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ABSTRACT

As space exploration accelerates and the number of robots and humans working in ex-
treme environments grows with it, we must enact autonomous multi-agent coordination in
order to safely operate in environments that are inherently hostile to communication. To
the best of our knowledge, there are no multi-agent scheduling algorithms capable of in-
dependently reasoning over communication delay. A key gap that must be addressed is a
single-agent scheduler capable of deciding when to act given uncertain observation, which
can the form the basis for distributed multi-agent scheduling. Existing research has provided
insights into temporal reasoning, namely modeling observation uncertainty and scheduling
events with temporal constraints. There is both a need for deciding when to schedule events
when there is uncertain observation delay, and a need to robustly coordinate between agents.
Scheduling events in the face of uncertainty is a challenge due to the compounding uncertain-
ties of uncontrollable exogenous events, unknown observation delay, and uncertain communi-
cation between agents. This thesis puts forth a series of contributions that culminates in the
demonstration of a robust single-agent task executive that used our scheduler to coordinate
in a multi-agent context despite observation delay. Doing so required insights in checking
controllability of temporal constraints with uncertain delay, defining a scheduler that is ro-
bust to uncertain observation delay, integrating the scheduler in an existing high-level task
executive, and a coordination strategy for multiple agents. We show that the scheduler
exhibits the expected performance characteristics, and perform laboratory demonstrations
of multi-agent execution with uncertain communication using a scenario inspired by human
spaceflight.
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Chapter 1

Introduction

The United States, Europe, private companies, and new space agencies around the world
are collectively racing to orbit, the Moon, and Mars with a zeal that has not been seen
since Apollo. We are witness to the great forces of political will, economics, and technologi-
cal prowess launching our foothold beyond low Earth orbit and into planetary colonization.
From every perspective, the scale of space exploration is staggering. It will take relentless
effort from untold numbers of people, and our robotic partners, to usher humanity into the
era where interplanetary travel and living off-world are commonplace. In every envisioned
scenario for deep space exploration, there is a need to coordinate between agents, whether
human or robotic, who must find a way to safely work together in the face of the communi-
cation challenges inherent to extreme environments.

There is good reason to design a system for coordination around the notion of uncertain
communication. We take for granted that communication is easy in our civilized corners of
the Earth’s surface. Cellular signals and WiFi are security blankets, tricking us into thinking
it must be easy for everyone to communicate everywhere. The fact of the matter is that
communication is far from a given in the frontiers. Consider low Earth orbit. The largest
artificial satellite, the International Space Station (ISS), has been in orbit since 1998. Despite
that, it still loses communication with the ground regularly. Satellites with much less robust
infrastructure lose contact with the ground even more often. When astronauts set foot on the
South Pole of the Moon soon as part of the Artemis program, they will find uncertain satellite
coverage and the need to contend against local topology that is unforgiving to radio signals
[1]. Any robots working near a habitat, or any astronauts collecting samples nearby, may rely
on complicated systems of relays that can provide, at best, unpredictable communications
with nearby in situ agents, let alone Mission Control on Earth. Communications may be
delayed due to passing through multiple relays and the speed of light. Or communications
may drop out altogether when astronauts step behind a large boulder between them and the
closest relay.

This thesis will address on-the-fly task coordination under limited communication using
human spaceflight, specifically spacewalks, as a motivating example. Our aim is to define a
tactical, moment-by-moment scheduling system for teams of explorers in extreme environ-
ments where communication is not guaranteed. We provide more background here before
outlining the rest of this thesis.

The Artemis astronauts will continue a longstanding tradition in the U.S. space program
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of performing Extravehicular Activities (EVAs) [2]. Like the Apollo astronauts of the 1960s
and 1970s, Artemis astronauts will embark on EVAs wherein crews don spacesuits, egress
landers, and conduct scientific expeditions on the lunar surface. There, they will survey
surface features, collect samples, and in general perform field geology [3]–[5]. A small number
of astronauts are Ph.D. geologists by trade, and NASA is training others in the principles
of field geology up to a notional masters level of understanding [6]. NASA will support the
lunar activities of these astronauts through a vast infrastructure of personnel on the ground,
including teams of domain-relevant scientists. Together with flight controllers and engineers
from various disciplines, a science team on the ground will provide real-time feedback to
ensure that Artemis astronauts maximize the scientific return of their EVAs.

Throughout an EVA, the crew (astronauts with spacesuits on), need to know what to
do. Currently, Mission Control Center (MCC or simply “ground”), a vast infrastructure with
hundreds of personnel, monitors all aspects of EVAs and provides timely guidance to the
crew. A key role MCC plays is keeping the crew on schedule by informing them as to what
actions need to be taken and when to take them [7]. Current operations use a mix of manual
processes and automated tools1 for tracking a crew’s progress on an EVA timeline. Crews
then rely on verbal communications with MCC, as well as written notes kept on their suits
(e.g. Figures 1.1 and 1.2), to perform the right actions at the right times. It is not a stretch
to imagine that future spacewalkers will don new spacesuits that feature digital assistants
designed to walk them through procedures. Astronauts may interact with digital assistants
through heads-up-displays, over voice, or on wrist mounted screens. If communications with
MCC are challenged, then behind a digital assistant will need to be a system capable of
providing the same timely advice that MCC provides today. To do so, it will need to reason
over all the actions in an EVA timeline, while taking into account the current state of what
has been done and what needs to be done, in order to help the crew decide when actions
should be performed. We call such a system a scheduler.

Of course, astronauts never work alone. In addition to communicating with MCC, crews
perform EVAs on a buddy system, meaning two crew members egress and ingress at the same
time. At any given moment, they may be collocated, distant, working independently, or in
tight cooperation. Robotic assets also play a role. On ISS, crews work with manipulators
like the Canadarm [8]. Rovers and robotic systems will almost certainly be present on the
Moon. They may collaborate in many ways. Fundamentally, collaboration is a process of
deciding when to perform actions based on when other agents acted. For instance, taking
a picture is a form of collaboration. In Figure 1.1, Pete Conrad clearly decided when to
snap a photo by observing when Alan Bean held up the sample container. Maybe Conrad
saw Bean getting ready and knew when to act. Or, more likely, Bean told Conrad over the
radio that he was ready for a picture, so Conrad should get the camera ready. We envision
that future digital assistants must facilitate similar collaboration. To do so, each agent will
have their own assistant, each running a scheduler that can reason over timing constraints
between their actions and the actions of their peers.

The gap in the current state of the art is that, to the best of our knowledge, there is no
such scheduler that is capable of reasoning over uncertain communication and observation
delay. Existing schedulers assume instantaneous communications (e.g. [9]), which is unrea-

1E.g. https://github.com/nasa/maestro
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Figure 1.1: Astronaut Alan Bean on a lunar EVA during Apollo 12. The photographer,
astronaut Pete Conrad, can be seen in Bean’s helmet. Note Bean’s left wrist, which sports
a printed EVA timeline with notes about the tasks the crew needed to perform. Credit:
Charles “Pete” Conrad, Apollo 12, NASA.
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Figure 1.2: Astronaut Peggy Whitson on an ISS EVA in 2017. Note her left wrist, which
sports a printed EVA timeline with notes about the tasks the crew needed to perform. Credit:
NASA (source).

sonable on the lunar surface, or indeed, any extreme environment. Furthermore, state of the
art schedulers do not provide collaborative capabilities that allow multiple agents to work
together, especially in the presence of uncertain communication. This thesis leverages and
contributes to temporal reasoning research to implement such a scheduler for multi-agent
(MA) collaboration with uncertain communication, which we refer to as a delay scheduler.

For the remainder of the introduction, we present a short summary of each chapter.

1.1 Problem Statement

A delay scheduler can be used in the case of both one agent (e.g. a single astronaut or a
robot) working individually, as well as when a team of agents are collaborating. We start
by defining the problem statement for the single-agent case, before identifying the features
that are necessary for the MA case.

We use tools from temporal reasoning, namely temporal networks [10], to model EVA
timelines as time constraints (relationships) between a set of events. Some events are under
an agent’s control, like deciding when an astronaut decides to start walking to a science
station.Other events are not controlled, such as the exact time when the astronaut arrives
at a science station. Some events may not be learned until an unknown later time, i.e. they
have uncertain observation delay. An example would be when an unfortunate configuration
of satellites causes messages from MCC to arrive a minute late.

At some time 𝑡 during an EVA, we have a set of events that were observed before 𝑡. When
an event has been recorded at 𝑡, we say that it has been assigned. If there is no associated
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Figure 1.3: The summary page from US EVA 22 on ISS. Each column represents a different
agent with time increasing from top to bottom. “PET” is the Phased Elapsed Time, or
time since the EVA began. Each activity has a time in HH:MM seconds associated with it.
SSRMS is the Canadarm. EV1 and EV2 are the two spacewalkers. Credit: NASA (source)
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observation delay with an event, then the time of an observation is the same as assignment.
If there is associated observation delay, then it is possible that assignment times are earlier
than their respective observations.

We want a Real-Time Execution Decision (RTED), which consists of unexecuted events
and when they should be performed. Each RTED consists of a set of unexecuted events to be
scheduled at a future time. A digital assistant might use an RTED to display a notification
informing an astronaut that they should, say, finish taking photographs in two minutes.

Our problem statement for the delay scheduler is as follows. For some time 𝑡 during
scheduling, the delay scheduler should take a temporal network, observation delay, observa-
tions thus far, and assignments so far as input. It should output an RTED.

Each member of a team of collaborative explorers would naturally rely on their own delay
scheduler, each with their own temporal network. Like an astronaut waiting for their buddy
to finish a task before they both move on, some constraints will depend on events that are
performed by someone else. Events that an agent receives from peers are no different than
observations. Figure 1.3 shows a three-agent EVA timeline consisting of the Canadarm and
two astronauts. As can be seen, there are actions each agent will perform independently, but
there are constraints that dictate agents must also synchronize their actions. Hence, there
are constraints each agent must respect that depend on events performed by others.

We expand the problem statement with the following inputs and output. In order to
perform multi-agent scheduling, each agent should take a set of peers and event observations
as input, and output a broadcast that sends event assignments to all peers.

1.2 Approach

The architecture of the delay scheduler is designed around the notion of taking everything we
know about a set of temporal constraints and when events have been assigned and distilling
it down to a single RTED. There are four key processes in the delay scheduler.

1. an offline process that initializes the scheduler with a given model, including the tem-
poral network and observation uncertainty,

2. an online process that updates the scheduler with event observations,
3. an online process that broadcasts event assignments to peers, and
4. an online process that queries for RTEDs.

Much like how a flight controller cannot provide guidance on an EVA timeline without
an accurate copy of the EVA timeline, before scheduling begins, the scheduler must be given
a model of the schedule. Such a model will be unique to a given agent and must include
all events, the constraints between events, and the observation delay associated with events.
Figure 1.4 represents this input as a separate model given to each scheduler offline.

During scheduling, schedulers receive observations of events. For a given agent, 𝑎, ob-
servations come from three sources: actions 𝑎 has sensed but not controlled (“I traversed
difficult terrain and reached the installation location at 𝑡 = 5”), actions 𝑎 has performed (“I
put the tripod down at 𝑡 = 6”), and actions that have been communicated to 𝑎 (“It is 𝑡 = 15
and my peer told me they arrived at the science station”). Figure 1.4 shows observations
coming from outside the two schedulers while communications are passed between them.
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Figure 1.4: A sample architecture with two delay schedulers collaborating. Each agent
receives a single temporal network as input. Observations of the outside world are recorded.
Communications relay event assignments to peers. Each agent outputs its own RTED.

As scheduling progress, a digital assistant will want to ask the scheduler for guidance as
to when to act. We represent the delay scheduler’s output as an RTED, which can also be
seen in Figure 1.4.

With three distinct processes involved in single-agent scheduling (subprocesses 1, 2, and
4), we naturally define three explicit interfaces on the delay scheduler. Figure 1.5 shows the
flow of information between the interfaces and introduces a new data structure called the
dispatchable form. In the context of scheduling, the dispatchable form is a graph structure
that acts like a database. Event assignments are recorded to the dispatchable form, and
the dispatchable form can be queried to find the next RTED. Note that Figure 1.5 is a
simplification. The dispatchable form is the key data structure that make scheduling possible,
but an implementation of a scheduler will store forms of data other than the dispatchable
form when events are recorded.

The key distinction between a delay scheduler and existing schedulers is that we do not
assume perfect knowledge of event assignments. Instead, we reason over uncertain observa-
tion delay when observations of events are received and when we generate RTEDs.

The second interface in Figure 1.5, recording, takes both observations and communica-
tions as input. A key idea for the delay dispatcher is that communications from agents are
no different than event observations. Peer schedulers communicate when they have assigned
events, which then also received as observations. The result of equating communications
and observations is that a single-agent delay scheduler that can be seamlessly integrated
in a multi-agent context simply by being networked with peers. We do not assume every
agent can communicate with ever peer. Rather when communications are received, event
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Figure 1.5: The four interfaces of a delay scheduler. The first is for initialization, the second
is for schedule updates, the third is for broadcasting, and the fourth is for generating RTEDs.
The dispatchable form is ultimately the source of truth for when events should be scheduled.
Scheduling and broadcasting are shown in the same box because broadcasts are triggered by
event observations.

assignments are relayed to all known peers.

1.3 Modeling Temporal Constraints with Uncertain Ob-
servations

As stated before, our choice for modeling the “what” and “when” of scheduling is a temporal
network, also called a temporal constraint network [10].

Temporal networks consist of events and constraints. Written in English, events and
constraints might be stated as “samples must be stowed no more than five minutes after being
collected.” In this case, sample-collecting and sample-stowing would be two events. It
is the case that mission planners have a robust set of modeling tools for creating schedules.
In the literature, there are constraints between events we can control [10], events we cannot
control [11], constraints between multiple agents [12], events that may not be observed [13],
and events with variable observation delay [14]. We highlight key components of our chosen
modeling framework below.

Our choice of modeling constraints is set-bounded ranges. That is, a constraint between
two events, “sample collecting” and “sample stowing” is represented as sample-collecting

[0,5]−−→
sample-stowing. sample-stowing must be scheduled no earlier than 0 time units beforee
and no later than 5 time units after sample-collecting. This constraint assumes both
sample-collecting and sample-stowing are under the astronaut’s full control. Perhaps
the astronauts are working separately with one sample collection bag shared between them.
In that case, an astronaut might need to wait for their buddy to finish using the bag before
stowing samples. If so, then sample-stowing is outside their control. We would then model
the constraint as, say, sample-collecting

[0,5]
==⇒ sample-stowing. Now, the constraint dic-

tates that sample-stowing will happen no later than five minutes after sample collection,
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but the astronaut cannot choose (control) when in the next five minutes sample-stowing is
scheduled.

Our choice of model for uncertain communication is variable observation delay [14]. Say
there is uncertain communication between the astronauts. Now the communication indicat-
ing that sample-stowing can be begin may arrive either immediately, or a minute after it
was sent. We model the delay using a variable-delay function, 𝛾(sample-stowing) = [0, 1].
Altogether, the astronaut may receive the communication indicating that sample-stowing
may begin instantaneously, or with up to a minute of delay. Key to our model is that the
receiver does not know how much a message was delayed. If the message is received at 𝑡 = 4,
then the communication may have been sent at 𝑡 = 4 and received immediately. Or it is
possible that it was sent as early as 𝑡 = 3 and received after a minute delay.

Temporal networks play two key roles in scheduling. First, they allow a modeler to
represent the events and constraints between events of a schedule in a form that a scheduler
can ingest. Second, they can be checked for controllability (also called consistency). In
order for it to be possible for a temporal network to be scheduled, there must be a set of
assignments for all events under the agents control that satisfies all constraints in spite of
the fact that some events may arrive late or never at all.

With our choice of modeling constraints with variable observation delay, we perform a
variable-delay controllablity check on temporal networks passed to the delay scheduler. A
key aspect of checking controllability is that we must the temporal network to one with less
uncertainty that is equivalent with respect to controllability. It is this less uncertain form of
the temporal network that we then schedule.

We demonstrate the utility of our chosen modeling framework for uncertain observations
through a series of comparisons with other approaches to modeling uncertainty.

1.4 Scheduling Events Despite Uncertain Observations

From this point forward, we assume that the scheduler has been given a controllable temporal
network that accurately models the world.

Other researchers have presented single-agent scheduling algorithms for temporal net-
works with uncontrollable events [9], [15], the fastest being FAST-EX [9]. An underlying
assumption of existing schedulers is that events are observed instantaneously. Events with
uncertain observations are incompatible with this assumption, necessitating a change to the
way observations are recorded. The delay scheduler is a modified version of FAST-EX.

In fact, there are broadly two key differences between a delay scheduler and a scheduler
that implements FAST-EX. First, we must account for observation delay when events are
observed. For instance, if we know an observation at time 𝑡 was delayed by 𝛾 time units, the
assigned time is then 𝑡− 𝛾. Second, we introduce a new variable to RTEDs, a no-operation,
or no-op, boolean. Some events in an RTED may be no-op for the reason explained below.

When we transform the original temporal network with uncertain observations to one
with less uncertainty, we artificially shrink some of the constraints in the original temporal
network. Some uncontrollable events may arrive earlier or later than expected. We address
these situations with buffering and imagining uncontrollable events. We use the no-op
addition to RTEDs to simplify the handling of events that must be buffered or imagined.

20



Figure 1.6: Total runtime data for scheduling all events in temporal networks with uncertain
observations with less than 300 events.

We demonstrate that the delay scheduler exhibits the performance characteristics of
FAST-EX. At the core of FAST-EX is a Dijkstra Single Sink/Source Shortest Paths sub-
routine, which limits the runtime performance. Each call to the subroutine should have a
runtime performance of 𝑂(𝑁 log𝑁), where 𝑁 is the number of events in the temporal net-
work. Thus, we expect the total runtime to schedule all events in a temporal network to be
𝑂(𝑁2 log𝑁). To evaluate the performance of the delay scheduler, we scheduled randomly
generated temporal networks with a structure inspired by a satellite dish installation proce-
dure. In the experiments, we model multiple astronauts (up to eight) working in parallel with
inter-agent temporal constraints. Figure 1.6 shows that the delay scheduler demonstrates
the expected performance characteristics against said temporal networks.

1.5 An Envisioned Executive for Dispatching Actions with
Uncertain Observations

We need a means to connect the RTEDs of a delay scheduler with the actions an agent
performs. We envision that the delay scheduler can serve as the scheduling logic behind an
astronaut’s digital assistant, or in the case of a robot, a task executive. A task executive
should allow a human modeler to provide constraints as input. The task executive is then
charged with generating a plan and dispatching actions as output.

We integrate the delay scheduler into a high-level task planner known as Kirk. We call
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our variant of Kirk, Delay Kirk. A simplified overview of Delay Kirk’s architecture can be
found in Figure 1.7. Delay Kirk takes the Reactive Model-Based Programming Language
(RMPL) [16], a high-level language for modeling hybrid automata and constraints, as input.
It then creates a temporal plan network and chooses timed actions to execute to satisfy all
the goals as specified in RMPL. It is at this point that the delay scheduler can be integrated
into delay Kirk. With events and temporal constraints between them, the delay scheduler
can produce RTEDs and tell Delay Kirk when to act.

Figure 1.7: A high-level overview of the Delay Kirk task executive architecture with respect
to dispatching actions.

For the purpose of this thesis, planning is out of scope. Instead, we focus on the delay
dispatcher a component that enables an executive to impact an environment by taking
actions based on the RTEDs the delay scheduler produces.

In Figure 1.8, we introduce a new component, the driver. We also define new variables in
order to paint a complete picture of the role the delay dispatcher plays. 𝑥𝑟 represents a con-
trollable event. obs(𝑥𝑟) and obs(𝑥𝑐) represent the times that controllable and uncontrollable
events are observed respectively. The actions that the dispatcher dispatches are mediated
through the driver. Essentially, it translates events to commands that cause actions to hap-
pen in the real-world. For a digital assistant, a driver might send a command to update the
heads-up-display in the crew’s helmet. For a robot, the driver might publish a ROS message
[17].
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Figure 1.8: A more detailed view of the delay dispatcher architecture.

Observations are passed to the scheduler through the dispatcher. We do so because in
our architecture the dispatcher, not the scheduler, has access to a clock (hence the clock
emoji in Figure 1.8). The dispatcher takes the responsibility of comparing RTEDs to the
clock time and deciding when to act. Likewise, when events are observed, the dispatcher
tells the scheduler when they were observed. This change has the cumulative effect of giving
the dispatcher responsibility for interacting with the environment.

A key distinction between a dispatcher for instantaneous observations and the delay
dispatcher is that not all observed events are scheduled immediately. It is the case that
some observations must be buffered to a later time to be scheduled. If so, the dispatcher has
the responsibility of actually waiting until the correct clock time to record the time in the
scheduler.

We evaluate the dispatcher’s interface that loops and compares the clock time to an
RTED to decide when to act. For these tests, we use the same randomly generated temporal
networks as were used when evaluating the scheduler. Figure 1.9 shows the total runtime for
all calls to the dispatcher while scheduling all events in a temporal network. The Dijkstra
updates that are performed when recording events dominates the runtime performance.
Given every event is recorded inside this loop, we see the same 𝑂(𝑁2 log𝑁) performance we
saw when looking at the total time to run all schedule updates.

1.6 Multi-Agent Scheduling with Uncertain Observations

Collaboration between agents is enabled by enforcing that communications between agents
are treated the same as uncontrollable event observations. Thus, we are only challenged
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Figure 1.9: A comparison of the total runtime to run the dispatcher against the number of
events in a temporal network.

to define communication pathways between agents that guarantee agents receive relevant
observations. We do so by networking delay schedulers in a communication graph. A com-
munication graph is a simple directed graph that is used to broadcast event propagation
messages between peers.

We evaluate the multi-agent delay scheduler in two simulations. In the first simulation,
we run three instances of Delay Kirk with inter-agent constraints between them. We compare
their schedules to the same schedule that would be produced if one delay scheduler tried to
schedule all events for all three agents. We found that the multi-agent delay dispatchers
were able to schedule events while respecting all inter-agent constraints.

We finally present a hardware demonstration with a Barrett WAM manipulator being
controlled by one Delay Kirk, with another Delay Kirk representing an astronaut’s digital
assistant. We demonstrate that Delay Kirk is able to dispatch actions to the Barrett WAM
while receiving communications representing inter-agent constraints over HTTP.

1.7 Thesis Structure

The structure of this thesis is as follows. A more detailed problem statement, including
descriptions of the scenarios used for testing distributed collaboration and coordination with
uncertain communication, will be provided in Chapter 2. Our approach to addressing the
problem statement will be outlined in Chapter 3. Chapter 4 will provide the first technical
contributions of this thesis, first by addressing the issue of modeling observation delay,
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Figure 1.10: A hardware demonstration in four parts. (a) 𝑡 = 0, when the two Kirks
are started at the same time. (b) 𝑡 = 16, when the astronaut observed that the science
experiment was setup. (c) 𝑡 = 23, when the robot received a delayed observation from the
astronaut indicating they had completed science setup. (d) 𝑡 > 23, as the robot performed
the drilling task.
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then by providing a procedure that can be used to check that temporal constraints with
observation delay are satisfiable. Chapter 5 contributes a delay scheduler, a novel strategy
for deciding when to act given observation delay. In Chapter 6, we position the delay
scheduler in a high-level task executive that can be deployed to real hardware. Chapter 7
finally contributes a multi-agent coordination architecture for environments with uncertain
communication. The discussion in Chapter 8 concludes this thesis by providing additional
context for the decisions made during this research.

Unless otherwise specified, the code used to run the experiments of this thesis can be found
at http://gitlab.com/mit-mers/enterprise/enterprise under the CAM-SM-THESIS branch.
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Chapter 2

Problem Statement

There is a real-world need for coordinating multiple agents that are collaborating while fac-
ing uncertain observations and uncertain inter-agent communication. The problem domain
of EVAs will be used to elucidate the inputs and outputs of a multi-agent delay scheduler for
uncertain observations. However, any domain in which operations take place in extreme envi-
ronments needs to consider uncertain communication. Examples include military operations
and remote science, both summarized below.

Military operators are frequently in environments where communication is impossible
or dangerous. Radioing from a battlefield back to a command center may be impossible.
Even communications between operators in a hostile environment may risk exposure to an
enemy. Despite communication concerns, there is clearly an advantage for operators who
can coordinate on a battlefield. A delay scheduler would allow military operators to decide
when to act given uncertainty in their environment and communications.

Remote science with robotic explorers features many of the same communication and
observation constraints that are found in human spaceflight. The upcoming set of NASA
Commercial Lunar Payload Systems (CLPS) [18] missions will be collecting samples and
exploring the lunar surface. While a CLPS rover is a single agent in and of itself, it is
important to recognize that both flight controllers and the scientists on the ground need to
pass information between each other and the rover to make the mission successful. From
a scheduling perspective, CLPS mission execution is a multi-agent scenario. The scientists
and flight controllers running CLPS missions must contend with uncertain or delayed com-
munications. For example, there will likely be planned and unplanned loss of signal events,
uncertain delays in the arrival of scientific information due to protocols like CFDP [19], and
issues with topological interference on the lunar surface.

Consider a subset of activities a rover might perform in a science station, or a small
area where multiple samples are collected. Within a tightly constrained window at each
science station (measured on the order of hours), a rover may collect core samples from
multiple sites. Drill sites within the science station might be pre-planned, however, it is
possible that some later sites could be changed by scientists based on the data collected so
far. If that is the case, scientists would have a limited time window after the first samples
arrive to change where later samples are collected. Without taking communication delay
into account, scientists may debate too long and miss an opportunity to impact drill sites.
A delay scheduler would allow the scientists to identify the last possible moment to suggest
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a new drill site for the end of the science station. This would give scientists as much time
as possible to analyze the data and have an impact on the mission.

We now provide an example using EVAs to motivate the need for uncertain observations.

2.1 EVAs as a Problem Domain

EVAs must be performed in a timely manner. Life support imposes an upper bound on the
total duration of an EVA. As an EVA progresses, EV crews consume four non-renewable
resources, comprised of oxygen, battery power, water, and CO2 scrubbers [20]. The duration
of EVAs is limited by the consumable that is on track to be depleted first across the life
support systems of both EV crew members, referred to as the limiting consumable. Absent
any other more pressing constraint, it is this limiting consumable that forces EVA crews and
ground support to stay on timeline.

Meanwhile, uncertain observations are manifested across three distinct categories: signal
transmission, human operational delays, and instrument processing. Each category presents
a source of delay that varies with uncertainty. For signal transmission, delay is sourced from
the speed of light between planetary bodies and infrastructural deficiencies. Communication
infrastructure outside of low-Earth orbit, including satellites and planetary surface signal
repeaters [21], is not robust, and as such unpredictable delays and signal dropouts will be
common [22]. For human operational delays, note that the primary goal of Mission Control
is keeping the crew safe [23]. As such, communications from the science team to the crew
may be delayed or dropped because Mission Control needs to prioritize communications and
actions related to crew health and safety at the expense of science [24], [25]. Lastly, for
instrument processing, there is uncertainty in the temporal relationships between the acti-
vation of complex scientific instruments and the return of useful information [26]. Scientific
packages may generate high and low bandwidth data products, the uplink of which will be
bottlenecked by limited bandwidth between space and ground.

