal mol−1 for two composite levels of theory. Optimization
and frequency calculations are done with Q-Chem while single point energy refinement is done using
Molpro.

Table 6. Fitted BACs in kcal mol�1 for two composite levels of theory. Optimization and frequency calculations were done in
Q-Chem while single point energy refinement was done using Molpro.

Bond Additivity Correction (kcal mol�1)

CCSD(T)-F12a/cc-pVDZ-F12// CCSD(T)-F12a/cc-pVTZ-F12//
Atom wB97X-D3/def2-TZVP wB97X-D3/def2-TZVP

C ––– C -0.7940736288861328 -0.37319831366523176
C ––– N -0.2736082180869344 -0.04394537008104246
C ––– O 1.215648303725274 0.6845507542289013
C – C -0.006153161261658441 0.12602185168066687

C – Cl 0.7595723077901367 0.4000395071268901
C – F 0.4815204101380463 0.5386953055500939
C – H 0.010156098370800108 0.03014784912580578
C – N 0.10438905540134882 0.3022567343857892
C – O 0.09987252247930076 0.22156464774957604
C – S 0.4090396417072708 0.059041022372472614
C –– C -0.32837634513571645 -0.049584091100670837
C –– N -0.6872690836499937 -0.4428639989215071
C –– O -0.011879042720396643 0.05943900637676746
C –– S -0.45740929709171363 -0.7758177193710785

Cl – Cl -0.014451326911147977 0.1382704625282193
Cl – F 0.6479093120532244 0.3846791604086004
Cl – H 0.37650914650193457 0.19401601074149966
Cl – N 0.5872703379266317 0.4109773959959559
Cl – O 0.5095510277409292 0.2892748705965537
Cl – S 0.646585596795355 0.21784097251125079
F – F -0.7037812030852666 -0.6423018409407416
F – H 0.13879622147405257 0.1102321131699
F – O -0.5823379151756342 -0.5555283888816168
F – S 0.9474443582208304 0.8514568108157713

H – H -0.00879296155638677 -0.24061025875957348
H – N -0.3973581320058072 -0.2458184828878194
H – O -0.05082328074118156 0.007966375791966561
H – S 0.9006352849672502 0.6141296238226581
N ––– N 0.6426432154389473 0.15991986841815756
N – N 1.0261474051290596 1.2279613861249787
N – O -0.03642922490749102 0.20879882425699858
N –– N 0.1708502331465831 0.44949205775999634
N –– O -0.8042125954300557 -1.029059282226874
O – O -0.7325577965540944 -0.611163660061622
O – S -0.18825122982916948 -0.43698174359431335
O –– O -2.7021030234346695 -2.8858691436809196
O –– S 0.9232025676598207 0.3100869947699715
S – S 0.14102013117456597 0.10571953923531874
S –– S -0.9855656265939845 -1.6070546530751422
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Table 4.8. Molecular correction parameter for Melius-type BACs for each level of theory

Level of Theory 𝐾LoT (kcal mol−1)

B97-D3/def2-mSVP -3.096451394144581
𝜔B97X-D3/def2-TZVP -3.782190737782739
CCSD(T)-F12a/cc-pVDZ-F12//
𝜔B97X-D3/def2-TZVP 0.30287826305208276

CCSD(T)-F12a/cc-pVTZ-F12//
𝜔B97X-D3/def2-TZVP 0.3057912044551125

Table 4.9. Fitted parameters in kcal mol−1 for Melius-type BACs for B97-D3/def2-mSVP.

Element 𝛼 𝛽 𝛾

Br -4.262780823587865 8692.219738590926 -0.637372927288811
C 4.999999999999999 133.3489203999116 0.07497384490455655
Cl -4.999999999999999 983.472669453573 0.412600941322612
F -4.999999999999999 98.4144446431002 0.44818650615117767
H -1.0450492093486716 0.9620481174299411 -0.9999999999999999
N -4.999999999999999 1.258833913444385e-27 -0.2675044921389425
O -4.999999999999999 356.54294878127047 -0.16343725217730817
S -4.99999999999999 4253.83724390785 0.11474046296004109

Table 4.10. Fitted parameters in kcal mol−1 for Melius-type BACs for 𝜔B97X-D3/def2-TZVP.

Element 𝛼 𝛽 𝛾

Br -4.236702026546933 2886.4449179333255 0.27904803369228603
C 0.2049164817767285 0.05644392159534064 -0.09439333163743208
Cl -2.5370579912419085 257.3272543651555 0.17830274429860773
F -4.390697891358869 136.75193570503143 0.14749707198083395
H -2.062847444255194 1.0783080754563377 -0.1790691880962216
N -4.999999999999999 4.0393833100316303e-35 -0.3694958066667204
O -2.485820286098204 120.00409931223447 -0.07383806558254727
S -2.3806435571125646 301.39625436311553 -0.13458257713999408
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Table 4.11. Fitted parameters in kcal mol−1 for Melius-type BACs for CCSD(T)-F12a/cc-pVDZ-
F12//𝜔B97X-D3/def2-TZVP.

Element 𝛼 𝛽 𝛾

C -0.5464261912627 64.6767878335258 -0.024587039354705877
Cl -0.3331232529849068 6.316147607205602 -0.03540309101545116
F 0.09684535337591452 2.9969902462203326e-14 -0.016933453385969043
H 0.3093277751661718 1.8496519952345347e-16 0.046660614206200754
N 0.4773300729311916 9.624991083595463 -0.0053021340471547
O 0.6949720732175282 1.0824291132601096e-15 -0.01078514461511072
S -0.9142689727759676 735.661291892654 -0.13988268641251655

Table 4.12. Fitted parameters in kcal mol−1 for Melius-type BACs for CCSD(T)-F12a/cc-pVTZ-
F12//𝜔B97X-D3/def2-TZVP.

Element 𝛼 𝛽 𝛾

C -0.6004599146970828 57.600230521006345 -0.02675767045779017
Cl -0.21285368087888518 72.75494140267224 -0.026157341196276294
F 0.20136534958427602 2.7637442704545506e-39 -0.09738287356772249
H 0.1409606206795142 0.04568584404132764 0.08331791884967885
N 0.44677472396061857 7.988043181948807 -0.031799354286893795
O 0.7724579645053421 1.1170405486633287e-25 -0.04321158886089615
S -0.1294113249415446 337.25420543898184 -0.07172725215109269

Table 4.13 summarizes the mean absolute errors (MAE) and root mean squared errors
(RMSE) when applying these corrections for each level of theory. Figures 4.2, 4.3, 4.4, and
4.5 show a histogram of the residuals before and after applying BACs; errors are relative
to the reliable set of experimental enthalpies used for fitting. AECs are always included.
After applying BACs, the distribution of errors both centers much more closely to zero
and noticeably tightens, representing a significant reduction in both the bias and variance
of errors. These figures show the expected trend in which using a higher level of theory,
such as explicitly correlated coupled cluster calculations, give lower errors both before and
after applying the fitted BACs. Further, despite the potential limitations of Petersson-type
BACs, the results for these four LoT indicate that Petersson-type BACs perform slightly
better than Melius-type BACs. While all of these results report a training error, I also
tested whether the fitted parameters generalize well to new molecules. As described in
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the technical validation for Chapter 3, I applied the Petersson-type BACs fit at CCSD(T)-
F12a/cc-pVDZ-F12//𝜔B97X-D3/def2-TZVP to molecules from the Pedley compilation set
[59] that have experimental uncertainty of less than 1 kcal mol−1. The resulting RMSE of
1.2 kcal mol−1 demonstrates the accuracy of our BACs.

Table 4.13. Errors in kcal mol−1 relative to experimental data before and after applying either
Petersson-type or Melius-type BACs that were fit for each respective level of theory. AECs are
always included.

Table 2. Errors in kcal mol�1 relative to experimental data before and after applying Petersson-type BACs fit to each
respective level of theory.

Without BACs With BACs

Reaction Family MAE RMSE MAE RMSE

B97-D3/def2-mSVP 21.76 27.83 3.16 6.58

wB97X-D3/def2-TZVP 5.12 6.79 1.33 2.22

CCSD(T)-F12a/cc-pVDZ-F12//
wB97X-D3/def2-TZVP 0.94 1.26 0.52 0.83

CCSD(T)-F12a/cc-pVTZ-F12//
wB97X-D3/def2-TZVP 0.82 1.17 0.49 0.79

Table 3. Errors in kcal mol�1 relative to experimental data before and after applying Petersson-type and Melius-type BACs fit
to each respective level of theory.

Without BACs Petersson Melius

Reaction Family MAE RMSE MAE RMSE MAE RMSE

B97-D3/def2-mSVP 21.76 27.83 3.16 6.58 4.23 7.31

wB97X-D3/def2-TZVP 5.12 6.79 1.33 2.22 1.43 2.22

CCSD(T)-F12a/cc-pVDZ-F12//
wB97X-D3/def2-TZVP 0.94 1.26 0.52 0.83 0.57 0.91

CCSD(T)-F12a/cc-pVTZ-F12//
wB97X-D3/def2-TZVP 0.82 1.17 0.49 0.80 0.51 0.87

Table 4. Errors in kcal mol�1 relative to experimental data before and after applying Petersson-type BACs fit to each
respective level of theory.

AEC (Hartree)

Atom B97-D3/def2-mSVP wB97X-D3/def2-TZVP

H -0.49516021903680546 -0.49991749801833063
C -37.833878658169624 -37.84993993601866
N -54.541699219144505 -54.58750889521559
O -75.01524900146931 -75.07402423801669
F -99.65948092488345 -99.7392410428872
S -397.97912317555034 -398.10051734579775

Cl -459.9963616463421 -460.1341841971797
Br -2575.1192984500663 -2574.175384284091
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Figure 4.2. Histogram of fitting errors (corrected minus experimental enthalpies) for B97-D3/def2-
mSVP when using a) Petersson-type BACs and b) Melius-type BACs.
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Figure 4.3. Histogram of fitting errors (corrected minus experimental enthalpies) for 𝜔B97X-
D3/def2-TZVP when using a) Petersson-type BACs and b) Melius-type BACs.
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Figure 4.4. Histogram of fitting errors (corrected minus experimental enthalpies) for CCSD(T)-
F12a/cc-pVDZ-F12//𝜔B97X-D3/def2-TZVP when using a) Petersson-type BACs and b) Melius-
type BACs.
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Figure 4.5. Histogram of fitting errors (corrected minus experimental enthalpies) for CCSD(T)-
F12a/cc-pVTZ-F12//𝜔B97X-D3/def2-TZVP when using a) Petersson-type BACs and b) Melius-
type BACs.

4.4 Improvements to RMG’s Kinetic Estimates

Here, I add over one hundred training reactions to RMG database and refit the decision
tree rate estimators. The thermochemistry information for all reactant and product species
involved in these reactions is stored in Spiekermann_refining_elementary_reactions.py.
Given the high-quality data stored in this library, future users should be encouraged to in-
clude this library when using RMG to generate kinetic mechanisms. That way, if any of these
species end up in the mechanism, RMG can directly use this very accurate thermochemistry
data. Showing a plot of each rotor scan and Arrhenius fit for each of the reactions would
use an unnecessary amount of pages. Interested readers can find this info in the various pull
requests that have been made on the RMG database GitHub. Each pull request includes
a Jupyter Notebook that contains all related plots for the corresponding rotor scans and
Arrhenius fits.

To show the benefit of retraining the rate trees with these new training reactions, I
calculate the improvement ratio as the ratio between the new and old RMG rate estimate
for these reactions using

Improvement ratio =
New rate estimate
Prior rate estimate

(4.12)

If needed, the reciprocal is taken so all ratios are ≥ 1. The prior rate estimate comes
from RMG rate rules. After my additions, all of these reactions now exist as training
reactions within RMG database. Thus, RMG will directly query their Arrhenius expression
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to evaluate the rate coefficients rather than estimate the parameters. As described in the
methods section, the Arrhenius expression for these training reactions comes from fitting the
results of TST calculations from Arkane. The summary from Table 4.14 shows that the rate
estimates are improved by at least one order of magnitude, sometimes substantially more.

Table 4.14. Median improvement ratio between the new and old RMG rate coefficient estimate
for reactions from Chapter 3.

RMG Family 500K 1000K 1500K 2000K

1,3 Insertion CO2 1.06e10 2.81e4 603 159
1,3 Sigmatropic 1.86e12 2.52e4 2.05e3 4.05e3

Diels Alder Addition 476 21.2 4.49 2.28
Ketoenol 168 10.9 7.32 12.4
Retroene 25.2 5.72 3.56 3.01

In addition to adding reactions from the dataset presented in Chapter 3, I also added
two reactions as part of a separate project. The improvement ratio for these two reactions
is shown in Table 4.15 and was very substantial for the Intra R Add Exocyclic reaction.

Table 4.15. Improvement ratio between the new and old RMG rate estimate for Intra R Add
Exocyclic and Endocyclic reactions.

RMG Family 500K 1000K 1500K 2000K

Intra R Add Exocyclic 3.46e4 44.39 4.56 1.42
Intra R Add Endocyclic 5.48 4.52 4.34 4.30
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Chapter 5

Fast Predictions of Reaction Barrier

Heights: Towards Coupled-Cluster

Accuracy

Much of this work has previously appeared as Spiekermann, K. A.; Pattanaik, L.; Green, W.
H. Fast Predictions of Reaction Barrier Heights: Toward Coupled-Cluster Accuracy. J. Phys.
Chem. A 2022, 126, 3976–3986 [link]. Lagnajit Pattanaik assisted with analyzing model re-
sults. All code and model weights are freely available at https://github.com/kspieks/chempr
op/tree/barrier_prediction.

5.1 Introduction

Accurately predicting the time evolution of reacting chemical systems and the yields of
various products and side products has been one of the main projects of physical chemistry
for more than 135 years [1, 2]. Some important systems have been very heavily studied,
leading to chemical kinetic model predictions so compelling that they drive governmental
and business decisions, and have even led to major international treaties (e.g., the Montreal
Protocol) [3, 4]. If a large number of data are available, one can make useful predictions, e.g.,
regarding which organic synthesis routes are likely to succeed at specified reaction conditions
[5, 6]. However, data relevant to a particular system of interest are usually scarce, and it is
often impractical to do enough experiments to develop a predictive model with the desired
accuracy or generalizability.

Over the last ∼25 years, it has become possible to accurately compute the rate coefficients
of individual reactions using quantum chemistry and rate theory [7, 8]. This suggests it
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might be possible to accurately predict the behavior of a reacting system even before any
experimental data are available on that system, with many ramifications [9]. Indeed, recently
several research groups have constructed models to quantitatively predict the time-evolution
of diverse chemical systems, based largely on parameters derived from quantum chemistry
rather than experiment. For example, earlier this year our group has published models for
combustion [10], pyrolysis [11, 12], and the degradation of pharmaceutical compounds [13].
However, because quantum chemistry calculations of rate coefficients are slow, only a small
fraction of the numerous rate coefficients in these models have been computed accurately,
which can make the predictions somewhat erratic. The vision of reliable predictive chemical
kinetics can only be realized if accurate rate coefficients can be calculated much more rapidly
than is possible today.

The traditional workflow to obtain kinetic parameters, shown in Figure 5.1, is quite
involved [7, 8]. In summary, the workflow starts by creating 3D structures for the reactant(s)
and product(s), which are optimized using quantum chemical methods. The search for a
good 3D structure for the transition state (TS) often consumes the most human time, since
automated saddle point finders are not yet sufficiently reliable [14, 15]. After the most
promising TS structure is identified, it is optimized using a more accurate method, and
often an intrinsic reaction coordinate (IRC) calculation is run to confirm it connects the
reactant(s) and product(s) [16]. Then the energy of reactant(s) and TS is re-computed at a
high-level of theory (e.g., coupled-cluster) with zero-point energy corrections to provide an
accurate reaction barrier. If the studied structures are flexible with many rotatable bonds
or other large-amplitude motions, conformational effects must also be considered. Usually,
this is done by approximating each hindered internal rotor as independent [17–19], but
often this approximation is not accurate, requiring some treatment of the coupling between
different rotors [20]. Alternative methods which involve multiple conformational minima
for reactants and transition states and couple conformational effects with low frequency
anharmonic torsional modes–including multistructure methods developed by Truhlar and
coworkers–are becoming popular, but it can be challenging to find all the conformers [21–
24]. Finally, one can calculate the partition functions, which canonical transition state theory
(TST) uses to estimate the high-pressure limit rate coefficient 𝑘∞(𝑇 ), including effects of
symmetry/reaction path degeneracy, tunneling, and other corrections [8, 25–27].

Given the importance and impact of kinetic models, several efforts have been made to
accelerate portions of the traditional workflow in Figure 5.1, either by accelerating individual
steps, or by skipping over steps, illustrated as arrows in the interior of the figure. Many
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programs have been published for rapid conformer generation of stable species [24, 28–
31]. Several methods also exist for generating good TS guesses, such as using hand-made
templates [32–34] or deep learning [35–37].

Despite all these advances, calculations of rate coefficients are still limited by the accurate
yet expensive quantum methods used to find the saddle point geometry, and the poor scaling
of the even more expensive methods used to compute its energy. For example, coupled-
cluster CCSD(T)-F12 calculations are commonly considered the gold-standard in quantum
chemistry due to their reliable single point energies and reaction energies [38–43], yet they
scale as 𝒪(𝑁7), where 𝑁 is the number of orbitals [44]. For some reactions, even CCSD(T)
is not accurate enough, and more expensive calculations are required [8].

Since so many computer resources and human efforts are required to obtain each reli-
able value, especially for reactions of large molecules, it would be advantageous to directly
estimate kinetic parameters instead. Indeed, established methods for directly estimating
barrier heights or log(𝑘∞(𝑇 )) from reactant and product identities include simple models
such as Evans-Polanyi relationships [45] and the Hammett correlations [46]. In his textbook,
Benson presented simple methods to predict Arrhenius A-factors [47]. Several authors have
extended Benson’s popular thermochemical group additivity approach [47–49] to estimate
activation energies [50, 51], A-factors [52], and rates [53]. Unfortunately, linear models are
an inherently limited representation, so the simple Benson-type groups that work so well
for predicting the thermochemistry of many organics are not sufficient for predicting rate
coefficients over a broad range of reactions. Much larger supergroups [54] or decision trees
[55–57] are needed to reach acceptable accuracy. Still, the supergroups and decision trees are
often manually defined for each reaction type, which is tedious and error-prone. Thus, there
has been interest in automating tree construction [58, 59] to facilitate the incorporation of
new training reactions, but the process is still cumbersome.
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Recent work has focused on other nonlinear methods to predict kinetic parameters. For
example, Heinen et al. [66] trained a kernel ridge regression (KRR) model to predict acti-
vation energies. The model was fit to their previously generated dataset [83] of SN2 and E2
reactions with single point energies computed at DF-LCCSD/cc-TZVP. Stuyver et al. [64]
trained a graph neural network (GNN), augmented with quantum descriptors, on the same
dataset. In both cases, random splits gave a testing MAE of ∼2.5 kcal mol−1. The relatively
low error is expected since the test set had a similar composition as the training set i.e., it is
a measure of interpolation. To assess generalizability, Stuyver et al. also restricted training
to three of the four nucleophiles in the dataset, reserving the fourth only for the test set.
Although their augmented GNN extrapolated better than KRR to the unseen nucleophile,
both models showed significantly higher testing errors relative to random splitting. Further,
since all reactions start from a substituted ethyl-based scaffold, it is unclear how well these
models would generalize to other reactants.

Estimators for activation energy have also been applied to catalysis. Takahashi et al.
[76] trained several types of models (linear, random forest, and support vector regression) to
predict the activation energy for a small dataset of heterogeneous catalytic reactions. When
using a random split, testing errors were ∼0.90 eV (>20 kcal mol−1) for all models, much too
large to be useful. Similarly, Singh et al. [75] trained a feed forward neural network (FFN)
model to predict reaction barriers for a small dataset containing dehydrogenation reactions
as well as 𝑁2 and 𝑂2 dissociations. They report a testing error of 0.22 eV when using a
random split.

Komp and Valleau [85] trained two different FFNs to predict the natural logarithm of the
“partition function” at a given temperature. The first model takes the molecular geometry
and inverse temperature as input to predict the “partition function” of a molecule. The
second model uses the geometry and “partition function” of the reactant and product as
well as the inverse temperature to predict a “partition function” of the TS. Unfortunately,
the quantities used by those authors for training and testing their model were not the true
partition functions that appear in rate theory, but instead rigid-rotor harmonic-oscillator
(RRHO) partition functions of a single conformer of the TS, reactant or product. However,
the great majority of the species in their data set have rotatable bonds and a large number of
low-energy conformers, and many of the “product” structures and vibrational frequencies they
used were actually properties of van der Waals complexes of two or three product molecules.
Partition functions are drastically affected by conformers and rotors [20–24], which is why
the refined dataset from ref. [43] published high-pressure limit TST rate coefficients for only
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a small subset of the reactions–those where the TS and the reactant(s) were rigid so there
was only one low-lying conformer. Further, in the Komp and Valleau paper, no analysis was
provided for how sensitive the model predictions are to the input 3D geometry; as shown in
our results section below, this could be a significant problem.

Another focus is using machine learning (ML) methods to directly estimate 𝑘∞(𝑇 ). Hous-
ton et al. [77] used Gaussian process regression (GPR) on 13 reactions to predict bimolecular
rate constants over a large temperature range. As a follow up, Nandi et al. [78] clustered the
input data, retrained the GPR model on each cluster, and then predicted rate coefficients
for the O(3P) + HCl reaction. In other work, Komp et al. [82] trained a FFN on ∼1.5
million data points to predict the product of 𝑘∞(𝑇 ) with the reactant partition function for
1D barrier problems. FFNs have also been fit to the rate coefficients from small datasets
of hydroxyl radical reactions [67, 68] and ionic liquids [69]. In all these cases, the data sets
employed did not cover much reaction space.

Still another approach is to use ∆-ML, a technique developed by Ramakrishnan et al.
[86] in which a model is fit to the residuals between a high- and low-level of theory. Thus,
rather than directly predicting a high-quality value for the parameter of interest, the ∆-ML
model predicts the correction to the low-level value, which should be relatively inexpensive
to calculate. In the context of kinetics, Bragato et al. [84] showed that using KRR for ∆-ML
outperformed direct ML approaches for predicting barrier heights from von Rudorff et al.’s
[83] SN2 dataset.

In the remainder of this paper, we present a new model for estimating the zero-point
energy corrected barrier height from either 2D or 3D structures of the reactants and products.
Many of the ML models summarized here, as well as in recent reviews [87–89], are trained
on relatively small datasets from a specific reaction family, which severely hinders their
generalizability. In contrast, our goal is to develop a deep learning model that quickly predicts
accurate barrier heights for a diverse set of reactions. Our model uses information from only
the reactant and product so future workflows could avoid the often delicate and challenging
task of finding the TS geometry. This model would be useful for directly estimating barrier
heights during the automated generation of kinetic models [56]; it would also offer substantial
speedup when refining existing kinetic models by avoiding the need for a TS geometry.
Lastly, this model would allow for quantitative ranking of potential reactions produced from
an automated enumeration [14, 15, 90, 91].

Our work brings several advances over a recent study, which trained a graph neural
network to predict barrier heights on a similar dataset calculated at a lower level of theory
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[92]. First, our model is trained on a refined dataset that allows barrier height predictions to
approach coupled-cluster accuracy. As shown below, our new model’s predictions are about 1
kcal mol−1 more accurate than a good density functional theory (DFT) calculation and offer
a ∼105 factor speedup. Our model also uses an improved reaction representation, which
substantially improves the accuracy, and it uses 75% fewer parameters than models from
previously published works [63, 93], making our lightweight model more practical to integrate
into prediction workflows. Importantly, our training procedure uses proper data splits to
accurately estimate the model’s performance on unseen reactions. Finally, our work also
compares performance of models using 2D and 3D information, highlighting opportunities
for future innovation.

5.2 Methods

5.2.1 Dataset

To train our model, we leverage a recently refined gas-phase dataset of elementary reactions
with atom-mapped SMILES [43, 94]. These data span a diverse set of reactions, whose
neutral molecules involve carbon, hydrogen, nitrogen, and oxygen and contain up to seven
heavy atoms. Reactions are available at three levels of theory: B97-D3/def2-mSVP, 𝜔B97X-
D3/def2-TZVP, and CCSD(T)-F12a/cc-pVDZ-F12//𝜔B97X-D3/def2-TZVP. Data from all
levels of theory are used in a transfer learning approach, which first trains the model on
a larger dataset with lower accuracy and then fine-tunes the model with a slightly smaller
dataset with higher accuracy calculations. All regression targets are z-scored during training
for numerical stability. Similar to in ref. [63] and [95], the model is initialized with the
final weights from the previous run and then uses a smaller learning rate. The final model
is evaluated against the coupled-cluster values. At each level, the zero-point energies from
the harmonic vibrational analysis were added to the reactant, product, and TS energies.
These energies used scaled vibrational frequencies to account for anharmonic effects [96, 97].
The barrier heights were calculated by subtracting the resulting TS and reactant energies.
Reaction enthalpies were calculated by subtracting the resulting product and reactant en-
ergies, which include bond additivity corrections as described in ref. [43]. These reactions
largely overlap with those used to train the model in ref. [63]. However, ref. [43] refined the
energies of each species using coupled-cluster calculations. All of the earlier works fitting
these reactions [63, 85, 93] only had access to DFT energies. Suspecting convergence errors
in the quantum chemistry, we removed any reaction in which the coupled-cluster reaction
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enthalpy is over 10 kcal mol−1 above the barrier height.
All reactions contain one reactant and one to three products. All the transition states

and unimolecular reactants have an even number of electrons, and were computed as singlets
(S=0). Almost all of the products also have an even number of electrons. However, there are
49 reactions unique to the larger B97-D3 dataset whose product was a pair of radicals (each
product had an odd number electrons). We modeled these odd-electron species as doublets
(S=1

2
). We augment our data by including the reverse reactions by using the following

expressions

∆𝐸0,reverse = ∆𝐸0,forward −∆𝐻forward (5.1)

∆𝐻reverse = −∆𝐻forward (5.2)

which results in approximately 33,000 reactions at B97-D3 and 24,000 reactions at both the
𝜔B97X-D3 and CCSD(T)-F12a levels.

When creating training, validation, and testing sets, we use five folds, each with an 85:5:10
split. To create these sets, we use a scaffold split on the reactant SMILES, which partitions
the data based on the Bemis-Murcko scaffold [98] as calculated by RDKit [99]. Scaffold
splits are a better measure of generalizability compared to random splits [93, 100–104].
When assigning reactions to each set, we place each pair of forward and reverse reactions
in the same set. Otherwise, if we separate forward and reverse reactions between sets, the
model’s testing error will be polluted by data leakage–the same transition state would appear
in both the training and testing set–and so will not reflect the true performance of the model
when evaluating a new reaction [93].

5.2.2 2D D-MPNN Model

When developing data-driven methods to predict barrier heights, graph neural networks
(GNNs) are a natural choice; here, molecules are abstracted as graphs where atoms are
graph nodes and bonds are graph edges [105]. GNNs operate by updating representations
of nodes or edges with the information from neighboring nodes or edges, propagating infor-
mation throughout the graph. For our work, we adapt Chemprop [100], a directed message
passing neural network (D-MPNN), which is a type of GNN that passes messages across
directed bonds. Like other GNNs, the D-MPNN architecture builds a learned molecular
representation by aggregating atomic representations after the message passing phase and
feeds this representation through a dense layer to predict the molecular property of interest.
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Extending the D-MPNN architecture to reaction properties is an intriguing way to model
barrier heights. Grambow et al. [63] altered Chemprop to predict reaction properties by em-
bedding the reactant and product with the same D-MPNN, subtracting the learned atomic
representations, and passing the aggregated molecular representation through a FFN to ob-
tain the final prediction. Heid and Green [93] showed that using the established condensed
graph of reaction (CGR) representation [106] improved Chemprop’s performance on barrier
height prediction. A key aspect of the CGR representation is that it removes disjoint graphs
present in multi-molecular reactions and allows message passing between all atoms, overcom-
ing a limitation of the Grambow et al. method. Since CGR is a superposition of the reactant
and product graphs, only one graph is input to the model, leaving the rest of Chemprop’s
architecture unchanged.

Here, we extend the CGR version of Chemprop by incorporating additional atom and
bond features. We also concatenate additional features before the dense layer readout, such
as reaction enthalpy, to improve prediction performance. A schematic of the model architec-
ture is shown in Figure 5.2. Table 5.2 shows the improvement from each modification, and
Section 5.5.1 in the Appendix contains more detail about the network, training procedure,
and hyperparameter optimization. Our modified code and final weights are freely available
on GitHub [107].

