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Abstract

Reinforcement Learning (RL) is recognized as a promising paradigm to improve nu-
merous decision-making processes in the real world, potentially constituting the core
of many future autonomous systems. However, despite its popularity across multiple
fields, the number of proofs of concept in the literature is substantially larger than
the number of reported deployments. This can be primarily attributed to differences
between real-world environments and experimental RL setups. On one hand, from a
domain-specific perspective, it is challenging to fully characterize concrete tasks and
environments in the real world, and training in physical environments may not always
be possible. On the other hand, the real world presents several domain-agnostic chal-
lenges that make learning more difficult, such as high-dimensionality, non-stationarity,
or generalizability. Although RL agents have demonstrated effective performance in
practical applications, their robustness to these real-world phenomena is still chal-
lenging.

To move a step forward towards better RL deployability, this thesis investigates
different aspects of RL system design, focusing on enhancing robustness in real-world
environments. It is composed of three main areas of research:

Firstly, to comprehensively characterize the problem of real-world robustness, I
propose an RL roadmap. This identifies key factors that influence the interaction
between an RL system and a real-world environment, and it offers a structured ap-
proach to addressing the overall problem. I further delve into one specific element
of this roadmap, the state space, and present a set of mathematical bounds for the
change in mutual information (MI) between state features and rewards during policy
learning. By observing how MI evolves during learning, I demonstrate how to identify
more effective feature sets, as shown through the study of a practical use case, the
Traffic Signal Control problem.

Secondly, I introduce MetaPG, a novel domain-agnostic RL design method that
prioritizes robustness in addition to performance. MetaPG is an AutoRL method that
automates the design of new actor-critic loss functions, represented as computational
graphs, for optimizing multiple independent objectives. Through evolutionary search,
MetaPG generates Pareto Fronts of new algorithms that maximize and trade all

3



objectives considered. When applied to a use case aimed at optimizing single-task
performance, zero-shot generalizability, and stability on five different environments,
evolved algorithms show, on average, a 4.2%, a 13.4%, and a 67% increase in each
of these metrics, respectively, compared to the SAC algorithm used as warm-start.
Furthermore, MetaPG offers insights into the structure of the evolved algorithms,
allowing for a better understanding of their functionality.

Lastly, this thesis focuses on the application of conceptual frameworks and design
principles to specific real-world problems in which robustness has been systematically
overlooked. I introduce a novel RL system for solving the frequency assignment
problem for multibeam satellite constellations. By conducting a comprehensive search
over six major design decisions, I identify a design variation that achieves a 99.8%
success rate in 100-beam scenarios. However, this variation falls short in handling
high-dimensionality and non-stationarity. This thesis demonstrates that robustness
against these challenges can be obtained through different design variations, which
attain an 87.3% success rate in 2,000-beam cases. Additionally, I also investigate
design trade-offs in another real-world application, molecular optimization, and show
that current methods are not well aligned with robustness.

Thesis Supervisor: Prof. Edward F. Crawley
Title: Professor, Aeronautics and Astronautics
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Chapter 1

Introduction

The purpose of this chapter is to define the main guidelines of this dissertation. It
starts with a short introduction on Reinforcement Learning, its evolution, and its
growing application to real-world problems (Section 1.1). Then, I present the main
motivation of the dissertation, which focuses on the absence of real-world deployments
and the lack of robustness when developing RL for practical applications (Section
1.2). Next, I introduce the general objectives of this dissertation (Section 1.3) and
extend the initial overview on real-world RL by explaining the different thrusts of
work present in the literature (Section 1.4). Finally, I outline the structure of the
remaining parts of the dissertation (Section 1.5).

1.1 Context

Reinforcement Learning (RL) is a learning paradigm based on the sequential interac-
tion between a decision-making entity called the agent and its surrounding environ-
ment [348] (see Figure 1-1). This interaction takes place when the agent observes the
state of the environment and takes an action based on it. This process is sequential,
as the environment changes in response to the action, leading to a new state. The
goal of the agent is to learn the best action to take in each state, which is encoded
in the agent’s policy. The agent learns by receiving rewards after each action, which
evaluate the quality of the action in the given state. Using this feedback, the agent
improves its policy.

The RL paradigm originated from various research currents that can be traced
back to the early 20th century, with studies on trial and error [386] and animal learning
[357]. One significant thread was the research on “optimal control” [47], which began
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in the 1950s and gave rise to Dynamic Programming and the Bellman equations [34].
This field has continued to evolve in modern times [36]. The study of discrete optimal
control problems led to the development of Markov Decision Processes (MDPs) [33],
which formed the foundation for early RL algorithms like policy iteration [177].
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Reward

Environment

Action

State

Reward

Policy
(Neural Network)

Policy improvement 
algorithm

(Deep Learning)

Deep RL Agent

UpdatesExperience

Environment
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Policy
(Tabular)

Policy improvement 
algorithm

(e.g., Q-learning)

RL Agent

UpdatesExperience

Figure 1-1: Representation of the Reinforcement Learning paradigm: an agent
interacting with an environment through states, actions, and rewards.

The first concepts of “learning” in RL emerged in the 1970s [385] when trial and
error ideas resurfaced after years of focusing on supervised learning for control [215].
Around the same time, “learning automatas” were introduced [363], leading to the
research field of Bandit Theory [338]. The formal definition of Reinforcement Learn-
ing, as a way to differentiate it from supervised learning, came in the 1980s [25, 27],
following the introduction of temporal-difference learning methods [25,26]. Temporal-
difference learning research continued from optimal control, and in the late 1980s and
1990s, key methods such as TD(𝜆) [347] and Q-learning [378] were proposed. This
period also saw significant research on RL for board games [349].

Throughout most of the 20th century, RL employed tabular policies, which mapped
states to actions and required registering every possible state in the agent’s memory.
This constituted a problem when the number of different states was large or when the
state was continuous and discretization was not straightforward. The emergence of
Deep Learning [144] and its great success in supervised learning tasks such as image
classification or natural language processing [327] paved the way for RL using neural
networks to replace tabular policies and thus the subfield of Deep Reinforcement
Learning (Deep RL or DRL) originated.

While the combination of artificial neural networks and RL was initially proposed
as “neurodynamic programming” in 1996 by Bertsekas and Tsitsiklis [38], most ad-
vances in DRL research have taken place in the last decade. As shown in Figure 1-2,
DRL replaces tabular policies with neural networks, avoiding the need to store all
possible states and instead relying on a function approximator. This allows the agent
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Figure 1-2: Comparison of a traditional RL agent (left) with a DRL agent (right),
which utilizes neural networks and Deep Learning algorithms for the learning process.

to learn a good policy even if not all states have been visited, as neural networks gen-
eralize across the state space. The policy improvement process involves adjusting the
network’s weights using Deep Learning algorithms, often utilizing objective functions
derived from the Bellman equations [34, 270].

In recent years, DRL has been proposed for a wide range of real-world tasks.
Various research fields and industries view DRL as a crucial component for future au-
tonomous systems to optimize decision-making (see Figure 1-3). This trend is driven
by the evident success of DRL in several key applications [31, 270, 283, 336, 368], and
its influence continues to grow. The increasing number of peer-reviewed publications
containing the keywords "Reinforcement Learning" or "Deep Reinforcement Learn-
ing" in their titles, as shown in Figure 1-4, is a testament to this growth. Moreover,
domain-specific studies increasingly emphasize the term Deep RL, reflecting neural
networks’ integral role in advancing the field.

The range of real-world domains in which DRL has been proposed so far is large
[230,274], including —but not limited to— robotics [305], communications [124,246],
drug discovery [104], fluid mechanics [137], autonomous vehicles [208, 351], chip de-
sign [269], recommender systems [9], sailing [259], nuclear energy [86], energy sys-
tems [303], combinatorial optimization [256], and economics [272]. As Artificial Intel-
ligence (AI) becomes more deeply integrated into society, the potential applications
of DRL continue to expand, enhancing human decision-making processes. As Russell
& Norvig [324] puts it: “Reinforcement Learning can be viewed as a microcosm for
the entire AI problem”.

This dissertation studies the application of DRL to real-world problems. A real-
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world problem is defined as follows

A real-world problem or task is a problem that originates independently
from RL or DRL research and has relevance in the physical world. Real-world
problems can be fully software-based or may involve hardware components.
For example, optimizing resource management in a data center is a real-world
problem.

Throughout this dissertation, the terms RL and DRL may be used interchange-
ably, all referring to Deep Reinforcement Learning, where neural networks and Deep
Learning algorithms are integral to the RL agent. However, some of the issues ana-
lyzed in this dissertation may also be relevant to traditional RL.

1.2 Motivation

In recent years, the market for Machine Learning as a service (MLaaS) has expe-
rienced significant growth. In 2017, it was projected to reach US$ 20 billion by
2025 [87]. By 2020, 30% of high-tech and telecommunications companies had already
incorporated Deep Learning capabilities into their operations, resulting in an average
revenue increase of 5% [258]. However, these estimates fell short as AI technology
continued to evolve. The AI Index report of 2023 indicated that the US had invested
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nearly US$ 50 billion in AI in 2022, and the adoption of AI by companies more than
doubled since 2017 [255]. Additionally, AI has extended its reach into other impor-
tant domains such as policymaking and law. For instance, the US increased its AI
spending by 2.5 since 2017, and mentions of AI in global legislative proceedings rose
to nearly 6.5 times more since 2016 [255,261].

One significant factor contributing to the underestimated growth of AI is the
progress and accessibility of Large Language Models (LLMs) [121,309]. These models
are expected to impact multiple aspects of our lives, from shaping the labor market
[103] to facilitating new scientific discoveries [39]. The Reinforcement Learning from
human feedback (RLHF) fine-tuning process employed by many LLMs has played
a crucial role in aligning these models with human expectations regarding language
usage [64, 288]. Prior to the popularity increase of LLMs, RL had already garnered
attention in the media and research community due to notable successes such as
AlphaGo [336], AlphaStar [368], and more recently, AlphaTensor [111]. Given RL’s
potential to impact numerous domains, reports emphasize the importance of “charting
a course” for RL [260] and “turning toward more general RL” [406] to maximize the
value generated by AI.

The reliable integration of RL into autonomous systems operating in the real
world not only creates new market opportunities but also addresses significant societal
challenges. These challenges include managing the complexities of decarbonizing the
energy sector [303], handling capacity and resources in larger, more decentralized,
and autonomous communication networks [246], ensuring the safety and effectiveness
of intelligent transportation systems [160], accelerating the drug discovery process
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[412], solving non-linear and high-dimensional fluid mechanics problems for designing
energy-efficient systems [137], and more.

Despite the popularity increase coming from different communities, and the ex-
tensive research efforts to prove the applicability of RL in real-world contexts, the
successful deployment in real environments is a test many of the proposed RL models
in the literature still need to pass —real-world testing is usually left as future work.
The number of reported deployments remains low, and the actual impact in concrete
domains appears to be limited [16, 162, 296]. Currently, significant impact is only
observed when there is a substantial allocation of computational and human expert
resources [52]. This is particularly concerning in real-world domains in which access
to those resources is not easy, preventing many practitioners from fully understanding
the applicability of RL in their fields and influencing future research directions. In
contrast, other Machine Learning (ML) fields like computer vision or natural language
processing offer non-expert practitioners an increasing number of tools to successfully
integrate state-of-the-art methods into real-world systems [258]. Consequently, one of
the pressing questions for the extended RL community is how to make RL technology
more accessible and deployable without incurring large costs [260].

In this context, a practitioner is defined as an individual or entity possessing
relevant domain expertise in a specific real-world problem, who may or may not
possess expertise in RL at the same time. Practitioners within the extended
RL community are those who seek to utilize RL in their respective domains.

The term deployability, within the scope of this dissertation, refers to the
extent to which an RL agent can be integrated and allowed to autonomously
operate in a real-world environment with minimal or no supervision from the
practitioner.

1.2.1 Why is RL adopted?

As shown in Figure 1-4, the interest in RL and DRL continues to grow. This growth
is also evident in the increasing number of fields where RL is being applied to solve
specific problems. At a high level, the motivations behind this adoption can be
grouped into four categories:

1. Fast decision-making in high-dimensional contexts: In certain industries,
systems are scaling up and presenting new degrees of freedom, making them
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more challenging to operate, particularly in time-sensitive settings. In such
cases, DRL offers a new approach to enable fast decision-making. For example,
within the satellite communications community, as constellations become larger
and more flexible, DRL has been explored as a means to improve decision-
making speed [88,113].

2. Leveraging raw signals: Some systems require control policies that can ef-
fectively utilize raw signals such as images, sounds, or brain activity. DRL,
with its powerful representation capabilities, is being studied to achieve bet-
ter performance in such cases. Examples of applications include robotics tasks
such as manipulation [184, 305] and healthcare applications such as treatment
prescription [108,398].

3. Supervision is costly or not possible: In situations where supervised learn-
ing is expensive or not feasible, DRL offers a way to learn policies by encod-
ing system-level goals into reward functions and leveraging exploration during
training. This is particularly applicable to NP-hard combinatorial optimization
problems [96] and drug design applications [281, 306], where DRL can provide
approximate solutions and identify promising candidate molecules, respectively.

4. Long-term dependencies: Finally, DRL provides a framework that can ef-
fectively account for sequential dependencies in decision-making. This aspect
is especially relevant for recommender platforms and other interaction-based
systems [9, 409].

1.2.2 A lack of robustness in real-world RL

As introduced earlier, real-world RL is currently brittle. On one hand, from a domain-
specific perspective, it is challenging to fully characterize concrete tasks and envi-
ronments in the real world, and training in real environments may not always be
feasible or preferred. On the other hand, real-world problems, regardless of the do-
main, involve certain challenges that make learning more difficult. Numerous domain-
agnostic challenges have been identified in RL research, including non-stationarity,
high-dimensionality, sparse rewards, and generalizability, among others [100,184,419].
The combined impact of these challenges affects the ability of an RL agent to suc-
cessfully complete real-world tasks or problems.

The extent to which an agent accomplishes a real-world task can be examined
from two perspectives: performance and robustness. These two properties represent
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distinct goals for the agent.

An RL agent that demonstrates high performance in a particular real-world
problem or task is capable of satisfactorily completing the task under a specific
set of assumptions (e.g., nominal conditions). However, these assumptions may
not encompass all the configurations in which the task presents itself in the real
world. An RL system that can train a high-performance agent is referred to as
a system that achieves high performance.

The majority of domain-specific studies in the literature demonstrate that the
proposed RL systems achieve high performance. Under specific assumptions that do
not compromise the nature of the underlying problem, it is possible to train an agent
that successfully completes the task. Here are some illustrative examples:

• A quadrupedal robot learns to walk on completely flat surfaces using an RL
model.

• An RL agent can learn how to efficiently allocate power in a 100-beam satellite.
• New molecules generated via RL show high bioactivity against a certain target.
• A drone can learn to autonomously navigate the interior of large factories using

an RL controller.
• An RL agent controls traffic lights at an intersection with 3 roads.

However, achieving high performance might not be enough for an agent to be
deployed from the practitioner’s perspective, as the agent can only complete the task
under a limited set of assumptions that capture specific configurations of the problem.
A subsequent step might involve capturing a much broader range of assumptions and
configurations, which are necessary for practitioners to consider RL as a more cost-
efficient problem-solving approach. This second step requires a different type of ability
distinct from performance, which this dissertation refers to as robustness. Formally,
it is defined as follows:

Robustness refers to the ability of an RL agent to satisfactorily complete a
real-world problem or task across all the configurations and sets of assumptions
in which the task presents itself in the real world. Thus, agents displaying
higher robustness are better equipped to address the specific challenges that
arise in real-world RL tasks. An RL system that can train a robust agent is
referred to as a system that achieves high robustness.
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Robustness, or the lack thereof, primarily determines the deployability of RL
agents in the real world. To better grasp this concept, let’s consider how a lack
of robustness manifests in the aforementioned illustrative examples of performance:

• The quadrupedal robot fails to learn gait movement on uneven surfaces, or the
trained policy does not generalize beyond flat terrains.

• The RL model for power allocation fails to train effective policies in the 1,000-
beam regime.

• RL struggles when faced with more complex targets requiring larger molecules.
• The same drone fails to learn if we impose a budget of samples to learn from.
• The same traffic agent does not perform well in 4-road intersections.

In all these cases, a practitioner may choose not to deploy the agent as it cannot
address all the relevant scenarios, and rectifying this issue during operation would
likely be more costly than seeking an alternative approach or set of approaches. It
should be noted that performance and robustness are not necessarily independent, as
an agent that performs poorly is unlikely to be robust. However, the opposite may
not hold true.

Given that the literature indicates current RL research prioritizes performance
over robustness, a natural question arises: How can we enhance the robustness
of RL systems to real-world problems and phenomena? This question serves
as the motivation for the research direction undertaken in this dissertation. In many
cases, addressing robustness aligns with addressing the deployability of RL for the
specific problem being considered.

Other uses of the term robustness

An important distinction regarding the use of the term “robustness” across disciplines
is necessary. In certain research areas such as operations research, robustness strictly
pertains to the adaptation of systems to uncertainty. In this dissertation, the defini-
tion connects robustness to the ability to withstand change, specifically indicating that
an RL agent is robust to changes in the problem configuration or assumptions that go
beyond uncertainty in the parameters. To the best of my knowledge, no other term
has been proposed in the RL literature to describe RL’s ability to address the com-
plexity of real-world problems comprehensively. Other uses of the term “robustness”
in the RL literature include robustness against specific real-world challenges [100] and
robustness against uncertainty [393], as derived from operations research.
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Robustness also overlaps with the well-known concept of generalization or gener-
alizability in ML. It might not be uncommon in the literature to refer to an agent
that generalizes well as a robust agent. From the ML perspective, a model able to
generalize is defined as a model that can complete its task given contexts that have
not been seen during training. In the case of RL, an agent that learns a policy that
takes good actions given states or scenarios unseen during training is referred to as an
agent that generalizes or possesses generalizability. For example, an RL agent trained
to drive in cities should generalize to unseen traffic conditions, as it cannot be trained
in all possible scenarios. This issue, which in Chapter 6 is referred to as zero-shot gen-
eralizability, is one of the real-world challenges considered by many [100,184,210,393].

However, generalization can also be seen from the perspective of the complete
RL system. To better understand this, we can think of real-world problems as a
composition of subproblems, which correspond to different sets of assumptions or dif-
ferent configurations. For example, the problem of driving could be decomposed into
two subproblems: driving in a city and driving on a highway. Similarly, modifying
elements of the learning process such as the training budget or restricting access to
specific information from the environment, can also be regarded as considering dif-
ferent subproblems. In that sense, one agent can be trained to perform well in one
specific subproblem, although it can only be considered robust when it is able to
generalize across all important subproblems of the real-world problem at hand. This
idea of generalization and its overlap with robustness is further discussed in Chap-
ter 3. The subproblem perspective is introduced in this dissertation to support the
explanation of certain concepts; in practice, partitioning a problem into subproblems
might not be straightforward, might have multiple levels of decomposition, and might
be subject to different interpretations.

1.3 General Thesis Objectives

This dissertation sits at the intersection of RL research and real-world applicability,
aiming to bridge the gap between RL system design and adaptation to real-world
requirements. A significant aspect of this gap is the lack of robustness in current
RL agents, which serves as the overarching framework for the dissertation’s general
objectives. Conversely, improving performance and exploring ways in which RL beats
performance benchmarks for specific practical applications are beyond the scope of
this work.

Given that the holistic perspective of robustness is often neglected in the RL
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literature, the first objective of this dissertation is to gain clarity on this concept and
identify its various manifestations in the real world. The specific aim is as follows:

General Objective 1

To characterize different aspects of robustness that hinder the deployment of
RL systems and agents in real-world scenarios.

Then, I aim to better understand what needs to change in current RL design
practices if robustness and the bridge with real-world applicability need to be priori-
tized. In this regard, I aim to investigate new methods and practices that align better
with robustness. While increasing performance is not the primary focus of this dis-
sertation, I will consider it simultaneously and identify directions that promote both
performance and robustness, as well as directions that inherently involve trade-offs
between the two. The second objective of this dissertation is stated as follows:

General Objective 2

To develop new RL design methods that prioritize robustness alongside perfor-
mance and comprehend their associated trade-offs.

Lastly, while the conceptual analysis in this dissertation and many challenges
related to real-world RL and robustness are domain-agnostic, I acknowledge that
implementing robust RL systems may require considering the specifics of individual
real-world problems. To this end, I will focus on particular real-world problems
where robustness can be measured and apply the ideas and methods explored in this
dissertation to obtain more robust solutions for those specific problems. The final
objective of this dissertation is defined as follows:

General Objective 3

To apply conceptual frameworks and design principles that prioritize robustness
to address concrete real-world problems.

The next chapter will review the existing literature on real-world RL and its asso-
ciated challenges to gain a deeper understanding of the research gap. Subsequently,
specific research opportunities that this dissertation aims to address will be proposed,
along with a formal Thesis statement.
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1.4 Background

The majority of research around real-world RL can be classified either as domain-
specific or domain-agnostic, two complementary thrusts of work. In this section I
introduce both of them and present representative examples. In addition, I also
discuss other areas of RL research that are not directly linked to real-world RL —
although they might impact it— such as the study of theoretical foundations of RL,
the development of new RL algorithms, or the application of new Deep Learning
research to RL. I consider these as research thrusts that aim to enrich the toolbox
available to researchers who do focus on specific issues of real-world RL.

1.4.1 Domain-specific real-world Reinforcement Learning re-

search

Domain-specific RL research focuses on the application of RL to a specific real-world
problem or task with the objective of solving that task or improving upon the state-of-
the-art. The majority of the works come from specific communities; examples include
using RL for Traffic Signal Control [278] or RL for drug discovery [81]. In each of
these examples, and in many others from numerous research communities, RL studies
mostly focus on finding existing RL methods that can work well for the problem being
considered.

To evaluate specific agents, designers generally pick a subproblem (see Section
1.2.2) or a few of them, and run analysis using the experimental setup defined by
these subproblems. While the subproblems being considered might be good rep-
resentatives of real-world scenarios, most experimental setups do not capture well
subproblem diversity [192]. This leads domain-specific research to overfocus on per-
formance in those subproblems rather than designing for robustness in the set of
—possibly many— subproblems that matter for deployability.

In the process, designers commonly leverage broad domain expertise to finetune
the different components of RL systems, such as state representations or reward
functions. However, in many cases, these efforts lead to excessively tailoring agents
to the few subproblems that conform the experimental setup. To try increasing the
variability in the experimental setups, some communities put substantial efforts in
designing domain-specific RL benchmarks, such as OpenSpiel in the case of games
[224], and in developing flexible simulators that can be incorporated in experimental
setups, such as the SUMO library in Traffic Signal Control [241].
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Table 1.1 summarizes the main characteristics of domain-specific RL research and
contrasts them with the trends of domain-agnostic RL research.

1.4.2 Domain-agnostic real-world Reinforcement Learning re-

search

Domain-agnostic RL research consists of developing algorithms, methods, and frame-
works that address specific problem features that manifest across various domains.
For instance, coming up with new approaches that benefit robustness towards a spe-
cific real-world challenge falls into the class of domain-agnostic RL research. The
ultimate goal of these investigations is that their findings can be applied to multiple
domains and problem instances.

There are many studies in the literature in which the main premise is to pick a
specific real-world challenge and investigating it without using any concrete real-world
problem as support. Generally, the contributions of these works involve the design of
a new method or approach that moves the community a step closer to achieving ro-
bustness against that challenge. To that end, these studies utilize standardized bench-
marks that are not based on specific real-world problems but on toy-like experimental
setups which emphasize the presence of the challenge being addressed. The research
on these benchmark environments is rich [28,75,84,100,147,286,355,361,373,400].

While one does generally observe improvement upon the benchmarks for the chal-
lenges considered, rarely do these studies follow through with real-world testing on
specific applications. Therefore, evaluation on real-world experimental setups is usu-
ally left as future work for domain-specific practitioners. A possible reason for that
might be to avoid tailoring the new methods to the features of any domain in par-
ticular, which might not generalize to other domains. In that sense, domain-agnostic
RL research rarely leverages domain knowledge, many important domain skills are
left to be learned from scratch by the agent.

Table 1.1 summarizes the points presented in this section and juxtaposes them
with their domain-specific counterparts.

1.4.3 What is missing?

After presenting a description of the trends in both domain-specific and domain-
agnostic, here I argue about the possible synergies that could be established between
both thrusts of work in order to make steps towards more robust RL and a larger
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Table 1.1: Main differences between domain-agnostic and domain-specific real-world
RL research.

Domain-agnostic research Domain-specific research

Focuses on challenges of real-world RL
without investigating any particular
problem or task

Focuses on real-world problems and
tasks, although it generally does not
capture all present real-world chal-
lenges well; it focuses on single sub-
problems

Investigates new methods that address
the specific challenge being considered

Investigates which existing methods are
useful to address the problem being
considered

Studies robustness against the real-
world challenge at the center of the re-
search

Generally prioritizes performance in
one concrete subproblem over robust-
ness across many subproblems

Experimental setups mostly include
toy-like environments and domain-
agnostic RL benchmarks that have sub-
stantial flexibility

Experimental setups are based, to-
tally or partially, on real-world environ-
ments, although they mostly capture
few subproblems

There is a widespread lack of follow-
through on specific real-world problems
that exhibit the challenge being consid-
ered

Leverages domain expertise to test on
real-world-based environments

Sometimes attempts to learn certain
behaviors and constraints from scratch

RL systems and agents are tailored to
a specific subproblem

number of deployments. I summarize my perspective on these opportunities in the
following bullet points:

• The path to robustness and deployments passes by doing research on specific
real-world problems while focusing on both the scope of important subproblems
and the real-world challenges that are intrinsic to the problem.

• In some cases, existing methods might be enough to address the problem, and a
know-how on leveraging those is an important skill. In other cases, the solution
might require investigating new methods and designs.

• The key to deployability is to address robustness capturing all intrinsic real-
world challenges and considering all important subproblems. In the process,
thinking from the point of view of the robustness to individual challenges could
be helpful. To that end, practitioners might need to trade performance in
concrete subproblems for robustness in the overall problem.
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• Experimental setups should be based on the real-world problem at hand, al-
though they should also be flexible enough to model subproblem variety.

• There should be a leverage of domain expertise without getting into excessive
tailored solutions that lack robustness.

1.4.4 Other areas of Reinforcement Learning research

In addition to domain-specific and domain-agnostic RL research, there are several
other research areas that are out of the scope of this dissertation but contribute
to the progress of RL as a field and directly or indirectly influence real-world RL
research. Here I refer to RL theory, the development of new RL algorithms, the
infusion of Deep Learning research into RL, and the development of new research
infrastructure for RL. In the following lines I briefly summarize the main ideas of
each research direction.

Theoretical foundations of RL delve into the mathematical principles underlying
RL algorithms. Researchers analyze the convergence properties of different RL algo-
rithms, investigate their sample complexity, and develop theoretical frameworks to
understand their behavior. By establishing theoretical guarantees, researchers can
better guide the development of RL algorithms, ensure their stability, and provide
insights into their limitations and potential improvements. A good example of theo-
retical research in RL is the study of multi-armed bandits [338].

Developing new RL algorithms constitutes an active area of research which aims
to develop new methods for RL agents to learn more effective policies. By identifying
problems in the learning behavior of agents, researchers propose new algorithms that
can be applied in different domain-specific contexts. In that sense, these algorithms
belong to the “toolbox” that domain-specific practitioners use when applying RL in
their domains. In many cases, research directions on new RL algorithms overlap with
the theoretical study of RL and also synergize with Deep Learning research. Examples
in this category include many popular RL algorithms such as Rainbow [166], Proximal
Policy Optimization (PPO) [328], and Soft Actor-Critic [152].

Then, the application of new Deep Learning research to RL leverages the advances
in neural network architectures, optimization methods, and training techniques. Us-
ing several techniques first proposed for supervised learning research has been suc-
cessful in many RL studies and constitutes an important source of innovation in
RL. The literature in RL already shows examples leveraging graph neural networks
(GNNs) [58], transformers [318], automated Machine Learning (AutoML) [296], trans-

35



fer learning [422], etc. These methods also become part of the design toolbox that
RL researchers and practitioners can use.

Finally, there are also efforts focused on developing RL infrastructure that other re-
search threads can rely on. The most well-known examples correspond to the creation
of widely-used repositories for RL development such as OpenAI Gym [43], OpenAI
Spinning Up [6], and DeepMind ACME [171]. In addition, other authors directly work
on highly-flexible environment suites that can be leveraged for multiple purposes, such
as the Arcade Learning Environment [30] and the StarCraft environments [326].

1.5 Thesis structure

The remainder of this dissertation is structured as follows: Chapter 2 reviews the
literature of different domain-agnostic fields that are relevant for real-world RL, in-
cluding the real-world challenges and a deeper dive into AutoML for RL. Chapter
3 introduces a roadmap for real-world RL that aims to identify all the important
elements that play a role in the performance and robustness of RL agents in practical
applications. Chapter 4 dives deeper into the current real-world considerations for
one of these elements, the state space, and studies the design of feature sets based
on mutual information in the context of policy learning. Then, Chapter 5 proposes
a new AutoML method, MetaPG, for the design of RL loss functions that optimize
multiple objectives at the same time. Chapter 6 demonstrates the validity of MetaPG
by applying it to the specific use case of optimizing, in addition to single-task per-
formance, zero-shot generalizability and stability, two key aspects of RL robustness.
Chapter 7 shifts the focus to the implications of developing new RL systems in the
context of concrete real-world problems. In Chapter 8 and Chapter 9, I focus on two
particular problems, frequency plan design in satellite communications and molecular
optimization, respectively, and propose new RL systems and evaluation procedures
that better address aspects of robustness for these particular problems, analyzing the
specifics of each problem in the process. Finally, Chapter 10 summarizes the work
conducted in this dissertation, outlines the main contributions, and identifies areas
of future research.
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Chapter 2

Literature Review

This chapter covers the literature review related to the main goals of the dissertation.
Section 2.1 explores the different issues that make real-world RL challenging and
ties them to different areas of the literature. Section 2.2 presents the literature on
the so-called challenges of real-world RL and summarizes the different approaches
utilized to mitigate them. Then, it goes deeper into one of the most recently popular
areas of work: Automated Machine Learning for RL. Following, Section 2.3 presents
other important considerations for real-world RL research such as reproducibility and
experimental analysis. Next, Section 2.4 provides different examples in which RL has
been successfully deployed in the real world. After examining the general literature
on real-world RL, Section 2.5 presents the specific research opportunities addressed
in this dissertation and Section 2.6 outlines the research statement. The chapter
concludes in Section 2.7 with an overview of which opportunities are addressed in
each of the chapters to follow.

2.1 What does make the real world hard?

As discussed in the previous chapter, one of the robustness issues that impede RL
agents from succeeding in the real world is the presence of domain-agnostic challenges
that manifest across multiple domains. Initially, the majority of these challenges were
not directly incorporated into the theoretical RL formulations and have only been
recognized as RL research and application have both progressed. While there is no
well-established classification for these challenges, several studies have attempted to
summarize them, I plot them in Figure 2-1.

Dulac-Arnold et al. conducted extensive work on these challenges in their pa-
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Figure 2-1: Set of challenges of real-world DRL considered in different studies and in
this dissertation. Some of the challenges might interact or overlap in specific settings.

pers [102] and [100]. They offered a comprehensive review of nine domain-agnostic
challenges and analyzed their impact on RL agents. These challenges include learn-
ing from limited samples, dealing with delays in the system, high-dimensional state
and action spaces, safety constraints that hinder exploration, partially observable
environments, multi-objective or unspecified rewards, real-time inference, training
from offline logs, and providing explainable policies. By introducing a set of real-
world-oriented benchmarks in [100], the authors were able to quantify the correlation
between the intensity of a specific challenge and the decrease in performance when
using two state-of-the-art DRL algorithms, namely D4PG [24] and DMPO [3]. This
study stands as the first holistic analysis of the robustness of RL in real-world set-
tings. One of the key findings from their work is that the simultaneous presence of
multiple challenges significantly impacts performance. Since that many real-world
problems involve multiple challenges concurrently, this paper sheds light on why op-
erators might hesitate to deploy even the most advanced RL models.

Other authors have approached the challenges of real-world RL from the per-
spective of specific domains, particularly robotics. Zhu et al. [420] emphasize three
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important challenges for RL in robotics: learning from raw sensory input, devising
reward functions without reward engineering, and learning without resets. The au-
thors propose a method that specifically addresses this triad while recognizing that
achieving “truly scalable real-world robotic learning” involves tackling a broader range
of challenges simultaneously.

This broader perspective is adopted by Ibarz et al. [184] as they outline twelve
different DRL challenges specific to robotics: reliable and stable learning, sample effi-
ciency, use of simulation, side-stepping exploration challenges, generalization, avoid-
ing model exploitation, robot operation at scale, asynchronous control, goal-setting
and reward specification, multitask learning and meta learning, safe learning, and
robot persistence. For each challenge, the authors discuss specific manifestations of
each challenge in robotic tasks and review the related literature. Their conclusions
suggest that, while there exists a set of real-world DRL challenges that are truly
domain-agnostic, specific domains might introduce unique additional challenges that
are equally important.

The aforementioned papers aim to analyze the various challenges posed by real-
world operation to DRL models. Their findings can be summarized as follows:

1. The set of domain-agnostic challenges is broad and diverse, and there is not a
unique interpretation of this set. Capturing all possible challenges requires an
holistic perspective on RL operations.

2. The nature of these challenges may vary depending on the specific application.
Certain fields, such as robotics, may prioritize a subset of challenges or exhibit
additional domain-specific challenges that are equally crucial.

3. In general, real-world RL challenges often manifest in combinations, and the
cumulative effect can significantly hinder the performance of RL agents.

To the best of my knowledge, no other paper in the literature has thoroughly
examined multiple real-world RL challenges or analyzed RL robustness from a holistic
standpoint. Most existing literature tends to focus on specific challenges or issues
rather than considering the full scope of robustness. The subsequent section provides
a literature review on each of the specific challenges considered in this dissertation.

2.2 Challenge mitigation strategies

This section addresses the literature on each specific challenge and tries to summarize
the mitigation strategies adopted for each of them. These are not unique; sometimes
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the same method is proposed in different contexts. The goal of this section is to
extend the challenges identified in [101] and try to carry out an analysis following the
format in [184]. This part of the dissertation is based on my subjective view of the
challenges and the reviewed literature; as an active area of research, it remains open
to different interpretations.

As shown in Figure 2-1, this dissertation considers 18 challenges: offline RL, learn-
ing from limited samples, large-scale learning, high-dimensionality, safe RL, partial
observability, non-stationarity, unspecified reward, multi-objective reward, system de-
lays, representation, generalizability, long trajectories and credit assignment, stochas-
ticity, multi-agent DRL, counterfactual reasoning, stability, and the combination of
many of these challenges.

Note these challenges do not need to be independent, in some contexts spe-
cific challenges might be a consequence of other challenges manifesting (e.g., non-
stationarity during learning might be a cause of a partially observable environment).
There are two other challenges highlighted by some authors that are not included in
my analysis as isolated challenges: continuous spaces and real-time inference. These
challenges are hard to be found being addressed in isolation and therefore are ex-
cluded from the previous list. However, they remain important considerations for
operation; the former deals with how state and action spaces that are naturally con-
tinuous can be successfully incorporated into the agent’s representations, and the
latter concerns the speed in which an agent takes an action in the environment after
receiving the updated states. In some cases, a high frequency might be needed, this
problem is linked to hardware architectures and has been studied by the deep learning
community [197,271].

Before diving into the challenge-specific review, it is important to mention that the
literature on each challenge is in itself rich enough. However, my goal is to provide the
reader with a sufficiently deep review of each challenge such that, when considering the
overall set of challenges, the reader can comprehend the various approaches employed,
their classification, and the most prominent ones. To facilitate further consultation,
I also provide review papers for most of the challenges that delve deeper into the RL
community’s work on each specific challenge.

2.2.1 Challenge-specific work

Offline DRL Some agents might require learning from offline logs or external poli-
cies instead of directly interacting with the environment, as that might be costly or
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not possible. An extensive review on the subject is presented in [228]. To address this
issue, different off-policy algorithms such as DDPG [233] or D4PG [24] can be used in
some cases. Other authors propose batch-constrained RL methods [128,222,334,388],
where the learned policy is constrained based on the state-action distribution from
the dataset and the extrapolation error is accounted for. Then, the work by Agarwal
et al. [12] considers an ensemble or convex combination of Q-functions to leverage
data in a replay buffer. Finally, model-based RL [348] constituted another research
area in the context of offline DRL [205,401].

Learning from limited samples In some cases an agent must learn from a small
number of training samples, either because acquiring experience is slow or costly, or
rapid adaptation to a new context is needed. While the representations chosen or
learned, as well as the specific algorithm —e.g., SAC [153]— can impact the learning
speed [340], multiple methods have been proposed to directly address data efficiency.
One alternative is to learn a model of the world and use that model to plan [48,66]. In
the context of learning specific tasks, if expert demonstrations [98,285] or behavioral
priors [337] are available, the agent can bootstrap from those to avoid interacting with
the environment. If the goal of the agent is multitask learning, various tasks can be
learned concurrently taking into account multiple gradient inputs [399], or if the tasks
are to be learned sequentially, meta learning algorithms, especially few-shot methods,
offer a way to learn new tasks faster [115, 227, 231, 346]. Finally, in online learning
contexts, where new tasks need to be learned fast and on-the-fly, different approaches
have been proposed to promote forward and backward transfer [53,248,275,329] and
avoid catastrophic forgetting [211].

Large-scale learning In specific settings an agent should be able to quickly capital-
ize on massive amounts of data, either because experience comes at a high frequency
or multiple independent agents can collect experience simultaneously. For the latter
case, when environments can be parallelized (e.g., self-driving cars, recommendation
systems, drone swarms), distributed training with importance and priority mecha-
nisms has been proposed in different works [8, 107,172].

High-dimensionality Some agents might need to operate in high-dimensional or
combinatorial state and/or action spaces (e.g., natural language, molecular space,
online retail catalogs). Here, one approach is to operate with lower dimensional
embeddings of the spaces [99, 322]. Zahavy et al. propose action elimination mech-
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anisms to determine which actions not to take first [402]. For the specific case of
Q-learning [348] over large action spaces, de Wiele et al. [83] propose replacing the
maximization operator for a neural network. Finally, the use of canonical spaces can
help reducing the state space size by encapsulating redundant states together [387].

Safe DRL While exploration plays an important role in the success of RL, au-
tonomous agents operating in real-world environments should account for safety con-
straints and be able to evaluate risks. One common approach to that end is to encode
constraints as part of the reward function [136], but that might not always be desir-
able [7]. Some studies propose adding a learnable safety layer on top of the policy in
order to prune or correct unsafe actions [80]. The work by Tessler et al. [356] explores
reward shaping and proposes a method that subtracts constraint-violation penalties
to the reward. Then, Lyapunov functions have also been proposed to certify stability
and safety of different RL-based controllers [35, 63]. Constraint satisfaction can also
be guaranteed by means of primal-dual methods, as shown by Qin et al. [308]. Finally,
an agent can also learn to trade rewards and costs by specifying constraints as costs
with state-dependent and learnable Lagrangian coefficients [40].

Partial observability Many environments in the real world are partially observ-
able. In the context of DRL, some authors initially proposed incorporating past
observations to the state [270] or use recurrent neural network architectures [159].
Inspired by the theory on POMDPs [50], Igl et al. [187] propose training a variational
autoencoder to learn latent representations encoding belief states. In the case the
agent competes against other non-fully-observable agents, Jaderberg et al. [190] show
that training populations of agents eventually leads to best agents finding suitable
policies for the environment. If, instead, the agent must cooperate with other agents,
the use of shared experience replay helps mitigating the effect of partial observabil-
ity [282].

Non-stationarity A robust policy should be effective in non-stationary environ-
ments, where the underlying dynamics might change over time due to various factors
that introduce noise or perturbations. In these contexts, one alternative is the use
of latent variables that encode environment representations that are robust to noisy
cues [391]. A well-established approach is to assume uncertainty in the transition ma-
trices and derive robust algorithms that consider worst-case scenarios [250] or pursue
soft-robustness [92]. Bayesian optimization-based methods can be also derived from
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this latter idea [91]. Finally, data augmentation and randomization during train-
ing can also lead to policies that adapt to real-world environments and generalize
better [301].

Unspecified reward Sometimes agents must learn skills without clear reward sig-
nals, due to either unavailable expert feedback, complex exploration dynamics, or long
horizon tasks. If there is no reward function but expert demonstrations are available,
Inverse RL is an approach to learn reward signals [127]. In some scenarios Inverse RL
is preferred over imitation learning, a more direct and scalable approach [117, 118].
Hansen et al. [156] propose a method to train policies by means of self-supervised
learning when deploying in environments without reward information. Another alter-
native is to learn a goal-conditioned policy via unsupervised learning, maximizing the
similarity between the visited states and a goal state [377]. In the context of multitask
learning, Eysenbach et al. [109] show an agent is capable of learning a diverse set of
distinguishable skills by maximizing entropy. These skills can be then used to better
adapt to new tasks.

Multi-objective reward Several tasks in the real world require accounting for
multiple objectives and an agent must learn to reason about them and make trade-offs
if necessary. To that end, many works rely on scalarization approaches that combine
the different objectives into a weighted reward function. This approach can be hard
to tune if there are changes on the individual rewards’ scale or their priorities over
time. To have a better control over the objectives, [2] proposes training individual
policies for each objective and then, instead of combining rewards in the reward
space, combine policies in the distribution space. Another alternative is to train a
different policy per preference over objectives [392,396], which leads to dense Pareto-
optimal sets of policies that trade the different objectives following the operator’s
preferences. Finally, meta learning methods have also been proposed to learn new
objective preferences and automate reward search in a few-shot fashion [59,110].

System delays DRL experimental setups generally assume negligible delay when
operating, observing new states, or receiving rewards. That might not be the case
in the real world. To address this issue, the framework of Delay-Aware MDPs was
introduced by Chen et al. [54] to account for delayed dynamics. A similar idea was
proposed by Derman et al. [90], where the delayed-Q algorithm leverages a forward
dynamics model to predict delayed states. Other works propose training with arti-
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ficial delays to simulate the hardware gap [221]. In the context of recommendation
systems, the method by Mann et al. [252] exploits intermediate observations/symbols
to mitigate the effect of delays.

Representation In certain environments the challenge lies in efficiently encoding
all information relevant to the problem or task, leveraging the sufficient amount of
domain knowledge or inductive biases [167]. Trade-offs are present, e.g., learning
policies from physical state-based features might be more sample-efficient —although
not always possible— compared to learning from pixels or other raw signals [355]. The
question “what makes a good representation for RL?” is studied by Singh et al. [337].
A simple approach is to design different representations for the same environment and
turn the specific chosen representation into a hyperparameter that can be tuned based
on the scenario [132, 207]. Different environment encodings can be also combined
into multimodal representations (e.g., image and sound in video-based environments)
[358, 362]. Helpful representations can also be learned, for instance by means of
contrastive learning frameworks [340,389]. Then, Zhang et al. [403] propose learning
invariant representations by means of lossy autoencoders that capture only task-
relevant elements. Finally, representation problems can also be regarded from the
perspective of the reward; better reward functions might be devised following reward
shaping methods [60,110].

Generalizability Also referred to as generalization in the literature. Policies should
be able to generalize to different instances of the system/and or environment regard-
less of their low-level features, without posing a considerable challenge. To that end,
randomization strategies can be used to increase robustness against poor generaliza-
tion [14, 226, 302, 359]. AutoML methods for RL serve as another way to achieve
generalization, by parametrizing specific elements of the DRL framework and using
an outer loop learner trained on multiple environments [15, 176, 212, 280]. Learn-
ing common invariant latent spaces could be another approach to consider in some
contexts [148]. The use of regularization strategies has also proved to benefit gener-
alization [56,69,186].

Long trajectories and credit assignment When trajectories are long and/or
rewards are sparse, learning effective behaviors can be challenging; the agent must
discover a long sequence of correct actions. Hierarchical RL poses a possible solution,
by considering a hierarchy of auxiliary tasks with known reward structure in order
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for the agent to reason at different levels of temporal resolution [273,319,365]. Other
works propose attention mechanisms to ease credit assignment over long timescales
[182, 379]. Then, the method presented by Arjona et al. [17] tackles the problem
by redistributing reward, i.e., creating a return-equivalent MDP that redistributes
reward more uniformly. Finally, reward shaping methods are also studied for this
type of contexts [60,344].

Stochasticity In some occasions, real-world environments can be stochastic, which
might lead to high variance gradient estimates that hamper learning. To make sure
the agent is trained over a wide distribution of states, data augmentation strategies
and randomization are proposed by some authors [226, 359]. The method presented
by Ghosh et al. [141] suggests partitioning the initial state distribution and train
different policies that are later merged in a divide-and-conquer fashion. In highly-
stochastic environments, the final policy might be better if the agent does not learn
based on the average return but on a distribution over returns [24,32,79].

Multi-agent DRL In many real-world environments (e.g., autonomous vehicles,
robot swarms), a team of agents must align their behaviors while acting in a decen-
tralized way [312]; leveraging experience from multiple agents is not always straight-
forward and other challenges such as partial observability and non-stationarity might
also come into play. An extended review on the subject can be found in the work by
Nguyen et al. [277]. To address this challenge, one approach is to have each agent
learn independently [352], which decentralizes training but might originate stability
problems [123]. On the opposite side, Foerster et al. [122] explore the framework
of multiple decentralized actors and a single centralized critic. Inspired by Value
Decomposition Networks [345], the work by Rashid et al. [312] and Son et al. [339]
propose hybrid mechanisms to combine per-agent Q-functions into a single central-
ized Q-function. Multi-agent Policy Gradient algorithms introduce a similar concept
designed for continuous spaces [229, 243], which can be also combined with atten-
tion [188].

Counterfactual reasoning The ability to reason about not taken actions and
“what-ifs” is necessary in some real-world systems, especially when constraints or
risks are hard to capture. This is a relevant problem in healthcare applications [307].
This challenge in part overlaps with offline DRL, since extrapolation techniques can
be useful in some contexts, especially when there is correlation between state-action
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pairs inside and outside the experience databases [128]. While some studies might
touch on this concrete challenge, I did not find any work specifically focused on coun-
terfactuals and real-world DRL. Facebook’s platform Horizon [139] leverages work on
Counterfactual Policy Evaluation [376] to evaluate policies without needing to de-
ploy them. In the specific case of agents playing imperfect-information games might
benefit from Counterfactual Regret Minimization strategies [46].

Stability Once deployed, agents should maintain the desired behavior for indefinite
time, even when new experience is collected. This challenge is connected to other con-
siderations: online learning and the problem of catastrophic forgetting, autonomous
resets (Ibarz et al. [184] identify autonomous resets as one of the specific challenges in
the context of robotics), and the general issue of reliability. From the perspective of
post-deployment or operation, there is no literature that addressed this issue in the
context of real-world RL. However, in some control applications stability has been
studied as the ability to reach the same performance during independent training
runs [21]. This is an issue that overlaps with stochasticity, as it has been shown that
randomness can play a substantial role in the outcome of a training run [163].

Combined challenges Finally, as pointed out by Dulac-Arnold et al. [101], real-
world DRL challenges do not usually appear in isolation but combined. The literature
specifically addressing multiple challenges simultaneously is scarce. For instance,
the work by Jaderberg et al. [190] focuses on both multi-agent settings and partial
observability, although they are commonly related. There are no other works tackling
numerous challenges at the same time.

2.2.2 Summarizing the mitigation approaches in the literature

Subject to the previous analysis, one can realize that, while the set of challenges is
diverse, the mitigation strategies used to address them are not unique to one chal-
lenge but sometimes the same method or approach is proposed in different contexts.
Table 2.1 tries to group the different different strategies into 13 classes or types:
AutoML frameworks, derivation of mathematical theorems, changes in neural net-
work architectures, solutions directly derived from RL theory, embeddings and latent
spaces, reward engineering, derivation of environment models, pruning and masking
strategies, relying on auxiliary tasks, data augmentation approaches, use of heuristics,
population-based methods, and solutions specifically designed for multi-agent cases.
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Table 2.1: Summary of the different approaches that have been considered by the
RL community to address the specific challenges of real-world RL. Each approach has
been considered for different challenges independently.

Approach Description Examples

AutoML An outer loop learner changes meta param-
eters to better adapt to the challenge

Meta learning for offline DRL, meta learning for
multi-objective reward, Meta RL for generaliz-
ability, replacing action maximization by neural
network search in high-dimensional spaces

Mathematical
guarantees

Derive equations and theorems that support
the challenge fulfillment

Lyapunov functions and primal-dual methods for
safe DRL, assume uncertainty matrices to address
non-stationarity

Neural
network
architectures

Rely on Deep Learning advances to increase
robustness against the challenge

RNNs for partial observability, attention mecha-
nisms for credit assignment, network ensembles
for offline DRL

RL theory Adapt theoretical RL frameworks to DRL
settings and the use of neural networks

Off-policy algorithms, POMDPs, Delay-Aware
MDPs, Constrained MDPs, Maximum-entropy
RL

Embeddings
and latent
spaces

Address challenge problems by relying on
robust intermediate embeddings

High- to low-dimensional embeddings, latent vari-
ables for non-stationarity, multimodal and con-
trastive learning-based representations, unsuper-
vised learning

Reward
estimation or
modification

Try to overcome the challenge by directly
modifying the reward structure and/or
function

Reward shaping in long trajectories, reward shap-
ing for safe DRL, reward redistribution, distribu-
tional RL against stochasticity

Deriving a
model

Instead of learning a policy, learn models of
the environment and use them to plan Model-based RL, imitation learning, inverse RL

Pruning and
masking

The learning process involves deciding,
among different learning signals, how im-
portant each of them is and eliminating the
unnecessary ones

Batch-constrained methods for offline DRL, dis-
tributed training in large-scale settings, action
elimination in high-dimensional spaces, divide-
and-conquer methods in stochastic environments

Use auxiliary
tasks

Provide the agent with auxiliary tasks that,
combined, increase robustness against the
challenge

Multitask learning and online learning for data
efficiency, self-supervised learning for unspecified
reward, hierarchical RL in long trajectories

Data
augmentation

Rely on different data augmentation and
data wrangling techniques

Randomization to transfer better, data augmen-
tation to address non-stationarity and stochastic-
ity

Heuristics Use human-crafted rules or processes to ad-
dress the challenge

Scalarization of multiple objectives, hyperparam-
eter tuning

Population-
based
methods

Have multiple agents with slightly different
parameters/objectives and search for the
best ones

Multi-agent populations in partially observable
environments, multi-objective populations

Multi-agent
specific

Solutions specific to the multi-agent chal-
lenge that can not be mapped to other chal-
lenges

Independent Q-learning, decentraliced actors and
centralized critic, hybrid mechanisms

The number of ways in which real-world challenges, which constitute different as-
pects of robustness, are addressed is large, but there is not a clear one-to-one mapping
between specific strategies and specific challenges, since the same ideas can be applied
to solve different problems. For example, deriving a model of the environment is use-
ful for tackling offline RL problems and also cases in which the reward is unspecified.
Despite the diversity of solutions, I identify a trend in automated Machine Learning
(or AutoML) frameworks to solve some of the challenges. In the following section, I
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expand my literature review on AutoML and identify current research threads.

