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ABSTRACT

In this research we consider some aspects of the general problem of
encoding and decoding for time-discrete, amplitude-continuous memoryless
channels. The results are summarized below.

1. Signal Space Structure: A.scheme for constructing a discrete
signal space, for which sequential encoding-decoding methods are possible
for the general continuous memoryless channel, is described in Chapter II.
We consider random code selection from a finite ensemble. The engineering
advantage is that each code word is sequentially generated from a small num-
ber of basic waveforms. The effects of these signal-space constraints on the
average probability of error, for different signal power constraints, are
also discussed.

2. Decoding Schemes: In Chepfer III we discuss the application of
sequential decoding to the continuous asymmetric channel. A new decoding
scheme for convolutional codes, called successive decoding, is introduced in
Chapter III. This new decoding scheme yields a bound on the average number
of decoding computations for asymmetric channels that is tighter than has
yet been obtained for sequential decoding. The corresponding probabilities
of error of the two decoding schemes are also discussed in Chapter III.

3. Quantization at the Receiver: In Chapter IV, we consider the
quantization at the receiver, and its effects on probability of error and
receiver complexity.

Thesis Supervisor: John M. Wozencraft
Title: Associate Professor of Electrical Engineering
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CLOSSARY

The number of input symbols per information digit

Voltage signal-to-noise ratio

 oo Smax
max &amp; Maximum signal-to-noise ratio

The number of branches emerging
in the convolutional tree code

Channel capacity

D(u, v) = [/n 150 The "distance" between u and v
p(viu)

d(x, y) = Jn L0G) The "distance" between x and y
p(y x)

The aimenodoa’fer(numberofsamples)ofeach input
3ymbaol

The c¢ptimum =xponent of the upper bound to the probabil-
ity of error (achieved through random coding)

The exponent of the upper bound to the probability of
error when the continuous input space is replaced by the
discrete input set X,

A probability-1like function (Appendix A)

Moment generating functions (Appendix A)

The numbar of source information digits per constraint-
length (code word)

The number of input symbols (vectors) in the discrete
input space Xo

The number of d-dimensional input symbols per constraint
length (code word)

The number of samples (dimensions) per constraint length
(code word)

Average number of computations

The signal power

from each branching point

i

\

The rate of information per sample



viil

R rit

R
comp

The critical rate above which E(R) is equal to the
exponent of the lower bound to the probability of error

The computational cut-off rate (Chapter III)

The set of all possible words of length n samples

The transmitted code word

A member of U other than the transmitted message u

The set of all possible output se-juences

The output sequence (a member of V)

The set of all possible d-dimensional input symbols

A transmitted symbol

A member of X other than x

The discrete input set that consists os
vectors (symbols)

The set of all possible output symbols

The set of all possible input samples

A sample of the ransmitted waveform u

A sample of nu’

The set of ai. possible output samples

d~-dimensional

A sauiple of the received sequence wv

My

The power of a Gaussian noise



CHAPTER I

[INTRODUCTION

We intend to study some aspects of the problem of communication via

a memoryless channel. A block diagram of a general communication system

for such a channel is shown in Figure 1. The source consists of M equi-

probable words of length T seconds each. The channel is of the following

type: Once each - seconds a real number is chosen at the transmitting point

This number is transmitted to the receiving point but is perturbed by noise,

so that the ith real number ¥ is received as Mj. Both § and 7 are mem-

bers of continuous sets and therefore the channel is time discrete but

amplitude continuous.

The channel ig a. se xemor. rasa in the sense that its statistics are

given by a probabiliry deme: p(T, Fy, §,0 «oe, &amp; ;) such that

PCY, HEE y 89 °c 0 0) Fo =p(y|€, [ .

snere

lSme[£)$=So =, (1-2;

A code word, or signal, of length n for such a channel is a

sequence of n real numbers ( 1 mies $e This may be thought of geomet-

rically as a point in n-dimensional Euclidean space. The type of channel

we are studying here is, of course, closely related to a band limited chan-

nel (W cycles per seconds wide). For such a band limited channel we have

n = 2WT.

The encoder maps the M messages into a set of M code words (signals).

The decoding system for eush a code 18 a partitioning of the n dimen-

sional output space ince M,sunzets corresponding to the messages from 1 to M.

For a glven coding end decoding system there ls « definite proba-

bility of error for recalviuz a message. This is given by
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FIGURE 1 COMMUNICATION SYSTEM
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M

ooim] &amp;
(1-3,

where RP, is the probability, if mesncage i is sent, that it will be decoded
i

as a message other than i.

The rate of information per sample is given

R _——
is
J. wu

ov

( 1 +,

We are interested in coding systems that, for a given rate R, minimize the

probability of error, Pr.

In 1959, C.E. Shannon (1) studied coding and decoding systems for a

time discrete but ampiitude comtimuous channel with additive Gaussian noise,

subject to the constraint that all code words were required to have exactly

the same power. Upper and lower bounds were found for the probability of

error when using optima! csdes ard oprimal decoding systems. The lower

bound followed from sphere packing arguments, and the upper bound was derived

by using random coding arguments,

In random coding for sual: &amp; Gaussian channel one considers the

ensemble of codes obtained by planing M points randomly on a surface of a

sphere of radius nF , (where uP ie the power of each one of M signals, and

n = 2WT where T is the time length of each signal and W is the bandwidth of

the channel). Move precisely. each point is placed independently of all

other points with a probability measure proportional to surface area or,

equivalently, to solid angle. Shannon's upper and lower bounds for the prob-

ability of error are very close tngether for signaling rates from some R cit

up to channel capacity C.

R.M. Fano (2) has recently studied the general discrete memoryless

channel. In this case the sigrals are not constrained to have exactly the

same power. If random ceding ls wsed, the upper and lower bounds for the

probability of error are again very close together for all rates R above

some Rorit’
The detection scheme that was used in both of these studies is an

optimal one, that is, one which minimizes the probability of error for a



given code. Such a scheme requires that the decoder compute an a posteriori

probability measure, or a quantity equivalent to it, for each of (say) the

M allowable code words.

In Fano's and Shannon's cases it can be shown tnat a lower bound on

the probability of error has the form

x
% =]

2 N Ke Z (R)n lA" od,

where K is a constant independent of n. Similarly, when optimum random

coding is used, the probability of error is upper bounded by:

—

- *

- E(R)n, E(R) = E (R) for R &gt; R__,. (1«5b

(In general, construction of a random code involves the selection of messages

with some probability density P(u) from the set U of all possible messages.

When P(u) is such that ER) is maximized for the given rate R, the random

code is called optimum.)

The behavior of E (EK and E(R) as a function of R is given in

Figure 2.

Fano's upper-bounding tachnique may be extended to include contin-

uous channels, for all cases where the integrals involved exist. One such

case 1s the gaussian channel. However, the lower bound is valid for discrete

channels only. Therefore, as far as the continuous channel is concerned,

the upper and lower bounds are not necessarily close together for rates

R &gt; R ie

The characteristics of many continuous physical channels, when quan-

tized, are very close to the original ones if the quantizationisfine

enough. Thus, for such channels we have E (R) = E(R) for R &gt; Rit

We see from Figure 2, that the specification of an extremely small

probability of error for a glven rete R implies in general a significantly

large value for the number of zurdat and for the number of decoding computa-

tions.
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J.L. Kelly (3) haz derived a class of codes for continuous channels.

These are block codes in which the (exponentially large) eset of code words

can be computed from a much smaller set of generators by a procedure analo-

gous to group coding for discrete channels. Unfortunately, there seems to

be no simple detection procedure for these codes. The receiver must gener-

ate each of the possible transmitted combinations and must then compare them

with the received signal.

The sequential coding scheme of J.M. Wozencraft (4), extended by

B. Reiffen (5), (6) is a code well suited to the purpose of reducing the num-

ber of coding and decoding computations. They have shown that, for a suit-

able sequential decoding scheme, the average number of decoding computations

for channels which are symmetric at cheir A is bounded by an algebraic

function of n for all rates below some Romp” Thus, the average number of

decoding computations is not an exponential function of n as is the case when

an optimal detection scheme is used.

In this researcr, ww. uisidesr the foilowing aspects of the general

problem of encoding and du nuinz for time~discrefre memoryless channels:

1. Signal space structurs, %., zeguentlial decoding schemes, and 3. the effect

of quantization at the xeczi&lt;-, Our results for each aspect are summarized

below.

1. Signal Space Scructura: A scheme for constructing a dis-

crete signal space, in such a way as to make the application

of sequential e¢untding-desoding possible for th: genaral con-

tinuous memory-.z2s chawnel, is described in Chapter II. In

particular, wheveéss Shanncn’'s work (1) considered code selec-

tion from ar infinite =meamble, in this investigation the

ensemble is a finl~e owe. The engineering advantage is that

each code word cen ne ssqgueénizizlly generated from a small set

of basic waref mr, The =ifents of thesze signal spare con-

Btraints on the si ver.ze -~obablliitv of error, for different

 ny
A channel with transicicr troheb’lity matrix P{y|x) is symmetric at its out-

put if the set of prebatisivies Ply|w.), P{y|%,) 5 le rhe sama for all
output symbols vy.



signal power constraints, are also discussed in Chap-

ter II.

2. Sequential Decoding Schemes: In Chapter III we discuss

the application of the sequential decoding scheme of

Wozencraft and Reiffem to the continuous asymmetric chan-

nel. A lower bound om B omp for such a channel is derived

The Wozencraft-Reiffen scheme provides a bound on the aver-

age number of computations that are needed to discard all

the messages of the incorrect subset (5). No bound on the

total number of decoding computations for asymmetric chan-

nels has heretofore been derived.

A new systematic decoding scheme for sequentially

generated random codes is introduced in Chapter III. This

decoding scheme, when averaged over the ensemble of code

words, yields =n avers ze rota) number of computations that

is upper-bounded by a quantity proportional to 2, for all

rates below some cut-off rate R comp’

The corresponding probabilities of error of the

two decoding schemes are also discussed in Chapter III.

3. Quantization at the Renelver: The purpose of intro-

ducing quantization at the receiver is to curtail the

utilization of analogue devices. Due to the large number

of computing cperations which are carried out at the

receiver, and the large flow of information to and from the

memory, analogue dev’ces may turn out to be more compli-

cated and expensive than digital devices. In Chapter 1V,

the process of quantizztion at the receiver and its effect

on the probability of ¢rror end the receiver complexity is

discussed.



CHAPTER II

SIGNAL SPACE STRUCTURE

We proceed to introduce a structured signal space, and to investigate

the effect of the particular structure on the probability of error.

2.1 The Basic Signal Space Structure

Let each code word of length n channel samples be constructed as a

series of m elements, each of which has the same length d, as shown in

Figure 3. Each one of the m elements is a member of a finite input space

Xp that consists of 7 d-dimensional vectors (d = = ), as shown in Figure 3.

The advantage of such a structure is that a set of randomly constructed code

words may be generated sequentially (4), (5), as discussed in Section 2.4.

Two cases will be congidered

Case 1: The power of @ich of the n sampl

equal to 7.

 3 &gt; .€533 chan or

Case 2: All code words have exactly the same power nP.

(2 1)

{2

The first case to be comsidered is that of Statement 2-1.

2.2 The Effect of the Signal F---~ S*»urture an +hae Avarace Probability of

Exror, Case 1

In order to evaluate the effect of a constrained input space on the

probability of error, let us first consider the unrestricted channel.

The constant memoryless channel is defined by the set of conditional

probability densities pC" | ), where $ is the transmitted sample, and mn
is the correeponding chanmel output. The output 1s considered to be a

member of a continuous output ensemble [— . By statement 2-1 we have

£ &lt;AP (2- &gt;

Let us consider riow the optimal unrestriccd random code where each
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FIGURE 3 CONSTRUCTION OF A

CODE WORD AS A SERIES OF ELEMENTS



particular message of length n is constructed by selecting the n samples

independently at random with probability density p(%) from &amp; continuous
ensemble rr. Then following Fano (2) it can be shown (Appendix A,

Section 4) that the average probability of error over the ensemble of codes

is bounded by

~
5, -NE(R) oo

crit
(2

-nER) _ _-n[E(0) - R] 0 oe &lt;Q ~ Rie

where R = L fon is the rate per sample. E(R) is the optimum exponent in the

sense that it is equal, for large n and for R 2 R ie to the exponent of

the lower bound to the average probability of error (Figure 2). For any

given rate R, p(%) is chosen so as to maximize E(R) [i.e., to minimize PI.
Let us now constraint @ack code word to be of the form shown in

Figure 3, with the exception that we let the set xX, be replaced by a contin-

uous ensemble with an infinite, rather than finite, number of members. We

shall show that in this case, the exponent ER) of the upper bound to the

average probability of error for such an input space can be made equal to

the optimum exponent E(R).

Theorem: Let us introduce a random code that is constructed in the

following way: each code word of length n consists of m elements, where

each element x is a d-dimensional vector

§ = 9

CS”

C Tar ees os [2 oh

selected independently at random with probability density p(x) from the

d-dimensional input ensemble X. Let the output event y that corresponds to

x be

7.5 Mos 2945p 7 4 {2= bY

y is a member of a d-dimenmsional output ensemble ¥. The channel is defined

by the set of conditional probabilities



AlLSu

d

p(y|x) = 11 PC 4|% 9)

j=

d

p(x) =1] p(Y,)

(2-6)

(2- 75

where JE ES PCY), for all i, is the one dimensional probability density
that yields the optimum exponent E(R). The average probability of error is

then bounded by

o

14 ®

rit
k i

(2 3)
y

=191% R ) -nlE (0) - R i &lt;

where

2, (R) = ER); E (0) = E(3, (2-9)

Proof: The condition given by Eq. 2-7 is statistically equivalent

to an independent, random selection of each one of the d samples of each

element x. This corresponds to the construction of each code word by select:

ing each of the n samples independently at random with probability density

p(%) from the continuous space = and therefore by Eqs. 2-7 and 2-3,

yields the optimum exponent E(R).

Q.E.D.

The random code given by Eq. 2-6 ig therefore an optimal random code, and

yields the optimal exponent ECR).

We now proceed to eveluate the effect of replacing the continuous

input space x by the discrete d-dimensional input space x , which consists

of A vectors. Consider a random code, for which the m elements of each



word are picked at random with probability 3 from the set X, of Y wave-
forms (vectors)

Re = {x; k = 1, ces f (2 LJ

The length or dimensionality of each x, is d. Now let the set X, be

generated in the following fashion: each vector xy is picked at random with

probability density p(x) from the continuous ensemble X of all d-

dimensional vectors matching the power constraint of Statement 2-1. The

probability density p(x,) is given by

p(x) = plxi K 1 | (2-11)

where p(x) is given by Eq. 2-7. Thus, we let p(x) be identical with the

probability density which was used for the generation of the optimal

unrestricted random code. We can then state the following theorem.

Theorem: Let the general memoryless channel be represented by the

set of probability demsities p(y/x). Given a set Xp , let Ep, d®) be the
exponent of the average probability of error over the ensemble of random

codes constructed as above. Let Ep q®) be the expected value of

Ep, 4®) averaged over all possible sets Xp .
Now define a tilted probability density for the product space XY

~ P(x) plylx)} 8esn®

[ [veo pCy1x) "2£(y) ®axdy
J

(2 12a)

where

[ [ ptx) ply|xt 2axn)t/1-®
E(y) = Q(y) = —

yr

J

— . 0
9

| 1/1-p(x) p(yIx) dx] / Sdy
J

1
8 £3 (2-12b)



Jk, vy). px)pGylotTE
Ul) Q(y) : 1

[p(x) p(ylx) dx
058g 5 (2-13)

TY Ccmd

LE, a ®) &gt; ER) - 2 fet Fb A-1 (2-14)

and * (R) are related parametrf=s1ly to the rate R as shown below.

[ [px ply1x) 21-8 gry) 28-1y) d

F.(R) Jn XJ 0
r

/ pu) plylx) "%ax1%a(n2%Lay
&lt;Se g3

(2-15a)

-
’ Qlxlv) ,1 [ [ ae, y) Ls p(x) andy 2Rerie

X \

(2-15b)

R rit = [R], = 1/2

Also when R &lt; Rss

A 2R) = F(R je) = dE(0) = - yA it / p00 p(y x) 24x) dy ;

(2-16)

ee fete do,2. BE, JR)&gt;ER +3 An (2-17,



where F, (R) is related parametrically to the rate R by

7 foe) plyx?1®qey)2%Laxdy
J * (R) -= JA —

-
IY

 9

oer) plylx3 E812 ey)28taxdy

(2-18a)

# F,(R)d

[anv Ln %o2ay1foesAaaul = =
4

 ry 3

EO, fy1) gt Lo)78rit = a (2-18b)

§ J oD 008 J.
when R &lt; Roce ar n = 7Also

[©
) ‘R) = F,

1
Aerie) = E(0) = - d

9 _Ua [1 [oto piyimoM2axitey (21s)
vy XxX

Proof: Given the set Lg each of the successive elements of a

code word is generated by first picking the index k at random with prob-

ability 7 and then taking Xp to be the element. Under these circumstances,
by direct analogy to Appendix A, Eqs. A-46, A-41 and A-26 with the index k

replacing the variable x, the average probability of error is bounded by

p(e XpJse
-nk 7JR) =nE

2, ® gp. g(RJ
(2-20)

where

D

AY JR) = R - = oy gto ¥) r= (2-21)



bo

(2)E R) = - =

, a® al %y, a8) = Dy.

%p q(t, ©) = fo g, alt» r

(2-22)

(2-23a)

a 7 gt, ©) = JZ &gt; p(k) p(k’) p(ylk) e(r-t) D(ky) + eD(k', Yay
. v k=l k=l

&lt;0: t&lt;&lt;

£ 277j=1 72 POy[x
{r-t) D(x v) + tD{x.

- "dy

[ 0 (2-23b)

D(ky) = D(x, , - Ey)
y) (x, y) n p(y] x) (2 4)

f(y) is a positive function of y satizfying J £(y) dy = 1. D, is an
arbitrary constant. |

3 (0) = J -

p(k) ply|k) eMgy
ie:

- 1 au

[2 Lots] -
4 kel

nN

dy-

As in Eq. A-47, let D, be such that

(1) (2)
E J, aR Ey’ PLey

0

\J

a
oad

(2 25a)

(2-25b)

(2-26)

Inserting Eqs. 2-21 and 2-22 into Eq. 2-26 yields

/by t a

+

r) = r ~~
m

D

) o(® = 82i
J (2-27)

Thus

1D 1
~-90 = - ee - 1d m d ly al d Ug. alts r) - R] S-r (2-28)

Inserting Eq. 2-28 into Eas. 2-71 and 2-22 vields



7

Ey o®) = 2 JR) = 2 JB)

3 w= { CL oes

r fo 8) 8 fp (x, ©)
vv — *——— 4 sR]

y t ed 0 (2-29)

Inserting Eq. 2-29 into Eq. 2-20 yields

(ee:
-nE (R

x) S2e £7?

where Ey aR) is given by Eq. 2-29.

