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ABSTRACT

In this research we consider some aspects of the general problem of
encoding and decoding for time-discrete, amplitude-continuous memoryless
channels. The results are summarized below.

1. Signel Space Structure: A scheme for constructing a discrete
signal space, for which sequential encoding-decoding methods are possible
for the general continuous memorvl=is channel, is described in Chapter II.
We consider random code selecticon from a finite ensemble. The engineering
advantage is that each code word 13 sequentially generated from a small num-
ber of basic waveforms. The etffects of these signal-space constraints on the
average probability of error, for aifferent signal power constraints, are
also discussed.

2. Decoding Schemes: In Chapter III we discuss the application of
sequential decoding to the continuous asymmetric channel. A new decoding
scheme for convolutiomal codes, called successive decoding, is introduced in
Chapter III. This new decoding scheme yields a bound on the average number
of decoding computations for asymmetric channels that is tighter than has
yet been obtained for sequential decoding. The corresponding probabilities
of error of the two decoding schemes are also discussed in Chapter III.

3. Quantization at the Receiver: 1In Chapter IV, we consider the
quantization at the receiver, and its effects on probability of error and
receiver complexity.

Thesis Supervisor: John M. Wozancraft
Title: Associate Professor of Electrical Engineering
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CLOESARY

a The number of input symbols per information digit

A= ji Voltage signal-to-noise ratio

A = Eiﬂéﬁ Mawimum signal-to-noise ratio

max G

b The number of branches emerging from each branching point
in the convolutional tree code

C Channel capacity

D(u, v) -.ﬁn = {0 The "distance” between u and v

: p(viu)

d(x, y) = é% £0) The "distance" between x and y

p(y|x)

d Thiz . admenod coal ity (number of samples) of each inmput
symbec | :

E(R) The cptimum ¢xponent of the upper bound to the probabil-

ity of error (achieved through random coding)

E (R) The exponent of the upper bound to the probability of
f’d P %
error when the continuous input space is replaced by the
discrete input set X,

f(y) A probability-like function (Appendix A)
g(s), g(r, t) Moment generating functions (Appendix A)
i The number of source information digits per constraint-

length (code word)

jz The number of input symbols (vectors) in the discrete
input space XQ

m The number of d-dimensional input symbols per constraint
length (code word)

n The number of samples (dimensions) per constraint length
{code word)

Average number of computations

The signal powesr

B ooz

The rate of information per sample
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The critical rate above which E(R) is equal to the
exponent of the lower bound to the probability of error

The computational cut-off rate (Chapter III)

The szt of all possible words of length n samples

The transmitted code word

A member of U other than the transmitted message u

The set of all possible output se-juences

The output sequence (a member of V)

The set of all possible d-dimensional input symbols

A transmitted symbol

A member of X other than x

The discrete input set cthat consists of,g d-dimensional

vectors (symbols)

The set of all possible output symbols
The set of all possible input samples
A sample .f the -ransmitted waveform u
A sample of u'

The set of all possible oucput samples
A saumple of the received sequence v

Thz power of a Gaussian noise



CHAPTER I
INTRODUCTION

We intend to study some aspects of the problem of communication via
a memoryless channel. A block diagram of a general communication system
for such a channel is shown in Figure 1. The source consists of M equi-
probable words of lengrh T seconds each. The channel is of the following
type: Once each g seconds a real number is chosen at the tramsmitting point.
This number is transmitted to rhe receiving point but is perturbed by noise,
so that the ith real number ?’i is received as % i Both ? and ¥ are mem-
bers of continuous sets and therefore the channel is time discrete but
amplitude continucus.

The channel i alse xemoryless in the sense that its statistics are

given by a probabiliry demsiin: g{ﬁ_d'f1ﬁ fz, LEY ?’i) such that

p“Z:Ll?L‘ §or oo £ =p( | €D (1-1)

where

@x:?zf_;g’_;)wp<ﬂ;); S TSl (12

A code word, or signal, of length n for such a channel is a
sequence of n real numbers ( ?15 e o ?rg' This may be thought of geomet-
rically as a point in n-dimemsional Euclidean space. The type of channel
we are studying here is, of course, closely related to a band limited chan-
nel (W cycles per seconds wide). For such a band limited channel we have
n = 2WT,
The encoder maps the M messazes into a set of M code words (signals).
The decoding systam for such a code i8 a partitioning of the n dimen-

sional output space inre M, asureets corresponding to the messages from 1 to M.

2

For a gilven coding snd decoding syetem there ls & definite proba-

bility of error for recalving & msusege. This 13 gilven by
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. M
B D B, (1-3)
i=1 i

where Pe is the probability, If message i is sent, that it will be decoded
as a message other than 1.

The rate of information per sample is given by

L1/ ' g
R - in M (1-4)

We are interested im coding systems that, for a glven rate R, minimize the
probability of error, Fr.

In 1959, C.E. Shannon (1) studied cod#ng and decoding systems for a
time discrete but ampliitude continuous channel with additive Gaussian noise,
subject to the constraint that all code words were required to have exactly
the same power. Upper and lower bounds were found for the probability of
error when using opfilma. codes srd cprimal decoding systemz., The lower
bound folliowed from spher¢ nacklog arguments, and the upper bound was derived
by using random coding arguments.

In random coding for euvcl & Gaussian chaunel one considers the

ensemble of codes obtained by placing M points randomly on a surface of a

sphere of radius =aF , (where =P ieg the power of each one of M signals, and
n = 2WT where T is the time lemgth of each signal and W is the bandwidth of
the channel). Moxe preclsely, ezch point is placed independently of all
other points with a probabll ity messure proportional to surface area or,
equivalently, to solid angle. Shannon’'s upper end lower bounds for the prob-
ability of error are very close together for signaling rates from some Rcrit
up to channel capacity C.

R.M. Fano (2) has recenrly\studied the general discrete memoryless
channel. In this case the sigrals are not constrained to have exactly the
same power. If random ceding s ueed, the upper and lower bounds for the
probability of error are asgalr very close together for all rates R above
some Rcrit°

The detection scheme thal waco used 1n bork of these studies is an

optimal one, that is, ome which minimizes the probability of error for a



given code. Such a scheme requires that the decoder compute an a posteriori
probability measure, or a quantity equivalent to it, for each of (say) the
M allowable code words.

In Fano's and Shannon's cases it can be shown that a lower bound on

the probability of error has the form

%

* - . >

g 5 g (1-5a)
e =

*

where K 1is a constant independent of n. Similarly, when optimum random

coding is used, the probability of error is upper bounded by:

e-E(R)n:

(1-5b)

%
e E(R) = E (R) for R ;; R

5 Sé K cerit
(In general, construction of a random code involves the selection of messages
with some probability densitv P{u) from the set U of all possible messages.
When P(u) is such that E{(R) is maximized for the given rate R, the random
code is called optimum.)

The behavior of E*(E; and E(R) as a function of R is given in
Figure 2.

Fano's upper-bounding tzchnique may be extended to include contin-
uous channels, for all cases wher: the integrals involved exist. One such
case is the gaussian chamnnel. However, the lower bound is valid for discrete

channels only. Therefcre, as far as the continuous channel is concerned,

the upper and lower bounds are not necessarily close together for rates

2 2> Rcrit'

The characteristics of many continuous physical channels, when quan-
tized, are very close to the original ones if the quantizatiom is fine
enough. Thus, for such channels we have E*(R) = E(R) for R.;; Rcrit'

We see from Figure 2, that the specification of an extremely small
probability of error for & glven rate R implies in general & significantly
large value for the number of vurdal and for the number of decoding computa-

tions.
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OF E¥(R) AND E(R) AS A FUNCTION
OF R



J.L. Kelly (3) haz derived a cless of codes for continuous channels.
These are block codes in which the (expomentially large) set of code words
can be computed from a much smaller set of generators by a procedure analo-
gous to group coding for discreie chaznnels., Unfortunately, there seems to
be no simple detection procecure for these codes. The receiver must gener-
ate each of the possible transmitted conbinations and must then compare them
with the received signal.

The sequential coding scheme of J.M. Wozencraft (4), extended by
B. Reiffen (5), (6) is a code well suited to the purpose of reducing the num-
ber of coding and decoding compurations. They have shown that, for a suit-
able sequential decoding scheme, the average number of decoding computations
for channels which are gymmerric ac cheir outpwt* is bounded by an algebraic
function of n for all rates below some Rcomp' Thus, the average number of
decoding computations is not an exponential function of n as is the case when
an optimal detection scheme s uzed,

In this research, w: cousider the following aspects of the general
problem of encoding and dec~iing for time~discrete memoryless channels:
1. BSignal space structurs, %, zeguential decoding schemes, and 3. the effect
of quantization at the reczziwe -, Our results for each aspect are summarized
below.

1. Signal Space Structure: A scheme for constructing a dis-

crete signal space, inm such a way as to make the application

of sequential ercading~decoding possible for the general con-
tinuous memory-iz2s cnannel, 1s described in Chapter II. In
particular, whevzz: Shamncn's work (1) considered code selec-
tion from ar imfinf{cs =nuzmble, In this investigation the
ensembie is a fini”e cne. The engineering advantage is that
each code word cen "e ssguentizlly generated from a small set
of basic wavef =mwe, The =ffests of these signal spare con-

straints on the zverage ~robabliity of ervor, for different

* , ‘

A channel with rtramsiticn -
put if the set of prubakily
output symbols y.

matrix P(y|x) is symmetric at its out-
2 P(y]xz), «s. <& the sam2 for all




signal power constraints, are also discussed in Chap-

ter IIL.

2. Sequential Deccding Schemes: 1In Chapter III we discuss
the application of the sequential decoding scheme of
Wozencraft and Reiffen to the continuous asymmetric chan-
nel. A lower bound on Rcomp for such a channel is derived.
The Wozencraft-Reiffen scheme provides a bound on the aver-
age number of computations that are needed to discard all
the messages of the incorrect subset (5). No bound on the
total number of decoding computations for asymmetric chan-
nels has heretofore been darived.

A new zystematic decoding scheme for sequentially
generated random codes is introduced in Chapter III. This
decoding schemz, when averaged over the ensemble of code
words, yields sn sversze rotal number of computations that
is upper-bounded by & quantity proportional to nz, for all
rates below som& cur-off rate Rcomp°

The corresponding probabilities of error of the

two decoding schemes are aiso discussed in Chapter III.

3. Quantizetion at vthe Reselver: The purpose of intro-
ducing quantization at the receiver is to curtail the
utilization of analogue devices. Due to the large number
of computing cperacions which are carried out at the
receiver, and the large flow of information to and from the
memory, analogue dev’.&s may turn out to be more compli-
cated and expensive than digital devices. In Chapter 1V,
the process ¢f quantizztion at the receiver and its effect
on the probability ol ¢rror eénd the receiver complexity is

discussed.



CHAPTER II
SIGNAL SPACE STRUCTURE

We proceed to introduce a structured signal space, and to investigate

the effect of the particular structure on the probability of error.

2.1 The Basic Signal Space Structure

Let each code word of lemgth n channel samples be constructed as a
series of m elements, each of which has the same length d, as shown in
Figure 3. Each one of the m zlemente L8 a member of a finite input space
%2 that consists of l? d-dimenzional vectors (d = ﬁ ), as shown in Figure 3.
The advantage of such a structure is that a set of randomly constructed code
words may be generated sequentislly (4), (5), as discussed in Section 2.4.

Two cases will be congidered

Case 1: The powsr of eich of the n samples is less than or

equal to 7. (2-1)
Case 2: All code words: have exactly the same power nP, {2-2)
The first case to be considered ie that of Statement 2-1,

2.2 The Effect of the Signs! Space Structure on the Average Probability of

Error, Case 1

In order to evaluate the effect of a constrained input space on the
probability of error, let us first consider the unrestricted chanmel.

The constant memoryless channel i8 defined by the set of conditicnal
probability denaitieg‘p{f? ]§ ), where ? is the transmitted sample, and 42
is the corresponding chanmel cutput. The output‘? ie considered to be a

member of a continuous ocutput ensemble [—] . By statement 2-1 we have

Ijl <\ (2-1b)

Let ue comsider now the cptimal unyestricted random code where each
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particular message of length n is constructed by selecting the n samples
independently at random with probability demsity p(f) from & continuous
ensemble ,5570 Then following Famo (2) it can be shown (Appendix A,
Section &) that the average probability of error over the ensemble of codes
is bounded by

-nE(R) i
2e ) Rertt % B L6
r < (2-3)
¢ MER) _ _-n[ECQ) -R] 0 <R R,

where R = %-,@nn is the rate per sample. E(R) is the optimum exponent in the
sense that it is equal, for large n and for R Z‘Rcrit’ to the exponent of
the lower bound to the average probability of error (Figure 2). For any
given rate R, p(g’) is chosen so as to maximize E(R) [i.e., to minimize Pe]‘

Let us now constreint sack ~ode word to be of the form shown in
Figure 3, with the exception that we let the set xe be replaced by a contin-
uous ensemble with an infinite, rather than finite, number of members. We
shall show that im this case, the exponent Ed(R) of the upper bound to the
average probability of error for such an input space can be made equal to
the optimum exponent E(R) .

Theorem: Let ug introduce & random code that i8 constructed in the
following way: each code word of length n consists of m elements, where

each element x is a d-dimemsional wvector
x = ?1, fz, cess T g (2-4)

selected independently at random with probability demsity p(x) from the
d-dimensional input ensembls X. Let the cutput event y that corresponds to

x be
' . /erﬂ /7217 LHCE ) 4Zd§ (2"5)

y 18 a2 member of a d-dimemeional output ensemble ¥. The chennel iz defined

by the set of conditional probsbilities
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d
p(y|x) = H JUME (2-6)
Also, let
d
p(x) =] Tp(F)) (2-7)
1]

where p(?’i) = p(f’), for all i, is the one dimensional probability density
that yields the optimum exponent E(R). The average probability of error is
then bounded by

-nEd(RB
& i Rcrit = R < C
e 7 (2-8)
-nE(R uru{:E 15?‘0\‘\\, R
. jie ( ) - pt ; ]) R \< ch{t
where
E,(R) = ER); E (0) = E(0) -

Proof: The condition givem by Eq. 2-7 is statistically equivalent
to an independent, random selection of each one of the d samples of each
element x. This corresponds to the construction of each code word by select-
ing each of the n samples independently at random with probability density
p(?) from the continuous space ;E;+, and therefore by Eqs. 2-7 and 2-3,

yields the optimum exponent E(R).

Q.E.D.

The random code given by Eq. 2-6 1z cherefore an optimal random code, and
yields the optimal expoment E(R).

We now proceed to evaluate the effect of replacing the continucus
input space x by the discrete d-dimensional input gpace x , which comsists

of /e vectors., Comnsider a random code, for which the m elements of each
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word are picked at random with probability‘% from the set %f of }2 wave-

forms (vectors)

{xk; kw1, } (2-10)

The length or dimemsionality of each X, is d. Now let the set X, be
generated in the following fashion: each vector Xy is picked at random with
probability density p(xk) from the continuous ensemble X of all d-
dimensional vectors matching the power constraint of Statement 2-1. The

probability demsity p(xk) is given by

plx) = plx) kel, ..,0 (2-11)

where p(x) is given by Eq. 2-7. Thug, we let p(xk) be identical with the
probability density which was used for the generation of the optimal
unrestricted random code. We can then state the following theorem.
Theorem: Let the general memoryless channel be represented by the
set of probability demsitics p{wfx}. Given a set %ﬁ , let Eﬁ?, d(R) be the
exponent of the average probability of error over the ensemble of random
codes constructed as above. Let f}f:—zzi) be the expected value of
EJ?, d(R) averaged over all possible sets ;2 .
Now define a tilted probability demsity for the product space XY

BDfx y)

Q(x, y) = plx) p(ylx) . 1¢'9) p(yIX)l-sf(y)s
J(j/ 8D (x, y)pfx) plylx) dxdy h/ﬁj/b(x) P(le)l-sf(y)sdxdy
¥ 5 |
(2-12a)
where
( j[-qu) Pﬁ?lx)n-adx]lll-s
f(Y) = Q(Y) = & ; 0 s 5 \<% (2.,121.,)

/[ / plx) plylx) dx]]’/l s

Y X
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l-8
Qx|y) = Qﬂ%;sxl w P(x) p(ylx) ; 0<sg % (2-13)
Qly f .
p(x) p(y|x)” "dx
X
Then
F.(R)

,_ 1 /.

l.Ej’ d(R) ;} E(R) - % JZH s /€+ e (2-14)

s and FI(R) are related parametrically to the rate R as shown below.

/}/pm piy1x 217805y 28 Laxay
X Y :

1
0 S FICR) -,Qn e . : - ; 0 ..‘g 8 S E
f{ /200 bty Cax1e) ey
Y X
(2-15a)
R =i f Qx, y) ﬂn Qxl ) 440 < R (2-15b)
d > ¥ plxy XY 2 Rerit
XY
Rcrit = [R]s = 1/2
Also when R §; Rcrit
5 7y 1
Fl(R) = FI(Rcﬂt) = dE(0) = - /Zn /[ /p(X) p(y x) jzdﬂzdy 3
Y X
g % (2-16)

jﬁ jn &FZ(R)+ f-l

2 Ef’ d(R)) 2~ ER® + ,é ) (2-17)



- 5§ =

where Fz(‘R) is related parametrically to the rate R by

[ ot p(y 102" qy)22 Laxay

| g 1
ogrz(a)-ﬂn 5 - 108 L3
/[ /p(ix} pCy1x) 212 qey)?® Laxdy
(2-18a)
F (R)d
% //Q(x,y)jwdxdy-—ﬁ j'l
Z
E(0)d i ‘
P Rerir -:115 [/ + £ (2-18b)
i
4 E(0Yd
Also, when R \< Rcrﬁt - i yn = /€+ ﬂ-l

FyR) = Fy(R ., o = E(O) = - % /s /[ /p(x) ply 10 2ax1%ay  {2-19)
X

Proof: Given the zet ng each of the successive elements of a
code word is generated by first picking the index k at random with prob-
ability L and then taking X to be the element. Under these circumstances,
by direct analogy to App&ndi# 4, Eqs. A-46, A-4]1 and A-26 with the index k
replacing the variable x, the average probability of error is bounded by

-ng 4®) B4 (m)
£ re 404 (2-20)
p(e{}(‘e )\< €

where

Bs
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ED a® = -3 [ %, 4 - sy (2-22)
/ﬁﬂ, 4(ts ) = fn 8, alts r) (2-23a)
' (r-t) D(ky) + tD(k', y)

3 (t; ¢) = p(k) p(k") p(ylk) e dy ;
£, d /k-l k=1 i

' r <0; t<O0

(r~t) D(xiy) e tD\ jj)
[% 5 P(y[x;) e dy ;
j=1 f

r< 0t 0 (2-23b)
D(ky) = D(x, ., y) = n L) _ (2-24)

ply|x)

f(y) is a positive function of y satisfying Jrf(y) dy = 1. DO is an

arbitrary constant,

Ty, 4t = fag, i (2-25a)
. , 5
sp a8 = ff p(k) ply|k) e® (kY)dy 5 0 <8
y
1 ab 'I.xkb Y)
N /2 = :@JCYIZ‘Z.. ) e dy 5 0< s (2-25b)
k=1 a
As in Eq. A-47, let DO be such that
i 3 2
E(g) NOR E(f) 4 (2-26)
Inserting Eqs. 2-21 and 2-22 into Eq. 2-26 yields
1 D 1 D
0 0
AR RO R S-S EEF RS PRRCERE (2:22)
Thus
1D 1 1
-0 _ - tg) o = - R] —— -
d m [ d %fq d“"sj} d /?SQ d(t’ r) - R] 8~r (2-28)

Inserting Eq. 2-28 into Eqs. 2-2L1 and 2-22 yields
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By, o® =Y w0 =P @

r J) (8 s (r, t)
- 'g’ d + %ﬁ’dd + sR] ;

0 =8, r <0; t< O (2-29)
Inserting Eq. 2-29 into Eq. 2-20 yields

-nE (R)

where E/Q d(R) is given by Eg. 2-29.