2.2.3 AutoML for RL: a novel and popular research direction

Based on the grouping in Table 2.1, many research directions are converging towards
automated Machine Learning or AutoML [183] as a promising research area to tackle
domain-agnostic challenges. AutoML has proven to be a successful tool for supervised
learning problems [116,313,369,423]. Within the realm of AutoML, the integration of
AutoML frameworks with RL has given rise to Automated Reinforcement Learning or
AutoRL. AutoRL methods aim to automate the design of RL algorithms [29,67,212,
280], their hyperparameters [165, 395, 404], the policy/neural network [129, 266], or
elements of the environment (e.g., state representation, reward, curriculum1) [89,110,
112, 120, 149, 371], and other components, enabling generalization across a broader
range of problems and reducing the reliance on manual design processes that do not
scale well. So, in addition to a better performance or generalization, AutoRL research
also looks to reduce design costs [296].

Broadly speaking, AutoRL methods employ a double-loop algorithm consisting of
an inner loop, where an RL agent learns policies for different environments, and an
outer loop, where an AutoRL optimizer (might be also described as meta learner [175])
changes elements of the agent such as the neural network architecture, algorithm
hyperparameters, or the structure of the loss function. This is illustrated in Figure
2-2. For example, we consider the case in which the AutoRL optimizer provides, fully
or partially, the loss function utilized by the agent. In this case, the agent uses the
provided loss function to find a good policy for the task at hand. Then, the learning
curve for this process and the experience collected is passed to the AutoRL optimizer
which, in turn, leverages that information and other metrics to guide its search for
better loss functions for the agent. In that sense, the interface between the meta
learner and the agents plays a crucial role in AutoRL frameworks, as it encodes all
learning signals between them.

An interesting research direction in AutoRL is learning new algorithms or loss
functions; many of the advances in RL to particular aspects of robustness (e.g., gen-
eralizability, stability) have come through algorithmic innovation [23, 69, 152, 186].
While RL algorithms have been traditionally designed by human experts, recently,
several lines of work propose to view RL algorithms as tunable objects that can be

1A curriculum consists of a sequence of environment configurations or scenarios with increasing
difficulty that the agent sees during training in order to learn more effectively.
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AutoRL optimizer

Agent 1

Environment 1
s0 s1 s2

a1, r1 a2, r2
sT…aT, rT

(r1, r2, …, rT)

The AutoRL optimizer sets specific 
parameters of the agent and/or 

environment configurations

The AutoRL optimizer updates its internal 
parameters and/or configuration based on 

performance from N agents

Agent 2

Environment 2
s0 s1 s2

a1, r1 a2, r2
sT…aT, rT

(r1, r2, …, rT)

Agent N

Environment N
s0 s1 s2

a1, r1 a2, r2
sT…aT, rT

(r1, r2, …, rT)

…

Figure 2-2: A generic AutoRL framework. A set of 𝑁 different agents, possibly
interacting with different environments, attempt to learn good policies for their re-
spective setups. Simultaneously, an AutoRL optimizer tries to learn optimal agent
and/or environment configurations based on each agent’s returns. The goal of the
AutoRL optimizer is to improve the design of new RL agents that do better at com-
pleting given tasks, even if those have never been seen.

optimized automatically [296]. Many studies consider a fixed-form update rule which
takes in meta parameters provided by a meta learner. This is the case of Houthooft et
al. [176], who propose an evolutionary strategy to learn a good policy update parame-
ter 𝜋̂ that guides policy optimization. The authors meta train the meta RL framework
on several MuJoCo tasks [361] and meta test on similar versions of those tasks. The
same meta train and meta test procedure is followed by Bechtle et al. [29], although
a meta gradient descent strategy is adopted instead of evolutionary methods. This
approach is also followed by Kirsch et al. [212], who propose a framework coined as
MetaGenRL to attain higher generalization. Those are proven in test environments
based on unseen MuJoCo tasks. In addition to learning an appropriate policy update
rule 𝜋̂, the method presented by Oh et al. [280], coined as Learned Policy Gradient,
also learns a prediction update rule 𝑦, i.e., the semantics of the agent’s prediction.
In some experiments, the discovered semantics converge towards a notion of value
function. The authors claim this method is able to attain higher generalizability,
as proven on the performance on unseen Atari environments after meta training on
toy environments. The prediction update rule is also a focus of Xu et al. [394], who
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parametrize the target to update the policy and value function and learn it via meta
gradient descent. Then, Lu et al. [244] draw ideas from Mirror Learning and propose
to meta learn a “drift” function that benefits learning a policy.

Despite the results of the approaches introduced in the previous paragraph, all
these models are limited by fixed-form update rule, i.e., all meta learning must be
“encoded” within meta parameters (e.g., 𝜋̂ and 𝑦). One approach to avoid relying on
hand-crafted update rules is to encode them as computational graphs and define a
search language to modify those graphs. This idea dates back to the field of neuro-
evolution [267, 343] and genetic programming [218, 315] to discover computer code,
and has been applied in the context of supervised learning [314]. Co-Reyes et al. [68]
study evolving loss functions for value learning algorithms. Authors introduce a search
language with 26 operators used by the evolutionary framework to form different
update rules in the form of directed acyclic graphs. The optimizer explores the space
of graphs by means of evolutionary strategies and keeps track of a population with
improved loss functions. The same idea is also present in the work by Alet et al. [15],
where a meta learner produces curiosity graphs that drive the agent’s exploration by
shaping the environment’s reward; the agent then uses the modified reward with a
fixed update rule. Then, He et al. [161] propose a method to evolve auxiliary loss
functions which complements predefined standard RL loss functions.

In summary, AutoRL combines AutoML frameworks with RL to automate the de-
sign and optimization of RL components, including algorithms and loss functions. By
automating RL components and exploring techniques such as meta-learning and com-
putational graph representations, AutoRL is a promising research avenue to facilitate
the wider application of RL to diverse real-world problems. It offers the potential for
improved performance, generalization, and reduced design costs, and it has been pro-
posed numerous times to improve certain aspects of RL robustness determined by the
real-world challenges, such as offline RL, multi-objective rewards, or generalization.
An important gap for AutoRL is that, so far, it has been proposed to address one
goal at a time. While the nature of real-world problems is multi-objective and many
of the investigated optimizers have some variant that incorporates multi-objective
optimization, it is still not clear if AutoRL methods can be designed for multiple
objectives.
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2.3 Other domain-agnostic challenges

Besides considering the challenges of real-world RL, it is important to acknowledge
that there are additional research directions in the community that study other prac-
tical considerations of RL that are also important for the progress of the field overall,
such as reproducibility of results, brittleness of training, interpretability, etc. These
extend beyond the complexity of the lerning setups but also contribute to the bottle-
necks around real-world applications. Some of them can also emerge as critical issues
that warrant attention due to their impact on a broader societal level; issues like
privacy [235], fairness [262], or ethics [55] are important across many ML disciplines
including RL. While in this review I focus primarily on the challenges within the
scope of this work, it is important to recognize that addressing concerns related to
the research activity in RL and its societal impact is key for the successful deployment
of RL in the real world.

The current progress in RL exhibits a certain level of brittleness and a lack of
interpretability does not contribute to improve this issue. Dulac-Arnold et al. [102],
in their first paper on real-world RL, identify interpretability as one of the nine
key challenges to consider. Then, Henderson et al. [162] delve into the intricacies of
reproducibility, experimental analysis, and reporting within the RL domain, shedding
light on the importance of robust research practices. Furthermore, studies such as
those by Islam et al. [189] and Zhang et al. [405] emphasize the significance of proper
hyperparameter tuning in RL and other authors such as Agarwal et al. [13] and
Colas et al. [72,73] discuss proper statistical significance testing and reporting in RL.
Overall, these investigations demonstrate the crucial role that these factors play in
the reliability and validity of RL research outcomes.

Addressing the impact of design choices on RL systems, Reda et al. [316] examine
the effect of multiple choices made on the agent side, while Andrychowicz et al. [16]
conduct a similar analysis focusing on algorithmic components. Understanding how
these design choices influence the performance and generality trade-off is crucial for
developing robust and adaptable RL models, as explored by Hessel et al. [168] and
further investigated in Zhao et al. [410]. Moreover, the suitability of smaller-sized
environments for empirical work in RL is highlighted by Ceron et al. [52], suggest-
ing that such environments offer valuable insights and experimental opportunities.
Jayawardana et al. [192] explore the impact of evaluating RL models on individual
Markov Decision Process (MDP) instances, as opposed to MDP families, uncovering
important implications for the generalization of RL algorithms. Lastly, Engstrom et
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al. [105] emphasize the significant role played by codebases in determining the out-
comes of RL experiments. They emphasize the need for well-structured and accessible
codebases, as they facilitate reproducibility and contribute to the overall reliability
of RL research.

2.4 A broad look into domain-specific successes

As introduced in the beginning of this dissertation, the successful deployment of RL
in real-world domains is a significant achievement, albeit one that remains relatively
scarce. In this section, I aim to explore a selection of notable success stories where
RL has been effectively deployed in practical settings. It is important to note, how-
ever, that the true scope of RL success may not be fully apparent due to two major
constraints: 1) companies, due to proprietary interests and competitive advantage,
may not disclose all successful deployments of RL, and 2) there is a similar reluctance
to publicly share instances of RL failures. Therefore, while this section does not offer
an exhaustive exploration of domain-specific research, it endeavors to investigate the
reported deployments, considering these limitations. The examples presented herein
offer valuable insights into the capabilities, challenges, and implications of deploying
RL in the real world.

One of the main roadblocks in real-world RL is training in simulation before
deploying. The sim-to-real gap is a well-known problem that many applications face.
Still, the work in [283] proved a robot could learn manipulation skills and solve
a Rubik’s Cube only from high-quality simulation training. The agent relies on a
simple algorithm, PPO [328], to learn the policy. Training in simulation also offered
the advantage to easily randomize different environment properties, which helped
learning more robustly. [287] and [350] are examples that follow the same framework
for autonomous driving and robot mapless navigation, respectively. However, the
deployment context in both applications is more complex than solving a Rubik’s
Cube, therefore the authors only limit themselves to very controlled test conditions in
real settings. These differences suggest that the specific real-world problem addressed
plays an important role in determining the deployability of a certain DRL model. This
motivates our discussion in the following parts of this section.

In some cases, agents might be able to train in the real world and not need to rely
on simulations. The work in [151] focuses on the ability to learn in a real setting,
specifically proposing a method for a quadrupedal robot to learn locomotion skills. By
maximizing both return and entropy, the robot acquires a stable gait from scratch in
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about two hours. Entropy maximization might become essential in real-world training
as a means to explore more and better.

In many industries, deployment involves integration within a company’s opera-
tions. A good example of an industrial deployment is Google Loon’s DRL-based
station-keeping mechanism [31]. The company replaced its previous controller by a
DRL agent that is better at keeping balloons close to base stations. A key feature
of this example is that the agent’s actions do not alter the environment (i.e., wind
currents) and therefore the learning process has less interactions to capture. Another
interesting example of industrial application is the collaboration between Microsoft’s
Project Bonsai and PepsiCo to develop an RL agent to adjust the extruders during
the manufacturing process of certain snacks [257]. Authors emphasize that safety
and minimizing risk was an important concern during development, and modeling as
many real-world phenomena that occur in the factory as possible was key to achieve
the result.

Another relevant industrial deployment is Meta’s Horizon [139] (formerly Face-
book’s Horizon), which the company used to decide when to send notifications to
users. Other companies like Zynga [155] have developed notification models that stem
from the ideas developed in Horizon. In these cases, the possibility to gather massive
amounts of data from millions of users has made RL a successful decision-maker. This
mirrors the usefulness of self-play in videogames applications such as AlphaZero [335]
or AlphaStar [368]. In that sense, due the absence of hardware, videogames constitute
an accessible domain in which RL has proven to have an edge. The complexity of RL
agents for videogames continues to increase; Wurman et al. [390] recently introuced
an RL agent that matches the best e-sport drivers in the PlayStation game Gran Tur-
ismo. The underspecification of the reward function was one of the main challenges
of this work.

Another key software-based problem in which RL has recently outperformed hu-
mans is designing new matrix multiplication algorithms [111]. In this work, Fawzi et
al. developed AlphaTensor, an agent that found a new algorithm to multiply 4-by-4
matrices with fewer multiplications compared to the best algorithm discovered so far,
more than 50 years ago. More recently, AlphaDev discovered faster sorting algorithms
thanks to DRL [251]. The research lab behind AlphaTensor and AlphaDev, Deep-
Mind, also contributed to the development and deployment of a video compression
agent [249] that achieved a 6.28% reduction in size while conserving the quality. This
was achieved in collaboration with YouTube, which offered data and a platform to
study the implications of the deployment.
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Another important accomplishment of RL in a complex real-world problem was
the implementation of an RL agent to control magnetic actuator coils inside a nuclear
reactor to maintain high-temperature plasma [86]. The approach provided unprece-
dented flexibility and was able to generalize across a diverse set of plasma configura-
tions, thus reducing the cost of designing for them. Another example of RL deployed
in a complex industrial setting was BCOOLER [245], an agent tasked with controlling
commercial cooling systems. Real-world experiments showed it was able to achieve
energy savings of 10%, while dealing with complext real-world challenges such as
learning from offline data and a constrained action space. RL is also participating in
the process of chip design [268], specifically in the layout configuration phases.

Many of these success stories come from research teams with large amounts of
computational and human expertise resources; it seems that, currently, having access
to those resources is a constraint for achieving RL deployments in the real world. In
addition, many of the presented works rely on high-quality training environments,
both software-based and hardware-based, that allow to model dynamics accurately,
to train on a wide variety of environment configurations, and to capture risk and
safety feature, things that overall benefits the robustness these agents need to be de-
ployed. When smaller-scale projects attempt to apply RL, the literature shows that
the majority of the studies fail to capture robustness considerations and prioritize
performance when reporting the results. RL systems and agents are tailored to con-
crete configurations that are sufficient to prove the usefulness of RL but fail to grant
the conditions for deployment.

2.5 Research opportunities

After conducting the literature review on different areas of real-world RL and robust-
ness, I identify 7 research opportunities that either domain-agnostic, domain-specific
of neither research thrust currently address.

Research opportunity 1 | Domain-agnostic research thrust

There is little research on designing for real-world robustness outside of robotics
use cases.

There is a lack of research focused on designing for real-world robustness beyond
robotics use cases. While robotics has been a popular domain for exploring different
aspects of RL robustness, other real-world applications in which robustness is also
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important have not received sufficient attention. This research opportunity highlights
the need for domain-agnostic studies that, in addition to robotics, consider diverse
applications. By expanding the scope of robustness research beyond robotics, we can
identify generalizable principles and techniques that contribute to the deployability
of RL in a wide range of real-world problems.

Research opportunity 2 | Domain-agnostic research thrust

There is little research on combined aspects of robustness for real-world RL.

There is a dearth of research that investigates combined challenges of real-world
RL. As presented in this chapter, existing studies often focus on individual issues and
tailor solutions for those. However, in practical applications, RL systems face multiple
challenges simultaneously. This research opportunity emphasizes the importance of
studying the interaction and trade-offs between different aspects of robustness, and
motivates the study of new methods for designing RL that take this interplay into
account.

Research opportunity 3 | Domain-agnostic research thrust

Designing for robustness is currently human-driven, which is costly when sys-
tems scale.

Currently, the design of the majority of methods that address the real-world chal-
lenges heavily rely on human-driven approaches, which are costly and inefficient when
systems scale. This research opportunity highlights the need for automated and
algorithmic-based design methods that enable scalability and cost-effectiveness. By
leveraging different AutoML techniques such as meta learning or evolutionary search,
we can develop approaches to autonomously optimize RL systems for robustness.
Such integrations would significantly reduce the manual effort and expertise required,
as has been proved for some of the real-world challenges, facilitating the widespread
deployment of robust RL in the real world.

Research opportunity 4 | Domain-specific research thrust

Research prioritizes performance over robustness, this comes as a result of ex-
cessive problem tailoring.

In many published studies, the prioritization of performance over robustness is
a prevalent issue in domain-specific research thrusts, often stemming from excessive
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tailoring to specific configurations or scenarios of a real-world problem. Many RL
agents are designed to excel under these specific scenarios that often fail to capture
all the complexity of the problem and neglect robustness to different real-world chal-
lenges. This opportunity emphasizes the importance of striking a balance between
performance and robustness in domain-specific RL research. By adopting a holistic
approach that incorporates robustness considerations into the design process, we can
mitigate the overemphasis on performance and foster the development of better RL
agents for concrete problems.

Research opportunity 5 | Domain-specific research thrust

The designs of RL agents for specific applications do not converge.

A significant issue in the design of RL systems for real-world problems is the lack
of consensus and understanding regarding the most effective components for specific
applications. The literature often lacks clear guidance on which RL components work
best for a given problem, leading to a lack of convergence on standard approaches. In
particular applications, one can find many different designs for state representations,
action spaces, and reward functions to solve the same problem; they are simply treated
as elements to be reported. This opportunity highlights the need for comprehensive
investigations that explore the effectiveness and suitability of different RL components
in the context of specific applications. By identifying the optimal design choices and
promoting convergence on effective approaches, we can enhance the robustness of RL
in real-world domains.

Research opportunity 6 | Both research thrusts

There is little understanding of design choices and trade-offs.

There is limited understanding of the design choices and trade-offs involved in
developing robust RL systems; this encompasses both domain-agnostic and domain-
specific research thrusts. The complex interplay between algorithmic decisions, agent
configurations, and environments poses challenges in achieving robustness. This re-
search opportunity emphasizes the need for comprehensive studies that effectively
explore the design space of RL, considering the trade-offs between performance and
robustness. By gaining a deeper understanding of these design choices, researchers
and practitioners can make informed decisions and develop tailored approaches that
achieve an optimal balance in real-world applications.
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Research opportunity 7 | Both research thrusts

Research in RL for real-world problems does not capture the full picture of
designing, implementing, and operating RL systems. The design aspect is pri-
oritized over implementation and operation, as research generally only reports
on results.

The complete process of using RL for real-world problems is often overlooked in
research, with a primary focus on reporting results rather than also addressing imple-
mentation and operational aspects. This research opportunity highlights the need to
shift some attention towards the practical aspects of RL deployment. Understanding
the challenges associated with aspects such as implementation, integration, or main-
tenance is crucial for deploying RL agents in the real world. By investigating the
entire lifecycle of RL systems, from design to operation, researchers can provide valu-
able insights, guidelines, and best practices that facilitate the adoption and effective
utilization of RL in practical domains.

2.5.1 Chapter contributions

This dissertation delves into the research area of real-world RL. In this chapter, an
extensive literature review has been conducted to investigate diverse research direc-
tions, with particular emphasis on the robustness of RL systems in real-world scenar-
ios. To the best of my knowledge, this dissertation is pioneering in its comprehensive
examination of different facets of RL robustness, specifically tailored for practical
applications. It makes a substantial contribution to the ongoing endeavors aimed at
enhancing the effectiveness of RL in practical settings.

The specific contributions of this chapter are the following:

Contribution 2.1 Identified and characterized two RL research thrusts, namely
domain-agnostic and domain-specific, that currently contribute
to the real-world applicability of RL.

Contribution 2.2 Conducted a comprehensive review of real-world RL literature,
which revealed several areas of research that are currently unad-
dressed by any of the existing research thrusts.
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2.6 Thesis Statement

Given the literature review and the research opportunities identified in Section 2.5,
the problem statement of this dissertation is the following:

To identify and investigate ways of increasing the robustness of Deep Rein-
forcement Learning systems operating in real-world environments by:

I Identifying areas of the design process that are brittle in the context of
real-world DRL,

II Developing a conceptual framework that identifies key elements that in-
fluence the process of using DRL for real-world applications,

III Developing a new domain-agnostic DRL design method that simultane-
ously addresses multiple real-world challenges,

IV Applying the aforementioned method to a use case on the optimization
of both DRL for performance and robustness,

V Designing robust DRL agents for real-world use cases in diverse domains,

VI Conducting analyses to characterize the performance vs. robustness
trade-off in all explored cases,

Using Systems Engineering principles and Automated Machine Learning meth-
ods

2.7 Overview of research opportunities addressed in

each Thesis chapter

To ease following this dissertation, in Table 2.2 I provide a list of the chapters to
follow and point out, for each one, the specific research opportunities identified in
Section 2.5 that they address, and the goals of the Thesis statement from Section 2.6
that are fulfilled.
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Chapter 3

Roadmapping Deep Reinforcement
Learning for Real-world Applications

This chapter presents a roadmap for designing, implementing, and operating Deep
Reinforcement Learning systems in real-world environments. It is the initial attempt
on comprehensively identifying all elements that influence the interaction of a DRL
system and a real-world environment. Section 3.1 presents the concept of roadmaps
and motivates the need for one in the case of real-world DRL. Then, Section 3.2 covers
an overview of the roadmap proposed in this dissertation and its stages. The first
stage corresponds to the design process and is addressed in Section 3.3. Then, Section
3.4 presents the implementation phase and introduces the concepts of robustness,
generalization, and operability in the context of the roadmap. Lastly, the operation
stage and its main implications are discussed in Section 3.5. The chapter concludes
in Section 3.6 with a summary of contributions and a mapping of the remaining work
in the dissertation to the roadmap.

3.1 Introduction

A key question when it comes to applying DRL1 is how to make it more accessible
and understandable for real-world practitioners who do not have the resources to
insightfully design or implement DRL systems. This largely contributes to the gap
between both domain-agnostic and domain-specific DRL research and the deployment
of DRL in the real world. In Chapter 2, I identified a lack of high-level and procedural
analysis when developing new DRL agents for real-world problems, and argued that

1In this chapter I emphasize the focus on creating a framework for Deep RL, therefore I use the
acronym DRL.
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this is not aligned with practices oriented towards robust DRL. Although applying
DRL is a process, the implementation and operation of DRL systems is usually left
out of the picture in the majority of the studies; the focus is put on design. However,
design exercises in the literature are mostly oriented towards concrete real-world
challenges (domain-agnostic thrust) or specific subproblems of a certain application
(domain-specific thrust); holistic perspectives are scarce.

In the case of real-world problems, there exists a misalignment between the system-
level goals and the low-level decisions that are often the focus of the literature. Given
the exponential complexity of DRL systems, it is necessary to develop a set of sys-
tematic practices and protocols that align both, as it occurs in many other domains.
In this chapter I propose a first attempt on developing a comprehensive conceptual
framework, which I define as the DRL roadmap, that addresses all elements that
influence the interaction of a DRL system and a real-world environment.

Roadmaps have been widely use in many scientific fields as a way to plan and/or
forecast the adoption of certain technologies [82,130]. Examples include roadmapping
for nanophotonics [209] and for photopharmacology [44]. While many of the examples
focus on a particular field, roadmapping can be also seen from the perspective of a
certain technology or product and its development over time. In that sense, the
exercise of roadmapping can be simplified to setting different goals on a time horizon
when developing a certain technology [82]. I use this latter perspective to refer to a set
of guidelines and protocols when developing a DRL system for a specific real-world
application. I assume this process can happen in different intervals with different
goals separating them. This is something that has been already studied in supervised
learning [372].

3.1.1 The complexity of Deep Reinforcement Learning sys-

tems

Figure 3-1 reproduces the first figure of this dissertation; it is the way the DRL
community represents DRL systems in a comprehensive way that is easily understood
by non-experts. I call this the Level 1 representation of a DRL system. However,
Figure 3-2 shows that what a priori looks like an interaction between two components
can actually be decomposed into numerous subcomponents that together influence the
outcome of this interaction; it is the Level 2 representation. One can even further
decompose each component into smaller interwoven elements and realize that behind
the well-known two-component representation from Figure 3-1 hides a system with
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exponential complexity.

Agent

Environment

Action
State

Reward

DRL System setup – Level 1

Figure 3-1: Level 1 representation of a Deep Reinforcement Learning system: an
interaction between an agent and an environment.

Domain-agnostic DRL research has traditionally navigated this complexity by fo-
cusing on individual elements of the system. Looking at Figure 3-2, there are familiar
elements that are the object of many studies in the DRL community: algorithms, re-
ward functions, training curriculum, etc. There has been substantial research progress
when it comes to each of these individual elements; one can find separate papers that
address and optimize each of them (e.g., [110, 276]). However, three key differences
arise when looking at a DRL system in the context of the complete system:

1. The success criteria in a real-world environment can depend on many factors
that might be encoded in different parts of the system (e.g., a robot that should
run fast, efficiently, and safely might need an appropriate reward function, a
strong training curriculum, and an informative state representation).

2. The goal is not to optimize specific components but the interaction of all com-
ponents of the system; together they determine how the agent behaves in the
environment and if the success criteria are met.

3. Consequently, each component needs a conscious design decision that takes into
account the whole system.

A similar set of considerations is accounted for by designers of other complex
systems, for example airplanes. Airplanes are also composed of different subsystems
(navigation, communications, electronics, fuel management, etc.) but the main goal
is defined at a system level: fly passengers safely from point A to point B. The role of
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airplane designers is then to navigate the susbsystem decomposition to identify the
best design choices for each component while keeping the overall goal in mind.

Real or simulated 
system dynamics

Agent

State 
representation

Reward 
function Action 

representation

Policy 
(Network)

DRL 
Algorithm

Environment

Observation

Reward

Policy output

Environment action

Environment state

Updates Logs

DRL System setup – Level 2

Evaluation 
Protocols

Training 
curriculum

Training 
configuration

Evaluation 
metrics

Figure 3-2: Level 2 representation of a Deep Reinforcement Learning system: A
complex composition of interwoven elements can be observed.

3.1.2 The need for a Deep Reinforcement learning roadmap

When it comes to designing airplanes or other complex systems such as trains, satel-
lites, or even certain software programs, there exist systematic design and operation
processes that align the low-level efforts with the main goals of the system [76, 77].
Currently, there is no such set of practices and protocols when it comes to designing
real-world DRL systems and subjectivity greatly influences development [78]. This
might contribute to why there are significant bottlenecks in the road to deployment
and why, currently, successfully and robustly implementing DRL is costly. It is es-
pecially relevant for domain-specific practitioners, as a DRL roadmap would help to
reduce the amount of DRL expertise and computational resources needed.

In this chapter, I develop a DRL roadmap that casts a light on the different
elements that are involved in the use of DRL agents in real-world contexts. I frame
it as a process that connects agent design, implementation, and operation with the
goal of fulfilling the success criteria defined by the real-world problem at hand. For
each of the three stages, this chapter discusses key decisions, inputs, outputs, goals,
related literature, and caveats to consider.
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This chapter’s contribution is not a recipe for “how to make DRL work for
the real world”—mainly because this might be too dependent on the specific
domain—but the first attempt to comprehensively identify all ingredients that
are involved in that process.

I believe this roadmap is of interest to both domain-agnostic and domain-specific
DRL communities. On the one hand, it introduces a systems thinking approach
[76] for DRL, emphasizing the role of the interactions and the system-level goals
when a real-world problem is in the context. On the other hand, it introduces a
process to systematically design, implement, and operate DRL agents. This provides
domain-specific practitioners who lack DRL expertise a deeper understanding of the
elements that need to be considered when applying DRL to real-world problems and
an overview of possible elements to iterate on when DRL agents cannot be deployed
successfully.

3.2 Roadmap overview

Figure 3-3 depicts the DRL roadmap, presenting the process of developing DRL
agents for real-world environments. We argue this process, regardless of the specific
real-world domain considered, can be divided into three stages:

1. Design stage (Section 3.3) Making all decisions on the components of a DRL
system. This entails deciding not only the form of each component in Figure
3-2—alongside its subcomponents—but also how the process of deciding on that
form should be carried out.

2. Implementation stage (Section 3.4) Training the DRL agent, evaluating its
fitness to the real-world environment considered, and iterating on certain design
decisions of the system.

3. Operation stage (Section 3.5) Deploying the DRL agent in the real-world
environment and managing its continuous operation over time according to the
system.

3.2.1 The real-world task

The start point of the process is a real-world environment in which a specific task
must be carried out by an autonomous agent. This can be a quadrupedal robot
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Figure 3-3: Overview of the roadmap for Deep Reinforcement Learning for real-
world problems. Developing DRL agents for real-world applications is framed as a
process that connects a start point with a goal, both defined in the context of the
real-world problem. This process then has three stages: design, implementation, and
operation.

walking around a construction area, a system to design a new compound targeting
a specific disease, a software to decide how to allocate power in different parts of an
energy grid, an autonomous vehicle transporting goods, a bot for investing in the
stock market, etc. Throughout this chapter, the quadrupedal robot moving around a
construction area is used as a running example (see Figure 3-4).

3.2.2 System-level objectives

The specification of the task entails the definition of one or more system-level criteria
that determine whether the task is fulfilled and whether the interaction between the
agent and the environment is successful. In our example, the operator of the robot
might want it 1) to move as fast as possible in the different types of terrain found in a
construction site, 2) to avoid stepping on debris or falling into holes, 3) to generalize
to situations not encountered during training, and to 4) do all of that it in a cost-
efficient manner. In that sense, a key characteristic of real-world tasks is that their
goals are often multi-objective.

Multi-objectiveness adds a layer of complexity when evaluating a DRL agent op-
erating in the real world, as the operator of the agent must interact with possible
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Figure 3-4: Support example of a robot moving around a construction area. Besides
walking at an appropriate velocity through different terrains, the robot must avoid
obstacles—some of them not seen during training—and be energy-efficient.

trade-offs among the different objectives. For example, our robot might be able to
trade a larger speed for higher risk in its movements, or for worse generalizability.
Still, one can arguably assume that, given a trained agent deployed in the environ-
ment, the operator is able to observe how well the agent meets each goal and to decide
if the deployment is successful, almost in a binary fashion.

The task and its goals constitute the start and end of the process the roadmap
describes, respectively. These elements are what domain-specific practitioners are
usually familiar with and what motivates many domain-specific works in the liter-
ature; DRL agents are regarded as a way to connect both ends. In the following
sections I provide a systematic approach to do that while touching on the important
points in the middle.

3.3 Design stage

After scoping the task, several elements must be specified before one can train the
agent. This process constitutes the design stage and entails all possible decisions the
DRL system designer has influence on at both high- and low-level [16]. These decisions
range from individual hyperparameters, such as the learning rate or the discount
factor, to complete architectures, such as picking an suitable neural network. Some
of these decisions might be straightforward, such as choosing an appropriate action
space, or might require some creativity, such as finding a good training curriculum.
At a high level, they can be divided into decisions connected to the environment, the
agent, or the training configuration, and they can be human-driven or automated.
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3.3.1 Manual design and automated design

The performance of a DRL system is highly-sensitive to its design. This dissertation
distinguishes between two ways of making decisions on the different components of a
DRL system: manual or human-driven design and automated design. They are not
necessarily mutually-exclusive, as systems can be designed in combinations of both.

Human-driven design Generally, current DRL design is human-driven, i.e., de-
signers directly make the choices for each of the components of the DRL system. Many
of these choices come from empirical trial-and-error processes or are based on popular
implementations. Those who work on domain-agnostic DRL research might possess
deeper insights on what constitutes a good design choice, while domain-specific prac-
titioners generally lack the expertise to do so. However, the latter understand well
the real-world problem and therefore can further finetune specific choices to better
adapt to the problem (e.g., the reward function). In this section I follow the struc-
ture in Figure 3-2 and focus on the choices that are domain-agnostic, leaving domain
specificity outside of its scope.

Automated design Automated Machine Learning or AutoML research has seen
substantial progress in the recent years, especially in the fields of hyperparameter
tuning and Neural Architecture Search. AutoML methods automate the search for
specific design choices by relying on different search methods such as gradient descent,
population-based optimization, grid search, or even other neural network algorithms.
Some recent works have applied these methods to DRL design [296]. In those cases,
looking for the right design choices becomes an outer loop problem whereas evaluating
one specific choice is seen as the inner loop problem. Several works have shown that
using these methods to design policy networks, DRL algorithms, or generate training
curricula leads to better results compared to human-driven search. However, the
cost of running these algorithms increases with the complexity of the search space;
there is an ongoing debate in the community on the efficiency and benefits of these
methods. Still, it is a promising area of research and the reader should consider that
the design of many of the elements that are described in the following paragraphs can
be automated.
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3.3.2 Environment decisions

There are several elements of the environment that require a design decision in every
real-world DRL system: setting up the time discretization of the MDP, the environ-
ment dynamics to rely on, the state space, the action space, and the reward functions.

Time dimension of the MDP First, the real-world task must be encoded in the
form of a Markov Decision Process (MDP). An often overlooked part of this step
is that a time dimension must be made intrinsic to the MDP, as actions must be
taken sequentially in different discrete timesteps. Some environments are sequential
and discrete in nature and therefore offer a straightforward way to encode the time
dimension (e.g., recommending the next movie to watch), in others time is continuous
and therefore the designer must choose how to discretize it (e.g., a robot walking,
our example), and lastly some environments do not possess a time dimension at all
(e.g., generating a new molecule). In this latter case, the designer must decide what
constitutes a timestep in the MDP. Generally, the time scale will constitute a trade-
off, as picking smaller time scales might help the agent to take more precise actions
but might make learning those harder.

Environment dynamics Another important decision is which environment dy-
namics to use; it usually takes the form of an operational constraint, as the real
dynamics of the environment might not be available for different reasons. In those
cases, designers and operators rely on simulated dynamics to train agents. While this
might introduce some advantages such as gathering data faster, it entails sim-to-real
considerations [411]; I expand more on this point in the operation stage.

The dynamics of the environment might not offer a straightforward interface to
interact and learn from. As a consequence, appropriate state and action spaces must
be designed; they respectively become the output and input interfaces the agent uses
to interact with the environment.

State space The designer must decide how much information should be encoded in
the state and consider the trade-offs this entails. The work in [337] provides an anal-
ysis on what makes a good representation for DRL tasks. In this chapter’s example,
one could choose to rely only on sensor information at the robot’s joints or learn from
pixels. The latter option might be less sample-efficient [355, 403] but could provide
additional safety benefits. Incorporating domain knowledge is also important in the
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process; many domain-specific works use hand-crafted state representations that ex-
ploit specific elements in the domain (e.g., there can be symmetry in certain robotics
applications). It is worth noting that, while the MDP has a time dimension, it does
not necessarily need to match with the real time dimension of the environment and
therefore the state could be composed of elements of the environment that occurred
in the recent past (e.g., a state formed by stacking the four most recent frames of
a video game [270]). DRL research follows the progress of Deep Learning research.
In that sense, for example, the state could also be encoded in a multimodal fash-
ion [358, 362] in order to exploit information from different sources (e.g., both pixels
and a feature vector). Other authors have shown that good state representations
can be learned with contrastive learning methods [340] or by using autoencoders that
capture task-relevant information [403].

Action space Sometimes actions might be defined intrinsically by the environment
(e.g., setting a number, choosing a discrete option). Still, one can decide whether a
continuous action should be discretized to ease learning or if specific sequence of
actions in the real environment should be encoded together (e.g, an action could be
to take three steps forward and turn right). One can even decompose the action
structure in the environment by means of Hierarchical DRL [41]. This helps when
the natural action space is high dimensional, combinatorial, or when large sequences
of actions must be taken to meet a goal [319]. In our example, the action space could
range from setting torque values in each joint to specifying higher-level actions (e.g.,
move, stop, turn right, etc.). Other mechanisms to deal with large action spaces have
also been proposed [83,322,402].

Reward functions Rewards constitute the learning signals of the DRL system,
they are a critical part of the training process. Generally, reward functions that reflect
how well the agent is performing the task or how close it is from reaching the goal are
preferred. In some cases, this might be naturally provided by the environment (e.g.,
number of points in a game, a binary signal, a delta of a quantity in two consecutive
timesteps), but in other cases it might be difficult to find an appropriate reward. This
has constituted the motivation behind key DRL concepts such as Inverse RL [127],
Self-supervised learning for RL [156], unsupervised learning for RL [377], or entropy
maximization techniques [109]. Another factor to take into account is the sparsity
of the reward signal; too sparse rewards might lead to credit assignment problems,
which some authors have already studied [17,60,182,379].
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One important thing to note is that one of the most relevant misalignments between
DRL systems and real-world tasks is that, while the latter are usually multi-objective
in terms of the goal, the former rely only on a scalar signal. Capturing a complex set of
objectives in a single number is typically hard; domain-specific studies are sometimes
critiqued for excessive tailoring in the reward structure. Having reward functions that
are too dependent on certain parameters or coefficients might result in agents that are
unable to generalize outside of the training regime. It is important not to confuse this
with having multiple reward signals in the same environment (e.g., the speed and the
fuel consumption of an autonomous vehicle); some system goals might be impossible
to capture with a reward signal (e.g., sample efficiency, generalizability). Works that
have specifically addressed having multiple reward signals in the same environment
include [2, 59,392,396].

3.3.3 Agent decisions

The next set of design decisions corresponds to components of the agent that are
independent from the environment: the neural networks used for the policy and
other elements relying on function approximators (e.g., value functions) and the DRL
algorithm.

Neural networks The key feature of DRL that makes it “deep” is the use of a
neural network as the policy of the agent. The network should be designed to have
enough representation power to map states to actions. In that sense, it should ac-
count for high-dimensional or multimodal states if necessary, and output scalar values
that could be directly treated as outputs or as parameters of a specific probability
distribution. In addition, many DRL systems use secondary networks that act as
value networks, target networks, etc.; the design of those networks also falls into
this category. Deep learning research plays a major role in finding innovative de-
signs for policy networks; in addition to fully-connected networks, one can observe
structures such as CNNs, LSTMs, attention mechanisms, or autoencoders in different
DRL works in the literature. The design space of neural networks is vast, designers
typically resort to popular architectures from the literature or make use of AutoML
methods to automate the search.

DRL Algorithms The DRL algorithm is the element of the system that updates
the weights of the neural networks after collecting tuples of experience, following an
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iterative process. This process is usually non-stationary, as the experience tuples
depend on the current policy, which is constantly changing until convergence. The
complexity of DRL algorithms makes them one of the system components with more
design choices and flexibility, as has been shown by several works that have attempted
to automate its design [29, 67, 161, 212, 244, 280, 394]. While AutoML for DRL algo-
rithms is one of the most promising research directions in the field [296], most of the
algorithm innovations have come from human-driven design. Many human-designed
algorithms have become widely popular in the DRL community and have been picked
up by domain-specific works: Q-learning, PPO, SAC, TD3, DDPG, etc. Many of
these algorithms are improved versions of previous algorithms in which specific short-
comings are addressed.

A full dissertation could be devoted to discuss DRL algorithms, but at a high-level,
algorithms can be classified as model-free, if the algorithm simply learns a policy to
take actions in the environment; or model-based, if the goal is to learn a model of
the environment first, and then use this model to plan actions. They can also be
classified as on-policy, if an update of the policy only takes into account the most
recent experience tuples; as off-policy, if data collected at any point in the interaction
is used; or both. They can also be classified as policy learning algorithms, if the goal
is to learn the policy; as value learning algorithms, if they focus on learning a value
function [348] of the environment first; or both. In addition to the specific structure
of the algorithm, there are many hyperparameters than can be tuned in each of them.
Some of those are algorithm-specific (e.g., hyperparameters of experience replay), and
others are used by all algorithms, such as the learning rate or the discount factor 𝛾.
Deep learning algorithms also influence innovation in DRL, knowledge about specific
elements such as regularizers [240] is transferred between fields.

3.3.4 Training configuration decisions

The last set of decisions consists of choosing how training should be carried out. This
can be a dense search space, although all decisions can be primarily classified into
selecting training environments and their configurations, a training curriculum, the
evaluation metrics, and the evaluation protocols to follow.

Training environments A training environment, real or simulated, is defined by
transition dynamics [348] that map the agent’s actions to new environment states,
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and by a specific reward function. The transition dynamics can be deterministic or
stochastic, and known or unknown. If the environment is episodic, a terminal state
will be defined. The agent will train by running multiple episodes in the environ-
ment; the specific number of episodes and timesteps per episode is usually set as
a hyperparameter. In the cases of non-episodic environments, designers specify the
total number of timesteps training will last for.

Training curriculum This constitutes the set of real or simulated environments
the agent interacts with during training; usually there exists a hierarchy of difficulty
among the different environments. The goal of using different environments in the
curriculum—or defining easier tasks as part of the curriculum—is to help the agent
learn faster, especially in the case of complex tasks [276]. Some designers design it
empirically, others rely on methods to learn a curriculum [374, 375]. In the case of
model-based DRL, the curriculum might consist of different datasets of experience
tuples that provide different learning signals to the agent. A good curriculum can
lead to aligning the agent with system-level goals such as safety. In our example, we
could begin training the robot in an empty area, then add some rocks and sand to
the environment, then some easy obstacles, etc. Practitioners dealing with certain
real-world challenges such as non-stationarity or partial-observability might benefit
from designing easier versions of such tasks to improve the robustness of the agent.

Evaluation metrics The goal of the agent during training is to maximize the re-
ward. However, system-level goals might be multi-objective or hard to encode in the
reward function, and therefore only looking at the accumulated reward might not be
enough to evaluate a trained DRL agent addressing a real-world task. Looking at the
accumulated reward or return in the training environment might indicate how good
the nominal performance of the agent is, but might not be enough to evaluate its
robustness. For example, to evaluate one aspect of robustness such as generalizabil-
ity, the designer might come up with additional sets of environment configurations
unseen during training, operate the trained policy in those environments, and use the
return as a measure of how well the policy generalizes to new scenarios. In our ex-
ample, we could evaluate safety by testing the trained robot on a set of environments
with more obstacles and a lower risk tolerance. Other interesting real-world metrics
such as sample efficiency come from directly analyzing training curves in the training
environment. When it comes to the evaluation metrics, the role of the designer is to
determine what to observe and the necessary tools to make that observation.
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Evaluation protocols Evaluating a trained agent is not straightforward, the re-
liability of protocols followed by the majority of works in the literature has been
questioned [13,162]. First, many elements of a DRL system are stochastic in nature,
which authors have addressed by running the training loop multiple times and getting
confidence intervals on the different metrics. However, a recent study [13] points out
that there exist better statistical measures to determine uncertainty in DRL: interval
estimates, interquartile means, and performance profiles. It is also important to make
sure the number of runs is adequate. This adds to previous claims on the detrimental
effects of not having standardized codebases, evaluation protocols, or good ways of
picking random seeds [162]. In that sense, reproducibility is another pressing problem
in the community.

3.4 Implementation stage

After specifying the design of all elements of the DRL system, the next step of the
process is to train the agent using the chosen training configuration. In case the design
of one or more elements is automated, the implementation stage combines training
with meta-training being run as inner and outer loop learning processes, respectively.
The outcome of this stage is a trained agent that can be deployed in the real-world
environment. To that end, I argue the agent must meet certain criteria that can be
summarized as its abilities to 1) be robust and generalize and 2) be operated. Until
meeting these criteria, the agent might be trained more than once, as certain design
decisions might be revisited during this stage (see Figure 3-5).

Design Implementation Operation

Automated design

Not yet deployable

Change in the operability requirements

Figure 3-5: The DRL roadmap might not imply a sequence of steps exclusively in
the forward direction, there might be circumstances that require revisiting previous
phases.
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3.4.1 Robustness, generalization, and operability

The implementation phase, in which the agent is trained, has a clear input: a fully-
specified design. Then, the output of this phase is a trained agent that is ready
to be deployed. Deployment is the place where, from a practical point of view,
implementation should lead to. To better understand the meaning of “ready to be
deployed”, this section introduces three key concepts that apply to any real-world
problem and concisely capture the path to be traversed until deployment and the
operation phase.

Robustness Chapter 1 has presented robustness as one key central piece of this dis-
sertation. It has been defined as the ability of an RL agent to satisfactorily complete
a real-world problem or task across all the configurations and sets of assumptions
in which the task presents itself in the real world. This entails that, in order to be
deployed, a trained RL agent should be able to make decisions in the presence of any
real-world challenge. The extent to which it succeeds to do so determines the extent
to which this agent and the overall RL system are robust.

System-level generalization Also in Chapter 1, I discussed that there is a view
of robustness that overlaps with the idea of generalization seen from the RL system
perspective, different from the real-world challenge of generalizability. A given real-
world problem can manifest in different configurations or sets of assumptions (also
referred to as different subproblems). The ability to train an agent under any of these
assumptions means that the RL system generalizes, and therefore can be considered
robust to the problem. Given a real-world problem that can be decomposed into 𝑁

different subproblems (see reference to subproblems in Section 1.2.2), an RL system
that generalizes can be designed in 𝐾 ways such that, for each subproblem, there
exists at least one design variation that leads to training an agent that succeeds for
that subproblem. The number of design variations 𝐾 can range from 1 to 𝑁 . In our
robot example, the 𝑁 subproblems could correspond to all possible obstacle types
and layouts. Encoding all these possibilities is something almost impossible to do in
practice, so usually 𝐾 equals 1 and the hope is that this is enough to generalize to
all possible 𝑁 subproblems. However, operators really value generalization to the 𝑁

subproblems, this is something that humans do naturally.

When the system does not generalize, this can be due to three possibilities: 1) lack
of interpolation generalization, when the agent fails at subproblems that can be con-
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sidered “in between” two subproblems seen during training (e.g., in our example, this
could mean being able to avoid small and large rocks on the ground, but fail to avoid
medium-sized rocks); 2) lack of extrapolation generalization, when the agent fails at
scenarios outside of the training scope (e.g., we have trained our robot in terrains with
small and medium-sized rocks and observe that later it fails in scenarios with large
rocks); or 3) lack of both types. Generally, it is much harder to address extrapolation
problems. Figure 3-6 tries to visually summarize the effect of generalization.

!

Operates adequately Does not operate adequately

SO

Baseline
Training performance

Failure to generalize
Interpolation case 

Failure to generalize
Extrapolation case 

Failure to generalize
Both cases 

All possible subproblems in 
the real-world problem

Training scope Agent succeeds Agent fails

Figure 3-6: Overview of the different types of system-level generalization problems.
After computing a baseline of the agent’s performance on the training subproblems
(defined inside the training scope), the agent might fail to generalize due to interpo-
lation problems, extrapolation problems, or both.

Operability While a real-world problem can be defined in a generic way, as a
combination of 𝑁 subproblems, an operator will generally be interested in a subset of
𝑁 ′ subproblems, with 𝑁 ′ ≤ 𝑁 (e.g., in our example, the operator might know for sure
there are not large rocks on site so the agent does not need to learn to avoid them
in order for it to be deployed). However, in each of the subproblems that belong to
that subset, the agent must perform well according to all system-level goals. While
the specific performance in each dimension might vary depending on the subproblem,
a fair assumption is that the operator is able to decide, in a binary fashion, whether
the trained agent succeeds or fails in a specific subproblem or scenario. The more
subproblems an RL agent or an RL system is able to address, the more it generalizes,
and the more robust it is. Operability refers to the ability of the agent or system
to perform well in subproblems or scenarios inside the operator’s area of interest
(see Figure 3-7). Although operability is more important for deployment, there is
a relationship between operability and robustness and generalization, as increasing
generalization and robustness might also increase operability. One final note is that
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there might be some scenarios that a priori are not considered by the operator, but
at some point during operations, the operator becomes aware of them and adds them
to the set. In that sense, the scope is dynamic.

All possible 
scenarios of 
the problem

Scenarios the operator 
cares about for 
deployment

Training scope

All possible 
subproblems of 
the problem

Subproblems the 
operator cares about for 
deployment

Training scope

Figure 3-7: Representation on what might constitute the scope of the real-world
problem, the scope of the region of interest in terms of operability, and the training
scope.

3.4.2 The deployment gap

This section tries to explain why in many cases deployment of RL systems in the
real world is not possible. One can use the same RL system to train multiple agents
and/or run various evaluations on a trained RL agent to better understand its ro-
bustness, generalization, and operability —those tests must be designed too. Figure
3-8 represents the evaluation sucess of a trained agent in different scenarios on top
of the operation area defined in Figure 3-7. The figure helps us understand the 4
possible situations we can find ourselves in after training a real-world agent for a
problem (it assumes the system is only designed once, i.e., 𝐾 = 1). To simplify these
cases, the figure only discusses generalization and operability, and assumes there is
no lack of generalization due to interpolation; it only focuses on generalization due
to extrapolation. The figure uses the green color to refer to environment scenarios or
subproblems the agent succeeds in according to the operator’s binary approval that
has been discussed in the previous section. These 4 possible situations are:
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1. Low generalization and low operability In this first case there are prob-
lems that are complex and their operability entails a large number of subprob-
lems 𝑁 . Agents can only be trained in a small subset of the space and they do
not generalize. Many proofs of concept coming from domain-specific research
fall into this category.

2. Low generalization and high operability Many DRL systems from domain-
specific studies generalize poorly but, since the real-world problem addressed is
simple or well-structured, the resulting operability is high. Solving the Rubik’s
Cube in [283] is a good example of this kind of problems.

3. High generalization and low operability Even when the underlying real-
world problem is complex, some agents might achieve high generalization. How-
ever, the complexity still entails low operability. Robotics applications are some-
times good examples of this case [151,287,350].

4. High generalization and high operability Finally, some agents might be
able to overcome the complexity of the environment and produce policies that
achieve high generalizability and high operability. There are not many examples
of complex problems belonging to this category; although characterizing them
using operation terminology is not usual, the agents trained in AlphaZero [335]
and AlphaStar [368] would be examples in this fourth category.

Low generalization
Low operability

Low generalization
High operability

High generalization
Low operability

High generalization
High operability

1 2 3 4

Figure 3-8: Comparison of 4 possible situations after training a DRL for a real-world
application in terms of its generalization and operability with respect to the set of
scenarios defined by an operator.

3.4.3 Increasing operability

The goal of the implementation stage is to produce DRL agents that can be deployed
in the real-world. However, this is only possible if the operability of the agent is up
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to the operator’s expectations. This last section discusses four high-level ideas on
how to increase operability when the outcome of the implementation stage does not
match the operator’s criteria. These four ideas are depicted in Figure 3-9 and can be
described as follows:

1. Extending the training scope One can take the same DRL system and
agent and extend the training space by adding new subproblems to the training
data. To that end, operators must be able to incorporate them to the training
curriculum, as it might not always be possible or preferred. The new training
scope might also entail a different level of generalization as a consequence of
changing the training distribution.

2. Redesigning to increase generalization An agent might generalize poorly
because the environment presents certain key challenges [100] (e.g., non-stationarity,
high-dimensionality, credit assignment, etc.) that are not captured by the train-
ing scope. In those cases, one can try to increase the generalization of the policy
by redesigning certain components of the DRL system to be more robust against
the challenges that are not being captured.

3. Training additional agents with different designs and training scopes
In several real-world problems, the intrinsic complexity might be especially chal-
lenging for DRL agents, both their generalization and operability might be low.
In those cases, one solution is to create entirely new training configurations,
that might also include certain design variations, in order to address the dif-
ferent training scopes. This way, operability is increased by using an ensemble
of agents rather than a single one. However, this approach assumes generating
new training scopes is possible.

4. Combining DRL with other decision-making methods The complexity
of the specific real-world problem might be so challenging that it is fair to assume
that DRL might not be the solution to address all scenarios in the region of
interest, although it is especially relevant for a subset of the subproblems. In
those cases, one could rely on one or more decision-making methods to take care
of the scenarios or subproblems in which the agent fails to succeed. However,
finding the additional decision-makers might not be trivial.
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Other
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Figure 3-9: Four possible ways of improving the operability of a DRL agent in the
context of a real-world problem.