Condensed Graph of Reaction

Reactant

Products
Reaction

Embedding

+

GNN

Atomic Representations
R P-R

R P-R
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Figure 5.2. Schematic of the machine learning model architecture. Here, the GNN uses the
directed message passing scheme introduced by Yang et al. [100] The condensed graph of reaction
(CGR) representation [93, 106] is used to predict the reaction’s barrier height and corrected enthalpy.
The CGR concatenates the featurization of the reactant(s) with the difference of the featurization
between the reactant(s) and product(s). A subset of the initial atom and bond features are shown
for simplicity. The superscripts indicate the arbitrary atom-map numbers. Colors are for qualitative
purposes only.
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5.2.3 3D DimeReaction Model

Since models based on molecular geometries have worked well for property prediction [108],
neural network potentials [109], and excited-state dynamics [110], we also explored 3D net-
works for predicting the reaction barrier. We start with DimeNet++ [111], which is a faster
and more accurate version of the original DimeNet model [112]. Both are directional mes-
sage passing networks that operate on 3D coordinates and have shown promising results for
property prediction of individual molecules, such as on the popular QM9 dataset [113]. Here,
we extend the architecture so that it can predict reaction properties. We follow a similar
approach from Grambow et al. [63] by passing the reactant and product through the same
DimeNet++ model, subtracting the learned molecular representation, and passing the result
to a dense layer to predict the regression target. Our modified code and final weights are
freely available on GitHub [114].

Our DimeReaction model is trained on the unimolecular reactions from the dataset. Since
the model operates on molecular coordinates, reactions with multiple products should not be
arbitrarily aligned in 3D space. However, properly translating and rotating those molecules
to form a multi-product complex is beyond the scope of this work. Further, the unimolecular
reactions account for about 70% of the data, giving nearly 17,000 reactions after augmenting
with the reverse reactions which are also unimolecular. As before, a scaffold split is used to
create the training, validation, and testing sets with an 85:5:10 split, and each pair of forward
and reverse reactions is placed in the same set. The model is trained on only one fold of
the data since preliminary results indicated sub-par performance relative to the 2D-MPNN
model. Additional detail can be found in Section 5.5.2 the Appendix.

5.2.4 Baseline Models

We also include simpler models from Scikit-Learn [115] as baselines, such as random forest
(RF), multi-layer perceptron (MLP), and support vector regression (SVR) with both linear
and radial basis function (RBF) kernel. We also use extreme gradient boosting (XGB) from
the XGBoost package [116]. The best hyperparameters are chosen via Optuna [117] and are
listed in Section 5.5.3 in the Appendix. Since these methods operate on vector inputs, we use
Morgan (ECFP) fingerprints [118, 119] with 2048 bit hashing and radius of 2 as calculated
using RDKit [99]. To represent the reaction, we concatenate the fingerprint of the reactant
complex with the difference of the fingerprint between the reactant and product complex;
this is the same approach as the initial featurization in the CGR for the 2D D-MPNN model.
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The final baseline is a model that simply predicts the mean of the training target values for all
test reactions. Comparing against such a simple baseline provides helpful context, especially
if dealing with relatively homogeneous datasets whose narrow target distribution inherently
lead to low test errors that may be mistaken for satisfactory performance [120]; given that
the barrier heights span an enormous range from 0 to 200 kcal mol−1 for the dataset used in
this work, this is less of a concern and is simply done out of best practices.

5.3 Results and Discussion

5.3.1 Baseline Models

We first compare the performance of the classical ML methods. We also include the trivial
baseline model that predicts the mean of the training target value for all test reactions.
The results from Table 5.1 are generally quite disappointing. Even the best performing
model, MLP, gives a test MAE of 9.93 kcal mol−1. Although such a model may be useful
for extremely rough qualitative analysis, it most likely will not be useful for quantitative
analysis since an uncertainty on the activation energy of this magnitude implies that rate
coefficients would differ on average by a factor of 150 at 1000 K and by an enormous factor
of 17 million at 300 K.

Table 5.1. Testing errors (mean ± 1 standard deviation from the five folds) from various models
for predicting ΔE0 when using scaffold splits. MAE and RMSE have units of kcal mol−1.

Model MAE RMSE 𝑅2

Baseline (mean) 25.08 ± 0.31 31.04 ± 0.28 0.00 ± 0.00

SVR (RBF) 16.02 ± 0.25 20.00 ± 0.21 0.58 ± 0.01

SVR (Linear) 14.20 ± 0.36 18.63 ± 0.48 0.64 ± 0.01

RF 14.14 ± 0.36 19.02 ± 0.49 0.62 ± 0.02

XGB 11.81 ± 0.25 15.72 ± 0.40 0.74 ± 0.01

MLP 9.93 ± 0.19 14.10 ± 0.42 0.79 ± 0.01

5.3.2 2D D-MPNN Model

The testing mean absolute error (MAE) is 2.89 ± 0.16 kcal mol−1, the root-mean-square
error (RMSE) is 4.90 ± 0.16 kcal mol−1, and the coefficient of determination (𝑅2) is 0.975 ±
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0.001, such that the bounds correspond to one standard deviation calculated across five folds.
The parity plot in Figure 5.3a shows the model’s predictive power across the entire range of
data; accuracy is maintained even in regions where the data are sparser. The residuals are
centered around zero, indicating no systematic over- or under-prediction, which is further
supported by the error histogram in Figure 5.3b. 95% of the reaction barriers are predicted
within 6 kcal mol−1 of the calculated coupled-cluster value.

The overall testing performance is improved by using ensembles of models, which is
consistent with previous literature [100, 121]. For a given fold, different initializations are
used when training a model on that data split. The predictions are then averaged from each
ensemble and compared to the target values from the respective test set. Here, five different
initializations are used for each of the five data splits, resulting in a total of 25 models. The
weights for all 25 models are published on GitHub [107]. Ensembling lowers the testing MAE
(RMSE) to 2.57 ± 0.13 (4.58 ± 0.16) kcal mol−1 and slightly increases the 𝑅2 to 0.978 ±
0.001.

It is also important to examine model performance specifically on low barrier reactions
since these are the most feasible reaction pathways included in kinetic models. For example,
filtering the testing reactions to those with ∆E0 < 50 kcal mol−1 gives a testing MAE (RMSE)
of 2.07 ± 0.18 (3.76 ± 0.33) kcal mol−1, which is a slight improvement compared to the test
errors for all reactions. The subsequent analysis and all figures and tables use weights from
the first initial seed within each fold since the purpose is simply to explain interesting trends
rather than obtain the best predictions for each intermediate case.

Figure 5.3c shows that the model strongly benefits from additional training data. The
learning curve (how the model improves as more training data is added) has not yet shown
asymptotic behavior, which implies further improvement may be possible with more data.
The slope of the learning curve is similar to those we have observed when developing models
for other chemical properties using Chemprop [122]. To ensure that the only variable chang-
ing was dataset size, each plotted point uses the exact same reactions and data splits for
all three quantum chemistry datasets (one for each level of theory) for the transfer learning
scheme.

As described in ref. [43], a barrier height calculated at 𝜔B97X-D3 has an MAE of about
3.5 kcal mol−1 from the coupled-cluster value. Thus, this is the ideal prediction error that
one could expect when training a model only on DFT data. Indeed, the previous model
from Grambow et al. [63], which was trained to predict 𝜔B97X-D3 values, has an MAE of
4.74 ± 0.10 kcal mol−1 relative to the coupled-cluster values (approximately twice as large
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Figure 5.3. Deep learning model results for predicting reaction barriers. Error bars indicate one
standard deviation calculated across the five folds. (a) Parity plot of model predictions vs “true”
(CCSD(T)-F12a) barriers ΔE0 for the first fold. (b) Histogram of testing errors (predicted minus
“true”) for the first fold. (c) Testing MAE vs. the number of data points at each stage of training.
These reactions are present in all three level of theory datasets. (d) Testing MAE vs. number of
coupled-cluster training reactions. Each point shows a model pretrained on all B97-D3 and 𝜔B97X-
D3 reactions and then fine-tuned with increasing amounts of high-accuracy data.

as the model error from this work). Thus, Figure 5.3d is particularly exciting since it shows
that even a small amount of fine-tuning gives a meaningful improvement to our model’s
predictions. Each plotted point shows a model pretrained on both the B97-D3 and 𝜔B97X-
D3 datasets and then fine-tuned with increasing amounts of high accuracy data. The same
coupled-cluster validation and test set is used during each run. Although the model certainly
benefits from additional coupled-cluster values, performing such calculations, which scale as
𝒪(𝑁7), may not always be practical for large datasets or for large molecules. However, we
find that using these high-accuracy calculations for even just 50 reactions (augmented with
the reverse to yield 100 total training reactions), lowers the testing MAE by over 1 kcal
mol−1. Similar behavior was observed in some of our prior transfer learning studies, where
models built on large DFT data sets were fine-tuned using a small number of more accurate
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data [95, 122]. We believe this works because the model trained from the DFT data on a
large number of reactions has learned how a wide variety of chemical structures affect the
barrier height. But the DFT numbers are rough and benefit from calibration using a few
high-accuracy numbers. We suggest this type of fine-tuning may be a good strategy whenever
DFT gives reasonable predictions of a chemical property, one can afford to generate a large
DFT data set, and one has a smaller high-accuracy data set.

Table 5.2 demonstrates how various factors contribute to improving model performance.
The biggest improvement comes from optimizing the hyperparameters (see Table 5.6 in the
Appendix) and allowing enough degrees of freedom for the model to capture the diverse
chemistry in this dataset. Adding ring size to both the atom and bond features further
improves the model. We also use tried using RDKit [99] to generate molecular feature
vectors [123] for each SMILES and pass the difference of the product and reactant vector
as input to the dense layer. However, this does not improve results. Some recent work
has shown that using quantum mechanical descriptors can improve model performance for
reaction prediction. Similar to both Stuyver and Coley [64] and Guan et al. [102], we
use the D-MPNN network developed by Guan et al. [102] without modification to predict
atomic descriptors that are concatenated with the learned atomic representations before the
aggregated molecular representation is passed to the dense layer. However, we observe no
effect of using these descriptors. Finally, using reaction enthalpy as an input to the dense
layer, rather than co-training on both the barrier height and enthalpy as in ref. [63], further
improves the performance. This approach requires quantum calculations for the reactant and
product to obtain the reaction enthalpy; however, this is often easier than obtaining a TS, so
our model still offers substantial time savings compared to the traditional workflow outlined
in Figure 5.1. Alternatively, the predicted enthalpy from our co-trained model could serve
as input to the final model, which offers further time savings and only minimal increases in
testing error (see Table 5.7 in the Appendix).
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Table 5.2. Sequential optimization study showing the improvement in testing error (kcal mol−1).
Each row includes all changes from the previous row. Results are from the first fold of cross-
validation.

that using quantum mechanical descriptors can improve model performance for reaction

prediction. Similar to both Stuyver and Coley 63 and Guan et al.,101 we use the D-MPNN

network developed by Guan et al.101 without modification to predict atomic descriptors that

are concatenated with the learned atomic representations before the aggregated molecular

representation is passed to the dense layer. However, we observe no e↵ect of using these

descriptors. Finally, using reaction enthalpy as an input to the dense layer, rather than

co-training on both the barrier height and enthalpy as in ref. 62, further improves the per-

formance. This approach requires quantum calculations for the reactant and product to

obtain the reaction enthalpy; however, this is often easier than obtaining a TS, so our model

still o↵ers substantial time savings compared to the traditional workflow outlined in Figure

1. Alternatively, the predicted enthalpy from our co-trained model could serve as input to

the final model, which o↵ers further time savings and only minimal increases in testing error

(see Supporting Information).

Table 1: Sequential optimization study showing the improvement in testing error
(kcal mol�1). Each row includes all changes from the previous row. Results are
from the first fold of cross-validation.

B97-D3 !B97X-D3 CCSD(T)-F12a

Description MAE RMSE MAE RMSE MAE RMSE

Default 6.74 10.22 5.30 8.17 5.07 8.18
+Optimize hyperparameters 5.70 9.29 3.61 6.08 3.44 5.86
+Ring features 5.28 8.79 3.33 5.77 3.24 5.66
+Input �H 4.81 7.88 3.06 5.15 2.98 4.96

As mentioned above, creating proper data splits is essential to evaluating model perfor-

mance. We use a sca↵old split on the reactants from the forward reactions to create training,

validation, and testing sets. The reverse reaction is then added to the corresponding set,

which ensures that each set is independent. In contrast, the previous work from Grambow

et al.62 performed a sca↵old split on the reactants from the forward and reverse reactions.

However, since the reactant and product of the same reaction can have di↵erent sca↵olds,
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As mentioned above, creating proper data splits is essential to evaluating model perfor-
mance. We use a scaffold split on the reactants from the forward reactions to create training,
validation, and testing sets. The reverse reaction is then added to the corresponding set,
which ensures that each set is independent. In contrast, the previous work from Grambow
et al. [63] performed a scaffold split on the reactants from the forward and reverse reactions.
However, since the reactant and product of the same reaction can have different scaffolds,
the forward reaction could be placed in the training set while the reverse reaction could be
placed in the test set. Indeed, ∼80% of the testing reactions from Grambow et al. had their
forward or reverse counterpart in the training set. This data leakage resulted in underes-
timating the true testing error since the regression task had accidentally been reframed as
an easier problem [93]. Rather than asking the model to produce a barrier height for a new
reaction, the data leakage meant that the model was mostly predicting a barrier height for a
reaction it has already seen in either the forward or reverse direction. The dramatic impact
on model performance is shown in Table 5.3.

Table 5.3. Importance of independent data splits on ΔE0 testing errors (kcal mol−1). Results are
from the first fold of cross-validation.

the forward reaction could be placed in the training set while the reverse reaction could be

placed in the test set. Indeed, ⇠80% of the testing reactions from Grambow et al. had their

forward or reverse counterpart in the training set. This data leakage resulted in underes-

timating the true testing error since the regression task had accidentally been reframed as

an easier problem.92 Rather than asking the model to produce a barrier height for a new

reaction, the data leakage meant that the model was mostly predicting a barrier height for a

reaction it has already seen in either the forward or reverse direction. The dramatic impact

on model performance is shown in Table 2.

Table 2: Importance of independent data splits on Ea testing errors (kcal mol�1).
Results are from the first fold of cross-validation.

Proper B97-D3 !B97X-D3 CCSD(T)-F12a

Model Hyperparameters Splits MAE RMSE MAE RMSE MAE RMSE

Grambow et al. Grambow et al. No 2.99 5.87 1.91 3.35 1.87 3.29
Grambow et al. Grambow et al. Yes 8.15 11.46 5.94 8.55 5.50 7.97
Grambow et al. This work Yes 7.16 10.85 5.13 7.71 4.31 6.93

This work This work Yes 4.81 7.88 3.06 5.15 2.98 4.96

3D DimeReaction Model

One hypothesis is that using 3D information may improve the predictive capabilities rela-

tive to using a 2D attributed graph. Since obtaining a TS geometry is di�cult, our ideal

DimeReaction model would receive an optimized structure for the reactant and product and

then predict a barrier height. We find that model performance is better when only training

on the coupled-cluster data, rather than performing transfer learning as described earlier.

Still, results from this approach were quite poor with a barrier height testing MAE (RMSE)

of 6.20 (10.10) kcal mol�1. Although this large error is surprising, additional tests indi-

cate that the DimeNet++ model functions as intended. For example, training a multi-task

model that predicts both Ea and dH yields excellent performance on reaction enthalpy with

a testing MAE of 1.78 kcal mol�1. Thus, when the regression target is a function of the

input geometries, such as using reactant and product structures to predict reaction enthalpy
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5.3.3 3D DimeReaction Model

One hypothesis is that using 3D information may improve the predictive capabilities rela-
tive to using a 2D attributed graph. Since obtaining a TS geometry is difficult, our ideal
DimeReaction model would receive an optimized structure for the reactant and product and
then predict a barrier height. We find that model performance is better when only training
on the coupled-cluster data, rather than performing transfer learning as described earlier.
Still, results from this approach were quite poor with a barrier height testing MAE (RMSE)
of 6.20 (10.10) kcal mol−1. Although this large error is surprising, additional tests indicate
that the DimeNet++ model functions as intended. For example, training a multi-task model
that predicts both ∆E0 and ∆H yields excellent performance on reaction enthalpy with a
testing MAE of 1.78 kcal mol−1. Thus, when the regression target is a function of the in-
put geometries, such as using reactant and product structures to predict reaction enthalpy
rather than the barrier height, the model performs well. Additional results and analysis are
provided in Section 5.5.2 in the Appendix.

Another potential workflow is using the difference between the learned representations of
the reactant and TS geometries (rather than the reactant and product) since these directly
correspond to a barrier height. To test this idea, we first consider the ideal scenario of using
optimized TS structures. As expected, this results in a very low testing error—lower than
our best 2D model—shown as the first row in Table 5.4. While it is chemically satisfying to
see the reactant and TS encode more information about ∆𝐸0 than the reactant and product,
using an optimized TS geometry here is not sensible, at least not for molecules in this size
range. Once one has the optimal TS geometry, it is not expensive to perform a single-point
coupled-cluster calculation and then proceed with canonical TST to compute 𝑘∞(𝑇 ).

A more practical workflow involves quickly generating a TS guess and training a model
with this non-optimized structure. Several methods exist for generating TS guesses, from
using hand-made templates [32–34] to using deep learning [35–37], so it should be quite
practical to quickly obtain a TS guess. To first get an idea of how much a non-optimized
TS structure would impact the results, we add increasing amounts of Gaussian noise to the
optimized structures that were then used as input to the model. As seen in Table 5.4, the
model is very sensitive to the TS structure, as testing performance quickly decreases when
adding noise. We next use one TS guess predictor to quickly generate TS guesses. The
graph network from Pattanaik et al. [35] had achieved a testing RMSD of 0.28 Å. Using TS
guesses generated by this network as input to our DimeReaction model, we obtain a testing
MAE (RMSE) of 6.19 (9.26) kcal mol−1, which is inline with the trend from Table 5.4.
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Table 5.4. Impact of noisy TS inputs on DimeReaction’s testing errors (kcal mol−1). The first
row corresponds to using an optimized TS structure with no added noise.

𝜎 RMSD (Å) MAE RMSE

0 0 2.25 3.91

0.05 0.086 3.62 5.66

0.10 0.173 4.81 7.16

0.15 0.260 6.28 8.83

0.20 0.346 7.42 10.42

The sensitivity of the 3D reaction model renders it impractical compared to the 2D
workflow. However, it highlights an area of further research; future studies should investigate
methods to quickly and accurately produce 3D TS guesses, which can subsequently be used
in predicting kinetic parameters. Currently, available estimators achieve geometric errors
on TS structure generation that are much too high for such modeling efforts. As another
idea, the sensitivity could make DimeNet++ quite useful for screening which initial guess
geometries are worth the computational expense for optimization and frequency calculation.
It may also prove beneficial for screening conformers to identify low-energy structures.

5.4 Conclusion

To accurately predict the time evolution of a reacting chemical system, one needs a quick
way to estimate rate coefficients to decide which of the many conceivable reactions are
important enough to include in the kinetic model. Due to the high computational cost,
it is usually impractical to directly compute 𝑘∞(𝑇 ) for all of the reactions in a system of
interest. Methods are needed to accelerate or bypass some of the computational bottlenecks
in the conventional TST workflow based on high-accuracy quantum chemistry. Even rough
estimates can be helpful in deciding which reactions require expensive calculations. The need
for fast estimates of rate coefficients has been recognized for many decades, and excellent
estimators have been developed for certain reaction families. However, data scarcity has
made it difficult to develop models that generalize well over a broad range of reactions.
With recent advances in compute power, we can now routinely generate large datasets with
DFT and sometimes higher-level quantum chemistry methods, opening up the possibility of
constructing accurate estimators with much broader scope using machine learning techniques.
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For instance, the generation of new high-quality kinetics datasets [43, 92] allowed the
2D D-MPNN model presented here to quickly predict reliable values for barrier heights
across a diverse set of thousands of gas-phase reactions. The model gives more accurate
barrier heights on average than good (e.g., 𝜔B97X-D3/def2-TZVP) DFT calculations for
vastly lower computational cost. By directly estimating barrier heights, we anticipate the
model will be useful during the automated generation of kinetic models by reducing the
amount of computational effort devoted to reactions which cannot be important. The new
model can also quickly rank the most feasible (lower barrier) reactions produced from an
automated enumeration of possible reactions, making the process of discovering new low-
barrier reactions much more efficient. Combining this barrier height estimator with other
methods for computing or estimating Arrhenius A-factors would allow rapid estimation of
reasonable rate coefficients.

Going forward, existing kinetics datasets should be expanded. As shown in Figure 5.3c,
additional data would be beneficial for reducing the errors in predicted barrier heights.
Although the dataset from Spiekermann et al. [43] is the largest coupled-cluster reaction
barrier dataset to our knowledge, it is still relatively limited; its species contain at most
only seven heavy atoms, they only include the elements H, C, N, and O, all transition states
are closed shell singlets, no ions are included, and there are only gas-phase reactions. The
dataset used in this work also contains only a single conformer for each species, so some of
the prediction error may be due to not using the lowest energy conformers when calculating
the barrier height. Future dataset generation should perform thorough conformer searches.
This would also facilitate computation of 𝑘∞(𝑇 ) for reactions where the reactant(s) and/or
TS are non-rigid e.g., because they contain internal rotors.

When it comes to training models, using proper data splits is essential to evaluating
model performance. As shown by Table 5.3, each pair of forward and reverse reactions
must be placed in the same set to ensure that the training, validation, and testing sets are
independent. Otherwise, the model’s testing error will appear unrealistically low since it
has been polluted by data leakage. Scaffold splitting is also considered a better measure
of generalizability [93, 100–104]. In contrast, random splitting creates an easier prediction
task that is less useful at measuring extrapolation capabilities. Finally, we emphasize the
importance of fine-tuning models using whatever high-accuracy data is available. As shown
in Figure 5.3d, even small amounts of high-accuracy data give meaningful improvements to
model predictions.

132



5.5 Appendix

5.5.1 D-MPNN Description

5.5.1.1 Architecture and Featurization

For our experiments, we rely on Chemprop, a deep learning property prediction framework
built by Yang et al. [100] A detailed description of the model architecture is provided in
Section 2.2.5. Briefly, Chemprop takes SMILES [124] strings as input and outputs the single
or multiple properties of interest. While Chemprop is really a general-use framework that
can train a range of machine learning models, the heart of Chemprop’s innovation is their
directed message passing neural network (D-MPNN) architecture, which we adapt here.
Crucially, we include the additional architectural choices made by the original authors (i.e.,
input and output neural layers), which makes the D-MPNN architecture and the resultant
Chemprop property prediction framework so successful.

Since we are learning properties of reactions and not individual molecules, we must fea-
turize multiple molecular graphs (i.e., reactants and products). Here, we use the established
condensed graph of reaction (CGR) representation [106, 125], which was recently incorpo-
rated in Chemprop [93]. CGR is a superposition of the reactant and product graphs; thus
it requires atom-mapped reactions to compare the atoms and bonds between the reactant
and product (i.e., we must know which reactant atoms led to which product atoms, usually
defined by an annotation within the reaction SMILES string). A key aspect of the CGR
representation is that it removes disjoint graphs present in multi-molecular reactions and al-
lows message passing between all atoms, a limitation of the Grambow et al. method. Using
the CGR representation as input allows the rest of the Chemprop architecture to remain
unchanged.

Upon creating the new condensed graph, initial feature vectors are created with RDKit
[99] for each atom and bond for both the reactant and product. This creates three possible
combinations of features for the single CGR. First, the feature vectors from the reactant and
product can be concatenated together (reac_prod). Second, the reactant feature vector can
be concatenated with the difference of the product and reactant feature vectors (reac_diff).
Third, the product feature vector can be concatenated with the difference of the reactant
and product feature vectors (prod_diff). More detail about CGR in Chemprop, along with
performance on benchmark datasets, can be found in the original publication [93].

Heid and Green [93] reported that the reac_diff CGR representation usually performed
best. However, the reac_diff representation of forward and reverse reactions is identical to
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the prod_diff representation of reverse and forward reactions. Since this work augments
the datasets at each level of theory with the reverse reactions, we arbitrarily choose the
reac_diff CGR representation. Empirically, Table 5.5 shows that all three CGR represen-
tations give very similar performance; all models use the Optimal hyperparameter values
described in Table 5.8 and Table 5.9.

Table 5.5. Comparison of CGR Representations. Errors are in kcal mol−1, and results are from
the first fold of cross-validation.

Table S1: Comparison of CGR Representations. Errors are in kcal mol�1, and
results are from the first fold of cross-validation.

B97-D3 !B97X-D3 CCSD(T)-F12a

Representation MAE RMSE MAE RMSE MAE RMSE

reac diff 4.81 7.88 3.06 5.15 2.98 4.96
prod diff 4.75 7.78 3.06 5.20 2.84 5.00
reac prod 4.89 7.80 3.17 5.33 2.96 5.05

We tried several modifications to the model architecture. By default, the initial features

in Chemprop simply assign whether the bond is in a ring of any size. We modify this by

specifying the actual ring size (mapped to a one-hot vector) and incorporating this for both

the atom and bond feature vectors. As shown in Table S2, this addition improves the testing

RMSE by about 0.4 kcal mol�1. We also allow additional features to be concatenated to the

learned molecular representation that is passed to the feed forward network during readout.

We find that using RDKit molecular features1 and quantum atomic descriptors from Guan

et al.S9 have no e↵ect.

Table S2: Sequential optimization study showing the improvement in testing
error (kcal mol�1). Each row includes all changes from the previous row. Results
are from the first fold of cross-validation.

B97-D3 !B97X-D3 CCSD(T)-F12a

Description MAE RMSE MAE RMSE MAE RMSE

Default 6.74 10.22 5.30 8.17 5.07 8.18
+Optimize hyperparameters 5.70 9.29 3.61 6.08 3.44 5.86
+Ring features 5.28 8.79 3.33 5.77 3.24 5.66
+Molecular RDKit features 5.41 8.90 3.42 5.90 3.22 5.66
+Atom QM Descriptors 5.25 8.72 3.39 5.83 3.13 5.60

In contrast, using reaction enthalpy as an input to the dense layer improves model per-

formance. Thus, our model enables a workflow for predicting high-quality barrier heights

without the need for a transition state (TS). Researchers only need to obtain the reaction

1https://github.com/bp-kelley/descriptastorus

S5

We tried several modifications to the model architecture. By default, the initial features
in Chemprop simply assign whether the bond is in a ring of any size. We modify this by
specifying the actual ring size (mapped to a one-hot vector) and incorporating this for both
the atom and bond feature vectors. As shown in Table 5.6, this addition improves the testing
RMSE by about 0.4 kcal mol−1. We also allow additional features to be concatenated to the
learned molecular representation that is passed to the feed forward network during readout.
We find that using RDKit molecular features [123] and quantum atomic descriptors from
Guan et al. [102] have no effect.

Table 5.6. Sequential optimization study showing the improvement in testing error (kcal mol−1).
Each row includes all changes from the previous row. Results are from the first fold of cross-
validation.

Table S1: Comparison of CGR Representations. Errors are in kcal mol�1, and
results are from the first fold of cross-validation.

B97-D3 !B97X-D3 CCSD(T)-F12a

Representation MAE RMSE MAE RMSE MAE RMSE

reac diff 4.81 7.88 3.06 5.15 2.98 4.96
prod diff 4.75 7.78 3.06 5.20 2.84 5.00
reac prod 4.89 7.80 3.17 5.33 2.96 5.05

We tried several modifications to the model architecture. By default, the initial features

in Chemprop simply assign whether the bond is in a ring of any size. We modify this by

specifying the actual ring size (mapped to a one-hot vector) and incorporating this for both

the atom and bond feature vectors. As shown in Table S2, this addition improves the testing

RMSE by about 0.4 kcal mol�1. We also allow additional features to be concatenated to the

learned molecular representation that is passed to the feed forward network during readout.

We find that using RDKit molecular features1 and quantum atomic descriptors from Guan

et al.S9 have no e↵ect.

Table S2: Sequential optimization study showing the improvement in testing
error (kcal mol�1). Each row includes all changes from the previous row. Results
are from the first fold of cross-validation.