We now proceed to evaluate a bound on the expected value of Ef d(R)
»
when averaged over all possible sets X . The average value of EE d(R) is
2
by Eq. 2-29

e 1
Fe,a® Z " 5x

A 8
s [ - =< 6 ﬂ(s} +"i gf, d(rs £) + 8R] 3

o
R

0 <8, r<0,t <0 (2-30)

~

Ineq. 2-30 is not an equality simce, in general, the parameters s, r and t
should be chosen such as to maximize E,Q, d(R) of each individual input
set x)Z , rather than being the same for all sets. From the convexity of
the logarithmic function we have

-,ﬁnx)-ﬁnx (2-31)
Inserting Eq. 2-31 into Ege. 2-23a and 2-25a yields
-, 4 t)‘g,-fn 8y, alrs (2-33)

Now, since r -.'S G, 8 2 (0 we therefore have
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L cg; <t 2y (2-34)
Inserting Ineqs. 2-32, 2-33 and 2-34 into Ineq. 2-30 yields
B, a® 2 hidni, -t i, G0

(2-35)

From Eqs. 2-25b and 2-11 we have

[/p(x) ply]x) e axay

g, a® = [ pm) g, L8 dxk--—
X YX

k=1

where the index k has been dropped, since p(xk) = p(x). Thus

8‘2’ d(S) = J/i//é(x) ply|x) ESD(xy)dxdy (2-36)
¥ X

From Eq. 2-23b we have

SJ?: d(t, r) = J/' }/. plu, x j} g‘g’ (t, r)dxidxj (2-37)

where, by construction
= p(xy) plx) i# ]
p(x,, xj) g\ (2-38)
= plx,) (xi 5 xj) H i=]
and where, by Eq. 2-11
p(x)) = plx), for all 1 . (2-39)

Thus, from Eqs. 2-23b, 2-37, 2-38 and 2-39 we have
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sf’ 4, t) = g ,, d(r,t ) + 3y, q(t v (2-41)
14 j i=j

where

(r-t)D(xyy)+tD(x,y)

g (r, t) = / (x ) p(x ) p(y!x ) e dydx, dx
ij* d zz 1-1 j=1 / 173
] i#j X j

(r-t)D(xy)+tD (x)y)

'1_2 z Z///p(x) p(x") p(ylx) e dxdxdy :
i=1 17 7/,

r < 0t S0 (2-42)

and

rD(x,y)
8y, 4t D) = //p*bp(yx)e ¥ dxdy

m'ﬂ
i=3 i

z //p/x) ply|x) e’ xD(xy )dxdy i r & 0 (2-43)

i=1

Inserting Eq. 2-24 into Egs. 2-42 and 2-43 yields

1-r+t -t r
Sf, d(r’ t) = //p(x) p(x") p(y|x) p(ylx') £(y) dxdx'dy
14] ¥ XX
r <0;t <O (2-44)
8y, (rg t) =—[//p<fxf pl y!x) e dxdy; r <O (2-45)
i= Y X X'

In general, £(y) of Eq. 2-24 should be chosen so 28 te maximize Ef d(R)
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for each individual input set Xf . However, we let f(y) be the same for all
sets Xﬂ and equal to the f(y) that maximizes the expoqent Ed(R) correspond-
ing to the unrestricted continuous set X. Thus inserting Eqs. A-52 and A-53
into Eqs. 2-44 and 2-36 yields

/.1 Hales ©) f 1

sif;‘ ‘ji(r, t) = 7 e gq(r, t) (2-46)
1 fa
g’e’ d(r: t) ol el gd(r) (2'47)
L0 2

Thus, by Eq. 2-41

g9, 4(x> £) = -%1 84(r, t) +j 84(r) (2-48)
Also, by Eqs. A-52 and 2-35
glp, d(s) - g‘p_ atel (2-49)
Inserting Eqs. 2-48 and 2-49 into Eq. 2-35 yields
Ey (R L L gt - 3= L % 84(rs ©) + 7 gy(0]- 7R
r 1 e g4(r) /g (x,t)+/-1
T srd l?n gd(a) ot f?n gd(r £l 8-r dLQ 12 J 8-r B
Thus
5 (r)‘ﬁd(r:t)
s +,é11
By a® i lao - 21y - Lfel 7

(2-50)

Now, the exponent Ed{R) that corresponds to the unconstrained

d-dimensional continuous space X iz given by Eq. A-49
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D D
B®z- 5 [Ty - s 21m-rad(f e, 0 -2

Eliminating D, yields

0

. i | y . 8.1 . >
Ed(R) s-r d 45 d(s) s-r'd ﬁ d(r’ £ 8-r % (2-51)
Furthermore, Ed(R) is maximized, as shown in Eqs. A-50, A-51, A-54, A-55 and

A-56, by letting

U 6 oty Pae 1128
£(y) = —2 (2-52a)
/[ /p(X) plyl 0t "% 1M1 %y
Y x
r=28 -1 ; t=g - 1 (2-52b)
where, for R ;;,Rcr*t 8 18 such that
R=3 06D i@ -Y 1 5 0583 (2-52¢)
where
Rcrit = [Rls = 1/2 (2-52d)

If we let the parameters r, 8, and t of Ineq. 2-50 be equal to those of
Eq. 2-51 we have

ﬁd(r) - a’d(r’ t)
— s 1 e e l?m 1
Efs d(R) - Ed(R) "%z d gn [ /e ] (2-53)

The insertion of Eq. 2-52b yieclds

By o® 2 By - £ /. y, ] (2-54)

8



where

F,(R) = %d(zs 1) - f2e =15 8- 1)

Inserting Eqs. A-52 and A-53 into Eq. 2-55 yields

P R) = A [ [ 60 vty 02 1600 12 Laxay
Y X
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- f“ ///P(X) p(x") p(y[x)l'sp(y[x')l'sf(y)zs'ldxdx'dy
X

Y X'

Thus

7 & -
/ ﬁ(x}) ply 021" £y) 28 Laxay
Y X

F (R) = J?n

X

[[ fp(x} oty %)t 2ax 1P £ () 2® axdy
Y

(2-56)

where s and Fl(R) are related parametrically to the rate R by Eq. (A-60c),

for all rates above Rcrit = [R]g = 1/2°

As for rates below Rcr , we let

it

s = % ; t = - % ;s =0

(2-57)

Inserting Eq. 2-57 into Eqo. 2-54 and 2-55 yields, with the help of Egs.

A-69 and A-71

F,(®)] = A f /p(xf» ply[02ax)? = dE,(0)

s =1/2 X

(2-58a)
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where
E4(0) = [E4(R) 1R % (2-58b)
F (R)[
1
e e a=1/2
E g ALY > E(R) w% /n( £ /Z * ['1) (2-59a)
dE . {0)
d
- E(R)-%fn(e /"2[['1) (2-59b)

From Eqs. 2-11 and 2-9 we also have Ed(R) =— E(R) for all

for R S Rerie
The procf of the firet part of the theorem has

rates, by construction,

therefore been completed.*

E.D.

In order to prove the second part, let us rewrite Eq. 2-50 as

fld(r)-ﬁd(rs t)
d’?f (c, t) —-——[a+1/ e 7 2

b/(tﬁ)"a

Ef d(R) srd -r

-E_/D G’@)*'g‘;%%’d(r, )";“;[R] (2-60)
where
{4 - Uytx, ©
d
cernal e + L1 .
R R+dﬁn ,Q (261)

Comparing Ineq. 2-60 with Eq. 2-51 yields

F, (R)
2
ﬁn 2 /é' 8\ ) (2-62)

By, a® > B ®) = B, +%

*A simplified proof for the regiom R \< R _i¢ ig given in Ref. (7).
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where, by Eqs. 2-52, 2-56, A-57, A-58, A-59, A-60c and A-60b, FZ(R) is
related parametrically to the rate R by

J [ 2 pis0* a2 Laxay
Y X

F,(R) = fn , ;0 <8 K5 (2-63)
l-8, .2 2s8-1
[ fp(x) ply[x)" "dx]"Q(y)™" “dxdy
Y X
F, (R)
2
R' -R+'c]i fns‘—?&:—:% [/Q(xs y) fngﬁ%‘}l;
XY
0 < :{% (2-64)
for all
R' />/ R'c:.rit: - R'] . (2-65)
g = L.l2 X .
Ineq. 2-65 can be rewritten
F (R}j
2
1 [ e e=1/2 , f_,
R > Rcrit T d ﬁn /@
dE(0)  /
1 € T L=-1
erit d En Y/ (2-66)
dE(0)
As for rates below Rcril; - % jn = £+ E-l ,» we let
1
s=g,t=-2,r=0 (2-67)

Inserting Eq. 2-67 into Rqs. 2-6% and 2-63 yields

E(0)d
R CERRIES B et R L
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From Eqs. 2-11 and 2-9 we have also that, by construction
Ed(R) = E(R) for all rates. Thue, the proof of the second part of the

theorem has been completed.

Q.E.D.

Discussion: We proceed now to discuss the bounds that were derived
in the above theorem. We shall consider particularly the regiom
05 R S Rcrit’ which, as we shall see in Chapter 3, is of special interest.
From Egqs. 2-14 and 2-16

‘ dE(0) _
Ep, a®) 2 E®) - : bt £ ,€+ /4 '] forR <R, (2-69)
From Eq. 2-3 we have
E(R) = E(0) - R for R < R (2-70)

erit

Inserting Bq. 2-70 into Eg. Z-0% ylelde

CYR
n [

Ej, d(R) 2« E(0) - R -;,:— 7 ] for R < Rcrit (2-71)
Now, whenever
de(0) << 1 (2-72)
we have
E, J® 2 EO -R -3 Ka g LBl L1,
= £(0) .‘.R_% fm(1+d80 )
£y 2(0)

B(0) - R - E s for R < Rcrﬂ.t
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Thus

zf d(R)},E(O)[l-E]-R f°rR\§Rcr1:

and dE(0) <<< 1 (2-73)
Comparing Eq. 2-73 with Eq. 2-70, we see that E (0) can be made to be

£, d
practically equal to E(R) by using quite a small* number Jf, of input sym-

bols, whenever E(0)d << 1.
Ineq. 2-71 may be bounded by

E(0)d
Ef’d(R)ZE(O)'R';%ﬁnIe +’€]

Rcrit

= EQ) - R - % Do [ EOd - /YA +1 ] (2-74)

*In cases where Iﬂmx—;} 0 and Qﬂ%}_ I # 0 so that p(% [£ ) can
=0

be replaced by the first two terms of the Taylor series expansion,

p(Y 1€ ) =pCY| 0)+ ﬂ“iﬁd—%—'ﬁ

, it can be shown (by insertion

f=0
into Egs. A-74a~-d) that
1. The optimum imput space consists of two oppositely directed
vectors, fmx and « ?max” for all rates 0 < R < C

a1 € 2
2. E(0) = % = % g i&x.//([ _BS-E_?’_l’? - o]

(7] 0) “

where C is the chamnel cepacity.
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Thus, whenever
dg(0) —~1 (2-75)

ve have from Ineq. 2-74
E, J®FEO -k - z fn (2@ - ﬁné]%% ol - & (2-76a)
when
%an << E(0) (2-76b)
and

]

/AR OLE bt |
ol - roar

E Q, d(m) >;E(0) ~R =

~g(0) - ;11. & R (2-77a)

when

1 #

= %/ >> E(0) (2-77b)
Comparing Bq. 2-76 with Bg. 2-77 yields

ER) , E, 4R Z ER) ;5 R R .., dEO) >> 1 (2-78a)
or

E R) = E(R) (2-78b)

I =

if

3 ﬂnﬂ) £(0) dE(0) >7> 1 (R=dec)

In the following section we shall discuss the construction of a
semi-optimum finite input set Xﬁ? for the Gaussian channel. A semi-optimum
input space is one that yialdz an exponent B g, d(R) which is practically
equal to E(R).] We shall show that the number of input vectors }2 needed is
approximately the same as that indficated by Eqs. 2-78 and 2-73. This there-

fore demonstrates the effe:tiveness of the bounds derived in this section.
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2.3 Semi-Optimum Input Spaces for the White Gaussian Channel - Case 1 (2.1)

The white Gaussian channel is defined by the transition probability

density
C(1-5?
‘ 2
YT )= ﬁ"i"é" » & (2-79)

where by Ineq. (2-1b)

HERS lﬂmx"\l? (2-1b)

Let us define the'voltage signal tc noise ratio™ A, as
= — 2-80
A = ( )

Inserting Eq. (2-1b) into 2-20 vields

A < Amax

o lax  {F
G

~ (2-81)

We shall first discuss the case where

dAiax <K 1 (2-82)
and proceed with the proof ¢«f the following theorem.

Theorem: Consider & white Gaussfian Channel whose statistics are
given by Eq. 2-79. Let the input signal power be constrained by
Ineq. (2-1b) and by Ineq. 2-82. Let the input space consist of two d-
dimensional oppositely-directed vectors. Then the exponent of the upper
bound to the probability of error, 32q d(R) is asymptotically equal to the
optimum exponent E(R).

Proof: From Bg. 2-4 we have

Ll 273 PYIRMIEE 9 (2-4)



The input set x2

two vectors be given by

*y = ?11' flﬂ ?dl
where

?11' le’ ?diﬁ ¥ uan

and
2 2 2
¥ = ?1 3 PYIRTIIE 9
where

?12 - 522 b ?dz - -fm.a.x

From Eqs. 2-5 and 2-6 we have

e AU PURTIT ¥
p(y[x) -ﬁp('zijfi)

Inserting Eqs. 2-79, 2-82 snd 2-90 into Eq. 2-6 yields

d i Y- T’
ply|x) = [ —=7——= e =k
, 1 =] (Zﬂ)dlzgd
2
( ?i * ?max)
d . 22
1
ply|x,) = TT—'-.—‘— e
1 2 =] (Mbdiz (DJd

From Eqs. 2-29 and 2-30 we have

- nE2 &@R)
p(el Xz) S; 2e

consists of two oppositely directed vectors.
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Let those

(2-89a)

(2-89b)

(2-90a)

(2-90b)

(2-5)

(2-6)

(2-91a)

(2-91b)

{2-92a)
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where
xr 1 s 1 . 8 x
EZ, d(R) " srd %;, d(s) T g-r d 1523 d(r’ £) 8-¢ & \2-921)
Let
r=2t+1; s=1l+¢t; 0K 8K % (2-93)
Also, let
2
) U
1 5=
£(y) = p(y|0) =[] 4723 ¢ G (2-94)
i=1L (29) (>
and
1
p(x)) = p(x,) =3 (2-95)

Inserting Eqs. 2-93, 2-94 and 2-95 intec Eqs. 2-23, 2-25 and 2-92b yields

1-2s 1 1
By, a® =150 g Up, o -5 3 ¥z, aGs1, o) - 15 (2-96)

2 1 1- 3
/K 2, d(s) - gn z ['i P(y]xi) Bp(y\O) dy (2-97)

i=] Y

2
B, a1, o) = Qni'z—I f-}; PO [x) e [x ) oy 0% (2-98)
oy

Inserting Eqs. 2-91 and 2-94 into Egs., 2-97 and 2-98 yields
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1
- o= ZGZ 3 osﬂ S'z- (2-99)

21-8)(Y- §,. ) +(2s-1) %
/62, d(Zs-l,. g-1) = En"}:c{[ [\FT]".‘G, e 2 GJZ d’Z]d
1

| 201-) (Y+ 5 ) +(2s-1) %7
1 B 2 2 d
+ E'z/wa ) . 7

—(-s) (Y= fmm)?;@'S) (‘l"’ fm»«) "QS‘?)’?L
+2[4Lf 't‘Ge 2 G2 dgld}‘

‘.i;axd[zu'-s)%(l-s)z] _201-9) o
= ﬂn%{i’e ZGL +2e 26’1 3

1
0< s g3 (2-100)



- 31 -

Now, since by Ineq. 2-82

2
daa? . 7max <<1

max C;Z

we have

2
2
- =]y L2
,62, g\4n-1s B U”“fnz]: [4 f“‘“ d[2(1-8)-r(1-8)2- f?’f_d 2(1-8) ]
?2
- ﬁn [1 - "-fz-—-é— 2ds(l-s) ]
2
~
o . ZG“ 2ds(1-5) 2'6 (s) (2-101)
Inserting Eqs. 2-99 and 2-101 into Eq. 2-96 yields
2
1-2s 28 ; max 8
L Ll St & el 2g* " 1-s
52
max & . 1
2
Amax 8 1
-STEFER g 0 <s S-Z_ {2-102)

Maximizing 32 d(R) with respect to s yields

1 1,2
8=3 for R :S Rcrit “ 38 Amax

8=1-—= forR >

Thus:
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o~ L2 o 1,2
32, d(R)__ % Anax - R R < 3 Anax (2-103a)
B
E, d(n)g—;-a.zmm\% + R 3 %Aiaxsl{,s%&iax (2-103b)

Comparing Eq. 2-103 with the results given in page 654 of Ref (1)
yields*

ER) > E, ;(R) 2 EQR) (2-104)
Thus
32, d(a)_—’é E(R) {2-105)
for
a2 do<<
.E.D.

We proceed now to discuss cases where the condition of Ineq. 2-82
is no longer valid. The first step will be the evaluation of E,F d(0) for
3
the white Gaussian channel. From Eqs. A-69 and A-71 we have

JIRORRS IaZ 5 o0 vy [ ot 2 x 2y (2100
L xﬂ x
y S b4

*The results of Ref. (1) are derived for the power constraint of Statement
2-2, and are valid also in cases where the average power is comnstrained
to be equal to P.

The set of signals satisfying Statement 2-1 ig included in the set of sig-
nals satisfying the above aversge power constraint. Thus, Shaunon's
exponent of the upper bound c¢o the probability of error is larger than or
equal to the optimum exponent E(R) which corresponds to the constraint of
Statement 2-1,
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Inserting Eqs. 2-6 and 2-79 into Eq. 2-106 yields

(- Tt

Ep o = ﬂn}i' f p(x) p(x*)Il!’ T e] a
(2-107a)
where
£ s Bt s Py (2-107b)
2o Ean Fob v 5 (2-107c)
Thus

= ga
Ep 4 (o)w--fff x; s«ac“)TTe K-

i=1

f (£~ £
¥ [ ZZ P ptx) e = 2GT (2-108)

Let D be the geometrical distance between the two vectors x and x', given by

D°m k- x'I = Z«*fi g (2-109)

i=]

Then, inserting Eq. 2-109 into Eq. 2-108 yields

2
_Ax=x']
R g g0 - 3 f”‘? %Pm p(x') e B2G* (2-110a)

or
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Fagne
83*

(2-110b)

Ep 4@ = -3 fngg: p(D) ¢

where p(D) can be found from p(x) and p(x’).
In the case where the input set xz consists of two oppositely

directed vectors given by Eqs. 2-89, 2-90 and 2-95, we get from Eq. 2-108

 max®
_ 2 max
1 L 2(3‘
., e - o= 1
Ezs d(0) 3 l?n 5 (L +e )
. Az d
_ _max
=-2 faziiee 2 (2-111)
Again, for
A:l:laxd ~/ Aiax
- A | we have EZ, d(0) =

as in Eq. (2-103a).
For higher values of peak signal-to-noilse ratio we let d = 1. Then,
by Eq. 2-111

AZ
mex
2

E. .(0) = - ,ﬁl % (1+e ) (2-112)

2, 1

(0) together with C 1° the rate for which E (R) = 0, are given in

o | 2, 2, 1
Table 1. Also given in the same table are the channel capacity c* and the
zero-rate exponent E(O)?* that correspond to the power comstraint of State-

ment 2-2. (The channel capacity C s&nd the zero-rate exponent E(0) which

*The channel capacity is computed im Ref. (3).