3.5 Operation stage

Once the DRL system is adequately designed and the agent successfully trained, the
last step of the roadmap is to deploy the agent in the real-world environment. Then,
the agent operates in that environment for an indefinite amount of time. This stage
is not well explored in the literature but it is equally important to consider from
a practical point of view. There are certain issues that might make the agent fail,
such as possible performances drops due to the sim-to-real gap if it manifests for
the application at hand, or decisions on what to deploy exactly, as there might be
different options after the implementation stage.

What to deploy? The rationale behind this question might not be obvious if only
one agent is trained. However, based on the assumptions from the implementation
stage, there might be cases in which we find ourselves with more than one trained
agent and therefore must decide how many of these agents should be deployed, and
when to use each one. The following cases support this question:

1. When training multiple agents trading the system-level goals If a real-
world problem is multi-objective, one might be able to come up with different
designs that prioritize different objectives and therefore non-dominance among
objectives might occur [76]. Consequently, the operator might want to deploy
all of these agents and establish conditions to switch between their policies. In
our example, we could train one agent that moves faster but less safely, and
another agent that prioritizes safety above anything else. In that case, we could
be switching those policies depending on where in the construction site the
robot is at.
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2. When training multiple agents with different designs When following
the third approach presented in Figure 3-9, after the implementation stage
there will be a set of agents each of which has been trained differently. In that
case, the operator has to decide which of those agents are deployed in the end,
as their performance could be similar in the same scenario (i.e., overlapping
performance, see Figure 3-10).

3. When there are multiple seeds If more than one seed is used, the exact
same agent will be trained more than once, ending with one policy per seed.
Answering the question of which of the runs should be deployed might not
be straightforward, and the operator might want to consider doing additional
tests among the agents obtained from each run. The work in [390] tangentially
explores this issue.

Sim-to-real gap Many DRL concepts in the literature rely on simulated environ-
ments during the implementation stage due to different reasons such as the unavail-
ability of real environments, prohibitive costs of real-world training, the potential
risks involved, or the excessive time it takes to train in complex environments. How-
ever, accurately simulating the real-world environment dynamics is often challenging.
Despite the best efforts, these simulations may not fully encapsulate the intricacies
of the actual environments. These discrepancies invariably impact the performance
and robustness of the trained agent when it operates in the real world, typically
leading to a deterioration of both. Many authors, especially in the field of robotics,
have attempted to study this problem in depth, as empirical tests have shown that
robots that learn well during simulation do not transfer those learnings to the real
system [184].

The sim-to-real gap is not just a robotics problem, but extends to other do-
mains as well. It affects domains where training in the real world is either impossible
(e.g., satellite engineering), cost-prohibitive (e.g., autonomous drones), associated
with considerable risk (e.g., healthcare applications), or simply too time-consuming
(e.g., molecular generation processes). If the operator finds sim-to-real problems when
deploying, the process might need to go back to the design and/or implementation
stages, with the aim of better aligning the DRL system and the agent with the real-
world environment. In the majority of the cases this will mostly impact the training
configuration and the fidelity of the training environments. The challenge is to lever-
age the strengths of simulations while mitigating their weaknesses, thereby facilitating
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the transition of DRL agents from the simulation to the real world effectively.

Overlapping 
performance

Figure 3-10: Situation in which different agents with different designs and training
scopes are trained and, in some subproblems or scenarios, more than one agent could
perform successfully, i.e., their performances “overlap”.

Continual learning Even if one relies on real environments during training, there
can be a mismatch between training and deployment performance. This can be due
mainly to encountering scenarios that are not accounted for in the training configura-
tion or due to poor evaluation protocols. Some environments might be non-stationary
or partially observable, which adds a layer of complexity in the training process. While
capturing all of these nuances in the design and implementation stages might be hard,
DRL systems can rely on retrains or continual learning processes that ensure the agent
is up-to-date with the current dynamics of the environment.

In many cases, the performance of the agent might degrade with time. In other
cases, the agent might not follow episodic interactions with the environment and
needs to keep learning on-the-go [375]. Continual learning in DRL is an ongoing
adaptive process where the agent acquires new knowledge over time and finetunes
its behavior to the changing environment. This approach is key in maintaining the
agent’s performance up to the operator’s standards, especially in non-stationary en-
vironments where new states or actions may emerge, or the rewards associated with
states/actions may change.

Scheduling these retrains, resets, and/or updates during deployment is as critical
as designing an effective training process in the first place. The timing and frequency
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of these updates can significantly impact the performance of the DRL system, and
require careful consideration based on the dynamics and goals of the specific appli-
cation. Several studies have explored the theme of continual or lifelong learning in
DRL, demonstrating its importance in a variety of applications [53, 248,275,329].

3.6 Chapter summary and Contributions

This chapter has proposed a DRL roadmap as the first attempt on developing a
comprehensive picture that includes all elements that influence the interaction of a
DRL system and a real-world environment. This is motivated by one of the research
opportunities identified in Chapter 2, which highlighted that aspects related to imple-
mentation and operation of DRL systems are usually left out of research studies. As
stated in Section 3.1: this chapter’s contribution is not a recipe for making DRL work
for the real world, but the first attempt to comprehensively identify all ingredients
that are invovled in the process.

The first section has motivated why a roadmap is necessary for real-world DRL.
DRL systems can be viewed as complex systems; these are composed of subsystems
and this decomposition is exponential. However, success might not depend on indi-
vidual components of the system, but on their interaction. Still, the current practice
is for each component to be designed in isolation. These issues are also present in
many other complex systems; to navigate this complexity, there exist different sys-
tematic design and operation processes that align the low-level efforts with the main
goals of the system.

Then, the complete roadmap has been presented in Figure 3-3, which is reproduced
below for convenience. The roadmap connects a real-world task with the system-
level goals that need to be accomplished. This is divided into three phases: design,
implementation, and operation. Next, each of the phases has been characterized and
discussed in detail. Section 3.3 has focused on the design phase and delved into ideas
on design automation vs. human-driven design, environment-related design decisions,
agent-related decisions, and decisions on training configurations.

Section 3.4 has addressed the implementation phase, which is centered around the
concepts of robustness, system-level generalization, and operability. I have introduced
each concept and explained how they contribute to the deployment gap that manifests
in RL research. The chapter has further characterized the gap and then proposed four
high-level ideas on increasing the operability of the DRL system in order to reach
deployment. The chapter has concluded with a section on the operation phase, the
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Figure 3-3: Overview of the roadmap for Deep Reinforcement Learning for real-
world problems. Developing DRL agents for real-world applications is framed as a
process that connects a start point with a goal, both defined in the context of the
real-world problem. This process then has three stages: design, implementation, and
operation.

last step of the roadmap. While this part is not frequently addressed in the literature,
there are important aspects to consider such as choosing a set of agents to deploy,
the possible presence of the sim-to-real gap, and the need of continual learning.

The specific contributions of this chapter are the following:

Contribution 3.1 Proposed a DRL roadmap that identifies and breaks down key
elements that influence the process of using DRL in real-world
applications.

Contribution 3.2 Applied the DRL roadmap to characterize the relationship be-
tween the deployment of DRL systems in the real-world and their
robustness, system-level generalization, and operability.

3.6.1 Using the roadmap to map the rest of the dissertation

The proposed DRL roadmap also serves to summarize the focus of the remaining
chapters of this dissertation. Specifically, the remaining part of the dissertation ad-
dresses multiple aspects of improving the design of DRL for real-world applications.
Figure 3-11 presents the design stage of the roadmap and, for each set of chapters,
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4. Designing DRL Components for Real-World Applications: 
A Case Study on State Space Design
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7. Designing DRL Systems for Specific Real-world Problems

8. Case Study 1: DRL for Frequency Plan Design in 
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9. Case Study 2: DRL for Molecular Optimization

Figure 3-11: Mapping of the dissertation chapters on the DRL roadmap.

maps the primary focus of these chapters to provide an insight into their scope and
depth. In addition, it emphasizes whether the chapters discuss domain-agnostic or
domain-specific research topics, or both. Three sets of chapters with distinct focus
areas are as follows:

• Chapter 4 is a case study on improving the design of state spaces for real-world
applications. It primarily focuses on one specific element of the design process
and it does so from the perspective of both manual and automated design;
the chapter discusses a method that combines human-driven design of features
with automated selection. Although the methods and concepts discussed in this
chapter are domain-agnostic, it considers a domain-specific use case, namely
Traffic Signal Control.

• Chapters 5 and 6 focus on a new domain-agnostic method for automating the
design of DRL algorithms. This approach is fully automated, proposing a vast
search space for actor-critic algorithms that are sufficiently representative to
exclude the need for human-driven design.
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• Chapters 7, 8, and 9 shift the focus to domain-specific examples, investigat-
ing the design of robust DRL systems for two considered use cases: frequency
assignment in satellite communications and molecular optimization. Compared
to the previous set of chapters, these trade the depth of the search space for
breadth, exploring multiple design elements but within a significantly reduced
search space. The design approach in this case is primarily human-driven.

Regardless of the focus, each chapter aims to contribute towards effectively bridging
the gap between a real-world task and the system-level goals, i.e., connecting the start
and the end of the roadmap.
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Chapter 4

Designing DRL Components for
Real-World Applications: A Case
Study on State Space Design

This chapter provides a comprehensive exploration of feature selection in RL and its
relationship with mutual information (MI) in the context of policy changes. Section
4.1 presents the problem of state space design and introduces the goals of the chapter.
Section 4.2 provides an overview of the importance of feature selection in RL, its
impact on policy performance, and the related literature review. Then, Section 4.3
formulates and formalizes the feature-based state space design problem. Next, Section
4.4 introduces the concept of MI and demonstrates why the policy plays a major role
in the observed relevance of state features. Then, Section 4.5 takes steps toward
deriving mathematical grounding on how much the MI can change when the policy
changes, and what is the rate of change when the policy converges. In Section 4.6, the
analysis presented in the chapter is grounded in the Traffic Signal Control problem,
a real-world use case that provides a benchmark to study feature selection. Finally,
Section 4.7 summarizes the chapter and presents its main contributions.

4.1 Introduction

In Chapter 3, a comprehensive DRL roadmap was presented, encompassing all the
important elements involved in designing, implementing, and operating DRL in real-
world scenarios. Among these stages, the design phase involves a significant amount of
decision-making, as various components need to be considered, and there are different
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approaches to making decisions about these components. The literature provides
numerous examples of DRL designs for different real-world problems. However, as
discussed in Section 2.5, it can be observed that these designs often lack convergence
when applied to specific applications. Researchers frequently update elements such as
the state space or the reward function without a clear consensus emerging. This lack of
understanding regarding the optimal DRL design for real-world problems contributes
to the lack of robustness observed in many domain-specific works.

The objective of this chapter is to address this issue and propose a practical ap-
proach to enhance the design of DRL agents for real-world problems. To achieve this
goal, a thorough analysis is required, and therefore, the focus is placed on a specific
element of the design process depicted in Figure 3-3: the state space. The choice of
the state space directly impacts the performance of the agent [316, 337] and is often
determined through an empirical process [299]. When agents do not directly operate
on raw sensor inputs, this process typically involves selecting features that are relevant
to the problem at hand and provide the agent with the necessary information to take
good actions. While selecting a set of features might be straightforward, choosing
a good set of features can be challenging in many applications. This chapter delves
deeper into this issue, identifies important gaps, and proposes relevant approaches
to consider for addressing them. In subsequent sections, the Traffic Signal Control
(TSC) problem is utilized as a use case.

Efficient feature selection has been a long-standing problem in optimization and
Machine Learning [150] and has received some attention from the domain-agnostic
RL community [154,331]. Many works in the literature suggest that mutual informa-
tion (MI) analysis is an effective method [247] for identifying state features that aid
in predicting the reward. However, on one hand, this approach has not gained sig-
nificant traction within the domain-specific community, and on the other hand, the
majority of domain-agnostic studies only consider static policies (i.e., no learning)
when addressing this problem. In this section, the aim is to understand the interac-
tion between MI under policy changes and the empirical design of RL state spaces.
Efficient design of state spaces is crucial, as each additional feature may require col-
lecting additional data, which can be more intrusive for users or result in substantial
hardware costs.
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4.2 Current state space design strategies

This section provides motivation for studying state space design in RL. First, it
presents related literature on state space design for RL (Section 4.2.1). Then, it
discusses the issue of using an excess of features (Section 4.2.2). Finally, it explores
the problem of nonconvergence using the TSC problem as an example (Section 4.2.3).

4.2.1 Related literature review

The question of which state representation to use for an RL agent has been approached
from various perspectives. Singh et al. [337] conducted an analysis to determine the
characteristics of a useful representation for RL tasks. Wang et al. [374] treated
the state as an evolvable entity that follows a curriculum. Some AutoML for RL
works focused on automating the design of the state and other components of the RL
agent [296]. Alternatively, certain approaches involve interfacing between the envi-
ronment and the policy input. Afshar et al. [10], for instance, proposed a state aggre-
gation step to extract features based on the problem’s context. Raileanu et al. [311]
introduced an Upper Confidence Bound-based bandit to select image transforma-
tions for observations, while Wu et al. [387] employed canonical states to eliminate
redundancy in environment observations. Contrastive learning methods [11] and tile
coding techniques [348] have also been utilized for state representation. Additionally,
there are works discussing feature selection in the context of specific real-world RL
problems [132,316].

Several works have addressed feature selection and dimensionality reduction in
RL [237]. Some authors have investigated methods for aggregating states when ap-
proximating value functions [37, 201, 297, 298]. Other studies have employed MI to
identify useful features in state spaces [154,331]. Regularization techniques have also
been used to identify favorable feature subsets [216, 236, 242], with some methods
deriving from traditional Lasso regression [157]. Other authors have proposed match-
ing pursuit methods [198,292]. Furthermore, entropy-based dimensionality reduction
during learning has been employed as an alternative approach [294, 354]. Lastly, RL
itself has recently been studied as a mechanism for feature selection [238].

4.2.2 Excess of features

When constructing hand-crafted features for RL agents, a common approach is to
include as many features as possible, with the hope of providing the agent with more
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information and achieving better performance. However, it has been observed that
providing an excess of features to the agent can actually degrade performance. This
effect is demonstrated in three different robotics environments from PyBullet [75].
The results of an experiment conducted in the Hopper, Ant, and Humanoid environ-
ments are shown in Figures 4-1, 4-2, and 4-3, respectively. In this experiment, the
default state space provided by the environments’ codebases is taken, which includes
features encoding positional and inertial information of the robot body and its joints.
Groups of features are then masked out one at a time, including XYZ position of
the body, XYZ velocity of the body, roll, pitch, position of the joints, velocity of the
joints, and robot-ground contact features. Proximal Policy Optimization (PPO) [328]
is used to train seven different agents from scratch, each using a different mask, and
the resulting performance is compared with an eighth agent that uses all features
(labeled as None). Besides the mask, each agent uses the same configuration and is
trained using five different random seeds (see Appendix A.1.1).
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Figure 4-1: Learning curves when masking out different groups of features or None
in PyBullet Hopper. Results from 5 different random seeds and 95% CI are shown.

The experimental results reveal that using all features does not necessarily pro-
vide any additional advantage, and in some cases, it can lead to worse performance.
Removing a group of features from the state representation may have an impact on
the learning curve, but the agent can still learn a good policy without relying on
those features. For example, masking out the positions of the joints in the Hopper
environment does not significantly hinder the learning process. This suggests that de-
faulting to using as many features as possible may lack performance benefits, which
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Figure 4-2: Learning curves when masking out different groups of features or None
in PyBullet Ant. Results from 5 different random seeds and 95% CI are shown.
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Figure 4-3: Learning curves when masking out different groups of features or None
in PyBullet Humanoid. Results from 5 different random seeds and 95% CI are
shown.

may also have practical implications, such as the need for more hardware and sensors
in real-world setups.

Furthermore, the experiment highlights that the features that are beneficial or
detrimental to performance vary across different environments. For instance, masking
out the XYZ velocity of the body from the state representation negatively affects
performance in Hopper but leads to the best average result in Ant. This indicates
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that designing the state space based on similar environments, as is commonly done
in domain-specific literature, may result in suboptimal feature sets.

In conclusion, defaulting to using as many features as possible or blindly copying
the representation from similar environments is not always advantageous in practical
RL applications. However, determining the optimal feature set is not straightforward,
especially when the number of available features is large in complex environments.
Empirical search can be employed when the number of features is small, but exploring
the feature space becomes challenging when dealing with a large number of features.
Examples of these large feature spaces include the StarCraft environment, which has
up to 512 unitary features in addition to the map data [368], or RL-based power grid
control, with an observation space of nearly 5,000 features [94].

4.2.3 Non-convergence in literature

Another important observation is that consensus on state representations does not
naturally emerge in many domain-specific communities. To further highlight this
problem, the Traffic Signal Control (TSC) problem [169,382,417] is considered. The
TSC problem consists of controlling a set of traffic lights at a road intersection in
order to optimize traffic flow. Even though there are more than 160 peer-reviewed
studies proposing new RL approaches to solve the problem or aspects of it [278], and
many high-fidelity simulators have been developed [241, 263, 407], the deployment of
RL systems in real road networks is still a path to be traversed. This problem has
also been a use case in other studies focusing on empirical aspects of RL design [192].

Table 4.1 presents different state spaces for the TSC problem found in the lit-
erature. Specifically, it looks at the most recent papers identified in the systematic
literature review from [278]. The vast majority of the methods propose feature-based
state spaces encoding features from one or more of six different categories: phase,
occupancy, position, speed, waiting time, and spatial encoding.

While none of these studies defaults to using as many features as possible, it can
be observed that there is little overlap between state spaces considered in different
works, with more than 10 feature sets being proposed. In addition, multiple works
that use the same feature might encode it differently (e.g., some authors encode the
speed as average speed in the lane, while others encode the speed of each individual
vehicle). As a result, when designing a new RL method to address the TSC problem,
it is not clear which features it should rely on to achieve the best performance.
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Table 4.1: Feature utilization in the state space for multiple papers using RL for
Traffic Signal Control. Feature categories include the current phase, the occupancy
of each lane in the intersection, the position of the vehicles in the lane, the vehicles’
speed, and their waiting time. In addition, some state spaces are encoded as images
of the intersection seen from above.

Feature categories observed for each lane in the intersection
Reference Phase Occupancy Position Speed Waiting time Spatial encoding

[65,194] ✓ ✓

[173,380,381,415] ✓ ✓

[18, 214,320,321] ✓

[317] ✓ ✓ ✓ ✓ ✓

[330] ✓ ✓ ✓ ✓

[57, 417] ✓ ✓

[181,333] ✓ ✓ ✓

[143] ✓ ✓

[169] ✓

[140] ✓ ✓ ✓

[206] ✓

4.3 Notation and Formalism

A sequential decision-making task is denoted as 𝑇 and modeled as a Markov Decision
Process (MDP) with a state space 𝒮𝑇 1. Each state 𝑠 ∈ 𝒮𝑇 represents an array of
𝑁 features, expressed as 𝑠 = [𝑠1, 𝑠2, ..., 𝑠𝑁 ]. These features are predetermined by the
MDP designer and provide relevant information about the task 𝑇 . The performance
of an RL agent trained to solve task 𝑇 using the MDP is captured by the random
variable 𝑋𝑇

𝒮𝑇
. Each training session produces a realization of 𝑋𝑇

𝒮𝑇
.

As demonstrated in Section 4.2.2, the performance of the RL agent depends on the
MDP it is trained on, including the choice of the state space. Hence, additional state
spaces denoted as 𝒮𝑚 are explored, where 𝑚 ∈ [0, 1]𝑁 and 𝑚 is not the zero array 0.
Each 𝒮𝑚 is defined as 𝑠𝑚 = 𝑠 ⊙𝑚 = [𝑠1𝑚1, 𝑠2𝑚2, ..., 𝑠𝑁𝑚𝑁 ], where 𝑠 represents any
state from the MDP modeled by 𝒮𝑇 . Here, 𝑚 acts as a mask over the 𝑁 features
provided by the MDP designer. The performance of a specific mask is represented by
the random variable 𝑋𝑇

𝒮𝑚
.

The objective is to find the mask 𝑚* that maximizes the expected performance
E[𝑋𝑇

𝒮𝑚
]. In other words, 𝑚* is determined as argmax

𝑚
E[𝑋𝑇

𝒮𝑚
]. Notably, when 𝑚 = 1,

the original state space 𝒮𝑇 is considered, allowing for the possibility that using all
1In some cases, 𝒮𝑇 is simplified as 𝒮.
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features yields the best outcome. Evaluating all 2𝑁 − 1 masks is impractical for large
values of 𝑁 . Instead, when given a budget of 𝑀 masks 𝑚1, ...,𝑚𝑀 for evaluation,
the focus is on obtaining an estimate of the best mask 𝑚̂* that minimizes the expected
regret E[𝑋𝑇

𝒮𝑚* −𝑋𝑇
𝒮𝑚̂* ].

4.4 Feature selection via mutual information under

policy changes

The previous sections have highlighted the potential for improvement in current state
space design strategies for RL. While the problem of identifying the number and
selection of features has been extensively studied in supervised learning (SL) problems
[150], the use of mutual information (MI) analysis [247,364] has emerged as a widely-
adopted solution in these cases, allowing for quantification of the relationship between
specific features and the class being predicted. While feature selection via MI in RL
has been explored to some extent in the literature [154,331], existing studies primarily
focus on scenarios where the policy remains fixed. To the best of my knowledge, there
is a lack of research on feature selection via MI that takes into account the learning
context. This section introduces the concept of why a fixed-policy context might limit
the understanding of which state features are useful.

4.4.1 Expressing mutual information as a function of the agent’s

policy

The MI between two discrete random variables 𝑋 and 𝑌 is defined as

𝐼(𝑋, 𝑌 ) =
∑︁
𝑦∈𝒴

∑︁
𝑥∈𝒳

𝑃𝑋𝑌 (𝑥, 𝑦) log

(︂
𝑃𝑋𝑌 (𝑥, 𝑦)

𝑃𝑋(𝑥)𝑃𝑌 (𝑦)

)︂
(4.1)

In the case of SL, the variables 𝑋 and 𝑌 correspond to features and the class to
be predicted, respectively. In the case of RL, 𝑋 and 𝑌 represent state features and
rewards, respectively. In both cases, MI can also be computed for pairs of features,
which is particularly relevant for identifying redundancies.

When considering RL, there are two important differences with respect to SL.
Firstly, due to the sequential nature of RL problems, state-reward samples may not
be independent, whereas in SL, feature-class samples are generally independent. Sec-
ondly, in RL, the distribution of states and rewards can change as the agent learns,
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whereas in SL, there is usually no update of the data resulting from learning a model.
This distinction arises from the fact that states and rewards are connected by the
agent’s policy. Most studies in the literature compute MI under the optimal policy or
using datasets of experience collected by a specific policy, disregarding the fact that
policies change and, consequently, so do state-reward distributions.

To gain a better understanding of this, let’s apply Equation (4.1) to compute the
MI between the state 𝑆 and the reward 𝑅 in a MDP with a discrete state space 𝒮, a
discrete action space 𝒜, and a discrete set of rewards ℛ:

𝐼(𝑆,𝑅) =
∑︁
𝑟∈ℛ

∑︁
𝑠∈𝒮

𝑃𝑆𝑅(𝑠, 𝑟) log

(︂
𝑃𝑆𝑅(𝑠, 𝑟)

𝑃𝑆(𝑠)𝑃𝑅(𝑟)

)︂
(4.2)

The joint distribution 𝑃𝑆𝑅(𝑠, 𝑟) can be expressed as:

𝑃𝑆𝑅(𝑠, 𝑟) = 𝑃𝑆(𝑠)𝑃𝑅|𝑆(𝑟|𝑠) = 𝑃𝑆(𝑠)
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)𝑃 (𝑟|𝑠, 𝑎) (4.3)

As observed, the above expression depends on the policy 𝜋. Therefore, the MI between
𝑆 and 𝑅 given by policy 𝜋 can be defined as:

𝐼(𝑆,𝑅;𝜋) =
∑︁
𝑠∈𝒮

∑︁
𝑟∈ℛ

𝑃𝑆(𝑠)

(︃∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)𝑃 (𝑟|𝑠, 𝑎)

)︃
log

𝑃𝑆(𝑠)
∑︀

𝑎′∈𝒜 𝜋(𝑎′|𝑠)𝑃 (𝑟|𝑠, 𝑎′)
𝑃𝑆(𝑠)

[︀∑︀
𝑠′∈𝒮 𝑃𝑆(𝑠′)

(︀∑︀
𝑎′′∈𝒜 𝜋(𝑎′′|𝑠′)𝑃 (𝑟|𝑠′, 𝑎′′)

)︀]︀
(4.4)

4.4.2 The impact of changing policies: A toy example

To further illustrate the effect of policy changes on MI between state features and
rewards, we can examine a simple toy example. Consider a MDP with a two-feature
state space consisting of four possible states and a two-action space (𝑎1 and 𝑎2). The
MDP has deterministic rewards for each state-action pair, as shown in the left side
of Figure 4-4. For simplicity, we focus on a single time-step interaction and assume a
policy takes action 𝑎1 with probability 𝜋(𝑎1) regardless of the state (taking action 𝑎2

with probability 1− 𝜋(𝑎1)).
Then, an alternative definition for the MI between two random variables 𝑋 and

𝑌 is the following

𝐼(𝑋, 𝑌 ) = 𝐻(𝑋)−𝐻(𝑋|𝑌 ) = 𝐻(𝑌 )−𝐻(𝑌 |𝑋) (4.5)

where 𝐻(·) corresponds to the entropy of a random variable and 𝐻(·|·) is the con-
ditional entropy. Therefore, the MI between states and rewards can be computed
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Figure 4-4: Complete MDP for the toy example and partial MDPs that originate
if we only consider each feature separately. The rewards become probabilistic when
focusing on only one feature.

as 𝐻(𝑆) − 𝐻(𝑆|𝑅). Looking at the entropy of the state 𝑆, one can immediately
observe two extreme cases. On one hand, if all states are the same, then 𝐻(𝑆) = 0

and 𝑀𝐼(𝑆,𝑅) = 0, since, by definition, 𝑀𝐼(𝑆,𝑅) ≥ 0 and 𝐻(·) ≥ 0, i.e., both MI
and entropy are nonnegative quantities. On the other hand, in case there are 𝑁𝑆

equiprobable states, 𝐻(𝑆) equals:

𝐻(𝑆) = −
∑︁
𝑠∈𝒮

𝑃𝑆(𝑠) log𝑃𝑆(𝑠) = −
1

𝑁𝑆

∑︁
𝑠∈𝒮

log
1

𝑁𝑆

= − log
1

𝑁𝑆

= log𝑁𝑆 (4.6)

This corresponds to the maximum value the MI can attain. This also holds whether
the MDP corresponds to the state space with both features or just one of the two
features, the difference will be the value of 𝑁𝑆. Figure 4-4 represents the complete
MDP of this toy example and each of the two MDPs that originate if only one of the
two features is considered. Since the goal is to compute the MI between each feature
and the reward, the MDPs must be considered separately. As observed in the figure,
the rewards might become stochastic instead of deterministic.

Whether the full or the partial MDP is considered, the term 𝐻(𝑆|𝑅) to compute
the MI is computed as

𝐻(𝑆|𝑅) = −
∑︁
𝑟∈ℛ

∑︁
𝑠∈𝒮

𝑃𝑆|𝑅(𝑠|𝑟)𝑃𝑅(𝑟) log𝑃𝑆|𝑅(𝑠|𝑟) =

= −
∑︁
𝑟∈ℛ

∑︁
𝑠∈𝒮

𝑃𝑅|𝑆(𝑟|𝑠)𝑃𝑆(𝑠) log
𝑃𝑅|𝑆(𝑟|𝑠)𝑃𝑆(𝑠)∑︀

𝑠′∈𝒮 𝑃𝑅|𝑆(𝑟|𝑠′)𝑃𝑆(𝑠′)
(4.7)

In equation (4.7), the term 𝑃𝑅|𝑆(𝑟|𝑠) equals
∑︀

𝑎∈𝒜 𝜋(𝑎|𝑠)𝑃 (𝑟|𝑠, 𝑎). As mentioned
previously, in this toy example, two assumptions with respect to the policy are made,
1) there are only two actions, 𝑎1 and 𝑎2, and 2) the probability of taking either action
is independent of the state, i.e., 𝜋(𝑎1|𝑠) = 𝜋(𝑎1),∀𝑠. Therefore, 𝜋(𝑎2) = 1 − 𝜋(𝑎1).
Then, assuming the state is equiprobable (and hence 𝐻(𝑆) = log𝑁𝑆), Equation (4.7)
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can be simplified as follows:

𝐻(𝑆|𝑅) = −
∑︁
𝑟∈ℛ

∑︁
𝑠∈𝒮

∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)𝑃 (𝑟|𝑠, 𝑎)𝑃𝑆(𝑠) log

∑︀
𝑎′∈𝒜 𝜋(𝑎′|𝑠)𝑃 (𝑟|𝑠, 𝑎′)𝑃𝑆(𝑠)∑︀

𝑠′∈𝒮
∑︀

𝑎′′∈𝒜 𝜋(𝑎′′|𝑠′)𝑃 (𝑟|𝑠′, 𝑎′′)𝑃𝑆(𝑠′)
=

= − 1

𝑁𝑆

∑︁
𝑟∈ℛ

∑︁
𝑠∈𝒮

𝑔(𝑠, 𝑟) log
𝑔(𝑠, 𝑟)∑︀

𝑠′∈𝒮 𝑔(𝑠′, 𝑟)
(4.8)

where 𝑔(𝑠, 𝑟) corresponds to 𝜋(𝑎1)𝑃 (𝑟|𝑠, 𝑎1) + 𝜋(𝑎2)𝑃 (𝑟|𝑠, 𝑎2). Then, for each of
the two features, one can obtain the curves shown in Figure 4-5 by considering the
corresponding partial MDP from Figure 4-4 and computing the MI as

𝐼(𝑆,𝑅; 𝜋) = log𝑁𝑆 +
1

𝑁𝑆

∑︁
𝑟∈ℛ

∑︁
𝑠∈𝒮

𝑔(𝑠, 𝑟) log
𝑔(𝑠, 𝑟)∑︀

𝑠′∈𝒮 𝑔(𝑠
′, 𝑟)

(4.9)

This figure demonstrates the dependency of MI on 𝜋, as we simulate a sweep through
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Figure 4-5: Mutual information change as a function of the change in the policy
given by the probability of taking the first action in the toy example.

different values of 𝜋(𝑎1). It shows that the MI between the second feature and the
reward, computed using Equation (4.4), is maximal (log 2) when action 𝑎1 is never
taken, and minimal when the agent always takes action 𝑎1. In contrast, the first
feature is irrelevant and consistently has zero MI with respect to the reward, regardless
of the policy.

This toy experiment highlights that as the policy changes, the MI between state
features and the reward can also change. Consequently, certain features may appear
more or less relevant for predicting the reward.
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4.5 Deriving mathematical intuition using neural con-

textual bandits

After observing that the MI is dependent on the policy and therefore features can
be deemed more or less important without changes in the MDP, this section begins
taking steps towards a better understanding of these issues by providing mathematical
intuition on how much MI can change. To take the simplest form of learning paradigm,
it utilizes neural contextual bandits [338] and focuses on single-timestep interactions.

4.5.1 How much can mutual information change between two

similar policies?

Let’s consider two policies 𝜋1 and 𝜋2 for the same MDP, which consists of a discrete set
of states 𝒮, a discrete set of actions 𝒜, and a reward function of the form 𝑃 (𝑟|𝑠, 𝑎)→
[0, 1]. The goal is to derive a bound for the quantity |𝐼(𝑆,𝑅; 𝜋1) − 𝐼(𝑆,𝑅; 𝜋2)|. To
that end, the following is assumed:

Assumption 1 The difference between both policies is considered small, i.e.,
|𝜋1(𝑎|𝑠)− 𝜋2(𝑎|𝑠)| ≤ 𝜖𝜋, ∀ 𝑎, 𝑠, with 𝜖𝜋 ∈ (0, 1).

First, Equation (4.4) can be simplified to

𝐼(𝑆,𝑅;𝜋) =
∑︁
𝑠∈𝒮

𝑃𝑆(𝑠)
∑︁
𝑟∈ℛ

[︃(︃∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)𝑃 (𝑟|𝑠, 𝑎)

)︃
log

∑︀
𝑎∈𝒜 𝜋(𝑎|𝑠)𝑃 (𝑟|𝑠, 𝑎)∑︀

𝑠′∈𝒮 𝑃𝑆(𝑠′)
(︀∑︀

𝑎∈𝒜 𝜋(𝑎|𝑠′)𝑃 (𝑟|𝑠′, 𝑎)
)︀]︃
(4.10)

and further simplified as follows

𝐼(𝑆,𝑅; 𝜋1)− 𝐼(𝑆,𝑅; 𝜋2) =
∑︁
𝑠∈𝒮

𝑃𝑆(𝑠)
∑︁
𝑟∈ℛ

𝛼(𝑠, 𝑟) (4.11)

where

𝛼(𝑠, 𝑟) = 𝛽(𝑠, 𝑟, 𝜋1) log
𝛽(𝑠, 𝑟, 𝜋1)∑︀

𝑠′∈𝒮 𝑃𝑆(𝑠′)𝛽(𝑠′, 𝑟, 𝜋1)
−𝛽(𝑠, 𝑟, 𝜋2) log

𝛽(𝑠, 𝑟, 𝜋2)∑︀
𝑠′∈𝒮 𝑃𝑆(𝑠′)𝛽(𝑠′, 𝑟, 𝜋2)

(4.12)
with 𝛽(𝑠, 𝑟, 𝜋) =

∑︀
𝑎∈𝒜 𝜋(𝑎|𝑠)𝑃 (𝑟|𝑠, 𝑎). By definition, given 0 ≤ 𝜋(𝑎|𝑠) ≤ 1, 0 ≤

𝑃 (𝑟|𝑠, 𝑎) ≤ 1, and
∑︀

𝑎∈𝒜 𝜋(𝑎|𝑠) = 1, the inequality 0 ≤ 𝛽(𝑠, 𝑟, 𝜋) ≤ 1 holds. Analyz-
ing the function 𝑥 log 𝑥 between 0 and 1, one can see that 0 log 0 = 1 log 1 = 0, and
the function is negative in that interval with a minimum at 𝑥 = 1/𝑒. Similarly, taking
into account that

∑︀
𝑠∈𝒮 𝑃𝑆(𝑠) = 1, the expression 0 ≤

∑︀
𝑠∈𝒮 𝑃𝑆(𝑠)𝛽(𝑠, 𝑟, 𝜋) ≤ 1 holds.

98



Equation (4.12) can be rewritten as follows

𝛼(𝑠, 𝑟) =𝛽(𝑠, 𝑟, 𝜋1) log 𝛽(𝑠, 𝑟, 𝜋1)−𝛽(𝑠, 𝑟, 𝜋1) log

(︃∑︁
𝑠′∈𝒮

𝑃𝑆(𝑠
′)𝛽(𝑠′, 𝑟, 𝜋1)

)︃

−𝛽(𝑠, 𝑟, 𝜋2) log 𝛽(𝑠, 𝑟, 𝜋2)+𝛽(𝑠, 𝑟, 𝜋2) log

(︃∑︁
𝑠′∈𝒮

𝑃𝑆(𝑠
′)𝛽(𝑠′, 𝑟, 𝜋2)

)︃
(4.13)

where the terms in blue and orange will be treated separately. Regarding the former,
the goal is to derive a bound for the absolute value of the expression

𝛽(𝑠, 𝑟, 𝜋1) log 𝛽(𝑠, 𝑟, 𝜋1)− 𝛽(𝑠, 𝑟, 𝜋2) log 𝛽(𝑠, 𝑟, 𝜋2) (4.14)

which can be rewritten as∑︁
𝑎∈𝒜

𝑃 (𝑟|𝑠, 𝑎) [𝜋1(𝑎|𝑠) log 𝛽(𝑠, 𝑟, 𝜋1)− 𝜋2(𝑎|𝑠) log 𝛽(𝑠, 𝑟, 𝜋2)] (4.15)

where 𝑃 (𝑟|𝑠, 𝑎) depends on the environment. When evaluating the inner expression
𝜋1(𝑎|𝑠) log 𝛽(𝑠, 𝑟, 𝜋1)− 𝜋2(𝑎|𝑠)𝛽(𝑠, 𝑟, 𝜋2), three different cases can be observed:

1. 𝑃 (𝑟|𝑠, 𝑎) = 0, ∀𝑎 for the 𝑠 and 𝑟 considered. In this case the inner expression
can be neglected since (4.15) evaluates to zero.

2. 𝜋1(𝑎|𝑠) = 𝜋2(𝑎|𝑠) = 0 for all actions with 𝑃 (𝑟|𝑠, 𝑎) > 0. In this case the
expression also evaluates to zero.

3. 𝜋1(𝑎|𝑠)𝑃 (𝑟|𝑠, 𝑎) > 0 for some 𝑎. In this case the inner expression will be different
than zero.

Based on the previous three cases, one can conclude that there will be a change in
mutual information whenever 𝜋1 or 𝜋2 fulfills that 𝜋(𝑎|𝑠)𝑃 (𝑟|𝑠, 𝑎) > 0 for some 𝑎.

Assumption 2 𝜋1(𝑎|𝑠) > 0, ∀𝑎, 𝜋2(𝑎|𝑠) > 0, ∀𝑎, and there exists at least one
action 𝑎′ such that 𝜋1(𝑎

′|𝑠)𝑃 (𝑟|𝑠, 𝑎′) > 0 and 𝜋2(𝑎
′|𝑠)𝑃 (𝑟|𝑠, 𝑎′) > 0.

Now, to find a bound for expression (4.14), the Mean Value Theorem (MVT) is
used. Given a continuous and differentiable function 𝑓 in the interval (𝑥, 𝑦), the MVT
states that

𝑓(𝑎)− 𝑓(𝑏)

𝑎− 𝑏
≤ 𝑓 ′(𝑥) for all 𝑎 < 𝑥 < 𝑏 (4.16)

In this case the function to consider is 𝑓(𝑥) = 𝑥 log 𝑥. Expression (4.14) can be seen
as 𝑓(𝑥1) − 𝑓(𝑥2), where 𝑥1 = 𝛽(𝑠, 𝑟, 𝜋1) and 𝑥2 = 𝛽(𝑠, 𝑟, 𝜋2). The derivative of 𝑓 is
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𝑓 ′(𝑥) = log 𝑥+ 1. From Equation (4.16), it follows that,

|𝑓(𝑎)− 𝑓(𝑏)| ≤ |𝑓 ′(𝑥)||𝑎− 𝑏| ≤ max
𝑥∈(𝑎,𝑏)

|𝑓 ′(𝑥)||𝑎− 𝑏| (4.17)

Given that the derivative of the considered function, 𝑓 ′(𝑥) = log 𝑥 + 1, is mono-
tonically increasing, 𝑓 ′(𝑥) will have its maximum in the interval (𝑎, 𝑏) at 𝑎. To find
precise values for the bound, the following two assumptions are made

Assumption 3
∑︀

𝑎∈𝒜 𝑃 (𝑟|𝑠, 𝑎) ≥ 𝑝𝑟, i.e., the total probability of attaining re-
ward 𝑟 from state 𝑠 is at least 𝑝𝑟. Given Assumption 2, 𝑝𝑟 > 0.

Assumption 4 For both 𝜋1 and 𝜋2, 𝜋(𝑎|𝑠) ≥ 1/𝑘𝑎 ∀ 𝑎, with 𝑘𝑎 ∈ R+ and
𝑘𝑎 ≥ |𝒜|, where |𝒜| is the total number of different actions. This means all actions
have a certain probability of being chosen that is greater than or equal to 1/𝑘𝑎.

From these assumptions the following holds

𝛽(𝑠, 𝑟, 𝜋) =
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)𝑃 (𝑟|𝑠, 𝑎) ≥ 𝑝𝑟
𝑘𝑎

(4.18)

Therefore, the value for 𝑎 in Equation (4.17) cannot be lower than 𝑝𝑟/𝑘𝑎. Now, taking
into account Assumption 1, the following inequality can be defined

𝛽(𝑠, 𝑟, 𝜋1)− 𝛽(𝑠, 𝑟, 𝜋2) =
∑︁
𝑎∈𝒜

𝑃 (𝑟|𝑠, 𝑎)[𝜋1(𝑎|𝑠)− 𝜋2(𝑎|𝑠)] ≤
1

2
|𝒜|𝜖𝜋 (4.19)

where the multiplication by 1/2 comes as a result of the probability distributions over
all actions for both 𝜋1 and 𝜋2 adding up to 1. That entails that, if there exists a certain
action for which 𝜋2(𝑎

′|𝑠) − 𝜋1(𝑎
′|𝑠) = 𝜖𝜋, then there must be at least another action

𝑎′′ for which 𝜋1(𝑎
′′|𝑠) > 𝜋2(𝑎

′′|𝑠). Therefore, the limit case is that in which half of the
actions fulfill 𝜋2(𝑎

′|𝑠) − 𝜋1(𝑎
′|𝑠) = 𝜖𝜋, the other half fulfill 𝜋1(𝑎

′|𝑠) − 𝜋2(𝑎
′|𝑠) = 𝜖𝜋,

and for only one of the halves 𝑃 (𝑟|𝑠, 𝑎) > 0.

Then, the bound for expression (4.14) can be computed as (using 𝛽1 and 𝛽2 to
represent 𝛽(𝑠, 𝑟, 𝜋1) and 𝛽(𝑠, 𝑟, 𝜋2), respectively):

|𝛽1 log 𝛽1 − 𝛽2 log 𝛽2| ≤ | log(min(𝛽1, 𝛽2)) + 1||𝛽1 − 𝛽2| ≤
⃒⃒⃒⃒
log

𝑝𝑟
𝑘𝑎

+ 1

⃒⃒⃒⃒
1

2
|𝒜|𝜖𝜋 (4.20)

Next, the focus shifts to the terms from Equation (4.13) in orange. Now the
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objective is to find a bound for the expression⃒⃒⃒⃒
⃒𝛽(𝑠, 𝑟, 𝜋2) log

(︃∑︁
𝑠′∈𝒮

𝑃𝑆(𝑠
′)𝛽(𝑠′, 𝑟, 𝜋2)

)︃
− 𝛽(𝑠, 𝑟, 𝜋1) log

(︃∑︁
𝑠′∈𝒮

𝑃𝑆(𝑠
′)𝛽(𝑠′, 𝑟, 𝜋1)

)︃⃒⃒⃒⃒
⃒

(4.21)
Assumption 5 𝑃𝑆(𝑠) ≥ 1/𝑘𝑠,∀𝑠, with 𝑘𝑠 ∈ R+ and 𝑘𝑠 ≥ |𝒮|. Similarly to

Assumption 4, it is assumed that all states have a certain probability of occurring
that is greater than 1/𝑘𝑠.

Next, a similar approach is followed, using the multivariate version of the MVT.
The multivariate MVT states that, given a continuous function 𝑓 : R𝑁 → R, derivable
between 𝑎 and 𝑏, the following holds

|𝑓(𝑎)− 𝑓(𝑏)| ≤ |∇𝑓(𝑥)||(𝑎− 𝑏)| (4.22)

For the case under consideration, let 𝑓 be the function

𝑓(𝑥) = 𝑥𝑘 log

(︃
𝑁∑︁
𝑖

𝑝𝑖𝑥𝑖

)︃
= 𝑥𝑘 log (𝑝1𝑥1 + 𝑝2𝑥2 + ...+ 𝑝𝑁𝑥𝑁) (4.23)

This function can be mapped to each of the two elements in expression (4.21), as 𝑥𝑘

corresponds to 𝛽(𝑠, 𝑟, 𝜋) and log
(︁∑︀𝑁

𝑖 𝑝𝑖𝑥𝑖

)︁
corresponds to log

(︀∑︀
𝑠′∈𝒮 𝑃𝑆(𝑠

′)𝛽(𝑠′, 𝑟, 𝜋)
)︀
.

The partial derivatives ∇𝑓(𝑥) are the same for all 𝑥𝑖 except for 𝑥𝑘. For 𝑥𝑘:

∇𝑓(𝑥)|𝑘 = log

(︃
𝑁∑︁
𝑖

𝑝𝑖𝑥𝑖

)︃
+

𝑝𝑘𝑥𝑘∑︀𝑁
𝑖 𝑝𝑖𝑥𝑖

≡ log

(︃∑︁
𝑠′∈𝒮

𝑃𝑆(𝑠
′)𝛽(𝑠′, 𝑟, 𝜋)

)︃
+

𝑃𝑆(𝑠)𝛽(𝑠, 𝑟, 𝜋)∑︀
𝑠′∈𝒮 𝑃𝑆(𝑠′)𝛽(𝑠′, 𝑟, 𝜋)

(4.24)

For any other 𝑥𝑖 with 𝑖 ̸= 𝑘:

∇𝑓(𝑥)|𝑖 =
𝑝𝑖𝑥𝑘∑︀𝑁
𝑖 𝑝𝑖𝑥𝑖

≡ 𝑃𝑆(𝑠𝑖)𝛽(𝑠, 𝑟, 𝜋)∑︀
𝑠′∈𝒮 𝑃𝑆(𝑠′)𝛽(𝑠′, 𝑟, 𝜋)

, where 𝑠𝑖 ∈ 𝒮∖{𝑠} (4.25)

The different variables in the function are given by the different states in 𝒮, and the
points to be compared correspond to the two policies 𝜋1 and 𝜋2. Therefore expression
(4.22) corresponds to

|𝑓(𝛽(𝑠, 𝑟, 𝜋1))− 𝑓(𝛽(𝑠, 𝑟, 𝜋2))| ≤ |∇𝑓(𝛽(𝑠, 𝑟, 𝜋))| |𝛽(𝑠, 𝑟, 𝜋1)− 𝛽(𝑠, 𝑟, 𝜋2)| ≤

≤ max
𝛽(𝑠,𝑟,𝜋)

|∇𝑓(𝛽(𝑠, 𝑟, 𝜋))| |𝛽(𝑠, 𝑟, 𝜋1)− 𝛽(𝑠, 𝑟, 𝜋2)| (4.26)

From Equation (4.19), each of the components of |𝛽(𝑠, 𝑟, 𝜋1)−𝛽(𝑠, 𝑟, 𝜋2)| is bounded
by |𝒜|𝜖𝜋. Considering the assumptions introduced so far, expression (4.26) can be
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turned into

max
𝛽(𝑠,𝑟,𝜋)

|∇𝑓(𝛽(𝑠, 𝑟, 𝜋))| |𝛽(𝑠, 𝑟, 𝜋1)− 𝛽(𝑠, 𝑟, 𝜋2)| ≤
1

2
|𝒜|𝜖𝜋 max

𝛽(𝑠,𝑟,𝜋)
|∇𝑓(𝛽(𝑠, 𝑟, 𝜋))|1 =

=
1

2
|𝒜|𝜖𝜋 max

𝛽(𝑠,𝑟,𝜋)

(︃
log

(︃∑︁
𝑠′∈𝒮

𝑃𝑆(𝑠
′)𝛽(𝑠′, 𝑟, 𝜋)

)︃
+
∑︁
𝑠′′∈𝒮

𝑃𝑆(𝑠
′′)𝛽(𝑠, 𝑟, 𝜋)∑︀

𝑠′∈𝒮 𝑃𝑆(𝑠′)𝛽(𝑠′, 𝑟, 𝜋)

)︃
=

=
1

2
|𝒜|𝜖𝜋 max

𝛽(𝑠,𝑟,𝜋)

(︃
log

(︃∑︁
𝑠′∈𝒮

𝑃𝑆(𝑠
′)𝛽(𝑠′, 𝑟, 𝜋)

)︃
+

𝛽(𝑠, 𝑟, 𝜋)∑︀
𝑠′∈𝒮 𝑃𝑆(𝑠′)𝛽(𝑠′, 𝑟, 𝜋)

)︃
≤

≤ 1

2
|𝒜|𝜖𝜋

⃒⃒⃒⃒
⃒log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+

𝛽(𝑠, 𝑟, 𝜋)∑︀
𝑠′∈𝒮

1
𝑘𝑠
𝛽(𝑠′, 𝑟, 𝜋)

⃒⃒⃒⃒
⃒ =

=
1

2
|𝒜|𝜖𝜋

⃒⃒⃒⃒
log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠

𝛽(𝑠, 𝑟, 𝜋)∑︀
𝑠′∈𝒮 𝛽(𝑠

′, 𝑟, 𝜋)

⃒⃒⃒⃒
≤ (4.27)

≤ 1

2
|𝒜|𝜖𝜋

⃒⃒⃒⃒
log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠

⃒⃒⃒⃒
(4.28)

where |𝒮| is the number of different states in the MDP. Therefore, combining expres-
sions (4.21) and (4.28):⃒⃒⃒⃒
⃒𝛽(𝑠, 𝑟, 𝜋2) log

(︃∑︁
𝑠′∈𝒮

𝑃𝑆(𝑠
′)𝛽(𝑠′, 𝑟, 𝜋2)

)︃
− 𝛽(𝑠, 𝑟, 𝜋1) log

(︃∑︁
𝑠′∈𝒮

𝑃𝑆(𝑠
′)𝛽(𝑠′, 𝑟, 𝜋1)

)︃⃒⃒⃒⃒
⃒ ≤

≤ 1

2
|𝒜|𝜖𝜋

⃒⃒⃒⃒
log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠

⃒⃒⃒⃒
(4.29)

Then, going back to expression (4.13), the following can be concluded

𝛼(𝑠, 𝑟) ≤
⃒⃒⃒⃒
log

𝑝𝑟
𝑘𝑎

+ 1

⃒⃒⃒⃒
1

2
|𝒜|𝜖𝜋 +

1

2
|𝒜|𝜖𝜋

⃒⃒⃒⃒
log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠

⃒⃒⃒⃒
=

=
1

2
|𝒜|𝜖𝜋

(︂⃒⃒⃒⃒
log

𝑝𝑟
𝑘𝑎

+ 1

⃒⃒⃒⃒
+

⃒⃒⃒⃒
log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠

⃒⃒⃒⃒)︂
(4.30)
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Finally, the MI difference 𝐼(𝑆,𝑅; 𝜋1)− 𝐼(𝑆,𝑅; 𝜋2) is bounded by

|𝐼(𝑆,𝑅; 𝜋1)− 𝐼(𝑆,𝑅; 𝜋2)| =

⃒⃒⃒⃒
⃒∑︁
𝑠∈𝒮

𝑃𝑆(𝑠)
∑︁
𝑟∈ℛ

𝛼(𝑠, 𝑟)

⃒⃒⃒⃒
⃒ ≤

≤
∑︁
𝑠∈𝒮

𝑃𝑆(𝑠)
∑︁
𝑟∈ℛ

1

2
|𝒜|𝜖𝜋

(︂⃒⃒⃒⃒
log

𝑝𝑟
𝑘𝑎

+ 1

⃒⃒⃒⃒
+

⃒⃒⃒⃒
log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠

⃒⃒⃒⃒)︂
=

=
∑︁
𝑠∈𝒮

𝑃𝑆(𝑠)|ℛ|
1

2
|𝒜|𝜖𝜋

(︂⃒⃒⃒⃒
log

𝑝𝑟
𝑘𝑎

+ 1

⃒⃒⃒⃒
+

⃒⃒⃒⃒
log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠

⃒⃒⃒⃒)︂
=

=
1

2
|ℛ||𝒜|𝜖𝜋

(︂⃒⃒⃒⃒
log

𝑝𝑟
𝑘𝑎

+ 1

⃒⃒⃒⃒
+

⃒⃒⃒⃒
log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠

⃒⃒⃒⃒)︂
(4.31)

where |ℛ| is the total number of different rewards.