B97-D3 !B97X-D3 CCSD(T)-F12a

Description MAE RMSE MAE RMSE MAE RMSE

Default 6.74 10.22 5.30 8.17 5.07 8.18
+Optimize hyperparameters 5.70 9.29 3.61 6.08 3.44 5.86
+Ring features 5.28 8.79 3.33 5.77 3.24 5.66
+Molecular RDKit features 5.41 8.90 3.42 5.90 3.22 5.66
+Atom QM Descriptors 5.25 8.72 3.39 5.83 3.13 5.60

In contrast, using reaction enthalpy as an input to the dense layer improves model per-

formance. Thus, our model enables a workflow for predicting high-quality barrier heights

without the need for a transition state (TS). Researchers only need to obtain the reaction

1https://github.com/bp-kelley/descriptastorus

S5

In contrast, using reaction enthalpy as an input to the dense layer improves model per-
formance. Thus, our model enables a workflow for predicting high-quality barrier heights
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without the need for a transition state (TS). Researchers only need to obtain the reaction
enthalpy by running quantum calculations for the reactant(s) and product(s). One potential
drawback of this approach is that quantum calculations can be expensive depending on the
method and basis. An alternative workflow could instead quickly obtain a predicted value
as input to the final model, an approach commonly done by other published works for prop-
erty prediction [104, 126]. For example, we could instead use the model from Grambow et
al. [63], which was co-trained on ∆E0 and ∆H (without atom or bond corrections) at the
𝜔B97X-D3/def2-TZVP level of theory, to quickly predict ∆H. Similarly, we also co-trained a
model on ∆E0 and ∆H (with atom and bond corrections) at the CCSD(T)-F12a/cc-pVDZ-
F12//𝜔B97X-D3/def2-TZVP level of theory in this work; testing errors are shown in the
third row of Table 5.6. Using the predicted enthalpy from either of these models as input to
our final model would be more efficient than using quantum calculations to determine the
reaction enthalpy. As seen in Table 5.7, using either of these predicted enthalpy values yields
very comparable performance, with just a small 0.17 kcal mol−1 decline in testing MAE as
compared to using the calculated enthalpy. However, these results may be biased since both
the model from Grambow et al. [63] and from this work have already seen nearly all of these
reactions during training; the accuracy when extrapolating to new reactions may be lower.

Table 5.7. Testing error (kcal mol−1) when using reaction enthalpy calculated at the respective
level of theory or predicted using a pretrained model from Grambow et al. [63] or this work. Results
are from the first fold of cross-validation.

enthalpy by running quantum calculations for the reactant(s) and product(s). One poten-

tial drawback of this approach is that quantum calculations can be expensive depending on

the method and basis. An alternative workflow could instead quickly obtain a predicted

value as input to the final model, an approach commonly done by other published works

for property prediction.S10,S11 For example, we could instead use the model from Grambow

et al.,S5 which was co-trained on �E0 and dH (without atom or bond corrections) at the

!B97X-D3/def2-TZVP level of theory, to quickly predict dH. Similarly, we also co-trained a

model on �E0 and dH (with atom and bond corrections) at the CCSD(T)-F12a/cc-pVDZ-

F12//!B97X-D3/def2-TZVP level of theory in this work; testing errors are shown in the

third row of Table S2. Using the predicted enthalpy from either of these models as input to

our final model would be more e�cient than using quantum calculations to determine the

reaction enthalpy. As seen in Table S3, using either of these predicted enthalpy values yields

very comparable performance, with just a small 0.17 kcal mol�1 decline in testing MAE as

compared to using the calculated enthalpy. However, these results may be biased since both

the model from Grambow et al.S5 and from this work have already seen nearly all of these

reactions during training; the accuracy when extrapolating to new reactions may be lower.

Table S3: Testing error (kcal mol�1) when using reaction enthalpy calculated
at the respective level of theory or predicted using a pretrained model from
Grambow et al.S5 or this work. Results are from the first fold of cross-validation.

B97-D3 !B97X-D3 CCSD(T)-F12a

Description MAE RMSE MAE RMSE MAE RMSE

Input �H (predicted by ref. 62) 5.18 8.26 3.40 5.59 3.18 5.36
Input �H (our predictions) 4.94 8.08 3.26 5.36 3.15 5.21
Input �H (QM calculation) 4.81 7.88 3.06 5.15 2.98 4.96

S1.2: Training and Hyperparameter Optimization

Training, validation, and testing sets are created using a sca↵old split on the reactant

SMILES, which partitions the data based on the Bemis-Murcko sca↵oldS12 as calculated by

S6

5.5.1.2 Training and Hyperparameter Selection

Training, validation, and testing sets are created using a scaffold split on the reactant
SMILES, which partitions the data based on the Bemis-Murcko scaffold [98] as calculated
by RDKit. The exact procedure is described in ref. [100]. Intuitively, a scaffold split is
more challenging than a random split since validation and testing molecules are deliberately
chosen to have some class imbalance relative to the training set. This causes the testing
performance to be a better measure of extrapolation to new molecules rather than interpo-
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lation with molecules very similar to those in the training set. As described in the main
text, scaffold splitting was done based on the reactants from the forward reactions. Each
pair of forward and reverse reactions is placed in the same set, which ensures that each set is
independent. The data is split into 85% training, 5% validation, and 10% testing data. To
avoid bias that may be introduced from using just one split, we use 5-fold cross-validation.
Performance on the validation set is used to determine the best model weights as well as to
choose the Optimal hyperparameter values. We use the Noam learning rate scheduler from
Vaswani et al. [127] during training, which starts by linearly increasing the learning rate
from the initial to the maximum value over a specified number of warm-up epochs. Then
the learning rate is exponentially decreased to the final value over the remaining epochs.

We utilize data at all levels of theory during training. First, the model is pretrained
with the lowest level data from B97-D3/def2-mSVP. The model is then fine-tuned with
the 𝜔B97X-D3/def2-TZVP data and subsequently with the high-quality CCSD(T)-F12a/cc-
pVDZ-F12//𝜔B97X-D3/def2-TZVP data. We find that model performance is slightly better
when the message passing weights are not frozen after the first round of pretraining. Instead,
the model weights are initialized using the best weights from the previous training run, and
all weights are fine-tuned. We use the provided hyperparameter search code from Chemprop
[100] to determine the hyperparameters controlling the model architecture and fitting pro-
cedure, which are summarized in Table 5.8 and Table 5.9 respectively. Hyperparameters not
shown in the table used the default values from Chemprop.

Table 5.8. Optimal hyperparameter values for model architecture.

Hyperparameter Value

Hidden size 900

Hidden layers 4

Activation function Leaky ReLU

Aggregation sum

Additional FFN Inputs ∆H
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Table 5.9. Optimal hyperparameter values for training.

Hyperparameter Pretraining Fine-Tuning

Epochs 65 55

Initial learning rate 10−4 10−5

Maximum learning rate 10−3 10−4

Final learning rate 10−5 10−6

Warm-up epochs 5 5

Gradient clip 10 10

5.5.1.3 Fitting Error vs. Level Of Theory

Table 5.10 shows the testing error from training a model on each level of theory (no transfer
learning). Only reactions present in all levels are used i.e., each model had the same data
splits for training, validation, and testing so the only variable changing was the level of
theory for the regression target. We use the Optimal hyperparameter values from Table 5.8
and Table 5.9. Our results show that is about equally difficult to fit a model to each level
of theory; of course, the predictions will be better from a model trained on the higher level
dataset.

Table 5.10. Barrier height testing error (kcal mol−1) from training a model on each level of theory.

Level of Theory MAE RMSE

B97D3 3.95 6.68

𝜔B97X-D3 3.94 7.04

CCSD(T)-F12a 4.07 7.01

5.5.2 DimeReaction

Our DimeReaction model is an extension of the recently published DimeNet++ [111], which
is directional message passing network that operates on 3D coordinates. DimeNet++ was
designed to predict energies and forces of molecular structures with the intent of speeding up
molecular dynamics simulations, but the architecture has also shown promise in predicting
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molecular targets other than energies. More detail about the architecture as well as per-
formance on benchmark datasets can be found in the original publication. In our DimeRe-
action architecture, the QM-optimized reactant and product coordinates are each passed
through the same DimeNet++ model to create a learned representation of each molecule.
The learned representation of the product is then subtracted from that of the product before
passing through a dense layer to predict the barrier height. Although it may be interesting
to explore other architectures, such as subtracting the learned atom representations before
aggregating into a molecular representation, our results from the main text show that model
performance is extremely sensitive to the TS geometry, which precluded efforts to further
modify the architecture.

A scaffold split on the reactant SMILES is again used to create independent sets. As be-
fore, the data is split into 85% training, 5% validation, and and 10% testing, and each pair of
forward and reverse reactions is placed in the same set. Unlike with our modified Chemprop
model, training on only the coupled cluster data yields lower testing errors than using all
three levels in a transfer learning approach. We use the Noam learning rate scheduler [127]
during training and use Optuna for hyperparameter search [117]; the final hyperparameter
values are shown in Table 5.11.
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Table 5.11. Optimal hyperparameter values for the DimeReaction model.

Hyperparameter Value

Epochs 100

Warm-up epochs 4

Batch size 32

Learning rate 10−3

Learning rate scheduler Noam

Hidden channels 100

Output embedding channels 100

Output channels 100

Interaction embedding size 64

Basis embedding size 8

Blocks 6

Spherical harmonics 6

Radial basis functions 6

Output layers 2

Layers (FFN) 3

Activation (FFN) SiLU

Using the optimal hyperparameters for the network architecture and training procedure,
a few combinations of inputs and training targets are tested. Two types of inputs are ex-
plored, either the optimized reactant and product geometries or the optimized reactant and
TS geometries. The first strategy represents a realistic prediction strategy since reactants
and products are much easier to identify and optimize than a TS. The second strategy better
aligns with chemical intuition, since reaction barriers correspond to the difference in energies
of the TS and the reactant. The dense layer could optionally receive the enthalpy as an addi-
tional input that is concatenated to the difference of the learned molecular representations.
The regression target(s) are either just the barrier height or co-training the model on both
the barrier height and enthalpy.

The results from training on the coupled cluster data for these combinations are sum-
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marized in Table 5.12. For the case when we use reactant and product geometries, using
reaction enthalpy marginally improves the testing errors. However, using a 2D network, such
as our modified Chemprop, yields far better performance, which is quite surprising. For the
case when we use reactant and TS geometries, testing errors improve over the 2D Chemprop
formulation that had used the CGR of the reactant and product graphs. Although it is
satisfying to see the TS encode more information about the reaction’s barrier height than
the product does, the optimized TS is better used with canonical transition state theory to
calculate the rate constant.

An interesting conclusion comes from row 2 and row 4 in Table 5.12, both of which train
a multi-task model to predict ∆E0 and ∆H. When using the optimized reactant and product
geometries as input (row 2), the model gives very good predictions for reaction enthalpy
with a test MAE of 1.78 kcal mol−1. On the contrary, the model trained with optimized
reactants and TSs (row 4) results in a MAE of 5.95 kcal mol−1 for ∆H, which is quite poor.
These results indicate that the DimeNet++ model functions as intended; it was designed as
a neural network potential. When the output property is a function of the input geometries
(i.e., reactants and products for reaction enthalpy or reactants and TSs for barrier height),
DimeNet++ works well. However, when the output property is not a function of the inputs,
the model performs poorly. This is unfortunate since the more convenient use case would be
to predict barrier height from reactant and product structures.

Table 5.12. DimeReaction testing errors (kcal mol−1) for combinations of regression targets.

Optimized Input Target(s) ∆E0 MAE ∆E0 RMSE ∆H MAE ∆H RMSE

Reactant & Product ∆E0 6.20 10.10 - -

Reactant & Product ∆E0 & ∆H 6.03 9.84 1.78 2.78

Reactant & Product ∆H - - 1.26 2.20

Reactant & TS ∆E0 2.25 3.91 - -

Reactant & TS ∆E0 & ∆H 2.67 4.60 5.95 11.93

Reactant & TS ∆H - - 6.32 11.87
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5.5.3 Hyperparameters for Baseline Models

The best hyperparameters for the baseline models are chosen via Optuna [117], which is
used to minimize the average root mean squared error (RMSE) on the validation sets. The
optimal hyperparameter values are listed in Tables 5.13, 5.14, 5.15, 5.16, 5.17. Any other
hyperparameters assumed the default value.

Table 5.13. Optimal hyperparameter values for LinearSVR i.e., support vector regression with
linear kernel.

Hyperparameter Value

C 0.0136

Table 5.14. Optimal hyperparameter values for SVR with RBF kernel.

Hyperparameter Value

C 2.5646

Table 5.15. Optimal hyperparameter values for random forest (RF).

Hyperparameter Value

max_depth 15

n_estimators 125
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Table 5.16. Optimal hyperparameter values for extreme gradient boosting (XGB).

Hyperparameter Value

gamma 4

learning_rate 0.1801

max_depth 9

min_child_weight 0

n_estimators 75

reg_alpha 3

reg_lambda 3

Table 5.17. Optimal hyperparameter values for multi-layer perceptron (MLP).

Hyperparameter Value

num_layers 4

layer_size 500

alpha 0.00137
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Chapter 6

Accurately Predicting Barrier Heights

for Radical Reactions in Solution

This work is in preparation as Spiekermann, K. A.; Bergeler, M.; Menon, A.; Dong, X.; Pfei-
fle, M.; Sandfort, F.; Welz, O.; Green, W. H. “Accurately Predicting Barrier Heights for Rad-
ical Reactions in Solution using Deep Graph Networks” 2023. Angiras Menon helped with
quantum chemistry calculations. Xiaorui Dong helped parse SMILES from optimized struc-
tures. Maike Bergeler, Mark Pfeifle, Frederik Sandfort, and Oliver Welz led the dataset gener-
ation. All code and model weights are available at https://github.com/kspieks/chemprop/tr
ee/solvated_barrier_barrier_prediction.

6.1 Introduction

Accurate kinetic parameters are crucial for modeling various chemical kinetic processes, with
examples including pyrolysis [1, 2], polymerization [3–5], plastic recycling [6], and oxidative
degradation of pharmaceutical compounds [7], just to name a few. Two such parameters are
the Gibbs free energy of activation and of reaction, which determine a reaction’s rate coeffi-
cient and equilibrium constant at a given temperature via the Eyring and Gibbs-Helmholtz
equation, respectively. Gibbs free energies can be computed using quantum chemistry calcu-
lations [4]. Although they are commonly calculated in gas phase, solvent effects can have an
important impact on the species energies and subsequent reaction properties when looking
at reactivity in solution [8, 9]. To convert from gas phase to solution phase, one needs the
solvation free energy, which is defined as the change in Gibbs free energy between a molecule
in the gas phase and in solution at a given temperature. It is related to many physicochemi-
cal properties, including solubility [10], reaction equilibrium and kinetics [11], protein-ligand
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binding affinities [12], dissociation constants [13], lipophilicity via the alkane-water parti-
tion coefficient [14–17], and the distribution coefficient [17]. Altogether, this makes the
Gibbs free energy relevant to pharmacokinetic parameters, such as absorption, distribution,
metabolism, and excretion (ADME). Unfortunately, experimental solvation free energy data
are relatively rare [18, 19] so researchers must rely on computational techniques to calculate
values for many reactions.

There are three main approaches to calculate solvation effects [5, 20–22]. Explicit meth-
ods include an explicit solvent environment during geometry optimization and energy calcu-
lation, which provides the most descriptive and realistic model of solvent-solute interactions
[23]. However, adding many solvent molecules is often too computationally expensive for
high-throughput applications. Implicit methods represent solvation as a solute placed inside
a cavity within an implicit solvent, which is modeled as a continuum with a constant prop-
erty, such as conductivity or dielectric constant; these methods are commonly integrated into
quantum mechanical workflows [24]. Many implicit models have been developed, including
the polarizable continuum model (PCM) [25], solvation method based on density (SMD)
[26, 27], conductor-like screening model (COSMO) [28], Poisson–Boltzmann (PB) model
[29], and generalized Born (GB) model [30]. Although several studies have used implicit
continuum models to calculate free energies and rate coefficients of liquid phase reactions
[31–36], these methods are not the most accurate, partially because they do not consider
local solvent-solute interactions [5, 22, 37]. An implicit model going beyond the continuum
approximation is COSMO-RS (conductor-like screening model for real solvents) [38–42]. It
considers the statistical thermodynamics of pairwise interacting molecular surface segments
and is therefore able to describe interactions between different functional groups in a physi-
cally sound way. The density functional theory (DFT) methodology used within COSMO-RS
is further discussed in the methods section. Due to its favorable prediction performance at
relatively modest computational cost, it has gained quite some popularity in the last decades
[5, 43–47]. Finally, hybrid implicit-explicit models employ a small number of explicit sol-
vent molecules around the solute and use implicit models to describe the interaction of the
solvent-solute cluster with the solvent environment [37]. This has the potential to combine
the advantage of explicit and implicit models. The caveat of this approach is that the place-
ment of solvent molecules must be chosen in an adequate way, which is a tough challenge
for automated high-throughput workflows.

Despite the various methods to calculate solvation effects, all ab initio techniques to cal-
culate thermodynamic and kinetic properties in either the gas phase or solution phase are
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limited by the computational expense of obtaining a 3D structure, which can be particularly
challenging for a transition state (TS). Additionally, many modern kinetic mechanisms must
consider tens of thousands of elementary reactions [48], or even more, so it is crucial to have
estimators that can quickly make predictions. While many published models predict free
energy values of individual molecules [49–61], comparatively fewer studies have focused on
reactions in solution. One example comes from Ravasco and Coelho [62], who used multi-
variate regression to predict the Gibbs free energy of activation (∆𝐺‡) for inverse-electron
demand Diels-Alder reactions primarily in water using molecular descriptors calculated at
the M06-2X/6-31G(d) level of theory (LoT). Migliaro and Cundari [63] use a shallow neural
network to predict ∆𝐺‡ for methane activation reactions using descriptors calculated at the
𝜔B97X-D/def2-TZVPP LoT. In both cases, the computational cost associated with calcu-
lating descriptors using DFT precludes these models from quickly screening large regions of
reaction space. Other studies use a ∆-ML approach [64] to predict the residual between a
high- and low-accuracy method. One example comes from Gómez-Flores et al. [65], who fit a
shallow neural network to the energy difference between the density functional tight-binding
model and other higher level QM methods for thiol-disulfide exchange reactions in water.
Similarly, Farrar and Grayson [66] used seven different ML models to predict DFT-quality
∆𝐺‡ for a set of nitro-Michael addition reactions in toluene based on the features gener-
ated from semi-empirical quantum mechanical (SQM) methods. Although optimizing the
geometries of several conformers is much faster via SQM than with DFT, the computational
time is non-negligible so these models are still not feasible for high-throughput screening.
Furthermore, their models are limited to a single solvent and reaction family (i.e., the tem-
plate representing the transformation of reactants to products), which severely hinders their
generalizability.

There are a few examples of models that predict reaction properties in multiple solvents
without relying on 3D geometries. Jorner et al. [67] employed a Gaussian process regressor,
along with other traditional ML models, to predict experimental quality barrier heights of
443 SNAr reactions in various solvents. The best model presented from this work requires
features from a DFT-level optimization of both the TS and minima, which is not well-suited
for high-throughput applications. When using features only derived from SMILES [68], such
as fingerprints from the Morgan algorithm [69, 70] in RDKit [71] or from a BERT model
trained to create atom-mapped reaction SMILES [72], model performance was worse, but
obtaining these fingerprints is more practical for inference. Using only SMILES as input, Heid
and Green [73] trained a graph network on this same SNAr dataset. The learned reaction

155



representation in their model gives better barrier height predictions than the fingerprint
models from Jorner et al. [67] and even gives similar performance as when Jorner et al. [67]
used quantum chemical features. Although the models from both studies can successfully
provide fast predictions for reactions in solution, there are still several limitations. First,
these models continue to be limited by a small homogeneous training set comprised of only
one reaction family. Over half of these SNAr reactions took place in just two solvents:
acetonitrile and methanol. Furthermore, both models used fixed descriptors to represent
solvents, but previous studies have shown that molecular representations learned for the
specific task often outperform fixed molecular descriptors [49, 54, 73–108]. In summary, there
is a need for larger datasets that contain both increased reaction diversity and better solvent
representation. Satisfying these criteria is necessary to train a general purpose estimator
that offers broad utility.

Here, our work presents two important contributions for the field of kinetics in solution.
First, we create a high-quality dataset with nearly 6,000 elementary radical reactions. While
many computational kinetic datasets focus on gas phase [99, 109–116], we additionally calcu-
late solvation corrections for each reaction in 40 popular solvents. These data span a diverse
set of reactions, include conformer searches in the COSMO phase, and all TS geometries
are validated by an intrinsic reaction coordinate (IRC) calculation. Since identifying TSs
is quite challenging and computationally expensive, our second contribution is to train a
general purpose deep graph neural network to directly predict the Gibbs free energy of acti-
vation and of reaction using only the SMILES for the reaction and solvent. While many other
papers focus on small homogeneous datasets containing few reaction families and solvents,
our model should have much broader applicability. The simple input representation avoids
the need for expensive quantum chemistry calculations and makes our model well-suited for
high-throughput tasks, e.g., quickly refining detailed kinetic models with tens of thousands
of reactions [117] or identifying low-barrier reactions produced from an automated enumera-
tion [118–121]. Following best practices in ML, our training procedure also uses proper data
splits to estimate the model’s performance in both interpolation and extrapolation regimes.

6.2 Methods

6.2.1 Dataset Generation

This dataset spans a diverse set of radical reactions. The vast majority of the reactions
are generated from a closed-shell species, such as common vinylic monomer-derived esters,
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ethers, alcohols, and acids, reacting with a radical species and thus are bimolecular in the
forward direction. These reactions may be of interest for radical polymerization [3] or degra-
dation of active pharmaceutical ingredients [7]. A small percentage (68 reactions) started
from one radical species and thus are unimolecular in the forward direction. The reaction
generation logic is described further in the Supporting Information. Unless specified other-
wise, all calculations are done using Turbomole [122, 123]; version 7.2.1 is used for the MGSM
calculations while version 7.5.2 is used for subsequent calculations. The balanced reactions
involve the elements H, C, N, O, and S and contain canonical atom-mapped SMILES. All
species are neutrally charged. Each TS contains up to 19 heavy atoms and is calculated in
the doublet state.

The reactions are generated using a combinatorial reaction rule (i.e., driving coordinate)
enumerator in combination with the single-ended molecular growing string method (MGSM)
for reaction path optimizations [124]. First, starting from the SMILES, the connectivity of
the reactant structure(s) is analyzed and driving coordinates for subsequent MGSM calcu-
lations are generated. The reaction rule enumerator generates driving coordinates for the
MGSM calculations based on a combinatoric enumeration of bond breakages and bond for-
mations in the “ZStruct-like” manner [125] with constraints on the number of allowed bond
changes. Since elementary reactions typically involve few bond changes, we specify that at
most two bonds could be broken, at most two bonds could be formed, and a total of at most
three bonds could be changed. Here, a bond only considers connections via an adjacency
matrix rather than bond orders. Additional constraints are set for the reactive (radical)
centers. Second, a van der Waals complex of the reactant structure(s) is generated and
aligned for each driving coordinate using the workflow described in ref. [125]. This reac-
tant complex is the starting point for the growing string search. Note that in the MGSM
optimization, the driving coordinates are projected onto the nonredundant delocalized inter-
nal coordinates [126], a single tangent vector that represents all of the driving coordinates
simultaneously. Importantly, this projected dimension allows other coordinates to change
without constraint during the reaction path optimization, so the limits for breaking and
forming bonds only apply to the initial search direction. The entire reaction path is opti-
mized towards a path resembling a minimum energy path in the TS region using the setting
specified in the Supporting Information. Finally, the reactant and product complexes are
separated into individual species.

All minima and saddle-point structures are optimized using the B3LYP functional [127–
131] with D3 dispersion corrections [132] and Becke-Johnson damping [133, 134] along with
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a triple-𝜁 polarized split-valence basis set [135] i.e., B3LYP-D3(BJ)/def2-TZVP. These cal-
culations employed an m4 integration grid and tight convergence settings i.e., energy 8, gcart
4, scfconv 8 and denconv 10−8. For saddle-point optimizations, the eigenvector-following al-
gorithm as implemented in Turbomole was used. All optimizations and single-point energy
calculations described in this section employed the resolution-of-identity (RI) approximation
for the Coulomb integrals using matching default auxiliary basis sets [136, 137].

For each reactant, TS, and product structure, conformational searches are performed
using a BASF in-house tool that iteratively scans dihedral angles around all rotatable bonds
that are not part of a ring. For ring systems of all species, including those that formed on-
the-fly in saddle-point structures (e.g., for an intramolecular hydrogen atom transfer), full
sets of conformers (accessible through rotations around bonds) are considered. For saddle-
point structures, the bonds broken and formed during the reaction are kept frozen during
conformer search. This set of conformers is subsequently optimized using the meta-GGA
functional [138] TPSS/def2-TZVP using the COSMO continuum solvation model [28] (with
COSMOtherm version 18) with a dielectric constant of 𝜖 = ∞. TPSS has been shown to give
good geometries for organic species [139]. For structures containing -OH, -NH, or -COOH
groups, the conformer search procedure was applied not only to original input structure, but
also to two more conformer structures that were generated from the original input structures
by random multiple rotations around all dihedral angles not part of a ring system. The
conformer with the overall lowest electronic energy at the level of the conformer-search
method was taken as the best conformer in all solvents. Due to computational constraints,
we could not do a thorough conformer search in every solvent of interest. However, the
conformer search in the COSMO phase should capture generic solvent effects and result in
more realistic energy rankings than a conformer search in the gas phase.

This lowest-energy conformer is re-optimized at the B3LYP-D3(BJ)/def2-TZVP level of
theory with the same settings as the pre-optimization procedure described above. Harmonic
vibrational frequencies were computed based on second-order analytical derivatives [140].
We verified that the optimized minima contain no imaginary vibrational frequency. The
single-point energies are refined using the M06-2X functional [141] with the quadruple-zeta
def2-QZVP basis set [135], which is known to give reliable barrier heights [114, 142, 143].
Since only the lowest-energy conformer from the COSMO phase is used, there is likely
some error introduced in the calculated Gibbs free energies of activation and of reaction
in comparison to doing the optimization, frequency, and single-point energy calculation on
all possible conformers and then performing a Boltzmann ensembling to get the conformer
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population Gibbs free energy.
All TS geometries are verified by a forward and reverse IRC calculation, which link the

saddle-point to its adjacent reactant and product potential energy surface minima by a mass-
weighted downhill optimization [144]. Gaussian’s IRC algorithm is well-established, so all
IRCs are run with Gaussian 16 [145] using the same level of DFT as was used during the
optimization and frequency calculations. The IRC endpoints are parsed using OpenBabel
[146], which infers connectivity using its “connect-the-dots” method by adding bonds to
atoms closer than their combined covalent radii while maintaining minimum distance and
valence constraints. The TS is considered valid if the adjacency list matches between the
IRC endpoints and the original reactants and products which were optimized in the previous
step. All reactions published here satisfy this criteria. We also ensure that spin and charge
are conserved for all reactions. All TSs have exactly one imaginary frequency and show
no substantial spin contamination i.e., the expectation value of the spin squared operator
(<S2>) did not deviate by more than 0.1 from the expected value of 0.75. Additional analysis
can be found in Section 6.6.1.3 in the Appendix.

Finally, the Gibbs free energy of solvation (∆𝐺solv) at 298.15 K is calculated using
COSMO-RS theory[38, 39] as implemented in the COSMOtherm 18 software package[147].
COSMO-RS has proven to be a very valuable tool for predicting solvation effects on ki-
netic parameters [148, 149]. The BP_TZVP_18 parameterization is employed, which is based
on DFT single-point calculations at the BP86[150, 151]/def-TZVP[152] (COSMO, 𝜖 = ∞)
level of theory using Turbomole 7.5.2. Corresponding calculations with COSMO switched
off are performed as well to obtain gas-phase energies which are explicitly passed to COS-
MOtherm for the calculation of the transfer energies from gas phase to the ideal-conductor
COSMO medium. D3 dispersion corrections with Becke-Johnson damping [132] are active in
both BP86 calculations, though this detail influences neither the calculated screening charge
distributions nor the transfer energies. Although the BP_TZVPD_FINE_18 parameterization
should yield slightly more accurate values for individual molecules [153], any systematic er-
rors from BP_TZVP_18 should largely cancel when doing the subtraction to obtain ∆𝐺‡

soln

and ∆𝐺rxn
soln. In our experience, the BP_TZVP_18 method is generally more robust and less

likely to yield outliers. Indeed, Chung and Green[149] show that the errors in calculated
∆𝐺‡

soln relative to experimental values are actually slightly lower for BP_TZVP_18 while the
BP_TZVPD_FINE_18 method performed only about 0.1 kcal mol−1 better for estimating rela-
tive Gibbs free energies between solvents.

