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ABSTRACT
Agent-based modelling (ABMing) is a promising approach to mod-

elling and reasoning about complex systems such as financial mar-

kets. However, the application of ABMs in practice is often impeded

by the models’ complexity and the ensuing difficulty of performing

parameter inference and optimisation tasks. This in turn has mo-

tivated efforts directed towards the construction of differentiable

ABMs, enabled by recently developed effective auto-differentiation

frameworks, as a strategy for addressing these challenges.

In this paper, we discuss and present experiments that demon-

strate how differentiable programming may be used to implement

and calibrate heterogeneous ABMs in finance.We begin by consider-

ing in more detail the difficulties inherent in constructing gradients

for discrete ABMs. Secondly, we illustrate solutions to these diffi-

culties, by using a discrete agent-based market simulation model

as a case study. Finally, we show through numerical experiments

how our differentiable implementation of this discrete ABM en-

ables the use of powerful tools from probabilistic machine learning

and conditional generative modelling to perform robust parameter

inferences and uncertainty quantification, in a simulation-efficient

manner.
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1 INTRODUCTION
Agent-based models (ABMs) are stochastic simulation models in

which a collection of heterogeneous and interacting entities – the

“agents” of the system – make decisions and perform actions on the

basis of these interactions with other agents and their environment.

Such models have gained considerable popularity as a tool to model

financial systems, due to their ability to simulate complex systems

at a granular level [21]. While the ABM modelling paradigm offers

unique advantages, their complexity presents significant challenges,

for example in terms of parameter calibration [see e.g. 3, 13, 31].

Multiple factors contribute to the difficulty of these tasks, including

the intractability of the ABM’s likelihood function, and the often

black-box and non-differentiable nature of the ABM [1].

These drawbacks have motivated research into the construction

of differentiable ABMs [2, 9], in which an approximation to the

gradient of an originally non-differentiable ABM is sought, for ex-

ample by exploiting automatic differentiation (AD) frameworks.

AD – a methodological cornerstone in machine learning, largely

underpinning the success of deep learning paradigms due to its abil-

ity to accurately compute derivatives within models – circumvents

issues present in alternative approaches to model differentiation by

applying the chain rule of differentiation at a computational level,

resulting in accurate derivatives at a low computational cost. By im-

plementing ABMs within a differentiable programming framework,

approximations to the gradient of the ABM’s output with respect

to its input can be obtained and usefully applied in optimisation

and parameter calibration tasks.

In this paper, we consider some of the main challenges faced

when constructing differentiable implementations of discrete ABMs

in finance, before demonstrating how recent progress in AD and

probabilistic machine learning can be leveraged to build and cal-

ibrate differentiable ABMs of financial systems. Through experi-

ments with a discrete financial ABM, we provide empirical evidence

of the benefits gradient-assisted calibration methods can offer over

black-box alternatives, both in terms of simulation-efficiency and

the quality of the resulting parameter inferences. Given that ABMs

can be extremely expensive to simulate and that decision-makers

require robust parameter inferences to appropriately inform their
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decision-making, these developments have the potential to dra-

matically improve the ease with which ABMs can be deployed in

real-world settings.

2 AUTOMATIC DIFFERENTIATION IN
AGENT-BASED MODELS

In many practical settings involving ABMs, it is commonly the

case that practitioners are interested in performing optimisation

problems. Such problems often take of the following form:

min

𝜔∈Ω
E𝑧∼𝑝𝜔 [L(𝑧)] , (1)

where 𝑝𝜔 ∈ {𝑝𝜔 ′ : 𝜔 ′ ∈ Ω} is a probability distribution on domain

Z indexed by a parameter𝜔 belonging to some set Ω, andL : Z →
R is a loss function. For example, a key step in ensuring that the