Consider a spacewalker who is installing an array of satellite dishes on the Moon. The
procedure for installing a single satellite dish is well defined. The procedure involves, say,
firmly inserting a tripod into the lunar regolith, putting a dish on top, bolting the dish
in, attaching a few wires, and waiting to get confirmation from ground that the dish is
operational. Sometimes the tripod is easy to burrow into the regolith, other times it takes
a few tries. Sometimes the confirmation comes quickly, other times it comes later. Some
dishes are to be placed close to one another, yet others should be far apart and across
difficult to traverse terrain. Once one dish is done, the astronaut can move on to the next.
All the while, the astronaut’s life support system is slowly draining its consumable resources.
Ground wants one dish tested at a time, so the astronaut must wait for the confirmation
before proceeding. But the astronaut also knows the confirmation will come eventually.
They can continue to the next dish before receiving the confirmation if they are confident
that doing so still guarantees that the next installation will not happen before ground is
ready. Another perspective is that the astronaut knows ground must have confirmed the
installation, but the communication saying so was delayed. The challenge then is to wait
as little time as necessary before moving on to the next dish. To decide when to act, the
astronaut relies on advice from the delay scheduler built in to their digital assistant.
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2.2 Problem Statement Definitions

Broadly speaking in this scenario, we have two types of input and one type of output. The
first input is decided before the astronaut egresses the habitat. MCC writes an EVA timeline
(much like Figure 1.3), which describes the events that need to take place and the relationship
between events, such as their ordering, the time between them, or how much delay there may
be between when an event occurs and when it is observed. Once the astronaut starts the
EVA, we have a second input, which is the time when events are observed. Taken together,
we are tasked with finding an output of deciding which future events should be executed at
what time.

We define notation below in order to make our problem statement more explicit. We will
provide full definitions in Chapter 4.

We use temporal networks [10] to model EVA timelines as temporal constraints between
a finite set of events. Let a temporal network be represented by 𝑆, which is a tuple of
events 𝑋 and constraints 𝑅, ⟨𝑋,𝑅⟩. Events 𝑥 ∈ 𝑋 may be controllable or uncontrollable.
Constraints take the form of set-bounded intervals between two events. Some events in a
temporal network may be associated with an uncertain observation delay 𝛾.

At some time 𝑡 during an EVA, we have a set of events, 𝑥 ∈ 𝑋 that were observed before
𝑡, obs(𝑥 ∈ 𝑋) < 𝑡. 𝑥 may be controllable or uncontrollable. When an event has been
recorded at a given time 𝑡, we say that it has been assigned, 𝜉(𝑥) = 𝑡. Both observations
and assignments are mappings from an event to a time in R≥0. The set of events that were
assigned a time before 𝑡 is 𝜉(𝑥 ∈ 𝑋) < 𝑡. If there is no associated observation delay with an
uncontrollable event 𝑥𝑐, then obs(𝑥𝑐) = 𝜉(𝑥𝑐). If there is associated observation delay, then
it is possible that obs(𝑥𝑐) < 𝜉(𝑥𝑐).

We want a Real-Time Execution Decision (RTED), which consists of unexecuted events
and when they should be performed. Each RTED is a tuple of a set of unexecuted events,
𝑥𝑢 ⊆ 𝑋 and future time, 𝑡′: ⟨𝑥𝑢, 𝑡

′⟩.
Our specific problem statement for the delay scheduler is as follows.

Definition 1. Single-Agent Delay Scheduler
The delay scheduler should take triple ⟨𝑆, 𝛾, obs(𝑥 ∈ 𝑋) ≤ 𝑡⟩ of the offline (before

scheduling) and online (during scheduling) components of scheduling as input. It must
output an RTED ⟨𝑥𝑢, 𝑡

′⟩.

We can expand the scenario from above to include multiple astronauts installing multi-
ple satellite dishes in parallel. MCC wants to minimize the number of dishes that are being
confirmed at any given moment. We add new inter-agent constraints dictating that, given
astronauts 1 and 2, astronaut 2 may not start installing a dish until they receive confirmation
that astronaut 1 is complete. Likewise, astronaut 3 must wait for 2 to finish their confirma-
tion, 4 must wait for 3, and so on in a round robin fashion. Like communication with MCC,
communications between astronauts is spotty (hence why they need to install communication
infrastructure!) Sometimes, astronauts may easily communicate, other times, communica-
tions may be significantly delayed or drop out altogether. Naturally, the astronauts must be
able to share events with each other to satisfy the inter-agent constraints.

We expand the previous problem statement to the multi-agent case by adding the notion
of agents, 𝐴, each with their own delay scheduler. Each delay scheduler has their own 𝑆𝑎 with
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a subset of events, 𝑥 ⊂ 𝑋, they expect to receive from their peers in the form of observations.
While some actions are aligned between agents, there is no assumption that all agents are
working against the same events with the same constraints. From the perspective of an
agent, 𝑎 ∈ 𝐴, at time 𝑡, their peers simply need to be aware of what events 𝑎 has assigned
up to 𝑡, 𝜉𝑎(𝑥 ∈ 𝑋) ≤ 𝑡). Events that the peers of 𝑎 communicate to 𝑎 are treated the same
as observations of uncontrollable events in the environment that 𝑎 makes.

We must define a problem statement for how delay schedulers should coordinate in a
multi-agent context.

Definition 2. Multi-Agent Event Communications
Given online input of tuple ⟨obs(𝑥𝑡), 𝐴⟩, agent 𝑎 should output all assignments 𝜉𝑎(𝑥𝑡)

that are recorded in the form of a broadcast to all other agents, 𝐴− {𝑎}.

In other words, event assignments should be broadcasted to all peers as soon as the
assignments are made. Communications should be received as event observations.
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Chapter 3

Approach

We define a delay scheduler in such a way that one instance is useful for single-agent schedul-
ing, and multiple instances can be seamlessly integrated for collaboration with inter-agent
constraints. Our approach builds towards such a multi-agent delay scheduler by first defin-
ing the subproblems necessary for single-agent scheduling with uncertain communication
before layering on a communication pathway for multi-agent scheduling. Figure 3.1 presents
a simplified view of multi-agent scheduling.

Figure 3.1: A sample architecture with two delay schedulers collaborating. Each agent
receives a single temporal network as input. Observations of the outside world are recorded.
Communications relay event assignments to peers. Each agent outputs its own RTED.

Our approach relies on the ability of a delay scheduler to accurately decide what events
should be scheduled and when it is valid to do so. In this context, a decision being “valid”
means that the events and time of an RTED guarantees that all constraints in the problem
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can be satisfied given the history of events scheduled before now. We naturally need one
or more data structures that, if maintained correctly during scheduling, can be queried to
produce such an RTED. We refer to such a data structure as the dispatchable form, though,
as will be seen in Chapter 5, other data structures facilitate scheduling as well.

A delay scheduler must be able to output RTEDs that are consistent with the constraints
of the problem and the history of scheduled events. There are four key subproblems that
must be addressed:

1. an offline process must initialize a dispatchable form that reflects the semantics of 𝑆
and 𝛾,

2. an online process must update the dispatchable form given an event observation at a
given time,

3. an online process must broadcast new event assignments with peers, and
4. an online process must query the dispatchable form for new RTEDs.

Figure 3.2: The four interfaces of a delay scheduler. The second and third are combined
to highlight that broadcasts are trigged when events are observed. The first shows the
dispatchable form being intialized from a model. The second shows that event observations
will cause the dispatchable form to be updated, immediatelly triggering a broadcast (the
third interface). The fourth interface queries the dispatchable form to create RTEDs.

Figure 3.2 shows the architecture of a delay scheduler with respect to its four interfaces
and dispatchable form.

We provide pseudo-code for a delay scheduler in Algorithm 1. initialize will create the
dispatchable form, update will modify the dispatchable form to reflect an event assignment,
broadcast will send event assignments to peers, and query will read the dispatchable form
to find the next RTED.

For now, we make the following assumptions. We assume that initialization, updates,
and queries are sound and complete algorithms with respect to their intended handling of
the dispatchable form. We use the term “networked” to refer to agents that can communicate
event observations to each other. Broadcasting assumes the existence of a communication
protocol that guarantees messages indicating an event has been assigned reach all networked
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Input: Controllable temporal network 𝑆; Observation uncertainty 𝛾; clock; peers
Initialization: dispatchable-form ← initialize(𝑆, 𝛾); RTED ← ∅;

Delay Scheduling:
1 while there are unexecuted executable events do
2 if Event 𝑥 is observed then
3 update(dispatchable-form, 𝑥, clock.now));
4 broadcast(𝑥, peers);
5 endif
6 RTED ← query(dispatchable-form, clock.now)
7 end
Algorithm 1: Algorithm for performing delay scheduling to produce RTEDs for all
executable events in a temporal network.

schedulers. If a temporal network is controllable, then there must exist a dispatchable form
[27].

Below, we prove that Algorithm 1 will guarantee the output of valid RTEDs for all
executable events for coordinating agents. We start by showing that the delay scheduler can
be used in a multi-agent context.

Lemma 1. For 𝑎 ∈ 𝐴 delay schedulers, if each 𝑆𝑎 and 𝛾𝑎 is controllable and accurately
models the world, then all networked delay schedulers may produce valid RTEDs.

Proof. If 𝑆𝑎 is controllable for a single delay scheduler, then there must exist a set of RTEDs
that allows all constraints to be satisfied for all resolutions of uncertainty in the uncontrollable
constraints and observation delay. If 𝑆𝑎 and 𝛾𝑎 are accurate, we are guaranteed that the
resolution of uncertain constraints during scheduling will respect the bounds of 𝑆𝑎 and 𝛾𝑎.
If it were not the case that 𝑆𝑎 or 𝛾𝑎 accurately models the world, then the uncontrollable
inter-agent constraints of 𝑆𝑎 and 𝛾𝑎 would not strictly encompass all possible outcomes of
uncertainty during scheduling. This would mean that, during scheduling, there may be
a resolution of uncertainty that does not allow a valid RTED to be produced, which is
inconsistent with a controllable and accurate 𝑆𝑎. Thus if each 𝑆 is controllable and accurate
for all delay schedulers, then all delay schedulers may produce valid RTEDs.

We now show that the delay scheduler will produce valid RTEDs in a single-agent context.

Lemma 2. Given a controllable temporal network 𝑆 consisting of a set of events, 𝑋, con-
straints, 𝑅, and uncertain observation delay, 𝛾, initializing the dispatchable form before the
first event is observed guarantees the dispatchable form can be used to schedule any executable
event in 𝑋.

Proof. As an offline process, by definition initialization will run before scheduling begins.
Thus, the dispatchable form must be valid and include enough information to schedule all
executable events.

Not all events may be observed. For instance, any event with infinite observation delay
(as may occur during a communication dropout) is unobservable. The delay scheduler cannot
schedule events with infinite observation delay.
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Lemma 3. All events that have the ability to impact RTEDs may be observed by the delay
scheduler.

Proof. If 𝑆 is controllable, then it must be the case that the delay scheduler can output
RTEDs that will guarantee all constraints between events can be satisfied. If it were the
case that unobservable events must be assigned in order to produce a valid RTED, then
scheduling would depend on information that cannot be learned, meaning 𝑆 would not be
controllable.

For the next lemma, note that RTEDs are not the same as event assignments. An RTED
must be used by an exogenous system, e.g. digital assistant, to perform an action. We
assume that the exogenous system can observe the actions it takes.

Lemma 4. If an event is scheduled, it will be observed by the delay scheduler.

Proof. There are two parts to this proof. First, the delay scheduler loops without pause
until all executable events have been scheduled, meaning that the conditional on line 2 will
be reached for all events that can have an impact on RTEDs.

Second, an RTED must be translated into observable action by an exogenous system,
hence it is not an event observation.

Lemma 5. If we observe all events before producing RTEDs, then RTEDs will always be
valid.

Proof. We see that we always check for event observations before producing RTEDs. There
are no processes between checking for an observation and producing an RTED. Therefore,
each RTED will be queried against a dispatchable form that has been modified to reflect all
event assignments up to the current time. If the choice of dispatchable form is valid for any
set of assignments up to the current time, and the querying process is sound and complete,
then the RTED must also be valid.

We finish by revisiting the multi-agent context.

Lemma 6. If there are satisfiable inter-agent constraints, then broadcasting all event assign-
ments to all peers guarantees that each delay scheduler may produce valid RTEDs.

Proof. All observable events must be assigned. If all event assignments are broadcasted to
all agents, then it must be the case that all agents observe all events. If all observable events
are received for a controllable 𝑆, then it must be the case that a delay scheduler can produce
a valid RTED, and thus all networked delay schedulers can produce valid RTEDs.

The next chapters will address each of the assumptions made above. Chapter 4 will
elaborate on modeling temporal networks with uncertain communication and checking their
controllability. Chapter 5 will focus on the process of creating and maintaining a dispatchable
form throughout single-agent scheduling. Chapter 6 describes the integration of Algorithm
1 in a high-level task executive. Chapter 7 will describe the design of a robust broadcasting
algorithm for networked schedulers with uncertain communication.
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Chapter 4

Modeling Temporal Constraints with
Uncertain Observation Delay

Our overarching aim in this Chapter is to architect the offline portions of a single-agent
pipeline that takes a temporal network with uncertain observation delay of exogenous events
as input in order to execute events in the real world within time windows that guaran-
tee temporal consistency. Given everything we know and do not know about the temporal
relationship between events within and outside of our control, this chapter will lay the
groundwork that there exists an execution strategy that guarantees all constraints are satis-
fied despite the uncertainty. The next chapter, Chapter 5, will provide accompanying online
procedures for acting on said execution strategy and dispatching events with real hardware
(or by generally telling an agent what to do).

The three aims of this chapter are to

1. model temporal constraints with uncertain observation delay,
2. define a consistency (controllability) checking procedure for temporal networks with

uncertain observation delay, and
3. prove that there is a valid execution strategy for all resolutions of uncertainty.

In Section 4.1, we address aim (1) by outlining the necessary definitions for modeling
temporal networks. Sections 4.2 and 4.3 describe our chosen model for temporal constraints
with uncertain observation delay, and address aim (2) by presenting a procedure for checking
the consistency thereof. Sections 4.2 and 4.3 are largely based on the work originally put
forth by Bhargava et. al., [14], [28], [29] with additional contributions by us as highlighted
below. Notably, Section 4.3 addresses aim (3) by contributing novel proofs that the execution
strategy assumed to exist by Bhargava et. al. is valid. We conclude with experimental
analysis of our chosen consistency checking procedure in Section 4.5 using example temporal
constraint networks inspired by lunar exploration.

4.1 Temporal Networks

Temporal networks form the backbone of our architecture for temporal reasoning under
observation delay. Simple Temporal Networks (STNs) offer the basic building blocks for
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most expressive temporal network formalisms [10]. An STN is composed of a set of variables
and a set of binary constraints, each of which limits the difference between a pair of these
variables; for example, 𝐵−𝐴 ∈ [10, 20]. Each variable denotes a distinguished point in time,
called an event. Constraints over events are binary temporal constraints that limit their
temporal difference; for example, the aforementioned constraint specifies that event 𝐴 must
happen between 10 and 20 minutes before event 𝐵.

Definition 3. STN [10]
An STN is a pair ⟨𝑋,𝑅⟩, where:

• 𝑋 is a set of variables, called events, each with a domain of the reals R, and
• 𝑅 is a set of simple temporal constraints. Each constraint ⟨𝑥𝑟, 𝑦𝑟, 𝑙𝑟, 𝑢𝑟⟩ has scope
{𝑥𝑟, 𝑦𝑟} ⊆ 𝑋 and relation 𝑥𝑟 − 𝑦𝑟 ∈ [𝑙𝑟, 𝑢𝑟].

Definition 4. Schedule [27]
A schedule, 𝜉, is a mapping of events to times, 𝜉 : 𝑋 → R.

An STN is used to frame scheduling problems. A schedule is feasible if it satisfies each
constraint in 𝑅. We use the notation 𝜉(𝑥) to represent a mapping from an event, 𝑥, to a
time, 𝑥 → R, in the schedule. A schedule is complete if all 𝑥 ∈ 𝑋 are assigned times in 𝜉.
An STN is consistent if it has at least one feasible schedule that assigns all events in 𝑋.

The set of all possible schedules is Ξ.
An STN is consistent if and only if there is no negative cycle in its equivalent distance

graph [10]. Let 𝑛 be the number of events in a temporal network and 𝑚 to be the number of
constraints. Then consistency of an STN can be checked in 𝑂(𝑚𝑛) time using the Bellman-
Ford Algorithm [30] to check for negative cycles.

While an STN is useful for modeling problems in which an agent can control the exact
time of all events, it does not let us model actions whose durations are uncertain. A Simple
Temporal Network with Uncertainty (STNU) is an extension to an STN that allows us to
model these types of uncertain actions [11].

Definition 5. STNU [11]
An STNU 𝑆 is a quadruple ⟨𝑋𝑒, 𝑋𝑐, 𝑅𝑟, 𝑅𝑐⟩, where:

• 𝑋𝑒 is the set of executable events with domain R,
• 𝑋𝑐 is the set of contingent events with domain R,
• 𝑅𝑟 is the set of requirement constraints of the form 𝑙𝑟 ≤ 𝑥𝑟 − 𝑦𝑟 ≤ 𝑢𝑟, where 𝑥𝑟, 𝑦𝑟 ∈
𝑋𝑐 ∪𝑋𝑒 and 𝑙𝑟, 𝑢𝑟 ∈ R, and

• 𝑅𝑐 is the set of contingent constraints of the form 0 ≤ 𝑙𝑟 ≤ 𝑐𝑟−𝑒𝑟 ≤ 𝑢𝑟, where 𝑐𝑟 ∈ 𝑋𝑐,
𝑒𝑟 ∈ 𝑋𝑒 and 𝑙𝑟, 𝑢𝑟 ∈ R.

An STNU divides its events into executable and contingent events and divides its con-
straints into requirement and contingent constraints. The times of executable events are
under the control of an agent, and assigned by its scheduler. STNU executable events are
equivalent to events in an STN. Contingent events are controlled by Nature. Contingent
constraints model the temporal outcomes of uncertain actions and are enforced by Nature.
Contingent constraints relate a starting executable event and an ending contingent event. To
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ensure causality, the lower-bound of a contingent constraint is required to be non-negative;
hence, the end event of the constraint follows its start event. Contingent constraints are
not allowed to be immediately followed by additional contingent constraints. Requirement
constraints specify constraints that the scheduler needs to satisfy and may relate any pair of
events. An STNU requirement constraint is equivalent to an STN constraint.

To clarify terminology, we sometimes refer to contingent constraints as contingent links
and requirement constraints as requirement links. We also sometimes use the term free
instead of requirement to describe executable events and constraints. When we discuss
contingent constraint or contingent link duration, we refer to the amount of time that actually
elapses between a contingent link’s starting executable event and its ending contingent event.
We sometimes refer to STNUs as defined in Defintion 5 as vanilla STNUs (in contrast to
the many “flavors” of STNUs, namely the variants with fixed and variable observation delay
functions as will be defined in Sections 4.2 and 4.3 respectively).

With STNs, our goal is to construct a consistent schedule for all events such that all
constraints are satisfied. In STNUs, however, contingent events cannot be scheduled directly.
Instead, we are interested in determining whether there is a controllable execution strategy
that guarantees that a schedule can be constructed such that all constraints are satisfied
despite how uncertainty is resolved.

Definition 6. Situations [11]
For an STNU 𝑆 with 𝑘 contingent constraints ⟨𝑒1, 𝑐1, 𝑙1, 𝑢1⟩, · · · , ⟨𝑒𝑘, 𝑐𝑘, 𝑙𝑘, 𝑢𝑘⟩, each situ-

ation, 𝜔, represents a possible set of durations for all links in 𝑆, 𝜔 = (𝜔1, · · · , 𝜔𝑘) ∈ Ω. The
space of situations for 𝑆, Ω, is Ω = [𝑙1, 𝑢1]× · · · × [𝑙𝑘, 𝑢𝑘].

Each situation in the space of situations, 𝜔 ∈ Ω, represents a different assignment of
contingent links in the schedule [11]. We may represent the situation for a specific constraint
as 𝜔𝑖 for the i-th constraint in 𝑆, or 𝜔(𝑥𝑐) for contingent event 𝑥𝑐.

Situations may be applied to STNUs.

Definition 7. Projection [11], [27]
A Projection is an application of a situation, 𝜔, on an STNU 𝑆, which collapses the

durations of contingent links to specific durations resulting in an STN.

A projection is an STN that is the result of applying a situation to an STNU, and thus
the contingent links have reduced from uncertain ranges to specific durations [11], [27].

Definition 8. Execution Strategy
An execution strategy, 𝒮, is a mapping of situations to schedules, 𝒮 : Ω→ Ξ.

An execution strategy then naturally maps a specific resolution of the uncertainty of the
contingent constraints to a set of assignments for the events of an STNU. (Note that we use
the convention of assuming that the STNU exhibits dynamic controllability, which will be
described below.) For an STNU, time monotonically increases and we only observe activated
contingent events, or those contingent events at the tail of a contingent link whose free event
predecessor has been executed. As such, we modify our definition of 𝜉.

Definition 9. Partial Schedule
A partial schedule, 𝜉, is a mapping from a proper subset of events in an STNU, 𝑋 ′ ⊆

𝑋𝑒 ∪𝑋𝑐, to times, 𝜉 : 𝑋 ′ → R.
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As a proper subset, 𝜉 represents an assignment of events so far during the execution of
an STNU. From here on, 𝜉 refers to a partial schedule. If 𝑋 ′ = 𝑋𝑒 ∪𝑋𝑐, then the schedule
is complete.

To determine whether an STNU is controllable, we determine whether there exists a valid
execution strategy for it.

Definition 10. Valid Execution Strategy
A valid 𝒮 is one that enforces that, for any 𝜔 ∈ Ω, the outputted decision respects

all existing temporal constraints and ensures the existence of a subsequent valid execution
strategy following that action.

In the world of STNU literature, there are many forms of controllability that represent
the ability of a scheduler to enact execution strategies that satisfy constraints under differ-
ent conditions [11]. Three forms of controllability, strong, weak, and dynamic are studied
most often, though in practice we omit weak controllability from our analysis. A temporal
network is strongly controllable (or exhibits strong controllability) (SC), if there exists a
complete schedule that will satisfy all constraints for all projections of the STNU. A tem-
poral network exhibits dynamic controllability (DC) if an execution strategy exists for a
given partial schedule. As we will see below, variable-delay controllability, used to check
the consistency of temporal networks with uncertain observation delay, will unify strong and
dynamic controllability into a single theory. But first, we describe fixed-delay controllability,
which introduces known observation delay to STNUs.

4.2 Fixed-Delay Controllability

Under fixed-delay controllability (FDC) [28], we consider the problem of scheduling execution
decisions when the assignment of values to contingent events is learned after some time has
passed from the initial assignment, if ever. Fixed-delay controllability uses a fixed-delay
function to encode the delay between when an event occurs and when it is observed by a
scheduling agent. We sometimes refer to an STNU with an associated fixed-delay function
as a fixed-delay STNU.

Definition 11. Fixed-Delay Function [28]
A fixed-delay function, 𝛾 : 𝑋𝑐 → R+ ∪ {∞}, maps a contingent event to the amount of

time that passes between when the event is assigned and when its value is observed.

As a matter of convention, we use 𝐴
[𝑙,𝑢]−−→ 𝐵 to represent requirement links between

events 𝐴 and 𝐵 and use 𝐴
[𝑙,𝑢]
==⇒ 𝐸 to represent contingent links between 𝐴 and 𝐸. When

we refer to the fixed-delay function associated with a contingent event 𝐸 of some contingent
constraint 𝐴

[𝑙,𝑢]
==⇒ 𝐸, we use the notation 𝛾(𝐸), or equivalently, 𝛾𝐸. Without instantaneous

observation of contingent events, we must clarify the relationship between when an event is
assigned and when it is observed.

Definition 12. Contingent Event Observation
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Observations, obs, are a mapping from contingent events to times when the agent receives
knowledge the event has been assigned, obs : 𝑋𝑐 → R. An observation of an event, 𝑥𝑐,
follows the relationship, obs(𝑥𝑐) = 𝜉(𝑥𝑐) + 𝛾(𝑥𝑐).

We also present a revised definition of situations, Ω𝑓 , to reflect the impact of the delay
function on event observations.

Definition 13. Fixed-Delay Situations
For an STNU 𝑆 with 𝑘 contingent constraints ⟨𝑒1, 𝑐1, 𝑙1, 𝑢1⟩, · · · , ⟨𝑒𝑘, 𝑐𝑘, 𝑙𝑘, 𝑢𝑘⟩ and fixed-

delay function 𝛾, each fixed-delay situation, 𝜔𝑓 , represents a possible set of observed values
for all links in 𝑆, 𝜔𝑓 = (𝜔𝑓1, · · · , 𝜔𝑓𝑘). The space of situations for 𝑆, Ω𝑓 , is Ω𝑓 = [𝑙1+𝛾1, 𝑢1+
𝛾1]× · · · × [𝑒𝑘 + 𝛾𝑘, 𝑐𝑘 + 𝛾𝑘].

To emphasize that the observed value for an event is not the same as its assignment, we
also use the term observation space as a synonym for the space of situations.

Definition 14. Valid, Fixed-Delay Execution Strategy
A valid 𝒮 for a fixed-delay STNU is one that enforces that, for any 𝜔𝑓 ∈ Ω𝑓 , while

receiving observations of contingent events after a known and fixed delay, the outputted
decision respects all existing temporal constraints and ensures the existence of a subsequent
valid execution strategy following that action.

With the semantics of delayed observations in hand, we can define what it means for a
fixed-delay STNU to be controllable.

Definition 15. Fixed-Delay Controllability [28]
An STNU 𝑆 is fixed-delay controllable with respect to a delay function, 𝛾, if and only if

for the space of situations, Ω𝑓 , there exists a valid, fixed-delay execution strategy, 𝒮, that
will construct a satisfying schedule for all requirement constraints during execution.

Importantly, fixed-delay controllability (FDC) generalizes the two concepts of controlla-
bility that are central to STNUs, strong and dynamic controllability. In particular, by using
a fixed-delay function where we observe all events instantaneously, e.g. 𝛾(𝑥𝑐) = 0 ∀ 𝑥𝑐 ∈ 𝑋𝑐,
checking fixed-delay controllability reduces to checking dynamic controllability. Similarly,
a fixed-delay function that specifies we never observe any contingent events, e.g. 𝛾(𝑥𝑐) =
∞ ∀ 𝑥𝑐 ∈ 𝑋𝑐, corresponds to checking strong controllability [11].

As is the case for a vanilla STNU, evaluating whether a valid execution strategy exists
for a fixed-delay STNU reduces to checking for the presence of a semi-reducible negative
cycle in a labeled distance graph derived from the fixed-delay STNU [31]. The key insight for
checking fixed-delay controllability is the inclusion of a fixed-delay function in the constraint
generation rules for building the labeled distance graph [28].

The labeled distance graph corresponds to the constraints of the STNU with each un-
labeled edge from 𝐴 to 𝐵 with weight 𝑤 (denoted 𝐴

𝑤−→ 𝐵) representing the inequality
𝐵 − 𝐴 ≤ 𝑤. Labeled edges represent conditional constraints that apply depending on the
realized value of contingent links in the graph. For example, a lower-case labeled edge from
𝐴 to 𝐵 with weight 𝑤 and lower-case label 𝑐 (denoted 𝐴

𝑐:𝑤−−→ 𝐵) indicates that 𝐵 − 𝐴 ≤ 𝑤
whenever the contingent link ending at 𝐶 takes on its lowest possible value. An upper-case
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labeled edge from 𝐴 to 𝐵 with weight 𝑤 and upper-case label 𝐶 (denoted 𝐴
𝐶:𝑤−−→ 𝐵) indi-

cates that 𝐵−𝐴 ≤ 𝑤 whenever the contingent link ending at 𝐶 takes on its highest possible
value. Given a labeled distance graph, there are several valid derivations we can apply to
generate additional edges (see Table ??). If it is possible to derive a negative cycle that is
free of lower-case edges, then the STNU has a semi-reducible negative cycle and the STNU
is not controllable.

