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Abstract 
Strategic planning of manufacturing capacity requires data-based approaches to determine current and 

future constraints in a manufacturing network. While oftentimes, the desire to improve decision-making in 

strategic planning is strong among decision makers, and data on capacity generally exists in some form, 

there can be a lack of centrally coordinated efforts to harvest existing data as well as high degrees of 

inconsistency. In addition, modeling manufacturing capacity is an inherently complex problem due to 

varying modes of production, unclear units of measure, and complex global manufacturing networks.  

In this thesis, a capacity model design is proposed for a global medical device manufacturer, and key aspects 

of the model functionality are demonstrated in a case study. At the core of the capacity model is a database 

structure using standardized data fields for capacity and demand data, including cycle times, shift structure, 

and space. The logic of the capacity model is developed, with the goal to capture supply chain complexities 

such as mixed model lines or various degree of automation. In short, the logic determines the required 

production time for the product portfolio under consideration, and assesses the available capacity by 

comparing this required production time with the total available time.  

The logic is tested on a prototype product with a focus on mixed model lines. It is found that naming and 

product grouping inconsistencies require significant manual data manipulation, which – in combination 

with a lack of standardized, centrally available data – will form the biggest bottleneck in the implementation 

of the capacity model. Finally, an implementation roadmap is presented to offer guidance on converting the 

logic presented here into a functional model for decision makers in a supply chain strategy organization. 

Thesis Supervisor: Sean P. Willems 

Title: Visiting Professor of Operations Management, MIT Sloan School of Management  

Thesis Supervisor: Michael J. Cima 

Title: David H. Koch (1962) Professor of Engineering and Professor of Materials Science and 
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1. Introduction 

1.1 Strategic Capacity Planning 

The Encyclopedia of Production and Manufacturing Management defines [production] capacity as “the 

maximum possible output over a specified period of time. In cases where the output is non-homogeneous, 

capacity may be measured in terms of the available machine hours.”1 Production capacity therefore defines 

the amount of each product and their components a company is able to produce in a given unit of time. 

Production capacity is important for planning at various different time scales, as well as at various levels 

and functions in an operations organization. In terms of time scales, the shortest time scale at which capacity 

needs to be planned is in the short term, on the day-to-day scale, in order to plan actual hourly, daily, and 

weekly production volumes. At this scale, capacity can fluctuate based on staffing shortages, equipment 

downtime, or other short-term sources of capacity variation. On a medium term, at the order of a month to 

a year, companies need to plan their capacity in order to meet demand forecasts and execute tactical 

adjustments to the required capacity, such as increase in staffing or capacity utilization. On the long-term, 

from one to several years, companies need to plan the deployment of capital expenditure such as equipment 

 

 
Figure 1-1 Capacity Planning Time Horizons in Operations (from Ref. 2) 
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or buildings, and make strategic decisions based on market access considerations, long-term market and 

company performance projections, acquisitions/divestitures, product portfolio changes, or other long-term 

strategic requirements. The levels and functions at a company which are stakeholders in the capacity 

planning process range from the local production staff and their front-line managers, to factory site 

leadership and corporate executive-level management. In addition, functions such as sourcing, supply chain 

planning, facilities management, or operational strategic planning all have a stake in the capacity planning 

process. Figure 1-1, which is adapted from a book by Hayes et al. (2005) depicts the capacity planning 

process both as a function of the time horizon and the level of managers involved at those horizons.2  

Planning the manufacturing capacity of a company along the time horizons described above is part of the 

capacity strategy of a company, which in turn is a component of the operations or manufacturing strategy, 

a key discipline of corporate strategic planning.3 To develop a capacity strategy, a company requires a series 

of input parameters and assumptions for the future, including the predicted growth and variability of 

demand, the construction cost and operational expenses of manufacturing plants, trends in manufacturing 

and product technology, expected behavior of competitors, and expected trends in markets and the supply 

chain.4 Based on these predictions, the company can then decide how to strategically position itself, of 

which a capacity strategy is an important aspect. Developing a successful capacity strategy, and performing 

capacity planning along the different time horizons between the day-to-day and long-term scale, is a priority 

to any manufacturing company for a variety of reasons: Deployment of new capacity in the form of the 

construction of new manufacturing buildings constitutes a large investment which needs to be carefully 

evaluated. Companies aim to allocate their limited resources most effectively, and therefore, investment 

into new factories needs to occur when and where it is needed the most. Similarly, manufacturing resources 

need to be allocated effectively on a day-to-day basis. Furthermore, a good long-term strategy matters 

because lead times for new capacity is long: it can take three or more years in the medical device industry 

to construct and certify a manufacturing site. Assuming that a company aims to proactively deploy its 

capacity to meet market demand, it is therefore critical to have a successful strategy in place that ensures 

capacity is available when it is needed. Finally, manufacturing capacity is a key aspect in ensuring supply 

chain resiliency. Successful capacity planning allows for surge production resources to be available when 

there are demand spikes, while also ensuring that capacity utilization is level-loaded over time. 

Complicating the need for an effective capacity strategy is the fact that production capacity is difficult to 

define and to measure.4 However, at the same time it is vitally important for a company to accurately depict 

its current and future state of capacity in order to adequately lay out a capacity strategy. After all, “if you 

can’t measure it, you can’t improve it”i. Therefore, models of manufacturing capacity are of high interest 

                                                      
i Quote commonly credited to Peter Drucker.  
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for manufacturing companies, which aim to capture production capacity with as much accuracy and detail 

as possible. 

Production capacity forms a multifaceted problem with three key areas of interest: manufacturing space, 

manufacturing equipment, and labor. Manufacturing space relates to the physical factory that houses the 

production. On the largest scale, manufacturing space is defined by the factory buildings with their square 

footage. However, defining manufacturing space requires additional levels of granularity of the individual 

rooms and even the physical footprint of a line or individual equipment. In addition, for medical device 

manufacturers, the manufacturing space dimension in the context of capacity also entails different types of 

space such as cleanroom space with different levels of atmosphere control, as well as whether space can be 

converted from a non-controlled to a controlled environment. Space is typically the capacity dimension 

which requires the longest times to deploy, and the most capital. In the most expensive and long-term case, 

additional space is deployed by building entire factories, which can easily take five or more years from the 

beginning of the planning process to the steady-state operation of the factory, and require investments of 

hundreds of millions of dollars. Manufacturing equipment refers to the tools and machines used to produce 

goods in a factory. Equipment is usually grouped in production lines, and can exhibit large degrees of 

variation in terms of complexity, degree of automation, size, throughput, process types, or requirements of 

ancillary resources. Ultimately, this translates to large variations in space requirements, lead times, and 

cost. In adequately capturing equipment as a dimension of manufacturing capacity, different degrees of 

granularity can again be considered. The highest degree of granularity for manufacturing equipment is 

defined by individual pieces of equipment, such as machines or workstations. Individual units of equipment 

are typically grouped into groups of machines, either by grouping identical or similar machines performing 

the same tasks, or by grouping equipment which perform multiple sequential processes, constituting a larger 

process step in the production. These groups of machines are part of a production line, which captures a 

series of production steps to produce some sort of intermediary or final product. Production lines can be 

grouped into larger units, such as business units, which in turn make up the entirety of a factory. However, 

there can be added complexities where groups of machines are part of multiple lines, for example because 

these machines constitute a process shared by many different products. As such, measuring equipment 

capacity can be challenging as the granularity of the considered grouping as well as the grouping logic of 

equipment can affect the way that capacity is measured. Equipment capacity is closely linked with the 

concept of the bottleneck, i.e., the production step or production steps which constitutes the rate-limiting 

step of a full production process. The production capacity of a manufacturing line is defined by the 

throughput of the bottleneck, and therefore, to capture capacity of a process, it is critical to measure the 

cycle time or throughput of manufacturing equipment at least to the granularity of the bottleneck. Finally, 

a third dimension of capacity lies in the labor force of a factory or production unit. Labor capacity relates 
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to the degree of utilization of equipment and space: the shift structure and labor deployment defines the 

fraction of time where equipment is running versus standing still. Labor capacity therefore represents the 

amount of available time which can be used to convert a theoretical equipment throughput to an actual 

output of product. Furthermore, labor-related capacity aspects include staffing availability, training times, 

or short-term staffing fluctuations.  

To measure capacity accurately and holistically, all three aspects of space, equipment, and labor need to be 

considered appropriately. Furthermore, they are naturally intertwined, as the availability of one of those 

aspects limits the availability of the other two (equipment requires physical space, as well as operators to 

control the equipment, space without equipment or labor is not productive, etc.). Finally, as described 

above, for each of these aspects, there is a range of different degrees of granularity, which can be considered 

in describing capacity, ranging from a network-wide or factory level view, all the way down to an individual 

production station, with the associated staffing and space footprint. Capturing this granularity is highly 

complex, but critical to allow for effective strategic capacity planning. 

 

1.2 Company Background 

Boston Scientific Corporation (also known simply as Boston Scientific, BSCI, or BSC) is a global medical 

device manufacturer with ~38,000 employees globally5, headquartered in Marlborough, MA, USA. The 

company serves ~30 million patients every year, corresponding to a patient being treated with a Boston 

Scientific product once every second.5 Competitors to Boston Scientific in the global medical device market 

include Johnson & Johnson, Inc., Abbot Laboratories, Medtronic, Stryker Corporation, Cook Medical, and 

Olympus Corporation. The organizational structure can be described as a hybrid divisional/matrix 

organization. The commercial business of Boston Scientific operates in seven divisions, namely 

Endoscopy, Urology & Pelvic Health, Interventional Cardiology, Peripheral Interventions, Cardiac Rhythm 

Management, Electrophysiology, and Neuromodulation. Moreover, Boston Scientific groups these 

divisions into three larger units: Endoscopy and Urology & Pelvic Health are grouped into MedSurg, 

Interventional Cardiology and Peripheral Interventions are grouped into Cardiovascular, and Cardiac 

Rhythm Management, Electrophysiology, and Neuromodulation form Rhythm and Neuro. The Endoscopy 

division produces and markets minimally invasive devices for gastrointestinal and pulmonary conditions, 

and the Urology & Pelvic Health division serves patients with solutions for urological, urogynecological 

and gynecological diseases. The divisions in the Cardiovascular unit offer minimally invasive therapies for 

heart, vascular, arterial, venous, and oncological diseases. Cardiac Rhythm Management and 

Electrophysiology offer treatments for irregular heart rhythms and heart failures, and Neuromodulation 
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provides devices which address neurologic conditions such as Parkinson’s or chronic pain. In addition to 

these commercial divisions, the company has several corporate functions which serve all divisions. These 

functions include the global supply chain organization, research and development, finance, quality, and 

business development. This research project was carried out in the global supply chain organization, with 

responsibility for the end-to-end supply chain of the company, ranging from materials sourcing, internal 

and external manufacturing, to sterilization and the distribution of finished products. The global supply 

chain organization consists of the production network, see below, distribution centers, sterilization, as well 

as global supply chain planning, sourcing, supply chain analytics, and supply chain strategy. Among these 

functions, global supply chain strategy is responsible for the strategic planning of all aspects of the supply 

chain, such as network optimization, site selection, operational due diligence of acquisitions, capability 

assessments, market access, or network expansions. The research for this thesis was performed within the 

global supply chain strategy team. 

 

1.2.1 Manufacturing Network 

Boston Scientific operates a global manufacturing network, with major production sites located in 

Minnesota, Puerto Rico, Indiana, Georgia, as well as Costa Rica, Ireland, Malaysia, and Brazil. In addition, 

the network contains several smaller facilities across the world. Several of these manufacturing sites also 

serve as divisional headquarters, research and development centers, process development hubs and 

locations for other corporate and divisional functions. The network of Boston Scientific further consists of 

a large sterilization site located in the Northeast United States, and two tier I distribution centers located in 

Massachusetts and the Netherlands.  

The Global Supply Chain organization is led by the Senior Vice President of Global Supply Chain. 