model captures key relevant features of the modeled system is to

perform parameter calibration, in which the model parameter vector

– or a distribution over the parameter vector – is tuned in order to

uncover parameter vectors that are consistent with data observed

in the real world [31]. For example, some parameter calibration

procedures seek to identify the parameters 𝜽 in some set 𝚯 that

minimise some discrepancy D(·, y) between the model output x
and real-world data y; in many such cases, this task can be cast as

the optimisation problem

min

𝜽 ∈𝚯
Ex∼𝑝 ( · |𝜽 ) [D(x, y)] , (2)

where𝑝 (· | 𝜽 ) is theABM’s likelihood function and x = (x1, . . . , x𝑇 )
is a time series simulated from the ABM.

A natural approach to solving optimisation problems such as

Equation 1 is to perform an iterative gradient-based search of the

solution space Ω. Broadly speaking, such algorithms would iterate

by making small changes to the parameter 𝜔 by taking steps in a

direction informed by the gradient

∇𝜔E𝑧∼𝑝𝜔 [L(𝑧)] . (3)

In order to proceed in this manner, however, a necessary prerequi-

site is the ability to compute – or, where this is not possible, find a

Monte Carlo approximation to – the gradient given in Equation 3.

Since it is typically extremely difficult to find a closed-form expres-

sion for this gradient, one overarching challenge to performing

gradient-based optimisation and parameter calibration for ABMs is

the task of accurately and efficiently estimating Equation 3.

2.1 Monte Carlo gradient estimation
The task of estimating Equation 3 in the absence of a closed-form

expression for the gradient or expectation is known as the problem

of Monte Carlo gradient estimation [27], in which samples from the

probability distribution 𝑝𝜔 are used to find a finite-sample estimate

of Equation 3. Two dominant approaches exist for performing this

Monte Carlo estimation:

(1) The first approach is commonly termed a score-based gradi-

ent estimate, in which minimal assumptions are made about

the differentiability of the loss function L. By exchanging

the order of the integral and gradient in Equation 3, this

estimator is obtained as

∇𝜔E𝑧∼𝑝𝜔 [L(𝑧)] = E𝑧∼𝑝𝜔 [L(𝑧)∇𝜔 log𝑝𝜔 (𝑧)] (4)

≈ 1

𝑅

𝑅∑︁
𝑟=1

L(𝑧 (𝑟 ) )∇𝜔 log𝑝𝜔 (𝑧 (𝑟 ) ), (5)

where 𝑧 (𝑛) ∼ 𝑝𝜔 , 𝑛 = 1, . . . , 𝑁 . Such a gradient estimate is

broadly applicable, since it does not require differentiability

of L; however, a drawback of this gradient estimator is that

it is known to suffer from high variance in many cases [27].

(2) The second approach is commonly termed a path or pathwise
gradient estimator. This approach makes stronger assump-

tions about the loss function L and about the simulator: it

typically requires both that L is differentiable, and that the

stochastic sampling procedure 𝑧 ∼ 𝑝𝜔 can be reparameterised
[23], which is to say that is can be written as

𝑧 = 𝑔(𝑢,𝜔), 𝑢 ∼ 𝑝 (𝑢) (6)

for some parameter-free probability distribution 𝑝 (𝑢) and
function𝑔 that is differentiable in its second argument. In this

case, the pathwise gradient estimator may be constructed as

∇𝜔E𝑧∼𝑝𝜔 [L(𝑧)] = ∇𝜔E𝑢∼𝑝 [L(𝑔(𝑢,𝜔))] (7)

= E𝑢∼𝑝 [∇𝜔L(𝑔(𝑢,𝜔))] (8)

≈ 1

𝑅

𝑅∑︁
𝑟=1

∇𝜔L(𝑔(𝑢 (𝑟 ) , 𝜔)), (9)

where 𝑢 (𝑟 ) ∼ 𝑝 (𝑢), 𝑟 = 1, . . . , 𝑅 and we use the Law of the

Unconscious Statistician [20] in the first line. While this

approach imposes more stringent constraints on the form of

the simulator, it can result in Monte Carlo gradient estimates

that have lower variance than the score-based alternative in

Equation 5 [27].

