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ABSTRACT
We introduce the decision-aware time-series conditional generative
adversarial network (DAT-CGAN), a method for the generation
of time-series data that is designed to support decision-making.
The framework adopts a multi-Wasserstein loss on decision-related
quantities and an overlapped block-sampling approach for sample
efficiency. We characterize the generalization properties of DAT-
CGAN and in application to a multi-period portfolio choice prob-
lem and financial time series data, we demonstrate better training
stability and generative quality in regard to both raw data and
decision-related quantities than strong GAN-based baselines.

CCS CONCEPTS
• Computing methodologies → Machine learning theory;
Neural networks; Generative and developmental approaches;
•Mathematics of computing→Time series analysis; Stochastic
models; • Applied computing→ Banking.
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1 INTRODUCTION
High-fidelity data generators (“simulators") are desirable across
many domains as a result of paucity of data or because of high
stakes in the deployment of automated decision methods. A good
simulator can be used to improve and evaluate the performance
of decision methods. A typical approach to the design of data gen-
erators to use GANs but a gap in current approaches is that they
are not decision-aware but focus instead on modeling the raw data
distribution [12, 29]. A problem with this is that the approximation
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error in the raw synthetic data distribution can be further amplified,
after the transformation through decision-related functions, mak-
ing the approximation to the underlying decision-related quantities
unreliable.

We show that taking decision-related quantities into account
during training improves the effectiveness of GANs in support of
decision making and helps to stabilize the training process. We do
this by introducing decision-related quantities to the loss function.
We focus on time-series data, and consider settings where decisions
are made over time and based on multi-step inference.

In such settings, data scarcity can be a particular challenge, either
due to a limited sample size or non-stationarity. 1 Previous work
has applied bootstrap methods to improve the sample efficiency of
estimators for time-series data [8], but without introducing decision-
related quantities or providing finite-sample guarantees on gener-
alization error.

Another challenge when training sequential generative models
is exposure bias [22]. This arises when models are trained to pre-
dict one-step forward using previous ground truth observations,
whereas at test time they are used to generate an entire sequence.
As a result, the generated data distribution can diverge from the
training distribution, with accumulating errors. Although exposure
bias has received attention in language models [5, 23], this problem
remains present in other generative model applications [15].

Our Contributions. We propose a novel, decision-aware time-
series conditional generative adversarial network (DAT-CGAN). The
training procedure is made decision aware by adopting a multi-
Wasserstein loss structure on decision-related quantities in addition
to raw data. In particular, the generator needs to capture the struc-
tural relationship between different decision-related quantities. We
provide the discriminator with access to the same amount of condi-
tioning information as the generator to avoid it being too strong
relative to the generator. We also address exposure bias by align-
ing training and evaluation with the same number of look-ahead
steps and we improve sample efficiency by adopting an overlapped
block-sampling mechanism.

We provide a theoretical characterization of DAT-CGAN, giving
finite-sample generalization bounds.

In experimental results, we evaluate DAT-CGANs on a portfo-
lio choice problem for a risk-averse investor [19]. A high-quality

1For example, weekly financial data series only provide around 50 observations per
year, and pooling across multiple years is not effective due to potential distributions
shifts. Even for high-frequency data, distribution shift remains a concern due to the
potential changes in the composition of market participants and trading rules over
time.
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simulator will help an investor characterize the distribution of port-
folio returns more reliably than relying on simplistic parametric
assumptions such as normality. The results show that introducing
portfolio-decision-related quantities into the loss function, in ad-
dition to asset returns, provides better fit to quantities of interest
than strong GAN-based baselines.

Related Work. The literature on GANs for time-series data
does not consider decision awareness, even for the non-time series
context, and does not provide theoretical guarantees for decision-
related quantities or conditional GANs with overlapped sampling
schemes [21, 26, 28–30]. In the context of financial markets, Li
et al. [15] introduce stock-GAN for the generation of order streams,
and evaluate their approach on stylized facts about market micro-
structure. Koshiyama et al. [12] study the use of GANs for gener-
ating additional synthetic samples to help with model calibration
and aggregation. Neither method is decision aware, and they are
similar to the baselines we use in ablations (specifically, they are
akin to a “1-step, return-data only" baseline). There is also work
that makes use of GANs to perform anomaly detection in time
series data [4, 11, 13, 14], for imputation for multivariate time se-
ries [16, 17], and to study causal effects in economic models [3].
In the context of enhacing performance of deep learning, other
research introduces auxilary loss to an intermediate layer of the
Inception Network and use it as a regularizer during the training
process [25]. In regard to decision-focused learning, Mandi et al.
[18] frame this as a ranking problem and introduce ranking loss,
whereas Elmachtoub and Grigas [10] introduce a loss function that
measures the decision errors induced by predictions.

2 WASSERSTEIN GANS FOR TIME SERIES
GENERATION

A Wasserstein GAN uses the Wasserstein distance as the loss func-
tion. The Wasserstein distance between two random variables, 𝑟
and 𝑟 ′, distributed according to P𝑟 and P𝑟 ′ , is

𝑊 (P𝑟 ,P𝑟 ′ ) = infΓ∈Π (P𝑟 ,P𝑟 ′ )E(𝑟,𝑟 ′ )∼Γ [∥𝑟 − 𝑟
′∥], (1)

where ∥ · ∥ is the 𝐿2 norm, and Π(P𝑟 ,P𝑟 ′ ) is the set of all joint
distributions whosemarginals equal toP𝑟 andP𝑟 ′ . According to the
Kantorovich-Rubinstein duality [27], the dual form can be written
as:

sup{ℎ:∥ℎ∥𝐿⩽1}E𝑟∼P𝑟 [ℎ(𝑟 )] − E𝑟 ′∼P𝑟 ′ [ℎ(𝑟
′)], (2)

where ∥ℎ∥𝐿 is defined as sup𝑥,𝑥 ′ |ℎ(𝑥)−ℎ(𝑥 ′) |/∥𝑥−𝑥 ′∥. ForWasser-
stein GANs, the goal is to minimize the Wasserstein distance be-
tween the non-synthetic data and synthetic data.2 Following Mirza
and Osindero [20], we work with Conditional GANs, allowing for
conditioning variables. For functions 𝐷𝜃 and 𝐺𝜂 , the discriminator
parameterized by 𝜃 and the generator parametrized by 𝜂, and with
conditioning variable 𝑥 , the CGAN problem is

min𝜂max𝜃E𝑟∼P(𝑟 |𝑥 ) [𝐷𝜃 (𝑟, 𝑥)] − E𝑧∼P(𝑧 ) [𝐷𝜃 (𝐺𝜂 (𝑧, 𝑥), 𝑥)],

where P(𝑟 |𝑥) and P(𝑧) denote the distribution of non-synthetic
data and input random seed, respectively. Here, the synthetic data
comes from the generator, with 𝑟 ′ = 𝐺𝜂 (𝑧, 𝑥) conditioning on 𝑥 .

2We useWasserstein loss because it tends to improve the learning process stability rela-
tive to other choices, for example in regard to mode collapse, and to yield interpretable
learning curves [1].