**E(0) is computed im Ref. (2) end in Appendix B,



Aoe | B, 1@ E(0) 323(3)(0) & 1 c %2, 1
1 0.216 0.22 0.99 0.343 0.346 0.99
2 0.571 0.63 0.905 0.62 0.804 0.77
3 0.683 0.95 0.72 0.69 1.151 0.60
4 0.69 1.20 0.57 0.69 1.4 0.43
TABLE 1
TABULATION (OF B {0) AND C vs, A

2, 1

%y L

max
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corresponds to Statement 2-1 are, as shown in the footnote on page 32,
upper bounded by the C and E(0) that correspond to the power constraint of
Statement 2-2.) From Table 1 we see that the replacing of the continuous
input set by the discrete imput set xﬂ, congisting of two oppositely directed
vectors, has a nmegligible effect onm the exponent of the probability of error
as Amax g 1.

Let us next consider the case where the input set X, consists of
ﬂ one-dimensional vectors as shown in Figure 4. The distance between each

two adjacent vectors is

D = 2 Fmax (2-113)
min (-1

Let
p(xi) -E— ;s 1 =1, Jﬂ (2-114)

Inserting Egqs. 2-113 and 2-114 into Eq. 2-110 yields

2

3 (kDmin)
E, 1(0) = - {,€+ ’ﬂgq -k) e ECE ] (2-115)
Thus, since 4k < k2 3 k> 2 we have
2 2
_-min _4knmin
2
E, 1(0);« ﬂ+ (L1 e 86 +2(f2)ze G
! k=1
2
Dmin -4kD2 /8(‘9’2
2 - uf#?.(jﬂe —’([2» . e it
/8G
min
a8 =]
2
u..]}:h. : s grv2 . 1
>/=£nﬂ{a+@l*’@ R e }}
Ao\ 4D ",
228 . (2-116)
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Now define K by

A
f-l--‘f—é—“ﬁ : 0<K K (2-117)

Inserting Eqs. 2-117 and 2-81 inte Eg. 2-113 yields

D (o™ 25k (2-118)

Inserting Eq. 2-118 into Eq. 2-116 then vields

i<
2 2
Ez’ 1(0) }ﬂn(l o+ mm&x) - fn {1 + 2e + 5 } {2-119a)
28"
If we chooseﬁ&m that K22 1 , we have
Eza 1(0) = gn (1 ‘#Amﬂ:ﬁ) = fm 2,92 (2-119b)

From Eqe. 2-119b and 2-1.7 we have, for Amax = 1

Va¥4
st 10 = ﬁn A (2-120a)
= - ( 2-
jnf ___fn Alax Ezp .ia.of}l (2-120b)
On the other hand, it cam be shown (Appendix B) that
¢ 4
EQ0) $ Ana s A 771 (2-121)
Thus, by Egs. 2-121 and 2-120, we have
B, . R)=ZEBR); R <K A 1 2-122
2, 1 el = H L S Repgp? Mgy =7 (2-122a)

if

jn f = E(0) 5 dm 1 (2-122b)
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Comparing Eqs. 2-72 and 2-78 with Eqs. 2-105 and 2-122 respectively
yields that the lower bound on E 17 d(R) derived in Section 2.2 is indeed a

»
useful one.

2.4 The Effect of the Signal Space Structure on the Average Probability of
Error, Case 2 (Statemeni 2-2)

In the case of a power constraint such as that of Statement 2-2, we
consider the ensemble of codes obtained by placing M points on the surface of
a sphere of radius‘I;EW.

The requirement of Statement 2-2 can be met by making each of the
m elements in our signal space have the same power dP (see Figure 3). (The
power of each word is therefore mdP = nP and therefore Statement 2-2 is
satisfied). This additionsl constraint produces an additional reduction in
the value of E,E, d(R) as compared with E(R). Even if we let the d-

dimensional input space X, be an infinite set (12 = 0O0) , the corresponding

=

neral, be

|

exponent Ed(R) will, in g

Ed(R) 5: E(R) (2-123)

The discussion in Zhis section will be limited to the white Gaussian

channel and to rates below Rcrit’ Thus

Ed(R) = Ed(OD - R s R < Rcrit (2-124)
Let

Ed(O) = E(Q) - kdigi) E(0Q) (2-125a)
where

a2 - Q—:ii (2-125b)
Then by Eqs. 2-124 and 2-1%25 we have

Edf(R) E(0) - kd{;@ﬂ EC(OY = R < R (2-126)
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We shall now proceed to evaluate kd(Az) as a function of A2 for
different values of d.

The input space X is, by construction, a set of points on the surface
of a d-dimensional sphere of radius &Eﬂ .

Let each point of the set X be placed at random and independently of
all others wich probability measure proportional to surface area or,
equivalently, to solid angle. The probability Pr{0 << & < Gi) that an
angle between two vectors of the space X is less than or equal to 01, is
therefore proportional to the solid angle of a cone in d-dimensions with half
angle 91, This is obtaimed by summing the contributions due to ring-shaped
elements of srea (spherical surfaces in d-1 dimensions of radius sin € and
incremental width ¢ as showa in Figure 5.) Thus, the solid angle of the

cone is given by (1):

&
1
» (d"’l)!z X
99(9 ) = M_ﬂ,_._,.:.,..:“. ( ot ﬂ':‘-d Z 26 (2-127)
1 == (e
=3 ¥
2 - 0
Here we used the formula for the surface ad(r) of a sphere of radius r in
d-dimensions,
! -]
sd(r) = xdﬁz rd lf{ﬁ (/2 4+ 1)

From Eq. 2-127 wa have

o
d-2
o e (d1N2 f (aln o)~ do
\Iw@]l) L‘Aﬂ"h" " 0
PT(O Se <9) =3 n—t?—;!=- & e =
SN el pod, o rd,

4-2 30 (2-128)
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The probability density p(€) is therefore given by

der(o <& <€) , ['( % )
g) = - =
p(®) de, B3 F‘C d;l )

(sin e)‘l'2 (2-129)

Now, by Eq. 2-109, the geometrical distance between two vectors with

an angle © between them ie (see Figure 3)

p? = 4(dP sin’

r D

) (2-130)

Inserting Eqs. 2-130 and 2-129 into Eq. 2-110b yields

1P

-

b dp 2
f 7 2 sin
n [p(&) e de

o=
(X}

E,(0) = -

f ¢ Jz_i, 3 _dP sinz 14
Lot P b | -
- ﬂ fl; e [ g 4B 2(sin )¢ 2&&} (2-131)

i E ’
Inserting Bq. 2-125b imco 2-131 yields, for d > 2

2

d A dA 2 &
L ) 1F(%3 [ “poeinl g d-2
Ed(O) = -3 Jn ﬁ; W—f e (sin ©) dae (2-132a)
\ (<) 3
or
2 2
dﬁ cos €

[¢dy A x
E,(0) = - 1 " L =2 2 % f .
d (d 'i d‘l
& 0

Equation 2-132 ig walid for all d > 2. As for d = 1, it is clear that in

=

=

order to satisfy the powsr conscraint of Statement 2-Z the input space X

must congist of two oppositely divected vectore with an amplitude of (P . Thus
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Az - Az - (2-133)
Inserting Eq. 2-133 into Eq. 2-111 yields

f Wy Ezf2
E (0) = - [n (255

) (2-134)

In Appendix B we shown, for all d, that

~ 1,2 ; 2 ; ,
Ed(o) = % A E(0) ; A"d << 1 ; d > 2 (2-135a)
g (o)t 411 Doal: a2 > 13 dx2 (2-135b)
" d - 4 2 ? ) ;> ¥ =
Thus
fa’l di“’l\
Ed(O) = =3 ECO) (2-135¢c)
Inserting Eqs. 2-134 and 2135 imto Eq. 2-125 yields, for any d
E,(0) = E(0) - k, (&) B/0) (2-136a)
where
2 2 ’
kd(A )=0 Ad << 1 (2-136b)
k,(a%) = % ; 2 =59 (2-136c)

— —

The qualitative bshaviour of kd(Az) as a function of AZ and wich d

) %
as a parameter is glven in Figure 6.
i h—w;

klﬁAz) and kBQ&Z} gre tabulated in Table 2.

*Frg% Eg. 2-132a it is clear tChat EdQO} is a monotonic increasing functiom
of A™.
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2 A7 3
A k (&%) ky(A%)
‘1 7,01

4 ©.095 0.046

9 0.28 0.095

16 0.43 0.135

100 8.7 0.2
1% 0.9 0.28
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We proceed now to evaluate the effect of repiacing the continuous
d-dimensional input space X by & discrete d-dimensional input space XE =
which consists of JZ vectors.

Let each of the m elements be picked at random with probabilityJ%
from the set x£ of fv&cﬂ:or (waveforms) , Xf = xk: ko= 1, ,éj—

Let the set Xﬁ- be generated in the following fashion: each vector
X is picked at random with probability p(xk) from the ensemble X of all
d-dimensional vectors matching the power constraint of Statement 2-2. The

probability p(xk) is given by

plx) = p(x) s k=1, ouoyﬁz
. x = x

where p(xk) is the same probability distribution which is used to generate
Ed(O). The following theorem can then be stated:

Theorem: Let E.fJ ﬂf@“ be the zero-rate exponent of the ?ff????
probability of error for rendom codes constructed as above. Let B£2’ d(0)

be the expected value of EJZ d(u) averaged over all possible sets Xﬁ . Then

o

dE ,(0)
=S . d Ji
1 e + A-1
FRFCEAXORS Ia 7 (2-137)

The proof is identical with that o5f the theorem of Section 2-2. Inserting

Eq. 2-136 intoc Eq. 2-137 yields
de ,(0)
e +
n( [

Thus, there is a combined loss due to the two following independent comn-

ﬁ-l)

(2-138)

G |e=

3
B, 4002 BO) - k%) 3(0) -

straints:
1. Constraining the pover of each of the inmput vactors to be equal
to dP ; the resulcing loss is equal to kd(&z) E(0).
2. Constraining the input space to consist of ,Q vectors only; tche
4E,;(0)
I 1 F R A 2 +£-1
regulting loss is aqual to S 4 n .

’ Y/
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We now evaluate the effect of these constraints at high (and low) values of
Az. From Eq. 2-137 we have

w0
By o 2 E© - %;(jn (E——7¢—)

L dEd(O}J - fng
- E,(0) - a:fn;fe 1y (2-139)

Thus for E(0) 2= ,@n A= =51 we have

£y o© >3 bl AV AP ROE= 'erz“‘-i (2-140a)

E) (O ZE O 2 Iof =>> E,(0) = ol é-_—i (2-140b)
On the other hand we have always

E g 4@ < B0 (2-141)
Inserting Eq. 2-141 into Eq. 2-140b yields

E,, 4@ 2L g (0) = 4l 2 Dn a2 (2-142a)

for ¢ /R E,(0) (2-142b)

Whenever Azd << 1, gn input space X, that consists of two oppositely

2
directed vectors with an smplitude of \EdP yields the optimum exponent E(R)

for all rates 0 < R < &, #8 gshown in Jection 2.3 of this chapter.

2.5 Convolutiona] Emcoding

In the last three sections we have established a discrete signal
space, generated from & d-dimemsional input space which consists of Z input
symbols. We have showm that s proper selectiom of ﬁand d vields an expo-

nent E f d(R} which is arbitrarily close to the optimum exponent E(R).

9
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We proceed now to describe an encoding scheme for mapping output
sequences from an independent letter source into sequences of channel input
symbols which are all members of the input set xjg. We desire to do this
encoding in a sequential mamner so chat sequential or other systematic
decoding may be attempted at the receiver. By sequential encoding we mean
that the channel symbol to be transmitted at any time is uniquely deter-
mined by the sequence of the output letters from the message source up to
that time.

Decoding schemes for sequential codes will be discussed in the next
chapter.

Let us consider a randomly selected code with a constraint length n,
for which the size of M(w), the set of allowable messages at the length w

input symbols, is an expomential function of the variable w.

M) & A e 1< wgm (2-143)

where A. is some small comsf.nf 2 L.

1 =
A code structure that is consistent with Eq. 2-143 is a tree, as shown
in Figure 7. There is one brauch soint for each information digit. Each

information digit consists of "a" channel input symbols. All the input
symbols are randomly selected fvom a d-dimensional input space Xp which con-
sists of QE vectors. From each branch point there diverges b branches. The
constraint length is n ssmples and thus equal to m input symbols or i imfor-
mation digits where £ = g .

The upper bound om the probability of error that was used in the pre-
vious sections and which is discussed in Appendix A, is based on random
block codes, not on tree codes, to which we wish to apply them. The impor-
tant feature of random bluck codz2s, as far as the average probability of
error is concermed, is the fact that the M code words are statistically
independent of zach otaer, and that there is a choice of iaput symbol
a priori probabilities which maximize the exponent in the uppsr bound expres-
sion.

In the case of a tres scructure we shall seek in decoding to wmake a

decision only about the first information digit. Thiz digilt divides the
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entire tree get M into two subsets: M' is the subset of all messages which
start with the same digit as that of the transmitted message, and M'' is the
subset of messages cother than those of M'. It is clear that the messages in
the set M' cannot be made to be statistically independent. However, each
member of the incorrect subset M'' can be made to be statistically inde-
pendent of the transmitted sequence which is a member of M'.

Reiffen (5) has described a way of generating such randomly selected
tree codes where the messages of the incorrect subset M'' are statistically
independent of the messages in the correct subset M'.

Thus, the probability of incorrect detection of the first information
digit in a tree code is bounded by the same expression; as the probability
of incorrect detection of & message encoded by a random block code.

Furthermore, these trees can be made infinite so that the above
statistical characteristics are common to all information digits, which are
supposed to be emitted from the information source in a continuous stream
and a constant rate. These codes can be generated by a shift register (3),
and the encoding complexity per information digit is proportional to m,
where m = % is the number of chaunel input symbols per constraint length.

Clearly, the encoding couwplexity is also a monotonically increasing
function of,g , (the number of symbols in the input space X ). Thus, let

M, be an encoding complexity measure, defined as

l‘.l,é3 - gm = i (2-144)
The decoding complexfity for the two decoding schemes which are dis-
cussed in the next chapter, is shown to be proportional to ma, leag 2,
for all rates below some computational cut-off rate Rcomp°
Clearly, the decoding rcomplexity must by a monotonically increasing

function of_Q . Thus, let Md be the decoding complexity wmeasure defined as

M = /- jg (2-145)

In the next section we saall aiscuss the problen of minimizing Mg

and Md with respect to 12 and d, for a given rate R, a given constraint
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length n and a suitably defined lose in the value of the exponent of the
probability of error.

2.6 Optimization of .LZand d

This discussion will be limited to rates below Rcrit’ and to cases

where the power comstraint of Statement 2-1 is valid. Let L be a loss

factor, defined as

E(0) - Eﬁ’ d(0)

L= £(0) (2-146)
Now, for rates below Rcrit wz have by Eq. A-70

By o®) =E) 0 -R; RS R,
Thus

W -E@0) (1L -1) -R; RS R, (2-147)

Therefore specifying an acceptable E (R) for any rate R < R .
Z, d N Terit

corresponds to the gpecification of a proper loss factor L.
We proceed to discuss the minimization of M, and Hd with respect to
and d, for a given acceptabvle loss factor L, and a given constraint-
length n.

For dE{0) << . we have by Eq. 2-73

B2 4O S 1
E(0) 7 A-7): O, BE Roey (2-148)
Inserting Eq. 2-146 into Eq. 2-143 yields
/<L, :
L KO 2l Ry,

Thus, by Eqe. 2-144 and 2-145 we have



.

M, < % : E(0)d << 1 (2-149a)
.2
M, g ;2—; E(0)d << 1 (2-149b)

& and Md decrease when d increases.

Thus, d should be chogsen as large as possible and the value of d

The lower bounds to M

that minimizes M, and M, is therefore outside the region of d for which
E(0)d ¢< 1. The choice of {/ should be such as to yield the desired loss
factor L. Also by Eq. 2-74

e e 1 f eE(O)cl
Eﬂ, d(0) > E(0) - 3 n ( 7 +1) ; R K Rcrit (2-150)

This bound is effective whenever £>71. This corresponds to the region
E(0)d >> 1. (In order te get a reasonably small L, ,é’ should be much
larger than unity if E(0)d >> 1.) Inserting Eq. 2-150 into Eq. 2-146
yields

E(0)d
1 2
L-F(Ojjn(_;éﬂ— + 1)

Thus
/g el§.‘(0)c’l
W e — (2-151)
LE(0)d
Inserting Eq. 2-151 into Eqs. 2-1{4 and 2-145 yields

LE(0)d
LE(0)d

Me S (2-152a)

=V } -

n2 eE (0)d

Moo B (2-152b)
a4 S 2 1E(®d

From Eq. 2-152a we have that the bound to Me , has an extrimum point at
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E(0)d - 1 . LE(0)d ]
E(0)d(l - L) -1 °© (2-153)

if a solution exists. Thus, for E(0)d >> 1 this corresponds to

1 LE(0)d
1-L

or

1
dE(0) = T £ ﬁ

Now, for reasonably small -..x ables of the loss factor L we have
dE(0) = 1. (2-154)

This point is outside the region of d for which dE(0) >> 1.

From Eq. 2-152b we havs thet the bound to Hd has a extrimum point at

E(0)d - 2 LE(O}d
E0)d(L - L) - 2 ° ’ (2-155)

if a solution exists. This corresponds, for E(0)d =>> 1, to

L eLE(O)d

—_— =

1-L

or

1 1
dE(0) = L gn 1L

For reasonably small variables of the loss factor L we therefore have
dE(0) = 1 (2-156)

This point is outside the region of d for which dE(Q) >> 1.

We may conclude therefore that the lower bounds to M, and Md are

monotonically decreasing functions of d in the region dE(0) << 1 and

are monotonically imncreasing functions of d in the region dE(0) >> 1.



Both M, and Ed are therefore minimized if:

~ .

E(0)d =1 ; E(0) L 1, R 55 Rcrit
and since d > 1, £

d=1 ; E(Q) 2 1, R R .

The number,f? is chosen to yield the desired loss factor L,

- 53 -

(2-167a)

(2-167b)



CHAPTER "II
DECODING SCHEMES FOR CONVOLUTIONAL CODES

3.1 Introduction

Sequential decoding implies that we decode one information digit at
a time.
Thus the

The symbol s, is to be decoded immediately after s

receiver has availmile the decoded set (..., 8 1 so) whei itlis about to
decode 8- We shall assume that thegse symbols have been decoded without an
error. This assumption, &lthough crucial to the decoding procedure, is not
8o restrictive as it may appear. This will be discussed later in this chap-
ter.