This section concludes that, in a discrete MDP with state space 𝒮, action
space 𝒜, and reward set ℛ, with

∑︀
𝑎′∈𝒜 𝑃 (𝑟|𝑠, 𝑎′) ≥ 𝑝𝑟, 𝜋(𝑎|𝑠) ≥ 1/𝑘𝑎, and

𝑃𝑆(𝑠) ≥ 1/𝑘𝑠, ∀𝑠, 𝑎, 𝑟 ; the difference in MI between states and rewards given
by two similar policies 𝜋1 and 𝜋2 (i.e., |𝜋1(𝑎|𝑠)−𝜋2(𝑎|𝑠)| ≤ 𝜖𝜋, ∀𝑎, 𝑠) is bounded
as

|𝐼(𝑆,𝑅; 𝜋1)− 𝐼(𝑆,𝑅; 𝜋2)| ≤
1

2
|ℛ||𝒜|𝜖𝜋

(︂⃒⃒⃒⃒
log

𝑝𝑟
𝑘𝑎

+ 1

⃒⃒⃒⃒
+

⃒⃒⃒⃒
log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠

⃒⃒⃒⃒)︂
(4.31)

where |𝒮| and |ℛ| correspond to the total number of states and rewards, re-
spectively.

4.5.2 How does mutual information change as the policy con-

verges?

The previous section considered the case of the change in MI between two generic
policies 𝜋1 and 𝜋2. This section focuses on different policies that are part of the same
learning process 𝜋0, 𝜋1, 𝜋2, ..., 𝜋𝑁 , where 𝜋𝑁 is the policy when learning converges.
Similarly to the previous section, we assume that the change between consecutive
policies is small, i.e., |𝜋𝑛(𝑎|𝑠) − 𝜋𝑛−1(𝑎|𝑠)| ≤ 𝜆𝑛−1𝜖𝜋,∀𝑎, 𝑠, with 0 < 𝜆 < 1. This
indicates that this change becomes smaller as the policy converges.
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The maximum change between policy 𝜋𝑛 and policy 𝜋0 is bounded as follows

|𝜋𝑛(𝑎|𝑠)− 𝜋0(𝑎|𝑠)| ≤
𝑛∑︁

𝑘=1

𝜆𝑘−1𝜖𝜋 = 𝜖𝜋

𝑛−1∑︁
𝑏=0

𝜆𝑏 = 𝜖𝜋

(︃
∞∑︁
𝑏=0

𝜆𝑏 −
∞∑︁
𝑛

𝜆𝑏

)︃
= 𝜖𝜋

1− 𝜆𝑛

1− 𝜆

(4.32)

Then, a similar derivation to Section 4.5.1’s with a change in inequality (4.19) is
followed

𝛽(𝑠, 𝑟, 𝜋𝑛)− 𝛽(𝑠, 𝑟, 𝜋0) =
∑︁
𝑎∈𝒜

𝑃 (𝑟|𝑠, 𝑎)[𝜋𝑛(𝑎|𝑠)− 𝜋0(𝑎|𝑠)] ≤
1

2
|𝒜|𝜖𝜋

1− 𝜆𝑛

1− 𝜆
(4.33)

Now, by taking into account this change into expressions (4.20) and (4.28), one
can conclude that the difference in MI as the policy converges is bounded by

|𝐼(𝑆,𝑅; 𝜋𝑛)− 𝐼(𝑆,𝑅; 𝜋0)| ≤
1

2
|ℛ||𝒜|𝜖𝜋

1− 𝜆𝑛

1− 𝜆

(︂⃒⃒⃒⃒
log

𝑝𝑟
𝑘𝑎

+ 1

⃒⃒⃒⃒
+

⃒⃒⃒⃒
log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠

⃒⃒⃒⃒)︂
(4.34)

4.5.3 The effect of removing features

Finally, this part considers the case in which one or more features from the state
space are removed and the agent is retrained from scratch. In this case, the updated
space is defined as 𝒮 ′, with |𝒮 ′| ≤ |𝒮|. Note the number of different states cannot
increase, see the example in Figure 4-4.

As discussed in Section 4.4.2, the maximum MI that can be achieved corresponds
to log𝑁𝑆, where 𝑁𝑆 is the number of states in the MDP. Thus, when a feature is
removed from the state space, the maximum possible MI also decreases since there is
less information available to encode.

However, the bound derived in Equation (4.34) remains valid in this case with
an updated coefficient 𝑘𝑠′ . By definition, 𝑘𝑠′ ≤ 𝑘𝑠, where 𝑘𝑠 is the coefficient associ-
ated with the original state space 𝒮. Consequently, the bound on the change in MI
becomes:

|𝐼(𝑆 ′, 𝑅; 𝜋𝑛)−𝐼(𝑆 ′, 𝑅; 𝜋0)| ≤
1

2
|ℛ||𝒜|𝜖𝜋

1− 𝜆𝑛

1− 𝜆

(︂⃒⃒⃒⃒
log

𝑝𝑟
𝑘𝑎

+ 1

⃒⃒⃒⃒
+

⃒⃒⃒⃒
log

(︂
|𝒮 ′|
𝑘𝑠′

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠′

⃒⃒⃒⃒)︂
(4.35)

where the changes with respect to expression (4.34) are highlighted in blue.
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The derived bound consists of two components. The first component,

1

2
|ℛ||𝒜|𝜖𝜋

1− 𝜆𝑛

1− 𝜆

(︂⃒⃒⃒⃒
log

𝑝𝑟
𝑘𝑎

+ 1

⃒⃒⃒⃒)︂
remains constant and independent of the state space. It indicates that the reward
structure and the action space also influence the MI bound. Smaller action spaces
and less diversity in rewards lead to tighter MI bounds.

The second component depends on the state space and therefore is updated given
the change of 𝒮 to 𝒮 ′, i.e.,

1

2
|ℛ||𝒜|𝜖𝜋

1− 𝜆𝑛

1− 𝜆

(︂⃒⃒⃒⃒
log

(︂
|𝒮 ′|
𝑘𝑠′

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠′

⃒⃒⃒⃒)︂
The relationship between the two components determines whether the MI bound

becomes looser or tighter when a feature is removed. Specifically, these expressions
are compared: ⃒⃒⃒⃒

log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠

⃒⃒⃒⃒
≶

⃒⃒⃒⃒
log

(︂
|𝒮 ′|
𝑘𝑠′

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠′

⃒⃒⃒⃒
In the case one assumes that 𝑘𝑠 = |𝒮| and 𝑘𝑠′ = |𝒮 ′|, then the previous inequality

evaluates whether 𝑘𝑠 is greater than 𝑘𝑠′ , assuming 𝑝𝑟 and 𝑘𝑎 remain the same for
both MDPs. While 𝑘𝑠 and 𝑘𝑠′ can both take arbitrarily large values, if all states are
equiprobable, 𝑘𝑠′ will take lower values than 𝑘𝑠. Therefore:⃒⃒⃒⃒

log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠

⃒⃒⃒⃒
≥
⃒⃒⃒⃒
log

(︂
|𝒮 ′|
𝑘𝑠′

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠′

⃒⃒⃒⃒
This implies that the MI bound becomes tighter when a feature is removed.

There is another case in which, after removing one feature from the state space,
the MDP ends up with less possible states, i.e., |𝒮 ′| < |𝒮|, but the following holds:
𝑘𝑠 = 𝑘𝑠′ . For example, if there exist 𝑠1 ∈ 𝒮 and 𝑠2 ∈ 𝒮 ′ such that 𝑃𝒮(𝑠1) =

𝑃𝒮′(𝑠2), and both correspond to the minimum nonzero probabilities of their respective
distributions, then the value log(|𝒮|/𝑘𝑠) will be greater than log(|𝒮 ′|/𝑘𝑠′). However,
since 𝑘𝑠 ≥ |𝒮|, 𝑘𝑎 ≥ 1, and 𝑝𝑟 ≤ 1, then the logarithms will have negative value and
the effect of taking into account the absolute value will be⃒⃒⃒⃒

log

(︂
|𝒮|
𝑘𝑠

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠

⃒⃒⃒⃒
≤
⃒⃒⃒⃒
log

(︂
|𝒮 ′|
𝑘𝑠′

𝑝𝑟
𝑘𝑎

)︂
+ 𝑘𝑠′

⃒⃒⃒⃒
This indicates that the MI bound becomes looser after removing the feature.
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In summary, the effect of removing features on the MI bound depends on the
relationship between 𝑘𝑠 and 𝑘𝑠′ . When 𝑘𝑠′ takes lower values than 𝑘𝑠, the MI bound
becomes tighter. On the other hand, if 𝑘𝑠 = 𝑘𝑠′ and |𝒮 ′| < |𝒮|, the MI bound becomes
looser.

4.6 Case study: Traffic Signal Control

To ground the analysis and understanding of feature selection in RL, this section
reintroduces the TSC problem presented in Section 4.2.3 as a real-world use case to
study the change in MI during learning. The objective in this problem is to control
the traffic lights at an intersection by setting them to different phases. A phase is
defined as an assignment of states to each traffic light (e.g., green, red). The ultimate
goal is to optimize the traffic flow at the intersection accounting for figures of merit
such as the average waiting time. TSC problems can be formulated in multiple ways
that affect the specific available actions, the timescale, and the concrete goals to
achieve [106]. This dissertation focuses on the most frequent formulation, in which
time is discretized in equal intervals and a phase from a set of predefined phases is
chosen at each timestep. This can be applied to individual intersections or to large
road networks with multiple intersections.

4.6.1 Evaluating mutual information between state features

and rewards during learning

Several experiments are conducted to gain insights on the significance of the features
in Table 4.1. To accomplish this, the RESCO benchmark for TSC [20] and a real-world
road network and simulation with 21 agent-controlled traffic lights are utilized (see
Figure 4-6) as the scenario. The following elements are considered in the experiments:

• State space: The state space used in one of the benchmark models in RESCO
is taken. It consists of 5 different features for each lane in the intersection: the
current phase, the number of vehicles approaching, the average waiting time,
the number of vehicles waiting, and the average vehicle speed in the lane.

• Action: At each timestep, the action involves setting the phase at each inter-
section from a set of predefined phases. Each intersection may have a different
number of phases.
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Figure 4-6: Road network used during the simulations, based on the town of In-
golstadt, in Germany. Each of the 21 dots represents an intersection controlled by an
RL agent. The 7 intersections marked in blue are used as a downsized version of the
environment.

• Reward: At a given timestep, the sum of the time each vehicle at the intersec-
tion has been waiting is computed and multiplied by -1 to obtain the reward.

• RL algorithm: An independent agent is set up for each of the 21 intersections,
and the IDQN model from RESCO is used to train each agent independently.

During training, the states visited and the reward obtained after each action are
tracked. Since MI can only be estimated based on data samples instead of distribu-
tions [247], the MI is computed using entropy estimation from k-nearest neighbors
distances [219,220,323] for each training epoch. Additionally, a downsized version of
the environment with only 7 agent-controlled intersections is considered (see Figure
4-6). More implementation details can be found in Appendix A.1.2.

Figures 4-7 and 4-8 show how the MI between each of the 5 features and the reward
evolves during 100 episodes of training in the 7-intersection and 21-intersection use
cases, respectively. One can observe the MI substantially changes during learning for
two of the features and remains at a constant level for the rest. This is consistent with
the bounds given by expressions (4.31) and (4.34), as they allow big changes in the
MI but they do not necessarily imply changes in the MI, as there are circumstances
in which the MI does not change, as was discussed in Section 4.5. Additionally, the
figures show that changes in MI are more pronounced at the beginning of training,
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which is consistent with the reasoning in Section 4.5.2.
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Figure 4-7: Evolution of the mutual information between the reward and each of the
five features considered in the RESCO benchmark for Traffic Signal Control during
learning in the 7-intersection use case. The mean and 95% CI across 7 intersections
are shown.
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Figure 4-8: Evolution of the mutual information between the reward and each of the
five features considered in the RESCO benchmark for Traffic Signal Control during
learning in the 21-intersection use case. The mean and 95% CI across 21 intersections
are shown.

4.6.2 Which features are relevant?

Next, the relationship between the MI and the relevant features in the experiments
is investigated. To that end, this section introduces a figure of merit and the use of
the feature masks presented in Section 4.3. The figure of merit considered consists
of the average waited time per car in the simulation for the resulting policy. Taking
the average across vehicles provides a measure of the overall performance across the
network, as one vehicle might cross multiple independent intersections.

Regarding the feature masks, similar to the experiments in Section 4.2.2, using
feature masks entail using alternative feature spaces that zero out one or more of
the five features considered in this experiment. In total, 31 different masks are used
(25 − 1), which correspond to all possible combinations from one to five features,
excluding the option that all features are masked. For each of the 31 masks, 5
training runs for different random seeds are used. Consequently, for any of the five
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features, there are 16 · 5 = 80 figure of merit values corresponding to experiments
that do use such feature, and 15 · 5 = 75 figure of merit values corresponding to
experiments that do not use the feature. Therefore, a hypothesis test [191] between
the two sets of samples for each feature can be run in order to determine whether
there is a statistically significant difference between the averages of the figure of merit
values for both samples. The P -values for each feature are reported in Table 4.2.

Table 4.2: P-values obtained for five different hypothesis tests comparing two sets
of samples containing figure of merit values from runs in the 7-intersection case using
each feature and not using it, respectively.

1. Phase 2. Approach 3. Wait 4. Queue 5. Speed

0.044 0.799 < 0.001 < 0.001 0.479

The resulting values show that the waiting time and the queue size are strongly
relevant features, in addition to the current phase (i.e., a P -value of 0.05 is used to
determine statistical significance). In contrast, the number of cars approaching and
the average speed of the cars are irrelevant features for this problem. It is interesting
to point out that in Figures 4-7 and 4-8, high MI during learning for the two strongly
relevant features is observed, but it diminishes as the policy converges, showing a
similar MI to that of the irrelevant features. Therefore, in this case, relying on the
MI to detect relevant features will be more or less effective depending on the moment
of the learning process it is being measured at.

Another interesting observation is that, although the MI might not be robust to
policy changes, it is a cheaper method to evaluate feature relevance. While there is a
correspondence between the results in Figure 4-7 and in Table 4.2, the former require
a single training run whereas the latter require multiple different training runs, which
might be impractical if the number of features is large. Therefore, there is a cost-
efficiency advantage in understanding the evolution of MI under policy changes in
order to identify relevant features. Appendix E.2 shows that similar conclusions can
be derived when looking at the MI between pairs of features as the policy changes.

4.7 Chapter summary and contributions

This chapter has expanded on real-world RL design by focusing on a particular com-
ponent, the state space, and providing a comprehensive analysis on how to improve
current state space design practices based on mutual information (MI) analyses. This
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is motivated by two research opportunities identified in the literature review: a pre-
vailing lack of design consensus and a strong reliance on human-driven design in
domain-specific RL research. The goal of this chapter has been to study how feature-
based state spaces are currently designed and to propose a practical approach to
enhance these processes. Improving state space design practices can potentially lead
to less intrusive and less costly data collection needs.

The chapter has begun by examining the related literature review, identifying
the MI as one popular method of carrying out feature selection in RL and other
areas of Machine Learning. Then, I have presented two important issues of current
state space design strategies: using an excess of features and a lack of consensus
about which feature sets to use in specific applications. Then, I have formalized the
problem of feature selection in RL, with the goal of identifying the best feature set
for a given problem.

The next part of the chapter has focused on MI. There are two main shortcomings
related to MI use in RL: first, there is no reporting on MI being regularly used in
domain-specific RL studies as part of the design process; state spaces are treated
simply as elements to be reported. Second, domain-agnostic studies on MI for feature
selection in RL do not consider scenarios in which the policy changes as the agent
learns; policies are mostly treated as static. To emphasize the role of the policy when
looking at MI, I have presented a toy example in which, by modifying the agent’s
policy, the observed MI between certain features and the reward can be driven to
both the minimum and maximum possible values, which renders such features useless
and indispensable, respectively.

To further understand the behavior of MI under policy changes, the chapter has
continued by deriving a mathematical bound on how much the MI can change between
two different policies for the same Markov Decision Process. Then, the specific case
of a policy changing until convergence has been considered and the aforementioned
bound has been updated, concluding that the MI may suffer substantial changes as
the policy converges, although these changes become smaller the closer we are from
the convergence point. Finally, I have presented an updated bound that results when
removing a feature or set of features from the state space. This updated bound can
be tighter or looser depending on the structure of the updated state space.

Lastly, this chapter has concluded by taking the Traffic Signal Control (TSC)
problem as a real-world use case in which to validate the observations around MI. By
relying on the RESCO benchmark, we have observed that 1) using all features is not
the best approach, 2) the MI might be a good and cost-efficient way of identifying
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useful features in high-dimensional contexts, and 3) the MI of relevant and non-
relevant features become very similar once the policy converges, which emphasizes
the need of observing the MI along the complete learning curve.

The contributions of this chaper are the following:

Contribution 4.1 Characterized the limitations of current state space design prac-
tices for real-world RL problems, identifying an excess of features
and a lack of consensus as two important shortcomings.

Contribution 4.2 Identified a lack of study of feature selection via mutual informa-
tion in RL in the context of a changing policy and motivated its
consideration by proving the policy can substantially influence
the observed mutual information.

Contribution 4.3 Derived a mathematical bound for how much the mutual informa-
tion between state features and rewards can change when consid-
ering two different policies acting on the same Markov Decision
Process.

Contribution 4.4 Derived a mathematical bound for how much the mutual infor-
mation between state features and rewards can change as the
policy converges in the context of an RL algorithm.

Contribution 4.5 Outlined the possible updates on mutual information bounds
when removing a set of features from the state space.

Contribution 4.6 Provided a better feature set for two use cases of the RESCO
benchmark for Traffic Signal Control. Demonstrated this feature
set is also identifiable via mutual information.

Contribution 4.7 Validated the observations of mutual information changes dur-
ing policy learning using a real-world application and motivated
the need to compute the mutual information at different points
of the convergence process to get reliable estimations of feature
relevance.
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Chapter 5

MetaPG: Optimizing Multiple
Reinforcement Learning Objectives

This chapter introduces MetaPG, a method to evolve a population of actor-critic RL
algorithms, identified by their loss functions, with the goal of optimizing multiple RL
objectives. Section 5.1 introduces the goal of the method framed as a way of designing
RL algorithms while accounting for multiple real-world challenges. Then, Section 5.2
describes the main components of MetaPG and its workflow. The remainder of the
chapter focuses on detailed descriptions of each of these components. Section 5.3
explains the representation procedure based on computational graphs. Next, the main
building blocks of the evolution mechanism are introduced in Section 5.4. Following,
Section 5.5 explains the encoding of RL objectives as fitness scores into MetaPG.
Then, Section 5.6 describes how to run experiments with MetaPG, including an
overview of the meta-training, meta-validation, and meta-testing phases. Finally, the
summary of the chapters and its contributions are presented in Section 5.7.

5.1 Introduction

In Chapter 1, I introduced the so-called challenges of real-world RL as specific issues
that manifest in numerous practical applications and contribute to a lack of robustness
in RL. In Chapter 2, I reviewed the literature around those challenges and identified
that, while in real-world problems they manifest themselves in combination, there is
little research on addressing multiple challenges at the same time. The combined effect
of real-world challenges can be exponentially detrimental even for state-of-the-art RL
algorithms [100]. The majority of studies proposing new algorithms to robustify
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Figure 5-1: In many practical contexts, designing the RL agent that fulfills multiple
objectives above a certain threshold is an empirical and costly iteration-based process.

RL against individual challenges have a single-objective focus and come from human-
driven design processes. These design practices might become prohibitively expensive
when trying to optimize more than one RL objective, especially in concrete real-world
problems, where design tends to be empirical [16,234]. In order to find new algorithms
that are robust against multiple challenges given by different objectives, the design
process might require numerous expensive iterations, as trade-offs among objectives
might be present (see Figure 5-1). This motivates looking into AutoML methods for
RL, i.e., AutoRL, as a way to introduce automaton into the design process and make
it more cost-efficient.

This chapter tackles these gaps and proposes MetaPG1, a method that relies on
AutoML to evolve a population of RL algorithms, identified by their loss functions,
with the goal of optimizing multiple RL objectives. MetaPG, which I initially pub-
lished in [134], relies on a symbolic search language to represent algorithms as graphs,
on independent fitness scores, and on multi-objective optimization routines to find
new algorithms that are aligned with the objectives considered. This method aims
to find algorithm improvement directions that jointly optimize all objectives until it
obtains a Pareto Front or Pareto-optimal set of loss functions that maximizes fitness
with respect to each objective, approximating the underlying trade-off between them.

1The name MetaPG comes from Meta Policy Gradient. MetaPG specifically evolves actor-critic
loss functions.
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MetaPG is of interest to both domain-agnostic and domain-specific RL research.
On one hand, it highlights an important aspect of designing RL algorithms for prac-
tical applications: the balancing of multiple real-world challenges that together pose
bottlenecks for deployment. On the other hand, it provides practitioners without RL
expertise with a way of automating the search process. This way, practitioners only
have to limit themselves to encode their multiple problem needs as independent fitness
scores. I believe that MetaPG can benefit AutoML research too, as automating RL
still remains a complex research problem due to its brittleness and complexity [296].

This chapter describes MetaPG at a methods level, detailing each of its compo-
nents. Then, Chapter 6 presents the application of MetaPG to the specific use case
of optimizing performance, generalizability, and stability.

5.1.1 Related Work

The automation of the design process of RL components via AutoRL has been ex-
plored in different directions [296], as the design process (see RL roadmap in Figure
3-3) include multiple elements that can be automated. There have been studies
focused on automating the search for RL algorithms [29, 67, 212, 280], others have
focused on hyperparameter optimization in RL [165, 395, 404], the policy or neural
network has also been the subject of study in other works [129,266], and finally, there
has been research on automating environmental components such as the reward func-
tion [89, 110, 112, 120, 149, 371]. This chapter specifically addresses evolving RL loss
functions and leaves other elements of the RL system out of the scope.

MetaPG relies on evolution to search over the space of loss functions. In the
context of AutoML, these were introduced by neuro-evolution [267,343]; one of their
major contributions has been in the field of neural network architecture search [199,
313, 342]. Regarding RL, evolution has been proposed as a method to search for
policy gradients [176] and value learning losses [67]. The work in this chapter is
also related to the field of genetic programming, in which the goal is to discover
computer code [67, 218, 315]. MetaPG uses a multi-objective evolutionary method,
NSGA-II [85], to discover new RL algorithms, specifically actor-critic algorithms [348],
represented as graphs that do not have meta-parameters to be learned.

Finally, the search over loss function spaces has already been explored in the
literature. One popular approach is to use neural loss functions whose parameters are
optimized via meta-gradient [29,212,244,280,394]. An alternative is to use symbolic
representations of loss functions and formulate the problem as optimizing over a
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combinatorial space. One example is [15], which represents extrinsic rewards as a
graph and optimizes it by cleverly pruning a search space. Learning value-based RL
loss functions by means of evolution was first proposed by Co-Reyes et al. [67], and
was applied to solving discrete action problems. He et al. [161] propose a method
to evolve auxiliary loss functions which complemented predefined standard RL loss
functions. MetaPG focuses on continuous control problems and searches for complete
symbolic loss functions of actor-critic algorithms.

5.2 Method Overview

MetaPG (see Figure 5-2) focuses on finding new actor-critic RL algorithms given
by their loss functions (policy loss and critic loss). To that end, it represents loss
functions as directed acyclic graphs using a symbolic language. Multiple graphs
form a population that is constantly evolved by mutating individual graphs. The
population can be initialized from scratch (using randomly-generated graphs) or using
predefined graphs as warm-starts. To determine the best graphs in the population,
MetaPG relies on a ranking mechanism that takes into account different independent
fitness scores in order to determine the best graphs in the population. The fitness
scores are measured by training an RL agent from scratch with the corresponding loss
function in one or more training environments and evaluating aspects related to the
metric of interest. The multi-objective evolutionary algorithm NSGA-II [85] is used
to jointly optimize all fitness scores until growing a Pareto-optimal set of graphs or
Pareto Front. Finally, by inspecting the graphs of the evolved algorithms, MetaPG
allows to interpret which substructure drive the gains for the particular objectives
considered.

Algorithm 1 summarizes the overall process. Given a set of training environments
ℰ and an evaluation subroutine Eval, a population of graphs 𝑃0 is initialized from
scratch or using a warm-start. Before beginning evolution, this population is eval-
uated using the subroutine Eval(𝐿, ℰ), which returns an array of fitness scores, one
for each independent objective considered. Then, using NSGA-II’s Offspring sub-
routine, a new set of evolved graphs 𝑄0 is evolved from 𝑃0 and then evaluated using
Eval. This process is repeated multiple times. To keep the population at a constant
size every time an offspring is generated, the function RankAndSelect is utilized to
pick the best graphs; this is given by NSGA-II too. After completing 𝐺 iterations,
the algorithm returns the Pareto Front of the final population.
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Figure 5-2: MetaPG overview, example with two fitness scores encoding two RL
objectives. (a) The method starts by taking a warm-start RL algorithm with its loss
function represented in the form of a directed acyclic graph. MetaPG consists of a
meta-evolution process that, after initializing algorithms to the warm-start, discovers
a population of new algorithms. (b) Each evolved graph is evaluated by training
an agent following the algorithm encoded by it, and then computing two fitness
scores based on the training outcome. (c) After evolution, all RL algorithms can
be represented in the fitness space and a Pareto-optimal set of algorithms can be
identified. (d) Identifying which graph substructures change across the algorithms in
the Pareto set reveals which operations are useful for specific RL objectives. MetaPG
can be scaled to more than two RL objectives.

5.3 RL algorithm representation

MetaPG encodes loss functions as graphs consisting of typed nodes sufficient to rep-
resent a wide class of actor-critic algorithms. Compared to the prior value-based
RL evolutionary search method introduced by [67], MetaPG’s search space greatly
expands on it and adds input and output types to manage the search complexity.
Nodes in the graph encode loss function inputs, operations, and loss function out-
puts. The inputs include elements from transition tuples coming from a replay buffer,
constants such as the discount factor 𝛾, a policy network 𝜋, and multiple critic net-
works 𝑄𝑖. Operation nodes support intermediate algorithm instructions such as basic
arithmetic neural network operations. Then, outputs of the graphs correspond to the
policy and critic losses. The gradient descent minimization process takes these out-
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Algorithm 1 MetaPG Overview
Input: Training environments ℰ , Eval subroutine
Initialize: Initialize population 𝑃0 of loss function graphs
(random initialization or bootstrap with an algorithm such
as SAC).
1: for 𝐿 in 𝑃0 do 𝐿.𝑠𝑐𝑜𝑟𝑒← Eval(𝐿, ℰ)
2: end for
3: 𝑄0 ← Offspring(𝑃0) ◁ NSGA-II
4: for 𝐿 in 𝑄0 do 𝐿.𝑠𝑐𝑜𝑟𝑒← Eval(𝐿, ℰ)
5: end for
6: for 𝑡 = 1 to 𝐺 do
7: 𝑅← 𝑃𝑡−1

⋃︀
𝑄𝑡−1

8: 𝑃𝑡 ← RankAndSelect(R) ◁ NSGA-II
9: 𝑄𝑡 ← Offspring(𝑃𝑡) ◁ NSGA-II

10: for 𝐿 in 𝑄𝑡 do 𝐿.𝑠𝑐𝑜𝑟𝑒← Eval(𝐿, ℰ)
11: end for
12: end for
13: Output: Pareto Front of all loss function graphs.

puts and computes their gradient with respect to the respective network parameters.
The experimental evaluation in Chapter 6 only considers steepest gradient descent to
update network parameters; incorporating other gradient descent strategies into the
search space out of the scope of this dissertation. However, other strategies such as
natural gradient [254] or conjugate gradient [332] could be incorporated, as they do
gradient transformations and are agnostic to loss functions.

5.3.1 Representing loss functions as graphs

Figure 5-3 shows how a simple RL algorithm, REINFORCE, is turned into a com-
putational graph. Variables in the loss function correspond to input nodes (blue)
and operations in the loss function expression conform the set of intermediate nodes
(orange). In this case, the parameter update is used as the output of the graph.

5.3.2 Search space

MetaPG admits both continuous and discrete action spaces; specific nodes in the
graphs —e.g., the neural networks— are adapted to work with the corresponding
space. The majority of operation nodes treat input elements as tensors with variable
shapes in order to maximize graph flexibility. Each node possesses a certain number
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Figure 5-3: Using REINFORCE [348] as an example to show the transformation of
loss functions into computational graphs.

of input and output edges, which are determined by the specific operation this node
carries out. For example, a node that takes in two tensors and multiplies them
element-wise has two input edges and a single output edge. MetaPG’s search language
supports both on-policy and off-policy algorithms; however, this dissertation focuses
on off-policy algorithms given their better sample efficiency.

The complete list of the nodes considered is the following:

Input nodes MetaPG only encodes canonical RL elements as inputs:

• Policy network 𝜋

• Two critic networks 𝑄1,2 and two target critic networks 𝑄𝑡𝑎𝑟𝑔1,2

• Batch of states 𝑠𝑡 and next states 𝑠𝑡+1

• Batch of actions 𝑎𝑡

• Batch of rewards 𝑟𝑡

• Discount factor 𝛾

Output nodes The output of these nodes is used as loss function to compute
gradient descent on:

• Policy loss 𝐿𝜋

• Critic loss 𝐿𝑄𝑖

Operation nodes These nodes operate generally on tensors and can broadcast
operations when input sizes do not match:
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• Addition: add two, three, or four tensors
• Multiplication: compute element-wise product of two or three tensors
• Subtract two tensors
• Divide two tensors and add constant 𝜖 to the denominator
• Neural network operation: Action distribtuion from state
• Neural network operation: stopping gradient computation
• Operations with action distributions: Sample, Log-probability
• Mean, sum, and standard deviation over last axis of array or over entire array
• Cumulative sum, cumulative sum with discount
• Squared difference
• Multiply by a constant: -1, 0.1, 0.01, 0.5, 2.0
• Minimum and maximum over last axis of a tensor
• Minimum and maximum element-wise between two tensors
• Other general operations: clamp, absolute value, square, logarithm, exponential
• Trigonometry functions

To get an upper bound of the size of the search space in terms of the number of
possible graphs (not all of them valid), let’s consider the (𝑘+1)-th node in the graph
of size 𝐾 nodes. This node can correspond to one of the 𝑁 different operation nodes.
Assuming that this node has two inputs, there are

(︀
𝑘
2

)︀
possibilities of connecting to

previous nodes in the graph. Therefore, there are a total of 1
2
𝑁𝑘(𝑘 − 1) possible

combinations for the (𝑘+1)-th node. Then, an upper bound of the total number of
possible graphs is2 (︂

𝑁𝐾(𝐾 − 1)

2

)︂𝐾

(5.1)

In the experiments in Chapter 6, the number of nodes per graph is limited to 60 and
80. With 𝑁 = 33 and 𝐾 = 60, the search space has approximately 10286 graphs.
This number increases to 10401 if 𝐾 = 80 instead.

5.3.3 Example algorithm: Soft Actor-Critic (SAC)

This section presents an example of an RL algorithm represented using MetaPG’s
symbolic graph language. Specifically, Figure 5-4 depicts the version of Soft Actor-
Critic (SAC) [152] used in this dissertation3. The equations for the policy loss 𝐿𝑊𝑆

𝜋

2Equation 5.1 assumes the operator is commutative. For non-commutative operations the 1/2
factor does not apply.

3The specific names shown in the picture correspond to function names encoding each operation
in the code
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Figure 5-4: Soft Actor-Critic (SAC) algorithm represented as a graph using
MetaPG’s symbolic language.

and critic loss 𝐿𝑊𝑆
𝑄𝑖

correspond to:

𝐿𝑊𝑆
𝜋 = E(𝑠𝑡,𝑎𝑡)∼𝒟

[︁
log 𝜋(𝑎̃𝑡|𝑠𝑡)−min

𝑖
𝑄𝑖(𝑠𝑡, 𝑎̃𝑡)

]︁
(5.2)

𝐿𝑊𝑆
𝑄𝑖

= E(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∼𝒟

[︂(︁
𝑟𝑡 + 𝛾

(︁
min
𝑖

𝑄𝑡𝑎𝑟𝑔𝑖(𝑠𝑡+1, 𝑎̃𝑡+1)− log 𝜋(𝑎̃𝑡+1|𝑠𝑡+1)
)︁
−𝑄𝑖(𝑠𝑡, 𝑎𝑡)

)︁2]︂
(5.3)

where 𝑎̃𝑡 ∼ 𝜋(·|𝑠𝑡), 𝑎̃𝑡+1 ∼ 𝜋(·|𝑠𝑡+1), and 𝒟 is a dataset from the replay buffer. Graph
representations for other relevant RL algorithms are presented in Appendix B.

5.4 Evolution details

This section presents an overview of the different components of the evolution module
used in MetaPG. Specific implementation aspects related to the experimental setups
are discussed in Chapter 6.

Mutation The population can be initialized from scratch or using a warm-start
RL algorithm; all individuals are copies of this algorithm’s graph at the beginning.
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Once the population is initialized, individuals undergo mutations that change the
structure of their respective graphs. Specifically, mutations consist of either replacing
one or more nodes in the graph or changing the connectivity for one edge. The
specific number of nodes that are affected by mutation is randomly sampled for each
individual.

Operation consistency To prevent introducing corrupted child graphs into the
population during the mutation process, MetaPG checks operation consistency, i.e.,
for each operation, it makes sure the shapes of the input tensors are valid and com-
patible, and computes the shape of the output tensor. These shapes and checks are
propagated along the computational graph.

Hashing To avoid repeated evaluations, MetaPG hashes [315] all graphs in the
population. Once the method produces a child graph and proves its consistency, it
computes a hash value and, in case of a cache hit, reads the fitness scores from the
cache. Since only the gradient of a loss function matters during training, MetaPG
hashes a graph by computing the corresponding loss function’s gradient on synthetic
inputs. In this case, not only preventing the evaluation of the same graph twice
is important, but also identifying graphs that are different in form but identical in
function (e.g., adding a node that multiplies by 1 affects the form but not the function
of the graph). To that end, before hashing MetaPG prunes all graphs so that only
nodes that contribute to the output are taken into account. Then, it looks at the
gradients of the output losses with respect to synthethic input parameters and uses
their concatenation as the hash value.

Fitness scores and Pareto-dominance MetaPG keeps the population to a fixed
size during evolution. To decide which individuals should be removed in the pro-
cess, the method makes use of different fitness scores that encode each of the RL
objectives considered. These scores are not combined but treated separately in a
multi-objective fashion. This means that, after evaluating a graph 𝑖, it will have fit-
ness scores {𝑓𝑖,1, 𝑓𝑖,2, ..., 𝑓𝑖,𝐹}, where 𝐹 is the number of objectives considered. Then,
when comparing two graphs 𝑖 and 𝑗, we say 𝑖 has higher fitness than 𝑗 if and only if
𝑓𝑖,𝑘 ≥ 𝑓𝑗,𝑘,∀𝑘, with at least one fitness score 𝑘′ such that 𝑓𝑖,𝑘′ > 𝑓𝑗,𝑘′ . In this case we
also say graph 𝑖 Pareto-dominates graph 𝑗. If neither 𝑖 Pareto-dominates 𝑗 nor vice
versa, we say both graphs are Pareto-optimal (e.g., if 𝑓𝑖,𝑘′ > 𝑓𝑗,𝑘′ and 𝑓𝑖,𝑘′′ < 𝑓𝑗,𝑘′′ ,
then 𝑖 and 𝑗 are Pareto-optimal).
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Pruning the population The process of removing individuals from the population
follows the NSGA-II algorithm [85] which, assuming a maximum population size of
𝑃𝑚𝑎𝑥 individuals:

1. From a set of 𝑃 individuals, with |𝑃 | > 𝑃𝑚𝑎𝑥, it computes the set 𝑃𝑜𝑝𝑡 of Pareto-
optimal fittest graphs. None of the graphs in 𝑃𝑜𝑝𝑡 is Pareto-dominated by any
other graph in the population and, if a graph 𝑖 in 𝑃 is Pareto-dominated by at
least one other graph, then 𝑖 does not belong to the Pareto-optimal set.

2. If |𝑃𝑜𝑝𝑡| ≥ 𝑃𝑚𝑎𝑥, the graphs are ranked based on their crowding distance in
the fitness space. This favors individuals that are further apart from other
individuals in the fitness space. The fittest 𝑃𝑚𝑎𝑥 individuals of the Pareto-
optimal set 𝑃𝑜𝑝𝑡 are kept in the population.

3. Otherwise, if |𝑃𝑜𝑝𝑡| < 𝑃𝑚𝑎𝑥, the set 𝑃𝑜𝑝𝑡 is kept in the population and the process
is repeated taking 𝑃 ← 𝑃 \𝑃𝑜𝑝𝑡 and 𝑃𝑚𝑎𝑥 ← 𝑃𝑚𝑎𝑥 − |𝑃𝑜𝑝𝑡|.

Hurdle evaluations MetaPG carries out evaluations for different individuals in the
population in parallel. Each evaluation might require multiple agents to be trained in
different environments. To prevent spending too many resources on algorithms that
are likely to yield bad policies, MetaPG uses a simple hurdle environment [67]. It
first evaluates the algorithm on the hurdle environment and only proceeds with more
complex and computationally expensive environments if the resulting policy performs
above a certain threshold on the hurdle environment.

5.5 Defining fitness scores

This section delves into the design of fitness scores for MetaPG experiments, empha-
sizing their significance in guiding the evolutionary search process for discovering new
RL algorithms. When a new algorithm is proposed, all fitness scores are computed
to rank it against other individuals in the population. MetaPG is a multi-objective
optimization method, allowing for the encoding of multiple fitness scores without any
limit on the number of independent scores considered. Consequently, the evolutionary
processes described in Section 5.4 can scale to accommodate numerous scores.

The fitness scores serve as inputs to the method, necessitating their prior design.
The design process should primarily focus on capturing the system-level objectives
described in Chapter 3. Therefore, each score should encode a specific aspect of the
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desired agent competence. In the context of this dissertation, this presents an oppor-
tunity to not only incorporate metrics related to performance but also design fitness
scores that capture metrics connected to robustness against real-world challenges.

The scoring functions are not constrained, except for the requirement to return
a single scalar for each objective. As a result, algorithms can be evaluated in multi-
ple environments or configurations, if necessary, and then aggregated to obtain the
fitness score. For instance, the work in [67] employs each algorithm to train agents
in various environments, considering the average of the normalized returns across
these environments as the fitness score. While evaluating algorithms across multiple
environments can assess their cross-environment generalization capabilities, it also
increases the overall runtime of MetaPG due to the additional scoring runtime.

The number of RL objectives to optimize for does not necessarily need to corre-
spond to the number of fitness scores. For example, in Chapter 6, MetaPG is used
to optimize single-task performance, zero-shot generalizability, and stability across
independent runs. These three objectives are encoded as two fitness scores. Initially,
the algorithm trains an agent in a specific environment using a specific configuration,
with the return in that particular task serving as a performance metric. Subsequently,
the resulting policy, without retraining, is deployed in numerous other environments
within the same class but with different configurations, which measures generalizabil-
ity. These two independent metrics are computed multiple times for different random
seeds, and stability is accounted for by penalizing algorithms that exhibit significant
deviations across independent runs.

While this dissertation focuses on a specific use case, MetaPG can incorporate
other real-world RL challenges as independent fitness scores. For instance:

• The area under the learning curve could quantify sample efficiency.

• Evaluating robustness against high-dimensionality could involve training a
policy in a specific environment and then evaluating its performance in a scaled-
up version of that environment. Alternatively, a second training run could be
performed directly on the higher-dimensional environment, and the performance
could be encoded as an independent fitness score.

• Incorporating evaluation environments where observations become non-stationary
could capture the challenge of non-stationarity.

• A fitness score focusing on delays could be created by including evaluation
environments with purposely slowed-down dynamics.

• Combining multiple real-world challenges into the same environment, akin to
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Figure 5-5: Running an experiment with MetaPG is divided into three phases. 1.
Meta-training: a population of algorithms is evolved using a set of random seeds
𝑆𝑡𝑟𝑎𝑖𝑛 to compute scores. 2. Meta-validation: to prevent overfitting, the scores of
all algorithms in the population are reevaluated using a different set of random seeds
𝑆𝑣𝑎𝑙𝑖𝑑. 3. Meta-testing: specific algorithms such as those in the Pareto Front are
tested in different environments using a third set of random seeds 𝑆𝑡𝑒𝑠𝑡.

[100], and registering the return could effectively identify new algorithms that
are robust against combined challenges.

In MetaPG, fitness scores determine the Pareto Fronts that the method will dis-
cover, ultimately shaping the trade-offs the designer wishes to explore for the specific
application at hand. Gaining a better understanding of these trade-offs assists the
designer in selecting algorithms that align more closely with their preferences.

5.6 Running MetaPG experiments

Figure 5-5 describes the process of running experiments with MetaPG; these are
divided into three phases: meta-training, meta-validation, and meta-testing. The
rationale behind this division is to prevent overfitting to a specific set of random seeds
during evolution. Specifically, each phase relies on a set of 𝑁 random seeds: 𝑆𝑡𝑟𝑎𝑖𝑛,
𝑆𝑣𝑎𝑙𝑖𝑑, and 𝑆𝑡𝑒𝑠𝑡, respectively. Figure 5-5 considers an example with two objectives
each encoded by a different fitness score. Each run of MetaPG begins with the
meta-training phase, which consists of the evolution process described in the previous
sections. The result of this phase is a population of evolved algorithms, each with a
pair of meta-training fitness scores. Since the evolution process is non-deterministic,
one could run each experiment multiple times without configuration changes and
aggregate all resulting populations into one single larger population.
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Then, to avoid selecting algorithms that overfit to the set of random seeds 𝑆𝑡𝑟𝑎𝑖𝑛,
all algorithms in the population are reevaluated with a different set of seeds 𝑆𝑣𝑎𝑙𝑖𝑑;
this corresponds to the meta-validation phase. This phase provides updated fitness
scores for all algorithms. In the absence of overfitting, there should not be much
difference between meta-training and meta-validation scores, although the Pareto
Front might differ from one phase to another. Finally, the meta-testing phase concerns
assessing the fitness of specific algorithms we want to pick from the population (e.g.,
the algorithms in the Pareto Front) in different environments that may have or may
have not been used during meta-training and meta-validation. To that end, a third set
of seeds 𝑆𝑡𝑒𝑠𝑡 is used, which provides realistic fitness scores in the new environments.

5.7 Chapter summary and Contributions

This chapter has addressed two important research opportunities for real-world RL
identified in the literature review: focusing on combined real-world RL challenges and
the automation of the design process in RL. To that end, this chapter has presented
MetaPG, an AutoML method that evolves new actor-critic loss functions represented
as computational graphs that optimize multiple objectives. The design of these new
loss functions is automated by means of evolutionary search and then, by considering
multiple objectives separately, the method can encode metrics of robustness as fitness
scores to guide the search.

Firstly, the chapter has delved into the related literature, highlighting that design
automation is an emerging area of research that encompasses not only RL algo-
rithms, but also their hyperparameters, policy networks, and certain elements of the
environment. While evolutionary search for loss functions has been proposed before
to optimize returns, no previous work has explored this approach in the context of
optimizing for multiple RL objectives. Next, I have presented the main components
of MetaPG and its overall workflow, which relies on the well-known multi-objective
optimization algorithm NSGA-II.

The next sections of this chapter have each focused on different parts of MetaPG.
First, I have discussed the search space used by MetaPG, which is based on typed
nodes that encode input elements, a diverse set of operations, and the output elements
corresponding to the losses. Although MetaPG’s search space is high-dimensional, it
offers significant flexibility to represent various classes of actor-critic algorithms. Next,
the different elements of the evolution process have been discussed, including node and
edge mutation, operation consistency checks, hashing to avoid redundant evaluations,
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fitness scores that guide the search, population ranking, Pareto dominance, and hurdle
evaluations to avoid investing excessive resources in poor algorithms.

Then, I have discussed the design of fitness scores for MetaPG. By considering
complete training runs, numerous metrics that capture different aspects of robust-
ness can be developed; I have provided different examples of such metrics. The last
section has focused on running experiments with MetaPG, which are divided into
three phases: meta-training, meta-validation, and meta-testing. Each phase utilizes
a separate set of random seeds to prevent overfitting during evolution.

The contributions of this chapter are the following:

Contribution 5.1 Proposed MetaPG, a method that combines multi-objective evo-
lution and a search language representing actor-critic RL algo-
rithms as graphs to discover new loss functions that optimize a
set of different RL objectives.

Contribution 5.2 Developed MetaPG’s search space, which offers the flexibility to
represent a wide range of actor-critic RL algorithms.
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Chapter 6

Application of MetaPG to optimize
performance, generalizability, and
stability

This chapter applies MetaPG to a concrete use case of discovering new actor-critic
RL algorithms that optimize for single-task performance, zero-shot generalizability,
and stability across independent runs. Section 6.1 presents this use case, discusses
its significance, and outlines the related work on optimizing for these goals. The defi-
nition of fitness scores for these objectives is addressed in Section 6.2. Then, Section
6.3 focuses on the setups utilized in the different experiments. The experiments in
this chapter are designed around two sets of environments. The first set consists of
environments from the RWRL Environment Suite and OpenAI Gym and the experi-
ments are presented in Section 6.4. The second set of environments is based on the
Brax physics simulators and its results are presented in Section 6.5. Next, Section
6.6 dives deeper into the analysis of some of the evolved algorithms. Finally, Section
6.7 discusses the significance of the results and highlights specific areas of future work
for MetaPG, and Section 6.8 summarizes the chapter and its main contributions.

6.1 Introduction

Chapter 5 introduced MetaPG, an evolutionary framework to discover new RL algo-
rithms that optimize multiple RL objectives at the same time by means of indepen-
dent fitness scores and a symbolic search language. This chapter puts MetaPG into
practice by considering a use case in which both performance and generalizability
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are optimized. Generalizability or generalization is one of the real-world challenges
introduced in Chapter 2, it is present in many real-world domains and has been thor-
oughly studied in robotics. In addition, I also include the optimization of stability in
this use case as an intrinsic metric; it is another real-world challenge identified in the
literature review.

This chapter aims to answer the following questions:

1. Is MetaPG capable of evolving algorithms that improve upon performance,
generalizability, and stability in different practical settings?

2. How well do discovered algorithms do in environments different from those used
to evolve them?

3. Are the evolutionary results interpretable?

Generalizability and stability are two key aspects of RL robustness in real-world
applications. One one hand, many real-world environments present themselves in
multiple configurations (e.g., different sizes, structure, context, properties) and prac-
titioners expect zero-shot generalization when facing these new configurations. Ex-
amples of this issue are present in robot manipulation [185], navigation [61], energy
systems [304], and fluid dynamics [138]. On the other hand, real-world elements such
as stochastic dynamics should not result in unstable learning behaviors that lead to
undersired performance drops. Even for state-of-the-art RL algorithms, zero-shot
generalization and instability are considerable challenges [100,163].

Generalizability and stability are two suitable real-world challenges to be consid-
ered as a use case for MetaPG. In the literature, improving generalizability has been
addressed by learning or encoding inductive biases in RL algorithms [310,370]. Gains
mostly come by manually modifying existing algorithms [69, 70, 186]. As environ-
ments become more complex and inductive biases become environment-specific, the
cost of human-driven design might be too expensive when optimizing for generalizabil-
ity [410], let alone when optimizing for both performance and generalizability [168],
which are just two objectives we can consider but there are many more. In addition,
stable algorithms that show consistent performance and generalizability across inde-
pendent runs leads to higher algorithm reusability within the same environment and
across environments.

To evaluate MetaPG for optimizing performance, generalizability, and stability,
this section presents experiments using the zero-shot generalizability benchmark from
the Real-World RL environment suite [100] and two environments from the Brax
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physics simulator [126]. In this latter case, generalizability is accounted for by sim-
ulating perturbations like mass changes, different friction coefficients, and different
joint torques. There is no specific benchmark for stability, the similarity between
different learning curves is taken into account by using multiple random seeds and
computing multiple performance and generalizability scores. In all cases, the Soft
Actor-Critic (SAC) [152] graph presented in Section 5.3.3 is used to warm-start the
population.

6.1.1 Related Work

Generalizability is one aspect of RL robustness that is not new in RL literature
[210, 393]. Increasing generalizability has been addressed by means of environment
randomization [14, 302, 360]. Other authors have shown that removing or adding
certain algorithmic components impacts generalizability (e.g. using batch normal-
ization [69], adding elements to rewards [56], or using regularizers [69, 186]). Other
works directly achieve generalizability gains by modifying existing actor-critic RL al-
gorithms [70, 310]. Vlastelica et al. [370] propose a hybrid architecture combining a
neural network with a shortest path solver to find better inductive biases that improve
generalizing to unseen environment configurations.

Achieving stable behaviors during training is essential in many domains, partic-
ularly in control applications [21, 185]. It has been shown that randomness can play
a substantial role in the outcome of a training run [163]. Stable learning has been
sought by means of algorithmic innovation [23, 125, 152, 193]. New stable algorithms
have been mainly developed after looking into stability in isolation. For both sta-
bility and generalizability, new algorithms have been developed after looking at each
challenge in isolation. MetaPG considers them jointly in addition to performance,
ensuring that algorithm improvement directions that benefit the three metrics are
explored.

6.2 Fitness scores

This chapter focuses on optimizing single-task performance, zero-shot generalizability,
and stability across independent runs, and this section covers how each objective is
encoded in the fitness scores. This applies to any of the phases described in Section
5.6, the only difference is the set of random seeds considered. Given an algorithm or
graph to evaluate, the process to compute these fitness scores is depicted in Figure
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6-1 and explained throughout this section. It relies on 𝑁 random seeds and a set of
environments ℰ , which comprises multiple instances of the same environment class,
including a training instance 𝐸𝑡𝑟𝑎𝑖𝑛 ∈ ℰ . For example, ℰ is the set of all Cartpole
environments with different pole lengths (in the experiments these go from 0.1 meters
to 3 meters in 10-centimeter intervals), and 𝐸𝑡𝑟𝑎𝑖𝑛 corresponds to an instance with a
specific pole length (1 meter in the experiments).
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Figure 6-1: Process to compute fitness scores given an algorithm to evaluate. (a)
Independently for each seed from a set of 𝑁 seeds, a policy 𝜋𝑘 is trained using the
algorithm to evaluate, the environment 𝐸𝑡𝑟𝑎𝑖𝑛, and a seed 𝑘. During training, the
policy is allowed to take stochastic actions. Then, 𝜋𝑘 is evaluated deterministically
on that same environment 𝐸𝑡𝑟𝑎𝑖𝑛 to get a raw performance score 𝑓𝑝𝑒𝑟𝑓𝑘 , and on a set of
environments ℰ (same environment with different configurations; e.g., different pole
lengths as shown) to get a raw generalizability score 𝑓𝑔𝑒𝑛𝑘

. (b) Stability-adjusted
fitness scores 𝑓𝑝𝑒𝑟𝑓 and 𝑓𝑔𝑒𝑛 are computed by aggregating raw scores from each seed
using Equation 6.3.