3 DECISION-AWARE TIME SERIES
CONDITIONAL GENERATIVE
ADVERSARIAL NETWORK

Let (𝑟1, . . . , 𝑟𝑇 ) denote a multivariate time series, where 𝑟𝑡 in time 𝑡
is a 𝑑-dimensional column vector. Let 𝑥𝑡 denote an𝑚-dimensional
time-series information vector, summarizing relevant information
up to time 𝑡 . Let 𝑅𝑡+1:𝑡+𝑘 = (𝑟𝑡+1, . . . , 𝑟𝑡+𝑘 ) denote a 𝑘-length block
after time 𝑡 , where 𝑘 ∈ {1, . . . , 𝐾} is the 𝑘th look-ahead step, and 𝐾
is the total number of look-ahead steps to generate. To accommodate
settings where the sample size is very limited, we allow the 𝑅𝑡+1:𝑡+𝑘
blocks to overlap with each other for different 𝑡 and 𝑘 , in order to
fully utilize the samples.3

To model the decision process of an end user, let
𝑓𝑗,𝑘 (𝑅𝑡+1:𝑡+𝑘 , 𝑥𝑡 ) denote the 𝑗th decision-related quantity (a scalar,
vector, or matrix), for 𝑗 ∈ {1, . . . , 𝐽 }, in look-ahead step 𝑘 , and
define 𝑓𝑘 (𝑅𝑡+1:𝑡+𝑘 , 𝑥𝑡 ) as

(𝑓1,𝑘 (𝑅𝑡+1:𝑡+𝑘 , 𝑥𝑡 ), . . . , 𝑓𝐽 ,𝑘 (𝑅𝑡+1:𝑡+𝑘 , 𝑥𝑡 ))⊺ . (3)

This represents the 𝐽 decision-related quantities at look-
ahead step 𝑘 given data 𝑅𝑡+1:𝑡+𝑘 and information 𝑥𝑡 . In finance,
𝑓𝑗,𝑘 (𝑅𝑡+1:𝑡+𝑘 , 𝑥𝑡 ) could be the estimated co-variance of asset returns,
or the portfolio weights, both determined using the information up
to time 𝑡 + 𝑘 .

Multi-Wasserstein loss. Let 𝑟 ′
𝑡+𝑘 |𝑡 denote the synthetic data

generated from information vector 𝑥𝑡 for look-ahead step 𝑘 , for
𝑘 ∈ {1, . . . , 𝐾}. We use notation 𝑟 ′

𝑡+𝑘 |𝑡 rather than notation 𝑟 ′
𝑡+𝑘

because there is a difference, for example, between 𝑟 ′12 |9 and 𝑟 ′12 |10,
where 𝑟 ′12 |9 is the synthetic data generated for day 12 conditioning
on information up to day 9, and 𝑟 ′12 |10 is the synthetic data for day
12 conditioning on information up to day 10. For all 𝑡 , all 𝑘 , we want
the conditional distribution on synthetic data, P(𝑟 ′

𝑡+𝑘 |𝑡 |𝑥𝑡 ), where
𝑥𝑡 is discrete, to match the conditional distribution on the non-
synthetic data, P(𝑟𝑡+𝑘 |𝑥𝑡 ). Similarly, for all 𝑡 , all 𝑘 , we want the
conditional distribution on decision-related quantities for synthetic
data, P(𝑓𝑗,𝑘 (𝑅′𝑡+1:𝑡+𝑘 , 𝑥𝑡 ) |𝑥𝑡 ), where 𝑅

′
𝑡+1:𝑡+𝑘 = (𝑟 ′

𝑡+1 |𝑡 , . . . , 𝑟
′
𝑡+𝑘 |𝑡 ),

to match the conditional distribution, P(𝑓𝑗,𝑘 (𝑅𝑡+1:𝑡+𝑘 , 𝑥𝑡 ) |𝑥𝑡 ), on
quantities computed for non-synthetic data; see Figure 1. It will be
convenient to write P(𝑅′

𝑡+1:𝑡+𝐾 |𝑥𝑡 ) for
{P(𝑟 ′

𝑡+𝑘 |𝑡 |𝑥𝑡 )}𝑘∈{1,...,𝐾 } .
Adopting a separate loss term for each quantity and each look-

ahead step 𝑘 , we define the following multi-Wasserstein objective
(written here for conditioning, 𝑥𝑡 ):

infP(𝑅′
𝑡+1:𝑡+𝐾 |𝑥𝑡 )

𝐾∑︁
𝑘=1

𝜔𝑘𝐿
𝑟
𝑘
+

𝐾∑︁
𝑘=1

𝐽∑︁
𝑗=1

𝜆 𝑗,𝑘𝐿
𝑓

𝑗,𝑘
, (4)

𝐿𝑟
𝑘
=𝑊

(
P(𝑟𝑡+𝑘 |𝑥𝑡 ),P(𝑟 ′𝑡+𝑘 |𝑡 |𝑥𝑡 )

)
𝐿
𝑓

𝑗,𝑘
=𝑊

(
P(𝑓𝑗,𝑘 (𝑅𝑡+1:𝑡+𝑘 , 𝑥𝑡 ) |𝑥𝑡 ),

P(𝑓𝑗,𝑘 (𝑅′𝑡+1:𝑡+𝑘 , 𝑥𝑡 ) |𝑥𝑡 )
)
,

3In finance, 𝑟𝑡+1 could be the asset returns at day 𝑡 + 1, 𝑥𝑡 the past asset returns,
volatility, and other technical indicators, and 𝑅𝑡+1:𝑡+𝑘 the 𝑘-days forward asset returns
(see Figure 1).
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Figure 1: Non-synthetic data and synthetic data generated by
conditional GANs, shown for 𝐾 = 4.

where 𝐿𝑟
𝑘
denotes the loss for data at 𝑘 steps forward, 𝐿𝑓

𝑗,𝑘
the loss

for decision-related quantity 𝑗 at 𝑘 steps forward, and where values
𝜔𝑘 > 0 and 𝜆 𝑗,𝑘 > 0 are weights.4

Surrogate loss. Let 𝐷𝛾𝑘 denote the discriminator at look-ahead
step𝑘 , with parameters𝛾𝑘 , and let𝐷𝜃 𝑗,𝑘 denote the discriminator for
decision-related quantity 𝑗 at look-ahead step 𝑘 , with parameters
𝜃 𝑗,𝑘 . Let 𝑟 ′𝑡+𝑘 |𝑡 = 𝐺𝜂 (𝑧𝑡,𝑡+𝑘 , 𝑥𝑡 ) denote the synthetic data at look-
ahead step 𝑘 , where 𝐺𝜂 is the generator with parameters 𝜂, and
with noise 𝑧𝑡,𝑡+𝑘 ∼ 𝑁 (0, 𝐼𝑑 ). Let 𝑍𝑡,𝑡+𝑘 = (𝑧𝑡,𝑡+1, . . . , 𝑧𝑡,𝑡+𝑘 ) denote
a 𝑘-length block of random seeds after 𝑡 . We define the following
quantities:

E𝑟
𝑘
=E𝑟𝑡+𝑘∼P(𝑟𝑡+𝑘 |𝑥𝑡 ) [𝐷𝛾𝑘 (𝑟𝑡+𝑘 , 𝑥𝑡 )], (5)

E
𝐺𝜂

𝑘
=E𝑧𝑡,𝑡+𝑘∼P(𝑧𝑡,𝑡+𝑘 ) [𝐷𝛾𝑘 (𝑟

′
𝑡+𝑘 |𝑡 , 𝑥𝑡 )], (6)

E
𝑓 ,𝑅

𝑗,𝑘
=E𝑅𝑡+1:𝑡+𝑘∼P(𝑅𝑡+1:𝑡+𝑘 |𝑥𝑡 )[𝐷𝜃 𝑗,𝑘(𝑓𝑗,𝑘 (𝑅𝑡+1:𝑡+𝑘 , 𝑥𝑡 ), 𝑥𝑡 )], (7)

E
𝑓 ,𝐺𝜂

𝑗,𝑘
=E𝑍𝑡,𝑡+𝑘∼P(𝑍𝑡,𝑡+𝑘 ) [𝐷𝜃 𝑗,𝑘 (𝑓𝑗,𝑘 (𝑅

′
𝑡+1:𝑡+𝑘 , 𝑥𝑡 ), 𝑥𝑡 )], (8)

where (5) and (7) are defined on non-synthetic data and (6) and (8)
on synthetic data, and (7) and (8) are defined on derived, decision-
related quantities.