The COSMOtherm simulations are set up with the solutes at infinite dilution in the
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solvent of interest. From the vapor pressure of the solute 𝑝𝑣𝑎𝑝 predicted by COSMO-RS,
one obtains the Gibbs free energy of solvation for the reference state extrapolated to a mole
fraction of unity,

∆𝐺𝑥=1
solv = 𝑅𝑇 𝑙𝑛

(︂
𝑝𝑣𝑎𝑝
𝑝𝑟𝑒𝑓

)︂
, (6.1)

where the reference pressure 𝑝𝑟𝑒𝑓 = 1 bar is identical to the ideal-gas vapor pressure that is
employed for the calculation of the gas-phase thermodynamic potentials within Turbomole’s
“freeh” utility. A practically more useful quantity is the Gibbs free energy of solvation
corresponding to a reference state of 𝑐 = 1 mol/L in the liquid phase (i.e., the molar reference
state), which is obtained from ∆𝐺𝑥=1

solv via the following relationship

∆𝐺
1 mol/L
solv = ∆𝐺𝑥=1

solv +𝑅𝑇 𝑙𝑛

(︂
1 mol/L
𝑐𝑠𝑜𝑙𝑣𝑒𝑛𝑡

)︂
(6.2)

such that 𝑐𝑠𝑜𝑙𝑣𝑒𝑛𝑡 is the molar concentration of the pure solvent. In the remainder of this
paper, the notation ∆𝐺solv refers to the molar reference state, thus the superscript of 1
mol/L will be omitted. The solvent molarities have been estimated from a simple linear
correlation, using the COSMO cavity volumes and molecular weights as input. The values
used for 𝑐𝑠𝑜𝑙𝑣𝑒𝑛𝑡 are listed in the Appendix.

6.2.2 Regression Targets

For each minima and TS, the Gibbs free energy in solution is defined as

𝐺soln = 𝐸electronic + ZPE +𝐺RRHO +∆𝐺solv (6.3)

= 𝐺gas +∆𝐺solv (6.4)

such that 𝐸electronic is the electronic energy, ZPE is the zero-point energy, 𝐺RRHO is the
Gibbs free energy due to gas-phase thermal contributions with standard rigid-rotor harmonic
oscillator (RRHO) approximations, and ∆𝐺solv is the change in solvation free energy due to
the solute-solvent interaction. Unscaled harmonic frequencies have been used for the ZPE
and thermal corrections. Tunneling corrections are not considered in this work. The Gibbs
free energy of activation and of reaction in the gas phase are defined as

∆𝐺‡
gas = 𝐺TS

gas −
𝑁 reactants∑︁

𝑖=1

𝐺R𝑖
gas (6.5)
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∆𝐺rxn
gas =

𝑁 products∑︁

𝑗=1

𝐺P𝑗
gas −

𝑁 reactants∑︁

𝑖=1

𝐺R𝑖
gas (6.6)

The solvation correction to the Gibbs free energy of activation and of reaction are defined as

∆∆𝐺‡
solv = ∆𝐺TS

solv −
𝑁 reactants∑︁

𝑖=1

∆𝐺R𝑖
solv (6.7)

∆∆𝐺rxn
solv =

𝑁 products∑︁

𝑗=1

∆𝐺
P𝑗

solv −
𝑁 reactants∑︁

𝑖=1

∆𝐺R𝑖
solv (6.8)

such that ∆𝐺TS
solv, ∆𝐺R𝑖

solv, and ∆𝐺
P𝑗

solv represent the solvation free energies of a TS, reactant
𝑖, and product 𝑗 respectively. Graphically, the effect of solvation free energy is shown in
Figure 6.1.
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Figure 6.1. Potential energy diagram of a reaction in the gas phase and in solution phase.

Our primary interest is in ∆𝐺‡
soln so all baseline models are trained to predict this quan-

tity. However, our final model is co-trained to predict ∆𝐺‡
gas, ∆𝐺rxn

gas , ∆∆𝐺‡
solv, and ∆∆𝐺rxn

solv.
These values can be added together to give the Gibbs free energy of activation and of reaction
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in solution, which are defined as

∆𝐺‡
soln = 𝐺TS

soln −
𝑁 reactants∑︁

𝑖=1

𝐺R𝑖
soln (6.9)

= ∆𝐺‡
gas + ∆∆𝐺‡

solv (6.10)

∆𝐺rxn
soln =

𝑁 products∑︁

𝑗=1

𝐺
P𝑗

soln −
𝑁 reactants∑︁

𝑖=1

𝐺R𝑖
soln (6.11)

= ∆𝐺rxn
gas + ∆∆𝐺rxn

solv (6.12)

6.2.3 Model Architecture

As discussed in detail in Chapter 8, it is desirable to produce models that operate on sim-
ple user-friendly inputs. Thus, all models presented here use SMILES, rather than 3D
coordinates, as the source of chemical representation. Although inexpensive semi-empirical
methods [154–156] offer substantial time-savings, operating on SMILES offers a few prac-
tical advantages when making predictions on new reactions. First, it lets users avoid the
extra step of performing geometry optimizations as well as conformer searches, which can be
quite challenging for large flexible molecules. It is also more amenable for high-throughput
screening (e.g. of millions of candidate reactions) to occur on standard consumer computers
since few resources are needed during inference. Language models operate only on SMILES,
so in principal they could also satisfy the desire to operate on simple inputs. However,
previous language models that were fine-tuned to predict solvation free energy of individual
molecules require 7.6M [53] to 48.8M parameters [157]. In comparison, our final graph net-
work used for Table 6.4 has only around 650,000 parameters, which leads to more reasonable
resource requirements during model training and inference. Our baseline directed message
passing neural network (D-MPNN) used for Table 6.2 and Table 6.3 has only about 340,000
parameters.

6.2.3.1 D-MPNN

When using data-driven methods to model chemistry, graph neural networks (GNNs) are a
natural choice [158]. Molecules can be modeled as mathematical graphs such that atoms are
graph nodes and bonds are graph edges. Each atom and bond is assigned an initial feature
vector whose representation is updated with information from neighboring nodes and/or
edges to create a learned molecular representation that is passed to a standard feed forward
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network (FFN) to predict the property of interest. Empirically, the learned representations
from graph networks often outperform traditional ML models operating on fixed fingerprint
representations [49, 54, 73–108], particularly when predicting kinetic properties.

Here, we adapt the directed message passing neural network (D-MPNN) developed by
Yang et al. [54], which is a type of GNN that passes messages across directed bonds. To en-
code the reaction, we use the established condensed graph of reaction (CGR) representation
as the input since it has been shown to outperform other representations for various reaction
property predictions [73, 159–161]. This outperformance is partially expected since the CGR
is a superposition of the reactant and product graphs and thus resembles a 2D-structure of
the reaction’s TS. As shown in Figure 6.2, this architecture builds a learned reaction embed-
ding by aggregating atomic representations after the message passing phase. This involves
summing the vectors and then dividing by a constant for numerical stability. As done by ref.
[61], a separate D-MPNN is used to create a learned molecular embedding of the solvent,
which is concatenated to the reaction embedding and passed through an FFN to predict the
regression targets. For both the CGR and solvent graph, the initial atom and bond features
are generated using RDKit [71] and include atomic symbol, formal charge, hybridization,
bond order, etc. Section 6.6.4 in the Appendix contains additional detail about the network,
training procedure, and hyperparameter optimization. Our modified code and final weights
are freely available on GitHub [162] under the solvated_barrier_heights branch of our
forked repository.
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Figure 6.2. Schematic of the machine learning model architecture. Here, the GNN uses the
directed message passing scheme introduced by Yang et al. [54] The condensed graph of reaction
(CGR) representation concatenates the featurization of the reactant complex with the difference
of the featurization between the reactant and product complex. A subset of the initial atom and
bond features are shown for simplicity. The superscripts indicate the arbitrary atom-map numbers.
Colors are for qualitative purposes only. Only one resonance structure for the radical product is
shown here, but multiple resonance structures are included to augment the dataset while training
the model.

Our final models use the full architecture from Figure 6.2, which we will call D-MPNN-2
to indicate that two D-MPNNs are present. This model is co-trained to predict the Gibbs free
energy of activation and of reaction in the gas phase as well as the corresponding solvation
correction i.e., ∆𝐺‡

gas, ∆𝐺rxn
gas , ∆∆𝐺‡

solv, and ∆∆𝐺rxn
solv. As shown by Eq. 6.10 and 6.12, these

terms can added together to yield the Gibbs free energy in solution. This approach allows
the model to be more interpretable in comparison to directly predicting ∆𝐺‡

soln and ∆𝐺rxn
soln.

For example, ∆∆𝐺‡
solv could be used to calculate the ratio of a gas phase rate coefficient

(𝑘gas) to a liquid phase rate coefficient (𝑘liq) via the following expression:

𝑘liq

𝑘gas
= exp

(︃
−∆∆𝐺‡

solv

𝑅𝑇

)︃
(6.13)

such that 𝑅 is the universal gas constant and 𝑇 is the temperature. It could be also used to
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calculate the relative rate coefficient between two solvents:

𝑘rel =
𝑘s1

liq

𝑘s2
liq

= exp

(︃
−
∆∆𝐺‡

solv,𝑠1 −∆∆𝐺‡
solv,s2

𝑅𝑇

)︃
(6.14)

such that 𝑘s1
liq and 𝑘s2

liq are the rate coefficient of a reaction in a solvent 1 and in solvent
2, respectively, and ∆∆𝐺‡

solv,𝑠1 and ∆∆𝐺‡
solv,s2 are the corresponding solvation Gibbs free

energies of activation for the reaction in each solvent.
Our baseline comparisons will only use one solvent for simplicity, so the solvent GNN

is not needed. We call this architecture D-MPNN-1 to indicate that only one D-MPNN is
used. This baseline model is trained to predict ∆𝐺‡

soln in water.

6.2.3.2 Baseline Models

We also include simpler models from Scikit-Learn [163] as baselines, such as random forest
(RF), multi-layer perceptron (MLP), and support vector regression (SVR) with either a
linear or radial basis function (RBF) kernel. We also use extreme gradient boosting (XGB)
from the XGBoost package [164]. The best hyperparameters are chosen via Optuna [165]
and are listed in Section 6.6.3 in the Appendix. Since these methods operate on vector
inputs, we use Morgan (ECFP) fingerprints [70] with 2048 bit hashing and radius of 2 as
calculated using RDKit [71]. We also tried three other vector representations from RDKit:
Molecular ACCess System (MACCS) [166], Avalon [167], and Atom-pair [168]. To represent
the reaction, we concatenate the fingerprint of the reactant complex with the difference of
the fingerprint between the reactant and product complex; this is the same approach as the
initial featurization in the CGR. In addition to the baseline regression models, we also add
a trivial approach that simply predicts the mean of the training target values for all test
reactions [169].

6.2.4 Data Splits

Although random splitting, stratified sampling [170], and furthest point sampling[171] are
frequently used in the literature, these all create relatively simple learning tasks that measure
interpolation performance. However, given the vastness of chemical space [172–174] and its
often unsmooth nature (e.g. activity cliffs), it is prudent to evaluate model performance on
more challenging extrapolative splits as well. One idea is to use solvent-based splits in which
the model sees molecules or reactions in some solvents during training and then performance
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is tested with the same molecules or reactions in new solvents. However, given that ∆𝐺solv

values often have relatively small magnitudes for neutral solutes regardless of solvent [31, 36,
175, 176], solvent-based splits are likely not as challenging as they would appear. Indeed,
previous work has shown that solute-based splits typically represent a more challenging task
than solvent-based splits [53, 61, 177], so we focus on solute-based splits in this work.

Here, we create both interpolative splits and extrapolative splits based on the procedure in
the astartes software package [178] so future users are informed of the likely performance in
these different settings. Since data-driven methods typically benefit from additional training
points, all data splits include reactions from the forward and reverse direction, which creates
∼470,000 data points. To obtain the Gibbs free energy in gas phase, solution phase, and of
solvation for the reverse reactions, we use the following expressions:

∆𝐺‡
reverse = ∆𝐺‡

forward −∆𝐺rxn
forward (6.15)

∆𝐺rxn
reverse = −∆𝐺rxn

forward (6.16)

Splitting is done based on the forward reactions; the corresponding reverse reaction is then
added to the same set. Otherwise, the same transition state would appear in both the training
and testing set, which would cause the testing error to not reflect the true performance when
evaluating a new reaction [73, 179]. Preliminary tests showed that the model was sensitive to
the resonance structure passed as input so we additionally augment the dataset by sampling
multiple resonance structures when applicable. This creates approximately 720,000 data
points in total.

To measure interpolation, we use random splitting to assign 85% of the data to training,
5% to validation, and 10% to testing. To measure extrapolation, such as making predictions
for new types of molecules, we cluster the data based on reactant substructure. Splitting
based on the Bemis-Murcko scaffold [180] is a common approach for this task [49, 54, 73, 84,
87, 88, 100, 104, 157, 179, 181–183]. However, about 80% of the molecules in our dataset
do not match any Bemis-Murcko ring scaffolds, which precludes any attempt to cluster the
reactions in this way. Instead, we use a different procedure (K-means splits) with three
steps to accomplish our goal of creating more challenging splits with chemically dissimilar
compounds. Our approach is conceptually similar to leave-one-cluster-out cross-validation
[184], though many other papers have taken similar approaches to measure performance on
chemically dissimilar data splits [51, 67, 185–194] or quantify domains of model applicability
[195–198].

We first create Morgan fingerprints [69, 70] with 2048 bit hashing and radius of 2 for each
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reactant complex from the forward reactions using RDKit [71]. Since these vectors are quite
sparse, we use Principal Component Analysis (PCA) to project these vectors to a more dense
subspace. We next use K-means clustering to create twelve clusters. Finally, we assign ten
clusters to the training set, one cluster to the validation set, and one cluster to the testing
set to closely approximate an 85:5:10 split. Additional analysis is shown in Section 6.6.1
in the Appendix. Five folds are created for both interpolative and extrapolative splits; the
subsequent results report the mean and standard deviation of test predictions from the five
folds. All regression targets are Z-scored (i.e., subtract the mean and divide by standard
deviation) during training for numerical stability.

6.3 Results and Discussion

6.3.1 Dataset Statistics

The final dataset contains 5911 reactions occurring in 40 popular solvents summarized in
Table 6.1. The provided dielectric constant is the average of all values from ref. [199], which
compiles results from many sources; some values are taken from ref. [200] and [201]. The
dielectric constant represents the charge-screening ability of a solvent and serves as a one-
dimensional proxy for its polarity. Note that COSMO-RS does not use dielectric constants
as input parameters.
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Table 6.1. Solvents used from COSMO-RS. The tabulated dielectric constant is the average of all
values from the corresponding reference at the specified temperature.

Table 1: Solvents used from COSMO-RS. The tabulated dielectric constant is
the average of all values from the corresponding reference at the specified tem-
perature.

Solvent name Chemical formula Dielectric constant Temp. (K) Reference

1,4-dioxane C4H8O2 2.21 298.2 186
2-ethylhexanol C8H18O 7.58 298.2 186

Acetic acid C2H4O2 6.19 298.2 186
Acetone C3H6O 20.77 298.2 186

Acetonitrile C2H3N 36.26 298.2 186
Aniline C6H7N 6.91 298.2 186

Benzaldehyde C7H6O 17.09 298.2 186
Benzene C6H6 2.27 298.2 186

Caprolactam C6H11NO 2.80 298.2 187
Carbon disulfide CS2 2.63 298.2 186
Chlorobenzene C6H5Cl 5.61 298.2 186

Chloroform CHCl3 4.73 298.2 186
Cyclohexane C6H12 2.02 298.2 186
Cyclopentane C5H10 1.96 298.2 186

n-Decane C10H22 1.99 293.2 186
Dichloromethane CH2Cl2 8.93 298.0 186

Diethyl ether C4H10O 4.22 298.2 186
Diethyl sulfide C4H10S 5.72 298.2 186

Dimethyl formamide C3H7NO 37.04 298.2 186
DMSO C2H6OS 46.56 298.2 186
Ethanol C2H6O 24.41 298.2 186

Ethyl acetate C4H8O2 6.06 293.2 186
Ethyl acrylate C5H8O2 5.85 301.2 186

Furan C4H4O 2.95 298.2 186
Glycerol C3H8O3 45.72 298.2 186

Isopropanol C3H8O 19.24 298.2 186
n-Hexane C6H14 1.88 298.2 186
Methanol CH4O 32.51 298.2 186

Nitromethane CH3NO2 37.38 298.2 186
Octanol C8H18O 10.00 298.2 186
Phenol C6H6O 13.40 293.2 186

Phenyl isocyanate C7H5NO 8.94 293.2 186
Piperidine C5H11N 4.18 298.2 186
Pyridine C5H5N 13.45 298.2 186

Pyrrolidine C4H9N 8.30 293.0 186
Tetrahydrofuran C4H8O 7.62 298.2 186

Toluene C7H8 2.39 298.2 186
Triethylamine C6H15N 2.42 298.2 186
�-valerolactone C5H8O2 36.47 298.2 188

Water H2O 78.39 298.2 186

17
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As seen in Figure 6.3a, the reactions span a wide range of activation and reaction energies.
Thus, this dataset is suitable for training a model to act as a general purpose estimator that
has been exposed to both high-barrier and low-barrier reactions. The data generally follows
the expected Evans-Polanyi relationship [202] in which the activation energy is positively
correlated with the reaction energy. However, the correlation is mild at only 0.47 due to
the bimodal distribution, with the distribution on the right side of Figure 6.3a containing
many thermoneutral yet high-barrier reactions. Consistent with other published datasets
[179, 203] that were generated using a combinatorial driving coordinate generator together
with the MGSM method for reaction path optimization, there is large reaction diversity.
Most reactions do not match any of the manually-generated templates from the Reaction
Mechanism Generator (RMG) database [112]. Of the reactions that did match RMG tem-
plates, the vast majority belong to hydrogen abstraction and R-addition multiple bond (i.e.,
radical attacking a higher-order bond), with additional details shown in Section 6.6.1 in the
Appendix.

Although Figure 6.3a only shows the ∆𝐺soln values for water, the distribution is quite
similar for the gas phase as well as for the other solvents. This is because solvation corrections
are often relatively small, typically just 1-5 kcal mol−1 regardless of the solvent [31, 36, 175,
176]. Indeed, 98% of all values for ∆∆𝐺‡

solv and ∆∆𝐺rxn
solv values in this work are within

±5 kcal mol−1 across all solvents. Figure 6.4 shows the distribution of ∆∆𝐺solv for select
solvents. The distributions for more polar solvents have a larger range, i.e., outliers have a
larger magnitude for ∆∆𝐺solv. However, the average values are still very close to zero.

Figure 6.3b shows the broad distribution of the number of heavy atoms. Each reaction
can be classified by a general reaction template of “breaks X bonds and forms Y bonds”,
which is abbreviated as “bXfY”; this analyzes changes in connectivity, not bond order. As
shown in Figure 6.3c, most reactions have two bonds changing (i.e. breaking or forming
a total of two bonds). The distribution of which types of bonds are changing is shown in
Figure 6.3d; changes to C-H and C-C bonds are the most common bond changes, which
is expected given that carbon is the most common heavy atom in this dataset. Additional
dataset analysis is provided in Section 6.6.1.
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a) b)

c) d)

Figure 6.3. Summary of reaction characteristics. (a) Heatmap showing distribution of Δ𝐺‡
soln and

Δ𝐺rxn
soln for all reactions occurring in water. (b) Distribution of the number of heavy atoms. (c)

Distribution of reaction type, classified as “breaking X bonds and forming Y bonds". Warmer colors
generally denote a larger activation energy as breaking more bonds requires additional energy. (d)
Distribution of bond changes occurring during the reactions.
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Figure 6.4. Distribution of solvation correction for select solvents. Dielectric constant increases
from left to right.

6.3.2 Baseline Model Results

To determine which modeling approach to focus on, we first compare the performance of
all models for predicting ∆𝐺‡

soln in water. We also include the trivial baseline that predicts
the mean value of ∆𝐺‡

soln from the training set for all test reactions. For this preliminary
task, the D-MPNN model only uses GNN1 from Figure 6.2 since the solvent is constant.
Although both XGB and the MLP perform fairly well, the results from Table 6.2 and Table
6.3 show that learned representations from graphs vastly outperform all baseline models
for both random splits and more challenging K-means splits; this result is consistent with
many published references [49, 54, 73–108]. Further, the D-MPNN is much more robust
as the average performance is very similar for both types of data splits. In contrast, the
baseline models perform substantially worse when presented with more challenging data
splits. The poor performance of the baseline mean predictor is expected given the relatively
large variance in the target values as shown in Figure 6.3a. It is interesting to note that the
Avalon and MACCS featurization consistently yield poor performance for the models and
prediction task studied in this work.
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Table 6.2. Testing errors (mean ± 1 standard deviation from the five folds) from various models
for predicting Δ𝐺‡

soln in water when using random reaction splits. MAE and RMSE have units of
kcal mol−1.

featurization consistently yield poor performance for the models and prediction task studied

in this work.

Table 2: Testing errors (mean ± 1 standard deviation from the five folds) from
various models for predicting �G‡

soln in water when using random reaction splits.
MAE and RMSE have units of kcal mol�1.

Model Featurization MAE RMSE R2

Baseline (mean) N/A 17.15 ± 0.29 20.29 ± 0.23 0.00 ± 0.00

SVR (Linear)

AtomPair 8.29 ± 0.20 11.96 ± 0.33 0.65 ± 0.02
Avalon 12.63 ± 0.10 16.61 ± 0.18 0.33 ± 0.02
MACCS 12.12 ± 0.20 16.06 ± 0.37 0.37 ± 0.03
Morgan 4.61 ± 0.24 8.08 ± 0.60 0.84 ± 0.02

SVR (RBF)

AtomPair 11.24 ± 0.58 14.31 ± 0.91 0.50 ± 0.06
Avalon 12.85 ± 0.28 15.83 ± 0.42 0.39 ± 0.03
MACCS 13.62 ± 0.63 16.65 ± 0.81 0.33 ± 0.06
Morgan 10.97 ± 0.15 13.54 ± 0.37 0.56 ± 0.02

MLP

AtomPair 3.94 ± 0.22 7.07 ± 0.41 0.88 ± 0.02
Avalon 5.30 ± 0.13 8.77 ± 0.30 0.81 ± 0.01
MACCS 6.14 ± 0.20 10.20 ± 0.36 0.75 ± 0.02
Morgan 3.38 ± 0.23 6.60 ± 0.67 0.89 ± 0.02

RF

AtomPair 4.90 ± 0.20 8.05 ± 0.43 0.84 ± 0.02
Avalon 7.94 ± 0.20 11.50 ± 0.34 0.68 ± 0.02
MACCS 8.76 ± 0.25 12.49 ± 0.22 0.62 ± 0.02
Morgan 7.14 ± 0.11 10.26 ± 0.32 0.74 ± 0.02

XGB

AtomPair 3.82 ± 0.22 6.88 ± 0.39 0.89 ± 0.01
Avalon 7.60 ± 0.21 10.71 ± 0.34 0.72 ± 0.02
MACCS 6.78 ± 0.32 10.29 ± 0.46 0.74 ± 0.03
Morgan 5.62 ± 0.16 8.23 ± 0.45 0.84 ± 0.02

D-MPNN-1 Learned 2.53 ± 0.22 5.26 ± 0.38 0.93 ± 0.01
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Table 6.3. Testing errors (mean ± 1 standard deviation from the five folds) from various models
for predicting Δ𝐺‡

soln in water when using K-means splits. MAE and RMSE have units of kcal
mol−1.

Table 3: Testing errors (mean ± 1 standard deviation from the five folds) from
various models for predicting �G‡

soln in water when using K-means splits. MAE
and RMSE have units of kcal mol�1.

Model Featurization MAE RMSE R2

Baseline (mean) N/A 19.23 ± 2.17 22.18 ± 2.04 -0.10 ± 0.10

SVR (Linear)

AtomPair 10.80 ± 1.95 13.97 ± 2.59 0.55 ± 0.19
Avalon 17.69 ± 2.95 21.82 ± 2.99 -0.06 ± 0.18
MACCS 15.98 ± 2.54 19.36 ± 2.38 0.17 ± 0.12
Morgan 5.95 ± 2.80 9.96 ± 3.95 0.74 ± 0.23

SVR (RBF)

AtomPair 16.53 ± 3.32 19.75 ± 3.90 0.08 ± 0.43
Avalon 15.90 ± 1.73 19.36 ± 1.95 0.16 ± 0.12
MACCS 16.22 ± 1.86 19.19 ± 1.58 0.18 ± 0.06
Morgan 14.74 ± 2.33 17.81 ± 2.60 0.29 ± 0.17

MLP

AtomPair 5.29 ± 0.96 8.43 ± 1.22 0.84 ± 0.05
Avalon 7.62 ± 1.44 11.20 ± 1.62 0.71 ± 0.08
MACCS 9.31 ± 1.52 13.42 ± 1.62 0.59 ± 0.09
Morgan 4.10 ± 1.27 7.79 ± 1.65 0.86 ± 0.07

RF

AtomPair 7.03 ± 1.39 9.96 ± 1.48 0.77 ± 0.07
Avalon 10.08 ± 0.91 13.95 ± 1.33 0.56 ± 0.07
MACCS 11.91 ± 2.07 15.53 ± 2.05 0.45 ± 0.15
Morgan 9.71 ± 1.33 13.03 ± 1.61 0.62 ± 0.08

XGB

AtomPair 5.49 ± 0.68 8.48 ± 0.75 0.84 ± 0.03
Avalon 9.09 ± 1.06 12.66 ± 1.35 0.64 ± 0.07
MACCS 11.47 ± 1.90 14.65 ± 1.85 0.51 ± 0.13
Morgan 6.39 ± 1.22 9.11 ± 1.20 0.81 ± 0.05

D-MPNN-1 Learned 2.89 ± 0.45 5.55 ± 1.02 0.93 ± 0.02

3.3 D-MPNN Results

Based on the results from Section 3.2, we focus on training a D-MPNN using all data i.e.

nearly 500,000 entries from the forward and reverse reactions in all 40 solvents. The testing

errors across all 5-folds for both random and K-Means splits is shown in Table 4. Similar

to the results observed in Table 2 and 3, the D-MPNN performance is robust for both split
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6.3.3 D-MPNN Results

Based on the results from Section 6.3.2, we focus on training a D-MPNN using all data
i.e., nearly 720,000 entries from the forward and reverse reactions in all 40 solvents. The
testing errors when training on both random reaction splits and K-Means splits are shown in
Table 6.4. Similar to the results observed in Tables 6.2 and 6.3, the D-MPNN performance
is robust for both split types.
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When analyzing the predictions for ∆𝐺‡
soln on the test set from the K-Means splits, the

MAE is 3.00 ± 0.44 kcal mol−1 and RMSE is 5.99 ± 0.91 kcal mol−1, such that the bounds
correspond to one standard deviation calculated across five folds. Thus, the prediction error
of our ML model approximating M06-2X is on the same order of magnitude as the error
of the DFT method itself [114]. The overall signed error of the ML prediction will be a
superposition of the regression error and the intrinsic error of the DFT method, which may
involve some cancellation of errors. However, our model offers a ∼105 factor speedup so it
is well-suited to handle many reactions.

Table 6.4. Testing errors (mean ± 1 standard deviation from the five folds) for predicting Δ𝐺‡
gas,

Δ𝐺rxn
gas , ΔΔ𝐺‡

solv, and ΔΔ𝐺rxn
solv. Eq. 6.10 and 6.12 are used to calculate Δ𝐺‡

soln and Δ𝐺rxn
soln. MAE

and RMSE have units of kcal mol−1.

When analyzing the predictions for �G‡
soln on the test set from the K-Means splits, the

MAE is 3.00 ± 0.44 kcal mol�1 and RMSE is 5.99 ± 0.91 kcal mol�1, such that the bounds

correspond to one standard deviation calculated across five folds. These prediction errors are

nearly as good as an actual quantum chemistry calculation using the M06-2X functional.113

However, our model o↵ers a ⇠105 factor speedup so it is well-suited to handle many reactions.

Table 4: Testing errors (mean ± 1 standard deviation from the five folds) for predicting
�G‡

gas, �Grxn
gas , ��G‡

solv, and ��Grxn
solv. Eq. 10 and 12 are used to calculate �G‡

soln and
�Grxn

soln. MAE and RMSE have units of kcal mol�1.