Reporting to the SVP of Global Supply Chain are several Global Manufacturing Vice Presidents (GMVP), 

who form the link between corporate executive management and site leadership. Each GMVP is typically 

responsible for two to four manufacturing sites, and this distribution of sites between GMVPs is roughly 

by the commercial divisions that the sites predominantly serve. Therefore, GMVPs are also the senior 

supply chain leaders who form the liaison to senior leadership in the commercial divisions. Each site is 

managed by a Vice President who reports to a GMVP, referred to commonly as the site VP. The site VP 

has responsibility for all day-to-day management of the manufacturing site, including the financial 

performance of the site. Each production site is structured in business units, which represent a segmentation 

of the factory into smaller groups, typically by grouping similar production processes into a business unit.  
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1.2.2 Company Growth 

At the time of research for this thesis, Boston Scientific is undergoing significant growth, with a projected 

revenue growth from approximately $11 billion in 2019 (the last full year before the global COVID-19 

pandemic) to $16 billion in 2026.9 This revenue growth corresponds to a significant growth in terms of 

units sold, which requires manufacturing capacity to enable the production of these units. Table 1-1 lists 

the revenue of all divisions and the company as a whole for the years 2019, 2020, and 2021. The year 2019 

corresponds to the last full year before the onset of the global COVID-19 pandemic, and as such forms a 

more reliable baseline for comparison of future company performance than the years 2020 or 2021. During 

those years, the COVID-19 pandemic caused a major recession, as well as waves of surging hospital 

occupancy that required many elective surgeries to be postponed. Since many of the products produced and 

marketed by Boston Scientific fall under the category of elective surgeries, these fluctuations led to strong 

fluctuations in demand of Boston Scientific products. In addition, the COVID-19 pandemic led to 

disruptions of many global supply chains, in particular of air freight due to cancellations in commercial 

airline traffic, and in the semiconductor industry. These disruptions were also felt by Boston Scientific and 

required the company to utilize its safety stock reserves in order to meet patients’ needs. As can be seen 

from Table 1-1, there is strong growth within all divisions of the company, corresponding to the 

requirement to build more products. The overall growth forms the key motivation of the present study: in 

order to meet the projected growth targets, Boston Scientific needs to perform effective strategic planning 

of manufacturing capacity. Significant investment into manufacturing capacity will be required to provide 

the capability to sustain inherent product unit growth. In order to perform strategic planning of this growth 

trajectory in the operational landscape, it is critical to understand the current and future state of 

manufacturing capacity, and to proactively detect capacity constraints in order to alleviate them. 

Division Revenue 20196 Revenue 20207 Revenue 2021 8 
Endoscopy $1.9 B $1.8 B $2.1 B 

Urology & Pelvic Health $1.4 B $1.3 B $1.6 B 

Interventional Cardiology $2.8 B $2.3 B $3.0 B 

Peripheral Interventions $1.4 B $1.6 B $1.8 B 

Cardiac Rhythm Management $1.9 B $1.7 B $2.0 B 

Electrophysiology $0.3 B 0.3B $0.4 B 

Neuromodulation $0.9 B $0.8 B $0.9 B 

Total $10.7 B $9.9 B $11.9 B 
 

Table 1-1 Revenue of the commercial divisions of Boston Scientific in the fiscal years 2019, 2020, and 
2021. 
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1.3 Previous Work 

Boston Scientific has hosted several previous research projects in collaboration with the Leaders for Global 

Operations program at MIT, which performed research with respect to various aspect of the operations of 

the company.10–16 Among these studies, the work by Awuondo10 is closely connected with the present thesis. 

Awuondo carried out his research in the same organization within Boston Scientific as the present study, 

namely in the Global Supply Chain Strategy group, which was formerly known as the Global Operations 

Strategy group. In his work, Awuondo developed a Microsoft Excel-based planning tool for the 

manufacturing footprint capacity of the company network. In the tool, he includes important concepts 

relevant to operational strategic planning, such as scenario planning with adjustable parameters. Among 

these parameters are growth rates and improvement rates, and the input into the tool is the demand forecast, 

which is converted into future space requirements. The present study builds upon the learnings and methods 

from Awuondo, but aims to expand upon the presented concepts by developing a model framework which 

can capture supply chain capacity holistically, beyond the pure focus on the space component of capacity. 

Furthermore, the capacity model proposed here aims to use advanced data analytics and database tools, and 

proposes a business process that can be fully integrated with the existing planning and data processes in the 

supply chain organization. 

 

1.4 Open Research Questions 

Measuring and modeling supply chain capacity is a complex, interconnected problem common to many 

manufacturing companies of all sizes. As such, best practices of how to design, structure, implement, and 

sustain an effective supply chain capacity model is of relevance to supply chain strategic planners within 

and outside of Boston Scientific. A key question here lies in how to design a capacity model that captures 

as much of a supply chain’s complexity with a minimally sufficient data input. Because supply chain data 

is often incomplete and not well-structured, it is critical to minimize the amount of data required to generate 

as much insight as possible. Furthermore, additional complexity in capacity modeling stems from the scale 

and complexity of the underlying supply chain. It is therefore an important question of how to effectively 

scale a capacity model to adequately represent a large, complex, global supply chain. 

Answering the question(s) above requires an effective data structure. This data structure needs to satisfy a 

range of requirements:  
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First, it needs to be scalable such that it can be used to represent a complex supply chain with twelve 

manufacturing plants and tens of thousands of products. These products, and the underlying production 

processes, differ significantly in nature, and the data structure needs to be able to represent these differences, 

for example in the degree of automation or unit of measure of all products. 

Second, the data structure needs to offer flexibility for future changes to requirements. For example, new 

acquisitions or the introduction of new products may lead to features of the supply chain that have 

previously not been present, or manufacturing processes may change due to technological shifts. 

Furthermore, methods of data gathering, analytics and digital manufacturing are all evolving rapidly, and 

the data structure needs to be ready to handle any such changes.  

Third, the data structure needs to be able to represent connections between previously disconnected data 

sets. What this means is that there is a challenge of seemingly disconnected datasets originating from 

different parts of an organization. A key research question is how to establish a data structure and the 

corresponding business process to appropriately link data sets that are disconnected a priori.  

Fourth, the data structure needs to be comprehensive, in that it needs to capture all attributes required for 

capacity modeling.  

Fifth and finally, the data structure needs to function with various degrees of granularity of data. For 

example, data granularity may vary with regards to the specificity of production lines, i.e., whether data is 

available for a production line as a whole, or for individual work stations within the line. Moreover, demand 

planning may occur at varying levels of the product hierarchy, where in some cases, a range of similar 

products is grouped into one category of demand for the long-range plan, whereas in other cases, the 

demand forecast is available for individual products. The data structure needs to be able to adapt to these 

varying degrees of granularity. 

From an organizational and cultural perspective, an important consideration is how to manage the change 

introduced by developing a supply chain capacity model. The successful implementation of an enterprise-

wide capacity model poses a challenging problem, even if all technical aspects of the model were to be 

fully solved: It requires successful change management to implement business processes where the required 

capacity data is gathered and provided in the correct format, and maintained over time. This is best achieved 

if all stakeholders understand the benefit of the new approach, and are presented with clear advantages for 

their own function when the transition is successfully implemented. With regards to the core stakeholders, 

namely the operations strategy team driving the process of building a capacity tool, it is important to adapt 

existing methods of planning and decision making to the capabilities of the new tool. Finally, developing 

and implementing an enterprise-wide capacity tool and process is a transition that requires significant time 
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and resources, likely at the order of one to two years for the implementation, with a team that contains 

project management, software development, analytics, data engineering, and operations management 

capabilities. Therefore, a question is how to successfully obtain support for such a project from senior 

leaders, and how to manage the end-to-end process of implementation. 
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2. Problem Statement 
Boston Scientific has identified a need to improve the systems and processes of determining long-term 

capacity requirements and constraints of the production network. As previously described, the company is 

on a trajectory of significant growth, and consequentially, there is a need for increased production capacity 

in order to meet this growing demand. Furthermore, there is an increasing frequency of supply chain 

disruptions due to the COVID-19 pandemic, environmental events as a consequence of the effects of 

climate change, as well as a changing global political and trade landscape. In order to meet these challenges, 

there is a need to proactively model capacity constraints and requirements across the supply-side of the 

network on a 5-year horizon. With such a model, it will be possible to identify future capacity constraints, 

and to detect components of the manufacturing network which will require investment in the future to 

provide adequate capacity under the given boundary conditions. Furthermore, the increased uncertainty 

described above ensues a need for scenario planning, where different “what-if-scenarios” can be analyzed 

to understand the costs, benefits, and risks of certain supply chain investments. To achieve this, a robust 

and comprehensive definition of capacity is needed, that includes key aspects such as space, equipment 

capacity, and labor. The organization currently performs capacity planning in a distributed fashion, mostly 

at the level of the individual manufacturing sites or even smaller units within the sites, with limited centrally 

available data and lack of standardization in the types and structure of data. Therefore, a key challenge is 

to overcome this fragmentation of information across the organization, and to aggregate the existing 

fragmented information in a way that becomes useful for a variety of stakeholders such as operations 

strategic planning, supply chain planning, and manufacturing. This serves two purposes: first, to gain a 

more holistic understanding of current and future capacity and second, to understand which additional data 

should be gathered for further network optimization. This would ultimately allow for more effective 

strategic planning, and inform critical network-wide decisions such as investments or the placement of 

products at appropriate manufacturing sites. 
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3. Approach  
Determining a company’s manufacturing capacity can be performed taking either a top-down or a bottom-

up approach. In a top-down approach, highly aggregated data such as company growth projections, total 

production capacity in units per year, and total production space are used to determine future capacity 

requirements and constraints in the system. For example, in this approach, one would assume a percentage 

growth rate in company revenue, corresponding to a percentage growth rate in units sold per year. This unit 

demand then corresponds to a space requirement, which would grow with the same growth rate as the unit 

demand, minus an improvement rate of space utilization. Now the total required space in this calculation 

can be compared to the total available or planned space, to understand the needs for capacity investments 

at the highest level. This top-down approach corresponds to the status quo of capacity planning at Boston 

Scientific, and offers the benefit of a fairly simple analysis, which can be expanded in granularity by 

considering regional or divisional growth projections, or site-specific improvement and utilization rates. 

This method of extrapolation is vague and offers very limited insight into the specific constraints that will 

arise in the future. A second approach to perform capacity modeling is through a bottom-up approach, 

where the network capacity is measured with a high degree of granularity, for individual production lines 

or even stations, and then the overall network capacity is assessed by aggregating over the granular capacity 

of each station and for each product, in the form of assessing the rate-limiting step of each path. Specifically, 

it is possible in this approach to directly determine production units with future capacity constraints. The 

bottom-up approach requires a large amount of data from the manufacturing network, and relies on the 

effective handling of this large dataset to be successful. By performing calculations at a granular level, this 

approach offers the ability to identify specific constraints in the large network, which will provide decision 

makers the ability to respond proactively to these constraints. Importantly, it is straightforward to obtain 

aggregated results similar to the top-down approach from the bottom-up approach, but not vice versa: It is 

straightforward to aggregate a granular model, but very difficult to add granularity to an already aggregated 

model. Ultimately, manufacturing capacity is measured and executed at an individual station or an 

individual line, so granularity is critical in order to truly capture future constraints and analyze potential 

future scenarios without requiring assumptions or heuristics that disaggregate data. 

The drawback of the bottom-up approach is that it may give the illusion of precision through its granularity. 

The accuracy of capacity calculations depends on the precision of demand forecasts of the future, which 

are inherently uncertain. Even if it is possible to measure the ability of a network to produce product with 

a high degree of precision, knowing if this capacity will be sufficient is impossible. It is therefore important 

to understand the limitations of even a highly granular model, which leads to the important feature of 
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scenario planning, which helps decision makers understand how changes in forecasts or of model 

parameters will change the outcomes of the calculations. To perform scenario-planning, or “what-if-

analyses”, input parameters and assumptions need to be varied and the resulting changes in model outputs 

are observed. Parameters that need to be varied for successful scenario planning of capacity are the demand 

forecasts, i.e., growth rates and upside potential, improvement rates of cycle times and yields, and 

predictions of future acquisitions and R&D activity. 

In this thesis, the approach of developing a capacity model based on the bottom-up paradigm outlined before 

consists of five individual components. First, the current state of capacity-related data is assessed. This 

serves the purpose to identify the type of data available, the gaps in existing data, and the data structure and 

business processes currently in place to manage capacity-related data. The capacity model proposed here is 

based on assembling a central data base that can house a variety of data from the entire Boston Scientific 

organization, including demand data and site-specific capacity data. Importantly, for this thesis, only 

internal capacity data was considered, as considering supplier capacity adds further levels of complication 

in terms of data availability and standardization. This was deemed outside the scope of this research. 

Therefore, the second component is to design a database that has the appropriate fields to capture sufficient 

capacity data for a network-wide capacity model to be functional. In addition, the database design also 

includes selecting the appropriate architecture which allows for efficient data handling as well as 

performing analytics and data manipulations efficiently. Third, a capacity model is designed, in the form 

of establishing a modeling logic that can convert raw capacity data into meaningful outputs, such as reports 

on capacity constraints and space constraints. To verify the functionality of the model design, the fourth 

component of this work is to perform a case study on an individual product. This will allow to verify that 

the proposed type of data as well as the proposed data structure can sufficiently represent the production 

capacity of the selected product. Furthermore, the case study approach enables the detection of potential 

gaps in current logic. 

It is important to keep in mind that a case study, by nature, only captures a fraction of the reality of the 

complex global supply chain. It is therefore prudent to perform a gap analysis of missing details which the 

selected product or a case study in general cannot capture. Finally, based on the learnings from the case 

study, the gap assessment, and the overall data structure and model design, a scale-up plan is developed. 