To formulate the DAT-CGAN training problem, we use the
Kantorovich-Rubinstein duality for each Wasserstein distance in (4)
and sum over the dual forms [27]. This provides a surrogate loss,
upper bounding the original objective. The surrogate problem is a
min-max optimization problem, with the discriminator loss defined
as

inf
𝜂

sup
𝛾𝑘 ,𝜃 𝑗,𝑘

𝐾∑︁
𝑘=1

𝜔𝑘 (E𝑟𝑘 − E
𝐺𝜂

𝑘
) +

𝐾∑︁
𝑘=1

𝐽∑︁
𝑗=1

𝜆 𝑗,𝑘 (E
𝑓 ,𝑅

𝑗,𝑘
− E𝑓 ,𝐺𝜂

𝑗,𝑘
), (9)

and the generator loss defined as

inf
𝜂
−
∑︁
𝑘

𝜔𝑘E
𝐺𝜂

𝑘
−
∑︁
𝑘,𝑗

𝜆 𝑗,𝑘E
𝑓 ,𝐺𝜂

𝑗,𝑘
. (10)

4An alternative formulation would impose the Wasserstein distance on a vector con-
catenating all quantities. We justify this design choice in the experimental results
section.

Algorithm 1 . Learning Rate 𝛼 = 1𝑒 − 5, 𝜔𝑘 = 𝜆 𝑗,𝑘 = 0.8𝑘 , 𝑠𝐷 = 1,
𝑠𝐺 = 5, clipping 𝑙𝑏 = −0.5, 𝑢𝑏 = 0.5, 𝑇 = 3500, look-ahead step
𝐾 = 4, batch size 𝐼 = 32, training steps 𝑁 = 2𝑒5.
1: Require: 𝛾𝑘,0 and 𝜃 𝑗,𝑘,0, initial discriminator parameters; 𝜂0,

initial generator parameters.
2: for 𝑡 = 1, 𝑘 = 1 to 𝑇, 𝐾 do
3: Compute 𝑅𝑡+1:𝑡+𝑘 and 𝑓𝑗,𝑘 (𝑅𝑡+1:𝑡+𝑘 , 𝑥𝑡 ),∀𝑗
4: end for
5: while 𝑛 < 𝑁 do
6: for 𝑠 = 0 to 𝑠𝐷 do
7: Make 𝐼 samples of 𝐾-size time blocks.

The 𝑖th sample (1 ⩽ 𝑖 ⩽ 𝐼 ) ranges from time 𝑡𝑖 + 1 to 𝑡𝑖 +𝐾 ,
and consists of data (𝑟𝑡𝑖+𝑘 , 𝑓𝑘 (𝑅𝑡𝑖+1:𝑡𝑖+𝑘 , 𝑥𝑡𝑖 ), 𝑥𝑡𝑖 )𝐾𝑘=1

8: for 𝑖 = 1, 𝑘 = 1 to 𝐼 , 𝐾 do
9: Sample 𝑧𝑡𝑖 ,𝑡𝑖+𝑘 ∼ P(𝑧𝑡𝑖 ,𝑡𝑖+𝑘 ); Compute 𝑟 ′

𝑡𝑖+𝑘 |𝑡𝑖 =

𝐺𝜂 (𝑧𝑡𝑖 ,𝑡𝑖+𝑘 , 𝑥𝑡𝑖 ); Compute 𝑓𝑗,𝑘 (𝑅′𝑡𝑖+1:𝑡𝑖+𝑘 , 𝑥𝑡𝑖 ),∀𝑗
10: end for
11: for 𝑘 = 1 to 𝐾 do
12: 𝛾𝑘 ← clip(𝛾𝑘 + 𝛼𝜔𝑘∇𝛾𝑘

∑𝐾
𝑘=1 [Ê

𝑟
𝑘
− Ê𝐺𝜂

𝑘
], 𝑙𝑏 , 𝑢𝑏 )

13: 𝜃 𝑗,𝑘 ← clip(𝜃 𝑗,𝑘 + 𝛼𝜆 𝑗,𝑘∇𝜃 𝑗,𝑘
∑𝐾
𝑘=1 [Ê

𝑓 ,𝑅

𝑗,𝑘
−

Ê
𝑓 ,𝐺𝜂

𝑗,𝑘
], 𝑙𝑏 , 𝑢𝑏 ),∀𝑗

14: end for
15: end for
16: for 𝑠 = 0 to 𝑠𝐺 do
17: for 𝑖 = 1, 𝑘 = 1 to 𝐼 , 𝐾 do
18: Sample 𝑧𝑡𝑖 ,𝑡𝑖+𝑘 ∼ P(𝑧𝑡𝑖 ,𝑡𝑖+𝑘 ); Compute 𝑟 ′

𝑡𝑖+𝑘 |𝑡𝑖 =

𝐺𝜂 (𝑧𝑡𝑖 ,𝑡𝑖+𝑘 , 𝑥𝑡𝑖 ); Compute 𝑓𝑗,𝑘 (𝑅′𝑡𝑖+1:𝑡𝑖+𝑘 , 𝑥𝑡𝑖 ),∀𝑗
19: end for
20: 𝜂 ← 𝜂 − 𝛼𝜔𝑘∇𝜂

∑𝐾
𝑘=1 [Ê

𝐺𝜂

𝑘
− Ê𝑓 ,𝐺𝜂

𝑗,𝑘
],∀𝑗

21: end for
22: end while

We also write �̃�𝑟
𝑘
= E𝑟

𝑘
− E𝐺

𝑘
and �̃�𝑓

𝑗,𝑘
= E

𝑓 ,𝑅

𝑗,𝑘
− E𝑓 ,𝐺𝜂

𝑗,𝑘
, to denote the

discriminator loss for the raw data and decision-related quantities,
respectively.