We thersfore restrio: ou- wsureation to those 5, consistent with the

previously decoded symbols,

3.2 Sequentia]l Decoding (4fta: Wozencraft and Reiffen)

Let 4 be the segquencs that comnsists of the first w input symbols of
the transmitted sequemce, that diverges from the last information digit to be
detected. Let uw“ be & member of ithe incorrect set M'' (see Section 2.5).
uw' therefore starts with an iuformation digit other than that of the sequence
u Let ) A be the sequence that consists of the w output symbols that cor-

respond to the transmitted segment u . Let

plv )
W
Dw(u, v) ﬁn e E 3 (3-1)
W W
which we call the distance betwaen U and Ve Where
W
pv)) = [ ply,) (3-2)

i=]

W
plv |u) -];1 ply =) (3-3)
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Let us define & constant ij given by
j “k,
P (u, v} > D) L& ° (3-4a)

where kj is some arbitrary positive constant which we call "probability
criterion" and ie & member of an ordered set

K -Ek: kj ek v & ko B(R)ng, (3-4b)

where A > 0 is a constant.
Let us now comsider the sequential decoding scheme in accordance with
the following rules:
1. The decoding computer starts out to generate sequentially the
entire tree set M (Section 2.5). As the computer proceeds, it dis-

0

cards any seguence < m) for

"

of length w symbols (1 < w
which the distance ﬂ%@u”g v) = leo (le corresponde to the
smallest "probability criterion kl).

2. As scon as the computer discovers any sequence ig M that
is retained through .ength m, it prints out the corresponding
first informatiom digfic.

3. If the complece set ¥ s discarded, the computer adopts the
next larger criterion k , sad its corresponding distance

2 . ,
DWJ-((L w <.

S
4., The computer contimues this procedure until some sz:gquence in
M ie retained through Lengthk m. It then prints the correspond-

ing first information digil.

When these rules sve aswopted, the decoder never uses a criterion Kj
unless the correct subset M (and, hence, the correct sequence uw) is
discarded for kj 1° The srovability that u, is discarded depends on the

channel noise only. By sveraging both over all nolge szouences and over the

engemble of all tree codes, we cen bound the average nuwber of computations,

N, required to eliminate the incorrect subget M°',



- 56 -

3.3 Determination of a Lower Bound to R - of Wozencraft-Reiffen
Decoding Scheme (5), (6) P

Let N{w) be the number of computatioms required to extend the search

from w to w + 1. Using bare to denote averages

N= 3 Nw (3-5)
W

—

N(w) may be upper bounded in the following way: The number of incorrect

messages of length w, M(w), is given by Eq. 2-143.
dRw
M(w) < Ae (2-143)

The probability that an incorrect message is retained through length w + 1
when the criterion kj is used is given by

0 b T
Pr[D_(u', v) \< D | 3] (3-6)

The criterion k, i3 used whene=ver all sequences are discarded at some

length Aw ( % RS % ) with the criterion kj-l'
Thus the probability Pr(j) of such an event is upper bounded by the

probability of the correct sequence u being discarded at some length Aw,

Therefore

() <2 P, u, v o Sh (3-7)
Thus, by Bgqs. 2-143;, 3«6 and 3-7
N < 4% 2 pe ', v < 03[0 Re(h) (3-8)
J

Inserting Ineq. 3-7 inte Ineq. 3-8 yields

NGwy S age® Z Pe(d w’, vig D5 by (u,v) 30 3TNy (3-9)
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Inserting Eq. 3-9 into 3-5 yields
N wdR ; 3% j-1
N 5; é;:;Ale Pr[Dw(uﬂa v) 53 Dw 3 th(u, v) ;; th ] (3-10)

We would like to obtain an upper bound on

Pr[Dw(u”9 ) g; ij 5 th(u9 v) ;; thj-l]

of the form

-R*dw
e

0 ] 4 j"l
Pr[Dw((u y v) £ D\w g th(u, v) > Dkw J< B (3-11)

where B is a constant that is independent of w and A, and R* is any positive

number such that 3-~11 is true. Inserting Eq. 3-11 into Eq. 3-10 yields

S = X ‘.7:~. ‘.'L
¥ € > reBBRIwd (3-12)
LER 7S
where k = BAI.
The minimum value of R*, over all w, A and j is called "Rcomp'“ Thus
R = min {&*} (3-13)
comp "

Inserting Eq. 3-13 inte 3-12 yields

_ =-(R - R)wd
N < 2 ke coP (3-14)
Wy j oA

For R £ Rcomp” the summation on w is a geometric series which may
be upper bounded by a quantity independent of the constraint length m. The
sumuation on A containe m Lfdanticel terms. The summatien on j will contain

a number of termg proporitiomal to m. This follows from making the largest
criterion used, kjmaxg egual co F(R)n = E(R)nd. Thus for rates R < Rcomp’
N may be upper bounded by & quantity proportional to mzo Reiffen (6)
obtained an upper boumd to R

Goump
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— < E(0) (3-15)

It has been shown (5) that Rcomp = E(0) whenever the channel is symmetricl.
We proceed now to evaluate a lower bound on Rc
From Eq. 3-1, 3-2 and 3-3 we have

omp”’

, KZW 2{; j ply,) ;
D, fu, v) = dix, y) = o e 3-16a)
A =1 1=l ALY
D.(u', v) =3 dix', y) =3 [n ; (3-16b)
¥ gl—t =1 POYy|x )
Thus, by the use of Chernoff bounde (Appendix A, Section 3)
Pr(o, (v, v) 20, D) < RECOREYNOY (3-17a)
where, by Eqs. A-27, A-29 and 3-16a
% (o) =S f P(x) ply|x) 3% gy
5 3
-,&12‘ _fP(x}) ply <) Cp»)® dy ; s 20 (3-17b)
X v
and
h|
2 t(s) = t: (3-17¢)
Thus, by Inegs. -4 and 3-17
Priﬂkw(us v) ;; wajj 5; e“W(Jﬁ(s) -8 %s) ), e ¥ for 411 A (3-18a)

and



1::7“,j = " (8)

where s is determined as the solution of the equation

k
L s - Teo

In the same way

Pr[Dw(u°, v) 5; ij] E; eW(u(t) - tu'(t) )

where, by Section A.3 and Eq. 3-16 b

d(x',
u(t) = an fm‘) pyd e P Py
X 3

- QnZ [P(X‘) p(y)l'ﬁ'tp(y x') fayax' ;¢ <0
xﬁ Y

and

i
D
' - W
p'(t) Ny

Now, returning to Ineq. 3-11

0 h| 5 .1'1 [
Pr[D (u', v) <D0 5 D _(y, V) 2D ] L Pr[D (u', v) D

Also

¥ j @ 5 J‘l
PrIDW(u s V) $ D Dm“'f’ v) 2 D, ] € Pr[Dm(u, v) 2 D,

Thus, by Inegs. 3-20, 3-18 and J-19

j-1

- 5 -

(3-18b)

(3-18¢)

(3-19a)

(3-19b)

(3-19¢)

3

{3-20a)

]
(3-20b)
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1 . -1
el (u, v < 0 50 (u, v >0 37

< min {Prrnw(u', v <0315 e, ', v > b 37

plt) - tu'(t) -kj_l}
min {qe ;e (3-21)

Now, by Eq. 3-4b) kj = kj=l + A 3 & > 0. Thus by Ineq. (3-18a)

ki oo ok (F(s) -~ 8% ' (8) IW

e =g e =g e (3-22a)
where

]
D

7§ (s) = 2 (3-22b)

and
kj
Besy - s’ﬁ'(ﬁ) - = (3-22¢)

Therefore, inserting Eq. 3-22 into Ineq. 3-21 yields

-1

' i,
Pr[Dw(u s V) 5; Dw g th(u, v) 2; th |

& o in {ew(’zf () = 87'(e) ), lu(r) - tu(r) )
(3-23a)
Thus, if we chc. -2
R* = max {- ’E(m_;-a’{“(s) ;o= u(e) + tu'(t)}
or
* 1 f 3
R 23 {-ﬁ(sm + 8l (a) - ule) + tu'(t)} (3-23b)

then Eq. 3-11 is valid.
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Inserting Ineq. 3-23b into Eq. 3-13 yields

Rcomp 2/ min % {- %(s) + s%'(s) - u(t) + tu'(t)} (3-24)

Now, by Egs. 3-17 and 3-19

]P(x) p(y{x) *p(y)® f p(y'x)
Y
Y

(3-25a)
P(x) ply |0 " %p(y)® dy
'
1+t
Ex; Yf () ) Ty fn B gy
p'(t) = (3-25b)
2/ ] P(x) ply)  Tplylx) 7"
XQ v
If we let t = 8 -~ 1 we have
w'(e) = 41y 5 uey = % (o) (3-26)
Hence
R omp min 3 [28-1))'(s) - 2 ()] (3-27)
The minimum occurs at that s, for which
[(28 - 1) % "(s) - 28(a)] =0
which corresponds to g = = (3-28)

2

Also, [(1 - 28) ¥ '(a) - 27 ()1’ = 27" "'( % ) 2 0, since ¥ ''( %) is the
variance (see Ref. (2) ) of a wandom variable. Thus, s = —;— is indeed a
minimum point.
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Inserting Eq. 3-28 into Ineq. 3-27 yields

1
no::om;:o >'/ £ /K( 2 ) (3-29)

Now, by Eq. 3-17b

-
-

’b/( %) - ﬁn fé' P(x) p(y{x)z p(y)zdy (3-30a)
' X
Yy 7}
where
p(y) = Z P(x) ply %) (3-30b)
X
Therefore

Z

- B '1..- ‘l..
2 (3 = Qn{ JZ o(x) p(y[n)’ p(,)Zdy},
x
v %

2

i1
o b { f a(y»zp(y)zdy} (3-31a)
1
where
1.2
g(y) = {2 p(x) p(y!@‘a} (3-31b)
xp
By the Schwarz inequalicy
1 1 ,2
{ jg(y)z p(’{w‘zdy} < fs(y)dy /P(y)dy
Y Y Y

= /s(y)dy (3-32)

¥
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Inserting Ineq. 3-32 into Eg. 3-31 yields

2

2Pty < U ft}. p(x) p(y x?] dy (3-33)

B =

Inserting Ineq. 2-33 into Imeg. 3-29 yields

1
-2 /8 f [Z o8 Bl o (3-34)

R
comp

Now, by Eqs. A-69 and A-7l in Appendix A,
z 2
2
- ﬂn /[ 2 p(x) ply|x)"1 dy
T

is equal to the zero-rate 2cpament B‘Q d(0), for the given channel. By a
?
proper selection of pfx) aud he number of input symbols, E.ﬁ d(0) can be
3
made arbitrarily close to tle cptimum zero-rate exponent E(0) (see Chapter 2),
Thus

1 3 -
Rcomp =z 5 E i d(ﬂ) (3-35)
and for semi-optimum input spaces
1
Rcomp>/ = E(0) (3-36)

In this sectfon, we have been able to meaningfully bound the
average number of computsiions necessary to discard the incorrect subset.
The harder problem of bounding the computation on the correct subset has not
been discussed. A modification of the decoding procedure above, adapced from
a suggestion by Gallager [Kef (3) page 29] for binary symmetric channels,
yields a bourd on the tota! rnwiber of computatioms for any symmetric chan-

nel. However, no such bowad fyv asvmmetric channels have been yet discovered.
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3.4 Upper Bound to the Probability of Error for the Sequential Decoding
Scheme

Let us suppose we (conservatively) count as a decoding error the
occurrence of either one of the following events.

1. The transmitted sequence u and the received sequence v are such
jmax. ?Ee probability

of this event, over the ensemble, is less than me JWaX

that they fail to meet the largest criterion k

2. Any element u’' of the incorrect subset M'' together with
the received v satisfies some kj < k, » when the jth criterion
Imax
is used.
An element of M'' picked at random, together with the

received v, has a probability of satisfying some k, equal to

J
;%jPr[Dm(u', v)ig ij : kj is used]

Since the probabiliry »f a uniom of events is upper bounded by
the sum of the probabi’ities of the individual events, the prob-
ability that any element ¢f M'' together with the received signal

v satisfies k., is lese than

]

nR ¢ ],
e %Pr[nm(u o W) <~ D : k, 18 used]

3
The two events stated above are not in general independent.
However, the probabillity of their union is upper bounded by the sum of their

probabilities. Thus the probability of error p, may be bounded by

& §

P, 5; i Jmax . ede :?T erDngu’, v) P~ Dﬂ; : kj is used] (3-37)
It has been shown im ReZ. (5) that for channels which are symmetric
at their output, the proba®ility 0f error is bounded by
=E£ d(B.)) n
Pe g; me < where E‘Eu d{R) is the optimum exponent for the given
channel and the given imput space. (See Appendix A.) We now proceed to

evaluate Ineq. 3-37 for the gensral asymmetric memorylese channel. The
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event that kj is used is included in the event that u' together with v will

not satisfy the criterion k .12 OF

h|
Dm(u' , V) ? ij-l
Thus

Prip_(u', v) < nmj ik s used]

<ern ) >, v » 0 I (3-38)

m
Inserting Ineq. 3-38 into Ineq. 3-37 yields

i 3

-k
P, < me Jmax 4 ¢ Pr(D (u', v) D, %y

(3-39)

Now, by Ineq. 3-4, Duij is chosen so &8 to make

3

-k
Pr [Dm(u’ v) > D, s < e Imax

Also, by Ineq. 3-17

j ol §(a)-5 §'(s)]
Pr(D (u, v) > D_ s, $e ; s> 0

where

3

Dma.x
m

’6'(8)-‘ =

Thus, we let 'kj = m{’ﬁ(s) = ’Zj”f{s])] and therefore

"k, ml ) - 8% (e)}
e J=e ;e300 (3-40a)
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Pr[Dm(u', v)

where

u@

Inserting Ineq. 3~40 and 3-41 into Ineq. 3-39 yields

P
e

where

D

]

max

"(s) = =

From In

]

eq. 3-19 we have

e

max

D

(t) = =

m(
5; m[e

Y(s)-s ' (s )
+

3
n'(e) = 4(s) = "

By Eq. 3-26 we have that Eq. 3-42b is satisfied if we let t = g - 1,

by Eq.

P
e

Making

Koy - s '(s) = & + % ¢ - (s-1)'f " (o)

we get

3-26

m(
6( mfe

Pe < 2me

Ae)-s F(ed )

m(dRHu(t)-tp'(t) )

e

m(dR+ Y (s)-(s-1) Y '(s) )

+ e

n¢ Ja)-s Y1 ¢a) )

= Z2me

-nEsq(R)

i m(pt)=tu'(t) )

]

N

]
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(3-40b)

(3-41a)

(3-41b)

(3-42a)

(3-42b)

Thus

(3-43)

(3=-44a)
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where
- %15'(3) = R (3-44D)
and
B, ® =g (Do - s¥ () (3-44c)
The rate that makes E q(R) = () is the one that correSponds to s =0,
since {/6 (s) - sﬁ'(a)J/ By Eq. 3-%4%b

1
=/ . - '()
SRR s!s

Also, by Eq. 3-25a

L4, L5 f o 2
- (s) - - F(x) p(y|x)
d 520 d :é; ; l (y[x)
Thus
Baq(R) 2; 0 ; R :g'[n]smo (3-45a)
where
1 -
[llls_0 - Z /P(x) p(ylx)/ (y) dy (3-45b)

¥

Comparing Eq. 3-45 with Eq. A-57 of Appendix A yields that
Esq(R) 2} 0 for the same region of rates as E.f. d(R). Thug, if the input

space X 1is semi-optimal, one cam get anm arbitrarily small probability of

error for rates below the chamnel capacity C.

The zero-rate exponent qu(@) is given by
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E, @ = - T + e () = - (&) + (s - DY (o) (3-46a)
where 8 is the solution of

Ar(s) =0 (3-46b)
Thus

E, () > min 2 {- 2%y + (28 - 1) % '(s)} (3-47)

Following Eqs. 3-27 through 3-36 and substituting Rco by Esq(O) we get

mp
1
xsq(O) >/ 5 E 9, d(o;) (3-48)

and for semi-optimum input spaces

1
nsqm) ; > EC0) (3-49)
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3.5 New Successive Decoding Scheme for Memoryiess Channels

In this section a new sequential decoding scheme for random convolu-
tional codes is described. The average number of computations does not grow
exponentially with n; for rates below some R:omp’ the average number of comp-

utations is upper bounded by & quantity proportiomnal to

(1 + nmzomp )

m ;g m2

The computational cut-off rate R:Dmp of the new systematic decoding

scheme is equal to the lower bound om Rc . for sequential decoding with

om
asymmetric channels (see Section 3.3).

4
However, in the case of sequential decoding, R is valid only for

the incorrect subset of ccde words: the existence of ;:::p for the correct
subset has not yet been proven for asymmetric channels. The successive
decoding scheme, which is different from other effective decoding schemes
such as sequential decoding and low-density périty-check codes [Ref. (9)]
yields a bound on the total average number of computations.

When this decoding scheme 18 averaged over a suitably defined
ensemble of code words it has an average probability of error with an upper
bound whose logarithm is »nEa(R). EE(R)‘;; 0 for rates below channel capac-
ity if a semi-optimum imput space is used.

A convolutional tree code is shown inm Figure 7 end is discussed in
Section 2.5,

Let us now congfider the decoding procedure that consists of the fol-
lowing successive operations.

k

Step 1: Consider the set of b 1 paths of k, information digits that

diverge from the first node (branch poimt). Each pith consists, therefoie,
of kla input symbols. The a posteriori probability of each one of the b 1
paths, given the corresponding segment of v, is computed. The first branch
of the path of length kla which, given v, yields the largest a posteriori
probability is tentatively chosen to represent the corresponding first trans-
mitted digit (see Figure 8). K
Let us next consider the set of b L paths of length kla symbols that

diverges from the tentative decision of the previous step. The a posteriori
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k
probability of each one of these b : paths, given the corresponding segment

of the sequence v, is computed. The first branch of the link of length kla
which, given v, yields the largest a posteriori probability is tentatively
chosen to represent the second transmitted digit.

This procedure is continued until i = E information digits have been
tentatively detected. J?

The distance D(uly is then computed for the com-

p(v
plete word u, of length m input symbols tnus obtained.

If D(u19 v) is smaller than some preset threshold Do, a firm deci-
sion is made that the first digit of u

tion digit.

