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Abstract
The Dushnik–Miller dimension of a poset P is the least d for which P can be embedded into
a product of d chains. Lewis and Souza isibility order on the interval of integers [N/κ, N ]
is bounded above by κ(log κ)1+o(1) and below by �((log κ/ log log κ)2). We improve the
upper bound to O((log κ)3/(log log κ)2). We deduce this bound from a more general result
on posets of multisets ordered by inclusion. We also consider other divisibility orders and
give a bound for polynomials ordered by divisibility.

Keywords Partially ordered sets · Dimension · Multisets · Divisibility

1 Introduction

A partially ordered set (abbreviated poset) is an ordered pair (P,≤P ) consisting of a set P
and a binary relation ≤P on P such that for all a, b, c ∈ P we have

• a ≤P a,
• if a ≤P b and b ≤P a, then a = b, and
• if a ≤P b and b ≤P c, then a ≤P c.

We will refer to a poset (P,≤P ) by just P if the order ≤P is clear from context. In such
cases we may also write ≤ instead of ≤P . We will also write a < b to denote a ≤ b and
a �= b. Finally, we will only work with finite posets unless explicitly stated otherwise. For a
finite poset P , we denote the cardinality of its underlying set by |P |.

For a poset P with elements a and b, we say that a and b are comparable if a ≤ b or
b ≤ a. Otherwise, we say that a and b are incomparable. The simplest example of a poset
is one in which all pairs of elements are comparable. We call such a poset a chain or linear
order (also known as a total order).

A more complicated example of a poset is the divisibility poset D[6], which consists of
the set [6] = {1, 2, 3, 4, 5, 6} with the relation a ≤ b if b is divisible by a. Note that some
pairs of elements are incomparable, such as 5 and 6. This poset is depicted in Fig. 1, where
a ≤ b if and only if a is reachable from b by a sequence of downward arrows.
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Fig. 1 The Hasse diagram of D[6]

In general, for a poset P , we call a minimal such diagram the Hasse diagram of P . The
arrows are defined by covering relations: b covers a if a < b and there is no c such that
a < c < b.

Given a poset P , a natural question to ask is how complicated P is. A notion such as the
set cardinality of P would not be a good answer, since it does not consider the relation ≤P .
For example, a linear order on [6] is intuitively much simpler thanD[6]. A potential approach
is to try to understand how complicated the Hasse diagram of P is. Specifically, we could
ask for the least d such that the Hasse diagram of P can be viewed “nicely” in d-dimensional
space. For instance, the linear order on [6] can be viewed as a line, while D[6] can’t. We
formalize this idea of dimension using some more definitions.

Given posets P and Q, we say that P embeds into Q, written P ↪→ Q, if P is a subset of
Q and ≤P is the restriction of ≤Q to P . We also say that P is a suborder of Q.

This notion of poset containment allows us to relate a poset to d-dimensional space. We
just need to think of d-dimensional space as a poset. For this, we define the product of posets.

Given posets P and Q, we define the product poset P × Q to be a poset on the set product
P × Q with the relation (p1, q1) ≤ (p2, q2) if and only if p1 ≤P p2 and q1 ≤Q q2. We can
also take the product of several posets by iterating this definition.

Now, we can think of d-dimensional space as the posetRd , where we take the usual linear
order on d copies ofR and then take a product.More generally, we can think of d-dimensional
space as a product of any d chains. Since we will only care about finite posets, we can work
with finite chains as well. We are now ready to define the dimension of a poset.

TheDushnik–Miller dimension of a poset P , denoted dim(P), is the least d ∈ N for which
P embeds into a product of d chains. Note that dimension exists for all finite posets since we
can always embed P into a product of |P | chains. This notion of dimension was introduced
by Dushnik and Miller in 1941 [3] and has been extensively studied (see [14]). Other notions
of dimension exist (see [8, 9]), but we will only discuss the Dushnik–Miller dimension of
posets.

As an example, any linear order has dimension 1. A more interesting example is the poset
D[6] from above. One can check that dim(D[6]) > 1. Furthermore, dim(D[6]) ≤ 2 by the
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embedding in Fig. 2 of D[6] into a 4 by 3 grid (which is a product of chains of length 4 and
3).

Amore general example is the Boolean hypercubeQn .We viewQn as the poset on subsets
of [n], ordered by inclusion (i.e., the “subset” relation). Since Qn is generally thought of as
an n-dimensional object, we would expect it to have dimension n. In fact, because Qn is
isomorphic to a product of n chains of length 2, we have that dim(Qn) ≤ n. We will see in
Section 2 that indeed dim(Qn) = n. Things get more interesting when we consider suborders
of Qn .

Note thatQn has a natural partition into “layers,” where we partition subsets of [n] by their
cardinality. The Hasse diagram of Qn can be drawn with each layer being on a horizontal
line. So, a natural way to take a suborder of Qn is to just consider some subset of its layers.
For I ⊆ [0, n], we let Qn

I be the suborder of Qn on subsets S of [n] for which |S| ∈ I . The
dimension of such suborders has been studied in detail; see [6] for a survey by Kierstead.