Training procedure. See Algorithm 1. Lines 2-3 prepare the
data. Lines 6-15 train the discriminators: Line 7 performs 𝐾-
length block sampling; Lines 8-10 generate synthetic block sam-
ples for each time block, conditioning on the information vector;
Lines 11-14 update the discriminators. Lines 16-21 train the gen-
erators: Lines 17-19 generate synthetic block samples for each
time block, conditioning on the information vector; Line 20 up-
dates the generators. We define sample estimates for expecta-
tions (5), (6), (7), (8), as Ê𝑟

𝑘
, Ê𝐺𝜂
𝑘

, Ê𝑓 ,𝑅
𝑗,𝑘

and Ê𝑓 ,𝐺𝜂
𝑗,𝑘

, respectively. Quan-
tities (𝑟𝑡𝑖+𝑘 , 𝑓𝑘 (𝑅𝑡𝑖+1:𝑡𝑖+𝑘 , 𝑥𝑡𝑖 ), 𝑥𝑡𝑖 ),∀𝑖 are obtained by an overlapped
block sampling scheme (see Figure 1), where different blocks of
samples can overlap with other blocks.

4 THEORETICAL RESULTS
In this section, we give a finite-sample generalization bound for
DAT-CGAN. Previous techniques for generalization bounds for

38



ICAIF ’23, November 27–29, 2023, Brooklyn, NY, USA He Sun, Zhun Deng, Hui Chen, and David C. Parkes

GANs with i.i.d. data [2] have not considered the overlapping struc-
tures or derived quantities in our algorithm and to provide a gener-
alization bound we need to extend the previous arguments to the
present case. We only keep the assumptions and main theorems
here, but leave the proof details to Sun et al. [24].

Arora et al. [2] have shown that training results for GANs that
appear successful may be far from the target distribution in terms
of standard metrics, such as Jensen-Shannon (JS) divergence or
Wasserstein distance—even though the synthetic data distribution
is close to the empirical distribution induced by the samples, it can
still be far from the underlying true distribution under those met-
rics. For example, the Wasserstein distance between two empirical
distributions 𝜇 and 𝜈 , both induced by𝑚 training samples, can be
0, while the distance between the true underlying corresponding
distributions 𝜇 and 𝜈 can be larger than a constant unless𝑚 is ex-
ponentially large w.r.t. the data dimension, which is usually very
high. However, in practice, generalization occurs with respect to
a weaker version of distance, i.e. neural network distance, defined
in Definition 4.1. In practice, when training WGAN, we are not
optimizing the real Wasserstein distance between synthetic and
real data, but a distance approximated by neural networks:

min𝜂max𝜃E𝑟∼P𝑟 [𝐷𝜃 (𝑟 )] − E𝑧∼P(𝑧 ) [𝐷𝜃 (𝐺𝜂 (𝑧))], (11)

where 𝐷𝜃 and 𝐺𝜂 are instantiated as neural networks, parameter-
ized by 𝜃 and 𝜂. Here, 𝑟 is the real data while𝐺𝜂 (𝑧) is the synthetic
data with random seed 𝑧. Arora et al. [2] consider the following,
weaker metric:

Definition 4.1 (Neural Net Distance for WGAN). Given a family
of neural networks {𝐷𝜃 : 𝜃 ∈ Θ} for a set Θ, for two distributions 𝜇
and𝜈 , the corresponding neural network distance for theWasserstein
GAN is defined as,

𝒟Θ (𝜇, 𝜈) = sup
𝜃 ∈Θ
{E𝑥∼𝜇 [𝐷𝜃 (𝑥)] − E𝑥∼𝜈 [𝐷𝜃 (𝑥)]}. (12)

With this, Arora et al. [2] build a generalization theory for
WGANs under the following generalization property.

Definition 4.2. Let Pdata denote the distribution of non-synthetic
data and P𝐺 denotes the generated distribution, and let P̂data and
P̂𝐺 denote the corresponding empirical versions, the generalization
gap for WGAN is defined as

|𝒟Θ (P̂data, P̂𝐺 ) −𝒟Θ (Pdata,P𝐺 ) |. (13)

A natural question in our setting is the following: for DAT-CGAN,
can we give a generalization property guarantee under the neural
network distance?

To build such a theory for DAT-CGAN, instead of dealing with
i.i.d. data as in Arora et al. [2], we need to deal with time series and
overlapping block sampling as well as the conditioning informa-
tion. In this section, we will show how to conquer such issues and
provide a theoretical guarantee. Instead of considering a multi-step
multi-loss, it is WLOG to consider the case when 𝑘 = 𝐾 and a
single decision-related quantity (the raw data can also be viewed
as a decision-related quantity, where the corresponding 𝑓 is the
mapping picking the last element in 𝑅𝑡𝑖+1:𝑡𝑖+𝐾 ). For multiple but
finite values of 𝑘 , and multiple but finite decision-related quantities,
we can use a uniform bound to obtain the corresponding gener-
alization bounds. Given this, we can simplify notation: let P̂𝑅 (𝐼 )

and P̂𝐺𝜂 ,𝑍 (𝐼 ) denote the empirical distribution induced by data set
{(𝑓 (𝑅𝑡𝑖+1:𝑡𝑖+𝐾 , 𝑥𝑡𝑖 ), 𝑥𝑡𝑖 )}𝐼𝑖=1 and {(𝑓 (𝑅′

𝑡𝑖+1:𝑡𝑖+𝐾 , 𝑥𝑡𝑖 ), 𝑥𝑡𝑖 )}
𝐼
𝑖=1,

respectively. Recall

𝑅′𝑡𝑖+1:𝑡𝑖+𝐾 = (𝐺𝜂 (𝑧𝑡𝑖 ,𝑡𝑖+1, 𝑥𝑡𝑖 ), . . . ,𝐺𝜂 (𝑧𝑡𝑖 ,𝑡𝑖+𝐾 , 𝑥𝑡𝑖 )), (14)

and define

𝒟Θ (P̂𝑅 (𝐼 ), P̂𝐺𝜂 ,𝑍 (𝐼 )) = sup
𝜃 ∈Θ
[Ê𝑓 ,𝑅 − Ê𝑓 ,𝐺𝜂 ], (15)

Ê𝑓 ,𝑅 = (1/𝐼 )
𝐼∑︁
𝑖=1
[𝐷𝜃 (𝑓 (𝑅𝑡𝑖+1:𝑡𝑖+𝐾 , 𝑥𝑡𝑖 ), 𝑥𝑡𝑖 )],

Ê𝑓 ,𝐺𝜂 = (1/𝐼 )
𝐼∑︁
𝑖=1
[𝐷𝜃 (𝑓 (𝑅′𝑡𝑖+1:𝑡𝑖+𝐾 , 𝑥𝑡𝑖 ), 𝑥𝑡𝑖 )] .

