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I. INTRODUCTION

A. Motivaticn and Perspective

This thesis is concerned with some problems that arise in
connection with the statistical multiplexing of voice and data.
The motivation derives from the observation that conversational
speech actually consists of alternating periods of soﬁnd pro-
duction and silence. The most readily identifiable source of
this behavior is the alternation of dominance that naturally
occurs as two parties converse. However, even the speech of
the party considered the '"talker'" is not a continuous stream
of sound if one looks on a finer time scale. Rather, it too
consists of an alternating sequence of talkspurts (which can
comprise & few words or phrases) and silences. O©On even finer
time and frequency scales, one can observe that a talkspurt
itself does not always occupy the full "long-term" speech
bandwidth, which is approximately between 0 and 4000 Hz.

The success of any capacity sharing scheme that exploits
these characteristics depends on a variety of physical and
statistical considerations and their interplay. For the
sake of discussion, consider a model system in which N
speakers share Cy "units" of capacity. Each speaker alter-
nates between an active state, in which one unit of capacity

is required, and a silent state in which no capacity is




required. The system operates as follows. Each speaker is
connected to an activity detector and a switch. When the
detector observes a transition from silence to activity, the
switch connects the speaker to a unit of capacity, if it is
available. The connection is maintained until silence occurs.
I1f capacity is not available, the speaker is simply locked out
and joins a pool of other active, waiting speakers. This pool
is served on a first come-first serve (FCFS) basis as capacity
becomes availabie. During the lock out period, speech is lost,
and a speaker who becomes silent while waiting, departs the
pool.

One useful performance measure of this system is the

average loss or cut-out fraction ¢, defined as

Time Averaged Loss
Time Averaged Offered Load

The value of ¢ is determined by what are effectively the physi-
cal and statistical "response times'. The physical response

time is characterized by the switching time, Tgo and which

T
is the "window'" that the detecter needs to accurately track
activity. For successful operation, it is clear that T4 + T
must be much smaller than the average active time and average
silence time (TAC and ToL respectively ). If this condition
is met, one must lock at the '"statistical loss incurred in

waiting for capacity. This depends on N, Cv, and the statis-

tical behavior of the speakers. In the ideal case of




Tg = Tq = 0, and with suitable assumptions about the activity

process, one can show

where Py is the "equilibrium" probability that 2 speakers are
active. See Weinstein [1]. We will elaborate on this later.
In the above model, a unit of capacity depends on the
context. On»the talkspurt-silence level, it is the capacity to
handle all the "bit rate" of an encoded talkspurt. On a finer
scale, it may refer to some sub-band of the full speech band-
width, in which case, the loss is only for that sub-band.
The physical problems of frequency sub-band aultiplexing are
formidable because of the small times involved. That is, the
short-term bandwidth of a talkSpurt moves around rapidly
within the long term spectrum so that the detection problem
is hard. However, activity detection on the talkspurt-silence
level is quite feasible and has been implemented. for example,
in the late 1950's, Bell Telephone built the TASI (an acronym
for time assigned speech interpolation) system for use on

transcceanic cables. Thus, the ratio N/Cv is referred to as

the TASI advantage. Although the original system was in an
analog environment, we will use TASI as a generic term for any

such statistical multiplexing scheme. All future discussion
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will pertain only to the talkspurt-silence level.

TASI is successful because 1ittle speech is lost during
detection and switching. (Typically, Tg and T4 are on the order
of 10-20 ms whereas TsL and TAC are on the order of 1 s.) In
the next section, we will see that digital switching between
voice and dataon these time scales is no harder,and one can
consider transmitting data during the silences as well. This
is the main topic of the thesis. Because voice traffic must
meet certain rather stringent delay requirements, data must
have a lower prierity to some degree. Thus, thé data queue
effectively sees a Server whose rate is strongly governed
by speaker activity. The main question will be whether voice
activity returns from "high'" levels to its "mean' level
sufficiently rapidly, so that data backiogs which accumulate
while voice activity is high, can be emptied in "reasonable"
' time. Before delving intc this, we will spend the next few
sections discussing some implementation considerations and

voice activity models.




B. Network and Implementation Considerations

In a network setting, the previous analysis applies only
to an end-to-end or, conceptually, a single-link version of
TASI. That is, if N callers at a node A share CV "channels"
that transmit their speech to B, and each channel can only
accommodate one active speaker, then the cutout fraction ,9¢,
is the fraction of output that does not reach B. Since all
allocation decisions are made at A, the physical realization
of these channels is not important in the analysis; they can
be viewed as a single link of equivalent capacity. In a real
network, connections between users often comprise multihop
paths, and a given link is usually a part of paths between
man& sources and destinations. Thus, one can conceive of
'"network TASI" in which the output of a caller can be pre-
empted at any node on the path it follows, and all nodes
cooperate in globaliy allocating capacity.

With analog transmission and electromechanical switching
(i.e. relays) or even digital transmis;ion and switching with}
semiconductor logic gates, the nodes have neither the time
nor the processing power to make the necessary decisions.
Therefore, early TASI systems were indeed single-link oper-
ations used to increase the "virtual" voice capacity of rela-
tively expensive backbone trunks (such as transoceanic cables).
With digitized speech and the current '"software' switching

technology, network TASI is possible to implement. Ir fact,




digitized speech, with activity detecticn, may be viewed as
another type of bursty "data'" traffic whose arrival statistics
and delay requirements are different from those of conventional
tvpes. Thus, the network TASI protlem is only part of an inte-
grated voice/data network's overall allocation problem.

Network resource allocation problems are difficult, and
one usually cannot conduct a detailed queuing or loss analysis.
Instead, one often attempts to separate the "probabilistic" from
the '"networking" issues. For example, one might explore the
"networking" aspects of minimum delay routing problems by
assuming that the average queuing delay (at node i) of traffic
using link (i,j) depemds only on the link capacity and average
flow on the link. Here, a "networking" question is, for
example, how should the nodes cooperate to find best routes
given that each initially knows only the flows on its links?

A single link or tandem links queuing analysis can be uﬁed to
explore the validity of the assumption, i.e. can higher order
moments of the flows be neglected in computing average delay,
can statistical dependencies between queues be.neglected, etc.

In this approach, pricr knowledge of the particular net-
work architecture or quantity cf interest can sometimes be
used to tailor the single link model sc that one can focus
on specific issues. This is not done in the thesis. That 1is,
we will use a general model of a single voice/data link and
analyze a variety of quantities that might later be used in

network approximations. Nevertheless, it is helpful to first
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have a qualitative understanding of the transport requirements
of voice and data‘and of various switching disciplines.

Our discussion of these issues will be conducted in the
context of the following time-division multiplexed (TDM) switch
architecture and transmission format. Where we give values for
certain parameters, these values reflect our understanding of the
capabilities of current technology. This has come primarily
through ''private discussion", so we do not provide specific
references. At the end, we do indicate some tradeoffs affecting
‘the choices of values for these parameters. A more detailed
technical survey and bibliography can be found in [2]-

In the TDM architecture, time is divided into units of
length called frames. (Typically, T = 10-50 ms). The "atomic"
unit of transmission is the block, which consists of b bits.

We say that a 1ink has capacity C.r blocks/frame if the associated
node~link»node combination has the.processing and transmission
capacity to handle CT biocks/frame on a pipelined basis.

The meaning of this can be understood with the aid of the

following diagram.

Arrive nede o at node




During every frame, node 1 '"enters" CTb bits into the channel.
Consecutive groups of b bits are viewed as blocks occupying
slets 1in time. Block departures at node 1 are taken as point
events,occurring when the last bit of a block enters the channel.
The arrival process at node 2 is viewed simiarly, and an event
occurs when the last bit of a block is in node 2's memory and
ready for further transmission. The time between block departure
and arrival is called the link delay. (We assume link delays
do not change in time.) In practice, this might consist of
physical propagation time and some processing time to get the
bits intc memery. If the link delay is larger than t , there
will be at least cne complete frame cf blocks in the pipeline
at any instant. This will usually be the case on a geosynchro-
nous safellite link because the round trip propagation time
1s about .25 sec. (The altitude of the geosynchroncus orbit is
about 23,000 miles.) By "pipelined on a block basis', we mean
that the first bit of a block cannot leave a node until the
last bit of that btlock has arrived. Thus, the first bit incurs
a delay which is the sum of the link delay and the duration of
a slot,

In a network of these switches, this slotted frame format
is used on every (directsd) l1link, though we do not assume that
frame boundaries are glcbally aligned. t and b are the only
global constants. We do assume for now that 1links are noiseless.

Sources are connected to the network through a host node,




and the host and source communicate through a source buffer.

At the destination node there is a decoder which uses the

arriving bits to reproduce the source's messages for some
nfinal" user. We consider the decoder to be outside the net-
work. The time that a source is connected to the network is
called the session. Two types of users, 'voice" and 'data",

are considered.

Note: The callers of a two-way conversation are treated as

independent sources, and each speaker's output is viewed as

a sequence of "one-way'" messages. To allow them to sustain
normal conversation, the network must meet certain delay
requirements. Other than this it does not "recognize'" them as
interacting users. These requirements will be discussed later.
All data messages are ''one-way'.

A data source places bits into the source buffer in an
arbitrary manner. These bits are viewed as a sequence of
messages as prescribea by the user.The network can transport
individual bits as it chooses, as long as the following

requirements are met.

1) No loss - Ali bits must be delivered to the decoder
in correct order.

2) The network must separate messSages for the decoder.

2) End-to-end delays of messages must meet some (possibly
statistical) requirements. The delay cf a message 1is

the time between the entry of its last bit into the
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source buffer and the delivery of this bit to the

decoder.

Speech is digitized at a rate b/t bits per sec. The encoder
also performs activity detection. That is, a block is placéd
into the buffer at the end of a frame only if the encoder determines
that the speaker was active during that frame. (We view this
placement as a point event. Also, frame boundaries at the en-
coder and host node need not be aligned.) We assume that speech
loss caused by incorrect activity decisions is negligible. The
first block of a talkspurt is marked and contains a number in-
dicating the duration (in frames) of the preceding silence.
(Obviously the actual speech digitization rate must be reduced
slightly to accommodate such overhead. We neglect this.)

Characterizing the delay requirements of voice is difficult
because the ""message'" is not clearly defined. Theoretically,
speakers could communicate via a sequence of '"voice telegrams",
where each teiegram contains "a thought® and can be delayed a
few seconds. This is not the same as '"normal' conversation, in
which speakers implicitly use silences to Separate '"'messages!'',
Approximately 250 ms is usually given as the maximum acceptable
delay (the time between the beginning of a talkspurt at the
source and the beginning of its reproduction by the decoder ).
With larger delays, speakers ''ccllide™ and must resort to
explicit phrases to separate ''messages'.

In the single-liink TASI system first described, all loss
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occurs in some initial segment of a talkspurt. This results in
clipping that, apparently, is not noticed if the average loss
is below .5%. (See Weinstein [1].) We will see that with
"network TASI", loss can occur at various places in a talkspurt,
and speakers might tolerate larger average loss provided it is
scattered. Although this is an "experimental question'", we
note that if the "loss vs maximum TASI advantage' curve is
relatively flat, small increases in acceptable loss result in
relatively large increases in the maximum TASI advantage. The
single link "loss vs TASI advantage' curve will be discussed
in I.D.

We now discuss the implementations of three "standard"
switching disciplines within the TDM architecture and their

uses with voice and data sources.

1. Circuit Switching -  Conceptually, a circuit is a

guarantee of a path of specified capacity from the source to
the destination for the entire session. The network attempts
to establish or set up a path when the user arrives. 1If it
cannot do so within "reasonable" time, the user is rejected.
Therefore, circuit-switcher networks are designed to meet a
rejection probability requirement.
Historically, circuits were implemented using analog

transmission and "hardwired'" connections at switches. In the
TBM architecture, a "unit' capacity circuit is a guarantee cf

a slot in every frame at every node along some path between the
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source and destination. At‘set-up time, the nodes establish
tables with entries of the form "slot i on incoming link x
corresponds to slot j on departing link y". The particular
choices for i and j are unimportant, but they must remain
fixed while that path serves the circuit. Note that no address-
ing is required because the correspondence between circuit and
path implicitly identifies the source and destination. (Inter-
mediate nodes need not even know who the end users are.)

With analog circuits, the end-to-end delay is a sum of the
iink delays, and the delay is the samé for each increment of
the input signal. With TDM circuits, there can be buffering
delay because a block must wait for the appropriate departing
slot at each node. The exact value of this delay at a
particular node depends on the particular incoming and departing
slots serving the circuit and the relative alignments of frame
boundaries. But because the next occurrence of the appropriate
slot must be within T secs after the arrival of a block, this
delay is at most T at any node. Further, this delay is the
same for all blocks since the slot correspoﬁdénces are fixed.
As link delays are also constant (with time), it follows
that all blocks incur the same end-to-end delay. In this
sense, circuit switching offers synchronous service.

If a source is circuit-switched, the host node looks in
the source buffer every T sec and removes a block, if at

ieast b bits are present. Otherwise, the slot remains




"empty". Notice that the host node must transmit "something"
during empty slots. That i1s, the bits that are in the slot
will eventually reach the destination node unless the host
indicates otherwise. (If the decoder is also operating synchro-
nously - i.e. expecting a new block every frame - the "idle
message"” must also reach the decoder. If it is operating asyn-
‘chronously -i.e. it "wakes up" only when the destination node
indicates a new block has arrived - the idle message mugt only
reach the destination node). In a simple approach, the network
can reserve one of the possible 2b bit patterns to indicate

an empty slot. However, if idles occur frequently, this is an
inefficient source code (in an information theoretic sense).
One example of a potentially more efficient strategy is the
following. The first bit of a slot is used as a flag. When

an idle occurs, the host node sets the flag, and it can then
fill the remaining bits with other information. Of course,
some identifier or address must be provided for the new inform-
ation. This procedure is repeated at successive nodes on the
path. Notice that it is really a '"node to node" strategy.
Different nodes can use the empty slot in different ways as
long as the idle flag reaches the destination; If some node
actually has nothing else to send, this idle must also be
indicated, but it is of concern only to the next node on the
path. The flag only encodes source idles. The cost of this

strategy is 1 bit per slot, and the average gain is ab”,

T —— ————
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where o is the average idle fraction and b1 is the number of
bits per slot available for user information (i.e. aside from
the bits required for protocol).

Circuit switching can serve either type of user. The bits
of a data user do arrive in correct order at the destination
though some protocol must be used to separate messages (We do
not discuss this.) With a voice source, the decoder receives
either a new talkspurt block or an idle every frame. In the
latter case, it presumably reproduces a silence. Because the
service is synchronou#, the decoder does not need to use the
silence information included in the first block of each talk-

spurt.

2. Store and Forward Switching - Conceptually, the user

only has a "promise" of future delivery. Capacity is allocated
cn a link by link basis, and the information can, in principle,
be indefinitely buffered at any node.

This definitiocn obviously leaves many things unspecified.
For example - should messages be broken into packets; how large
should packets be; how should routes be chosen? A complete
discussion of these questions is not appropriate here. For
us; the important feature of store and forward switching is
that different parts of a message can incur different delays.

To focus on this, we consider a version of packet switching

in which each packet occupies one block. That is, the source

output is segmented into blocks,and each block or packet
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traverses the network on a store and forward basis. ( We do assume

that blocks arrive in correct order.) However, we consider this

version of packet switching.with the following "caveat” in mind.

Caveat: With the TDM architecture, one must be careful to
distirguish between the switching discipline and transmission
format. The slotted frame structure is not needed for '"packet"
switching. To the contrary, it is only used to maintain the
synchronous service of circuit switching. The bits in the slots
that are not reserved for circuits effectively constitute a
separate ''virtual" binary channel, which is interrupted when
reserved slots occur. In principle, the nodes-can use this
channel to implement a variety of storc and forward schemes.
We have assumed that the store and forward switched traffic
respects the slot structure only for convenience. Note that
one "cost " of this is that every idle is at least one slot
long, i.e. packet transmission cannot begin in the,middle of
a slot.

It is evident that the delay variability of packet
switching is not a problem for data users since the "message"
is in the bits themselves. Thus, the relevant tradeoff 1is
between line utilization (or scheduling flexibility) and
overhead (addressing). A bursty user wastes part of the
capacity of a circuit, but packet switched blocks require
addresses because their transmission is not "prescheduled".

Notice that even though the empty slots of a circuit can be
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encoded with a 1 bit flag(thereby releasing the remaining bits)
the network has no control over the occurrence of these slots.
That is, it does not have the scheduling flexibility of packet
switching.

Delay variability does cause problems for voice. Once the
decoder begins reproduction of a talkspurt, it looks for a new
block every .frame. If a block is late, the decoder might try
several things, e.g. "stretch" theuprevious block. For simpli-
city, we assume that a late block is unusable and results in
speech loss. Now consider a talkspurt that lasts M frames, and
suppose the blocks incur delays dl""dM‘ If the decoder begins
reproduction when the first block arrives, then block i is
~lost if di > dl. Wi;h this approach, substantial loss might occur
if the first block is "lucky", i.e. if d1 is much less than the
average delay. Therefore, the decoder might want to deliberately
postpone reproduction for a time d so that subsequent blocks
have more time to arrive.  Thus, there is an end-to-end
delay vs. loss tradeoff. (A practical problem with this scheme
is that the decoder generaliy cannot know dl‘ Since it is
the total delzay, i.e. d1 + d, that matters to the speaker,
choosing d is difficult. If the decoder does have some
knowledge cof the delay distribution, it might be able to make
a ''reasonable"” guess, e.g. choose d s.t. d +d1 < 250 ms with
high probability.)

Delay variability can also cause distortions in the

durations of silences since the initial blocks of successive
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talkspurts need ‘-not incur the same delay. When the first block
of a talkspurt arrives, the decoder knows what the duration of
the preceding silence is supposed to be since this information
is contained in the block. Presumably, the decoder also knows
when it last reproduced a talkspurt block. Thus, if the first
block of a talkspurt arrives before it is needed (i.e. before
the appropriate length silence has occurred) then the decoder

can postpone reproduction in order to recreate the appropriate

silence. (It might want to add even more delay to give subsequent

blocks of the new talkspurt more time to arrive, as we have

discussed.)
In summary:

e Data can use either packet oT circuit switching. With
elther discipline, all bits do arrive correctly and in
order. Some message separation protocol is required.
The basic tradeoff is between line utilization and

overhead (addressing) .

e Voice can use circuit switching, and end-to-end delay
is the only "dlstortlon" relative to face-to-face
conversation. Packet switching, or what we have termed
"Network TASI", is.also possible. In this case, the

network is free to discard or delay blocks in any way

as long as the end-to-end delay is less than about 250 ms,

and the loss (due to outright discard at intermediate
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nodes or delay variability at the decoder) is acceptable.

3. Fast Circuit Switching - 1In this case, the user is provided

a circuit only during "active periods'. The terms''fast' and
"active period" are obviously contextual. To discuss some trade-

offs, we adopt the following cocnventions:

1) The "session" is defined by the user, i.e. it is the time that

the user wants access to the source buffer.

2) The source can place at most one block into the buffer in

any frame.

3) An active period is a sequence of (consecutive) frames in

which the source does enter a block.

4) The duty factor is the percentage of frames during which the

source is active.

5) A session contains "many'" active periods.

For voice, active periods and talkspurts coincide. For data,
we have adopted the view that the source ''meters" out a
message at a rate of one block/frame. The host node initiates
a circuit acquisition at the beginning of each active period.
We have seen that the choice between circuit and packet
switching is based on a tradeoff between utilization and
overhead. Fast circuit switching is anothér way of increasing

the utilization for bursty (i.e. low duty facter) sources.
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From the user's viewpoint, fast circuit switching is acceptable
as long as the network can set up the circuit and deliver the
first block of the active period within an acceptable time.

(We assume that blocks are buffered until the circuit is set-up.)
Notice that fast circuit switching does not pose a delay
variability problem for talkspurt reproduction because once

the first talkspurt block arrives, subsequent blocks arrive at

a steady rate of one per frame. However, it can cause silence
distortions because the circuit set-up time can differ for
successive talkspurts. If both packet and fast circuit switching
can provide acceptable service to a bursty user,4the choice for
the network depends on the relative overhead costs of packet

- and fast circuit switching and the "nature of the bustiness".

To understand this, we first need to examine the costs of circuit
set-up.