Wewill see in Section 2 that for 0 < k < � < n, dim(Qn
{k,�}) = dim(Qn

[k,�]). That is, if we
take a suborder on some layers of the hypercube, it only matters what the lowest and highest
layers are. In particular, to understand dim(Qn

I ) for arbitrary I we just need to understand
dim(Qn

{k,�}). Several results are known, and we present some of them here. The case k = 1

was studied first. Dushnik gave an exact formula for dim(Qn
[1,�]) when � > 2

√
n in [2]. In

particular, we have the following theorem.

Theorem 1.1 (Dushnik) If � > 2
√

n, then dim(Qn
[1,�]) > n − √

n.

By using similar techniques, one can obtain the following corollary [14].

Corollary 1.2 (Trotter) If � <
√

n, then dim(Qn
[1,�]) > �2

4 .

Together, these results show that dim(Qn
[1,�]) grows at least quadratically in � until it gets

close to the upper bound of dim(Qn[1,n]) = n.
A result by Füredi and Kahn shows that this quadratic growth is correct up to a log n

factor [4]. Note that we use log to denote the natural logarithm throughout this paper.

Theorem 1.3 (Füredi–Kahn) For integers 1 ≤ � ≤ n, we have dim(Qn
[1,�]) ≤ (� + 1)2 log n.

Fig. 2 An embedding of D[6] into a product of two chains
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For the case of general k, the lower bounds for k = 1 also imply that dim(Qn
[k,�]) grows

at least quadratically in (� − k), by noting that Qn
[k,�] contains a copy of Qn−k+1

[1,�−k+1]
In 1994, Brightwell, Kierstead, Kostochka, and Trotter gave the following upper bound

[1].

Theorem 1.4 (Brightwell–Kierstead–Kostochka–Trotter) Let 0 ≤ k < � ≤ n be integers.
Then we have dim(Qn

[k,�]) = O((� − k)2 log n).

This shows that dim(Qn
[k,�]) grows quadratically in (�−k), up to a log n factor. These bounds

are relatively tight when � − k is large compared to log n. For results on the case when � − k
is smaller, see [5, 13].

A natural extension of this problem on subsets is to instead consider multisets of [n]. Let
Mn be the (infinite) poset on all multisets of [n], ordered by inclusion. As before, for I ⊆ N,
let Mn

I be the suborder of Mn on multisets S of [n] for which |S| ∈ I (in this paper I will
always be finite). Here |S| counts elements of S with multiplicity.

Our first new result is the following extension of Theorem 1.4.1

Theorem 1.5 Let k, �, n be positive integers with k < �. Then we have

dim(Mn
[k,�]) ≤ 34(� − k)2 log n.

Next, we consider a problem posed by Lewis and Souza in 2021. For a set R of positive
integers, let DR be the poset on R, ordered by divisibility. Earlier we saw an example with
R = [6] and showed that dim(D[6]) = 2. More generally, one can ask how dim(DR)

behaves in terms of R. A natural choice for R is the interval [N ]. Lewis and Souza (with an
improvement to the upper bound due to Souza and Versteegen) essentially solved this case
[7, 12].

Theorem 1.6 (Lewis–Souza, Souza–Versteegen) Let N be a positive integer. Then we have(
1

16
− o(1)

)
(log N )2

(log log N )2
≤ dim(D[N ]) ≤

(
4

log 2
+ o(1)

)
(log N )2 log log log N

(log log N )2
.

Another interesting choice of R is R = [N/κ, N ], where κ > 1 is a real number and N
is a positive integer. Lewis and Souza noted that D[1,κ] embeds into D[N/κ,N ], which gives a
lower bound of

dim(D[N/κ,N ]) = �((log κ)2(log log κ)−2).

Lewis and Souza also showed that dim(D[N/κ,N ]) is bounded above by κ(log κ)1+o(1),
using a general result of Scott and Wood [11]. Note that this is a function of only κ and not
N . So, a natural question is to understand the behavior of supN dim(D[N/κ,N ]) as a function
of κ .

Theorem 1.7 Let κ > 1 be a real number and let N be a positive integer. Then we have

dim(D[N/κ,N ]) ≤ max
(
688 (log κ)3

(log log κ)2
, 2

)
.

The 2 in themax function handles the case when κ is less than 3. To prove this theorem, we
first generalize Theorem 1.5. Note that Mn is isomorphic to Z

n≥0, by identifying a multiset
S with its tuple of multiplicities 	x(S). Additionally, we can identify an integer with the tuple
of exponents in its prime factorization. However, when we consider the size of an integer,

1 We have not optimized the constants in new results in this paper. We also omit some floors and ceilings.
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each prime has a different weight. Thus, to use multisets to capture an interval of integers,
we need to weight the elements of [n] in our multisets. So, for a weight vector 	v ∈ R

n
>0, we

define the 	v − si ze of a multiset S to be |S|	v = 	x(S) · 	v. We also define

Mn,	v
[k,�] = S ∈ Mn : |S|	v ∈ [k, �].

Here we allow k and � to be real numbers, as |S|	v may not be an integer. Note that when
all entries of 	v are 1 and k, � are integers, Mn,	v

[k,�] = Mn
[k,�].

To state our result on weighted multisets, we first need a technical definition to describe
the dependence on 	v. For a vector 	v ∈ R

n
>0 and a real s, we let m(	v, s) be the sum of the

least 
s� coordinates of 	v. Then we have the following result for weighted multisets, which
generalizes Theorem 1.5.