1 represents the first encoded informa-
I1f however, D(u13 V) ;; Bog the computation proceduré is to proceed
to Step 2.
Step 2: The decoding procedure of Step 2 is identical with that of

Step 1, with the exception that the length kl (information digits for k.a

1
channel symbolg) ie replaced by

k, = k1<+ VAN N\ a positive integer (3-50)

Let u, be the detected woxrd of Step 2. If D(uz, v) = -%éT&—— < D
a final decision is made, and the detection of the first
information digit is completed. If D(u29 v) ;; D0 no termination occurs and
the computation procedure is to them go to Step 3, and so on.
In general, for the jth step we have

kj - kjwl + /\ 5 A\ e positive integer (3-51)

and the detected word is uj’
Following the detection of the first information digit, the whole

procedure is repeated for the next information digit and so forth.
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FIGURE 8
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3.6 The Average Number of Computations per Information Digit for the
Successive Decoding Scheme

The number of computations that are involved in step j is bounded®

by
kJ
Nj g; mb (3-52)

Let Cj be the condition that no termination occurs at step j. Step j will be

used only if there are no terminations on all the j-1 previous steps. Thus

the probability of step j being used is

P(j) = Pr(Cl, C,» 03, B Cjwl) (3-53)
The average number of computation is given by
N = NlP(l) + NZP(Z} * e P NjP(j) + e B ijayp(jmax)
< 2. NP() (3-5a)
= ]
j=1
where
P(l) = 1 (3-54b)
P(j) may be bounded by
P(j) = Pr(cl9 022 C3U N ijl) < Pr(cj»l) (3-55)
Inserting Ineq. 3-55 and Eq. 3-52 into Eq. 3-54 yields
~ . j i
NN+ > N, Pr(C, ;) € mb +mw> b Pr(C, ) (3-56)

j=2 i=1

*We count as a computation the generation of one branch of a random tree

branches),
information

code at the receiver. There are b J paths ( that consist of k
which have to be sequentially computed for each one of the i
digits (i =2 ). Thus

i)

K K k
Njgibj & 1ab 4 = mp 3
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Now let uj be the code word detected at step j, and let u be the

transmitted code word. Then

Pr(cj) = Pr(D(uj, v) ;; DO)

= Pr[D(uj, v);;.DO; uy = u] + Pr[D(uj, v) > D0 ; u, ¥ u]
= Pr(D(u, v) >D0 pouy = u] + Pr[D(uj, v) > D, 3 u, # u]
Pr[D(u, v):;,DOJ + Pr[uj # u] (3-57)

We are free to choose the threshold D0 so a2 to satisfy

1

-=E (0)n
Pr[D(u, v) >D0} $ e 24, 4

(3-58)

Now, let ejr

not the same as the corresponding digit of the transmitted sequence u. Then

be the event that the rth information digit of uJ is

i
l’r:(uj # u) = Pr| U {ejr} 1 (3-59)

r=1

The probability of & union of events is upper bounded by the sum of

the probabilities of the individual events. Thus

i
Pr(uj # u) S Z Prie

r=]1

jry (3-60)

b-1

There are 5 b'kj paths of length kj information digits that diverge
from the (r-l)th node of u, and which do not include the rth information
digit of u. Over the ensemble of random codes these Eil b J are statisti-
cally independent of the corresponding segment of the transmitted sequence
u (see Section 2.5). The eveﬂt ejr occurs whenever the a posteriori prob-
ability of one of these Eii b I paths yields, given v, an a posteriori prob-

ability which is larger than that of the corresponding segment of u. Thus,
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Pr(ejr) is identical with the probability of error for randomly constructed
block codes of length kj
bers of the d-dimensional input space Xp which consists of ﬁ vectors) .

a channel input symbols.(All input symbols are mem-

Bounds to the probability of error for such block codes are given in
Appendix A. Thus, by Appendix A
(R) 'kjad (3-6la)

-E
Ly d
Pr(ejr) :S 2e

where
m n
1 a 1 ad 1
R-E ﬂnbﬁ;,ﬁnb =i jnb (3-61b)
!ﬂ’ d(R) = E f, d(G) - R ; R L Rcrit (3-61lc)
E’g, d_(R) >/ E /» d((()) = R 3 R > Rcrit (3-614)

Inserting Ineq. 3-61 inteo Eq. 3-59 yields

-E [D d(R) kjad

Pr(u, # u) < Zme (3-62)

Inserting Ineqs. 3-58 and 3-62 into Ineq. 3-57 yields
- -% Eﬂ d({@)n - Bz d(R) kjad

Pr(Cj) $ e y 4+ 2me & (3-63)
Now, by Ineq. 3-61 we have

1 , 1 .

2 Eﬁs d(0) \< Ef ) d(R) s R > B,Z, c1(0) (3-64)
Also

n =md = iad > kjad (3-65)
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Inserting Ineqs. 3-63 and 3-64 into Ineq. 3-63 yields

1

- = E (0) k.ad
2 4, 4 . 1

Pr(Cj)\<2me J L RS5E

]

HO! (3-66)

Inserting Ineq. 3-66 into Ineq. 3-56 yields

1
e k k, -=E (0) K, .ad
Ngmbl-l-Zmszjez’e’d Ak ; R&

1
= 2 B 4. 4©
(3-67)
Inserting Ineq. 3-61lb into Ineq. 3-67 yields
1
_ Rk. ad Rk, - = E (0) k, .]ad
Ng2{e L +m12e 3 24,4 -1 J;
j=2
R<TE, .(0) (3-68)
~ 24,4

By Eq. 3-51 we have

Rkjad 2 ARad s e[R . % By a@] [k +32) ad

E\<2{me +m e

j=1
1
RSBy, o©@ (3-69)

Let R* be defined as
comp

%

1
comp 2 E,Q, a(® (3-70)

* 1
Then, for all rates below pr, R -3 BZ’ d(0) < 0, and therefore

#
Rklad 2 e[R ] Rcomp] klad eA Rad
N <2/me + m ———t ; R
[ R Rcomp]Aad

* . 5
Rcomp 2 E,(Z, d

(3-71)

N

l -e

(0)
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The bound on the average number of computations given by Ineq. 3-71 is

minimized if we let®

*
1 ﬂn R/chgp
A e : (3-72a)
comp
(3-72b)

Eq. 3-72 can be satisfied only if both Eq. 3-72a and Eq. 3-72b

yield positive integers.
Inserting Eqs. 3-72 yields

1-B
— B 1+B | * - L -
N 55 T3 ™ : R 5; Rcomp > B)Z: d(0) (3-73a)
where
= * -
B Rchomp < (3-73b)

3.7 The Average Probability of Error of the Successive Decoding Scheme
Let u' be a

Let u be the transmitted sequence of length n samples.

member of the incorrect subset M''. (The set M'' consists of M'' members.)

As shown in Section 2.5, u' is statistically independent of u. The prob-
ability of error is then bounded by
] 1]
P, < Prid(u, v) > Dyl + M Pr[D(u’, v) < D]
dR
< Pridu, v) > D, + €"Pr(D(u’, v) < D] (3-74)
Now
- p(v) _
D(u, v) ,gn p(v[2)
where

m

p(v) “H p(y,)



and
m
P(v|w) "TT p(y, | %)
i=
Thus, by the use of Chernoff Bounds (Appendix A)
Pr(D(u, v) > Dojgem[/é@) -89 '(s)]

where

75(8) = fn > /P(x) p(y x " %p(y) %y ; 8

x.cY

\Y,
(<)

Y'(s) =,
Also

Pr[D(u’, v) < D] < GIk(E) = £ pi(e)]

u(t) = fn Zz j P(x) ply[x) ™" ply) ey
;2 Y

0
u'(e) =D,
If we let t = 3 - 1, we have by Eq. 3-26

o) =pey 5 s = uee)

Inserting Ineqs. 3-75, 3-76 and Eq. 3-26 into Ineq. 3-74 yields

p g @ - @1, mia@s @ - 0T

where ’3“(5) = DO

- 77 =

{3=75a)

(3-75b)

(3-75c¢)

(3-76a)

(3-76b)

(3=76¢)

(3-77a)

(3-77b)
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Now, comparing Ineq. 3-75 with Ineq. 3-58 yields
- () + s () =2 dE, ,(0) (3-78)
25" d '

On the other hand we have by Inegs. 3-27 through 3-35

- = u -

27(s) + (22 - DG > G, 40 (3-79)
Thus, inserting Ineq. 3-79 into Ineq. 3-79 yields
1
o) + (DY (e) 5 B, (0 (3-80)

Inserting Ineqs. 3-78 and 3-80 into Ineq. 3-77 yields

=%nE£ 40 =n[%32 40 - R]
] + 3

Peé e e
(L1g (0) - R] n[R* R]
kg R g, At - - o comp” . %*
< 2 2e ; R K B onip (3-81)

If the input space i¢ geml-optimal we have by Chapter 2 that
~
Eﬂ, d(O)__ E{0). Thus

ﬁ-[%xm = Bn 5

1
P < 2e ;R SRy =3 E(O) (3-82)

If, instead of setting DO ags we did in Ineq. 3-58, we get it so as
to make 7 (s) - sﬁ"(ﬁg) = drR ’O/(a) = (s»l)g'(s), where 1'(8) = Dop we
have by Ineq. 3-77 that

-nE_(R)
P \< Z2e

where by Inegs. 3-43 through 3-45 we have (for semi-optimal input spaces)

L
E_(0) 32 5 E(0)

ER) > 0; R L¢C



- 79

However, following Eq. 3-58 to 3-70, it can be shown that the new setfing of
* 1
D, yields acomp > 2 Ep, 4€0) -
The fact that the successive decoding scheme yields a positive
exponent for rates above Ri@mp does not imply that this scheme should be
used for such rates, since the number of computations for R > R* grows

~ comp
exponentially with m.



CHAPTER IV
QUANTIZATION AT THE RECEIVER

4,1 Introduction

The purpcse of introducing quantization at thé recelver is to
avoid the utilization of analogue devices. Due to the large number of compu-
ting operations which are carried out at the receiver, and the large flow of
information to and from the memory, analogue devices may turn out to be more
complicated and expensive than digital devices,

The discugsion is limited to the Gaussian channel and to rates below

R The effect of quantization on the zero-rate exponent of the probabil-

cerit’
ity of error is discussed in the three following cases:
Case I: (See Figure 9.) The gquantizer is connected to the

output terminals of the chanmel.

Cage II: (See Figure 9.) The logarithm of the a posteriori
probability per input letter (i.e. p(y’xi) s 1 =1, .,.,,Q )

is computed and then quantized.

Case III: (See Figure 9.) The logarithm of the a posteriori
probability per p imput letters (i.e., p(ypjxjp) s =1, o..ﬁj7p)
is computed and then quantized. (xj” is the vector sum of p
guccessive input-letters of one of the M code words; yp is

the vector sum of the p received outputs.

It was shown in Sectiom 2.2 that whenever semi-optimum input spaces
are used with white Gaussian channels, EJ?, d(o) is a function of Ai& , the
maximum signal-to-noise ratio.

In this chapter, the effect of quantization is expressed in terms of
"quantization loss" Lq in the signal-to-noise ratio of the unquantized chan-

nel.

Let E?g d(@) be the zero-rate exponent of the quantized channel,
9
Then, by Eq. A=70
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Therefore specifying an acceptable E? d(R) for any rate R :S'R

?
corresponds to the specification of a proper loss factor Lq.

crit’

Let Hq be the number of quantization levels that are to be stored
in the memory of the "Decision Computer" per one transmitted symbol.

Assuming that one of the two decoding schemes discussed in Chap-
ter]Ilis used, it is then convenient to define as the total decoding
complexity measure® (including the quantizer).

M= Md Mq where Md ie given by 2-145 (4-1)

In Chapter 2 we have discussed the ways of minimizing M with respect to
,gand d.

In this chapter we shall show that if semi-optimal input spaces are
used with a white Gaussian channel Mq of the quantization scheme of
Case III (Figure 9) iz alwaye larger than that of Case II and therefore the
quantizﬁtion scheme of Case IIIL should mnot be used.

Also, whenever E(0) = % .f% Aiax oS- 1 ES Hq of the quantization
scheme of Case 1 (Figure 9) iz gsmaller than that of Case II and therefore
the quantization scheme of Cese I should be used in such cases. On the
other hand, whenever E(0) << 1 (or Aiax << 1), Hq of Case II is
smaller than that of Case L.

Furthermore, it will be shown that M, like M ig minimized 1if we

d!
Lo/ ; j
let d — E(0) © E(0) <« 1.

*We have assumed that the comstraint length 0, as well as the rate R and
the signal power, are fixed.
The probability of error is then bounded by

-E(R)n
P, £ 2e
Now, given the acceptable probability ¢f error P, S:Pe one can find out

what the acceptable exponent E%ﬁ d(R) is, and thuz, what the acceptable
quantization loss, L_is. We ’ ghall therefore try to minimize M with
respect to ;@ and d for a fixed n and a given quantization loss, Lq'
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The results mentioned above are derived for the quantizer shown in
Figure 10a which is equivalent to that of Figure 10b.

The interval Q (Figure 10b) is amsumeﬁ to be large enough so that
the limiter effect can be ﬁeglected as far as the effect on the exponent of
the probability of error 1@ concerned,

Thus, the quantizer of Figure 10b can be replaced by the one shown
in Figure 10c. However, the actual number of quantization levels is not

infinite as in Figure 10c, but rather is equal to k = Q/q as in Figure 10b.

4.2 The Quantization Scheme of Case I (Figure 9)

The quantized zero-rate exponent qug d{0) of Case I can be lower
, dv
bounded by the zero-rate exponent of the following detection scheme:

The distance

2
—qux + x
d(x, v) (4-2)
is computed for each letter Xy of the tested code word.
Here yq is the guantized vector of the channel output, y
yq = /}Zlq: 72qv LR ,)qu (4‘3)

The distance

n
Dq(u: v) 'Z diq‘:;yis xi)
i=]1

is then computed.

The one code word that yields the smallest distance is chosen to
represent the transmitted word. This detection procedure is optimal for the
unquantized Gaussian variable y. However, yq is not a Gaussian random varia-
ble and therefore dq(x, y) is not necessarily the best distance.

Thus, the above detection scheme will yield an exponent B*(O), which
will be a lower bound on E?Q, d(0).
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k7 q -
E"(0) s: E}f, d(0) 5§ E/E” d(0) (4-4)
The probability of error is bounded by

P, < (M- 1) Prpevd, v < DV, W) (4-5a)
or

P, <MPr[p(vd, v) - pvd, wt) > o0] (4-5b)

where u corresponds to the transmitted word and u' corresponds to some

other code word.

Dq(uD v) as well as Dq(u"” v) are sums of n independent random

variables:
q gﬁ q =
D (u, v) d, "y, %) (4-6a)
i=]1
n
D', v) = > d %y, x,") (4-6b)
rpc i i

where xi iz the ith transmitted letter and xi“ is the iCh letter of some

other code word.

By the use of the Chernoff bounds (Appendix A, Section 3) it can be
shown that

¥ 009 oo i .
P, L (- 1) & F O nIENO) - R (4-7)

g

where, by Eg. A-65

9, 49yt
- E*(Q) = u,*(ﬁ) sl% ﬂn Z; ZZ P(x) P(xn) P(quX)estd (xsy) d (x 9Y)]
Y w
% (4=-7a)

) 8 2; 0 (4=7b)
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Now, let &8 = = Then, by Eqs. 2-107a and 4-7

20
xl gqu'wx}
E*(0) = - %ﬂ 52_ P(x')P(x)e ‘*G 2— p(y?(x) e 2G’ (4-8a)
where
yqx = ’?1q ?1 + ?zq ?2 R ?dq fd (4-8Db)
Thus, by Eq. 4-8, 4-4 and 2-107a
E I:\:[2 lx'[2 Uy -x
4 G* q 26" (4
f (0) E'ZP((X)P(X ) e Zy(; p(y’|x) e (4-9a)
x]z-[x” & x'-x
2 2
B dm - %g ZZP(x)Pffx ye * G ﬁ(ylx) e 267 gy = E, 4¢0
Y

(4-9Db)
The complete informatiom about the quantization effects is therefore
carried by the term:

y! %’ ex)

gl(x, x') = Zp(yq{ﬂ e e (4-10a)
Y

when compared with the unquantized term:

vix'-%)
g(x, x') = fp(yla@ e 2 dy (4-10b)
Y

The quantizer is & memoryless device; therefore, since the channel is

memoryless as well, we have by Eg. 2-6
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P40 = o0, £ 8,35 - P4 [0

Thus

4 ’)Ziq( ?1" ?,1_)
glx, x) =T 2 p(’?iqlfi) e 2 G ‘} (4-11)

i=1 "qu

Two important signal-to-noige ratio conditions will be discussed

Cuax

Condition 1: —ZEr— A 5; 1 (4-12)
and at the samef‘-time 120G

max
Condition 2: G Amx > 1 (4-13)

a. Condition 1l: A £ 1 (Bq. 4-12)
max

In this case we have that

‘(?1-?01) ; for d g 4-14
2 G gl,furallgami (4-14)

It is shown in Appendix C that whenevsr the quantizer of Figure 10c is used,
and the input to the quantizer is a Gaussian random variable with a probability

density such as in Eq. 2-79, we have that

/Yiq( ?;"?1)
> w1 e G

”Zj,j-I
V85, -Fp . (5"~ £
1 br i
ol p(?i[?i)e 25 47,1 1 ; for ¢ < 2. (4-15)

4 G2



Inserting Eq. 4-15 into Eq. 4-11 yields:

gl(x, x")

Thus by Egs.

Now

gl(x', x)

X

y(x"~-x)

e
= | fp(ylz’:) e 26

y

4-16 and 4-10a

(fi £

N T

d sh
dy]TT

i=]

sh

5 Gt

(fi §1) 4

(? f)q

d
=g(x', x) | | [

i=1

2
X
shx <e6

Also, for x < 1

shx o

X

Thus, by Egs.

(?

2
E.
6

4-18a and 4-14

(fy- )9
4 (52

; 2 2
RATTENE AN AR

AG""

(¢ - 09 < e
bt O ok

9% (3 4

Inserting Eq. 4-18c into Eq. 4-17 yields

or

glex', ) <

d

g(x', x) T | e

1=]

fy- f°
96 (3 “

]

4 Gg*
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(4-16)

(4-17)

(4-18a)

(4-18b)

(4-18c)
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f( -

glix', 0 K atx') 0 &7t 96@"‘ (4-19)
Therefore, by Eq. 2-4
q |x-%x"l
7
glx, x) £ glx, x') & 76C (4-20)

Replacing Eq. 4-10b by Eq. 4-20 snd inserting Eq. 4-20 into Eq. 4-9a yields:

jxl2-1x°| - 2 x=x!
E?, d(°> - *ﬁ 2— P"KJ‘ pix') e 4G gx, x') e 26GY

Inserting Eq. 4-10b into Bq. 4-21 yields:

q 5
FECD

‘3;'1_:.;-:‘;;7-,:_}3 ‘fxlz— 1.2 y(x"-x)
OB o~ / 2 a
- % gnz—z-i'(x) P(x') e et @ 4G ply|x) e 2G dy (4-22)
xLT

y

Inserting Bq. 2-79 imnto Eq. 4-22 yields

gz |x-x' 2 le=xf) %

E% d(°)>/ h % ﬂ ZE P(x) P(x') e %Gq eg SGE (6-23)

| i*{-=xl - g £12C-5 )
Bl 4@ ) - an P(x’) B(x) e 851 (4-24)
9 X
s

=

%
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Now by Eq. 2-110a we have

lx-x"] 2

-

E, (0)=-1 121:; > P(x") P(x) e (4-25)
Lo R

Comparing Eq. 4-23 with Eq. %-25 yields that whenever the channel is

in Condition 1 {eq. 4-12), the zero-rate exponent qu d(O) of the quantized
]

channel is lower-bounded by the zero-rate exponent of an unquantized Gaussian

channel with an average noise power of:

2
1 2 - 2 2 for ¢ < 26 (4-26a)
LR il

12032

This result does not depend on the kind of input space which is used
nor on its dimensionality, d. The eiffective signal-to-ncise ratio of the

quantized channel is given by

2 2 _
A2“'.?max_ gmax (1 - g‘z )
F3 A 2
g e e
Thus:
2 2 2
A = Ay, (- -17%-7‘ ) (4-26b)

Therefore, for a given quantization loss in the signal-to-noise ratio, let

q-ﬁ?%G q £2G (4-27)

where Lq, the '"quantization loss", 18 a constant that is determined by the

acceptable loss in signa’-to-noise ratio, as shown below:

3 . (4-28)



- 9] =

The number of quantization levels is, as shown in Figure 10b, equal

to
-g -
k (4-29)

%
It is quite clear from the nature of the Gaussian probeability density that
if we let

%-'fLax+BG' (4-30)

where B is a constant, then the effect of the limiter on E 1& d(0) (shown in
Figure 10b) is becoming negligible if B is large enough (in the order of
3)
Thus, inserting Eq. 4-30 into Eq. 4-29 yields

’ 2 ?max + 2B(3

k (4-31)
R
aG
Now, if E;x =A Lt
2B

The number of quantization levels for a given effective loss in signal-to-
noise ratio is therzfore independent of A , for A << 1. In the
max max

following section, the effective loss in signal-to-noise ratio for higher
values of A,and the corresponding number of cuantization levels k,are dis-
cussed.

b. Condition 2: A - 2 1  (Bqg. 4-13)
In this condition we have that Amax.:? 1 and therefore

7
Tl ' P

for some f% and ﬁ?“, Now, if q 5? 2(33 Bge. 4-18c through 4-28 are valid.
*The following statement has been proved by the author.
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The number of quantization levels is given by:

2‘;’mx+ 2By
DL G

k =

or

s oo + 2B
k ='—Siiﬁi———- (4-33a)

Thus, for Amax::>C>7 1

max

k = T3 : q <20 (4-33b)

In this case, again, k does does not depend on the kind of input space which
is used. There are many cases, however, where the assumption that q < T
is unrealistic, since much larger quantization grain ¢ can be used and still
yield the acceptable loss ngo

The effects of quantization in these cases depend heavily on the
kind of input set which is used. This fact will be demonstrated by the fol-
lowing typical input sets.