Circuit set-up algorithms build paths on a link by 1link
basis. The capacity reserved on a partially completed path is
not available for other circuits while the algorithm tries to
extend the path. In practice, the algorithm might backtrack
if it cannot extend some partial path. However, even if some
link does not end up in the final path, it is not released
until the backtracking actually reaches it. For attempt rates
below some 'critical range', most circuit requests are
successfully completed, and the throughput increases as the

attempt rate increases. (Throughput is number of success/unit
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time.) Beyond this critical range, the network's resources
are increasingly consumed by partially completed paths,and
the probability of successful completion decreases. In this

region, throughput decreases as the attempt rate increases.

1\

Fh rowshput

- Am;?« Rate

Now as a measure of "burstiness", the duty factor is
simply the long-term, average activity fraction, and a given
duty factor can be obtained by many combinations of activity
frequency and average duration of active periods. From the
‘previous discussion, it should be clear that, for fixed duty
factor, the overhead of fast circuit switching decreases rela-
tive to the overhead of packet switching, as the '"burstiness"
tends to the "infrequent but long active period" type. For
eéxample, a user wishing to make several large file transfers
in a session might be more efficiently served by fast circuit
switching. (Of course, as the duty factor itself increases,
"ordinary" circuit switching, i.e. providing a circuit for
the entire session, becomes relatively more attractive than

either packet, or '"fast circuit" switching.)
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Variable Rate Séeech Coding

So far, we have assumed that the decoder uses all b bits
of a block to reproduce a frame of speech. With variable rate
coding [3], speech is digitized so that a full block contains
information to reproduce speech at several possible levels of
fidelity. That is, a block actually contains, say, b/n sub-
blocks, the slot size is reduced "by n , and speech quality
increases as the number of sub-blocks used in reproduction in-
creases. This type of coding might be useful in congestion
control because by sending fewer sub-blocks, the network can
reduce delay but maintain the "continuity" of the conversation
at a lower quality. Presumably, this is preferable to total

loss of blocks or excessive delays.

Speech Digitization Techniques

1) Standard '"toll quality” speech uses 64 Kbps PCM
with a sampling rate of 8000 Hz and 8 bit

quantizaticn.

2) Differential PCM - Transmit the difference between
successive samples. We have seen references to

16 Kbps and 32 Kbps DPCM system.

3) Linear Predictive Coding (LPC) - In this approach
the vocal tract output during a frame is modelled as
the output of a linear time invariant system of some

order k.The encoder examines the speech during the
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frame and uses its observations to generate values
for the k system coefficients that result in a

"best fit" of the observed samples to the model.

These values and various other parameters are then
quantized and transmitted. Using LPC, it is possible
. to achieve intelligible speech with transmissioh rates

as low as 1 - 2 Kbps.

Noisy Links

Channel noise is combatted by error correcting coding
or error detection and retransmission. The latter is particularly
troublesome for voice traffic because it increases both delay
variability and average end-to-end.delay. Thus voice traffic
must usually accept the noise immunity provided by error correction.
This is an important consideration in the choice of the digiti-
zation technique. (64 Kbps PCM is relatively insensitive to

errors; LPC speech with 1 - 2 Kbps rates is sensitive to errors.)

Choice of T and b and Circuit Delay

Recall that TDM circuit switching introduces buffering
delays because a block must wait for its siot on the departing
link. This delay at a particular node depends on the choice
of slots serving the circuit, but for a given choice, it is
proportional to T and b. For example, one can provide an
equivalent capacity circuit by using a block size of b/2

and a frame size of 1t/2. For a given block of b bits at
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the source, this circuit will impose only half the buffering

delay on the leading edge of the block.

deparhing

frames
Arriving
frames

In the diagram, we have shown two arriving frames and the
corresponding departing frames. (The departing link has a lower

raw bit capacity so slots are wider, but all slots contain

b bits.)

Here the frame time and block size are halved, and the

buffering deiay of the leading edge is also halved. Essentially,

SN BetE M B e oa.
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this is a different interleaving of the b bits in the given
source block. This can reduce the overall end-to-end delay

as the following example shows.

We are cdncerned with the time between the beginning of a
talkspurt at the source and the beginning of its reproduction
at the destination. With PCM speech, the encoder can produce
digitized speech on a sample by sample basis, but if activity
detection is desired, it cannot release the first sample until
it has looked at the output for some more time. The minimum
time needed for this depends on the sensitivity of the tracking
algorithm, but it is generally greater than the time between
samples (i.e. >'§%35 = ,125 ms). Thus the activity detection
process requires a frame structure at the encoder with some
minimum frame time Tg- (This adds a delay TE.) Suppose
that within this time the encoder produces bE bits. Now the
PCM decoder does not need all bE bits to begin reproduction.
It can essentially work on a sample by sample basis, i.e. its
minimum block size is 8 bits. Thus, if the network transmits
the encoder's block using a network fraﬁe time of rE/Z and
block size bE/Z, the first sample of the talkspurt incurs
less buffering delay in traversing a given circuit. (Of
course, the other components of circuit delay, namely the link

propagation delays, are not reduced by this.)
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C. A Speaker Activity Model

In [4], Brady introduced a continuous time Markov chain
model of the activity of a single speaker A engaged in a
conversation with another speaker B. The four possible
combinations of activity are denoted by TT, TS, ST, SS;
where T = talk, S = silence, and the first letter in a pair

refers to A's state. His model has the following state diagram.

TS

N tvang Hon
\\7 ratve, L = ,x
-
"
\‘ IS
\ -
N J
* - . - s S T

Note that the combinations TT and SS are split to introduce
more memory. For example if TT is entered from TS, one might
guess that a return to TS is more likely than a passage to ST.

Presumably, A 1is dominant and B briefly interrupts.)Hence,
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one would guess V,, > Vo,

Qur objective is to model the activity of N independent
speakers at one end of a set of N independent conversations
between two sites. At this point, we could extract the marginal
behavior of A, say, and extrapolate to N speakers. (By indepen-
dence, the joint process would be a product process.) This leads
to considerable complications. For example, A is in talkspurt
whenever the chain is in states 1, 2, or 3. The time that a
Markov chain '"sojourns'" in a subset of its states ig generally
not easy to characterize in a '"closed form". The following.modél
has  been proposed by Weinstein [1], and we adopt it. Each

speaker is modelled by a two state chain.

Silent TalkK

From the independence of the speakers and properties of Markov
chains, it follows that the process A(t) = number active at

time t is characterized by a birth-death chain.

lL\ (v-4))
m |

A
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From this, one can see that the ergodic distribution of A is
A

binominal on N trials with '"Pr (success)" = YOI So the

mean activity level is A = N Téi , and the standard deviation
1/2

is LE&%%E——

As representations of the capacity demand of blocked,
digitized speech, these models have the obvious defect of
using continuous time. But-given that the frame time 1t is
much smaller than most active periods and silences, this is
not a serious problem. (We could use discrete time with
geometric distributions and obtain similar results.) A more
substantial question is whether talkspurts and silences can
be approximated by exponential distributions. (We adopt the
notation x ~F(-) to mean that F is the distribution function
of x. The notation exp(A) refers to the exponential distri-

bution with parameter X, i.e. F(x) =1 -e MX,

The mean is
then % .) Brady indicates that the exponential distribution
is reasonably good for talkspurts and suggests this is because
most talkspurts are what he terms '"solitary talkspurts", i.e.
those that begin in TS and end in SS without any passage
through TT. Now for the Brady chain, given that a sojourn
in state 1 ends with a transition directly to 5, the duration
of time spent in state 1 #exp (vls + vlz). (For any finite
Markov chain, the aposterioridistribution of the exit time
from a state i, given that the transition was to j, is in-
dependent of j andewexp ( I Vij)-) 0f course, the fact that
i
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most talkspurts in the Brady model are exponentially distributed
does not by itself imply that real talkspurts can be so approxi-
mated. The latter assertion must be empirically verified. The
only point is that if the Brady model is accurate and most talk-
spurts are solitary, then the exponential approximation will
also be good.

Brady also indicates that silences are not well.modelled
by an exponential distribution and suggests that this is because
there are really two types of silences -- long silence occuring
when a party is listening and shorter silen;es punctuating the
speech of a dominant talker. But we are really interested only
in the behavior of the aggregaﬁe process A(t) and not in indivi-
dual speakers. T@e following "plausibility arguments' indicate
that the birth-death model for A(t) is reasonable to use in
the case of "large N", even if the 2-state single speaker
Markov mecdel is not good.

First consider the following, more refined, single

speaker model.

Here there are two silent states S1 and S2 and, to attempt

to capture the desired behavior, one might assume ul,A1>>u2,A2.
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The relative equilibrium probabilities (i.e. unnormalized) are

P(T) = Al lz, P(Sl) = AZ My P(Sz) = kl o - The aggregate
vector process for N speakers, [T(t), Sl(t)], where T(t) is
the number in T and Sl(t) is the number in Sl’ is a Markov
process. When T = i and S1 = j, T is being driven to i -1
by a Poisson process of rate i (ul + uz) and to i1 + 1 by a
Poisson process of rate j1 Al + (N-i-jl)lz. Now we make two

assumptions for large N.

1) T rarely becomes very large (large is for example N - 0(1)
or N - 0(+¥N)) so that N - T is also large, i.e. T and N-T
are both 0(N).

2) Given that N - T is large, the relative populations in S1
and S2 can be replaced by their equilibrium relative

. - _ N p(s L) ,
mean values, i.e. §; = (N T_stl) +P(5,)

P(S,)
Pls)) + p(sy)

S, = (N -T)

With these assumptions, we are asserting that the (non-MarkoQ)
marginal process T(t) can be approximated by a birth-death
process of the type used for A(t) . That is when T = 1, it
is driven to i - 1 by a Poisson process of rate i(u1 + pz)

and to i + 1 by a Poisson process of rate
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. p(S;) . p(S,) |
(N - 1) Al ﬁtsl)+P(52) + AZ PT52)+P(51)] . Alternatively

we are asserting, that the replacement of the three state model

by a two state model (for a single speaker) with

' >‘1 P(Sl) + )‘2 P(Sz) . S
Woeoup ot Mg, X o« p(sl) - p(SZ) is valid in the aggregate.

As another apﬁroach, we might attempt to extrapolate a
1imit theorem from renewal theory to alternating renewal processes.
This theorem is as follows (See Feller [5] p. 370.) Consider
the process obtained by "merging N independent renewal processes,
j.e. look at the collective sequence of renewal epochs.

th process 1s L and

3¢
that the individual processes are ''rare’, i.e. no single process

Suppose the mean renewal time for the k

contributes greatly to the merged process. Set a = Uy * ...UN-
Then in the 'steady state', the waiting time for the next
event in the merged process (which is not a renewal process
in general) is approximately distributed as exp(a).-

Now consider N identical, alternating renewal processes;
say each process has two .states 0 and 1. Suppose the renewal

time in state 0 has distribution function Fo with mean % ,

and for state 1, these are Fl and % respectively. Let M(t)
be the merged process, M(t) = number in state 1. We would
like to assert that M(t) can be approximated by the birth-

death model. More precisely, we would like to show that




when M = i, the time until one of the i processes in state 1
goes to 0 is approximately ~ exp(iu), and analogously for the N-i
processes in state 0. (Note that this is not the assertion

that the time until the next 1+0 transition is ~exp(iu). The

next 1+0 transition, i.e. the next time M decreases, may result
from one of the (N-i) processes in 0 going to 1 and back to 0.)
The derivation of the 1imit theorem rests on the fact that, in
steady state, the waiting time for the kth renewal process has

its so called residual lifetime distribution. (This distribution
is defined as follows. Suppose one examines a renewal process

at some time t and asks for the distribution of time Yt until

the next renewal. Then one can show that as t+=, the density

of Yt approaches l—;EQLZl where G(y) is the renewal distri-
bution and m.is its mean, m =jr yd G(y)=Jf'°° (1-G(y))dy.)
0 0

To extend this limit theorem ﬁe would have to show fhat in
the steady state and given M = i, the 1+0 waiting times

for the 1 processes in state 0 are distributed as the resi-
dual lifetime distribution associated with Fl(x)ﬁ (and analo-
gously for the i processes in state 0). Of course, once a
transition occurs, say a 1+0 occurs first, the particular
process that changed joins the other N-1 processes in state 0,
and its renewal time distribution is just the original Fo(x)
rather than the residual lifetime distribution. However, for
those 1 such that i and N-1I are both large, its effect on

the total might be negligible. That is,we might always be
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able to treat the processes as if their renewal times are
distributed as the respective residual lifetimes.

Note that if we count states S4 and S2 as a superstate in
the three state single speaker model, the resultant two state

processes 1s an alternating renewal process with one renewal

! () "2 (X))
SRy 1 HqtH, 2

time--exp(u1 + uz) and the other ~
Suppose that state T is state 1, and the silent superstate is
state 0. If the generalization of the limit theorem is correct,
then when M = i, the distribution of time until the next tran-

sition of one of the (N-i) silent speakers can be approximated

- 1 ul uz 1-1 =
by exp(a) where a = (N-1) | —— (+— + =)
[“1*“2 M 27|
) o) [xl P(S5{) * A, P(SZ)J . This is the same as
P(Sl)*P(SZ) A

the previous formula. That ié, we can view the initial approxi-
mation made by replacing the number in S4 and S, by their
respective means (given that the number in T = i) as a special
case of this 1imit theorem. (Since F1 is exp (ul + uz), the
distribution exp(i(ul + uz))is exact for the speakers in T.
This is because the residual lifetime distribution associated
with an expohential distribution is the same exponential.
distribution.)

Weinstein [1] does indicate that far N > 25-30, the birth-
death model for aggregate activity appears to be as good as

the Brady model, in the sense that if one compares simulations
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of the birth-death model on N speakers and N independent,
marginal Brady speakers, the empirical distributions are simi-
lar. (By N independent, marginal Brady speakers we mean run
simulations of N Brady models and examine the process M(t) =

number of "A speakers" in talkspurt at t.)




D. The Loss Fraction

For the birth-death model of A(t), the transition proba-
bility Pr[A(t) = &|A(0) = i] approaches a limit p, that is
independent of i. This Py is called the equilibrium or
ergodic probability of state £ (See Chapter II) and is

given by (E) (X%ﬂ)l (X%F)N'z . It admits an interpretation

as the limiting fraction of time the chain spends in state &.
This expression actually applies to more general models of
speaker activity. For example, if each speaker is modelled
‘as a two-state alternating renewal process with mean silence
% and mean talkspurt % , and if the notion of an equilibrium
is well defined for this process, then the binominal distri-

_bution for A(=) follows from independence. See Weistein [1].

Once expressions for the {pg} are obtained, one can substitute

into the formula

N
E (R‘- Cv)pg‘
2=Cv+l

M=

lpl

=
[}

1

to obtain the average loss.

Although this formula only depends on the means of the
silence and talkspurt distributions, the actual manner in
which loss occurs, e.g. 1% of each talkspurt vs. 1 of every

100 talkspurts in its entirety, depends on the complete distri-




-35-

butions. To see this, consider the following examples. Suppose
N =2, Cv = 1, and the activity of each speaker is modelled as
an alternating renewal process with silence ~ exp(A) and a
talkspurt that is a mixture of two deterministic times T and
TZ.There are two cases:

oT.l— s g .

I'>> XA > Tos where the mixing probability, a is

chosen so that at, + (1 -a)tz = % , i.e. the long talkspurt
occurs rarely. Then it is evident that one speaker can
occassionally lose several entire talkspurts while the other

ties up the circuit with a long talkspurt.

s T =T, = 1/x. In this case a speaker will never lose
an entire talkspurt since the event of simultaneous completion
of silences has zero probability. However, the mean silence
and talkspurt times are the same in both cases so the average
losses are the same.

From the previous expression for ¢ we can obtain two

simple bounds

NP.(A>C,+1)

= B+
¢ < - = N Pr(A > CV + 1)
(A -C) -
¢ > min {0, —————— P_ (A > A + 1)}
- X T -

From the properties of the binominal distribution, we know

that if N and C, approach infinity with C, = A(l +€), = > 0,
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then Pr(A > CV + 1) approaches 0. (Essentially, this is because

the standard deviation is 0(v/N), which approaches 0 as a per-

centage of the mean, A = N K%E"’ as N = @« ) Since this works

for any € > 0, it follows that we can approach the TASI advantage

N arbitrarily closely (in percentage terms) with no loss, as

A N g o+ A . . . .
N - =, Note = = m , which is the inverse of the equili-
A

brium activity fraction for one speaker. It also follows from
the properties of the binominal distribution that as N + =,
Pr(A > A + 1) approaches a positive limit. If we choose

C. =-Af(l -€), 1 > e > 0, then the lower bound is

Eﬁ Pr (A > A+1) =¢ Pr(A > A + 1). By the previous remark,
ﬁhis remains bounded away from 0 as N+ =, That is, if we
attempt TASI with Cy =-:Tl - €), then for any 1 > € > 0, the
loss is bounded away from 0 in the 1limit. For these reasons,

the ratio % =1 + % is called the maximum TASI advantage.

The following table is taken from Weinstein [1]. 1In this
A

table, Cv = 36 and — = .4

A+U
N .\ TASI Advantage Utilization = K/CV Loss
60 24 1.66 .66 3.8 x 10°°
70 28 1.95 .77 1.5 x 1073
75% 30 2.08 .83 ‘ .005"
80 32 2.22 .88 014
85 34 2.36 .94 029
90 36 2.5 1 .05
100 40 2.77 1.11 11

The recommended operating point is N = 75.
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Although the TASI advantage 1 + % can be approached in
the limit with no loss, for any finite N and N > C_ > A, the
loss is still nonzero. That is, although the mean activity
level is A, the activity process does exhibit fluctuations
above A, and this results in loss. On the other hand, if
infinite buffering of speech is allowed, then for finite N and
Cv’ we can achieve a stable queue and no loss with any CV > A.
This follows from the queuing theory " metaprinciple"
that stability is present as long as the service rate exceeds
the average arrival rate of work. If the buffer is finite,
overflow speech is lost, but the loss fraction decreases as
the buffer size increases. (0f course, the average delay also
increases.) Thus there is a loss vs. delay vs. TASI advﬁntage
tradeoff. A formal model of this single-link, buffered TASI

‘multiplexer has been developed and analyzed by Berger [6].
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E. A Voice/Data Link Model

A link having capacity C bps is .shared by N callers, whose
activity is modelled by the birth-death chain, and an infinite
data buffer. Data arrives in messages. The message arrival
point process is taken as a renewal with mean rate n messages/sec.
Message lengths are modelled as i.i.d. random variables with

1

mean length £ - bits.

Remarks

® Although the term "bit" is used for a "unit'" of message

length, we treat these lengths as continuous variables.

® A few of our results will apply to general arrival
processes, but, in the main, we will assume Poisson
arrivals and exponential length distributions. For
a queue fed by many small, independent sources, the
assumption of Poisson arrivals is reasonable because

of the 1limit theorem mentioned in I.C.

For now we assume that the allocation of capacity is
given and depends only on A(t). That is, when A(t) = i,
the data backlog is decreasing at some rate T; bps, and we are
not concerned with how the remaining (C-ri)bps is used to
satisfy the spearkers. In a later chapter we will discuss the
control problem -- how should the capacity be divided given
some cost functions associated with an allocation policy.
Now, our main concern is to analyze a given allocation. With
this assumption, a sample function of the data backlog has

the following general shape.
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v4

t

The jumps indicate message arrivals, and changes in slope
reflect changes in speaker activity.

In terms of the TDM architecture, the model is a limiting
case in which the frame time and block size are very small
compared to speaker talkspurt and silence times, i.e. we
ignore the discrete nature of the TDM architecture. As indi-
cated, this is not an unrealistic assumption.

To describe the message arrival process, we adopt the
standard "A/B" notation from Queuing Theory. That is, A is
the message interarrival time distribution)and B is the message
length distribution. M stands for the Markovian or expo-
nential distribution, G is general etc. It should be noted
that, although message lengths are i.i.d, service times, i.e.
actual times to transmit messages, are not. The dependencies
enter through the speaker activity process, which will also

be called the phase process.
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II. Notation and Background

In this chapter, a brief discussion of finite, time-homo-
geneous Markov chain is presented. . The material is to a large
extent an adaptation of Keilson [7]. The purpose is to establish
some notation and a body of ''‘quotable results".