Note that with fixed-delay controllability, the lower-case and cross-case rules are modified
from the Morris and Muscettola [32], accounting for 𝛾. More specifically, we address the case
where observation delay makes it impossible to receive information about a contingent event
before its immediate successor. More detail can be found in [33].

Edge Generation Rules
Input edges Conditions Output edge

No-Case Rule 𝐴
𝑢−→ 𝐵, 𝐵 𝑣−→ 𝐶 N/A 𝐴

𝑢+𝑣−−→ 𝐶

Upper-Case Rule 𝐴
𝑢−→ 𝐷, 𝐷 𝐶:𝑣−−→ 𝐵 N/A 𝐴

𝐶:𝑢+𝑣−−−→ 𝐵

Lower-Case Rule 𝐴
𝑐:𝑥−→ 𝐶, 𝐶 𝑤−→ 𝐷 𝑤 < 𝛾(𝐶), 𝐶 ̸= 𝐷 𝐴

𝑥+𝑤−−→ 𝐷

Cross-Case Rule 𝐴
𝑐:𝑥−→ 𝐶, 𝐶 𝐵:𝑤−−→ 𝐷 𝑤 < 𝛾(𝐶), 𝐵 ̸= 𝐶 ̸= 𝐷 𝐴

𝐵:𝑥+𝑤−−−−→ 𝐷

Label Removal Rule 𝐵
𝐶:𝑢−−→ 𝐴, 𝐴

[𝑥,𝑦]
===⇒ 𝐶 𝑢 > −𝑥 𝐵

𝑢−→ 𝐴

Table 4.1: Edge generation rules for a labeled distance graph derived from a fixed-delay
STNU.

We generalize fixed-delay to variable-delay controllability next.

4.3 Variable-Delay Controllability

While fixed-delay controllability is quite expressive, its fundamental limitation is that it as-
sumes that contingent event assignments, even those made after a fixed delay, are always
known. If uncertainty in observation delay, and thus uncertainty in contingent event assign-
ment, is added to the model, then we are forced to decide when to act despite imperfect
knowledge of the partial history.

We now introduce this model in terms of definitions for a variable-delay function and
variable-delay controllability (VDC) checking as applied to variable-delay STNUs. Since
variable-delay semantics generalizes the notion of fixed-delay, as a matter of convenience,
we also use the simplified term delay STNUs to refer to STNUs with variable observation
delay. VDC was originally presented by Nikhil Bhargava [14]. However, we contributed
significant improvements of the lemmas and proofs herein, including the addition of novel
visual depictions of VDC, in our role as a coauthor with Bhargava on a journal article on
the topic of VDC that was submitted to the Journal of AI Research.

This section formalizes the definition of VDC, which is required to explain the procedure
of checking VDC in Section 4.3.1.

Definition 16. Variable-Delay Function
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A variable-delay function, 𝛾 : 𝑋𝑐 → (R+ ∪ {∞}) × (R+ ∪ {∞}), maps a contingent
event, 𝑥𝑐, to an interval [𝑎, 𝑏], where 𝑎 ≤ 𝑏. The interval bounds the time that passes after
𝜉(𝑥𝑐) before that value is observed to be assigned. No prior knowledge is assumed about the
distribution associated with this interval.

Importantly, this model does not assume that an executing agent may be able to infer
when a contingent event was executed. Instead, our model only infers that the event was
executed. Like the resolution of contingent constraints, the resolved value of 𝛾(𝑥𝑐) will
be selected by Nature during execution. Thus, the timing of when an agent receives an
observation is a function of the independent resolutions of the contingent link and variable-
delay function.

By convention, we use 𝛾−(𝑥𝑐) and 𝛾+(𝑥𝑐) to represent the lower-bound and upper-
bound, respectively, of the range representing the possible delay in observation, i.e. 𝛾(𝑥𝑐) ∈
[𝛾−(𝑥𝑐), 𝛾

+(𝑥𝑐)].

Definition 17. Observation Projection
The observation projection Γ is a mapping from a contingent event to a fixed observation

delay, Γ : 𝑋𝑐 → R ∈ [𝛾−(𝑋𝑐), 𝛾
+(𝑋𝑐)].

During execution, the observation projection, Γ, represents the resolution of observation
delay. Much like how a projection collapses a vanilla STNU to an STN, the observed projec-
tion collapses a contingent link with variable-observation delay to one with fixed-observation
delay. However, unlike the projection of an STNU, the observation projection is not guar-
anteed to be learned. We update our definitions of obs, 𝜉, and Ω accordingly.

Definition 18. Contingent Event Observation
Contingent event observations, obs, are a mapping from contingent events to times when

the agent receives events, obs : 𝑋𝑐 → R, based on the relationship, obs(𝑥𝑐) = 𝜉(𝑥𝑐)+Γ(𝑥𝑐).

Determining a real-valued mapping of a contingent event to the value of its assignment,
i.e. its schedule or 𝜉(𝑥𝑐), is no longer guaranteed due to an interval bounded Γ(𝑥𝑐). We must
use interval-bounded contingent event assignments instead.

Definition 19. Schedule
A schedule, 𝜉, when applied to contingent events, is a mapping of events to interval-

bounded times, 𝜉 : 𝑋𝑐 → (R≥0 ∪{∞})× (R≥0 ∪{∞}), where, for any contingent constraint,
0 ≤ 𝑙𝑟 ≤ 𝑐𝑟 − 𝑒𝑟 ≤ 𝑢𝑟, ending in contingent event 𝑥𝑐, 𝜉(𝑥𝑐) ∈ [𝑙 + 𝛾−(𝑥𝑐), 𝑢+ 𝛾+(𝑥𝑐)].

We sometimes use interval bounded schedules for requirement events as well. For a
requirement constraint 𝑙𝑟 ≤ 𝑥𝑟 − 𝑦𝑟 ≤ 𝑢𝑟 ending in requirement event 𝑥𝑒, 𝜉(𝑥𝑒) = 𝑡 ∈ [𝑙𝑟, 𝑢𝑟]
for some time 𝑡.

We once again revise our definition of situations, Ω𝑣, to reflect the impact of the variable-
delay function on the space of observations.

Definition 20. Variable-Delay Situations
For an STNU 𝑆 with 𝑘 contingent constraints ⟨𝑒1, 𝑐1, 𝑙1, 𝑢1⟩, · · · , ⟨𝑒𝑘, 𝑐𝑘, 𝑙𝑘, 𝑢𝑘⟩ and variable-

delay function 𝛾, each variable-delay situation, 𝜔𝑣, represents a possible set of observed
values for all links in 𝑆, 𝜔 = (𝜔𝑣1, · · · , 𝜔𝑣𝑘). The space of situations for 𝑆, Ω𝑣, is Ω𝑣 =
[𝑙1 + 𝛾−

1 , 𝑢1 + 𝛾+
1 ]× · · · × [𝑙𝑘 + 𝛾−

𝑘 , 𝑢𝑘 + 𝛾+
𝑘 ].
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We see that the space of observations has likewise grown in the transition to variable
observation delay. If 𝛾− ̸= 𝛾+, Ω𝑣 for variable observation delay is strictly larger than Ω𝑓

for fixed-observation delay and Ω for vanilla STNUs.
Like the fixed-delay function for fixed-delay controllability, the variable-delay function

relates an observation delay to a contingent event, independent of other events. We take a
similar approach to defining variable-delay controllability, relative to fixed-delay controlla-
bility.

Definition 21. Variable-Delay Controllability
An STNU 𝑆 is variable-delay controllable with respect to a variable-delay function, 𝛾, if

and only if for the space of situations, Ω𝑣, there is an 𝒮 that produces a satisfying schedule
for requirement events during execution, 𝜉.

Determining whether a given variable-delay STNU, 𝑆, is variable-delay controllable has
two components [14]. The first is to derive a fixed-delay STNU, 𝑆 ′, with fixed-observation
delay, 𝛾, that is equivalent with respect to controllability. The second is to show that 𝑆 ′

is fixed-delay controllable. Below, we reiterate the claims of [14], demonstrating how to
derive 𝑆 ′ from 𝑆 that is equivalent with respect to controllability. In Section 4.3.1, we first
demonstrate how to transform the contingent links from 𝑆 to 𝑆 ′, and demonstrate their
correctness with respect to observation spaces, before following up with transformations to
the requirement links to maintain the same scheduling semantics in 𝑆 ′.

4.3.1 Variable-Delay to Fixed-Delay Transformations

We now show how we transform a variable-delay STNU to a fixed-delay STNU in order to
perform fixed-delay controllability checking.

For the following lemmas, let 𝑥𝑐 be a contingent event in 𝑆 and variable-delay function
𝛾(𝑥𝑐). Let 𝑥′

𝑐 be the transformed contingent event in 𝑆 ′ with fixed-delay function, 𝛾(𝑥′
𝑐).

Figure 4.1: We visualize the relationship between realized assignments across 𝑆 and 𝑆 ′. In
this example, each horizontal line is a timeline monotonically increasing from left to right.
Dashed lines represent observation delays. We see how an assignment in 𝑆, 𝜉(𝑥𝑐), realized
observation delay, Γ(𝑥𝑐), and an observation in 𝑆, obs(𝑥𝑐), contribute to an assignment in
𝑆 ′, 𝜉(𝑥′

𝑐).
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Note that we receive obs(𝑥𝑐) from Nature, but make the assignment 𝜉(𝑥′
𝑐) in the dis-

patchable form of 𝑆 ′. To be clear, while 𝜉(𝑥𝑐) is an interval, (R ∪ ∞) × (R ∪ ∞), 𝜉(𝑥′
𝑐) is

in R ∪ ∞. For a fixed interval, e.g. obs(𝑥𝑐) ∈ [𝑡, 𝑡], we sometimes employ an equivalent
representation, 𝜉(𝑥𝑐) = 𝑡.

Additionally, we sometimes apply − and + superscripts to 𝑙 and 𝑢 to denote the earliest
and latest times respectively that an assignment at those bounds could be observed. For
instance, the relationship in Definition 18 simplifies to,

obs(𝑥𝑐) = [𝑙 + 𝛾−(𝑥𝑐), 𝑢+ 𝛾+(𝑥𝑐)] (4.1)
obs(𝑥𝑐) = [𝑙−(𝑥𝑐), 𝑢

+(𝑥𝑐)] (4.2)

Lastly, we need a means to compare observation spaces if we are to transform variable-
delay to fixed-delay STNUs.

Definition 22. Observation Space Mapping
Let 𝜇 be a mapping from an assignment to a situation, 𝜇 : 𝜉 → 𝜔. To say that 𝜇(𝑥′

𝑐) ⊆
𝜔𝑣(𝑥𝑐) means that, for any assignment of 𝑥′

𝑐 in 𝑆 ′, there is an equivalent situation in 𝑆 for
𝑥𝑐.

For the transitions below, it is a valid observation space mapping, if we can show that
𝜇(𝑥′

𝑐) ⊆ 𝜔𝑣(𝑥𝑐). If so, it is guaranteed that any assignment in the observation space of 𝑥′
𝑐

also has a valid assignment in the observation space of 𝑥𝑐.
We now have the necessary vocabulary and notation to step through the transformations

from 𝑆 to 𝑆 ′. These lemmas were first presented in [14], with some refinement by us for the
aforementioned journal article submission.

Definition 23. Variable-Delay to Fixed-Delay Transformations
The variable-delay to fixed-delay transformations define a set of observation space map-

pings, where there are valid observation space mappings for all the contingent constraints in
𝑆 ′ to 𝑆.

Thus, if there is a satisfying 𝒮 for the fixed-delay observation space of 𝑆 ′, it is guaranteed
to simultaneously satisfy any situation in the variable-delay observation space, Ω𝑣, of 𝑆.

Lemma 7. For any contingent event 𝑥𝑐 ∈ 𝑋𝑐 in 𝑆, if 𝛾−(𝑥𝑐) = 𝛾+(𝑥𝑐), we emulate 𝛾(𝑥𝑐) in
𝑆 ′ using 𝛾(𝑥′

𝑐) = 𝛾+(𝑥𝑐).

Proof. We translate an already fixed-bounded observation delay in the form of 𝛾(𝑥𝑐) to the
equivalent fixed-delay function, 𝛾(𝑥′

𝑐). Thus, 𝜔𝑓 (𝑥
′
𝑐) = 𝜔𝑣(𝑥𝑐).

Lemma 8. For any contingent event 𝑥𝑐 ∈ 𝑋𝑐, 𝛾+(𝑥𝑐) = ∞, we emulate 𝛾(𝑥𝑐) in 𝑆 ′ as
𝛾(𝑥′

𝑐) =∞.

Proof. There are projections where we would not receive information about 𝑥𝑐, therefore we
have to act as if we never receive an observation of 𝑥𝑐. Any 𝒮 that works when we do not
receive information about 𝑥𝑐 would also work when do receive an observation if we choose
to ignore the observation.

None of our decisions depend on 𝜉(𝑥′
𝑐), thus no observation space mapping to 𝑆 is neces-

sary.
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Figure 4.2: A visualization of the lemmas used to transform contingent links with variable
observation delay and subsequent requirement links.
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Lemma 9. If 𝑢− 𝑙 ≤ 𝛾+(𝑥𝑐)− 𝛾−(𝑥𝑐), we emulate 𝛾(𝑥𝑐) in 𝑆 ′ using 𝛾(𝑥′
𝑐) =∞.

Proof. We can ignore observations of 𝑥𝑐 because they are not guaranteed to narrow where
𝜉(𝑥𝑐) was assigned in the range [𝑙, 𝑢].

Let 𝛼 be the range of obs(𝑥𝑐) when 𝜉(𝑥𝑐) ∈ [𝑙, 𝑙]. Let 𝛽 be the range of obs(𝑥𝑐) when
𝜉(𝑥𝑐) ∈ [𝑢, 𝑢]. By Equation 4.1,

𝛼 = [𝑙−(𝑥𝑐), 𝑙
+(𝑥𝑐)]

𝛽 = [𝑢−(𝑥𝑐), 𝑢
+(𝑥𝑐)]

We can show that 𝑢−(𝑥𝑐) ≤ 𝑙+(𝑥𝑐).

𝑢− 𝑙 ≤ 𝛾+(𝑥𝑐)− 𝛾−(𝑥𝑐)

𝑢+ 𝛾−(𝑥𝑐) ≤ 𝑙 + 𝛾+(𝑥𝑐)

𝑢−(𝑥𝑐) ≤ 𝑙+(𝑥𝑐)

The lower bound of 𝛽 is less than the upper bound of 𝛼, thus 𝛼 ∩ 𝛽. An observation
obs(𝑥𝑐) ∈ [𝑢−(𝑥𝑐), 𝑙

+(𝑥𝑐)] could be the result of 𝜉(𝑥𝑐) = [𝑙, 𝑙], 𝜉(𝑥𝑐) = [𝑢, 𝑢], or any value
𝜉(𝑥𝑐) ∈ [𝑙, 𝑢]. Observations provide no information about the underlying contingent con-
straint, therefore we ignore obs(𝑥𝑐).

None of our decisions depend on 𝜉(𝑥′
𝑐), thus no observation space mapping to 𝑆 is neces-

sary.

Lemma 10. If 𝑢− 𝑙 > 𝛾+(𝑥𝑐)− 𝛾−(𝑥𝑐), we can emulate 𝛾(𝑥𝑐) under minimal information
by replacing the bounds of 𝑥𝑐 with 𝑥′

𝑐 ∈ [𝑙+(𝑥𝑐), 𝑢
−(𝑥𝑐)] and letting 𝛾(𝑥′

𝑐) = 0.

Proof. Under Lemma 10, observations obs(𝑥𝑐) are guaranteed to narrow the range of 𝜉(𝑥𝑐).
We have the same ranges for 𝛼 and 𝛽 as in Lemma 9, however we can show that 𝑢−(𝑥𝑐) ≥

𝑙+(𝑥𝑐) instead.

𝑢− 𝑙 ≥ 𝛾+(𝑥𝑐)− 𝛾−(𝑥𝑐)

𝑢+ 𝛾−(𝑥𝑐) ≥ 𝑙 + 𝛾+(𝑥𝑐)

𝑢−(𝑥𝑐) ≥ 𝑙+(𝑥𝑐)

Thus, receiving an observation is guaranteed to narrow the derived range of 𝜉(𝑥𝑐). The
transformation tightens the range of 𝑥′

𝑐 to one where there is maximum ambiguity of the
assignment of 𝑥𝑐 while guaranteeing an execution strategy for any assignment of 𝑥𝑐 ∈ [𝑙, 𝑢].

After applying Lemma 10, despite the limited expected range of assignments in 𝑥′
𝑐 in

𝑆 ′ compared to 𝑥𝑐 in 𝑆, we can show that Lemma 13 guarantees a satisfying schedule for
any obs(𝑥𝑐) ∈ [𝑙−(𝑥𝑐), 𝑢

+(𝑥𝑐)] using an 𝒮 that employs buffering and imagining contingent
events.
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Definition 24. Buffering
Buffering a contingent event 𝑥𝑐 is an execution strategy where, if 𝑥𝑐 is observed earlier

than the lower bound of the observation space obs(𝑥𝑐) < 𝜔−
𝑓 (𝑥

′
𝑐), we assign 𝜉(𝑥′

𝑐) to the
lower bound of the observation space, 𝜉(𝑥′

𝑐) = 𝜔−
𝑓 (𝑥

′
𝑐).

Definition 25. Imagining
Imagining a contingent event 𝑥𝑐 is an execution strategy where, if 𝑥𝑐 is observed later

than the upper bound of the observation space, obs(𝑥𝑐) > 𝜔+
𝑓 (𝑥

′
𝑐), we assign 𝜉(𝑥′

𝑐) to the
upper bound of the observation space, 𝜉(𝑥′

𝑐) = 𝜔+
𝑓 (𝑥

′
𝑐).

Lemma 11. If 𝑆 ′ is fixed-delay controllable after applying Lemmas 10, 12, and 13 to con-
tingent event 𝑌 with following requirement event 𝑍, there is a valid 𝒮 for any observation
in the observation space of 𝑆, 𝜔𝑣(𝑌 ) = [𝑎−(𝑌 ), 𝑏+(𝑌 )].

Proof. We first note the observation space of 𝑆 ′ is a subinterval of the original observation
space of 𝑆, 𝜔𝑓 (𝑌

′) ⊂ 𝜔𝑣(𝑌 ), and there are two distinct ranges of observations that are not
in 𝜔𝑓 (𝑌

′).

𝜔𝑓 (𝑌
′) = [𝑎+ 𝛾+(𝑌 ), 𝑏+ 𝛾−(𝑌 )]; 𝜔𝑣(𝑌 ) = [𝑎+ 𝛾−(𝑌 ), 𝑏+ 𝛾+(𝑌 )]

𝜔𝑓 (𝑌
′) ̸⊃ [𝑎+ 𝛾−(𝑌 ), 𝑎+ 𝛾+(𝑌 )) ("Early" observations)

𝜔𝑓 (𝑌
′) ̸⊃ (𝑏+ 𝛾+(𝑌 ), 𝑏+ 𝛾+(𝑌 )] ("Late" observations)

We address the early observations first. The range of early assignments of 𝜉(𝑌 ) in 𝑆
that we care about are the ones that could produce an observation obs(𝑌 ) ≤ 𝑎 + 𝛾+(𝑌 ),
which is 𝜉(𝑌 ) = [𝑎, 𝑎 + (𝛾+(𝑌 ) − 𝛾−(𝑌 ))]. We rewrite the range of early assignments as
𝜉(𝑌 ) = 𝑎 + (𝛾+(𝑌 )− 𝛾−(𝑌 ))− 𝜖, where 0 ≤ 𝜖 ≤ (𝛾+(𝑌 )− 𝛾−(𝑌 )). By the semantics of 𝑆,
the range of assignments of 𝜉(𝑍) is then,

𝜉(𝑍) = [𝑎+ (𝛾+(𝑌 )− 𝛾−(𝑌 ))− 𝜖, 𝑎+ (𝛾+(𝑌 )− 𝛾−(𝑌 ))− 𝜖] + [𝑢, 𝑣]

𝜉(𝑍) = [𝑎+ 𝑢+ (𝛾+(𝑌 )− 𝛾−(𝑌 ))− 𝜖, 𝑎+ 𝑣 + (𝛾+(𝑌 )− 𝛾−(𝑌 ))− 𝜖]

The earliest assignment of 𝑌 ′ in 𝑆 ′ is 𝜉(𝑌 ′) = 𝑎 + 𝛾+(𝑌 ). By the semantics of 𝑆 ′, the
range of assignments of 𝜉(𝑍 ′) is then,

𝜉(𝑍 ′) = [𝑎+ 𝛾+(𝑌 ), 𝑎+ 𝛾+(𝑌 )] + [𝑢− 𝛾−(𝑌 ), 𝑣 − 𝛾+(𝑌 )]

𝜉(𝑍 ′) = [𝑎+ 𝑢+ (𝛾+(𝑌 )− 𝛾−(𝑌 )), 𝑎+ 𝑣]

We see that 𝜉(𝑍 ′) ⊆ 𝜉(𝑍) for any 𝜖, meaning the execution strategy when 𝜉(𝑌 ′) =
𝑎 + 𝛾+(𝑌 ) results in a valid assignment of 𝜉(𝑍) for all early observations of 𝜉(𝑌 ). We are
safe to buffer early observations to 𝜉(𝑌 ′) = 𝑎+ 𝛾+(𝑌 ).

We use the same argument for imagining late observations. The range of late assignments
of 𝜉(𝑌 ) in 𝑆 that we care about are the ones that could produce an observation obs(𝑌 ) ≥
𝑏 + 𝛾−(𝑌 ), which is 𝜉(𝑌 ) = 𝑏 − (𝛾+(𝑌 ) − 𝛾−(𝑌 )) + 𝜖. By the semantics of 𝑆, the range of
assignments of 𝜉(𝑍) is then,
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𝜉(𝑍) = [𝑏− (𝛾+(𝑌 )− 𝛾−(𝑌 )) + 𝜖, 𝑏− (𝛾+(𝑌 )− 𝛾−(𝑌 )) + 𝜖] + [𝑢, 𝑣]

𝜉(𝑍) = [𝑏+ 𝑢− (𝛾+(𝑌 )− 𝛾−(𝑌 )) + 𝜖, 𝑏+ 𝑣 − (𝛾+(𝑌 )− 𝛾−(𝑌 )) + 𝜖]

The last assignment of 𝑌 ′ in 𝑆 ′ is 𝜉(𝑌 ′) = 𝑏+ 𝛾−(𝑌 ). By the semantics of 𝑆 ′, the range
of assignments of 𝜉(𝑍 ′) is then,

𝜉(𝑍 ′) = [𝑏+ 𝛾−(𝑌 ), 𝑏+ 𝛾+(𝑌 )] + [𝑢− 𝛾−(𝑌 ), 𝑣 − 𝛾+(𝑌 )]

𝜉(𝑍 ′) = [𝑏+ 𝑢, 𝑏+ 𝑣 − (𝛾+(𝑌 )− 𝛾−(𝑌 ))]

We see that 𝜉(𝑍 ′) ⊆ 𝜉(𝑍) for any 𝜖, meaning the execution strategy when 𝜉(𝑌 ′) =
𝑏+ 𝛾−(𝑌 ) results in a valid assignment of 𝜉(𝑍) for all late observations of 𝜉(𝑌 ). In practice,
there is no reason to wait until after obs(𝑌 ) = 𝑏 + 𝛾−(𝑌 ) to receive a late observation. As
soon as we see the clock has reached 𝑏+𝛾−(𝑌 ), we are safe to imagine that obs(𝑌 ) has been
received.

This concludes the modifications required to transform a contingent event 𝑥𝑐 ∈ 𝑋𝑐 in 𝑆 to
its equivalent 𝑥′

𝑐 ∈ 𝑋𝑐 in 𝑆 ′. What remains is to address the transformation of requirement
links, 𝑥𝑟 ∈ 𝑋𝑟, in 𝑆 such that their transformed equivalents, 𝑥′

𝑟 ∈ 𝑋𝑟 in 𝑆 ′, express the
same execution semantics in 𝑆 ′ as they did in 𝑆. We will demonstrate the correctness of the
transformations after Lemma 13.

Lemma 12. If we have contingent link 𝑋 =⇒ 𝐶 with duration [𝑙, 𝑢], outgoing requirement link
𝐶 −→ 𝑍 with duration [𝑢, 𝑣] with an unobservable 𝐶, and contingent link 𝐶 =⇒ 𝑌 with range
[𝛾−(𝑥𝑐), 𝛾

+(𝑥𝑐)], we can emulate the role of the original requirement link during execution
with a new link 𝑌 −→ 𝑍 with bounds [𝑢 −𝑚𝑎𝑥(𝛾−(𝑥𝑐), 𝑋𝑌 − 𝑢), 𝑣 −𝑚𝑖𝑛(𝛾+(𝑥𝑐), 𝑋𝑌 − 𝑙)],
where 𝑋𝑌 is the true duration of 𝑋 =⇒ 𝑌 .

Proof. See Figure 4.2c for reference. From an execution perspective, 𝑋 and 𝑌 are the only
events that can give us any information that we can use to reason about when to execute 𝑍
(since 𝐶 is wholly unobservable).

If we execute 𝑍 based on what we learn from 𝑌 , then we use our information from 𝑌
to make inferences about the true durations of 𝑋 =⇒ 𝐶 and 𝐶 =⇒ 𝑌 based on 𝑋 =⇒ 𝑌 .
We know that the lower-bound of 𝐶 =⇒ 𝑌 is at least 𝑋𝑌 − 𝑏 and that its upper-bound
is at most 𝑋𝑌 − 𝑎. But we also have the a priori bounds on the contingent link that
limit its range to [𝛾−, 𝛾+]. Taken together, during execution we can infer that the true
bounds of 𝐶 =⇒ 𝑌 are [𝑚𝑎𝑥(𝛾−, 𝑋𝑌 − 𝑏),𝑚𝑖𝑛(𝛾+, 𝑋𝑌 − 𝑎)]. Since we have bounds only on
𝑍’s execution in relation to 𝐶, we can then infer a requirement link 𝑌 −→ 𝑍 with bounds
[𝑢−𝑚𝑎𝑥(𝛾−, 𝑋𝑌 − 𝑏), 𝑣 −𝑚𝑖𝑛(𝛾−, 𝑋𝑌 − 𝑎)].

If we try to execute 𝑍 based on information we have about 𝑋, we must be robust to any
possible value assigned to 𝑋 =⇒ 𝐶. This means that we would be forced to draw a requirement
link 𝑋 −→ 𝑍 with bounds [𝑢+𝑏, 𝑣+𝑎]. But we know that 𝑢−𝑚𝑎𝑥(𝛾−, 𝑋𝑌 −𝑏) ≤ 𝑢+𝑏−𝑋𝑌
and 𝑣 −𝑚𝑖𝑛(𝛾−, 𝑋𝑌 − 𝑎) ≥ 𝑣 + 𝑎−𝑋𝑌 , which means that the bounds we derived from 𝑌
are at least as expressive as the bounds that we would derive from 𝑋.
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Since we have a local execution strategy that depends on the real value of 𝑋𝑌 , we can
try to apply this strategy to the contingent link that we restricted in Lemma 10, in order to
repair the remaining requirement links.