We now proceed to evaluate &amp; bound on the expected value of Ey 4®)
&gt;

when averaged over all possible sets X . The average value of Ey 4®) is

by Eq. 2-29

E, OZ -0-5 1, +5 0, 0+)
0 &lt;8,rT&lt;0,t&lt;0(2-30)

Ineq. 2-30 is not an equality simce, in general, the parameters s, r and t

should be chosen such as to maximize Ep 4K) of each individual input
&gt;

set Xp , rather than being the same for all sets. From the convexity of

the logarithmic function we have

Ja XxX &gt; - Jn x (2-31)

Inserting Eq. 2-31 into Egs. 2-23a and 2-25a yields

= f - (a

7, (rs 0 - In 8, Lr, ©)
9 9

(2-32)

(2-33)

Now, since r 0,8  ~2 0 we therefore have



£ 8 .

 or S05 oD E09 (2-34)

inserting Ineqs. 2-32, 2-33 and 2-34 into Ineq. 2-30 yields

om r 1 — s 1 ee s2, J 2 Eine, 6) Ing; g{rs t) - 3R

2 °3%)

From Eqs. 2-25b and 2-11 we have

8p. ale) = [ oe - 8D (XY) 4xdyL &gt; [ [eo p(y|x) e0. i mpg J

where the index k has been dronned, since p(x = pix). Thus

€ 9, 48) = [ [ot ply|x) 30) yay
7

(2-36)

From Eq. 2-23b we have

where

80, q(t» r) _° /

oy construction

rr fie "J

nd

= wey,
3)

A~

plu, x.) g , 4(ts r)dx dx, (2-37)

(2-38)

and where, by Eq. 2-11

p(x,) = p(x),

Thus, from Eqs. 2-23b, 2-37. 2-38 and 2-39 we

for ail A

have

(2-39)



-

8. 4 t) =g, JT.) + iy NRE
14 3 i= j

(2-41)

where

(r-t)D(x,y)+tD(x.y)—_— a oT i j

B /, a(t t) “j Z pa / /p(x,) p(x) [ots1x.) o dydx,dx,
i43 i J=-

(r-t)D(xy)+tD (xy)LD &gt; [ [foo p(x') plylx) e dxdxdy  ;
£2 ian j= ¥ X X'

(2-42)

rad

rD {x J) dxdyLT [ot prj e
Fo= 3

Ce
——

er / r pix) p(y|x) eFPO) gyay sr

Inserting Eq. 2-24 into Eqs. 2-42 and Z °3 =f 21ar

0 (2-43;

EE - 1-r+t -t r

By, ars t) =Ag [ [oe p(x') p(y|x) p(ylx') f£(y) dxdx'dy
{i # 4 YX ¥

(2-44)

wn

: Sr, ©) 4, [1 een ply TET dxdy; x
{ = 4 Y .

J (2-45)

general, f(y) of Eq. 2-24 should be chosen so £8 tc maximize E 7 4&amp;



for each individual input set Xp . However, we let f(y) be the same for all

sets Xg and equal to the f(y) that maximizes the exponent ER) correspond-
ing to the unrestricted continuous set X. Thus inserting Eqs. A-52 and A-53

into Eqs. 2-44 and 2-36 yields

————— £1 Tae 0)
ep, afr BO) =p
4;

—eeeees 1 e f4(0) i] 1 8 (x)
8g, ats t) "7 0
[= i

{. 1 \
le re (2-46

(2-47)

Thus, by Eq. 2-41

mo ey La

gp, alr» ©) = 7 g(r, t) + g(x)

Also, by Eqs. A-52 and 2-3¢

gy, a m8 yp 4

Inserting Eqs. 2-48 and 2-49 into Eq. 2-35 yields

(2-48)

(2-49)

TS a | sy - 2-1 Lo7, d Z s-r d a ggls) 8-r Lal : g84(r, t) +7 84(r)1- or R

g.(x)/g. (r,t) +/-1
Elf - tihng. af

Thus

— J (x)-1,(x,t)
Xo 1 d ’Ey) a® ping lao - E50 0 so 1fel4

(2-50)

Now, the exponent E 4B) that corresponds to the unconstrained

d-dimensional continuous space X ie given by Eq. A-49



Zi

D D

y=1(Gy0)=821mmad(fm0x2)

Eliminating D, yields

r 1 s 1 £HOE RM RORE—F I CHORES (2-51)

Furthermore, ER) is maximized, as shown in Eas. A-50, A-51, A-J4, A-55 and

A-56, by letting

[ px) peyjxax11/178
e (y) =

3  s+ = 1 ¢

p(x) p(y|x.

+

a 11-8,
(2-52a)

(2-52b)

where, for R - R.4¢ 8 18 such that

RQ [(s-1) “§. 1 i WJ
1

s £3 (2-52¢)

where

Rorit = [R], = 1/2 (2-524)

If we let the parer~%-rs r, #, and t of Ineq. 2-50 be equal to those of

Eq. 2-51 we have

)
sem Ta) = Tales ©) Loa (2-53)® --=2L JaeBg ALY Z Ey g-r d

The insertion of Eq. 2-52b yields

F.(R

E {(R) Cry. lf ei
4, d el 3 1-8 4

/. {2-354



wher"

F(R) = 4 (28 “1 - P28 -1: 8 "|
 a» 2

Inserting Eqs. A-52 and A-53 into Eq. 2-55 yields

3

{ .

= fn [ [et ply |x) 2743 £0)14°dxdy
Y X

/ [ - -/ = [[ oe p(x") pCy[x)"®ply |x")! 2E(y)*® Laxdx' ayGe

Lr

Thus

/ ox) ply] 2% £03) 28 Laxey
F {R) = 1s (2-56)

-1| oC ply fax Pen**aay
A

where 8 and F,(R) are related parametrically to the rate R by Eq. (A-60c),

for all rates above Ro ie e- [R]_ = 1/2°

As for rates below R , we let
crit

8 2; t=-27 3» EF (2-57)

Inserting Eq. 2-57 into Eqs. 2-54 and 2-55 yields, with the help of Egs.

A-69 and A-71

(F
y!

R)) = - in
s =1/2

[ /
20x) ply[01!2ax]?=aE(0) (2-58a)}
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where

0) = [B®]

R)}

To 1 e

E g 4B) =&gt; ER) - 3 n( S=——— ot

dE4(0) Los,e +_£-)0-1 Jac2

(2-58b)

(2-59a)

{2=-="3b)

for R &lt; Roi From Egs. 2-11 and 2-9 we also have ER) =— E(R) for all
rates, by construction. The proof of the first part of the theorem has

therefore been completed.*

Q.E.D.

In order to prove the second part, let us rewrite Eq. 2-50 as

Rr) r_1 v LB Ld _ 8 i£2. a®) 2 s-r d Tq 8-r d NC £) s-r R + 3 ja

Fr x 17 _ 8 1 8 rng=1r d a8) gor A bx, t) - s-r [R*]

J4(x)- (x, t)- v + 1
.

(2 603

where

Tar- Gytx, ©
R' =R +3 foe Esl (2-61)

Comparing Ineq. 2-60 with Eg. 2-51 yields

Ey, 4B) &gt; ER) = E,(R +3 Lanlopdo,

kA simplified proof for the regiom R R, ,, i8 given in Ref. ..

(2-562)

 oO



J

where, by Eqs. 2-52, 2-56, A-57, A-58, A-59, A-60c and A-60b, F,(R) is
related parametrically to the rate R by

(p(x) pey)x)21Bq(3)25Laxdy
[7

1

R) = ja ss 5 (2-63)
 [px ply %ax1®Qy)4Laxdy

Y

*
)

1
R + +

F,(R)1 e of 1 / Q( [¥)7 = 4 Q(x, y)yA %
? 3 p(x)

oa
5 J 3 (2-64)

for all

R’ = [R']
crit gs = 1/2

(2 65)

Ineq. 2-65 can be rewritten

AS

F.(R)2% |
R 1 fe =z, A.

~~ Terit d
?

Ce _dB( fo 20 Lys
qedgo

deo) , /1 e + £-1for rates belowR__.. - = Ja = , we let

, tL = ? r =

(2-66)

(2-67)

wngerting Eq. 2-67 into Eqs. 2-62 and 2-63 yields

Eg, dR) &gt; E.(R +4 fo 29%4LonR$ Rorit (2-68)
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From Eqs. 2-11 and 2-9 we have also that, by construction

E,(R) = E(R) for all rates. Thus, the proof of the second part of the
theorem has been completed.

Q.E.D.

Discussion: We proceed now to discuss the bounds that were derived

in the above theorem. We shall consider particularly the region

0 &lt; RK R 4p» Which, as we shall see in Chapter 3, 18 of special interest

From Bgs. 2-14 and 2-16

E, JB) 2 ER) - 3 ye for R Rito
dE(0) J. 1e 3Ja (2-69)

From Eq. 2-3 we have

E(R) = E(O0) - R R &lt;for &lt; Rit (2-70)

[nserting Bq. 2-70 into Eg. 20% yields

Ep oR) &gt; EO
=
a (2-71)dE(0) CR J. 1 ] for R &lt; Rit2Va [ —

Now, whenever

We

dE(Q)

have

(2-72)

E SR) FEO -R-3 Lo ¢ LtcE©) + Z:1

~ q

= gw) -R - = Do (1+ EU

~~ E(0) - R - Xp for R &lt; Bort



- . AF

Tlics

Ey, o® ZERO [1-
and dB(0) &lt;&lt;&lt; °

:p for R &lt; Revit

(2-73)

Comparing Eq. 2-73 with Eq. 2-70, we see that E, 40 can be made to be
practically equal to E(R) by using quite a small* number 2, of input sym-

bols, whenever E(0)d &lt;&lt; 1.

Ineq. 2-71 may be bounded by

I E(0)d

E 9. ® &gt; 50 nL fa £20 R

Ja { eE(0)d ” Ink + 1 &amp;
d

R rit

(2-74)

 dp 1€)
*In cases where = 0 and az j $# 0 so that p(% |§ ) can

=(
be replaced by the first two terms of the Taylor series expansion,

| £
p(Y lg ) = p( “| 0) + (1/2) , it can be shown (by insertion

§ fa
Into Eqs. A-74a-d) that

l. The optimum input space consists of two opposit-

vectors, ? ex and - ? a’ for all rates 0 &lt; R &lt; C

2f

[aryoo anif (710)2. EQ) m5 C=7 5oo p(%
where C 18 the channel capaclicy
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Thus, whenever

dE(0) =~1 (2-75)

we have from Ineq. 2-74

: TTR AJgp, dF EO -R - 1 0a RIOLE yn, j=l Jfd n -R (2-762)

shen

L (nl &lt;4 {i 3) (2-76Db)

znd

E J 4B &gt;E(0) -R -4 a [E(0)d - Onl + 1]

~~ E(0) -
i - (fal - E(0)d]
o

[% (2-773)

vhen

: ol &gt;, Ef (2-770)

Comparing Bq. 2-76 with Bg, 2-77 yields

£ E(R)E qa)E{R) &gt; 7.

E 7, 4® =Z E(R)

NS E(0)

R R ie? de(0) &gt;&gt; .

dE(0) &gt;&gt; 1

(2-78a)

{2 73b°

(2-78¢;

In the following section we shall discuss the construction of a

semi-optimum finite input set Xyg for the Gaussian channel. A semi-optimum

input space is one that yields an exponent E 7, a(R) which is practically
equal to E(R).] We ghall show that the number of input vectors 2 needed is

approximately the same as that indicated by Eqs. 2-78 and 2-73. This there-

fore demonstrates the effectiveness of the bounds derived in this section.



2.3 Semi-Optimum Input Spaces for the White Gaussian Channel - Case 1 (2.1)

The white Gaussian channel is defined by the transition probability

densi

(1-5)¢
| 2

KARRRE rk 20

JolV4

(2-79)

shere by Ineq. (2-1b)

18] &lt; | §lnax =F" (2-1b)

Let us define the'voltage signal to noise ratio™ A, as

5

~ (2-80)

Inserting Eq. (2-1b) into 2-20 yields

 [flee
max CG G

Ne shall first discuss the cg ['3

dA
naxx

ny

® where

(2-81)

(2 82,

and proceed with the proof ¢f the following theorem.

Theorem: Consider e white Gaussian Channel whose statistics are

given by Eq. 2-79. Let the input signal power be constrained by

Ineq. (2-1b) and by Ineq. 2-82. Let the input space consist of two d-

dimensional oppositely-directed vectors. Then the exponent of the upper

bound to the probability of error, E, 4B) is asymptotically equal to the

optimum exponent E(R).

Proof: From Eq. 2-4 we have

| gs £0 eee &gt;) Y Lor (se



The input set xX, consists of two oppositely directed vectors. Let those

two vectors be given by

2h $l es $ &lt;Q (2-894,

shere

7 A *

cc 0 0 = Ta = ¥max (2-89b)

J

 xX | yy’
2 A (2-90a)

where

T= 50 §l=-f1 (2-90b)

From Eqs. 2-5 and 2-6 we hava

y a» Das Nos voor Wg

p(y[x) = IT JME

Inserting Eqs. 2-79, 2-89 and 2-90 into Eq. 2-6 yields

2
d 1 (7, = §max)

Go(y|x,)=J[|—=j5——e 26°
1 j=l and?g 4

d
TT 1ply xy) = af2 ad ©

i=1 (2%) 6;

From Egs. 2-29 and 2-30 we have

p(e | X
a ot M

/

(2-5)

(2-6)

(2-91a)

{2~91b;

(2-92a)



where

xr 1 s 1 _ 8Ep, a®) s-r d ( (8) T g-r d 1, a(x £) 8-1 (2-92b)

»
of

r = 2t * ud 8
ou
—

- (2-93)

Also, let

&amp;

1 20%£(y) = p(y|0) =  ————
"i 02nd

(2-94)

pA 1

p(x,) = p(x,) = 4 (2-95)

[nserting Eqs. 2-93, 2-94 and 2-95 inte Eqs. 2-23, 2-25 and 2-92b yields

F
1-28 1 s 1

a® = - 1 3 1, «8-154 ¥, q(2s-1

/ 0 2 1 l-8 5
» 4(8) = Un &gt; 3 Ply|x)" p(310) %ay1

= oDee
‘a | (2-96)

(2 a7

2 ”

| 2) 428-1, s-1) = 5 [1 p(x) yx 1 p(y] 0)%%7! (2-98)

Inserting Eqs. 2-91 and 2-94 into Eqs. 2-97 and 2-98 yields



{CC

1-8) (7=§.. 0% 7%
fa = bot] Shs 2 G* d %°

: (1-e) (7 + Fa t 4’s
[1° 2 GC d }aax did 276 ® 7

2 (1-s)sd ;
fa &gt; {= 2G? |

 a. f next (1-2)or 05s &lt;3 (2-99)

! pi e-1, 8-1) = a i /(2, a2-1: 5-1) 4 7G

2(1-8) (7- g (25-10%?
? i

mg
2(1-8) (7+ Fo 0228-1) %?

12 dé

» 0-5) (1+ frm) —s-)Y%-(-9)( Y= So &gt; A\
1 G

2 | ==— eJ “6 an |

£ and (201-9)-41-0)%) 2(1-3) f2 4
J. 1 2 2c +2e 2G* 5H

J
L

8 £3 (2-100)



Now, since by Ineq. 2-82

We

4

z $ max
8,ax 3?

have

&lt;&lt;1

28° 29°B (28-1, s-1) = 1 5 2
2, d La 7 [4 - ro d[2(1-8)-r(1-8)"- — td 2(1-8)]

lax 2ds(1-s)fn [1 - 20

ge?
&amp; Toa 2ds(l-8) = 2 ( NG (2-101)

[Inserting Eqs. 2-99 and 2-101 into Eq. 2-96 yields

£
/ 1

£2RY= 1-2s 28 " max 8
RR) = + | Is tT. ] s{l-8) 2g* 1-8 R

o2
Smax 8
2G 1-8

 EB LJ . 8 $3

ant

a

max 8 . ” 1

7 "T-sF + 0x8 &lt;3 (2-102)

Maximizing E, aR) with resnect to s yields

 gE =1

}
1.2

for R &lt; Rorit 8 Nom

lw
A

LL, 2
for R Z -— 8 Aan

Thus:



~ 1,20 p
Ey, dB) = GAL R

pr 1,2 [RB 0E, gRI= 5A 24 5 TRS

R
1 2

$&lt; 8 Apax

sal &lt; Rs
8 "max

(2-103a)

L 2 .

. 2 A (2-:03b)

Comparing Eq. 2-103 with the results given in page 654 of Ref (1)

yields*

[ / Ud

Thus

E, JR) = E(R) (2 105)

Pee
-

2 »
asd &lt;&lt; ]

Q.E.D.

We proceed now to discuss cases where the condition of Ineq. 2-82

is no longer valid. The first step will be the evaluation of Ey 4¢9) for
the white Gaussian channel. From Bgs. A-69 and A-71 we have

E (0) = - i &gt;2, d ) 3 93 pix) p(x") [ 1/2 5 p(y) p(y |x") %ay (2 -106)

*The results of Ref. (1) are derived for the power constraint of Statement
2-2, and are valid also in cases where the average power is constrained
to be equal to P.

The set of signals satisfying Statement 2-1 is included in the set of sig-
nals satisfying the above average power constraint. Thus, Shannon's
exponent of the upper bound ito the probability of error is larger than or
equal to the optimum exponent E(R) which corresponds to the constraint of
Statement 2-1.
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Inserting Eqs. 2-6 and 2-79 into Eq. 2-106 yields

J
1, 0 =r LSS

2

og YER EDp(x) p(x") de 4G
m1 JT®GE ©

An

(2-107a)
where

&lt;

5

eS ee 5

&gt;! t eo!
C1 ¢ oboe y ¢ a

(2-107b)

(2-107¢)

Thus

d f; ~ §0°
1 or orp . = 8 G20) = - = J CC elxd p(x’) e

4, a d “te |
KE

d (% i} £2
2 —i ti

3 Vol 3 px plat) e
Yr w

Let D be the geometrical distance between the two vectors x and x
»

h4 x 1
g : 0,

(2-108)

given by

[2 109°

Then, inserting Eq. 2-109 into Eq. 2-108 yields

jm ( ) (2-110a)

3K



‘4

_D*°
E 4 = - x hss pm) ¢ SG (2-110b)

where p(D) can be found from p(x) and p(x’).