Vectors are denoted by single underscoring, and matrices
by double underscoring. The symbol 2 peans "is defined as".
If x is a vector, the associated -diagonal matrix Xp 4 (ﬁD)ij =
xisij’ sij 4 Kronecker delta. The vector 1 is a vector of all
ones, and if n is a scalar, n & n 1. The identity matrix,
which would be ;D in the above notation, is denoted by I . If
x and y are vectors or matrices of the same dimension, the
statements x = y, X > y, X > y mean that specified relation

holds on a componentwise basis. If A > 0 is a matrix then A

is called substochastic if A 1 < 1, stochastic if A1 = 1, and

strictly substochastic if A 1 < 1.

The Perron-Romanovsky-Froebinius Theorem (PRF)

(See Gantmacher [8]).

Let A be an nxn matrix s.t. A>0. A is called reducible

iff it can be put into the form1<B >, for some square

9
D

o

matrix B, via a sequence of permutations (interchanges of rows

and the corresponding columns). Otherwise A is irreducible.




-41-

>

is called primitive if for some integer m > 1, A™ > 0.
Associate an n-node directed graph with A by placing an arc from
i+j iff Aij > 0. Then one can show that A is irreducible iff the
graph is strongly connected, and A is primitive iff the g.c.d.

of all cycle lengths is 1, and A is irreducible.

Theorem PRF

Let A > 0 be irreducible. Then A has a real positive eigen-

value Tt with the following properties.
1) If X is any other eigenvalue,then|A] < T,

2) 7T is of algebraic and geometric multiplicity dne. That is r is
a simple root of the characteristic polynomial and has a one
dimensional eigenspace. The associated right eigenvector
Xp can be chosen real and positive, i.e. xp > 0. T is the

only eigenvalue having such an eigenvector.

3) If m and M are the minimum and maximum row sums then

m < T < M. Strict inequality holds in both cases unlessM = m.

4) If there are h eigenvalues of modulus r (counting r), then
the spectrum of A is mapped into and onto itself by a

rotation of the complex plane of angle %1.
5) h =1 iff A is primitive. r is called the spectral radius

of A, sp(A); the PRF root; or PRF eigenvalue.

Remark: Since éT is irreducible iff A is (reverse directions

of arcs), we can apply PRF to QT as well. This yields possibly
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different bounds on r in terms of column sums and a positive left

eigenvector x, for A.
In the primitive case,the behavior of ém as m +~ = is
. A T
determined by r, xp and x;. Let J = xp x; , where xp and x;

are normalized so that 5{ l=1, EE Xp = 1. Let g2 =A-rJ.

Then one can show

of, gaxg=0,302=2J=0.

T
1) X, &

2) J2

[

=4, JAa=4]

r J.

3) J is a dyad having 1 as an eigenvalue of geometric and
algebraic multiplicity one; and 0 as an eigenvalue of
algebraic and geometric multiplicity n-1.

4) The eigenvalues of Q are

i) 0 with associated eigenvectors Xp and x;
ii) the eigenvalues of A other than r. If Az =) z,

A # T, then Q2(2 z) = X 2 z.

5) A" =1 J + gm, and since r is uniquely maximal, (&/r)m -0

as m - » ., This implies (é/r)m ~ J.

The last statement suggest the following algorithm for

finding Xy and r.

T
1. x5+ 1
T T
2. Xj4p ¢ (x5 A)
5. x! +x /x! -1
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xT m

o . . . -0 = -
The algorithm is essentially a computation of —T__E_I =

= | >

X
=0

By definition of J this is

T T T m
(xg Xg) Xp * x,(2/7)

%, [xpxf+ (@/0)7] -1

Since (@/T)™ + 0 as m~+ « , this converges to 5{ . Since

5{ A=r 5{, we can then find r by r = 5{ A-l. Note that

there is no particular reason to increment by only one power of
A in step 2. We could precompute Am for some large m and then
use it. The limitation is that if r > 1 or r < 1, then A"
(without scaling) may overflow or underflow the machine. One
simple way around this is to simultaneously compute large powers
of A and rescale. We can do this by successive squarings. (Also

note that Eois arbitrary as long as it's positive.)

- T
1. xl o« 1; A« A/(xDA 1)
T T
2o Xjap v (25 4y)
2
3 Si¢1 T84
4 A A. . /(xL A, . -1)
=i+1 i+1l" *=o =i+l =

One may easily check that A = A /(52 A® 1). The convergence
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rate is determined by the rate at which (g/r)k approaches 0,
this being geometric with rate rl/r where T, is the second

largest eigenvalue modulus.

Discrete Time Chains

Suppose a Markov chain has M states {1, ..., M}, and

h transition. The evolution

S(k) denotes the state after the kt
of S is characterized by a stochastic matrix A called the

transition probability matrix. If S(0) is drawn according to

a distribution w(0), then the distribution of S(k) is zn(k),
where ET(k) = ET(O) ék. The existence of a limit for xm(k)

as k » » is a fundamental question. There are three cases.

1) If A is primitive then a limitihg p exists, independent
of m(0). Further p is the unique left eigenvector --

E? A= E?’ p>0, E? 1 = 1. This follows from the fact

that ék approaches J = 1 ET as k >~ @ ., (Because of the
primitivity, all eigenvalues other than 1 are strictly
inside the unit circle.) p is called the ergadic,
equilibrium, or steady state distributionm, and the chain

is called ergodic.

2) A irreducible but imprimitive -- The irreducibility
guarantees the existence of a unique left eigenvector
ps.t. p >0 and RT 1 =1. But n(k) exhibits oscillatory
behavior, and p is not a true limit. ReCall that A impri-

mitive implies that there exist i,j s.t. j is reachable
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from i at only at periodicaIly spaced transition epochs.
(from earlier remarks, it is clear thHat one can take
j =1, i.e. there -is a "node in the graph s. t.
every cycle beginning and ending at i has length that is
a multiple of some integer > 2.) To see the oscillatory

0 1) , which

behavior, consider the simple case of A = (
' 10

' )
corresponds to the chain d:ab . In this case p = (% , %),
)

and S does spend half its time in each state, asymptotically.

« f1 1\ /11
However A" =[Z 272} + (-1) Z-7\. So if m(0) = (1,0),
1 1 B
zZ 2 Zz >
(k) = (% + ("1)k %, % - (-1)k %) which oscillates between

(1,0) and (0,1).

Remark: If p is a left eigenvector with eigenvalue 1, then
7(0) = p implies (k) =p , Vk. Ifp>0 andp' 1 =1,

then p is called a stationary distribution for obvious reasons.
Irreducibility guarantees the existence and uniqueness of a
stationary p, and primitivity guarantees that w(k) approaches
this p in the limit. We will only deal with irreducible, non-
negative matrices, so the term "stationary distribution”

will always mean '"unique stationary distribution'.
y q

3. A reducible - A is stochastic so 1 is trivially an eigen-
value. However, it can have geometric and algebraic

multiplicities larger than 1, though there is at least one
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left eigenvector which can be chosen nonnegative.

Gantmacher [8] discusses the possibilities in detail.

Continuous Time Chains

The transition probabilities of discrete time are

replaced by transition rates “ij’ where vij'i 0, =0V i.

Vii
When S = i, the next state and time of transition are determined
by a set of competing Poisson processes with rates‘vij. If
an event from process j occurs first, the state goes to j at

the time of occurrence (Since Vi T 0, there are effectively at
most M-1 processes. If Vij ® 0 V j, the state i is called
absorbing. We only consider those chains for which § vij > 0,
V i.) A straightforward calculation shows that no matter which

j "wins", the a posteriori distribution on the holding time in

i is exp (vi) where v; = z vij' That is, the minimum of the
j

exponential random variables with parameters vij is distributgd
as exp(vi) regardless of which variable rea%izes the mimimum.
Further, the probability that j "wins'" is 3%1 . This leads

i
to the following equivalent view of the chain. When S = 1, the
time of the next transition is drawn from exp(vi),and at this
time, the next state is drawn according to the probabilities
v../vi. That is, there is a discrete time chain with transition

1]

. N A L. -
probability matrix vn© (where yp = diagonal (vi) and (g)ij vij)’

and a state dependent clock determining the actual time of
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transitions.
The role of the discrete time A matrix is played by the

infinitesimal generator matrix Q 4 Y - vp. The transition

probability matrix P(t), where Pij(t) = Pr[S(t) = j/S(0) = 1i],
is the unique solution of the so called forward and backward
equations P(t)=Q P(t) = B(t) Q s.t. B(0) = L. The solution P(t)
Q"

is the well known matrix exponential exp(Q t) = =

[
.

n

I£ S(0) is drawn from a distribution m(0), then 1’ (t) = 7T (0)B(L).

The existence of limits is determined by the irreducibility
of the nonnegative matrix vy, or equivalently, by the connecti-
vity of the graph in which an arc i=-3jis presen; iff vij > 0.
If irreducibility is present, then m(t) approaches a limit
independent of_E(O),and the chain is termed ergodic. We assume
irreducibility for the discussion in this chapter. The limit

OT, p >0 RT 1 =1 and is called the

p satisfies ET Q =
stationary or ergedic distribution. (Note Q 1 = 0 by
construction, so 0 1is an eigenvalue,) Since a limit exists,
all nonzero eigenvalues of 'g must have nonpositive real parts,
else exp(Q t) explodes, and such a solution is not probabili-
stically meaningful. However, we have not introduced a notion
analogous to primitivity to prevent oscillation, i.e. to rule

out purely imaginary eigenvalues. Such a notion is not necessary
because in continuous time, any state j reachable from i, 1is

reachable within any positive time, i.e. Pij(t) >0 V t. We




-48-

derive the above propérties of the continuous time chain by

introducing the following uniformization procedure.

Let v be chosen > max {v;} , and set A = = I+Q/v .
Then AJ > 0, AJ 1is stochastic and
~ > CeyD
exp(Qt) = exp(- vt(L - A3)) = & VP LEL an®
. n=0 n:

This has a simple probabilistic interpretation. A chain is
driven by a single, Poisson clock of rate v. At each . '"bong"

a transition occurs according to the matrix A7 . Such a transition

Ve .
occurs from i to j, i # j, with probability —%l and
Vv
V. ~
from i to i with probability 1 - :i . Notice that if v > v,
v

this self-loop has positive probability. This reflects the
fact that state i is being driven faster than its 'natural”

t V..
rate, Vv,

The matrix A5 1s irreducible since v is, and X is an
eigenvalue of éc iff G(A-l) is an eigenvalue of Q. The
corresponding eigenvectors are the same. Applying the PRF
theorem to A7 and using these relations between Q and A7 , we
can conclude that

. 0 is an eigenvalue of Q with algebraic and geometric

multiplicity of 1,
. all other eigenvalues of Q have negative real parts,

. Q and AG have the same stationary distribution p.
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We now show that NT(O) exp(Q t) approaches ET as t »«=, for
anylr.T(O). -

It suffices to show that exp(Q t) approaches Jd=1 E?- Let

2= A@- J. Then (AW" = J + 2". This implies

® n N
exp (Qt) = 5 et (g4 gh =g v exp(-3t(L - @)
T n=0 :

By construction, all eigenvalues of @ are on or inside the unit
circle, but 1 itself is not an eigenvalue of & . Therefore,
the eigenvalues of I-2 have positive real parts, which implies
that exP(-Gt(L - @) r0ast >,
One useful consequence of uniformization is an algorithm
for finding the stationary distribution of Q. The previous
algorithm does not work directly on g because g contains
transition rates, and its powers have no probabilistic meaning.
However, the stationary distribution of Q is the same as that
of é; for any uniformizing rate G. The previous algorithm
does work on é; provided that it is primitive. The following
argument shows that any choice of G > max{vi} yields a primi-
tive Ag . For such a choice of v,(A%);; =1 - v;/v > 0, V i.
This implies that every node in the graph associated with i;
has a self-loop. In turn, this implies that the g.c.d. of all
cycle lengths is 1. Primitivity then follows from irreducibility.
If a continuous time chain is ergodic, the ergodic proba-
bility P; admits an interpretation as the limiting fraction

of time the chain spends in state i. For a discrete time chain,
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the ergodic probability P; is the limiﬁing fraction of transi-
tion epochs at which the chain leaves state i.(One could also
count the fraction of epochs at which state i is entered. In
equilibrium, these are the same, i.e. looking immediately before
or after a transition makes no difference.) If A7 is a uni-
formizing matrix for a Q matrix, them A7 is the transition
probability matrix for a discrete time chain embedded at ''clock
bangs'". Intuitively, é; and Q have the same ergodic probabili-
ties because (uniform rate) Poisson sampling takes a truly
"random" look at the continuous time chain. Now, if the
continuous time chain has a transition rate matrix y (so that
Q=v - ¥D)’ the stochastic matrix gﬁl YV is a transition pro-
bability matrix for a discrete time chain embedded at transi-
tion epochs of the continuous time chain as determined by the
state dependent clock. Since y is irreducible, gﬁl v has

a stationary distribution p. However, p and p,the ergodic
distribution for Q, need not be the same because the holding
times in various states need not be the same. That is, even
though the holding time in each state is exponentially distri-
buted, the means are different, so that it is not uniform
Poisson sampling. However, there is a simple relationship
between p and P which is obtained by rescaling to correct

for clock rate differences. Specifically, ET Q = QT implies
pl(y - vp) = 0T which implies p! ;D(gﬁl v) = p! vy- Since

the stationary distribution § is unique, it follows that

ET vp is a scalar multiple of ET, i.e.
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. P. V.
(p_'r ;;D)/(RT vy +1) or p; -1 1 |

Zpi vy

These issues can be seen in the following example.

Consider the continuous time chain  (@fg X) -

s
0 A A 0
2 = o ¥p ° So
w0 \ 0 H
Q = (il A) . The ergodic probabilities are Py = T%E
H “H
A
pl = .
A+u
-1 0 1 :
Thus vp™ v = which corresponds to the discrete time
1 0

This chain is irreducible with 50 = %, 51'= 1 . However, it is

2
not ergodic since it is not primitive. Here, 5i # P;

if A # u because this discrete time chain ignores the

difference in clock rates. If XA = p , the continuous time

chain is already uniformized so that ﬁi =p; = % . But the
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matrix vy~ v is still imprimitive and its eigenvalues are

If we pick a uniformizing rate v > A,u,the associated

discrete gime chain is

I_M
3

“/5

This chain is irreducible and primitive, i.e. ergodic.

In discrete time, the left eigenvector condition for

R, 2? = RT A, indicates a global balance. (Writing out the

equation gives_pi = I pj Aji') In continuous time, the

]
analagous condition is with "probability flow'. The condition
T Q= 0T translates into v = L p: vV Some chains
B 272 - P15 %1 7 5 Py Vin

exhibit a stronger form of balance, called detailed balance,

in which there is equilibrium between every pair of states --
. c T

PivVij = PjVji- In matrix terms, this is p, Q = Q" pp, where

Bp is the diagonal matrix obtained from p. This implies

~ _1 ~

Q 4 g% Q QD’ is symmetric, which in turn implies that Q -

and hence Q have real eigenvalues. Further, Q is diagonal-

izable via an orthogonal matrix x

1
which implies that x pj
diagonalizes Q.

For a general chain, balance exists between aﬁy two sub-
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sets N1 and N2 which partition the state space, i.e.

z P- z V.. = X P-: T V. .
. i . ij . i, ij
1sN1 JeN2 1eN2 Je:N1
For birth-death processes, we can choose N1 = {i]i < io}
N, = {i] 1 » io} ,  and this balance equation is the detailed
balance condition for i° and i° + 1. Since iO is arbitrary,

this shows that birth-death processes always exhibit detailed

balance.

Miscellaneous Matrix Theory

1) An irreducible nonnegative matrix is similar to a scaled
stochastic matrix. To see this, let A > 0 be irreducible.
Let T be the PRF root and D be the diagonal matrix obtained
from a positive right eigenvector Xp- (Note xp > 0=5D
invertible.) Then

-1 -1

D X
1= ——=D

o
>
(1=
>

[
(=)

I
|+=

2) Girshgorin's Theorem (See [9].)

Let M be an n x n matrix (possibly complex). Let

n

L |Mij| . Then the eigenvalues of M are contained
j=i

j#i

>

T.
1

in the union of the circles centered at {Mii} with

respective radii {r.} . Applying this to a Q matrix
i
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(for which Mii = -V, T; < vi) gives another quick proof

that nonzero eigenvalues of Q have negative real parts.

Further, if D is a diagonal matrix with positive diagomnal

terms, then the theorem shows that the eigenvalues of D - Q

have positive real parts.
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III. Statistics of the Speaker Process

A. Transition Probabilities

Consider the two state chains of a single speaker. The
Q matrix for this process is
- A
U -H
The equilibrium distribution is binominal Py = X%U’ P = T%F .
The nonzero eigenvalue of Q is -(A+u). Let fij(t) =

Pr{j at t|i at 0] i,j = 0,1. From that fact that fij(t) is

f th -(A*’u)t . (@) = .y . . = .. 1
o e forma + b e , flJ( ) pJ flJ(O) 613, it
follows tpat
= -(A+u)t
fii(t) p; * Pj €
o -(A+u)t i#3.

For the N speaker process, the Q matrix is tridiagonal with

Qii = -(N-i)x - iu

Qi,i+1 (N-1)A 0 < i<N

Q,i-1 7

(Note that the indexing runs from 0 to N to preserve the
connection with number of active speakers.) Given the single

speaker transition probabilities, we can derive the N speaker
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probabilities using the independence. The expression 1is

_ i . i-k (N-i j-k N-i-j+k
pyj(8) = I (k)[fll(t)]k[flo(t)] (j_k)[f(,l(t)] [£90 ()]
N ——— o ———
term 1 term 2

B
expression comes from the fact that given A(0) = i, it is

A
where it is understood that( )= 0 if B > A or B < 0. This

possible to have A(t) = j if some of the k active at 0 are
active at t and j-k of the inactive at 0 are active at t,
these events occuring with probabilities given by term 1 and
term 2 respectively. ’

By examining the expressions for fij(t) one can igetthat
Pij(t) is a linear combination of the exponentials e k ,

where Sy = -k(x+p), 0 < k < N. The {sk} are of course the
eigenvalues of Q. The coefficient of the s, term is just

N x j u N-j . . . . .
pj =1 peem T+ , the equilibrium probability that

A=7.

From the discussion on detailed balance, we know that Q
is similar to a symmetric matrix which implies Q is diagona-
lizable. (In a more elementary way, this particular Q is
diagonalizable, i.e. has a basis of eivenvectors, because it
has distinct eigenvalues, and eigenvectors corresponding to
distinct eigenvalues are linearly independent.) Let

-1

S = diagonal {s,} . If L diagonalizes Q, i.e. Q=L " SL
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(the rows of L are left eigenvectors of Q and the columns of ;'1

are right eigenvectors of Q) then P(t) = exp(Q t) = ;'1

515, it
ij ij
So if we can find L, we can find another representation of P(t).

exp(S t)L.

.

Since § is diagonal, [exp(S t)]ij = e

We now develop explicit expressions for the eigenvectors of Q.
The expressions are not original (see Karlin [10]), but the
derivation was obtained independently. For this reason, the

discussion is not too detailed.

We wish to find a matrix L s.t. L Q =S L, i.e. the jth

row of L, L(j), satisfies L(j)Q = sjk(j). To complete the
diagonalization, we then need to find L°!. Let ¢ = % and
redefine Q by factoring out u from each term, i.e. Q + % Q,

so that now

Q; = -(N-ide - i
Qi i-1 = i
Qi i+1 = (N-1)e

This factoring reduces the eigenvalues by u, i.e. S) now is
-k(1+e), and does not affect the eigenvectors. (That is, in

the expression for Pij(t), the coefficients of the exponentials
only depend on the relative values of A and u.)

An eigenvector L(0) is already known to be the equilibrium

_ i
probability vector, P; = (N) —E———N— . For convenience, we
i (1+¢)

N\ .
take Li(O) =(i)el. Notice that L(0) is an N-fold convolution of
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*
the vector [1 ¢] with itself, i.e. L(0) = [1 €] . The

convolution operation is associative and commutative so
[1 €lu--xl1 €] = [1 s]*N is well defined.) One can check
that [1 - 1] is an eigenvector for S, in the case N = 1. We
now show that the vectors [1 - 1] and [1 €] generate the

{L()}.

- Y = *(N-3) . *J
Claim: L(j) = [1 €] [1 - 1] /. Our method of proof
is to relate Q and L for an N speaker process to those for
an N-1 speaker process. We use a superscript on matrices and

vectors to indicate the number of speakers.