Lemma 13. If we have an outgoing requirement link 𝐶 −→ 𝑍 with duration [𝑢, 𝑣], where 𝐶
is a contingent event, we can emulate the role of the original requirement link by replacing
its bounds with [𝑢− 𝛾−(𝑥𝑐), 𝑣 − 𝛾+(𝑥𝑐)].

Proof. See Figure 4.2d for reference. If we directly apply the transformation from Lemma 12
and Figure 4.2c to our original STNU, we introduce complexity through the need to reason
over 𝑚𝑖𝑛 and 𝑚𝑎𝑥 operations in our link bounds. However, from Lemma 10, we know that
in a controllability evaluation context, it is acceptable for us to simplify the 𝑋 =⇒ 𝑌 link to a
stricter range of [𝑎+𝛾+, 𝑏+𝛾−], instead of [𝑎+𝛾−, 𝑏+𝛾+]. This means that for the purpose
of evaluating controllability, we can assume 𝑎 + 𝛾+ ≤ 𝑋𝑌 ≤ 𝑏 + 𝛾−. When we evaluate
the requirement link 𝑌 −→ 𝑍, we see 𝑚𝑎𝑥(𝛾−, 𝑋𝑌 − 𝑏) = 𝛾− and 𝑚𝑖𝑛(𝛾+, 𝑋𝑌 − 𝑎) = 𝛾+.
This gives us bounds of [𝑢 − 𝛾−, 𝑣 − 𝛾+] for the 𝑌 −→ 𝑍 requirement link as seen in Figure
4.2d.

Lemma 13 handles outgoing requirement edges connected to contingent events. In addi-
tion, we must handle incoming edges.

Corollary 13.1. If we have an incoming requirement link 𝑍 −→ 𝐶 with duration [𝑢, 𝑣],
where 𝐶 is a contingent event, we can replace the bounds of the original requirement link
with [𝑢+ 𝛾+(𝑥𝑐), 𝑣 + 𝛾−(𝑥𝑐)].

Proof. A requirement link 𝑍 −→ 𝐶 with bounds [𝑢, 𝑣] can be immediately rewritten as its
reverse 𝐶 −→ 𝑍 with bounds [−𝑣,−𝑢]. After reversing the edge, we can apply Lemma 13 to
get 𝑌 −→ 𝑍 with bounds [−𝑣− 𝛾−,−𝑢− 𝛾+], which we can reverse again to get 𝑍 −→ 𝑌 with
bounds [𝑢+ 𝛾+, 𝑣 + 𝛾−].

We can examine a concrete example of Lemmas 10, 12, and 13 to show equivalence in
the transformation from Figure 4.2a to 4.2d. We start by building an example of 4.2a. Let
𝑋

[2,5]
==⇒ 𝐶 with 𝛾(𝐶) ∈ [1, 2] and 𝐶

[11,20]−−−→ 𝑍. If we learn of event 𝐶 at time 4, then one
possibility is that the realized duration of 𝐶 could have been 2 with an observation delay of 2.
In this case, event 𝑍 must be executed in [13, 22]. However, if the realized duration of 𝐶 were
3 with an observation delay of 1, then 𝑍 would fall in [14, 23]. Given we cannot distinguish
between the possibilities, we take the intersection of the intervals, yielding 𝑍 ∈ [14, 22].
Likewise, if we learn of 𝐶 at time 6, then 𝐶 could have been realized at time 5 with an
observation delay of 1 or it could have been realized at time 4 with an observation delay of
2. In the first case, 𝑍 must then fall in [16, 25], while in the second, 𝑍 would fall in [15, 24].
The intersection yields [16, 24].

By the semantics represented in Figure 4.2d, we can build an equivalent network with
𝛾(𝑌 ) = 0 by setting 𝑋

[4,6]
==⇒ 𝑌 and 𝑌

[10,18]−−−→ 𝑍. If 𝑌 is observed at time 4, 𝑍 must be
executed in [14, 22]. If 𝑌 is observed at time 6, 𝑍 then must be executed in [16, 24]. The
execution semantics for both cases match the equivalent networks from 4.2a described above.
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4.4 Discussion

We have demonstrated a modeling formalism to describe temporal networks with uncertain
observation delay, along with a sound and complete procedure for checking controllability
of said temporal networks. VDC is sound because if it finds that 𝑆 ′ has a valid execution
strategy, then it must also be the case that 𝑆 has an execution strategy. VDC is complete
because if it finds that 𝑆 ′ is not controllable, then there exists a projection of 𝑆 that is
uncontrollable, thus 𝑆 is not variable-delay controllable.

4.5 Experimental Analysis

In this section, we provide empirical evaluations of our variable-delay controllability checking
algorithms, showing that variable-delay controllability gives us a level of modeling expres-
siveness that cannot be captured by approximations that use delay controllability alone. We
do so by constructing examples of variable-delay STNUs for realistic multi-agent coordina-
tion scenarios that are taken from the domain of planetary exploration, inspired by the real
decision-making processes during Apollo and Artemis EVA science. First, we briefly describe
the operational environment, relevant actors, and decisions during science operations. We
then provide a selection of STNUs that reflect the activities and temporal constraints of
planetary exploration. Using these building blocks, we make a case for the expressivity of
VDC in modeling uncertain communication, then generate larger STNUs to demonstrate the
soundness of variable-delay controllability checking.1

Figure 4.3: An STNU representing an EVA sampling task. The episode durations are repre-
sentative of the bounds used in simulation. The depiction of this STNU with variable-delay
is presented with rows representing actors to clarify the context of each event.

Now, we present a sample collection communication scenario in Figure 4.3 that is rep-
resentative of the types of activities performed during exploration and requires uncertain

1The implementation of the experiments herein can be found at [https://gitlab.com/mit-mers/delay-stnu-
benchmarks].
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ccc
Variable-delay controllable Variable-delay uncontrollable

Min-fixed controllable 222 619
Min-fixed uncontrollable 0 159
Mean-fixed controllable 222 583

Mean-fixed uncontrollable 0 195
Max-fixed controllable 222 355

Max-fixed uncontrollable 0 423

Table 4.2: Variable-delay vs. minimum, mean, and maximum fixed-delay controllability
results with the parallel installation STNU from Figure 5.2.

communication delay to faithfully model.
At a high level, in this activity a crew of 𝑖 astronauts perform 𝑗 activities of scanning

potential samples and receiving feedback from the science team as to whether they should
store or discard those sample. Scanning requires liberating, that is chipping away, a piece
of rock from an outcrop, 𝐴𝑖,𝑗, and performing a scan of the newly exposed surface with
a handheld spectrometer. Spectroscopy data is eventually received at 𝑋𝑖,𝑗; we model this
duration of this process with the contingent link 𝐴𝑖,𝑗 =⇒ 𝑋𝑖,𝑗 where 𝑋𝑖,𝑗 is uncontrollable
because the time to liberate and scan is a function of the environment (eg. how hard
the sample is to access), not the crew. The processing completion time of the handheld
spectrometer is highly variable, and as such we have 𝛾(𝑋𝑖,𝑗) represent a variable delay in
receiving the results of the scan. Interestingly, note that the general time of 𝐴𝑖,𝑗 will be
known immediately through the use of audio and video communications - the variability of
𝑋𝑖,𝑗 refers to the delay of receiving the spectroscopy data itself.

During a narrow window of opportunity between the receipt of the sample information
and a deadline imposed by Mission Control, 𝑃𝑖,𝑗, the science team must confer and decide on
a sample collection priority list to send to Mission Control, 𝑋𝑖,𝑗 −→ 𝑃𝑖,𝑗. Even once Mission
Control has a sample priority list in hand, 𝑃𝑖,𝑗, due to health and safety concerns, they may
prioritize other messages before they send the science team’s sampling priority decision to
the crew. As such, the message passing process, 𝑃𝑖,𝑗 =⇒ 𝐵𝑖,𝑗, is modeled as uncontrolled with
a variable communication delay. Once the crew receives the priority list, 𝐵, they then stow
the requested amount of samples at 𝐶𝑖,𝑗. Then the astronaut traverses to the next location
and the procedure repeats anew. We use 𝐶𝑖,𝑗 =⇒ 𝐴𝑖,𝑗+1 to model the time needed to traverse
to the site of the next activity. We apply a requirement link with a lower-bound of 0 and an
upper bound of the limiting consumable from the overall start of each STNU to its overall
end after each astronaut has completed all activities.

With realistic STNUs in hand, we can now evaluate the performance of our variable-delay
formulations. For the simulations presented in subsequent sections, we generated STNUs
that follow the form of Figure 4.3 with randomized bounds on the links and delay functions,
as will be described below.

We now will evaluate the comparative quality of variable-delay formulations against fixed-
delay approximations by using the repeater installation scenario seen in Figure 5.2. We
generate STNUs with four astronauts each performing five installations. We set the lower
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bounds of 𝐴𝑖,𝑗 =⇒ 𝐵𝑖,𝑗 to 0 and choose the upper bounds from a uniform distribution of
integers between 0 and 20, 𝒰[0,20]. There is no delay function for 𝐵𝑖,𝑗. Likewise, for 𝐵𝑖,𝑗 −→
𝐶𝑖,𝑗, we set the lower bounds to 0 and choose an integer upper bound in 𝒰[0,15]. 𝐶𝑖,𝑗 =⇒ 𝐷𝑖,𝑗 has
a lower bound of 0 and an upper bound integer chosen in 𝒰[0,20]. The variable-delay function
𝛾(𝐷𝑖,𝑗) has a lower bound of 0 and upper-bound chosen from the exponential distribution
𝑓(𝑡) = 𝜆𝑒−𝜆𝑡 with 𝜆 = 3. 𝐷𝑖,𝑗 =⇒ 𝐴𝑖,𝑗+1 takes a lower bound integer, 𝑎, from 𝒰[10,20] and its
upper bound in 𝑎+ 𝒰[4,10]. Lastly, we pick a random limiting consumable as the multiple of
the number of activities and an integer from 𝒰[50,60].

We employ three different strategies for each 𝛾(𝑥𝑐) in 𝑆 for our fixed-delay approxima-
tions: 𝛾(𝑥𝑐) = 𝛾−(𝑥𝑐), 𝛾(𝑥𝑐) = 𝛾−+𝛾+

2
, and 𝛾(𝑥𝑐) = 𝛾+(𝑥𝑐). For each strategy, we know

that whenever the original STNU is variable-delay controllable with respect to 𝛾, it is also
fixed-delay controllable with respect to 𝛾. Each choice of 𝛾 represents a potential realiza-
tion of the delays offered by 𝛾, and the fixed-delay approximation has the added benefit of
eliminating uncertainty in observation.

We generate 1000 different STNUs and compare the variable-delay controllability results
to the different fixed-delay controllability approaches (Table 4.2). Note that our randomly
generated variables, notably the choice of 𝛾(𝐶𝑖,𝑗) and the width of the following 𝐶𝑖,𝑗 −→ 𝐷𝑖,𝑗

link, were selected such that the STNUs generated could be variable-delay, fixed-delay, dy-
namic, or strong controllable, or uncontrollable. The instances that are of greatest interest
are those where the STNU is not variable-delay controllable but the fixed-delay approxima-
tions determine it to be controllable.

This false positive rate of the minimum fixed-delay controllability approximation is quite
high at 80.0%. The mean and maximum fixed-delay approximations have more reasonable
false positive rates at 74.9% and 45.6% respectively. Since all approximations yield the
correct answer when the original STNU is variable-delay controllable, it follows that the
maximum fixed-delay approximation has the lowest false positive rate, as it is the most
demanding of the three.

We note that these results are dependent on the width of the variable-delay ranges found
in the network. We can increase the likelihood that a delay takes longer by increasing
the choice of 𝜆 in our exponential delay function. When we vary our delay function using
𝜆 = 4.5, 6, 7.5, and 9, the false positives of the max-delay approximation are 27.9% 12.9%,
7.0%, and 3.1%, respectively.

In addition to simulating the network using fixed-delays, we also consider the effect
of combining the two sources of uncertainty, the duration of the action and the delay in
observation, into one new source of uncertainty. Unlike the fixed-delay approximations,
we know that if a network under this transformation is controllable, then so too is the
original network, as this approach discards any existing knowledge about the difference in
uncertainties between the original event and the observation of that event.

As seen in Table 4.3, this approach yields no false positives, but still presents a modestly
high false negative rate of 19.3%. An appropriate approximation strategy can be adopted
to prevent either false positives or false negatives; however, such a wide disparity in results
strongly reinforces the value of modeling observational uncertainty directly.
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ccc
Variable-delay controllable Variable-delay uncontrollable

Elongated controllable 36 0
Elongated uncontrollable 186 778

Table 4.3: Variable-delay controllability vs. the controllability of a network that elongates
its contingent links to account for observational uncertainty when using an exponential delay
function with 𝜆 = 3.
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Chapter 5

Scheduling Events Despite Uncertain
Observations

Now that we have shown there exists a valid execution strategy for variable-delay controllable
STNUs, we contribute a novel scheduling and dispatching architecture for online, dynamic
execution. In this Chapter, our aim is to describe the single-agent form of a new instantiation
of Kirk, Delay Kirk, that can reason over uncertain observation delay to decide when to
execute requirement events on real hardware. There are two main components to Delay
Kirk: (1) a delay scheduler, and (2) a delay dispatcher. As will be shown in Section 5.2,
scheduling variable-delay controllable STNUs is an extension to existing dynamic scheduling
algorithms with modifications for the execution strategy shown to be sound and complete in
Chapter 4.

Additionally, to the best of our knowledge, scheduling fixed-delay STNUs has not been
presented in the literature. Fixed-delay scheduling is required for addressing (1). As such,
we contribute a fixed-delay scheduler in Section 5.2. The execution strategy from Chapter 4
will be shown to be a small extension to the fixed-delay scheduler. As to (2), to the best of
our knowledge, there are no other formalized dispatching algorithms in the literature. In the
development of Delay Kirk, we found it to be extremely useful to formalize dispatching as part
of creating a clear interface boundary between scheduling and dispatching. The dispatching
algorithms we put forth in Section 6.1.2 represent novel contributions to temporal reasoning.

This Chapter makes additional contributions to scheduling and dispatching. Safely ex-
ecuting events on real hardware requires modifications to generating decisions in dynamic
scheduling. We include said modifications, with confluent interfaces in dynamic dispatching,
to suit our intended use cases for Delay Kirk.

Finally, Section 5.3 provides a series of benchmarks of the scheduling and dispatching
algorithms described in this Chapter.

5.1 Dynamic Scheduling through Real-Time Execution
Decisions

We first provide a necessary overview of dynamic scheduling of vanilla STNUs, which we will
extend for STNUs with observation delay in Section 5.2.
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An STNU, 𝑆, that exhibits dynamic controllability can be scheduled dynamically (or
online). At a high-level, dynamic scheduling is the process of mapping the history of event
assignments to the execution time of future free events. We will build off of the scheduling
work by Hunsberger [9], [15], which describes an 𝑂(𝑁3) procedure, FAST-EX, for dynamic
scheduling of STNUs. We chose FAST-EX because, to the best of our knowledge, this is
the fastest dynamic scheduling algorithm in the literature today. At its core is the notion of
Real-Time Execution Decisions (RTEDs), which map a time to a set of requirement events
to be executed and are generated based on partial schedules of STNUs being executed. WAIT
decisions may also be produced, reflecting the need to wait for the assignment of a contingent
event before continuing. RTED-based scheduling applies a dynamic programming paradigm
in three steps:

1. creating a dispatchable form of temporal constraints offline in the form of a distance
graph,

2. updating the dispatchable form as the partial schedule is updated online through event
assignments, and

3. querying the dispatchable form online to quickly find the next RTED [34].

The dispatchable form employed by FAST-EX is the AllMax distance graph, which is
first described in the Morris 𝑂(𝑁4) DC-checking procedure [31].

Definition 26. AllMax Distance Graph [32]
The AllMax distance graph is a distance graph exclusively consisting of unlabeled and

upper-case edges.

The key idea of FAST-EX is maintaining accurate distances from an artificial zero point,
𝑍, of the distance graph to all events. At the outset of execution, all events from 𝑆 are
present as nodes in AllMax. As events are assigned, AllMax performs update steps using Di-
jkstra Single Source/Sink Shortest Path (SSSP) to maintain distances to unexecuted events,
while also collapsing executed events to 𝑍. The “fast” in FAST-EX is enabled by removing
unnecessary contingent links in AllMax in favor of their strongest replacements with respect
to 𝑍. We include pseudo-code of the real-time update step in Algorithm 2.

With an up-to-date distance graph in hand, we can perform an online query for the
current RTED.

Definition 27. Real-Time Execution Decisions [34]
A Real-Time Execution Decision is a two-tuple ⟨𝑡, 𝜒⟩, where:

• 𝑡 is a time with domain R,
• 𝜒 is a set of 𝑥𝑟 ∈ 𝑋𝑟 to be executed at time 𝑡

Let 𝑈𝑥 be the set of unexecuted free timepoints. If 𝑈𝑥 is empty, then the RTED is to
WAIT. Otherwise, we find the lower bound of the earliest executable time point and the set
of executable events associated with it.

𝑡 = min{−𝐷(𝑋,𝑍) | 𝑋 ∈ 𝑈𝑥} (5.1)
𝜒 = {𝑋 ∈ 𝑈𝑥 | −𝐷(𝑋,𝑍) = 𝑡} (5.2)
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Input: Time 𝑡; Set of newly executed events Exec ⊆ 𝑋𝑒 ∪𝑋𝑟; AllMax Graph 𝐺;
Distance matrix 𝐷, where 𝐷(𝐴,𝐵) is the distance from 𝐴 to 𝐵

Output: Updated 𝐷
FAST-EX Update:

1 for each contingent event 𝐶 ∈ Exec do
2 Remove each upper-case edge, 𝑌 𝐶:−𝑤−−−→ 𝐴, labled by 𝐶;
3 Replace each edge from 𝑌 to 𝑍 with the strongest replacement edge;
4 end
5 for each event 𝐸 ∈ Exec do
6 Add lower-bound edge 𝐸

−𝑡−→ 𝑍;
7 end
8 For each event 𝑋, update 𝐷(𝑋,𝑍) using Dijkstra Single-Sink Shortest Paths;
9 for each event 𝐸 ∈ Exec do

10 Add upper-bound edge 𝑍
𝑡−→ 𝐸;

11 end
12 For each event 𝑋, update 𝐷(𝑍,𝑋) using Dijkstra Single-Source Shortest Paths;
Algorithm 2: Algorithm for updating distances for all events in relation to 𝑍 upon the
execution of an event. Adapted from 15[15], Fig. 19.

We cannot execute events in the past. Let now be the current time, i.e. the last timepoint
captured in the event assignments. It is possible that 𝑡 ≤ now, in which case we must reassign
𝑡 to guarantee that 𝑡 > now. To do so, we update 𝑡 as follows, where 𝑡+ is earliest upper
bound of the executable timepoints,

𝑡+ = min{𝐷(𝑍,𝑋) | 𝑋 ∈ 𝑈𝑥} (5.3)

𝑡 =
now+ 𝑡+

2
(5.4)

So long as 𝑡+ > now, we know that the reassignment of 𝑡 ensures 𝑡 > now.

5.2 Delay Scheduling as an Extension to Dynamic Schedul-
ing

Figure 5.1 presents a high-level overview of the information flow in the scheduling process.
In order to schedule a variable-delay STNU, the core problem we must address is that, to

date, there is no means to directly create a corresponding dispatchable form that accounts
for uncertain assignments resulting from variable observation delay. We encountered this
same problem when describing the process of checking VDC in Section 4.3. We overcame
this limitation by first transforming the variable-delay STNU to a fixed-delay STNU before
checking FDC. A similar strategy will be followed for scheduling in that we will transform
the variable-delay to a fixed-delay STNU, then dispatch events using the dispatchable form
of the fixed-delay STNU instead. However, doing so creates a second problem. While we will
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Figure 5.1: A high-level flow chart showing how we use variable-delay STNUs to generate
scheduling decisions. The boxes represent the data structures involved in scheduling, while
the arrows are the processes that are followed to eventually produce RTEDs.

be performing FAST-EX against the fixed-delay STNU, the contingent event observations
we receive will adhere to the constraints and variable-delay function of the variable-delay
STNU. Hence, we must modify our real-time update and RTED generation algorithms to
account for early and late contingent event observations.

We start by providing an explanation of fixed-delay scheduling, before expanding it to
address the execution strategies of variable-delay scheduling.

5.2.1 Fixed-Delay Scheduling

We first establish the algebra of receiving observations. We use the same notation as Section
4.3.1. 𝑆 and 𝑥𝑐 refer to a variable-delay STNU and an uncontrollable event within 𝑆 respec-
tively. 𝑆 ′ is the fixed-delay STNU that is equivalent to 𝑆 with respect to controllability. 𝑥′

𝑐

is the transformed version of 𝑥𝑐 in 𝑆 ′.

Lemma 14. For any contingent event, 𝑥𝑐 ∈ 𝑆 or 𝑥′
𝑐 ∈ 𝑆 ′, observing 𝑥𝑐 at time 𝑡 ∈

[𝑙−(𝑥𝑐), 𝑢
+(𝑥𝑐)] fixes the observation to obs(𝑥𝑐) = [𝑡, 𝑡].

Proof. Prior to execution, an observation of 𝑥𝑐 may fall anywhere within the set-bounded
interval from the earliest possible observation at 𝑙−(𝑥𝑐) to the last possible observation at
𝑢+(𝑥𝑐). Receiving an observation obs(𝑥𝑐) = 𝑡 during execution eliminates all possible obser-
vations outside the interval [𝑡, 𝑡].

Lemma 15. For any temporal constraint, 𝑥, with bounds 𝑥 ∈ [𝑙, 𝑢] for some 𝑙 and 𝑢, and
timepoint 𝑡 ∈ [𝑙, 𝑢], if information reduces the bounds of 𝑥 to 𝑥 ∈ [𝑡, 𝑡], we may assert 𝑥 = 𝑡.

Proof. When the bounds of an interval, 𝑥 ∈ [𝑙, 𝑢] are fixed such that 𝑡 = 𝑙 = 𝑢, we can assert
that 𝑥 must have resolved to 𝑡.
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Lemma 16. For any contingent event 𝑥′
𝑐 ∈ 𝑋𝑐 in fixed-delay controllable 𝑆 ′, if 𝛾(𝑥′

𝑐) ∈ R,
we assign 𝜉(𝑥′

𝑐) = obs(𝑥𝑐)− 𝛾(𝑥′
𝑐) in the dispatchable form of 𝑆 ′.

Proof. The central challenge of checking fixed-delay controllability is determining that an
execution strategy exists that allows an agent to wait an additional 𝛾(𝑥′

𝑐) time units after
a contingent event has been assigned to learn its outcome. Importantly, the 𝛾 function is
not used to modify the edges of the labeled distance graph, which are derived from the
constraints 𝑟 ∈ 𝑅𝑒 ∪𝑅𝑐 in 𝑆 ′.

As 𝛾(𝑥′
𝑐) resolves to a known and finite value, we can derive the true value of 𝜉(𝑥′

𝑐) to
be assigned in the labeled distance graph. Contingent event assignments are recorded in the
labeled distance graph as follows, where obs(𝑥𝑐) is the resolved observation,

𝜉(𝑥′
𝑐) = obs(𝑥𝑐)− 𝛾(𝑥′

𝑐) (5.5)

The FAST-EX real-time update algorithm, Algorithm 2, then becomes Algorithm 3.

Input: Time 𝑡; Set of newly observed events Exec ⊆ 𝑋𝑒 ∪𝑋𝑟; AllMax Graph 𝐺;
Distance matrix 𝐷, where 𝐷(𝐴,𝐵) is the distance from 𝐴 to 𝐵; Fixed-delay
function 𝛾;

Output: Updated 𝐷
FAST-EX Update with Fixed Observation Delay:

1 for each contingent event 𝐶 ∈ Exec do
2 𝜉(𝐶)← obs(𝐶)− 𝛾(𝐶);
3 Remove each upper-case edge, 𝑌 𝐶:−𝑤−−−→ 𝐴, labled by 𝐶;
4 Replace each edge from 𝑌 to 𝑍 with the strongest replacement edge;
5 end
6 for each event 𝐸 ∈ Exec do
7 Add lower-bound edge 𝐸

−𝑡−→ 𝑍;
8 end
9 For each event 𝑋, update 𝐷(𝑋,𝑍) using Dijkstra Single-Sink Shortest Paths;

10 for each event 𝐸 ∈ Exec do
11 Add upper-bound edge 𝑍

𝑡−→ 𝐸;
12 end
13 For each event 𝑋, update 𝐷(𝑍,𝑋) using Dijkstra Single-Source Shortest Paths;
Algorithm 3: Algorithm for updating distances for all events in relation to 𝑍 upon the
execution or observation of an event.

No other modifications to FAST-EX are required to schedule a fixed-delay STNU.

5.2.2 Variable-Delay Scheduling

The execution strategy for scheduling a variable-delay STNU naturally builds off the execu-
tion strategy for fixed-delay STNUs. Our approach is to perform fixed-delay scheduling of
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𝑆 ′. However, Nature is under no obligation to obey the contingent constraints of 𝑆 ′. Thus
the execution strategy for variable-delay STNUs must address each of the following special
categories of contingent event observations:

1. uncontrollable events with infinite observation delay, and
2. uncontrollable events that are observed outside their bounds in 𝑆 ′

We address both concerns below.
The first category is a requirement for dispatching the fixed-delay equivalent of a variable-

delay STNU. If the constraints of a problem domain are modeled directly in a fixed-delay
STNU and the modeler gives a contingent event, 𝑥𝑐, infinite delay, e.g. 𝛾(𝑥𝑐) = ∞, the
event will never be observed and thus a fixed-delay scheduler has no need for an execution
strategy in the event that 𝑥𝑐 is observed. However, by Lemmas 8 and 9 there are some
contingent events with potentially finite observation delay in 𝑆 that are transformed to
infinite observation delay in 𝑆 ′, making it possible that the scheduler receives observations
of them.

Lemma 17. For any contingent event 𝑥′
𝑐 ∈ 𝑋𝑐 in fixed-delay controllable 𝑆 ′, which is trans-

formed from 𝑥𝑐 ∈ 𝑋𝑐 in variable-delay controllable 𝑆, if 𝛾(𝑥′
𝑐) = ∞, we mark the event

executed but do not assign 𝜉(𝑥′
𝑐) in the dispatchable form of 𝑆 ′.

Proof. If we are scheduling a fixed-delay STNU, 𝑆 ′, that is already known to be fixed-delay
controllable, an execution strategy must exist that is independent of the assignment of 𝜉(𝑥′

𝑐)
when 𝛾(𝑥′

𝑐) = ∞. We are not required to record 𝜉(𝑥′
𝑐) when 𝛾(𝑥′

𝑐) = ∞ to guarantee
controllability and may safely ignore it.

We mark the event executed to prevent it from appearing in future RTEDs.

The second category refers to the need for buffering and imagining events as a result of
Lemma 10 using the execution strategy proven to be valid in Lemma 11. There are three
regimes of contingent event observations to address.