This scale-up entails scaling the proposed model and logic to the whole production network, including 

establishing business processes which serve to collect, manage, and maintain the data. 
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4. Capacity Model Design 

4.1 Current State Assessment 

As a first step toward a capacity model that can capture the entire manufacturing network of the company, 

it was necessary to assess the current state of capacity data and systems. 

4.1.1 Work Content Graphs 

Work content graphs are a type of document used by Boston Scientific to measure the labor and equipment 

resources required to perform a set of production steps. They are usually created for a line or a set of 

workstations, and contain time studies which measure the amount of manual labor and equipment time 

required to perform each production step. As such, work content graphs contain information on the cycle 

times of the production process which they represent, with a focus on the manual labor content of these 

production processes. The information contained in a work content graph may be for one or multiple 

products. 

Importantly, work content graphs represent a theoretical upper bound of capacity of a given production 

unit. They are based on time studies of the manufacturing process under ideal conditions and in steady state, 

and therefore exclude real features of the production process that increase the effective cycle time, such as 

scheduled or unscheduled downtime, line ramp-up and ramp-down, breaks, or any other deviation from a 

perfect process execution. In addition, cycle times are typically unyielded, and therefore need to be 

corrected for by the yield of each production step. 

Despite these short-comings, work content graphs constitute the most widely used and most highly 

standardized type of capacity data available within the manufacturing network of Boston Scientific. As 

such, they are a promising starting point in collecting network-wide capacity data. In order to better 

understand the possibility to utilize this type of data as a source for capacity data across the network, the 

sites were surveyed about their use of work content graphs. The survey found that the use of work content 

graphs varies significantly from site to site, see Figure 4-1. For example, 27% of sites responded that they 

maintain work content graphs for all products, whereas one site reported that it does not have work content 

graphs for any products. For the majority of sites, namely 64%, work content graphs exist for 40-99% of 

all products, i.e., sites maintain work content graphs mostly for key products, but there are typically some 

products for which no work content graph exists. Furthermore, the survey and informal interviews have 

shown that there are strong variations across the network with regards to how frequently work content 

graphs are updated. A common approach is to perform time studies of all production processes once per 
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year as part of a structured business process of continuous improvement. In other cases, work content graphs 

are only updated when production processes are changed, and are otherwise left unchanged. Overall, this 

implies that the quality of information that can be extracted from work content graphs varies strongly across 

the organization. 

 

 

 

In addition, work content graphs only form one way with which sites manage their capacity. The role that 

work content graphs play in the day-to-day planning of capacity varies significantly, as does the way that 

work content graphs connect with the remaining tools for capacity planning at each site. For example, one 

site uses work content graphs as the source of truth for all of their capacity planning. At this site, the results 

from work content graphs are directly fed into a secondary capacity planning tool, which applies correction 

factors such the effective up-time of a line, the yield, and a general efficiency factor, to obtain the total 

capacity available to perform a certain production step. Due to the high importance that the work content 

graphs have at this site, they are generally updated frequently to ensure that data is current. 

However, other sites do not use work content graphs with the same discipline as the mentioned example, 

creating an additional source of discrepancy between data quality between sites. And finally, even within 

sites, there is discrepancy in the use of work content graphs. Thus, a linkage is not necessarily 

straightforward between work content graphs of production processes that are, for example, sequential steps 

in producing the same product. In conclusion, work content graphs form an incomplete data set, that could 

not, by itself, serve to measure capacity across the network without improving the discipline of creating 

and maintaining work content graphs for all production processes across the network. 

27%

37%

27%

9%

For how many products does your 
site have work content graphs?

100%

75%-99%

40%-74%

None

Figure 4-1. Survey result of site usage of work content graphs. 
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4.1.2 Site-specific Capacity Planning Tools 

A key aspect to the processes relating to managing manufacturing capacity at Boston Scientific to-date is a 

decentralized approach to capacity planning. With very few exceptions, each site relies on their own local 

capacity planning tool. This approach has historical as well as organizational reasons. As the historical 

aspect, many sites in the Boston Scientific network have been integrated into the network over time through 

acquisitions. Each of these sites brought their own staff, tools, and processes, which included proven legacy 

methods how to navigate the capacity planning process. In some cases, a software that had been successfully 

used prior to an acquisition would continue to be used after the acquisition was completed. For the 

organizational aspect, sites operate with a relatively strong independence from each other and the central 

corporate management. Under this approach, sites are given the liberty to develop their own best practices 

in certain areas, which allows them to adapt to their specific needs. 

Site capacity tools vary significantly with regards to the type of software, approaches to data structure, and 

the underlying definitions of capacity applied in these tools. For example, some tools are spreadsheets 

within Microsoft Excel, while other sites use dedicated stand-alone software solutions to manage their 

capacity. In terms of data structure, the tools show strong variations with regards to the data fields inside 

the tools, and the approaches used to calculate capacity. These variations make it challenging to define a 

standardized input format of capacity data, or to integrate locally housed capacity into a central database 

without significant manipulations to the format. 

Moreover, similar to the use of work content graphs, there are large discrepancies with regards to the quality 

of data available, and the discipline with which data is collected and maintained. It was found that for some 

sites and products, data quality was very high, with thorough analysis of all steps of a production process. 

This was particularly the case for products that are of high interest to management because they exhibit fast 

growth, a high share of revenue, or require significant investments into capacity. However, for other 

products where interest was less, for example because their revenue stagnated or was comparatively low, 

the quality of capacity data available within local capacity tools was much less comprehensive. Other 

factors that affect the quality of capacity data are the cost and lead time of additional capacity. 

In addition, it was found that with few exceptions, there was little formal connection between sites with 

regards to capacity planning. This means that in the case where multiple sites are involved in producing a 

finished product, for example by one site supplying components to a different site, there is little 

understanding by a downstream factory of the capacity of an upstream factory. In other words, while sites 

have a good understanding of the capacity within their own domain, they have a poor understanding of the 

capacity of their suppliers within the Boston Scientific network. This is problematic, as in this situation, 
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sites plan their capacity as if they were a stand-alone system, whereas in reality, they are subject to 

constraints from other sites. This situation creates a lack of transparency into the true capacity of the supply 

chain. 

Finally, even within the individual sites, there are variations to the degree of standardization among the 

different capacity tools. Some sites have implemented a capacity tool and best practices which are 

standardized across the whole site and adhered to. However, other sites show less discipline in how 

thoroughly locally standardized capacity tools are followed, or lack a standardized tool across the site.  

The overall lack of standardization of capacity tools across the network, as well as of the underlying data, 

makes developing a network-wide capacity model impossible at the time this study is performed. However, 

generally, sufficient data to perform advanced, network-wide modeling of capacity exists within the 

company. It needs to be made useful through a process of loading existing data into a central database in a 

standardized format. 

4.1.3 Control Tower 

Boston Scientific runs a center of excellence which measures the day-to-day performance of the supply 

chain, internally called the Control Tower. The Control Tower is an example of the company moving toward 

a more data-driven way to operate, and to base decision-making on accurate, real-time data. The Control 

Tower generates data visualizations available to any member of the supply chain organization, which 

contain key performance metrics of the supply chain such as on-time delivery performance, inventory on 

hand, and a range of other business-critical metrics. The Control Tower data system is an example of a data-

driven approach where information from separate sources is merged, such as from the company’s ERP 

system, manufacturing execution system, production planning system, as well as unstructured data from 

other sources. The Control Tower’s architecture is particularly interesting within the context of this thesis, 

since it has strong conceptual similarities with the required architecture of a network-wide capacity system. 

Data from a range of sources, and with different formats and structures, is automatically pulled on a daily 

basis. The data is then automatically cleaned and structured such that it can be stored in a relational database 

for further manipulation, analysis, and visualization.  

As a recommendation, the existing infrastructure of the Control Tower should be leveraged when 

implementing and scaling up a network-wide capacity system, for the following reasons: 

1) The database infrastructure of the Control Tower is similar to the required database architecture of 

a capacity model. Various capacity-related sources are already linked to the Control Tower, such 

as the supply chain planning system (see below), the bills of materials of all products, or the product 
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hierarchy of the ERP system. The Control Tower uses a cloud-based relational database system, 

which can form a blueprint for the capacity database. 

2) Some of the data included in the Control Tower is identical to data that is required for capacity 

modeling. This data includes production planning data, which is synchronized from the supply 

chain planning system. 

3) There is a large amount of existing know-how within the control tower team how to install an 

enterprise-wide database system with linkages into a multitude of software systems, as well as the 

handling of unstructured data. The team has experience on the required resources to implement sch 

as system, as well as the on how to perform front-end visualization and back-end data engineering. 

This experience can provide a significant advantage in designing and implementing the capacity 

database and model. 

4.1.4 ERP System and Supply Chain Planning Software 

Boston Scientific employs a company-wide enterprise resource planning (ERP) system to manage processes 

in human resources, finance, order processing, and procurement. In the context of the ERP system, products 

are sorted into a so-called product hierarchy with six levels, ranging from the division at the highest level 

of the hierarchy, groupings by so-called franchises and product families, down to the individual unique 

product numbers at the lowest level of the hierarchy. This product hierarchy is used in a range of planning 

processes in marketing, production, sourcing, and overall supply chain planning. The product hierarchy 

facilitates planning processes as planning at an individual unique product number is oftentimes not feasible. 

Products of a family or franchise often only differ by geographic localization such as labelling, or by other 

minor deviations which have a small impact on forecasting or medium-to-long-term planning. Therefore, 

planning processes of such products are simpler if they are carried at a franchise or product family level.  

SI&OP 

Boston Scientific uses a supply chain planning software system which is linked to the ERP system’s data 

repositories, and contains a real-time image of orders, inventory levels, bills of materials, etc. In addition, 

the planning software contains demand forecasts for the next 18 to 24 months on a rolling basis. This raw 

data is then used by supply chain planning as well as production staff to carry out the Sales, Inventory & 

Operations Planning (SI&OP) process. During the SI&OP process, monthly demand forecasts are converted 

into production schedules, with the goal to balance inherent demand forecast fluctuations and thus create a 

level-loaded production schedule. This production schedule is referred to as the committed build plan, 

which is agreed upon by both the global supply chain organization as well as local site production engineers. 
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The SI&OP process is a tactical, forward-looking planning process with monthly cycles and a forecasting 

horizon of 18-24 months. Therefore, it inherently does not provide a complete view on longer term planning 

such as a five-year horizon of strategic planning. In terms of product granularity, the SI&OP process 

typically operates at a level of so-called representative parts, a form of product grouping that allows for 

demand planning across geographies etc. This poses the challenge of translating the representative part to 

actual units of production of the different underlying products, which is what is required for accurate 

capacity planning. Furthermore, the SI&OP process is focused on planning the supply of top-assembly 

products based on market demand. Sub-assemblies and components are planned manually as a consequence 

of the results of the SI&OP process for top-assemblies, and their planning is therefore highly reactive in 

nature. To streamline and accelerate the SI&OP process across the supply chain, it would be desirable to 

perform component and sub-assembly planning proactively, without having to wait for top-assembly 

planning to be complete. Implementing this process improvement is currently hindered by a lack of 

transparency into the supply chain, where upstream demand and capacity data is limited and only available 

as an output of finished-good-level planning. Therefore, the SI&OP process would benefit from the 

availability of more detailed, end-to-end supply chain data, in particular with regards to manufacturing 

capacity. 

ERP system 

The company is currently in the process of implementing a next-generation cloud-based ERP system, which 

serves as an opportunity to reshape the specifications of the ERP system based on changed needs, and to 

adapt business processes accordingly. In the context of this transformation, Boston Scientific has an 

opportunity to improve the data collection and maintenance of capacity-related data. For example, capacity 

data could become part of the data regularly collected from sites and stored within the data warehouse of 

the ERP system. This would have the benefit of converting the capturing of capacity data into a business 

process with strong support of the IT organization. 

4.1.5 Long-Range Demand Forecast 

Boston Scientific runs a process of long-range demand forecasting, which is driven by the Global Supply 

Chain center of excellence in collaboration with marketing teams in the commercial divisions. The purpose 

of the long-range demand forecast is to plan for future demand on a 5-year time horizon. The long-range 

plan carries out planning roughly at a product family or franchise level, and includes a degree of 

inconsistency with regards to the product hierarchy level at which this planning occurs. The data generally 

includes a nominal and an upside demand forecast, i.e., projections on the expected demand, as well as a 

percentage increase in demand which represents an upside potential beyond the nominal demand 
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projections. This data is available on an annual basis (i.e., at the time of writing of this thesis, for the years 

2022, 2023, 2024, 2025, and 2026). 