1. The input set comsists of two equiprobable oppositely directed

vectors
X =X 4 x2 = -x (4=34a)
where
P(x,) = P(x,) = = (4-34b)
1 2 2z

As shown in Section 2.3, this input set is not optimal for Amax;> 1,
A semi-optimal input space for Amax ;> 1l is, as shown in Section 2.3,
the following one:

2. The input set comsists of J? equiprobable one-dimensicnal vec-

tors. The distance betwesn two adjacent vectors is-j%%i, as shown in
Figure 4,
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When the input set consists of two oppositely-directed vectors, we

have by Eq. 2-111

A% 4
Q 1 g m;x
1
32, d(O) =-3 Xn [ ) + 5 € ] (2-111)
Also, by Eqs. 4-9a, 4-10a and 4-11
2 a2
L% x|
B, > -3 /oSS e pa) g%, x) e 267 (4-35a)
%%
where, in this case,
/’Lq r_f
gl(x, x') = [2 P("l (?)  “EE Id (4-35b)
/Zq
since by Eq. 4-34, ?1 ?_] ? and ?1' = ?J' -t ? for all
1w, ¢ouy dand = 1, o..; ds
Thus, by Eq. 4-35
gdx, x") =1 x' = (4-36a)
’}LQ "
d
gl(x, x')-[z_p(%qlg)e 2 G R x % x'" = -x (4-36b)
q
Now for x' ¢ x,
(?2 g? -1 zgéax > 1, sinceA 7 1
It is shown in Appendix C that in guch a case
1%5:-D (5$'-DH1  Jo( 8 -Dl

2'/2 p(qlgre € <[Zp%§)e26" e
. (

(4-37)



Thus,

gl(x, x")

or

gd(x, x')

Thus, by Egs.

gl(x, x")
Thus
gl(x, x")

and

gd(x, x')

Thus,
with Eq. 4-34

q 1 /1? 1
B2,.:1(0)>/"d n g3
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inserting Eq. 4-~37 into Eq. 4-36 yields

(fr-D%  lacfe-Dla
SHZetg|ere 280 e AGH
g

Y(x":xb la¢ £°-%))4
< jpmx) 6 Oy s (4-38)
y

4-38 and 4-10b we have

la¢¥°-€)la
7

< alx, x') e

= g(x', x) =1 ; x' = x (4-39a)
gAd
1y 226 )
=g (x, x') e 5 x' # x (4-39b)

inserting Eqs. 4-39 and 4-10b into Eq. 4-9a yields, together

_a%d qad
2

. e2C (4-40)

P |

The zero-ratz exponent of the unquantized channel is given by Eq. 2-111.

Let

3 L2

A" =4
q

Inserting Eq.

ﬂé— A (4-41)

4-41 into Eq. 4-40 yields
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xg’ 40 > - % fn ( %+ % e ) (4-42)

Thus, comparing Eq. 4-42 with Eq. 2-111 yields that the zero-rate

q
2,
rate exponent of the unquantized channel (with the same input set) if the

exponent E d(0) of the quantized channel may be lower bounded by the zero-

original signal-to-noise ratio A2 is replaced by qu, which is given by
qu 4'41 °
Let

qBLi ?max-quf’u’ ?mxmf Sreeeed

where Lq is the "quantization loss" factor determined by the acceptable loss

in the effective signal-to-noise ratio as shown below

2 y 2
A /GA)+A
iz-(n“?g) -1-L2% A-j (4-tls)
A A 9 G

Inserting Eqs. 4-43 and 4-30 into Eq. 4-29 yields

k_z?;zse’_zus;zﬁza
L b
a { a
Thus, for A >> 1

k = — (4"45)

The number of quantization levels, for a given quantization loss in
signal-to-noise ratio, is therefore independent of Amax for Amax > 1.
Comparing Eq. 4-45 with Bq. 4-33b yields that for reasonably small ng the
number of quantization levels needed for a given loss in signal-to-noise

+ i ) bl /4_ -~ 1
ratio is higher for Am&x'j>;>i than it is for Amax‘g\\\.mo
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The binary input set does not yield the optimum zero-rate exponent
since more than two letters are needed for Amax> 1. It was shown in
Section 2-3 that an input-set that consists of f one-dimensional vectors,
yields a zero-rate expoment which is very close to the optimum one if the

distance betweem two adjacent vectors is:

z gjma.x
2

The zero-rate exponent of this input set is given by Eq. 2-115

28 o a_ =l

A= 1642
. 3 - e ax
1 gwl 8 4° gt 8 £*
Bﬂ,l(O)--ﬂn(z+2F +.|-."'ze + ... )

Now since mt‘—l , we get from Eq. 2-116

L
4a2
Vi . ‘“a:‘
Ef’ 1(0)—::' - ﬂn c§}+g’;:ze 87 )

In other words, only adjacent vectors with a distance [g' = f l =20
are considered.

For all such vectors we have

1§ ¢
—38"—' = 1 (4-46)
Following Eqgs. 4-14 through 4-31 yields that the number of quantization
levels is
. 2§+ 280
A2'L &
q
or
ZAmax + 2B
k = . (4-47a)
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Thus

K ~ Pnax AL . Sy (4-47b
—frL, ¢ max )

The number of quantization levels in this case 1is therefore increasing with
the signal-to-noise ratio.

Summary

The zero-rate exponent E?Z, d(0) of the quantized channel of Case I
(Figure 9) may be lower bounded by the zero-rate exponent of the unquantized
channel with the same input space if the sigmal-to-noise ratio, Az, is
replaced by qu” where

A 2

J'z'-l“‘Lz
A q

The quantization loss LZ ig a fumction of the number of quantization levels,
k. The number of quantization levels for a given loss Lg is constant for all
A <<1, for all input sete, However, the number of quantization levels does
depend on the input space whenever Amax:> 1. Two typical input sets were
introduced. The first input set consisted of two letters only, while the
second input set was large enough to yield an E,@, d(0) which ig close to the
optimum exponent E(0).

It has been shown for _. % input spaces discussed in this section
that the number of quantization levels for a given loss Lq is higher for
Amax << 1 than it is for Amax“:>j> 1. In the case of the semi-optimal input
space shown in Figure 4, the number of quantization levels is increasing
linearly with A« (for Amax >> 1), The results are summarized in
Table 3.

The quantization scheme of Case 1I (Figure 9) will now be discussed,



2

Input A k q
Space Signal-to-noise Ratio No. of Quantization | Quantization
Levels Grain
. A << 1 3 zﬁ””ﬂz q = J12 Ly G
q
2 2
2 q= L s‘ma:x
L
q
Binary A >>1 24

i;mr for q(Z(‘,J q= 12 LG

Optimal A >> 1 28 i g= {121 ¢
max I-Lqm q

TABLE 3

QUANTIZATION SCHEME OF CASE I -- RESULTS
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4.3 The Quantization Scheme of Case I1 (Figure 9)

In this case the logarithm of the a posteriori probability per
input letter is computed and then quantized. The a posteriori probability
per input letter is by Eq. 2-79%

v 2- 2xy + x .

@

1 2 % :
plyx) = ——m— (4-48)
(21:)&[26&
Thus
L oty 10) = ~ o - In 0¥y’ (4-49)

The only part of Eq. 4-49 that carries information about x is

d(x, y) = %—'%—;M (4-50)
Thus, the computation of Qn p(y|x) may be replaced by the somewhat simpler
compﬁfation of d(x, y) with no increase in the probability of error. The
 decoding scheme for the unquantized channel is discussed in Appendix A,
Section A.2, with d(x, y) of Bq. 4~50 replacing d(x, y) of Eq. A-18. The
corresponding probability of error is bounded by Section A-3

-[E (0) - R]n
g §

Pe S s R<LR (4-51a)

where E f d(O) is given by
H]

1
s [d(x, y)-d(x',y)]
£y, 40 = - % /énzzu P(x) P(x') /p(ﬂx)z e dy
% % y (4-51b)
or
Ef’ 4@ = °='lg ﬂngz Flx) P(x") g(x, x') (4-52a)

- XX)p
AR ST P PR (IS FL ¥
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where
1 (]
7 [dlx, y) - d(x', y)]
g(x', x) = |p(y[x) e dy (4-52b)
y
Now, comparing Eqs. 4-52 and 4-50 with Eq. 4-9b yields
ol
_ o (x-x")
g(x', x) m e 8G* (4-52c)

Let the input to the quantizer be d(x, y) given by Eq. 4-50 and let the output
*

be dq(x, y). The zero-rate exponent E,Z d(0) of the quantized channel in

Case II, can be lower bounded by the zero-rate exponent E (0) of the following

detection scheme: The distance di(x ), given by Eq. 4-50 is computed for

i’ Yy

each letter Xy of the tested code-word and then quantized to yield diq(x, y)

the quantized version of di(x, y). The distance

pi(u, v) = Z d, U=, v (4-53)
i=1

is then computed. The one code word that yields the smallest distance
Dq(u, v) is then chosen to represent the transmitted code word.
Thus

E*(0) ézqﬁ, 4@ < E , (@ (4-54)

Following Eqs. A=65 and A-70 of Appendix A, we have

a9

E (0) = - — f Z Y]?(1{) P(K ) fp(ylx) e{ (X ) Y) -d (K, y)ldy ;
X/

L& ! £ <0 (4-55a)

*As shown by Eq. 4-50 the quantity = ~/ 2E“ is added to - 2yx/2G°¢ at the
input to the quantizer rather than at its cutput. If eachix’s* is equal to
one of the k quantization levels exactly, one can add the quantitylx ké at
the output to the quantizer, znd the bounds will still be the seme as those
derived in the text.
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and if we let t = - %
E*¥(0) = - % 1&1:? ’P(x) p(x") gq(x°, x) (4-55b)
5%
where
; 2 1%, ) - &, W)
g'(x, x') = Jp(y|x) e” dy (4-55c)

Y

Now, by Eq. 4-50

xl2 - 2yx
d(x,y) = o (4-50)
where y is a d-dimensional Gaussian vector which, for a given x, consists of
d independent Gaussian variableg, each of which has a mean power of G?zo

Thus, d(x, y) is a Gaussian variable with an average variance of

20
- Z ——— 21 _ 4G Jxi_ _ Ixi )
s \/(d (x, ) ) - (@0, 9)) 5 ael R
Now, let

d(x, y) _ d(x, y) -
Gatx, v L

G (4-57)
dx', v) d(x'§ - 4+ SO
Gae', »» B

Thus, by Eqs. 4-56 and 4-57, z and z' are normalized random Gaussian
variables with a unit variance.

Inserting Eq. 4-57 into Eq. 4-35c yilelds
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LopEiEh e L 2z
gq(x, x') = J/<>/;(gz°lxsx°) e G G dzdz' (4-58)

z z'

since the product :pace Z Z' is identical with the space y for given x and

x'. Now

( Eé?L )q = dq(x, y) = d(x, y) + nq

where nq is the "quantization noise". Thus

(e ozl Pay bl
G ® x G
G
or
Ix[ L. d N
(éz)q'%(z}m%’-lzfﬁ] (4-59a)
G
where

q
2l =z + 2 o4 (X ) (4-59b)
% x
G G
Thus, 29 is equivalent to the output of a quantizer with z as an input and

with a quantization grain that ie equal to
z

q = i,— | (4-60)
&

vwhere q is the quantization graim of the quantizer of d(x, y). Inserting
Eq. 4-59 into Eq. 4-58 yields
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1 ;ix]l q x'l ,q

[ E'L z° - g2 %]

e, iy ffp(zqg z“qlx, 21y a2 ¢ dz%z"? (4-61)
anzq

Both z and z' are Gaussian random variables, governed by the joint prob-

ability density:

1 ~(z—E)2 + 2.?(2-2)(z'-§1)-(z'-z')2

exp [
25(1- §2}1/2 2(1__52)

]

p(z, z'l X, x') =

where E= (z =) (2'- 2") (4-62)

It is shown in Appendix C that for such a joint probability density
as in Eq. 4-62, we have that

1. When f§|=1 {(x = ax")

=0 - ik,
L a :
g, 9 = ot W3] B e 4 ger'y, < 2 (4-63)
4G 9y
Where, by Eq. 4-58
]
S8 0 Zldx,y) -d(x' 1) ]
g(x, x') = plz, 2"|x, x') e dzdz' = p(y[x) e dy
' z .2z Y
(4-64a)
Also, it is assumed that
]
z_.9 .9 (4-55)

T H "kt " %
G G
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where q is the quantization g;&in of the quantizer of d(x, y), and q' is the
quantization grain of the quantizer of d{x', y). In other words, it is
assumed that both d(x, y) and d(x', y) have the same normalized* quantiza-
tion grain.

2. When |f§l<:1

sh x| q, sh|x’!q'z
gl(x, x') = [g(x, x')] (_;&:l—_) (%) for q, < 2(1 - Sz)
z 4
B e (4-66)
3. When I8| = 1 and q, > 2 we have that
{x|= x| )q,
gl(x, x') L 8(x, x') e “ G for q, = q,' (4-67)
4, When ISJ < 1 and q, > 2(1 - fgz) we have that
Ixla, +Ix'la,
glx, x') Celx', e 46 (4-68)

Studying Eqs. 4-66 through 4-68 yields that the effecte of quantiza-
tions depend on the kind of input space which is used. The effect of quan-
tization for three importamt input spaces will be discussed.

a. The Binary Input Space

The binary input space comgists of two oppositely directed vectors

xl =X xz = =y (4“34&)
where
P(x.) = P(x.) =+ (4-34b)
1 2 2

This corresponds to = -1

*The quantization grain of each of one of the f quantizers of Case 11
(Figure 9) is assumed tc be proportiomal to the variance of the Gaussian
variable d,(x, y) fed into that guantizer. The }2 quantizers are therefore
not identical.
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The first signal-to-noise condition to be considered is

l A%a = ‘—é‘—‘ 13 q&2 (4-69)

By Eq. 4-63 we have

Bhlx[qz
qa. 0 0 23
g (x, x') = [glx, x')] — 1~ (4-702)
= Xl q,
26
and
glix, x') = g(x, x') =1; x=x (4-70b)
Now, inserting Eqs. 4-72 and 4-55c into Eq. 4-70 yields
_ x? sh|x|q,
q J1 1.1 26 —re— | .
Bl a2 dfntz-a»ze e i & 2 (4-71)
2@
Inserting Eq. 4-65 into Eq. 4-71 yields
2
£ Big
©) > }-Qn[-}*vi-}-e_zs e E 2 (4-72)
JQ d d 202 q 4 1<
2
Inserting Eq. 4-18a into Eq. 4-72 yields
2 2
- == o
1 1.1 2G2 24
qu,d(‘))}*gﬁnﬁffg*?ge e 15 a<2 (4-73)

let

a= 2L -'é—‘,— (4-74)
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Inserting Eq. 4-74 into Eq. 4-73 yields

2

Acd 2
E? 0) =-lfn[§—‘+lea7(l-1‘q3] (4-75)
/, 4 Z a 2 "2
as compared with Eq. 2-111
1 1,1 2 )
EQ’ 4(® --d[n [ he ] (2-111)

Thus, the zero-rate exponent 33?, d(O) of the quantized channel is
lower bounded by the zero-rate exponent of an unquantized channel with an
effective signal-to-noise ratio qu given by qu = Az(l - qu) or
qul A2 =1 - qu where Lq is the "quantization loss" factor.

Now the mean value of the Gaussian variable d(x, y) 1s,1in general,
different from zero. Thug, Bq., 4-30,which was derived for the Gaussian vari-

able y which has a zero mean, ig8 zeplaced by

e S 2 e
Q= d(x’, W ™ d(x', y) , +2Bld (x', y) - (A", y)) (4-76)
Now
y = )0-1- x (4-77)

where ¥° is a Gaussian vector that consists of d independent Gaussian

variables with zero mean sand a variance (3. Thus, by Eq. 4-50

fxl2 + 2 |x||x] _ 3lx12

i = =
d(x 3 Y)max 2 Ga ZG; (A 78&)
T 2 2

; o Axl - 20x|x]  Ix]
ax's ¥) 0 2 o> Yok (4-78b)

Inserting Eqe. 4-78 and 4-5% into Eq. 4-76 yields
g~ 2EL xl? , gy el (4-79)
G G
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Inserting Eqs. 4-79 and 4-74 into Eq. 4-29 yields

2
R (4-80)

xl 4 o
{12 Lcl

Thus for Aﬁ-l-é’— << 1

2B
k= (4-81)
{12'Lq

Equation 4-75 is valid also in cases whemeiAzd = %i} > 1 as long as

2 |xl
q, < 2 (or: q < —E§~ ). Thus, by Eq. 4-80

| %
2 | Xl 24 (d
G =) (x| 2\x!
= - s A\d = —Eo 1 4-8
12t {1ZLo K G Eo R 4 =02

However, there are cu:.: where much larger grain may be used., In

2 3] =
such cases, where q > = and -Gg- > > 1, Equation 4-67 should be used.

Therefore, by Eq. 4-67

gq(x, x') =1 x' = x (4-83a)
and
lxlqz
gl(x, x") = g(x, x°) e 26 ; x' = -x (4-83b)

Inserting Eq. 4-60 into Eg. 4-83 yields

gq(x, x') =1 ; x = x' (4-84a)
and
2
gl(x, x') = g(x, x') e x' = =x (4-84b)

Inserting Eqs. 4-84 and 4-34b into Eq. 4-55b yields
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le2 q
1 f " 28 2
E?Z 40 =2 -3 Xn( % + % e e ) (4-85)
Let
2
2 x| 2,2
=L =L “A°d (4-86
e e
then
2
A°d 2
2, 0> -L% foclsle 2 (I”Lq)) (4-87)
0, a9 23 272
as compared with Eq. 2-111
_bAzd
2
Epg, 4@ 2 '-% Qn@i%-«&«%e “G* 3 (2-111)

The number of qusntization levels, for a given loss of signal-to-
noise ratio is determined by inserting Eqs. 4-86 and 4-79 into Eq. 4-29 which
yields

2
2-,—4?"" +2B-'a"-'-
2 xI*
1 G*

\Y

k=

| =

Thus, for AI?- 1&—' >> 1 we have

k = — (4"88)

b. Orthogonal Input Set

The binary input epaée is an optimal one, for A << 1, as shown in Section 2.3,
Another optimal input space for A <3?% is the orthogonal input space. In

this case
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X, xj =0 ; 14 j (4-89a)
X, X, = x. x -|x|2 3 i=j (4-89b)
1)t g !

for all L = 1, ..., 0 ; ju1, ... L.