In the case where the input set Xx, consists of two oppositely

directed vectors given by Eqs. 2-89, 2-90 and 2-95, we get from Eq. 2-108

5 nas- Ll

eet fale. 26°.
 Zz

at 4
max

) jan 3 ( 1 (2-111)

Again, for

a2 d
max

We nave

Z
A

~/ max
BE, 40) =

as in Eq. (2-103a).

For higher values of peak signal-to-noise ratio we let d = 1. Then,

by Eq. 2-111

foliosg, (0) = - An (1+

&amp;
A

max

(2-112)

E,. 10) together with Cy. 1° the rate for which E, 1 (R) = (0, are given in

Table 1. Also given in the same table are the channel capacity C* and the

zero-rate exponent E(0)** that correspond to the power comstraint of State-

ment 2-2. (The channel capacity C and the zero-rate exponent E(0) which

*The channel capacity is computed im Ref, (3).

**E(0) is computed im Rz2f. (2) end in Appendix B.



A
max

3

BE, 1€0)

0.216

0.571

0.683

nN 7)

4 vy

0.27

0.63

0.95

E,. 1(0)
£00)

0.9¢

0.905

0.72

9

Cag

0.33

0.62

0.59

0 3

0.346

0.804

1.151

C
2, lc

0 22

0.77

0.60

0.4.

ABLE

TABULATION OF Es. , (0) AND C,. 1 V8: A ax
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corresponds to Statement 2-1 are, as shown in the footnote on page 32,

upper bounded by the C and E(0) that correspond to the power constraint of

Statement 2-2.) From Table 1 we see that the replacing of the continuous

input set by the discrete input set x,» consisting of two oppositely directed

vectors, has a negligible effect on the exponent of the probability of error

as a2 &lt; 1.
Let us next consider the case where the input set X, consists of

£ one-dimensional vectors as shown in Figure 4. The distance between each

two adjacent vectors is

Léa r

2 oA ing
min fJ-1

p(x  -
3

3  hk y X

(2-113)

(2- 114)

Inserting Eqs. 2-il13 and 2-114 into Eq. 2-110 yields

J (0)

, 100) = - bs 22 (Lei zhwe °Cg

Thus, since 4k
Z

&lt;_k we have

(2-115)

2

6, 0) 3 - Anl min 22 - fal: tf 4p ve Jon e Bo J { Dyin+ 2(X£-2) &gt; e 8G* ]
k=l

D 2 2 2

| __min -4kD_. [8G2CPL i Le 20-1) e 86% Lac lon gm3
7% -4p%. /8gt

min Ty

2
Dp

= nin
4 ~~ 2= Ia L)a + [2e 36 + 2

4p”,
min _

8 Y2
PX 116,
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Now define K by

J. q «mex : 0 (2-117)

Inserting Eas. 2-117 and 2-81 into Eq. 2-113 yields

D
min

= 2(3K (2-118)

[nsexting Eq. 2-118 into Eq. 2-116 then yields

2

Ey . (0) &gt; Jaa ofr RA Lo) = 1 [1 + 2e

If we choose !so that K 22 1 , we have

E) 1(0) = /. (1 +A - Fn 2,52

2
me.  32K” _

(2-119a)

(2-119b)

From Eqs. 2-119b and 2-11.7 we have, for A ax =z

~N/2, 1 $0) = Jn Ay

Jud 2 fa A x E, i

On the other hand, it cam be shown (Appendix B) that

¢ AEQ) $&lt; AnA_

(2-120a)

(2-120Db)

(2 121)

Thus, by Ege. 2-12] and 2-120, we have

8, ,(R)=XBR);

Vol E(0)

N

3 =

ei 0
ns -p a  -_ {(2-122a)

(2-122b)



Comparing Eqs. 2-73 and 2-78 with Eqs. 2-105 and 2-122 respectively

yields that the lower bound on Ey 4B) derived in Section 2.2 is indeed a
useful one.

2.4 The Effect of the Signsl Space Structure on the Average Probability of
Error, Case 2 (Statement 2-2)

In the case of a power constraint such as that of Statement 2-2, we

consider the ensemble of codes obtained by placing M points on the surface of

a sphere of radius [nP '.

The requirement of Statement 2-2 can be met by making each of the

m elements in our signal space have the same power dP (see Figure 3). (The

power of each word is therefore mdP = nP and therefore Statement 2-2 is

satisfied). This additions) constraint produces an additional reduction in

the value of Ev, aR) as compared with E(R). Even if we let the d-

dimensional input space X, be an infinite set (2 = OO), the corresponding

exponent E,(R) will, in geaersal, be

E£.(R) &lt; ER)

The discussion in Zhis section will be limited to the white Gaussian

channel and to rates below Rerit Thug

E,(R) = I (0) - »

«5 LS
{2 124)

Let

£ (0) = E(0) - k,(a%) ECO) (2-125a;

where

2 P
AS = —

 = 2 (2-125b)

Then by Egs. 2-124 and 2-125 we have

3

g R) = E(Q) - &lt; (a) oh R = Rewit (2-126)
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We shall now proceed to evaluate k (4%) as a function of A‘ for

different values of d.

The input space X is, by construction, a set of points on the surface

of a d-dimensional sphere of radius Jae’ .

Let each point of the set X be placed at random and independently of

all others with probability measure proportional to surface area or,

equivalently, to solid angle. The probability Pr{(0 &lt; © &lt; 8) that an

angle between two vectors of the space X is less than or equal to 6, is

therefore proportional to the solid angle of a cone in d-dimensions with half

angle 8, This is obtained by summing the contributions due to ring-shaped
elements of area (spherical surfaces in d-1 dimensions of radius sin € and

incremental width ¢' as shown in Figure 5.) Thus, the solid angle of the

cone is given by (1):

TMegE=y

»

( [4 &amp; ~ (2-127)

Here we used the formule for “he surface 8,(x) of a sphere of radius r in

d-dimensions,

3
? oo ~

‘r) = B12 gni ere + .
3

From Eq. 2-127 we have

Pr (J

6
d-2( (sin 6) “do

Cray can S412
goles, gy Tet

[ideny a
La LD ea= Mess 0

¢ 2
1 [egy [ 4-2# dipSipragagm sin8)9 24m

 {i ~~ 2 &lt;&lt; r

(2-128)
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The probability density p(&amp;) is therefore given by

"

’ d

 ——— er Se (gin ©)

de, RES [ d-1 )2

(2-129)

Now, by Eq. 2-109, the geometrical distance between two vectors with

an angle © between them is (see Figure 5)

ny? = 4(dP stn? ? )

[ngarcing Bas. 2-130 and =129 into Eq. 2-110b yields

y
he y,  La )

x To sin’ g
z

peta [oe 2G 240

RES TLE ein”2
hori [ 26 2(sin oo | (2-131)0 =) S57

Inserting Eg. 2-125b into 2-131 yields, for d &gt; 2

2 2 i |de mf 2 02 ( &gt; in 2 sin 0) d[le I.; 7 feb0-3 hEE
1

“3 “24 dA dA1 , [ed E § S-cose d-2
2,00) == "Te ETT @ le sin 6 “d6

[' 5) .

(2-132a)

(2-132b)

Equation 2-132 is valid for all d &gt; 2. As for d = 1, it is clear that in

order to satisfy the power comstraint of Statement 2-2 the input space X

must consist of two oppositely directed vectors with an amplitude of Jp’ . Thus



4,

a’ =2% =p
max

(2-133)

Inserting Eq. 2-133 into Eq. 2-111 yields

{ 1+ e a’y2
J) = = Yn (= =~K

In Appendix B we shown,

~ 1,2
2. (0) =F A° = ECO) A

orge1l f2E, (0) = 3 L fea ©
~

for all 4, that

(2-134)

(2-135a)

[2~ 35b;

Thus

oo! d=1
E.(0)== == E(0)

Inserting Ege. 2-1." ga

R dy) = FE wbyo. K  heo J ‘?

-r nto Bg. 2-125 yields, for any d

{(2-135¢)

(2-136a}

shere

2
ka ) =¢C

2, 2 1,
k AT) = =;

’ (2-136b)

{2-136c)

The qualitative behaviour of ky (a%) as a function of a? and with d
.

as a parameter is given in Figure 6.

Kk, 5 and k, (63) gre tabulated in Table 2

“From Eq. 2-132a it is clear that E,(0) is a monotonic increasing function
of A.
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We proceed now to evaluate the effect of replacing the continuous

d-dimensional input space X by a discrete d-dimensional input space xX; »

which consists of J vectors.

Let each of the m elements be picked at random with probability 5

from the set X, of [ vectors (waveforms), Xp = { x k=1, nd] .
Let the set xX) be generated in the following fashion: each vector

x is picked at random with probability pix) from the ensemble X of all
d-dimensional vectors matching the power constraint of Statement 2-2. The

probability p(x.) is given by

p(x.) = p(x)| s k= 1, soos
J

where p(x) is the same probability distribution which is used to generate

E 4¢0- The following theorem can then be stated:

Theorem: Let E 7, 210) be the zero-rate exponent of the average

probability of error for remdom codes constructed as above. Let Ey, 40)

be the expected value of Eg, 402 averaged over all possible sets X, . Then

dE (0)
1 e -~ AL-1]E, 20 » 5,0 - + Anes =1, (2-137)

The proof is identical with that of the theorem of Section 2-2. Insertinp

Eq. 2-136 into Eg. 2-127 vields

_ a,—_— 7 -

Bp 402 BO) - ka) 200) - Jn(e—=1) (2-158

Thus, there is a combined loss due to the two following independent con-

straints:

Constraining the power of each of the input vectors to be equal

to dP ; the resulting loss is equal to k (a%) (0).
2. Constraining the input space to consist of J vectors only; the

| B®) yg
regulcing loss Ls equal to fq Ee TEI



We now evaluate the effect of these constreints at high (and low) values of

A%. From Eq. 2-137 we have

LL dE (0) 7
2). 40) &gt; E,(0) - Ln E75)

dE . (0) nl
* (Q) = Lfnie 4 + 1)

Thus for E(0) = {a a? &gt;&gt; 1 we have

E © &gt; 3 bl Lhd &lt;= ro2 451 La?
2

 Eno Lal no 2ot da

(2-139)

(2-140a)

(2 -140Db)

On the other hand we har glw vs

7 400)&lt;EBD (2-141)

Inserting Ea. 2-141 into Eq. 2-140b yields

E
~

J. 400) =E,(0 = 5-1 4 2;€0J 3% Ja a

cor + fod &gt;&gt;

(2-142a)

(2-142D)

Whenever ata &lt;&lt; 1, an input space Xx, that consists of two oppositely
directed vectors with an amplitude of ldp yields the optimum exponent E(R)

for all rates 0 &lt; R &lt; C, as shown in Section 2.3 of this chapter.

2.5 Convolutions! Encoding
In the last three sections we have established a discrete signal

space, generated from &amp; dedimensional input space which consists of 7 input

symbols. We have shown that a »roper selection of J and d vields an expo-

nent Ey } a’) which is arbitrarily close to the optimum exponent E(R).
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We proceed now to describe an encoding scheme for mapping output

sequences from an independent letter source into sequences of channel input

symbols which are all members of the input set Xg . We desire to do this

encoding in a sequential manner so that sequential or other systematic

decoding may be attempted at the receiver. By sequential encoding we mean

that the channel symbol to be transmitted at any time is uniquely deter-

mined by the sequence of the output letters from the message source up to

that time.

Decoding schemes for sequential codes will be discussed in the next

chapter.
Let us consider a randomly selected code with a constraint length n,

for which the size of M(w), the set of allowable messages at the length w

input symbols, is an exponential function of the variable w.

Mw) &lt; aed . 143)

where A, is some small consgft.nf 5 “3

Ze a

A code structure that fs ucomsistent with Eq. 2-143 is a tree, as shown

in Figure 7. There is one bruu-h point for each information digit. Each

information digit consists of "a" channel input symbols. All the input

symbols are randomly selected frvom a d-dimensional input space Xp which con-

sists of { vectors. From each branch point there diverges b branches. The

constraint length is m samples and thus equal to m input symbols or i infor-

mation digits where { «= 2 .

The upper bound on the probability of error that was used in the pre-

vious sections and which is discussed in Appendix A, is based on random

block codes, not on tree codes, to which we wish to apply them. The impor-

tant feature of random block codes, as far as the average probability of

arror is concerned, is the fect that the M code words are statistically

independent of zach otaer, and that there is a choice of iaput symbol

a priori probabilities which maximize the exponent in the upper bound ex» s-

sion.

In the case of a trer structure we shall saek in decoding to make a

decision only about the first information digit. This digit divides the



sm ame
Fv ownudd

FY ntry,wwpram

TRANSMITTED

XJ

§
I

—dd—

nN J n= 220;  4d

15

= 0
Ta

[a

14

 mo 2

2.

7a 15. L_
A 15; R 10 Uns = Jao

25

FICURE 7 CONVOLUTIONAL TREE CODE



entire tree get M into two subsets: M' is the subset of all messages which

start with the same digit as that of the transmitted message, and M'' is the

subset of messages other than those of M'. It is clear that the messages in

the set M' cannot be made to be statistically independent. However, each

member of the incorrect subset M'’' can be made to be statistically inde-

pendent of the transmitted sequence which is a member of M'.

Reiffen (5) has described a way of generating such randomly selected

tree codes where the messages of the incorrect subset M'' are statistically

independent of the messages in the correct subset M',

Thus, the probability of incorrect detection of the first information

digit in a tree code is bounded by the same expressions as the probability

of incorrect detection of a message encoded by a random block code.

Furthermore, these trees can be made infinite so that the above

statistical characteristics are common to all information digits, which are

supposed to be emitted from the information source in a continuous stream

and a constant rate, These codes can be generated by a shift register (5),

end the encoding complexity per information digit is proportional to m,

where m = 3 is the number of channel input symbols per constraint length.

Clearly, the encoding complexity is also a monotonically increasing

function of J , (the number of symbols in the input space X ). Thus, let

M, be an encoding complexity meagure, defined as

M A
A (2-144;

The decoding complexity for the two decoding schemes which are dis-

cussed in the next chapter, is shown to be proportional to on’, lag 2,

for all rates below some computational cut-off rate Romp’
Clearly, the decoding complexity must by a monotonically increasing

function of J . Thus, let M be the decoding complexity measure defined as

M HY Du? (%-145)

In the next section we stall discuss the problem of miaimizing M,

and M, with respect to v and d, for a given rate R, a given constraint



length n and a suitably defined lose in the value of the exponent of the

probability of error.

2,6 Optimization of { and d

This discussion will be limited to rates below Rorit’ and to cases

where the power constraint of Statement 2-1 is valid. Let L be a loss

factor, defined as

L
E(0) - Eg 4¢9)

E(0) (2-146)

Now, for rates below Rie we have by Eq. A-70

P's’ p 4(@ -R 8 &lt; Roric

Thus

2g JB) = EO) (1-1) -K R &gt; Rosi (2-147)

Therefore specifying an acceptable E 5 q®) for any rate R Ro ie?
corresponds to the specification of a proper loss factor L.

We proceed to discuss the minimization of M. and M, with respect tc
{ ana d, for a given acceptable loss factor L, and a given constraint-

length n.

For dE{0) &lt;&lt;&lt; . we have by Ea ide

A &gt; Ly, Ecc—S— &gt; a-}) &lt;&lt; R iS R.rit (2-148)

Inserting Bq. 2-146 into En. 2-143 yields

/ Eq(uyd &lt; A  BR  R OS erit

Thus, by Eqs. 2-144 and 2-145 we tiave



u j¢SNe N Ld?

2

d La2

md &lt;&lt; 1A

E(0)d &lt;.

(2-149a)

(2 +146 3:

The lower bounds to M, and M d decrease when d increases.

Thus, d should be chosen as large as possible and the value of d

that minimizes M, and M; is therefore outside the region of d for which
E(0)d ¢&lt; 1. The choice of ¢ should be such as to yield the desired loss

factor L. Also by Eq. 2-74

—— E(0)d
Ep, a= EO) - + Luts) : R : Ro ie (2-150)

This bound is effective whenever {&gt;&gt;1. This corresponds to the region

E(0)d &gt;&gt; 1. (In order to get a reasonably small L, J should be much

larger than unity if E(0)d &gt;&gt; 1.) Inserting Eq. 2-150 into Eq. 2-146

yields

I,
E(0)d

ae Ee +dE(0) Ls (=&gt; J

Thus

J LE(0)d
© T1E(0)d _, (2-151)

Inserting Eq. 2-151 into Eqs. 2-1&amp;{4 and 2-145 yields

Az _E(0)d
. LEO,

2 E(0)d
My £3 F ”

2 IEA

(2 -152a)

(2-LI2D;

From Eq. 2-152a we have that the bound to Mo , has an extrimum point at
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E(0)d - 1 _ LE(0)d
E(0)d(L -L) - 1 € (2-153)

Lf a solution exists. Thus, for E(0)d &gt;&gt; 1 this corresponds to

A SLE(0)d
1-L

1 1dE os GN(0) I A I-L

Now, for reasonably small vat ables of the loss factor L we have

dE(0) =X 1. (2-154)

This point is outside the region of d for which dE(0) &gt;&gt; 1

From Eq. 2-152b we have that the bound to M, has a extrimum point at

E(0)d - 2 - SLE(07d
E(0)d(1 - L) - 2 (2-155)

if a solution exists, This cor-2sponds, for E(0)d &gt;&gt; 1, co

i LE(0)d
1-1

2 =: fol

For reasonably small vaxiables of the loss factor L we therefore have

AE(0) == 1 (2-156)

This point is outside the region of d for which dE(0) &gt;&gt; 1.

We may conclude therefore that the lower bounds to M, and M 4 are

monotonically decreasing functions of d in the region dE(0) &lt;&lt; 1 and

are monotonically increasing functions of d in the region dE(0) &gt;&gt; 1.



Both M, and My are therefore minimized if:

E(O)d &amp;£ 1 ;: E(0) &lt; 1. R
Sy (2-167a)

and since d &gt; 1,

i, E(0) 2 1, R &amp; Rose (2-167b)

The number Y 18 chosen to yield the desired loss factor L



CHAPTER II

DECODING SCHEMES FOR CONVOLUTIONAL CODES

3.1 Introduction

Sequential
a time.

{~~ding implies that we decode one information digit at

The symbol 8; is to be decoded immediately after 8, NE Thus the

receiver has available the decoded set {(..., 8_1 84) when it is about to

decode 8. We shall assume that these symbols have been decoded without an

error. This assumption, although crucial to the decoding procedure, is not

so restrictive as it may appear. This will be discussed later in this chap-

ter.