1. obs(𝑥𝑐) ∈ [𝑙−(𝑥𝑐), 𝑙
+(𝑥𝑐)), ie. strictly earlier than the range of 𝜉(𝑥′

𝑐),
2. obs(𝑥𝑐) ∈ [𝑙+(𝑥𝑐), 𝑢

−(𝑥𝑐)], ie. the range equivalent to 𝑥′
𝑐, and

3. obs(𝑥𝑐) ∈ (𝑢−(𝑥𝑐), 𝑢
+(𝑥𝑐)], ie. strictly later than the range of 𝜉(𝑥′

𝑐).

Note that we omit the −𝛾(𝑥′
𝑐) term from Equation 5.5 in this analysis due to the fact

that 𝛾(𝑥′
𝑐) = 0 after applying Lemma 10.

Our execution strategy is to then make the following assignments during the FAST-EX
real-time update.

𝜉(𝑥′
𝑐) =

⎧⎪⎨⎪⎩
𝑙+(𝑥𝑐) if obs(𝑥𝑐) ∈ [𝑙−(𝑥𝑐), 𝑙

+(𝑥𝑐)) (buffering)

obs(𝑥𝑐) if obs(𝑥𝑐) ∈ [𝑙+(𝑥𝑐), 𝑢
−(𝑥𝑐)]

𝑢−(𝑥𝑐) if obs(𝑥𝑐) ∈ (𝑢−(𝑥𝑐), 𝑢
+(𝑥𝑐)] (imagining)

(5.6)

In the first case, we cannot immediately schedule buffered events. This is a key distinction
between a delay scheduler and existing dynamic schedulers. It may be the case that, despite
observing an event, we must wait to perform the assignment. If we make an assignment at
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𝑙+(𝑥𝑐), we would be preempting events that could be assigned before 𝑙+(𝑥𝑐). Doing so would
cause us to later make assignments out of order, violating the assumptions in place while
checking controllability. Thus, we buffer 𝑥′

𝑐 in the sense that we must wait until 𝑙+(𝑥𝑐) to
assign 𝜉(𝑥′

𝑐) = 𝑙+(𝑥𝑐).
In the last case, late observations are assigned to an earlier time. During execution, time

is always increasing. There is no need to wait to make an observation after 𝑢−(𝑥𝑐). Instead,
we modify RTED generation, namely Equation 5.1, such that we dispatch 𝑥′

𝑐 at 𝑢−(𝑥𝑐) if it
is not been observed before 𝑢−(𝑥𝑐). Let 𝑈𝑐 be the set of unobserved contingent timepoints.

𝑡𝑥 = min{−𝐷(𝑋,𝑍) | 𝑋 ∈ 𝑈𝑥} (5.7)
𝑡𝑐 = min{𝐷(𝑍,𝑋) | 𝑋 ∈ 𝑈𝑐} (5.8)
𝑡 = min{𝑡𝑥, 𝑡𝑐} (5.9)

𝜒𝑥 = {𝑋 ∈ 𝑈𝑥 | −𝐷(𝑋,𝑍) = 𝑡} (5.10)
𝜒𝑐 = {𝑋 ∈ 𝑈𝑐 | 𝐷(𝑍,𝑋) = 𝑡} (5.11)
𝜒 = 𝜒𝑥 ∪ 𝜒𝑐 (5.12)

Note that we allow RTEDs where 𝑡 is the current time. Hunsberger presents an addendum
in [9] p.129 that guarantees that 𝑡 is greater than the current time.

We see that RTEDs may now include unobserved (or unexecuted) uncontrollable events
at their upper bounds. Note that there is no need to distinguish between contingent events
that are the result of tightening during the fixed-delay transformation by applying Lemma
10 and others. We assume that the contingent constraints of the variable-delay STNU
accurately reflect Nature. The latest any other contingent event should be observed is their
upper bound in 𝑆 ′ and thus should never be in the set of events, 𝜒, of an executed RTED.

We have defined variable-delay execution strategies for when contingent events have in-
finite delay and tightened constraints. The remaining category of contingent events is when
a contingent event has a finite, non-zero 𝛾(𝑥′

𝑐) in 𝑆 ′. If that is the case, 𝑥′
𝑐 must have had

fixed observation delay in 𝑆, Lemma 7, and can be scheduled normally after backing out the
observation delay with Equation 5.5.

We have addressed the key issue of reconciling observations from 𝑆 with the dispatchable
form from 𝑆 ′. Section 6.1 will present a dispatcher and wrapper algorithms on top of FAST-
EX that combine to add robustness for variable observation delay.

5.3 Experimental Analysis

We first introduce an example which models a construction task on the lunar surface that
will be used to randomly generate STNUs with realistic constraints for benchmarking pur-
poses. We then describe benchmarks against the performance of the real-time FAST-EX
update with the variable-delay execution strategy, the dispatching routine, and observa-
tions. All benchmark code can be found at https://gitlab.com/enterprise/enterprise in the
kirk-v2/benchmarks directory.

It is possible that, before NASA is ready to grow the population of a lunar base, there is a
need to prepare a communications infrastructure near a habitat with a large grid of repeater
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Figure 5.2: An STNU roughly representing the installation and test of repeater antennas.
Each row represents a single rover. The episode durations are representative of the bounds
used in simulation. Circles with solid lines represent controllable events, while dashed lines
are uncontrollable events.

antennas. This scenario depicted with the STNU in Figure 5.2 represents an installation
task wherein 𝑖 rovers (mobile robot) are each installing 𝑗 surface signal repeater antennas.
During the activity, every rover is responsible for installing one repeater. Each event, 𝑋, is
represented for the $i$-th rover and $j$-th repeater as 𝑋𝑖,𝑗. All numbers in the figure are
representative of the minimum and maximum of the randomly generated constraints in the
benchmarks.

The rovers work in parallel, with a [0,∞) requirement link from the start of the STNU
to each 𝐴𝑖,1 (not shown). The first episode, 𝐴𝑖,𝑗 =⇒ 𝐵𝑖,𝑗, represents traversing to the site
of the installation. We model traverses as uncontrollable due to the fact that crews are
embarking across unknown terrain. Once at the site, an antenna is installed as represented
by 𝐵𝑖,𝑗 −→ 𝐶𝑖,𝑗. Each repeater needs to have its configuration tested and confirmed working by
𝐷𝑖,𝑗, represented by the edge 𝐶𝑖,𝑗 =⇒ 𝐷𝑖,𝑗. Confirmation takes the form of a request-response
cycle to the ground. We model 𝐷𝑖,𝑗 as uncontrolled and with variable delay because each
antenna takes an unknown time to self-configure and the crew does not know when they
will receive a response from Earth that the repeater installation has been verified due to
uncertainty in communication. Bandwidth is limited, so we limit the number of repeaters
simultaneously sending requests to their configuration. We use the 𝐷𝑖,𝑗 −→ 𝐶𝑖+1,𝑗 links to
enforce that the start of the confirmation of the next repeater does not begin until after the
previous repeater’s confirmation. Confirmations are required until we reach the last crew
member or the last activity. Once testing is complete, the rovers clean up their workstations,
𝐷𝑖,𝑗 −→ 𝐴𝑖,𝑗+1 and then repeat the cycle until all antennas have been installed.

To perform the benchmarks, we generated variable-delay STNUs of increasing sizes with
randomly determined constraints as previously described. We immediately checked VDC
of each STNU, and would generate new STNUs of a given size until we found one that
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was confirmed to be VDC. We then simulated scheduling and dispatching of the STNU
with a faster-than-realtime clock. No driver was present, so all real events were scheduled
immediately.

These data were collected on an Intel i7-10710U 6c/12t mobile processor with 16GB of
RAM in a ThinkPad X1 Carbon Gen 7 laptop. All tests were run while the laptop was
attached to wall power. The code was written in Common Lisp and all benchmarks were run
with Steel Bank Common Lisp version 2.0.1. To reduce the time spent running benchmarks,
we scheduled multiple STNUs in parallel, with each STNU being scheduled in its own thread.

The regressions below were performed using the Python packages scipy [35] and sklearn
[36], then graphed with matplotlib [37].

The implementation of the delay scheduler from which these data were collected has a
bug that we have been unable to identify. We have only seen the bug surface with STNUs
with more than about 50 events. The bug takes effect when observing a contingent event,
𝑥𝑐, which has incoming contingent constraint [𝑙, 𝑢]. If we observe 𝑥𝑐 at some time 𝑡, where
𝑙 ≤ 𝑡 < 𝑢, the Dijkstra SSSP subroutine may unexpectedly find a negative edge and raise
an error. We have been able to replicate the problem for specific STNUs with specific
observations, and, as of the time of this writing, we are still investigating the cause. We do
not believe it meaningfully impacts the validity of the benchmarks or experiments in this
thesis.

5.3.1 Scheduling

We start with the runtime performance of schedule updates. There can be runtime variance
for each individual call to the scheduling update routine, so we focus on the total time spent
scheduling all events in the STNU. According to the FAST-EX algorithm, the total runtime
is dominated by the 𝑂(𝑁 log𝑁) runtime of Dijkstra SSSP, where 𝑁 is the total number of
events. Thus, the total runtime to schedule every event in an STNU is 𝑂(𝑁2 log𝑁) [9, p.
144]. Given the changes we made to FAST-EX are also dominated by Dijkstra SSSP, we
expect to see the same runtime performance here.

Figure 5.3 clearly shows that the total time spent scheduling STNUs with 𝑁 ≤ 300
follows 𝑂(𝑁2 log𝑁) as expected, with a coefficient of determination for the regression of
𝑅2 = 0.995.

If we expand the size of STNUs to 𝑁 ≤ 600, then we see the total runtime correspond
less closely with 𝑂(𝑁2 log𝑁), as can be seen in Figure 5.4. We believe the deviation is due
to programming language features in lisp outside of our control, such as automated memory
management.

5.3.2 Event Observations

Next, we examine the runtime characteristics of event observations. While generating VDC
STNUs, we also collected possible ranges of time to observe the confirmation event. As
scheduling progressed, we automatically triggered observations of the confirmation event at
a time randomly selected within the range given.

Contingent event observations are made much less frequently than scheduling. While we
must schedule every event in an STNU, our benchmarking procedure will only observe a
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Figure 5.3: Total runtime data for scheduling all events in VDC STNUs where 𝑁 ≤ 300.

Figure 5.4: Total runtime data for scheduling all events in VDC STNUs where 𝑁 ≤ 600.
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small fraction of the events. As a result, sample sizes are small. Given event observations
are dominated by the call to FAST-EX for a scheduling update, we expect to see runtimes on
the order of 𝑂(𝑁 log𝑁). However, the data in Figure 5.5 show significant deviation from it.
Given that the method call to observe events is a thin wrapper around a FAST-EX update,
we believe the error of this graph is due to small sample sizes.

Figure 5.5: Average runtime data for observing events in VDC STNUs. Error bars represent
standard deviation.
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Chapter 6

An Executive for Scheduling with
Observation Delay

A delay scheduler is only useful if there is a system capable of dispatching the actions
associated with RTEDs. A delay scheduler could be integrated as a subsystem for a digital
assistant, if such a digital assistant has a means for surfacing RTEDs to a user in a useful
manner. Instead, for this thesis, we choose to integrate with a high-level task and motion
planner, Kirk [38]. Kirk is a complete, end-to-end executive in that it can take human-
friendly problem specifications as input and send commands to hardware as output.

At a high-level, Kirk operates by first taking a description of the problem domain as
written by domain experts, which should include the constraints, agent dynamics, environ-
ment, and starting and goal states of the problem at hand. Kirk then generates state plans,
which consist of episodes that organize the occurrence of events as activities. State plans may
include temporal constraints and non-temporal constraints, such as classical planning precon-
ditions and effects. Kirk checks plans for consistency using an optimal satisfiability (OpSAT)
solver [39]. Next, it elaborates temporal plan networks (TPNs) [40] to sub-executives when
it encounters constraints and goals it cannot plan against directly. Finally, it dispatches
actions to hardware. For the purpose of this thesis, we focus on Kirk’s capability to dispatch
actions from state plans.

Below, we present an instantiation of Kirk, Delay Kirk, designed to dispatch actions
from state plans with uncertain observations. A delay scheduler lives at the core of Delay
Kirk, with a new component, a delay dispatcher taking responsibility for translating RTEDs
into actions in the real world. In this chapter, we start by defining a delay dispatcher,
which plays a key role in enabling delay scheduling. Next, we present a high-level overview
of Kirk’s architecture. Finally, we define necessary components of an input language, the
Reactive Model-Based Programming Language (RMPL), used to represent constraints and
action models for Delay Kirk. We present experimental results on the performance of the
delay dispatcher, however, experimentation with a full Delay Kirk executive are presented
in Section 7.3.
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6.1 Dynamic Dispatching of STNUs with Observation
Uncertainty

We assume that events in an STNU map one-to-one with actions in the real world. To
put the design of the dispatcher in context, it is worth considering what events may look
like. In the case of a robotic agent, requirement events may represent the instantaneous
timepoints when motion plans begin, while contingent events could be anything from the
completion of said motion plans to the receipt of PROCEED messages from a third party. For
a human, requirement events could be presented in a mission timeline as the start of planned
actions such as the collection of scientific samples. The end of a sampling activity would
then be an uncontrollable event. Or uncontrollable events could be the actions performed
by other agents, like say another astronaut on an EVA, with whom temporal constraints are
shared. In both the case of the robot and the human, a robust dispatcher should take into
consideration that passing a message to the agent telling it to execute a requirement event
does not cause the event to occur instantaneously. Put in other words, we are not guaranteed
that dispatching an action causes an event to be scheduled instantaneously. A robot may
require offline processing before it executes the motion plan. Or a human may need to
acknowledge that they have started the action their digital assistant has instructed them
to perform. Neither situation is a problem for our chosen formalism for temporal reasoning
so long as each requirement event is assigned at some point within their constraints in the
STNU. In our view, the dispatcher is responsible for ensuring requirement constraints are
met by both monitoring the real-world and interfacing with hardware to cause actions to be
performed.

As depicted in Figure 6.1, there are two key pathways within a delay dispatcher. First, a
delay dispatcher takes an RTED as input and causes actions to happen in the environment as
output. Second, it takes event observations as input and may cause the scheduler to record
events as output.

Additionally, we introduce a sub-component, a driver, that can interpret dispatched
events and cause some action to be performed in the environment. We separate the driver
and delay dispatcher in Figure 6.1 for completeness, however, for all intents and purposes,
the driver is a sub-component of a delay dispatcher. A driver is defined as performing the
following transformation: given some event, 𝑥, as input the driver should cause an action
to be performed. For instance, if Delay Kirk is controlling a robotic manipulator over ROS,
the driver would receive an event string as input and publish ROS messages as output.

In this Section, we contribute a set of algorithms for building the dispatcher for a robust
executive that can reason over observation delay and safely enact the actions symbolized
in requirement events in the real world. We focus on the interpretation, management, and
flow of RTEDs in Section 6.1.2. In Section 6.1.3 we describe the process of observing events.
But first, we present a novel view on RTEDs that is required for dispatching events to real
hardware in Section 6.1.1.
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Figure 6.1: A more detailed view of the delay dispatcher architecture.
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6.1.1 Guaranteeing Agents Receive Actionable Events

We take the view that events in an STNU may be interpreted as commands by the driver.
It is improper to knowingly send an invalid command. Accordingly, the driver must never
receive an event (in an RTED) that cannot be mapped to a corresponding action in its
environment. As such, it is the dispatcher’s responsibility to filter events in order to only
dispatch valid actions.

In a variable-delay STNU, there are events that are associated with actions and there are
events that are not. We call these real and no-op (“no operation”) events. Only controllable
events may be real, but both uncontrollable and controllable events may be no-op. Below, we
present our rationale for the distinction between real and no-op events, and how we modify
real-time execution decisions accordingly.

To start, imagined uncontrollable events are no-ops. They are assignments we artificially
perform with no corresponding real-world action, and solely exist to maintain the controlla-
bility of the fixed-delay dispatchable form. Imagined events should never be dispatched to a
driver.

There are requirement events that are also no-ops. Consider the process of normalization
of an STNU [31]. While building the labeled distance graph during a DC check, we rewrite
contingent links such that their lower bounds are always 0. For instance, for an uncontrollable
event 𝐶 and requirement event 𝐸, 𝐶 − 𝐸 ∈ [𝑙, 𝑢], during normalization we create a new
requirement event, 𝐶 ′, fixed at the lower bound of the contingent link, and then shift the
bounds of the contingent link to start at 0 while maintaining the original range, 𝑢− 𝑙. This
results in two constraints: 𝐸 − 𝐶 ′ ∈ [𝑙, 𝑙] and 𝐶 − 𝐶 ′ ∈ [0, 𝑢 − 𝑙]. The original contingent
link’s semantics are thus maintained.

Importantly, the requirement events representing the normalized lower bounds of uncon-
trollable events are in the dispatchable form for dynamic scheduling because we draw the
AllMax graph directly from the DC check. To a scheduler, there is no distinction between
the semantics of a real event, as modeled by a human planner writing an STNU for an agent
to execute, and 𝐶 ′, an artifact of checking controllability. Both are modeled in the AllMax
distance graph forming the basis of RTED generation. However, an agent cannot dispatch
any action to satisfy 𝐸 −𝐶 ′, rather 𝐶 ′ should simply be scheduled at the appropriate time.
Thus, we make the following addendum to the definition of RTEDs.

Definition 28. Event-No-op Pair
An Event-No-op Pair, event-noop, is a two-tuple, ⟨𝑥, noop⟩, where:

• 𝑥 is an event in 𝑋𝑒 ∪𝑋𝑐,
• noop is a boolean, where if true, the event cannot be interpreted by the driver, else the

event is a valid command.

Definition 29. RTED with Operational Distinction
A Real-Time Execution Decision with Operational Distinction is a tuple ⟨𝑡, event-noops⟩,

where:

• 𝑡 is a time with domain R,
• event-noops is a set of event-noop pairs to be executed at time 𝑡.

67



For convenience and simplicity, and given the similarities between RTED and RTED
with Operational Distinction, future references to RTEDs will always refer to RTEDs with
Operational Distinctions.

6.1.2 Dispatching Actions Dynamically

The dynamic dispatcher runs the main loop of the executive’s temporal reasoning routine. It
consists of a dispatching routine and some type of outer loop monitoring it. The interaction
between the dispatching routine and monitoring loop is limited. The algorithms are presented
below. First we provide a walkthrough of the dynamic dispatching algorithm.

We now provide a walkthrough . For simplicity’s sake, the term schedule here is shorthand
for whatever data structures the scheduler uses to generate RTEDs. Updating the schedule
refers to running the fixed-delay FAST-EX update, Algorithm 3, using the variable-delay
execution strategy from Section 5.2.

We break the dispatching routine into three distinct phases.

1. Observe events that were executed.
2. Collect events from the RTED and events that have been buffered that should be

dispatched at this time.
3. If there are events to be dispatched:

(a) send real events to the driver, and
(b) immediately assign all no-op events to the current time.

Our goal in the dispatching routine is to dispatch events to the driver only after updating
the schedule, collecting an up-to-date RTED, checking for buffered events, and confirming
we are within the time window of the actions to be dispatched. The routine will exit before
reaching the dispatch step if any conditions are not met.

For the first step, we ask the scheduler if there are any remaining executable events. If
there are none, we return false to signal the loop’s termination, otherwise we continue.

Next, we observe events associated with actions that have been dispatched by the driver.
We choose to use a FIFO queue to store messages corresponding to event observations from
the driver. The presence of a message would indicate that the driver has successfully executed
a free event. We iteratively pop messages off the queue and update the schedule with the
events and execution time contained in each message. Note that the scheduler update is a
blocking operation because we need an up-to-date schedule to guarantee future RTEDs are
consistent.

The second step begins once we have popped all messages from the driver off the queue.
We need to decide what events will be dispatched as actions next. Given the relationship
between the scheduler, routine, and driver, we do not assume that dispatched actions are ex-
ecuted instantaneously by the driver. We know that execution contends against delays such
as the computational time in simply calling a function, to network latency, to robotic hard-
ware that takes a moment to interpolate a motion plan from waypoints. In some contexts,
it may make sense to preempt execution by dispatching events some small amount of time
before the clock time reaches the RTED execution window. We call this preemption time
𝜖, where 𝜖 ∈ R≥0. If 𝜖 = 0, the dispatcher is not allowed to preemptively dispatch actions
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before the RTED time. The value of 𝜖 should be dependent on the operational domain of
the driver.

What distinguishes a delay dispatcher from a dispatcher that would work with instanta-
neous observations is a delay dispatcher’s handling of buffered events (see Lemma 11). Given
we left no facility in the delay scheduler to track events that need to be buffered, a delay
dispatcher must take responsibility for buffered events. A delay dispatcher should record
which events need to be buffered, and how long they should be buffered.

To find the event-noop pairs to dispatch, we compare a new RTED and any buffered
events to the history of actions dispatched so far. Let 𝑡 be the current time. We want to
find a set of event-noopsconsisting of:

1. any event buffered to 𝑡,
2. real events of the RTED if 𝑡RTED = 𝑡 ≤ 𝜖, and
3. no-op events of the RTED if 𝑡RTED = 𝑡.

Buffered events are always no-ops given that they are uncontrollable events observed
earlier, hence we do not need to preempt them with 𝜖. No-op events in the RTED should
not be preempted either. Only real events should be preempted.

A history of actions is necessary to avoid dispatching the same action more than once.
If the dispatcher loop is running quickly and actions are dispatched asynchronously, then
the loop may iterate one or more times between dispatching an action and observing its
associated event.

If there are no event-noop pairs, we end this iteration by returning true.
Once we reach the third stage, we are guaranteed to be able to dispatch valid actions

because (1) we have confirmed that the event-noops we have in hand have never been dis-
patched, and (2) we are in a time window that the scheduler has told us is consistent with
the STNU’s constraints. We filter the event-noop pairs into a set of no-op events and a set of
real events. In the event that an uncontrollable event and its normalized lower bound (both
no-ops) are to be scheduled at the same time, we schedule the normalized lower bound first
first. Real events are then asynchronously sent to the driver.

All event-noops that were dispatched are added to the history to prevent them from
being dispatched again. Finally, because events were dispatched, the dispatching routine
returns true.

Input:
Initialization: Hash-table buffered-events ← ∅; Set history ← ∅

Dynamic Dispatching Outer Loop:
1 all-inputs ← ⟨buffered-events, history, Scheduler,Driver,Queue,Clock, 𝜖⟩
2 while Calling inner loop with all-inputs returns true do
3 continue
4 end

Algorithm 4: The outer loop of the dynamic dispatching algorithm.

The monitoring loop, Algorithm 4 is a simple while that repeats until it receives false
from the dispatching routine, Algorithm 6. The dispatching routine returns a Boolean indi-
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Input: RTED; buffered-events; a set of dispatched event-noops history;
𝜖; 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑡𝑖𝑚𝑒t

Output: Set of event-noops
Initialization: event-noops ← ∅

Choose Event-Noops:
1 if t is a key in buffered-events then
2 event-noops ← event-noops from buffered-events[𝑡];
3 endif
4 if RTED[𝑡𝑖𝑚𝑒] = 𝑡 then
5 Add no-op RTED[event-noops] to event-noops;
6 endif
7 if 𝑡− RTED[𝑡𝑖𝑚𝑒] ≤ 𝜖 then
8 Add real RTED[event-noops] to event-noops;
9 endif

10 Remove any event-noops in event-noops that are in history;
11 return event-noops;
Algorithm 5: An algorithm for paring the events from an RTED and buffered events
into event-noops.

cating whether there are executable events remaining. Algorithm 5 implements the subrou-
tine for selecting event-noop pairs to dispatch.

We benefit greatly from using instance-based properties. The implementation of the
delay dispatcher for this thesis uses slots on a dispatcher class to manage inputs to the
dispatcher, which are then accessed by reference. All inputs to Algorithm 4 can be properties
on an instance of a delay dispatcher class.

The biggest factor for the performance of the dispatching routine, Algorithm 6, is updat-
ing the schedule. Assuming the Scheduler is the Delay Scheduler described in Section 6.1,
then performing an assignment of an event will trigger the FAST-EX update that runs in
𝑂(𝑁3) [9, p. 144] with the number of events in the STNU. In the worst case, the dispatcher
confirms that all events in the STNU have arrived at the same time, whether as messages
from the driver in the FIFO queue, or RTED noop events. Each event would trigger a
schedule update. Thus, the dynamic dispatching routine runs in 𝑂(𝑁4) in the worst case.

6.1.3 Observing Contingent Events

The dispatcher relays contingent event observations to the scheduler. In the base case,
when a contingent event is observed, the dispatcher updates the schedule with the event and
current clock time.

If the observed event is uncontrollable and arrived earlier than its lower bound, then the
dispatcher will save the event in a buffered-events hash-table with the lower bound of its
constraint as the key. By Lemma 11, the lower bound will be 𝑙+(𝑥𝑐) for some uncontrollable
event 𝑥𝑐.
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Input: Current time 𝑡, buffered-events; history; Scheduler ;Driver ;Queue;Clock ; 𝜖;
Output: Boolean whether the outer loop should continue
Initialization: real-events ← {}; noop-events ← {}; 𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑡𝑖𝑚𝑒𝑜𝑓Clock;

Dynamic Dispatching Routine:
1 if Scheduler has no more unexecuted events then
2 return false;
3 endif
4 for message in Queue do
5 Pop message;
6 for event, 𝑡execution in message do
7 Update Scheduler with observation of event at 𝑡𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛;
8 end
9 end

10 RTED ← a new RTED from Scheduler ; //Equations 5.2 and 5.4
11 event-noops

← choose-event-noops(RTED, buffered-events, history, 𝜖, t)
12 if no event-noops then
13 return true;
14 endif
15 for event-noop pair in event-noops do
16 if event-noop[noop] is true then
17 Add event-noop[event] to noop-events;
18 else
19 Add event-noop[event] to real-events;
20 endif
21 end
22 Sort noop-events such that normalized lower bounds have the lowest indices;
23 for event in noop-events do
24 Update Scheduler with observation of event at 𝑡;
25 end
26 Asynchronously send all real-events to the Driver ;
27 Add event-noops to history;
28 return true;

Algorithm 6: The dynamic dispatching routine.
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6.1.4 Experimental

Finally, we benchmark action dispatching. In our simulated environments for dispatching,
we run the dispatcher function as described in Algorithm 6 twice per simulated second.
(We run it twice in the event that scheduling an event enables us to dispatch other actions
immediately. If we ran Algorithm 6 once per second, the newly enabled events would then
be dispatched a second late.)

Given every event will be scheduled once using the FAST-EX update, FAST-EX updates
will dominate the total runtime of dispatching. As seen in Figure 6.2, the total runtime of
all calls to Algorithm 6 indeed follows 𝑂(𝑁2 log𝑁).

Figure 6.2: Average runtime data for running Algorithm 6.

6.2 Architecture

We present a view of the Delay Kirk architecture that focuses attention to its scheduling
and dispatching capabilities. Kirk takes RMPL [16] as input and produces actions as output
(from here on, “Kirk” refers to Delay Kirk because the architectural design of Delay Kirk
and other Kirks is fundamentally the same). As shown in Figure 6.3, there are three key
components of Kirk.

Figure 6.3 explicitly identifies the environment. We do so to highlight that Kirk is
designed to be able to interact with the outside world. For instance, if Kirk is running on
a robot, the environment might consist of the pose of the manipulator and any objects in
the scene. If Kirk is responsible for sending notifications to a digital assistant in a spacesuit,
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Figure 6.3: A simplified, high-level overview of the Delay Kirk task executive architecture
with respect to dispatching actions.
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then the environment might be the “as executed” version of an EVA timeline. In either
case, actions caused by Kirk will impact the environment. Likewise, Kirk learns from the
environment. Here we show event observations from the environment being sent to the
scheduler. However, when Kirk is working with sub-executives designed for specific problem
domains, e.g. risk-bounded motion planning, it may be monitoring other aspects of the
environment as well.