Random K-Means

Target MAE RMSE R2 MAE RMSE R2

�G‡
gas 2.83 ± 0.32 5.82 ± 0.68 0.92 ± 0.02 2.95 ± 0.45 5.89 ± 0.94 0.92 ± 0.02

�Grxn
gas 3.01 ± 0.36 6.61 ± 0.72 0.87 ± 0.03 3.13 ± 0.38 6.54 ± 0.93 0.85 ± 0.02

��G‡
solv 0.58 ± 0.01 0.97 ± 0.04 0.69 ± 0.02 0.59 ± 0.09 0.94 ± 0.17 0.65 ± 0.08

��Grxn
solv 0.46 ± 0.04 0.84 ± 0.05 0.71 ± 0.04 0.43 ± 0.09 0.79 ± 0.19 0.67 ± 0.09

�G‡
soln 2.85 ± 0.34 5.89 ± 0.68 0.92 ± 0.02 3.00 ± 0.44 5.99 ± 0.91 0.92 ± 0.03

�Grxn
soln 3.11 ± 0.37 6.85 ± 0.72 0.86 ± 0.03 3.21 ± 0.38 6.76 ± 0.96 0.85 ± 0.02

The parity plot in Figure 4a shows the model’s predictive power is maintained across the

entire range of data, even in regions where the data are sparser. Consistent with previous

literature using this model architecture,176 Figure 4b shows that the residuals are centered

around zero, indicating no systematic over- or under-prediction. 90% of the reaction barriers

are predicted within 6 kcal mol�1 of the value calculated via quantum chemistry.

It is also important to examine model performance specifically on low barrier reactions

since these are the most feasible reaction pathways included in kinetic models. For example,

reactions matching the RMG templates of R-Addition Multiple Bond and Hydrogen Ab-

straction have a �G‡
soln between 0 and 45 kcal mol�1, which is about half as large as the

dynamic range for the entire dataset. As seen in Figure 4c, filtering the test set reactions to

this subset gives much smaller errors. For R-Addition Multiple Bond reactions, the MAE is
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The parity plot in Figure 6.5a shows the model’s predictive power is maintained across
the entire range of data, even in regions where the data are sparser. Consistent with previous
literature using this model architecture [179], Figure 6.5b shows that the residuals are cen-
tered around zero, indicating no systematic over- or under-prediction. 90% of the reaction
barriers are predicted within 6 kcal mol−1 of the value calculated via quantum chemistry.

It is also important to examine model performance specifically on low barrier reactions
since these are the most feasible reaction pathways included in kinetic models. For example,
reactions matching the RMG templates of R-addition multiple bond and hydrogen abstrac-
tion have a ∆𝐺‡

soln < 45 kcal mol−1, which is about half as large as the dynamic range for
the entire dataset. As seen in Figure 6.5c, filtering the test set reactions to this subset gives
much smaller errors. For R-Addition Multiple Bond reactions, the MAE is 2.46± 0.54 kcal
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mol−1 and RMSE is 4.04 ± 1.14 kcal mol−1 for ∆𝐺‡
soln. Similarly, the MAE is 1.29 ± 0.31

kcal mol−1 and RMSE is 1.69 ± 0.41 kcal mol−1 for Hydrogen Abstraction reactions. It is
promising to see the model perform even better on this relevant subset.

a) b)

c) d)

Figure 6.5. Deep learning model results for predicting Δ𝐺‡
soln and Δ𝐺rxn

soln when using K-Means
splits. Error bars indicate one standard deviation calculated across the five folds. (a) Parity plot
of model predictions vs “true” (i.e., calculated) barriers Δ𝐺‡

soln for the first fold. (b) Histogram of
testing errors (predicted minus “true”) for the first fold. (c) Testing RMSE grouped by reaction
template. (d) Testing RMSE vs. the number of training data points.

To examine model sensitivity to the size of the training set, we trained models using
incrementally less data. The validation and test sets are kept constant so that model per-
formance is always evaluated on the same sets and thus training set size is the only variable
changing. Figure 6.5d plots the learning curve and demonstrates that the model strongly
benefits from additional training data. The test set RMSE begins to level off after about
200,000 training points. However, the curve has not fully reached an asymptote so it is
expected that further improvement could be obtained if training with more data.
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6.4 Conclusion

The field of quantitative predictive chemistry depends on having accurate kinetic parame-
ters. Historically, the field has relied on regressing these values from a relatively narrow set
of experimental measurements. More recently, the field of chemical kinetics has transitioned
from a post-dictive to predictive modeling approach that utilizes ab initio calculations which
can better extrapolate to new conditions and reactions [204]. This framework is powerful
as exploring these systems computationally should be cheaper, faster, and safer in compari-
son to experimental approaches. Still, the standard quantum chemistry workflow is far too
computationally expensive to be applied to every possible reaction that may be of interest
for modeling a given system. There is a growing need to provide easy access to accurate
kinetic predictions. While training ML models using high-accuracy calculations or experi-
ments would yield the greatest value, data scarcity has made it difficult to train data-driven
estimators that generalize well over a broad range of reactions.

This work presents two key contributions for the field of kinetics in solution. To address
the current paucity of quantitative chemical reaction data, we first create a novel dataset with
approximately 6000 elementary radical reactions. This dataset contains substantial reaction
diversity, all TS geometries are validated by an IRC calculation, and all reactions are calcu-
lated in the gas phase as well as in 40 popular solvents. We anticipate this dataset will serve
as a benchmark for future studies. Our second contribution is training a deep graph network
to simultaneously predict the Gibbs free energy of activation and of reaction in both gas and
solution phases. Importantly, our model only requires the atom-mapped SMILES of the re-
actant, product, and solvent as input, making it ideal for high-throughput screening of large
regions of reaction space. Our model shows strong performance for both interpolation-based
random splits and more challenging K-Means splits. In contrast, many other published mod-
els require more expensive representations or were only evaluated on random splits. Finally,
our results corroborate existing literature that shows learned representations from graphs
typically outperform traditional approaches within the field of chemical kinetics. We antici-
pate our model will be useful for estimating barrier heights during the automated generation
of kinetic models, identifying relevant low-barrier reactions produced from an automated
enumeration, and offering substantial speedup when refining existing kinetic models.

Going forward, one idea for future work is to explore passing quantum mechanical de-
scriptors as input to the D-MPNN model. However, prior studies with select descriptors
have only demonstrated improvements to model performance for small training set sizes.
These descriptors often have negligible impact for any reasonably sized dataset [84, 93, 95,
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193], but it is possible other descriptors exist which are more correlated with the prediction
target. More broadly, the field should continue generating high-quality kinetics datasets.
To our knowledge, the dataset from ref. [109] is the largest open-source kinetics dataset
with nearly 12,000 reactions calculated at CCSD(T)-F12a/cc-pVDZ-F12//𝜔B97X-D3/def2-
TZVP. However, the scope of this dataset is still relatively limited; the species only include
the elements H, C, N, and O, each TS contains at most only seven heavy atoms, all TSs are
closed shell singlets, and all reactions are only calculated in the gas phase. The data created
in this work directly addresses several of these limitations. For example, the reactions in our
dataset contain up to 19 heavy atoms, include some sulfur containing compounds, and focus
on radical chemistry in both gas and solution phase. Despite this progress, most chemical
space remains unexplored [173, 174, 205]. It is imperative for the field to continue developing
open-source datasets and new models that can process the magnitude of reactions necessary
to achieve the grand vision of quantitative predictive chemistry.

177



6.5 Appendix

6.5.1 Settings for the Single-Ended Molecular Growing String Method

The settings used for the single-ended molecular growing string method (MGSM) [124] are
shown in Table 6.5.

Table 6.5. Settings used for the single-ended MGSM [124] to identify transition state structures.

Setting Value

M_TYPE SSM
MAX_OPT_ITERS 100
STEP_OPT_ITERS 30
CONV_TOL 0.0005
ADD_NODE_TOL 0.1
SSM_DQMAX 0.4
GROWTH_DIRECTION 0
INT_THRESH 2.0
MIN_SPACING 1.0
INITIAL_OPT 150
FINAL_OPT 150
PRODUCT_LIMIT 100
TS_FINAL_TYPE 1
NNODES 30

6.6 COSMO-RS Information

The molar concentrations of the pure solvents (𝑐𝑠𝑜𝑙𝑣𝑒𝑛𝑡) used during the COSMO-RS workflow
are shown in Table 6.6.
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Table 6.6. Solvents used from COSMO-RS. 𝑐𝑠𝑜𝑙𝑣𝑒𝑛𝑡 is provided in units of mol/L.Table S2: csolvent is provided in units of mol/L.

Solvent csolvent at 298 K

Acetic acid 17.8
Acetone 14.7
Acetonitrile 19.5
Aniline 10.4
Benzaldehyde 9.6
Benzene 11.7
✏-Caprolactam 9.0
Carbon disulfide 16.1
Chlorobenzene 10.2
Chloroform 13.2
Cyclohexane 10.0
Cyclopentane 11.6
n-Decane 5.3
Dichloromethane 16.7
Diethyl ether 11.2
Diethyl sulfide 9.9
Dimethyl formamide 12.7
1,4-Dioxane 12.1
DMSO 13.5
Ethanol 18.1
Ethyl acetate 11.1
Ethyl acrylate 9.8
2-Ethylhexanol 6.3
Furane 14.9
Glycerol 11.8
n-Hexane 8.4
Isopropanol 13.7
Methanol 26.0
Nitromethane 19.2
n-Octanol 6.3
Phenol 10.9
Phenyl isocyanate 9.0
Piperidine 10.5
Pyridine 12.4
Pyrrolidine 12.2
Tetrahydrofurane 13.1
Toluene 9.8
Triethylamine 7.8
�-Valerolactone 10.5
Water 50.1

S4
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6.6.1 Supplemental Dataset Analysis

6.6.1.1 Reaction Generation

Our dataset centers around main and side reactions relevant to radical polymerization of vinyl
(H2C––CH–R) and methyl-substituted vinyl (H2C––C(CH3)–R) monomers. The following
species types are considered:

• initial radicals, which are either generated in situ from technically important radical
polymerization initiators, or which occur as intermediates in autoxidation chemistry of
hydrocarbons (see Table 6.7)

• a variety of vinyl and methyl-substituted vinyl monomers, which can undergo a radical
polymerization (see Table 6.8)

• 2-Mercaptoethanol as a classical chain-transfer agent (CTA)

• propagating radicals derived from the respective monomers (as explained below)

• polymer repeating units derived from the respective monomers (as explained below)

The propagating radicals are model species for the growing polymer chain end radicals.
In our dataset, they are derived from the monomers by adding a CH3 radical to either
the terminal or central carbon atom of the C=C double bond, as shown in Figure 6.6.
CTAs are species that facilitate transfer of the radical center from the propagating radicals
if possible, usually by a hydrogen abstraction reaction, and for which the formed radical
center subsequently reacts with a monomer to start a new propagating chain. Transfer of
the radical center from propagating radicals to the polymer backbone is technically also a
chain-transfer reaction. Here, we explicitly consider transfer to a polymer repeating unit,
which we represent in our dataset by adding a CH3 to both sites of the C=C double bond,
as shown in Figure 6.7 for styrene and methacrylate. We furthermore add a few radicals to
our dataset, for which only unimolecular reactions are explored. These species are listed in
Table 6.9.

We next define combinations of reactant molecules that are subjected to exhaustive reac-
tion path exploration. Here, we focus on bimolecular reactions of a radical with a closed-shell
molecule and left out radical-radical recombination reactions. The following reaction types
are studied:
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• initial radical + monomer

• propagating radical + monomer

• initial radical + CTA

• propagating radicals + CTA

• initial radical + polymer repeating unit

• propagating radicals + polymer repeating unit

In these reaction types, we considered the full set of radicals/molecules for each species
type. Additionally, to cover some aspects of potential unimolecular side reactions–especially
under the presence of molecular oxygen, which can lead to the formation of peroxy and
hydroperoxy alkyl radicals–a few selected unimolecular reactions are studied for the species
listed in Table 6.9. Note that backbiting reactions, in which a radical chain end reacts with
the polymer backbone of one of the neighboring repeating units (usually by abstracting a
hydrogen atom) and therefore transfers the radical to another position in the polymer) are
not specifically covered in this reaction data set.

Table 6.7. Initial radicals chosen for the reaction data generation.

SMILES String Molecular Structure

[CH3]

C[CH2]

[OH]

O[O]

CO[O]

C[C](C)C#N
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O=[C]c1ccccc1

Table 6.8. Monomers used in the reaction data generation.

SMILES String Molecular Structure

C=Cc1ccccc1

COC(=O)C(=C)C

CC(=C)C(=O)O

CCOC(=O)C=C

CCCCC(CC)COC(=O)C=C

CC(=O)OC=C
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C=CNC=O

CCC=C

CC(=C)C

OC(=O)C=C

NC(=O)C=C

COC=C

Table 6.9. Radicals chosen for the unimolecular reaction data generation.

SMILES String Molecular Structure

OC[CH]CCCC

C(COO)[O]

COCCSCO[O]
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[CH2]COOCC

COCCOCO[O]

C(COO)CO[O]

O[CH][C@@H](CC)OO

[CH2]COO

CH3

CH2

CH

O

O

O

OC

O

O
H2C

vinylic monomer       +    methyl radical  

+

propagating radical 
from terminal attack

propagating radical 
from central attackor

or

CH3+ or

Figure 6.6. Examples to demonstrate how the two propagating radicals are formed from different
vinyl monomers.
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O

O

vinylic monomer       +    

+

product

+

O

O

H3C CH3

H3C CH3

chain transfer 
agent

Figure 6.7. Examples to demonstrate the logic of the chain transfer agent generation from vinyl
monomers.

After the exhaustive search of possible reactions–based on combinatoric bond changes
as explained in the main manuscript–starting from the different reactant combinations de-
scribed above, we refine the transition-state structures and perform an intrinsic reaction
coordinate (IRC) calculation. This procedure is also explained in the main manuscript. In
a few cases, the IRC calculations led to reactants or products that were different from the
original reactants and products according to the MGSM calculations. In this case, the orig-
inal structures are replaced with the structures from the IRC calculations, and the latter
structures are used in the dataset. This procedure explains the presence of reactions in the
data set that cannot be derived from the systematic data generation procedure described
above.
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6.6.1.2 Dataset Statistics

Here, we give an overview of the data generated in this work. All reactions are balanced,
contain neutrally charged species, and have canonical atom-mapped SMILES. Figure 6.8
shows the broad distribution of molecular weights, with the most common value being around
170 Da. For organic molecules comprised primarily of carbon atoms, this correspond to
approximately 12 heavy atoms, as shown in Figure 6.3b from the main text.
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Figure 6.8. Distribution of molecular weights for the reactions in this dataset.

With the exception of 68 unimolecular reactions, all reactions start from two reactants.
As seen in Figure 6.9, most reactions produce two products, making them bimolecular from
both directions. Four reactions produced four products in the forward direction. Although
these reactions would be quite improbable in the reverse direction, the transition state (TS)
geometry of these four reactions–and of all reactions included in our dataset–was successfully
verified by both a forward and reverse intrinsic reaction coordinate (IRC) calculation at
B3LYP-D3(BJ)/def2-TZVP, so we included them in our final set. These four reactions have
similar reaction templates as they all produce carbon dioxide and methane as two of the four
products. The distribution of the Gibbs free energy of activation in water and the Gibbs free
energy of reaction in water vs. the number of products is shown in Figure 6.10. The color in
Figure 6.9 and Figure 6.10 generally denotes increasing Gibbs free energy of activation since
forming more products requires breaking more bonds which in turn requires more energy to
be input to the system.
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Figure 6.9. Distribution of the number of products formed by the reactions.

a) b)

Figure 6.10. Distribution of the a) Gibbs free energy of activation in water and b) Gibbs free
energy of reaction in water grouped by the number of products formed by the reaction. Although
some categories appear to have negative barrier heights, this is only an artifact of the fitted kernel
density distribution; all Δ𝐺‡

soln values are positive.

As another method to characterize the data, we look at the number of bond changes that
occurred during the reaction. Here, we account for changes in connectivity, not changes in
bond order to existing connections. Each reaction can be classified by a general reaction
template of “breaks X bonds and forms Y bonds”, which is abbreviated as “bXfY”. As shown
in Figure 6.11, most reactions have two bonds changing (i.e. breaking or forming a total
of two bonds). This plot is identical to Figure 6.3c from the main text and is reproduced
here for convenience. The distribution of which types of bonds are changing is shown in
Figure 6.3d from the main text. The distribution of the Gibbs free energy of activation in
water and the Gibbs free energy of reaction in water grouped by the number of broken and
formed bonds is shown in Figure 6.12. The data generally follows the expected trend in that
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the Gibbs free energy of activation increases as more bonds are broken during the reaction.
As before, the color generally becomes warmer to denote this larger energy requirement.
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Figure 6.11. Distribution of the number of bonds broken and formed during the reaction.

a) b)

Figure 6.12. Distribution of the a) Gibbs free energy of activation in water and b) Gibbs free
energy of reaction in water grouped by the number of broken and formed bonds during the reaction.

Consistent with other published datasets [179, 203] that were generated using a combina-
toric driving coordinate generator in combination with the single ended molecular growing
string method, most reactions do not match templates from the manually curated list of
families stored in the Reaction Mechanism Generator (RMG) database [112]. This result is
expected since the driving coordinates specified by combinatorics of potential bond forma-
tion and bond breakages is known to create large reaction diversity. Of the reactions that
did match RMG templates, the vast majority belong to the two families shown in Table 6.10.
This result is also inline with expectations since Figure 6.11 indicates that the most common
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reaction type involves breaking and forming one bond. As seen in Figure 6.13, the Pear-
son correlation coefficient is approximately 0.90 for both of these families, indicating strong
agreement with the expected Evans-Polanyi relationship [202] in which the activation energy
is positively correlated with the reaction energy.

Table 6.10. RMG reaction templates present in the dataset.

RMG Reaction Family Template

H_Abstraction
1R 2H 3R 2H 3R1R+ +

R_Addition_MultipleBond
2R 1R

3R 1R
3R+ 2R

a) b)

Figure 6.13. Scatter plot of the Gibbs free energy of reaction vs. the Gibbs free energy of activation
in water for a) hydrogen abstraction reactions and b) R addition multiple bond reactions.

We also look at the number of rotatable bonds, which indicates how flexible a molecule is
and correlates with the number of possible conformers. Here, the number of rotatable bonds
is calculated using the CalcNumRotatableBonds function from RDKit [71] with strict=True

when considering explicit hydrogens. The distribution for the reactants and products is
shown in Figure 6.14.
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a) b)

Figure 6.14. Distribution of the number of rotatable bonds in the a) reactants and b) products.

We also examine the number of hydrogen bond donors and acceptors, which can be
important properties for drug design [206, 207]. These values were calculated using the
CalcNumHBD and CalcNumHBA functions from RDKit. Hydrogen bonding typically arises due
to the presence of electronegative atoms, and can act as a general indicator of the molecule’s
acidity. The distribution of donors from the reactants and products is shown in Figure 6.15,
while the distribution of acceptors is shown in Figure 6.16.

a) b)

Figure 6.15. Distribution of the number of hydrogen bond donors in the a) reactants and b)
products.
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a) b)

Figure 6.16. Distribution of the number of hydrogen bond acceptors in the a) reactants and b)
products.
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6.6.1.3 Analysis of the Spin Squared Operator

To inspect whether the quantum chemistry calculations are spin contaminated, we examine
the expectation value of the spin squared operator <S2>. Figure 6.17 plots the distribu-
tion of <S2> for the radical reactants, radical products, and TSs, which were all run with
unrestricted methods in the doublet state. The values from the singlet reactant and singlet
product species are not plotted since they were run with a restricted method so by definition
are forced to have <S2> = 0.
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Figure 6.17. Distribution of <S2> for reactants, transition states, and products in the doublet
state across B3LYP-D3(BJ)/def2-TZVP used for geometry optimization and M06-2X/def2-QZVP
used for single point energy refinement.

Some of the TS calculations in the initial set had large <S2> values (e.g. larger than
1.00). When considering what threshold to set for an acceptable deviation, we consulted
with Gaussian technical support, who shared that a deviation of ± 0.10 from the expected
<S2> value is not necessarily substantial, especially for TS structures in which there are
partial bonds being formed and/or broken. All reactant and product calculations fell within
this tolerance, but we removed about 5% of the initial data to exclude reactions whose TS
had a <S2> that deviated substantially from the expected value of 0.75 in this case.

We applied a spin projection method to estimate how much the spin contamination
impacts the unrestricted electronic energy. One method to correct for the contamination is
to project out the energetic contribution from the higher energy state (quartet in this case)
causing the contamination [208, 209]. This allows us to obtain a spin-projected energy of
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the doublet state without the spin contamination error as follows:

𝐸𝐿𝑆
𝐴𝑃 = 𝛼𝐸𝐿𝑆

𝐵𝑆 − 𝛽𝐸𝐻𝑆 (6.17)

where

𝛼 =

⟨
𝑆2
⟩𝐻𝑆

−
⟨
𝑆2
⟩𝐿𝑆

exact⟨
𝑆2
⟩𝐻𝑆

−
⟨
𝑆2
⟩𝐿𝑆
𝐵𝑆

(6.18)

and

𝛽 = 𝛼− 1 (6.19)

such that BS stands for broken symmetry, AP stands for approximate spin projection, LS
stands for low spin state, and HS stands for high spin state.

We applied this method to five transition states with
⟨
𝑆2
⟩𝐿𝑆
𝐵𝑆

ranging from 0.80 to 0.85.
In general, the spin-projected energies are lower than the original M06-2X energies by 0.9-
1.4 kcal mol−1. The energy difference of around 1 kcal mol−1 is not completely negligible,
but it is also not the largest error in the entire workflow. For example, ensuring that
one has the lowest energy conformer and/or the full set of conformers for multi-structure
transition state theory will likely have a bigger impact on the energy value; future work with
additional computational resources could explore this further. Additionally, there should be
some cancellation of errors if the reactant energies are recalculated with spin projection as
well.

193



6.6.2 Creating Clusters for Extrapolative Data Splits

Here, our goal is to create more challenging data splits to measure the likely performance
in extrapolative tasks, such as making predictions on new types of molecules. Although
splitting based on the Bemis-Murcko scaffold [180] is commonly used for this task, this
approach relies on many ring structures. The molecules contained in our dataset happen to
not be good candidates for this since about 82% of the reactants do not match any Bemis-
Murcko scaffolds, which precludes any attempt to cluster molecules or reactions based on
this label. Instead, we use a different procedure with three step to accomplish our goal of
creating more challenging splits. The first step is to create a vector representation of the
reactant complex from each reaction. We use Morgan (ECFP4) fingerprints [69, 70] with
standard settings of 2048 bit hashing and radius of 2 from RDKit [71]. Several fingerprint
representations exist in the literature [210], and future work could explore how the choice of
initial representation impacts the clustering.

Since these Morgan fingerprint vectors are quite sparse (e.g. about 90% of the entries
are zero across all vectors), we use Principal Component Analysis (PCA) to project these
vectors to a more dense subspace. To determine how many principal components to use,
we do a hyperparameter sweep and plot the cumulative explained variance vs. the number
of principal components. We choose to use four components since this explains 80% of the
variance as shown in Figure 6.18. Future work could explore other projection methods, such
as t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation
and Projection (UMAP) [211, 212], or others.
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Figure 6.18. Plot of cumulative explained variance vs. number of principal components.

194



Clustering relies on calculating a distance matrix (or similarity matrix), of each reactant
complex with respect to all other reactant complexes, which inherently scales as 𝒪(𝑁2),
such that 𝑁 is the number of complexes. Projecting the vectors to a smaller dimension does
not change the overall scaling, but it effectively multiplies it by a smaller prefactor since
fewer floating point operations need to be performed to calculate the distance in the reduced
dimensional space e.g. calculating the distance between vectors of only four dimensions is
faster than between vectors with 2048 dimensions.

The final step is to create clusters of similar reactant complexes. We use K-means clus-
tering, though future work could explore other clustering algorithms as well. The algorithm
randomly initializes k centroids and iteratively updates the centroids to minimize inertia–
defined as the within cluster sum-of-squares–which is given by

Inertia =
𝑘∑︁

𝑗=0

𝑛∑︁

𝑖=0

⃦⃦
⃦𝑥(𝑗)

𝑖 − 𝜇𝑗

⃦⃦
⃦
2

(6.20)

such that 𝑘 is the number of clusters, 𝑛 is the number of samples within a cluster, 𝑥(𝑗)
𝑖 is

the 𝑖𝑡ℎ sample within cluster 𝑗, and 𝜇𝑗 is the centroid for cluster 𝑗. The entire process is
repeated several times. To determine the number of clusters to use, we create an elbow plot
shown in Figure 6.19 to approximate the point of diminishing marginal returns (i.e. when
adding additional clusters offers negligible improvement towards lowering the inertia). Here,
we choose twelve clusters.

2 4 6 8 10 12 14 16 18 20
k

0
3000
6000
9000

12000
15000
18000

In
er

tia

Figure 6.19. Elbow plot showing inertia vs. number of clusters (k).

Intuitively, K-means creates more challenging splits than randomly splitting since valida-
tion and testing molecules are deliberately chosen to be different relative to the training set.
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This intuition is confirmed by using Tanimoto (Jaccard) [213, 214] similarity to quantitatively
compare the clusters. We observe the expected trend that the average similarity of reac-
tant complexes within a cluster is higher than the average similarity to reactant complexes
for all other clusters. Finally, we inspect the clusters to confirm that they are chemically
sensible. For example, reactant complexes that involve acrylic acid, radical derivatives of
acrylic acid, methacrylic acid, and/or ethylacrylic acid are grouped together. Similarly, reac-
tions involving isobutene or radical derivatives are grouped together while reactions involving
smaller radicals like AIBN, HO2, MeOO, and OH form a separate cluster. Reactions involv-
ing sytrene or radical derivatives of styrene are grouped together. Thus, this automated
clustering workflow preserves chemical intuition.
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6.6.3 Baseline Models

As described in the main text, we compare the performance of several baseline models from
Scikit-Learn [163] and featurizations when predicting ∆𝐺‡

soln in water. We concatenate the
vector fingerprint of the reactant complex with the difference of the fingerprint between the
reactant and product complex. This is the same approach as the initial featurization in
the condensed graph of reaction representation [159]. We explored using Morgan (ECFP4)
fingerprints [69, 70], Molecular ACCess System (MACCS) [166], Avalon [167], and Atom-
pair [168]. All fingerprints are generated with RDKit [71] using the following functions
respectively:

• GetHashedMorganFingerprint with default arguments of radius=2 and nBits=2048

• MACCSkeys

• GetAvalonFP with the default argument of nBits=512

• GetHashedAtomPairFingerprint with default arguments of nBits=2048, minLength=1,
and maxLength=30.

Since this baseline model will only predict ∆𝐺‡
soln in water, a representation of the solvent is

not needed. The best hyperparameters for the baseline models are chosen via Optuna [165],
which is used to minimize the average root mean squared error (RMSE) on the validation sets.
The values are listed in Tables 6.11, 6.12, 6.13, 6.14, and 6.15. Any other hyperparameters
assumed the default value.

Table 6.11. Optimal hyperparameter values for LinearSVR i.e. support vector regression with a
linear kernel.

Split Type

Featurization Hyperparameter Random K-means

AtomPair C 0.0745 0.0174
Avalon C 0.7757 0.0068

MACCS C 0.9307 0.0086
Morgan C 0.3618 0.1449
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Table 6.12. Optimal hyperparameter values for SVR with an RBF kernel.

Split Type

Featurization Hyperparameter Random K-means

AtomPair C 5.6467 1.9803
Avalon C 13.841 1.6795

MACCS C 4.7346 3.5793
Morgan C 8.2168 3.8101

Table 6.13. Optimal hyperparameter values for random forest (RF).

Split Type

Featurization Hyperparameter Random K-means

AtomPair
max_depth 15 15

n_estimators 125 250

Avalon
max_depth 15 15

n_estimators 300 75

MACCS
max_depth 15 15

n_estimators 125 225

Morgan
max_depth 15 15

n_estimators 125 150
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Table 6.14. Optimal hyperparameter values for extreme gradient boosting (XGB).