Here, Θ and Ξ are parameter sets. Before formally stating the
theoretical results, we need to understand the convergence point
of 𝒟Θ (P̂𝑅 (𝐼 ), P̂𝐺𝜂 ,𝑍 (𝐼 )). Notice that for the surrogate loss, taking
expectation with respect to P(𝑟𝑡+𝐾 |𝑥𝑡 ), for any realization of 𝑥𝑡 , i.e.
𝑥𝑡 = 𝑐 for constant vector 𝑐 , we need enough samples for 𝑟𝑡+𝐾 given
𝑥𝑡 = 𝑐 so that the empirical distribution P̂ (𝑟𝑡+𝐾 |𝑥𝑡 = 𝑐) can well
represent the ground-truth distribution P(𝑟𝑡+𝐾 |𝑥𝑡 = 𝑐). However,
in applications, we would not normally have enough samples for
any arbitrary value 𝑐 , and especially considering that 𝑥𝑡 may be a
continuous random vector instead of a categorical one. It is even pos-
sible that for all {𝑡𝑖 }𝐼𝑖=1, the {𝑥𝑡𝑖 }

𝐼
𝑖=1 values are different from each

other. Thus, we need to understand what𝒟Θ (P̂𝑅 (𝐼 ), P̂𝐺𝜂 ,𝑍 (𝐼 )) con-
verge to as 𝐼 →∞. We show that 𝒟Θ (P̂𝑅 (𝐼 ), P̂𝐺𝜂 ,𝑍 (𝐼 )) converges
to a “weaker" version for a given 𝜂 under certain conditions, i.e.,
that it converges to

𝒟Θ (P𝑅,P𝐺𝜂 ,𝑍 ) = sup
𝜃 ∈Θ
[E𝑓 ,𝑅 − E𝑓 ,𝐺𝜂 ], (16)

where P𝑅 and P𝐺𝜂 ,𝑍 are the distribution of (𝑓 (𝑅𝑡+1:𝑡+𝐾 , 𝑥𝑡 ), 𝑥𝑡 )
and (𝑓 (𝑅′

𝑡+1:𝑡+𝐾 , 𝑥𝑡 ), 𝑥𝑡 ), respectively, and

E𝑓 ,𝑅 =E𝑥𝑡E𝑅𝑡+1:𝑡+𝐾∼P(𝑅𝑡+1:𝑡+𝐾 |𝑥𝑡 )[𝐷𝜃 (𝑓 (𝑅𝑡+1:𝑡+𝐾 , 𝑥𝑡 ),𝑥𝑡 )], (17)

E𝑓 ,𝐺𝜂 = E𝑥𝑡E𝑍𝑡,𝑡+𝐾∼P(𝑍𝑡,𝑡+𝐾 ) [𝐷𝜃 (𝑓 (𝑅
′
𝑡+1:𝑡+𝐾 , 𝑥𝑡 ), 𝑥𝑡 )] . (18)

Compared with the surrogate loss mentioned previously, such
as Eq. (5), there is an extra expectation over 𝑥𝑡 in
𝒟Θ (P𝑅,P𝐺𝜂 ,𝑍 ), which comes from sampling over different {𝑥𝑡𝑖 }’s.
We can view this as an average version of the surrogate losses
under different realizations of 𝑥𝑡 ’s. Now we are ready to state a
generalization bound regarding

|𝒟Θ (P̂𝑅 (𝐼 ), P̂𝐺𝜂 ,𝑍 (𝐼 ))) −𝒟Θ (P𝑅,P𝐺𝜂 ,𝑍 ) |.

In order to conquer the issues with non-i.i.d. data and overlapping
sampling, we introduce a framework for defining suitable mixing
conditions. This kind of framework is commonly used in time-series
analysis [7].

Mixing condition framework. Let 𝑋𝑖 ∈ 𝑆 for some set 𝑆 ,
and 𝑋 = (𝑋1, , · · · , 𝑋𝑛). We further denote 𝑋 𝑗

𝑖
= (𝑋𝑖 , 𝑋𝑖+1, · · · , 𝑋 𝑗 )

as a random vector for 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛. Correspondingly, we let
𝑥
𝑗
𝑖
= (𝑥𝑖 , 𝑥𝑖+1, · · · , 𝑥 𝑗 ) be a subsequence for the realization of 𝑋 ,

i.e. (𝑥1, 𝑥2, · · · , 𝑥𝑛). We denote the set C = {𝒚 ∈ 𝑆𝑖−1,𝑤,𝑤 ′ ∈ 𝑆 :
P(𝑋 𝑖1 = 𝒚𝑤) > 0, P(𝑋 𝑖1 = 𝒚𝑤 ′) > 0}, and write 𝜂𝑖, 𝑗 ({𝑋𝑖 }𝑛𝑖=1) =
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supC 𝜂𝑖, 𝑗 (𝒚,𝑤,𝑤 ′), where
𝜂𝑖, 𝑗 (({𝑋𝑖 }𝑛𝑖=1,𝒚,𝑤,𝑤

′) denotes

TV
(
P(𝑋𝑛𝑗 |𝑋

𝑖
1 = 𝒚𝑤),P(𝑋𝑛𝑗 |𝑋

𝑖
1 = 𝒚𝑤 ′)

)
. (19)

Here, TV is the total variation distance and P(𝑋𝑛
𝑗
|𝑋 𝑖1 = 𝒚𝑤) is

the distribution of 𝑋𝑛
𝑗
conditioning on {𝑋 𝑖1 = 𝒚𝑤}.

Assumptions and implications.Wemake a number of natural
boundedness assumptions. We assume the time series data have
bounded support with a universal 𝐵𝑟 , such thatmax{∥𝑟𝑖 ∥∞, ∥𝑟𝑖 ∥} ⩽
𝐵𝑟 ,

where the boundedness of ∥𝑟𝑖 ∥ is implied by the boundedness
of∥𝑟𝑖 ∥∞ since the dimension of 𝑟𝑖 is finite. We assume boundedness
of conditioning information {𝑥𝑡 }𝑡 with a universal 𝐵𝑥 , such that
max{∥𝑥𝑡 ∥∞, ∥𝑥𝑡 ∥} ⩽ 𝐵𝑥 .

For the discriminators 𝐷𝛾 and 𝐷𝜃 , where 𝜃 ∈ Θ ⊆ R𝑝 , we
assume w.l.o.g. that Θ is a subset of unit balls with corresponding
dimensions.5 Similarly, for the generative model 𝐺𝜂 , 𝜂 ∈ Ξ, we
assume Ξ is a subset of unit ball.

We also require 𝐿-Lipschitzness of 𝐷𝜃 and 𝐺𝜂 with respect to
their parameters, i.e. ∥𝐷𝜃1 (𝑥) − 𝐷𝜃2 (𝑥)∥ ⩽ 𝐿∥𝜃1 − 𝜃2∥ for any 𝑥
(similar for 𝐺𝜂 ), as well as the boundedness of the output range of
𝐺 , with a Δ such that max{∥𝐺𝜂 (𝑥)∥, ∥𝐺𝜂 (𝑥)∥∞} ⩽ Δ for any input
𝑥 . To characterize the mixing conditions, we assume there exists a
universal function 𝛽 , such that
max{𝜂𝑖, 𝑗 ({(𝑟𝑖 , 𝑥𝑖 )}𝑇𝑖=1), 𝜂𝑖, 𝑗 ({𝑥𝑖 }

𝑇
𝑖=1)} ⩽ 𝛽 ( | 𝑗 − 𝑖 |)),

and with Δ𝛽 =
∑∞
𝑘=1 𝛽 (𝑘) < ∞, where 𝛽’s are the mixing coeffi-

cients. Lastly, and as holds for the Wasserstein GAN, there exists a
constant �̃�, such that ∥𝐷𝜃 (𝑥) − 𝐷𝜃 (𝑥 ′)∥ ⩽ �̃�∥𝑥 − 𝑥 ′∥ for all 𝜃 . We
first claim the boundedness of the decision-related quantities in
DAT-CGAN. We defer the proofs of Lemma 4.3 and Theorem 4.4 to
Sun et al. [24].

Lemma 4.3 (Boundedness of decision-related quantities). Under
the assumptions above, the decision-related quantities we considered
are all bounded, where the bounds are universal and only depend on
𝐵𝑟 .