Every Kirk has a planning component that takes RMPL as input, generates state plans,
then checks consistency using OpSAT. OpSAT is similar to a satisfiability (SAT) solver with
the property that it produces optimal assignment to real valued variables. Any temporal
constraints in the state plan are translated to a delay STNU then checked with the variable-
delay controllability checker from Chapter 4.

If the overall state plan is satisfiable, it is then sent to the delay scheduler. Note that
earlier we have said that the delay scheduler takes a temporal network as input. However,
Figure 6.3 shows a state plan as input to the delay scheduler. Functionally, there is no
difference. There is a one-to-one relationship between state plans and delay STNUs. In
fact, as implemented for this thesis, the delay scheduler can take either a state plan or delay
STNU as input. If a state plan is received, then the first action taken is to convert the state
plan to a delay STNU.

RTEDs that the delay scheduler outputs are sent to a delay dispatcher.

6.3 RMPL

RMPL [38] is a key component of Kirk. This section steps through example RMPL control
programs to describe their features and our modeling choices. The purpose of this section is
two-fold:

1. We must describe the modeling choices of RMPL in sufficient detail to make con-
crete our approach to modeling temporal constraints in human-readble form for the
experiments in Sections 7.3.1 and 7.3.2

2. The above is used to demonstrate that modeling uncertain communication delay can
be naturally modeled in RMPL.

This section is not meant to be a complete documentation of RMPL, rather our goal is
to motivate the strength of RMPL as a modeling language for human planners describing
autonomous systems with observation uncertainty.

RMPL has undergone a number of rewrites since its inception, and is currently being
developed as a superset of the Common Lisp language using the Metaobject Protocol [41].
The goal is that a human should have a comfortable means for accurately modeling sufficient
detail about the problem domain such that an executive can perform model-based reasoning
to decide how to act.

An example of an RMPL control program for a single-agent without agent dynamics
follows in Listing 1.

Looking past the parentheses, we can see different options for defining temporal con-
straints. For example, the (duration (simple ...)) form is used to define a set-bounded
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;; NOTE: we omitted Lisp package definitions here for simplicity's sake

(define-control-program eat-breakfast ()
(declare (primitive)

(duration (simple :lower-bound 15 :upper-bound 20))))

(define-control-program bike-to-lecture ()
(declare (primitive)

(duration (simple :lower-bound 15 :upper-bound 20))))

(define-control-program main ()
(with-temporal-constraint (simple-temporal :upper-bound 40)

(sequence (:slack nil)
(eat-breakfast)
(bike-to-lecture))))

Listing 1: A sample control program composed of three constraints. eat-breakfast and
bike-to-lecture designate controllable constraints, while the main control program en-
forces that the constraints are satisfied in series.

temporal constraint between a :lower-bound and an :upper-bound. The main control pro-
gram uses a different form, (with-temporal-constraint ...) to place an :upper-bound
on the overall deadline for scheduling all events in the control program.

The example control programs in Listing 1 are defined without agents in that there is an
assumption that the Kirk instance that executes this control program must know what the
semantics of eat-breakfast and bike-to-lecture mean and how to execute them.

Each constraint is represented as an episode of a start and end event, e.g. eat-breakfast
becomes eat-breakfast:start

[15,20]−−−→ eat-breakfast:end.
It could also be the case that Kirk is simply being used to produce a schedule of events

offline that will be handed to an agent that knows how to execute them. As an example,
perhaps a student wants some help planning their morning, so they write an RMPL control
program with constraints representing everything they need to do between waking up and
going to lecture, as seen in the more complex control program in Listing 2. The student
could ask Kirk to produce a schedule of events that satisfies all the temporal constraints in
this RMPL control program, which they would then use to plan their morning routine. See
the resulting schedule produced by Kirk in Table 6.1. (Note that while normally times in
RMPL are represented in seconds, we use minutes in Listing 2 and Table 6.1 for simplicity’s
sake.)

Listing 2 introduces the notion of control programs that are allowed to be executed simul-
taneously, as modeled with the (parallel ...) form found in the main control program
on line 48.

Kirk is able to simulate the RMPL script in Listing 2 and produce a schedule because there
were no uncontrollable constraints, that is, all control programs are under the agent’s con-
trol. Say we replaced bike-to-lecture with drive-to-lecture. Due to traffic conditions,
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1 ;; This file lives in the thesis code repo at:
2 ;; kirk-v2/examples/morning-lecture/script.rmpl
3 ;;
4 ;; To execute this RMPL control program as-is and generate a schedule, go to the root
5 ;; of the thesis code repo and run the following command:
6 ;;
7 ;; kirk run kirk-v2/examples/morning-lecture/script.rmpl \
8 ;; -P morning-lecture \
9 ;; --simulate

10

11 (rmpl/lang:defpackage #:morning-lecture)
12

13 (in-package #:morning-lecture)
14

15 (define-control-program shower ()
16 (declare (primitive)
17 (duration (simple :lower-bound 5 :upper-bound 10))))
18

19 (define-control-program eat-breakfast ()
20 (declare (primitive)
21 (duration (simple :lower-bound 15 :upper-bound 20))))
22

23 (define-control-program review-scheduling-notes ()
24 (declare (primitive)
25 (duration (simple :lower-bound 10 :upper-bound 15))))
26

27 (define-control-program review-planning-notes ()
28 (declare (primitive)
29 (duration (simple :lower-bound 10 :upper-bound 15))))
30

31 (define-control-program pack-bag ()
32 (declare (primitive)
33 (duration (simple :lower-bound 5 :upper-bound 6))))
34

35 (define-control-program bike-to-lecture ()
36 (declare (primitive)
37 (duration (simple :lower-bound 15 :upper-bound 20))))
38

39 (define-control-program review-notes ()
40 (sequence (:slack t)
41 (review-scheduling-notes)
42 (review-planning-notes)))
43

44 (define-control-program main ()
45 (with-temporal-constraint (simple-temporal :upper-bound 60)
46 (sequence (:slack t)
47 (shower)
48 (parallel (:slack t)
49 (eat-breakfast)
50 (review-notes))
51 (pack-bag)
52 (bike-to-lecture))))

Listing 2: A student’s morning routine preparing for lecture as modeled in RMPL. This is a
complete RMPL program that includes the required Lisp package definitions to run in Kirk.
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Table 6.1: The schedule produced by Kirk’s scheduler for the student’s routine before lecture
as modeled in Listing 2. Note: Kirk’s output has been cleaned for readability purposes.

Event Time (min)
START 0
Start shower 1
End shower 6
Start review-scheduling-notes 6
Start eat-breakfast 6
End review-scheduling-notes 16
Start review-planning-notes 16
End eat-breakfast 21
End review-planning-notes 26
Start pack-bag 26
End pack-bag 31
Start bike-to-lecture 32
End bike-to-lecture 46
END 46

driving presents in an uncontrollable constraint. RMPL allows us to model uncontrollable
constraints as in Listing 3.

(define-control-program drive-to-lecture ()
(declare (primitive)

(duration (simple :lower-bound 15 :upper-bound 20)
:contingent t)))

Listing 3: An uncontrollable, or contingent, temporal constraint in a control program.

The addition of :contingent t to the (duration ...) form tells Kirk that drive-to-lecture:end
is an uncontrollable event. With the instantiation of Kirk used for this thesis, observations of
drive-to-lecture:end could come in the form of user interactions, HTTP POST requests,
or a pre-determined list of event observations given to Kirk.

As a contribution of this thesis, our existing approach to specifying durations in RMPL
was expanded to model observation delay. An example follows in Listing 4 modeling a sample
collection control program with observation delay.

We can see in Listing 4 that representing set-bounded observation delay is a simple as
adding :min- and :max-observation-delay to the (duration (simple ...) :contingent
t) form.

See Appendix B for further discussion of RMPL.
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(define-control-program collect-science-sample ()
(declare (primitive)

(duration (simple :lower-bound 15 :upper-bound 30
:min-observation-delay 5
:max-observation-delay 15)

:contingent t)))

Listing 4: An RMPL control program describing a science data collection task with obser-
vation delay.
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Chapter 7

Coordinating Multiple Agents under
Uncertain Communication

In this chapter, we present a novel MA framework for dynamic event scheduling with inter-
agent temporal constraints. Our framework adheres to the variable observation delay mod-
eling framework presented in Chapter 4, making it robust to uncertain communication.

Online MA coordination of event dispatching allows executives to dynamically decide
when to act given the resolution of inter- and intra-agent temporal constraints. In our
formulation, each executive has its own STNU with contingent events it expects to observe
and free events it is responsible for monitoring. We do not distinguish between contingent
events that are the free events scheduled by peer agents and contingent events from any
other source in Nature. There are no restrictions on inter-agent constraints, though they
must avoid chained contingencies the same way that vanilla, single-agent STNUs do [27].

Executives are not required to have perfect knowledge of the complete state of the world
with respect to event assignments, nor are they required to even agree on the state of the
world. Rather, their knowledge should be consistent with the temporal constraints and
observation delay modeled in their individual delay STNUs. This requirement stands in
opposition to the communication challenge that is commonly addressed in problems involving
distributed agents, e.g. distributed consensus approaches [42], [43], where it is crucial that all
agents agree on the state of the world. In our framework, each agent acts according to their
given constraints. Due to scheduling uncertainty from observation delay, it is impossible to
expect agents to agree on partial histories, nor is it necessary because each agent is capable
of scheduling events with observation uncertainty.

To our knowledge, no such online scheduler for MA coordination with this requirement
has been proposed. In this chapter, we first present a grounded Artemis-like scenario to
motivate coordination. Next, we describe a modeling framework for MA control programs
that is necessary for establishing coordination between agents. Then we define an event
propagation algorithm used to guarantee that event observations match individual agent
STNUs. We finish by presenting experimental analysis of our event propagation algorithms,
and the results of hardware demonstrations of Delay Kirk using a robotic arm and a simulated
astronaut.
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7.1 Event Propagation

At a high level, scheduled events propagate through a simple directed graph of connected
executives. We put checks in place to ensure that cycles do not cause infinitely recursed
event observations.

Definition 30. Communication Graph
A communication graph 𝐶 is a tuple ⟨𝑉,𝐸⟩, where:

• 𝑉 is a set of vertices representing peer executives,
• 𝐸 is a set of directed edges between 𝑣 ∈ 𝑉 representing the path of event observation

propagation,
• Each edge 𝑒𝑖 ∈ 𝐸 is a pair (𝑜, 𝑡), where 𝑜, 𝑡 ∈ 𝑉 represent the origin and termination

of the edge respectively.

Self-loops, or self-edges, are not allowed, i.e. for any vertex 𝑣𝑖 ∈ 𝑉 , no single edge 𝑒𝑖 ∈ 𝐸
may both originate and terminate at 𝑣𝑖.

For some executive 𝑣𝑖 ∈ 𝑉 with outgoing edges in 𝐸, (𝑣𝑖, 𝑣𝑗), · · ·, (𝑣𝑖, 𝑣𝑘), any scheduled
events that 𝑣𝑖 assigns, whether free or contingent, are propagated to all peer executives 𝑣𝑗,
· · ·, 𝑣𝑘. Likewise, all contingent events received from Nature are propagated to peers. Finally,
any events 𝑣𝑖 receives from other agents are also relayed to peers.

Definition 31. Event Propagation Messages
An event propagation message 𝑚 is a tuple ⟨𝑥, 𝑃 ⟩, where:

• 𝑥 is a set of one or more events scheduled simultaneously,
• 𝑃 ⊆ 𝑉 is a set of executives who have already received the message.

Recognize that Definition 31 is vague in defining 𝑥. Event propagation messages are
passed between agents, and each agent has its own STNU. In some cases, 𝑥 will be free
events, in others 𝑥 will be contingent events. The type of event makes no difference to the
algorithm so we do not distinguish between them here.

Events that are received in 𝑚, 𝑚[𝑥], are handled the same as observations of contingent
events during scheduling. Lemmas 14, 17, and 16 are applied as appropriate when the
observation of 𝑚[𝑥] arrives.

For an edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, it is possible that 𝑣𝑗 receives events that are not present in its
STNU.

Because we have not defined a temporal decoupling-like algorithm wherein an STNU for
multiple-agents is programmatically separated into individual STNUs (see the discussion of
multi-agent STNUs [12] in Section 8.2), we are reliant on human planners to write STNUs
for each agent by hand. As a result, there is no guarantee that 𝑥 is meaningful to a given
agent.

To be more specific, there is no guarantee that any event 𝑥𝑖 ∈ 𝑥 in the event propagation
message has an equivalent event in 𝑋𝑐 of the STNU being executed by any receiving agent
𝑣𝑗 ∈ 𝑉 . If agent 𝑣𝑗 cannot find 𝑥𝑖 in their 𝑋𝑐, then 𝑥𝑖 can be ignored. As will be discussed
in Algorithm 7, we represent 𝑥 using a type that can be compared for equivalence with the
events in an agent’s STNUs, e.g. a list of strings.
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We use 𝑃 to avoid cycles in event propagation. As will be shown in Algorithm 7, agent
𝑣𝑖 will avoid propagating 𝑥 to any agents in 𝑃 . Agent 𝑣𝑖 will also grow 𝑃 when it relays 𝑚
to other agents by appending to 𝑃 itself and all outgoing agents 𝑣𝑗, · · · , 𝑣𝑘.

Timing information, e.g. timestamps, is explicitly excluded from 𝑚. Dynamic schedul-
ing and the variable-delay STNU and event observation, obs, formalisms do not account
for timestamps. Instead, we expect that passing messages for event propagation between
executives takes an amount of time in the domain R+. Thus, when 𝑣𝑗 expects to receives
an event, 𝑥𝑖 ∈ 𝑥, from 𝑣𝑖, the time delay can be naturally modeled in the variable-delay
function, 𝛾(𝑥𝑖), in the STNU that 𝑣𝑗 will execute.

If event propagation messages were to include accurate timestamps, we would need to
modify the way events are recorded during scheduling, impacting scheduling Lemmas 14, 17,
and 16. Scheduling events in the past could also impact controllability. For these reasons,
we avoid the inclusion of timestamps in event propagation messages.

By Definition 31, events received from other agents are no different than events received
from Nature, and no special considerations are required for scheduling.

We now walk through the process of passing messages between agents as shown in Algo-
rithm 7. We use the same Event Propagation algorithm in three cases:

1. When an agent 𝑣𝑖 schedules free events 𝑥,
2. When 𝑣𝑖 receives an observation from Nature of contingent events 𝑥,
3. When 𝑣𝑖 receives an incoming message 𝑚𝑖 with contingent events 𝑚𝑖[𝑥] from another

agent in 𝑉 .

Let peers be a mutable set initialized to the terminal vertices for all 𝑒 ∈ 𝐸 originating
at 𝑣𝑖.

In the first case, agent 𝑣𝑖 fulfills its responsibilities as defined in 𝐶 by broadcasting 𝑥 to
its peers, who will receive 𝑥 as exogenous contingent events. The outgoing message 𝑚𝑜 that
will be passed to peers will include enough information such that no agent should receive a
given 𝑥 more than once. To do so, we let 𝑃 be a set of all agents that will have observed 𝑥
when 𝑚𝑜 is received by peers, 𝑃 = {𝑣𝑖, 𝑝 ∀ 𝑝 ∈ peers}. We finalize 𝑚𝑜 = ⟨𝑥, 𝑃 ⟩, which we
simultaneously transmit to each 𝑝 in peers. Transmission is a “fire and forget” operation,
where 𝑣𝑖 does not wait for acknowledgment from any 𝑝 that 𝑚𝑜 was received.

The second case plays out the same as the first, the only difference being that 𝑥 is itself
observed from Nature. Once again, we let 𝑃 be a list of 𝑣𝑖 and all peers, and then transmit
𝑚𝑜 simultaneously to all peers.

The third case is a relay operation. Agent 𝑣𝑖 is responsible for propagating events 𝑚𝑖[𝑥]
that it has just observed, but we want to avoid sending the events to peers who have
already observed them. We remove those agents from peers accordingly with a set difference
operation: peers = peers−𝑚𝑖[𝑃 ]. Likewise, we grow the list of agents who have received
𝑥, which is now 𝑃 = 𝑃 ∪ peers. Agent 𝑣𝑖 composes a new 𝑚𝑜 = ⟨𝑚𝑖[𝑥], 𝑃 ⟩ and transmits it
to peers.

Ideally, the Event Propagation algorithm should run on a separate thread from the main
scheduling loop, else we run the risk of incurring unnecessary delays in observing and dis-
patching events.

The complexity of Algorithm 7 is trivially 𝑂(𝑁), where 𝑁 is the number of executives
in 𝑉 − 1. The limiting factor to the performance of Event Propagation will be the time it
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Input: Incoming message 𝑚𝑖; Scheduled events 𝑥; Self 𝑣𝑖 ∈ 𝑉 ; Set of outgoing
peers ⊂ 𝑉

Event Propagation:
1 peers← peers−𝑚𝑖[𝑃 ];
2 𝑃 ← 𝑚𝑖[𝑃 ] ∪ {𝑣𝑖} ∪ peers;
3 𝑥← 𝑥 or 𝑚𝑖[𝑥];
4 𝑚𝑜 ← ⟨𝑥, 𝑃 ⟩;
5 for each 𝑝 in peers do
6 Perform a non-blocking transmission of 𝑚𝑜 to 𝑝;
7 end
Algorithm 7: An event propagation algorithm that avoids recursive message passing.

takes to transmit messages between agents, which, to reiterate, should be modeled in the
delay functions for any inter-agent temporal constraints.

7.2 Modeling Inter-Agent Constraints

We have assumed that for multi-agent collaboration, all instances of Kirk have their own
constraint programs. The instances of Kirk used to evaluate multi-agent delay scheduling
(Sections 7.3.1 and 7.3.2) both rely on the existence of constraint programs in RMPL that
accurately reflect the uncertainty in their respective environments. The design of said con-
straint programs for multiple agents is not obvious when there is observation uncertainty
and inter-agent constraints. Communication delays naturally cause agents to disagree as to
the exact timing of events. Below, we introduce a strategy for synchronizing multiple agents
with observation uncertainty.

Consider two agents, agent1 and agent2, that are scheduling STNUs 𝑆1 and 𝑆2 respec-
tively. 𝑆1 and 𝑆2 share a subset of semantically similar episodes, 𝑒1 and 𝑒2. agent1 “owns” 𝑒1,
meaning it is responsible for scheduling the free event 𝑒1-start and observing the contingent
event 𝑒1-end, while agent2 owns 𝑒2. It is the case that 𝑒1 must precede 𝑒2 in 𝑆1 and 𝑆2. A
simplified MA view of the constraints is as follows.

𝑒1-start
[15,30]
====⇒ 𝑒1-end

[0,∞]−−−→ 𝑒2-start
[22,26]
====⇒ 𝑒2-end

From agent1’s perspective, 𝑆1 models the following constraints. We add a noop start
event, 𝑍, to simplify coordination. For now, we allow chained contingencies, though in a
moment they will need to be addressed.

𝑍
[0,0]−−→ 𝑒1-start

[15,30]
====⇒ 𝑒1-end

[0,∞]
===⇒ 𝑒2-start

[22,26]
====⇒ 𝑒2-end

We assume that agent1 models 𝑒2 in 𝑆1 because other events under their control depend
on 𝑒2. 𝑆2 is then modeled as follows. Note the change to the controllability of 𝑍

[0,0]
==⇒ 𝑒1-start.

𝑍
[0,0]
==⇒ 𝑒1-start

[15,30]
====⇒ 𝑒1-end

[0,∞]−−−→ 𝑒2-start
[22,26]
====⇒ 𝑒2-end
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For the sake of controllability of 𝑆1 and 𝑆2, we would simply add [0, 0] free constraints
between consecutive contingent constraints. Also note that from a scheduling standpoint,
there is no difference between 𝑎

[0,0]−−→ 𝑏 and 𝑎
[0,0]
==⇒ 𝑏 - both indicate 𝑎 and 𝑏 should be

scheduled simultaneously.
We will walk through scheduling this scenario from the perspective of both agents. First,

we describe their actions in the case that there is no communication delay, then we introduce
communication, and finally we add delay to communications. This scenario will motivate
our analysis of the challenges that arise in MA control programs.

If both agents have perfect knowledge of the world (instantaneous knowledge of events),
scheduling is trivial. agent1 and agent2 execute 𝑍 simultaneously. agent1 schedules 𝑒1-start
and agent2 instantaneously receives an observation of 𝑒1-start. 𝑒1-end arrives in [15, 30] later,
which again, both agents observe simultaneously. Now agent2 is free to act. It schedules
𝑒2-start, which agent1 observes instantaneously. 𝑒2-end arrives [22, 26] later and is observed
simultaneously by both agents.

Now, we enforce that agent1 “owns” 𝑒1 and is the only agent that can observe it directly.
Likewise, agent2 owns 𝑒2. In order for an agent to learn about an episode they do not
own, they must receive a communication from the agent who does. After agent1 schedules
𝑒1-start, it must send a message to agent2. agent2 receives said message, which it interprets
as an observation of 𝑒1-start. If communications are instantaneous, the partial histories of
both agents agree on the assignment of 𝑒1-start. Later 𝑒1-end is observed by agent1, who is
then responsible for relaying a communication to agent2 indicating that it is safe to assign
𝑒1-end. agent2 is now free to schedule 𝑒2-start, which it does instantaneously. The same
pattern of sending messages that events have been scheduled repeats and agent1 learns that
𝑒2-start was schedule simultaneously with 𝑒1-end. After all events have been scheduled, the
histories of agent1 and agent2 still agree on the times assigned to each event.

We now show that adding delay to the communications between agents forces us to add
synchronization episodes to 𝑆1 and 𝑆2 to maintain event ownership. First, we must address
the chained contingencies. Note that we have freedom in how we model the constraints of
this scenario. The following example will motivate the need for a synchronization episode
while remaining as close to the semantics of the original STNU as possible.

From the perspective of agent1, 𝑆1, we cannot escape the fact that there are two un-
controllable events in sequence - the end of 𝑒1 and the start of 𝑒2, if we try to separate the
events with a synthetic requirement episode, 𝜎, with a [0,∞] constraint, the semantics no
longer respect the original scenario.

𝑍
[0,0]−−→ 𝑒1-start

[15,30]
====⇒ 𝑒1-end

[0,0]−−→ 𝜎-start
[0,∞]−−−→ 𝜎-end

[0,0]
==⇒ 𝑒2-start

[22,26]
====⇒ 𝑒2-end

The delay scheduler will choose to schedule 𝜎-end simultaneously with 𝜎-start, also lead-
ing to 𝑒2-start being immediately scheduled. However, 𝑒2 is not under agent1’s control, and
thus it has no authority to schedule 𝑒2-start. Instead, our synthetic constraint also needs to
be contingent.

𝑍
[0,0]−−→ 𝑒1-start

[15,30]
====⇒ 𝑒1-end

[0,0]−−→ 𝜎-start
[0,∞]
===⇒ 𝜎-end

[0,0]−−→ 𝑒2-start
[22,26]
====⇒ 𝑒2-end
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Now, the issue is that 𝑆1 is uncontrollable due to 𝜎-start
[0,∞]
===⇒ 𝜎-end. We know

the agent2 will receive 𝑒1-end somewhere in 𝛾′(𝑒1-end), where the 𝛾′ function represents
observation delay in 𝑆2. agent2 will then immediately schedule 𝑒2-start. Finally, 𝑆1 becomes

𝑍
[0,0]−−→ 𝑒1-start

[15,30]
====⇒ 𝑒1-end

[0,0]−−→ 𝜎-start
[𝛾′−(𝑒1-start),𝛾′−(𝑒1-end)]
================⇒ 𝜎-end

[0,0]−−→ 𝑒2-start
[22,26]
====⇒ 𝑒2-end

In practice, an agent may choose to schedule other events while waiting for 𝜎-end to
arrive.

In 𝑆2, we may choose to give agent2 the same synchronization episode without changing
the execution semantics. We know that 𝑒1-end will be observed somewhere in 𝛾′(𝑒1-end).
When 𝑒1-end arrives, we are guaranteed to have waited somewhere in the lower and upper
bounds 𝜎. Assuming agent2 knows that 𝑒1-end and 𝜎-end semantically represent the same
point in time, 𝜎-end can be safely scheduled as soon as 𝑒1-end arrives.

Synchronization episodes allow inter-agent constraints with observation delay to be mod-
eled without impacting the ordering of events. They are used to separate control programs
in the hardware demonstration in Section 7.3.2.

7.3 Experimental Analysis

We performed two demonstrations of the Event Propagation algorithm. The first was a
hardware demonstration performed on a Barrett WAM manipulator in the MERS lab. The
second is a multi-agent simulation showcasing the ability for multiple Kirks to share events
and respect inter-agent constraints. Both will be described below.

7.3.1 Distributed Kirk Simulation

To demonstrate multi-agent communication, we built a simulation of an end-to-end mission
with three independent Kirks, agent0, agent1, and agent2. We will show that distributed
Kirks can successfully dispatch events within temporal bounds in the face of multiple sources
of communication uncertainty. The Kirks are responsible for executing an installation pro-
cedure with the same randomly generated constraints as used in the validation of the delay
scheduler in Section 5.3. In this scenario, each agent is responsible for installing two satellite
dishes with staggered confirmations so as to limit uplink bandwidth usage. As Kirks receive
confirmation that installation has been completed, they then share the confirmations with
their peers.

To simplify comparing schedules, we used a standardized format for event names. Re-
peated event names are given as Event:[agent]:[iteration], where [agent] and [iteration]
are zero-indexed. For instance, Install:4:3 would be the start of an installation episode
for a hypothetical agent4 (of at least five agents) in its fourth iteration.

There is one modification from the original constraints from Section 5.3 in that we sepa-
rate the communication delay inherent to the confirmation task with the observation delay
inherent to sharing observations with peers. There may be a delay waiting for confirma-
tion from ground, and the in situ communication infrastructure may add an additional
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delay to communications between agents. We assume the sources of delay compound.
For instance, agent1 will need to know when agent0 has confirmed its installation task,
Confirm:0:0 before beginning their own installation, Install:1:0. if agent0 expects to
receive Confirm:0:0 with an observation delay of 𝛾(Confirm:0:0) = [0, 10], we increase
𝛾+(Confirm:0:0) by one for any peers that receive the observation broadcasted from agent0.
In other words, from the perspective of agent1 or agent2, 𝛾(Confirm:0:0) = [0, 11] instead.

Figure 7.1: The Kirk architecture used to generate event assignments for the centralized
delay STNU. A single Kirk receives the VDC STNU that includes constraints for all agents,
as well as contingent event observations. Kirk then performs delay scheduling, resulting in
an assignment to all events.

At a high-level, our procedure for creating this demonstration is as follows. We randomly
generated a variable-delay STNU for three agents and two installation procedures (using the
same generator code that was used in Section 5.3) and confirmed it to be VDC. We call this
STNU the centralized delay STNU in that it includes all constraints for all three agents in
a multi-agent mission with observation delay. We then acted like a mission planner in that
we manually decoupled the centralized delay STNU into three single-agent RMPL control
programs. Each control program contained the subset of the constraints from the centralized
delay STNU required for a single agent to maintain the semantics of the original constraints.
We call the variable-delay STNUs represented by the collection of the three RMPL control
programs the distributed variable-delay STNUs. We finally pre-determined when observations
would arrive for each agent to simplify running the demonstration. Both the centralized and
distributed scenarios received observations of the same events at the same times.