Theorem 1.8 Let 0 ≤ k < � be real numbers and let n be a positive integer. Let 	v ∈ R
n
>0 be

a weight vector. Let r be the least real number such that m(	v, r) ≥ 2(�− k) and r ≥ 1. Then
we have

dim(Mn,	v
[k,�]) ≤ 43r2 log n.

The key new idea in this paper is a way to deal with arbitrary weight vectors 	v in the proof
of Theorem 1.8. We will prove Theorem 1.7 by applying Theorem 1.8.

Theorem 1.8 can also be used to analyze other divisibility orders. For example, consider
divisibility orders on polynomials. For a prime power q and integers d0 ≥ 0, δ > 0, let
P(Fq)[d0−δ,d0] denote the poset on monic polynomials in Fq [x] with degree in the interval
[d0 − δ, d0], ordered by divisibility. Using Theorem 1.8, we obtain the following result.

Theorem 1.9 Let q be a prime power and let δ be a positive integer. Then for each nonnegative
integer d0, we have

dim(P(Fq)[d0−δ,d0]) ≤ min

(
910

(δ log q)3

(log δ)2
, 172δ3 log q

)
.

The two bounds in this theorem correspond to the two regimes when q < δ and q ≥ δ.
The paper is organized as follows. In Section 2 we will discuss some basic properties of

poset dimension that will be useful in the proofs of the main results. In Section 3 we analyze
unweighted multiset posets and prove Theorem 1.5. In Section 4 we extend our arguemnts
to weighted multiset posets and prove Theorem 1.8. In Section 5 we prove Theorem 1.7 by
applying Theorem 1.8. In Section 6, we discuss other divisibility orders and prove Theorem
1.9. In Section 7 we discuss further directions.

2 Preliminaries

A linear extension of a poset P is a total (linear) order on the elements of P that agrees
with all relations in P . Given a set L of linear extensions of P , we say that L is a realiser
if for each pair2 of incomparable elements (x, y), there exists an extension L ∈ L such that
x ≥L y. Then dim(P) is also the minimum size of a realiser of P . One way to see this is by
embedding P into R

d and constructing a linear extension from each of the d coordinates.
We now discuss some basic properties of dimension. Given two posets P and Q, if P

embeds into Q, then dim(P) ≤ dim(Q).

2 We will refer to ordered pairs as pairs when the order is clear.
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An important concept in the study of poset dimensions is the notion of critical pairs. A
critical pair in a poset P is a pair of incomparable elements (x, y) such that x is minimal
among elements incomparable to y and y is maximal among elements incomparable to x .
We say that a linear extension L of P reverses a critical pair (x, y) in P if x ≥L y.

Proposition 2.1 Let L be a set of linear extensions of a (finite) poset P. Suppose that each
critical pair in P is reversed by some extension in L. Then L is a realiser of P.

Proof Let (x, y) be any pair of incomparable elements in P . As long as (x, y) is not a critical
pair, we can decrease x or increase y while keeping the pair incomparable. Since P is finite,
this means we can find a critical pair (x ′, y′) such that x ≥P x ′ and y ≤P y′. Now there
exists some L ∈ L such that x ′ ≥L y′, so we also have x ≥L y as desired. �

Using the concept of a critical pair, we can see why we only care about the lowest and
highest layers of a suborder of Qn . Let 0 < k < � < n and consider the poset Qn

[k,�]. In this
poset the critical pairs are precisely the incomparable pairs of subsets (X , Y ) where |X | = k
and |Y | = �. So to construct a realiser for Qn

[k,�] it suffices to construct a realiser for the
suborderQn

{k,�}. Thus we have that dim(Qn
[k,�]) ≤ dim(Qn

{k,�}). Additionally, sinceQn
{k,�} is a

suborder ofQn
[k,�],wehave that dim(Qn

{k,�}) ≤ dim(Qn
[k,�]). Thus dim(Qn

{k,�}) = dim(Qn
[k,�]).

Critical pairs also explain why dim(Qn) = n. The critical pairs in Qn are precisely the
pairs ({x}, [n] \ {x}) for x ∈ [n]. There are n such critical pairs and a linear extension ofQn

can reverse at most one of them. Thus dim(Qn) ≥ n. We already know that dim(Qn) ≤ n,
so dim(Qn) = n.

Nextwe consider some basic poset constructions. Given posets P and Q, recall the product
poset P × Q, where (p1, q1) ≤ (p2, q2) if and only if p1 ≤P p2 and q1 ≤Q q2. Then we
have that dim(P × Q) ≤ dim(P) + dim(Q) by combining embeddings of P and Q into an
embedding of P × Q.

Another poset construction we will use is the disjoint union of two posets. Given posets
P and Q, let P � Q be their disjoint union. Here we take the union of a copy of P and
a copy of Q with all elements of P being incomparable with all elements of Q. As long
as P and Q are nonempty, P � Q cannot be a chain, so dim(P � Q) ≥ 2. Next, let
d = max(dim(P), dim(Q), 2) and note that both P and Q can be embedded into R

d .
By appropriately translating these embeddings, we can construct an embedding of P � Q
into R

d . So dim(P � Q) = max(dim(P), dim(Q), 2).
Next, to illustrate some of the techniques used in the proof of Theorem 1.7, we will prove

the following easier result, which is already a small improvement upon the previous best
known bound.