Inserting Eq. 4-89 into Eq. 2-110a yields

1 le_lr?-
Eg’d(O)B-E ﬁn(z«&*z-e ) (4-90)

Now, since the input zignsls are orthogonal it can be shown that
5’ = 0. Following Egqs. 4-59 through 4-88, with Eq. 4-66 replacing 4-70a,
Eq. 4-90 replacing 2-111 and Bq. 4-78 replaced by

2 2

T a w2 L T me X )
d(x', y)max Tk alx” . ﬂmin 2Gh (4-91)
it can be shown that the numb:r sf gquantization levels is
2B 1x|
k 12 1 ; Ald o e 1 (4-92a)
q
2Ad" Ix] ) 2 |x|
k==L AF - c >l a< =4 (4-92b)
q
2 L=l 2 ix|
k i —— Ald = >>1; q (4-92¢)
5% e G 1>
q

c, Optimal Input Space

Both the binary and the srthogonal input spaces are non optimal for A >> 1.
An input set which is a semi-optimal one for A >>> 1 ig shown in Figure 4
(Section 2.3). Now, 1f d = ., it can be shown that Ej@, 1(0) of the quantiza-
tion scheme of Case Il is equal to that of Case I,

The results of this sectiosu sre summarized in Table 4. From Table 4

we may conclude that in Cazse II,z2 in Case I,the number of quantization
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levels for a given "quantization loss™ 1s increasing with the signal-to-

noise ratio which, in this case, is equal to Azdlcjz.

4,4 The Quantization Scheme of Case III (Figure 9)

In this case the logarithm of the a posteriori probability per p
input letters is computed and then quantized.

Let xP be the vector sum of p input symbols. One can regard the
vector sum x* as a member of = new input space with "dp" dimensions. Equa-
tions 4-48 to 4-68 are therefore valid in Case III, once x is replaced by
xP.

Now, it has been demonstrated that, in both Case I and Case II, the
number of quantization levels is incre=asing with the signal-to-noise ratio. If
the signal~-to-noise ratio in Cases II is A2d, the gignal-to-noise ratio in
Case III is then Azdp.

Thus, given a quantization loss Lq and given an input space Xy

kCase II 55 kCase 111 (4-93)

4.5 Conclusions

Let Mq be the number of digits that are to be stored in the memory
of the decision computer per each transmitted symbol.
Let M _ and kI be annd k of Case I.

gl
Let MqII and kII be Haand k of Case II.
Let MqIII and kIII be M&and k of Case III.

We therefore have

MqI = kId (4-94a)

MqII = kII for a binary input space (since only one "matched filter"
should be used for both signals) {(4-94Db)

an = RHQ (for any input space other than binary) (4-94c)

M (4-94d)

-l P
qIII »p klﬂ[ ‘g'



2

Input A% - Elé‘_|1 K q
Space
Signal-tc-noise ratio | No. of Quantization Quantization
Levels Grain
2B
Binary Azd << 1 Lz WAF
2 f%z’ 5 9> ZA&_d_' LzAZd
Binary Ad >>1 o
28N 2 5
Wi a<»l 12 afd
2 2B
Orthogonal ATd <K 1 i—ﬁr \l 12 AE
2
2 LA d
Lﬂ' 3y 9> ZAF 2
2
Orthogonal AYd > 1 | Py
2A \d
1%7‘ : q< 2Ald 112'a{d’
d =1 See Table 10.1

TABLE 4

QUANTIZATION SCHEME OF CASE :~ -- RESULTS




Inserting Ineq. 4-93 into Eq. 4-94d yields

& P "
MqIII ;> ) kIIJZ (4-95)
Now%fpzf ,67/2 Thus
Mar > knﬁ } f 2z 2 (resio)

Comparing Ineq. 4-96 with Inegs. 4-94b and 4-94c $ields

MqIII > qu (4-97)

Thus, we may conclude that the quantization scheme of Case III1

should not be used.

Comparing Table 3 with Table 4 yields

kI-kII;’ d = 1

Thus, by Eq. 4-94

MqI g MqII ; d =1 (4-98)

We may therefore conclude that the quantization scheme of Case I

should be used whenever d = 1.

From Tables 3 and 4 we have, that in the case of the binary input

space, kI = kl’I for Azd <<« 1. Thug, we have by Eq. 4-94

M =k.d k., =M

or
yi
| - ! f - o .;.0
Mql> Hqu bipary fnput space; A"d << 1 (4-99)

We may therefore comclude that whenever the signal-to-moise ratio is

low enough t’AZd << 1), the guentization scheme of Cage II should be used.
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As shown in Table 4, the number of quantization levels for a given
Lq is not a function of d (as long as A2d << 1). Thus, the complexity
measure, M, defined in Section 4.1, is like Md, minimized by letting

IR

1 n 1 2 1
g0y ¢ EO= zAT<< g
From Section 2.3 and 2.5 it is clear that the binary input space is the best
semi-optimal input space (for Azd i, = 1) since it yields the optimum expo-
nent while the number of input vectors is kept as small as possible (i.e.,
0 =12).

If E(0) & Qn Amai.x > > 1, we have by Section 2.2 that
1 Q —_—
1 nQ = E(%) >>> 1. Thus

f >fn,g >>d (4-100)

On the other hand one should expect k.. to be larger than k.{ since the

, Ix [
signal-to-noise ratio Azd of Cagse II - lorgzr ¢hasn that of Case I (which is

A%), 1£d > 1. Thus

klé kII g d >1 {4-101)

Inserting Inegs. 4-100 and %-101 into 4-94a and 4-94c yields

My < Mgpp 6 d>1 ; EQ0) =>>1

We thus conclude that whensver ELO)-; ,én Amn>> land d > 1,

the quantization scheme of Case I sghould be used.

I1f an orthogonal set iz used and at the same time Azd << 1, we

have from Tables 3 and 4 that k, = k.. Thus, by Eq. 4-94

2
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4.6 Evaluation of E?e d(0) for the Gaussian Changel with a Binary Input
Space (ﬁ- 2)

In the earlier sections of this chapter, methods were derived to

lower bound E’£7 d(0)

]

In this section the exact value of E% 7, d (0) is evaluated for a
?

binary input space (see Eq. 2-89). Let us first discuss the case where

d = 1 and the output of the channel is quantized as follows (Case I; k = 2)

For all y > 0 ; yd =1
| (4-102)
For all y < 0 ; yq = -]

q

where y* is the output of the quantizer. The channel is converted into a

binary symmetric channel, and is described by the following probabilities

P(x)) = P(x,) ..;_ TN SN (4-103a)
o0 (y-xl)
P(llxl) = P(-l|x2) & ﬁ—_,;—l—é— e zszdy (4-103b)
0
00 (rhx )
P(1fx2)- P(2|x)) = J/(‘Fﬂécj al AT gy (4-103c)
0

By Eqs. A-71 and A-69

9 0= T 5T v e reYnT pofe? cwion

¥4 X X

Inserting Eq. 4-103 intc Eq. &-104 yields

i ty-xp)? o r)?

X 1 ) G2 I T T2 g2 2
{ J/fi?ﬁ;E; @ dy ‘rz%t; e dv]
L o 0

~~

o

T

0
I
\Q_j
Ll
3 [=2

(4-105)



Now
0
G0’
1 202 n 1 X
e dy = ‘= i = 1
Inserting Eq. 4-106 into Eq. 4-105 yields
E 4] s | e
2 19 = { n 26")
2 2
.__f_:_/ __1_. 3 -?1 BE Amx A << 1
n4Gr ® 40G% = & max
Thus, by Eq. 2-103a we have
ng [0 2
2l = -, A L<i; k=2
b
EZ, 1(0)
and
2 2
Lq =1 - . ko << 1 ; k=2
Also
oo 2
i B ZGZ' ~ x|
@ dy = 1 & == > 1, % >0
J/fdzats 7 T
0
o9 2 2
(y-x) X
= T -
/ 1 & 2 ayicl 5 234 ; 1x! >> 1,
G G
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(4-106)

(4-107)

(4-108a)

(4-108b)

(4-109a)

(4-109b)
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Inserting Eq. 4-109 into 4-105 yields

2
il
= ZE;E
~o l? 1+ e
Ez, 10 = n (=)
A2
_ ._max
J? 1l + e 4
— & n ( e a3 ) k=2, Amax s SR | (4-110)
Comparing Eq. 2-112 with Eq. 4-110 yields
121, 1;ke2 (4-111)
q 2 k] max >> ]
If three quantization levels are used, (k = 3), it can be shown that
£y 1@
—2—— = (.81 ; A & & Ly kw3 (4-112a)
e (0) max
2, 1
2 .
Lq = 0,19 ; — <:<: 1, k 3 (4-112Db)
If four quantization lavels are used, (k = 4), it can be shown that
3,0
s . 0.86 ; A << 1, k=4 (4-113a)
2 1
2
Lo = 0.14 AL << 1, k=4 (4-113b)

Eqs. 4-107, 4-108, 4-111, 4-112 and 4-113 are valid also for the

quantization scheme of Case [I, if A2 is replaced by AZ d.
max max



CHAPTER V
CONCLUDING REMARKS

The important features of this research are as follows:
1. It presents a method of sending data over a time discrete,
amplitude-continuous memoryless channel with a probability of error which,
for R :>'Rcrit’ has an exponent that can be made arbitrarily close to the
optimum exponent E(R). This is achieved by using a discrete input space.

2. It presents a decoding scheme with a probaﬁility of error no
more than a quantity proportional to exp [-n ( % E(0) - R)] and an average
number of computations no more than a quantity proportional to mz. The num-
ber of channel input symbols is roughly equal to ,gn E(0) when E(0) >> 1,
and is very small when E(0) << 1 (for the Gaussian channel we have that

jZ- 2). The dimensionality o¢f each input symbol is d = 1, when E(0) >>1
s whenever E(0) << 1.

E(0)
3. It presents a method of estimating the effects of quantization at

and is equal to d o

the receiver, for the white Gausslan channci. It was shown that the quantiza-
tion scheme of Case I ig to be used whenever Aiax > > 1. The quantization

scheme of Case II is the one to be used whenever Aiax_<:<: L

Suggestions for Future Research

A method has been suggested (11) for adapting coding and decoding
schemes for memoryless channels to channels with memory converted into
memoryiess channels by means cof "scrambling' the transmitted messages. Exten-
sion of the results of this thesis to channels with memory, using scrambling
or more sophisticated methods, would be of great interest.

Another very importent and sttractive extension would be the inves-
tigation of communication systems with a feedback channel. One should expect
a further decrease in the decoding complexity and, probably, a smaller prob-
ability of error if feedback is used.



APPENDIX A
BOUNDS ON THE AVERAGE PROBABILITY OF ERROR-SUMMARY

A.1 Definitions
Following Fano (2), we shall discuss in this appendix a general

technique for evaluating bounds on the probability of decoding error when a
set of M equiprobable messages are encoded into sequences of m channel input
events.

Let us consider a memoryless channel that is defined by a set of
conditional probability densities p('Q\ ?), where f is the transmitted sam-
ple and % is the corresponding channel output (p(ﬂ,[f ) is a probability
distribution if % is discrete). We consider the case where each imput
event x is a d dimensiomal wvesztor., amd 1g & member of the (continuous) input
space X.

The vector x is glven by x = ?’1, ?’2, ooy ?d‘

The corresponding d dimensional output vector y is a member of the
d dimensional continuous space Y, with y = 7,1,41 pr tes nzd. The number of
dimensions d is given by d = 3, where n is the number of samples per message.

The channel statistics are therefore given by

d
p(y[ %) -Hp(nilw where p(Y, |§f ) =p(1|£); £, =5, L =1,

The mth power of this channel is defined as a channel with input
space U consisting of all possible sequences u of m events belonging to X,
and with output space V consisting of all possible sequences of m events
belonging to Y. The ith event of the sequence u will be indicated with
yi. Thus,

1 2 . 1
US X 3, X 3 Xy oooy £ 5 BV o F 3 ¥ 5 coen ¥ (A-'“l)
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where x' may be any point of the input space X, and yl may be any point of
the output space Y.
Since the channel is constant and memoryless the conditional prob-

ability density p(v[u) for the mth power channel is given by

m ;
p(v[u) = |1 p(y’|x") {A-2)
i=1
where
‘ i
p(yilxi) = p(ylx}; yi =y, X =X (A-3)

We shall assume in what follows that the message space consists of M equi-

probable messages My, Mys eowy My

A.2 Random Encoding for Mewory =se Channels

In the case of random encoding we consider the case where the input
sequences assigned to messzges are selected independently at random with
probability density p(u). if U i& a continuous space, or with probability
distribution p(u) if U is discrere. The average probability of error cor-
responding to any such random azslignment of input sequences to messages

depends, of course, on the probabllity density p(u). We sheall set

2 i
p(w) = [T p(x7) (A-4)
i=1
where
i i .
p(x") = p(x); x = x (A-5)

p(x) is an arbitrary probability density whenever X is continuous, and {s an
arbitrary probability disvgibutlon whenever X is discrete. Egq. A-4 is equiv-
alent to saying that ths inpui sequence corresponding to each particular mes-
sage is constructed by selectirg ils component events independently at random
with probability (demsicy) «(x).

We shall assume, unless mentioned otherwise, that the chanmel cutput



- 120 -

is decoded according to the maximum likelihood criterion: that is, that any
particular output sequence v is decoded into the message m, that maximizes

the conditional probability (density) p(v]mi). Since messages are, by assump-
tion, equiprobable, this decoding criterion is equivalent to maximizing the

a posteriori probability pﬁﬁhﬁﬂ which in turn results in the minimization

of the probability of error.

Let us assume that a particular message has been trarsmitted, and
indicate by u the corresponding imput sequence and by v the resulting output
sequence. According to the specified decoding criterion, an error can occur
only if one of the orher M-l messages iz represented by an input sequence

u' for which

plviu') > p(v|w) (A-6)

Let F(v) be an arbitrary positive function of v satisfying the

condition

ﬁ(v) dv = 1 (A-7)

or

;§jF(v) = 1 {A-Ta)

if v is discrete.

Also define

TORL i ) —F(-(-YL (A-8)

plvu)

as the "distance'" between v and v. In tevrms of this messure of distance

the condition expresssd o Eq. A-6 becomes
D(u', v) é; D{u, ) {A-9)

For any arbitrary consiant D the average probability of error then

O!
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satisfies the inequality

Py &M+ Ey (4-10)
where

P, = Pr[D(u, v) < Dy, D(u’, v) L D(u, V)] (A-11)
and

P, = Pr[D(u, v) > D] (A-12)

The bound of Eq. A-10 corresponds to the following decoding scheme:
D(u, v) of Eq. A-8 is computed for each one of the M sequences of the input
space U and the one given output sejuence v. The only distances D(u, v)
that are taken into further consideration are those for which D(u, v) < DO,
where D0 is an arbitrary comstant. The one sequence u, out of all the
sequences for which D{u, v) 5; DO’ that vields the smallest distance D(u, v)
is chosen to represent the cransmicted sigmal. If no such sequence u
exists, an error will occur.

1f the above deacoding procedure is carried out with an arbitrary
distance function of u and v, Dq(u, v), other than the D(u, v) of Eq. A-8,

then the average probability of error satisfies the inequality

P, é MP, + P, (A-13)
where

P, = Prpi(u, v) < D plu', v) < D (u, V)] (A-14)

P, = Pr(DYu, v) > D,] (A-15)

However, oune would expact the bound of Ineq. A-13 to be larger
than that of Eq. A-10, if quuﬂ v) is not a monotonic function of the a

posteriori probability plu|w).
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A.3 Upper Bounds on P; and P, by Means of Chernoff Bounds

The m events constituting the sequence u assigned to a particular

message are selected independently at random with the same probability p(x).

If we let
2 i
F(v) = | | £G5) (A-16)
i=1
where

EGD 1 oy = £0)3 ff(y)d-y -1

o}

T
D £ =1, (4-17)

when y is discrete,

it then follows from Eas. A-Z, A-3, and A-16 that the random variable
D(u, v) defined by Eq. A-8 ig the sum of m statistically independent, equally

distributed, random variables:

m
D(u, v) = ; x5 v,) (A-182)
where
i i £
d(x™, y) = d(x, y) = l?n ;%iliy i A X3 yi oy (A-18b)

In cases where an arbitrary distance Dq(uv) other than D{uv) of
Eq. A-8 is used, the discussion will be limited to such distances Dq(uv)
which may be represented az a sum of m statistically iadapendant, equally

distributed, random wariables.

m
plu, vi =2  a¥xt, v (A-19)
i=1
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where

9t v = %, y); L ex, yi=y (A-20)

The moment generating function (m.g.f.) of the random variable

D(uv), is:

G(s) = f p(Cu, v)] e V) ap(u, v) (A-21)
D (uv)

where p[D(uv)] is the probability density of D(uv) . Thus

6(s) = ] /p(u) st i 8™ P T gy (A-22)
u v

From Eqs. A-18, A-4, A-5, A-~2, and &4-3, we get

m
c@ =TT [ [ o060 pypn ™ Vaney = 1g,0)1” (a-23)
i=1 J J
where
gd(s) = _/’ ‘/ﬂp(x) ply|x) eSd(xy)dxdy (A-24)
Xy

In the case of P2 of Eq. A-12 we are interested in the probability that

D(uv) is greater than some walue D

D(uy) ;; D0

0 For all values of D(uv) for which

eSD(UV) ;; e8DOD for 8 » O,

Using this fact, we may rewrite Eg. A-21 as:



sD 0

G(s) > e pID(yv)] dD(uy)

D(uv) > D0

Using Eq. A-23,
m ﬁiﬁgb - 8D
Pr(D(w) > D1 L e ¢ 9

where

/Xd(s) = ,Qn gd{a) = ﬂn //p(;tu} p(y]x) eSd(XY)dxdy
X Y
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(A-25)

(A-26)

(A-27)

Equation (A-26) is valid for all s > 0. We may choose s such that the

exponent is minimized., Differentiation with respect to s and setting the

result equal to zero, ylelds

Pr(D(u, v) > DO} é ;‘?‘-T-‘\[,ﬁ'd(b‘.‘lg ~ 8 ’b/d"(s)];

where 8 1is the solution to
d §4(s) Dy
d m

'{é (8) = - =

8

In the same way
q ~
Pr [Dq(u, V) > Doj S em ,Xd (3) BDO

where
q
%dq(s) = fn gdq@{s) = ﬂn //‘p(x) p(y[x) o (x, y)dxdy
X Y

The exponent of Eq. A-30 is minimized if we checose s such that

(A-28)

(A-29)

(A-30)

(A-31)
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T e Ry =0

(4 M) - 54,3 ()]

< e (A-33)

Pr[l)q(us v) > Do‘ﬂ <

In the case of Pl we desire an upper bound to the probability

P, = Pr(D(u, v) < Dy, Dfu’, v) < D(u, V)] (A-11)

For this purpose let ue identify the point uu'v of the product space UU'V
with the point a of a space A, the probability (density) p(uu'v)=
p(u)p(v')p(v|u) with rhe probability(density) p(a), the random variable
D(uv) with #(a), and the random variable D{u', v) - D(u, v) with the random
variable ©(a). Inserting (s and @#(2) into Eq. A-1l yields

p, = Pr(d(a) < D,, €(a) L 0] (A-34)

Let us form the m.g.f. of the pair (@(a), ©(a)).