We thersfore rescore oo wolention to those s.

previously decoded symbois.

consistent with the

3.2 Sequentisl Decoding (Afra: Wozencraft and Reiffen)
Let u be the sequence that consists of the first w input symbols of

the transmitted sequence, that diverges from the last information digit to be

detected. Let u' be &amp; member of ithe incorrect set M'' (see Section 2.5).

u' therefore starts with am iuformation digit other than that of the sequence

ue Let Ve be the sequence that consists of the w output symbols that corxr-

respond to the transmitted segment ue Let

pv.)
Wy

{

which we call the distance between u and v_. Where

WwW

dv) = TT p(y,)
{=7

W

v8) =TT p(y, Ry)
{esl

 MW ]
5

(3-2)



Let us define a constant D_° given by

° J (a, Vv) Ig 2 . (3-4a,

where ks is some arbitrary positive constant which we call "probability
criterion” and is a member of an ordered set

R=lh: ky =k + Aj
Wr

Sma
E{R)n [ 5 =¢

where A &gt; 0 is a constant.

Let us now consider the sequential decoding scheme in accsrdance with

the following rules:

1. The decoding computer starts out to generate sequentially the

entire tree setM(Section 2.5). As the computer proceeds, it dis-

cards any sequence Gg of length w symbols (1 &lt; wv &lt; m) for

which the distance p(w’, Vv) = J ®, corresponds to the
smallest “probability criterion” k,).
2. As soon a¢ the computer discovers aeny sequence ig M that

is retained through iength m, it prints out the corresponding

first information digic.

3. If the complece set i s discarded, the computer adopts the

next larger critezion ¥ aad ite corresponding distance

D5 tL gw uw.
4, The computer continues this procedure until some s:suence in

M is retained through length m. It then prints the correspond-

ing first information digit.

When these rules ave avopted, the decoder mever uses a criterion Ey

unless the correct subset M' (and, hence, the correct sequence ©) is

discarded for kyo1° The srovebiiity that uw 1s discarded devends on the
channel noise only. By sveraging both over all noise sscuences and over the

ensemble of all tree codes, we cen bound the average number of computations,

N, required to elimfnste the incorrect subset M'°



3.3 Determination of a Lower Bound to R om of Wozencraft-Reiffentn  —— EE rE peteDecoding Scheme (5), (6) P

Let N(w) be the number of computations required to extend the search

from w to w+ 1. Using bars to denote averages

N=3New {3.

N(w) may be upper bounded in the following way: The number of incorrect

messages of length w, M(w), is given by Eq. 2-143.

Mw) &lt; A.rdRw (2 143

The probability that an incorrect message is retained through length w + 1

when the criterion k, is used is given by

Pr(D_(u’, v) &lt; p}| il {so

The criterion ®, is used whenever gll sequences are discarded at some

length Aw ( i &lt;A £ 2 ) with the criterion ky 1
Thus the probability Pr(j) of such an event is upper bounded by the

probability of the correct sequence u being discarded at some length Aw,

Therefore

oj) &lt; 2 Pr (D, (u , VW) ’
Te

1d D !
3 J XJ

{3-

Thus, by Bqs. 2-143, 3-6 and 3-7

Nw) aR - 0
Pr(D_(u o VY) |Son Era) (3-8,

Inserting Ineq. 3-7 into Ineg. 3-8 yi _Js&amp;

dol D (u®, vv,Nw) K A.- £- Pr(D_(u’, J Qu, v) . D 3-1a y (3-9.



Inserting Eq. 3-9 into 3-5 yields

AJ] LAEZ_ 1 PrD (u’, Vv) )  op ww 30 3 G-10)

We would like to obtain an upper bound on

f

9
Pr [D (u . WV D, b rs

Z

3
7

7a|95 ©

the Form

Pr iD (u', v) &lt; D 3, D. (u, v) D ly « Be ® Ov
a= 2 NS Ye ? Aw: 7 AW &lt; (3-11)

where B is a constant that is independent of w and A, and kK” is any positive

number such that 3-11 is true. Inserting Eq. 3-11 into Eq. 3-10 yields

a m——— FL ~

N &lt; &gt; Ke (R-R" wd
Ww, i.A

(35 4

where k = BA_.

The minimum value of R*, over all w, A and } is called "Reomp® Thus

R = min { R*comp
A.W

(3-13)

[Inserting Bq. 3-13 into 3-12 yields

N
— = (R = R)wd

{ ZZ ke “OP
Wo iA

(3-14)

For R Bop’ the summation on w is a geometric series which may

be upper bounded by a quantity independent of the constraint length m. The

summation on A containg m fdenticel terms. The summation on j will contain

a number of terms proportiomal te m. This follows from making the largest

criterion used, k , equal co B(R)n = E(R)md. Thus for rates R &lt; R
Jmase comp

N may be upper bounded by a quantity proportional to =. Reiffen (6)

obtained an upper bound to R_
EEENTD
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R omp &lt; ED) (3-15)

[t has been shown (5) that Romp = E(0) whenever the channel is symmetricl.

We proceed now to evaluate a lower bound on Romp

From Eq. 3-1. 3-2 and 3-3 we have

AW AW p(y.)i) fa, v) = &gt; d(x, y) = &gt; Yn EY
we =i i=l p(yyl®y)

dD {u', v) = d(x’, y) = J regensamese &gt; te = p0yx

Thus, by the use of Chernoff bounds (Appendix A, Section

Pr(D _(u, v) 20.0) &lt; MV (8) -8%'( J J

~

(3-16a)

(3-16b)

(3-17a)

where, by Eqs, A-27, A-29 and 3-1°-

1 (so NY J re plyl%) 2dx, Yi,
Xlw

1
I P(x) p(y |x) p(y) ° dy i (3-170)

and

N'(s) = Dh
AY

{3=-17¢)

Thus, by Ineqs. 2-4 and 3«17

q £

Prd, ru, Vv, oo bo JC) =e We) Do RI pol a1 A (3-184)

—-a”



ys

D, ~ = AW T's) (3-18b)

where 8 is determined as the solution of the equation

k

oi = sf (8) - Yes, (3-18¢)

In the same way

where

? Pr D_(u', v) p 7] &lt; nt) - tu (t) i

. bv Section A.3 and Ea. 3

di LJ
(i '

” 3 [re p(y) salz’, ay

[eer p(n) ty x') “dydx'

(3-19a)

(3-19b)

md

D -
3 - AW

u(t) Eve (3-19c¢)

Now, returning to Ineq. 3-11

Pr D (u' . Vv J J - oy
j-1 ' J

D,., ] &lt; Pr [D_ (u , V) S D, ]
(3-20a)

Also

CooL j= j-1
Pr [D_(u’, Vv) &lt; D° 5 D, .{v, vy LD D, ] Pr [D, (us v) pA D, ]

(3-200)

Thus, by Ineas. 3-20, 3-18 and 3=1%



 an

' J, -1Prd (u,v) &lt; D7 5D, (u,v) &gt; 0, 7]

min J rip Cu’, v) &lt; p 3 Pr(p, (u', v) &gt; p, 7h

p(t) = en'(t)  -k,
nin {e ¥ HI J-1 L

x.

a

(3- 9

Now, by Eq. 3=4b) k. =k., + A : 4&amp;4 "20. Thus by Ineq. (5-18a)

7 K(g) - 8" RS J oH

 eg (3-22a)

where

3 ual

$1 (8) ou
-

3
Tes) - ef (a) = -

(3-22b)

(3-22¢)

Therefore, inserting Eq. 3-22 into Ineq. 3-21 yields

2 . y Vv, L
a| p, (a, \ 1}

\
“w

2° win [eT - s J" (a) ) wut) - tut) )

(3-23a)

Thus, if we choo

® = max J- f(s) 4-5 7" (8) ; = u(t) + tue) |

? ‘o}Ke ad = wit) + tu= J="N(e) + sa) {-4 (3-23b)

then Eq. 3-11 is valid.
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Inserting Ineq. 3-23b into Eq. 3-13 yields

% oti min 2 §- (8) +4 sf '(s) - u(t) + ey (3-24)

Now, by Eqs. 3-17 and 3-16

JA
P

((x[®
( )fi 8

 p(x) ply x} En (y) wu

4

(3-25a)

Xe

-t p(y) d Pep») Tein fa BI ay

A (tt)

SE LEPre) p(y)" ply.x+ 4

(3-25b)

[f we let t = 8 - 1 we have

 lb (t) = \'(8) : pit) = X (8) (3-26)

Hence

omg 7 103[28-1(8)-2 (8)

The minimum occurs at that s. for which

(2s - 1) % '(s) - 2% (s)] = _

“J

which corresponds to g&amp; = :

(3-27)

(3-28)

1 1
Also, [(1 - 28)J'(8)-2(e)]""= 2% ''( 5) 2 0, since TU''( 3) is the
variance (see Ref. (2) ) of a random variable. Thus, s = : is indeed a

minimum point.



Inserting Bq. 3-28 into Ineq. 3-27 yields

no&gt;BK (3-29)

Now, by Eq. 3-170bL

i 1

Bes) = Jo [&amp; P(x) ply[x)? p(y)dy (3-30a)

where

p(y) = 2 P(x) p(y x) (3-30b)

Therefore

where

tye fol
/ 11.2

p(x) ply[x)? pt 2a |)

2 1 42

Ja [ [sntoorter |

1.2

g(y) = i p(x) pelo? |
Xp

(3-31a)

(3-31b)

3y the Schwarz inequality

1 1
| gy)? ply) lay g(y)dy / p(y)dy

/
 gly)dy (3-32)
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Inserting Ineq. 3-32 into Eg. 3-31 yields

L
—- = 2

2 Pedy hn JZ et pty 0®1 ay
Wy 7

(3-33)

Inserting Ineq. 2-33 into Imeq. 3-29 yields

i
9.2

comp &gt; - : A [ 12 p(x) p(y x)?] dy
Y J

y (3-34)

Now, by Eqs. A-69 and A=] in Appendx

32
a 2 p(x p(y |x)? ay

{

1s equal to the zero-rate exponent Ep 4¢9)&gt; for the given channel. By a
9

proper selection of p(x) aud whe number of input symbols, Ey 49) can be
?

made arbitrarily close to he optimum zero-rate exponent E(Q) (see Chapter 2).

Thus

 | -

2 comp ~ 3 EB 7 aC (3- or 5)

and for semi-optimum input spaces

1
Rom 7 5 E(0) (3-36)

In this section, we have been able to meaningfully bound the

average number of computations necessary to discard the incorrect subset.

The harder problem of bounding the computation on the correct subset has not

been discussed. A modification of the decoding procedure above, adapted from

a suggestion by Gallager [Ref (3), page 29] for binary symmetric channels,

yields a bound on the tote! nwaber of computations for any symmetric chan-

nel. However, mo such bound Jor zsvmmetric channels have been yet discovered.



3.4 Upper Bound to the Probability of Error for the Sequential Decoding
Scheme

Let us suppose we (conservatively) count as a decoding error the

sccurrence of either one of the following events.

1. The transmitted sequence u and the received sequence v are such

that they fail to meet the largest criterion nar” k probability
of this event, over the ensemble, is less than me -WaX

2. Any element u' of the incorrect subset M'' together with

the received v satisfies some k, &lt; ky , when the jth criterion
is used. max

An element of M'' picked at random, together with the

received ve has a probability of satisfying some k, equal to

J 1 jPr(D_(u , IK D_ 2 ky is used]

Since the probabilit: »f a union of events is upper bounded by

the sum of the probabi’ities of the individual events, the prob-

ability that any element ¢f M'' together with the received signal

v satisfies k, is legs than

mR 5° J.
2 &amp; FriDyfut, v) &lt; D_ : ky is used]

The two events stated above are not in general independent.

However, the probability of their union is upper bounded by the sum of their

probabilities. Thus the probability of error p, may be bounded by

-

5 mdR  — ~

_ me “BAX Le ee Pr(D (u’, v) =D : k. is used] (3-37)

It has been shown im Ref. (5) that for channels which are symms*—-

at their output, the probability 0f error is bounded by

“Ey aR) n
Pe &lt; me &gt; where Ey 4B) is the optimum exponent for the given

channel and the given imput space. (See Appendix A.) We now proceed to

evaluate Ineq. 3-37 for the general asymmetric memoryless channel. The



&amp;

event that k, is used is included in the event that u' together with v will

not satisfy the criterion ky 10 or

D
bo
a’, vw): D

Thus

Pr(D_(u’, v) &lt; D J sk, is used)

&lt; Pr(p J &gt;P (u,v) » D_° * 4 (3-38)

Inserting Ineq. 3-38 into Ineq. 3-37 yields

PF
K dmR 2

me Jmax4¢Pr(D_(u', v) &lt; D max (3-39)

Now, by Ineq. 3-4, D_; is chosen so &amp;8 to make

Pr
J

D_(u, v) » DF
=f

Also, by Ineq. 3-17

j wf §¢a)-8 ['(s)]
Pr(D_(u, v) &gt; D max, Le a

”
y

Jhere

X p_“mex'(8) = —

Thus, we let -k, = nf J ¢e) = Bees) and therefore

2

nl fs) - 8% (s)]
J (3-402)

vhere



A

J

Kiem
From Ineq. 3-19 we have

Pr iD _(u', v) &lt; p_ max, &lt; Shuda-eu tn) ‘

(3-40b)

(3-412)

where

D max
a

u(t) — (3-41Db)

Inserting Ineq. 3-40 and 3-41 into Ineq. 3-39 yields

*
LUCE NO )  m(dRHu(t)-tp'(t) )

(3-422)

where

u(t) = 4 (s) =p TEX

By Bq. 3-26 we have that Eq. 3-42Zb is sati-‘ied if we le:

by Bq. 3-26

m( J ¢s)-8 J Ce)
mle

4 m{dR+ F(s)-(s-1) { ' (8) \
J

(3-42D)

Thus

(3-43)

Making

Nis) - 8 '(s) = ar + J (2) - (5-1)§*(s)

Je ZEL

n( fears fread) nem)
Aq 2me 2 2me (3-448)



pp

where

wii 21 (s) = R (3-44b)

Loai

 Ee®) =&lt; (Be) - 8% (o) °

(3-44¢)

The rate that makes ER = 0 is the one that corresponds to 8 = 0

since {1 (8) - +1 cf = 0, By Eq. 3-4%b
s=0

1r= - fee)
g=0 s=(

Also, by Ea. 3-25a

Lh) - o ++0 | d 2 J reo p(y|x) la Sus dy

Thus

Es (®) &gt; 0; R &lt; RI (3-45a)

vnere

rR] =Li2 pO)s=() d /X, Fe: p(y|x)JA eo) dy y (3-45b)

Comparing Eq. 3-45 with Eq. A-57 of Appendix A yields that

EgqR) &gt; 0 for the same region of rates as Ey. aR). Thus, if the input
space X is semi-optimal, one can get an arbitrarily small probability of

error for rates below the channel capacity C.

The zero-rate exponent E_.(O is given by



»

E 0) =- J) +f (a) = - f(s) + (s - IY" (a) (3-46a)

where 8 is the solution of

Xi(s) = =

v’ (3-46b)

Thus

E, (0) &gt; min 2 1- 2 (8) + (28 - 1) % (a) (3-47)

Following Eqs. 3-27 through 3-36 and substituting Romp by E q(® we get

J) = 3 2 7. ¢(@

and for semi-optimum input

i
1 :

0) 2 5 BW)

Spaces

{
—_48

{ s=49
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3.5 New Successive Decoding Scheme for Memoryless Channels

In this section a new sequential decoding scheme for random convolu-

tional codes is described. The average number of computations does not grow

exponentially with n; for rates below some Romp’ the average number of comp-

utations is upper bounded by a quantity proportional to

(1 + R/R* )
comp &lt; mn?

The computational cut-off rate Romp of the new systematic decoding

scheme is equal to the lower bound on Romp for sequential decoding with

asymmetric channels (see Section 3.3).

However, in the case of sequential decoding, Romp is valid only for

the incorrect subset of code words: the existence of R onp for the correct

subset has not yet been proven for asymmetric channels. The successive

decoding scheme, which is different from other effective decoding schemes

such as sequential decoding and low-density parity-check codes [Ref. (9)]

yields a bound on the total average number of computations.

When this decoding scheme is averaged over a suitably defined

ensemble of code words it has an average probability of error with an upper

bound whose logarithm is -nE_(R). ER) &gt; 0 for rates below channel capac-
[ty 1f a semi-optimum input space is used.

A convolutional tree code is shown in Figure 7 and is discursed in

Section 2.5.

Let us now congfder the decoding procedure that consists of the fol-

lowing successive operations. K

Step 1: Consider the set of b : paths of ky information digits that

diverge from the first node (branch point). Each path consists, therefore,
of k,a input symbols. The a posteriori probability of each one of the b 1

paths, given the corresponding segment of v, is computed. The first branch

of the path of length k,a which, given v, yields the largest a posteriori
probability is tentatively chosen to represent the corresponding first trans-

mitted digit (see Figure 8). K
Let us next consider the set of b 1 paths of length ka symbols that

diverges from the tentative decision of the previous step. The a posteriori



probability of each one of these b 1 paths, given the corresponding segment

of the sequence v, is computed. The first branch of the link of length k,a

which, given v, yields the largest a posteriori probability is tentatively
chosen to represent the second transmitted digit.

This procedure is continued until i = : information digits have been

tentatively detected.

The distance D(uy, Vv) = 1a TAT then computed for the com-

plete word u, of length m input symbols thus obtained.

If D(u,, v) is smaller than some preset threshold Dj» a firm deci-
sion is made that the first digit of u, represents the first encoded informa-

tion digit.

1f however, D(u,, v) &gt; Dys the computation procedure is to proceed
to Step 2.

Step 2: The decoding procedure of Step 2 is identical with that of

Step 1, with the exception that the length ky (information digits for ka
channel symbols) is replaced by

ce =k, + A: 4 a poef~ive integer (3-5y,

Let u, be the detected word of Step 2. If D(u,, Vv) = JA pve &lt; D,
a final decision is made, and the detection of the first

information digit is completed. If D(u,, v) Z D, no termination occurs and
the computation procedure is to then go to Step 3, and so on.