Define QN by

N _ .
§i; =1 jz1
N . .
Si; 0 J <1

Once can check that (QN).1 has ones on the diagonal, minus ones
on the superdiagonal, and zeroes elsewhere. As a change of
basis, this transformation is replacing a state j by the -sum

of all states < j. The crucial step is then to show that

~N Ny-1 AN -N
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This relationship can be verified by a straightforward computa-

tion, so we omit proof. We can now draw two conclusions.

o If o0y(s) = det(sl - Q") them oy (s) = soy_(s*(1+e))-
This follows from the fact that similar matrices have
the same characteristic polynomials, and, an expansion
of det(s; -‘§N) along the last column. The relation
between N and ON-1° in turn implies that S, = 0 is
an eigenvalue of QF, and that if sj = -j(1+e) is an

N-1

eigenvalue of Q° ~, then Sie1

eigenvalue of QN. Since the eigenvalues of Ql are 0

= -(j+1) (1+e) is an

and -(l+e), it follows that the eigenvalues of QN are

sj, 0 < j <N, as indicated before.

A direct computation shows that if

EN-l(j) QN-1 - s LN-lcj) then

LGy, = s, 1,0

or [LNh),01 @Y = sy )00

In words, if LN'l(j) is an eigenvector of sj for the (N-1)

1

speaker process, then [LN'l(j),O](QN)' is an eigenvector of

*
sj+1 for the N speaker case. Since LN(O) = [1 €] N ¥ N,

1

Ll(l) = [1 -1], and multiplication by (gN)' is equivalent

to convolution with [1 —1],Vthe claim follows by induction.
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. *(N-3) 1% :
Remark: [1 €] *[1 -1] can be expressed im terms
of the binominal coefficients and powers of €. The resulting

polynomial is a special case of the Krawtchouk polynomials (see

Karlin[10]).

To complete the diagonalization we need to find ;'1. We
now show that ;2 = (1 + e)N I.(We drop the superscript for
number of speakers so that ;2 has its usual meaning.) Thus one

-N/2

can take L(1l+g) for the diagonalization.

Claim: L% =1 + )V

The proof is somewhat involved so we '"sketch" it. First, one

shows that L is also a right eigenvector matrix. This implies

L= ;-l D for some diagonal matrix D. Then one shows D = al
for some constant a. These are the involved parts. Determi-
‘ning a is easy. L = ag'l implies L® = al. The first row of L

is [1 e]*N, and the first column of L is 1. Now ([1 s]*N)l =
(1 +g)N by construction. Thus a = (1+5)N,

The matrix L has several other interesting properties
which derive from the rich structure of the chain. They seem
to have little probabilistic significance, so discussion is

omitted.
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B. Mean First Passage Times

We mentioned that the crucial question is one of time scales.

One useful characterization of this is the mean first passage time
4

between states. Let Tij 2 mean first passage time from i to j,
+ é H N Q = = + = l
T, = Ti,i+1’ T, Ti,i-l' For the case N=1, T,,; T, T and

T10 = Ti = % . We can in fact derive recursive relations for

these quantities for a general birth-death process. Let An and

My denote the birth and death rates respectively. Then

+ 1 Hn + *
T. = + = [T__, + T ].
n xn+un An+un n-1 n

This equation says that we must

A}

a) wait until the first exit from n, the mean of this time is

1

.)\n',-l'1

and
n

b) 1if this transition is to n-1, which occurs with probability

un
+ - 14
7\n un

*
we must wait another Tn_1 + T; to first reach n+l.

Solving for T; yields

_ 1 n +
T,h=%* v Tia

The following induction argument shows that a solution to this

recursion 1is

—]
1]
u' ™3

pj,where the {pj}are the ergodic probabilities.
0
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Proof: Detailed balance shows ann = Up.1 Ppel - The basis,

T; = %— is trivial. Assuming the formula true for n-1, we
0

can substitute into the recursion to obtain

+ 1 Hn 1 n-1
W = =+ & (+——=— I Pp)
n An *n *a-1Pn-1 oj=0
1 1 n-1
=5 (1 + =— I p:;) (using detailed balance)
n Pn k=0 J ,
n
1
= z P
Anpn j=0 J
_ - 1 N
By analogous reasoning, T_ = I p:. (See Keilson [7]
n l-lnpn j=n J

for more on the actual first passage time distributions.)
The general mean first passage time between two states is now

seen to be

T.. = I >
ij ~ g2y 2 32t
i -
L. = T T j <1
1) p=j+1 L

For the speaker chain, we can say more. First observe
that in the speaker chain, An is a decreasing sequence, and
uo is an increasing sequence. For such a chain, one suspects

- - + + . . .
that Tn > Tn+l and Tn < Tn+1 . This is indeed the case.

A simple inductive argument goes as follows. (We only prove

the inductive step. The basis is a simple computation). From
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the expressions derived

A
- 1 n -
T = = + —T
n M Mo n+l
A
- 1 n+l .-
T = — + T
n+l Hn+l Mn+l n+2
. 1 An An+1
From monotonicity, — > and — > . By the
Hp Hel "n n+1
induction hypothesis, Tn+1 > Tn+2 which implies Tn > Tn+1 R

thus completing the induction. (Similar reasoning works for

+
Tn.)

For the speaker chain, An = (N-n)X and Hp = DU The birth
and death rates ‘become equal atn = N T%E = A. Forn >4, a
transition to n+l becomes an "uphill battle'" of increasing
difficulty. (Similarly for T;, n <A.) Thus one suspects that
the time to go from A ta A + O(N) becomes quite large as N-w .
An analysis of this has been done by Bellman and Harris [11].
They show that the actual distribution approaches an exponential
with a mean that grows very quickly with N,Of more interest

to us are mean passage times towards A, especially from above.

From the previous results we can derive some simple bounds.

Recall
- N 1
T, = (T p;)
n j=n 37 Pp ¥p
A
__1 n -
= an * 7 T
The first equation shows T; > %— . Combining the second one
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1

—ru ’

with the inequality Tn+1 < Tn (shown above) shows Tn < —

for n s.t. wu, > A i.e. for n > A. Let n, >mn, > A be given.

Then the lower and upper bounds show

1 1 1
T > z —_— = —_— z —_—
P1o%2 T jen,e1 ¥ Hojen,el
T ! : 1 __
n,,n, < I Ju - (N-J)A
J—n2+1
n
1 1 1 , Wwhere ¢ = A
n(l+e) z T T H
u(l+e By
jen,+1 J A

These harmonic sums can easily be bounded in terms of the
logarithm. Specifically, if x and y are positive integers,

with x <y, then
log(—111) < { 1 . log (—z )
X’ = .23 - x-1
j=x
(Logs are base e,) Applying these bounds to the previous

bounds on passage times we obtain

n, - Eﬂ

1 (nl*l) T 1,
T ologlgar )< S FEey o8 =
u n2+1 n,,n, p(l+e n, - rA]

where [ | is the ceiling function.

We now investigate these bounds as N, n,, n, approach infinity,
and n, and n, have some specified growth relative to the mean.

That is, we assume n, and n, approach infinity as
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ng = &l + £

X + £)n)

n,

=
.

where fl(N) > fl(N) >
Remarks:

e To avoid technicalities, we dnly consider "asymptotically
'~ commensurate" functions, i.e. for any functions g and h that
that we compare,we assume the ratio g(N)/h(N) goes to = ,
to 0,or to a positive limit, as N »-= . In the last case,
we write g(N) = 0(h(N)). .If g(N)/h(N)* 1, we write
g(N) ~# h(N). Clearly, fl(N) and fz(N) are at most O(N),

and f,/f, + y where 0 < vy < 1.

e We neglect all "integer roundoff' errors, e.g. A a ﬁﬂ

énd ny+l N1 since & = 0(N).
" C—
ny+I n;

With this behavior for n, and n, specified, the bounds

become
1 A+ £ 1
m log E—:_;; < Tnl’nz < mecD] log (fl/fz)

The asymptotic behavior of these bounds is as follows:

Lower Bound

® If either £ ’ﬂ'fz oTr fl(N)/N -+ 0,the bound approaches 0

1
since the argument of the log - 1. In the latter case,

this is because A dominates fl and f,.
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e In the other cases, the bound approaches the positive

constant
1 + £,/
H 1+ £,/R

Upper Bound

e This is constant only if f1 = O(fz). If flﬂ' f the

2’
constant is zero, otherwise it is positive.

e Since fl > f2’ fl/f2 cannot vanish. Thus the only other
possibility is fl/f2 + o, in which case the bound

grows as log (fz/fz)'
Thus:
e Both bounds approach 0 if f1 ~ fZ’

o If f1 = 0(N), f2 = 0(N), but f1 + fZ’ the bounds

approach (different) positive constants.

. Otherwise, they disagree in asymptotic behavior.

The upper bound is somwehat '"'closer to the truth" in the
following sense. (The proof of these results is appendix A.)

Suppose n tends to infinity as X + f£(N). Then
Region I: fEMNYMN < =
Then T. -+ 0(3:—)
n /N
Region II: £(N) = xNJN where X += but xNA/ﬁ'+ 0

1
N

Then Tn + 0¢( )

N
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Region III: f(N) = 0O(N)
Then T <2 0(3).

Now recall that the bounds on the one-step passage time

Tn are
1 1 - 1 1 1
—_— [ p—d < T K — =
au Mo — 0 WptA w(l+e) o %

Thus the one-step upper bound is correct in regions II and III,
whereas the one-step lower bound is correct only in region III.
(Since the two bounds do agree in region III, 0(%) must be the
correct behavior. We say more about the constant in the

appendix.)
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IV. Effective Service Times

Given a data service rate vector, r = (ro,...,rN), a message
length x, and an initial phase state i, we would like to know the
distribution of time it takes to complete service and the phase
state at completion (jointly). We first consider the simplest

form of this problem in which N=1, r_ =1, and T, = 0, i.e. we

o
consider a "Markovian server" who is either "on" or "off".
In this case (because r, = 0), the problem is equivalent to
finding the total time T that must elapse until the time

accumulated in state 0 is equal to x, given a start in i. Let
H (t,x) & Pr(T < t|i and x], i = 0,1

To find Hi’ we first compute a related quantity. If the chain
starts in state i, and we observe it for a time t, what is the

amount of time w spent in state 0. Let
F; (t,x) & Pr(w < x|i and observation for t].

F and H are related as follows. The event (T < t|x,i) occurs
iff the event (w > x|i,t) occurs. Therefore Hi(t,x) =
=1 - Fi(t,x) + Pr[w = x|i,t]. (There may be impulses so we
have to worry about the "="‘part of ">".)

Before computing Fi’ we make some observations about Hi'
First, if the chain starts in i=1, the amount of time needed

to finish x is the amount of time needed to reach i=0
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(exponentially distributed with mean u-l) plus the amount of
time needed to finish x given a start in i=0. Thus Hl = Ho*ue_ut.
Second, the event (T < x|0) is impossible while the event

(T = x|0,x) occurs with probability e * (the probability that
the chain first leaves i=0 after time x). Thus the function

Ho(t,x) has the following general shape

1 - Een e e ey o= e W e e

Ho(¢,x)
(x & xed)

By similar reasoning, Fo(t,x) = 1 for x >t and has a jump of

height et at x =t .

- - ™ - . e T e g o,

Po(tlx) : I e- 2t
(t Fixed)

t X
And F,(t,0) = et the probability that the chain leaves

state 1 after time t so that no time in 0 is accumulated.
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F(t,%)
(t fixed)

Po and Fl are related by the following integral equations which

can be obtained by conditioning arguments.

t
F,(t,x) =[ )‘e')‘v Fy(t-v,x-v)dv + e Mt I(x > t)
0

t
Fy(t,x) = j{) ne ™V Fo(t-v,x)dv + e HF I(x > 0)

where I( ) is the indicator function.
Taking the Laplace-Stieltjes transform on x and the Laplace

transform on t(t&?z, x &3s) gives

N ) 2 A 1
Fo(zis) = Fl(z’s) A + S + z * )\+s + Z
N 2 1
= U
Fi(z,s) = Fo(z,8) o= * 773
- A+t o+ Z

which imply Folz,s) (A+s5+2)+ (U+Z) - AW
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As one check on correctness, we can compute the expected amount
of time spent in state 0 as a function of the observation time t,

and then take its Laplace transform. This should equal

- %g %o(z,s)

s=0

The expected time spént in 0 given a start in 0 is

t

E /" I(state(v) = 0|state (0) = 0)dv = /* p__(v)dv,where
0 0

Poo (V) is the tranmsition probability,p  (v) = f%i + %¥ﬁ e (A¥u)v,

ut A -(A+u)t
— [1-e ].
E O

(See Chap. III .) Thus the expected time is

This expression can be interpreted as pot(po = equilibrium fraction

of time spent in 0) plus a '"bias" term reflecting the start in 0.
A

The asymptotic effect of this bias is to add a constant —
(A+u)

The Laplace transform of this is

AL L. _—2')\ L. 1,

and one can verify equality.

~

Inverting the double transform F (z,s) on the s variable

yields
2 A+ + Z (A+ u + 2z
Fo(z,x) = . E —= exp(-z B x).

The inversion on the =z variable is considerably more tedious,
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The answer is

s e_x#é(t'X) + e-xxe-(k_X)[Cp(trx)]’ 0 f_ X i t
£,(e,x) = I .

_ I,(2/3)
where ¢(t,x) = A 10(2/u)) + Ag X —7::—— , u o= Aux(t-x), IO

‘ u
and I, are modified Bessel functions. Because we took Laplace-
Stieltjes transform on the x variable, fo(t,x) is a probability

density as a function of x for t fixed.

From the previous discussion then)Ho(t,x) = fm_ fo(t,v)dv.
, x

There appears to be no simple form for this integral. However,
one can compute the mean of T, i.e. the mean total time needed
to complete the amount of work X given a start in 0. From
probablllty theory this is [1 - H (t,x)dt. The evaluation
is tedious, so we only give the answer -- (1 + —)x. This may be
somewhat surprising at first in that there 1s no "pias" term.
The foliowing argument shows that this lack of bias and lineaxr-
ity occur because T; = 0 and because of the memoryless property
of the exponential distribution. Consider the time to complete
an - amount of work 2x, given 2 start in state 0. Because Ty =0,
work is only done in state 0, SO that when the first X is
completed, the chain must be in state 0, Now suppose the

first x is completed after some time u has elapsed since the
chain entered state 0 on the visit of completion. (This need

not be the initial visit.) Because of the memoryless property,
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the time to complete the second x is independent of the past,
j.e. is independent of u and the number of the visits. Thus
the time to complete the second x is a probabilistic replica of
the time to complete the first x. Since x is arbitrary, this
shows that the mean completion time is linear in the amount of
work, given a start in state Q. For large x, we would expect

that the mean time to complete x is approximately sﬁ = (1+%)x._

o]
Combining this with linearity, it follows that (1+ %]x must be

the exact expression.

We can in fact obtain the Laplace-Stieltjes transform of

-zt

Ho(t,x). Let Ho(z,x) = fo e dt Ho(t,x)

Recall that H_(t,x) = /. £ (t,v)dv. For t fixed, £ (t,V)
X

is a pdf having an impulse of wight e'At at v = t,and is 0 for

v >t. For v < t, it has a term (the Bessel function part)

which we call go(t,v), defined for v < t. Then

e I(t > x) + I g (t,v)dv x <t

H,(t,x) = |
0 x >t

Again the calculation is laborious but straightforward so

details are omitted. The answer is

z(z+A+u) x)

Ho(z,x) = exp(- 255
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Now we may consider x itself to be random with distribution
B(x). In terms of a queue, the time needed to complete x is the
effective "'service time'" of a message Which has a random length
distributed at B(x). (If the message arrives when the system is
empty, it may find the server in state 1. 1In this case, the
service time will have an additional component -- the time for
the server to return to state 0.) The Laplace-Stieltjes trans-

form of the effective service time starting in state 0 is

/2 d B(x)dx 7 e %t Hy (t,x)dt = /7 ﬁo(z’x)d B(x) = B(E(ZtAtu)
0 0

0 Z+y
where B(z) = 7 e Xy B(x)dx. The mean effective service time
-0
. _d oz (z+A+u) - M3 X =/
is then - B(—LETE__—) (1 + u)x , Where Xx 16 xd B(x).
z2=0

This is consistent with previous results. If B(x) e~ exp(£&)

the formula for the transform is (ﬁEg;?%E+z)+kz

Because of the memoryless property of the exponential
distribution, we can derive the last expression more directly.

Let Pi(t) = Pr(T < t|i, x~B(x)], i = 0,1.

Then
Po(t) = ft Xe'xv [Pr(x < v) + Pr(x > v)Pr(T<t-v|1,x>v)]dv
0
N —————
12 e N Pr(x < t]dv

t
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The crucial simplification is that the underscored term is just

Pl(t-v), because of memorylessness.

P (1) = £5ae V1 - &7V 4 etV p (t-v)ldv + (1 - e H)e?t
0
B, (t) = rt ue-uv-Bo(t-v)dv.

t

Taking Laplace transforms and solving for Po(z) yields ﬁo(z) =

E(z+p) 1
(z+u) - (z+g)+az ° 2

. As Po(z) is the transform of the distri-

bution, we conclude that the transform of the density is

zPo(z) which agrees with the previous expression.

The completion time analysis for exponential length messages
can be extended to the general case of N speakers and arbitrary
service rates {ri} . Let Ti(E) denote the completion time of a
message whose length is exponentially distributed with mean g'l

given a start in phase state 1. And.let i(z,&) 8

_é (To(z,a),...,TN(z,a))denote the vector of Laplace-Stieltjes
transforms. Then a conditioning argument similar to the one
above shows

[z L+ &zy - Q] i(z,E) =g

where Q is the generator for the speech process, and r, 1is the

diagonal matrix obtained from the service rate vector r.

Using the transform to extract moments we obtain i(s)

(T (8) s Ty(8)) = (Exp - Q7F

= Z(E;D - g)'z 1. If a message initiates service in a state

1 and T7(8) = (T, (£),..,T}(2))
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chosen according to the speaker equilibrium distribution, p, then
its mean service time is ET.. I(E), and the variance is ET.Q?(a)
- (pT -f(a))z. It is possible to show that if A, u > =, with %
remaining fixed then i(Z,E) approaches ——EEE: 1. That is, the
z + &T

service rate effectively becomes deterministic at the average
rate T = Z? - p, so that for any i)Ti(E) approaches an exponential.
with mean (E?)‘l in distribution. This is because the speaker
process passes through its states "infinitely" often during a
service, and the fraction of time it spends in state i approaches
.Pji-

The previous characterization immediately generalizes if
we seek the joint distribution of completion time and the speaker
state at completion. Let Tij(t,a) = Pr{message is completed¢
within time t; the completion state is j|initial state i] and

let %ij(z;a) be the Laplace-Stieltjes transform. (Note Tii(t,s)

is a possibly defective distribution, i.e..[: dt Tij(t,s) <1,

since completion need not occur at j). Then a conditioning

argument shows
(2 L+ &xp - Q) L(Z,8) ='¢xp -

Note that T(0,&) is a transition probability matrix on the

speaker state space itself, i.e. gi.(o,s) = Pr[message completed

J
in j|start in i]. We will use T(Z,g) to compute waiting times

in Chapter VI.
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V. The M/M Case

A. Orientation

In this &hapter, we assume that data arrivals are Poisson
with rate n , and message lengths ™exp(§). r = (ro,...,rN)
denotes the vector of service rates. With these assumptions,
the vector process [A(t), K(t)], where K(t) is the number of
messages in the system, is a Markov process. Its state diagram

is a two-dimensional grid with a state (i,k) having transition

‘rates
(i,k) - (i+1,k) at rate Ai = (N - i)2A
(i,k) - (i-1,k) at rate By o= iy
(i,k) - (i,k+1) at rate n

(i,k) » (i,k-1) at rate er; if k > 0

LI }
N"l a & ¢
A A" : ]
\
4
o > a0

K:O I o o _&
Notice that the last transition rate r.é has units of messages/sec.
(as it must) and depends on T, and & only through their pro-

duct. For convenience, we take £ =1.
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In looking at the diagram, we notice that if a column
is viewed as a superstate, the "column process'" is a multidi-
mensional analog of the classical M/M/1 birth-death process in
that the transitions into and out of any column have the same
Sstructure (except at K=0 where the process is truncated). The
voice/data model is in fact a special case of the more general
quasi-birth-death (QBD) or column continuous processes. These
are ;ime-homogengous, discrete-state )bivariate Markov chains
[X(t),Y(t)] for which

1) A transition (xl,yl) - (xz,yz) can occur only if

ly1 - yzl < 1, whence the term column cuntinuous.