6.2.1 Raw performance and generalizability scores

The first step (see Figure 6-1a) is to compute raw performance and generalizability
scores for each individual seed. Using 𝐸𝑡𝑟𝑎𝑖𝑛 and seed 𝑘 to train a policy 𝜋𝑘, the
performance score 𝑓𝑝𝑒𝑟𝑓𝑘 is the average evaluation return on the training environment
configuration:

𝑓𝑝𝑒𝑟𝑓𝑘 =
1

𝑁𝑒𝑣𝑎𝑙

𝑁𝑒𝑣𝑎𝑙∑︁
𝑛=1

𝐺𝑛(𝜋𝑘, 𝐸𝑡𝑟𝑎𝑖𝑛), (6.1)

where 𝐺𝑛 corresponds to the normalized return (e.g., keeping returns between 0 and
1) for episode 𝑛 given a policy and an environment instance, and 𝑁𝑒𝑣𝑎𝑙 is the number
of evaluation episodes. Algorithms that learn faster in the training environment and
overfit to it obtain higher performance scores.

The generalizability score 𝑓𝑔𝑒𝑛𝑘
is in turn computed as the average evaluation

return of the policy trained on 𝐸𝑡𝑟𝑎𝑖𝑛 over the whole range of environment configu-
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rations. Generalizability addresses the real-world challenge of taking good actions in
unseen instances of the environment, so the policy is trained on a single environment
configuration (for example 1.0 meter pole length) and then is evaluated in a zero-shot
fashion to new unseen environment configurations:1

𝑓𝑔𝑒𝑛𝑘
=

1

|ℰ|𝑁𝑒𝑣𝑎𝑙

∑︁
𝐸∈ℰ

𝑁𝑒𝑣𝑎𝑙∑︁
𝑛=1

𝐺𝑛(𝜋𝑘, 𝐸) (6.2)

6.2.2 Stability-adjusted scores

The third objective in this use case is stability. While a third raw fitness score could
be considered, in practice one looks for stable training results for both performance
and generalizability. Therefore, I encode it intrinsically in the two other metrics and,
from the optimization perspective, keep the problem as 2-objective. To that end,
once there are independent raw scores for each seed (𝑁 different performance and
generalizability scores), the stability-adjusted scores (see Figure 6-1b) are defined as

𝑓 = 𝜇({𝑓𝑛}𝑁𝑛=1)− 𝜅 · 𝜎({𝑓𝑛}𝑁𝑛=1) (6.3)

where 𝑓 is a score (performance or generalizability), 𝑓𝑛 denotes the score for seed 𝑛;
𝜇 and 𝜎 are the mean and standard deviation across the 𝑁 seeds, respectively; and
𝜅 is a penalization coefficient. Then, the final fitness of a graph is the tuple (𝑓𝑝𝑒𝑟𝑓 ,
𝑓𝑔𝑒𝑛).

6.3 Experimental setups

This section describes the different experiments and analyses that are carried out
throughout the rest of the chapter alongside their experimental setups. First, Section
6.4 presents the results on running MetaPG on a set of environments from the RWRL
Environment Suite [100] and OpenAI Gym [43]. For each case, it describes the Pareto
Fronts, the behavior of the best algorithms, the stability of the population, and
the cross-environment performance. Then, Section 6.5 follows a similar procedure
for environments based on the Brax physics simulator [126], emphasizing the meta-
testing and cross-environment results of the best algorithms in the population. Lastly,

1More precisely, it should be 𝐸 ∈ ℰ ∖ {𝐸𝑡𝑟𝑎𝑖𝑛}. In practice, this makes no significant difference
in the metric because the number of test configurations is normally around 30.
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Section 6.6 focuses on the interpretability of the algorithms and presents an analysis
on the graph structure of two of the evolved graphs.

The experimental setups that support the analyses in this section are the following:

Training environments The following environments are used: Cartpole and Walker
from the RWRL Environment Suite, Pendulum from OpenAI Gym, and Ant and Hu-
manoid from the Brax physics simulator. As it matters to compute generalizability,
different instances of these environments are defined by varying the pole length in
Cartpole, the thigh length in Walker, the pendulum length and mass in Pendulum,
and, to mimic a practical setting, the mass, friction coefficient, and torque in Ant
and Humanoid. See Appendix A.2.1 for the specifics.

Meta-training details The population and maximum graph size consist of 100
individuals and 80 nodes in the Brax environments, respectively, and 1,000 individuals
and 60 nodes in the rest of the environments. All are initialized using SAC as a warm-
start (see Section 5.3.3), which consists of 33 nodes. Additional operation nodes are
added to each individual until reaching the maximum amount of 60 nodes. For RL
algorithm evaluation, 10 different random seeds 𝑆𝑡𝑟𝑎𝑖𝑛 are used and the number of
evaluation episodes 𝑁𝑒𝑣𝑎𝑙 is fixed to 20. In the case of Brax, since training takes longer,
the number of seeds is reduced to 4 different but 𝑁𝑒𝑣𝑎𝑙 is increased to 32. As discussed
in Section 5.6, repeats are carried out; specifically, there are 10 independent repeats of
MetaPG when evolving on RWRL Cartpole, RWRL Walker, and Gym Pendulum; 5
repeats when evolving on Brax Ant; and 3 repeats for Brax Humanoid. Meta-training
uses 100 TPU 1x1 v2 chips for 4 days in the case of Brax environments (∼200K and
∼50K evaluated graphs in Ant and Humanoid, respectively), and 1,000 CPUs for 10
days in the rest of environments (∼100K evaluated graphs per experiment). In all
cases fitness scores are normalized to the range [0, 1] and 𝜅 = 1 in (6.3). Additional
details are in Appendix A.2.2.

Meta-validation details Meta-validation utilizes a set of 10 random seeds 𝑆𝑣𝑎𝑙𝑖𝑑,
disjoint with respect to 𝑆𝑡𝑟𝑎𝑖𝑛. In the case of Brax environments, 4 meta-validation
seeds are used. The same applies during meta-testing. In each case, the number of
seeds achieves a good balance between preventing overfitting and having affordable
evaluation time. The value of 𝑁𝑒𝑣𝑎𝑙 during meta-validation and meta-testing matches
the one used in meta-training.
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Hyperparameter tuning The same fixed hyperparameters are used during all
meta-training. Algorithms are also meta-validated using the same hyperparameters.
In the case of Brax environments, hyperparameter tuning occurs for all algorithms
during meta-validation; additional details can be found in Appendix A.2.4. We also
hyperparameter-tune all baselines we compare our evolved algorithms against.

RL Training details The architecture of the networks (both actor and critic)
corresponds to two-layer fully-connected networks or MLPs with 256 units each. Ad-
ditional training details are presented in Appendix A.2.2.

Mutation During mutation, there is a 50% chance an individual undergoes node
mutation and a 50% chance it undergoes edge mutation. During node mutation,
there is a 50% chance of replacing one node, a 25% chance of replacing 2 nodes, a
12.5% chance of replacing 4 nodes, and a 6.25% chance of replacing 8 and 16 nodes,
respectively. During edge mutation, only one edge in the graph is replaced randomly.

Hashing In the hashing process a fixed set of synthetic inputs with a batch size of
16 is used to compute the hash value for each graph. A new algorithm is evaluated if
and only if there is not a cache hit after computing the hash.

6.4 Evolution in RWRL and OpenAI Gym environ-

ments

In this section MetaPG is used on the two environments from the RWRL Environ-
ment Suite, Cartpole and Walker, and on Pendulum, from OpenAI Gym. In all cases
the population is initialized with SAC and then undergoes meta-training and meta-
validation. I compare the resulting algorithms with an SAC implementation from
ACME [171]. When running ACME SAC in any environment, first there is a hyper-
parameter tuning phase and the two configurations that lead to the best stability-
adjusted performance and the best stability-adjusted generalizability are picked (in
the figures and tables these are identified as ACME SAC HPT Perf and ACME SAC
HPT Gen, respectively).

The order of the analyses is the following: Section 6.4.1 presents the evolution
results when using MetaPG on RWRL Cartpole. This includes reporting on the best
graphs at the Pareto Front and visualizing the behavior of the best performer and
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the best generalizer. Sections 6.4.2 and 6.4.3 do the same for RWRL Walker and
OpenAI Gym Pendulum, respectively. Then, Section 6.4.4 extends the analysis on
the stability achieved by the evolved algorithms and lastly, Section 6.4.5 addresses
the performance and generalizability of the evolved algorithms when transferred to
different environment than those they were evolved in.

6.4.1 RWRL Cartpole

Figure 6-2: Meta-training and meta-validation stability-adjusted fitness scores
(computed using Equation 6.3 across 10 seeds) for each RL algorithm in the pop-
ulation alongside the warm-start (SAC) and ACME SAC when using MetaPG on
the RWRL Cartpole environment. The figure shows the meta-validated Pareto Front
of algorithms that results after merging the 10 populations corresponding to the 10
repeats of the experiment.

Figure 6-2 depicts the meta-training and meta-validation populations after run-
ning MetaPG on RWRL Cartpole, with the meta-validated Pareto Front highlighted
in pink. Then, Table 6.1 shows numeric values for each of the three metrics considered
in this use case: performance, generalizability, and stability. In the case of stability,
the table shows a measure of instability represented as the change in standard devi-
ation compared to the warm-start (i.e., warm-start has the value 1.0). Instability is
measured independently with respect to performance and generalizability.

The results from Table 6.1 show that MetaPG discovers RL algorithms that im-
prove upon the warm-start’s and ACME SAC’s performance, generalizability, and
stability in the same environment used during evolution. Compared to the warm-
start, the best performer achieves a 4% improvement in the stability-adjusted perfor-
mance score (from 0.836 to 0.868) and the best generalizer achieves a 20% increase
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Table 6.1: Comparison of all algorithms in the Pareto Front with SAC (warm-
start and hyperparameter-tuned ACME SAC) using metrics obtained in the RWRL
Cartpole environment: average performance and generalizability, stability-adjusted
performance and generalizability scores, and measure of instability (standard devia-
tion 𝜎 divided by the warm-start’s 𝜎𝑊𝑆. These metrics are computed across 10 seeds
and the best result in a column is bolded. Rows in gray correspond to algorithms
that improve upon the warm-start in all metrics. †In contrast to performance and
generalizability, the lower the instability the better.

Performance Generalizability Instability† (𝜎/𝜎𝑊𝑆)
RL Algorithm 𝑓𝑝𝑒𝑟𝑓 𝑓𝑝𝑒𝑟𝑓 𝑓𝑔𝑒𝑛 𝑓𝑔𝑒𝑛 Perf. Gen.
Pareto 1: Best performer 0.871 0.868 0.475 0.459 0.33 0.59
Pareto 2 0.857 0.856 0.513 0.488 0.11 0.93
Pareto 3 0.857 0.855 0.514 0.489 0.22 0.93
Pareto 4 0.856 0.854 0.517 0.493 0.22 0.89
Pareto 5 0.855 0.853 0.520 0.497 0.22 0.85
Pareto 6 0.854 0.852 0.531 0.514 0.22 0.63
Pareto 7 0.798 0.788 0.540 0.524 1.11 0.59
Pareto 8 0.794 0.784 0.546 0.528 1.11 0.67
Pareto 9 0.783 0.776 0.569 0.543 0.78 0.96
Pareto 10: Best generalizer 0.770 0.756 0.570 0.551 1.55 0.70
Warm-start SAC 0.845 0.836 0.487 0.460 1.0 1.0
ACME SAC HPT Perf 0.865 0.864 0.372 0.312 0.11 2.22
ACME SAC HPT Gen 0.845 0.833 0.518 0.478 1.33 1.48

in the stability-adjusted generalizability score (from 0.460 to 0.551). The table also
highlights those algorithms in the Pareto Front that improve upon the warm-start
in all metrics. For example, Pareto point 6 achieves a 2% and a 12% increase in
both stability-adjusted performance and stability-adjusted generalizability, respec-
tively. Then, in terms of the stability objective, the best performer reduces perfor-
mance instability by 67% and the best generalizer achieves a reduction of 30% for
generalizability instability.

The gains in generalizability and stability are substantial when comparing the
results to hyperparameter-tuned ACME SAC. The best generalizer achieves a 15%
increase in stability-adjusted generalizability compared to ACME SAC tuned for such
metric. The instability in the hyperparameter-tuned SAC is twice as high (1.48 vs.
0.70, as shown in Table 6.1). In terms of performance, the best performer achieves a
slightly better result compared to SAC hyperparameter-tuned for performance.

Figure 6-3 compares how the best performer and the best generalizer behave
in different instances of the RWRL Cartpole environment in which the pole length
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Figure 6-3: Average and standard deviation across seeds of the meta-validation
performance of the best performer, the best generalizer, and the warm-start (SAC)
when training on a single configuration of RWRL Cartpole and evaluating on multiple
unseen ones. The pole length changes across environment configurations and a length
of 1.0 is used as training configuration.

changes (all instances form the environment set ℰ used during evolution). The goal of
this analysis is to follow the same procedure described by [100]. The best performer
achieves better return in the training configuration than the warm-start’s. The best
generalizer in turn achieves a lower return but it trades it for higher returns in con-
figurations outside of the training regime, being better at zero-shot generalization.

Appendix C.1 updates Figure 6-3 by introducing PPO [328] in the comparison.
One can observe that PPO is not well-suited for the continuous control tasks explored
in this work. In contrast, SAC proves to be a good warm-start for the environments
considered.

6.4.2 RWRL Walker

This section discusses the evolution results when running MetaPG with RWRL Walker
as the training environment. Figures 6-4 and 6-5 show the resulting population and
the performance across environment configurations for the best performer and the
best generalizer in the Pareto Front, respectively. Exact numbers for each algorithm
in the Pareto Front can be found in Table 6.2. Again, MetaPG finds a Pareto Front
of evolved algorithms that outperform the warm-start in terms of both performance
and generalizability. Note the warm-start is not hyperparameter-tuned at any point
in the process, as a result, it might perform poorly, as is the case in this environment.
Additional details on hyperparameter tuning in the RWRL environments can be found

138



Figure 6-4: Meta-training and meta-validation stability-adjusted fitness scores
(computed using Equation 6.3 across 10 seeds) for each RL algorithm in the pop-
ulation alongside the warm-start (SAC) and ACME SAC when using MetaPG on
the RWRL Cartpole environment. The figure shows the meta-validated Pareto Front
of algorithms that results after merging the 10 populations corresponding to the 10
repeats of the experiment.

Table 6.2: Comparison of all algorithms in the Pareto Front with SAC (warm-
start and hyperparameter-tuned ACME SAC) using metrics obtained in the RWRL
Walker environment: average performance and generalizability, stability-adjusted per-
formance and generalizability scores, and measure of instability (standard deviation
𝜎 divided by the warm-start’s 𝜎𝑊𝑆. These metrics are computed across 10 seeds and
the best result in a column is bolded. †In contrast to performance and generalizabil-
ity, the lower the instability the better.

Performance Generalizability Instability† (𝜎/𝜎𝑊𝑆)
RL Algorithm 𝑓𝑝𝑒𝑟𝑓 𝑓𝑝𝑒𝑟𝑓 𝑓𝑔𝑒𝑛 𝑓𝑔𝑒𝑛 Perf. Gen.
Pareto 1: Best performer 0.963 0.961 0.544 0.526 1.0 18.0
Pareto 2 0.962 0.959 0.536 0.524 1.0 12.0
Pareto 3 0.960 0.958 0.542 0.527 1.5 15.0
Pareto 4 0.959 0.956 0.541 0.528 1.0 13.0
Pareto 5 0.960 0.955 0.541 0.532 1.5 9.0
Pareto 6 0.954 0.951 0.555 0.546 2.5 9.0
Pareto 7: Best generalizer 0.955 0.950 0.569 0.554 2.5 15.0
Warm-start SAC 0.028 0.026 0.033 0.032 1.0 1.0
ACME SAC HPT Perf 0.968 0.965 0.444 0.430 1.5 14.0
ACME SAC HPT Gen 0.926 0.918 0.510 0.498 4.0 12.0

in Appendix A.2.3.

Since the ACME SAC versions are hyperparameter-tuned for both performance
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Figure 6-5: Average and standard deviation across seeds of the meta-validation
performance of the best performer, the best generalizer, and the warm-start (SAC)
when training on a single configuration of RWRL Walker and evaluating on multiple
unseen ones. The thigh length changes across environment configurations and a length
of 0.225 is used as training configuration.

and generalizability, respectively, their results improve substantially with respect to
the warm-start SAC. While MetaPG does not offer improvements on performance in
this case, it achieves a substantial generalizability increase (stability-adjusted), as the
metric improves by 11% (from 0.498 to 0.554). This reinforces the ability of MetaPG
to address an important real-world challenge that is encoded as a fitness score.

6.4.3 OpenAI Gym Pendulum

Third, this section presents the evolution results when running MetaPG with OpenAI
Gym Pendulum as the training environment. Figures 6-6 and 6-7 show the result-
ing population and the performance across environment configurations for the best
performer and the best generalizer in the Pareto Front, respectively. In the case of
Pendulum, the generalizability fitness score is computed across the perturbation of
two different parameters: the pendulum mass and the pendulum length. These pa-
rameters are changed separately, as opposed to varying both the mass and length
of the pendulum in the same run. Exact numbers can be found in Table 6.3. The
table compares the 8 algorithms in the Pareto Front with the warm-start SAC and
hyperparameter-tuned versions of ACME SAC.

In the case of Pendulum, MetaPG offers substantial improvements in generalizabil-
ity and stability, alongside a minor advantage in performance. The best generalizer
achieves 15% more stability-adjusted generalizability with respect to the warm-start
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Figure 6-6: Meta-training and meta-validation stability-adjusted fitness scores
(computed using Equation 6.3 across 10 seeds) for each RL algorithm in the pop-
ulation alongside the warm-start (SAC) and ACME SAC when using MetaPG on the
OpenAI Gym Pendulum environment. The figure shows the meta-validated Pareto
Front of algorithms that results after merging the 10 populations corresponding to
the 10 repeats of the experiment.

Table 6.3: Comparison of all algorithms in the Pareto Front with SAC (warm-start
and hyperparameter-tuned ACME SAC) using metrics obtained in the OpenAI Gym
Pendulum environment: average performance and generalizability, stability-adjusted
performance and generalizability scores, and measure of instability (standard devia-
tion 𝜎 divided by the warm-start’s 𝜎𝑊𝑆. These metrics are computed across 10 seeds
and the best result in a column is bolded. Rows in gray correspond to algorithms
that improve upon the warm-start in all metrics. †In contrast to performance and
generalizability, the lower the instability the better.

Performance Generalizability Instability† (𝜎/𝜎𝑊𝑆)
RL Algorithm 𝑓𝑝𝑒𝑟𝑓 𝑓𝑝𝑒𝑟𝑓 𝑓𝑔𝑒𝑛 𝑓𝑔𝑒𝑛 Perf. Gen.
Pareto 1: Best performer 0.887 0.877 0.360 0.349 0.45 0.73
Pareto 2 0.885 0.876 0.381 0.364 0.41 1.13
Pareto 3 0.887 0.876 0.391 0.377 0.45 0.93
Pareto 4 0.887 0.876 0.392 0.379 0.45 0.87
Pareto 5 0.887 0.876 0.393 0.386 0.41 0.47
Pareto 6 0.886 0.876 0.433 0.415 0.45 1.20
Pareto 7 0.886 0.875 0.437 0.418 0.45 1.27
Pareto 8: Best generalizer 0.868 0.834 0.445 0.424 1.55 1.40
Warm-start SAC 0.879 0.857 0.383 0.368 1.0 1.0
ACME SAC HPT Perf 0.880 0.866 0.392 0.380 0.64 0.80
ACME SAC HPT Gen 0.879 0.865 0.400 0.391 0.64 0.60
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Figure 6-7: Average and standard deviation across seeds of the meta-validation
performance of the best performer, the best generalizer, and the warm-start (SAC)
when training on a single configuration of OpenAI Gym Pendulum and evaluating
on multiple unseen ones. The pendulum mass and the pendulum length indepen-
dently change across environment configurations (only one changes at a time). The
training configurations use a pendulum mass and a pendulum length of 1.0 and 1.0,
respectively.

(0.424 vs. 0.368) and a 8% improvement over ACME SAC (0.424 vs. 0.391). Figure
6-7 offers a clear view at the better robustness of the best generalizer with respect
to the warm-start when varying the pendulum mass and its lenght. Looking at the
stability itself, the majority of the algorithms show better stability, especially those
with better performance. For example, the best performer achieves a 55% reduction
in the instability of the performance metric and a 27% reduction in the instability of
the generalizability metric. Finally, the advantage in stability-adjusted performance
is 2% (0.877 vs. 0.857). This aligns with the observations from Chapter 2, which
emphasized that RL design is currently good at performance instead of robustness,
which offers more margin of improvement for the latter.

6.4.4 Stability analyses

This section presents additional figures focused on stability in order to complement the
analyses carried out in the previous sections. As introduced in Section 6.2, stability is
accounted for by penalizing the standard deviation across seeds, following Equation
6.3. Figures 6-8, 6-9, and 6-10 show how that impacts the distribution of individuals in
the metrics space for RWRL Cartpole, RWRL Walker, and OpenAI Gym Pendulum.
Specifically, for each environment, a subset of meta-validated graphs is selected and
plotted in the metrics space as a data point symbolizing the average raw performance
and raw generalizability achieved (i.e., no penalization for standard deviation) and
an ellipse in which the length of each semiaxis corresponds to the standard deviation
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for that metric. One can observe that algorithms in the Pareto Front and those closer
to it present lower variability (i.e., smaller ellipses), emphasizing that MetaPG is
successful in improving the stability of RL algorithms.

Figure 6-8: Meta-validation average fitness scores surrounded by an ellipse with
semiaxes representing the standard deviation across seeds for each fitness score after
running MetaPG on RWRL Cartpole. Only a subset of the graphs is shown to avoid
cluttering.

Figure 6-9: Meta-validation average fitness scores surrounded by an ellipse with
semiaxes representing the standard deviation across seeds for each fitness score after
running MetaPG on RWRL Walker. Only a subset of the graphs is shown to avoid
cluttering.
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Figure 6-10: Meta-validation average fitness scores surrounded by an ellipse with
semiaxes representing the standard deviation across seeds for each fitness score after
running MetaPG on OpenAI Gym Pendulum. Only a subset of the graphs is shown
to avoid cluttering.

6.4.5 Transferring evolved algorithms across environments

The last step of the analyses on the RWRL Environment Suite and OpenAI Gym is to
evaluate how the algorithms evolved in one specific environment perform in the other
environments. To that end, hyperparameter tuning is used during the transfer (see
Appendix A.2.3). To better explain this analysis, I take the case of RWRL Cartpole,
which is presented in Table 6.4. The table is divided into two sets of columns: best
performance and best generalizability. The best performance columns correspond to
the stability-adjusted performance and generalizability scores of algorithms that have
been hyperparameter-tuned for stability-adjusted performance. Conversely, the best
generalizability columns correspond to the stability-adjusted fitness scores of algo-
rithms that have been hyperparameter-tuned for stability-adjusted generalizability.

Then, there are several rows. One of the rows correspond to the algorithms evolved
directly on RWRL Cartpole, and it shows the scores for the best performer (on the
best performance columns) and for the best generalizer (on the best generalizability
columns), all scores copied from Table 6.1. Then, for both RWRL Walker and OpenAI
Gym Pendulum, the table represents one row for each best performer and best gen-
eralizer (e.g., the Walker Perf. corresponds to the algorithm that obtained the best
stability-adjusted performance when evolving on RWRL Walker). For each of these
algorithms, hyperparameter tuning is carried out, once maximizing stability-adjusted
performance, and a second time maximizing stability-adjusted generalizability. The
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scores resulting from the tuning process are reported on the left-hand side columns in
the former case and on the right-hand side for the latter case. Additionally, there is
one final row corresponding to the best stability-adjusted performance and general-
izability of ACME SAC (also taken from Table 6.1). Tables 6.5 and 6.6 do the same
analysis for RWRL Walker and OpenAI Gym Pendulum, respectively.

Table 6.4: Transfer results on RWRL Cartpole. The row highlighted in gray cor-
responds to the results of the evolution experiment in RWRL Cartpole. The rest
correspond to the best stability-adjusted performance and stability-adjusted gener-
alizability configurations that result from doing hyperparameter tuning to the best
performer and the best generalizer evolved in different environments. For example,
the best performer evolved in OpenAI Gym Pendulum (row Pendulum Perf.) achieves
0.856 stability-adjusted performance and 0.478 stability-adjusted generalizability af-
ter being hyperparameter-tuned for the former metric. When that same algorithm
is hyperparameter-tuned for generalizability, the results are shown on the right-hand
side of the table.

RWRL Cartpole
Best performance Best generalizability

RL Algorithm 𝑓𝑝𝑒𝑟𝑓 𝑓𝑔𝑒𝑛 𝑓𝑝𝑒𝑟𝑓 𝑓𝑔𝑒𝑛

Cartpole 0.868 0.459 0.756 0.551
Walker Perf. 0.839 0.403 0.802 0.415
Walker Gen. 0.576 0.335 0.576 0.335
Pendulum Perf. 0.856 0.478 0.846 0.523
Pendulum Gen. 0.804 0.438 0.687 0.469
ACME SAC 0.864 0.312 0.833 0.478

The results vary slightly across environments, although there are several interest-
ing trends. In general, the best performers transfer better to new environments; they
obtain better scores than the best generalizers after doing hyperparameter-tuning, in-
dependently on whether the tuning is for performance or generalizability. A possible
reason for that is that generalizability is environment-specific so, in order to achieve
it, best generalizers learn many aspects of the evolution environments, which are hard
to transfer unless the new environment shares the dynamics. Even though best per-
formers transfer reasonably well, their fitnesses are not better than ACME’s in the
majority of the cases, although they are close. This highlights that the experimen-
tal setup considered in this chapter does not favor finding algorithms that generalize
well across many environments but become good performers and generalizers for a
specific environment instead. In many applications, one might be interested to find
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Table 6.5: Transfer results on RWRL Walker. The row highlighted in gray cor-
responds to the results of the evolution experiment in RWRL Walker. The rest
correspond to the best stability-adjusted performance and stability-adjusted gener-
alizability configurations that result from doing hyperparameter tuning to the best
performer and best generalizer evolved in different environments. Read the caption
of Table 6.4 for an example of how to read this table.

RWRL Walker
Best performance Best generalizability

RL Algorithm 𝑓𝑝𝑒𝑟𝑓 𝑓𝑔𝑒𝑛 𝑓𝑝𝑒𝑟𝑓 𝑓𝑔𝑒𝑛

Cartpole Perf. 0.955 0.477 0.952 0.521
Cartpole Gen. 0.029 0.031 0.024 0.034
Walker 0.961 0.526 0.950 0.554
Pendulum Perf. 0.466 0.230 0.466 0.230
Pendulum Gen. 0.905 0.465 0.903 0.483
ACME SAC 0.965 0.430 0.918 0.498

Table 6.6: Transfer results on OpenAI Gym Pendulum. The row highlighted in gray
corresponds to the results of the evolution experiment in OpenAI Gym Pendulum.
The rest correspond to the best stability-adjusted performance and stability-adjusted
generalizability configurations that result from doing hyperparameter tuning to the
best performer and best generalizer evolved in different environments. Read the
caption of Table 6.4 for an example of how to read this table.

Gym Pendulum
Best performance Best generalizability

RL Algorithm 𝑓𝑝𝑒𝑟𝑓 𝑓𝑔𝑒𝑛 𝑓𝑝𝑒𝑟𝑓 𝑓𝑔𝑒𝑛

Cartpole Perf. 0.862 0.329 0.857 0.349
Cartpole Gen. 0.821 0.323 0.821 0.323
Walker Perf. 0.860 0.324 0.813 0.375
Walker Gen. 0.849 0.319 0.679 0.388
Pendulum 0.877 0.349 0.834 0.424
ACME SAC 0.865 0.380 0.865 0.391

specialized components that can offer good results for the application considered. The
next section extends the analyses on transferrability using the Brax environments as
support.
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6.5 Evolution in Brax environments

In this second set of experiments, the goal is to test MetaPG on more intricate
environments in which dynamics are more complex but similar among environments.
These environments are Ant and Humanoid from the Brax physics simulator [126],
which allows running environment transitions on GPUs and TPUs using JAX [42]. For
this environment, generalizability is assessed by adding three different perturbations
to the environments in the form of changes in the friction coefficient, the body mass,
and the torque (see Appendix A.2.1 for detailed descriptions).

Given the complexity of the environments and the added runtime, in these exper-
iments I meta-train the population, then meta-validate the best few individuals, and
then meta-test them before comparing. The warm-start SAC is also hyperparameter-
tuned (independently of evolution) and used in the comparison. Transferring across
environments is also evaluated in this case, using the hyperparameter tuning process
described in Appendix A.2.4. Section 6.5.1 presents the results for Brax Ant and
Section 6.5.2 does the same for Brax Humanoid.

6.5.1 Brax Ant

Figure 6-11 shows the behavior of evolved algorithms when meta-tested in perturbed
Brax Ant environments. Algorithms are first evolved independently in both Ant and
Humanoid, and then those algorithms that have the highest stability-adjusted perfor-
mance score 𝑓𝑝𝑒𝑟𝑓 during meta-training are selected. Then, using the meta-validation
seeds, the algorithms are hyperparameter-tuned for generalizability (i.e., Figure 6-11
shows the meta-testing curves for the algorithms that were hyperparameter-tuned for
generalizability), and then re-evaluated using the meta-testing seeds. In all cases, the
algorithms are also compared against the warm-start SAC. Table 6.7 shows the full
meta-testing fitness scores.

These results highlight that an algorithm evolved by MetaPG in Brax Ant per-
forms and generalizes better than a SAC baseline in the same environment. Specif-
ically, an improvement of 15% in stability-adjusted performance (0.729 vs. 0.632)
and of 10% in stability-adjusted generalizability (0.592 vs. 0.537) are observed. In
addition, there is a 23% reduction in instability. Furthermore, one can observe that
an algorithm initially evolved using Brax Humanoid and meta-validated in Brax Ant
transfers reasonably well to Brax Ant during meta-testing, achieving a slight loss of
performance compared to hyperparameter-tuned SAC. Fewer graphs were evolved in
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Figure 6-11: Comparison of the average and standard deviation across of the meta-
testing evaluation of three algorithms after hyperparameter tuning: a loss function
evolved in Brax Ant (orange), a loss function evolved in Brax Humanoid (green, to
assess environment transfer), and the SAC baseline used as warm-start (blue). Each
figure corresponds to a parameter of the environment being altered including the
friction coefficient, the mass coefficient, and the torque multipliers. In all cases 1.0 is
used as training configuration and to evaluate performance and the rest are used to
assess generalizability.

Table 6.7: Meta-tested performance and generalizability scores (average and
stability-adjusted), and measure of instability (standard deviation 𝜎 divided by the
warm-start’s 𝜎𝑊𝑆) for algorithms first evolved in Brax Ant and Brax Humanoid, and
then evaluated on Brax Ant on a different set of seeds. Scores compared against the
hyperparameter-tuned warm start SAC. Meta-testing uses 4 seeds and the best result
in a column is bolded.

Performance Generalizability Instability† (𝜎/𝜎𝑊𝑆)

RL Algorithm 𝑓𝑝𝑒𝑟𝑓 𝑓𝑝𝑒𝑟𝑓 𝑓𝑔𝑒𝑛 𝑓𝑔𝑒𝑛 Perf. Gen.

Ant performer 0.770 0.729 0.627 0.592 0.77 0.97

Humanoid performer 0.643 0.526 0.553 0.467 2.21 2.39

Warm-start SAC 0.685 0.632 0.573 0.537 1.0 1.0

the case of Humanoid (50k compared to 200k evolved graphs for Ant), as training a
policy in Brax Humanoid is more costly. Therefore, it is expected these results could
improve if more algorithms were evolved in the population.

6.5.2 Evolution results for Brax Humanoid

Similar to last section, Figure 6-12 shows the behavior of evolved algorithms when
meta-tested on Brax Humanoid, using the same environment perturbations described
in Appendix A.2.1. Again, algorithms are first independently evolved in both Hu-
manoid and Ant and, then, the algorithms with best stability-adjusted performance
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𝑓𝑝𝑒𝑟𝑓 during meta-training are chosen. The next step is to meta-validate each algo-
rithm considering multiple hyperparameter sets (see Appendix A.2.4) and pick those
configurations that lead to the best stability-adjusted generalizability. Finally, all al-
gorithms are meta-tested with fixed hyperparameters. Figure 6-12 shows performance
across perturbations for the hyperparameter set that led to the best stability-adjusted
generalizability and Table 6.8 reports on all meta-testing fitness scores, including the
warm-start SAC (the warm-start is also hyperparameter-tuned independently).

Figure 6-12: Comparison of the average and standard deviation across of the meta-
testing evaluation of three algorithms after hyperparameter tuning: a loss function
evolved in Brax Humanoid (green), a loss function evolved in Brax Ant (orange, to
assess environment transfer), and the SAC baseline used as warm-start (blue). Each
figure corresponds to a parameter of the environment being altered including the
friction coefficient, the mass coefficient, and the torque multipliers. In all cases 1.0 is
used as training configuration and to evaluate performance and the rest are used to
assess generalizability.

Table 6.8: Meta-tested average and stability-adjusted performance and generaliz-
ability scores, and measure of instability (standard deviation 𝜎 divided by the warm-
start’s 𝜎𝑊𝑆) for algorithms first evolved in Brax Humanoid and Brax Ant, and then
evaluated on Brax Humanoid on a different set of seeds. We compare these scores
against the hyperparameter-tuned warm start SAC. We compute these metrics across
4 seeds and the best result in a column is bolded.

Performance Generalizability Instability† (𝜎/𝜎𝑊𝑆)

RL Algorithm 𝑓𝑝𝑒𝑟𝑓 𝑓𝑝𝑒𝑟𝑓 𝑓𝑔𝑒𝑛 𝑓𝑔𝑒𝑛 Perf. Gen.

Ant performer 0.440 0.374 0.420 0.384 0.63 0.51

Humanoid performer 0.474 0.391 0.462 0.420 0.80 0.60

Warm-start SAC 0.514 0.410 0.450 0.380 1.0 1.0

The numerical results of this analysis show that, while the algorithm evolved in
Brax Humanoid achieves better stability-adjusted generalizability and a clear reduc-
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tion in instability (up to 40%) compared to the warm-start SAC, it performs worse
than SAC in meta-testing. This is a consequence of hyperparameter-tuning the al-
gorithms for generalizability, hence the higher score. In addition, note fewer graphs
are evolved in the specific case of Brax Humanoid (50K compared to 200K evolved
graphs for Brax Ant), as training a policy in Humanoid is more costly. These results
could improve if more algorithms were evolved in the population. Then, similar to
the case meta-testing was carried out on Brax And, good cross-environment fitness
is achieved compared to SAC, although the scores are lower. However, in this case
the algorithm evolved in Brax Ant shows more stability than SAC when both are
evaluated in Humanoid.

6.6 Analyzing evolved algorithms

This sections analyzes some of the evolved algorithms to gain insights on the evolution
process. Specifically, it focuses on the experiments on RWRL Cartpole presented in
Section 6.4.1, the equations for the experiments using the rest of the environments
can be found in Appendix C.2. The experiment began by taking the warm-start SAC
presented in Section 5.3.3, which has a policy loss and a critic loss. Now let’s focus
on the best performer and best generalizer from the meta-validation phase (first and
last algorithms in the Pareto Front from Table 6.1). The policy loss 𝐿𝜋 and critic
losses 𝐿𝑄𝑖

(one for each critic network 𝑄𝑖) observed from the graph structure for the
best performer are the following:

𝐿𝑝𝑒𝑟𝑓
𝜋 = E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝒟

[︁
log(min(𝜋(𝑎̃𝑡+1|𝑠𝑡+1), 𝛾))−min

𝑖
𝑄𝑖(𝑠𝑡, 𝑎̃𝑡)

]︁
(6.4)

𝐿𝑝𝑒𝑟𝑓
𝑄𝑖

= E(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∼𝒟

[︂(︁
𝑟𝑡 + 𝛾

(︁
min
𝑖

𝑄𝑡𝑎𝑟𝑔𝑖(𝑠𝑡+1, 𝑎̃𝑡+1)− log 𝜋(𝑎̃𝑡+1|𝑠𝑡+1)
)︁
−𝑄𝑖(𝑠𝑡, 𝑎𝑡)

)︁2]︂
(6.5)

where 𝑎̃𝑡 ∼ 𝜋(·|𝑠𝑡), 𝑎̃𝑡+1 ∼ 𝜋(·|𝑠𝑡+1), and 𝒟 is an experience dataset extracted from
the replay buffer. The changes and additions with respect to SAC are highlighted in
blue, and in red the elements of the SAC loss function that evolution removes. Then,
the loss equations for the best generalizer are:

𝐿𝑔𝑒𝑛
𝜋 = E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝒟

[︁
log 𝜋(𝑎̃𝑡|𝑠𝑡)−min

𝑖
𝑄𝑖(𝑠𝑡+1, 𝑎̃𝑡)

]︁
(6.6)

𝐿𝑔𝑒𝑛
𝑄𝑖

= E(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∼𝒟

[︂
atan

(︂(︁
𝑟𝑡 + 𝛾

(︁
min
𝑖

𝑄𝑡𝑎𝑟𝑔𝑖(𝑠𝑡+1, 𝑎̃𝑡)− log 𝜋(𝑎̃𝑡|𝑠𝑡)
)︁
−𝑄𝑖(𝑠𝑡, 𝑎𝑡)

)︁2)︂]︂
(6.7)

While both algorithms resemble the warm-start SAC, one can observe that the
best performer does not include the entropy term in the critic loss while the best
generalizer does (i.e., they correspond to setting 𝛼 to 0 and 1 in the original SAC
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algorithm [152], respectively). This aligns with the hypothesis that, since ignoring
the entropy pushes the agent to exploit more and explore less, the policy of the
best performer overfits better to the training configuration compared to SAC. In
contrast, the best generalizer is able to explore more. Figure 6-13a validates the
latter observation showing a higher entropy for the best generalizer’s actor compared
to the warm-start’s.

(a) Average entropy of the policy during
training for RWRL Cartpole.

(b) Average gradient norm of the actor loss
during training for RWRL Cartpole.

Figure 6-13: Analysis of the entropy and gradient norm of the actor when evaluating
the best generalizer from RWRL Cartpole in comparison to the warm-start. An
hypothesis is that this increase in entropy and decrease in gradient norm with respect
to SAC contribute to achieve better generalizability.

The use of arctangent in the critic loss of the best generalizer is also noticeable as,
supported by Figure 6-13b, this operation serves as a way of clipping the loss, which
makes gradients smaller and thus prevents the policy’s parameters from changing too
abruptly. In the experiments of this dissertation, the number of training episodes
(when evaluating a specific algorithm) is fixed as a compromise between achievable
returns and low evaluation runtimes. As a consequence, clipping the loss has an
early-stopping effect compared to the baseline and results in a policy less overfitted,
which benefits generalizability.

To better understand this effect, Figure 6-14 shows the same plots than Figure 6-13
but in this case the training budget for the agent is more than an order of magnitude
larger. One can observe that ignoring the fixed number of training episodes and letting
agents train for longer makes metrics like the entropy and the gradient norm converge
to similar values with respect to the warm-start. While training until convergence is
usually preferred, in certain applications the number of training episodes might be
a constraint, so MetaPG’s ability to exploit this kind of constraints is beneficial in
those setups.
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(a) Average entropy of the policy during
training for RWRL Cartpole.

(b) Average gradient norm of the actor loss
during training for RWRL Cartpole.

Figure 6-14: Analysis of the entropy and gradient norm of the actor when evaluat-
ing the best generalizer from RWRL Cartpole in comparison to the warm-start and
increasing the number of training episodes 13x with respect to Figure 6-13.

6.7 Discussion

This chapter has shown that MetaPG can discover novel RL loss functions that achieve
better single-task performance, zero-shot generalizability, and training stability com-
pared to warm-start algorithms such as SAC. MetaPG is able to automate a process
that in practice takes many iterations (see Figure 6-15a). This section discusses some
interesting areas of future work for MetaPG.

Objective 1

Objective 2

Initial algorithm

Objective 1

Objective 2

Objective 1

Objective 2

Goal algorithm

Intermediate 
iterations

Goal algorithm

Pareto Front

Preference at t1

Preference at t2

Preference at t3

a b c

Figure 6-15: (a) In many practical contexts, achieving more than one objective is
an empirical iteration-based process. (b) MetaPG’s advantage is identifying trade-
offs among objectives and, when the search converges, Pareto Fronts of algorithms.
(c) During operation, preferences might change, resulting in some objectives traded
for others.

Additional use cases One obvious area of future work for MetaPG is evaluating
it on other use cases with different objectives and fitness scores. Given the limited
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computing budget, this dissertation has focused on one specific use case, which already
has proven useful to validate MetaPG and to gain significant understanding on the
applicability of this method in the context of real-world RL. Other use cases could
consider some of the example fitness scores described in Section 5.5.

Search space complexity The search space consits only of primitive operators,
similar to the work in [67]. Although this promotes expressiveness of algorithms in
the space, it requires many nodes and edges to represent a loss function which makes
the search space vast, which entails that good loss functions are extremely sparse in
this space. It is challenging for evolutionary algorithms to traverse this space given
limited search budget. One area for improvement is to design a more efficient search
space so that there is a greater chance of discovering better algorithms under the
same computation budget.

Still, MetaPG’s search’s outcome is aligned with the community’s practice to find
better algorithms, as advances in RL often come from small variations in existing
algorithms (e.g., CQL [223], S-DQN and M-DQN [367]), especially when addressing
generalizability [69, 70, 186]. Hopefully, further work in the search process will lead
to larger algorithmic changes. In earlier versions of MetaPG, with a reduced search
space, it was able to evolve REINFORCE [348] from scratch.

One of MetaPG’s advantages with respect to other methods is its capacity to
identify Pareto Fronts among the considered objectives (see Figure 6-15b). However,
current efforts to obtain Pareto Fronts require combining multiple evolution runs,
since each individual run could converge to a different local optimum. Future work
also includes improving evolution to avoid converging early to local optima.

Cost efficiency Running MetaPG involves a non-negligible upfront computational
cost. However, this cost can be amortized by reusing the evolved algorithms; this is
something that is aligned with the economy of scale AutoML approaches look for [300].
First, the cost is amortized by generating a Pareto Front of stable loss functions
from which practitioners can choose a specific point based on the preference among
objectives. A single-objective approach would require running MetaPG every time
this preference changes (see Figure 6-15c). In addition, achieving cross-environment
generalization provides an additional perspective on amortizing the cost; algorithms
can be reused across different domains and environments. Finally, the results also
show that the largest fitness jumps are attained in the earliest iterations, so one could
run MetaPG for shorter time in some cases (see Appendix C.3).
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Transferrability of algorithms Another direction of future work is to improve
the transferrability of evolved algorithms to new domains. On one hand, the results
have demonstrated that evolved algorithms transfer reasonably well (especially best
performers in the original environment). On the other hand, sometimes they do not
perform better than SAC in the new environments without hyperparameter tuning
first. While hyperparameter tuning has not been used during evolution (which could
suggest there is additional margin of improvement in terms of achieved scores), future
work should address how fitness scores can be better aligned with cross-domain trans-
ferrability. At the same time, it poses an interesting research question of determining
whether MetaPG is better suited to find “super algorithms” for specific environments
or a new generation of all-purpose algorithms.

Ensembling It would also be interesting to ensemble the evolved loss functions on
the Pareto front. Such loss function may give additional flexibility for practitioners
when designing an RL system by encoding complex design choices into an interpola-
tion across objectives.

Exploiting training constraints Finally, Section 6.6 has showed that the use of
the arctangent in Equation (6.7) might benefit generalizability by serving as an early-
stop before the policy overfits to the training configuration. The experiments fixed a
certain number of training episodes as a compromise between achievable returns and
evaluation runtimes. At the same time, letting run for longer makes certain metrics
across algorithms converge to similar values. While training until convergence is
usually preferred, in certain applications the number of training episodes might be a
constraint, so MetaPG’s ability to exploit this kind of constraints beneficial in those
setups.

6.8 Chapter summary and Contributions

This chapter has focused on evaluating MetaPG on a specific use case on optimiz-
ing for single-task performance, zero-shot generalizability, and stability across inde-
pendent training runs. The goal is not only to address the opportunities of design
automation and combined challenges of real-world RL, but it also involves trade-off
analysis as part of the design process in RL. This latter goal was another of the
research opportunities identified in the second chapter of this dissertation.
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The chapter has commenced by posing three specific questions to answer. I now
repeat these questions with answers below each one:

1. Is MetaPG capable of evolving algorithms that improve upon perfor-
mance, generalizability, and stability in different practical settings?

Yes, MetaPG has found new RL algorithms that improve upon a popular
baseline, SAC, in all objectives considered for different environments.

2. How well do discovered algorithms do in environments different from
those used to evolve them?

Evolved algorithms display different levels of cross-environment perfor-
mance; algorithms that achieve the highest performance in the original
environments have been found to transfer the best, achieving at least sim-
ilar results compared to SAC, better in some cases.

3. Are the evolutionary results interpretable?

By examining the equations of the evolved loss functions, interpretations
of the performance and generalizability biases have been derived, proving
that MetaPG provides valuable information about the search outcome that
might not be accessible when using other AutoML methods such as black-
box algorithms.

To answer these questions, this chapter has begun by presenting the specific fitness
scores considered for this use case. These scores explicitly optimize performance and
generalizability and implicitly optimize stability. Prior to that, related work on gen-
eralizability and stability has been reviewed. Then, I have presented the experimental
setups considered, including information on training environments, meta-training and
meta-validation configurations, and hyperparameter tuning protocols.

The first batch of experiments has focused on Cartpole and Walker from the
RWRL Environment Suite and Pendulum from OpenAI Gym. The summary of the
improvements achieved over the SAC warm-start due to evolution is reported in Ta-
ble 6.9. In addition, these experiments have examined the transferrability across
environments of different algorithms from Pareto Fronts, concluding that algorithms
achieving high performance during evolution can transfer better.

Next, the results for the second batch of experiments have been outlined. These
experiments have utilized the Brax physics simulator, specifically the Ant and Hu-
manoid environments, and their evolution results are also presented in Table 6.9.
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Table 6.9: Summary of improvements achieved by MetaPG over the warm-start
SAC for each of the environments considered for this use case. † The performance of
the warm-start was very poor in the case of RWRL Walker, comparisons are made
with respect to ACME SAC instead.

Environment Performance Generalizability Stability

RWRL Cartpole 4% 20% 67%
RWRL Walker† 0% 11% 150%
OpenAI Gym Pendulum 2% 15% 55%

Brax Ant 15% 10% 23%
Brax Humanoid 0% 11% 40%

Average 4.2% 13.4% 67.0%

Additionally, this section has examined transferrability with hyperparameter tun-
ing during meta-validation, which has demonstrated that algorithms achieve at least
comparable performance with respect to SAC. The last section on experiments has
focused on analyzing the structure of some of the evolved algorithms, showing that
several of their substructures can be interpreted.

Finally, the chapter has concluded with a discussion on areas of future work for
MetaPG. Given its complexity and the computational infrastructure needed, the lim-
ited experimental budget has left many interesting areas of future research unexplored,
including improving the efficiency of the evolutionary search, making MetaPG more
cost-efficient, and improving the transferrability of algorithms by means of new cre-
ative fitness scores.

The specific contributions of this chapter are the following:

Contribution 6.1 Formulated MetaPG fitness scores to explicitly optimize for per-
formance and generalizability and implicitly encourage stability.

Contribution 6.2 By running MetaPG, identified set of Pareto-optimal loss func-
tions that have been evolved in different environments and out-
perform Soft Actor-Critic for such environments in terms of per-
formance, generalizability, and stability.

Contribution 6.3 Provided, for the specific case of RWRL Cartpole, a compre-
hensive dataset2 of algorithms obtained throughout the complete

2The dataset can be found at: https://github.mit.edu/garau/MetaPG-dataset
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evolution process (not only the Pareto Front). This dataset may
be further analyzed to gain additional insights on algorithmic
changes and trade-offs.
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Chapter 7

Designing DRL Systems for Specific
Real-world Problems

This chapter supports shifting the focus from the emphasis on domain-agnostic as-
pects and methodologies for RL robustness addressed in the previous chapters to
the upcoming exploration of concrete real-world applications in the remainder of the
dissertation, which looks into aligning the design process of RL systems with the
robustness priorities of these specific scenarios. To that end, Section 7.1 introduces
the goals of this last part of the dissertation. Then, Section 7.2 discusses current
domain-specific workflows when it comes to new real-world DRL methods and identi-
fies gaps that are frequently overlooked. To better understand those gaps, this part of
the dissertation relies on two use cases, which are introduced in Section 7.3. Lastly,
Section 7.4 concludes the chapter.

7.1 Introduction

As discussed in Chapter 2, a primary issue faced by domain-specific RL research is
improving the development process of DRL systems so that robustness is prioritized.
Currently, there exists an emphasis on performance that in many cases results in
excessive tailoring to specific scenarios or subproblems. This approach, as argued in
the implementation phase of the roadmap presented in Chapter 3, directly conflicts
with system-level generalization and robustness, thereby creating impediments to
effective deployment.

To investigate these issues more thoroughly, this dissertation’s focus will now shift
to analyzing specific real-world use cases. In Chapter 8, the robustness of DRL in
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the context of frequency assignment for satellite communications will be examined.
Subsequently, in Chapter 9, the study will extend to the problem of molecular op-
timization. Both use cases are outside of the realm of robotics, which aligns with
another of the research opportunities this dissertation addresses.

This chapter effectively bridges the introductory aspects of how domain-specific
RL research currently tackles the design and implementation of DRL systems for
real-world applications, and this dissertation’s subsequent focus on the two afore-
mentioned use cases. To that end, this chapter initially introduces the workflow that
domain-specific RL research typically follows when innovating on DRL for certain
practical applications. The highlighted eight high-level steps help to frame the gaps
that indicate a lack of robustness prioritization in the process. These gaps are the
basis of the ensuing study in both use cases, which are also introduced in this chapter.

7.2 Understanding the workflow of domain-specific

real-world RL research

I argue domain-specific RL research is guided by a multi-step workflow when devel-
oping new DRL systems for a particular real-world application. This workflow, while
comprehensive, often overlooks several crucial steps necessary for prioritizing robust-
ness in addition to performance. This section delves into the details of this workflow
and presents such gaps.

The typical workflow that domain-specific RL research follows is depicted on the
left side of Figure 7-1 and, at a high level, can be broken down into the following
eight steps:

1. Identify and scope the real-world problem to solve. The first step simply
involves picking a problem to solve. In many cases this will correspond to a
problem already explored in the literature by means of other methods.

2. Formulate the problem as a Markov Decision Process (MDP). Unless
the problem can be represented as a MDP involving sequential decision-making,
it will be hard to design a DRL system for it. Therefore, the next step is to
frame it as a MDP. For example, in the case of molecular optimization, one
of the two use cases studied in this dissertation, the MDP might consist of
generating the molecule atom by atom or scaffold by scaffold. There could be
multiple ways of defining the MDP.
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Identify and scope the real-world problem 
to solve

Formulate the problem as a Markov 
Decision Process

Define the subproblem or scenario that 
performance is measured against

Design a DRL system for that subproblem 
(agent, environment, training configuration)

Train the agent

Evaluate the performance of the agent on 
the selected subproblem

Redesign or redefine the system if the 
performance is not satisfactory

Report the results

Identify the real-world 
RL challenges present 
and their interactions 
with the problem goals

Define the required 
subproblems for 

measuring robustness 

Evaluate the agent on 
all subproblems and 

study the performance 
versus robustness 

tradeoffs

Typical domain-specific workflow Frequent gaps

Figure 7-1: Workflow of domain-specific real-world DRL research, highlighting the
common steps followed in the process (left) and the frequent gaps that need to be
addressed for ensuring robustness (right).