The architecture for the centralized scenario is shown in Figure 7.1, while the distributed
scenario is represented in Figure 7.2. Figure 7.2 presents a simplified view in order to keep
the diagram readable. In reality, each Kirk broadcasts all events to all peers.

Event observations were arranged as follows. In the centralized case, the single Kirk
received all contingent event observations. Any observations that were not explicitly provided
as an observation was assumed to be assigned at its upper bound. In the distributed case,
Kirks were only given event observations for events that belong to them. For instance,
only agent0 received an observation of Confirm:0:0, the event signifying that they have
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Figure 7.2: The distributed architecture for the demonstration. The original centralized
delay STNU is manually decoupled to three separate RMPL control programs, which are
then used to initialize three Kirks. The Kirks receive appropriate event observations, which
they then share to their peers. After delay scheduling, each Kirk produces an assignment to
events that were under their control.
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completed installation of the first satellite. It was then the responsibility of agent0 to
broadcast the event observation to its peers.

To evaluate the ability of a distributed Kirk architecture to perform scheduling with
communication uncertainty, we focus on the schedules produced. To do so, we compare the
schedule created by a Kirk running against centralized delay STNU (Table 7.1) against the
combined schedules of the three single agents (Tables 7.2-7.4). If observations arrive at the
same time, both scenarios should yield the same schedules. Importantly, the inter-agent
constraint between overlapping installation tasks should hold in the distributed scenario.
The confirmation events are highlighted in gray in each table for ease of identification.

Running the demonstration was then a matter of running three networked instances of
Kirk simultaneously against three different control programs. We did so using a Makefile
with three targets, running make with the -j3 flag, and setting up communications to take
place over HTTP.

From the root of the thesis repository, execute make kirk && make -j3 demo to run
the demonstration. The resulting schedules will be written to agent{0,1,2}.txt. Note
that the STNU was generated directly for the centralized delay STNU, but the STNUs were
compiled from RMPL control programs for the distributed delay STNUs. There are naming
differences between the events of the different schedules due to way control programs receive
names in RMPL and the way RMPL control programs are compiled to STNUs. The event
names in schedules in Tables 7.1-7.4 have been manually altered such that they match here.
See Appendix B for a description of the resulting STNUs from RMPL control programs.

Here, we show Confirm:0:1 as the last event, but In the RMPL control program, we
used a close-out episode with bounds [0,∞] to end the mission. Given that it follows a
Confirm episode, It is semantically the same as the confirmation (again, see Appendix B for
an explanation of how control programs translate to STNUs).

We can see in Tables 7.1-7.4 that the three Kirks are able to avoid overlapping installation
tasks using a communication architecture that assume uncertain communication.

7.3.2 Hardware Demonstration

We envision a scenario with an astronaut and a robot coordinating on the lunar surface. The
astronaut is performing scientific exploration while the robot performs remote construction
tasks. The concept of operations allows for the astronaut to use a rover to traverse away
from the robot in search of promising scientific samples. Due to the position of surface relays
and general uncertainty in lunar topology, there is an uncertain time delay between agents.

Bandwidth between Mission Control on Earth and the Moon is limited. There are low
and high bandwidth communications available to both agents. Low bandwidth is responsible
for transmitting critical data (e.g. suit telemetry), while high bandwidth communications are
reserved for purposes such as video calls and large dumps of scientific data. It is not possible
for both the astronaut and the robot to use high bandwidth communications simultaneously.
Thus, there is a need for the agents to coordinate such that they make effective use of high
bandwidth communications without stepping on each others toes, so to speak.

We hone in on a point in an EVA where there is substantial time delay between the
astronaut and robot. The astronaut has set out far from the robot in search of scientifically
interesting rock samples. Meanwhile, the robot is preparing to perform a drilling operation.
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Table 7.1: The schedule produced by a single Kirk against against the “multi-agent” variable-
delay STNU.

Event Time (s)
ALL:START 0
Start:0:0 0
Start:1:0 0
Normalized Lower for Traverse:0:0 1
Normalized Lower for Traverse:1:0 1
Traverse:0:0 10
Install:0:0 11
Normalized Lower for Confirm:0:0 15
Traverse:1:0 15
lightgray Confirm:0:0 17
Install:1:0 17
Start:2:0 17
Normalized Lower for Traverse:2:0 18
Start:0:1 19
Normalized Lower for Traverse:0:1 20
Normalized Lower for Confirm:1:0 22
lightgray Confirm:1:0 30
Start:1:1 31
Normalized Lower for Traverse:1:1 32
Traverse:2:0 32
Install:2:0 33
Traverse:0:1 38
Install:0:1 39
Normalized Lower for Confirm:2:0 40
lightgray Confirm:2:0 41
Normalized Lower for Confirm:0:1 42
Start:2:1 43
Normalized Lower for Traverse:2:1 44
Traverse:1:1 44
Install:1:1 45
lightgray Confirm:0:1 48
Normalized Lower for Confirm:1:1 52
lightgray Confirm:1:1 55
Traverse:2:1 60
Install:2:1 61
Normalized Lower for Confirm:2:1 62
lightgray Confirm:2:1 63
ALL:END 63
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Table 7.2: The single agent schedule produced by agent0 in the demonstration.

Event Time (s)
Start:0:0 0
Normalized Lower for Traverse:0:0 1
Traverse:0:0 10
Install:0:0 11
Normalized Lower for Confirm:0:0 15
lightgray Confirm:0:0 17
Start:0:1 19
Normalized Lower for Traverse:0:1 20
Traverse:0:1 38
Install:0:1 39
Normalized Lower for Confirm:0:1 42
lightgray Confirm:0:1 48

Table 7.3: The single agent schedule produced by agent1 in the d emonstration.

Event *Time (s)
Start:1:0 0
Start:0:0 0
Normalized Lower for Confirm:0:0 6
lightgray Confirm:0:0 17
Traverse:1:0 17
Install:1:0 18
Normalized Lower for Confirm:1:0 23
lightgray Confirm:1:0 30
Start:1:1 31
Normalized Lower for Traverse:1:1 32
Traverse:1:1 44
Install:1:1 45
Normalized Lower for Confirm:1:1 52
lightgray Confirm:1:1 55
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Table 7.4: The single agent schedule produced by agent0 in the demonstration. We added
a CLOSE-OUT episode to end with a requirement event.

Event Time (s)
Start:2:0 17
Normalized Lower for Confirm:1:1 22
lightgray Confirm:1:1 30
Traverse:2:0 32
Install:2:0 33
Normalized Lower for Confirm:2:1 40
lightgray Confirm:2:1 41
Start:2:1 43
Normalized Lower for Traverse:2:1 44
Traverse:2:1 60
Install:2:1 61
Normalized Lower for Confirm:2:1 62
lightgray Confirm:2:1 63

The astronaut’s sample collection work involves spectroscopy and video imagery, which is
being sent to Mission Control using the high bandwidth connection. It will take between 15
and 30 minutes to downlink all the data. As soon as sample collection is over, the robot can
use the high bandwidth connection to stream video back to scientists and engineers on earth
while performing a drilling operation.

We say that the astronaut “owns,” or is responsible for sharing observations of, the start
and end of the experiment, while the robot similarly owns the drilling operation.

We built a physical demonstration of this scenario of this thesis in our laboratory using
a Barrett WAM manipulator and a simulated astronaut. In this scenario, the astronaut and
robot are collaborating on the lunar surface with uncertain communication delay between
them. Throughout this mission, agents must coordinate with respect to their usage of uplink
bandwidth. We choose to focus on a moment in time where the robot is waiting for the
human to finish their use of the uplink before beginning a bandwidth-heavy task of their
own. We assume the agents are moving on the lunar surface during execution, and as such
the observation delay between them changes as well. See Figure 7.3 for the laboratory setup.

The architecture of the hardware demonstration is as shown in Figure 7.4. We ran two
Kirks on the same network. One Kirk was responsible for driving the Barrett WAM, while
the other acted as the decision making logic behind an interface on the astronaut’s person
(say a tablet, heads-up-display, or portable computer of some kind).

The laptop ran the Kirk that controls the WAM. It did so by dispatching requirement
events to a separate driver that could translate event names to pre-built trajectories for the
WAM. The trajectories were then published to the WAM’s controller as ROS messages. As
trajectories were completed, ROS messages were received by the ROS driver layer, which
then sent contingent event observations back to Kirk.

The Valve Steam Deck (SD), a handheld PC, ran the astronaut’s Kirk. The Kirk com-
mand line tool allows users to press a number to trigger the observation of a contingent
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Figure 7.3: The two Kirks and two agents of the hardware demonstration. The Kirk executive
running on the laptop is controlling the Barrett WAM arm in the background. Cameron
Pittman is the second agent (acting as the astronaut) and interacting with a Kirk executive
running on the Steam Deck handheld PC. This image was taken in the MERS lab on 20
May 2023.

Figure 7.4: The information flow between the two agents and two Kirks in the hardware
demonstration. “SD” is short for Steam Deck.
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Figure 7.5: The laptop screen at the end of the second hardware demo scenario. On the left
is Kirk’s output, on the right is the ROS translation layer. Kirk is showing the schedule that
it executed, while we can see logs from messages sent between Kirk and the ROS layer on
the right.
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event. We modified the output of the video game controller buttons of the Steam Deck
such that they would automatically input the number corresponding to the observation of a
contingent event. As the astronaut, Cameron only needed to press one button (mapped to
left on the d-pad) during the run to trigger the observation.

Figure 7.6: The Steam Deck screen at the end of the second hardware demo scenario. On the
left is Kirk’s output, on the right is the ROS translation layer. Kirk is showing the schedule
that it executed, while we can see logs from messages sent between Kirk and the ROS layer
on the right.

The laptop and the Steam Deck were on the same local network. Note the cable dangling
from the Steam Deck in Figure 7.3, which is a USB-C to Ethernet adapter. The Steam Deck
was hardwired to the network for demonstration purposes. Communications occurred over
HTTP. To simulate uncertain communication, a sleep call with a time in the range of 𝛾(𝑥𝑐)
was injected into Kirk’s function responsible for broadcasting event observations to peers,
where 𝛾(𝑥𝑐) was drawn from any contingent event 𝑥𝑐 ∈ 𝑋𝑐 of the receiving agent.

To start a run of the demonstration, we would start both Kirks simultaneously. Each
Kirk had their own RMPL control program, which we include in Listings 5 and 6. Note
that the control programs are nearly identical. The control programs related to the high
bandwidth handoff, human-downlink-science, sync, and robot-drilling, differ only in
observation delay and whether the sync event is controllable. Adding observation delay
reflects uncertain communication between the agents.

The sync control programs were included as synchronization episodes between human-downlink-science
and robot-drilling. Note that the robot also has a sync episode, which ensures that both
agents agree on the naming of events.

We can see the modeling power of variable observation delay in Listings 5 and 6. It

93



(defpackage #:scenario1)

(in-package #:scenario1)

(define-control-program human-downlink-science ()
(declare (primitive)

(duration (simple :lower-bound 15 :upper-bound 30)
:contingent t)))

(define-control-program sync ()
(declare (primitive)

(duration (simple :lower-bound 5 :upper-bound 15
:min-observation-delay 0
:max-observation-delay 1)

:contingent t)))

(define-control-program robot-drilling ()
(declare (primitive)

(duration (simple :lower-bound 22 :upper-bound 26
:min-observation-delay 0
:max-observation-delay 2)

:contingent t)))

(define-control-program human-closeout ()
(declare (primitive)

(duration (simple :lower-bound 10 :upper-bound 30))))

(define-control-program main ()
(with-temporal-constraint (simple-temporal :upper-bound 480)

(sequence (:slack nil)
(human-downlink-science)
(sync)
(robot-drilling)
(human-closeout))))

Listing 5: The control program the astronaut uses while collecting and downlinking scientific
data.
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(defpackage #:scenario1)

(in-package #:scenario1)

(define-control-program human-downlink-science ()
(declare (primitive)

(duration (simple :lower-bound 15 :upper-bound 30
:min-observation-delay 5
:max-observation-delay 15)

:contingent t)))

(define-control-program sync ()
(declare (primitive)

(duration (simple :lower-bound 5 :upper-bound 15))))

(define-control-program robot-drilling ()
(declare (primitive)

(duration (simple :lower-bound 22 :upper-bound 26
:min-observation-delay 0
:max-observation-delay 1)

:contingent t)))

(define-control-program robot-poweroff ()
(declare (primitive)

(duration (simple :lower-bound 10 :upper-bound 30))))

(define-control-program main ()
(with-temporal-constraint (simple-temporal :upper-bound 480)

(sequence (:slack nil)
(human-downlink-science)
(sync)
(robot-drilling)
(robot-poweroff))))

Listing 6: The control program the robot uses to decide when to act with respect to learning
the astronaut has finished collecting scientific data.
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is natural that the observation delay between agents may change due to the evolution of
resources during a mission. The variable-delay modeling framework allows us to model
uncertain delay for each temporal constraint independently. For instance, if we know that,
say, agents will be distant during a given constraint, then we may add uncertain delay
accordingly. If agents are collocated during other constraints, then we can safely decrease
the observation delay (absent other sources of delay).

According to the constraints and variable delay of the human-downlink-science control
program from the perspective of the robot, the transformed fixed-delay STNU the robot is ex-
ecuting will reflect constraints of human-downlink-science:start

[30,35]
====⇒ human-downlink-science:end

with 𝛾(human-downlink-science:end) = 0 after applying Lemma 10.
We performed two demonstrations. In the first, the astronaut would observe the end of

the science downlink, the end event of human-downlink-science:end, which would trigger
a delayed observation being passed to the robot. Once the robot received the command,
it would begin its robot-drilling activity. It passed observations of its scheduled events
back to the astronaut.

Figure 7.7: The first demonstration in four parts. (a) 𝑡 = 0, when the two Kirks are started
at the same time (unfortunately, the SD is below the image frame). (b) 𝑡 = 16, when the
astronaut observed that the science experiment was setup. (c) 𝑡 = 23, when the robot
received a delayed observation from the astronaut indicating they had completed science
setup. (d) 𝑡 > 23, as the robot performed the drilling task.

The second demonstration focused on the behavior of the delay scheduler when commu-
nications are not received in time. After starting both Kirks at the same time, we unplugged
the astronaut’s Kirk from the network. While, in reality, a disconnection should be modeled
as 𝛾+(𝑥𝑐) = ∞, we did it to emphasize the fact that the robot’s Kirk would not receive
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an observation within the fixed bounds it was expecting. The delay scheduler would then
imagine human-downlink-science:end and dispatch its drilling activity accordingly.

Figure 7.8: The second demonstration in four parts. (a) 𝑡 = 0, when the two Kirks are started
at the same time (unfortunately, the SD is below the image frame again). (b) 𝑡 = 3, when
the SD is removed from the network. (c) 𝑡 = 38, after the robot imagined an observation
from the astronaut and began the drilling task. (d) 𝑡 = 60, when Kirk has observed the end
of the drilling task.

We present the schedules of the agents for both scenarios in Tables 7.5-7.8. The schedule
has been cleaned and the event names have been modified to better reflect the intent of the
RMPL control programs. See Appendix B for an explanation of how RMPL and the STNUs
compiled from it are related. We also removed anonymous (non-named) events that were
added in the process of translating RMPL to variable-delay STNU.

We can see variable observation delay at work by comparing the assigned end times for
human-setup-science between the astronaut and robot in Tables 7.5 and 7.6. The human
knows that science setup was completed at 𝑡 = 16, but the robot received an observation of
the same event after an apparently delay of six seconds.

Note that the robot was running an experimental optimistic version of the delay scheduler
in the demonstration. The difference between the delay scheduler as described in Chapter 5
and the optimistic version is that the optimistic version will attempt to avoid buffering early
contingent events by rewriting the delay STNU based on the early observation and checking
VDC. It will be discussed in more depth in Appendix C.

Finally, we see in the second experiment that the robot was forced to imagine contingent
events due to communication delay. The robot was able to satisfy all constraints with its
drilling episode despite not receiving communication from the astronaut about the end of
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Table 7.5: The complete history of the delay scheduler for the astronaut in the first hardware
demo scenario.

Event Time (s)
Start Human Setup Science 0
Normalized Lower for End Human Setup Science 15
End Human Setup Science 16
Start Sync 16
Normalized Lower for Sync 22
End Sync 23
Start Robot Drilling 23
Normalized Lower for Robot Drilling 47
End Robot Drilling 49
Start Close Out 49
End Close Out 59

Table 7.6: The complete history of the delay scheduler for the robot in the first hardware
demo scenario.

Event Time (s)
Start Human Setup Science 0
Normalized Lower for Human Setup Science 15
End Human Setup Science 22
Start Sync 22
End Sync 22
Start Robot Drilling 22
Normalized Lower for Robot Drilling 45
End Robot Drilling 46
Start Robot Poweroff 46
End Robot Poweroff 56

Table 7.7: The complete history of the delay scheduler for the astronaut in the second
hardware demo scenario.

Event Time (s)
Start Human Setup Science 0
Normalized Lower for End Human Setup Science 15
End Human Setup Science 30
Start Sync 30
Normalized Lower for Sync 36
End Sync 45
Start Robot Drilling (imagined) 45
Normalized Lower for Robot Drilling 69
End Robot Drilling (imagined) 71
Start Close Out 71
End Close Out 81

98



Table 7.8: The complete history of the delay scheduler for the robot in the second hardware
demo scenario.

Event Time (s)
Start Human Setup Science 0
Normalized Lower for Human Setup Science 30
End Human Setup Science (imagined) 35
Start Sync 35
End Sync 35
Start Robot Drilling 35
Normalized Lower for Robot Drilling 58
End Robot Drilling 60
Start Robot Poweroff 60
End Robot Poweroff 70

the astronaut setting up the science experiment.
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Chapter 8

Future Work and Conclusion

We highlight two areas for future work.

8.1 Expanding the Execution Space of the Delay Sched-
uler

The execution decisions produced by the delay scheduler are dependent on the strategy for
checking VDC as presented in Chapter 4. While the delay scheduler has been shown to be
effective, there is room for improvement. The delay scheduler presented in this thesis does
not use the entirety of the execution space available to it. To demonstrate how execution
space is limited, consider the following example.

𝐴
[1,3]
==⇒ 𝐵

[5,9]−−→ 𝐶

Let 𝛾(𝐵) = [3, 8]. After applying Lemmas 10 and 13, its fixed-delay equivalent represen-
tation is,

𝐴′ [6,9]
==⇒ 𝐵′ [4,6]−−→ 𝐶 ′

where 𝛾(𝐵) = 0. According to the semantics of the original variable-delay STNU, 𝐵
may arrive as early as 𝑡 = 4. If so, the delay scheduler will compare the observation to the
fixed-delay equivalent representation, forcing it to buffer 𝐵′ to 𝑡 = 6. 𝐶 ′ will be scheduled
no earlier than 4 time units later (the lower bound of 𝐵′ [4,6]−−→ 𝐶 ′) at 𝑡 = 10.

However, if we were able to schedule the original variable-delay STNU directly, we could
come to a different scheduling decision. If 𝐵 arrives at 𝑡 = 4, we know it must be the case
that 𝐵 was assigned at 𝑡 = 1 and 𝛾(𝐵) resolved to a delay of 3. We can then schedule 𝐶 5

time units after 1 (the lower bound of 𝐵
[5,9]−−→ 𝐶) at 𝑡 = 6.

Clearly then, there is room for improvement in our execution strategy. I can imagine two
avenues for future work. The first would be identifying a dispatchable form for variable-delay
STNUs that fully encompasses their entire execution semantics. A dispatchable form that
includes all resolutions of observation uncertainty would potentially allow us to schedule
variable-delay STNUs directly, as opposed to the dance we do by observing resolutions

100



of uncertainty from the full variable-delay STNU, but scheduling the limited fixed-delay
equivalent. The second avenue would be to perform what we have be framing as Optimistic
Rescheduling. We began work on Optimistic Rescheduling for this thesis. We have a partial
implementation of it in Delay Kirk, though there are some caveats. First, it is largely
untested and we have not shown it is sound and complete, hence why it was not included in
this thesis. Second, it is seemingly inefficient and may inhibit a scheduler from performing
its duties in larger STNUs.

We present our work on Optimistic Rescheduling so far in Appendix C. At a high level,
the algorithm works roughly as follows.

1. Given an early observation of an uncontrollable event, 𝑥𝑐, at time 𝑡, rewrite the variable-
delay STNU to narrow the temporal constraint and observation delay of 𝑥𝑐 to the range
that would allow an observation at time 𝑡.

2. Check VDC of the rewritten variable-delay STNU. If uncontrollable, abort.
3. Build a dispatchable form from the fixed-delay equivalent STNU.
4. Loop through all observed events earlier than 𝑡 and perform the same observations in

the same order against the new dispatchable form.
5. Observe 𝑥𝑐 at time 𝑡 in the new dispatchable form.

As shown in Appendix C, the total time to schedule all events is 𝑂(
1

2
𝑁2(𝑁 + 1) log𝑁)

in the worst case due to step 4.
Ideally, we would not need to reschedule past events to change future constraints. Future

work could entail defining a procedure for tightening the current dispatchable form directly
instead of rescheduling the entire run from scratch.

8.2 Coordination

We were focused on addressing the multi-agent (MA) online scheduling problem. Before
scheduling, we must contend with planning, e.g. building variable-delay STNUs for each
agent. We considered extending the two existing planning approaches described below to
model variable observation delay between agents. We ultimately decided neither were fit for
the motivating scenarios of this thesis. Instead, we used a manual planning approach more
akin to the ISS EVA planning process.

The first planning approach we considered was to model the system as a Multi-Agent
STNU (MASTNU) [12]. MASTNUs allow modelers to describe temporal constraints between
multiple agents, then check the overall dynamic controllability of the system. To check the
controllability of a MASTNU, the first step is to perform temporal decoupling with the
goal of producing individual dynamically controllable STNUs for each agent that can be
dynamically scheduled per usual. While superficially promising, there is a considerable
drawback to this approach, namely that temporal decoupling is sound but not complete, i.e.
temporal decoupling may report failure even when the MASTNU is dynamically controllable.
This limits the utility of MASTNUs as a planning tool.

The other approach to this problem we are aware of is Stedl’s Hierarchical Reformulation
(HR) algorithm [44]. HR begins with a MA temporal plan network (TPN), which is similar
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to a MASTNU (though HR pre-dates MASTNUs). Stedl’s key insight is to avoid inter-agent
communication altogether by reformulating constraints between groups of agents such that
they are strongly controllable. As such, no communication between agents is required. A
centralized dispatcher is then responsible for then handing events to agents. We also assume
that there is no central authority, making HR a poor fit for our problem domain.

Both MASTNUs and HR assume communications between agents are either instanta-
neous or impossible, i.e. with an infinite delay. As we saw in Section 4.3, our formalism
for variable observation delay allows a spectrum of communication delay. While we felt it
was possible to shoehorn uncertain observation delay into MASTNUs or HR, we felt both
were a poor choice because of their pre-existing expectations with respect to communica-
tion. In combination with our focus on online scheduling, we decided to forgo extending
either formalism to account for observation delay. Instead our planning process simply con-
sists of manually writing variable-delay STNUs with intra-agent and inter-agent temporal
constraints by hand.

We believe it may be possible for MASTNUs or HR to be expanded to include variable
observation delay, though we leave that problem for future research.

We considered framing our approach to inter-agent communication as a distributed con-
sensus problem because we believed we needed a means for disparate agents to agree on the
state of the world. Existing distributed consensus algorithms like Paxos [43] or Raft [42]
would then be integrated into the communication layer of Kirk and take responsibility for
ensuring that agents agree on which events have been scheduled.

Ultimately the drawbacks of a distributed consensus approach outweighed the benefits.
Chiefly, both Paxos and Raft assume that communications are either instantaneous and
freely available or that agents have gone dark (i.e. can no longer communicate). This
communication model is incongruous with the explicitly modeled communications of the
VDC formalism. Furthermore, the VDC formalism allows us to model that agents never
receive communications, negating the requirement for distributed consensus.

8.3 Conclusion

In summary, we contributed the following to temporal reasoning research.

A Scheduler for Uncertain Observations Past work in temporal reasoning has pro-
vided a sound and complete online algorithm for dispatching controllable events given
all other event assignments up to the current time [9]. We contribute an online method
for scheduling that guarantees that all temporal constraints will be satisfied given un-
certain observations.

An Online Dispatcher for Dispatching Events to Hardware State of the art sched-
ulers are limited in that they output execution decisions, which act like instructions
as to when to act rather than actions themselves [9]. We contributed a dispatching
algorithm for enacting execution decisions on robotic hardware in the face of uncertain
observations.

Distributed, Multi-Agent Coordination through Uncertain Communications We
contributed a coordination algorithm that allows multiple agents, each using the schedul-
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ing and dispatching contributions described above, to share knowledge of event observa-
tions. The result is a multi-agent scheduling procedure for environments with uncertain
communication.
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Appendix A

Comparison of Variable-Delay STNUs to
Partially Observable STNUs

The delay scheduler is flexible in that so long as it receives a variable-delay STNU, it is
capable of scheduling. Human modelers have flexibility in how they represent temporal
constraints in that there are many flavors of STNUs, each with their own advantages and
disadvantages. Earlier, we presented RMPL as a modeling language that is compiled to
variable-delay STNUs. There are other choices for modeling frameworks. Here, we present
a comparison of variable-delay STNUs to POSTNUs [13], a flavor that is similar in many
respects. This section presents a comparison of variable-delay STNUs and POSTNUs, includ-
ing transformations that allow some classes of POSTNUs to be represented as variable-delay
STNUs.

One of the strengths of the variable-delay controllability model is its ability to generalize
the concepts of strong and dynamic controllability. This technique was first seen in greater
depth in the context of POSTNUs. In an STNU, all contingent events are either instan-
taneously observable under a dynamic controllability model or entirely unobservable under
a strong controllability model. In POSTNUs, contingent events can be marked observable
and unobservable. To say that a POSTNU is dynamically controllable equates to asserting
that it is possible to construct a schedule during execution that respects all constraints if
the scheduler only receives information about observable contingent events.

While, superficially, POSTNUs and delay STNUs appear to model distinct problems in
temporal reasoning, all delay STNUs can be accurately represented as POSTNUs. While
the converse is not true, there is a subset of POSTNUs that delay STNUs are able to model.
It is advantageous to translate POSTNUs to delay STNUs when possible because we are
guaranteed to finish controllability checks for delay STNUs in polynomial time, while evalu-
ating the controllability of POSTNUs in general is harder [13]. Furthermore, the sub-class of
POSTNUs that can be checked efficiently and accurately, those without chained contingent
links [45], are members of the subset of POSTNUs that can be expressed directly as STNUs
with fixed-delay, and likewise variable-delay, functions , [29, p. 59]. The converse is also true
- we may emulate STNUs with variable-delay functions as POSTNUs without chained con-
tingent links. Below, we elaborate on translations from delay STNUs to POSTNUs, before
describing how we can express POSTNUs without chained contingent links as STNUs with
fixed-delay functions. Note that this is not a comprehensive list of transformations between
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delay STNUs and POSTNUs - our aim is to describe the minimum set of transformations
required to model POSTNUs without chained contingent links as delay STNUs. For the
following discussion, let 𝑆 be a delay STNU and 𝑃 be an equivalent POSTNU.