In general, for the sth step we have

K = k gaat Ds Ae poritive {i nteger { J 51,

and the detected word is Oh
Following the detection of the first information digit, the whole

procedure is repeated for the next information digit and so forth.
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FIGURE 8 SUCCESSIVE DECODING
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3.6 The Average Number of Computations per Information Digit for the
Successive Decoding Scheme

The number of computations that are involved in step j is bounded*

k
N, &amp; mb 3 (,-52)

Let C, be the condition that no termination occurs at step j. Step j will be

used only if there are no terminations on all the j-1 previous steps. Thus

the probability of step j being used is

P(j) = Pr(C,, C,, C,s oes Cog

The average number of computation is given by

N=NP(1) + N.P(2) + ... + N P(j) +

&lt;2&amp; NPC)

 &gt;» &amp; 3 + N P5, Pax)

(3-54a)

where

P(1l) = (3-54Db)

P(j) may be bounded by

3 (4) = Pr(C;, Cy, Cg ouvs C4) &lt; Pr(C,)) (3-553;

inserting Ineq. 3-55 and Eq. 3-52 into Eq. 3-54 yields

N
°° ¥ =k

CN, + 2 NoPr(c, ) mb +m bd ee(c, )
jm2 3 } 1=1 J

(3-56)

Fge count as a computation the generation of one branch of a random tree
code at the receiver. There are b J paths ( that consist of k, branches),
which have to be sequentially computed for each one of the { ] information

digits (i = 2 ). Thus
k k k

ibd ¢ jabdempJ



J

Now let uy be the code word detected at step j, and let u be the

transmitted code word. Then

Pr(C)= Pr(D(u,, v) &gt; D,

 RK Br Ju. v) &gt; Dys u, = u] + PrD(u;, v) &gt; D, ; u, ¥ ul

Pr ‘Du, v) 2D :u =u] + Pr[D(u. v)“2 D, , é¢ ul

Pr (D(u, v) »D,] + Prlu, # ul (3- 57)

We are free to choose the threshold D., so as to satisfy

“28g
D(u, v) ~&gt; D,l &lt; e

UI
Pr (3-58)

Now, let rv be the event that the ££ information digit of uy is

not the same as the corresponding digit of the transmitted sequence u. Then

1
Pr{u, # u) = Pr[ e ]U {o4 { o- 59)

The probability of &amp; union of events is upper bounded by the sum of

the probabilities of the individual events. Thus

Pr (u, # u) Pr(e,_ (3-50
am =

r—1

There are 2d bd paths of length ky information digits that diverge

from the (r-1) 0 node of u, and which do not include the rn information

digit of u. Over the ensemble of random codes these bl b J are statisti-

cally independent of the corresponding segment of the transmitted sequence

u (see Section 2.5). The event &amp;y occurs whenever the a posteriori prob-
ability of one of these 2k b J paths yields, given v, an a posteriori prob-

ability which is larger than that of the corresponding segment of u. Thus,



Pr(e,,) is identical with the probability of error for randomly constructed

block codes of length 5.2 channel input symbols. (All input symbols are mem-
bers of the d-dimensional input space Xp which consists of £ vectors).

Bounds to the probability of error for such block codes are given in

Appendix A. Thus, by Appendix A

, 2 1, 4®) k.,adPr(e _;
(3-61a)

shere

R==
n

m JL
Jovda b fopadal 1s

n ad

- $ R &lt;&lt;RE J, a® = E J. 4(0 R 3 crit

E R E = : &gt;/, 4¢ ) &gt; 4, 4(0) R R g- R.rit

(3-61b)

(3-61c)

(3-614)

Inserting Ineq. 3-61 into Eq. 3-59 yields

{ (R) k.ad
Pr(u. ¥ u) &lt; 2me 4, 4 (3-62)

Inserting Ineqs. 3-58 and 3-(2 into Ineq. 3-57 yields

P+ rr
0

) PE. al® + 2me&lt; e
E /. aR) k,ad

(3-63)

Now, by Ineq. 3-61 we have

1
2 Bg. 4(9 « RY 4B) : RS 5B, 40 (3-64)

Al30

n=md = iad &gt; k.,ad (3-65)
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Inserting Ineqs. 3-63 and 3-64 into Ineq. 3-63 yields

Pr CC)  KK 2me
- E /. 4(® k.ad

R
7 PR |

ro) (3-66)

Inserting Ineq. 3-66 into Ineq. 3-56 yields

IN K k, -=E ©)K,.ad
N&lt;mbl+owm?22 ple 2 £4 i-1 RSE, 19)

J=2 (3-67)

[ngserting Ineq. 3-61b into Ineq. 3-67 yields

&gt;

R S7Fp, ¢@ (3-68)

By Eq. 3-51 we have

1
_ Rk.ad 2 ARad [R - =~ E (0)] [¥k,+j&amp;)ad
Ne2 ome! +me 2e 2 £4

j=l

A. » £9, 40 (3-569)

Let R* be defined as
comp

Reomp - 2 Ey40 (3-70)

Then, for all rates below RY ap’ R - : Ey 4(0) &lt; 0, and therefore
?

%*

f Rk,ad e [(R B comp) k,2d 2 = . 12!m e tm Lem mm sR&lt;RY =2E (0)
R RY pp] 02d comp 2 /,d

-

[ 1 J
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The bound on the average number of computations given by Ineq. 3-71 is

minimized if we let¥

Jom?AD = rr RE2RRcom
ad R/R - 1

comp

&lt;. “A + J.

(3-722)

LS- 125)

Eq. 3-72 can be satisfied only if both Eq. 3-72a and Eq. 3-/2b

yield positive integers.

Inserting Eqs. 3-72 yields

B

1-B 148 }
rr B n
NL 73 2

x ~

A comp ~ 2 Ey, a® (3-73a)

where

= *
B RRC oo &lt; 1 (3-73b)

3.7 The Average Probability of Error of the Successive Decoding Scheme

Let u be the transmitted sequence of length n samples. Let u' be a

member of the incorrect subset M'’. (The set M'' consists of M'' members.)

As shown in Section 2.5, u’' is statistically independent of u. The prob-

ability of error is then bounded by

 Pp Pr {D(u, v) &gt; D,] + M" 'Pr[D(u’', v) &lt; D,

PriD(u, v) = DI +  Rp (u’, v) &lt; Dy! (3-74)

Now

D(u, v) = {apv)_
p(v]|u)

where
m

p{v) -T1 p(y)



J

-»-- €}

m

p(viu) =] p(y,|x)
§ a=

Thus, by the use of Chernoff Bounds (Appendix A)

Pr J w, v) 5 D1 lB) = alCe (3-752)

whera

bes) = fa S | P(x) p(y x) "%p(y)%dy ;
X

? -,

A (8) =D,

oh (3-75b)

(3-75c)

Also

Pr[D(u’, v) KL D,] &lt; Blue) -t u'(t)]

1(t) = {a «— [ P(x) p(y [0Fp(y) Tay
 4

uw {(C) =D

(3-76a)

{(3-76b)

{ Oo = 16¢)

If we let t = g - 1, we have by Eq. 3-26

Peo) = pe) 5 (ed = win

Inserting Ineqs. 3-75, 3-76 and Eq. 3-26 into Ineq. 3-74 yields

a  ml ee) - ef °(a)1, mia + V(s) - (5-1)F(o)]

where 4° (2) = D,

(3-77a)

(3-770)



Now, comparing Ineq. 3-75 with Ineq. 3-58 yields

(+s) =3d8, © (3-78)

On the other hand we have by Ineqs. 3-27 through 3-35

Ey 1(s) + (28 = 1) §°(s) &gt; dE&gt; 4&amp;5 q© (3-79)

Thus, inserting Ineq. 3-79 into Ineq. 3-79 yields

Po) + 5-1F3)HgaE, (0)

[Inserting Ineqs. 3-78 and 3-80 into Ineq. 3-77 vields

*
nk, 40 = 1 { ip 400) -R]

I

. SE (0) -R
&lt; 2e 2°4, 4 2 Js

“R (Romp - Eg

+ RS R coms

If the input space is semi-optimal we have

?

sy Chapter 2 that

5

- 3 E(0) - R]n
P&lt; te * = 2 E(0)

R &lt; R comp 2

(3-80)

(3-81)

(3-82)

If, instead of setting D, as we did in Ineq. 3-58, we get it so as

to make f(s) - 8 Y'(e) = &amp;&amp; + f(s) - (s-1)% '(s), where ¥'(s) =D, we

have by Ineq. 3-77 that

&gt; - ye "Es

where by Inegs. 3-43 through 3-45 we have (for semi-optimal input spaces)

1
E_(0) 2 5 E(0)

~~ 0 2

) ® _



However, following Eq. 3-38 to 3-70, it can be shown that the new setting of

D, yields RY omp &gt; FE 2. 4(0).
The fact that the successive decoding scheme ylelds a positive

exponent for rates above RY mp does not imply that this scheme should be

used for such rates, since the number of computations for R pI RY mp grows

exponentially with m,



CHAPTER IV

QUANTIZATION AT THE RECEIVER

4.1 Introduction

The purpose of introducing quantization at the receiver is to

avoid the utilization of analogue devices. Due to the large number of compu-

ting operations which are carried out at the receiver, and the large flow of

information to and from the memory, analogue devices may turn out to be more

complicated and expensive than digital devices.

The discussion is limited to the Gaussian channel and to rates below

Rorit’ The effect of quantization om the zero-rate exponent of the probabil-

ity of error is discussed in the three following cases:

Case I: (See Figure 9.) The quantizer is connected to the

output terminals of the channel.

Case II: (See Figure 9.) The logarithm of the a posteriori

probability per input letter (i.e. P(y[x,) si=1, ..., 0)
is computed and then quantized.

Case III: (See Figure 9.) The logarithm of the a posteriori

probability per p input letters (i.e., pty" x") 5 j=l, ces IF
is computed and then quantized. (x, is the vector sum of p
successive input-letters of one of the M code words; yP is

the vector sum of the p received outputs.

It was shown in Section 2.3 that whenever semi-optimum input spaces

are used with white Gaussian channels, Ey, 4¢®) is a function of 2, the

maximum signal-to-noise ratio.

In this chapter, the effect of quantization is expressed in terms of

"quantization loss" L im the signal-to-noise ratio of the unquantized chan-

nel.

Let EY) 49 be the zero-rat=2 exvonent of the quantized channel.
9

Then, by Eq. A=-70
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Therefore specifying an acceptable Ey 4(®) for any rate R SRepier

corresponds to the specification of a proper loss factor Ly

Let M be the number of quantization levels that are to be stored

In the memory of the "Decision Computer" per one transmitted symbol.

Assuming that one of the two decoding schemes discussed in Chap-

ter [IIis used, it is then convenient to define as the total decoding

complexity measure” (including the quantizer).

M = My Mo where My ie given by 2-145 (4 1;

In Chapter 2 we have discussed the ways of minimizing M with respect to

J and 4d.

In this chapter we shall show that if semi-optimal input spaces are

used with a white Gaussian channel, N of the quantization scheme of
Case III (Figure 9) is always larger than that of Case II and therefore the

quantization scheme of Case IIl should not be used.

Also, whenever E(0) #1 fo a2 &gt;&gt; 1, M, of the quantization
scheme of Case I (Figure 9) is smaller than that of Case II and therefore

the quantization scheme of Case I should be used in such cases. On the

other hand, whenever E(0) &lt;&lt; 1 (or al &lt;L 1), M of Case II is
smaller than that of Case I.

Furthermore, it will be shown that M, like My is minimized if we

let d = 25, ; E(0) « 1.

We have assumed that the constraint length 0, &lt;8 well as the rcie R and
the signal power, are fixed.
The probability of error is them bounded by

P £ 2e E(R)m

Now, given the acceptable probability ¢f error P, £ Pe one can find out
&amp;

what the acceptable exponent EY) 4B) is, and thus, what the acceptable
quantization loss, Ly is. We ? shall therefore try to minimize M with
respect to Z and d for a fixed n and a given quantization loss, L_.
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The results mentioned above are derived for the quantizer shown in

Figure 10a which is equivalent to that of Figure 10b.

The interval Q (Figure 10b) is assumed to be large enough so that

the limiter effect can be neglected as far as the effect on the exponent of

the probability of error is concerned. ;

Thus, the quantizer of Figure 10b can be replaced by the one shown

in Figure 10c. However, the actual number of quantization levels is not

infinite as in Figure 10c, but rather is equal to k = Q/q as in Figure 10b.

4,2 The Quantization Scheme of Case I (Figure 9)

The quantized zero-rate exponent Ey 40) of Case I can be lower

bounded by the zero-rate exponent of the following detection scheme:

The distance

q Z
q -2y x + XxX

1*(x, y) = 2 G2 ( ?

is computed for each letter xg of the tested code word.

Here yd is the quantized vector of the channel output,

The

he | 7a qu ) ° o !

distance

pi {u, v) - d
{=]

(4- 1)

is then computed.

The one code word that yields the smallest distance is chosen to

represent the transmitted word. This detection procedure is optimal for the

unquantized Gaussian variable y. However, yd is not a Gaussian random varia-

ble and therefore ax, y) is not necessarily the best distance.

Thus, the above detection scheme will yield an exponent 2" (0), which

will be a lower bound on EY 40)
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2 a

(4-4

The probability of error is bounded by

D (M - 1) Pe[p(vI, u') &lt; Dvd, uj}

P N IM Pr [D(vY, u) - pv, u") / J)

where u corresponds to the transm” “ted word and u' corresponds to some

other code word.

pu, v) as well as pu

variables:

v) are sums of n independent random

D
{ml

y

Diu’, v) «
3

Ay x v

(4-5a)

(4-5b)

(4-62)

(4-6Db)

where x, is the 1&amp;8 transmitted letter and x, is the SB letter of some

other code word.

By the use of the

shown that

Chernoff

pd M=-1)Taw (2In _=n|E”

pounds

wl J)

{Appendix

R |

A. Seccion 3) It can be

shere, by Eq. A=65

Fs
1 J ©J = p¥(s) = 3 a

v4 7

q Pa
P(x) P(x") py) ge2ld (x,y)=-d*(x",y)]

(4=-T7a)

{&amp;s- 5)



 yg 4

Now, let § = 2, Then, by Eqs. 2-107a and 4-7

xE 0)=-%JTad

— |x12- xl 2 yx! -x)
3 P(x')P(x)e 4G* 2, 22 e 2G&gt;

r (4-8a)

where

Sv = 735 +008, + AE, (4-8D)

Thus, by Eq. 4-8, 4-4 and 2-107a

1
402-3

”

40) £ - 3

_ 1x12- 1x2 y3(x'-x)
&gt; P(x)P(x’) e 4 G* &gt;. p(y) x) e 2G (4-9a)J.Zo

x,

1x12- 1x" 2 y{(x'-x)
&lt;7 YT 2 2Li P(x)P(x") e 4G Sots e 26 dy = Ee 4¢9
XX, ’

AL:

(4-9b)

The complete information about the quantization effects is therefore

carried by the term:

y? 7x x;

g(x, x") = . iEx’) i p(yd|x) e * G* (4-10a)

when compared with the unquantized term:

2(x, x') = / Eap(y|x) e ¢ (4-10b)

The quantizer 18 &amp; memoryless device; therefore, since the channel is

memoryless as well, we have by Eg. 2-6
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GUD =p, [£1 0,05) oe (D0

Thus

. d . TX Fi £0
g (x, x') “17 p(%, 154) e G | (46-11)

I'wo important signal-to-noise ratio conditions will be discussed

f nes
Condition 1: = =A. &lt; i

and at the some tine 1 £2G
Condition 2: ——oX m A &gt;
Condition 2: —o= = An,

(4-12)

(4 1 3;

° 1 -a. Condition 1: A £1 (Ba. 4-12)
In this case we have that

(¢,-3',) NTT (4-14)

It is shown in Appendix C that whenever the quantizer of Figure 10c is used,

and the input to the quentizer is a Gaussian random variable with a probability

density such as in Eq. 2-79, we have that

v 1,%%,-7 q p(7,° foe 2 e =

: (1,'- $)a
7, g 7 , I "i or ec 26 ons

2 G | —e ect ffoe 2 OT ay, Cf. fa
? gr



 Bu

Inserting Eq. 4-15 into Eq. 4-11 yields:

4
3X, X ) =|

y(x'-x) ; $$)
2G32 NEpy|x) e dy] Sr apeEpesI (§,'-§1) 4a

4 5°

(4-16)

Thus by Eqs. 4-16 and 4-10a

2 (X

(§,'- {Da
 TEE» Xr = ¥ ) ’ 0

I WE EAT

4 (2°

(4-17)

Now

&lt;2
shx ~~ 6x Le (4-183)

Also, for x € 1

“

shx »~¥ 6

Thus, by Eqs. 4-18a and 4-14

; ; 2 2(§-%0a  (F- 6k
sh iT ce. %G7

(§;'-%Pa ©
Lot

(4-18D)

(4-18c)

Inserting Eq. 4-18c into Eq. 4-17 yields

 © \2

, Cf, FD
boltTELx, wm Cex, Te %C

fm]

37
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; 2 2| &gt; ¢ 1# © £) ~q
lx’, x) gx’, x) et 9G" (4-19)

Therefore, by Eq. 2-4

2, 2
gq Ix-x'l

y
glx, x) £ glx, x) e 25°C (4-20)

Replacing Eq. 4-10b by Eq. 4-20 and inecerting Eq. 4-20 into Eq. 4-9a yields:

BR J. at &gt; - yg
’

T ry

-

op!

P

|x 12- lx°) 2 qx - x
(x) p(x’) e 4G? gx, x°') e 96 G4

(L&amp; 2

[nserting Eq. 4-10b into Bg. 4-2] vields:

Eg ©iJ

ates? tegen2 yx’ =x)
— 96 2 a

J 2 P(x) P(x’) e Wh. 4G ply|x) e ge dy (6-32
£5

{

Inserting Eq. 2-79 into Ea o Geog? yielde

J dy LJd

2 X-x' 2 _Jdx=x) 2
aH 2P(x) P(+"Y e 96 ® 86E” Th (4-23)

y
7

e%)  © Jid / k
rex? = g¥r128Y

P(x’) P(x) &amp; 82 (4224)
Be
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Now by Eq. 2-110a we have

-

2
Co dx-x'|

/ 4(®) = - 3 las &gt; P(x’) P(x) e 8G (4-25)

Comparing Eq. 4-23 with Eq. 4-25 yields that whenever the channel is

in Condition 1 (eq. 4-12), the zero-rate exponent Ely 4¢0) of the quantized

channel is lower-bounded by the zero-rate exponent of an unquantized Gaussian

channel with an average ncise power of:

5ta ch
q 2

J:
12(32

for ‘| &lt; 26 (4-263)

This result does not depend on the kind of input space which is used

nor on its dimensionality, d. The effective signal-to-noise ratio of the

quantized channel is given by

2 2 ,

Ag = A = aux U-mee)
«Gy 6

Frhus:

Z
_ a2 oq

A ax (1 12 @3*&gt; ) (4-260)

Therefore, for a given auant’~ tion loss in the signal-to-noise ratio, let

" = 2 2 3

where Lys the "quantization loss", i8 a constant that is
acceptable loss in signal-to-noise ratio, as shown below:

4
A
9 2=1-1

2 q
A
max

(4-27)

determined by the

{4-28,



A

The number of quantization levels is, as shown in Figure 10b, equal

X 4 (4-27

x

It is quite clear from the nature of the Gaussian probability density that

if we let

2- [fl +50 [ 4 = 30)

where B is a constant, then the effect of the limiter on E / 40) (shown in
3

Figure 10b) is becoming negligible if B is large enough (in the order of

1

Thus, inserting Eq. 4-30 into Ea. 4-29 yields

2% + 2BG
12 LaD

Now, if ge = A

L +
2B

va

(4-31)

(4-32)

The number of quantization levels for a given effective loss in signal-to-

noise ratio is therefore independent of A , for A &lt;&lt; 1. In the
max max

following section, the effective loss in signal-to-noise ratio for higher

values of A,and the corresponding number of cuantization levels k,are dis-

cussed.

b. Condition 2: A x = 1 (Eq. 4-13)ee —————aXS

In this condition we have that A 7 1 and therefore

2»
/ 1

fa)

2 G ;

for some 2 and Zo, Now, if q &lt; 2055 Bgas. 4-18c through 4-28 are valid.
*The following statement has been proved by the author.
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The number of quantization levels is given by:

| 2% + 28S
ETL &amp;

2A + 2B
Kk I raem—

J127L

Thus, for A ax &gt;&gt;

24
K = Dax

Ji2'L 2 (2

(4-33a)

(4-33b)

In this case, again, k does does not depend on the kind of input space which

is used. There are many cases, however, where the assumption that q &lt; 2 (3

is unrealistic, since much larger quantization grain q can be used and still

yield the acceptable loss Lt.
The effects of quantization in these cases depend heavily on the

kind of input set which is used. This fact will be demonstrated by the fol-

lowing typical input sets.