(Also called skip-free left and right.)

2) The rate of a transition within a column,

(xl,y) - (xz,y), is independent of y.

The QBD processes for which the inter-column rates, i.e.
(xl,y) -+ (xz;ytl), are also independent of y (except at
boundaries) constitute an important subset. We term these
homogeneous QBD processes with the understanding that complete
spatial homogeneity might not be present because of boundaries.
The voice/data model belongs to this subset and is even more
restricted because (xl,y) - (xz,yil) can occur only if
X] = X,. This restriction coupled with 2) shows that the
marginal process X(t) (in our case A(t)) is a Markov process.
In this sense, the speaker process is an ""independent'" phase

process ''modulating" the transitions of K (though A and K
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are generally not statistically independent). Notice that in
the general QBD process, the marginal process X(t) is not Markov
because the rate of transitions (xl,y) - (xz,ytl) can depend

on y. An exception to this is the subset of truly homogeneous
QBD processes, i.e. those in which the state space of Y is all
the integers. For in this case, changes in X are independent
of Y.

The homogeneous QBD processes in general can be viewed as
multidimensional analogs of the classical M/M/1 birth-death
process (i.e. even if (xy,y) + (x,,yzl), X, # X, is allowed).
Thus one might expect ergodic distributions that are matrix
analogs of the geometric or truncated geometric ergodic distri-
butions of the M/M/1 queue. This is indeed the case.(Perhaps
we should say that, a posteriori,the following makes sense.)

Assume ([X,Y] is a homogeneous QBD process in which the state
space of X is {0,1,...,N} -and that of Y is {Q,1,2,...} . Let
e(y) = (eoy”"’eNj) denote the vector of the joint ergodic

probabilities for the yth column. Then we will show that

eTeo) &

sT(y)
Where 8 is similar to a strictly substochastic matrix. (Hence
8's eigenvalues are inside the unit circle, as they must be
for this to be meaningful.) This form for the solution is
apparently due to Evans and Wallace. (Our historical infor-
mation was obtained through Neuts [12] and Keilson [13].

For more references and a more complete study of matrix-geometric
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methods see Neuts [12].) Independent derivations were sub-
sequently obtained by Keilson and Neut8. The approach was
brought to our attention by Keilson who was working on similar
Markov models in other contexts when we brought the voice/data
problem to him. An exposition of some of his results can be
found in [14]. (In this paper, the roles of columns and row
are reversed from our usage, so he terms them row continuous.)
In the remainder of this chapter, we explore the applica-
tion of the matrix geometic method to the voice/data model.
As indicated, the general-. theoretical questions have largely
been solved. However, the voice/data model is a restricted
case, and we have been able to characterize certain quantities
in some detail. To maintain the continuity of development, we
do not always explicitly separate those theoretical results
that are particular to the voice/data model (and hence new to
us). Where possible, we provide references for previously
known results. Undoubtedly, we have overlooked some authors
and apologize for this. But the queuing theory literature is
so vast and diffuse, that a complete literature search is
not appropriate unless one is doing a survey paper. This
was not our intent. .

Our development will use Keilson's approach as a theore-
tical guideline. This is based on the so called compensation
method. (See Keilson [15].) Before proceeding with this, we
briefly discuss the z-transform approach.

One first defines the partial z-transforms
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@

F.(z) = T e,
1 k=0 3K

(which are difference equations of degree 2 in both the i and k

zk , and then using the global balance equations,

coordinates) obtains the relation ET(z)A(z) = gT(O)QCZ), where
- E(z) = (Fo(z),...,FN(z)), and the entries of A(z) and B(z) are
polynomials in z of degree 2 or less. Thus ET(z) = gT(O)g(z)é'l(z).
The matrix é'l(z) has poles in the region |z| < 1, and one can,

in principle, solve for e(0) by using the requirement that F(z)
must be analytic for |z| < 1. (The analyticity condition places

N constraints on e(0). The (N+1l)st comes from a "Eonservation
equation.)

This approach shows that the Fi(z) are rational functions and
hence that the solution is a sum of geometrically decaying terms.
(The decay rates must be eigenvalues of §.) However, one cannot
easily extract from the transform solution the manner.in which
the (possibly complex) roots combine into a real matrix repre-
sentation 8. Also, the numerical inversion of the z-transforms
is less attractive than the methods to be presented.

The transform approach was our first approach, and later we
found that the same results had been obtained by Yechiali and

Naor [16], [17].
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B. Stability and Existence of Ergodic Distributions

In the general study of queues and backlog processes,
"stability'" is usually present iff the ''service rate" exceeds
the '"arrival rate'". The precise mathematical formulation of
these notions depends on the particular model. Typically, a
weak notion of stability is that the emptying of the queue or
backlog should be a recurrent event. One can then further
require, for example, that the waiting times convergevin
distribution to a random variable having a certain number of
moments etc. For many classes of queuing models, the various
requirements are equivalent, but it is not our purpose to
discuss this general problem.

For Markov chain queuing models, stability means that the
Markov chain is ergodic. For finite Markov chains, ergodicity
reduces to the ﬁurely structural question of irreducibility,
but for infinite chains one must further require some ''net
return force toward the origin'". 1In the case of Markov queuing
models, this translates into the arrival rate < service rate
condition. The voice/data model poses no structural barriers
since there is a path between any two states provided that at
least one r; > 0. The other condition is satisfied if what we

term the drift n - Lp; T; =n- T, is negative, and we assume

i
this throughout the development. As our interest is in computing
various statistics and not in '"'existence' results, we do not

formally prove that the negative drift condition is necessary
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and sufficient. At various places, "plausibility arguments"
will become apparent, e.g. as the drift approaches 0, the
maximal eigenvalue of § approaches 1. For a formal proof and
general discussion of queues with dependent interarrival or

service times,the reader is referred to Loynes [18], [19], [20].
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C. Derivation of Solution

First consider the process [A(t), KH(t)] obtained by re-
moving the boundary at zero and extending the columns out to -.
This process is spatially homogeneous in the k variables
because the transition rates depend only on A. Because of
homogeneity, the ‘transition probability Pr[A(t) = j,kli(t) =
k, 1A(0) = i,kH(o) = k,]depends only on k; - k . We take kH = 0

as the origin and definegﬁk,t) by

g;5(k,t) = Pria(t) = j,KH(t) = k[a(0) = 1,x%0) = 0]

The asymptotic behavior of KH(t) as t - » depends on the drift
(n - I)T p- If the drift is negative, the homogeneous process
drifts to Kl = -w .

Define the k step right first passage time density matrix

s (k,t) by

s’i'j (k,t)dt = Pr{k =k is first reached at t,t+dt and A(t) =
ilacoy = 1, x70) = 0]

for k > 1. The special case i+(1’t) is denoted by ;+(t).

Similarly define s (k,t) for k steps left, i.e. k < -1. Using

conditioning arguments, one can show
k times

1]
~
ot
ct
—
|

= s (t)*...* s (t)
=T g(t) k21 gt
s (k,t)» g(t) k < -1

e

ba
~\
=
+
_—
1

g£(0,t)

where * denotes the matrix-convolution product,



85-

[2()x B(E)]55 = I [a;, () by (-m)dr

Let g+(k,w),g'(k,w), Y(k,w) be the Laplace transforms of ;+(k,t),

;'(k,t), g(k,t) respectively. Further let g+(w) e g+(l,w);

g (w) & g (1,0); y(w) e y(0,w) and let g+ 8

g (w=0); g~ 4 g (w=0),
X g yY(w=0). Note for example, g+ =j: =s:'(t)d'c so that the ith
row-sum of g+ is the probability that the homogeneous process ever
reaches the set {(+,1)} given that it starts in (i,0). (The set
{(+,i)} denotes the set of states in the column KH-=i.) An
analogous interpretation applies to g'. Because the drift is
negative, g+ is strictly substochastic as thé process may o
never reach KH =1 from kH=0. similarly, g  is stochastic since

the process kHdoes eventually decrease,with probability one.

In the transform domain, the previous relations become

'k, = (g w1"
g (k,w) = [g )]k
(g () 1% x(0,0) k> 1
X g @) 1% 10,0 k < -1

Now to the crux.
Keilson [15] has shown that if a boundary is inserted in

the homogeneous process at kH =0 then

1) There exists a '"compensation measure'" [(k), -= < k

/] -aY

e(k) is a convolution in k of y(k) and T (k). (x(k)

-]

y(k,w=0) = j; g(k,t)dt.)
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Specifically

Ty = & TR y(k-o) k>0,

2) I(k) = 0 except at k = -land k = 0 so that
T = 1Ty + IT(-1)y(k+1)
3)  IL(-1) #T(0) =0, I(-1) < 0 so that
eT k) = rT(0) [x(K) - y(k+1)]
Using the previous relations we then obtain

k+1

el (k) rfoyghH* - @H* iy

Ty - s*1ehH*

= e (0)8

where ET(O) = E?(O)[; - g+]Y and § = l- o" Y . Notice that 8§

. - . . - +
is similar to the strictly substochastic matrix g . Hence the
eigenvalues of § are strictly inside the unit circle. This
-]
implies that the series z gl is convergent and equals

_ 2=0 o
[1-8] 1 From the relation Z e(k) = p, we then obtain

g?(O) = RT(; -9). Thus we do not need to explicitly find the
compensation measure [ (0) if 8 can be found. At this point

we need to find y and g+. It turns out that y is easily

o

. + . .
obtainable once g and are known, so we first proceed with

+ -
g and g .
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.Remark: The compensation technique also applies if K has

a boundary at some positive integer, say M. In this case, the
compensation measure also has mass at k = M and k = M+1.
Thus one obtains a term of the form LT(M)[l(k-M) - y(k-M-1)],

and this can be expressed in terms of y and powers of g'.
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D. Calculation of g: and g

For the homogeneous process define the matrix g by

%55 = Pr[KH departs k = 0 by going to kH =1, A = j when
this occurs A(0) = 1

k7 (0) = 0

Similarly define 8 forgoing'to KH =-1. Notice the distinction

between g and g+ and 8 and g . The g's are first passage
probabilities whereas g and g are the K@ =+1, K© =-1 probabili-
H

ties when K leaves 0 (either to KH =+]1 or KH_=-1). If either
n#0orzr #0, then g + 8 is‘stochastic since the process must
eventually leave k! =0. The matrix a + 8 is in fact a transition
probability matrix (on the speaker state space) for the embedded
discrete time chain defined at the instants of changes in KH.

As one suspects, there is a relationship among the g, 8, and

g's. Specifically

-+

g =

(
¢

Ie
lfoo

la

+
- +

+)2
g = 8 B

[[%]
la

The first equation says that the first passage to KH =1 may occur
a) at the first departure from KH =0, the o term, or b) if

the first departure is to K =-1, reflected by the B term, then
two first passages to the right are required to reach KH==+1.
Because of homogeneity, the transition from -1 to 0 has the

same probabilistic structure as the one from 0 to 1. Thus the

(g+)2 appears. A similar interpretation applies to (g')z.
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The iteration g ., =g *+ 8§ gi. gy = 0 (or reverse g and g for

g') does converge to the probabilistically correct solution. This
algorithm is discussed later.
The matrices g and 8 can easily be found. By a conditioning
argument
M

B e +  —— N . + D
04 Q V. §
1

Q. . . .
ij vy i+l vy i-1,] ij

where v, = n+ki+ui+ r, = total exit rate out of a state (i,-)

and Gij = Kronecker delta. In matrix form these equations are

-1
g = (@p*zIp-9 "o

where Q is the generator for the speaker process. Similarly g =
(ap * Ip - g)'l Iy- We can put these matrices into a form which
more clearly indicates their probabilistic meaning. Let

vy = (vi Gij) and let 2 = 2‘+ diag(ki * ui). Then we can write

the equations as

-1 4A,-1 -1
a = (L-2p D ¥y Ip
B = L-yltotyt

Essentially, we are considering the embedded discrete time

chain. The matrix gD-l Q 1is a strictly substochastic matrix
giving the probabilities that when a transition occurs, the KH
coordinate does not change. AnalogouslygD.1 np and ;61 Ip
give the probabilities that when a trasition occurs, KH goes

to +1, -1 respectively. Since ;D'l Q is strictly substochastic,
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-1 2.-1 _ ®
(L-yp U7 = I (y
of these equations as accounting identities is as follows. A

'l.g)l . The probabilistic meaning

departure to KH==+1, for example, occurs when there are, say,
2 transitions at which KH does not change -- this is reflected

-1 2.2
by the (vp =~ Q)
ga_l Ip is the appropriate transition matrix. A simple

calculation will indicate that g+ 8= (L - vy ' Q"

term--followed by a departure to kH=+1 -- for
which
- -1
¥y @p*Tp)
is stochastic.

So far, we have not really relied on the particular proper-

ties of the voice/data model, except in using the relation
[=-]

£ e(k) = p to expressg(0) in terms of 8 and p. The procedure
ggofact, does work for general, homogeneous QBD processes. In
the general case, Q is the generator for some.Markov chain
defined on{0,1,...,N}, and Iy and Iy are replaced by general

transition rate matrices nand r, e.g. n is the rate at

i,,1i

1°72
which (il,k) > (iz,k+1) transitions occur. We later show that
e(0) can be characterized as a left PRF eigenvector of a sto-

chastic matrix in the general case, and e(0) is then uniquely

specified by the requirement the r e; =1lor

i,k 7k
-1

ET(O) [I - 8] 1l = 1. But as indicated, the relation z e(k) = p,

where p is the stationary distribution of the Q matrix in
question, is generally not true since changes in the marginal
"row process' are not totally accounted for by this Q. Also,

the simple drift criterion n- ZT p <0 1s replaced by a more
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general condition.
For the voice/data model,we can prove the following

assertions, assuming n > 0, r > 0.

1)

e

>0 8>0

2) - > 0 o >

o

3) The eigenvalues of g,8 and ¢ + § are real and positive

4) The eigenvalues of g+ and g' are real and positive.

Proof:

1) In the speaker chain, any state A = j is reachable
from any state A = i. If n > 0, then the transition
(j,0) - (j,1) can occur V j. So the sample paths that
start in (i, 0), wander in the set {(-,0)} until j is
reached, and then go to (j,l) at the next tramnsition,

have positive probability, i.e. a..

ij >0, Vi,j.

Similarly, r > 0 implies g > 0.

2) From the matrix quadratic equations for the g's, it

follows that g~ >ga, g > 8, so 2) follows from 1).

Remark: It follows from 1) and 2) and our discussion in
Chapter II,that g, 8, g+, and g' are primitive. Properties 1)
and 2) are not too special. In the general homogeneous QBD
process, they will follow from the irreducibility of the
transition structure within a column and the condition

1Tnp > 0% ana 2’ ¢ >0f

» where n and r are the general rate

matrices. The condition lT g:>gT simply means that for each j,
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there is some i s.t. an (i,0) - (j,1) transition is possible.

(Similarly for r.)

3) We use the following lemma.
Lemma: If ﬁl and ﬂz are two positive definite matrices
(symmetry is included in our definition), then the eigen-
values of the product Ml Mz are real and positive.

(Note ﬂl MZ need not be positive definite.)

Proof: M; M, x = €x implies M, x = ¢ &i X, which implies
* -
x ¥ M, x = e;lT Mll X, where * = complex conjugate. Now, M,

positive definite implies gll positive definite, so by the

%* * -
definition of positive definite Xx T M, x and x T gll X are real

and positive. Thus ¢ must be real and positive.

(If either ﬂl or leis only semi-definite, a similar result

holds with > replaced by >, though the proof is more complicated.)

1

Nowleté=(gD+£D-g) and!;:EDi—gﬁ

[SIE

x>

» where Bp is
the diagonal matrix obtained from the speaker ergodic distri-

bution p. By Girshgorin's theorem, the eigenvalues of A have

positive real parts, and henée the eigenvalues of i and A'l

1
-2

NI=
O

must also. By our remarks on detailed balance, Bp° 2Py

is symmetric, and hence A and é_l are, since pn and r, are
diagonal. Thus é-l is positive definite. Now g = é'l np which

. ~_ 21 1 ~
implies pp* apy® = = A 1 o 2 0 EDZ = (A) 1 oy and similarly

for 8 = A " (o *+ Ip). By assumption,

n>0,1>0, sonpy, Iy, and oy + I are positive definite.
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Invoking the lemma, we can conclude that g, 8 , and

a + B are similar to matrices having real positive eigenvalues.

4) We only prove the result for g+ since the proof for
¢  is the same with rhe roles of g and 8 reversed. For

. +
convenience, we drop the "+" from g .

~ o~
+ 8 gz where

fa
([0 ]

By previous remarks, g =g + § gz, so
M=pp

~
eigenvector of g with eigenvalue €. Then we obtain ¢

-l 1
‘M an, for M = g, 8, or g. Now suppose x is an

x=
ax + e? B x. Recall from the proof of 3) that ; = (=A':_)'1 1y
1

~

and 8 = (A) Ip, Wwhere A is positive definite. Thus € x =

! (np + e? Ip) x, which implies € A x = (np * e’ Ip) X.
%*
Multiplying both sides on the left by x T, we obtain
cC,eE=cCc_ + C ez where c, = x*T R X, C, = x*T T, X, C_ =1
1 ) 2 ’ 1 = == "2 = =D= :

o
(We assume x has unit norm.) From the definition of A it
*T 1

-

= = - 2 -2
follows that ¢; = c  + ¢, + c;, where c§ X " Py Q B, ° x-
-1 i
From our remarks on detailed balance, BDZ Q pp * 1is symmetric.
Since Q has nonpositive eigenvalues, it follows that cs > 0.
Further, c, and c, are positive since n > 0, r > 0. A

straighforward application of the quadratic formula then shows

that both roots of the polynomial must be real and positive.

Remark: This indicates that (¢)¥ will not exhibit

"oscillatory behavior'" as k -+ o=,
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E. Calculation gg X

The transition probability matrix g{t), Bij (t) = PrA(t) = i,
Heey= 0]A(E) = i (o) = 0] satisfies integro-differential

equations

g£(t) g(t)[Q - np - Ipl * (g(t)gp)*s ()7 (g(t)zp) *s+(t)

g(t) g(t)(Q - nop - pl * s (£)*(g(t)np) * gf(t)*(g(t)gn)-

(* = matrix-convolution product)

These equations can be derived using the conditioning arguments
relating g(t+dt) to g(t). In both equations, the first term
comes from the fact that (j,0) can be reached at t * dt by
being in (j-1,0), (j,0), (j*+1,0) at time t and then having a
transition up, no transition, transition down, respectively.
The matrix [Q - Op ~ Ipl incorporates these possibilities.
The other terms are in general different in the two equations
since matrix multiplication (and hence *) is not commutative.
The two equations derive from different conditioning arguments.
We sketch the two for the “& Ip s™" term.

In the first equation, "gn s " is obtained as follows.
We wish to compute gij(t+dt). .One ''set of paths" starting in
(1,0) at O and reaching (j,0) at (t+dt) 1s the following. At
some intermediate time t -t , the process is in state (2,0)»
with probability gil(t—r). In the next dt it goes to (%&,1)

with probability ndt. Then the first return to the set
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{(+,0)} occurs <t,t+dt later, and the entrance state is (j,0),

with probability S;j(T)dT . Therefore gij(tfdt) contains a term
of the form E ndt .[ogil(t-T)slj(T)dT so that gij(t) contains a

term nE 8ig * sij‘ Note that there is no double counting

because sij is a first passage time density.

In the second equation, the term is obtained as follaqws.
The state (j,0) can be reached at t + dt if the process is in
(j,-1) at time t,this occurring with probability gij(-l,t),and
then a transition to (j,0) occurs (with probability ndt). But
from previous results g(-1,t) = g_(t)*g(t).