Given that the long-range demand forecast includes nominal as well as upside demand forecasts, this data 

provides an opportunity for scenario planning and the analysis of what-if scenarios. Even with the raw data 

itself, the nominal and upside scenario are readily available as a basis for further what-if analysis, which 

would be based on adjusting the projected nominal and upside growth rates to understand how such changes 

modify associated capacity needs. 

However, it is in the nature of forecasts that they include a large degree of uncertainty. Even with a 

comprehensive scenario planning approach, there is a significant chance that demand forecasts are entirely 

false and do not materialize. It is therefore important to also include unlikely extreme scenarios in the 

planning process, in order to allow for the development of contingency plans beyond the expected growth 

trajectory. 

Overall, the long-range demand forecast is a useful dataset for the purpose of strategic capacity planning. 

While its accuracy is inherently associated with a large degree of uncertainty, and product grouping and 

naming is inconsistent within the dataset and with regards to other datasets, it forms a strong basis to 

understand future demand needs and can be easily stored in a central database for future analysis. The long-

range plan therefore forms a key data source for the purpose of this project.  

 

4.1.6 Overall Data Availability 

Given the current state of data availability at the company, a network-wide capacity model is not feasible 

at this time. Besides the specific examples listed above, the following observations were made with regards 

to overall data availability. 

Lack of consistency of capacity data 

There is currently a lack of consistency among the capacity data that exists within the Boston Scientific 

network. As described above, it was found that each site uses a separate, locally created capacity calculation 

tool, which is commonly a spreadsheet in the software Excel. All tools are similar with respect to the high-

level purpose and functionality: they aim to compare manufacturing capacity of individual business units 

or lines with the demand as reported from the global supply chain planning staff. However, these local tools 

differ significantly across the network, with variations along the structure of data, capacity definitions, and 

the business processes involved with creating, maintaining, and using the capacity tools. On the highest 
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level, these capacity tools exhibit significant variations in the formatting and layout of spreadsheets, with 

differing structures of tables, or required columns of data between different tools. This means that even if 

these capacity tools contain similar information, aggregating this information, ideally in an automated 

fashion, across the whole network is challenging.  

Furthermore, there exist differences in the processes of creating and utilizing capacity data among the sites. 

For example, some sites have thorough space planning processes, with detailed accounts for all use of space 

and regular updates to keep data recent. Other sites perform these actions ad-hoc as needed when major 

adjustments to the manufacturing footprint are performed. Furthermore, the format of data is fully 

inconsistent across sites, ranging from Excel spreadsheets to marked up images indicating space utilization. 

In addition, there are strong discrepancies with regards to data on cycle time, i.e., work content graphs, as 

described above. 

These inconsistencies complicate the aggregation of capacity data across the network, and the lack of data 

for some products, processes, or sites, makes an overall network-wide collection of data impossible at the 

point of writing of this thesis. 

Lack of consistency between different levels in the product hierarchy 

There is a lack of consistency in planning demand and production capacity with regards to the level of the 

product hierarchy where planning is performed. The level where planning is performed ranges from 

franchises or product families down to individual SKUs. In particular, there is a lack of consistency between 

supply and demand planning: Oftentimes, the hierarchy level at which production capacity is planned does 

not align with the hierarchy level of the long-range demand forecast for the same product. In addition, the 

long-range demand plan is an ad-hoc process without a standardized format, commonly performed at a 

franchise or product family level, and sometimes the grouping of products even falls outside of the defined 

product hierarchy. In addition, the lack of consistency in the planning hierarchy level makes identifying 

products challenging due to inconsistent grouping. Individual SKUs have a unique product number, which 

could serve as a unique identifier for a product. However, the numbering system in the product hierarchy 

does not provide such unique identifiers to groups of products such as product families or franchises, nor 

is it possible to deduce a product group from a unique product number. This makes creating linkages 

between different levels of grouping impossible in many cases, unless data is manipulated manually based 

on domain knowledge of a data engineer. Specific examples of these are provided below, as well as in the 

case study in Chapter 5. 
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Use of decentralized systems 

Additional challenges are caused by the lack of a centralized capacity planning system to date. Capacity 

planning occurs locally on an individual’s computer, and not in a central tool with a central database. The 

lack of this central data system means that capacity data is not centrally accessible, which would simplify 

a central capacity planning tool. With the current state of decentralized data, in order to assemble a central 

capacity planning tool, it would be required to request capacity data from hundreds of different individuals 

for thousands of products, and then manually transfer this data into a central database. Such an effort 

requires significant resources and time, making it unrealistic at the current time. 

Product nomenclature 

There is a large discrepancy in the product names used within the organization, by individuals and within 

different datasets. Products may have three or more different names, such as a commercial brand name, a 

descriptor based on the medical indication for which it was developed, production names, and heritage 

names stemming from R&D working names or from prior to an acquisition. Furthermore, there may be 

additional variations to these nomenclatures due to the use of abbreviations, the use of colloquial product 

names, or inconsistent use of product sub-qualifiers such as for different sizes or product generations. These 

discrepancies are resolved only by human operators, as naming inconsistencies between different systems 

are not formally resolved in any kind of data system. 

As an example of this highly complex and inconsistent nomenclature, the naming conventions in the 

Cardiac Rhythm Management and Neuromodulation divisions were analyzed. Figure 4-2 displays the 

different naming conventions in the long-range demand forecast, and within the capacity planning tool used 

at a manufacturing site which will be called Site B for the remainder of this thesis. In addition, Figure 4-2 

contains the proposal for a grouping, which serves to resolve the discrepancies among the unclarity with 

product naming. As can be seen from the schematic, various products carry different names in the long-

range plan and in the Site B capacity tool. For example, the product referred to in the long-range plan as 

Accolade is known as SB in Site B, where SB in turn is an abbreviation for Springboard. Such naming 

variations, while seemingly trivial, pose a stark challenge to the automation of capacity data analysis: both 

the long-range plan and the site capacity tool data sets refer to products by their respective name, and not 

some sort of unique identifier such as the unique product number. With the previous example of 

Accolade/Springboard/SB, there is thus no way for an automated system to know a priori that these 

products are in fact one and the same. The product naming discrepancies are further complicated by 

variation in product grouping between the different parts of the organization. This can be illustrated from 

the products of the Tachy franchise, and to an even graver extent, from the products in the Neuromodulation 
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division. In the Tachy franchise, it can be seen that the long-range plan breaks out the NG3 and NG4 

products, whereas the capacity tool at Site B only lists the NG3 product. In this specific case, this is caused 

by the development history and the underlying technical details of the product: The capacity tool which 

was inspected in-depth here stems from a business unit producing a certain component of the Tachy device. 

As it turns out, the two generations of Tachy productions referred to by the marketing organization as NG3 

and NG4 share the identical version of this component, and thus, the manufacturing site refers to them as 

the same product, NG3. Again, there is a priori no reason to assume that NG4 and NG3 are the same 

product, and it was necessary to manually create this connection and group these products to accurately 

represent them in a capacity model. These product grouping discrepancies are even more prominent in the 

Neuromodulation division. Here, the commercial organization only delineates two types of devices, deep  
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Figure 4-2. Example of inconsistent naming conventions and product grouping in the 
Cardia Rhythm Management and Neuromodulation divisions. 
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brain stimulators and spinal cord stimulators. Both are not referred to by these names in the long-range 

plan, and instead have the titles “8584 Dbs Ipgs” and “8503 Ipg”, respectively. In contrast, the 

manufacturing site at Site B performs planning based on five different product groups, namely Spectra, 

Montana, Archie, Wilson, and Blink. These products all exist in manifestations for deep brain stimulation 

and spinal cord stimulation, under the same Site B names. Instead, the different names refer to different 

generations of the medical devices, as well as different form factors and rechargeable/non-rechargeable 

configurations. They can therefore not be linked with the product types under which long-range planning 

is performed. In this remarkable example, the smallest possible grouping linking the production planning 

and demand forecasting datasets is the Neuromodulation division itself. 

Again, the most significant feature of this naming inconsistency is that it is not a priori clear or discoverable 

without knowing about the linkages between different data sets. What this implies is that in order to 

successfully build a full-scale model of the entire supply chain of Boston Scientific, there will be the need 

for significant efforts in data cleaning requiring the input of subject matter experts familiar with the different 

products and their varying names across the organization. In Chapter 4.4, an approach to develop a 

dictionary and product grouping system to link various product names is proposed, which could be used to 

implement a systematic data structure of product names and their synonyms. 

 

4.2 Unit of Measure 

It is an inherently difficult problem to measure manufacturing capacity for a large and complex 

manufacturing network. The specific case of a medical device manufacturer with a diverse product portfolio 

adds to this complexity due to the large variety of types of products produced. In particular, in this complex 

system there are stark variations with regards to the definition of what defines a single unit of a product. 

For example, there are products which can simply be counted, i.e., the unit of measure is the number of 

individual copies of the same item. Beyond this most simple case, there are products, in particular raw 

materials and components, that measured in units of length, such as wires, braids of wire, polymer tubes. 

Originating from these components and sub-assemblies measured by length, there are products which differ 

only in their length, implying that a major difference is the amount of material taken from a continuous 

source such as coil. In a simple numerical example, one could imagine an assembly with three different 

lengths of 50 cm, 75 cm, or 100 cm. From a coil with raw material of length 1500 cm, one could therefore 

cut 30 pieces of 50 cm, 20 pieces of 75 cm or 15 pieces of 100 cm, or any combination thereof. Therefore, 

if the production system has a certain capacity to produce coils with 1500 cm of raw material, it is not clear, 

what the capacity of the network is to produce finished goods – the result depends on the required mix of 
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lengths for the final product. Other potential units of measure for product quantity are by volume, i.e., liters 

or fluid ounces of a liquid, or by packages of individual items. 

Additional challenges to measuring capacity originate from differing product sizes and quantities produced. 

Product and component sizes can range from the sub-millimeter range to large capital equipment with 

dimensions at the order of a meter. Simply counting the number of products produced cannot capture the 

difference in scale and complexity of producing an individual small component such as a piece of stamped 

metal with thousands of units produced per day, versus the assembly of a complex, large piece of capital 

equipment, where quantities are in the range of a few individual units per day.  

Mixed model lines, which are discussed in further detail in the following section, add an additional 

dimension of complexity to the problem of accurately measuring capacity. Ultimately, to resolve the 

challenges associated with measuring capacity for different types of products and different units of measure 

for product, it is necessary to convert all production to the required production time. Production time 

presents a form of measurement that is comparable and clearly defined for all types of products. The details 

of this are described in Section 4.3 on mixed model lines, as the concept is closely linked to treating multiple 

products within a single line. 

4.3 Mixed Model Line Modeling 

Mixed model lines are production lines where the same production assets produce different types of 

products. In general, mixed model lines can take the shape of a line where the same tooling is used to 

produce different products, or where retooling occurs between batches of different products. 

Allocating production capacity to the different products passing through a mixed model line is not possible 

if capacity is measured as units produced in a certain time period. This is because the product mix changes 

how much capacity is allocated to each product. As an example, a production line produces products A and 

B, and product A has an effective cycle time of 100 s, and product B has an effective cycle time of 20 s. If 

the factory runs one 8-hour-shift per day, then the line could produce 288 units of product A per day if it 

only produced product A, or 1440 units of product B per day if it only produced product B. However, since 

the line produces some mix of products A and B, the capacity in units per day for each of these products 

depends on how much of the other product is produced. It is therefore not possible to provide a definitive, 

generally valid number in units per day for products A and B. The solution to this problem lies in redefining 

how capacity is measured, namely in terms of the ability to produce what is demanded. For the same 

numerical example, assume that we have a daily demand for product A of 200 units, and for product B of 

300 units, and we still have one 8-hour shift available to produce products A and B. The total time it would 
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take to produce all 200 units of product A and all 300 units of product B is 26,000 s or 7.2 hrs. This required 

time to produce is less than the time we have available, and thus there is sufficient capacity to produce both 

products A and B. However, it is also obvious that the required production time is close to the available 

time, so if there is significant growth in demand for either product, there is the expectation that capacity 

will soon be limited. In that case, it would be necessary to add an additional shift to increase the available 

time, or to reduce the effective cycle time of product A or B or both e.g. through the addition of additional 

equipment or through process improvements. Note that inherently, there is not more capacity of product A 

or product B. If the overall available time were insufficient to produce enough of both products to meet 

demand, it is not clear a priori whether product A or B should be given priority. This is a decision to be 

made by management when constraints manifest. 