We present these transformations to demonstrate that the delay scheduler is capable of
scheduling POSTNUs without chained contingencies. So long as it receives a variable-delay
STNU, the fact that POSTNUs can be scheduled allows modelers additional flexibility in
their means of representing the problem domain.

We start with an 𝑆 that consists of the links 𝐴 =⇒ 𝐵 and 𝐵 −→ 𝐷 with delay function
𝛾(𝐵). See Figure ?? for an example translation between a fixed-delay STNU and a POSTNU.

Lemma 18. For contingent link 𝐴 =⇒ 𝐵 in 𝑆 with observation delay 𝛾(𝐵) = [𝑙, 𝑢], where
0 ≤ 𝑙 ≤ 𝑢 < ∞, and outgoing requirement link 𝐵 −→ 𝐷, we may emulate observation delay
in 𝑃 by copying 𝐴 =⇒ 𝐵 and 𝐵 −→ 𝐷 to 𝑃 , enforcing that 𝐵 is unobservable, and adding a

new observable contingent event, 𝐵′ with 𝐵
[𝑙,𝑢]
==⇒ 𝐵′.

Proof. In both 𝑆 and 𝑃 , we do not observe 𝐵 directly, yet we define an outgoing requirement
link, 𝐵 −→ 𝐷, that depends entirely on the resolution of 𝐵. The only information available
to reason about the assignment of 𝐵 comes in the form of an indirect observation, 𝐵′ or
𝛾(𝐵), received after a delay in R≥0. If 𝑃 was not equivalent to 𝑆, we would be able to
learn the assignment of 𝐵 without waiting 𝛾(𝐵) time units after its true assignment. Thus,
because we must wait 𝐵′ − 𝐵 ∈ [𝑙, 𝑢] time units to learn the assignment of 𝐵, and 𝐵 −→ 𝐷
has equivalent constraints between 𝑆 and 𝑃 , 𝑃 must model the same semantics as 𝑆.

Lemma 19. For a contingent event 𝐵 with variable-delay function 𝛾(𝐵) = [0, 0] in 𝑆, we
may emulate the same constraints with an observable contingent event, 𝐵 in 𝑃 .

Proof. The variable-delay function enforces instantaneous observation. By the definition of
observable contingent events in the POSTNU model, we will observe 𝐵 instantaneously.

A POSTNU with a chained contingency is defined as follows. Consider a chain of contin-
gent events, 𝐴 =⇒ 𝐵 and 𝐵 =⇒ 𝐶. If 𝐵 has one or more outgoing links to free or contingent
events other than 𝐶, it is a chained contingency. Lemma 18 results in a POSTNU without
chained contingencies, hence variable-delay STNUs fall into the subclass of POSTNUs that
can be checked efficiently [45].

In the other direction, to transform a POSTNU without chained contingencies into an
STNU with variable-delay functions, we need to address three cases of contingent constraints:
(1) unobservable contingent events not immediately followed by other contingent constraints,
(2) unobservable contingent events immediately followed by other contingent constraints, and
(3) observable contingent constraints.

Lemma 20. For an unobservable event 𝐵 in 𝑃 , with no outgoing contingent links, we can
emulate it in 𝑆 with a contingent event 𝐵 and upper bound of its variable-delay function set
to 𝛾+(𝐵) =∞.
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Proof. We will not observe 𝐵 nor will outgoing contingent links provide information about
𝐵. As such we define 𝛾+(𝐵) = ∞ in 𝑆.1 From a controllability standpoint for both 𝑆 and
𝑃 , we know the a priori bounds of 𝐵 but will not learn its true assignment.

Lemma 21. For an unobservable contingent link 𝐴
[𝑚,𝑛]
===⇒ 𝐵 in 𝑃 , with a single outgoing

link, 𝐵
[𝑤,𝑧]
===⇒ 𝐶, we replace the two constraints from 𝑃 in 𝑆 with a concatenated constraint,

𝐴
[𝑚+𝑤,𝑛+𝑧]
=======⇒ 𝐶.

Proof. The only information we may receive is the observation of 𝐶. Given there are no
other outgoing links from 𝐵, folding 𝐵 into the successive contingent constraint can not
affect the semantics of the network. The bounds of the new link, 𝐴

[𝑚+𝑤,𝑛+𝑧]
=======⇒ 𝐶 is the result

of summing the intervals of 𝐴
[𝑚,𝑛]
===⇒ 𝐵 and 𝐵

[𝑤,𝑧]
===⇒ 𝐶: [𝑚,𝑛] + [𝑤, 𝑧] = [𝑚+ 𝑤, 𝑛+ 𝑧].

Note that we did not specify whether 𝐶 is observable in 𝑃 . After applying Lemma 21,
we then apply either Lemma 19 or 20 to 𝐶.

Lemma 22. For an observable contingent event 𝐴
[𝑚,𝑛]
===⇒ 𝐵 in 𝑃 , with a single outgoing

link to an observable contingent event, 𝐶, 𝐵
[𝑤,𝑧]
===⇒ 𝐶, we create three constraints in 𝑆:

𝐴
[𝑚,𝑛]
===⇒ 𝐵, 𝐵

[0,0]−−→ 𝐵′, and 𝐵′ [𝑤,𝑧]
===⇒ 𝐶 where 𝛾(𝐵) = [0, 0].

Proof. Given 𝐶 is observable in 𝑃 , a simulated free event, 𝐵′ in 𝑆, can be scheduled si-
multaneously with 𝐵. Any contingent constraints following 𝐵 now start at an executable
event and are thus valid constraints in 𝑆. 𝐵 is observable, so we need no observation delay
according to Lemma 19.

Thus, delay STNUs are sufficiently capable of expressing all POSTNUs that can efficiently
be checked for controllability using today’s tractable POSTNU algorithms.

It is not clear if controllability can be checked more efficiently across a greater subset of
POSTNUs beyond those without chained contingencies. However, it is worth highlighting
that variable-delay controllability can be leveraged to construct improved algorithms with
respect to scheduling and controllability of POSTNUs. The model for observation delay
proposed by variable-delay controllability can be expressed exactly as a POSTNU with a
“single-headed” chained contingency2 as shown in Figure ??b; the main difference is that
we represent the contingent link between 𝐵 and 𝐵′ with our variable-delay function 𝛾(𝐵).
Hence, the algorithm we present for variable-delay controllability can be used to both solve
POSTNUs without chained contingencies, as described above, as well as those POSTNUs
with single-headed chained contingencies. Approaches inspired by variable-delay controlla-
bility have been used to further expand POSTNU dynamic controllability checking in more
expressive chained instances [46]. We hope that insights from variable-delay controllability
will continue to expand the subset of POSTNUs that can be controllability checked, and as

1Note: ,p. [29, p. 60] erroneously claims that we should define 𝛾(𝐵) = 0 for unobservable events.
2To borrow the term “single-headed” from [46].
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Figure A.1: (a) An STNU with a contingent constraint that has a certain delay. (b) One
possible way of rewriting the STNU as an equivalent POSTNU. This particular POSTNU
exhibits a chained contingency, as 𝐵 is a contingent event that starts a contingent constraint
and is connected to 𝐵′ via a contingent constraint.

B B

D D
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such we advocate for continued development of the theory of variable-delay controllability
as a relevant framework for modelers.
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Appendix B

Additional RMPL Information

Modeling constraint programs in RMPL was required for the multi-agent demonstrations of
a delay scheduler. We include additional information on RMPL below.

B.1 Control Programs and STNUs

Key to the challenge of being a mission planner is to understand the constraints between
events. RMPL is an abstraction layer, meaning that it will interpret RMPL and produce a
delay STNU reflecting its own interpretation, which may not align with the mission planner’s
intention. We have seen students in the lab be surprised by the temporal constraints gener-
ated by RMPL, and, through the experiments involved in this thesis, have also found RMPL
to be less-than-intuitive on occasion. The chief cause of confusion is a disjoint between the
fundamental unit of temporal reasoning, the temporal event, and the fundamental unit of
RMPL control programs, the episode, which consists of a start and an end event. This is
not a limitation of the semantics of RMPL, rather, it is a naming issue.

To elaborate, temporal reasoning literature emphasizes events as meaningful timepoints.
For instance, we used numbered Confirm:0:0 events to represent the end of an installa-
tion task in Sections 5.3 and 7.3.1, while the start of the task was an Install:0:0 event,
e.g. Install:0:0

[𝑙,𝑢]
==⇒ Confirm:0:0. Depending on the size of the generated STNU, the

Confirm:0: event then had outgoing edges to events such as Start:0:1, Install:1:0, or
ALL:END. In RMPL, however, a representation of this constraint between events with these
names is impossible.

Consider the following control program.

(define-control-program take-pictures ()
(declare (primitive)

(duration (simple :lower-bound 1 :upper-bound 5))))

We have defined an episode named take-pictures. It represents a requirement con-
straint in the form of take-pictures:start

[1,5]−−→ take-pictures:end. Note that the one
episode led to the creation of two events. We now add a second episode and show the two
options RMPL gives us for joining them in series.

108



(define-control-program eat-snack ()
(declare (primitive)

(duration (simple :lower-bound 3 :upper-bound 7))))

;; Sequence option 1
(define-control-program with-slack ()

(with-temporal-constraint (simple-temporal :lower-bound 6 :upper-bound 10)
(sequence (:slack t)

(take-pictures)
(eat-snack))))

;; Sequence option 2
(define-control-program no-slack ()

(with-temporal-constraint (simple-temporal :lower-bound 6 :upper-bound 10)
(sequence (:slack nil)

(take-pictures)
(eat-snack))))

We have two commonly used options for :slack in the sequence, (:slack nil) and
(:slack t). If slack is applied, episodes are connected with [0,∞] constraints, effectively
guaranteeing episode ordering without enforcing that the latter episode must start immedi-
ately after the first. Ignoring the overall constraint, the two control programs are connected
like so.

take-pictures:start
[3,7]−−→ take-pictures:end

[0,∞]−−−→ eat-snack:start
[3,7]−−→ eat-snack:end

Without slack, the constraints are arranged as follows.

take-pictures:start
[3,7]−−→ take-pictures:end

[0,0]−−→ eat-snack:start
[3,7]−−→ eat-snack:end

The RMPL compiler takes it a step further. A constraint of the form 𝐴
[0,0]−−→ 𝐵 enforces

simultaneous execution of 𝐴 and 𝐵, making one of the events redundant from a scheduling
perspective. In this example, RMPL removes take-pictures:end, leaving us with three
events for the two constraints.

take-pictures:start
[3,7]−−→ eat-snack:start

[3,7]−−→ eat-snack:end

From an execution perspective, eat-snack:start both signifies the end of taking pictures
and the beginning of snacking.

Going back to the installation example, we want the execution semantics of deciding
when to start, traversing to an installation location, performing the installation, waiting for
the response, and then moving to the next installation. As described in Section 5.3, the
delay STNU takes the form as follows, with 𝛾(confirm:0:0) = [0, 3].
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start:0:0
[1,15]
===⇒ traverse:0:0

[1,14]−−−→ install:0:0
[1,6]
==⇒ confirm:0:0

[2,12]−−−→ start:0:1

In RMPL, we model each iteration of the procedure like so. (We use the /0-0 numbering
instead of the :0:0 scheme in RMPL because : causes errors related to lisp package exports.)

(define-control-program traverse/0-0 ()
(declare (primitive)

(duration (simple :lower-bound 1 :upper-bound 15)
:contingent t)))

(define-control-program install/0-0 ()
(declare (primitive)

(duration (simple :lower-bound 1 :upper-bound 14))))

(define-control-program confirm/0-0 ()
(declare (primitive)

(duration (simple :lower-bound 1 :upper-bound 6
:min-observation-delay 0 :max-observation-delay 3)

:contingent t)))

(define-control-program start/0-1 ()
(declare (primitive)

(duration (simple :lower-bound 2 :upper-bound 12))))

(define-control-program main ()
(with-temporal-constraint (simple-temporal :upper-bound 108)

(sequence (:slack nil)
(traverse/0-0)
(install/0-0)
(confirm/0-0)
(start/0-1))))

This results in a delay STNU of the form below (ignoring the overall upper-bound for
simplicity’s sake).

traverse/0-0:start
[1,15]
===⇒install/0-0:start

[1,14]−−−→ confirm/0-0:start
[1,6]
==⇒

start/0-1:start
[2,12]−−−→ start/0-1:end

If we need to translate events between the two forms, we simply note that event names
are shifted by one place earlier in the delay STNU generated by RMPL.
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B.2 Action Model

This section is included to expand on the features of RMPL, though note that none of
these features are required for controlling distributed agents, and were not a part of the
experiments for this research.

If we wanted to specify agents in a multi-agent control program, or if we wanted to take
vehicle dynamics into account, RMPL gives us a means for using the Common Lisp Object
System (CLOS) for defining agents, agent dynamics, and the control programs agents may
execute.

An example RMPL control program with an agent is provided in Listing 7 for complete-
ness sake from the domain of underwater robotics.

In Listing 7, glider refers to a low-powered autonomous underwater vehicle that prefers
to traverse by following ocean currents using a buoyancy engine.1 We see that we model
a glider agent and its properties using standard CLOS. The move control program then
takes a glider and a location as arguments. The (requires ...) form is equivalent to
the preconditions of a durative action in a PDDL 2.1 [47] domain. Likewise, the (effect
...) form is equivalent to PDDL effects. Finally, as we saw before, the durative action also
includes a temporal constraint in its (duration ...) form.

Kirk is able to take RMPL as input to perform classical planning, though further discus-
sion of it falls outside the scope of this thesis.

1The Slocum Glider is an example: https://www.whoi.edu/what-we-do/explore/underwater-
vehicles/auvs/slocum-glider/.

111

https://www.whoi.edu/what-we-do/explore/underwater-vehicles/auvs/slocum-glider/
https://www.whoi.edu/what-we-do/explore/underwater-vehicles/auvs/slocum-glider/


;; This code is a snippet from a file in the thesis code repo found at:
;; kirk-v2/examples/glider/script.rmpl

(defclass glider ()
((id

:initarg :id
:finalp t
:type integer
:reader id
:documentation
"The ID of this glider.")

(deployed-p
:initform nil
:type boolean
:accessor deployed-p
:documentaiton
"A boolean stating if the glider is deployed at any point in time.")

(destination
:initform nil
:type (member nil "start" "end" "science-1" "science-2")
:accessor destination
:documentation
"The location to which the glider is currently heading, or NIL if it is not
in transit.")

(location
:initarg :location
:initform "start"
:type (member nil "start" "end" "science-1" "science-2")
:accessor location
:documentation
"The location where the glider is currently located, or NIL if it is not at
a location (in transit).")))

(define-control-program move (glider to)
(declare (primitive)

(requires (and
(over :all (= (destination glider) to))))

(effect (and
(at :start (= (destination glider) to))
(at :start (= (location glider) nil))
(at :end (= (destination glider) nil))
(at :end (= (location glider) to))))

(duration (simple :lower-bound 10 :upper-bound 20))))

Listing 7: A snippet of an RMPL script that defines an agent and classical planning predi-
cates and effects of a control program.
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Appendix C

Optimistic Rescheduling

We return to problem of potentially unnecessary wait time created by the buffering execution
strategy described in Lemma 11. First, we use an example to demonstrate how buffering
early contingent events results in a reduction of the execution space. Then we contribute a
technique for managing event observations that circumvents the loss of execution space.

Consider the following variable-delay controllable STNU, which we will refer to as Bufferable.

𝐴
[1,7]
==⇒

𝛾∈[1,3]
𝐵

[5,9]−−→ 𝐶

Following the semantics of the delay scheduler, we would first transform Bufferable to its
fixed-delay equivalent, Bufferable ′ by applying Lemma 10.

𝐴′ [4,8]
==⇒

𝛾=0

𝐵′ [4,6]−−→ 𝐶 ′

If we assume 𝐴 is executed at 𝑡 = 0, the only question is when to schedule 𝐶 (or its fixed-
delay equivalent, 𝐶 ′). According to the semantics of Buffering , if 𝐵 is observed at 𝑡 = 2, we
know that 𝐵 was assigned at 𝑡 = 1. Thus, we only need to wait until 𝑡 = 6 to schedule 𝐶.
However, the delay scheduler would schedule according the constraints found in Buffering ′,
wherein 𝜉(𝐵′) = 2 falls earlier than the lower bound of 𝐴′ [4,8]

==⇒ 𝐵′, triggering Lemma 11.

As a result, we act as if 𝜉(𝐵′) = 4 and then wait for the lower bound of 𝐵′ [4,6]−−→ 𝐶 ′. The end
result is that 𝐶 ′ is assigned to a later time of 𝑡 = 8.

From a human mission manager perspective, this wait appears to be a waste. Time is
money. And in the case of planetary exploration, time is safety. If a NASA flight controller
were to ask why your software is telling astronauts on Moon to just stand there doing nothing,
responding that your algorithm does not know if it is safe to act, would be unacceptable.
Therefore, we contribute an approach that looks for opportunities to avoid buffering when
contingent events arrive before their expected windows in the fixed-delay STNU. The goal
of this method is to dispatch future actions earlier if possible.

At its core, Optimistic Rescheduling consists of copying the original variable-delay STNU
then rewriting it to reflect the resolution of uncertainty so far. Key to rewriting the variable-
delay STNU is narrowing the constraint and observation delay to match what was observed.
We then re-perform controllability checks. If controllable, we have a new schedule that
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removes the need to buffer this contingent event. If not controllable, we do nothing, buffer
the contingent event as planned, and continue dispatching against the original schedule.

We now step through the Event Observations with optimistic rescheduling algorithm
(Algorithm 8) in detail.

Input: Original VDC STNU 𝑆; Equivalent fixed-delay function 𝛾;
Partial history 𝜉; Executed events map Ex (𝑆, 𝑥); Observed contingent event 𝑥;
Normalized lower bound �̂�; Current time 𝑡;
Output: Boolean whether 𝑥 was successfully scheduled, VDC STNU

Event Observations with Optimistic Rescheduling:
1 successp, bufferedp ← updateSchedule(S, x, t);
2 if ¬bufferedp then
3 return successp, 𝑆;
4 endif
5 𝑆* ← rewriteSTNU(S, x, t);
6 if 𝑆* is not variable-delay controllable then
7 return successp, 𝑆;
8 endif
9 for a in 𝜉 //a is an assignment

10 do
11 if 𝛾(a[event ]) ̸=∞ then
12 updateSchedule(S *, a[event ], a[time] + 𝛾(a[event ]));
13 endif
14 end
15 for event in Ex (S ) do
16 Ex (𝑆*, 𝑥)← Ex (𝑆, 𝑥)
17 end
18 updateSchedule(S *, x̂, t);
19

20 return true, 𝑆*;
Algorithm 8: An Algorithm for observing contingent events with optimistic reschedul-
ing.

We cannot know if an event is buffered if we do not attempt to schedule it. Our first step
is to schedule an event like normal. If scheduling is possible without buffering, we simply
return whether scheduling was successful.

If the event was buffered, then we begin to optimistically reschedule. We do so by
tightening the bounds of the original VDC STNU, 𝑆original , based on the observation we
received, which is the responsibility of Algorithm 9, implementing Lemma 23.

If the rewritten STNU, 𝑆*, is found to be VDC, we prepare to schedule it. First we
iterate through all the assignments in the partial schedule and make the same assignments
against the new STNU. When assignments are made, we subtract out the fixed observation
delay. In this loop, we add the observation delay back, lest it be subtracted from the original
observation twice.
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If any contingent events with infinite delay were observed, they would have been marked
executed but not assigned. We iterate through the executed events of 𝑆 and mark the same
events executed in 𝑆*.

The distance graph, partial schedule, and executed events of 𝑆* now match that of 𝑆
before 𝑥𝑐 was received. We are almost safe to record a new observation. Lastly, we must
address the executable event representing the normalized lower bound of 𝑥𝑐, �̂�𝑐. During
scheduling, we would have received an RTED consisting of ⟨𝑙 + 𝛾+(𝑥𝑐), �̂�𝑐⟩. Given that 𝑥𝑐

arrived before 𝑙 + 𝛾+(𝑥𝑐), we never would have assigned �̂�𝑐, so we assign 𝜉(�̂�𝑐) = 𝑡 now. We
finally update the schedule with the contingent event that arrived.

Lemma 23. If a contingent event, 𝑥𝑐 ∈ 𝑋𝑐, where 𝑢 − 𝑙 > 𝛾+(𝑥𝑐) − 𝛾−(𝑥𝑐), is observed
at time 𝑡 and when 𝑡 < 𝑙 + 𝛾+(𝑥𝑐), we may replace 𝑥𝑐 and 𝛾(𝑥𝑐) with a constraint, 𝑥*

𝑐, and
variable-delay function, 𝛾(𝑥*

𝑐), with narrower bounds as follows.

𝑥*
𝑐 = [𝑙*, 𝑢*]

𝑥*
𝑐 = [max(𝑙, 𝑡− 𝛾+(𝑥𝑐)),min(𝑢, 𝑡− 𝛾−(𝑥𝑐))]

𝛾(𝑥*
𝑐) = [max(𝛾−(𝑥𝑐), 𝑡− 𝑢),min(𝛾+(𝑥𝑐), 𝑡− 𝑙)]

Proof. Buffering is only possible if the conditions of Lemmas 10 and 11 are triggered. By
Lemma 10, we are guaranteed to be able to narrow where in the range [𝑙, 𝑢] 𝑥𝑐 was scheduled.
By Lemma 11, we know that rewritten bounds will lead to an assignment of 𝑥𝑐 that is no
later than 𝑙 + 𝛾+(𝑥𝑐). Our tool for narrowing the bounds is Equation 5.5, which allows us
to use the observation to reason over the assignment and observation delay. Our strategy is
to look at the extreme cases leading to an observation.

We start by reasoning over the earliest and latest assignments respectively. In order for
𝑥𝑐 to be assigned as early as possible, 𝑙*, we assume the delay has taken on its maximum
value, 𝛾+(𝑥𝑐).

𝜉(𝑥𝑐) = obs(𝑥𝑐)− 𝛾(𝑥𝑐) (C.1)
𝑙* = 𝑡− 𝛾+(𝑥𝑐) (C.2)

Likewise, to find the last possible assignment leading to an observation, we subtract the
smallest observation delay, 𝛾−(𝑥𝑐).

𝑢* = 𝑡− 𝛾−(𝑥𝑐) (C.3)

Given that Nature will adhere to the constraints originally put forth in 𝑆, the bounds of
𝑥*
𝑐 must remain within the bounds of 𝑥𝑐. Hence, we guarantee the lower bound is at least 𝑙

while the upper bound is at most 𝑢.

𝑙* = max(𝑙, 𝑡− 𝛾+(𝑥𝑐))

𝑢* = min(𝑢, 𝑡− 𝛾−(𝑥𝑐))
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We use the same logic for narrowing the observation delay. If 𝑥𝑐 was assigned as late
as possible, 𝑢, then the observation delay would be minimized, 𝛾−(𝑥*

𝑐). Likewise, if 𝑥𝑐 was
assigned as early as possible, 𝑙, the observation delay would be maximized, 𝛾+(𝑥*

𝑐). The
narrowed lower and upper bounds of 𝛾(𝑥𝑐)

* are as follows.

𝛾 = obs(𝑥𝑐)− 𝜉(𝑥𝑐)

𝛾−(𝑥*
𝑐) = 𝑡− 𝑢

𝛾+(𝑥*
𝑐) = 𝑡− 𝑙

As before, the bounds of 𝛾(𝑥*
𝑐) must stay within the original bounds of 𝛾(𝑥𝑐), leaving us

with the following narrowed observation delay.

𝛾−(𝑥*
𝑐) = max(𝛾−(𝑥𝑐), 𝑡− 𝑢) (C.4)

𝛾+(𝑥*
𝑐) = min(𝛾+(𝑥𝑐), 𝑡− 𝑙) (C.5)

We revisit the example from the beginning of this section to see Lemma 23 in action. As
we saw before, any obs(𝐵) before 𝑡 = 4 will result in buffered assignments.

𝐴
[1,7]
==⇒

𝛾∈[1,3]
𝐵

[5,9]−−→ 𝐶

Let 𝑡 = 3. We will step through the reasoning for narrowing the bounds of 𝑥𝑐 accordingly.

𝑥*
𝑐 ∈ [max(𝑙, 𝑡− 𝛾+(𝑥𝑐)),min(𝑢, 𝑡− 𝛾−(𝑥𝑐))]

𝑥*
𝑐 ∈ [max(1, 3− 3),min(7, 3− 1)]

𝑥*
𝑐 ∈ [1, 2]

𝛾(𝑥*
𝑐) ∈ [max(𝛾−(𝑥𝑐), 𝑡− 𝑢),min(𝛾+(𝑥𝑐), 𝑡− 𝑙)]

𝛾(𝑥*
𝑐) ∈ [max(1, 3− 7),min(3, 3− 1)]

𝛾(𝑥*
𝑐) ∈ [1, 2]

We find that 𝜉(𝑥𝑐) must have fallen somewhere in the range of [1, 2], while 𝛾(𝑥𝑐) was
resolved somewhere in [1, 2]. Looking at the extremes, it is clear that there are multiple
combinations of the assignment and observation delay that could lead to an observation at
𝑡 = 3. While the narrowed range allows for observations other than 𝑡 = 3, for instance, if
𝜉(𝑥𝑐) = 2 and obs(𝑥𝑐) = 2 yielding an observation at 𝑡 = 4, there are no other ranges of
assignments or observation delay outside of 𝜉(𝑥𝑐) ∈ [1, 2] and 𝛾(𝑥𝑐) ∈ [1, 2] that would allow
an observation at 𝑡 = 3.

In the worst case, each of the 𝑁 events could trigger Optimistic Rescheduling. From
FAST-EX we know that the total time to schedule one event scales with 𝑂(𝑁 log𝑁) [9].
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Input: VDC STNU 𝑆original ; Variable-delay function 𝛾;
Observed contingent event 𝑥; Observation time 𝑡;
Output: VDC STNU
Initialization: 𝑆new ← copy(𝑆original)

Rewrite STNU:
1 for constraint in 𝑆new do
2 if constraint ends in 𝑥 then
3 constraint [𝑙𝑜𝑤𝑒𝑟]← max(constraint [𝑙𝑜𝑤𝑒𝑟], 𝑡− 𝛾+(𝑥));
4 constraint [𝑢𝑝𝑝𝑒𝑟]← min(constraint [𝑢𝑝𝑝𝑒𝑟], 𝑡− 𝛾−(𝑥));
5 𝛾−(𝑥)← max(𝛾−(𝑥), 𝑡− constraint [𝑢𝑝𝑝𝑒𝑟]);
6 𝛾+(𝑥)← max(𝛾+(𝑥), 𝑡− constraint [𝑙𝑜𝑤𝑒𝑟]);
7 endif
8 end
9 return 𝑆new ;
Algorithm 9: An Algorithm for rewriting an STNU given the resolution of uncertainty
of a contingent link.

Scaling all events goes as 𝑂(𝑁𝑁 log𝑁). If we had to schedule the next to last event too, the
performance would be 𝑂(𝑁𝑁 log𝑁+(𝑁−1)𝑁 log𝑁). The last two events being rescheduled
would have the performance of 𝑂(𝑁𝑁 log𝑁 + (𝑁 − 1)𝑁 log𝑁) + (𝑁 − 2)𝑁 log𝑁), and so
on for all 𝑁 events. We know that

∑︀𝑁
𝑛=0𝑁 −𝑛 = 1

2
𝑁(𝑁 +1), giving us 𝑂(𝑁2(𝑁 +1) log𝑁)

total runtime to schedule (and reschedule) all events.
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