Proposition 2.2 Let κ > 1 and N ∈ N. Let π(κ) denote the number of primes less than or
equal to κ . Then we have

dim(D[N/κ,N ]) ≤ max(π(κ), 2) = (1 + o(1))κ(log κ)−1.

Proof The key idea is to write D[N/κ,N ] as a disjoint union of several posets.
Call a prime p small if p ≤ κ and large if p > κ . Let K be the set of all positive integers

M ≤ N with no small primes dividing M . For each M ∈ K , let g(M) be the set of all positive
integers of the form Mq , where q has only small prime divisors. Now, note that we have a
set partition of [N/κ, N ] given by

[N/κ, N ] =
⊔

M∈K

g(M) ∩ [N/κ, N ].
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Furthermore, elements of different sets in this partition are incomparable in D[N/κ,N ],
because if they were comparable, their ratio would be divisible by a large prime. Thus
D[N/κ,N ] is a disjoint union of posets of the form Dg(M)∩[N/κ,N ], and it suffices to show that
dim(Dg(M)∩[N/κ,N ]) ≤ π(κ) for any M ∈ K .

For any given M ∈ K , we can embed Dg(M)∩[N/κ,N ] into R
π(κ) by mapping an integer

m to its tuple of exponents of small primes. Applying the prime number theorem completes
the proof. �

The main result of this paper is to provide a nontrivial bound on dim(Dg(M)∩[N/κ,N ])
using new results on multisets. We first review some notation for multisets.

When referring tomultisets, we always count size/cardinality withmultiplicity.We denote
the set of distinct elements of a multiset S by supp(S), so that |supp(S)| is the number of
distinct elements of S. For multisets S and T , we use S \ T to denote the multiset where we
subtract the multiplicity of an element in T from its multiplicity in S (without going below
0). For example, supp(S \ T ) is the set of elements which have greater multiplicity in S than
in T . Also, we write S ⊆ T if the multiplicity of each element in S is at most its multiplicity
in T .

3 Results onMultisets

In this section we prove Theorem 1.5, which is a modification of the main result of Brightwell
et al. [1].

To prove this theorem, we will construct two sets of linear extensions ofMn
[k,�]. The first

set of extensions, L1, will deal with all incomparable pairs of multisets (S, T ) for which
|supp(T \ S)| ≤ 3(� − k). The second set of extensions, L2, will deal with all incomparable
pairs of multisets (S, T ) for which |supp(T \ S)| > 3(� − k).

Lemma 3.1 Let n be a positive integer and let r be a positive real number with r ≥ 1. Then
there exists a set L1 of at most (3r + 1)2 log n linear extensions of Mn such that for every
incomparable pair of multisets (S, T ) with |supp(T \ S)| ≤ 3r , there exists an extension
L ∈ L1 where S >L T .

Proof The proof uses the probabilistic method, with an argument similar to the proof of
Theorem 1.3 in [4].

Note that the result is clear if n ≤ 3r + 1, so we will assume n > 3r + 1.
For a total order σ on [n], we define the lexicographic linear extension Lσ ofMn . Specif-

ically, for S, T ∈ Mn , we have S >Lσ T if maxσ (supp(S \T )∪supp(T \ S)) ∈ supp(S \T ).
For a subset Y of [n] and an element x ∈ [n] \ Y , we say x >σ Y if x >σ y for all y ∈ Y .

We would like to construct a set of at most d = (3r + 1)2 log n choices of σ such that for
every 3r -element subset Y ⊆ [n] and x ∈ [n] \ Y , one of our d choices of σ gives x >σ Y .

To accomplish this, consider sampling d choices of σ uniformly and independently at
random from all possible total orders. For a given 3r -element subset Y ⊆ [n] and x ∈ [n]\Y ,
the probability that x >σ Y in a given sample is 1

3r+1 . Thus, in d samples, the probability

that x �>σ Y for any of the sampled σ is
(
1 − 1

3r+1

)d
. The number of possible choices for

(x, Y ) is at most n3r+1. Thus the expected number of pairs (x, Y ) for which x �>σ Y for all
d choices of σ is at most

n3r+1
(
1 − 1

3r + 1

)d

< n3r+1e−d/(3r+1) = 1.
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So, we can choose d total orders σ1, . . . , σd such that for every choice of (x, Y ), x >σi Y
for some chosen σi . Now, let L1 = {Lσi : 1 ≤ i ≤ d} be the set of lexicographic linear
extensions corresponding to these choices of σ .

Consider an incomparable pair of multisets (S, T ) inMn with |T \ S| ≤ 3r . Choose any
x ∈ |supp(S \ T )| and any 3r -element subset Y of [n] \ {x} containing |supp(T \ S)|. Then
we have that x >σi Y for some chosen σi . In the corresponding linear extension Lσi , we will
have S >Lσi

T , as desired. �
Note that Lemma 3.1 holds for any value of r , but we will apply it with r = � − k.

Additionally, note that sinceMn
[k,�] is a suborder ofMn , we can restrict the linear extensions

we obtain from Lemma 3.1 to linear extensions of Mn
[k,�] with the same property.