Let 𝐵𝑓 denote the bound of the decision-related quantity,
max{∥ 𝑓 (𝑅𝑡𝑖+1:𝑡𝑖+𝐾 , 𝑥𝑡𝑖 )∥, ∥ 𝑓 (𝑅′𝑡𝑖+1:𝑡𝑖+𝐾 , 𝑥𝑡𝑖 )∥} ⩽ 𝐵𝑓 for all 𝑖 . By
Lemma 4.3, we obtain the following generalization bound for
|DΘ (P̂𝑅 (𝐼 ), P̂𝐺𝜂 ,𝑍 (𝐼 )))−DΘ (P𝑅,P𝐺𝜂 ,𝑍 ) |, for each iteration of the
training process (referring to each round of the mix-max optimiza-
tion of CGANs).

Theorem 4.4. Under the assumptions above, suppose
𝐺𝜂1 ,𝐺𝜂2 , · · · ,𝐺𝜂𝑀 be the 𝑀 generators in the 𝑀 iterations of the

training, let 𝐵∗ =
√︃
𝐵2
𝑓
+ 𝐵2

𝑥 (𝐾 + Δ𝛽 ), then

sup
𝑗∈[𝑀 ]

|𝐷Θ (P̂𝑅 (𝐼 ), P̂𝐺𝜂𝑗 ,𝑍 (𝐼 ));𝜂) − 𝐷Θ (P𝑅,P𝐺𝜂𝑗 ,𝑍 ) | ⩽ 𝜀,

with probability of at least

1 −𝐶 exp
(
𝑝 log( 𝑝𝐿

𝜀
)
)
(1 +𝑀) exp

(
− 𝐼𝜀2

�̃�2𝐵2
∗

)
,

for some constant 𝐶 > 0.
5We can always rescale the parameter properly by changing the parameterization as
long as Θ is bounded. The boundedness of Θ is naturally satisfied since the training
algorithm of the Wasserstein GAN requires weight clipping.

Theorem 4.4 provides, whether for raw data or a decision-related
quantity, that the distribution on non-synthetic data is close to the
generated distribution at every iteration in training. As with Arora
et al. [2], we obtain an exponential tail bound, in our case with
a constant that also involves the mixing coefficient and sampling
block size.

5 DAT-CGAN FOR PORTFOLIO CHOICE
We apply the DAT-CGAN to portfolio choice, where an investor
wants to understand the properties of a portfolio strategy. A good
generator (“simulator") should not only generate synthetic asset
return data but also support the high-fidelity generation of decision-
related quantities that are relevant for portfolio choice.

Specifically, we assume the investor formulates a mean-variance
portfolio optimization problem in choosing the portfolio weights.
They want to invest across a number of assets, considering the
portfolio return and the portfolio risk. Let 𝑟𝑡+𝑘+1 denote the asset
return vector at time 𝑡 +𝑘 +1, for look-ahead step 𝑘 +1. Let 𝑥𝑡 denote
the conditioning variables at time 𝑡 . We use 𝑤𝑡+𝑘 |𝑡 to denote the
portfolio weights decided at time 𝑡 +𝑘 , and traded on at time 𝑡 +𝑘+1.
For non-synthetic data, the portfolio optimization problem at time
𝑡 + 𝑘 can be written as:

max
𝑤
⊺
𝑡+𝑘 |𝑡 1=1

𝑤
⊺
𝑡+𝑘 |𝑡𝑢𝑡+𝑘 |𝑡 − 𝜙 ·𝑤

⊺
𝑡+𝑘 |𝑡 Σ̂𝑡+𝑘 |𝑡𝑤𝑡+𝑘 |𝑡 , (20)

where 𝜙 > 0 is the risk preference parameter, and with estimated
mean and co-variance of asset returns, 𝑢𝑡+𝑘 |𝑡 and Σ̂𝑡+𝑘 |𝑡 , respec-
tively.

Figure 2: Decision-related quantities in the portfolio selec-
tion problem.

These estimators are defined on non-synthetic asset returns
as, 𝑢𝑡+𝑘 |𝑡 = 𝑓𝑢,𝑘 (𝑅𝑡+1:𝑡+𝑘 , 𝑥𝑡 ) = MA𝜁 (𝑟𝑡+𝑘 ) and Σ̂𝑡+𝑘 |𝑡 =

𝑓Σ,𝑘 (𝑅𝑡+1:𝑡+𝑘 , 𝑥𝑡 ) = MA𝜁 (𝑟𝑡+𝑘𝑟
⊺
𝑡+𝑘 ) − 𝑢

2
𝑡+𝑘 |𝑡 . Here, MA𝜁 (𝑟𝑡+𝑘 ) =

𝜁 ·MA𝜁 (𝑟𝑡+𝑘−1) + (1 − 𝜁 ) · 𝑟𝑡+𝑘 is a moving average operator, and
𝜁 > 0 a smoothing parameter. We set 𝜁 = 0.74. The analytical
solution to the investment problem is,

𝑤𝑡+𝑘 |𝑡 =
2�̂�𝑡+𝑘 |𝑡
𝜙
(𝑢𝑡+𝑘 |𝑡 −

1⊺�̂�𝑡+𝑘 |𝑡𝑢𝑡+𝑘 |𝑡1 − 2𝜙1

1⊺�̂�𝑡+𝑘 |𝑡1
), (21)

where �̂�𝑡+𝑘 |𝑡 is the estimated precision matrix (Σ̂−1
𝑡+𝑘 |𝑡 ) of asset

returns. �̂�𝑡+𝑘 |𝑡 = ((1 − 𝜏)Σ̂𝑡+𝑘 |𝑡 + 𝜏Λ)−1 using the shrinkage
method [9], where Λ is the identity matrix and 𝜏 > 0 is a shrinkage
parameter.
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(a) Final step asset returns (S1) (b) Final step precision matrix (S1) (c) Final step portfolio weights (S1)

(d) Final step asset returns (ETF) (e) Final step precision matrix (ETF) (f) Final step portfolio weights (ETF)

Figure 3: Wasserstein Distance between non-synthetic and synthetic data for artificial environments S1 (first row), and for real
data comprised of four U.S. ETFs (second row). 3a and 3d asset returns; 3b and 3e estimated precision matrix; 3c and 3f portfolio
weights. An epoch is one full pass of the data. Confidence bands are computed over 5 runs.

The investor is interested in the realized portfolio return,
𝑝𝑡+𝑘+1 |𝑡 = 𝑤

⊺
𝑡+𝑘 |𝑡𝑟𝑡+𝑘+1 |𝑡 , and the realized utility of the portfolio

return given the risk preference, defined as 𝑈𝑡+𝑘+1 |𝑡 = 𝑝𝑡+𝑘+1 |𝑡 −
𝜙𝑝2

𝑡+𝑘+1 |𝑡 .
We give the relationship between the various decision-related

quantities in Figure 2.
These decision-related quantities are generated based on condi-

tioning variables that reflect market conditions. We use the chain
rule to take derivatives through the portfolio optimization problem
during training, making use of the closed-formed solution (21).

6 EXPERIMENTAL RESULTS
We study two different kinds of environments. A first kind of en-
vironment is an artificial environment, while the second kind of
environment makes use of real time series data that comprises a
basket of ETF time series. To avoid ambiguity, we emphasize here
that we adopt the phrase “artificial” to refer to the first environment.
We always using “synthetic" to refer to the data generated by the
DAT-CGAN and other baselines, whether in the first or second kind of
environment.