1. The input set cons”

vectors

ee

oo ( &amp; Fi/y-]

where

1
P(x.) = P(x,) ® 2 (4-34b)

As shown in Section 2.3, this input set is not optimal for A ax” 1.

A semi-optimal input space for Ax 1 is, as shown in Section 2.3,

the following one:

2. The input set consists of J equiprobable one-dimensional vec-

tors. The distance between two adjacent vectors is oe, as shown in

Figure 4,



When the input set consists of two oppositely-directed vectors, we

have by Eq. 2-111

1 1 i
Ey. a@ - 3 n [5 + Fe

A a
max

2
(2-111)

Also, by Eqs. 4-9a, 4-10a and 4-11

Lx 2- Ix] 2

100) &gt; - A £5 P(x) B(x') g(x, x) e 2G3'=» x!
4

N
f (4-35a)

where, in this case

HR d
six, x) = [2 pier e 2 1

"4
since by Eq. 4-34, zy = 5s - C
l=1, ,..,dand j=1, ....

Thus, by Eq. 4-35

g(x, x’) =

LX ox d
2, ‘X

LX) = 3[ 2 po}va r &gt;)e

-

i
2
3

¥

for all

(4-35b)

(4-36a)

(4~-3€b)

Now for x' ¢ x,

'- 2

Iz ol [27 &gt;1, since A =&gt; 1
[t is shown in Appendix C that in such a case

 EE Ent lacfr-0)
/ J 4



Thus, inserting Eq. 4-37 into Eq. 4-36 yields

_ (f:-$yn lq( 7 '- )|
size) e 2 GG? 1. Ls d2

ol x xX J

y (x =x) lac £'-%))4
3(x, x") &lt; J vow e 204 a * (4-38)

Thus, by Eqs. 4-38 and 4-10b we have

la¢¥-2)1d
g(x. x') &lt; glx. x") e 4

Thus

g(x, x) = g(x,

g ( ) 9 “) &amp;

(4-39a)

(4-39b)

Thus, inserting Eqs. 4-39 and 4-10b into Eq. 4-9a yields, together

with Eq. 4-34

_A%d gad
4 1 1 1 2 20E, 40) 2 3 n(5+5e e (4-40,

The zero-rate exponent of the unquantized channel is given by Eq. 2-111

Let

= A“ S_
= [a-4])

Inserting Eq. 4-41 into Eq. 4-40 yields



hg

J
2

q J 1 1.4E, 4(® 2 L faces (4-42)

Thus, comparing Eq. 4-42 with Eq. 2-111 yields that the zero-rate

exponent ES, PY of the quantized channel may be lower bounded by the zero-
rate exponent of the unquantized channel (with the same input set) if the

original signal-to-noise ratio a? is replaced by AZ, which is given by
Eq. 4-41.

Let

“Lf ox "LF Fan” (4-43)

where L, is the "quantization loss" factor determined by the acceptable loss
in the effective signal-to-noise ratio as shown below

4° § 1gh)+a
A=

a (4-44 J

eh

Inserting Eqs. 4-43 and 4-30 into Eq. 4-29 yields

£
" s28d 24° BJA

mb
a

Thus, for A

XK =| ~
« £
i

.

~

 ~~

(4-45)

The number of quantization levels, for a given quantization loss in

signal-to-noise ratio, is therefore independent of A ox for A ox &gt;&gt; 1.

Comparing Eq. 4-45 with Bq. 4-33b yields that for reasonably small Ls the
number of quantization levels needed for a given loss in signal-to-noise

ati )ratio is higher for A ax &gt;&gt;1 than it is for A x
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The binary input set does not yield the optimum zero-rate exponent

since more than two letters are needed for Ax = 1. It was shown in

Section 2-3 that an input-set that consists of ¥ one-dimensional vectors,

yields a zero-rate exponent which is very close to the optimum one if the

distance between two adjacent vectors is:

2 §
J

A
ma

(/FE

The zero-rate exponent of this input set is given by Eq. 2-115

GA

[50| 1 -1 8

&lt;p. 1@ = An (Fez e

16A“
max

8 4%

Now since Bmax 1 , we get from Eq. 2-116

4h”
14 - max

tg © - ha teatle 4

In other words, only adjacent vectors with a distance |g - € = 203
are considered.

For all such v- ~"~g we have

12. - ¢| = 1
2(¥ (4-46)

Following Eqs. 4-14 through 4-31 yi-~lds that the number of quantization

levels is

25, + 50
12.

2A + 2B
Kk = max

112 L (4-47a)
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Thus

« 2 Zax : A To

fr, max
(4-470)

The number of quantization levels in this case is therefore increcsing with

the signal-to-noise ratio.

Summary

The zero-rate exponent EY 49) of the quantized channel of Case I
(Figure 9) may be lower bounded by the zero-rate exponent of the unquantized

channel with the same input space if the signal-to-noise ratio, a? is

replaced by al, where

A

Hd. m1 -1

The quantization loss L* is a function of the number of quantization levels,

k. The number of quantization levels for a given loss 1 is constant for all

A &lt;&lt;1, for all input sets. However, the number of quantization levels does

depend on the input space whenever Alay 1. Two typical input sets were

introduced. The first input set consisted of two letters only, while the

second input set was large enough to yield an Eg 40) which is close to the

optimum exponent E(0).

It has been shown for ©... % input spaces discussed in this section

that the number of quantization levels for a given loss ky, is higher for

A ox &lt;&lt; 1 than it is for A ax &gt; 1. In the case of the semi-optimal input

space shown in Figure 4, the number of quantization levels is increasing

linearly with A__ (for A. &gt;&gt; 1). The results are summarized in

Table 3.

The quantization scheme of Case II (Figure 9) will now be discussed,



Input
Space

All

Binary

Optimal

Signal-to-noise Ratio

me

No. of Quantization
Levels

2B

L_J12

2
L

7

¢

2A

L 17 for q&lt; 233

2A
max

L {12

Quantization
Grain

q={121,3

q = 2Lo, $max

G 12 LG

g = {12 L_¢

TABLE 3

QUANTIZATION SCHEME OF CASE I -- RESULTS
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4.3 The Quantization Scheme of Case II (Figure 9)

In this case the logarithmofthea posteriori probability per

input letter is computed and then quantized. The a posteriori probability

per input letter is by Eq. 2-79*

X) =~ —477 4 ©Ad 203/24

} roxy +x 2

2 &amp;% (4-48)

Thus

d d

Do ogy = 2x” 32, J 222753 TL n eo? (4-49)

The only part of Eq. 4-49 that carrics information about x is

2

d(x, y) - uC (4-50)

Thus, the computation of Ja p(y| x) may be replaced by the somewhat simpler

computation of d(x, y) with no increase in the probability of error. The

decoding scheme for the unquantized channel is discussed in Appendix A,

Section A.2, with d(x, y) of Bq. 4-50 replacing d(x, y) of Eq. A-18. The

corresponding probability of error is bounded by Section A-3

- (B 4, 4¢0? = Rin
R -_— “arit (4-518)

where E 7 4(® is given by

7, 1(0) -- 2 Lo ! 2 43 P(x) P(x') fori? o s 9):46:1493)E

Eg 4 = - 2 lz2 Fix) P(x') g(x, x')
’ »

(4-523)

xym= Ma +ja Fk 2aMLF od ah
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where

1
5 [d(x, y) = d(x’ ’ y) ]

3(x', x) = [oes e? d -J (4-520)

Now, comparing Eqs. 4-52 and 4-50 with Eq. 4-9b yields

g(x' LSE2

(4-52¢)

Let the input to the quantizer be d(x, y) given by Eq. 4-50 and let the output

be d9¢x, 9. The zero-rate exponent El 49) of the quantized channel in
Case II, can be lower bounded by the rErorzale exponent E” (0) of the following

detection scheme: The distance d, (xy, Yq)» given by Eq. 4-50 is computed for
each letter Xx, of the tested code-word and then quantized to yield a, 9x, y)

the quantized version of d, (x, y). The distance

m

pd(u, Vv) = &gt; dN.
fm]

(4-53)

is then computed. The one code word that yields the smallest distance

p(n, v) is then chosen to represent the transmitted code word.

Thus

x
| § ©) &lt; edJ, 4(® &lt; E 7 SwA» d

(4-54)

following Eqs. A-65 and A-70 of Appendix A, we have

9/1 a9
P(x) P(x") [ror1 ld (x', y)-d%(x, Yl4y :

Y t &lt;0 (4-55a)

As shown by Eq. 4-50 the quantity = &lt;/ 2G“ is added to - 2yx/2G4 at the
input to the quantizer rather than at its output. If cachix fs is equal to
one of the k quantization levels exactly, one can add the quantity x} at
the output to the quantizer, znd tha bounds will still be the same %s those
derived in the text.



-

| §

and if we let t = - =

BA ay =o©) 3 /. 22 200 p(x") g¥(x'; x) (4-55Db)

7

where

I 2 1a%x, y) - dix’,« [ois &lt;2 15 » y) = d(x’; y)] (4-55¢c)

Now, by Eq. 4-50

2

d(x,y) -SYra (4-50)

where y is a d-dimensional Gaussian vector which, for a given x, consists of

d independent Gaussian variables, each of which has a mean power of ct.

Thus, d(x, y) is a Gaussian variable with an average variance of

Gace, y) - J (xs 1 reer 0) 4G? x12 o axl (4-56)
(d(x, ¥))° == Zi C

Now, let

d(x, vy) - d(x, vy)

Gatx, y) =

ax,vy)ax.y) = 2
Cate’, vy»  E-

(4-57)

Thus, by Eqs. 4-56 and 4-57, z and z' are normalized random Gaussian

variables with a unit variance.

Inserting Eq. 4-57 into Eq. 4-55¢ yields
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1 4

y Lpaixhe xl
gl(x, x') = J pig xnt e? G G dzdz'

 Zz z!
(4-58;

since the product space 2 "3 v 1 3 .dentical with the space vy for given x and

x'. Now

(
z Ix!
= 19 = dx, y) = a Ly x ry

where n_ is the "quantization noise” This

{
n [x1

1X a2 4 (22) :Fl 3 x

{ xl va. dxl ay Ixl —qa= @Y Flat y]
2

(4-59a)

where

n
ey pa dy

5 23
(4-59Db)

Thus, z9 is equivalent to the output of a quantizer with z as an input and

with a quantization grain that ies equal to

ad i) (4-60)

where q is the quantization graim of the quantizer of d(x, y). Inserting

Eq. 4-59 into Eq. 4-58 yields



,

 -— 3

1 Ix] q x! _.q5 . z°® - z'"]
g9(x, x’) = INES 29x, x') 2 G dz%dz' 4 (4-61)

71974

Both z and z' are Gaussian random variables, governed by the joint prob-

ability density:

18

‘ _ _ -(z-3)* + 2 8(2-3) (2'-21)-(2"'-2")?
a(z, z'| x, w) == 7; expl &gt;

2x(l- © ) 2(1-58%)

where Ew (z -ZF) (2'- 2 (4-62)

It is shown in Appendix C that for such a joint probability density

in Eq. 4-62, we have that

When |@|=1 (x = ax’  MN

ta ote!Sx) - 1x nq,
LG
(ix) =x)

by lz
3x, x") = [g{x, x')] for gq _ (4-63)

Where, by Eq. 4-58

1x) 1x’ islaz-% 2'] =[d(x,y)=d(x’,y
(x, x') = 1 [ve 2’ x, x'} #2 © Cizdzt = p(y|x) e° a

7

[ - WL A J

Also, it is assumed that

~  9.9
Ix] x! 1
{3 G

{ &amp;
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where q is the quantization grein of the quantizer of d(x, y), and q' is the

quantization grain of the quantizer of d(x’, y). In other words, it is

assumed that both d(x, y) and d(x’, y) have the same normalized* quantiza-

tion grain.

2. When |Q|&lt;1

sh xlaq, sh |x°| q',
4 4 2 2

xa, O° x" q ) for q, &lt; 2(1 - §7)

4G 40

g(x, x') = [gx, x')] {

(4~6H

When $1 = 1 and q, &gt;&gt; 2 we have that

(x= x"),
x, x') &lt;x, x) e G for a  Ja (4-67)

when
l

191 &lt; 1 and q, &gt; 2(1 - 7) we have that

[kla, +x'lq,
g(x, x') &lt; g(x’, x) e 4 G (4-68)

Studying Eqs. 4-66 through 4-68 yields that the effects of quantiza-

tions depend on the kind of imput space which is used. The effect of quan-

tization for three important input spaces will be discussed.

a. The Binary Input Space

The binary input space consists of two oppositely directed vectors

(4-343)

where

P(x,) = P(x,) -2 [ 4 = 3 hy

This corresponds to = -.

freee .— — —— o_o

The quantization grain of each of one of theyquantizers of Case II
(Figure 9) is assumed to be proportional to the variance of the Gaussian

variable d, (x, y) fed into that quantizer. The { quantizers are therefore
not identical.
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The first signal-to-noise condition to be considered is

C 1

By Ea. 4-63 we have

g «x, x") = [g(x, x')]

Keck i

g(x, x') - g(x, x") mw 1

sh |x| q_
23

x] q,
205

(4-69)

(4-70a)

(4-70Db)

Now, inserting Eqs. 4-72 and 4-55c into Eq. 4-70 yields

‘ shix|q, |2 foe

"20 WE1 e Win4 [5+3 i
1 n [0)Zz -3d4.

E (4-71)

[Inserting Eq. 4-65 into Eq. 4-71 yields

x“ sh
Lf Lo. “Tg) &gt; Fn these 267

3

R

inserting Eq. 4-18a into Eq. 4-72 yields

7 (0) 2 . 2Zz “a fot 5

2 2
CA 4

. 26% 24F |

q (4-72)

(4-73)

l=t

Ix)
2 L —

r= 3 q 5 {4 14)
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Inserting Eq. 4-74 into Eq. 4-73 yields

a8

4 - 1 4 &lt;2BY, a® &gt; - 4 Ls [3

compared with Eg. 2-111

4
Ad 2
55 aL

0 ©) = - =y L fn (Ls - 48
2 72 ¢ |5

(4-75)

(2-111)

Thus, the zero-rate exponent ES) 4(® of the quantized channel is
lower bounded by the zero-rate exponent of an unquantized channel with an

effective signal-to-noise ratio Al given by at =- AZa - L&gt;) or
alt a2 =] - L’ where L, is the "quantization loss" factor.

Now the mean value of the Gaussian variable d(x, y) is,in general,

different from zero. Thus, Eq. 4-30,which was derived for the Gaussian vari-

able y which has a zero mean, is replaced by
— {

= AGT, Ym A, yi +28 Ee, Y) - @y) 2 (ees

Now

 ry = D+wv (4-41

where © is a Gaussian vector that consists of d independent Gaussian

variables with zero mean and a variance G. Thus, by Bq. 4-50

FTES) - Ix 2 + 2 xx] _ 31x12
3 J)pax 2 G&amp; 205%

d(x’ ¥) - 1x12 - 2(x)Ix] _ Mk
’ min 9 a? 2G

Inserting Eqs. 4-78 and 4-54 inte Eq. 4-76 vields

22 x!= 2x gp 18D

(4-78a)

(4-78)b)

(4-79)
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Inserting Eqs. 4-79 and 4-74 into Eq. 4-29 yields

. X

2 3 + 2B
19]{12'Lg

Thus for Ald=x

« = —2B__
 12" Lo

(4-80)

(4-81)

Equation 4-75 is valid also in cases where|aZd =iz &gt; 1 as long as

1 02 (or: q &lt; 2 J. Thus, by Eq. 4-80

ug al ° Ald’ - AX! &gt;&gt;1 q &lt;2x!
2't (12. °°’ G ’ G

(4-82)

However, there gre c¢is.¢ where much larger grain may be used. In
|

such cases, where q &gt; Rt and va &gt;&gt; 1, Equation 4-67 should be used.
Therefore, by Eq. 4-67

24 (KX. x") = L824

 + 4

lxlq,
g(x, x") = glx, x’) e 2G. v3d  5% (4-83b)

Inserting Eq. 4-60 into Eg. 4-83 ylelds

2d X. X Y=1 (4-843)

* =

 lh we oi

a

g(x, x') = glx, x') ei %! (4-84)

Inserting Eqs. 4-84 and 4-34b into Eq. 4-55b yialds
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By o&gt; f Gd n (+3LB  gq
e?) (4-85)

Fi ™

2

g=17 i -L ‘a’ (4-86)

rhen

48

=) 4¢%) &gt;ad
 1

d
{a (

2
Ad 2S2E1-L5. 22 a’

compared with Eq. 2-111

a4
1 1.1 2G%,Ep. a 2 L facial

(4-87)

(2-111)

The number of quantization levels, for a given loss of signal-to-

noise ratio is determined by inserting Eqs. 4-86 and 4-79 into Eq. 4-29 which

yields

2

2 She + 2BEa
ST? xk

4 Ge

 KL

Thus, for Ald'= x &gt; &gt; 1 we have

© 2
1.2

(4-88)

b., Orthogonal Input Set
The binary input gpace is an optimal one, for A &lt; 1, as shown in Section 2.3.