The lesson from this example is that the appropriate way to measure capacity is by calculating the required 

time it takes to produce the demanded products, and to determine whether this amount of required time is 

above or below the available time to produce a product. If this analysis is performed in the appropriate time 

intervals (e.g. on a quarterly basis) based on demand forecasts, one can then identify current or future 

capacity constraints. It is also worth noting that management oftentimes prefers to be presented with 

summaries such as “we have the capacity to produce 10,000 units of product A and 50,000 units of product 

B per year” since this measurement is much easier to grasp than a pure time-based analysis. Based on the 

previous discussion, it is therefore very important to implement a cultural change where it becomes clear 

that the problem is not adequately captured by presenting a simple set of numbers in units per year for 

mixed model lines. Senior management needs to accept and drive the awareness that capacity is equivalent 

to the ability to produce 

4.4 Database Fields 

To develop a model of network manufacturing capacity, it is proposed to first implement a central database 

capturing capacity data from across the network in a standardized format. Figure 4-3 provides an overview 

over the proposed database tables and fields, each containing relevant attributes required to calculate 

network capacity. The capacity database is proposed to have the following tables, which will be described 

in more detail below: Raw Capacity Data, Cycle Times and Available Times, Demand, Space Map, Space, 

Product Map, Product Synonyms, Product Groupings, and UPN List. The table fields described below 

represent the columns of each of these tables, and each row represents a data point within the table. It was 

found that this data represents the minimally sufficient set of data required to accurately capture capacity. 
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Raw Capacity Data 

The table Raw Capacity Data contains attributes of production capacity for products and sites. An entry in 

this table consists of attributes identifying the site and production unit (table fields: Site, BU, Line, Station) 

and the product (table fields: Product, UPN). Capacity-related data includes the shift structure (table fields: 

shifts/day, hours/shift, days/work week, work weeks/year, time deduction/shift), and production-related 

attributes (table fields: equipment quantity, downtime in percent, uptime in percent, cycle time per 

equipment, effective cycle time, yield, efficiency factor, yielded net cycle time). Here, uptime is calculated 

based on the downtime, the effective cycle time is calculated based on the cycle time per equipment, the 

uptime, and the equipment quantity, i.e., the number of machines performing the same task, and the yielded 

net cycle time is calculated based on the effective cycle time, the yield, and the efficiency factor. 

It is worth noting that the capacity logic should function in the two cases where only one cycle time is 

provided for an entire manufacturing line (i.e., the cycle time at the bottleneck), and where the cycle time 

of production units smaller than a full line are available. 

Cycle Times and Available Times 

This table consists of calculated values based on the input values of the Raw Capacity Data. In combination 

with the demand data, the table Cycle Times and Available Times represents the relevant quantities required 

to perform the analysis of required time and available time. Table fields include an identification of the 

production unit, the product, the yielded net cycle time, and the available time (shifts/day, hours/shift, 

days/work week, work weeks/year, time deduction/shift). 

Demand 

The Demand table contains data from the long-range demand forecast in a flattened and standardized form. 

The product is identified through its name and unique identifier, and for each year, the nominal and upside 

demand are represented in the table. 

Space Map 

The Space Map table serves to link production units with the space in which they are located. The 

production unit is represented by the production unit unique ID field, and the space is represented by the 

space unique ID field. By linking a production unit, which could be a line or a production station, with the 

space (i.e., room) in which it is located, analyses of space-related capacity becomes possible. 

Space 
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The Space table captures a range of parameters relevant for capacity planning of production footprint. A 

set of attributes serves to uniquely identify a unit of space (table fields site (name), site code, space unique 

ID). Here, units of space can range from whole sites, to buildings, business units, and rooms. The space 

unique ID needs to be designated to each space, and should capture this hierarchy of space types. In 

addition, the table contains information about the type of space, and a Boolean value indicating whether the 

space is convertible. The rest of the table consists of the planned occupied and free space for the years 

considered, namely 2021 through 2026 for the purpose of this study. The total space of a unit is simply the 

sum of occupied and free space. 

Product Map 

The Product Map table serves to represent the product bill of materials in a flattened format. The attributes 

of this table are a top assembly name and unique ID, and a corresponding sub-assembly/component name 

and unique ID. Importantly, each sub-assembly or component for the same top assembly requires the entry 

of a new data point. Through this, a flattened data structure in the relational database is created. 

Product Synonyms  

The Product Synonyms table links a product name to a synonym of the same name. This serves as a 

dictionary that can help resolve the challenge of inconsistent product nomenclature across the organization. 

Again, the data is represented in a flattened format, i.e., for each synonym of the same product, a new row 

needs to be created. 

Product Groupings  

The Product Groupings table serves the purpose to link products to a product group. This table serves to 

formalize the observations made for products in the Neuromodulation division, where different parts of the 

company used different groupings to perform planning processes, see section 4.1.6, product nomenclature. 

The table contains fields to identify the line and site where a grouping occurs (table fields site, line unique 

ID, BU). This information is required because groupings may vary from site to site or even from line to 

line. The other fields identify the product and the group to which the product belongs. 

UPN List 

The proposed UPN List creates a connection between a potentially non-unique product name, and the 

unique product number. In addition, the representative part number is required as required as an attribute 

since it represents a more generally valid identifier than the UPN for planning purposes. 
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4.5 Capacity Calculation Logic 

In the following section, a logical flow of capacity calculations is proposed, which serves to convert 

capacity data from various sources into outputs delineating capacity constraints in the manufacturing 

network, Figure 4-4. On the highest level, calculating network capacity requires a set of inputs from various 

sources, which are being fed into a set of calculations converting these raw input data into measurable 

capacity information. These calculations yield results which need to be aggregated and properly presented 

as outputs. 

Inputs 

A range of input data from different sources and in various formats is required in order to capture and 

calculate the capacity across the network of a complex manufacturing supply chain. Capacity data also 

necessarily requires the availability of demand data, in order to properly capture the product mix of mixed 

model lines, as described in section 4.3. The capacity data required for the proposed calculation logic 

includes the product hierarchy and information on bills of materials for all products. This information is 

critical to capture the flow of product through the supply chain, and to calculate supply and demand of sub-

assemblies and components for a finished good. In addition, this data set includes information from the 

established product hierarchy, i.e. various levels of product grouping and aggregation. This becomes 

relevant to capture that different parts of the organization perform planning tasks at different levels of the 

product hierarchy. A second required data set is a complete list of production lines and individual stations 

on those lines, including the information of which products are being processed on each line. This data set 

constitutes a list of physical assets, and links them to the respective products. Importantly, for reasons which 

will be further elaborated in the case study section, it is desired to obtain a maximum level of granularity 

for this data: If available, production line data should be broken down to the level of individual production 

stations because for mixed model lines, the production bottle neck of each product may be a different station 

for each different product passing through the line. Further, capacity calculations require the cycle times of 

each product on each line, in the form of Design Units per Hour (DUPH) as determined by the work content 

graph. This data measures how much time is required, in steady state and under idealized conditions, to 

perform the bottle neck operation, and thus defines the output frequency of a production line. In order to  
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determine the real production output of a line, efficiencies, downtime data, and production yields are 

required. With the help of this data, the theoretical cycle times or DUPH can be corrected to determine a 

net cycle time. With regards to data on the available time to produce product, shift structure data is required. 

Again, this data should be included with the highest possible level of granularity since shift structures vary 

even from line to line or business unit to business unit within production sites. Averaged or typical shift 

data could distort the calculated results, and cover up cases of capacity constraints that are specific to a 

specific line or station. Finally, as mentioned before, the capacity calculations require the input of demand 

data, which is typically provided in the form of the long-range demand forecast of top assembly products. 

Here, demand data exhibits variations at the level of the product hierarchy where planning is performed, 

and thus it is important to have the appropriate linkage to the product hierarchy to connect demand data 

with supply side data such as cycle times or production lines. In the model developed here, it is assumed 

that the data is available for the next five years. Importantly, this requires that for yield data, downtime, 

cycle times, etc. in future years, improvement rates have already been included in calculating this data as 

an input into the model. The input data fields were described in section 4.4, where the format of all tables 

and table entries is described to capture the data described here. The specific process of capturing such data 

is described in more detail in chapter 5, where specific case studies are presented with numerical examples. 

 

 

Figure 4-4. Overview over the capacity model calculation logic, feeding a range of inputs into a 
calculation logic, yielding outputs of capacity constraints detected in the manufacturing network. 

Inputs

Product Hierarchy & Bills 
of Materials

Manufacturing Lines

Top Assembly 
Demand

Cycle Times (DUPH)

Efficiencies & 
Downtime
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Outputs

Cases of Capacity 
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Calculations

Yielded Demands at 
Every Station

Corrected Cycle Times

Sum of Required Time 
per Station

Comparison of Available 
Hours to Required Hours

Line Available Hours



38 
 

Calculations 

The input data needs to then be made useful by performing a sequence of capacity calculation steps, which 

convert raw input data into an output of detected capacity constraints. Further detail on the specific 

calculation steps is provided below. It is important to note that all calculations need to be performed for all 

future points in time of interest, for example on a quarterly or annual basis.  

Demand data as provided from the long-range demand forecast inherently includes only the demand of 

finished goods, i.e., top assemblies. Since a complex supply chain such as the one of Boston Scientific 

represents a pull system, where sub-assemblies are serving as supply to the top assembly production, and 

components feed the sub-assembly production, each of these supply chain echelons needs to meet the 

demand of the layer which it supplies. This implies that the demand of sub-assemblies feeding into the top-

assembly production line has to be corrected for the yield of the top-assembly production: The supplying 

layer of the supply chain has to provide sufficient input for the starts at the next layer, not just for the 

successful finishes. 

Figure 4-5 schematically depicts the calculation of the yielded demand for each sub-assembly and 

component based on the yields of each production step and the demand of the top assembly. These 

calculations need to be performed for each top assembly, and for each sub-assembly and component within 

the supply chain of each product, respectively. At each layer, the demand of the supplying layer is given by 

 

 

Yielded Demand

Component (p3) Sub-Assembly (p2) Top-Assembly (p1)
Input: BOM/Product 
Hierarchy Input: Demand d1

𝑑𝑑2 =
1
𝑦𝑦1
⋅ 𝑑𝑑1𝑑𝑑3 =

1
𝑦𝑦2
⋅ 𝑑𝑑2

Input: Yield y1Input: Yield y2

Input: Line 3 Input: Line 2 Input: Line 1

Output: 
{Product 𝑝𝑖, Production Line 𝑙𝑗, Demand 𝑑𝑑𝑖}
Where 𝑖 and 𝑗 are unique identifiers for the product and 
production line, respectively

Inputs:
 Bill of Materials / Product Hierarchy

 Defines product material flow
 Production Line IDs

 Defines production units
 Demand Forecast

 Provides top-assembly demand
 Yields

 Defines production yield of every step

Figure 4-5. Calculation of the yielded demand of products upstream in the supply chain, based on the 
top assembly demand from demand forecasts, and on yields of each step along the manufacturing supply 
chain. 
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𝑑𝑑𝑙𝑙+1 =
1
𝑦𝑦𝑙𝑙
⋅ 𝑑𝑑𝑙𝑙 

Where dl+1 is the demand at the supplying layer, and yl and dl are the yield and demand at the pulling layer, 

respectively. The calculation outputs a set of tuples of the form {Product pi, Production line lj, Demand di}. 

this means that for each product, which includes all top-assemblies, sub-assemblies and components, and 

for the corresponding production line, a demand value is calculated.  

It was found that the most commonly available source of capacity data stems from work content graphs, 

which include measurement data on the theoretical, ideal cycle time of production steps in the form of 

design units per hour (DUPH). The cycle time of a production step is simply the inverse of the DUPH. 

Since this data represents an idealized state which does not account for imperfections and inefficiencies in 

the production process, it needs to be corrected for these imperfections, as schematically depicted in Figure 

4-6. Here, the yield represents the fraction of successful finishes of a production step out of all starts. The 

up time is the fraction of time where the production process is actually running; most commonly this is 

equivalent to the equipment running. The up time in percent is 1 – down time, where the down time is the 

time fraction where the production process is stopped, for example due to equipment failure. Finally, the 

efficiency factor measures all other sources of inefficiency in the production process that could increase the 

cycle time relative to the ideal cycle time of the process. For example, this could include ramp-up and ramp-

down phases after and before stoppage or breaks, or deviations from the ideal cycle time from newly trained 

workers. 

 

 

Corrected Cycle Times

𝑁𝑒𝑡 𝐶𝑦𝑦𝑐𝑐𝑙𝑒 𝑇𝑖𝑚𝑒 =  
1

𝑦𝑦𝑖𝑒𝑙𝑑𝑑
⋅  

1
𝑢𝑝 𝑡𝑖𝑚𝑒

⋅  
1

𝑒𝑓𝑓𝑖𝑐𝑐𝑖𝑒𝑛𝑐𝑐𝑦𝑦
⋅

1
𝐷𝑈𝑃𝐻

Inputs:
 DUPH (Design Units per Hour)

 Theoretical, optimal cycle time of a process
 Yield

 Ratio (in %) of successful completes out of process starts 
 Up Time

 Ratio (in %) of time where equipment is running (1 –
down time)

 Efficiency
 Efficiency (in %) that corrects for other sources of 

reduced throughput

Output: 
Net Cycle Time (in hours), calculated for each 
production step, and each product (including top-
assemblies, sub-assemblies, and components)

Figure 4-6. Calculation of corrected cycle times, by correcting ideal cycle times, i.e. the inverse of 
Design Units per Hour (DUPH), with the yield, up time and efficiency of a process. 
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Next, it is necessary to calculate the amount of time available at a factory for production. Importantly, there 

are two approaches to compute the available time: in the first approach, the current shift structure is used 

to obtain a total amount of time at which the production line is running. In the second approach, an ideal 

state of factory utilization is assumed, for example 70% utilization during steady-state production, with an 

additional 20% of utilization available for surge capacity and 10% available for maintenance. This 

corresponds roughly to a 24/5 shift structure, i.e. 24 hours of production during the 5 workdays of a week. 