On the basis of this discussion, it can be desirable to ensure that

the conditions required to perform the reparameterisation trick

and obtain pathwise derivatives are met, in order to obtain lower-

variance Monte Carlo gradient estimates and to converge more

rapidly onto a suitable minimiser for the optimisation problem in

Equation 1.

2.2 Challenges to Monte Carlo gradient
estimation for agent-based models

Here, we conclude by considering some of the main challenges

that ABMs, both in financial settings and more broadly, pose to the

broader challenge of performing Monte Carlo gradient estimation

in general optimisation and parameter calibration problems.

2.2.1 Pathwise derivatives in the presence of discrete randomness.
By nature, ABMs simulate discrete events, transitions, and interac-

tions, for which meaningful notions of derivatives are difficult to

construct due to the intrinsically non-continuous nature of these

operations. For this reason, it is typically not immediately the case

that ABMs satisfy the constraints required to find pathwise deriva-

tives, and consequently a pathwise Monte Carlo gradient estima-

tor as in Equation 9. One of the central difficulties in performing

gradient-based optimisation for ABMs is therefore the issues of dif-

ferentiating through discrete operations and discrete randomness
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that are simulated within an ABM, in a manner that preserves the

generally low-variance nature of a pathwise gradient estimator.

Initial research efforts towards approaches to differentiating

through discrete structures in ABMs have primarily centred on

transforming the ABM’s discrete control flow structure with con-

tinuous approximations [1, 28]. Such an approach is, however, gen-

erally undesirable, since this introduces approximations to both

the gradients of the model and the underlying model itself. More

recently, more desirable approaches to differentiating through dis-

crete randomness that entail only the introduction of approxima-

tions to the model’s gradients without modifying the underlying

model have been taken (see e.g. [2, 9]) through the use of the

Gumbel-Softmax (GS) reparameterisation trick [22] and Stochasti-

cAD [2] in the Julia programming language [6].

In this paper (see section 3 below), we discuss and demonstrate

how these efforts can be extended to the case of financial ABMs,

and how a discrete financial ABM can be implemented in a differ-

entiable manner using automatic differentiation (AD) frameworks.

We will show that the gradient estimates obtained using the GS

reparameterisation trick are sufficiently robust for fast and accurate

Bayesian inference for a stochastic ABM of trader decisions in an

artificial financial market.

2.2.2 Memory-efficient simulator gradients. An additional consid-

eration that we discuss in this paper is the memory requirements

in constructing and employing differentiable financial ABMs in

practice. When using AD to compute derivatives within a differen-

tiable simulator, two primary AD techniques are available to the

user: reverse-mode AD and forward-mode AD [4]. In reverse-mode

AD (RMAD), a computation graph must be stored that records all

operations performed within the model, such that the gradients

of the model outputs with respect to the input parameters can be

obtained. This contrasts with forward-mode AD (FMAD), where

the gradients are computed during forward simulation of the ABM.

Two important computational considerations exist when com-

paring FMAD and RMAD in the context of differentiable ABMs.

The first is that the computational time associated with FMAD

scales with the number of model inputs, while that of RMAD scales

with the number of model outputs. In many machine learning set-

tings, the latter option is more prevalent, since machine learning

models often have many more inputs than outputs. However, the

computation graph that RMAD must store in (often GPU) memory

can be extremely large, hindering the possibility of differentiating

through large models. This is particularly pertinent for ABMs: the

size of the computation graph grows with the number of agents

and time-steps, which can pose a challenge to the use of RMAD for

ABMs with a large number of agents and time-steps. For this rea-

son, imprudently using RMAD exclusively during gradient-assisted

calibration can result in prohibitively large memory requirements.