Transforming the first equation yields

wy(w) = L =x(@IQ - oy - 2yl * x(w) [npg (w) + £pg” (w)]
As y = L(m=0), we conclude,

- +,-1
Y = [op+*+zIy-Q-0p8 - zpel

The existence of y, i.e. the invertibility of the matrix in

in brackets, can now be shown. Let v. = n+ T.

i rry v (N-ix + 1y

¥ = diag(vi). Then the matrix in question can be rewritten
_lA - + ~

as yp[L - B] where B = vy "(Q *+ nopg *+ Ipo ) and Q = Q +

diagonal ((N-i)Xx + iu). B is an irreducible nonnegative matrix,

and because g+ is strictly substochastic, B is also. Thus

sp(B) < 1= 1 - B is invertible.

Now Yij = fomgij(t') = E{]:dtI(KH(t) = 0, A(t) = j|KH(0) =0,

A(0) =i)}, where I( ) 1is the indicator function. That is vy .
'd lJ
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is the expected amount of time that [A(t), KH(t)] spends in
(j,0) given a start in(i,0). With negative dfift, KH(t) +> -
a.s., so that the column I(H = 0 is transient. The existence

of y shows that gij(t) goes to 0 rapidly enough to be integrable.
From this, it follows that y(w) = j{ e'mtg(t)dt is finite
: 0

as well for Re w > 0.
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F. Alternate Characterization gf e(0)

For the bounded process, let £(t) be the transition

probability matrix for the K = 0 column
fij(t) = Pr[A(t) = j, K(t) = 0]|A(0) = i, K(0) = 0].

If the drift is negative, the column k =0 is recurrent in the
bounded process, and fij(t) - ej0 as t » », independent of 1i.
£(t) satisfies the followed differential equation which can be

derived similarly to the one for g(t).

£(r) = £(8)[Q - npl * £(t)pp*s (1)

Note the Ip terms are not present (except through ;'(t))because
of the boundary. Also, for the bounded process, the one step
left (i.e. k + k-1) first passage time density for any k > 1

is the same as that in the homogeneous process because neither
is bounded above. Thus the ;'(t) from the homogeneous process
is the correct quantity to use in the above equation. It

follows that f(») =1 ET(O) and ET(O) is a left eigenvector

eT(0)(Q - np *npe’l = 0.

From the discussion on uniformizing a chain, e(0) is also a left
eigenvector with eigenvalue 1 of the matrix

1 1 -y A o] +, _
(L+350Q-n0p] *+350p2) = (g, +2) = A, where
v > max(n + (N-i)A + iu). Since g is stochastic, the matrix A
is stochastic and is a transition probability matrix for the

discrete time chain embedded at clock "bong'" instants when the

process enters a state in the column K = 0. That is (év)ij
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is the probability that at the next clock 'bong" for which

the chain enters a state (¢,0), it enters (j,0), given a start
in (i,0). Note that this may be the very next clock bong,

with probabilities given by the gS term. (Again (ag)ii > 0 if
v>n+ (N-i)X + iy so (i,0) itself can be the '"entrance' state

at the next bong.) Or, at the next clock time, the chain may go

n

to (i,1), with probability, T, in which case the state of return

to{(-,0)}is determined by the g;j‘s.
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G. Algorithm for Computing g: and g

(Much of this discussion is due to Zachmann [21] and
Neuts [12].)

Let So be the set of substochastic matrices (A1l < 1),

S1 the set of stochastic matrices, (A1l = 1), and s2 the set
of strictly.substochastic matrices (A 1l < 1).. Note

S° Q-Sl U SZ’ and the containment is proper. We now study
thé equation g =g + B 22 where ¢ B8 e S, ¢ >0, 8 >0,

@ *+ 8 €5;. (Technically, the assumption g > 0, 8 > 0 could be
replaced by ¢ > 0, 8 > 0, and weaker assuptions about the
irreducibility/primitivity of g or 8 or even just g + 8,
depending on the result. For our purposes, such tgchnical
details are of little added value, so we assume g > 9, 8> 2.)

Let f be the function £f(g) = g +§gz. Note that if
g eSi, then £(g) esi, i=20,1,2. By Brouwer's Fixed Point
Theorem, f has at least one fixed point in Sl.(S1 is compact,
and f is continuous.) We investigate other solutions of
probabilistic . significance.

Consider the iteration Tye1 = f(gk). We denote .k applications
of the iteration by Ak(g) so gy = Ak(go). Let m denote the left
eigenvector of the stochastic matrix g + 8,associated with the
PRF root 1, s.t. lT 1 =1. Recall that g + 8 has an inter-
pretation as a transition probability matrix of an embedded

chain, so 7 is its stationary distribution. The convergence

properties of the algorithm are as follows:
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1) If 9o = 0 then the algorithm converges to a limiting

matrix A?(g)'eso, and A‘(g) is a fixed point of f.

2) If LT(gﬁg)l > 0 then A" (Q)e S, and is the unique fixed
point of £ in S+ (Thus it is the one guaranteed by

Brouwer's theorem.) Further, for any g e SO,AQ(go) = Am(g).

0
3) If lT(g‘Q)l < 0, then Am(g) is the unique fixed point

in SZ' (1If 9o # 0, the algorithm need not converge to

the desired strictly substochastic solution. For example,

if 9 is stochastic then Ak(go) is stochastic V¥ k.)

We now sketch the proof of these properties.

1. One can show that AK*1(0) > a¥(0). Since £(g)c s,
if go€ So’ the sequence Ak(g) is bounded above, componentwise.
Thus it must converge componentwise to a limit. This limit

is clearly a fixed point.

2. One can also show that for any gQE S

. A%g)) > AR

Thus if the limit A”(0) is stochastic, AM(g, ) must also
converge to A“(g). In particular, if 9 is a fixed point,

then g_ = Am(go) = Am(g), so Am(g) is the unique fixed point

o}
in So if it is stochastic. The hypothesis ET(%'Q)l > 0 is

needed to prove A“(g) stochastic.

The quantity & = ﬂT(g-g)l also has an interpretation as

a drift. The 1 th component of (a-8)1 is the difference between
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the probabilities of going from (i,k) - {(-,k+1) and going
from (i,k) - {(-,k-1)} . The 1 appropriately weights the phase
state i at which the departure from the column occurs.

The condition § < 0 is the requirement for the ergodicity
of the general, homogeneous QBD process with boundary at 0..
For the voice/data model, it reduces to the previous stability
condition n < ET r.(This was pointed out to us by Humblet [22].)
We now_show this. I is the ergodic distribution of the discrete
time chain embedded at epochs when KH changes. For the voice/data
model, A(t) does not change when KH‘éhanges,so by our remarks

in Chapter II, I is proportional to (n, + rp)p, i.e. when

A(t) = i,changes in kH occur at rate n+ r;» so I, is p; weighted
. . . p; (n+r;)
by this factor. With normalization, I, = ——— The

T ozpy(n+ry)

condition NIT(g+g) =I' implies

1°(L - (o * )7t Qg + ;D)'I(gn + 1p) = 17, which implies

1 T

I (L - (QD + ;D)' Q) = II". (Note this equation implies

1 T

1" (g + £p) 7Q = 07, which implies ' is proportional to

P (I'—lD + LD) as reasoned earlier.)Thus,EI_l (2-8)1 = 1° (QD+r

ZPi(n‘ri) n- BT r -
—_— T Thus & < 0 iff n < p Tr.
Zp; (n+ry) n+ p I

Mathematically, & enters the convergence proof as follows.
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Let g(x) g sp(a/x + xg}, X > 0. Since g + 8 is stochastic,
g(l) = 1, g(x) is strictly convex, and g'(1) = -§. The assertion
g'(l) = -§ can be verified by direct computation assuming that
g(x) and the left PRF eigenvector L(x) (which we take as a
row vector) are differentiable. Let M(x) = a/x + XB . Note
a>0 (or B8 > 0) implies M(x) primitive ¥ x > 0. Thus, the
eigenvector L (x) can be chosen positive and normalized, We
assume that, with this consistent choice, L(x) is differentigble.
Then L(x) M(x) = g(x) L(x) implies L~"(x) M(x) + E(x)[g-g/xz] =
g°(x) L(x) + g(x) L°(x). Note M(1) = g+§ implies L(1) = I'
and ﬂﬁl)l = 1. Substituting x = 1 into the equation and taking
the inner product of both sides with 1 shows
L (1)1 + ET(Q -a)1 = g”(1) + EfLi) -1 which implies g;(l) = -4 .
See Kingmanv[zs] for the convexity proof,

Now let g > 0 be any fixed point (not necessarily in So)
and let r = sp(g). Note that g > a > 0 so g is in fact ir-

reducible. By the discussion in Chapter II, the matrix

p'ts p

T
from the PRF right eigenvector of g. Thus the identity

is stochastic,where D is the diagonal matrix obtained

-1 -1

(=]

D D'a D 1 DeD,
—— 7 — *TrLQ e

shows that g/r + rg is similar to a stochastic matrix. This
implies sp(a/T + T8) = 1. Thus we have a characterization of
“the PRF root of a nonnegative fixed point. If § > 0 then

g”(1) < 0. Together with convexity this shows that r =1
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is the only value of r < 1s.t. g(r) = 1. Thus if ge So its
spectral radius must be 1. (For any M ¢ Sy» sP(M) < 1.) From
the discussion on PRF roots (specifically, the row sum bounds

on r), the only irreducible substochastic matrices that have

spectral radius one are in fact stochastic. Thus if g ¢ S,

and g is a fixed point, geS;-

3) If §< 0 then g”(1) > 0.Since g > 0, g(r) =as r ~ 0.
Together with convexity, this shows that there is exactly one
‘value of r <1 s.t. g(r) = 1. This allows for the possibility
(though by itself doesn't prove the existence of) another
fixed point in So» with spectral radius < 1. The matrix A”(g)
can be shown to be such a fixed point, and Am(gj is in fact

strictly substochastic and is the unique fixed point in S2 .

Let us apply this to the voice/data link. For the queue
to be stable,Ss must be negative. In this case, the iteration
a + B gi, 9o = 0 converges to g+ and is strictly substochastic.
The other fixed point (by Brouwer's Theorem) has no apparent
probabilistic meaning. For the iteration 8 +gﬁg§, the quantity
ET(g-g)l 1s positive, so this converges to a stochastic solution
which is g . As mentioned, the starting point in this case is
not important; and g~ is unique in Sg-

Extending the probabilistic reasoning used to derive the
fixed point equation,we see that g+ is the sum over all paths

+

that are '"loops followed by an alpha'". Specifically, g 1is
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a sum over terms of the form

8t1 oJ1 ..., gL oJLle

L L M M
where I 'il = I jl and for any M < L, I Lo < z j2 Such
2=1 =1 =1 2=1

a term corresponds to a sample path in which the first i1 changes
in the KHcoordinate are negative,»the next j1 positive, etc.
until the final jL changes bring it back to 0, and then a
transition to +1 occurs. With each step, the algorithm computes

more of these terms. For example

%= 2

g, = &

g, = ¢+ 8 %2

go= a+gael+ pagalepgte’ gl aet

It seems difficult to find any characterization of the probability
mass which is still uncounted after the kth iteration -- i.e.'
what is the convergence rate. _This is a real problem. For

g, we know that the final answer is stochastic. Thus one

has an absolute test of convergence. For g+ we have no such

test yet. One can look at the successive componentwise
differences, but it seems difficult to relate this "stepsize"

to the true distance from the limit. This problem needs more
investigation.

Finally, we discuss another algorithm. In the equation

+ B 22 one can "solve" for g,g = [L - g 17t

this leads to another iteration in an obvious manner. To see

, and

la
fle
la
[[%
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the difference, consider the result of the second step, when

go = 4. Then g, = [I - 8 g]'l a = T (8 g)2 a. In this case
2=0

the algorighm is counting all prefixes of the form 8 ¢ .... 8 a
followed by an g. It is unclear as to when one algorithm
"counts faster" than the other. One might even be able to

devise a hybrid procedure.
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H. An Example

To make some of this more '‘concrete'", we work out the
details of the case in which r; = T ¥ i. This problem is
rather trivial in that A(t) and K(t) are now statistically
independent, and K(t) is just the classical M/M/1 birth-death
queuing process with parameters n, T and utilization p=n/T < 1.
For this queﬁe (see Kleinrock [24]),the ergadic probability of
k customers in the system is (1 -D)ok, k =0,1,... Thus,
for the vector process, .e;; = P; (1 - p)pk, or e(k) = B(l-p)pk.
From the previous discussion, we know that ET(k) = BT[; - g]ek
and one might suspect that g is simply pl. This is not the
case. In fact, we have shown that g+ is primitive, and hence
p (which will turn out to be the PRF root) is a simple eigen-
value. Thus 8 ,which is similar to g+, cannot be pl.

First we recall the following from Chapter III.

- The Q matrix for the speaker process has eigenvalues

Si = -i(A+py) 1 = 0,...N.

- Q is diagonalizable, i.e. Q = g'l S L, where the ith
*N-i , i qq*i
row of L is [1e] N/£1 1] s € = Ay, and
(1 + €)
L= ;'1 (* = convolution)

*N
+ p is proportional to L(0), specifically, p = Ll—El——ﬁ-
TN/Z (1 + €)
or p = E(O) - (1 + €)

From the previous sections in this chapter,

-



a=((+DL-QY 'n g" =+ ggh?
g=(n+DL-tT g =8+ alg)?
y=(+DL-0-7Tg -ngHt  e=ylgty

where now r, reduces to TI .

Now define M = L M L where M is any of the previous

matrices. Set D = [(n+ T)L - g]'l.

S = diagonal (S,) so

D is diagonal. Then a simple computation shows g = Dn ,

B=DF, y=0'-Tg" -ng),8=xy1af . Wewill show
that g+ and g' are diagonal, which implies y diagonal, and thus
8= g+, which implies g = g+. g+ wil have real positive

+

diagonal terms, and p will be the largest with %90 =~ P°- Thus

eT) = pTrL - 8185 = pT L (I - ¢"IL L(gH)

- pTLa-ghEhf L a2 - ghehky

where fo is the vector (1,0,...0). (This follows>because

P =_£(0)(1+e).N/2 and L = ;'l, so LF(O) L =.fg .) Continuing,
we obtain ET(k) = (1 + e)_N/Z(l p)pk fg_é =

-N/2

(1+€) (1-0)0% LT(0) = pT(1-p)0K, as claimed.

Now consider the matrix quadratic equation g = g + 8 gz.

(We drop the "+" for convenience.)

We know that the equation has a unique strictly sub-‘
stochastic solution, which we want, and at least one other
solution in Sl' The meaningful one is the 1limit of the
2

recursion g,= + B g , 0 = 0. Conjugating the equation

|
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A
~

by L, we obtaing =g+ § 2, where ¢ = Dn , B8 =D T.

fia >

Notice that if we start the transformed recursion with

g5 = 0, then Iy is diagonal for each k. For the moment, let

us assume that the fixed point which corresponds to the

o)
o4
g

. + .
L 1is the correct g , is

. A+ . ~
desired g , i.e. the g s.t. L

diagonal. Then, we are left with the individual equations

These equations are scalar quadratic equations of the form

2z =a+ b z2

where a, b > 0 and a < b (since n < r). Further a + b =1
if i =0, a+b<1, i # 0. From the quadratic formula, we

obtain the roots

Note ab < % implies the roots are rea;. A simple geometric
argument shows that both roots are positive, one root is

always less than 1, and the other equals 1 if a + b =1,

and is greater than 1 if a + b < 1. Since we are after a strict-
ly sub-stochastic matrix, we pick the root less than 1 for

each i. This is

1 - (1 - 4n?Di)1/2

2T
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For i = 0, this is p , and for i # 0 it is less than p.
Technically, we still need to show that with this choice

of é, the matrix L é L is the desired gf . Intuitively,

this is pretty clear. A formal proof can be obtained by showing

that if g is the limit of g, = g + g8 gz-l s 95 = 0, then

L& L is the limit of the original recursion for g', starting

with g, = 0. A simple argument then shows that the g we have

chosen, i.e. with eigenvalues <1, is the limit of g, é + ﬁ gz
2-1

starting with g, = 0.

Similar computatidns go through for g' except now we have
the scalar equations z = a + bz2 with a > b. For i =0 (whére
a+b=1) we obtain a root at z = 1 and a root z > 1. Thus
we pick z = 1. For i # 0, one root‘is < 1l,and the other
is > 1. We pick the smaller.

The eigenvalues of g+other than p have no apparent

probabilistic meaning.
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VI. Queue Statistics and Numerical Examples

A, Queue Statistics

The matrix series ¢ g% obeys the "ordinary calculus rules"

= 2 -2

for geometric series, e.g. 287 = 8[1 - 8] . Hence,

20
computing moments of the distribution of the number in system
poses no special problem. Also, one can easily obtain an
expression for the actual "bit" backlog distribution. Specifi-
cally, let fk = g?(k) 1l denote the marginal probability of

k messages in the system, and let [exp(g)]*k denote the
k-fold covolution of the message length distribution exp (&)

with itself. Then the backlog distribution is ? fk[exp (s)]*k

It is customary to separate a queuing system into the

""queue' and the "'service facility"

—_—— e, e  Seeiteme e T — ewmme  e— —

\

|

| | .

| Queue “ﬂ :
|

(

{

Waiking W Service 5§ |
Time Time

—-—--‘—-—-—.—

SY’SH’.M T
Time
The total time spent in the system is denoted by T, the time
a message spends in the queue is called the waiting time W,

and S is the service time. It follows from this definition
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that
KQ = XS - 1 + Pr[KS = 0]

where KS = number in system, KQ = number in queue, and over -
bar denotes expectation.

For a constant rate server (and i.i.d. message lengths)
this division is quite natural. A message's service time is
linearly related to its length and is independent of its'waiting
time and the service and waiting times of other messages. That
is, the queuing process only affects waiting times. For a
voice/data queue model in which T varies with i, the distinction
between service and waiting can be less meaningful as the follow-
ing examples indicate.

Consider a service rate vector (ro,.,,,rN) s.t. T, = 0
¥V i# 0, and T, is "infinite'". Assume A = u = 1. The mean first

passage from A =1 to A = 0 is l'pe - ZN . More generally,
P, - N ’

the péssage time from any initial state to state 0 is dominated
by the time to take the last step from 1 to 0, 1i.e. if a
message arrives when & # 0, the mean time until the speaker
process reaches 0 is still = %ﬁ . Now suppose that the mean

message length E-l = 1. There are two cases. If the mean

N
interarrival time % << %— ) large queues accumulate while A # 0,

and these are emptied '"instantaneously" when A reaches 0.

Thus most messages have a very large waiting time but essentially
N

no serice time. If % >> %- , then most messages arrive to

an empty system. Their waiting times are zero, but their
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service times are very large. In both cases, the mean system
time is determined by the time it takes for a return to A = 0.

The point of this is as follows. A message is 'inconvenienced"
by having to share the link with both the speakers and other
messages. To a certain extent, the "service time" reflects
the sharing with the speakers, and the waiting time reflects
the sharing with other messages; Although it is possible to
compute the service time distribution given a start in some
speaker state, the interaction between the queueing process
and voice activity process can affect the distribution of
service initiation states. That is, waiting and service times
are not independent, and the distribution of service initiation
states is generally not the same as the speaker ergodic
distribution p.

In any case, it is possible to derive expressions for
the Laplace-Stieltjes transforms of the limiting distributions
of T, W, and S. Let iij(z) denote the L - S transform of the
‘joint [service time; voice completion state = j/A(0) = i]

distribution, i.e.

iij(Z)

/ e-th_'PrEservice time < t, A = j at
0 ‘
completion|A(0) = i]
(See Chapter IV.)
Because message lengths are 1i.i.d., it follows that the
analogous transform for the time to service k successive

messages 1s [éﬁzﬂ'k. Further, [X(O)]Ej = Pr(completion of

k messages occurs when A = j|A(0) = i]. We also make use of
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the following observations:

T(2)

W(z)

S(z)

Poisson arrivals take a "random" look at the system,
so that the equilibrium distribution of [A, K] as

seen by arriving messages is the same as the ergodic

distribution {eik} . (This need not be the case for non-

Poisson arrivals; see Kleinrock [24] .)

If a message arrives to a nonempty system and A = j,
the distribution of the time needed to complete service
for the message in the service facility is the same as
if a message with length ~ exp(£) starts service when
A = j. (This follows from the memoryless property of

the exponential distribution.)

From all this, it follows that

o8
o

T X1 1= pTIL - 8L - 8 X217 X(2) 1

i T X1¥1

e 8

k

@

$oel(k) [x(0)1F X(z) 1
k=0

The matrix 2(0) can be related to a and 8 , as follows.