For various reasons, many factories, or parts of factories, deviate from this ideal state, either by exceeding 

or by falling below a 70% utilization: While some production units are heavily utilized with utilization 

close to 100% (i.e., 24/7 operation), other production units only operate one or two shifts, corresponding to 

utilization rates well below 50%. Since measuring capacity ultimately reduces to comparing the amount of 

time required to produce the demanded products with the available time, it is important to understand the 

current available time based on the shift structure, corresponding to the first approach. This calculation is 

presented in Figure 4-7 and explained here: The hours available per day are the length of a single shift, net 

of breaks multiplied with the number of shifts per day. Then, the hours of each day need to be converted to 

total available time per year, by multiplying with the number of work days per week, and the number of 

work weeks per year. Finally, the total number of available days needs to be corrected by any holidays 

where the manufacturing unit is shut down. It may be useful to convert this number of annual hours to the 

Line Available Hours

𝐴𝑣𝑎𝑎𝑖𝑙𝑎𝑎𝑏𝑙𝑒 𝐻𝑜𝑢𝑟𝑟𝑠𝑠 𝑝𝑒𝑟𝑟 𝑦𝑦𝑒𝑎𝑎𝑟𝑟 = (ℎ𝑜𝑢𝑟𝑟𝑠𝑠 𝑝𝑒𝑟𝑟 𝑠𝑠ℎ𝑖𝑓𝑡 − ℎ𝑜𝑢𝑟𝑟𝑠𝑠 𝑜𝑓 𝑏𝑟𝑟𝑒𝑎𝑎𝑘 𝑝𝑒𝑟𝑟 𝑠𝑠ℎ𝑖𝑓𝑡) ⋅ #𝑠𝑠ℎ𝑖𝑓𝑡𝑠𝑠/𝑑𝑑𝑎𝑎𝑦𝑦
⋅ (#𝑤𝑜𝑟𝑟𝑘 𝑑𝑑𝑎𝑎𝑦𝑦𝑠𝑠/𝑤𝑒𝑒𝑘 ⋅ #𝑤𝑜𝑟𝑟𝑘 𝑤𝑒𝑒𝑘𝑠𝑠/𝑦𝑦𝑒𝑎𝑎𝑟𝑟 − #ℎ𝑜𝑙𝑖𝑑𝑑𝑎𝑎𝑦𝑦𝑠𝑠)

Inputs:
 Shift Structure:

 Working hours per shift
 Hours of break per shift
 Shifts per day
 Work days per week
 Work weeks per year
 Number of holidays (i.e. days of plant shut down) per 

year

Output: 
Line available hours per year

Line available hours per week

𝐴𝑣𝑎𝑎𝑖𝑙𝑎𝑎𝑏𝑙𝑒 𝐻𝑜𝑢𝑟𝑟𝑠𝑠 𝑝𝑒𝑟𝑟 𝑤𝑒𝑒𝑘 = 𝐴𝑣𝑎𝑎𝑖𝑙𝑎𝑎𝑏𝑙𝑒 𝐻𝑜𝑢𝑟𝑟𝑠𝑠 𝑝𝑒𝑟𝑟 𝑦𝑦𝑒𝑎𝑎𝑟𝑟 / 52

Figure 4-7. Calculation of line available hours based on shift structure and other work time data. 
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average number of hours per week, by dividing by 52. This allows for easy comparison with the described 

ideal state based on desired utilization factors. 

 

 

As described, the goal of the capacity model is to compare the available time to the required time at the 

most granular level of a production unit which the data can provide. In the most granular case, this occurs 

at an individual station level. Mixed model lines are a common feature for the production network of Boston 

Scientific, so the total required time at a station or line is the sum of required time for each individual 

product produced by the production unit, as depicted in Figure 4-8. For each product pi processed by station 

sj, the required time to produce that product is calculated by multiplying the previously calculated net cycle 

time with the yielded demand at this stage of the supply chain. This individual required time is then summed 

for all products to obtain the total required time at the station. Again, depending on the granularity of 

calculation (based on available data), this calculation can occur either at an individual station level, or at a 

line level, where only the bottleneck is considered. However, the bottleneck may not be the same for each 

product, so calculations performed at the individual station level will generate the most accurate results. 

Sum of Required Time per Station

Product p1

Demand d1

Cycle Time ct1,j

Product p2

Demand d2

Cycle Time ct2,j

Product pn

Demand dn

Cycle Time ctn,j

𝑟𝑟𝑡1,𝑗 = 𝑑𝑑1 ⋅ 𝑐𝑐𝑡1,𝑗Required time

𝑟𝑟𝑡2,𝑗 = 𝑑𝑑2 ⋅ 𝑐𝑐𝑡2,𝑗Required time

𝑟𝑟𝑡𝑛,𝑗 = 𝑑𝑑𝑛 ⋅ 𝑐𝑐𝑡𝑛,𝑗Required time

Total required time 𝑅𝑗 = �𝑟𝑟𝑡𝑖,𝑗
𝑖St

at
io

n 
s j

Output: 
 Required time rtij: required time to meet demand of

product pi at station sj
 Total required time Rj: Total required production 

time at station sj
 This calculation needs to be performed for 

every station

Inputs:
 List of stations: {sj} = {s1, s2, … ,sm}
 List of products processed at station sj: 

{pi}j = {p1, p2, … , pn}j
 Demand di for each product pi
 Net cycle time ctn,j of product pi and station sj

Figure 4-8. Calculation logic for the total sum of required time. 
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Finally, based on the previous calculations, it is now possible to actually assess the capacity of a production 

system such as a station or line. Assessing the capacity of a production system is equivalent to comparing 

the required time to the available time. In the proposed model, it is assessed whether the current capacity 

based on the actual shift structure is sufficient to produce product, and also whether the required time meets 

the ideal utilization goals of Boston Scientific, where shift utilization should be less than 70% to have 

available surge capacity and time available for maintenance. This logic is described in Figure 4-9, and 

broken down in three possible cases, A, B, and C. In case A, the required time Rj exceeds the available time 

Aj. If this is the case, the current capacity is not sufficient to meet demand. This scenario can in turn be 

broken down into two sub-cases. In case A1, the required time exceeds 168 hours per week, i.e., it exceeds 

the total number of hours a week has, so it is physically impossible to produce all products required. This 

means that a hard capacity constraint exists, which requires some sort of investment to be alleviated. In the 

case A2, the total required time is above the current available time, but less than 168 hours per week. In this 

case, the current shift structure does not provide sufficient capacity to meet demand, but it would be 

physically possible, through additional shifts or overtime, to meet demand with the currently available 

equipment and space. Both cases A1 and A2 correspond to insufficient capacity of the production system. 

In case B, the required hours fall below the available hours, but the required hours exceed 118 hours per 

week. In this case, the level of capacity utilization is higher than the desired ideal state of 70%, which means 

that there is limited capacity for surge. Therefore, case B corresponds to constrained capacity. Finally, in 

case C, the required time falls below both the available time and the desired state of 70%. In this case, there 

is sufficient capacity to meet demand with the current configuration of shift structure and equipment. 

 

Comparison of Available Hours to Required Hours

Total required 
time Rj

Total available 
time Aj

Case A: Rj > Aj Required time exceeds available time

⇒ Case A1: Rj > 168 hrs / week 

⇒ Case A2: Rj < 168 hrs / week 

Case B: Rj < Aj and Rj > 118 hrs / week

Case C: Rj < Aj and Rj < 118 hrs / week

Required time per week exceeds the number of hours in a week

Required time per week exceeds available time but is less than 
the number of hours in a week

Required time per week is less than the available time and more than 
the ideal state of 118 hours per week

Required time per week is less than the available time and less than 
the ideal state of 118 hours per week

Ideal state of capacity utilization:

Steady state: 
70% of 168 hrs = 118 hrs

Surge capacity: 
20% of 168 hrs = 34 hrs

Unplanned outage capacity: 
10% of 168 hrs = 17 hrs

Insufficient 
capacity

Constrained 
capacity

Sufficient 
capacity

Figure 4-9. Comparison of available hours to required hours. 
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Outputs 

The calculated results need to be aggregated and presented to decision makers, in order to make the useful 

and convert findings into actions which respond to detected capacity constraints. The proposed model 

determines capacity constraints for each production unit, using the cases outlined above, where capacity 

constraints are broken down into insufficient capacity and constrained capacity with different levels of 

urgency. These cases need to be aggregated and presented visually in order to extract information and 

inform decisions.  

 

4.6 Space Logic 

The model described in Chapter 4.6 outlines how capacity constraints are detected. As a next step, the 

model then needs to determine whether these capacity constraints can be alleviated by adding additional 

shifts, or if space additions are required. This schematically depicted in the flow diagram of Figure 4-10, 

which needs to be executed for all spaces/products, and for each planning cycle such as for every quarter 

or year for which the model should make predictions. At the start of this logic sits the output from the 

general capacity model, which produces cases of insufficient line capacity, i.e., where the amount of 

required production hours exceeds the available hours. By including information on the shift structure, the 

next step is to determine whether there is an ability to add an additional shift to increase the available hours. 

This can be achieved when a line is not yet operating at the ideal state of 70% utilization, i.e., a 24/5 shift 

structure (for simplicity, it is assumed that a 24/5 shift structure can be implemented at all factories in the 

network, ignoring potential labor-related issues that might arise). If a shift can be added, this should be 

done in order to meet capacity. If a shift cannot be added, this implies that additional space is required to 

increase capacity to the required level. At this point it is necessary to determine the additional space 

requirement to add capacity and alleviate the constraint. This should be done through a calculation using a 

space scaling factor, which yields the following equation: 

𝑎𝑎 = 𝑐𝑐 ⋅ 𝑠𝑠 ⋅ (𝑟𝑟 − 1) 

Where a is the additional space required, c the current space footprint of the line, s the scaling factor 

described below, and r the ratio of required hours to available hours.  

The scaling factor is defined as follows, and based on the following rationale: doubling the output of a 

production unit does not necessarily require twice the space, as it may not be necessary to duplicate the full 

line. Instead, only parts of a line, namely the production steps with the lowest throughput, would need to 

be duplicated. So effectively, adding twice the production output may only require, say, 25 % more space,  
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Figure 4-10. Flowchart of the logic to assess manufacturing space as a dimension of capacity, based on 
the outputs of the capacity model, i.e., the detection of capacity constraints. The decision tree determines 
if additional space is required or current footprint is sufficient to accommodate the additional capacity 
requirement. 
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in which case the scaling factor would be 25 %. Therefore, the scaling factor s is defined such that to add x 

% of capacity, space needs to be increased by s∙x %, where s < 1. 

Once the additional space is calculated, the next step is to verify whether the required additional space is 

available. Here, two criteria are relevant: First, whether the space required at a site exceeds the total 

available space. And second, whether the type of required space is available. The first criterion verifies 

whether space is available at all, and the second criterion ensures that the correct type of space, for example 

the appropriate level of cleanroom quality is available. If the total required additional space exceeds the 

available space, this indicates a capacity constraint, i.e., the requirement to add additional space to the 

network. In the case of ensuring the availability of the correct type of space, if the correct space is not 

currently available, the next check is whether there is convertible space that can be appropriately converted 

to the required space type such as the right level of cleanroom control. If such space is not available, then 

again, a capacity constraint has been detected, requiring investment into additional space to alleviate the 

constraint. 

As mentioned initially, this analysis needs to be performed for the whole network and for different points 

in time. Using this approach, future space constraints can be detected in the network, and ideally, if they 

are detected with sufficient lead time, appropriate measures to respond to future constraints can be taken 

before they arise. By doing so, capacity planning can be shifted from a reactive to a proactive mode, where 

capacity is being installed prior to an increase in demand manifesting itself. Given the high margins in the 

medical device industry, this is a favorable approach, as the opportunity cost of underage, where demand 

cannot be met, far exceeds the cost of excess capacity. In addition, there is an ethical obligation to have 

sufficient capacity for a medical device company, in order to be able to serve patients who require the life-

saving products Boston Scientific offers. 
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5. Case Study 
As laid out in the current state assessment above, the manufacturing network of Boston Scientific is a highly 

complex system, and to date, there a is gap of uniform capacity data that could be used to build a network-

wide capacity model. To demonstrate the logic developed in section 4, a product was selected for case study 

of the performance of the model, which will be referred to as Product A in this thesis. In this case study, it 

is demonstrated how a capacity model could be implemented for a single product. These learnings can then 

be applied for the scale-up of the model beyond individual products.  