As we will demonstrate in section 3, this problem can be addressed

with a judicious use of both RMAD and FMAD while performing

gradient-assisted calibration and optimisation.

3 EXPERIMENTS
In this section, we demonstrate how gradients can be introduced to

discrete ABMs and used to perform gradient-assisted calibration.

3.1 The agent-based model
To demonstrate how differentiable programming can be applied

to discrete ABMing in finance, we consider the discrete ABM of

volatility clustering in financial markets presented in [10], which

we briefly describe here. In this model, 𝑁 agents trade a single

asset over discrete periods 𝑡 ∈ {1, . . . ,𝑇 }, where the price of the
asset at time 𝑡 is denoted 𝑆𝑡 . At time 𝑡 , agent 𝑖 submits a buy or sell

order, represented with 𝜌𝑖 (𝑡) = 1 and −1, respectively. A value of

𝜌𝑖 (𝑡) = 0 implies that agent 𝑖 is inactive at time 𝑡 . Agents receive a

common signal 𝜖𝑡 that forecasts the next time period’s log-returns

𝑟𝑡 = log 𝑆𝑡/𝑆𝑡−1 in the price of the asset, upon which they base their
decisions to place orders; this signal is modelled as a sequence of

iid, zero-mean Gaussian innovations 𝜖𝑡 ∼ N(0, 𝜎2) with standard

deviation 𝜎 > 0. On the basis of this signal, agent 𝑖 decides whether

or not to place an order at time 𝑡 according to the following rule:

𝜌𝑖 (𝑡) = 1𝜖𝑡>𝜈𝑖 (𝑡 ) − 1𝜖𝑡<−𝜈𝑖 (𝑡 ) , (10)

where 𝜈𝑖 (𝑡) > 0 is the threshold level for agent 𝑖 at time 𝑡 , which

determines the range of values of the public information 𝜖𝑡 that

agent 𝑖 considers to be significant. In this way, each agent receives

the same information, but the different agents differ in how this is

processed. The initial values 𝜈𝑖 (0) are drawn iid from some prob-

ability density function 𝑓𝛾 indexed by parameters 𝛾 . The excess

demand

𝑍𝑡 =

𝑁∑︁
𝑖=1

𝜌𝑖 (𝑡) (11)

then determines the actual log-returns according to

𝑟𝑡 =
𝑍𝑡

𝑁𝜂
, (12)

where 𝜂 > 0 is a free parameter of the model. Finally, each agent

updates their threshold 𝜈𝑖 (𝑡) at time 𝑡 according to

𝜈𝑖 (𝑡) = 1𝑢𝑖 (𝑡 )<𝑠 |𝑟𝑡 | + 1𝑢𝑖 (𝑡 )≥𝑠𝜈𝑖 (𝑡 − 1), (13)

where 𝑢𝑖 (𝑡) are iid uniformly distributed random variables on the

unit interval [0, 1] and 𝑠 = 10
−1

is the probability that each agent

updates their threshold in a given time period.

In summary, a single model iteration proceeds as follows:

• Each agent receives a common information signal 𝜖𝑡 ∼
N(0, 𝜎2);

• Agent 𝑖 compares 𝜖𝑡 with their (time-varying) threshold 𝜈𝑖 (𝑡)
to produce purchase order 𝜌𝑖 (𝑡) according to Equation 10.

• The excess demand 𝑍𝑡 is used to obtain the log-returns 𝑟𝑡 at

this step according to Equation 12.

• With probability 𝑠 = 10
−1
, each agent updates its threshold

to |𝑟𝑡 |, otherwise their threshold is left unchanged.