We construct L2 from (ordered) partitions of [n]. We can represent a partition of [n] with
a parts by a function f : [n] → [a]. More generally, we represent a sequence of t such
partitions by a function f : [n] × [t] → [a].

Working with these partitions instead of [n] allows us to have a smaller object to deal
with. However, we also need our sequence of partitions to remember some of the structure
of [n]. This is encoded with the following property.

Definition 3.2 ([1]) A function f : [n] × [t] → [a] is (a, b, r , t, n)-good if for each subset
X ⊆ [n] of size |X | = b, there exists τ ∈ [t] such that | f (X , τ )| > r .

In other words, for each subset X of [n]with b elements, we need to be able to choose one
of our t partitions that divides X into more than r parts. The following lemma guarantees the
existence of good functions for appropriately chosen parameters.

Lemma 3.3 ([1]) Let a, b, r , t, n be positive integers such that r < b ≤ n and r < a. If(
n

b

)
ert (r/a)(b−r)t < 1,

then there exists an (a, b, r , t, n)-good function.

The proof of this lemma is by the probabilistic method; we choose f uniformly at random.
See [1, Lemma 2.2] for a full proof.

We are now ready to construct L2. The key idea is to focus on a subset R ⊆ [n] (which
we will choose later) and use it to order our multisets by counting only elements of R (with
multiplicity). The goal is to find a collection R of several different subsets of [n] such that
for any incomparable pair of multisets (S, T ) with supp(T \ S) > 3(� − k), there exists an
R ∈ R inducing an order with S > T . We accomplish this by taking several partitions of
[n], corresponding to a good function given by Lemma 3.3. The fact that T can have at most
�−k more elements than S (since k ≤ |S|, |T | ≤ �) will allow us to find a suitable collection
R of relatively small size.

We will find R using a good function. Specifically, for an (a, b, r , t, n)-good function f
and α ∈ [a], τ ∈ [t], we let Rα,τ = {i ∈ [n] | f (i, τ ) = α}. That is, Rα,τ denotes part α

of partition τ in the sequence of partitions represented by f . We then let R = {Rα,τ | α ∈
[a], τ ∈ [t]}.
Lemma 3.4 Let n, k, �, r be positive integers with k < � and r = � − k. Then there exists
a set L2 of at most 18r log n linear extensions of Mn

[k,�] such that for every incomparable
pair of multisets (S, T ) with |supp(T \ S)| > 3r , there exists an extension L ∈ L2 where
S >L T .
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Proof If 3r > n, then dim(Mn
[k,�]) ≤ n < 18r log n. So assume 3r ≤ n and set a = b = 3r ,

t = 3 log n. Note that the condition in Lemma 3.3 holds, since(
n

b

)
ert (r/a)(b−r)t =

(
n

3r

)
ert3−2r t < n3r e−r t = 1.

So, we fix an (a, b, r , t, n)-good function f . Now we will use Rα,τ as described above.
For each α ∈ [a], τ ∈ [t], j ∈ [2], we will construct a linear extension Lα,τ, j of Mn

k,l .
That is, we will construct two extensions for each part in each partition. Our set of extensions
L2 will consist of these 2at extensions.

Fix two linear extensions M1 and M2 ofMn which both order multisets by size, but order
the multisets of a given size in opposite orders. Also let M0 be an arbitrary linear extension
of Mn .

For a multiset S, let Sα,τ be the multiset obtained by restricting S to the elements of Rα,τ ,
i.e., Sα,τ = {i ∈ S | f (i, τ ) = α}. Note that Sα,τ keeps the same multiplicities of elements
as S.

We now construct our linear extensions Lα,τ, j . We let S <Lα,τ, j T if Sα,τ <M j Tα,τ . If
Sα,τ = Tα,τ then we let S <Lα,τ, j T if and only if S <M0 T .

We now show that L2 satisfies the desired condition. Suppose that (S, T ) is an incompa-
rable pair of multisets in Mn

[k,�] with |suppT \ S| > 3r = b. Since f is (a, b, r , t, n)-good,

there exists τ ∈ [t] such that | f (T \ S, τ )| > r holds3.
If there exists α ∈ [a] such that |Sα,τ | > |Tα,τ |, then S > T in both Lα,τ,1 and Lα,τ,2. So

assume that |Sα,τ | ≤ |Tα,τ | for all α ∈ [a]. Next, note that∑
α∈[a]

|Sα,τ | = |S|,
∑
α∈[a]

|Tα,τ | = |T |.

Recall that k ≤ |S|, |T | ≤ �, so |T | − |S| ≤ � − k = r . Hence there are at most r values
of α ∈ [a] for which |Sα,τ | < |Tα,τ |. Thus there exists α ∈ f (T \ S, τ ) with |Sα,τ | = |Tα,τ |.
Additionally, we can’t have Sα,τ = Tα,τ since α ∈ f (T \ S, τ ). So S > T in either Lα,τ,1 or
Lα,τ,2, and we are done. �
Applying Lemma 3.1 with r = � − k and Lemma 3.4, we have that

dim(Mn
[k,�]) ≤ (3r + 1)2 log n + 18r log n ≤ 34(� − k)2 log n.

This proves Theorem 1.5.