If K(0) > 1, the time to complete a service is the time until

K(t) registers its first decrease. By this we do not mean the

first passage time to K(0) - 1, but the time until the first
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decrease occurs, with any possible number of intervening

increases. Since K is not bounded above, it follows that

X= 8+ak

(The reasoning is similar to that used to derive the

quadratic equation for the g's.) Thus X = [I - g]'l 8.
A straightforward calculation will show that [ -‘g]'l B =

(e zp - g)'l Iy, which is the expression derived in Chapter IV.

B. Numerical Examples

We have applied the matrix-geometric algorithms to a
voice/data queue with 10 speakers. The other speaker parameters

are A = .75, u = .81, (per second) so mean silence = A'l = 1.34sec.

and mean talkspurt = u'l = 1.23 sec. [ 6]. The link has capa-
city 320 Kbps, and each speaker demands 32 Kbps when in talk-
spurt. Thus r, = 320 - 32i Kbps, so T =~ 166 Kbps.

One important question is how the mix of data traffic
affects performance, i.e. for fixed total average data rate,
n/g, how does performance depend on n and £ individually. We
consider three mixes for each value of the utilization
p=.1,.2,...,.9, where p = n/(ZT). The three mixes are
referred to as cases A, B, and C,and the respective mean message
lengths are 500, 1000, and 2000 bits. Thus, in each case,

n is varied to obtain the appropriate value of op.

Notice that for states 5 - 10, r; < T. The total

occupation fraction of these states is about .57. We have
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also computed the mean first passage times from each speaker

state to state rK] = r4.8] = 5. These are

State Time(sec) State Time (sec)
0 1.23 6 .36
1.1 7 .61
2 .93 8 .80
3 .72 9 .95
4 .43 10 1.08

The results are organized in tabular form, and the notation

is as follows:

KS = mean number in system SERV = mean service time
VARKS = variance of KS Pr{0] = Pr[KS = 0]
STDVKS = /VARKS | - DRIFT = -7 (g - g)1 = &&=1

- — ET + n
COEFVAR = STDVKS/KS (see Chapt.V)

MAXDEC = maximum asymptotic

KQ = mean number in queue

_ decay rate, i.e.
T = mean system time PRF root of g+-
W = mean waiting time .

Our "benchmark" for comparison is an M/M/1 queue with service

rate T = Lp; T;, i.e. ri=? V i. This is appropriate since we

i)
wish to determine how the service rate variability affects
performance. Each of the first nine tables represents

the above statistics for all cases (one table for each

value of p). Each of the next two tables presents selected
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statistics for all values of p and all mixes. In the second
of these two tables, the quantity SERV (random)refers to

Ip; SERV; where SERV, is the mean effective service time given
a start in state i, and P; is the ergodic probability that
A= i.‘ This is the average service time that a message arriving
"randomly" to an empty system would incur. As indicated, this
is not necessarily the actual mean service time incurred by
messages since the queuing process does interact with the voice
activity process. For purposes of comparison, we mention that
SERV(random) is 3.5 ms, 6.3 ms and 13.6 ms in cases A, B, and C
respectively. Finally, the last three tables present some
points from the tails of the respective distributions, e.g.
TAIL 5 = Pr[KS > S]. |

In the case of g , the Aiteration for g, =8 + g 22
' 2-1

was run until g, was stochastic to within 10'4 or so. In

the case of gf (for which we have no absolute test), the
procedure was run until max | (g ) - (g ) | o< 10'7, 10
i,] 2 1] 2-1 1ij

-8~

We did not perform an error propagation analysis, bﬁt this
stopping criterion seemed reasonably adequate. Occasionally,
we run some cases until the maximum difference was 10'12 oT SO.
This did not result in any drastic changes.

For ah M/M/1 queue, the PRF root is p and fk = (l-p)pk,

i.e. the distribution of KS is independent of the load mix.

Thus for fixed p, the average system time approaches zero as

0(%) as n, £ » ». For the voice/data queue, the distribution
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of KS is not independent of the load mix, and we can qualitati-
vely explain the observed behavior as follows. (In this discussion
we consider p fixed, i.e. we let n,g. approach either 0 or o«
with n/g remaining fixed.) As indicated in Chapter IV, the
behavior of the voice/data queue approaches that of the analogous
M/M/1 queue as n, £ -+ 0. This is because the speaker process
moves "infinitely fast'" relative to the data arrival and service
processes so that each message is effectively served at a constant
rate T. As n, £ - » , the individual queuing processes in each
speaker state become '"decoupled'", and there are two possible
types of behavior. If Py = n/ (g ri)< 1.¥i, Fhen the behavior
approaches that of N+1 decbupled, stable, M/M/1 queues with

Pi

utilizations p;. For example, KS will approach 1p; T -
' i

Note, by convexity,

-1
Pi zpi Pj § n(ZEPi ri)

Ipi T Py 2 1T- Lp; P

. 2 . -1° 71T -
i 1 - Az €p; ;) 1 P

That is, the variable service rate does degrade performance,
though XS remains bbunded as n - = . If there is at least
one overloaded or unstable state, i.e. some i s.t. Py > 1, the
behavior is qualitatively ”different, While the voice process
is sitting in state i, the mean number in system is growing

as (n - Eri)t. As long as overall stability, i.e.n< ¢ T,
is present, these backlogs are eventually emptied. However,
as n, £ =+ =, the contribution to KS made by the unstable

states becomes the dominant contribution, and, asymptotically,
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XS will grow linearly with n. The value of the slope of this
growth depends on many factors, and there does not appear to
be a simple estimate. Thus, we have the following qualitative

picture of the behavior of KS.

Voice/Data
with seme Pu 7|

-b°iﬁ:;”>c+u
with Pi< | VL.

- CIED EEICED eEmm. > wun  ———  e—

MM/

_b

(No assertions about monotonicity or convexity are intended
in these graphs,though one would certainly expect at least

monotonicity.)

For the M/M/1 and voice/data with Py < 1, ¥ i, KS remains

bounded, and it follows that as n,§ » =,

time goes to 0. For the third case, the
system grows linearly with n , but since

length is scaled accordingly, it follows

the average system
average number in
the average message

that the average

backlog in bits and hence the system time, remain bounded.

In fact, if KS grows as

that T - b. Thus,

bn it follows from Little's Theorem

the existence of an unstable state does not
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preclude overall stability, but it does lead to the somewhat
"unconventional" result that even if individual messages become
small, their delay is bounded away f;om zero, for fixed total
data rate.

As n, £ » =, the arriving data stream effectively becomes
a steady flow of rate n/f bps. This is because during an
interval of length t , the mean number of arriving bits is nt/g
but the variance is Znt/Ez, and this goes to zero as n,f + =,
n/g fixed. This suggests.- using a "flow model" for the back-
log when n and £ are large. That is, one assumes that the back-
log X(t) grows (or shrinks) deterministically at rate n/g - T,
when A = i. This model should give the correct asymptotic
dependence of the backlog on n, i.e. if XS »bn , the flow
model will show that the average backlog X is (n/E)b.For
the flow model, the vector process [A(t), X(t)] is a Markov
process; and its ergodic probability distribution vector
G(x), where Gi(x) = Pr[A = i, X < x],satisfies the system of

differential equations

T 8 VOL=1) = 6o g

subject to the boundary conditions

. Gi(O) =0 if n/g > T i}e. the backlog cannot be empty

in unstable states)

- Gi(=) = pi) i.e. the marginal distribution of A is
the original ergodic distribution P -

(This model was used by Berger in [6], and the reader

(1)
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can find a detailed exposition there )

It is sometimes easier to work with these equations directly

rather than with limiting arguments on the previous expression
[~

z fk[exp(E)]fk. For example, it follows from the structure
k=0

of the differential equation and the fact that the boundary
conditions depend only on A/u, that the backlog random variéble
is linear in 1/x , 1/u for A/u fixed, i.e. G(x,sA, su) =
G(sx,A,u). This implies that the average system time is linear

in 1/A, 1/u, in the limit of small, frequent messages.
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KS

VARKS
STDVKS
COEFVAR
KQ

T (ms)

W (ms)
SERV (ms)
Pr{0]
-DRIFT

MAX DEC

Voice/Data M/M/1 Voice/Data M/M/1 Voice/Data M/M/1
.138 .11 .135 .11 .132 .11
.226 .123 .181 .123 .164 .123
.475 .351 .426 .351 .406 .351
3.4 3.2 3.2 3.2 3.1 3.2
.024 .011 .021 .011 .019 .011
4.1 3.3 8.1 6.6 15.9 13.2
.73 .3 1.3 .6 2.3 1.2
3.4 3.0 6.8 6.0 13.6 12.0
.886 .9 .886 .9 .887 .9
.82 .82 .82
.81 .69 .53

S ——SNTESE v WEEE N S
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KS
VARKS
STDVKS

COEFVAR

Q

T (ms)

W (ms)

SERV (ms)
Pr[0]
-DRIFT

MAXDEC

.348

1.16

1.07

3.1

.122

5.2

1.8

3.4

774

.67

.90

.25

.31

.56

2.24

.05

3.7

.33
.71
.84
2.25
.104
9.9
3.2
6.8
.774
.67

.83

.25

.31

.56

2.24

.05

7.4

1.4

6.0

.32
.54
.74
2.3
.092
19
5.6
13.5

775

.71

.25

.31

.56

2.24

.05

14.8

2.8

12.0
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KS
VARKS
STDVKS
COEFVAR
KQ
T (ms)

W (ms)

SERV (ms)
Pr[0]
-DRIFT

MAXDEC

5.5

2.3

3.3

.39

7.25

3.9

3.4

.66

.54

.43

.61

.78

1.8
.13
4.3
1.3

3.0

.64
2.48
1.6
2.5
.30
13
6.1

6.8

.54

.89

.43
.61
.78
1.8
.13
8.6
2.6

6.0

.59
1.6
1.2
2.03
.26
24
10
13
.66

.54

.43

.61

.78

1.8

.13

17.2

5.2

12

w

R - i

T
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KS
VARKS
STDVKS
COEFVAR
KQ

T (ms)
W (ms)

SERV (ms)

Pro]

-DRIFT

MAXDEC

1.47
23.7
4.87
3.3
1.03
11.1
7.7
3.4
.56
.43

.96

.67

1.11

1.05

1.57

.26

5.0

2.0

3.0

1.21
9.3
3.04
2.5
77
18.2
11.6
6.6
.56
.43

.92

.67

1.11

1.05

1.57

.26

10.0

4.0

6.0

1.05
4.6
2.14
2.0
.61
32
18.4
13.6
.56
.43

.85

.67

1.11

1.05

1.57

.26

20

12
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KS
VARKS
STDVKS
COEFVAR
xQ

T (ms)

=|

(ms)
SERV (ms)
pr[0]
-DRIFT

MAXDEC

3.14

96

9.8

3.12

2.6

18.9

15.6

3.3

.44

.33

.97

1.4

1.4

6.02

3.01

3.01

2.31

32.6

5.7

2.5

1.76

27.7

21

6.7

.45

.33

.94

1.4

1.4

12.0

1.86

13.8

3.72

1.32

45

31

14

.45

.33

.89

1.4

1.4

24

12

12

- ee—




KS
VARKS
STDVKS

COEFVAR

Q

T (ms)

=|

(ms)
SERV (ms)
Pr[0]
-DRIFT

MAXDEC

6.97

367

19.2

2.75

6.3

35

31.7

3.3

.35

.25

1.5

3.75

1.94

1.29

7.5

4.5

3.0

4.68

116

10.8

2.31

4.03

47

40

.35

.25

.96

1.5

3.75

1.94

1.29

3.42

42.7

6.54

1.91

2.78

68

55

13

.35

.25

.92

1.5

3.75

1.94

1.29

30

18

12
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KS

VARKS
STDVKS
COEFVAR
KQ

T (ms)

N (ms)
WWMﬂ.mamu
Pr[0]
-DRIFT

MAXDEC

16.3

1.4 x 10
37.3
2.29
15.5

70

66.8

3,2

.25

.18

2.33
7.78
2.79
1.20
1.63

10

9.8

399

20

2.04

Q._.

84

78

.18

.97

2.33
7.78
2.79
1.20
1.63
20

14

6.7

139

11.8

1.76

115
102
13

.26
.18

.95

2,33

7.78

2.79

1.20

1.63

40

28

12

e e
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KS
VARKS
STDVKS
COEFVAR
XQ
4.msmu

W (ms)

SERV (ms)
Prio]
-DRIFT

MAXDEC

A B

41.4 a 23.7 4 14.7 4
5.8 x 10° 20 1.6 x 10° 20 513 20
75.9 4.47 40.4 4.47 2.7 4.47
1.83 1.11 1.7 1.11 1.55  1.11
40.5 3.2 22.9 3.2 13.8 3.2
156 15 179 30 221 60 o= .8
152 12 172 24 208 a8
3.2 3 6.3 6 13 12
.16 .2 .16 .2 17 .2
11 11 11

.99 .98 .97
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KS
VARKS

STDVKS
COEFVAR
[0
ﬂasmv

mﬁsmu

SERV(ms)
Pr[o0]
-DRIFT

MAXDEC

134

3.57 x uoa

189

1.41

133

449

446

3

.07

.05

.995

9.5

1.06

8.1

30

27

.1

73

9850

99

1.36

72.2

489

483

.05

.991

90

9.5

1.06

8.1

60

54

42.2
2690
54.4
1.28
41.2
564
552
12

.08

.983

90

9.5

1.06

8.1

120

108

12




A B _ C

Voice/Data M/M/1 Voice/Data M/M/1  Voice/Data M/M/1

XS p=.1. .138 11 .135 .11 .132 .11
STDVKS .475 .351 .426 .351 .406 .351
COEFVAR 3.4 3.2 3.2 3.2 3.1 3.2
.2 .348 .25 .33 .25 .33 .25
1.07 .56 .84 .56 .74 .56
3.1 2.24 2.5 2.24 2.3 2.24
.3 .7 .43 .64 .43 .59 .43
2.3 .78 1.6 .78 1.2 .78
3.3 1.8 2.5 1.8 2.03 1.8
4 1.47 .67 1.21 .67 1.05 .67
4.87 1.05 3.04 1.05 2.14 1.05
3.3 1.57 2.5 1.57 2.0 1.57
.5 3.14 1 2.31 1 1.86 1
9.8 1.4 5.7 1.4 3.72 1.4
3.12 1.4 2.5 1.4 2 1.4
6 6.97 1.5 4.68 1.5 3.42 1.5
19.2 1.94 10.8 1.94 6.54 1.94
2.75 1.29 2.31 1.29 1.91 1.29
7  16.3 2.33 9.8 2.33 6.7 2.33
37.3 2.79 20 2.79 11.8 2.79
2.29 1.2 2.04 1.2 1.76 1.2
.8 41.4 4 23.7 4 14.7 4
75.9 4.47 40.4 4.47 22.7 4,47
1.83 1.11 1.7 1.11 1.55 1.11
.9 134 9 73 9 42.2 9
189 9.5 99 9.5 54.4 9.5
1.41 1.06 1.36 1.06 1.28 1.06

Selected Queue Length Statistics for
All Values of p and All Cases




=l

Actual SERV
T/SERV (random)

P —— e N T

A
Voice/Data M/M/1 Voice/Data M/M/1 Voice/Data M/M/1
4.1 3.3 8.1 6.6 15.9 13.2
.7 .3 1.3 .6 2.3 1.2
3.4 3.0 6.8 6.0 13.6 12.0
1.17 1.1 1.29 1.1 1.17 1.1
5.2 3.7 9.9 7.4 19 14.8
1.8 .7 3.2 1.4 5.6 2.8
3.4 3.0 6.3 6.0 13.5 12.0
1.49 1.23 1.57 1.23 1.4 1.23
7.25 4.3 13 8.6 24 17.2
3.9 1.3 6.1 2.6 10 5.2
3.4 3.0 6.8 6.0 13 12.0
2.05 1.43 2.06 1.43 1.76 1.43
11.1 5.0 18.2 10 32 20
7.7 2.0 11.6 4 18.4 8
3.4 3.0 6.6 6 13.6 12
3.17 1.66 2.8 1.66 2.35 1.66
18.9 6.0 27.7 12 45 24
15.6 3.00 21 6 31 12
3.3 3.00 6.7 6 14 12
5.4 2 4,4 2 3.31 2
35 7.5 4.7 15 68 30
31.7 4.5 40 9 55 18
3.3 3.0 7 6 13 12
10 2.5 7.46 2.5 5 2.5
70 10 84 20 115 40
66.8 7 78 14 102 28
3.2 3 6 6 13 12
20 3.3 13 3.3 8.46 3.2
156 15 179 30 221 60
152.8 12 172.7 24 208 48
3.2 3 6.3 6 13 12
45 S 28.4 S 16 45
449 30 489 60 564 120
446 27 483 54 552 108
3 3 6 6 12 12
128.3 1.0 77 .6 lQ 41.5 - 10

Selected Time Statistics for All Values

of p and All Cases (in milliseconds)

TV S ———




.00075
.0057
.023
.061
.131
.241
.381
.561

.771

TAIL 5

.00046
.0045
.019
.055
.121
.221
.361
.551

.761

.00024

.0033

.015

.047

.11

.21

.34

.53

.75

M/M/1
.00001
.00032
.0024
.001
.031
.078
.171
.33

.59



-133-

TAIL 10
A B o M/M/1
.0002 .000051 .0000065 1 x 10710
.0016 .0008 .00028 1x 1077
.0078 .0047 .0024 5.8 x 10~
.025 .018 .011 .0001
.067 .052 .037 .0098
.14 .12 .094 .006
.27 .24 .20 .028
.46 .42 .38 11

.7 .67 .64 .35




.1

7.1 x 10~
.00011
.0043
.015

.046

11

.22

.40

.66
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TAIL 15

7.8 x 10
.00026
.0019
.009

.031

.082

.18

.36

.62

2.8 x 10;
4.4 x 10~
.00061
.0041
.017

.054

.14

.30

7

5

M/M/1

1 x 10713

1.3 x 10710
1.4 x 107
1.1 x 10°
3.1 x 107
.00047
.0047
.035

.20




C. A Queuing Inequality

From the previous discussion, it appears that the M/M/1
queue, i.e. r = T 1, is the "best" queue in the sense of minimizing
KS or T among service rate vectors with mean r. This is consistent
with the queuing theory '"metaprinciple'" that, for fixed average
values, ''performance' degrades as ''randomness' increases. One
can attempt to make this notion precise in several ways, which

we now explore. First some notation and "context'.

For a random variable X, let Fx denote its distribution

© [ O
function and F; =1 - Fx' Note that E(X) =j[ Fi(s)ds - Fx(s)ds.
0 -0

(Use integration by parts.) We assume that each term in the
difference is finite, i.e. E(|X|) < = . For two randam variables,

X, Y, we write X <.Y, if F;(s) < F;(s) for all s. This notion

1
of "inequality'" is sometimes called stochastic dominance and
is quite strong. For example, if X and Y are nonnegative, then

X <; Y implies EQX™ < E(YM), n = 1,2,... since

E(Xn) =n j[ sn"1 F;(s)ds for a nonnegative random variable X.
o)

--]
We write X <, Y if f (FS(s) - FS(s))ds< 0,for all t,
-2 + X y -
This is equivalent to E((X-t)*) < E((Y-t)¥") for all t, where
(x)* = x, x > 0; (x)¥ = 0, x < 0. Although not as strong as
<1 the notion L) does retain some features of a measure of
the''smallness" and '"determinism' of a random variable, as the

following properties indicate.




-136-

1) If X <

<, Y then E(X) < E(Y).

Proof: By previous remarks, it suffices to show

1; (Fi(s) - F;(s))dsi 0. Set G(t) = jz (Fics)- F;(s))ds

X <2 Y implies G(t) < O for all t. Further, the. assumptions E(|X|)<“,
E(|Y|) < »rule out the possibility that G(t) "oscillates"
as t » -» , 1i.e. these assumptions implyjf lFi(s) - F;(s)lds < @

-0

so that G(t) must converge as t » -= .||

2) If EXxX) E(Y) and X <5 Y, then var (X) < var(y).