To select an appropriate product for a case study, this product should satisfy a range of criteria that makes 

it a valuable example along the dimensions of relevance, complexity, and practicality: 

Relevance: In order for a case study product to be relevant in the context of manufacturing capacity, it 

should contribute significantly to Boston Scientific’s revenue today, as well as exhibit significant future 

growth of volume and revenue. If the product satisfies these criteria, this means that it is a priority to senior 

management. Furthermore, it implies that the product is representative of the future growth of the company, 

which is the key business driver requiring more systematic network capacity modeling. 

Complexity: Products selected for a case study should capture as many aspects of supply chain complexity 

as possible, in order to be generalizable. These aspects of supply chain complexity include: 

 Components, sub-assemblies, and top-assemblies pass through multiple factories within the 

network. 

 At least some production occurs in mixed-model lines, and there is variation between batch and 

serial manufacturing. 

 The production processes at different steps of the value chain vary in their degree of automation, 

from highly manual to fully automated. 

 There are special handling requirements, such as cold-chain requirements, nuclear safety 

requirements, or short shelf lives. 

Practicality: It should be practically feasible to build a capacity model for the selected product, meaning 

that sufficiently complete capacity data should exist for this product. Furthermore, this data needs to be 

accessible through both the relevant responsible team members and the data systems where the data is 

housed. 
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5.1 Case Study on Product A 

5.1.1 Product Description 

Product A is marketed by the Cardiac Rhythm Management division of Boston Scientific. It was selected 

for a case study in this thesis because it satisfies many of the criteria mentioned above. It represents a 

growing and relevant product in the Boston Scientific portfolio, and an example of a product in a rapidly 

growing segment of the healthcare market.17 Furthermore, its supply chain contains many of the 

complexities that are characteristic for Boston Scientific and other global medical device manufacturers: 

multiple sites are involved in the production of the product, and many lines are mixed-model lines. The 

manufacturing systems of Product A and its components feature varying degrees of automation, and the 

manufacturing of lithium-containing batteries requires special handling including a dry-room atmosphere. 

Finally, the current-state assessment has shown that capacity data of the product is available, albeit in 

various formats and structures, which enables the creation of a capacity model for this product. 

5.1.2 Process Flow Diagram of the Manufacture of Product A 

Manufacturing of Product A occurs at two sites in the Boston Scientific network, which will be referred to 

as Site A and Site B in this thesis. Figure 5-1 shows a high-level process flow diagram of the production 

steps required to produce Product A from individual components to the finished good. It can be seen that 

most components and sub-assemblies are produced at Site A, which is highly representative for the design 

of the Boston Scientific network: Site A serves mostly as an internal supplier of components to other 

factories. The components of Product A, components A, B, C, and D, are produced in different business 

units of Site A. Components C and D feed into sub-assemblies which are also produced at Site A, and 

component B feeds into a sub-assembly production process at Site B. All components and sub-assemblies 

are then supplied to the finished good production line at Site B. The top-assembly consists of four steps 

prior to sterilization and packaging, which are not considered in this thesis. 
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5.1.3 Capacity Assessment 

A prototype model for a mixed model line was assembled for the production of Sub-Assembly A at BU B.1 

of Site B. For this line, it was found that sufficient data was available to perform stand-alone calculations, 

and additionally, gaps in data could be filled via manual inputs. 

An important feature of this prototype is the ability to adjust certain input parameters for scenario planning. 

This is particularly important for parameters which are based on assumptions or forecasts of future 

developments, because these parameters are inherently uncertain. With the help of scenario planning, it is 

possible to determine potential breaking points in the future capacity evolution, e.g., by determining under 

which demand trajectory current capacity projections will be insufficient in the future. Importantly, in this 

first prototype, adjustable parameters were viewed as global, i.e., they apply to all products or processes. 

In future iterations, it should be considered if these parameters are chosen as global values, which would 

allow for simplicity for the operators, or as parameters which can be adjusted for individual lines, products, 

etc. In the view of the author, a good balance would be to maintain adjustable parameters at a factory level 

for capacity data, and at a product family level for demand forecasting data. Selecting this intermediate 

Sub-Assembly A

(Site B)

Component B

Component C

BU A.3

Sub-Assembly C

BU A.5

(Site B)

Step 2Step 1 Step 3 Step 4

Sub-Assembly B

Component D

BU A.1

Component A

(Site A)
BU A.1

BU A.4

BU B.1BU A.2
(Site A)

(Site A) (Site A)

(Site A) (Site A)

Top assembly – BU B.2

Figure 5-1. High-level process flow diagram of the manufacturing steps involved in the manufacturing 
of Product A from components to sub-assemblies and the top assembly. 
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level of granularity, in combination with reasonable default values and the ability to adjust parameters at a 

global scale, will allow decision makers a reasonable degree of customization, without giving in to the 

illusion that there can be perfect predictions of the future. 

While the prototype was a part of the capacity analysis of only Product A, the line investigated in detail 

constitutes a mixed model line. Due to the interdependency of capacity of all products passing through a 

mixed model line, it was required to perform a capacity analysis for all products passing through the same 

line. This made data capture significantly more complex than for an individual product, since the product 

mix corresponded to nine products in the demand forecast and eleven products in the manufacturing 

planning tools. However, by capturing this additional complexity, the model is more representative for the 

overall complexities in the supply chain, and generalized learnings can be extracted. 

The following parameters were included as adjustable input parameters for the purpose of scenario 

planning: 

Improvement rate – cycle time:  This parameter sets the annual improvement rate, in percent, of the cycle 

times in the model. For example, an improvement rate of 5% would mean that year-over-year, the cycle 

time of all processing steps reduces by 5%. 

Improvement rate – yield: The improvement rate of the yield defines by how many percent the yield 

improves annually. For example, an improvement rate of 5% of the yield would imply a year-over-year 

increase in yield by 5%. 

Demand adjustment – nominal demand: This parameter serves to adjust the nominal demand as forecasted 

in the long-range demand forecast. Therefore, it is possible to investigate the capacity requirements based 

on higher or lower demand manifestations than nominally forecasted. The parameter is input in the form of 

a percentage deviation from the nominal forecast data. 

Demand adjustment – upside demand: Similar to the demand adjustment for the nominal demand, this 

parameter lets a user of the model adjust the demand forecast for upside demand. Therefore, it is possible 

to perform scenario planning for stark deviations from the nominal forecasts, and observe potential breaking 

points in the capacity projections. 

Beyond these adjustable parameters for scenario planning, the model consisted of three types of data: Input 

data from structured sources, manual entry data, and calculated data. Input data from structured sources 

represents data that was available from data sources such as site capacity models or the long-range demand 

forecast. It could be used without a large degree of manipulation, besides translating data structures from 

data sources to the data structure proposed in Chapter 4.4. Manual entry data is data that was not readily 
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available from structured sources, but rather had to be collected through research, interviews, or 

explanations from subject matter experts. Calculated values are based on the first two types of data, and 

result from calculations and data manipulation. These values contain parts of the logic outline in Chapter 

4.5. 

The following data from structured sources was used as inputs into the model: 

Cycle times and shift structure:  The cycle times and shift structure were extracted from the capacity tool 

of the business unit B.1 at Site B. The data had to be reformatted to match the desired input format. 

Demand: The demand data was extracted from long range forecast, as provided from the global supply 

chain center of excellence and the supply chain planning staff. 

The following data had to be entered manually since no structured data was available: 

Product synonyms: A list of product name synonyms was assembled which contained different names for 

the same products, containing synonyms for all involved products as used in the long-range demand 

forecast, capacity planning tool, as well as other sources of data. The list of synonyms can be found in 

Table 5-1. Here, we discuss all relevant product synonyms in the Cardiac Rhythm Management and 

Neuromodulation divisions, which were part of the considered mixed model line. As described in section 

4.1.6, there are various types of product naming inconsistencies within the Boston Scientific supply chain 

and commercial businesses. For example, the types of synonyms range from spelled out abbreviations and 

the commercial names to a qualifier of the division, regional localizations, or indications of the product 

generation. In the model, all of these synonyms point to a Product Master Name, which serves as the linkage 

point between different names. It is worth reiterating that this connection between names and the list of 

synonyms was assembled manually, which implies that it is likely not exhaustive. Therefore, there is a 

likelihood for further complications in the future, when the model is scaled form a small set of products to 

the larger organization. 

Product groups: The list of product groups, Table 5-2, contains the manually assembled grouping of 

products based on the different types of grouping in different data sources. Importantly, all products in a 

product grouping point towards the same master group name, which is given in the left column. The two 

product groups created for the Neuromodulation and Cardiac Rhythm Management divisions were the  
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Tachy group and the Neuro group. These groupings are consistent with the description in section 4.1.6 and 

Figure 4-2. For Tachy, it was found that two products in the long-range forecast named NG3 and NG4 

correspond to only one product in the PCPA manufacturing line: The products represent to two generations 

of the same product series, and the built-in printed circuit board assembly has not changed between the two 

generations. Therefore, manufacturing plans production as only one product, which implies that a linkage 

between demand planning and manufacturing requires to group the products accordingly. In case of the 

neuromodulation division, it was found that the divisional planning of demand and the planning of 

manufacturing capacity occurs with entirely different types of groups, as outlined in section 4.1.6 and 

Figure 4-2. Here, the smallest possible grouping that can capture these differences is the division itself, and 

thus the grouping is termed Neuro, capturing all existing product names from both the long-range forecast 

and the local capacity planning tool. 

Product Master Name Synonym 
ICM Insertable Cardiac Monitor 
ICM LUX-Dx 
ICM CRM ICM 
ICM LUX-DX ICM US 
ICM LUX-DX ICM OUS 
ICM LUX-DX ICM 1.2 IDE US 
ICM ICM 1st 
NG3 NG 3 
NG3 Tachy 
LCP Leadless Cardiac Pacemaker 
SB Springboard 
SB Accolade 
SB Brady 
SB SB  
SICD Gen 2 
SICD Emblem 
SICD S-ICD PG 
SICD S-ICD 
ETS External Trial Stimulator 
ETS External Trial Stimulator 
ETS SCS ETS 
ETS ETS PCBA 
ETS ETS Flex 

 

Table 5-1. List of product synonyms for the cardiac rhythm management and neuromodulation divisions, 

for products processed at BU B.1 of Site B. 
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Product Grouped product 
Tachy NG4 
Tachy NG3 
Neuro DBS IPGs 
Neuro SCS IPGs 
Neuro Spectra 
Neuro Montana 
Neuro Archie 
Neuro Wilson 
Neuro Blink 

 

Table 5-2. List of product groups for the cardiac rhythm management and neuromodulation divisions, 

for products processed at BU B.1 of Site B. Most importantly, neuromodulation products exhibit 

inconsistent grouping between the long-range forecast and the production site, making the division itself 

the smallest possible general grouping. 

 

Based on the structured and manual input data, a range of calculations was performed, mirroring the 

capacity calculation logic outlined in Chapter 4.5. These calculations were performed sequentially, as some 

results served as inputs for subsequent calculations. 

Joined groups: The joined groups represent the synthesis of product synonyms and product groups 

described above. They represent a “lowest common denominator” of product names and groups, linking all 

input data to the smallest possible group of products in order to connect different types of data collected 

with different product names/groups. This data table represents a flattened, table-version of the linkages 

laid out in Figure 4-2. Every input product name from the long-range demand forecast, and from the Site 

B capacity planning tool is first mapped to its product master name based on the synonyms table, and then 

to the appropriate product group, based on the product group table. 

Cycle times by group: The table cycle times by group maps the raw cycle times as extracted form the Site 

B Capacity tool to the joined groups as previously defined. This is performed at the same level of granularity 

in terms of work centers as the raw data, which in the case of this prototype is by individual production 

station. It is worth noting that within a joined group, individual products do not necessarily have the same 

cycle times, and therefore, it was necessary to develop a definition of the cycle time for a group. For 

simplicity, cycle times were simply averaged in the form of the arithmetic mean, but other approaches are 

certainly viable and would represent the data more accurately. A grouping approach using a weighted 

average based on the actual product mix as represented in the demand would be more accurate, but create 

an additional loop in the calculation logic of the capacity model. Since in the case of the considered line, 
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products grouped together are generally similar in nature, with similar cycle times, this additional loop was 

avoided to make the model simpler to understand and to implement at a larger scale. 

Demand by group: The demand by group is the mapping of raw input demand to the groups established in 

the table joined groups. In the case of demand, the aggregation is simply a summation of the demand of 

individual products, and is therefore an accurate representation of the data, albeit with an obviously reduced 

degree of granularity. 