3. Define the subproblem or scenario that performance is measured
against. In Chapter 1 the concept of subproblems was introduced. While
the MDP can be defined in a generic way, practitioners might have a specific
subproblem in mind when designing the different components of the system.
This might be motivated by a certain benchmark or environment they want
to simulate. In the case of molecular optimization, this might correspond to
optimizing for a specific property.

4. Design a DRL system for that subproblem. Next, the components of
the system are designed, which includes selecting a state representation, action
space, reward function, etc. At this point, the practitioner might consciously or
subconsciously introduce inductive biases given by the subproblem considered.
As a consequence, the design might be too tailored to that subproblem.
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5. Train the agent. This step is typically straightforward, it requires training
the agent and observing a learning behavior that indicates the system, based
on its design, is successful at training the agent.

6. Evaluate the performance of the agent on the selected subproblem.
There is always a procedure to evaluate and understand the performance of the
agent. This can be based on standardized benchmarks or evaluation environ-
ments that are also designed. In any case, if there has been excessive tailoring
to the subproblem under consideration, this performance measure might be
too tied to that particular subproblem and therefore not sufficiently addressing
robustness. In the case of molecular optimization, this might correspond to eval-
uating the agent at optimizing for that particular property, but not considering
more realistic scenarios that entail a broad range of multi-property optimization
tasks.

7. Redesign or redefine the system if the performance is not satisfactory.
Many of the problems solved via DRL are hard in nature, therefore it is common
to change some aspects of the design of the DRL system once the practitioner
gets performance feedback. This step is generally only oriented at increasing
the performance of the agent.

8. Report the results. Success stories generally get attention in the form of
publications; there is value in proving DRL works for a certain subproblem.
However, as discussed in Chapter 1, in most cases the lack of follow-through
leaves the study of deployability unexplored for that particular problem.

This workflow describes a systematic approach to tackling real-world problems
using DRL. However, it often misses several opportunities to take robustness into
account in the development process. These can be summarized in three key steps
that interleave some of the steps of the presented workflow, as shown on the right-
hand side of Figure 7-1.

First, during the first and second steps, the domain-agnostic challenges of real-
world RL are often overlooked. While only a few of the challenges might be present in
the considered problem, their combined interaction is already detrimental enough for
any DRL system that ignores them [100]. Therefore, not including these challenges
as part of problem formulations and MDP descriptions can almost certainly lead to
a mismatch between the performance during development and the performance at
deployment. Capturing these challenges is as important as taking into account the
domain specifics when formulating the MDP. For example, if partial observability will
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be present at deployment, the MDP should be framed as a partially-observable MDP
or POMDP.

Second, the third step of the workflow entails designing a subproblem or scenario
that performance is measured on. This subproblem biases the posterior design of
the overall DRL system. Since robustness is not considered, other subproblems are
not accounted for in order to expand the scope of assessment of the system. For
example, for one of the use cases studied in this dissertation, frequency assignment
for satellite communications, all DRL works found in the literature evaluate agents
in low-dimensional scenarios. This contrasts with the upcoming landscape of the
industry, which is quickly moving towards high-dimensional constellations. An agent
that cannot complete the task in those scenarios will not be ready for deployment;
since robustness against high-dimensionality is not evaluated, it is not clear whether
published models are well-suited.

Third, one can assume there will not be a single design that achieves the best
performance and the best robustness for the problem considered; trade-offs are likely.
However, unless robustness is accounted for and measured, it is not possible to study
how these trade-offs impact the problem at hand. As discussed in Chapter 3, under-
standing the performance versus robustness trade-offs is crucial to get a comprehensive
picture of what needs to be improved about the DRL system and which approach is
more likely to yield such improvement. Therefore, assessing the trade-offs should be
an integral part of the evaluation process and any redesign of the system should also
include robustness considerations if necessary. In both use cases studied in Chapters
8 and 9, I discuss the trade-offs that are found in each case.

Addressing the three aforementioned gaps is crucial for the development of robust
DRL systems. To ground these recommendations in real-world examples, in the next
section I present the two real-world use cases this dissertation considers, frequency as-
signment for satellite constellations and molecular optimization, which are expanded
in Chapters 8 and 9, respectively. In the subsequent chapters, I delve into the real-
world challenges these use cases present, propose evaluation approaches that account
for both performance and robustness, study trade-offs among them, and analyze the
influence of the design in the trade-offs.

7.3 Case studies

This section presents the two real-world use cases that support the analysis of the
question how to improve real-world robustness from the domain-specific perspective?
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The first use case corresponds to the problem of frequency assignment or frequency
plan design for satellite constellations and the second use case consists of the problem
of molecular optimization or drug design; they are covered in Chapters 8 and 9,
respectively. In both cases, after identifying trends in the literature that prove the
community is not aligned with the deployment of DRL systems in the real world, I
examine aspects of how these systems are commonly designed, propose changes for
improving robustness, and analyze the trade-offs.

7.3.1 Frequency plan design for satellite constellations

The satellite communications landscape has been undergoing significant changes dur-
ing the last few years. The growth of streaming platforms and other data-intensive
services has pushed a traditionally television/video-centered industry into a data-
dominated market characterized by higher throughput demands [279]. In addition,
new ground stations in unserved communities where terrestrial networks are not an
affordable option, as well as new mobile terminals in almost every plane, make user
bases larger and more complex. In response, highly-flexible mega constellations are
being designed and launched to orbit, and eventually will flood the market in the
upcoming years. What once was a static process from a resource control point of
view is becoming increasingly dynamic and more challenging.

Satellite operators have been able to incorporate the necessary hardware improve-
ments to adapt to this new dynamic context. Beamforming capabilities capture more
complex terrestrial landscapes, digital payloads allows for real time power and band-
width control [22], and the industry is entering an era marked by mega constellations
that add new degrees of freedom [366]. However, current resource management poli-
cies are human-driven, which is no longer sufficient given the high-dimensionality and
flexibility of upcoming systems. Therefore, operators are looking to outsource many
of these human decisions to autonomous agents [1], as it will be the key to being
competitive in this growing market [74].

DRL and other AI solutions are prominent in satellite communications research as
a promising way to control these complex space systems [113,246]. It has been proven
that DRL has the potential to meet the operational constraints that the previously-
adopted optimization approaches in the community no longer can [135]. DRL has
been studied for the different subproblems that conform the Dynamic Resource Man-
agement (DRM) problem (see Figure 7-2): the beam placement and shaping sub-
problem [180], the routing subproblem [142], the frequency assignment subproblem
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[114, 132, 179, 232, 413], and the power allocation subproblem [114, 133, 135, 232, 408].
Overall, it is a time-sensitive problem, as the dynamic behavior of the users’ demand
requires updating parts of the solution to the subproblems in real time. Given these
time constraints and the high-dimensionality context of upcoming constellations, DRL
is seen as an essential tool to keep up with the constantly-changing demand in a way
that won’t require operators to severely over-provision resources.

Figure 7-2: Dynamic Resource Management problem in satellite communications
divided into a sequence of subproblems. From a set of fixed and mobile users with
certain demand requirements (step 1), operators first decide how many beams to use,
as well as their location and shape (step 2). Then, each beam is routed to a gateway
(step 3) and a certain amount of bandwidth within the available frequency spectrum
is allocated (step 4). The final subproblem involves powering each beam (step 5),
resulting in a complete resource allocation (step 6).

This dissertation specifically focuses on the frequency assignment subproblem
(from now on problem); the work is presented in Chapter 8, which is based on [132].
This problem consists of assigning a central frequency and a bandwidth amount to
each beam in a satellite constellation [253]. This can be seen as a partitioning prob-
lem, although some beams can have access to the same resources given the frequency
reuse mechanisms present in the satellite (e.g., different polarizations). In contrast,
other beams might not be able to share spectrum since their footprints might be close
and therefore interference is present, or because they overlap in the satellite handover
schedule. Different versions of this problem have been already addressed by means of
DRL [114,132,179,232,413].

The majority of the literature on DRL for the frequency assignment problem
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proves DRL is capable of matching the state-of-the-art performance in the specific task
considered, but mostly focus on nominal scenarios, provide little insight on modeling
decisions, and fail to address operation considerations that are connected with the
domain-agnostic challenges of DRL, such as high-dimensionality and non-stationarity.
While the expected dimensionality is around thousands of beams, many papers don’t
use test cases that go beyond 100 beams. As far as I know, this dissertation presents
the first DRL system tested on cases with more than 1,000 beams. In addition,
literature generally assumes fixed user bases, while the reality might involve highly-
fluctuating and non-stationary user bases. In the context of satellite communications,
to the extent of my knowledge, this is the first work testing a DRL model for robust-
ness under non-stationarity.

7.3.2 Molecular optimization

The goal of the molecular optimization problem (also referred to as drug design or
drug discovery) is to identify novel small molecules with desirable properties and/or
activity against a drug target that have the chance to be approved as a drug later
in clinical studies. This problem is challenging because the chemical space is huge
(between 1030 and 1060 different molecules) [341] and there is a large risk of a candidate
molecule failing clinical trials. Historically, methods such as genetic algorithms [95]
and virtual screening were used to find molecules with desired property profiles. With
the advancement of novel generative models in different domains, researchers have
been testing many of these new generative methods for the design of novel molecules
[97, 104, 195, 196, 239] but the problem of identifying the most promising/optimal
compound remains an active area of research.

To try addressing this gap, many studies in the recent years have proposed DRL
as a solution to search better over the molecular space [146, 281, 306, 341, 397, 412,
418]. The main benefit of DRL for this problem is the ability to encode property-
relevant information into the reward function, this way molecule generation and target
profiling can be combined into a single process. However, despite the evident interest
in this technology, there is little consensus on which are the most promising models
and how DRL should be robustly integrated in industrial processes. The community
has not paid enough attention to properly benchmark DRL models for molecular
optimization with respect to each other and against previous approaches.

Molecule generation is generally treated a sequential decision-making process, as
depicted in Figure 7-3. Generative models work with a specific representation of a
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molecule (e.g., graph, SMILES string) and generate a full molecule atom by atom or
scaffold by scaffold in an iterative fashion. This process can sometimes take more than
100 steps. A common approach in the literature is to first train a prior generative
model from a molecular database (between 105 - 108 different molecules) that simply
learns to produce molecules that are valid. In a second stage, the prior is used as
the initial policy for a DRL model to finetune, similar to the approach large language
models rely on [64, 288]. The goal of the DRL agent is to change the generation
distribution so that it favors molecules that optimize specific properties, encoded via
the reward function.

7

Properties 
of interest

Figure 7-3: Process of molecular design and optimization.
Process of molecular design and optimization. A molecule is typically designed

sequentially and its properties of interest measured at the end. The goal of
molecular optimization is to find molecules that maximize the properties of interest.

This dissertation treats the molecular optimization problem as the second real-
world use case in which to further examine how DRL systems are currently designed.
While it has been proved that DRL can help find better potential candidate molecules
faster, and accelerate the whole synthetization pipeline [412], there is still a lack of
understanding which models work better for which kind of subproblems and which
are the trade-offs among design decisions. Many of the experimental setups con-
sidered in the literature focus on discovering new molecules within distribution to
maximize basic synthesizability metrics and/or simple properties. However, in the
real world, factors such as more complex atomic structures, out-of-distribution opti-
mization, multiproperty optimization, or non-synthesizable compounds can become
hard challenges for DRL. The goal in Chapter 9 is to review the literature, identify the
most common design choices, and compare them under the same benchmarks, with
increasing levels of complexity in order to test both performance and robustness.

7.4 Chapter summary and Contributions

This chapter sets the stage for an in-depth look at domain-specific aspects of DRL
robustness, which is the main focus for the rest of this dissertation. As outlined in
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Chapter 2, two major hurdles in domain-specific RL research are the lack of diverse
use cases beyond robotics and an overemphasis on performance at the expense of
robustness. The two real-world applications that follow in this chapter tackle these
hurdles, providing insights on the performance versus robustness trade-off for those
specific cases.

The chapter has been split into two main sections. The first has dived into the
typical workflow that domain-specific RL research follows when developing new DRL
solutions for a particular application. In essence, it involves eight high-level steps,
starting from identifying the problem and framing it as a Markov Decision Process
to evaluating performance and making necessary design changes. It is through this
workflow that we have identified three key gaps that could explain why robustness
often gets sidelined: 1) Not fully understanding the real-world RL challenges present
in the problem, 2) Not defining the subproblems that matter most for robustness, and
3) Not testing the agent across different subproblems to better grasp the performance
versus robustness trade-offs.

The second part of this chapter has introduced two real-world use cases, each
addressing these gaps in their own way. Chapter 8 will explore frequency assignment
for satellite constellations, a problem which has been already studied through a DRL
lens but without considering the role of robustness. Here, this dissertation will delve
into high-dimensionality and non-stationarity, two critical real-world RL challenges.
Conversely, Chapter 9 will take a closer look at the molecular optimization problem,
focusing on the challenges of multi-objectiveness and out-of-distribution optimization.

The specific contributions of this chapter are the following:

Contribution 7.1 Discussed the typical workflow domain-specific RL research fol-
lows when proposing new real-world RL methods, as well as the
robustness-related gaps that are frequently overlooked.
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Chapter 8

Case Study 1: Deep Reinforcement
Learning for Frequency Plan Design
in Satellite Constellations

This chapter follows from the previous chapter and presents an approach to real-world
DRL system design for a specific use case: frequency assignment in satellite constel-
lations. The goal of the chapter is to design a DRL system for this problem in which
the main design factors and their trade-offs are examined from the perspective of both
performance and robustness. To that end, Section 8.1 reintroduces the problem and
reviews the related literature. Then, Section 8.2 formalizes the problem, presenting
the main variables and restrictions to consider. To gain clarity, these are transformed
into an Integer Linear Program, which Section 8.3 focuses on. Next, the main design
needs for a DRL system for this problem are discussed in Section 8.4. Then, the
experimental analyses are concentrated in Section 8.5, which is divided into differ-
ent questions. The results are later discussed in Section 8.6. Finally, Section 8.7
concludes the chapter and presents the main contributions.

8.1 Introduction

Chapter 7 introduced two real-world use cases which this dissertation tries to find
more robust DRL solutions for. One of them is the frequency plan problem, which
is addressed in this chapter. As discussed in the previous chapter, DRL is becoming
a promising method to solve many of the upcoming challenges in communications,
especially in satellite communications [246]. Given the scalability of new constella-
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tion systems, the upcoming dynamic and uncertain environments, and the need to
exploit decision-making flexibility, making frequency assignment decisions is becom-
ing a complex optimization problem. Operators are looking into solutions like DRL
to meet the new set of operational requirements. Although there have been studies
proposing DRL to solve aspects of frequency assignment, no real-world deployments
have been reported.

One important bottleneck is that, despite the positive results of DRL in the lit-
erature, the majority of studies mostly focus on nominal or average-case scenarios,
provide little insight on design decisions, and fail to address the operational consid-
erations of deploying DRL systems. Therefore, current DRL systems for frequency
assignment in satellite constellations are not robust. Specifically, one can observe
two important real-world challenges present in this problem: high-dimensionality and
non-stationarity. I argue one reason these challenges are not well-addressed is poor
design choices, although they are rarely discussed in the literature (as outlined in
Chapter 4, they are usually treated as elements to be reported).

The work in this chapter shifts the target from results and performance to design
and robustness. Besides analyzing nominal performance, the experiments in this
chapter try to fill the gap that other studies have not addressed in terms of modeling
operational requirements. In that sense, constellations with hundreds and thousands
of beams are simulated (as opposed to considering individual satellites with less than
50 beams). Similarly, the experiments include non-stationary environments in which,
after deployment, the demand distribution changes with respect to the used during
training. Relying on models that assume static user distributions could be detrimental
during real-time operations and it is seldom considered in the literature. Part of the
work in this chapter was originally published in [132].

8.1.1 Related work

The frequency assignment problem typically bifurcates into two distinct sub-problems:
central frequency assignment (essentially, which central frequency to choose) and
bandwidth allocation (essentially, how much bandwidth to allocate). Previous re-
search has proposed solutions to one or both of these sub-problems. The related
work on these three different classifications, namely, central frequency assignment,
bandwidth allocation, and the combined task of central frequency and bandwidth as-
signment, along with the experimental setups used in the literature, are summarized
in Table 8.1. It can be observed that there is a trade-off between performance and
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scalability in the solutions proposed in the literature. More complex algorithms, such
as those employing metaheuristics, Linear Programming, or RL, exhibit positive out-
comes in simpler scenarios, typically involving a single satellite with a limited number
of beams. Conversely, heuristic solutions based on rules are verified in larger-scale
situations (such as Non-Geostationary Satellite Orbit constellations with an increased
number of beams), but they fail to ensure optimal assignments.

Table 8.1: Literature review summary for the frequency assignment problem in
satellite communications. Frequency Reuse (FR) refers to whether the proposed
solutions allow for all beams to use all available spectrum and polarizations (✓)
or the frequency reuse strategy (beam color and polarization) is fixed (e.g., four
color frequency reuse). Other acronyms: CF=Central Frequency, BA=Bandwidth
Allocation, LP=Linear Programming.

Problem Reference Method Satellites Beams FR
CF Camino et al. [49] Greedy alg., simulated annealing 1 GEO 150 ✓

CF Kiatmanaroj et al. [202] LP, greedy alg. 1 GEO 200 –
CF Hu et al. [179] DRL 1 GEO 37 ✓

BA Kisseleff et al. [213] Heuristic 70 LEO 347 –
BA Park et al. [295] Lagrange multipliers, heuristic 1 GEO 20 –
BA Choi et al. [62] Water-filling 1 GEO 100 –
BA Wang et al. [164] Lagrange multipliers 1 GEO 10 –
BA Abdu et al. [5] Successive Convex Approximation 1 GEO 67 –
BA Paris et al. [293] Genetic algorithm 1 GEO 63 –
BA Pachler et al. [289] Particle Swarm Optimization 1 GEO 200 –
BA Ferreira et al. [114] DRL 1 LEO 1 –
BA Ortiz-Gomez et al. [284] Convolutional Neural Networks 1 GEO 82 –

CF + BA Kibria et al. [203] LP 1 GEO 8 ✓

CF + BA Abdu et al. [4] LP 1 GEO 27 ✓

CF + BA Zheng et al. [414] DRL 1 LEO 40 ✓

CF + BA Hu et al. [178] DRL 1 GEO 37 ✓

CF + BA Salcedo et al. [325] Hopfield neural network, genetic alg. 1 GEO 200 –
CF + BA Cocco et al. [71] Simulated annealing 1 GEO 200 ✓

CF + BA Pachler et al. [291] Greedy algorithm 4,400 LEO 10,000 ✓

Central Frequency Assignment problem Camino et al. [49] represented this
problem as a graph coloring problem, using local search and Simulated Annealing
(SA) as their approach. Kiatmanaroj et al. [202] noted that traditional Integer Linear
Programming (ILP) optimizers face scalability limitations and hence put forward a
greedy algorithm as a solution. Some researchers turned to AI algorithms to meet
operational demands. For instance, Hu et al. proposed a DRL model to tackle
the Dynamic Channel Allocation (DCA) problem. The performance of this model
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was found to align closely with that of leading-edge DCA algorithms. However,
it’s important to note that these studies were conducted in settings involving fewer
than 200 beams. The scalability of these approaches becomes more constrained when
frequency reuse (FR) variables are incorporated into the optimization process [49,179].

Bandwidth Allocation problem Kisseleff et al. [213] looked into bandwidth al-
location in a LEO constellation with 70 satellites and 350 beams. However, the
solution they offered was limited to discovering a viable heuristic allocation. Park
et al. [295] put forth a binary search-based method, a more equitable alternative to
the water-filling approach that Choi et al. [62] had previously considered. Subse-
quent research [5, 164] also utilized the same fairness-based optimization objective
but implemented convex optimization to allocate bandwidth. Both of these studies
assessed their methodologies on single-satellite and single-gateway cases with no more
than 70 beams. Bandwidth allocation in single-satellite systems also saw the use of
metaheuristics [290, 293] and AI techniques [114, 284]. In all the cited studies, other
variables like power or the roll-off factor were taken into account for simultaneous
optimization. However, the effectiveness and robustness of these methods were not
evaluated for systems with over 200 beams.

Joint Central Frequency Assignment and Bandwidth Allocation Both con-
ventional optimization and AI methods were proposed for the joint problem, with the
majority of the studies also accounting for FR optimization. Some of the studies
proposed Linear Programming. For example, Kibria et al. [204] addressed multi-user
aggregation and access control design for carrier aggregation, while Abdu et al. [4]
incorporated power optimization as well. Both works were tested in a single GEO
satellite setup with fewer than 30 beams. DRL has also been considered as a potential
solution. This was explored by Zheng et al. [414] and Hu et al. [178], who highlighted
that traditional optimization methods place a severe limit on use cases with time con-
straints. Both evaluated their solutions in scenarios involving a single satellite and
up to 40 beams. Salcedo-Sanz et al. [325] utilized a neural network combined with a
genetic algorithm to tackle the problem from an interference minimization perspec-
tive, testing it on multiple scenarios with a maximum of 36 beams and 128 bandwidth
channels. The same issue was examined by Cocco et al. [71], who also optimized for
power and used a capacity-oriented objective function and the SA algorithm. Their
tests on a single satellite with 200 beams and 16 bandwidth channels demonstrated
that this method reduces both unmet and excess capacity compared to traditional
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approaches using conventional payloads. The constraint satisfaction algorithm pre-
sented by Pachler et al. [291] is the only identified solution that addresses scenarios
involving more than 500 beams. The aim of using DRL is to further decrease the
time that greedy approaches take to solve the problem.

8.2 Problem statement

The goal is to design a frequency plan for a constellation with 𝑁𝑆 identical multibeam
satellites, all situated in the same orbital plane as depicted in Figure 8-1. This
necessitates entirely outlining the frequency utilization for all of the constellation’s
𝑁𝐵 beams. Each beam can serve one or more users, or gateways that connect to
the ground segment. It is assumed that all beams consistently serve their designated
gateway or user group, which could be mobile —in such cases, the beam “tracks”
the users. An essential input to this problem is the throughput required by each
user, which could correspond to fluctuating demands or committed rates defined by
user contracts. At any given moment, each beam draws power from a single satellite
within the constellation. For Non-Geostationary Orbit (NGSO) satellites, handover
operations occur, resulting in changes over time in the satellite powering each beam.

Satellite 1 Satellite 2 Satellite NS −1 Satellite NS

…

Fixed user terminal Gateway Mobile user terminal, maritime Mobile user terminal, air 

Beam 1 Beam NB

Figure 8-1: A constellation with 𝑁𝑆 identical satellites in the same orbit and 𝑁𝐵

beams is considered. Gateways, fixed terminals, and mobile users are connected to
the network.

When it comes to frequency resources, all satellites are permitted to use the same
specific portion of the spectrum, which is partitioned into 𝑁𝐵𝑊 equivalent bandwidth
channels or slots. Similarly, all satellites possess the same frequency reuse capabili-
ties: there are 𝑁𝐹𝑅 frequency reuses accessible, along with 𝑁𝑃 polarizations for each
reuse. Polarizations enable the utilization of more spectrum in a condensed area
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without causing additional interference. For instance, when using right-handed and
left-handed circular polarizations, 𝑁𝑃 equals 2.

To define a full frequency plan, the operator must decide, for each beam, how
many and which bandwidth slots are assigned, and which reuse group and polar-
ization should be used. Formally, this corresponds to selecting, for every beam
𝑏 ∈ {1, ..., 𝑁𝐵}:

• A discrete number of consecutive bandwidth slots 𝑏𝑏, which cannot be greater
than 𝑁𝐵𝑊 . This number might have a lower bound required to satisfy the link
budget equation.

• A positive integer 𝑓𝑏, that indicates the first bandwidth slot used. Beam 𝑏 then
uses slots 𝑓𝑏, 𝑓𝑏 + 1, ..., 𝑓𝑏 + 𝑏𝑏 − 1, all of them part of the available spectrum.

• A positive integer 𝑘𝑏 representing a frequency reuse out of the 𝑁𝐹𝑅 available.

• In case 𝑁𝑃 = 2, a binary variable representing the chosen polarization.

Figure 8-2: Frequency assignment representation in grid form with 𝑁𝐹𝑅 ·𝑁𝑃 rows
and 𝑁𝐵𝑊 columns. In this example, 𝑁𝐹𝑅 = 3, 𝑁𝑃 = 2, and 𝑁𝐵𝑊 = 13. Each of the
3 beams being powered by the satellite is assigned to a cell in the grid representing
the first slot (black squares) and to a certain number of consecutive slots (colored
cells). For example, the beam depicted in green is assigned to reuse group 2, left
polarization, and is using slots 8 and 9.

Figure 8-2 presents a graphical representation of this decision space structured as a
grid, with 𝑁𝐹𝑅·𝑁𝑃 rows and 𝑁𝐵𝑊 columns. Each column represents a bandwidth slot,
while each row corresponds to a combination of a frequency reuse and a polarization.
Rows are arranged first by frequency reuse and then by polarization. With this
representation, assigning a frequency for a beam translates into selecting a specific
cell in the grid, corresponding to the first slot (depicted as black squares in the figure)
and choosing a valid number of slots (represented as colored cells).

The constellation’s orbit is assumed to potentially be NGSO. As a result, fre-
quency plans need to consider handover operations. While new digital payloads will
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enable the reassignment of frequency resources during a handover, it may not always
be possible or preferred due to various reasons. In such scenarios, beams continue
to utilize the same frequency resources when transitioning between satellites. This
scenario is illustrated in Figure 8-3, where the green beam switches from satellite 1 to
satellite 2, maintaining the same frequency reuse, polarization, and bandwidth slots.

Frequency 
resources Sat. 1

Frequency 
resources Sat. 2

Frequency 
resources Sat. 1

Frequency 
resources Sat. 2

Satellite 1 Satellite 2
Time instant t1

Satellite 1 Satellite 2
Time instant t2

Figure 8-3: Handover operation example between two satellites at time instants 𝑡1
and 𝑡2.

During a handover, it’s crucial that the resources slated for use on the incoming
satellite aren’t already being used by another beam. This consideration forms a
significant constraint and applies to any pair of beams powered by the same satellite
at any moment. We identify this constraint for a pair of beams as an intra-group
restriction between these beams. Therefore, the set ℛ𝐴 encompasses all pairs (𝑖, 𝑗)

where beams 𝑖 and 𝑗 maintain an intra-group restriction. We operate under the
assumption that this set is determined beforehand and is externally updated during
operation as required.

A second type of restriction involves potential interference if two beams with
closely placed footprints utilize the same polarization and their designated bandwidth
slots overlap. This situation is termed an inter-group restriction, as depicted in Figure
8-4. Like in the case of the handover constraint, the set ℛ𝐸 encodes all pairs of beams
(𝑖, 𝑗) sustaining an inter-group restriction. Different interference criteria could be used
to construct this set, such as SINR level or angular distance threshold. We presume
that the specific choice, and consequently the set ℛ𝐸, are provided by the operator.

The final type of restriction pertains to gateway dimensioning. The operator may
desire to reduce bandwidth use for a pair of beams, not just when they overlap in
the handover schedule or when they could potentially interfere with each other, but
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Figure 8-4: Inter-group restriction example between beam 1 and beam 2. Diagram
shows the moment beam 2 is to be assigned and beam 1 has already been assigned.

also if they utilize resources from the same gateway at any given time. The objective
is to design the frequency plan in a way that accounts for the gateway dimensioning
as well. We assume that the usable spectrum at the gateway aligns with the usable
spectrum at the satellite. Furthermore, the gateway employs the same number of
polarizations, 𝑁𝑃 , but cannot reuse frequency. We also have access to the set ℛ𝐺,
which encodes all pairs of beams (𝑖, 𝑗) that share a gateway at any point in time.

Ultimately, the optimization scope of this problem formulation is frequency as-
signment at the beam level, a problem which, to the best of my knowledge, remains
unresolved in high-dimensional, dynamic constellations with frequency reuse mecha-
nisms. A further layer of decomposition could potentially involve splitting the beams
into multiple carriers to serve each user. However, frequency assignment at the car-
rier level falls outside the scope of this dissertation. This issue can be addressed in
various ways that can coexist with the optimization framework (for example, TDMA,
FDMA, or CDMA). The methods introduced in this chapter, by considering inter-
ference among beams, ensure that carriers within one beam do not interfere with
carriers from other beams. Therefore, frequency assignment at the carrier level could
be solved locally for each beam.

8.3 Integer Linear Programming formulation

To provide a mathematical grounding for this problem before designing a DRL system
to solve it, this section presents an Intener Linear Programming (ILP) formulation
that encodes each decision and restriction as variables and constraints, respectively.
While this is an adequate method to easily encode problem needs, constraints, and
objectives with low granularity with respect to the decision variables and only requires
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a commercial solver, it is not well-suited for high-dimensional scenarios. In contrast,
the advantage of DRL is that decision-making consists of forward-passes of a neural
network.

The following lines outline how different features of the frequency assignment
problem are encoded in the ILP formulation using linear operators. It is assumed
that constraint sets ℛ𝐴, ℛ𝐸, and ℛ𝐺 are an input. The formulation is framed for
optimizing the downlink frequency plan, although it is also compatible with uplink
frequency plan design.

Frequency plan decisions On the beam level, frequency assignment decisions
consist of choosing how many bandwidth slots, which ones, and which frequency reuse
and polarization to use. From the perspective of the grid representation introduced
in Figure 8-2, this means selecting 1) a column and 2) a row in the grid, and then 3) a
number of consecutive slots. The formulation encodes the column (i.e., the first slot)
as an integer variable 𝑓𝑖, with domain {1, ..., 𝑁𝐵𝑊}, for each beam 𝑖 ∈ {1, ..., 𝑁𝐵}.
Then, the row (i.e., frequency reuse and polarization) is encoded as an integer variable
𝑔𝑖, with domain {1, ..., 𝑁𝐹𝑅 ·𝑁𝑃}. Finally, the number of consecutive slots is encoded
as an integer variable 𝑏𝑖, with the same domain as 𝑓𝑖. These variables are formally
defined as follows:

𝑓𝑖 ∈ {1, ..., 𝑁𝐵𝑊}, ∀ 𝑖 ∈ {1, ..., 𝑁𝐵} (8.1)
𝑔𝑖 ∈ {1, ..., 𝑁𝐹𝑅 ·𝑁𝑃}, ∀ 𝑖 ∈ {1, ..., 𝑁𝐵} (8.2)
𝑏𝑖 ∈ {1, ..., 𝑁𝐵𝑊}, ∀ 𝑖 ∈ {1, ..., 𝑁𝐵} (8.3)

Any frequency plan can then be decoded using these three variables per beam. Any
optimization method should return these values to the operator.

The bandwidth variable (8.3) has been defined with domain {1, ..., 𝑁𝐵𝑊}. How-
ever, the operator might be interested in specifying higher lower bounds, for contrac-
tual reasons or since using a single bandwidth slot might not be enough to satisfy
the link budget equation for certain beams [253]. This way, variable (8.3) could be
redefined as

𝑏𝑖 ∈ {𝑐𝑖, ..., 𝑁𝐵𝑊}, ∀ 𝑖 ∈ {1, ..., 𝑁𝐵} (8.3)

where 𝑐𝑖 is the minimum number of slots that beam 𝑖 requires. Similarly, the domain
of variables (8.1) and (8.2) could also be changed to split frequency resources following
criteria specified by the operator or the users’ contracts. This is left outside of the
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scope of this dissertation.

Constraint: Limited spectrum The focus now shifts to the constraints of the
problem. First, we encode the constraint that all bandwidth slots used must be within
the spectrum limits imposed by the system (i.e., only the 𝑁𝐵𝑊 considered slots can
be used). This is encoded as follows:

𝑓𝑖 + 𝑏𝑖 − 1 ≤ 𝑁𝐵𝑊 , ∀𝑖 ∈ {1, ..., 𝑁𝐵} (8.4)

Constraint: Intra-group or handover restrictions The next step is account-
ing for the intra-group restrictions, given by the set ℛ𝐴. This type of restrictions are
caused by handover operations and are relevant if and only if constrained beams that
use the same frequency reuse and polarization (i.e., same 𝑔𝑖) overlap in their band-
width slots. I first introduce the constraints that encode the intra-group restrictions
and then describe each of the elements involved. A pair of constraints is defined per
restriction:

𝑓𝑖 + 𝑏𝑖 ≤ 𝑓𝑗 +𝑁𝐵𝑊 (2− 𝑦𝑖𝑗 − 𝑧𝑖𝑗), ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐴 (8.5)
𝑓𝑗 + 𝑏𝑗 ≤ 𝑓𝑖 +𝑁𝐵𝑊 (1− 𝑦𝑖𝑗 + 𝑧𝑖𝑗), ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐴 (8.6)

Both constraints make use of two types of auxiliary binary variables: 𝑦𝑖𝑗 and 𝑧𝑖𝑗, which
are now explained. Constraints (8.5) and (8.6) enforce a non-overlapping frequency
assignment between beams 𝑖 and 𝑗 holding an intra-group restriction if and only if
both beams use the same reuse group and polarization. To ignore these constraints
in case they do not, 𝑁𝐵𝑊 is added to the right-hand side of the inequalities, as
𝑓𝑖 + 𝑏𝑖 is upper-bounded by 𝑁𝐵𝑊 . To that end, variable 𝑦𝑖𝑗 is used and the following
constraints enforced:

𝑦𝑖𝑗 ∈ {0, 1}, ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐴 (8.7)
𝑔𝑖 ≥ 𝑔𝑗 −𝑁𝐹𝑅 ·𝑁𝑃 (1− 𝑦𝑖𝑗), ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐴 (8.8)
𝑔𝑖 ≤ 𝑔𝑗 +𝑁𝐹𝑅 ·𝑁𝑃 (1− 𝑦𝑖𝑗), ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐴 (8.9)

If 𝑦𝑖𝑗 = 1, the formulation enforces that 𝑔𝑖 = 𝑔𝑗, since both (8.8) and (8.9) are active.
If 𝑦𝑖𝑗 = 0, the opposite should occur and these constraints should be ignored, to that
end the upper-bound term 𝑁𝐹𝑅 ·𝑁𝑃 is added to the right-hand side of the inequalities.
However, enforcing 𝑔𝑖 ̸= 𝑔𝑗 cannot be achieved solely with variable 𝑦𝑖𝑗. To enforce
strict inequality when 𝑦𝑖𝑗 = 0, the formulation introduces binary variables 𝑝𝑖𝑗 and the
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following constraints to account for both cases 𝑔𝑖 > 𝑔𝑗 and 𝑔𝑗 > 𝑔𝑖:

𝑝𝑖𝑗 ∈ {0, 1}, ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐴 (8.10)
𝑔𝑖 − 𝑔𝑗 ≥ 𝜖−𝑁𝐹𝑅 ·𝑁𝑃 (1− 𝑝𝑖𝑗 + 𝑦𝑖𝑗), ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐴 (8.11)
𝑔𝑖 − 𝑔𝑗 ≤ −𝜖+𝑁𝐹𝑅 ·𝑁𝑃 (𝑝𝑖𝑗 + 𝑦𝑖𝑗), ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐴 (8.12)

which are active if and only if 𝑦𝑖𝑗 = 0. In that case, and when 𝑝𝑖𝑗 = 1, (8.11) is active
and 𝑔𝑖 > 𝑔𝑗. On the contrary, if 𝑝𝑖𝑗 = 0, (8.12) is active and 𝑔𝑗 > 𝑔𝑖 holds. When
𝑦𝑖𝑗 = 1, the difference between 𝑔𝑖 and 𝑔𝑗 is upper-bounded by 𝑁𝐹𝑅 ·𝑁𝑃 .

The effect of binary variable 𝑧𝑖𝑗 comes into play if beams 𝑖 and 𝑗 hold a restriction
and are assigned to the same frequency reuse and polarization (i.e., 𝑔𝑖 = 𝑔𝑗). In
this case, we want to make sure that 𝑓𝑖 + 𝑏𝑖 ≤ 𝑓𝑗 or 𝑓𝑗 + 𝑏𝑗 ≤ 𝑓𝑖, i.e., we want to
ensure that beam 𝑖 has allocated spectrum either to the left or to the right of beam
𝑗, but without overlapping. These two possible scenarios are taken into account with
variable 𝑧𝑖𝑗 and the following constraints:

𝑧𝑖𝑗 ∈ {0, 1}, ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ (8.13)
𝑓𝑗 − 𝑓𝑖 ≥ 0−𝑁𝐵𝑊 (1− 𝑧𝑖𝑗), ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ (8.14)
𝑓𝑖 − 𝑓𝑗 ≥ 𝜖−𝑁𝐵𝑊 𝑧𝑖𝑗, ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ (8.15)

where 𝜖 is a very small positive number, and ℛ represents the union ℛ𝐴 ∪ℛ𝐸 ∪ℛ𝐺

(these constraints are defined for all intra-group, inter-group, and gateway restric-
tions). Given a restriction (𝑖, 𝑗), if 𝑧𝑖𝑗 = 1, (8.14) is active and enforces that 𝑓𝑗 ≥ 𝑓𝑖

(i.e., beam 𝑗 cannot use lower frequencies than beam 𝑖’s). On the contrary, if 𝑧𝑖𝑗 = 0,
(8.15) is active and the effect is the opposite. These constraints become inactive by
leveraging the 𝑁𝐵𝑊 term on the right-hand side of the inequalities, as −𝑁𝐵𝑊 is the
lowest value the difference can take.

Note that at most one of the intra-group constraints (8.5) and (8.6) can be active
at a given time. Constraint (8.5) does so for the case in which 𝑧𝑖𝑗 = 1 (𝑓𝑖 ≤ 𝑓𝑗),
whereas constraint (8.6) is active when 𝑧𝑖𝑗 = 0 (𝑓𝑖 > 𝑓𝑗). To summarize the effect of
the auxiliary variables introduced so far, Table 8.2 shows how the different frequency
assignment cases between two beams holding an intra-group restriction are encoded
by means of variables 𝑧𝑖𝑗, 𝑦𝑖𝑗, and 𝑝𝑖𝑗.

Constraint: Inter-group or interference restrictions The inter-group restric-
tions are given by set ℛ𝐸 and concern all pairs of beams with close footprints, which
might interfere with each other during operations. Setting a threshold for how close
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Table 8.2: Encoding of different frequency assignment cases by means of auxiliary
variables when beams 𝑖 and 𝑗 share a constraint.

Auxiliary variables Encoded frequency assignment case Necessary for
𝑧𝑖𝑗 = 1 𝑓𝑖 ≤ 𝑓𝑗 Any type of
𝑧𝑖𝑗 = 0 𝑓𝑖 > 𝑓𝑗 constraint
𝑦𝑖𝑗 = 1 𝑔𝑖 = 𝑔𝑗 (same freq. reuse and polarization) Intra-group

𝑦𝑖𝑗 = 0 and 𝑝𝑖𝑗 = 1 𝑔𝑖 > 𝑔𝑗 constraints
𝑦𝑖𝑗 = 0 and 𝑝𝑖𝑗 = 0 𝑔𝑖 < 𝑔𝑗 (handover)

𝑠𝑖𝑗 = 0 𝑚𝑖 = 𝑚𝑗 (same polarization) Inter-group
𝑠𝑖𝑗 = 1 and 𝑑𝑖𝑗 = 0 𝑚𝑖 < 𝑚𝑗 constraints
𝑠𝑖𝑗 = 1 and 𝑑𝑖𝑗 = 1 𝑚𝑖 > 𝑚𝑗 (interference, gateways)

two interfering beams can be is up to the operator’s policy, which might prefer to
trade additional inter-group restrictions for further interference mitigation. One way
to define this set might be to impose an angular distance threshold between beams;
this decision is left out of the scope of the formulation.

As in the intra-group case, a pair of constraints is defined per restriction:

𝑓𝑖 + 𝑏𝑖 ≤ 𝑓𝑗 +𝑁𝐵𝑊 (1 + 𝑠𝑖𝑗 − 𝑧𝑖𝑗), ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐸 (8.16)
𝑓𝑗 + 𝑏𝑗 ≤ 𝑓𝑖 +𝑁𝐵𝑊 (𝑠𝑖𝑗 + 𝑧𝑖𝑗), ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐸 (8.17)

Inter-group constraints rely on auxiliary binary variables 𝑠𝑖𝑗 and 𝑧𝑖𝑗. The effect of
variable 𝑧𝑖𝑗 is given by constraints (8.14) and (8.15), which have been introduced
previously, and considers the cases in which beam 𝑖’s spectrum is to the left or right
of beam 𝑗’s. The definition of 𝑠𝑖𝑗 variables is addressed next.

As introduced in Figure 8-4, inter-group restrictions can negatively impact the
performance of the system when both beams are using the same polarization, regard-
less of their frequency reuse. To specifically focus on polarization, first the following
variables and constraints are introduced:

𝑘𝑖 ∈ {1, ..., 𝑁𝐹𝑅}, ∀ 𝑖 ∈ {1, ..., 𝑁𝐵} (8.18)
𝑚𝑖 ∈ {0, 𝑁𝑃 − 1}, ∀ 𝑖 ∈ {1, ..., 𝑁𝐵} (8.19)
𝑔𝑖 = 𝑁𝑃𝑘𝑖 −𝑚𝑖, ∀ 𝑖 ∈ {1, ..., 𝑁𝐵} (8.20)

Variable 𝑘𝑖 encodes the frequency reuse assigned to beam 𝑖 whereas variable 𝑚𝑖 en-
codes its polarization.

Similar to constraints (8.7) - (8.9), binary variable 𝑠𝑖𝑗 is used for each pair of
beams holding an inter-group constraint. This variable encodes whether beams 𝑖 and
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𝑗 use the same polarization, by means of the following constraints:

𝑠𝑖𝑗 ∈ {0, 𝑁𝑃 − 1}, ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐸 (8.21)
𝑚𝑖 ≥ 𝑚𝑗 − (𝑁𝑃 − 1)𝑠𝑖𝑗, ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐸 (8.22)
𝑚𝑖 ≤ 𝑚𝑗 + (𝑁𝑃 − 1)𝑠𝑖𝑗, ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐸 (8.23)

If 𝑠𝑖𝑗 = 0 then both (8.22) and (8.23) are active, and 𝑚𝑖 and 𝑚𝑗 are enforced to be
equal. Note that in case 𝑁𝑃 = 1, then 𝑠𝑖𝑗 is always zero and 𝑚𝑖 = 𝑚𝑗, since there is
only one polarization.

Then, following the same idea behind constraints (8.10) - (8.12), binary variable
𝑑𝑖𝑗 is used to help encoding whether 𝑚𝑖 > 𝑚𝑗 or 𝑚𝑗 > 𝑚𝑖, i.e., enforcing 𝑚𝑖 and 𝑚𝑗

to be different in case there is more than one polarization and 𝑠𝑖𝑗 = 1. The following
constraints explain this idea:

𝑑𝑖𝑗 ∈ {0, 1}, ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐸 (8.24)
𝑚𝑖 −𝑚𝑗 ≤ −𝜖+ (𝑁𝑃 − 1)(1 + 𝑑𝑖𝑗 − 𝑠𝑖𝑗), ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐸 (8.25)
𝑚𝑖 −𝑚𝑗 ≥ 𝜖− (𝑁𝑃 − 1)(2− 𝑑𝑖𝑗 + 𝑠𝑖𝑗), ∀ 𝑖, 𝑗 s.t. (𝑖, 𝑗) ∈ ℛ𝐸 (8.26)

which can only be active if 𝑠𝑖𝑗 = 1 (more than one polarization). Then, if 𝑑𝑖𝑗 = 0,
(8.25) is active and therefore 𝑚𝑗 > 𝑚𝑖. On the other hand, if 𝑑𝑖𝑗 = 1, (8.26) is active
and 𝑚𝑖 > 𝑚𝑗. In all cases, the difference |𝑚𝑖 − 𝑚𝑗| is bounded by 𝑁𝑃 − 1. Table
8.2 also summarizes all cases that inter-group restrictions-related auxiliary variables
encode.

Constraint: Gateway dimensioning The gateway dimensioning constraints are
given by the set ℛ𝐺 and correspond to beams that cannot overlap in frequency when
they connect to the same gateway. Since it is assumed that gateways do not reuse
frequency but share the same number of polarizations with the satellites, these con-
straints can be encoded by replicating the constraints introduced for inter-group re-
strictions, i.e., constraints (8.16) and (8.17) and auxiliary constraints (8.18)-(8.26).
Some pairs of beams (𝑖, 𝑗) might be in both ℛ𝐸 and ℛ𝐺, in that case the formulation
only needs to define the constraints once.

Other considerations: objective function and computational complexity
While the previous variables and constraints are enough to define feasible frequency
plans, and therefore they are enough to understand the feasibility of any DRL solution,
an ILP commercial solver will not be able to set priorities among feasible plans. To
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that end, an objective function must be defined. There are different options on what
to prioritize, all of them can be encoded in a parametrized function. This is discussed
in depth in Appendix D.1, since this chapter mostly focuses on feasibility.

The main advantage of DRL over the ILP formulation is runtime, especially when
the number of beams 𝑁𝐵 is large. Appendix D.2 shows that this problem is NP-hard
and possesses a search space of the order 𝒪((𝑁2

𝐵𝑊𝑁𝑃𝑁𝐹𝑅)
𝑁𝐵). This explains why

many approaches proposed in the literature might have been limited to experimental
setups with only dozens of beams.

8.4 Designing a Deep Reinforcement Learning Sys-

tem

This section covers the design of a DRL system to solve the frequency assignment
problem for a set of 𝑁𝐵 beams of a constellation. The goal is to understand which
are the empirical design choices that benefit the performance and robustness of the
DRL system in the context of this task. To that end, six different elements of the
design process are taken into account: the state representation, the action space,
the reward function, the policy network, the policy optimization algorithm, and the
training procedure. For each of these elements, different choices are proposed, with
the goal of finding the best ones to solve the problem and further understanding the
trade-offs between performance and robustness in satellite communications.

Table 8.3 summarizes the variations that are considered for each of the six elements
of the DRL system that are being designed. This section discusses the variations for
the first three (state, action, and reward), which account for domain expertise. The
rest are taken from the literature and will be introduced alongside the experimental
setup in the next chapter.

8.4.1 Episodes and timesteps

As presented in the previous section, the total number of plans is in the order of
(𝑁2

𝐵𝑊𝑁𝑃𝑁𝐹𝑅)
𝑁𝐵 , which makes the problem challenging for large values of 𝑁𝐵𝑊 ,

𝑁𝐹𝑅, and 𝑁𝐵. While some methods will take a time penalty to compute a solution
(e.g., ILP), DRL might still be relatively fast and in many cases able to still operate
under time constraints. However, one can assume that the complexity of training
and the quality of the solutions obtained will degrade as the dimensionality of the
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Table 8.3: Main components of the DRL system to be designed and their considered
variations.

DRL system component Variations considered
State representation Lookahead and without lookahead

Action space Grid and tetris-like
Reward function Each, final, and Monte-Carlo
Policy network CNN+MLP and CNN+LSTM

Policy optimization algorithm DQN and PPO
Training procedure Same as test and harder than test

problem increases. To that end, the design of episodes and timesteps considered for
the problem will take scalability into account.

Specifically, a timestep is defined as the frequency assignment for just one beam.
Then, the episode is defined as the complete frequency assignment of all 𝑁𝐵 beams.
By doing this, the dimensionality of the problem reduces to 𝑁2

𝐵𝑊𝑁𝑃𝑁𝐹𝑅 for each
timestep. Since the goal is to factor in robustness into the analysis, the problem
is simplified to select only the first bandwidth slot, the frequency reuse, and the
polarization, therefore the total number of used slots is given (i.e., according to the
formulation, for each beam 𝑏𝑖 is given and the agent picks 𝑓𝑖 and 𝑔𝑖). Specifically,
for each beam, it is assumed the problem provides the minimum number of slots
necessary, this corresponds to 𝑐𝑖 in equation (8.3). Therefore, the problem is reduced
to pick a cell in the grid representation depicted in Figure 8-2, with 𝑁𝐵𝑊𝑁𝑃𝑁𝐹𝑅

different options.

8.4.2 Action space

Two different action spaces are studied, these are pictured in Figure 8-5, which shows
a scenario/grid with 𝑁𝑃𝑁𝐹𝑅 = 4 and 𝑁𝐵𝑊 = 4. One alternative is to directly choose
a cell in the grid as the action. This action space, which is defined as grid, consists
of 𝑁𝐵𝑊𝑁𝑃𝑁𝐹𝑅 different actions. The second action space is defined as tetris-like
and only contemplates five possible actions. In this space, for each beam, a random
frequency assignment is first made for a beam, i.e., a cell in the grid is randomly
chosen. Then, the agent is able to move it up, down, left, and right across the grid
until the fifth action new is chosen and a new beam undergoes the same procedure.
Note that with this latter approach, episodes take a longer and random number of
timesteps, since one beam can take more than one timestep to be assigned and there
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Figure 8-5: Two action spaces considered for the frequency assignment problem:
grid and tetris-like.

is no restriction on how many intermediate actions should be taken before taking
action new. The advantage of this representation is the substantial reduction of the
action space, which benefits the learning algorithm.

8.4.3 State representation

Next, two different state representations are considered. In both of them, the state is
defined as a 3-dimensional tensor in which the first dimension size is 1, 2, or 3, and
𝑁𝑃𝑁𝐹𝑅 and 𝑁𝐵𝑊 are the sizes of the second and third dimensions, respectively. A
slice of such tensor along the first dimension is referred to as a layer. To better under-
stand both representations, let’s consider a certain timestep, in which the assignment
for one specific beam 𝑘 is being made, 𝑘 − 1 beams have already been assigned, and
there are 𝑁𝐵 − 𝑘 to go. Below is a description of each layer:

1. In both representations the first layer (with dimensions 𝑁𝑃𝑁𝐹𝑅 ×𝑁𝐹𝑆) stores
which grid cells conflict with beam 𝑘, since they are “occupied” by at least one of
the beams, among the 𝑘−1 already assigned, that have some kind of constraint
with 𝑘.

2. In the case the action space is tetris-like, the second layer stores the current
assignment of beam 𝑘 – this is done regardless of the state representation chosen.

3. The last layer serves as a lookahead layer and is optional. This layer contains
information regarding the remaining beams, such as the number 𝑁𝐵 − 𝑘, or
the amount of bandwidth that will be compromised in the future for beam 𝑘

due to some of the beams remaining to be assigned having an intra-group or
inter-group constraint with beam 𝑘.

Figure 8-6 shows an example of what each of these three layers might look like.
Whether the last layer (lookahead layer) is included in the tensor or not defines the
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compromised bandwidth and 
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Figure 8-6: Different possible layers of the state space.

two state representations considered. Training runs will use state representations with
or without the lookahead layer.

Note that the selection of state and action representation entails an additional
benefit: the agent can start from incomplete frequency plans. There might be situ-
ations in which the operator might not want to entirely reconfigure a plan but just
reallocate a reduced set of beams (e.g., due to moving users, handover reconfigura-
tions, etc.). Furthermore, adding or removing beams to the constellation would not
be a problem either. In that sense, the model would be adapt to changes in the beam
placement.

8.4.4 Reward function

Then, three alternative functions are considered to define the reward. For the three
of them, if the action space is tetris-like, the reward function is only applied whenever
the action new is chosen, otherwise the value −1

𝑁𝐹𝐺·𝑁𝐹𝑆
is given as a reward. This is

done to avoid the agent finding local optima that consist of just moving a specific
beam around without calling the action new.