Another optimal input space for A &lt;i is the orthogonal input space. In

this case



= 0

= =y ¥, =|x|"

for all 1 = 1. 4 °

1 T
7

£

4 -
J/

8 0 9 N=

109 re

(4-89a)

(4-89b)

Inserting Eq. 4-89 into Eq. 2-110a yields

2
x!

1 1 J-1 ~ Wg%
9, 40) = - 3 Va ‘9*7 © (4-90)

Now, since the input signals are orthogonal it can be shown that

$ = 0. Following Eqs. 4-659 through 4-88, with Eq. 4-66 replacing 4-70a,

Eq. 4-90 replacing 2-111 and Eq. 4-78 replaced by

d(x', y) = 3 xl 3 :
max 7 Gr °° ale’, yy = - x“min 2G

It can be shown that the numb:7 of cur +ion levels is

2B __ - Ix!
Lo ald o &lt;&lt;!

q

 oo 2A

121
2 |x

} pp i 4 &lt; 78Ix | &gt;&gt;1 [x]PME

C-—t. - xlcays Ald G &gt;-13q 5%

(4-91)

(4-923)

(4-92Db)

(4-92c)

Cc. Optimal Input Space

Both the binary and the orthogonal input spaces are non optimal for A &gt;&gt;1.

An input set which is a semi-optimal one for A &gt;&gt;1is shown in Figure 4&amp;4

(Section 2.3). Now, if éd = 1, it can be shown that EY). 1 (0) of the quantiza-

tion scheme of Case II is equal to that of Case I.

The results of this secticu ere summarized in Table 4. From Table 4

we may conclude that in Case II,,zs im Case I, the number of quantization
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levels for a given "quantization loss™ is increasing with the signal-to-

noise ratio which, in this case, is equal to a2ay 2?

4.4 The Quantization Scheme of Case III (Figure 9)
In this case the logarithm of the a posteriori probability per

input letters is computed and then quantized.

Let xP be the vector sum of p input symbols. One can regard the

vector sum x¥ as a member of a new input space with "dp" dimensions. Equa-

tions 4-48 to 4-68 are therefore valid in Case III, once x is replaced by

xP.
Now, it has been demonstrated that, in both Case I and Case II, the

number of quantization levels is increasing with the signal-to-noise ratio. If

the signal-to-noise ratio in Case II is ada, the signal-to-noise ratio in

Case III is then A%dp.

Thus, given a quanti~--tion loss L_ and given an input space Xp

“case 11 &lt; Kase 171 4-973

4.5 Conclusions

Let M. be the number of digits that are to be stored in the memory

pf the decision computer per each transmitted symbol.

Let LI and ky be Mand k of Case I.

Let Mor and key be M and k of Case II.

Let Mor and kirp be Mand k of Case III.
We therefore have

Mg = kad (4-54a)

Mor = Fox for a binary input space (since only one “matched filter’

should be used for both signals) {4-94b)

Morr = kir { (for any input space other than binaxy)

i er

Mair = 0 %run L

(4-94c)

(4-944)



Input
Space

Binary

Binary

Orthogonal

Jrthogonal

1

Al - Fin
d =?

Signal-to-noise ratio

Ad &lt;&lt; 1

B

Aa

afd

See Table 10.1

No. of Quantization
Levels

2B
Li"

2; q&gt; 2ald
2A @ .SE q&lt; ald

2B
Li2

“rs q&gt;2ald
2A {dBl aT

Quantization
Grain

\12'a[d

12444

 7 afd

{12'ald

L?a%4
&gt;

112° ald

TABLE 4

QUANTIZATION SCHEME OF CASE :  -- RESULTS



Inserting Ineq. 4-93 into Eq. 4-94d yields

of A 7AIII 2 o S1-

Now = JP / : 7

Lar &gt;» fir Ls X

I pate&amp;

(4-95)

(4-96)

Comparing Ineq. 4-96 with Ineqs. 4-94b and 4-94c Yields

Hon 2 Yar (4=3517,

Thus, we may conclude that the quantization scheme of Case III

should not be used.

Comparing Table 3 with Table 4 vielrds

oom ko :

Thus, by Eq. 4-94

{ °
1 NS M11 ’ 2 (4-98

We may therefore conclude that the quantization scheme of Case I

should be used whenever d = 1.

From Tables 3 and 4 we have, that in the case of the binary input

space, ky = kit for 2%a &lt;&lt; 1. Thue, we have by Eq. 4-94

k.d kyq =M (TT

~~ ° gv ° -

1. Moir binary input space; A

We may therefore comclude that whenever the signal-to-noise ratio is

low enough 22a &lt;&lt; 1), the gusntization scheme of Case II should be used.
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As shown in Table 4, the number of quantization levels for a given

9 is not a function of d (as long as a%4 &lt;&lt; 1). Thus, the complexity

measure, M, defined in Section 4.1, is like M,, minimized by letting

d wo 1, ~ 1,2 a
= 50% E(0) = 7 A &lt;&lt; 3

From Section 2.3 and 2.5 it is clear that the binary input space is the best

semi-optimal input space (for a%4 &lt;&lt; 1) since it yields the optimum expo-

nent while the number of input vectors is kept as small as possible (i.e.,

L = 2).

, If E(0) = {s A. &gt;&gt; 1
3 (nl = E(2) &gt;&gt; 1. Thus

J bn &gt;&gt; d (4-100)

On the other hand one should expect keg to be larger than ky since the
signal-to-noise ratio Ad cf Case II - loruz= than that of Case I (which is

A%y, if 4d &gt; 1. Thus

kg Z . A 101)

Inserting Inege. 4-100 and 4-101 into 4-94a and 4-94c yields

Mr &lt; Mp 3 a 2-1 E(Q) &gt;"&gt;"

We thus conclude that whenever E(0) = J A &gt;&gt; 1 and d &gt; 1,

the quantization scheme of Case I should be used.
1f an orthogonal set is used and at the same time 22d &lt;&lt; 1, we

have from Tables 3 and 4 that ky = kre Thus, by Eq. 4-94

ald &lt;1; 4.Ad vps
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4,6 Evaluation of EY 4(Q for the Gaussian Channel with a Binary Input
Space « = 2)

In the earlier sections of this chapter, methods were derived to

lower bound ely 4¢0-
In this section the exact value of 2 4¢®) is evaluated for a

binary input space (see Eq. 2-89). Let us first discuss the case where

d = 1 and the output of the channel is quantized as follows (Case I; k = 2)

For ally &gt; 0 ; vd

For all y £ O ; v
(&amp; vl,

where yd is the output of the quantizer. The channel is converted into a

binary symmetric channel, and is described by the following probabilities

p / = P ’

JX

P(1[x,) = P(-1|x,) =

P(1(x,)= P(2[x.)  ey

Ww ol

} max’ * “ 7 aX

00 (y-x,)
i 233[= = e dy

nN

(rhe)?
moe (Ow/

~/

(4 103a)

(4-103b)

(4-103¢c)

5y £q8. A-71 and A-6¢

(0) = - J. —
 XX.

1 1

P(x) Pix") p(y x)? p(y9 x")? (4-104)

[Inserting Eq. 4-103 into Eq. 4-104 yields

2 2

Sa em ey"= LI — 2 1 24672, 12, (0) ny 4 | eg - GC av Tye dy]
0

A
?

—
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NGUw

Co Gn?
! 23% ~~ 1 1—_—e dy = + + w=— : x (4-106)

inserting Ea. 4-106 into Eq. 4-105 yields

2
1 a 2 xX

o Pudiiia. in100) = - n{z+30 x 2g%)

2 2 2

~ 2X2 Ana
 TT w43E* w 43% =n b °°

A - :aX &lt;&lt; 1; k = 2 (4-107)

Thus, by Eq. 2-103a we have

q
E, 1(®) 2

 = = Br

wy E
ha

£
w

A
ma¥

i »

9] K =

i,

7

A. (4-108a)

(4-108b)

Also

[ Gen?
x6 © $e ay 21; I

bg &gt;
)

(y-x)° &lt;
. - ‘ - 2

one © 26 dy &amp; e 26 :. n

1

1x!
~
Cc

&gt;&gt; 1, x £0

(4-109a)

(4-109b)
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Inserting Eq. 4-109 into 4-105 yields

z
i.

atCX. faire€~
A

)
a

max

yp

 = Po ¢lte-

) k = 2, A ax &gt; 1 (4-110)

Comparing Eq. 2-112 with Eq. 4-110 vields

iL

2 9 A &gt;&gt; 1 °

»
id (4-111)

If three quantization levels are used, (kx = 3), it can be shown that

Ey 10)
Lat=0.81 ;
EO

A
ma &amp;

(4 l 12a)

- 0,19 :
max &lt;

v (4-112))

If four quar. tion levels are used, (k = 4), it can be shown that

E; 100)
Zl TL 0.86;

E, ,00)
a

max (4- 113a)

= 0.14 Amax (4-113Db)

Eqs. 4-107, 4-108, 4-ill, 4-112 and 4-113 are valid also for the

quantization scheme of Case II, if a2 is replaced by A d.
max max



CHAPTER V

CONCLUDING REMARKS

The important features of this research are as follows:

It presents a method of sending data over a time discrete,

amplitude-continuous memoryless channel with a probability of error which,

for R &gt;Re has an exponent that can be made arbitrarily close to the

optimum exponent E(R). This is achieved by using a discrete input space.

2. It presents a decoding scheme with a probability of error no

more than a quantity proportional to exp [=n ( : E(0) - R)] and an average
number of computations no more than a quantity proportional to m . The num-

ber of channel input symbols is roughly equal to Ja R(0) when E(0) &gt;&gt; 1,

and is very small when E(0) &lt;&lt;! (for the Gaussian channel we have that

J a2. The dimensionality of each input symbol is d = 1, when E(0) &gt;&gt;, .

and is equal to d= om whenever E(0) &lt;&lt; 1.
3. It presents a method of estimating the effects of quantization at

the receiver, for the white Gaussian channel. It was shown that the quantiza-

tion scheme of Case I is to be used whenever al &gt; &gt; 1. The quantization

scheme of Case II is the one to be used whenever a &lt;&lt; 1.

Suggestions for Future Research

A method has been suggested (11) for adapting coding and decoding

schemes for memoryless channels to channels with memory converted into

memoryless channels by means of scrambling’ the transmitted messages. Exten-

sion of the results of this thesis to channels with memory, using scrambling

or more sophisticated methods, would be of great interest.

Another very importent and attractive extension would be the inves-

tigation of communication systems with a feedback channel. One should expect

a further decrease in the decoding complewity and, probably, a smaller prob-

ability of error if feedback is used.



APPENDIX A

BOUNDS ON THE AVERAGE PROBABILITY OF ERROR-SUMMARY

A.1 Definitions

Following Fano (2), we shall discuss in this appendix a general

technique for evaluating bounds on the probability of decoding error when a

set of M equiprobable messages are encoded into sequences of m channel input

events.

Let us consider a memoryless channel that is defined by a set of

conditional probability densities p(M | $)s where § is the transmitted sam-

ple and 7 is the corresponding channel output (p(M)§ ) is a probability

distribution if 7 is discrete). We consider the case where each input

event x is a d dimensional veztor. and is a member of the (continuous) input

space X.
The vector x is given by x = 1 $0 ces far
The corresponding d dimensional output vector y is a member of the

d dimensional continuous space Y, with y = Tis nN pr cr 74 The number of

dimensions d is given by d = . vhere n is the number of samples per message.

The channel statistics are therefore given by

d

&gt; (yl %) = TTC ]fp where p(%, [ff) =p(L|£§); §. =F,” 44

The oh power of this channel is defined as a channel with input

space U consisting of all possible sequences u of m events belonging to X

and with output space V consisting of all possible sequences of m events

belonging to ¥Y. The a event of the sequence u will be indicated with

rr . Thus,

1 3 i
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where x" may be any point of the input space X, and y" may be any point of

the output space Y.

Since the channel is constant and memoryless the conditional prob-

ability density p(v/u) for the " power channel is given by

a i, 4
o(viu) = | | pGy*|x™)

i=1
{

wher:s

p(yIxY)=p(yix); - (A~13,

We shall assume in what follows that the message space consists of M equi-

probable messages My, My eon, My,

A.2 Random EncodingforMexoryssChanne.s
In the case of random encoding we consider the case where the input

sequences assigned to messages are selected independently at random with

probability density p(u). if U {i¢ a continuous space, or with probability

distribution p(u) if U is discrere. The average probability of error cor-

responding to any such random assignment of input sequences to messages

depends, of course, on the pr-babllity deasity p(u). We shall set

m 7

pla) = TT p(x)
i=1

wad

where

p(x*) = p(x); ¥ - (A-5]

p(x) is an arbitrary probability density whenever X is continuous, and is an

arbitrary probability distribution whenever X is discrete. Eg. A-4 is equiv-

alent to saying that the input sequence corresponding to each particular mes-

sage is constructed by selectirs its componen! events independently at random

with probability (densicy) p(x)

We shall assume, unless mentioned otherwise, that the channel output
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is decoded according to the maximum likelihood criterion: that is, that any

particular output sequence v is decoded into the message m, that maximizes

the conditional probability (density) p(vjm,). Since messages are, by assump

tion, equiprobable, this decoding criterion is equivalent to maximizing the

a posteriori probability plm |v), which in turn results in the minimization

of the probability of error,

Let us assume that a verticular message has been transmitted, and

indicate by u the corresponding input sequence and by v the resulting output

sequence. According to the specified decoding criterion, an error can occur

only if one of the other M-1 messages is represented by an input sequence

u' for which

p(viu") &gt; pv

Let F{v) be an az “ote~ry positive function of v sati-fying the

[A

~onditicen

Jew dv =

&gt; F(v) = 1 (A=/a.

\z

y
na

if v is discrete.

Also define

D(u, v) = fn Ev)
p(v/ u) (A=

as the "distance" between © ard v.

the condition expressed p=

In terms of this measure of distance

i -0 becomes

&lt;D(u', v) D (au . 3 ‘A=9,

For any arbitrary constant D., the avercge probability of error then
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satisfies the inequality

wy MP +P (A-10)

wher

p. = Pr(D(u, v) Dy» D(u’, v) &lt; D(u, v)] (A-11)

and

P_ = Pr[D(u, v) &gt; Dy’ (A-12)

The bound of Eq. A-10 corresponds to the following decoding scheme:

D(u, v) of Eq. A-8 is computed for each one of the M sequences of the input

space U and the one given output sequence v. The only distances D(u, v)

that are taken into further consideration are those for which D(u, v)&lt;Dy

where Dy is an arbitrary constant. The one sequence u, out of all the

sequences for which D(u, v) Dy&gt; that yields the smallest distance D(u, v)

is chosen to represent the cransmicted signal. If no such sequence u

exists, an error will occur.

If the above decoding procedure is carried out with an arbitrary

distance function of u and v, p(y, v), other than the D(u, v) of Eq. A-8,

then the average probability of error satisfies the inequality

? MP +P, (A 1 2

where

p

J

= pr[DY(u, v) &lt; Ds pu’, v) D_(u, v)]

= Pr(D%(u, v) &gt; D,

(A-14)

(A-1)

However, one would expect the bound of Inegq. A-13 to be larger

than that of Eq. A-10, if D (u. v) is not a monotonic function of the a

posteriori probability p(u|wv).
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A.3 Upper Bounds on Py and P, by Means of Chernoff Bounds

The m events constituting the sequence u assigned to a particular

message are selected independently at random with the same probability p(x).

If we let

» i
F(v) = | £(y~)

i=1
(A-16)

where

[f og J = f(y); [£¢y)dyP = vy —
1

5
&gt; =2 f(y) = 1. £

when y is discrete,

it then follows from Egs. A-2Z, A-3, and A-16 that the random variable

D(u, v) defined by Eq. A-8 is the sum of m statistically independent; equally

distributed. random variables:

Dc , Jy=A
EN

1
J x. *

[fo 18a}

wher-&lt;

i 1 £ &gt;16, yh = atx, y= fa £9 jx = = (A-18b)

In cases where an arbitrary distance D% (uv) other than D(uv) of

Eq. A-8 is used, the discussion will be limited to such distances D3(uv)

which may be represented gs a sum of m statistically independant, equally

distributed, random variables.

D1 ={ud » Vv) &gt;
9
=1 v 3 45 9  vy 'A-19
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where

i idx", yO = dx, v); (A-20)

The moment generating function (m.g.f.) of the random variable

D{uv), is:

~

3 3) = / p(y, v)] eV apy, v,
D (uy)

lA-21]

where p[D(uv)] is the probabil‘ty density of D(uv). Thus

N
 y 3) Is p(v[u) et \

Judv

From Eqs. A-18, A-4. A- .and A-3, we get

i
G(s)

= 0 ™

! .

{
4d PLY Ks

fe dxdy = [g (8) ]"

(A-22)

(A-23)

where

Z
1
8) = | / p(x) ply|x) e849) 41 ay (A-24)

In the case of P, of Eq. A-12 we are interested in the probability that

D(uv) is greater than some value D,. For all values of D{(uv) for which

D(uy) &gt; Dy

sD (uv) . sDo
for = LS 0

Using this fact, we may rewrite Eq. A-21 az:
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G(s) &gt; 0 / p(D(uv)] db(uy)
D(uv) &gt; D,

(A-25)

Using Eq. A-23

Jil

Pr J (uv) © D._| omTat®)- epg

“=a

¥ yo = Un 848) = A / / pts) p{y|x) e290) gay

(A-26)

(A-27)

Equation (A-26) is valid for all s &gt; 0. We may choose 8 such that the

exponent is minimized. Differentiation with respect to s and setting the

result equal to zero, vields

Pr {D(u, Vv) Ss D.
Rul 450s) - 8 fy (8)| (A-28"

where 8 1s the solution to

In

1 / d(5) = - Yq) Dds = :
m

the same way

D i D ilu, Vv) D.; ~

~:

mn Nas) - 8DQ

(A-29)

{A-30)

Jnere

f(s) = A g, (a) J. / q
/ ox) p(y/[x) e®P (%s ggg (A-313

The exponent of Eq. A=-30 is minimized if we choose 8 such that
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' af (s) D
d 0

% 9s) = 4s gg — (A-32)

Thus

wl 4s) - 8%, % (8)
ru, v) &gt; D,] Ke ts bs

In the case of P. we desire an upper bound

= Pr{D(u, v) &lt; Ds Du’, v) &lt; D(u, v)I

to the probability

(A-33)

(A-11;

For this purpose let us identify the point uu'v of the product space UU'V

with the point a of a space A, the probability (density) p(uu'v)=

p(u)p(v')p(v|u) with the probability(density) p(a), the random variable

D(uv) with @#(a), and the wandom variable D{u', v) - D(u, v) with the random

variable ©(a). Inserting t'(«) and @(z) into Eq. A-1l yields

D = Prd(a) &lt; D,, (a) &lt; 0] | 1

Let us form the m.g.f. of the pair (#(a), €(a)).