Split Type

Featurization Hyperparameter Random K-means

AtomPair

gamma 0 0
learning_rate 0.0901 0.0973

max_depth 11 12
min_child_weight 3 1

n_estimators 140 90
reg_alpha 2 5
reg_lambda 0 2

Avalon

gamma 3 0
learning_rate 0.0638 0.0847

max_depth 15 9
min_child_weight 5 4

n_estimators 120 120
reg_alpha 4 0
reg_lambda 5 1

MACCS

gamma 0 2
learning_rate 0.0911 0.0351

max_depth 15 12
min_child_weight 5 2

n_estimators 200 200
reg_alpha 4 4
reg_lambda 0 3

Morgan

gamma 4 0
learning_rate 0.0851 0.0948

max_depth 14 10
min_child_weight 4 3

n_estimators 120 160
reg_alpha 0 3
reg_lambda 4 5
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Table 6.15. Optimal hyperparameter values for multi-layer perceptron (MLP).

Split Type

Featurization Hyperparameter Random K-means

AtomPair
num_layers 0.0005948 0.000672
layer_size 500 500

alpha 3 3

Avalon
num_layers 0.00049499 0.002489
layer_size 400 450

alpha 4 2

MACCS
num_layers 0.00157 0.001128
layer_size 400 400

alpha 3 3

Morgan
num_layers 0.0008288 0.00209
layer_size 200 350

alpha 3 3
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6.6.4 Graph Network Description

A detailed description of the D-MPNN architecture is provided in Section 2.2.5. We use
the Noam learning rate scheduler from Vaswani et al. [215] during training, which starts by
linearly increasing the learning rate from the initial to the maximum value over a specified
number of warm-up epochs. Then the learning rate is exponentially decreased to the final
value over the remaining epochs.

We use the provided hyperparameter search code from Chemprop [54] to determine the
hyperparameters controlling the model architecture and fitting procedure. Only a subset of
the data is used during the hyperparameter search. The optimal hyperparameters used by
D-MPNN-1 and D-MPNN-2 are summarized in Table 6.16 and Table 6.17 respectively. As
described in the main text, the D-MPNN-1 notation indicates that only one graph network is
used while D-MPNN-2 indicates that two graph networks are used to account of the different
solvents. Hyperparameters not shown in the tables used the default values from Chemprop.

Table 6.16. Hyperparameters the define the architecture and training for D-MPNN-1. The same
values are used when training on both random reaction and K-Means splits.

Hyperparameter Value

MPNN hidden size 300
MPNN depth 3

Activation function LeakyReLU
Aggregation sum

Aggregation norm 40
Epochs 65

Batch size 16
Initial learning rate 1× 10−4

Maximum learning rate 1× 10−3

Final learning rate 1× 10−5

Warm-up epochs 6
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Table 6.17. Hyperparameters the define the architecture and training for D-MPNN-2. The same
values are used when training on both random reaction and K-Means splits.

Hyperparameter Value

MPNN hidden size 300
MPNN depth 3

Activation function LeakyReLU
Aggregation sum

Aggregation norm 40
Epochs 65

Batch size 16
Initial learning rate 1× 10−4

Maximum learning rate 2× 10−3

Final learning rate 1× 10−5

Warm-up epochs 6

6.6.5 Comparison of Compute Resources

The following tests were run to estimate the computational speed-up offered by our ML
model. We used the model to make predictions for 600 reactions using one CPU. This
took 18 seconds, i.e., ∼0.03 seconds per reaction. In contrast, a geometry optimization and
frequency calculation using density functional theory commonly takes about 1-2 hours per
molecule when parallelized across 8-12 cores. Dividing the two values shows that our ML
model can estimate kinetic parameters approximately 1× 105 times faster than using quan-
tum chemistry calculations. The times reported here may vary depending on the available
compute hardware.
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Chapter 7

Towards a Foundation Model to Predict

Kinetic Properties

This work is in preparation as Spiekermann, K. A.; Pang, H. W.; Dong, X.; Wu, H.; Pat-
tanaik, L.; Green, W. H. “Enumerating Reaction Space for Small Molecule Chemistry:
Towards a Foundation Model to Predict Kinetic Properties” 2023. Hao-Wei Pang, Xi-
aorui Dong, and Haoyang Wu helped predict values via RMG. Lagnajit Pattanaik as-
sisted with analyzing model results. All code and model weights are freely available at
https://github.com/kspieks/NLP_barriers/tree/main as well as https://github.com/kspieks
/chemprop/tree/foundation_rxn_model.

7.1 Introduction

Quantitative estimates for kinetic properties, namely reaction barrier heights and reaction
energies, are essential for developing kinetic mechanisms, predicting reaction outcomes, and
optimizing chemical processes. However, obtaining kinetic parameters is not trivial. The
field has historically relied on regressing these parameters from a relatively narrow set of
experimental measurements. More recently, ab initio methods, such as quantum chemistry,
have become a popular alternative since this approach should be cheaper, faster, and safer
in comparison to doing experiments. Still, quantum chemistry calculations exhibit high
computational cost that scales anywhere from 𝒪(𝑁4) for density functional methods with
exchange correlation, such as B3LYP [1–4], to 𝒪(𝑁7) for highly accurate CCSD(T) methods
[5, 6], such that 𝑁 is the number of basis functions.

This cost becomes particularly prohibitive when considering the vastness of chemical
space. Modern kinetic mechanisms must often consider hundreds of thousands of possible
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reactions [7]. More broadly, even when considering only organic species comprised of the
elements H, C, N, O, S, and halogens, there exist at least 166 billion organic molecules with
up to 17 heavy atoms [8]; this size range is still rather limited as many modern medicines and
materials contain much larger species. The scope of possible reactions is intuitively much
larger since each molecule can contain multiple reaction sites and participate in multiple
reactions, leading to a combinatorial explosion. For example, naively listing all pairwise
combinations (e.g., potential bimolecular reactions) in this set is equivalent to 166 × 109

choose 2, which is 1.37× 1022. It is imperative to develop tools that can handle numbers of
this magnitude in order to achieve the grand vision of quantitative predictive chemistry.

The need for fast estimators has created a ripe opportunity for machine learning (ML).
Quantitative structure-activity or structure-property relationships (QSAR or QSPR) have
a long history of utilizing traditional ML methods that operate on low-dimensional feature
vectors to quickly make predictions [9–11]. Perhaps the most popular example is Benson’s
group additivity approach to estimate species thermochemistry [12–15], though a myriad of
QSAR and QSPR papers have been published over the past decades. Today, more modern
techniques are emerging that often outperform traditional ML approaches. For instance, the
transformer architecture [16] has revolutionized sequence-to-sequence modeling, and fields
such as language processing have rapidly shifted towards creating foundation models [17],
which typically refers to models trained on a large amounts of unlabeled data that can
be fine-tuned for many specific applications, with one example being the Generative Pre-
trained Transformer (GPT) series [18–21]. However, these more complex model architectures
are data hungry (e.g., requiring billions of examples), which has proven to be a significant
hurdle within the field of chemistry. Although certain chemical tasks have utilized the
transformer [22–27], they have yet to have a similarly profound impact. Many published
models for predicting kinetic properties have very limited applicability since they are trained
using datasets that contain just one reaction class [28–36]. Thus, the main obstacle for
quantitative predictive chemistry is the lack of publicly available data in comparison to
other fields.

Although several datasets have been published for molecular property prediction [37–53],
there are comparatively fewer reaction datasets with atom-mapped SMILES [54–57] and high
quality datasets are especially rare [58]. One example comes from von Rudorff et al. [54], who
presents approximately 4,500 reactions belonging to the E2 and SN2 templates. Although
this dataset has provided an opportunity to benchmark various modeling approaches, this
dataset is fairly narrow in focus; it contains just two reaction templates, all reactions start
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from a substituted ethyl-based scaffold, and only four nucleophiles are present. To generate
datasets that contain more reaction diversity, the field has also utilized more exhaustive
approaches that enumerate many possible bond forming and breaking steps with only a few
constraints. Examples come from Grambow et al. [55], Zhao et al. [56], and Chapter 6, all of
which use the single ended growing string method (GSM) [59] to search for TS geometries.
This exhaustive enumeration inherently leads to a very diverse set of reaction templates.
Despite the success with using the GSM, it can sometimes identify TSs for relatively high-
barrier reactions whose transformations may not be intuitive to chemists and whose high-
barriers often preclude them from being added to kinetic mechanisms in the first place. In
some cases, it may be beneficial to focus on templates that generally have lower barriers and
whose transformations have already proven important for modeling radical chemistry.

Here, we seek to address this paucity of reaction data by providing two new datasets for
the field. The first is RMG-DB-11, which enumerates 750 million atom-mapped reaction
SMILES [60] that belong to 22 elementary reaction templates from the Reaction Mechanism
Generator (RMG) database [61]. These transformations have been selected since they are
relevant for radical gas-phase chemistry. This dataset should serve as a reaction equivalent to
the popular GDB11, which enumerates organic molecules with up to 11 heavy atoms [62, 63].
We believe this will be valuable for various pre-training tasks within ML and push the field
towards creating foundation models. It also provides a starting point for identifying transi-
tion state (TS) geometries to eventually calculate kinetic parameters at scale. The second is
RDB7-CCSD(T)-F12, which builds upon prior work from Grambow [64] and contains 1,143
radical reactions calculated at CCSD(T)-F12a/cc-pVDZ-F12//𝜔B97X-D3/def2-TZVP. The
explicitly correlated coupled-cluster method is known to be very accurate [5, 65–69] so this
data should be useful for radical gas-phase chemistry. Finally, we use the new RMG-DB-11
to pre-train both a graph network and language model, which are then fine-tuned on RDB7-
CCSD(T)-F12 and on another published dataset. These new datasets should be valuable to
the kinetics community. All data is free and publicly accessible, and we are excited about
the future that data-driven techniques can enable.

7.2 Methods

7.2.1 Dataset Generation

A total of three datasets are used in this work, which we refer to as RMG-DB-11, RDB7-
CCSD(T)-F12, and RDB19-M06-2X. The first two are created as novel contributions from
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this work while the latter has already been published in the literature. All reactions con-
tain neutrally charged species and atom-mapped reaction SMILES. Our main contribution
is RMG-DB-11, which contains 750 million reactions with up to 11 heavy atoms that match
templates from the RMG database. This dataset is useful for defining a subset of reac-
tion space and can be used to pre-train ML models. RDB7-CCSD(T)-F12 contains radical
reactions with up to 7 heavy atoms whose barrier heights and reaction energies are calcu-
lated using the CCSD(T)-F12 method. This dataset is used to fine-tune pre-trained models.
RDB19-M06-2X contains radical reactions with up to 19 heavy atoms whose kinetic proper-
ties are calculated using the M06-2X method. It comes from Chapter 6 and is used here as
another fine-tuning task. The overall workflow is shown in Figure 7.1.

Large scale 
dataset generation

Pre-train both a
LLM and GNN

Fine-tune using 
accurate barrier 

height data

Figure 7.1. Schematic outlining the high-level workflow in this work. First, we generate a large
dataset of reactions that belong to RMG templates. This new dataset is used to pre-train both a
large language model (LLM) and graph neural network (GNN), each of which is fine-tuned using
two different quantum chemistry datasets with highly accurate barrier height values.

7.2.1.1 RMG-DB-11

Dataset generation starts from GDB-11 [62, 63], which enumerates 26.4 million small, or-
ganic, stable molecules containing up to 11 heavy atoms and comprised of the elements H,
C, N, O, and F. Analysis of the chemical diversity of GDB11 is presented in the original pa-
pers. We downsample this dataset by removing all Fluorine-containing species, which leaves
approximately 17 million starting molecules. We then apply several reaction templates from
RMG to exhaustively generate a list of potential reactions and their corresponding atom-
mapped reaction SMILES. Table 7.1 provides the list of 22 elementary reaction templates
that define the transformation from the reactant to the product. Dataset validation includes
ensuring that all SMILES can be sanitized via RDKit [70] without errors i.e., the SMILES
satisfy basic valence rules. Each SMILES is also canonicalized with RDKit. All work is done
using the GitHub version commit string of e3d0617fbcc43bdf58c770def18baef0dacb7bf0 on
the main branch of RMG-Py and bd1319070f83447e0951d583b4e3a4b770d67ce5 on the main
branch of RMG-database. This dataset is accessible on Zenodo [71].
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Table 7.1. RMG reaction templates used to generate the RMG-DB-11 dataset. “R” refers to part
of the molecule not directly participating in the reaction.

RMG Reaction Family Template

1,2_Insertion_Carbene
1CH2

2R 3R+ 2R 1C 3R

H H

1,2_Insertion_CO
2R 3R+ 2R 1C 3R

1C 4O

4O

1,3_Insertion_CO2
3R 4R1C O + 3R 1C

O

2O 2R
2O

1,3_Insertion_ROR 1R 2R4O R + 3R 1R 2R 4O3R R

1,3_NH3_Elimination
+3R 2R

4H 1NH2
3R 2R 1NH2

4H

1,3_Sigmatropic_Rearrangement 3R 4R2R1R 2R 3R1R4R

1,4_Cyclic_Birad_Scission
1R 4R2R 3R

1R 4R2R 3R

1+2_Cycloaddition 1R 2R 3R+

1R 2R

3R

2+2_Cycloaddition
1C

2R

3R

4R

1C

2R

3R

4R

+

6_Membered_Central_C-
C_Shift

1C 2C 3C

4C5C6C

1C 2C 3C

4C5C6C

Birad_recombination
2
R1

R
2
R1

R

Cyclopentadiene_Scission
5C

4C 3C

2C

1C

2C 3C 4C 5C 1C

Diels_Alder_Addition

4R

5R

6R

2R

1R

3R

4R

5R

6R

2R

1R

3R

+
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Intra_2+2_Cycloaddition_Cd

1C

2C

3C

4C

1C

2C 4C

3C

Intra_Diels_alder_monocyclic
1C

6C

5C

4C

3C

2C

4C3C2C1C 5C 6C

Intra_Disproportionation 3R 2R 4H
1R

3R 2R1R4H

Intra_ene_reaction

2C

1C
5C

4C

3C

6H

2C

1C
5C

4C

3C6H

Intra_Retro_Diels_alder_bicyclic

1R

6R

5R

4R

3R

2R

4R 5R3R 6R2R1R

Ketoenol 3O 4H2R1R 2R 3O1R4H

R_Recombination
2
R 1

R
2
R

1
R +

Retroene

2R

1R

6H

5R

4R

3R

2R

1R

6H

5R

4R

3R

+

Singlet_Carbene_Intra_Disprop
ortionation

1C 2C 3H
1C 2C3H

Pre-training on all 750 million reactions (1.5 billion if including reverse reactions), would
require substantial compute resources. Thus, we create a downsampled version of RMG-DB-
11. The first filtering criteria is to only use reactions that contain at most 8 heavy atoms.
However, this still leaves approximately 3 million reactions when considering the forward and
reverse direction, so the second filtering criteria only allows a reaction template to be used
once per starting SMILES from GDB8. If a given RMG template matches multiple reaction
sites on a molecule, one is chosen at random and the remaining are discarded when creating
this subset. This step produces a pre-training set that has more even representation of the
reaction templates than is shown in Figure 7.3 for the entire dataset. The downsampled
set contains approximately 800,000 reactions when accounting for the forward and reverse
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directions. This unlabeled data is used to pre-train a language model, though future work
could explore using more data for pre-training.

Although this same unsupervised approach could be used to pre-train a graph network
[72], here we use supervised pre-training. To create labels for the data, we use RMG to
estimate the activation energy (𝐸𝑎) and the enthalpy of reaction (∆Hrxn) at 0 K for each
reaction. The former is estimated using RMG’s decision trees while the latter is estimated
via linear group additivity. However, some species contain groups which are not stored in
the RMG database, so this subset is omitted since an estimate could not be obtained. The
final regression pre-training set contains just over 700,000 reactions when accounting for the
forward and reverse directions. Note that 𝐸𝑎 is simply a fitting parameter from an Arrhenius
expression that does not offer the same physical interpretation as the reaction barrier height
(∆E0), which is defined as the difference in energy–electronic energy plus corrected zero point
energy–of a reaction’s TS and reactants at 0 K in the gas phase. However, our hypothesis
is that the correlation between RMG’s estimated 𝐸𝑎 and the calculated ∆E0 will be close
enough to still be useful as a regression pre-training task.

7.2.1.2 RDB7-CCSD(T)-F12

The original source of this dataset is around 1300 radical reactions identified by Colin Gram-
bow [64] and optimized at 𝜔B97X-D3/def2-TZVP [73, 74] using Q-Chem [75]. Similar to
previous work from Grambow et al. [55, 76], the TS geometries were identified via the single
ended growing string method [59] from a given set of reactants. All reactions start from
one species and produce one, two, or three products. Similar to in ref. [58], we first clean
the SMILES by fixing a few reactions that initially had charge imbalances due to occasional
errors from using Open Babel [77] to perceive connectivity and generate a SMILES from
the 3D coordinates. Since all reactions with multiple products contained one van der Waals
product complex, we separate the product complexes into individual product geometries and
recalculate the optimization and frequency at 𝜔B97X-D3/def2-TZVP. Finally, we refine the
single point energies using the explicitly correlated coupled cluster method from Molpro [78].
The R-CCSD(T)-F12 method is used for closed shell species while RO-CCSD(T) is used for
radical species to avoid any spin contamination. All single-point energy calculations use the
cc-pVDZ-F12 basis set. Although the energy of an individual species from an unrestricted
calculation will be less than or equal to the energy from a restricted calculation, these differ-
ences should mostly cancel when doing the subtraction to obtain a barrier height or reaction
enthalpy. Additional analysis is shown in the Appendix. Some species failed during these
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various steps so our final dataset contains 1143 reactions with cleaned atom-mapped reaction
SMILES.

Zero-point energies (ZPEs) from the harmonic vibrational analysis are added to the
electronic energy for the reactant, product, and TS. For each species, a scaling factor is
applied to the computed harmonic frequencies used to compute the ZPE. The scaling factor
for 𝜔B97X-D3/def2-TZVP was previously calculated as 0.984 from ref. [58] by using the
procedure described by Alecu et al. [79] The regression targets used during fine-tuning are the
barrier height (∆E0) and reaction energy (∆H0). The former is determined by computing the
difference between the ZPE-corrected TS and reactant energies while the latter is calculated
based on the difference of the ZPE-corrected product and reactant energies. All data is
accessible on Zenodo [80].

7.2.1.3 RDB19-M06-2X

This dataset comes from Chapter 6. Briefly, this work also uses the growing string method
[59] to exhaustively enumerate nearly 6,000 elementary reactions calculated at the M06-
2X/def2-QZVP//B3LYP-D3(BJ)/def2-TZVP level of theory. While Chapter 6 focuses on
predicting kinetic values in solution, here we fine-tune the models to predict the Gibbs free
energy of activation and of reaction in the gas-phase defined as:

∆𝐺‡ = 𝐺TS −
𝑁 reactants∑︁

𝑖=1

𝐺R𝑖 (7.1)

∆𝐺rxn =

𝑁 products∑︁

𝑗=1

𝐺P𝑗 −
𝑁 reactants∑︁

𝑖=1

𝐺R𝑖 (7.2)

Unscaled harmonic frequencies have been used for the ZPE and thermal corrections. A
thorough analysis of this dataset is presented in Chapter 6.

7.2.2 Machine Learning Models

7.2.2.1 D-MPNN

When using data-driven methods to model chemistry, graph neural networks (GNNs) are a
natural choice [81]. Molecules can be modeled as graphs such that atoms are graph nodes
and bonds are graph edges. Each atom and bond is assigned an initial feature vector whose
representation is updated with information from neighboring nodes and/or edges to create
a learned molecular representation that is passed to a standard feed forward network (FFN)
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to predict the property of interest. This type of model is advantageous since the input only
requires the atom-mapped SMILES of the reactant(s) and product(s), which are converted
to molecular graphs using RDKit [70]. No expensive quantum chemistry calculations are
required, which makes this model amenable to high-throughput.

Here, we adapt the directed message passing neural network (D-MPNN) developed by
Yang et al. [82, 83], which is a type of GNN that passes messages across directed bonds. To
encode the reaction, we use the established condensed graph of reaction (CGR) represen-
tation as the input [84–87]. The CGR creates a superposition of the reactant and product
graphs by concatenating the features of the reactant with the difference of the feature vec-
tors between the reactant and product and thus resembles a 2D-structure of the reaction’s
TS. Figure 7.2 shows a schematic of the model architecture, which builds a learned reac-
tion embedding by aggregating atomic representations after the message passing phase. The
Appendix lists the hyperparameters used when training the model. Our modified code and
final weights are freely available on GitHub [88] under the foundation_rxn_model branch
of the forked repository.

Condensed Graph of Reaction
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Products
Reaction

Embedding

+

GNN

Atomic Representations
R P-R

R P-R
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Charge
Hybridization

Atom Features Bond Features

Bond order
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Figure 7.2. Schematic of the machine learning model architecture. Here, the GNN uses the
directed message passing scheme introduced by Yang et al. [82] The condensed graph of reaction
(CGR) representation [84, 87] is used to predict the reaction’s barrier height and corrected enthalpy.
The CGR concatenates the featurization of the reactant(s) with the difference of the featurization
between the reactant(s) and product(s). A subset of the initial atom and bond features are shown
for simplicity. The superscripts indicate the arbitrary atom-map numbers. Colors are for qualitative
purposes only.

7.2.2.2 ALBERT

We also use the ALBERT model architecture [89] from the popular Huggingface package
[90]. In contrast to its precedent BERT [16], ALBERT shares weights across layers, resulting
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in smaller models that should be more practical to incorporate into prediction workflows.
Similar to the D-MPNN, ALBERT only requires a SMILES string as input. However, the
language model does not require atom-mapped SMILES as input, which may offer advantages
in some cases. Still, applying reaction templates, such as those from RMG, preserves atom-
mapping and recent work [91] should make atom-mapped SMILES easy to obtain even if the
template is unknown so this likely presents only a slight benefit for language models.

Unlike graph networks which first convert the SMILES into an attributed graph, the
transformer architecture operates directly on the SMILES string as a sequence of tokens. To
convert a SMILES string into tokens, we use a regular expression introduced by Schwaller
et al. [92] that converts each character (element or bond) into a token. The total vocab size
is only 72. Example tokens include C, N, O, (, and ). The ALBERT model has 6 layers,
8 attention heads, embedding size of 128, hidden size of 512, and intermediate size of 512.
The hyperparameters are listed in the Supporting Information. Our code and model weights
are freely available on GitHub [93].

The model is pre-trained using standard masked language modeling (MLM) using the
canonicalized SMILES from the downsampled version of RMG-DB-11. This approach ran-
domly masks 15% of the input tokens. The model must then predict the true token, thus
learning the vocabulary of the SMILES representation. However, SMILES is a non-unique
identifier as there are often many SMILES strings that correspond to the same molecule.
Future work could explore data augmentation, which has been shown to slightly improve
accuracy for reaction yield predictions [94, 95].

7.2.2.3 Baseline Models

We also include simpler models from Scikit-Learn [96] as baselines, such as random forest
(RF) and support vector regression (SVR) using a linear kernel. The best hyperparameters
are chosen via Optuna [97] and are listed in the Supporting Information. Since these methods
operate on vector inputs, we use Morgan (ECFP) fingerprints [98] with 2048 bit hashing and
radius of 2 as calculated using RDKit [70]. To represent the reaction, we concatenate the
fingerprint of the reactant complex with the difference of the fingerprint between the reactant
and product complex; this is the same approach as the initial featurization in the CGR. The
final baseline simply predicts the mean of the training target values for all test reactions [99].
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7.2.2.4 Data Splits

Since data-driven methods typically benefit from additional training points, all data splits
include reactions from the forward and reverse direction. Splitting is done based on the
forward reactions; the corresponding reverse reaction is then added to the same set. Other-
wise, the same TS would appear in both the training and testing set, which would cause the
testing error to not reflect the true performance when evaluating a new reaction [87, 100].

The pre-training sets are randomly partitioned using a 94:3:3 split (i.e., 94% of the
data is assigned to training, 3% to validation, and 3% to testing). The fine-tuning data
is partitioned using an 85:5:10 split. For the regression tasks, the values for the reverse
reactions are obtained using the following expressions:

∆E0,reverse = ∆E0,forward −∆Hforward (7.3)

∆H0,reverse = −∆H0,forward (7.4)

We create both interpolative splits and extrapolative splits based on the procedure in the
astartes software package [101] so future users are informed of the likely performance in
these different settings. Splitting is done based on the forward reactions; the corresponding
reverse reaction is then added to the same set. Otherwise, the same transition state would
appear in both the training and testing set, which would cause the testing error to not reflect
the true performance when evaluating a new reaction [87, 100]. To measure interpolation,
we use random splitting to assign 85% of the data to training, 5% to validation, and 10% to
testing. To measure extrapolation, such as making predictions for new types of molecules,
we cluster the data based on reactant substructure. We first create Morgan fingerprints
[98, 102] with 2048 bit hashing and radius of 2 for each reactant complex from the forward
reactions using RDKit [70]. We next use K-Means clustering to create 15 clusters. Finally,
we assign 13 clusters to the training set, one cluster to the validation set, and one cluster to
the testing set to closely approximate an 85:5:10 split.

For fine-tuning, we create both interpolative splits and extrapolative splits based on the
procedure in the astartes software package [101] so future users are informed of the likely
performance in these different settings. To measure interpolation, we use random splitting.
To measure extrapolation, such as making predictions for new types of molecules, we cluster
the data based on reactant substructure. We first create Morgan fingerprints [98, 102] with
2048 bit hashing and radius of 2 for each reactant complex from the forward reactions using
RDKit [70]. For RDB7-CCSD(T)-F12, we use K-Means clustering to create 15 clusters.

229



Finally, we assign 13 clusters to the training set, one cluster to the validation set, and one
cluster to the testing set to closely approximate an 85:5:10 split. For RDB19-M06-2X, we use
the exact same splits as published in Chapter 6 which created 12 clusters and then assigned
ten clusters to the training set, one cluster to the validation set, and one cluster to the testing
set to closely approximate an 85:5:10 split.

7.3 Results & Discussion

7.3.1 Dataset Statistics

7.3.1.1 RMG-DB-11

All data is free and publicly accessible on Zenodo [71]. A summary of the number of generated
reactions grouped by the number of heavy atoms is provided in Table 7.2. The combinatorial
explosion is evident. Even starting from relatively small species quickly results in millions
of reactions. Dividing the number of reactions by the number of starting species shows the
expected trend that larger molecules have more possible reaction sites and thus more total
reactions can be generated; we anticipate that trillions of reactions could be enumerated by
applying RMG templates to the 166 billion species from GDB17 [8]. The large magnitude
from Table 7.2 is impressive considering that the scope of this dataset is still relatively limited.
For example, all species are neutrally charged and contain up to only 11 heavy atoms that
are restricted to the elements C, N, and O. Furthermore, all reactions are unimolecular from
at least one direction. The distribution of RMG reaction templates is shown in Figure 7.3.
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Table 7.2. Summary of the number of total elementary reactions enumerated from the correspond-
ing number of starting species. Results are grouped by the number of heavy atoms.

Num. of
Heavy Atoms

Num. of Starting
Species Num. of Reactions

Num. Reactions /
Num. Starting

Species
1 3 4 1.3

2 6 17 2.8

3 17 89 5.2

4 64 475 7.4

5 276 3,244 11.8

6 1,409 22,750 16.1

7 7,846 169,500 21.6

8 48,222 1,305,198 27.1

9 312,827 10,266,077 32.8

10 2,132,245 82,304,042 38.6

11 14,648,825 655,009,337 44.7

Total 17,151,740 749,080,733 43.7
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Figure 7.3. Distribution of RMG reaction families present in our RMG-DB-11 dataset.

7.3.1.2 RDB7-CCSD(T)-F12

Our RDB7-CCSD(T)-F12 dataset contains 1,143 reactions with cleaned atom-mapped re-
action SMILES. All data is free and publicly accessible on Zenodo [80]. 657 reactions (i.e.
∼57%) do not match any RMG templates. This is an expected result since the TS geometries
were identified by Grambow [64] via the single ended growing string method [59], which is
known to give large reaction diversity that often extends beyond the hand-curated list of tem-
plates from RMG. For example, of the approximately 12,000 reactions originally published
by Grambow et al. [55], whose energies were further refined by Spiekermann et al. [58], only
about 12% of the reactions match templates from the RMG database. 43% of reactions in
RDB7-CCSD(T)-F12 match RMG templates; this higher percentage is expected since RMG,
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and the corresponding reaction templates, primarily focuses on radical gas-phase chemistry.
The distribution of reaction templates is shown in Figure 7.4. Intra hydrogen migration,
in which the radical reactant abstracts a hydrogen from itself, is the most common RMG
template. R-addition multiple bond is the next most common. Table 7.3 shows the reaction
templates.
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Figure 7.4. Distribution of RMG reaction families present in the RDB7-CCSD(T)-F12 dataset.