4 WeightedMultisets

In this section we prove Theorem 1.8 using the same proof strategy as for Theorem 1.5. This
time we are given a value of r which depends somewhat on �−k. We will again construct two
sets of extensions of Mn,	v

[k,�]. The first set of extensions, L1, will deal with all incomparable
pairs of multisets (S, T ) for which |supp(T \ S)| ≤ 3r , and the second set of extensions, L2,
will deal with all incomparable pairs of multisets (S, T ) for which |supp(T \ S)| > 3r .

To constructL1, we apply Lemma 3.1 and restrict the resulting linear extensions toMn,	v
[k,�].

This gives us at most (3r + 1)2 log n linear extensions of Mn,	v
[k,�] such that for every incom-

parable pair of multisets (S, T ) with |suppT \ S)| ≤ 3r , there exists an extension L ∈ L1

where S >L T .

3 We let f (X , τ ) = f (supp(X), τ ) for multisets X .
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To construct L2, we will use the same strategy as in the proof of Lemma 3.4. However, we
will need some new ideas. Previously, for an incomparable pair of multisets (S, T ), if a subset
Rα,τ of [n] ordered T above S, then this would “cost” 1 from |T | − |S| ≤ � − k. However,
when dealing with 	v-size, we can no longer make such a claim, since |Tα,τ |	v − |Sα,τ |	v could
be very small. Instead, we will find a way to still “win” if |Tα,τ |	v − |Sα,τ |	v is sufficiently
small.

Lemma 4.1 Let 	v ∈ R
n
>0, and k, �, r be real numbers with 0 < k < � and r ≥ 1. Suppose

that m(	v, r) ≥ 2(� − k). Then there exists a set L2 of at most 27r log n linear extensions of
Mn

[k,�] such that for every incomparable pair of multisets (S, T ) with |supp(T \ S)| > 3r ,

there exists an extension L ∈ L2 where S >L T .

Proof Set a = b = 3r , t = 3 log n, and fix an (a, b, r , t, n)-good function f as in the proof
of Lemma 3.4. Let Rα,τ = {i ∈ [n] | f (i, τ ) = α} denote part α of partition τ .

For each α ∈ [a], τ ∈ [t], and j ∈ {0, 1, 2}, we will construct a linear extension Lα,τ, j of

Mn,	v
[k,�]. That is, we will construct three extensions for each part in each partition. Our set of

extensions L2 will consist of these 3at extensions.
For a multiset S, define Sα,τ as before. Let M1 and M2 be two linear extensions of Mn

which both order multisets by 	v-size, but order the multisets of a given 	v-size in opposite
orders. Let M0 be an arbitrary linear extension of Mn .

First we define Lα,τ,0. For each α, τ , we will have Lα,τ,0 order multisets S by |Sα,τ |	v ,
breaking ties using M0. That is, we have S <Lα,τ,0 T if |Sα,τ |	v < |Tα,τ |	v . If |Sα,τ |	v = |Tα,τ |	v ,
then S <Lα,τ,0 T if and only if S <M0 T .

We now define Lα,τ, j for j ∈ {1, 2}. For each α, τ , both extensions will order multisets S
by taking into account the 	v-size |Sα,τ |	v . Specifically, Lα,τ, j will ordermultisets S by applying
an ordering Kα,τ, j of R to |Sα,τ |	v as follows. If |Sα,τ |	v <Kα,τ, j |Tα,τ |	v , then S <Lα,τ, j T .
This defines how Lα,τ, j orders multisets S and T except when |Sα,τ |	v = |Tα,τ |	v . We will
deal with this edge case later.

To define Kα,τ, j , we first let ε = ε	v, f (α, τ ) = mini∈Rα,τ (vi ), where vi is the i th entry
of 	v. Now, consider dividing the real number line into half-open intervals of length ε in the
following two ways.

R = · · · ∪ [0, ε) ∪ [ε, 2ε) ∪ [2ε, 3ε) ∪ · · ·
R = · · · ∪ [ε/2, 3ε/2) ∪ [3ε/2, 5ε/2) ∪ [5ε/2, 7ε/2) ∪ · · ·

We let Kα,τ,1 order the intervals in the first partition of R in increasing order, but order the
elements of each interval in decreasing order. We define Kα,τ,2 in the same way from the
second partition of R. Specifically, for reals x < y, we have x <Kα,τ,1 y if and only if

x/ε� < 
y/ε�, and x <Kα,τ,2 y if and only if 
x/ε − 1/2� < 
y/ε − 1/2�.

This in turn defines our linear extensions Lα,τ,1 and Lα,τ,2. For example, for multisets S
and T with ε < |Sα,τ |	v < 3ε/2 < |Tα,τ |	v < 2ε, we will have S >Lα,τ,1 T and S <Lα,τ,2 T .
Additionally, note that if S and T are two multisets satisfying |Tα,τ |	v − ε/2 < |Sα,τ |	v <

|Tα,τ |	v , then at least one of Lα,τ,1 and Lα,τ,2 orders S greater than T .
Now we deal with the edge case of distinct multisets S, T with |Sα,τ |	v = |Tα,τ |	v . If

Sα,τ �= Tα,τ , then S <Lα,τ, j T if and only if Sα,τ <M j Tα,τ . Finally, if Sα,τ = Tα,τ , then
S <Lα,τ, j T if and only if S <M0 T .