G(r, t) = fp(a.}] erm{a)%'t&(‘&)da (A-35)

Now, for all values of {&: Ga) < D3 g(a) < 0}-,

D |
erG(a)-i"tﬁr(a) 2 e i forr £0;t <0

Using this fact, Eq. A-35 may be rewritten as

Dy
G(r, t)? e p(a)da

.{a: G{a}é ﬁog &(a) < 0}

or
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D
6r, ) e  Prif(a) < Dy, 8a) K O] (A-36)

Thus

-rD
py = Pr(f(a) < DO"’ &(a) £ 0] gG(r, t) e 0, rg0; £ g0 (A-37)

#(a) = D(u, v), 8(a) = D(u", v) - D(u, v),
and
p(a) = p(uu'v) = plu)pu’)p{v[u). Thus

from Eqs. A-18, A-4, A-5, A-2, A-3 and A-35 we get
G(r, t) = [g (r, £)]" (A-38)

where

g (x, t) = J/jkj/;(x)p(xuﬁp(ylx) AFRIA(R,, XIPEA(x"s Y] punvdy (R-39)
vl LI

Inserting Eq. A-38 into Eq. A-36 yilelds
m ﬁd(r, t)-rDo
p, = Pr[D u, v) <Dy, D(u', v) < D(u, V)] < e 5
r<0; ££0 (A-40)

where

%(r, t) = ﬁn By(r, t

= fn [//p(x)p(x')p(y‘x) e(r-l:)d(xy)-l—td(x', Y)dxdx'dy

Y X X' (A-41)
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We may choose r and t such that the exponent of the right-hand side of
Ineq. A-40 is minimized. Differentiating with respect to r and setting the
result equal to zero and then repeating the same procedure with respect to

t, we obtain

m[f (x, B)-x §'y (r, ©)]
P, = Pr [D(uv) < DO‘“ D(u)w) g D(uw) ] S e r (A-42)

where

' : — e 2 (A -
'ﬁdr Fy B =T m A3
and
a%(r. t) .
L = — = .
fﬁdt (r, t) ——»——*a : 0 (A-44)
In the same way
m[/édq(r, t)—rDofm]
Prp%(uw) g D, Diu'v) < D ()] < e (A-45a)
where
, (r-t)d_(xy)+td (x'y)
§ 0, o) = [ gy (x, £) = A f/p(x)p(ylx) e i 1 axdy
Y X (A-45b)
Inserting Inegs. A-40, and A-30 into Ineq. A-13 yields:
m| 'Jd(s)-snolm] m[n/m R+ f‘gd(r, t) - rDO/m]
P L e + e (A-46a)
e X
where R, the rate of information per sample, is given by
R =2 J/a (A-46b)
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From Eqs. A-11 and A-12 we have that the two probabilities, Py and

Py Vary monotonically with D, in the opposite directions. Thus, the right-

0
hand side of Ineq. A-45 is approximately minimized by the value of D0 for

which the two exponents are equal to each other. Therefore, let D . be such

0
that
D0 n Do
B -8 —==—r s Yz, 0) v (A-47)
The insertion of Eqs. A~47, A-44, and A-43 into A-46a yields
m[ % ,(z)-8Dy/m] -nE (R}
Pe:g' 2e = Ja (A-48)
where
m D0 m DO
1, B(R) ® ~= [f () ~ s3] = B 4= ( Bales 1) mx =~ (A-49)
Do
f = ' - ) oEm e -
2. féds(s) ’Kdr (x, t) =~ 850, t<0,rg0 (A-50)
3. Y ' ey =0 r<0; t <0 (A-51)
E
Now, from Eqs. A-25 and A-18 we have
% y(o) = J. ffpm p(y[x) 40 axay
Y X
= an [p(x) o(y|x) 1 £ (y) Bdxdy (A-52)
Y X

Also, from Eqs. A-3Y and A-18 ws havs

fqles ©) = J. /// pix) px") p 0T Sply[x) BT (a-53)
vy ' %
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It can be shown (Ref. (2), pp. 324-332) that
1. Eq. A-44 is satisfied if we let

l-r+ts= -t i, =0, 1t 5; 0
or
i}
r =14 2t ; b s 5 (A-54)
2. Eq. A-50 is satisfied by letting
. 1-5, .1/1-8
[ [ p(x) plylx)" "dx]
fly) = s (A-55a)
1-s 1/1-s
f[ /p(X) p(y|x)~ "dx] dy
Y X
and
1
s= 1+t ; 0 < s S'E- (A-55b)
3. Eq. A-49 is then satisfied if we let
Remd (a1 4 () - $,08)] ; 0 s <12 (A-562)
= 8= d L8) = d 8 s < 8 $3 a

We should notice, however, that Eqs. A-44, A-50 and A-49 are

satisfied if, and only 1f, R is such as to make 0 < s < % It can be
shown (Ref. (2), pp. 324-332) that this corresponds to the region

Rcrit <RI (A-56b)
where
=1 - p{y|x) =
I=9 f/p(x) p(y |x) Fn (y) x4y R1 .o (A-56c)
¥ X

and
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Rc:?:it: & [R]s = 1/2 (A-56d)

Let us now define for the product gpace XY the tilted probability
(density)

5P (%s Yoy ptyixn)
ffesm;xs y)P‘({.K) ply|x) dxdy

Q(x, y) =

’ -],"'S‘&?;‘
- PG p{yIX)” TE ()

e (A-57)
f[p(x) plylx) """ £ (y) dxdy
where
X 1
Qly) = £(y) = : - 0<s &5 (a-38)
f[ fpm Sy LS M 15 gy
Y X
QGx, ¥ (0 plyix* e 1
Qx|y) = Q()’,—,” B Bl ;0 S0 g5 (A-59)
| [p(x}* plyix) " "dx
3

Inserting Eqs. A-52, A-53, A-54, A-56, A-57, A-59

-nE(R)
Pe < 2e

2
L

ceip S R T (8-60a)

where the exponent E{R) 1z =elated parametrically to the transmission rate

per sample R, for RC < R LI, by
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<E®) =3 f/qcx, 93-Ln e R (A-60D)

Y X

I £R K -]é[/Qk(xv)fg-‘m/R 2 0. = 8 &

Pix) crit < <

N |

(A-60c)

R

o

crit [R]s = 1/2; i {R]s =0

ffp(x) p{y|x) ﬂ p(y)
XY

(A-504d)

Whenever R < R . there does not exist a D, that simultaneocusly
crit 0

satisfies Eqs. A-49%, A-50 and A-31, However, the average probability of

error may always, for any rate, be bounded by

Pe < MPr(D(u'v) < D) ] (A-61)
This is equivalent to seiting DO = in Egs. A-~11 and A-12. Thus,
Pl = Pr[D(u'v) < D(uv)! s PZ = ( (A-61)

In the same way:

P < MP

= MPr[D (u'v) < D (uv)] A-63)

X

The evaluation of P. under these conditions proceeds as before,
e

except for setting r = 0 in Ineqs. A-42 and A-45a. Therefore

m[n/m R + qd(o,, £) ] ot B (A-64)

Pege

where
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Yq0, 0 =B o

- ﬁn [//P(X') p(x) p(y|x) SLld(x"y) - d('*"-yndx”dxdy ;

Y X X'
tg< o (A-bhs)
and
m[n/m R + ﬁdq(os )]
Pe S e z t <0 (A-65)
where
Yo, &) = %)
ﬂ eldx'y) - aYxy)]
= o [ [ [ o0 p6) piyin ¢ dx' dxdy
Y X X'
t 3:’ 0 (A-65a)
Thus
Iﬁ ( y 1-t o .
4os t) = Ln p(x) p(y(x)” plyjx') 5 t £ 0 (A-56)
X ¥

'6d(0, t) may be minimized by choosing a proper t. Differentiation with

respect to t and setting the result equal to zero, yields

(nd
]
)
[ ol

(A-67)

1

1
1 1 ﬁ 2 7
140D = o) = Lo [ [[ 360 26 23107 pi1x0? aoe)
I X%
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or
1 % 172, .2
’b{d(os sk= pn f [ fp(w p(y|x) d dx] (A-69)
b 4
The insertion of Eq. A~67 into Eq. A-64 ylelds
-n[E,(0) - R]
d
P, S e (A-70)
where
1 ; 1
B (0) = -3 %400, 3) (A-71)
! 1
From Eq. A-60 we have that, for R = R je? 8™ »8=-3 and
r =0, Thus, by Eq. A-49
E.(R) < - R L ¥ w0, 2y=840) -n (4-72)
d crit " d . ] d crit
Rcrit

and the expomentials of Eq. £-70 and Eq. A-49 are indeed identical for

B Rcrit'

It can also be shown tha: dEd{R)IdR = «] 8o that the deriva-
Rcrit
tives of the two exponents with respect to R are alzo the same at R = R

crit’
The average probability of error can therefore be bounded by

-n[Ed(0) - R]
v ’ R'S; Rcrit
Pe 5; (A-73a)

~n[E (R)]
2e 4

where
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Ed(O) - Rcrit = Kd(R) (A-73Db)
crit

and

d[E,(0) - R]
\ --1 (A-73c)

dEd(R)l
dr “drR

crit Rcrit

A.4 Optimum Upper Bounds for the Average Probability of Error

The upper bound of Eq. A-73 may be optimized by choosing p(x) such
that, for a given rate R the expo#ent of the bound is minimized.,

let d = 1 and m = n. xi is then identigal with ?’i, where ?’1 is
the ith input sample which is a member of the (continuous) one-dimensional
space E. yi is identical with ’Z i, where AZ L is the ith output sample
which is a member of the (continuous) one-dimensional space f:i-.

It can be shown (Ref. (2), pp. 332-340) that there exists an optimum
probability (density) p(x) = pﬁg’} defined on ;E:' that minimizes the upper
bound to the average probability of error so that, for large n and for
R ;Z'Rcrit’ it becomes exponentially equal to the lower bound on the prob-
ability of error.

The characteristics of many continuous physical channels, when quan-
tized and thus converted into a discrete channel, are very close to the
original ones if the quantization is fine enough. Thus, for such continuous
channels there exists .ne random ¢.2: with an optimum probability density
p(x) = p(§>) that yields an exponent E(R) which is equal to the exponent of
the lower bound of the average probability of error, for a very large and

for R ;; Rcrit’



APPENDIX B
EVALUATION OF Ed(ﬂ'?') OF SECTION 2.3, FOR CASES WHERE EITHER Azd << 1 OR
A2 > 1
In this appendix we shall evaluate lower bounds to the exponent
Ed(O) which is given by Eq. 2-132 and is equal to

2

A 2
1f 1 f(";') r 'MT““% d-2
Ed(o)--— n{ S [a sin ¢ ~d6 (2-132)
n ﬁ’f(_m) !
2 0
When d = 2 we have
2 2
IQ 1 =%— % éz—cos&
32(0)--5 n{;e Je do
0
2 2

lf -%1 zﬂ%cose
» E Y n{e E;_/e de
0

Thus
ﬁ Al ,
1 2 A
32(0) -3 n{e IO ( 2 )} (B-1)
AZ
For - << 1 we have
&t
v L f) T A



2

For A

2 > 1 we have

_a? N
lﬂn{e S S
2

_r:_/
32(0) 0 -

foxzt [ W'

for d = 3 we have from Eq. 2-132

IR

1
2

Now,

2 2

-—-3-'A x -'?"A cos ©
E(O)--l n lte. i e4
3 3 2
0
3 .2 0 3 .2
.-AQH{;;U‘L a &t
3 2 3&2 dg
n
Thus
3 sh = A2
E.(0) = -+ ¥nle !
3 3 3,2
4
2
For%— << 1 we have
gl Y '%Az A
33(0)2-3 ne T
% o
ForzA > 1 we have
21 fa2a2al faszed fo3
E, 0= 3 % A ? t3 £y
2/3
w1 g
= 3 (A )
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(B-3)
sin © d&%
cos ©
d&}
(B-4)
(B=-5)
(B-6)
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In general, for an d > 3, we have

E (0) = %AZ : e 1 (B-7)
d-1
Ed(O)f’—: % ﬂn (Az) 4 — -‘%ﬁ E(0) A% o= | (B-8a)
where
E0) = E,(0) = %/m@% : &F = 1 (B-8b)
de=n S>> 1

Proof: From Eq. 2-132 we have, for Azd =< 1

2n
2 2
1 IS, 2 : a’ a’ a-2
m"‘“dﬂ{r’ _{1-4)[(1-4)63089 sin € d&}
0
1 g a’ |~ a2
i RN
Thus
~ A,z 2
E.(0) = 2~ ; A4 << 1 .E.D.
d 4
We now proceed to prove Egqs. 2-135b and 2-135c. Let x = sin2 g
and insert x into Eq. 2-132. We then have
d
g(o)-_l ﬁn{l r(23 2d-31} (B-9a)
d d S da-1
e
where
1 _a’ 43 43
[ 2 210 2 ax (B-9b)
0
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Now

L o e (B-10)

Inserting Eq. B-10 into Eq. B-9b yields

a%4 yd=3 43

1
(S )5 ==
" 5§-/'e d-3 2 . 2
0

dx

INE—S

3o (B-11)
Ad )iy 2
( d_3 ).

d-3

[

Inserting Eq. B-11 into B-%9a yields

INED) dd
1 1 2’ 43 .1 d-3 . 2.2
Ed'.’O} o 1 fn{\‘ﬁ_1 i1 2 + 3 4n [_d + A7) k

d
("2')

The first term on the r.h.s. of Ineq. 2-139 is bounded by

(3 o )
_ ik /él ; 2 ,4-3 < - % J/PLEE

d d-1
($)?2
s d%; ﬂn 2
Thus, for A2 > 1 we have
d-1
2, 2L foa?y? 2411 [a (3-12)
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Now, let

E(0) = Ed-“(O)[n L (B-13)

Inserting d = n >> 1 into Ineq. B-12 yields

E0) > % fn K*

From the convexity of the exponent E(R), when plotted as a function

of R we have

E(0) <¢C

0) < (B-14)
where C is the channel capacity and is given by (Ref. 1)

cE%anZ; i* S g
Thus, by Inegqs. B~13 and B-1%

" E
E(0) = C E%— gn AZ g AZ >> 1 (B~-15)

Inserting Eq. B-15 into Ineq. B-12 yields

—

~odell 2 ot g-1
Ed(O)___ 2Qn.A = =3 E(0)



APPENDIX C
MOMENT GENERATING FUNCTIONS OF QUANTIZED GAUSSIAN VARIABLES
(AFTER B, WIDROW, REF. (3))

A quantizer is defined as a non-linear operator having the input-
output relation shown in Figure 10c. An input lying somewhere within a
quantization "box"™ of width q will yield an output corresponding to the cen-
ter of the box (i.e., the output i8 rounded off to the center of the Lox).

Let the input z be a random variable. The probability density dis-
tribution of z/p(z))is given.,

The moment generating function (m.g.f.) of the input signal is

therefore

g(s) = J/Fp(z) e %4z (C-1)
Z
Our attention is devoted to the m.g.f. of the quantized signal zq, given by

gde) = | ptzh e 40 (c-2)
. 24
where p(zq) is the probability demsity of the output of the quantizer, 29,
p(zq) consists of a series of impulses. Each impulse must have an area
equal to the area under the probability density p(z) within the bound of the
"box" of width q, in which the impulse is centered. Thus, the probability
density p(zq) of the quantizer output consists of "area samples" of the input
probability density p(z). The quantizer may be thought of as an area sampler
acting upon the "signal," the probability demnsity p(z).
Thus, p(zq) may be c:nstructed by sampling the difference

g(z + % ) - @ (z - % ) where @(z) is the input probability distribution given
by
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@#(z) = J/( p(z) dz (C-3)
— 0 :

This is equivalent to first modifying p(z) b)} a linear "filter" whose trans-

fer function is

= q (C-4)

and then impulse-modulating it to give p{zq)o
Using "A " notation to indicate sampling we get

q sh L A A
g'(s) = [ g(s) a8 ] = F (8) (C-5a)
2
where
sh g8
F(s) = g(s) q —= (C-5b)
13
Now, let the function F(s) be the transform of a function £(z)
F(s) = ff(z) e %%y (C=6)
2
Then
& -
F (s) = /f“(z) e ® 4z (c-7)
Z

where £ (z) is the sampled version of £(z).
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Thus
£9(2) = £(2) c(z) (c-8)

where c(z) is a train of impulses, q amplitude-units apart. A Fourier
analysis may be made of the impulse traim ¢(z). The form of the exponen-

tial Fourier series will be
o0
c(z) = 1 zzr eikﬁQz : G2 28 (C-9)
q k= -0 q

Inserting Eq. C-9 into Bq. C-7 yields

oo

Fé(s) = %Z F(s - ik52) (C-10)

k=-co

Inserting Eq. C~10 into Eq. C-5 yields

o0 (8-ikS2)
Us) =2 gl Gy (c-11)
g(s) = g(s - ik c-11
= ) QSuikﬁ?I

Now, if the input is a Gaussian variable governed by the probability

density
W2
_ Lz-x%)
o et 2 Q%
p(z|x) TG © (c-12)
it can be shown that
sh SZE
gl(s) 2 g(a) it R s (C-13)
2
where
2.2
s°G
2 + x8

g(s) = e (C=14)
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Let z and z' be two random Gaussian‘ variables governed by the fol-
lowing probability density

=32y “z) (2! -z)=fz g! 2
p(z, z') = 1 7173 exp| =(z-2) "+: § (2 z)éé* e s ) ] (C-15a)
2Zn(1- ) 2¢1- %)
where
S=(z -32) (z' -2") (C-15b)

Let the corresponding m.g.f. be given by

g(r, t) '[Z‘p(z, z') & ¥ t:z'dzdz' {C-16)
4

Now let z and z' be quantized by the quantizer of Figure 10c, to yield

z9 and 2'9., Thus

a q - o e
gq(r, t) = // p(zq, z"q) g It -z dzqdz'q (C-17)
9.,:9
Z"2Z

It can then be shown (as has been shown in the derivation of Eg. (C-13) )

that
sh qr sh gt
Uy, t) = gr, t) —= 2 201 - % (C-18)
g » gir, qr qt H q < g
2 2
Also if z = z' (g- 1) we have
sh g‘ (x + t)
gl(x, t) = g(r, t) —= i q<&2 (C-19)

§(r+c.)

Now, if z = - z° (g--l) we have



« Y4k

sh-%(r-t)
gl(x, t) = g(r, t) : q < 2 (C-20)
g‘(r-t)

We now proceed to derive upper bounds to g(s) and g(r, t) to be used
whenever the quantization grain q is large, so that Egqs. C-13, C-17, C-18

and C-19 are not valid any more,

Let zq

by Eq. C-2

=z + nq(z) where nq(z) is the "quantization noise.™ Thus,

= 8{z + n (2) )
gl(s) = _/rp(z) e 9 dz
Z

Now, Inq(z)l £ % . Therefore

q 1
8(8)..<___f p(z) e dz e
Z
o g
= g(s) e (c-21)

In the same way, let

q 1 q i 9
z" =2z +n (z) ; z =z 4+ n (z
q() q()

Thus, by Eq. C-17
-r(z +n (z) ) - t(z' + n (z') )
gl(r, t) = )/;// p(z, z') e & 1 dz'dz
o A

Now
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Thus

-rz - tz' 'r %l + lt %'
gq(r, t) é/—/p(z, z') e dz'dz e
z 2!

r 2|+ e 3
= g(r, t) e\ 2 2 (c-22)
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