Table 7.3. RMG reaction templates present in the RDB7-CCSD(T)-F12 dataset. “R” refers to
part of the molecule not directly participating in the reaction.

RMG Reaction Family Template

1,2_Insertion_CO 2R 3R+ 2R 1C 3R
1C 4O

4O

1,2_shiftC

1C 2C 3C

H

H

H

1C H

H

3C

H

2C
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1,3_Insertion_ROR 1R 2R4O R + 3R 1R 2R 4O3R R

1,3_NH3_Elimination +3R 2R
4H 1NH2

3R 2R 1NH2

4H

1,3_Sigmatropic_Rearrangement 3R 4R2R1R 2R 3R1R4R

Intra_2+2_Cycloaddition_Cd

1C

2C

3C

4C

1C

2C 4C

3C

Intra_R_Add_Endocyclic

2R1R
3R

2R1R
3R

Intra_R_Add_ExoTetCyclic

1R 2R 3R
1R 2R 3R+

Intra_R_Add_Exocyclic

2R1R
3R

2R1R
3R

Intra_ene_reaction

2C

1C
5C

4C

3C

6H

2C

1C
5C

4C

3C6H

Intra_H_migration
3H 2R 1R

2R 1R 3H

Ketoenol 3O 4H2R1R 2R 3O1R4H

R_Addition_COm 2R
1C 3O 2R 1C

3O

+

R_Addition_MultipleBond
2R 1R

3R 1R
3R+ 2R

As shown in Figure 7.5a, the data generally follows the expected Evans-Polanyi rela-
tionship [103] in which the barrier height is positively correlated with the reaction energy.
Figure 7.5b shows that the barrier heights calculated at density functional theory by Gram-
bow [64] have a slight systematic offset relative to the explicitly correlated coupled cluster
values. On average, the bias is relatively small as the difference is only a couple of kcal mol−1.
A few reactions show larger differences between the two methods; further investigation into
these reactions could present an area of future research.
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a) b)

Figure 7.5. Dataset statistics. Panel a) shows the correlation between ΔE0 and ΔH0 for the
CCSD(T)-F12 values. Panel b) shows the difference in barrier height (ΔE0) calculated at CCSD(T)-
F12a/cc-pVDZ-F12//𝜔B97X-D3/def2-TZVP and 𝜔B97X-D3/def2-TZVP

7.3.2 Model Results

7.3.2.1 RDB7-CCSD(T)-F12

As the main contribution of this work is the RMG-DB-11 and RDB7-CCSD(T)-F12 datasets,
only a preliminary study is done with machine learning. As expected, the baseline model
which simply predicts the mean value of the training set gives poor performance with a
coefficient of determination (𝑅2) near 0. As seen in Table 7.4, the D-MPNN does better
than the SVR and RF, which is consistent with many published results that empirically
demonstrate the learned representations from graph networks often outperform traditional
ML models operating on fixed fingerprint representations [22, 23, 30, 35, 36, 44, 52, 82, 87,
104–132], particularly when predicting kinetic properties.

Pre-training the D-MPNN only gives slightly improvements when fine-tuning with ran-
dom reaction splits. One interpretation of this is that random splits present a relatively
simple learning task such that the benefit of pre-training is small. In contrast, pre-training
the D-MPNN substantially improves performance on the more challenging K-Means splits.
The mean absolute error (MAE) and root-mean squared error (RMSE) are much lower com-
pared to directly training the D-MPNN on RDB7-CCSD(T)-F12 without pre-training. This
is a promising result, especially when considering that only 4% of the reactions in the RDB7-
CCSD(T)-F12 fine-tuning set match the RMG reaction templates present in the RMG-DB-11
pre-training set. Furthermore, the pre-training regression target included an 𝐸𝑎 from an Ar-
rhenius expression estimated by RMG, which does not capture the same physical significance
as the ∆E0 in the fine-tuning set, which was calculated via quantum chemistry.
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Table 7.4 also shows that the D-MPNN outperforms the ALBERT model. The outperfor-
mance is particularly impressive when considering that the D-MPNN has only about 330,000
parameters, about six times fewer than the nearly two million parameters in our ALBERT
model. The D-MPNN’s smaller size leads to faster training times and more reasonable com-
putational requirements. Thus, these specific results indicate that representing molecules
using a physically-motivated graph structure provides better barrier height predictions in
comparison to representing molecules as a sequence of tokens. However, it is possible that
additional pre-training could improve performance, and in general there are examples of
language models succeeding for certain chemistry-related tasks [133–140].

Still, it is equally important to emphasize that the MAE and RMSE values from all
models are too large to be useful. The results from Table 7.4 indicate that these radical
reactions present a challenging benchmark for ML models, and future work should continue
trying to improve predictions on this set.

Table 7.4. Testing errors (mean ± 1 standard deviation from the five folds) from various models
for predicting ΔE0 from RDB7-CCSD(T)-F12. MAE and RMSE have units of kcal mol−1.

Model Split MAE RMSE 𝑅2

Baseline (mean)
Random 21.37 ± 1.58 26.69 ± 1.70 0.00 ± 0.00
K-Means 22.50 ± 2.37 27.90 ± 2.97 -0.01 ± 0.01

SVR (Linear)
Random 16.32 ± 0.83 21.35 ± 1.23 0.36 ± 0.03
K-Means 18.82 ± 1.97 24.07 ± 2.60 0.25 ± 0.04

Random Forest
Random 16.93 ± 1.46 21.72 ± 1.79 0.34 ± 0.03
K-Means 20.03 ± 2.49 25.33 ± 3.39 0.17 ± 0.08

D-MPNN Random 11.05 ± 1.04 15.37 ± 1.46 0.66 ± 0.07
without pretraining K-Means 14.50 ± 1.84 18.75 ± 2.46 0.53 ± 0.13

D-MPNN Random 10.72 ± 0.88 14.95 ± 1.35 0.68 ± 0.06
with pre-training K-Means 12.18 ± 1.83 16.37 ± 2.31 0.65 ± 0.08

ALBERT Random 14.59 ± 0.90 19.67 ± 1.39 0.45 ± 0.05
with pre-training K-Means 16.48 ± 1.52 21.79 ± 2.05 0.38 ± 0.08
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7.3.2.2 RDB19-M06-2X

Similar results are observed when fine-tuning on RDB19-M06-2X as with RDB7-CCSD(T)-
F12 above. As seen in Table 7.5, the D-MPNN does much better than the various baseline
models and again outperforms the ALBERT model. For this dataset, pre-training on the
regression subset of RMG-DB-11 offers no benefit when examining results from random
reaction splits. However, like before, pre-training does improve performance on the more
challenging K-Means splits.

The D-MPNN results are promising for several reasons. First, the species in the fine-
tuning set are approximately twice as large as those in the pre-training set. Other papers
have identified molar mass-based splits as more challenging [40] so it is encouraging to see
pre-training improve performance when extrapolating to reactions containing larger species.
Second, only 0.1% of the reactions in the RDB19-M06-2X fine-tuning set match the RMG
reaction templates present in the RMG-DB-11 pre-training set i.e., pre-training on general
radical chemistry appears quite helpful even when extrapolating to entirely new reaction
templates. Additionally, 66% of the reactions in RDB19-M06-2X are bimolecular in both
directions, while all reactions from RMG-DB-11 are unimolecular from at least one direction.
Thus, the benefit of pre-training on our new set of radical reactions is evident.
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Table 7.5. Testing errors (mean ± 1 standard deviation from the five folds) from various models
for predicting Δ𝐺‡ from RDB19-M06-2X. MAE and RMSE have units of kcal mol−1.

Model Split MAE RMSE 𝑅2

Baseline (mean)
Random 17.67 ± 0.30 20.78 ± 0.26 0.00 ± 0.00
K-Means 19.75 ± 2.21 22.70 ± 2.12 -0.11 ± 0.11

SVR (Linear)
Random 4.30 ± 0.23 8.06 ± 0.67 0.85 ± 0.03
K-Means 5.88 ± 2.90 9.97 ± 4.02 0.75 ± 0.22

Random Forest
Random 7.33 ± 0.15 10.52 ± 0.23 0.74 ± 0.01
K-Means 10.34 ± 1.45 13.69 ± 1.75 0.60 ± 0.09

D-MPNN Random 2.52 ± 0.07 5.09 ± 0.35 0.94 ± 0.01
without pretraining K-Means 3.15 ± 0.36 5.68 ± 0.96 0.93 ± 0.02

D-MPNN Random 2.57 ± 0.10 5.14 ± 0.27 0.94 ± 0.01
with pre-training K-Means 2.76 ± 0.42 5.44 ± 0.96 0.93 ± 0.02

ALBERT Random 3.27 ± 0.52 6.58 ± 0.70 0.90 ± 0.02
with pre-training K-Means 3.96 ± 0.93 7.42 ± 1.56 0.88 ± 0.05

7.4 Conclusions and Future Directions

Quickly obtaining reliable estimates for kinetic properties remains one of the grand challenges
in quantitative predictive chemistry. To date, the lack of suitable data has been the main
limitation towards accomplishing this aim. While many previous works have trained data-
driven estimators on very specific reaction templates [28–36], the goal of this work is to push
the fields towards creating more generalizable models.

To accomplish this, we report two new datasets. The first is RMG-DB-11, which enumer-
ates 750 million atom-mapped reaction SMILES. This dataset acts as a first step towards
defining an enormous reaction space and should serve as a reaction equivalent to the popular
GDB11 [62, 63]. The second is RDB7-CCSD(T)-F12, which contains about 1,100 radical re-
actions calculated at CCSD(T)-F12/cc-pVDZ-F12//𝜔B97X-D3/def2-TZVP. Although some
reaction databases exist in the literature [55, 56, 58], these do not focus on radical reactions.
Thus, the highly accurate barrier heights in our refined dataset should be valuable.

To demonstrate the value of our new RMG-DB-11 dataset, we pre-train both a graph
network and language model and then fine-tune each on two datasets with barrier heights cal-
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culated using highly accurate methods. The results in this specific study indicate that graph
networks are better suited than language models for predicting kinetic properties. However,
future work should continue to explore this further. Identifying good model architectures and
generalizable reaction representations remains an important task for computational kinetics.

Despite the utility of RMG-DB-11, there are still several opportunities to further expand
the scope of this work. Regarding dataset generation, future work could use these atom-
mapped SMILES to identify transition states using a myriad of methods–nudged elastic
band [141], the doubled ended growing string method [142], AutoTST [143], or various ML
methods [144–147]–and then calculate rate coefficients using established statistical mechanics
software [148, 149]. Future work could also explore larger molecules, additional elements and
functional groups, or more reaction templates e.g., including those that are bimolecular from
both directions. Regarding the ML results, a more thorough hyperparameter search could be
beneficial. It is also possible that other architectures from Huggingface could demonstrate
better performance. Specifically for training the language model, it would also be interesting
to explore other tokenization strategies [150] or try using IUPAC names as input rather than
SMILES [151]. Lastly, it’s important to continue exploring various methods to measure
uncertainty and assess out-of-domain generalizability [152–155].
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7.5 Appendix

7.5.1 RDB7-CCSD(T)-F12

7.5.1.1 Analysis of Unrestricted Calculations

All reactions in this dataset are calculated using RO-CCSD(T)-F12a/cc-pVDZ-F12//𝜔B97X-
D3/def2-TZVP to avoid spin contamination. To investigate the magnitude of any inaccu-
racies caused by using a restricted method, we perform a preliminary test by recalculating
the single-point energy of the first two reactions using UCCSD(T)-F12a/cc-pVDZ-F12. The
indices for these reactions are rxn000000 and rxn000001. Note that the reactant is identical
for these two reactions. For r000000, ts000000, and ts000001, the expectation value of the
spin squared operator <S2> is << 0.01 which would suggest minimal spin contamination.
As expected, the energies of the individual reactant and transition state are each lower when
using an unrestricted method. However, as shown in Table 7.6, the difference in electronic
energy (i.e., the reaction’s barrier height) is essentially unchanged. The difference in energy
for the individual species largely cancels when doing the subtraction to obtain ∆E0. A more
rigorous study could be done in the future.

Table 7.6. Comparison of the barrier height between using a restricted or unrestricted method for
the single-point energy calculation for two sample reactions. ΔE0 values have units of kcal mol−1.

∆E0

Reaction Index RCCSD(T)-F12 UCCSD(T)-F12

rxn000000 122.94 122.68

rxn000001 76.35 76.35

7.5.2 Model Hyperparameters

The best hyperparameters for the baseline models from Scikit-Learn [96] are chosen via
Optuna [97], which is used to minimize the average root mean squared error (RMSE) on the
validation sets. The values are listed in Tables 7.7 and Table 7.8. Any other hyperparameters
assumed the default value.
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Table 7.7. Optimal hyperparameter values for LinearSVR i.e. support vector regression with a
linear kernel.

Split Type

Hyperparameter Random K-Means

C 0.01330 0.01253

Table 7.8. Optimal hyperparameter values for random forest (RF)

Split Type

Hyperparameter Random K-Means

max_depth 15 15

n_estimators 125 100

The hyperparameters used for the D-MPNN are shown in Table 7.9 and Table 7.10.
Hyperparameters not shown in the tables used the default values from Chemprop [82]. The
same values are used when training on both random reaction and K-Means splits.

Table 7.9. Hyperparameters the define the architecture for D-MPNN.

Hyperparameter Value

MPNN hidden size 300

MPNN depth 3

Activation function LeakyReLU

Aggregation sum

FFN layers 2
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Table 7.10. Hyperparameters used for training the D-MPNN. The “Training” columns refers to
hyperparameters used to train directly on either RDB7-CCSD(T)-F12 or RDB19-M06-2X, which
acts as a baseline to compare performance to the pre-training + fine-tuning approach.

Hyperparameter Pre-training Fine-Tuning Training

Epochs 2 55 65

Warm-up epochs 1 5 5

Initial learning rate 2× 10−4 1× 10−5 1× 10−4

Maximum learning rate 2× 10−3 1× 10−4 1× 10−3

Final learning rate 2× 10−5 1× 10−6 1× 10−5

Batch size 64 50 32

Gradient clip 10 10 10

The hyperparameters used for the ALBERT model are shown in Table 7.11 and Ta-
ble 7.12. Hyperparameters not shown in the tables assumed the default values. The same
values are used when training on both random reactions and K-Means splits.
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Table 7.11. Hyperparameters the define the architecture for ALBERT.

Hyperparameter Value

attention_probs_dropout_prob 0.1

embedding_size 128

hidden_act gelu new

hidden_dropout_prob 0.1

hidden_size 512

initializer_range 0.02

inner_group_num 1

intermediate_size 512

layer_norm_eps 1× 10−12

max_position_embeddings 128

num_attention_heads 8

num_hidden_layers 6

num_hidden_groups 1

position_embedding_type relative key

Table 7.12. Hyperparameters used for pre-training and fine-tuning the ALBERT model.

Hyperparameter Pre-training Fine-Tuning

Epochs 5 30

Warm-up ratio 0.05 0.05

Max grad norm 3 3

Learning rate 1× 10−4 1× 10−4

Learning rate scheduler cosine with restarts cosine

Batch size 16 16
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Chapter 8

Best Practices in Machine Learning for

Chemistry

This work has been submitted as Spiekermann, K. A.; Stuyver, T.; Pattanaik, L.; Green, W.
H. Comment on “Physics-based Representations for Machine Learning Properties of Chemical
Reactions”. Mach. Learn.: Sci. Technol. 2023. Thijs Stuyver and Lagnajit Pattanaik helped
with the analysis.

8.1 Introduction

Mechanistic kinetic models are invaluable tools to acquire understanding in—and potentially
engineer—chemical processes, with applications ranging from advanced pharmaceutical de-
sign, high-performance material development, and renewable energy research [1]. Such ki-
netic models commonly require accurate thermodynamic and kinetic parameters for hundreds
of species and several thousands of reactions. Unfortunately, there are relatively few exper-
imental data, and the traditional computational workflow to obtain kinetic parameters—
namely barrier heights, A-factors, and rate coefficients—is complex and expensive [2, 3].
The grand vision of predictive kinetics is to quickly and accurately estimate these param-
eters. As such, much effort has been devoted to developing models to directly estimate
kinetic parameters, rather than computing them explicitly with computational chemistry
methods. Several methods for estimating rate coefficients or barriers have been developed
[4]. In recent years, large datasets of reaction barriers have become available [5–9], and sev-
eral research groups have used these to train machine learning models. A summary of recent
advancements on this front is provided in our feature article [10], and others have similarly
commented on the state of affairs of applying machine learning (ML) to chemical kinetics
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[11–14].
Recently, van Gerwen et al. [15] presented a new ML framework using kernel ridge regres-

sion (KRR) models to estimate reaction properties. In their work, the authors introduced
a set of reaction representations based on quantum machine learning (QML) in which reac-
tant and product representations are subtracted, similar to the well-documented approach
of representing a reaction as a difference fingerprint for both graph neural network (GNN)
architectures [16, 17] and classical ML techniques [18]. Other highlights include the release
of a new dataset focused on alkene insertion in the catalytic cycle of olefin hydroformylation
and the introduction of a new bond-based reaction representation, 𝐵2𝑅2.

Despite the novelty of these contributions, the presented work also raises some important
and fundamental questions which are relevant to the field as a whole. Specifically, we strongly
believe that applicability should be front and center when developing and publishing a new
ML model. We provide a point-by-point overview of our main concerns below.

With this specific Comment and broader perspective, we encourage the community to
reflect on the use-cases of their models by asking pertinent and fundamental questions such
as “Which problem are we trying to solve with this model?” and “How could our models be
usefully employed?” before presenting a new ML approach.

8.1.1 Providing Context for Model Performance

To gauge whether a model will actually be useful to the kinetics community, it is instructive to
place the model’s errors into context. For example, some recent papers have used ML models
to quickly predict energy values for individual molecules [19, 20] or reactions [10] that are
more accurate than those obtained through a density functional theory (DFT) calculation,
which has the potential to offer considerable time savings. The test MAE reported by van
Gerwen and co-workers for the DFT dataset from ref. [5] however amounts to about 10 kcal
mol−1. While a model with such errors may be useful for very rough qualitative analysis, it
most likely won’t be useful for quantitative analysis, since an uncertainty on the activation
energy of this magnitude implies that rate coefficients would differ on average by a factor of
150 at 1000 K and by a factor of 19 million at 300 K.

Another way to place model performance into context is to compare to some baselines.
The most trivial baseline model is one that simply predicts the mean value. For the dataset
from Grambow et al. [5], always predicting the mean barrier height results in an MAE of 18
kcal mol−1. Remarkably, none of the bag-of-bonds (BOB) based reaction representations out-
perform this trivial baseline by more than a few kcal mol−1, and only when SLATM/SOAP
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is used in combination with the 𝑋𝑑 reaction representation does the accuracy improve. For
the Proparg-21-TS dataset [21], the 𝑋𝑟 representation actually does worse than always pre-
dicting the mean of 3 kcal mol−1, and the 𝑋𝑝 representation does only marginally better. For
the Hydroform-22-TS dataset, predicting the barrier heights based on the means for each of
the three catalyst groups (Co, Rh, and Ir) achieves an MAE of 1.6 kcal mol−1 for the entire
dataset. Using the best reaction representation (𝑋𝑑), the various models presented by van
Gerwen et al. achieve a test MAE of 0.8 to 1.1 kcal mol−1 on this dataset, which offers only a
modest improvement of 0.5-0.8 kcal mol−1 over the trivial baseline model. Thus, comparing
against such a simple baseline provides helpful context [22], particularly when dealing with
relatively homogeneous datasets (e.g., Proparg-21-TS and Hydroform-22-TS) whose narrow
ranges inherently lead to low test MAEs that might be mistaken for satisfactory performance.

A final way to contextualize prediction errors is to compare performance to published
papers that train models on the same datasets. For the Grambow et al. [5] dataset in
particular, test MAEs 2-3x lower than what is reported by van Gerwen et al. have been
obtained in recent years [10, 16, 17]. Similarly, in a related task of predicting barrier heights
for SN2 and E2 reactions, Stuyver et al. [23] show that a QM augmented GNN extrapolates
better to unseen nucleophiles than KRR with the SLATM kernel.

At several instances throughout their paper, van Gerwen et al. suggest that KRR is
superior to GNN for problems involving chemical structures. But this assertion has already
been tested in the literature and found to be false, not just for barrier heights [10, 17, 23],
but also for other molecular properties. For example, both Yang et al. [24] and Faber et
al. [25] compared several representations and modeling approaches for property prediction
on the famous QM9 dataset [26] and found that graph convolutions often outperformed the
alternatives. Feinberg et al. [27] similarly found that graph networks outperformed random
forest when predicting various drug properties, especially on more challenging splits, for the
vast majority of the 30 datasets analyzed.

Despite the demonstrated superior performance of GNNs for predicting many molecular
properties, including reaction barriers, our argument is not that researchers should exclu-
sively use deep learning. For example, sometimes classical ML techniques as simple as
decision trees or random forest can be quite effective at estimating kinetic parameters [28]
or ranking reaction conformations [29], and we do not doubt that there are some molecular
problems and/or datasets where KRR or other architectures may have some advantages over
GNN-based approaches. Our argument instead is that comparing model performance to rel-
evant baselines—and to experimental data when available [30–42]—should never be “beyond
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the scope” of work for a model-developer. Rather, it is an essential first step at convincing
readers that the model is useful.

8.1.2 Reconsidering Model Inputs

Given the myriad of ways to represent a molecule [43–45], a second crucial consideration
is determining whether the model’s inputs are user-friendly and economical. The model
architecture presented by van Gerwen et al. requires DFT-optimized geometries as input
and infers DFT quality (electronic) activation or reaction energies as output.

When reaction energies are selected as the target, as in the first application presented
with the SN2-20 dataset, this issue is particularly clear and pressing. To put it bluntly, the
presented ML workflow becomes an exercise in futility in this case. The aim of this model
is to predict energy differences between optimized structures of reactants and products, but
as one generates the input for the model, the model’s output (i.e., electronic energies) are
automatically computed at no additional cost, which begs the question of why an ML model
would be needed in the first place? In all fairness, van Gerwen et al. briefly acknowledge that
low testing errors are expected for this specific task since the output is already contained in
the input. At the same time, one can think of many opportunities to make this application
more sensible, for example by including energy corrections in the predicted targets through
the computation of zero-point energies and partition functions with statistical mechanics.
Applying these energy corrections is necessary to compute practically useful reaction en-
thalpies. Or, as discussed below, one could build a model based on some simpler or cheaper
input than DFT calculations.

Of course, the situation is different when activation energies are selected as the target,
which is the case for applications 2-4 in their paper. In this setup, the developed model
makes it possible to circumvent the need to find a TS, which is often very challenging and
resource intensive [10, 46–48]. However, when cheaper and equally-accurate (or even more
accurate) alternatives are available (vide supra/infra), the appeal of this specific KRR model
is arguably limited.

It should be noted that the van Gerwen et al. manuscript leaves some questions related
to this issue unaddressed, which could potentially shine a different light on the appeal and
user-friendliness of their presented models. More specifically, if low-quality geometries or
conformers are sufficient to get accurate predictions, and if the attained accuracy would
be a chemically meaningful improvement over cheaper baselines and alternative approaches,
then a clearer motivation to prefer these KRR-based models could be envisioned. However,
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the authors do not provide evidence for the former point, and our own analysis (vide infra)
suggests that—at least for one of the datasets considered—the latter point is not fulfilled.
Finally, if optimized geometries do prove beneficial (or are necessary for certain tasks such as
quickly ranking conformer energies), comparison to state-of-the-art models such as SchNet
[49], DimeNet++ [50], PaiNN [51], EGNN [52], E3NN [53], etc would be informative.

Overall, we argue that in order to convince the kinetics community that a geometry-
based ML model is robust and useful, a detailed analysis regarding the sensitivity of the
results toward the input geometry, as well as an analysis of the sensitivity toward conformer
identity, is needed. Several precedents exist for this kind of analysis. For example, other
groups have analyzed performance on geometries from semi-empirical methods or even force
fields [54], which are much more practical for users to obtain than ab initio geometries.
Other studies have used a ∆ML technique [55], such as using semi-empirical geometries
to predict DFT quality energies [56–58] or barrier heights [59, 60], bringing a potential
energy surface from B3LYP up to CCSD(T) [61], or predicting the effect of perturbatively
included triples [62]. Regardless, we want to conclude this section by stressing that any
model operating on 3D coordinates will always require an extra step compared to models
operating on simpler representations. Given that modern kinetic mechanisms must often
consider hundreds of thousands of possible reactions [63], it is imperative to have estimators
that can quickly make predictions at scale. We encourage the community to consider, and
verify on a case-by-case basis, whether the compute time spent optimizing geometries, and
likely also performing conformer searches, actually offers meaningful improvements to the
model’s predictions.

8.1.3 Interpolation vs. Extrapolation

Another important point regarding model applicability is whether we expect the model to
be used for interpolation or extrapolation. Since models can sometimes learn irrelevant
patterns in the data when training on interpolation (i.e., random) splits that hinder their
generalizability [64–67], end users should always understand the limitations of such models
and apply them within appropriate bounds. However, given the vastness of chemical space
[68, 69] and its often unsmooth nature (e.g., activity cliffs), it seems unlikely that users will
want to be restricted to exclusively operate in an interpolation regime.

We see a few different ways to test extrapolation capabilities. If we are interested in assess-
ing model performance on new molecules, we can train a model with many reaction templates
but use substructure splitting to create training, validation, and testing sets. Bemis-Murcko
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scaffolds [70] are commonly used to partition the data for this purpose, though clustering
based on other input features or chemical similarity to measure extrapolation has also been
explored [23, 71–88] as has quantifying domains of model applicability [89–93]. Scaffold
splitting is not perfect, but by ensuring that molecules in the testing set are structurally
different than those in the training set, it offers a much better assessment of generalizability
than splitting randomly [17, 24, 67, 94–110]. This is also evident when examining the learn-
ing curves for the different splitting approaches, as presented in Figure 8.1; the test error is
higher for scaffold splitting because it is a more challenging task. As a concrete example of
extrapolation error for the popular SN2 and E2 dataset that is also analyzed by van Gerwen
et al., Stuyver et al. [23] show that both regular GNNs and KRR do not generalize well
to different nucleophiles, even when the reaction family and substituted ethyl-based scaffold
are held constant. As another example, substantially worse performance on out-of-sample
test sets compared to random splitting has been observed for reaction yield prediction tasks
as well [111, 112]. Another option is to train on many molecular scaffolds but split by reac-
tion type to measure performance on new reaction families [113, 114]. Yet another example
comes from Chen et al. [115] who trained a graph network on molecules with up to 11 heavy
atoms and then obtained a testing MAE of 2 kcal mol−1 relative to experimental data on
molecules with up to 42 heavy atoms. Still other papers show that time-based splits offer a
better measure of generalization than random splits [27, 116–118], though it is likely more
rigorous to directly split on chemical information rather than a proxy such as a time which
may still leak substructures and/or reaction templates. If working with solvated systems,
some papers claim that solvent-based splits–in which the model sees molecules or reactions
in some solvents during training and then performance is tested with the same molecules or
reactions in new solvents–can measure extrapolation [119]. However, given that ∆𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛

values often have relatively small magnitudes [120–122], solvent-based splits are likely not as
challenging as they would appear, and it is likely that a trivial baseline model would perform
only slightly worse; in contrast, solute-based splits represent a harder task [123–125].

Nevertheless, many papers use random splits [64, 126–147], which ultimately measures
an interpolation error. For example, when doing a random split of 85:5:10 to create training,
validation, and testing sets for the Grambow et al. [16] dataset, all scaffolds end up in
the training set and 78% of all scaffolds end up in the test set. Given the similarity in
composition, good performance on random splits is unsurprising.

For their Hydroform-22-TS dataset, the authors go one step further by using furthest
point sampling (FPS) when creating splits. This greedy algorithm places the most diverse
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points in the training set, which guarantees all testing points will be contained within the
span of the training set. FPS is commonly used within the KRR community [148–154].
However, given that the field has established that random splitting overestimates the ex-
trapolation capabilities, testing errors from the greedy FPS splits are likely to also be un-
realistically low and will not reflect the true model performance when evaluating a new
sample. Additionally, due to its dependence on the kernel space, the split cannot be ex-
panded straightforwardly to e.g., graph neural networks. As such, we encourage future work
on KRR models to also measure performance against more challenging splits so that readers
can better understand the scope of applicability and make fair comparisons with alternative
model architectures.