G(r, t) = Soe RAZCIELIL CII

Now, for all values of {a: Ga) &lt; D,; g(a) &lt; 0}

r@(a)+t6(a) ~ rD,
&gt; oe

(A-35)

Using this fact, Eq. A-35 may be rewritten as

G , A

Dg
o

yr

J p(a)da
fa: Ga) Dj; €(a) &lt; 0}
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G(r, ©) He © Prlda) &lt; Dy, 6a) &lt; 0]

~~ a
‘yLr

(A-36)

thus

3 = Pr(f#(a) § D,, (a) § 0] G(r, t) e Po r&lt;0; t&lt;0  (A-37)

\4

f(a) = D(u, v), 8a) = D(u’, v) - D(u, v)

aad

p(a) = p(uu'v) = p(u)p(u’)p(v|u). Thus

from Eqs. A-18, A-4, A-5, A-?. A-3 and A-35 we get

Sle ty = (g(r, 3) (A-38)

where

[[[poaptxintin e000 MIG NDggnay aos
/

Inserting Eq. A-38 into Eq. A-35 vielws

Du V &lt; D D(u’ 3 J[ 9 ) o “9PY Vv  ~~
56:s V1 IN Bales t)-rD,

3 (A =40

where

fe, ©) = Boge, 0

J [[ [sconce e(r-t)d(xy)+td(x’, Y) dxdx' dy
I XX (A-41)
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We may choose r and t such that the exponent of the right-hand side of

Ineq. A-40 is minimized. Differentiating with respect to r and setting the

result equal to zero and then repeating the same procedure with respect to

t, we obtain

3 = Pr[D(uv) &lt; D,, D(u,v) ZX Dly)] &lt;
ml (x, t)-r f'y (x, t)]

. (A-42)

where

Jr, tr)AK Fie: Y 1) Dy
 BR eee gr

ry) t m

5, (x, bo D0. =o

(A-433

(A-44)

In the same wav

whi

Pr [D (uv)

=

m[ 7 (x, t)-rD,/m]
. Dp» Duty) &lt;D (w)]  e (A-45a)

(r-t)d_(xy)+td (x'y)fd, ©) = [a gy (xr, £) = J EI e 1 axdy
(A-45D)

Inserting Ineqs. A-40, and A-30 into Ineq. A-13 yields:

J   ;(s)-8D,/m] m[n/m R+ §,(r, t) - rD,/m]

where R, the rate of information per sample, is given by

¢ 2
=

—_—

a

/ 1M

(A ~-46a)

‘A ~46D)
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From Eqs. A-11 and A-12 we have that the two probabilities, Pq and

Pp, vary monotonically with BD, in the opposite directions. Thus, the right-

hand side of Ineq. A-45 is approximately minimized by the value of Dg for

which the two exponents are equal to each other. Therefore, let D, be such

that

Dj n
B45) - s —=~—R + ¥. (x, t, = *

D.
in
n

{(A-4]7,

The insertion of Eqs. A-47, A-44, and A-43 into A-46a yields

J

4 ¥ (2) -8D,/m] -nE .
{A / R

here

m Dg
E,(R) -- = [7.03 «8

' g zw0 qd (8) A (vr. t}
D
o
Ya

i
L.

q |

- +

-

1 2 oR - (fe,

-

\ L

D

cL) (A-49)

J (A-50)

{A -"% vy
y

Now, from Eqs. A=-25 and A-18 we have

6 4(8) = Je ( re p(y/x) e®) 4xdy

Jo [ [ peo) oy] x) 125 (y) Sdxdy (A-52)
“J

Also, from Eqs. A-39 and A-18 we have

A Q
[1]... TA) S10T Spire tity” (A-E57%/
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It can be shown (Ref. (2), pp. 324-332) that

Eq. A-44 is satisfied if we let

= 8 J

1 fhe 2°

ra o A-50 is satisfied by letting

Ls : C ~ et

(A-54

[ pix) ply|xd! Bax1 "2

L r

buf 3 (A-55a)
 oo 1-8, ,1/1-Fi ply) %ax) 1 8ay

_ 1g

4 Cages 0 NS (A-55Db)

Eq, A-43 is then satisfied if we let

2 oe JL 40 - Ee 5 0 $s C32 (A-564)

We should notice, however, that Eqs. A-44, A-50 and A-49 are

satisfied if, and only if, R is such as to make 0 &lt; s &lt; z It can be

shown (Ref. (2), pp. 324-332) that this corresponds to the region

R
crit

&lt; R (A-56b)

where

L 3 ( [ oc py (3) JRly) dxdy = [R]__, (A-56c¢c)

w 15
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R elt = Rl, = 1/2

‘a Sn J wail

(A-56d)

Let us now define for the product space XY the tilted probability

"densi ! v)

Le Yoo pm
y) / sD(x, y) LL i»[ e px) plylx) dxdy

 4

) X

; legoe..px)p{ylx)™ "©
 les Lg

f (p(x) p(yl x)" a: (v) dxdy
(A-57)

where

(yy) = f(y) = reecesel

 px) pl Bag

1-8
oly = Q(x, VY) pix) plylx)"

0x) = Zo
[etx plyix)" “dx

”

~N
=
2

=
9

(A-58)

(A-59)

Inserting Eqs. A-3&gt;2, A-53, A-54., A-56, A-57, A-59

Pg
~~

2a DER] KR, ~
crit

R 'R (A-60a)

where the exponent E(R) is related parametrically to the transmission rate

per sample R, for R. &lt; R &lt; I. by
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1 Xx0 SER) = 3 nes y) A pt dxdy
J :

~ 3 CQlx]v)3 [ow n As Pia) 7 Rerie
¥

°

8 bY

1
R rit = [R1, = 1/2° L= Rl, = ( d [ [peo o(yix) Pn BGI

I’; p(y)

(A-60b)

(A-60c)

(4-604)

Whenever R Ripe there does not exist a Dy that simultaneously

satisfies Eqs. A-49, A-50 and A-51, However, the average probability of

error may always, for any rate, be bounded by

oo MPr{D(u'v) £ Dluw)?

This is equivalent to setting D.

P, = PriD(u'v) &amp;£ D(uv)]

SEE in Eqs. A-1)1 and A-12. Thus

(A-61)

y

[n the same wavy

2 MP. = MPr [D (u'v) £ D_(uv)] (A=-63)

The evaluation of P. under these conditions proceeds as before,

axcept for setting r = 0 in Ineqs. A-42 and A-45a. Therefore

m(n/m R + qo, t)] {A D4
1)

where



y

T40, ©) =F

f ‘.

Ta [1[oxy pwr peypy oF = 861gK

va  lh

n

wher

 PY

ee
or

m[n/m R + 1.3, £)]
(A-65)

f 8

e[d¥xty) - a%xy)]
/ ( [[v0 p(x") plylx) + dx 'dxdy

(A -65a)

Thus

{ 4Co, t) = J [ [poo p(y) py x)" (AL

{ 400, t) may be minimized by choosing a proper t. Differentiation with

respect to t and setting the result equal to zero, yields

(A-b7,

Le Ly 2 ean[a0 =) = Y4(3) = An [eo p(x") p(ylx)? plylx')?
 Vv YY Ww

(B.-68)
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¥

B05) = A [t [rw ply 0 Zax)?
 vy

(A-69)

The insertion of Eq. A-~b7 into Eg. A-04 vields

| I
1 Jy)-KE

(A-70)

where

==

5
:
LE ~ 4

1
From Eq. A-60 we have that, for R = Ro pit? s 2 t

Thus, by Eq. A-49)

R) |
Ri

I ..

rit Cd 1,0.2&gt;) = EC ) - at
crit

(A-71)

k and

[A Fi /

and the exponentiale of Eq. £-70 and Eq. A-49Y are indeed identical for

R = R ie

[t can also be shown tha! 48 (RY IR | = -] go that the deriva-

R rit

tives of the two exponents with respect to R are slzo the same at R = R rit:

The average probability of error can therefore be bounded bv

a(E,(0) ~ R'

.

{ P,

 PER]

~ at
 eo A. 1

X « R
crit {

-

ww

(A-73a)

where
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Ba(0) -R ge = B®)
crit

(A-73Db)

a +3)

d[E (0) - R] | Za
aR "T&amp;R =

Rerit Rois
(A-73c)

A.4 Optimum Upper Bounds for the Average Probability of Error

The upper bound of Eq. A-73 may be optimized by choosing p(x) such
that, for a given rate R the anponant of the bound is minimized.

Let d= 1 and m = n., x is then identigal with el where et is
the ith input sample which is a member of the (continuous) one-dimensional

space =. ot is identical with 7 i where 7 i is the {th output sample
which is a member of the (continuous) one-dimensional space HH.

It can be shown (Ref. (2), pp. 332-340) that there exists an optimum

probability (density) p(x) = p(%) defined on 2 that minimizes the upper

bound to the average probability of error so that, for large n and for

R ZR ie it becomes exponentially equal to the lower bound on the prob-

ability of error.

The characteristics of many continuous physical channels, when quan-

tized and thus converted into a discrete channel, are very close to the

original ones if the quantization is fine enough. Thus, for such continuous

channels there exists une random co’: with an optimum probability density

p(x) = p(%) that yields an exponent E(R) which is equal to the exponent of

the lower bound of the average probability of error, for a very large and

for R &gt; R ie



APPENDIX B

EVALUATION OF E,(®) OF SECTION 2.3, FOR CASES WHERE EITHER a4 &lt;&lt; 1 OR
2

A &gt; 1

In this appendix we shall evaluate lower bounds to the exponent

gE, (0) which is given by Eq. 2-132 and is equal to

1 20G) [oc
m3 bof wea;

2 2
&lt;

When d = 2 we have

DRSFSAER ¢
£

r A
C7 cos ©

£¢ do|

sin 89 2d (2-132)

[4 ~~ 2
A 7% kh

- .' =— co8©

ful TE [TT%

Thus

I SO

qo = Had Ty 4]

For
2

A
Y

&lt;&lt; 1 we have

AS,
vo 1 fT al

E,(0) = - 3 ne = %

(B-1)

(B-2)



- ~~
L .

AS
For &gt; &gt;&gt; 1 we have

a -_—
= - = — inJe(0) = L : ¢

ba

ih

~ Lf a 1 1/2= 7 nA” +7 axl fa ad

Now, for d = 3 we have from Eq. 2-132

0) = - 3 fs.
3,2=Aor 3,2 cos ©

{ sin © ry’

3 2 0 3.2

. | 1 T&amp;A 4 4 4h cos ©
7 Aq FE ant ae

46

(B-3)

Thus

4 a2 sh =&gt; AZ
3 3,2

7 A

E

For ac
A &lt;&lt; 1 we have

3 ,«
- 2a 2

vl fT ER a
2,00) = - 3 ne 4

For 1,2 &gt; 1 we have

(B Is

(B-5)

al fase if, fos€.(0) = 3 nA 3 n A + 3 n 7

v1 fon— 3 nA =7
/Je ly : (2-5)



In general, for an d &gt; 3, we have

4 9) J A A

d-1

2, (0)£22 Jo ary @ = =X go) 3; A* &gt;.

(B-7)

(B-8a;

vhere

Proof.

g( = 1 foals a20) = E40)| = = fn ; A
den &gt;&gt;1

-

a (B-8b)

From Eq. 2-132 we have, for aa LL &lt;&lt;

| 4 g 2 2

wz Lf LD af (1- L-)cos &amp; sin 8972 ao.
(J) = = 4 By d=1 | 4

2
J

2 2
dA ~ AJ. 1--")= rei

Thus

2 )

~ A_
E (0) m— 4b a 2 9 a Q.E.D.

We now proceed to prove Eqs. 2-135b and 2-135c. Let x = sin’ 2

and insert x into Eq. 2-132. We then have

d
(5)0) = - 2 bof &amp; LG)#294-3 |

I" redl,
KX (B-9a)

where

|
da’ d-34-3

? v 2 (1-%) 2 dx (B-9b)



nm

A a3

a
des

i (B-10)

Inserting Eq. B-10 into Eq. B-9b yields

c
Ad -(Ad, p83, i

!
J

d-1[gly
2 d=1

d-3 , Ad 2
(== (53 +1))

(B-11)

inserting Eq. B-11 into B-%9a yields

 -

dl

a bof TE3 {mT 27a
¢ &amp;- o

d-1

d-3 |, 1 J d-3 , ,2, 22 + 3 «Ln [ =5~ + A”] L

[he first term on the r.h.r. of Ineq. 2-139 is bounded b;

eds1JA a
3

Vn yd=3

3 [.
Thus, for a? ~&gt; &gt; 1 we have

2
R"

A| (3-12)
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p

Now, let

£0) = E,_ (0)

Inserting d = wu

n 7

 ld into Imeq. B=12 yields

(B-13)

E(0) 2 z ya X

From the convexity of the exponent E(R), when plotted as a function

of R we have

B(0) &lt;&lt; ~
ud

(B=-.4

where C is the channel capacity and is given by (Ref. 1;

Cc = L faa? 3

Thus, by Ineqs. B-12 and B-1%

£0) =% cl Jaa? A (B-15)

Inserting Eq. B-15 into Ineq. B-12 yields

k  2 dll fz prety !,



APPENDIX C

MOMENT GENERATING FUNCTIONS OF QUANTIZED GAUSSIAN VARIABLES

(AFTER B. WIDROW, REF. (3))

A quantizer is defined as a non-linear operator having the input-

output relation shown in Figure 10c. An input lying somewhere within a

quantization "box" of width q will yield an output corresponding to the cen-

ter of the box (i.e., the output is rounded off to the center of the box).

Let the input z be a random variable. The probability density dis-

tribution of z,p(z),1is given.

The moment generating function (m.g.f.) of the input signal is

therefore

2(8) = J pe e 524: (C-1)
Z

Our attention "5 devoted to the m.g.f. of the quantized signal 29, given by

candie) =f pz arf
794

{C 2;

where pz is the probability density of the output of the quantizer, zd

p(z%) consists of a series of impulses. Bach impulse must have an area

equal to the area under the probability density p(z) within the bound of the

"box" of width q, in which the impulse is centered. Thus, the probability

density p(z%) of the quantizer output consists of "area samples” of the input

probability demsity p(z). The quantizer may be thought of as an area sampler

acting upon the "signal," the probability density p(z).

Thus, p(zh may be c:mstructed by sampling the difference

3(z +3 ) -@ (z - 5 ) where @(z) is the input probability distribution given
‘vy
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F(z) = J p(z) dz
—

(C-3)

This is equivalent to first modifying p(z) by a linear "filter" whose trans-

fer function is

sq _ sq
2 2 sh 42

2” =~ r 2
= gq ————

qs
{(C-4;

and then impulse-modulating it to give p(z%).

Using "A" notation to indicate sampling we get

 zg (s ) [ g(s) =iY= A] = F = {_ (C-5a)

where

Now,

sh qs
: 2
(8) = gs) q a

q 5

iet the function F’¢) be the transform of a function f(z)

F(8) = f £(z) e “%dz

(C-3b)

(C= 5)

Then

A -/e (z) e ®% dz
zZ

where £ (z) is the sampled version of £(z).

{C-



I.. i]

£2(2) = £(z) c(z)

§ &amp;

(C- 8,

where c(z) is a train of impulses, q amplitude-units apart. A Fourier

analysis may be made of the impulse train c(z). The form of the exponen-

tial Fourier series will be

50

((z) = LD Jb 52 = £2
1 k= —o0

{(C- 9;

 ner ~~ing Eq. C-9 into Ba. C-/ yields

oo

7 2 (8) 12 F(s - 1k52)
k=m-co

inserting Eq. C~-10 into Eq. C-5 yields

. 20 sh (q(e-ikid)

&amp; Ba - 1k&amp;) TRY(5-118)
2

{C-10)

(C=11)

Now, 1f the input is a Gaussian variable governed by the probab~li~y

densi:y

 £4
=X{2-2L e

2 (Z|x) = TET

{it can be shown that

31 ( ——ee8) = g(
, sh 482

qs
q &lt; 26

{C=-12)

(C=13)

Wien =

2 \3)=m:

2.02
£83 ya

(C-14)
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Let z and z' be two random Gaussian variables governed by the fol-

lowing probability density

Wik2

p(z, 2 J

2: - = |

( (eB) 4 $B)(u! Do (e'-)” ]  (C-15a)
02 172 XP 2(1- ©)2g(1- °7)

1
»

C= (z -2) (2' -2') (C-15b]

Let the corresponding m.g.f. be given by

g(r, t) -[[ z') er? * 2’ 3zdz
Z

Now let z and z' be quantized by the quantizer of Figure lOc, to yield

z9 and z'9. Thus

- he SE ¥g(r, t) = // p(z9, z'%) ” rz tz 4294219
73nd

(C-16)

(C=-17,

[t can then be shown (as has been shown in the derivation of Eq. (C-13) |

that

Als0O

Now

gh 4&amp; sh L&amp;
ir, t) = g(r, t) —= —2g(r, g(r, po” &lt;

2 2

(©=1)wehave

sh 2 (xr + t)
rr, t) = g(r, t) =Z

1 (xr +t)
— EEC ——

) ix La I y
—— = ~]1) we have

q

G

2(1-Pb“fe’, (C-18}

(C-19)
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sh (r -t
gl(r, t) = g(r, ozEY q &lt;&lt;

I(x - 1)
2 (C-20)

We now proceed to derive upper bounds to g(s) and g(r, t) to be used

whenever the quantization grain q is large, so that Eqs. C-13, C-17, C-18

and C-19 are not valid any more.

Let 23 = z + n_(z) where n (z) is

dy Ea. C=-2

2, (8) = [oe e
 ae n, 2)

 ll

Now, [n_(2)] £ 3 Therefore

g (8) &lt; ( p(z) e
~

dz
3 a4

 IR

®
a

g(8) e
2

ne ry quantization noise.” Thus

{C-21)

In the same way, let

Zz =z +n (2) 3 ”
t

 wn

ro n_(z')

Thus, by Eq. C-17

g (r, t) = [/ p( ' bi
/ . 2h) - z +n (2) ) - t(z' +

n_(z') )
a

dz'dz

ow

In| &lt; 55 | 0]&lt;E
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Thus

(r,t) [[ vt 21) e
, 3

-rz ~ tz’ rd+[edras | d | 2

oi

g
g{r, t) Jr 2 +e 2

(C-22)
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