To help defining the three reward functions, let’s denote by 𝐵(𝑠𝑡) the number of
successfully already-assigned beams at state 𝑠𝑡. A beam is successfully assigned if it
does not violate any constraint. The rewards are then computed as:

1. Each: Once a beam is assigned (i.e., any action is taken in the grid action
space or the action new is taken in the tetris-like action space), the first re-
ward function consists of computing the difference in the number of successfully
already-assigned beams between the states at the current timestep and previous
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s2 → r2 = B(s2)−B(s1)
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s4 → r4 = B(s4)−B(s3)

sT → r5 = B(sT)−B(sT-1)

…

…
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…

s1 → r1 = 0

s2 → r2 = 0

s3 → r3 = 0

s4 → r4 = 0

sT → r5 = B(sT)

…
…

…
…

…

…

s1 → r1 = R(s1)

s2 → r2 = R(s2)

s3 → r3 = R(s3)

s4 → r4 = R(s4)

sT → r5 = 0

…

Each Final

Rollouts

Rollout policy

Figure 8-7: Reward function choices considered. 𝐵(𝑠𝑡) corresponds to the number
of successfully already-assigned beams at state 𝑠𝑡.

timestep, i.e., 𝑟𝑡 = 𝐵(𝑠𝑡)−𝐵(𝑠𝑡−1). Note this number can be negative.

2. Final: The second alternative is to only compute the final quantity of beams
that are successfully assigned once the final state 𝑠𝑇 is reached and give a reward
of zero at all timesteps before that. Therefore, 𝑟𝑡 = 𝐵(𝑠𝑡) if 𝑠𝑡 = 𝑠𝑇 , otherwise
zero.

3. Rollout: Finally, the third reward function uses a rollout policy that randomly
assigns the remaining beams at each timestep. This is only done to compute the
reward, the outcome of the rollout policy is not taken as agent’s actions. The
reward equation is 𝑟𝑡 = 𝑅(𝑠𝑡) = 𝐵(𝑠𝑇 )|rollout−𝐵(𝑠𝑡). Note that 𝑟𝑇 = 𝑅(𝑠𝑇 ) = 0.

Each of these strategies is defined as each, final, and rollout, respectively. Figure 8-7
shows a visual comparison between the three options considered.

8.5 Results

This section introduces the experimental results of comparing different designs of the
DRL system for the frequency assignment problem in satellite communications. The
distribution of experiments is as follows: first, Section 8.5.1 presents the experimen-
tal setup that is used across experiments, including the constellation models and the
data considered. Then, Section 8.5.2 provides an exhaustive comparison across the
different combinations of designs when considering the action space, the state rep-
resentation, the reward function, the training procedure, and the discount factor 𝛾.
Next, Section 8.5.3 focuses on scalability, the first real-world challenge considered for
this problem, and provides an updated comparison when scaling the dimensionality
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of the constellation model by 5. Section 8.5.4 continues the analysis by incorporat-
ing the policy network and the policy optimization algorithm into the design process
and comparing different combinations for them. Scalability is further analyzed in the
same experiment. Lastly, Section 8.5.5 addresses non-stationarity in the environment,
which constitutes the second real-world RL challenge considered for this use case.

8.5.1 Experimental setup

To test the proposed DRL system, this section considers a baseline scenario with
100 beams, 7 satellites, 𝑁𝑃 = 2, 𝑁𝐹𝑅 = 2, and 𝑁𝐵𝑊 = 20. This matches the
dimensionality of typical experimental setups found in the literature. From a set
of 5,000 beams based on real data provided by SES S.A., a random train and test
datasets are created, disjoint with respect to each other. Then, for each episode of the
training phase, 100 beams are randomly selected from the train dataset. Then, during
the test phase, 100 other beams are selected from the test dataset and the agent is
evaluated on those beams. Simulations use 8 different environment in parallel, this
way experience is shared throughout the training phase and statistics can be computed
during evaluation.

As introduced in Table 8.3, two different policy optimization algorithms are consid-
ered: Deep Q-Network (DQN) [270] and Proximal Policy Optimization (PPO) [328].
The former is a value learning algorithm that has proven to be a good choice for dis-
crete action space problems while the latter is a policy gradient algorithm [348] that
has proven to achieve good results in a wide variety of real-world-based RL problems.

Similarly, two different policy networks are considered. In both cases, the net-
work is first composed by two convolutional layers (first layer with 64 5x5 filters,
second layer with 128 3x3 filters). Then, in one case the convolutional layers are fol-
lowed by two fully-connected layers (first layer with 512 units, second layer with 256
units). In the other case the fully-connected layers are substituted by a 256-unit Long
Short-Term Memory (LSTM) [170] network. In all cases, the network ends with an
output layer that maps to the action space considered. Rectified linear units (ReLUs)
activation layers and normalization layers are used in all cases.

Lastly, there are two versions of the training procedure being considered, with
differ on the number of beams used during training with respect to the test beams.
In one case, the number of training beams corresponds to the number of testing beams
(100 in both cases for the baseline scenario). The second option doubles the number
of training beams (200 for training, 100 for testing in the baseline scenario) in order
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to make the task harder and potentially obtain a better policy. Additional beams are
also sampled from the training dataset. The remaining implementation details are
described in Appendix A.3.

8.5.2 Full enumeration analysis in the baseline scenario

The first analysis consists of carrying out a full enumeration analysis and test each
possible combination of state-action-reward under the two possible training proce-
dures for a total of 50,000 steps per training run. In addition, the full enumeration
search is extended to include the discount factor 𝛾 [348], a DRL hyperparameter.
Three possible values are evaluated: 0.1, 0.5, and 0.9. A larger discount factor im-
plies that the agent takes into account longer term effects of its actions, whereas lower
discount factors are related to greedier policies. At this point the policy network and
policy optimization algorithm are not considered, the CNN + MLP policy and DQN
are used in each case, respectively. In total, 72 different designs are evaluated, and
the result is shown in Table 8.4. This table presents the average number (across
the 8 parallel environments) of successfully-assigned beams during test time (out of
100) for each combination of action, state, reward, discount factor 𝛾, and number of
training beams. For reference, these results are compared against a totally random
policy, which achieves an average of 83.5 successfully-assigned beams.

One can observe that using the reward strategy each leads to better outcomes,
and using the grid action space with the state space using lookahead does better
on average. For the baseline case, there is no apparent advantage in using reward
strategies that delay the reward until the end of the episode or rely on rollout policies;
individual timesteps provide enough information to guide the policy optimization.
To better understand the impact of the modeling decisions, below there are several
significance tests that further analyze the trade-offs:

• There is no advantage in training with 200 beams instead of 100 (P -value =
0.08). Therefore, training with more beams does not make a better agent for
this case. This is even less impactful when 𝛾 = 0.1 (P = 0.90), since the policy
behaves greedily regardless of how many beams remain to be assigned. The
strategy for placing the first 100 beams is similar both cases.

• The discount factor affects the performance of the policy (P < 0.001), but there
is no significant performance difference when using 𝛾 = 0.1 or 𝛾 = 0.5 (P =
0.83). The performance worsens when 𝛾 = 0.9. The learned policy relies more
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on a greedy behavior to be successful, which is consistent with other methods
that have addressed the problem [291].

• With 𝛾 ≤ 0.5, the each reward strategy, and grid action space, the state space
affects the performance (P < 0.001). It is better to include the lookahead layer.

• With 𝛾 ≤ 0.5, the each reward strategy, and tetris-like action space, the state
space affects the performance (P < 0.001). Not including the lookahead layer
(without in the table) in the state achieves better results in this case.

• With 𝛾 ≤ 0.5 and the each reward strategy, using the grid state space is a better
alternative than using tetris-like (P < 0.001), since it supports more flexibility
to make an assignment.

• Overall, the tetris-like action space appears to be less sensitive to the reward
strategy chosen, especially when comparing across the simulations using the
rollout reward strategy.

The lookahead layer plays an important role together with the grid action space,
since the agent has total freedom to place a beam, and therefore being informed of
the remaining assignments is beneficial. In contrast, in the case of the tetris-like
action space, the agent is limited by the initial random placement of the beam, and
therefore the information of what is to come is not as useful. This is an example of
how different representations can interact with each other.

8.5.3 Scalability analysis

After assessing the DRL system works for the baseline scenario, the next step is
focusing on the high-dimensionality challenge and analyze the impact scalability has
on the agent. To that end, this section considers a scenario with 500 beams, 7
satellites, 𝑁𝑃 = 2, 𝑁𝐹𝑅 = 8, 𝑁𝐵𝑊 = 80, 𝛾 = 0.1, and the each reward function, and
compare all 4 combinations for the state and action representations. In this case each
time the model is trained for a total of 200k timesteps and random set of 500 beams
are sampled from both the train and test datasets. The results of this experiment
are shown in Table 8.5, which are averaged across the 8 parallel environments and
compared against a random policy, which achieves 429.9 successfully-assigned beams.

The main conclusion of this analysis is that when the dimensionality of the problem
increases, the DRL system actually achieves a better outcome using the tetris-like
action space, as opposed to the 100-beam case. The grid action space does even
worse than random, which is due to the large amount of actions (1,280 for this case)
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Table 8.5: Average number of successfully-assigned beams out of 500 in the test
data using the each reward function and 𝛾 = 0.1. A random policy achieves 429.9.

Action and state
representation

Number of successfully-
assigned beams

Grid and Lookahead 320.1
Grid and Without 328.1

Tetris-like and Lookahead 461.6
Tetris-like and Without 478.9

and an inappropriate exploration-exploitation balance. Overall, there is no impact in
terms of the state representation in this example (P = 0.64), although there is when
conditioning on the tetris-like action space (P < 0.001); the agent does better without
the lookahead layer. These results prove that relying on a single representation for a
specific real-world problem might not be a robust strategy during operation. In the
specific case of the frequency assignment problem, sticking to use cases with less than
100 beams as the majority of the literature would have rendered different conclusions.
Understanding the limitations of specific representations is essential in order to make
these models deployable.

8.5.4 Considering different policy networks and optimization

algorithms

The last two DRL design elements considered in Table 8.3 that remain to be studied
are the policy network and the policy optimization algorithm. In the real-world RL
literature, typical design choices for these two components rely heavily on the progress
by the domain-agnostic RL and the Deep Learning communities and rarely involve
domain expertise in the design process. This is also the case for the choices considered
in this experiment. The analyses of the previous section are now extended, the goal is
to compare the baseline DQN algorithm and CNN + MLP against other alternatives.

As introduced at the beginning of the results section, in the case of the policy
optimization algorithm, the Proximal Policy Optimization (PPO) algorithm [328] is
chosen to be compared against DQN [270]. PPO is a policy gradient and on-policy
algorithm and DQN is a value learning and off-policy algorithm. PPO optimizes the
policy on an end-to-end fashion, by doing gradient ascent on its parameters according
to a function of the cumulative reward over an episode. Additionally, it clips the
gradients to avoid drastic changes to the policy. DQN focuses on optimizing the

191



prediction of the value of taking a certain action in a given state; it then uses these
predictions to choose an action. Also, it stores all the agent’s experience in a replay
buffer and makes use of it over time by “replaying” past episodes and training on
them. OpenAI’s baselines [93] are used to implement each method.

Regarding the policy network, the second design option is to substitute the MLP
block for a 256-unit LSTM. By comparing the CNN + MLP option against the CNN
+ LSTM option we can evaluate the impact of using a recurrent network as part of
the policy. These structures take advantage of temporal dependencies in the data and
therefore can potentially perform better in sequential problems.

Table 8.6 shows the results of using both policy networks and both policy op-
timization algorithms for 4 different cases: the 100-beam scenario using the grid
action space with both state representations, the 500-beam scenario using the tetris-
like action space with both state representations, and two additional 1,000-beam and
2,000-beam scenarios for the tetris-like action space without using the lookahead layer
in the state representation. For each case the random policy successfully assigns 83.5,
429.9, 799.7, and 1,137.7 beams on average, respectively. Since the previous section
has concluded the tetris-like action space better suits high-dimensional scenarios, only
its performance is explored in the thousand-beam range. In all cases, the each re-
ward strategy and 𝛾 = 0.1 is used. All simulations belonging to the same scenario
are trained for an equal number of timesteps.

In the scenarios with 1,000 beams or less, one can observe there is no significant
advantage in using PPO over DQN, although DQN consistently outperforms PPO in
each scenario. Looking at the 2,000-beam scenario, however, the performance differ-
ence emerges. Note that the 1,000-beam and 2,000-beam simulations use the same
values for 𝑁𝑃 , 𝑁𝐹𝑅, and 𝑁𝐵𝑊 . Therefore, in the 2,000-beam case, the performance
worsening occurs during the assignment of the last 1,000 beams. During the last
timesteps of such a high-dimensional scenario, having a prediction over multiple ac-
tions, as DQN does, proves to be a better approach, as opposed to PPO’s method,
which relies on the single action that the policy provides.

The same occurs if we compare the CNN+MLP policy (MLP in the table) against
the CNN+LSTM policy (LSTM in the table). Given the greedy behavior of the pol-
icy, having the LSTM’s hidden state does not offer any advantage when placing the
last 1,000 beams in the 2,000-beam scenario. Although allowing more training iter-
ations could help reducing the performance gap, these results prove that the choices
of the policy and the policy optimization algorithm are especially important under
certain circumstances. For the frequency assignment problem in the context of mega-
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Table 8.6: Average number of successfully-assigned beams in the test data when
comparing different combinations of policy networks and policy optimization algo-
rithms for different use case dimensionalities. The each reward function and 𝛾 = 0.1
are used in all cases.

Action and state
representation

DQN
MLP

PPO
MLP

PPO
LSTM

100 beams, Random: 83.5
𝑁𝑃 = 2, 𝑁𝐹𝑅 = 2, 𝑁𝐵𝑊 = 20

Grid, Lookahead 99.8 94.9 94.9
Grid, Without 95.6 97.5 91.5

500 beams, Random: 429.9
𝑁𝑃 = 2, 𝑁𝐹𝑅 = 8, 𝑁𝐵𝑊 = 80

Tetris-like, Lookahead 461.6 460.5 470.0
Tetris-like, Without 478.9 478.0 465.1

1,000 beams, Random: 799.7
𝑁𝑃 = 2, 𝑁𝐹𝑅 = 10, 𝑁𝐵𝑊 = 100

Tetris-like, Without 962.3 936.0 957.0
2,000 beams, Random: 1,137.7
𝑁𝑃 = 2, 𝑁𝐹𝑅 = 10, 𝑁𝐵𝑊 = 100

Tetris-like, Without 1,746.0 1,139.0 967.0

constellations, operators care about the thousand-beam range. To help visualizing
the performance of these models, Figure 8-8 shows the assignment results for one of
the 8 environments in the 2,000-beam, DQN, and CNN+MLP scenario. A total of
1,766 beams are successfully assigned.

8.5.5 Non-stationarity analysis

Finally, this section addresses the second real-world RL challenge considered, non-
stationarity, and analyzes its impact on trained DRL models. In the context of
the frequency assignment problem, one interesting aspect of non-stationarity is the
phenomena that might change between training to operation, such as the bandwidth
distribution, the number of beams, or the constraint distribution. This section focuses
on the bandwidth distribution for its analysis. Specifically, the goal is to study how the
performance changes when the test environment includes beams with more average
bandwidth demand than those in the training set. The analysis consists of carrying
out simulations in which the average bandwidth demand per beam in the test set
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Figure 8-8: 2,000-beam Frequency Plan example obtained by the DQN-based agent
using the CNN+MLP policy, the tetris-like action space, the state representation
without the lookahead layer, the each reward function, and 𝛾 = 0.1. Golden cells
indicate non-successful assignments (i.e., a constraint is violated), any other color
indicates a successful assignment. 1,766 beams are successfully-assigned in this case.
RG in the vertical axis corresponds to a combination of frequency reuse and polar-
ization.

is 2 times and 4 times larger. This is done for the 100-beam scenario and the grid
action space, as well as for the 500-beam scenario and the tetris-like action space. For
both cases, both state representations are compared and the random policy is used
to compare. The outcome of this analysis can be found in Table 8.7.

Table 8.7: Average number of successfully-assigned beams in the test data when
comparing different imbalances between train and test data. The each reward func-
tion, the DQN algorithm, the CNN+MLP policy, and 𝛾 = 0.1 are used in all cases.

Action, State
representation

Same
demand

2-times
demand

4-times
demand

100 beams, 𝑁𝑃 = 2, 𝑁𝐹𝑅 = 2, 𝑁𝐹𝑆 = 20

Grid, Lookahead 99.8 84.9 52.6
Grid, Without 95.6 84.4 65.3

Random 83.5 81.3 71.9
500 beams, 𝑁𝑃 = 2, 𝑁𝐹𝑅 = 8, 𝑁𝐹𝑆 = 80

Tetris-like, Lookahead 461.6 453.0 249.0
Tetris-like, Without 478.9 434.0 337.0

Random 429.9 400.0 227.0

The results show that, as expected based on the literature on real-world RL chal-
lenges [100], non-stationarity does negatively affect the performance of trained DRL
agents for the frequency assignment problem. In this case, it correlates with the av-
erage bandwidth demand per beam difference between the train and test data. In the
100-beam scenario, the performance gap between the random policy and the agent is
reduced for the 2-times case, and then random performs better in the 4-times case.

Something similar occurs in the 500-beam scenario, although the random policy
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does not beat the agent in any case. This is a consequence having a bigger search
space and the more frequent use of the actions up and down in the tetris-like action
space to make changes to the resource group assignment rather than changing the
assignment within the same resource group. When analyzing the actions taken during
test time for this latter scenario, the up and down actions were taken, on average,
2.5 times more than the left and right actions. Furthermore, non-stationarity affects
the usefulness of the lookahead layer when used in combination with the tetris-like
action space. In the analysis from Table 8.5, it is observed that not using it is a
better alternative, whereas in the 2-times demand case the agent does better with it.
There is a certain advantage in knowing what is to come in non-stationary scenarios,
although there is a limit to how beneficial the lookahead layer is, as observed in the
4-times demand case.

8.6 Discussion of results

The proposed DRL system and its design variations have shown a quantitatively
good outcome in the majority of scenarios considered. On average, the DRL agent
has successfully assigned 99.8% of beams in the 100-beam case, 95.8% in the 500-beam
case, 96.2% in the 1,000-beam case, and 87.3% in the 2,000-beam case. The main
advantage of this approach is that evaluating a neural network is substantially faster
than relying on other algorithms such as metaheuristics, while still showing a good
performance. This has allowed the proposed system to scale up to the thousand-
beam range, which many methods from the literature fail to do. To make up for
the constraints that are not fulfilled, operators could use a subsequent “repairing”
algorithm to address the conflicting beams, which would require much less time since
there are less beams to allocate and most of the conflicts can be solved locally.

The interesting insight that comes from these numbers is that designing for ro-
bustness is not aligned with designing for performance, as the specific models for
each scenario correspond to different design variations that use different state and
action representations. In that sense, the goal of this chapter was not to treat de-
sign components as elements to be reported but as additional elements to be tuned.
Given the importance of high-dimensionality in real-world satellite operations, evalu-
ating robustness entailed focusing on cases with hundreds to thousands of beams, as
opposed to works that limit themselves to cases with less than 100 beams. The con-
clusions on the importance of design variations for this problem could not have been
extracted without explicitly designing for robustness in addition to performance. This

195



is aligned with some of the ideas discussed around real-world RL and the domain-
specific research thrust. Evaluating the models under real-world conditions focused on
robustness is at least as important as achieving or improving upon the state-of-the-art
on performance-oriented benchmarks.

The results have also provided insights on the limitations resulting from environ-
ment non-stationarity. This chapter validates the RL domain-agnostic community’s
observations on the detrimental effect of non-stationarity on trained policies. It is
uncommon to find these type of analyses on the domain-specific side. If the goal
is to make DRL deployable, then it is essential that contingency cases caused by
non-stationarity are properly addressed for the problems being considered. This can
be done either by capturing sources of non-stationarity in the training data, or by
devising strategies to mitigate its negative impact during real-time operations, which
might entail relying on other methods at the same time.

Overall, the findings show that DRL is a potential method to address the frequency
assignment problem in real operations, especially because of its speed in decision-
making. However, no single model is able to outperform the rest in all scenarios, and
the best approach for each of the six core design elements depends on the features
of the operation environment. While DRL has the potential to solve future complex
problems in the aerospace industry, it is also important to reflect on the necessity
of designing appropriate models and training procedures for both performance and
robustness, understanding the applicability of such models, and reporting the main
trade-offs.

8.7 Chapter summary and Contributions

This chapter has explored the design of DRL systems for robustness from the perspec-
tive of a domain-specific problem: frequency assignment for satellite constellations.
This addresses four of the research opportunities identified in Chapter 2: 1) focus-
ing on applications beyond the realm of robotics, 2) automating parts of the design
process, 3) prioritizing robustness in conjunction with performance in design, and 4)
understanding the trade-offs between different design choices.

The initial part of the chapter has focused on presenting the context of the fre-
quency assignment problem in satellite communications, highlighting the key motiva-
tion behind employing DRL for this issue —the demand for real-time or near real-time
decision-making in high-dimensional contexts, a requirement traditional methodolo-
gies struggle to fulfill. This has been followed by a review of the related literature,
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revealing that a considerable majority of studies, including those proposing DRL, fail
to effectively encapsulate the flexibility and scalability of contemporary constellations
or to accommodate rapid computing requirements.

The next section has outlined the problem statement, comprised of four different
decision variables per beam and four types of constraints. A key outcome of this
section has been the representation of the frequency assignment problem as a decision
grid. Then, to gain mathematical intuition of this problem, I have proposed an Integer
Linear Programming (ILP) formulation that, if combined with a commercial ILP
solver, is capable of producing a complete frequency plan, given sufficient computing
time.

Then, the DRL system to solve the frequency assignment problem has been pre-
sented. This system has been designed around six different core design decisions that
have a major impact in the outcome of a training run: the policy network, the pol-
icy optimization algorithms, the state representation, the action space, the reward
function, and the training configuration. Different alternatives for each of these com-
ponents have been proposed with the objective of creating a search space of diverse
designs to be studied. Then, grid search has served as a means of automating the
search for the best choices.

Table 8.8: Summary of the best result achieved by the proposed DRL system (as
a % of total number of beams successfully assigned) for each combination of degree
of dimensionality considered and demand distribution at test time. The case same
demand corresponds to scenarios in which non-stationarity is not present, otherwise
non-stationarity entails larger average demand at test time.

Test demand 100 beams 500 beams 1,000 beams 2,000 beams

Same demand 99.8% 95.8% 96.2% 87.3%

2x demand 84.9% 90.6% - -
4x demand 71.9% 67.4% - -

Section 8.5 has presented the analytical evaluation of this chapter, which has
focused around four sets of experiments. Table 8.8 shows the summary of the best
result obtained for each of the experimental configurations considered. First, I have
carried out a full enumeration analysis using grid search on the decisions for the state
representation, the action space, the reward function, and the training configuration.
In addition, I have included three values for the discount factor; 72 different designs
have been evaluated, with 8 random seeds each. This first experiment has identified
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a reward function, a training configuration, and a value for the discount factor to
downselect.

The next experiment has focused on increasing the dimensionality of the problem
by 5 and determining whether the relative results among design variations hold. While
the grid action space has proved to be better suited in low-dimensionality scenarios,
this experiment has demonstrated that the tetris-like action space is more robust
against scalability. Then, I have kept analyzing the latter action space in scenarios
in the thousand-beam range, also including the variations for the policy network and
the policy optimization algorithm.

Finally, the last set of experiments has focused on the challenge of non-stationarity,
examining what happens during operations if the DRL agent is deployed but the
demand distributions changes. By considering cases with two and four times increased
demand, I have shown that adding a lookahead layer in the state representation is
more robust. The implications of the complete analysis and the process followed for
this real-world RL problem have been discussed in Section 8.6.

The specific contributions of this chapter are the following:

Contribution 8.1 Proposed a novel Integer Linear Programming (ILP) formula-
tion that describes the modern frequency assignment problem
for multibeam satellite constellations. This formulation can be
directly integrated with a commercial ILP solver.

Contribution 8.2 Developed a DRL system to address the frequency assignment
problem in satellite communications that optimizes decision-making
for both performance and robustness.

Contribution 8.3 Identified a design variation of the DRL system that trains agents
that achieve high performance in low-dimensional scenarios.

Contribution 8.4 Identified an alternative design variation of the DRL system that
trains agents able to demonstrate robustness against scalability,
up to the thousand-beam range.

Contribution 8.5 Conducted an in-depth analysis of the performance versus ro-
bustness trade-off among different design variations, with spe-
cific regard to the challenges posed by high-dimensionality and
non-stationarity.
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Chapter 9

Case Study 2: Deep Reinforcement
Learning for Molecular Optimization

This chapter covers the second real-world use case for which DRL system design is
concretely analyzed: molecular optimization. Similarly to the case of frequency as-
signment, the objective of this chapter is to better understand how the design of DRL
systems for this applications influences the performance and robustness of agents by
directly considering domain-specific performance and robustness benchmarks. To that
end, Section 9.1 introduces again the problem and discusses the related literature.
Then, Section 9.2 formulates the problem, highlighting the role of generative models
in the process of discovering new compounds. Section 9.3 addresses the benchmark-
ing process, covering the experimental setup, the choice of models to compare, and
the results, which are later discussed in Section 9.4. Finally, Section 9.5 concludes
the chapter and presents the main contributions.

9.1 Introduction

The second real-word use case for which this dissertation analyzes aspects of robust-
ness is DRL for molecular optimization, also known as drug design or de novo drug de-
sign. As introduced in Chapter 7, given the enormous size of the molecular space, find-
ing new compounds that optimize a set of properties is prohibitively expensive when
only relying on the chemists’ experience and intuition. Computational approaches to
generate new molecules have been long studied, from metaheuristic algorithms such
as evolution [95, 384] to modern deep learning methods [97, 104, 195, 196, 239]. Still,
property targeting remains a considerable challenge for state-of-the-art methods, es-
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pecially when looking for multiple properties at the same time. To close this gap,
DRL has been proposed as a method to produce undiscovered molecules with better
properties, since the reward function serves as a way of biasing the generative process.
However, while recent results are promising, so far there is still only one reported use
and success of DRL in end-to-end pharmaceutical trials [412].

The literature on DRL for molecular optimization reveals a scenario similar to
that of the frequency assignment problem: experimental setups explore basic prop-
erty targeting use cases, design choices are seldom discussed, and there is no clear
consensus on which design choices are superior. In addition, since many of the tests
occur under non-disclosure agreements, it is not clear how different methods in the
literature rank in terms of robustness. This problem also presents several real-world
challenges in combination: high-dimensionality, generalizability, multi-objectiveness,
representation, and long trajectories. While there have been efforts in the literature
to create thorough benchmarking protocols [45,421] and apply them [131], their use is
still not widespread and designs do not seem to converge. For example, some studies
treat molecules as 2D or 3D graphs, while other authors propose methods that treat
them as tokenized sequences such as SMILES. These differences apply to many other
components of the DRL system such as the action space, the reward function, or the
policy optimization algorithm.

This chapter examines trade-offs among the principal design choices of methods
in the literature and benchmarks some of the most popular models in order to gain
design insights. Specifically, it compares different text-based and graph-based models
in more than 20 tests from the GuacaMol benchmarking suite [45] across six different
types of benchmark, including rediscovery tests, similarity tests, isomer discovery
tests, median molecule tests, multi-property optimization tests, and structural tests.

9.1.1 Related Work

The related work section examines recent studies on the application of DRL to drug
design. This section limits to DRL and the design of molecules composed by atoms
and bonds. Works that use other methods for property targeting and the application
of DRL in other biological domains (e.g., proteins) are left out of its scope. Table
9.1 summarizes the literature on DRL. Given the goal is to better understand design
choices for this problem, the table breaks down each work by how molecules are
represented, the definition of the state, the action space, the reward functions, the
policy optimization algorithms, and the experimental setups that were considered.
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The table shows that there exists great diversity of choices for each of the different
components considered. For example, some studies treat molecules as graphs, follow-
ing their natural structure; others treat them as tokenized sequences like SMILES
[383]; and others also consider using fingerprints [51] of the molecules. The state rep-
resentation generally follows from the molecular representation considered, therefore
it consists of partial graphs [397], partial sequences [306], and fingerprints from par-
tial molecules [418]; but it can also be encoded using binary trees [341], or MACCS
keys [145]. The action spaces can be divided into spaces that append some sub-
structure to the molecule like atoms or scaffolds [397], spaces that select the next
token in the sequence [281], spaces that only add edges [119], and spaces that select
reactants [145] and thus find new molecules via chemical reactions.

Then, one of the design components with the largest variety is the reward func-
tion. While in many cases it depends on the specific experiment carried out, some
authors define the reward as a direct measurement of the property [418] using popu-
lar cheminformatics tools like RDKit [225], others define a binary reward [341], and
in other works an activity model is first learned via supervised learning and then is
used as reward function [174, 412]. The DRL algorithms that have been proposed
in the literature range from simple REINFORCE implementations [412] and varia-
tions [353], to more complex versions of actor-critic algorithms. PPO is one of the
preferred choices [397], and in some cases versions of DQN are considered [418]. As
pointed out in Chapter 1, domain-specific research rarely proposes new algorithmic
methods; this is an example of such trend. Finally, the experimental setups are mostly
single-objective, in few cases multiple objectives are considered via parametrized func-
tions [353]. Most of the papers consider basic molecular properties such as indicators
of solubility (logP), synthetic accessibility scores (SA), and quantitative estimates
of druglikeness (QED). Fewer works address specifically showing activity against a
biotarget [145,281,353]. Finally, the work in [412] is the only one that reports results
on the complete drug generation pipeline, from design to synthesis.

Although the columns in Table 9.1 already demonstrate the differences among the
different methods in the literature, there are other design factors that papers treat
differently:

• There is no widespread criteria on when to stop the generation process of a
molecule, some works fix the number of steps [418], others have a termination
state [341], others add a stop signal in the action space [397], or an end-of-
sequence (EOS) character [281,306].
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• Some authors use the original versions of algorithms like REINFORCE or PPO,
others add regularizers [353] or change the loss function [397,418].

• There are works that consider an initial supervised learning stage in which a
prior model is learned [146,281,397,412]. The sizes of the datasets used to train
these models range from 250k to 1.5M molecules.

• In some cases the validity of the molecules during the generation process is
enforced by adding constraints to the action space [418], in other cases validity
is a penalty added to the reward function [281].

• Some authors allow states to represent incomplete molecules [306, 397], others
only consider state representations for which molecules are complete [145,353].

• When to provide rewards to the agent is also a design choice, some authors only
provide nonzero rewards when reaching the terminal state [174, 281], others
guide the agent in the middle of the generation process [397].

The literature review demonstrates that there is a lot of diversity in how the
DRL systems are designed for the molecular optimization problem. Given the lack of
real-world-based benchmarking, there is little knowledge of which design choices lead
to more robust agents that can operate across more tasks. The rest of the chapter
addresses this issue for a selection of models and design choices.

9.2 Problem formulation

The problem of molecular optimization entails the exploration and discovery of novel
molecules with desired properties. Molecules can be viewed as complex graphs where
nodes represent atoms and edges represent bonds. Each node and edge can have a
type, reflecting different kinds of atoms and bonds respectively. The problem involves
investigating large, high-dimensional search spaces, given that a molecule’s proper-
ties are determined by its atomic configuration. This section introduces a general
mathematical formulation of the problem to provide a rigorous understanding and to
simplify its inherent complexity.

The search space of molecules Let’s define the search space of molecules as Ω,
which is the set of all possible molecules defined by all possible atomic configurations.
In the context of the graph perspective, each molecule 𝜔 ∈ Ω can be represented as a
graph 𝐺 = (𝑉,𝐸) where 𝑉 is the set of nodes or atoms and 𝐸 is the set of edges or
bonds. Each node 𝑣 ∈ 𝑉 has an associated type 𝑡(𝑣), representing the atomic element
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of the node, with the set of all possible atomic elements denoted as 𝐴. Similarly, each
edge 𝑒 ∈ 𝐸 has an associated type 𝑡(𝑒), representing the type of the bond (e.g., simple,
double), with the set of all possible bond types denoted as 𝐵. Hence, 𝑡(𝑣) : 𝑉 → 𝐴

and 𝑡(𝑒) : 𝐸 → 𝐵.

Each molecule is associated with a property of interest 𝑌 (𝜔), which is a mapping
from Ω to a real number, i.e., 𝑌 : Ω→ R. The goal is to find the molecule 𝜔* ∈ Ω for
which 𝑌 (𝜔) achieves an optimum (maximum or minimum), formally expressed as:

𝜔* = argmax
𝜔∈Ω

𝑌 (𝜔) for maximization, or

𝜔* = argmin
𝜔∈Ω

𝑌 (𝜔) for minimization.

However, directly optimizing 𝑌 (𝜔) is challenging due to the high-dimensionality of
the search space, the combinatorial nature of Ω, and the cost of evaluating 𝑌 (𝜔),
which requires expensive experiments. Instead, a generative model 𝐺 is used as an
intermediary step to guide the search.

The generative model The generative model is defined as 𝐺 and is parameterized
by 𝜃, it learns the underlying distribution of Ω, i.e., 𝑃𝐺(𝜔; 𝜃). In practice, the model
searches over a space 𝑍, which is a mapping from a lower-dimensional latent space to
Ω, i.e., 𝐺 : 𝑍 → Ω. To learn this latent space, it relies on a dataset with an empirical
distribution 𝐷 and the learning process consists of minimizing a divergence measure
𝐷(𝑃𝐺||𝑃𝐷). Once the model is learned, the problem can be transformed into a search
in the latent space 𝑍. However, 𝑃𝐺(𝜔; 𝜃) may not directly align with the optimization
objective 𝑌 (𝜔). Therefore, the real challenge lies in adapting the learned generative
model to guide the search towards regions in Ω that optimize the property 𝑌 (𝜔).

The transformed problem thus involves finding 𝑧* ∈ 𝑍 such that 𝜔 = 𝐺(𝑧*)

optimizes 𝑌 (𝜔), formally expressed as:

𝑧* = argmax
𝑧∈𝑍

𝑃 (𝐺(𝑧; 𝜃)) for maximization, or

𝑧* = argmin
𝑧∈𝑍

𝑃 (𝐺(𝑧; 𝜃)) for minimization.

This reformulation mitigates the problem’s complexity, as the latent space 𝑍 is typi-
cally much smaller than Ω and the generative model 𝐺 provides a structured way of
exploring Ω.
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Deep Reinforcement Learning Now this considers the case in which the gener-
ative model 𝐺 is finetuned by means of a DRL system. The neural network of the
model acts like the policy network 𝜋, which interacts with the environment repre-
sented by the latent space 𝑍. The finetuning process begins with a state 𝑠, which
is a point in the latent space 𝑍. Depending on the implementation and the chosen
representation, a point in the latent space might not always correspond to a molecule
in Ω, as some implementations build on partial molecules.

The agent then takes an action 𝑎 according to a policy 𝜋(𝑎|𝑠; 𝜃), which is typically
a stochastic function of 𝑠 and 𝜃. The action 𝑎 transforms the current state to a new
state 𝑠′ in the latent space. The quality of the new molecule is evaluated by the
reward function 𝑟(𝑠, 𝑎, 𝑠′) = 𝑌 (𝐺(𝑠′; 𝜃)). The goal of the DRL model is to learn the
policy that maximizes the expected cumulative reward:

𝜃* = argmax
𝜃

E𝜋(𝑎|𝑠;𝜃)

[︃
𝑇∑︁
𝑡=0

𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)

]︃
(9.1)

where 𝑇 is the time horizon, 𝛾 ∈ [0, 1] is the discount factor, and the expectation is
over trajectories of states and actions generated by the policy 𝜋. By optimizing this
objective, the DRL model can finetune the generative model to produce molecules
that have higher values of the property of interest 𝑌 (𝜔). This framework provides
a structured approach to explore the space of molecules and adapt the generative
model based on the feedback from the environment.

It is worth noting that not all DRL approaches incorporate a finetuning process as
outlined above. An alternative paradigm involves concurrent learning of the structure
of the molecular space and the specifics of the targeted property. These methods aim
to simultaneously capture the inherent chemical composition rules and the property
optimization objective within a unified framework. While this approach avoids relying
on a dataset 𝐷, it often poses other challenges due to the complex interplay between
the generative process and the property optimization.

9.3 Benchmarking experiments

This section presents benchmarking experiments using the GuacaMol benchmarking
suite [45] to assess the relative performance of different classes of DRL models for
molecular optimization. To that end, it tries to capture some of the different design
choices introduced in Table 9.1 by considering examples of text-based models, graph-
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based models, and descriptor space models. The distribution of the section is the
following: Section 9.3.1 presents the experimental setup; then Sections 9.3.2, 9.3.3,
and 9.3.4 introduce each of the three model classes and the selected representative
examples. Lastly, Section 9.3.5 presents the results of the benchmarking process.

9.3.1 Experimental setup

The experiments carried out in this section focus on two clear objectives. On one
hand, they seek to compare different DRL designs for the molecular optimization
problem when solving tasks that go beyond targeting individual simple properties
such as the molecular weight. On the other hand, the experiments consist of a task
set diverse enough to capture aspects of robustness of each of the designs being
compared.

In order to provide a structured framework for the experiments, the choice of
molecular representation is regarded as the critical design factor for comparing differ-
ent models. Three different representations are considered: text-based, graph-based,
and descriptor space-based. For each class, one or two methods are benchmarked on
a broad range of tasks. The models are introduced in the sections that follow. Most
of the implementation details are kept identical to the original papers, the exact
configurations are reported in Appendix A.4.

Regarding the benchmark, instead of developing one from scratch, the GuacaMol
benchmark [45] is used in the process. The GuacaMol benchmarking suite is a com-
prehensive framework developed by BenevolentAI for the evaluation of models in de
novo drug design. It consits of a set of well-defined and meaningful tasks that mirror
real-world drug discovery challenges. While it is gaining traction in the community
as a way to compare different drug design methods [131], its use is still limited.

Specifically, GuacaMol consists of two main components: a benchmark suite and
task-specific scoring functions. The benchmark suite comprises a collection of 20 tasks
divided into six task types including, but not limited to, rediscovery of known drugs,
lead optimization, scaffold hopping, and designing molecules with multiple concrete
properties. The scoring functions are used to quantify the model’s performance on
each task, ensuring a fair and objective comparison between different models. These
are directly used as reward functions for all the different methods considered. Addi-
tional details on the benchmarking suite are presented in the original paper [45].

In the following sections each of the three representation classes are presented
and their representative examples introduced. In total, four different methods are
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Figure 9-1: Text-based (left) and graph-based (right) representations of a molecule.

considered: ReLeaSE, REINVENT, GraphINVENT, and CDDD+PPO. In all of these
models, a prior model is built via supervised learning. The GuacaMol benchmark
also addresses this aspect, as it provides a dataset of molecules from the ChEMBL
database [264] which all models use to learn the prior.

9.3.2 Text-based generative models

Text-based generative models leverage textual representations of molecules (Figure
9-1 left), such as SMILES strings [383], to learn and generate novel molecular struc-
tures. These methods capitalize on the extensive developments in natural language
processing (NLP) and apply similar techniques to model the sequence of characters
that represent a molecule.

Typically, DRL systems using on text-based representations rely on neural net-
works with recurrent structure, such as RNNs, LSTMs, gated recurrent units (GRUs),
or, recently, transformer-based architectures. These models are usually trained to pre-
dict the next character in a SMILES string given the preceding characters, thereby
learning the underlying syntactical rules of molecular structures.

Despite their success, text-based models have limitations. Not all generated strings
correspond to valid molecular structures due to the specific syntax rules of SMILES,
and the models may require additional steps to ensure validity of the generated
molecules. Furthermore, they miss out on important structural information; two
molecules with different molecular structure might be encoded by the same sequence.
In addition, during the generation process, incomplete sequences might be useless and
that usually leads designers to set intermediate rewards to zero.

Two text-based models will be compared: ReLeaSE [306] and REINVENT
[281]. Both are based on SMILES strings, make use of recurrent architectures that
generate the molecule one token at a time, and are first trained via supervised learn-
ing to build a prior model. ReLeaSE uses a stack-RNN and a GRU module and only
provides nonzero rewards at the end of the generative process. The policy is opti-
mized via REINFORCE [348], which accounts for the magnitude of the reward and
the likelihood of the trajectory to make changes using the policy gradient method.
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REINVENT only uses a MultiGRU module and optimizes the policy using a single
update. To that end, the discount factor 𝛾 is set to zero, which allows to sample
multiple episodes at once. The algorithm uses experience replay of the best molecules
found during the learning process and regularization techniques to 1) encourage ex-
ploration, 2) penalize deviations from the prior model. In their papers, ReLeaSE and
REINVENT are used for optimizing melting temperature, solubility, and activity
against JAK2; and celecoxib generation and activity against DRD2, respectively.

9.3.3 Graph-based generative models

In contrast to text-based models, graph-based generative models (Figure 9-1 right)
directly treat molecules as graphs, where nodes represent atoms and edges repre-
sent bonds. These models seek to capture the graph-structured data of molecular
structures, and thereby more accurately reflect the inherent structural properties of
molecules.

Graph-based models generally leverage graph neural networks (GNNs) to en-
code the features of nodes and edges, capturing the local and global structure of
the molecule. Then, they generate new molecules by adding nodes and edges to
an existing graph, ensuring that each intermediate step represents a valid molecular
structure. This way, intermediate structures can be exploited in the form of rewards.

Graph-based models inherently enforce the validity of generated structures, over-
coming a key limitation of text-based models. However, they often face challenges in
terms of computational complexity due to the need to manipulate graph-structured
data.

One recent graph-based model is chosen to be benchmarked: GraphINVENT
[19, 265]. The application of GraphINVENT for property targeting via DRL is also
separated in a first supervised learning phase and a subsequent DRL phase. GraphIN-
VENT’s architecture consists of a gated-graph neural network (GGNN) [416] which
first transforms initial feature vectors by means of graph operators and then outputs
an action probability distribution (APD) by applying fully-connected layers on top
of concatenated representations from the previous stage. The APD allows to add
one atom to the molecule, connect the previously added atom to another atom, or
terminate the process. The DRL stage is similar to REINVENT’s; it is based on RE-
INFORCE with the addition of regularizers that penalize deviations from the prior
unless the reward is large. The experimental setup considered for GraphINVENT
includes optimizing for QED, number of atoms, and activity against DRD2.
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Figure 9-2: Descriptor space-based models for molecular optimization.

9.3.4 Descriptor space-based models

Another class of models for molecular optimization operates directly in descriptor
spaces rather than the original molecular structure space. These models represent
molecules using low-level, typically continuous descriptors, which capture relevant
information about the molecules and their properties (see Figure 9-2).

The primary goal is to learn a transformation from the high-dimensional, dis-
crete molecular structure space to a lower-dimensional, continuous descriptor space
using neural networks. This is typically accomplished by training models to translate
between different representations of the molecular structures (e.g., from SMILES to
graph and vice versa) using encoders and decoders, thereby embedding the meaningful
information into a compact, low-dimensional descriptor.

Once trained, we can generate new molecules by navigating in the continuous
descriptor space and mapping points in this space back to the original molecular space.
This approach allows for efficient exploration and optimization as the descriptor space
is often smoother and better suited for a wide variety of search methods such as
bayesian optimization [217] or particle swarm optimization [158].

However, one of the challenges with these models is ensuring the validity of the
generated molecular structures. While the transformation from descriptor space to
molecular space is generally smooth, it is not guaranteed to produce valid molecules
at all points in the descriptor space, and additional steps may be required to enforce
the validity of the generated molecules.

This dissertation takes a different approach for these methods and implements a
DRL model to search over the descriptor space. The implementation of the descriptor
space is based on the CDDD model [384] and PPO [328] without any modification
(OpenAI baselines version [93]) is used to navigate the descriptor space. This method
is labeled as CDDD+PPO.
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9.3.5 Benchmark

Table 9.2 presents the result of each of the 4 methods compared (ReLeaSE, REIN-
VENT, GraphINVENT, and CDDD+PPO) for all 20 tests of the GuacaMol bench-
marking suite, which are divided into six types: rediscovery (3 tests), where the goal is
to learn to generate a specific molecule that is not in the original ChEMBL database;
similarity (3 tests), where the goal is to discover molecules that are structurally close
to molecules chosen for each task; isomer discovery (2 tests), where the goal is to
generate molecules that correspond to a specific target formula; median molecules (2
tests), which consists of conflicting tasks of maximizing similarity to two molecules;
multi property optimization (8 tests), where the goal is to discover molecules that
optimize for two to four different objectives at the same time; and structural changes
(2 tests), which specifies certain structural patterns that generated molecules must
fulfill. The table also includes the performance of four other models and the best
performance registered in the ChEMBL database, all as reported in [45]. The other
models in the table are: An implementation of PPO using a LSTM (LSTM PPO), a
genetic algorithm operating over SMILES (SMILES GA), a genetic algorithm oper-
ating over graphs (Graph GA), and a Monte Carlo tree search algorithm operating
over graphs (Graph MCTS). The reader is referred to the original publication [45] for
a full description of these additional models.

An initial glance at the results reveals that no single method consistently out-
performs the others in every task, underscoring the complexity and diversity of this
real-world problem as represented by the GuacaMol benchmarks. Different methods
display strengths and weaknesses based on the individual characteristics of each task,
which agrees with what other studies relying on this benchmark conclude [45,131].

Focusing on DRL, REINVENT emerges as the top performer in the majority of
the tasks. However, its average performance across benchmarks is not the largest;
the Graph GA model as reported in the original GuacaMol paper achieves a slightly
better result (0.89 vs. 0.90, respectively).

Interestingly, while graph-based models are often perceived as more sophisticated
and superior, we can observe this is not always the case. For example, REINVENT,
which utilizes SMILES strings, outperforms GraphINVENT, a graph-based model
that uses the same learning algorithm. This observation coincides with other non-
DRL studies [131] and underscores that success in molecular design might not simply
be a matter of representation type.

The novel CDDD+PPO model, though not the top scorer, consistently outper-
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forms the best molecule in the dataset, demonstrating its capability to generate im-
proved solutions. This indicates that the combination of continuous drug-descriptor
latent spaces and DRL algorithms like PPO can be a promising avenue for future
research.

9.4 Discussion of results

The results validate that DRL is well-suited to address the task of molecular optimiza-
tion, although its robustness remains challenged, as many of the methods presented
in the literature are tailored to specific use cases. While it is still not clear if gen-
eralization with respect to the problem can be achieved with a single method, the
results show that REINVENT is able to score the top performance in the majority of
tests; it achieves a perfect score in rediscovery tasks, similarity tasks, isomer discov-
ery tasks, and structural change optimization tasks. While representing molecules as
SMILES strings might entail loss of structural information, the syntactical rules of
this representation can be exploited to successfully complete many simple tasks.

Further analysis reveals REINVENT’s particular weakness in some of the multi-
property optimization tasks. This exposes a lack of robustness against real-world
RL challenges in drug discovery, which is often characterized by multi-objectiveness
and out-of-distribution optimization. As the complexity of the task increases and
involves optimizing for multiple objectives at the same time —something common in
real-world settings— REINVENT loses the top spot to the Graph GA model reported
in [45].

However, graph-based models that use DRL might still be too brittle for this spe-
cific problem. While the results when considering a GA show that the graph structure
provides substantial advantages over SMILES, GraphINVENT displays deficiencies
in these tasks. While it showed promising results in the original paper —which the
model used in this dissertation was able to reproduce— design for graph-based mod-
els might be too tailored for specific use cases, which in the case of GraphINVENT
consisted of single-objective optimizing for molecular weight and QED. However, it is
worth mentioning that exhaustive hyperparameter tuning was not performed for any
of these models, which could potentially affect the reported performances.

While these findings provide valuable insights, it is important to bear in mind that
the GuacaMol benchmark is based on scoring functions derived from chemoinformat-
ics libraries such as RDKit. These results, thus, reflect the models’ performance in
this specific benchmark context, but do not necessarily imply similar performance in
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real-world drug discovery pipelines. The application and testing of these models in
practical scenarios, with real-world constraints and requirements, remain open areas
for further exploration and publication.

Overall, the outcomes of this chapter reveal that robustness is not at the cen-
ter of current design practices for DRL systems for molecular optimization, some
of the model designs being highlighted in the literature might actually fall short
when evaluated across a range of broader tasks. With use cases characterized by
high-dimensionality and multi-objectiveness as central challenges in drug discovery,
evaluating robustness necessitates focusing on complex tasks rather than settling for
simpler ones.

9.5 Chapter summary and Contributions

This chapter has delved into the design of DRL systems for molecular optimization,
the second real-world problem considered in this dissertation. Despite its complexity
exceeding that of the frequency assignment in satellite communications, it serves as
a valuable case study for exploring DRL design beyond the realms of robotics and
control applications, and understanding the degree to which current design practices
overlook robustness in favor of performance. These aspects represent two of the
research opportunities pinpointed in Chapter 2.

The first part of the chapter has introduced the problem, articulating its signifi-
cance and the role DRL can play in improving current drug design pipelines. It has
also addressed the alignment, or lack thereof, of current proposed methods with real-
world deployability, indicating that models in existing literature are rarely subjected
to a broad array of tests reflecting the problem’s diversity, and design choices are not
frequently discussed. These two bottlenecks have been further studied in the related
work section, revealing that among the dozen published DRL models for this task,
over five different molecular representations, state representations, action spaces, re-
ward functions, and algorithms exist. Furthermore, the lack of consensus regarding
experimental setups is even larger, as those are seldom identical and typically explore
only simplistic single-objective tasks, such as optimization for logP or QED.

The next part of the chapter has introduced a mathematical formulation for the
problem, structuring it around the molecular search space, the generative model, and
its finetuning through DRL. Then, Section 9.3 has shifted the focus to benchmarking
experiments, initially introducing the experimental setup founded on the GuacaMol
benchmarking suite. This suite provides 20 distinct benchmarks split into six cate-
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gories, a set of scoring functions, and a database facilitating the construction of prior
models via supervised learning. Next, four different models compared in this section
have been presented: two text-based models, ReLeaSE and REINVENT; one graph-
based model, GraphINVENT; and a novel method, a descriptor space-based model
that employs PPO to navigate the descriptor space generated by CDDD [384].

Then, the benchmarking results have been presented, which have been later dis-
cussed in Section 9.4. The findings have underscored that no single method domi-
nates the rest; while REINVENT achieves the highest score in most tests, it does not
obtain the best overall score. The multi-property optimization benchmarks, which
arguably mirror real-world use cases closest, remain challenging for all DRL models.
Graph-based models like GraphINVENT, despite impressive results in their respec-
tive papers, may be excessively tailored to specific scenarios. The novel CDDD +
PPO implementation achieves good results, despite not being the top scorer. Al-
though these results and methods warrant further analysis and benchmarking, this
dissertation emphasizes that the design for robustness is often not prioritized.

The specific contributions of this chapter are the following:

Contribution 9.1 Proposed a novel method for molecular optimization which in-
volves navigating a descriptor space using Proximal Policy Opti-
mization. This approach achieves an average score of 0.82 in the
GuacaMol benchmarking suite.

Contribution 9.2 Performed comprehensive benchmarking of four different DRL
models for molecular optimization using the GuacaMol bench-
marking suite, which offers a thorough evaluation across 20 varied
drug discovery tasks.