Experimental setup. We study a generation problem with
𝐾 = 4 lookahead horizon steps. We assume the risk-preference
parameter of an investor is 𝜙 = 1, and adopting shrinkage parame-
ter 𝜏 = 0.01 when estimating the precision matrix to avoid issues
with a degenerate co-variance matrix.

Our proposed methods are as follows:
• (Ret-Utility-GAN) Asset returns as raw data and with the real-

ized utility of the portfolio as the decision-related quantity.
• (Ret-Cov-Utility-GAN) Asset returns as raw data, with estimated

covariance matrix as intermediate quantity and with the realized
utility of the portfolio as the decision-related quantity.

Utility is the decision-related quantity in Ret-Utility-GAN, since
this comes at the end of the decision chain and controls all the
decision-related quantities; in particular, the derivative of this quan-
tity also involves the derivative of earlier quantities, via the chain
rule, and thus controls multiple quantities of interest. Estimated
covariance matrix is the intermediate quantity in Ret-Cov-Utility-
GAN, and is adopted as it provides additional supervision to control
the errors of intermediate quantity, which further control the errors
of all quantities.

We find in our experiments that Ret-Utility-GAN and Ret-Cov-
Utility-GAN provide good fidelity across different risk preference
parameters (See Figure 3 and Figure 7 in Sun et al. [24]) and across
different data generating processes comparing with the baselines.
(see the first row of Figure 3 and 4).

Baselines. We compare our methods with the following ap-
proaches:
• (Ret-GAN) Asset returns as raw data. This is a standard

model [12, 30] with loss imposed only on the asset return. This
GAN generates synthetic raw asset returns 𝑅′

𝑡+1:𝑡+𝐾 for each 𝑡 , and
the training process uses the sum of 𝐾 Wasserstein losses, one for
each look-ahead step.
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(a) Final step asset returns (S2) (b) Final step covariance matrix (S2) (c) Final step portfolio return (S2)

(d) Final step asset returns (S3) (e) Final step covariance matrix (S3) (f) Final step portfolio return (S3)

Figure 4: Wasserstein Distance between non-synthetic and synthetic data for artificial environments S2 (first row) and S3
(second row). 4a and 4d asset returns; 4b and 4e estimated covariance matrix; 4c and 4f portfolio return. An epoch is one full
pass of the data. Confidence bands are computed over 5 runs.

• (1 Step-GAN) Asset returns as raw data. This is a 1-step version
of the Ret-Utility GAN: a GANwith a 1-step look-ahead asset return
and utility (this is similar to Li et al. [15], but with an additional
decision-aware loss). This GAN generates synthetic data 𝑅′

𝑡+1:𝑡+1
(i.e. 𝑟 ′

𝑡+1 |𝑡 ) and synthetic derived quantity 𝑈 ′
𝑡+1 |𝑡 , i.e., utility. The

training process uses the sum of two Wasserstein losses, defined
on 𝑅′

𝑡+1:𝑡+1 and𝑈 ′
𝑡+1 |𝑡 .

• (Single-GAN) Asset returns as raw data. This is a single Wasser-
stein loss defined on a vector of 2𝐾 quantities coming from stacking
the asset returns, 𝑅′

𝑡+1:𝑡+𝐾 , and utility quantities𝑈 ′
𝑡+𝑘 |𝑡 , for each 𝑘

and 𝑡 .
• (Utility-GAN) Asset returns as raw data. The utility is the only

loss of this model. (i.e., no loss on the asset returns). This GAN
generates the synthetic derived quantities,𝑈 ′

𝑡+𝑘 |𝑡 , for each 𝑘 and 𝑡 ,
i.e., the utility quantities. The training process uses the sum of 𝐾
Wasserstein losses, one for each look-ahead step.

Generator Network Architecture. For the generator, we use
a feed-forward neural network for each asset, where the outputs
are predicted asset returns and used to compute decision-related
quantities. The generator network architecture for a particular
asset (asset 2) is shown in Figure 5. For period 𝑡 and look-ahead
step 𝑘 , there is a network with (5 + 32) inputs, with 5 hand-crafted
conditioning variables and 32 random seeds. 𝑥𝑡,𝑖,𝑠 is an input node,
with index 𝑖 (1 ⩽ 𝑖 ⩽ 5) corresponding to the asset return in the
last day and each of four rolling-average returns (see below), and

s being the index for the asset. Inputs 𝑧𝑡,𝑡+𝑘,𝑗 (1 ⩽ 𝑗 ⩽ 32) are the
random seeds, which are shared for each asset given the same 𝑘 .
The network has a single hidden layer with 16 ReLU units, denoted
ℎ𝑡+𝑘 |𝑡,𝑙,𝑠 units (1 ⩽ 𝑙 ⩽ 16). The output units 𝑟 ′

𝑡+𝑘 |𝑡,𝑠 provide the
synthetic asset return for asset 𝑠 . We then concatenate 𝑟 ′

𝑡+𝑘 |𝑡,𝑠 to
form 𝑟 ′

𝑡+𝑘 |𝑡 .
After obtaining 𝑟 ′

𝑡+𝑘 |𝑡 , we compute quantities of interest, i.e.,
𝑢′
𝑡+𝑘 |𝑡 = 𝑓𝑢,𝑘 (𝑅′𝑡+1:𝑡+𝑘 , 𝑥𝑡 ), Σ̂

′
𝑡+𝑘 |𝑡 = 𝑓Σ,𝑘 (𝑅′𝑡+1:𝑡+𝑘 , 𝑥𝑡 ), �̂�

′
𝑡+𝑘 |𝑡 ,

𝑤 ′
𝑡+𝑘 |𝑡 , 𝑝

′
𝑡+𝑘+1 |𝑡 , and 𝑈

′
𝑡+𝑘+1 |𝑡 (see Section 5). We use the same

generator architecture for each asset 𝑠 , each period 𝑡 , and each
look-ahead step 𝑘 .

Discriminator Network Architecture. There is one discrim-
inator for each quantity of interest (e.g., raw data, or a decision-
related quantity). Figure 6 illustrates the discriminator network
for the utility quantity. As with other quantities of interest, this
is a feed-forward neural network. In the case of utility, the input
to the network for period 𝑡 and look-ahead step 𝑘 is either the
synthetic utility𝑈 ′

𝑡+𝑘 |𝑡 or the non-synthetic utility𝑈𝑡+𝑘 , together
with 𝑥𝑡,𝑖 , for 1 ⩽ 𝑖 ⩽ 5, where 𝑥 represents the conditioning vari-
ables. There are 32 hidden nodes (ReLU activations), these shown
as 𝑚𝑡+𝑘 |𝑡,𝑖 units (for 1 ⩽ 𝑖 ⩽ 32). There is a single output node,
denoted 𝐷𝑈 ,𝑡+𝑘 |𝑡 , and representing the discriminator value. We use
the same discriminator architecture for each decision quantity of
interest, each period 𝑡 , and each look-ahead step 𝑘 .
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Figure 5: Generator Network Architecture for Asset 2, shown
for period 𝑡 and for look-ahead step 𝑘 = 1 and 𝑘 = 𝐾 .
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Figure 6: Discriminator Network Architecture for Utility,
shown for period 𝑡 and for look-ahead step 𝑘 = 1 and 𝑘 = 𝐾 .