Supply/demand match: The supply/demand match is the final step in the capacity logic and represents the 

core functionality of capacity modeling. In this calculation, the required and available times are compared 

and represented in a rudimentary graphical form, see Figure 5-2. The required times are calculated per 

station for each year, for both the nominal and upside demand forecast values: the cycle time of each product 

is multiplied by the annual demand to calculate the annual number of hours required to produce the product. 

For each station, these required hours are then summed up for all products, yielding the total required hours 

per station. The table furthermore includes the currently available hours based on the shift structure, as well 

as the total number of hours in a year as the theoretical upper limit of available time in a year. If the number 

of required hours is less than the currently available hours, the corresponding table field will be highlighted 

in green, indicating sufficient capacity. In the case that the required hours exceed the currently available 

hours, but are less than the total hours in a year, the corresponding table field is highlighted in yellow, 

indicating a capacity constraint under the current shift structure. Such a constraint could be alleviated by 

adding additional shifts, but without the requirement for further investment into equipment or space. 

Finally, in case the required hours exceed the total hours in a given year for the nominal or upside demand, 

the respective table field is highlighted in red. This corresponds to a lack in capacity which requires 

additional installation of equipment or space, as the constraint cannot be alleviated by an additional shift. 

In addition to the nominal calculation results based on current cycle times and the long-range demand 

forecast, the supply/demand match table also includes a sensitivity analysis based on the adjustable 

parameters described above (improvement rates and demand adjustments). This second table, which is 

formatted in the same layout as the nominal results, shows how the capacity constraints shift in case of 

adjusted demand or when capacity-related manufacturing performance improves. As an example, it can be 

seen in Figure 5-2 that for Station 1, under the given adjusted parameters (improvement rate: cycle time – 

2%, improvement rate: yield – 8%, demand adjustment: nominal demand – 5%, demand adjustment: upside 

demand – 5%), capacity would be insufficient under nominal demand in year 3, whereas without 

adjustments, it would be insufficient only under upside demand in year 3. This indicates that there is a 

potential breaking point at Station 1 which could manifest quickly should demand rise quickly or 

improvement rates fall short of expectations.  
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5.2 Generalized Learnings 

The implementation of a prototype capacity assessment for Product A led to learnings which will be 

generalizable for the future scale-up of the capacity model. These learnings are described in the following 

section, and should be considered when planning for the implementation of the abstract model logic 

outlined in Chapter 4. 

One of the major challenges associated with measuring capacity successfully, as described above, is the 

correct unit of measure of products, as well as the appropriate level of granularity of data included in the 

model. It has been described above in detail that the appropriate measure of capacity is in units of production 

time, and this was verified through the implementation outlined here (c.f., in particular, Figure 5-2). 

Furthermore, a goal here was to understand what constitutes a minimally sufficient level of data granularity 

for the raw capacity data, in particular of the level of product hierarchy and supply chain granularity 

required for successful modeling. It was found that capacity needs to be measured in individual production 

units, and data needs to be collected on a per station level. While this level of granularity is challenging to 

achieve and requires significant resources to implement, it will offer a degree of insights that cannot be 

captured by more aggregate, higher level data. In several cases observed for this work, it was found that for 

a mixed model line, the bottleneck of a line varies for different products passing through the line, and 

therefore, for an adequate level of model accuracy, it is necessary to capture sufficiently granular data that 

can delineate these varying bottlenecks. As a rule of thumb, capacity data should always capture at least all 

bottlenecks for all products passing through a line. Overall, simply put, it is always possible to aggregate 

granular data to obtain higher level insights, but is difficult to retroactively add granularity.  

A second key learning from the case study is that all data inputs require to be in a standardized structure 

for a successful implementation of a larger-scale capacity model. While this observation appears trivial, it 

is critical for the success of such a model. It was found that a significant amount of time was spent with 

understanding raw capacity data as used by manufacturing sites, and by translating and manipulating such 

data to match the proposed attributes as defined in this thesis. Given the large variation that already exists 

in the quality and type of data within the Boston Scientific enterprise, it is critical to minimize complexity 

and variation wherever possible. Furthermore, from a practical implementation point of view, the local 

users of capacity tools usually have the largest amount of expertise in the tools’ functionality and design. 

A feasible and efficient path to scaling the model would be for these subject matter experts to carry out the 

translation of their local capacity data into the centralized format. 

In the current model, significant effort was required to determine adequate product groupings which can 

link different degrees of granularity. This is likely to only be exacerbated for an implementation at a larger 
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scale, where instead of less than ten products, thousands of products need to be considered. This will likely 

require the most amount of manual data engineering by the implementation team with regards to the 

different tasks of the implementation process. 

A specific observation from the case study presented above was that products within a product group can 

have different cycle times at the same station. Here, product group refers to the groupings that are required 

to link products in the different data sets, as described above. Because of these different cycle times within 

what becomes a single data point, it was required to somehow aggregate the cycle times of individual 

products to the effective cycle time of the overall group. For the purpose of the case study, the effective 

cycle time was simply the arithmetic mean (i.e., the average) of the individual products’ cycle times. 

However, this is not necessarily accurate, and weighted average based on the true product mix would yield 

improved results. Given the multiple layers of uncertainty, and strong assumptions particularly in the 

demand forecast, it was found that this lack of accuracy should have minor implications on the overall 

findings of the model. Therefore, for simplicity, the arithmetic mean should provide an adequate level of 

precision without introducing additional computational complexities in the form of an additional feedback 

loop between demand and capacity data.  

5.3 Gap Assessment 

The previous case study by its nature offers only a partial view into the capacity of the highly complex 

network of Boston Scientific. While the product was selected to be representative of a broad set of products, 

the case study naturally cannot be equated with a full-scale capacity model. The intent of the case study is 

to serve as a basis for the future scale-up of the capacity model, and as such, it is important to assess the 

gaps of the case studies in order to understand the requirements which need to be met by a full-scale model. 

The most immediate gap of the case study approach is that it only captures individual products, and not the 

complications that arise from the complex product portfolio of tens of thousands of products. From the case 

study of Product A, some of these complications can be observed in a simplified fashion. For example, the 

final assembly of Product A occurs on the same line as the entire product portfolio of cardiac rhythm 

management and neuromodulation devices. It was observed that for each of these devices, a different step 

in the production process represents the rate-limiting step, or bottleneck, of production. This means that 

there is no single bottle neck on this line, but rather, it depends on the product and mix of products being 

produced. In addition, for each of these products, there is a different supply chain with different constraints 

that feeds into the top assembly line. Because of these different constraints, a learning on Product A does 

not necessarily represent a learning that is applicable to other devices that pass through the same line.  
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In this context, there are additional complexities that arise from moving from an individual product to a set 

of products. By considering multiple products, especially the entire product portfolio, additional 

interactions between products have to be considered. Seemingly disconnected products may share common 

raw materials or sub-assemblies, or their sub-assemblies/components may share manufacturing resources. 

This all implies that capacity calculations upstream become increasingly complex. 

The current case study captures a product that is produced in only two sites of the Boston Scientific network. 

Given the network’s size and complexity with twelve major manufacturing sites, the case study therefore 

only captures a small fraction of this network. Other sites use different tools and processes than the ones 

harvested for the case study, and in particular, capacity related data such as from local capacity planning 

tools may contain different (and less) information than what was available for Product A. 

In terms of manufacturing capabilities, the case study does not capture some of the intricate complexities 

of the network. In particular, special handling requirements such as for radioactive materials or in cold 

chains do not pose an issue for Product A, but are relevant for certain products in the Boston Scientific 

portfolio. All products can be measured in terms of counted units, which differs from components such as 

braided metal tubes or extruded polymer tubes. The product also differs strongly from large size, small 

volume products from the capital equipment business of Boston Scientific, which is becoming more and 

more relevant to the overall organization. 

In the current prototype, the space logic described in Chapter 4.6 has not been implemented. This is 

primarily because the appropriate space data was not available at the level of granularity required to test 

the logic proposed here. At the same time, the space logic also requires highly granular space data for the 

entire site, which was outside the scope of the smaller scale prototype assembled here. Therefore, in the 

next iteration and scale-up process, a demonstration of the space capacity logic is required to test the 

functionality and determine its limitations. 
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6. Implementation Roadmap 
In the following section, a roadmap for the scale-up and implementation of the capacity model and logic is 

proposed. This roadmap should serve as guidance to plan this challenging, cross-functional project, and 

give indications on the dimension which this project will take. 

Overall, given the limited quality of data that currently exists, and the complexity of the Boston Scientific 

manufacturing network, it is to be expected that the implementation of a network-wide capacity model will 

require significant resources. Required capabilities include data engineering, analytics, visualization, 

supply chain planning, manufacturing/industrial engineering, and project management know-how. 

6.1 Workshops to Develop Requirements 

As a first step it will be important to asses the needs of all stakeholders involved in short-, medium-, and 

long-term capacity planning. To develop the requirements and specifications of the capacity tool, a series 

of workshops involving all these stakeholders should be held. At the workshops, stakeholders 

collaboratively develop a set of outputs and results which they would want to receive from a capacity model. 

Furthermore, they would determine which inputs are required to obtain these outputs, based on the data and 

logic presented in this thesis. These stakeholders would be able to asses which data of the proposed data 

structure is available, which data is missing, and how the data could be assembled for further development. 

Finally, the workshops would serve to align stakeholders and obtain their buy-in in the proposed model, by 

educating them how they would benefit from the success of this project. 

6.2 Standardize Capacity Data Fields 

As described in this thesis, it will be critical to standardize the database fields in order to enable a scalable 

solution that requires the smallest possible amount of iterative manual data engineering. Therefore, based 

on the data tables, fields, and attributes proposed here, as well as the outcomes from the stakeholder 

workshops described above, the capacity database fields need to be standardized and clearly defined prior 

to any implementation work. The benefit of investing into this design and specification step prior to 

implementation is that the definitions of database fields can be developed together with the business process 

that will be used to populate the data in the future. By considering which data is available, who would 

provide the data, and what format existing data has, the database fields will be more practical and faster to 

populate. The proposed database structure in this thesis should serve as a strong foundation for this step. 
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6.3 Build Data Architecture 

After conceptualizing and defining the database fields and attributes, it will be necessary to implement the 

database architecture and infrastructure. This relates to installing server space with the appropriate 

relational database architecture, and to create the appropriate tables based on the definitions obtained 

previously. Furthermore, a process to populate these tables should be designed: This could be through 

implementing a type of entry form where data can be entered manually by an operator such as an industrial 

engineer or supply chain planner. Another feasible entry method could be the ability to upload tables which 

contain data in the desired, standardized format. For this purpose, user-friendly upload templates should be 

created, for example in the form of Excel spreadsheets. 

6.4 Populate Database 

After creating the raw data architecture, it will be required to populate the database with the desired data. 

This will be a resource-intense process that requires input from the entire manufacturing network, likely 

down to industrial engineers responsible for individual lines. It will be critical to ensure that all data inputs 

match the requirements and standardization. To achieve this, templates should be made available as 

described above, and significant effort should be spent on educating the network on the specifications and 

requirements of the data entry. By receiving high-quality data as input, less effort will be required for 

additional data manipulation, corrections, and for obtaining missing data. A particular challenge will be 

assembling a product name dictionary for the vast product portfolio of Boston Scientific. This was 

performed at a small scale in the case study presented in Chapter 5, but will require significant effort and 

resources to be populated at network-scale. 

6.5 Implement Capacity Logic 

As the core of the model, the actual capacity logic needs to be implemented. This implementation would 

execute the model logic designed in Chapter 4 of this thesis, and prototyped in Chapter 5, using the data in 

the database as designed and populated in the previous steps. The capacity logic will require a range of 

table manipulations to create the desired linkages between previously disconnected data. Moreover, the 

logic should include the ability to manipulate parameters for scenario planning and sensitivity analysis, as 

demonstrated for the demand forecast data and improvement rates in this thesis. 
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6.6 Build Minimum Viable Product 

While all previous work to this stage was done on the back-end of the capacity model, the minimum viable 

product represents a first usable front-end solution. Therefore, in this development step, the focus lies on 

visualizing the outputs and results from the logic, and adequately aggregating results such that they are 

useful to decision makers. For example, high-level summaries of key capacity constraints should be 

assembled, and the most significant projected investments should be highlighted. Due to the granularity of 

the model and the underlying data, decision makers will then be able to dive deeper into these detected 

constraints, and investigate potential breaking points through sensitivity analysis. Developing the minimum 

viable product will require resources in the analytics and data visualization, combined with a strong 

understanding of the business needs for decision making in manufacturing capacity. 

6.7 Iterate 

After implementing the first full-scale minimum viable product, it will be necessary to iterate and improve 

the tool based on the learnings and results from this full-scale model. It is likely that flaws will be detected 

which should be addressed in an iterative fashion.  
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