Contribution 9.3 Assessed the performance versus robustness trade-off in the con-
text of molecular optimization, with a focus on different molec-
ular representations reported in the literature. The analysis re-
vealed that challenges associated with multi-objectiveness and
out-of-distribution optimization are still not adequately addressed,
especially within complex tasks.
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Chapter 10

Conclusion

Reinforcement Learning (RL) is increasingly gaining attention in numerous real-world
domains as a tool to automate and enhance many decision-making processes. How-
ever, this escalating interest is not mirrored by a corresponding increase in the re-
ported deployment of RL systems in real-world environments. Currently, significant
impacts are only observed when large amounts of computational and human expert
resources are available, creating a substantial bottleneck for its widespread study
and deployment. Consequently, a pivotal question within the broader RL commu-
nity is how to make RL technology more accessible and deployable without incurring
considerable costs.

A key factor in the slow progress of real-world RL is the need to address several
challenges that complicate the learning process. While the research community is
primarily focused on achieving new performance benchmarks, these challenges ne-
cessitate a robustness perspective that aligns more closely with the deployment re-
quirements of practitioners. This dissertation has tackled the question of how we can
enhance the robustness of RL systems to real-world problems and phenomena.

To take steps towards answering this complex question, three overarching objec-
tives have been established at the beginning of this dissertation. Firstly, as robustness
is not a comprehensively-studied issue in RL, one goal has been to characterize dif-
ferent aspects of robustness that impede the deployment of RL systems in the real
world. Secondly, another objective has been to develop new RL design methods that
prioritize robustness and complement existing work focused on performance. Lastly,
the third goal has involved applying the conceptual frameworks and design principles
explored in this dissertation to address specific real-world problems.

This chapter summarizes the key findings and contributions that have emerged
from addressing these objectives. It begins with an overview of the dissertation’s
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specific objectives and a summary of each chapter (Section 10.1). This is followed
by a detailed recap and discussion of the Thesis contributions (Section 10.2). The
chapter concludes by outlining the areas of future work that this dissertation has
opened up (Section 10.3).

10.1 Thesis summary

Chapter 1 has begun by presenting the context and historical evolution of RL, high-
lighting Deep RL as a pivotal moment in RL’s history. Then, the lack of deployments
and the need for increasing the robustness of RL systems have been underscored as
the primary motivating factors for this dissertation. This dissertation complements
two existing research thrusts: domain-agnostic and domain-specific, both of which
have been introduced in the first chapter.

In this context, Chapter 2 has comprehensively reviewed the literature on real-
world RL, focusing on three key topics: the domain-agnostic challenges of real-world
RL and strategies to mitigate them, the application of AutoML frameworks to RL, and
reported successes of RL in the real world. This review has led to the identification
of seven research opportunities that have been explored throughout the remainder of
the dissertation. These include extending the robustness research scope to use cases
beyond the realm of robotics (Chapters 8 and 9), addressing combined challenges of
real-world RL (Ch. 5 and 6), investigating the automation of design for robustness
(Ch. 4, 5, 6, and 8), prioritizing robustness in design to avoid problem tailoring
(Ch. 7, 8, and 9), exploring the problem of non-convergence of agent design in many
applications (Ch. 4), studying the trade-offs between performance and robustness
(Ch. 6 and 8), and developing a comprehensive framework that covers all aspects of
real-world RL (Ch. 3).

Chapter 3 has presented a pioneering DRL roadmap, aiming to provide a com-
prehensive view of all elements that impact the interaction between a DRL system
and a real-world environment. This has been driven by the need to address the of-
ten overlooked aspects related to the implementation and operation of DRL systems
in research studies. The chapter has not provided a recipe for perfecting DRL in
real-world applications, but rather has identified all the components involved in the
process. The roadmap links a real-world task with the system-level goals that need to
be achieved, and is divided into three phases: design, implementation, and operation.
Each phase has been thoroughly characterized and discussed. The design phase ex-
plores ideas on design automation versus human-driven design, environment-related
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design decisions, agent-related decisions, and training configurations. The implemen-
tation phase focuses on the concepts of robustness, system-level generalization, and
operability, and introduces strategies to bridge the deployment gap in RL research.
The operation phase, often neglected in literature, addresses critical aspects such as
the selection of agents for deployment, the potential sim-to-real gap, and the necessity
for continual learning.

Chapter 4 has delved into one of the elements of the roadmap, the state space,
and has examined current design practices in real-world RL, aiming to enhance them
through mutual information (MI) analyses. The chapter has focused on feature-based
state spaces; it has highlighted the excess of features and the lack of consensus on
feature sets as present issues in the literature. Looking at feature selection strategies,
MI has been identified as a popular method for feature selection in ML and, to a
certain extent, in RL. However, two important shortcomings in the use of MI in RL
are its infrequent utilization in domain-specific RL studies and the failure of domain-
agnostic studies to consider scenarios where the policy changes as the agent learns.
The work in this chapter has consisted of deriving a mathematical bound on how
much the MI can change between two different policies for the same Markov Decision
Process. This bound has been also applied for the specific case of a policy changing
until convergence and the removal of features from the state space. The chapter has
concluded with a real-world use case, the Traffic Signal Control problem, validating
the observations around MI and emphasizing the need to observe the MI along the
complete learning curve, as it is an inexpensive way of selecting features in large
spaces.

Chapter 5 has addressed two significant research opportunities in real-world RL:
the focus on combined real-world RL challenges and the automation of the RL design
process. To this end, the chapter has introduced MetaPG, an AutoML method that
automates the design of new actor-critic loss functions represented as computational
graphs to optimize multiple objectives. To guide the search, MetaPG relies on several
components including evolution mechanisms with several strategies to reduce cost, the
multi-objective optimization algorithm NSGA-II, a search space encoding a diverse set
of operations, and multiple fitness scores. These fitness scores can encode independent
metrics of robustness, leading to the discovery of Pareto Fronts of new algorithms that
maximize and trade all objectives considered.

Chapter 6 has evaluated MetaPG on a specific use case on optimizing for single-
task performance, zero-shot generalizability, and stability across independent training
runs. Overall, this chapter has proved that MetaPG can evolve algorithms that im-

219



prove upon performance, generalizability, and stability in different practical settings.
In the process, it uses two fitness scores explicitly encoding performance and gen-
eralizability, and implicitly encouraging stability. Relying on different environments
from the RWRL Environment suite, OpenAI Gym, and the Brax physics simulator,
MetaPG has found new RL algorithms that improve upon a popular baseline, SAC, in
all objectives considered for different environments. On average, MetaPG has evolved
Pareto Fronts that achieve a 4.2%, a 13.4%, and a 67% increase in performance, gen-
eralizability, and stability, respectively. In addition, some of the evolved algorithms
are capable of transferring to unseen environments, achieving at least similar results
compared to SAC, better in some cases. Furthermore, by examining the equations
of the evolved loss functions, interpretations of the performance and generalizability
biases have been derived, proving that MetaPG provides valuable information about
the search outcome.

Chapter 7 has set the groundwork for a detailed exploration of domain-specific
aspects of DRL robustness and its co-existence with performance. The chapter has
presented the typical workflow of domain-specific RL research when developing new
DRL solutions for a specific application, identifying three key gaps that could explain
why robustness often gets sidelined: a lack of full understanding of the real-world RL
challenges present in the problem, failure to define the subproblems that matter most
for robustness, and inadequate testing of the agent across different subproblems to
better understand the performance versus robustness trade-offs. This chapter has also
introduced the two real-world use cases that have been studied in this dissertation:
frequency assignment for satellite constellations and molecular optimization.

Chapter 8 has delved into the design of DRL systems for robustness from the
perspective of a domain-specific problem: frequency assignment for satellite constel-
lations. This is an important use case for DRL beyond the field of robotics, as tradi-
tional methods struggle to fulfill the requirements of modern constellations, namely
real-time or near real-time decision-making in high-dimensional contexts. However, in
the literature, DRL has neveer been tested for robustness against high-dimensionality
and non-stationarity, two key real-world challenges of this problem. The chapter has
presented a new Integer Linear Programming formulation for the problem, and has
proposed a DRL system to solve it. By conducting a grid search over six major design
decisions of the DRL system, a design variation has been found to solve the prob-
lem for low-dimensional use cases, achieving a 99.8% success rate in a 100-beam case.
However, this variation has not been able to scale, proving that different design choices
were required in order to prioritize robustness against high-dimensionality. A design
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variation that has primarily relied on a different action space has achieved a 87.3%
success rate in a 2,000-beam case. Similarly, when specifically testing for robustness
against non-stationarity due to demand shifts, a different design variation has been
proved to achieve better results. Overall, this chapter has demonstrated that, while
robustness is crucial for deployment, domain-specific research seldom prioritizes it
when designing new DRL methods.

Finally, Chapter 9 has focused on the design of DRL systems for molecular op-
timization, another impactful real-world problem in which DRL can substantially
contribute to accelerate drug development pipelines. The chapter has addressed the
alignment, or lack thereof, of current proposed methods with real-world deployabil-
ity, as many experimental setups in the literature are narrow and mostly concern
single-property optimization. The main outcome of this chapter has been a thorough
benchmarking process of four different DRL models using the GuacaMol benchmark-
ing suite. The results have underscored that no single method dominates the rest,
and the multi-property optimization benchmarks, which arguably mirror real-world
use cases closest, remain challenging for all compared models. One of the methods
compared is novel and integrates a descriptor space from the literature [384] with a
PPO-based search, achieving an average score of 0.82 on the GuacaMol benchmark.

10.2 Contributions

This dissertation has made several contributions that extend the current understand-
ing of RL robustness for real-world problems. These are summarized in Table 10.1,
which enumerates them according to the chapter each is related to. The contri-
butions are divided into four types: conceptual, which correspond to new concepts
and frameworks that have been proposed throughout the dissertation; theoretical,
which correspond to new theory-based proofs and lemmas derived in this dissertation;
methodological, which correspond to new methods, algorithms, and implementations
that have come out of this dissertation’s work; and practical, which corresponds to
advances and insights for specific domains that have constituted the use cases of this
dissertation.

221



Table 10.1: Summary of Thesis contributions. Contribution X.Y corresponds to
contribution number Y in chapter X.

Contribution Description Type

Contribution 2.1
Identified and characterized two RL research thrusts, namely
domain-agnostic and domain-specific, that currently con-
tribute to the real-world applicability of RL.

Conceptual

Contribution 2.2
Conducted a comprehensive review of real-world RL litera-
ture, which revealed several areas of research that are cur-
rently unaddressed by any of the existing research thrusts.

Conceptual

Contribution 3.1
Proposed a DRL roadmap that identifies and breaks down
key elements that influence the process of using DRL in real-
world applications.

Conceptual

Contribution 3.2

Applied the DRL roadmap to characterize the relationship
between the deployment of DRL systems in the real-world
and their robustness, system-level generalization, and oper-
ability.

Conceptual

Contribution 4.1

Characterized the limitations of current state space design
practices for real-world RL problems, identifying an excess
of features and a lack of consensus as two important short-
comings.

Conceptual

Contribution 4.2

Identified a lack of study of feature selection via mutual in-
formation in RL in the context of a changing policy and
motivated its consideration by proving the policy can sub-
stantially influence the observed mutual information.

Conceptual

Contribution 4.3

Derived a mathematical bound for how much the mutual
information between state features and rewards can change
when considering two different policies acting on the same
Markov Decision Process.

Theoretical

Contribution 4.4
Derived a mathematical bound for how much the mutual
information between state features and rewards can change
as the policy converges in the context of an RL algorithm.

Theoretical

Contribution 4.5
Outlined the possible updates on mutual information bounds
when removing a set of features from the state space.

Theoretical

Contribution 4.6
Provided a better feature set for two use cases of the RESCO
benchmark for Traffic Signal Control. Demonstrated this
feature set is also identifiable via mutual information.

Practical

Continued on next page
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Table 10.1 Continued from previous page

Contribution Description Type

Contribution 4.7

Validated the observations of mutual information changes
during policy learning using a real-world application and
motivated the need to compute the mutual information at
different points of the convergence process to get reliable
estimations of feature relevance.

Practical

Contribution 5.1

Proposed MetaPG, a method that combines multi-objective
evolution and a search language representing actor-critic RL
algorithms as graphs to discover new loss functions that op-
timize a set of different RL objectives.

Methodological

Contribution 5.2
Developed MetaPG’s search space, which offers the flexibil-
ity to represent a wide range of actor-critic RL algorithms.

Methodological

Contribution 6.1
Formulated MetaPG fitness scores to explicitly optimize for
performance and generalizability and implicitly encourage
stability.

Methodological

Contribution 6.2

By running MetaPG, identified set of Pareto-optimal loss
functions that have been evolved in different environments
and outperform Soft Actor-Critic for such environments in
terms of performance, generalizability, and stability.

Methodological

Contribution 6.3

Provided, for the specific case of RWRL Cartpole, a compre-
hensive dataset of algorithms obtained throughout the com-
plete evolution process (not only the Pareto Front). This
dataset may be further analyzed to gain additional insights
on algorithmic changes and trade-offs.

Methodological

Contribution 7.1

Discussed the typical workflow domain-specific RL research
follows when proposing new real-world RL methods, as
well as the robustness-related gaps that are frequently over-
looked.

Conceptual

Contribution 8.1

Proposed a novel Integer Linear Programming (ILP) formu-
lation that describes the modern frequency assignment prob-
lem for multibeam satellite constellations. This formulation
can be directly integrated with a commercial ILP solver.

Methodological

Contribution 8.2
Developed a DRL system to address the frequency assign-
ment problem in satellite communications that optimizes
decision-making for both performance and robustness.

Methodological

Contribution 8.3
Identified a design variation of the DRL system that trains
agents that achieve high performance in low-dimensional sce-
narios.

Practical

Continued on next page
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Table 10.1 Continued from previous page

Contribution Description Type

Contribution 8.4
Identified an alternative design variation of the DRL system
that trains agents able to demonstrate robustness against
scalability, up to the thousand-beam range.

Practical

Contribution 8.5

Conducted an in-depth analysis of the performance ver-
sus robustness trade-off among different design variations,
with specific regard to the challenges posed by high-
dimensionality and non-stationarity.

Practical

Contribution 9.1

Proposed a novel method for molecular optimization which
involves navigating a descriptor space using Proximal Policy
Optimization. This approach achieves an average score of
0.82 in the GuacaMol benchmarking suite.

Methodological

Contribution 9.2

Performed comprehensive benchmarking of four different
DRL models for molecular optimization using the Gua-
caMol benchmarking suite, which offers a thorough evalu-
ation across 20 varied drug discovery tasks.

Practical

Contribution 9.3

Assessed the performance versus robustness trade-off in the
context of molecular optimization, with a focus on dif-
ferent molecular representations reported in the literature.
The analysis revealed that challenges associated with multi-
objectiveness and out-of-distribution optimization are still
not adequately addressed, especially within complex tasks.

Practical

These contributions address the different research opportunities on real-world RL
that domain-agnostic and domain-specific research thrusts do not currently consider.
These research opportunities were identified in Chapter 2 and the mapping to the
contributions outlined in each chapter of this dissertation is shown in Table 10.2.

10.3 Future work

Several directions of future work have been identified during the completion of this
dissertation. They can be grouped into the following areas:

Improving MetaPG’s efficiency MetaPG, in its current state, is a composite
system with multiple complex components. The version presented in this dissertation
lays a foundation, demonstrating that this methodology can automate the design of
multiple RL objectives, with an emphasis on robustness. As highlighted in Chapter
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Table 10.2: Mapping of the thesis chapter contributions to the research opportuni-
ties identified in Chapter 2.

Research opportunity Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7 Ch. 8 Ch. 9

There is little research on
designing for real-world
robustness outside of robotics
use cases.

✓ ✓

There is little research on
combined aspects of
robustness for real-world RL.

✓ ✓

Designing for robustness is
currently human-driven,
which is costly when systems
scale.

✓ ✓ ✓ ✓

Research prioritizes
performance over robustness,
this comes as a result of
excessive problem tailoring.

✓ ✓ ✓

The designs of RL agents for
specific applications do not
converge.

✓

There is little understanding
of design choices and
trade-offs.

✓ ✓

Research in RL for real-world
problems does not capture
the full picture of designing,
implementing, and operating
RL systems. The design
aspect is prioritized over
implementation and
operation, as research
generally only reports on
results.

✓

6, each component within MetaPG could potentially be refined to further optimize
its overall performance. Presently, despite the inclusion of consistency checks, the
hashing process, and the environment hurdles, MetaPG’s operation remains resource-
intensive. A promising direction for future research could involve devising more cost-
effective methods for exploring the loss function search space, without compromising
on loss function expressiveness. Additionally, cost efficiency could also be augmented
from the standpoint of cross-environment performance. Throughout this dissertation,
MetaPG has been meta-trained in isolation with single environment classes, which
has led to marginal improvements in transfers across diverse environments. To foster
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increased algorithmic reusability, an optimized, cost-reduced MetaPG could be meta-
trained simultaneously with a wider diversity of environments.

Expanding the use cases for MetaPG Future research avenues for MetaPG
could involve the execution of a broader spectrum of use cases. As discussed in Chap-
ter 5, various fitness scores could be evaluated for MetaPG, including but not limited
to sample-efficiency and non-stationarity. Furthermore, integrating more than two
fitness scores into MetaPG is a possibility, albeit one that would increase the cost of
the search process. Lastly, given MetaPG’s demonstrated ability to discover new per-
formance thresholds, another potential research direction could involve deploying it
for complex problems, particularly those where identifying high-performing methods
presents a significant challenge.

Automating the design of other RL components for robustness MetaPG
has successfully unified the automation of RL loss function design and RL robustness
into a single method. Additional elements of the algorithm such as the gradient
descent method could be also incorporated into the search space. Pivoting from
searching over the loss function space, future research could explore the integration
of existing AutoRL algorithms for other components, such as the reward function
or the training curriculum, with robustness optimization. The automation of RL
and the specification of system-level goals tied to robustness could lead to impactful
developments in RL.

Characterizing the operation space for a problem Figure 3-7, set within the
context of the DRL roadmap, has introduced the concept of operability and has
emphasized the necessity for a DRL system to adapt to all subproblems considered
essential by a practitioner or operator for effective deployment. While the ensuing
ideas derived from this concept have been articulated at a conceptual level too, an
interesting avenue of future research could involve mapping out the set of subprob-
lems for a specific real-world problem. This characterization could then serve as
a deployment benchmark, offering a valuable reference point for emerging research
advances.

Optimizing the state space for other use cases Chapter 4 has relied on the
Traffic Signal Control (TSC) problem as a practical example to investigate feature
selection through mutual information (MI). Although the TSC scenario served as an
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effective means to evaluate the theoretical implications derived in this dissertation,
broadening the application spectrum to encompass other use cases would be desirable,
particularly those entailing larger feature sets.

Tailoring mutual information bounds to specific RL algorithms The math-
ematical bounds derived in Chapter 4 have not assumed any particular underlying
learning algorithm. However, in a practical context, there exists a diverse set of
RL algorithms and algorithm classes, some of which impose restrictions on the fre-
quency and magnitude of policy changes (e.g., trust region policy optimization algo-
rithms [328]). Incorporating assumptions about the underlying RL algorithm into the
derivation process could yield updated, specific mathematical bounds for each case.
This approach would offer a more customized understanding of feature selection for
cases that depend on a particular RL algorithm.

Evaluating the DRL system for frequency assignment on additional con-
stellations Although the evaluation approach adopted in Chapter 8 encompassed
an unprecedented degree of scalability, gauged by the number of beams in the constel-
lation, the experimental framework only encapsulated a small portion of the flexibility
inherent in modern constellation systems. A more comprehensive understanding of
the performance and robustness of DRL within this real-world problem could be gar-
nered by expanding the range of scenarios and use cases examined. This expansion
should not only incorporate additional values for the number of beams but also in-
clude a variety of constellations. Similarly, this dissertation has solely addressed one
facet of non-stationarity in this problem, namely, demand shifts. Exploring the mod-
eling of other operational phenomena, such as changes in the user base or sudden
system failures, could yield further interesting insights.

Expanding the design search space for real-world use cases Lastly, a po-
tential research direction is to explore considerably larger design spaces than those
evaluated in the two real-world use cases presented in this dissertation. In each in-
stance, a handful of choices have been considered for each design decision, a process
which has effectively highlighted that current practices may not align well with ro-
bustness. However, in practice, this represents a modest degree of flexibility. The
work with MetaPG has demonstrated that search spaces, when unconstrained by hu-
man design biases, can be extensive and potentially yield substantial improvements
in both performance and robustness.
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Appendix A

Experimental setups

This appendix presents details on the experimental setups and configurations used in
the different experimental work of this dissertation. Section A.1 presents the setup
for Chapter 4, Section A.2 concerns Chapter 6, and Sections A.3 and A.4 for the
real-world use cases in Chapters 8 and 9, respectively.

A.1 State space analyses

This section focuses on the experimental configurations related to the research on
state space analyses, presented in Chapter 4. It first covers the configurations used
for the PyBullet experiments and then the setup for the Traffic Signal Control ones.

A.1.1 PyBullet experiment configurations

Table A.1 shows the configuration used for each of the experiments with the PyBullet
environments [75]. Then, specific details about the environments’ feature spaces are
shown in Table A.2.

A.1.2 Traffic Signal Control experiment configurations

Table A.3 shows the configuration used for each of the experiments with the RESCO
benchmark [20] for the Traffic Signal Control problem. Then, specific details about
the environments’ configuration are shown in Table A.4.
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Table A.1: Configuration used for the PyBullet experiments.

Parameter Value
Discount factor 𝛾 0.99

Maximum episode length 1,000
Algorithm PPO [328]
Epochs 200

Steps per epoch 4,000
Clip ratio 0.2

Learning rate policy 𝜋 0.0003
Learning rate value function 𝑣 0.001

Training iterations 𝜋 80
Training iterations 𝑣 80

𝜆 0.97
Target KL 0.1
Policy 𝜋 MLP, 64 × 64

Value function 𝑣 MLP, 64 × 64
Activation Tanh

Table A.2: Feature space details for PyBullet environments.

Parameter Number of features
XYZ body position (all) 3
XYZ body velocity (all) 3

Roll (all) 1
Pitch (all) 1

Joint positions Hopper 3
Joint velocities Hopper 3
Contact points Hopper 1

Joint positions Ant 8
Joint velocities Ant 8
Contact points Ant 4

Joint positions Humanoid 17
Joint velocities Humanoid 17
Contact points Humanoid 2
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Table A.3: Configuration used for the Traffic Signal Control experiments.

Parameter Value

Discount factor 𝛾 0.99
Algorithm DQN
Batch size 32

Number of episodes 100
Target network update frequency 500

Policy 2×2 conv. layer + MLP 64 × 64

Table A.4: Environment configuration in the RESCO benchmark.

Parameter Number of features

Step length 10 seconds
Length yellow signal 3 seconds
Simulation length 1 hour

A.2 MetaPG

This section presents the configuration elements for MetaPG’s use case studied in
Chapter 6, which consisted of optimizing for performance, zero-shot generalizability,
and stability. First, the environment details are introduced, followed by the training
configurations and hyperparameter tuning procedures.

A.2.1 MetaPG environment configurations

Chapter 6 uses multiple environments for the experiments: Cartpole and Walker from
the RWRL Environment Suite [100], Pendulum from OpenAI Gym [43], and Ant and
Humanoid from the Brax physics simulator [126]. Table A.5 lists the training config-
uration used for each and the parameters that are used to assess the generalizability
of the policies. The parameters that are not listed are fixed to the default values for
the environment in question.

In the case of Pendulum and the Brax environments, there is more than one per-
turbation parameter; the generalizability score is computed by first sweeping through
the perturbation values for one, taking the average 𝑓𝑔𝑒𝑛1 , repeating the same process
for the others to compute 𝑓𝑔𝑒𝑛2 , ..., 𝑓𝑔𝑒𝑛𝑃

, and then computing the average of both to
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get the final score, i.e., 𝑓𝑔𝑒𝑛 = (𝑓𝑔𝑒𝑛1 + ...+ 𝑓𝑔𝑒𝑛𝑃
)/𝑃 , where 𝑃 is the total number of

different parameters that are perturbed.

For the parameters that undergo perturbations, the specific value used in the
training configuration is selected based on the following criteria: in the case of the
RWRL Environment Suite, the training value is taken from [100], which corresponds
to the default value as described in each benchmark; in the case of Pendulum, the
default values given by the environment are chosen for the training configuration; in
the case of Brax, the rationale is to select training configurations that represent a
baseline scenario (i.e., no mass variations, normal friction, and normal torque).

A.2.2 MetaPG training configurations

An individual from the population encoding an RL algorithm in the form of a graph
is evaluated by training an agent using such algorithm. The implementation used in
that process is based on an ACME agent [171] for the RWRL and Gym environments,
and an implementation based on the Brax physics simulator [126] for the Brax envi-
ronments. The configuration of the training setup is shown in Table A.6 for RWRL
and Gym environments, and in Table A.7 for the Brax environments.

A.2.3 Hyperparameter tuning in MetaPG - RWRL and

OpenAI Gym environments

In the experiments with the RWRL Environment suite and OpenAI Gym Pendulum,
once an evolution experiment is over and the evolved algorithms are meta-validated,
they are compared against: 1) ACME SAC [171], and 2) other RL algorithms that
have been evolved in a different environment. To that end, for each ACME benchmark
and evolved algorithm transfer, algorithm hyperparameters are tuned. Since there
are two fitness scores (performance and generalizability adjusted for stability), two
hyperparameter configurations are selected: those that lead to the best stability-
adjusted performance and best stability-adjusted generalizability scores, respectively.
These two configurations are denoted as the best performer and best generalizer,
respectively. To that end, a grid search is done across the sets of hyperparameters
listed in Table A.8. This process is only carried out once the evolution is over; the
warm-start algorithm is not hyperparameter-tuned before evolution.
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Table A.5: Environment parameters and perturbations used for MetaPG experi-
ments.

Environment parameter Value
RWRL Cartpole

Rollout length 1,000
Min. return 0
Max. return 1,000
Training episodes 150
Perturbation parameter (PP) Pole length
PP Default value 1.0
PP Generalizability values 0.1 to 3.0 in steps of 0.1

RWRL Walker
Rollout length 1,000
Min. return 0
Max. return 1,000
Training episodes 225
Perturbation parameter (PP) Thigh length
PP Default value 0.225
PP Generalizability values .1, .125, .15, .175, .2, .225, .25, .3, .35, .4, .45, .5, .55, .6, .7

Gym Pendulum
Rollout length 2,000
Min. return -2,000
Max. return 0
Training episodes 100
Perturbation parameter 1 (PP1) Pendulum mass
PP1 Default value 1.0
PP1 Generalizability values .1, .2, .4, .5, .75, 1.0, 1.5, 2.0, 3.0, 5.0, 7.5, 10.0
Perturbation parameter 2 (PP2) Pendulum length
PP2 Default value 1.0
PP2 Generalizability values .1, .2, .4, .5, .75, 1.0, 1.5, 2.0, 3.0, 5.0, 7.5, 10.0

Brax environments
Rollout length 1,000
Min. return 0
Max. return 10,000 (Ant) and 14,000 (Humanoid)
Training episodes 1,000
Perturbation parameter 1 (PP1) Mass coefficient
PP1 Default value 1.0
PP1 Generalizability values 0.8 to 1.2 in steps of 0.05
Perturbation parameter 2 (PP2) Friction coefficient
PP2 Default value 1.0
PP2 Generalizability values 0.3 to 1.0 in steps of 0.05
Perturbation parameter 3 (PP3) Torque multiplier
PP3 Default value 1.0
PP3 Generalizability values 0.5 to 1.0 in steps of 0.05
Perturbation parameter 4 (PP4) Combined parameters PP1, PP2, and PP3
PP4 Default value 1.0 for each
PP4 Generalizability values Grid search over individual generalizability values
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Table A.6: RL Training setup for the RWRL and OpenAI Gym environments.

Parameter Value

Discount factor 𝛾 0.99

Batch size 64 (RWRL Cartpole and Gym Pendulum)

128 (RWRL Walker)

Learning rate 3 · 10−4

Target smoothing coeff. 𝜏 0.005

Replay buffer size 1,000,000

Min. num. samples in the buffer 10,000

Gradient updates per learning step 1

n step 1

Reward scale 5.0

Actor network MLP (256, 256)

Actor activation function ReLU

Tanh on output of actor network Yes

Critic networks MLP (256, 256)

Critic activation function ReLU

A.2.4 Hyperparameter tuning in MetaPG - Brax environments

In the experiments with Brax Ant and Brax Humanoid, given they are more costly
environments to run, not all algorithms in the population are meta-validated. Instead,
the best algorithms during meta-training are chosen and directly meta-tested with
additional hyperparameter tuning. To that end, a grid search is done across the
hyperparameters listed in Table A.9 and the configuration that maximizes the score
of interest is selected for each case, as described in the previous section.

A.3 Frequency assignment

Table A.10 presents the relevant hyperparameters for the frequency assignment ex-
periments described in Chapter 8 and the values used in this dissertation.
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Table A.7: RL Training setup for the Brax environments.

Parameter Value

Discount factor 𝛾 0.95

Batch size 128

Learning rate 6 · 10−4

Target smoothing coeff. 𝜏 0.005

Replay buffer size 1,000,000

Min. num. samples in the buffer 1,000

Gradient updates per learning step 64

Reward scale 10.0

Number of parallel environments 128

Actor network MLP (256, 256)

Actor activation function ReLU

Tanh on output of actor network Yes

Critic networks MLP (256, 256)

Critic activation function ReLU

Table A.8: Hyperparameter values considered during the tuning process for RWRL
and OpenAI Gym environments.

Hyperparameter Values

Discount factor 𝛾 0.9, 0.99, 0.999

Batch size 32, 64, 128

Learning rate 1 · 10−4, 3 · 10−4, 1 · 10−3

Target smoothing coeff. 𝜏 0.005, 0.01, 0.05

Reward scale 0.1, 1.0, 5.0, 10.0

A.4 Molecular optimization

Finally, Table A.11 presents the relevant hyperparameters for the molecular opti-
mization experiments described in Chapter 9 and the values used in this dissertation.
Additional hyperparameter configurations can be found in the original papers for
ReLeaSE [306], REINVENT [281], CDDD [384], and GraphINVENT [19,265].
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Table A.9: Hyperparameter values considered during the tuning process for Brax
environments.

Hyperparameter Values

Discount factor 𝛾 0.95, 0.99, 0.999

Batch size 128, 256, 512

Learning rate 1 · 10−4, 6 · 10−4, 1 · 10−3

Gradient updates per learning step 32, 64, 128

Reward scale 0.1, 1.0, 10.0, 100.0

Table A.10: Hyperparameter values used in the frequency assignment experiments.

Hyperparameter Value

DQN batch size 16

DQN replay buffer size 100x Num. beams

DQN target network update freq. 100

DQN initial exploration 0.5

DQN final exploration 0.2

PPO num. steps 64

PPO num. opt. epochs 4

PPO num. minibatches 8

PPO 𝜆 0.8

PPO clip factor 0.2

CNN network 3 layers (64 5x5, 128 4x4, and 256 3x3 filters)

MLP network 3 layers (512, 256, 128 units)

Activation ReLU

Learning rate 0.0001
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Table A.11: Hyperparameter values used in the molecular optimization experiments.

Hyperparameter Value

ReLeaSE

Max. sequence length 120

Num. RNN layers 2

Num. MLP layers 2

Num. RNN and MLP hidden units 128

Batch size 128

Learning rate 0.005

Activation ReLU

REINVENT

Max. sequence length 100

Batch size 128

𝜎 [281] 10

Learning rate 0.0005

Num. GRU cells 3

Num. hidden units 512

CDDD + PPO

PPO Num. steps 1,024

PPO Num. minibatches 4

PPO Num. opt. epochs 4

PPO clip factor 0.2

MLP layers 3

MLP hidden units 512

Activation ReLU

GraphINVENT

Max. molecular size 100

Batch size 64

Epochs 300

Block size 10k

𝜎 [265] 20

𝛼 [265] 0.5

Learning rate 0.0001
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Appendix B

Additional examples of RL algorithms
represented as graphs

This section presents additional examples of representing Reinforcement Learning
algorithms and loss functions as computational graphs. In all cases, the notation
used follows the style introduced by Co-Reyes et al. [67].

B.1 Vanilla Policy Gradient

Figure B-1 presents the graph representation of both the policy gradient and the value
function gradient for a Vanilla Policy Gradient algorithm.
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Figure B-1: Policy gradient (left) and value function gradient (right) in a Vanilla
Policy Gradient algorithm represented as graphs.
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B.2 Deep Deterministic Policy Gradient (DDPG)

Figure B-2 shows the graph representation of both the Q-function gradient and the
policy gradient for the Deep Deterministic Policy Gradient algorithm [233].
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Figure B-2: Q-function gradient (left) and policy gradient (right) in the DDPG
algorithm represented as graphs.

B.3 Proximal Policy Optimization (PPO)

Figure B-3 presents the graph representation of the Proximal Policy Optimization loss
function for the policy as presented in [328]. The value function gradient function is
the same as the one introduced in the Vanilla Policy Gradient algorithm case.
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Figure B-3: Policy gradient of the PPO algorithm represented as a graph.
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Appendix C

Additional evolution results

This section presents additional results of the evolution experiments carried out in
Chapter 6. First, it includes PPO [328] in the performance and generalizability com-
parison for the case of RWRL Cartpole. Then, it presents the loss functions for the
best performers and generalizers for each of the environments considered. Lastly, it
shows the evolution of the best-in-population performance and generalizability.

C.1 PPO

Figure C-1 extends Figure 6-3 presented in the evolution results for RWRL Cartpole.
In addition, to the performance of the evolved algorithms and SAC, it also shows the
performance of PPO, which has been hyperparameter-tuned for both performance
and generalizability. In any case it is able to adequately complete the task.

C.2 Evolved algorithms

This section presents the evolved loss functions (policy loss and critic loss) for the
rest of the enviornments considered in this dissertation: RWRL Walker, OpenAI Gym
Pendulum, Brax Ant, and Brax Humanoid.

C.2.1 Best performer and best generalizer for RWRL Walker

and OpenAI Gym Pendulum

This part presents the loss equations for both the best performer and best generalizer
when using RWRL Walker and OpenAI Gym Pendulum as training environments.
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Figure C-1: Average and standard deviation across seeds of the meta-validation
performance of the best performer, the best generalizer, the warm-start (SAC), and
two hyperparameter-tuned versions of PPO (tuned for performance and generaliz-
ability, respectively) when training on a single configuration of RWRL Cartpole and
evaluating on multiple unseen ones. The pole length changes across environment
configurations and a length of 1.0 is used as training configuration.

First, the best performer for RWRL Walker:

𝐿𝑝𝑒𝑟𝑓
𝜋 = E(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∼𝒟

[︁
𝑟𝑡 + 𝛾

(︁
min

𝑖
𝑄𝑡𝑎𝑟𝑔𝑖(𝑠𝑡+1, 𝑎̃𝑡+1)− atan(𝛾/𝑄(𝑠𝑡, 𝑎𝑡))

)︁
−𝑄(𝑠𝑡, 𝑎̃𝑡)

]︁
(C.1)

𝐿𝑝𝑒𝑟𝑓
𝑄𝑖

= E(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∼𝒟

[︂(︁
𝑟𝑡 + 𝛾

(︁
min

𝑖
𝑄𝑡𝑎𝑟𝑔𝑖(𝑠𝑡+1, 𝑎̃𝑡+1)− atan(𝛾/𝑄𝑖(𝑠𝑡, 𝑎𝑡))

)︁
−𝑄𝑖(𝑠𝑡, 𝑎𝑡)

)︁2]︂
(C.2)

In all cases, 𝑎̃𝑡 ∼ 𝜋(·|𝑠𝑡), 𝑎̃𝑡+1 ∼ 𝜋(·|𝑠𝑡+1), and 𝒟 is a dataset of experience tuples
from the replay buffer. Next, the best generalizer for RWRL Walker:

𝐿𝑔𝑒𝑛
𝜋 = E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝒟

[︂
0.2 · log 𝜋(𝑎̃𝑡+1|𝑠𝑡+1)

𝑄𝑖(𝑠𝑡+1, 𝑎̃𝑡+1)− 0.1 · log 𝜋(𝑎̃𝑡+1|𝑠𝑡+1)
−min

𝑖
𝑄𝑖(𝑠𝑡, 𝑎̃𝑡+1)

]︂
(C.3)

𝐿𝑔𝑒𝑛
𝑄𝑖

= E(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∼𝒟
[︀
(𝑟𝑡 + 𝛾 (𝑄𝑖(𝑠𝑡+1, 𝑎̃𝑡+1)− 0.1 · log 𝜋(𝑎̃𝑡+1|𝑠𝑡+1))−𝑄𝑖(𝑠𝑡, 𝑎𝑡))

2]︀
(C.4)
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The best performer for Gym Pendulum is given by equations:

𝐿𝑝𝑒𝑟𝑓
𝜋 = E(𝑠𝑡,𝑎𝑡)∼𝒟

[︁
2 · atan(log 𝜋(𝑎̃𝑡|𝑠𝑡))−min

𝑖
𝑄𝑖(𝑠𝑡, 𝑎̃𝑡)

]︁
(C.5)

𝐿𝑝𝑒𝑟𝑓
𝑄𝑖

= E(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∼𝒟
[︀
(𝑟𝑡 + 𝛾 (𝑄𝑡𝑎𝑟𝑔𝑖(𝑠𝑡+1, 𝑎̃𝑡)− log 𝜋(𝑎̃𝑡|𝑠𝑡))−𝑄𝑖(𝑠𝑡, 𝑎𝑡))

2]︀ (C.6)

Finally, the equations for the best generalizer when using Gym Pendulum are:

𝐿𝑔𝑒𝑛
𝜋 = E(𝑠𝑡,𝑎𝑡)∼𝒟

[︁
log(log 𝜋(𝑎̃𝑡|𝑠𝑡))−min

𝑖
𝑄𝑖(𝑠𝑡, 𝑎̃𝑡)

]︁
(C.7)

𝐿𝑔𝑒𝑛
𝑄𝑖

= E(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∼𝒟
[︀
(𝑟𝑡 + 𝛾 (𝑄𝑡𝑎𝑟𝑔𝑖(𝑠𝑡+1, 𝑎̃𝑡)− log(log 𝜋(𝑎̃𝑡|𝑠𝑡)))−𝑄𝑖(𝑠𝑡, 𝑎𝑡))

2]︀
(C.8)

C.2.2 Best performer for Brax Ant and Brax Humanoid

Lastly, the loss equations for the best performer algorithms evolved in Brax Ant and
Brax Humanoid are presented; the analytical sections of this dissertation have focused
on these two algorithms. The loss functions for the best performer for Brax Ant are:

𝐿𝑝𝑒𝑟𝑓
𝜋 = E(𝑠𝑡,𝑎𝑡)∼𝒟

[︁
log 𝜋(𝑎̃𝑡+1|𝑠𝑡+1)−min

𝑖
𝑄𝑖(𝑠𝑡, 𝑎𝑡)

]︁
(C.9)

𝐿𝑝𝑒𝑟𝑓
𝑄𝑖

= E(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∼𝒟

[︂⃒⃒⃒⃒(︁
𝑟 + 𝛾

(︁
min

𝑖
𝑄𝑡𝑎𝑟𝑔𝑖(𝑠𝑡, 𝑎̃𝑡+1)− 𝛾

)︁
−𝑄𝑖(𝑠𝑡, 𝑎𝑡)

)︁2
· 𝐶1

⃒⃒⃒⃒]︂
(C.10)

where
𝐶1 = 𝑟𝑡 + 𝛾 ·

(︁
min

𝑖
𝑄𝑖(𝑠𝑡+1, 𝑎̃𝑡+1)− 𝛾

)︁
(C.11)

In all cases, 𝑎̃𝑡+1 ∼ 𝜋(·|𝑠𝑡+1) and 𝒟 is a dataset of experience tuples from the replay
buffer. Then, the equations for the best performer evolved in Brax Humanoid are:

𝐿𝑝𝑒𝑟𝑓
𝜋 = E(𝑠𝑡,𝑎𝑡)∼𝒟

[︁
log 𝜋(𝑎̃𝑡+1|𝑠𝑡+1)−min

𝑖
𝑄𝑖(𝑠𝑡, 𝑎𝑡)

]︁
(C.12)

𝐿𝑝𝑒𝑟𝑓
𝑄𝑖

= E(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∼𝒟
[︀
(𝐶2 −𝑄𝑖(𝑠𝑡, 𝑎𝑡))

2 · 𝐶2

]︀
(C.13)

where
𝐶2 = 𝑟𝑡 + 𝛾

(︁
min

𝑖
𝑄𝑡𝑎𝑟𝑔𝑖(𝑠𝑡, 𝑎̃𝑡+1)− log 𝜋(𝑎̃𝑡+1|𝑠𝑡+1)

)︁
(C.14)
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C.3 Computational cost vs. performance

Figure C-2 shows the evolution of the best fitness in the population with respect to
the total number of graphs evolved in the case of RWRL Cartpole; 10 independent
runs of the same experiment are shown. It can be observed that the largest jumps
in stability-adjusted performance and generalizability occur in the first 10% and 25%
of individual evaluations, respectively. The stochastic nature of an individual exper-
iment can lead to different outcomes with shorter or longer distances between fitness
jumps. Aggregating populations —after meta-training— from 10 different experi-
ments is a good way of countering such stochasticity.

(a) Stability-adjusted performance. (b) Stability-adjusted generalizability.

Figure C-2: Evolution curves of the best fitness in the population with respect
to the total number of evaluated individuals. Figures show 10 identical runs of the
evolution experiment using RWRL Cartpole.
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Appendix D

Additional information use case
satellite communications

Chapter 8 has introduced an Integer Linear Programming (ILP) formulation for the
frequency assignment problem in satellite constellations. The variables and con-
straints have served to define a basis for the subsequent DRL system. Two elements
remained to be discussed with respect to the ILP formulation: the objective function
and the computational complexity. They are both addressed in this section.

D.1 Objective function

The ideas presented in Chapter 8 include the essential constraints and decisions that
contribute to the creation of valid frequency plans, which essentially refers to plans
that conform to all existing constraints. But to make a selection between various
valid frequency plans, an objective function is required. There may be situations
where operators would favor plans that amplify bandwidth allocation or those that
minimize frequency reuses. To integrate this adaptability into the ILP structure, the
following objective function is proposed:

max
𝑁𝐵∑︁
𝑖=1

(𝛽1,𝑖𝑏𝑖 − |𝛽2,𝑖|𝑔𝑖 − |𝛽3,𝑖|𝑓𝑖 − |𝛽4,𝑖|𝑃𝑖(𝑓𝑖, 𝑏𝑖)) (D.1)

Here, 𝛽1,𝑖, 𝛽2,𝑖, 𝛽3,𝑖, and 𝛽4,𝑖 act as weighting parameters for beam 𝑖, with each 𝛽𝑘,𝑖

being a real number. This function merges four distinct objectives:

1. 𝛽1,𝑖𝑏𝑖 maximizes or minimizes (when 𝛽1,𝑖 < 0) the bandwidth allocated to beam
𝑖. Having superior control over bandwidth utilization can lead to enhanced
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power efficiency.

2. −|𝛽2,𝑖|𝑔𝑖 aims to minimize frequency reuses, true when |𝛽2,𝑖| > 0. Setting
𝛽2,𝑖 = 0 for all beams allows for a consistent use of frequency reuses and po-
larizations. Absolute terms for the coefficient 𝛽2,𝑖 are used because maximizing
and minimizing 𝑔𝑖 have equivalent effects, as per the formulation introduced in
Chapter 8.

3. −|𝛽3,𝑖|𝑓𝑖 aims to regulate the number of frequency slots used. If −|𝛽3,𝑖| < 0,
the lower parts of the spectrum are given precedence. If 𝛽3,𝑖 = 0, the spectrum
usage is even. This term is deducted given that lower frequencies may need less
power and hence are occasionally preferred by operators.

4. When available, −|𝛽4,𝑖|𝑃𝑖(𝑓𝑖, 𝑏𝑖) serves as a substitute for the RF power con-
sumption of beam 𝑖 for the slots 𝑓𝑖, 𝑓𝑖 + 1, ..., 𝑓𝑖 + 𝑏𝑖 − 1. This operand signifies
the preference to reduce RF power whenever feasible, when 𝛽4,𝑖 > 0.

These weighting parameters serve to establish a priority order among these objectives.
Though these parameters can be the same for all beams, operators might want to
prioritize extra bandwidth or certain bands for particular beams.

D.2 Computational complexity

Constructing a frequency plan is a problem acknowledged as NP-hard, a fact estab-
lished through its association with the graph coloring problem, a subject of extensive
research in graph theory [200]. In particular, under the assumption that each beam is
assigned an equal bandwidth amount of 1 (𝑏𝑖 = 1,∀𝑖) and there exists solely a single
frequency reuse (𝑁𝐹𝑅 = 1), the problem’s constraints turn into:

𝑓𝑖 ∈ {1, ..., 𝑁𝐵𝑊𝑁𝑃}, ∀ 𝑖 ∈ {1, ..., 𝑁𝐵} (D.2)

𝑓𝑖 ̸= 𝑓𝑗 ∀ {𝑖, 𝑗} ∈ ℛ𝐴 ∪ℛ𝐸 ∪ℛ𝐺 (D.3)

This scenario translates into a solution space mirroring the graph coloring problem,
a known NP-complete problem, as substantiated by preceding studies in the domain
of spectrum management [49]. Navigating this solution space demands complexity
of 𝒪((𝑁𝐵𝑊𝑁𝑃 )

𝑁𝐵). Reverting to the initial problem, with multiple bandwidths and
frequency reuses, results in a solution space of order 𝒪((𝑁2

𝐵𝑊𝑁𝑃𝑁𝐹𝑅)
𝑁𝐵).
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To provide a frame of reference, a system comprising 5 potential bandwidths
(𝑁𝐵𝑊 ), 2 polarizations (𝑁𝑃 ), 2 frequency reuses (𝑁𝐹𝑅), and 1,000 beams (𝑁𝐵)
presents a solution space of magnitude 102000. This implies that addressing the prob-
lem for a high quantity of beams becomes computationally unmanageable.
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Appendix E

Additional experiments Traffic Signal
Control

This section presents additional experiments for the Traffic Signal Control (TSC) use
case introduced in Chapter 4. Specifically, the change in MI after removing features
and the MI between pairs of features are discussed.

E.1 The effect of removing features

The experiments in Section 4.6.2 have identified the phase, the total time waited in
the intersection, and the number of cars waiting as the features that are statistically
significant. This part examines what occurs in terms of learning and changes in
mutual information (MI) 1) when those features are removed and 2) when those are
the only features kept. Figure E-1 shows the change in MI across 100 episodes when
masking the relevant features in the 7-intersection use case. The figure shows the
MI remains constant at zero for all features, as the agent is not able to pick up any
learning signal. In the baseline case, the agent identifies two important features that
help getting information on the reward, then it progressively exploits those features
until they are no longer informative —once the policy converges. Consequently, in
practical applications, observing constant MI at zero for a sequence of episodes or
epochs might indicate more features are needed, as the agent cannot learn from any.
Note that when looking at a slice of the learning process, one could observe zero
or close to zero MI for all features without indicating the agent struggles to learn a
policy, this would be the observation in the last episodes in Figures 4-7 and 4-8.

Then, Figure E-2 shows the same procedure when masking all variables except
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Figure E-1: Masking the phase, the total waiting time, and the number of vehicles
waiting in the 7-intersection use case. Evolution of the Mutual Information between
the reward and each of the five features considered in the RESCO benchmark for
Traffic Signal Control during learning. The mean and 95% CI across 7 intersections
is shown.

from the three significant ones. In this case, since these are the only features the
agent needs to learn the policy, the MI curve is similar to the one observed in the
baseline case. Observing negligible MI in useless features is something that agrees
with other studies [247].
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Figure E-2: Masking the number of vehicles approaching and the average speed in
the 7-intersection use case. Evolution of the Mutual Information between the reward
and each of the five features considered in the RESCO benchmark for Traffic Signal
Control during learning. The mean and 95% CI across 7 intersections is shown.

E.2 Comparing the mutual information between fea-

tures

Finally, this section complements the results on MI between state features and rewards
by examining the MI between pairs of state features as the agent learns the policy.
This experiment shows that the MI between pairs of features also changes as the
agent learns the policy. Figure E-3 shows the change in MI between pairs of features
as the policy converges in the 7-intersection use case.

The experiments in Chapter 4 have demonstrated that the total waited time at
the intersection (feature 3) and the number of cars in the queue (feature 4) are both
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Figure E-3: Evolution in the pairwise Mutual Information between features during
learning in the 7-intersection use case. Each row and column correspond to a different
feature and only the upper side and the diagonal of the grid are relevant. The title
of each cell indicates which two features are being considered. The mean and 95% CI
across 7 intersections is shown.

relevant features and their MI with respect to the reward is high at the beginning of
learning and low at the end. This is also observed when examining the MI between
these two features, although the MI does not drop to zero when the policy converges,
indicating there is some degree of redundancy in the information provided by both
features at the moment of convergence. At the beginning of learning, both features
have a high MI, indicating that only one of them might be enough. However, as
the agent learns, both become relevant separately. This observation is interesting to
better understand whether relevant features are relevant at all times during learning
or if their relevance changes as the policy changes.
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Then, the baseline experiments have also showed that the number of cars ap-
proaching (feature 2) and the average speed in the lane (feature 5) are not necessary
features. These figures show that there is high redundancy given by moderately high
MI between these two features during the whole learning process —it even slightly
increases. While this indicates that at least one of them is not necessary, in the end
both features are not statistically significant. Figure E-4 displays the same behaviors
in the 21-intersection use case.
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Figure E-4: Evolution in the pairwise Mutual Information between features during
learning in the 21-intersection use case. Each row and column correspond to a different
feature and only the upper side and the diagonal of the grid are relevant. The title
of each cell indicates which two features are being considered. The mean and 95% CI
across 21 intersections is shown.

254



Bibliography

[1] Nadine Abbas, Youssef Nasser, and Karim El Ahmad. Recent advances on ar-
tificial intelligence and learning techniques in cognitive radio networks. Eurasip
Journal on Wireless Communications and Networking, 2015(1), 2015.

[2] Abbas Abdolmaleki, Sandy Huang, Leonard Hasenclever, Michael Neunert,
Francis Song, Martina Zambelli, Murilo Martins, Nicolas Heess, Raia Had-
sell, and Martin Riedmiller. A distributional view on multi-objective policy
optimization. In International Conference on Machine Learning, pages 11–22.
PMLR, 2020.

[3] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nico-
las Heess, and Martin Riedmiller. Maximum a Posteriori Policy Optimisation.
jun 2018.

[4] Tedros Salih Abdu, Steven Kisseleff, Eva Lagunas, and Symeon Chatzinotas.
Flexible resource optimization for geo multibeam satellite communication sys-
tem. IEEE Transactions on Wireless Communications, 20(12):7888–7902, 2021.

[5] Tedros Salih Abdu, Steven Kisseleff, Eva Lagunas, Symeon Chatzinotas, and
Björn Ottersten. Demand and interference aware adaptive resource manage-
ment for high throughput geo satellite systems. IEEE Open Journal of the
Communications Society, 3:759–775, 2022.

[6] Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

[7] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained
policy optimization. In International Conference on Machine Learning, pages
22–31. PMLR, 2017.

[8] Igor Adamski, Robert Adamski, Tomasz Grel, Adam Jȩdrych, Kamil Kacz-
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