8.2 Methods

8.2.1 Dataset

We analyze the performance of predicting barrier heights from the DFT dataset created
by Grambow et al. [5], which has been used in several other modeling papers [10, 16, 17,
155–158]. van Gerwen et al. refer to this dataset as GDB7-20-TS. Of the four datasets
studied by van Gerwen et al., GDB7-20-TS is the most diverse, spanning the largest range of
barrier heights and covering many different reaction templates; thus, this dataset arguably
offers the most challenging benchmark for barrier predictions. The other datasets include
some larger species, but they tend to focus exclusively on specific reaction classes. For
these reasons, and given our personal interest in developing broad purpose models capable
of distinguishing high-barrier reactions from more plausible low-barrier reactions, we decided
to focus our analysis on the GDB7-20-TS dataset.

When creating training, validation, and testing sets, we use five folds, each with an
85:5:10 split. Our results report the mean and standard deviation of each fold to give
some sense of model uncertainty; future work could more rigorously examine uncertainty
estimation [159–168], though it’s sometimes unclear which method is best [169]. We use
both random splitting and scaffold splitting on the reactant SMILES, which partitions the
data based on Bemis-Murcko scaffold splits [70], as calculated by RDKit [170]. To make
this a fair comparison, we use the exact same data splits for both model types described
below. Once the training, validation, and testing sets are established, we randomly sample
from the training set to create smaller training sets, which allows us to examine how model
performance depends on the size of the training dataset. Thus, in total we have five training
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set sizes of 1016, 1807, 3214, 5716, and 10165 reactions.

8.2.2 Models

We analyze the introduced reaction representation SLATM(2)
𝑑 kernel from van Gerwen et

al. [15] All code related to our analysis is freely available on GitHub [171]. To facilitate
comparison, we use the KRR implementation and corresponding hyperparameters provided
by van Gerwen et al. However, we want to briefly comment on their procedure used to
determine these hyperparameters. The authors state that, “the best hyperparameters are
those with a minimal MAE on the test set across the five folds.” Best practices in data
science however dictate that, in order to minimize the risk of hyperparameter overfitting,
one ought to only optimize hyperparameters with a validation set and use a held-out test set
to accurately measure performance on unseen data [107, 109, 172–180] i.e., if doing five-fold
cross validation, it is essential to first create five separate training, validation, and testing
splits. It is unclear to what extent a more rigorous hyperparameter optimization procedure
would have affected the results for their specific experiments, but one can reasonably expect
that, if anything, the approach taken will overstate the actual accuracy of the KRR model
on unseen data.

We compare the KRR performance to models built by Chemprop [24] – a type of GNN
– which uses a directed message passing neural network (DMPNN) to create a learned
fingerprint, followed by feed-forward neural network. We use the established condensed
graph of reaction (CGR) representation as the input when predicting barrier heights [17,
181–183]. Since we use the exact same forked version and hyperparameters as were used in
ref. [10], we refer readers to our previous work for additional details.

8.3 Results & Discussion

Both Table 8.1 and Table 8.2 show that the testing errors obtained from our DMPNN is
lower than that from KRR when using the exact same splits across all training set sizes for
the Grambow et al. [5] dataset. Figure 8.1 plots the test MAEs for easy visual inspection.
These results explicitly and unequivocally refute the claim from van Gerwen et al. [15] that
“representations derived from graphs in deep learning models...tend to perform well only for
large dataset sizes”. These results are corroborated by several papers that have found the
learned representations from graphs often outperform other approaches [10, 17, 24, 25, 27,
85, 97, 99, 100, 104–106, 110, 118, 140, 184–206]. While the DMPNN performs better than
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KRR for all dataset sizes tested, Figure 8.1 shows that the DMPNN takes better advantage
of additional data, with mean absolute errors over a factor of two lower than KRR for cases
with many training data points. The errors from scaffold splitting are higher than those
from splitting randomly, especially in the low-data regimes, which is an expected result since
scaffold splitting is a more challenging extrapolative task as discussed in Section 8.1.3.

Table 8.1. Testing errors in kcal mol−1 (mean ± 1 standard deviation from the five folds) for
predicting barrier heights from the DFT dataset from Grambow et al. [5] when using random
splitting. The exact same data splits are used between the KRR with SLATM(2)

𝑑 representation and
DMPNN with CGR representation.

SLATM(2)
𝑑 DMPNN

Training Points MAE RMSE MAE RMSE

1016 15.47 ± 0.42 22.66 ± 0.85 9.31 ± 0.42 13.65 ± 0.64
1807 13.49 ± 0.63 20.40 ± 1.29 7.59 ± 0.28 11.50 ± 0.65
3214 12.04 ± 0.42 17.71 ± 0.66 6.14 ± 0.17 9.79 ± 0.42
5716 10.92 ± 0.35 16.34 ± 0.73 5.06 ± 0.09 8.44 ± 0.34
10165 10.01 ± 0.16 14.90 ± 0.36 4.11 ± 0.07 7.15 ± 0.25

Table 8.2. Testing errors in kcal mol−1 (mean ± 1 standard deviation from the five folds) for
predicting barrier heights from the DFT dataset from Grambow et al. [5] when using scaffold
splitting. The exact same data splits are used between the KRR with SLATM(2)

𝑑 representation and
DMPNN with CGR representation.

SLATM(2)
𝑑 DMPNN

Training Points MAE RMSE MAE RMSE

1016 25.06 ± 3.60 35.26 ± 4.54 14.34 ± 1.18 19.04 ± 1.24
1807 22.71 ± 1.03 31.35 ± 1.56 13.48 ± 0.35 18.28 ± 0.58
3214 20.83 ± 1.29 30.68 ± 4.06 13.27 ± 1.28 18.05 ± 1.86
5716 19.09 ± 1.18 28.68 ± 3.80 12.97 ± 0.68 17.76 ± 0.94
10165 13.32 ± 0.73 19.08 ± 0.94 6.56 ± 0.30 9.99 ± 0.59
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a) b)

Figure 8.1. Testing errors for predicting barrier heights from the DFT dataset from Grambow
et al. [5] when using either a) random splitting or b) scaffold splitting. Dashed lines are the best
fit line to the plotted points. Error bars indicate one standard deviation calculated across the five
folds. The exact same data splits are used between the KRR with SLATM(2)

𝑑 representation and
DMPNN with CGR representation.

Several approaches could be taken to further reduce the DMPNN errors presented here.
First, if suitable pretraining data is available, transfer learning is an established technique to
improve model performance [123, 207–213]. Second, we do not use ensembling here; however,
this is another established method to improve model predictions [24, 214]. Finally, one could
augment the dataset with the reverse reactions, which doubles the dataset size. This is
crucial because the learning curve shown here does not plateau (i.e., all models shown are
operating in a data-limited regime and should yield better testing performance if trained
on additional reactions). Usually reaction training data is scarce, so it is common practice
to use both the forward and reverse barriers to increase the number of training data [10,
17]. However, van Gerwen et al. only used the forward reactions during training, so here we
present results consistent with their study.

More broadly, the findings presented here fit into a growing body of evidence that the
usefulness of GNNs is not necessarily restricted to very big datasets. For example, Stuyver
et al. [23] demonstrated in a recent contribution that QM-augmented GNN models already
reach similar accuracy as regular KRR models in barrier prediction for E2 and 𝑆N2 reactions
with training set sizes as small as 100 data points. Non-QM-augmented DMPNNs were
shown to become competitive with KRR for training sets as small as ∼500 data points.

We are not aware of any reactivity dataset with more than ∼500 reactions where KRR
models have been demonstrated to outperform GNNs. It is definitely possible that applica-
tion areas will emerge in the near future where KRR models do show improved accuracy. In
the absence of evidence however, caution should be exerted when discussing the performance
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of one model architecture relative to the other. Ideally, any statement of this type should
be corroborated with unambiguous performance comparisons.

As an aside, we recommend that future work use the updated version of this dataset,
which is publicly available on Zenodo [215]. We also recommend people refer to this dataset
as RDB7 i.e., a diverse reaction database whose transition states contain up to seven heavy
atoms. This newer work substantially improves the quality of the tabulated barrier heights
and enthalpies for these reactions by performing highly accurate single-point energy refine-
ments at CCSD(T)-F12a/cc-pVDZ-F12 level of theory and accounting for zero-point-energies
along with the corresponding frequency scaling factor [216]. The updated reaction enthalpies
include atom energy corrections [217], which are important for individual heats of formation
but actually cancel when calculating the reaction enthalpy since all reactions are balanced,
as well as bond additivity corrections [218, 219] from Arkane [220], which are essential to
calculating a true thermodynamic energy. This work also cleans the reaction SMILES and
re-optimizes the product complexes. Additional details can be found in ref. [6].

8.4 Conclusion

Machine learning for chemistry is a rapidly growing field that offers great potential to ac-
celerate steps in a broader research workflow. For example, the ability to quickly predict
values of interest could allow researchers to screen thousands of candidate molecules or re-
actions faster than they could with traditional quantum chemistry approaches. However,
we encourage the community to critically think about which problem their model is trying
to solve. Model performance should always be placed in context, and comparisons to other
architectures should be supported by data. To facilitate faster adoption of these models, it
is important to operate on user-friendly inputs or offer evidence that justifies more expensive
chemical representations. Models which do not require the user to provide 3D geometries
as input have many advantages, including avoiding the need to identify the lowest-energy
conformer, which can be challenging for large flexible molecules. Finally, reporting errors
from both interpolative and extrapolative data splits gives readers a better understanding of
model applicability and likely performance in extrapolative prediction tasks. We welcome the
community to contribute additional thoughts and are excited about the future that machine
learning techniques can enable.
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Chapter 9

Better Data Splits for Machine Learning

This work is in preparation as Burns, J. W.; Spiekermann, K. A.; Bhattacharjee, H.; Vlachos,
D. G.; Green, W. H. Machine Learning Validation via Rational Dataset Sampling with
astartes. JOSS 2023. Jackson Burns and I designed and implemented much of this work in
tandem. Jackson focused more on software engineering and algorithm development while I
focused more on applications, though we each contributed to both aspects. All code is freely
available on GitHub.

9.1 Introduction

Machine learning has sparked an explosion of progress in chemical kinetics [1, 2], drug dis-
covery [3, 4], materials science [5], and energy storage [6] as researchers use data-driven
methods to accelerate steps in traditional workflows within some acceptable error tolerance.
To facilitate adoption of these models, researchers must critically think about several top-
ics, such as comparing model performance to relevant baselines, operating on user-friendly
inputs, and reporting performance on both interpolative and extrapolative tasks. astartes
aims to make it straightforward for machine learning scientists and researchers to focus
on two important points: rigorous hyperparameter optimization and accurate performance
evaluation.

First, astartes’ key function train_val_test_split returns splits for training, valida-
tion, and testing sets using an sklearn-like interface. These splits can then separately be
used with any chosen ML model. This partitioning is crucial since best practices in data
science dictate that, in order to minimize the risk of hyperparameter overfitting, one must
only optimize hyperparameters with a validation set and use a held-out test set to accu-
rately measure performance on unseen data [7–11]. Unfortunately, many published papers
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only mention training and testing sets but do not mention validation sets, implying that they
optimize the hyperparameters to the test set, which would be blatant data leakage that leads
to overly optimistic results. For researchers interested in quickly obtaining preliminary re-
sults without using a validation set to optimize hyperparameters, astartes also implements
an sklearn-compatible train_test_split function.

Second, it is crucial to evaluate model performance in both interpolation and extrapo-
lation settings so future users are informed of any potential limitations. Although random
splits are frequently used in the cheminformatics literature, this simply measures interpola-
tion performance. However, given the vastness of chemical space [12] and its often unsmooth
nature (e.g., activity cliffs), it seems unlikely that users will want to be restricted to exclu-
sively operate in an interpolation regime. Thus, to encourage adoption of these models, it is
crucial to measure performance on more challenging splits as well. The general workflow is:

1. Convert each molecule into a vector representation.

2. Cluster the molecules based on similarity.

3. Train the model on some clusters and then evaluate performance on unseen clusters
that should be dissimilar to the clusters used for training.

Although measuring performance on chemically dissimilar compounds/clusters is not a
new concept [13–20], there are a myriad of choices for the first two steps; the astartes

software incorporates many popular representations and similarity metrics to give users
freedom to easily explore which combination is suitable for their needs.

9.2 Example Use-Case in Cheminformatics

To demonstrate the difference in performance between interpolation and extrapolation,
astartes is used to generate interpolative and extrapolative data splits for two relevant
cheminformatics datasets. The impact of these data splits on model performance could
be analyzed with any ML model. Here, I train a modified version of Chemprop [21]–a deep
message passing neural network–to predict the regression targets of interest. I use the hyper-
parameters reported by ref. [2] as implemented in the barrier_prediction branch, which is
publicly available on GitHub at github.com/kspieks/chemprop/tree/barrier_prediction [22].
First is property prediction with QM9 [23], a dataset containing approximately 133,000 small
organic molecules, each containing 12 relevant chemical properties calculated at B3LYP/6-
31G(2df,p). I train a multi-task model to predict all properties, with the arithmetic mean of
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all predictions tabulated below. Second is a single-task model to predict a reaction’s barrier
height using the RDB7 dataset [24, 25]. This reaction database contains a diverse set of
12,000 organic reactions calculated at CCSD(T)-F12 that is relevant to the field of chemical
kinetics.

For each dataset, a typical interpolative split is generated using random sampling. Two
extrapolative splits are also created for comparison. The first uses the cheminformatics-
specific Bemis-Murcko scaffold [26] as calculated by RDKit [27]. The second uses the more
general-purpose K-means clustering based on the Euclidean distance of Morgan (ECFP4)
fingerprints using 2048 bit hashing and radius of 2 [28, 29]. The QM9 dataset and RDB7
datasets were organized into 100 and 20 clusters, respectively. For each split, five different
folds are created by changing the random seed. This allows the results to report the mean
± one standard deviation of the mean absolute error (MAE) and root-mean-squared error
(RMSE).

Table 9.1. Average testing errors for predicting the 12 regression targets from QM9 [23].

Split MAE RMSE

Random 2.02 ± 0.06 3.63 ± 0.21

Scaffold 2.20 ± 0.27 3.46 ± 0.49

K-means 2.48 ± 0.33 4.47 ± 0.81

Table 9.2. Testing errors in kcal mol−1 for predicting a reaction’s barrier height from RDB7 [24].

Split MAE RMSE

Random 3.87 ± 0.05 6.81 ± 0.28

Scaffold 6.28 ± 0.43 9.49 ± 0.50

K-means 5.47 ± 1.14 8.77 ± 1.85

Table 9.1 and Table 9.2 show the expected trend in which the average testing errors are
higher for the extrapolation tasks than they are for the interpolation task. The results from
random splitting are informative if the model will be primarily used in interpolation settings,
i.e., the model will not see any molecules or substructures beyond what is contained in the
training set. However, these errors are likely unrealistically low if the model is intended to
make predictions on new molecules that are chemically dissimilar to those in the training
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set. Performance is worse on the extrapolative data splits, which present a more challenging
task, but these errors should be more representative of evaluating a new sample that is out-
of-scope. Together, these tables demonstrate the utility of astartes in allowing users to
better understand the likely performance of their model in different settings.

Briefly, it is important to point out that this analysis focuses on the general trends when
comparing Table 9.1 and Table 9.2 rather than the magnitude of the errors themselves.
Several approaches could be taken to further reduce the errors presented in both tables. For
example, transfer learning is a popular technique [30, 31] that has found many applications
in chemistry [2, 32–38]. Thus, one could pre-train on additional data or fine-tune the model
with experimental values. Ensembling is another established method to improve model
predictions.
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Chapter 10

Recommendations for Future Work

This thesis has contributed several novel bodies of work towards improving the field of chemi-
cal kinetics, specifically for quantitative reaction prediction. The main theme centers around
combining dataset generation via quantum chemistry with machine learning to provide easy
access to accurate kinetic predictions. Sample applications of this work include automating
high-throughput screening of large regions of reaction space (e.g., quickly identify relevant
low-barrier reactions produced from an automated enumeration that may justify more ex-
pensive first-principles calculations if even higher accuracy is needed) and offering substantial
speedup when refining existing kinetic mechanisms. Although deep graph networks are the
data-driven model of choice in this thesis, it is certainly possible that future research can re-
veal better architectures. Despite the progress advanced by this thesis, much work remains
for the field to realize the full potential of transitioning from a post-dictive to predictive
modeling approach [1]. The sections below summarize some recommended future directions,
such as ways to improve our group’s RMG database–an open-source database that has been
a seminal contribution to the field–as well as ideas to improve deep learning applications
within science and engineering more generally.

10.1 Further Improving RMG Database

10.1.1 Adding High-Quality Data

Reasonably accurate estimates for thermochemistry and rate coefficients are essential for
RMG to automatically construct high-fidelity kinetic mechanisms. In contrast, poor esti-
mates can wreak havoc by causing RMG to explore irrelevant chemistry, which both wastes
compute resources and often results in kinetic mechanisms that are either incomplete (i.e.,
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missing important species and/or reactions) or contain many irrelevant reaction pathways
that only slow the numerical integration when studying the time evolution of the system.
As shown in Table 4.1, the training data for numerous RMG families is still quite sparse;
many families have fewer than twenty reactions to train the decision tree estimators, which
are then used to make predictions for many reactions during mechanism generation. It is
very likely that these estimators are extrapolating; as discussed in Chapter 8 and Chapter 9,
this is known to be a challenging task for machine learning models and commonly produces
more erratic predictions, whose average errors are not only larger but also the standard de-
viation across five folds is typically much larger for extrapolation-based splits in comparison
to interpolation-based splits as shown in Chapter 5, Chapter 6, Chapter 7, Chapter 8, and
Chapter 9. Since the Arrhenius expression is very sensitive to small changes in the acti-
vation energy, especially at lower temperatures, these errors can be substantial. Even for
the RMG reaction families that have hundreds or thousands of training reactions, as shown
in Table 4.2, more than 70% of these come from a linear group additivity estimate rather
than from a high-quality first principles approach that combines quantum chemistry with
transition state theory or even better, a reliable experimental value.

It is essential to continue improving RMG database to address parameter errors at the
source. These improvements will have broad impact by benefiting all current and future
users within the kinetic community. One option is to add more gas-phase reactions from
the datasets presented in Chapter 3 and Chapter 6. Although most reactions in these
two datasets do not match existing RMG templates, approximately 4000 reactions total do
match, which presents a prime opportunity to continue adding more high-quality training
reactions. The reactions from Chapter 6 seem especially promising since all TS structures
were verified by an IRC and a conformer search was done for all reactant, product, and TS
structures. Importantly, these reactions contain solvation effects, which are currently not
stored in RMG’s database. Adding solution-phase data would be greatly beneficial to expand
the scope of chemistry that RMG can model. The thermochemistry for the species involved
in these reactions should be added to Spiekermann_refining_elementary_reactions.py

on GitHub. Adding these reactions and species will increase the probability that RMG can
directly query a high-quality kinetics or thermochemical value rather than relying on an
estimate. Of course, it would also be beneficial to use these new data to retrain RMG’s
decision trees and group additivity values to improve all future estimates for kinetics and
thermochemistry respectively. The hydrogen transfer reactions published in ref. [2] may
also be useful. Another promising direction could be to find transition states for some of the
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approximately 750 million RMG reactions presented in Chapter 7. Finally, one could utilize
recent work from ref. [3] to automatically parse kinetics parameters from papers published
in the literature.

Another option could be to extract reaction templates from the datasets mentioned above
to potentially create new RMG families. Currently, RMG relies on manually generated
reaction templates, which requires human-time to review and create forbidden groups to
try avoiding conflicts between reaction families. It would be greatly beneficial to develop
a user-friendly workflow for automatically extracting reaction templates and integrate this
data into RMG. In this case, the goal would be to expand the coverage of RMG so it can
identify additional reactions that may be relevant to the kinetic mechanism of interest. If
pursuing this option, a priority should be given for low-barrier reactions since those would
likely be the most relevant when constructing a detailed kinetic model.

10.1.2 Improving Data Storage

A discussion about improving RMG database would be remiss without mentioning that
the process of accessing current data and adding new data is not particularly user-friendly.
The workflow involves several steps, with the main issue being that data is stored as a
text file containing Python objects, i.e., it must be parsed via tools within RMG-Py. For
example, published works in the literature have identified that RMG database stores many
duplicate reactions [4]. However, this is not trivial to identify due to the text file structure
that also requires installation of the entire RMG software suite. Ideally, RMG would utilize
modern database architectures, such as structured query language (SQL). Although the
task of updating the status quo would be very ambitions, the benefits would be equally
substantial. Data storage should be more efficient, using less disk space. Querying data
should be faster as well, which has benefits for kineticists seeking to interact with the database
but it should also offer speed-up during RMG’s automatic mechanism construction since
all calls to RMG database should be faster. A tabular data format would also be more
organized. For example, each row could denote a species or reaction and each column could
store results from calculations at various levels of theory (e.g., electronic energy, zero point
energy, and frequency scaling factor) or experimental sources (e.g., enthalpy of formation).
Altogether, these improvements would substantially improve the utility and further cement
RMG database as a crucial contribution to the field of chemical kinetics.
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10.1.3 Use Modern Data-Driven Techniques

RMG relies on decision trees to quickly estimate kinetic parameters during mechanism gen-
eration. Historically, these trees were manually curated, which resulted in very shallow trees
whose nodes were generally interpretable. The introduction of automated tree generation [5]
substantially reduces the required human-time, though manual definition of the root node
is still required. Although this algorithmic approach commonly produces better estimations
that their hand-generated counterparts, it is prudent to ask if incorporating more modern
data-driven methods would be beneficial. The first motivation stems from the compute time
required to train these models. As more research groups continue to publish kinetic results,
access to larger datasets that we wish to incorporate into RMG database will only grow over
time. However, the current algorithm for training RMG’s decision trees is relatively slow
and does not scale well with these large datasets. For example, even when parallelized across
many CPUs, it takes roughly 10 hours to retrain these decision trees on approximately 2000
datapoints, which is still relatively small when considering data-driven modeling techniques.
In contrast, it takes only 7 minutes to train a basic directed message passing neural network
[6] on approximately 10,000 reactions when using a standard GPU, such as an NVIDIA
GeForce RTX 2080 Ti which was released in 2018.

The second motivation comes from a maintenance perspective. Currently, RMG supports
approximately 100 reaction families. Incorporating reactions from a new diverse dataset
means that each decision tree must be retrained individually. Given the computational costs
discussed earlier, this is less than ideal. Having just one, or perhaps a few, deep graph
network(s) would allow for more efficient maintenance. Further, some reaction families may
have similar mechanisms and thus have similar kinetics. Consolidating these estimators
would allow data-driven models to identify these similar patterns. If one reaction family has
far fewer training reactions, consolidation could result in better predictions since it could rely
on data from reactions with a similar template. One example of this is shown in Figure 6.5c
in which a D-MPNN trained on a very diverse set of radical reactions was able to show very
good performance for the subset of reactions that matched the hydrogen abstraction reaction
template from RMG.

Finally, modern deep learning approaches can benefit from pre-training on larger amounts
of data and then fine-tuning the model’s weights with higher-quality data. For instance,
both Table 7.4 and Table 7.5 show that pre-training a D-MPNN improves performance on
downstream tasks, which is particularly impressive given how little overlap there is between
the pre-training and fine-tuning sets. It is less obvious how decision trees could utilize this
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technique (e.g., partial learning [7] based on specific batches of data is only supported for
certain classical model types within Scikit Learn [8] and the decision tree is not one of them).
In short, the combination of computational speed-up, easier maintenance, and potentially
better predictions present compelling reasons to explore this option in the near future.

10.2 Addressing Limitations of Machine Learning in Chem-

istry

10.2.1 Overcoming Data Scarcity

Data scarcity plagues chemistry. While fields such as natural language processing and com-
puter vision routinely have access to millions or even billions of examples, many papers
published within the field of predictive chemical kinetics commonly use a few hundred or
maybe a few thousand data points. Obtaining new data is both challenging and expensive.
Validating computational results with experiments can prove even more so.

Chapter 3, Chapter 6, and Chapter 7 introduce new datasets with approximately 12,000,
6,000, and 1,100 reactions respectively, each of which are calculated using quantum chemi-
cal methods that have been established to be very accurate relative to experimental values.
Outside of this thesis, other studies have released larger datasets on the order of 100,000
reactions, albeit calculated with methods that enjoy only medium accuracy [2, 9]. Still,
these numbers are dwarfed by the vastness of chemical space. There exist at least 166 billion
organic molecules with up to 17 heavy atoms [10], even when applying several constraints
to limit the search space, such as only considering the elements H, C, N, O, S, and halo-
gens. The scope of possible unimolecular reactions that could be enumerated from this set is
enormous since each molecule has multiple reaction sites and can participate in multiple re-
action templates. The number of possible multi-molecule reactions results in a combinatorial
explosion (e.g., 166× 109 choose 2 is 1.37× 1022).

It is imperative for the field of predictive chemistry to continue creating more open-
source kinetics datasets. One option could be to start searching for TSs for the ∼750 million
reactions presented in Chapter 7. The traditional workflow from Figure 1.3 could be used,
which would include generating initial guesses for the TS structure via nudged elastic band
[11], the doubled ended growing string method [12], or AutoTST [13] just to name a few.
More recently published ML methods could also be used to quickly generate initial TS
structures, though the success rate for converging to a true TS structure will likely be

295



slightly lower [14–17]. Including solvation effects for these reactions would be another viable
option to increase the scope. So far, only neutral reactions have been considered in this
thesis. However, ionic reactions are prevalent in solution phase chemistry and are strongly
affected by the solvent environment. Future work could explore reactions containing ionic
species.

As a final point regarding dataset generation, it would also be beneficial to create stan-
dards when sharing this data. Since many SMILES strings can correspond to the same
molecule, one example would be to publish data that includes InChI keys. This would make
it is easier to combine data from different sources by joining on unique identifiers. Attempts
to aggregate many published datasets into one database would also be helpful [18].

Regarding modeling, transfer learning is one option to try dealing with data scarcity.
Transfer learning is a popular technique [19, 20] that has found many applications in chem-
istry [21–28]. Both Chapter 5 and Chapter 7 contain examples of transfer learning being
used to improve model performance. Active learning has similarly proven useful [29].

Another promising direction is to utilize unsupervised techniques to pre-train models
at scale. This has become particularly popular for the field of natural language processing
(NLP) to train large language models (LLMs), e.g., the Generative Pre-trained Transformer
(GPT) series [30–33]. Similar trends have been observed within text-to-image generation,
e.g., DALL-E 2 from OpenAI [34] or Imagen from Google [35]. Although the cost to train
such models is likely prohibitive for academic labs and often the datasets in chemistry are
much smaller than those in other fields, the success of LLMs and image generation models
stems from pretraining with unsupervised learning. To my knowledge, this has been explored
less with graph-based networks, but it would be interesting to try pre-training GNNs to
obtain a continuous molecular representation. Ideally, these pre-trained models, or the latent
representations themselves, would be transferable and could be used as input for subsequent
supervised tasks. This was briefly explored in Chapter 7, but future work should investigate
this more thoroughly with an ultimate goal of creating foundation models for chemistry.

10.2.2 Improving Kinetics Estimation Workflows

Chapter 5 and Chapter 6 provide an important first step towards temperature-dependent
kinetics estimation by training models that can quickly predict reaction barrier heights.
However, actually obtaining a rate coefficient would also require fast prediction of an Arrhe-
nius pre-exponential factor. Alternatively, models could be trained to predict the molecular
partition functions of the reactants and transition state. To my knowledge, these ideas have
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only been briefly explored in the literature [36, 37] with far fewer papers published in com-
parison to models for barrier height prediction. Thus, this could present an opportunity for
future research.

Regardless of the method to quickly predict kinetic parameters, there is an opportunity
to integrate these models into the pipeline of automatic mechanism generation. Currently,
the status quo of analyzing kinetic parameters is to perform sensitivity analysis to identify
which parameters are most important to the time-evolution of the system and then use the
workflow from Figure 1.3 to determine updated estimates for the rate coefficient. This first-
principles approach of taking derivatives to measure rates of change is very sensible. However,
it is also computationally expensive. It would be interesting to use a machine learning
model to quickly predict kinetic parameters for all reactions. Then, any predictions that are
wildly different than the current estimate could warrant additional analysis. Uncertainty
quantification is another important topic that this thesis did not have time to explore;
however, it could certainly be a useful area of future research [38–40]. Finally, various data
splitting techniques, such as those aggregated within the astartes [41] Python package,
could be integrated into popular graph network packages like Chemprop [6].
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