Features. For both the discriminator and the generator, we use
five features as the conditional variables for each asset. These are
the asset return of the last week, and four different moving-average-
based features, computed by taking the average of asset returns
in the past few weeks. The moving average operators are defined
as MA𝜓𝑖 (𝑟𝑡 ) = 𝜓𝑖MA𝜓𝑖 (𝑟𝑡−1) + (1 − 𝜓𝑖 )𝑟𝑡 , where 𝑟𝑡 is the raw
asset return and the value of the smoothing parameter 𝜓𝑖 (0 <

𝜓𝑖 < 1) controls the smoothing for a particular feature. We adopt
this small and fixed set of features, rather than some more general
approach such as recurrent neural nets to represent history because
the sample size is small when working with real data and we want
to avoid over-fitting.

Evaluation. For evaluation, we calculate the Wasserstein dis-
tances between the raw asset returns, the estimated covariance
matrix, the estimated precision matrix, the portfolio weights (the
decision variables), the portfolio return and their respective syn-
thetic counterparts. We do this for quantities that correspond to
each of the final lookahead steps (i.e., steps 3 for the estimated co-
variance matrix, precision matrix and portfolio weights, and steps
4 for the raw data and portfolio return). We have chosen to present
evaluation metrics exclusively for the final step quantities, which
represent the culmination of the chain and therefore pose a greater
challenge for yielding positive results. By demonstrating favorable
outcomes on these difficult-to-master quantities, we implicitly sug-
gest the proficiency of our proposed method for the earlier, less
complex stages of the chain as well.

Results: Artificial environment.We first present results on
three distinct artificial time series. Here, the data-generating process
is given by 𝑟𝑡+1 = 𝑏0 · 𝑟𝑡 +

∑4
𝑖=1 𝑏𝑖 ·MA𝜁𝑖 (𝑟𝑡 ) + 𝜖 , where 𝑟𝑡 is the

asset return vector, MA𝜁𝑖 (𝑟𝑡 ) the moving average operator, 𝜁𝑖 > 0
the smoothing parameter, 𝑏𝑖 the coefficient, and 𝜖 the noise.

We summarize the datasets as follows:
• (S1) We set 𝜁1 = 0.55, 𝜁2 = 0.74, 𝜁3 = 0.86, 𝜁4 = 0.92, and

𝑏0 = 0.3, 𝑏1 = 0.1, 𝑏2 = 0.2, 𝑏3 = 0.1, and 𝑏4 = 0.1. We use a multi-
variate t-distribution to model the noise, with location parameter
𝜇 = [0, 0, 0, 0]⊺ , shape matrix Σ =

[1, 0.6, 0, 0; 0.6, 1, 0.6, 0; 0, 0.6, 1, 0.6; 0, 0, 0.6, 1], and d.o.f., 𝜈 = 100. 𝜈
simulates the tail level of asset returns [6].
• (S2) We keep all parameters of data generating process from

S1 the same, and only let 𝑏0 = −0.3.
• (S3) We keep all parameters of data generating process from

S1 the same, and only let 𝜈 = 5, which simulates a heavy tail
distribution.

The first row of Figure 3 and both rows of Figure 4 show that
the Ret-Utility-GAN and Ret-Cov-Utility-GAN have generally bet-
ter performance in terms of minimizing the Wasserstein distance
for each of asset returns, estimated covariance matrix, estimated
precision matrix, portfolio weights and portfolio return. In the first
row of Figure 3, Ret-Utility-GAN performs (1) better than Ret-GAN,
confirming that introducing utility provides useful moderation on
the distribution of synthetic raw data; and (2) better than the Utility-
GAN, which shows that including the asset return loss also helps;
(3) better than the Single-GAN, which shows that imposing loss
for each quantity is more effective than a single loss on stacked
quantities (also, Ret-Utility-GAN is more computationally efficient
than Single-GAN, since Single-GAN Wassterstein loss is imposed
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on higher dimensions of stacked quantities, which increases the
discriminator capacity compared to the unstacked version); (4) com-
parably to the 1-Step GAN. We also observe that Ret-GAN doesn’t
perform as well as the Ret-Utility-GAN even on the raw asset re-
turns.

Our hypothesis is that, by introducing additional loss, Ret-Utility-
GAN providesmore information for the gradient during the training
process, leading to more effective training stability and better gen-
eralization on evaluation data. In addition, the Ret-Utility-GAN,
1-Step GAN, and Single-GAN have losses imposed on both asset
return and utility quantities, and they outperform Ret-GAN and
Utility-GAN, showing that having both raw quantities and derived
quantities are important for good performance.

In each row of Figure 4, Ret-Cov-Utility-GAN performs the best
among all methods by a large margin, and Ret-Utility GAN is also
competitive for raw data and the covariance matrix metric. Ret-
GAN does not have good performance for the convariance matrix,
and Utility-GAN does not have good performance for raw data.
Ret-GAN and Utility-GAN are the two worst methods for the port-
folio return metric. Together, these results confirm that introducing
derived and decision-related quantities helps for stabilizing the
training process and achieving better test performance.

Results: Real ETF time series.We also give results for training
DAT-CGAN on real ETF time series, where we use weekly price
data for each of four U.S. ETFs6 from 1999 to 2016. The data includes
the end-of-day price for each ETF. The entire dataset has more than
3,500 data points (17 years × 52 weeks × 4 ETFs). We divide the data
into a training set from 1999–2006, and a test set from 2007–2016.
As a reference, Yoon et al. [29] make use of 4,000 data points for
their experiment, thus our sample size is comparable. We generate
future weekly returns for each of 𝐾 = 4 future weeks (1 month).

Figures 3, second row, shows that the performance of Ret-Utility-
GAN is much better than Ret-GAN in regard to the Wasserstein
loss in regard to each of the asset returns, precision matrix, and
portfolio weights. Ret-Utility-GAN performs as well as Single-GAN
in regard to theWasserstein loss on all metrics. Ret-Utility-GAN also
performs better than the 1Step-GAN in terms of its training stability,
which shows that the Ret-Utility-GAN is effective in addressing
exposure bias. In this experiment, Utility-GAN, also performs well.
We again observe that Ret-GAN does not perform as well as Ret-
Utility-GAN, and even on the raw asset return data, which further
emphasizes that the introduction of a decision related quantity,
such as utility, provides moderation on the distribution of synthetic
raw data.

7 CONCLUSION
In this paper, we have introduced DAT-CGAN, which is a novel,
decision-aware time series conditional generative adversarial net-
work for generating time-series data. The method incorporates
decision-related quantities into a multi-loss structure, avoids expo-
sure bias by aligning look-ahead steps during training and testing,
and alleviates problems with data scarcity through an overlapped-
block sampling scheme. We characterize the finite-sample general-
ization properties of DAT-CGANs for generating the raw data as

6the Material (XLB), Energy (XLE), Financial (XLF), and Industrial (XLI) ETFs.

well as decision-related quantities. In an application to financial
portfolio selection, we demonstrated better generative quality for
decision-related quantities, such as estimated precision matrix and
portfolio weights, as well as raw data than other strong, GAN-based
baselines. We have established this on real, ETF time series data as
well as within three different artificial environments.
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