Next, we check that Lα,τ, j is indeed a linear extension ofMn,	v
[k,�]. Suppose S, T ∈ Mn,	v

[k,�]
with S ⊆ T . Then S ≤M0 T . Also, Sα,τ ⊆ Tα,τ , so Sα,τ ≤M j Tα,τ . Thus S ≤Lα,τ, j T if
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|Sα,τ |	v = |Tα,τ |	v . Now suppose that |Sα,τ |	v < |Tα,τ |	v . Pick any i ∈ (T \ S)α,τ . Since S ⊆ T ,
we have

|Tα,τ |	v − |Sα,τ |	v = |(T \ S)α,τ |	v ≥ vi ≥ ε(α, τ ).

Thus |Sα,τ |	v and |Tα,τ |	v cannot lie in the same half-open interval of length ε(α, τ ). So
|Sα,τ |	v <Kα,τ, j |Tα,τ |	v and S <Lα,τ, j T . Therefore Lα,τ, j is indeed a linear extension of

Mn,	v
[k,�].
We now show that L2 satisfies the desired condition. Suppose that (S, T ) is an incom-

parable pair of multisets in Mn,	v
[k,�] with supp|T \ S| > 3r = b. Then k ≤ |S|	v, |T |	v ≤ �.

So |T |	v − |S|	v ≤ � − k. Since f is (a, b, r , t, n)-good, there exists τ ∈ [t] such that
| f (T \ S, τ )| > r . If there exists α ∈ [a] such that |Sα,τ |	v > |Tα,τ |	v , then we are done.
So assume that |Sα,τ |	v ≤ |Tα,τ |	v for all α ∈ [a]. Next, consider α ∈ f (T \ S, τ ). If
|Sα,τ |	v > |Tα,τ |	v − ε(α, τ )/2, then S > T in Lα,τ, j for at least one j ∈ {1, 2}. So assume
that |Tα,τ |	v ≥ |Sα,τ |	v + ε(α, τ )/2 for each α ∈ f (T \ S, τ ). Summing over all such α, we
obtain

� − k ≥ |T |	v − |S|	v ≥ 1

2

∑
α∈ f (T \S,τ )

ε(α, τ ) >
1

2
m(	v, r),

where the last inequality follows by noting that each ε(α, τ ) is a distinct entry of 	v and using
| f (T \ S, τ )| > r . Since m(	v, r) ≥ 2(� − k), we have a contradiction. This completes the
proof. �

Applying Lemma 3.1 and Lemma 4.1, we have that

dim(Mn,	v
[k,�]) ≤ (3r + 1)2 log n + 27r log n ≤ 43r2 log n.

This proves Theorem 1.8.

5 Results on Divisibility inN

In this section we use Theorem 1.8 to obtain a significantly better bound on dim(D[N/κ,N ]),
proving Theorem 1.7.

We use some of the ideas from the proof of Proposition 2.2. As before, call a prime p
small if p ≤ κ and large if p > κ . Let K be the set of all positive integer M ≤ N with no
small primes dividing M . For each M ∈ K , let g(M) be the set of all positive integers of the
form Mq , where q has only small prime divisors. Now, recall that to bound dim(D[N/κ,N ]) it
suffices to bound dim(Dg(M)∩[N/κ,N ]) for each M ∈ K . We will accomplish this by applying
Theorem 1.8.

Let n = π(κ), and let 	v = (log 2, log 3, . . . , log pn), where pi is the i th prime. Fix some
M ∈ K and let kM = log((N/κ)/M) and �M = log(N/M), so that �M − kM = log(κ).
Now, by associating an integer with its prime factorization we have an isomorphism between
posets

Mn,	v
[kM ,�M ] ∼= Dg(M)∩[N/κ,N ].

If κ < 3 then dim(Mn,	v
[kM ,�M ]) ≤ 2. Otherwise, it can be checked (see Appendix A) that

with r = 4 log κ
log log κ

, we have m(	v, r) ≥ 2 log(κ). So by Theorem 1.8, dim(Mn,	v
[kM ,�M ]) ≤

43r2 log n. This holds for all choices of M , so we have that

dim(D[N/κ,N ]) ≤ 43r2 log n ≤ 688
(log κ)3

(log log κ)2
,
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which proves Theorem 1.7.

6 Other Divisibility Orders

In this section we consider other divisibility orders. In some sense the posetMn,	v
[k,�] captures

all possible normed divisibility orders subject to reasonable conditions. Specifically, given a
(multiplicative) monoidwith a norm and some notion of primes and unique factorization4, we
can construct a divisibility order on the elements with norms lying in an interval [N/κ, N ].
Letting 	v be the vector of the norms of primes with norm at most κ , we can then apply
Theorem 1.8. If we have an understanding of the primes and the norm we can obtain a
concrete bound, as in Theorem 1.7.