Proof: It suffices to show E(Xz) < E(YZ). This follows from

the hypothesis X <, Y and the identity E(x%) - E(Y%)

- x

2 jﬂ dt(| (Fg(s) - Fo(s))ds]. ||
-0 t

As a "partial converse' to 2) we have

3) If X is deterministic and E(X) < E(Y) then X <

Proof: If t > X,then E((X-t)") = 0 < E((Y-t)*). For t < X

(-]

we reason as follows. E(X) < E(Y) implies (F;(s) -
t ) t

F;(s))ds 5.-.[ (Fe(s) - F;(s))ds. Now for any s < t,

-

Fg(s) = 1 > Fo(s) since t < X. Thus the right-side of the

last inequality is < 0. ||

Stoyon [25] has used <, to make the "metaprinciple"

precise in the following way. Let Ai and Bi’ i=1,2,...




denote the interarrival and service times respectively for two

G/G/1 qUeuing systems. Then: if E(Al) = E(Az), Aq A

2 o0

B BZ’ then Wl ) WZ’ wi = limiting waiting time. 1In

1 22
particular, for fixed arrival time distribution A and mean service
time B, the A/D/1 is '"best" among all A/B/1. (Apply property (3).)

Similarly D/B/1 is '"best" among A/B/l1 for B fixed in distribution

but A fixed only in mean. (D = deterministic.)
For the voice/data queue, we have been able to establish

the following inequality.v

Proposition: Let B(t, r) denote the backlog (in bits) at time
t for a voice/data queue with service rate vector I and with
an initial speaker state drawn from the stationary distribution

P, and an initially empty backlog. Then

B(t, T 1) <, B(t, 1)

‘where T = ET r, and all other parameters, i.e. A, u, n, &,are
the same in the two cases.
OQur proof uses the following characterization of the

backlog.

Lemma: Let U(t) denote the total number of bits arriving up to

time t. Let R(t, r) denote the total potential amount of
t

service up to time t, i.e. R(t, r) = jr T (A(s))ds,
: o)

r(A=1) = T;- Then

B(t,r) = sup (U(t) - U(y) - R(t,r) + R(y,R)).
O<y<t
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Proof:

t
B(t,r) = U(t) - R(t,I) +f I[B(s,r) = 0]r(A(s))ds,
o

where I () is the indicator function. This integral term

gives the amount of service that is counted in R(t,r) but which
should not be counted because work is not done during idles.
That is, the current backlog = total arrival - totai potential
work + work counted during idles. The following picture ''shows"

that the integral is given by

sup  (R(y,r) - U(m).
O<y<t :

v 1

g = yyvvny
i idie Wme TDucy e P

It is clear that a new idle starts whenever the graph crosses
its previous maximum. Thus the sup counts that part of R(t,r)

which accumulates in idles. ||

Proof of Proposition:

Set G(t,y,r) = U(t) - U(y) - R(t,r) + R(y,r). Since
(a-b)* = sup(a,b) - b for any numbers a,b, the proposition is

equivalent to
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E sup(x,sup G(t,y,t 1)) < E sup(x, sup AG(t,y,;)) for all x.
O<y<t O<y<t

~Since E sup(ay) > sup(E(ay)) for any collection of random
variables {aY} , Since sup(x,sup(ay)) = sup(sup(x,ay)), and

y
since U(t) and A(t) are independent we obtain

E sup (x, sup G(t,y,z)) > Ejy sup  (E, sup(x, G(t,y,r)))
A,U O<y<t O<y<t

> Ey sup (sup(x,E, G(t,y,r))) = Ey sup  (sup(x,G(t,y,T 1))
O<y<t Oiyit
The last equality uses, E(R(s,r)) =T s, which holds because
the initial speaker state A(0) is drawn from the stationary

distribution.

Remark: Our proof did not rely on U(t) consisting of Poisson
arrivals with exponential length messages, and it should work
for any '"nonpathological" bit arrival process, as long as arrivals
-and speaker activity are independent. Similarly, one should also

be able to extend it to more general stationary service processes.

s o s
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VII.‘A CONTROL PROBLEM

So far, we have discussed methods for analyzing the
data queue performance as a function of given service rates
that depend only on the speaker activity A. From the discussion
of the TDM architecture, it is evident that there is no particular
"physical" reason to change the allocation only when speaker
activity changes.- That is, for purposes of transmission,
voice and data blocks are indistinguishable, and one can easily
vary the allocation from frame to frame. In an idealized model
then,one might assume that the allocation can be varied
"instantaneously" (i.e. neglect the frame structure) and seek
an optimal control (allocation policy) with respect to some
overall cost for voice and data performance, For the data
component of this cost, one can take some function of the delay
or backlog. For voice, one might consider two types of costs.
First, one might assume that speech is kept in some finite
buffer with overflow speech being discarded, and then take the
voice cost as some function of the delay/loss. Alternatively,
one can assume that speech is not buffered but that there is
simply a '"fidelity cost per unit time'" h(i,r) of encoding the
output of i active speakers with (C f r) bps. (C = link

capacity.) The average cost 1imE(% h(A(t), r(t))dt) can

T > o

then be taken as the voice component of the total cost. We

adopt this structure.
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If r depends only on A, then the voice cost equals its

N
ensemble average, h(r) = Z pj h(j,rj), since the speaker
j=0

chain is ergodic. If the data cost can also be expressed as

some ''closed form'" function ?(ro,...,rN), then the optimization
problem ''reduces'" to a static problem, e.g. min ?(ro,... rN) +
T ,..,T ’
o} N

+ H(ro,...rN) or min f(ro,...,rN) subject to H(ro,...,rN)i hg

ro,...rN)
etc. Such a "simple form'" for the data cost does not appear to
be fbrthcoming. However, by using the method of chapter V, we
can, in principle, "optimize by numerical trial and error', i.e.
T can be evaluated numerically for any ToseesTy (in the M/M
case anyway) and, presumably, h can be evaluated since the
pj are known.

If the data service rate, r, is allowed to depend on
speaker activity, the data backlog size, and perhaps time
explicitly, the problem is more complicated, and we have no
procedure for finding the equilibrium behavior of the data
queue for a fixed pdlicy. (To begin with, the notion of
""stability' 1s more complicated. For example, one can
conceive of policies that keep the backlog bounded, but that

A;.Mr"jﬂ/iead to a well-defined "steady-state' behavior.) However,

| it is sometimes possible to characterize an optimal control,
without "reducing" the problem to the static case by finding
a formula rélating cost and control. As a first step in

exploring the complete stochastic control problem, we have
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managed to characterize the optimal control for the much simpler
problem of emptying an initial backlog, assuming no data arrivals

or speaker activity changes. The formulation and analysis follow.

Backlog Emptying Problem

e X(t) denotes the backlog at time t, X(0) > 0.

e r(t) is the data service rate so that

~t
X(t) = (X(0) - }f r(s)ds)”*
Q

We allow r to be piecewise continuous with at most
a finite number of jump discontinuities. At such a
jump, we choose r so that it is right continuous.

r(t) is constrained to be in [0,C] for each t.

® The voice cost per unit time is h(r). We assume h(0) = 0,
h(r) nondecreasing and piecewise differentiable on
either [0,C) or [0,C] i.e. we allow h(r) - = as r-C.
At r = 0, we take the right-sided derivative h'(Of)
and at r = C, we take the left-sided derivative h'(C")
(which might be infinite). At all other points
0 <t <C, both h'(r™) and h'(r’) exist, and

h'(r™) = h'(r”) at all but a finite number of points.

e The total cost to be minimized is

J(r) = J{ X(t)dt +jf h(r(t))dt
0 [o]

Remark: The time, T, at which X reaches 0 is a free parameter
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in the problem, and clearly, an optimal control r*(t) must be
zero if t > T. A priori, T might be infinite for some h,
i.e. X(t) approaches zero without ever reaching it. We will
show that if there is an optimal conrrol, thenthis cannot be

the case.

Necessary Condition for Optimality

Y
Suppose t; and t, are two times s.t. r (tl) > 0,
Je
T (tz) < C. By right continuity, there exist §, A >0 such that

the control

. .

r (t) - &, t € [tl,t1+A]

* .

r(t) = 1 (t) + & , t e [tz,t2+A]
r*(t) , otherwise

is admissible.

X(t)

>
T, 2 t

*
To first order in A,S, the difference in costs J(r) - J(r ) is

h(r' () -8) - h(r*ctl))}
(tz - tl)éA + S§A 3

. h(r (t,+8) - h(r (t,))
M[ 2 T (tg))]

° ]
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*
If r is optimal, this must be nonnegative, so we obtain

t, + h'(r") . > t; + h'(rT) . (1)
r=T7 (tz) T=T (tl)

(We have shown t1 < t; in the picture, but this was not used
in deriving (1), i.e. (1) is a property of an optimal control at
any times ty, t2 meeting the specified conditions. 1In particular,
if C> r*(tl),r*(t2)> 0, (1) also holds with the roles of ty
and t2 reversed.)

We can now show that there is a time T at which X does
reach 0 (assuming an optimal r* exists). First, we note that,
trivially, there is a control with finite cost, e.g.
r* =T, I(0 <t < X(O)/ro) where I( ) is the indicator function
and 0 < ry < C (since h(r) < = if r < C). Second, we note that
an optimal control must be nonincreasing. To see this, observe

*
that if r is increasing on [a,b], then the control

r= 1 (t) t ¢ [a,b]
' (b-(t-a)) t e (a,b],

J
(which just reverses r. in time over [a,b]) has the same voice

cost but lower data cost.

1

X (&

3 s s 5t g, R NI Ry e e T A i3 545 e g
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Now, evidently, there is some time t, at which r* assumes a
value r, less than C. Since h'(r+), h'(r’) are nonnegative and
h'(r") < = if T < C, it follows from (1) that r (t) can be
positive only if t < t, * h'(r:)) < =», Thus there is some time
tl at which r*(tl) = 0. By monotonicity, r*(tj = 0, for t > tl’
so if X(tl) # 0, J(r*) is infinite and r* cannot be optimal.
Letting T = inf {t:X(t) = 0} it follows from the continuity
of X(t) (r* has no "impulse') and the right continuity of
r* that X(T) = r*(T) =07 x(t) >0, r*(t) > 0, for.t « T,

Since r*(t) >0, t <T, we can apply (1) to obtain, for
OitiT

h'(r") <t =+ h'(0") (2)

r=r*(T-t)
t + h'(r") | < h' (")
r=r (T ") T (T-t) (3)

if ¢ (T-t) < C.

(In (3), if T (T7) = 0, we mean lim, h'(r’) which must be
>0 :
h'(07).) It follows from either (2) or (3) that h'(r’) <h'(0h)
. -
r=r (T )
*
Now we can use these conditions to construct r .

Case 1: h is convex U . In this case, h'(r ) > h'(0+) for all
T > 0. Thus, by the previous remark, we can conclude

h'(r’) = h'(0"), so from (2) and (3) we obtain
r=r *(T )

v . B et v o e o or
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h'(r7) t + h' (07) (4

| A

r=r*(T-t)

h'(r") >t + ht(0h) (5)

r=r (T-t)
if r (T-t) <C.

The basic idea is to work "backwards'" in time from T and use

(4) and (5) to pick off aTyalue for r*(T-t). The construction

. .
stops when, for some t_, r (s)ds = X(0), so that one then
o
T-to

"redefines the origin" and T = t,> i.e. the free parameter T
is determined by this condition. We illustrate the possibilities

by the following example.

[inear rvesgiy S

i mo¥ di Herenkiehle

" " 4

Yy ) '3. r
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In the region 0 < r < Ty h is strictly convex and differentiable

so (4) and (5) hold with equality, and there is a unique solution,

r (T-t) = [h'] %t + h'(0")). For t in the region

h'(r]) - h'(07) <t < h'(r]) - h'(0"), any r < r; satisfies (4)

but only r = T, satisfies (5). Thus r*(T-t) sits at'r1 until t

reaches h'(r1+) - h'(0+), and it then proceeds up the next

portion of the curve. Once t exceeds h'(rz), any r, < r < o

satisfies (4), but if r < C , (5) does not hold. Thus r* = C

must be chosen and then maintained until the condition specifying

T is met. More generally, we see that a linear portion in h

causes a3 jump discontinuity, and a nondifferentiable point causes
*

*
r to remain constant for some time. Otherwise r (T-t) increases

monotonically and continuously with t.

Case 2: h is not convex. This reduces to the previous case

as follows. Let 3 be the convex hull of h. Then, since h < h,
an optimal policy for f which only uses values for r* at which
h and h agree, must also be optimal for h. Now in an interval
(a,b) in which fi and h disagree, T is linear and "joins" h at
the endpoints. By the previoué construction, an optimal policy

for ﬂ will only use a or b if it uses any r in [a,b].
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VIII. FURTHER RESEARCH

e (ontrol Problem - Our aim has been to determine the extent

to which data and voice can share a link's transmission capacity.
A basic theme has been the "service demand vs. service supply"”
mismatch problem, and we have seen that changes which allow
faster movement between "high'" and "low'" data service states
improve performance. The analysis of data queue performance for
fixed rates Tgs-e«sTy WasS roughly based on the assumption that,
because of its delay requirements, voice must have ''nearly"
complete priority, i.e. r cannot change until A changes.

(One could perhaps optimize data queue performance over choices
of TgseeesTy that yield equivalent overall speech quality levels,
but there is not too much flexibility.) An important conceptual
question is whether a 'dynamic control", i.e. T depends on
voice activity and backlog size, offers substantial improvement.
The following "heuristic' argument indicates a possible reason
for expecting improvement. It seems that a large part of the
delay in queuing systems is incurred by a small percentage of
customers, in particular, those arriviﬁg during or right after
"surges" which overwhelm the server. A numerical example
supporting this "interpretation" can be found by_considering a

truncated M/M/1 queue, with room for say L customers.

(overflow is "lost".) For p = .9 and L 20 the loss is 1.3%,

and the average number in system is .6 T%E . At L = 10, the
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loss is 5%, and average number in system is .26 T%E .  The

same reduction in délay would not occur if we rejected 1.3%

or 5% of customers at random, i.e. the finite buffer ''targets"
the rejection during surges. In the context of the voice/data
queue, this might'mean that we can significantly improve data
performance by providing brief but large '"bursts' of capacity
at the righé moments, i.e. by '"backing off" on voice priority
at certain times we might be able to improve data performance

while maintaining acceptable speech quality. It is not clear

how brief these bursts can be and still help the data.

® More Queuing Inequalities - We conjecture that other

queuing inequalities of the type in VII.C are true. One might
consider inequalities involving system time, number in system,

backlog etc. and various notions of "stochastically smaller",

but the basic conjectures fall into these categories.

e All other things being equal, performance improves

monotonically as A,u increase, A\/u fixed.

e All other things being equal, performance improves as
one ''equalizes" serviée ratés, i.e. raise some L] that
is below T and reduce some Ty above T in such a way
that the average is maintained. Since the vector t 1
is the "ultimate equalization", a result of this type
involving the backlog and the stochastic-inequality

measure f&” would imply our previous result in VIVC.
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e Matrix-Geometric Analysis With Other Voice Models -

The matrix geometric approach works with any underlying
Markov chain for the phase process. It would be interesting

to carry out the numerical calculations for the three state

M A,
single speaker model (i:>:f:;::[ji1::;:(i:>
"X X\

(In this case, the phase process for N speakers would be
the Markov process (T(t), Sl(t)),see I.C.) This model is
more realistic for small numbers of speakers since the
effects of two different types of silences do not "wash
out" until,apparently, N 1is 25-30. Note that in this
model, a substantial portion of the silence time comes
from the '"long, infrequent” silences'in S, i.e. the
alternation between talkspurt and a part of the silences.
is on a slower scale. -Thus, one would expect degraded

performance.

®* General Length Distributions (i.e. thé M/G case) -

If message lengths are not exponentially distributed,
then the procéss [A(t), K(t)] is not Markov. However,
the process [A(t), X(t)], X(t) = bit backlog,is, and
one can derive coupled integro-differential equations
for the joint equilibrium probabilities Gi(x)¢=

Pr{A = i, X<x]. (The equations are similar to those in
the flow model in Chapter VI, except that the discrete

nature of message arrivals leads to terms which are
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convolutions of the Gi(x) and the message length distri-
bution.) These equations have been studied by Halfin
and Segal [26], [27]. Since they are more difficult to
handle (than the matrix-geometric approach), one would
be interested in knowing the '"'sensitivity' of the data
queue performance to the message length distribution,
i.e. for what purposes can one assume exponentially

distributed message lengths.

The equation g = g + g gz. The expressions for a and g

are relatively "simple'", and, more important, the basic
parameters of the problem appear in a rather "direct"
way. It would be nice to have some relation (or bound)
on some quantities pertaining to g (e.g. eigenvalues)
in terms of the corresponding quantities for g and § .
Also, the convergence rate of the iteration when

HT(Q - B)1 < 0, i.e. when we are computing the strictly

. . + .
substochatic matrix g , needs to be determined.
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APPENDIX A.

The exact expression for T; is

1 1 N
WP jen
n J=n

so our task is to estimate this, when the {pj} are the terms
of a binomial distribution. For convenience, we will only
consider symmetric distributions i.e. A = y . This does not
result in loss of generality since the asymptotic expressions
can be appropriately modified for asymmetric distributions.
The value of some constant might change, but we are not concerned
with this. Also, we will assume p = 1, since for fixed A/u, T;
is inversely proportional to yu, i.e. the {pj} depend only

A

on e Any result we quote is taken from Feller [28],

Chapter 6.
Notations:
e 2N is the number of speakers, so A = N, and the
standard deviation oy = vYN7Z7

y
oLet ¢(y) = (/TM) 1 eXP(-YZVZ), a(y) = J{ ¢(t)dt

- 0o

ep@) =GN o2 A
N :
*H(n) = I p(j)
j=n

We consider the asymptotic behavior of
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- NIEN)  gor GN) = N + £(N)
“ony Povy

T 6o

Region I: 1im £(N)//WN < =
From Feller:

P(G(N)) ~ —— exp(-£% (M)/N)
/TN

H(GN)) ~ 1 - 8(£(N)/ay)

/AT (1 - 2(£(N) /oy )

- 1
T ~
S G Negny exp(-£2 (N)/N)

e.g.

e EMN)//R -0, %/NF-

'ré Ny ~

. . - 1 - 3(y)
If f(N)/UN Y TG(N) ~/%- exp(‘Y;/Z)

For large values of Y , we can apply the assymptotic result

( 3 - -~ il 1 = 1
1 -2(y) ~ $7ZL to obtain TG(N) VG; = = -

Region II: £(N) = XN N where XN + «» but XN/ON - 0.

————CTIAE N P N W WRESE
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then from Feller, we have

¢ (Xy)

P(G(N)) ~ exp( - s(Xy))

H(G(N)) ~ (1 - B(X\)) exp (-s(Xy))

Combining this with 1 - Z(y) ~ Ql%l , we obtain

S S |
GN)  NegeNy XN
. o
N+Xy oy Xy
_ 1
ZXN UN

Region ITI: £(N)/N -~y , 0 <y <1
From the simple one step bounds %; < T; < TR
we obtain —=— < Tooo < zregy - For £(N)  in this
N+£(N)
region , these become -1 < Té(N) < 1 , in the limit.
(1+y)N 2YN

We will show that the upper bound is exact, in the asymptotic
sence, i.e. for any &> 0,] Ny s.t. VN > N_
1 S

G(N) = E;E TN

T
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Hereafter, all > statements used in the asymptotic sence will

be in the above context, and we write > -~ without going through

the "for any §, ] N" argument in a formal way.

. 2N
Let j be a given positive integer. Then g(j) = ( T (2§)>/(2§)
2=] J

ZN ZN m 2 . ] Il .
NOW . = . —1—— . I f . !
(J+m) ( J) H J+ here oTre 72'.]) 814- j

+

(ZN-j)(2N-j-1)
+ SERSICED) e

Now fix an integer k. Because each term in the sum is positive
and because, for fixed x, %ﬁ% is decreasing in y, we obtain
the bound

k

- = 1 H(G(N N-f(N) + k L
oo * ST ey 2 I, R e

- (f ek )R o « e

1 - N-£(N) + k N+£(N)
N+f(N) + k+1

1 _(N-f(N + k ) k+1
NI?Tﬁ%‘:‘EIT Kl

= + 1 +
26(N) + 1 U+ wr!

Now observe that if £(N)/N > 0 as N - =, then (papuidrip ™! -

as N =+ =, and the bound is useless. However, if £(N)/N - vy ,

then this expression approaches

ol -y (k+1
2YN

Since k is arbitrary, we can conclude Té(N) >~ L.

2YN
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