As another example of this principle, we analyze the divisibility order on monic polyno-
mials over a finite field. As in the proof of Proposition 2.2, P(Fq)[d0−δ,d0] is isomorphic to

a disjoint union of posets of the form Mn,	v
k,� , where � − k = δ, n is the number of monic

irreducible polynomials over Fq [x]with degree at most δ, and 	v ∈ R
n is the vector of degrees

of these n polynomials.
It can be checked (see Appendix B) that n ≤ qδ and that with r = 4.6 δ log q

log δ
, we have

m(	v, r) ≥ 2δ. Additionally, since each entry of 	v is at least 1, we have m(v, r) ≥ 2δ with
r = 2δ. These two choices of r handle the regimes when q < δ and q ≥ δ, respectively. By
applying Theorem 1.8, we obtain

dim(P(Fq )[d0−δ,d0]) ≤ 43

(
min

(
4.6

δ log q

log δ
, 2δ

))2

log(qδ) ≤ min

(
910

(δ log q)3

(log δ)2
, 172δ3 log q

)
.

This proves Theorem 1.9.

7 Further Directions

Considering multiset posets was initially motivated by working on divisibility posets. How-
ever, multiset posets are a natural extension of subset posets and interesting on their own. It
would be nice to see Theorem 1.8 applied to problems not directly obtained from divisibility
orders.

Although Theorem 1.7 is a substantial improvement over previously known bounds, it is
not quite tight with the lower bound given by Lewis and Souza. This lower bound cannot be
improved without new ideas, since it is obtained by embedding the optimal subset poset of
the form Qn

[1,�] into D[N/κ,N ] [7]. On the other hand, there are also reasons to believe that
Theorem 1.7 might be close to tight. The limiting factor in the upper bound is the dimension
of the subset poset Qn[1,3r ]. In the regime when r is close to log n, Kierstead showed that

dim(Qn[1,3r ]) is close to r3 [5]. Unfortunately the proof technique does not extend easily to
the divisibility problem, but perhaps it could be modified with new ideas.

Appendix A. Computations for Theorem 1.7

In this appendix we show the following bound.

4 We just need commutativity, cancellation, and finitely many elements with norm at most N for each N .
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Proposition A.1 Let 	v = (log 2, log 3, . . . , log pn), where pi is the i th prime. Let κ ≥ 3 be
a real number, and let r = 4 log κ

log log κ
. Then m(	v, r) ≥ 2 log(κ).

Proof We use [10], which provides bounds on the Chebyshev function ϑ(x) = ∑
p≤x log p

(where the sum is over primes p). Note that m(	v, r) = ϑ(p
r�). By [10, Theorem 6], we
have that

ϑ(p
r�) ≥ 
r�(log
r� + log log
r� − 1.076869).

Now, let λ = log κ > 1 and note that λ
log λ

≥ e. So


r� > r − 1 >

(
4 − 1

e

)
λ

log λ
≥ 3.5

λ

log λ
.

Let η = 1.076869 and note that η < log(3.5). Using the above bounds and log log λ
log λ

≤ 1
e , we

have that

m(	v, r) > 3.5
λ

log λ

(
log

(
3.5

λ

log λ

)
+ log log

(
3.5

λ

log λ

)
− η

)

> 3.5
λ

log λ
(log(3.5) + log λ − log log λ − η)

> 3.5
λ

log λ
(log λ − log log λ)

= 2λ + λ

(
1.5 − 3.5 log log λ

log λ

)

≥ 2λ + λ

(
1.5 − 3.5

e

)

> 2λ.

So m(	v, r) ≥ 2 log κ , as desired. �

Appendix B. Computations for Theorem 1.9

In this appendix we show bounds on irreducible polynomials in Fq [x]. Let ni be the number
of monic irreducible polynomials of degree i . Recall that the product of all monic irreducible
polynomials of degree dividing i is xqi − x . In particular, this means that ni ≤ qi/i . In the
notation of Section 6, we have that n = n1 + · · · + nδ and 	v ∈ R

n is a vector with ni entries
being i .

Proposition B.1 We have n ≤ qδ .

Proof We have n1 = q and for i ≥ 2,

ni ≤ qi · 1
i

≤ qi · q − 1

q
= qi − qi−1.

So
n = n1 + · · · + nδ ≤ q + (q2 − q) + · · · + (qδ − qδ−1) = qδ.

�
Proposition B.2 Let r = 4.6 δ log q

log δ
. Then m(	v, r) ≥ 2δ.
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Proof For each i , 	v has n1 + · · · + ni−1 entries that are less than i . Thus m(	v, r) has


r� − (n1 + · · · + ni−1)

terms that are at least i . Then for any d ∈ N we have

m(	v, r) ≥
d∑

i=1


r� − (n1 + · · · + ni−1) = d
r� − (d − 1)n1 − · · · − (1)nd−1.

We will apply this with d = 
log δ/ log q� + 1. Since δ
log δ

≥ e and log q ≥ log 2,


r� > r − 1 ≥ 4
δ log q

log δ
+ 0.6 · e log 2 − 1 > 4

δ log q

log δ
.

Now we have

m(	v, r) >
log δ

log q
· 4δ log q

log δ
− (d − 1)

q1

1
− · · · − (1)

qd−1

d − 1
.

By rearrangement,

(d − 1)
q1

1
+ · · · + (1)

qd−1

d − 1
≤ (1)

q1

1
+ · · · + (d − 1)

qd−1

d − 1
= q1 + · · · + qd−1 ≤ 2qd−1.

So we have
m(	v, r) > 4δ − 2qd−1 ≥ 4δ − 2δ = 2δ.
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