While the model is a clear simplification of reality – for example,

no social learning between agents is introduced, and there is no

distinction between different trader types such as chartists and

fundamentalists – the model serves as a useful case study for con-

structing gradients for discrete, stochastic ABMs, which we discuss

in more detail in subsection 3.2.
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3.2 A differentiable implementation
The model presented in subsection 3.1 is not immediately differen-

tiable, as a result of the following two model properties:

(1) The 𝜌𝑖 (𝑡) are (non-iid) discrete random variables taking val-

ues in the set {−1, 0, 1} according to whether the 𝜖𝑡 falls in

the range (−∞,−𝜈𝑖 (𝑡)), [−𝜈𝑖 (𝑡), 𝜈𝑖 (𝑡)], or (𝜈𝑖 (𝑡),∞), respec-
tively. 𝑍𝑡 is consequently also a discrete random variable;

(2) The 𝜈𝑖 (𝑡) are (non-iid) discrete random variables taking val-

ues in the set {|𝑟𝑡 |, 𝜈𝑖 (𝑡 − 1)} with probabilities 𝑠 and 1 − 𝑠 ,

respectively.

To differentiate through the model – for example, to find the partial

derivatives of the model outputs with respect to the input param-

eters – we would like to be able to pass gradients through these

discrete random variables (passing gradients through the remain-

ing operations in the model is immediately possible, either due to

the continuous nature of the operations or through the use of the

reparameterisation trick [23]). Importantly, we would like to do so

in a way that does not entail changing the model itself, in order

that the modeller remains free to specify the model in the way that

they believe is most appropriate.

With the above in mind, we implement the model in pytorch
[30] and equip 𝜌𝑖 (𝑡) and 𝜈𝑖 (𝑡) with gradients by implementing

Equation 10 and Equation 12 using the following tricks:

(1) We take the following “straight-through” approach [5] to

constructing a differentiable 𝜌𝑖 (𝑡):

𝜌𝑖 (𝑡) = 𝜌𝑖 (𝑡) + 𝜚𝑖 (𝑡) − 𝜚𝑖 (𝑡).detach(), (14)

where 𝜌𝑖 (𝑡) is computed according to Equation 10, while

𝜚𝑖 (𝑡) = 𝜍𝑘 (𝜖𝑡 − 𝜈𝑖 (𝑡)) − 𝜍𝑘 (−𝜖𝑡 − 𝜈𝑖 (𝑡)), (15)

𝜍𝑘 (𝑥) = (1 + exp(−𝑘𝑥))−1 (16)

is a soft-threshold approximation to Equation 10 that uses

the sigmoid function 𝜍𝑘 with steepness parameter 𝑘 > 0

as an approximation to the indicator function appearing in

Equation 10. In this way, the additional term

𝜚𝑖 (𝑡) − 𝜚𝑖 (𝑡).detach()

appearing in Equation 14 provides 𝜌𝑖 (𝑡) with a non-zero

gradient via 𝜚𝑖 (𝑡), while the term −𝜚𝑖 (𝑡).detach() ensures

that 𝜌𝑖 (𝑡) ∈ {−1, 0, 1} with the required probabilitieswithout
destroying the gradient information carried by 𝜚𝑖 (𝑡).

(2) We implement Equation 13 similarly using theGumbel-Softmax

(GS) reparameterisation trick [22]. In particular, we once

again take

𝜈𝑖 (𝑡) = 𝜈𝑖 (𝑡) + 𝑣𝜏𝑖 (𝑡) − 𝑣𝜏𝑖 (𝑡).detach(), (17)

where 𝜈𝑖 (𝑡) is computed as in Equation 13, while 𝑣𝜏
𝑖
(𝑡) is

a reparameterised GS random variable with temperature

parameter 𝜏 = 0.1 [22]. As before, the additional terms in

Equation 17 introduce a non-zero approximation to the gra-

dient of the discrete random variable 𝜈𝑖 (𝑡), but do so without
changing the value of 𝜈𝑖 (𝑡) used internally during the for-

ward simulation of the ABM.

3.3 Gradient-assisted model calibration
Setting 𝑓𝛾 = Gamma(𝛼, 𝛽) for free parameters 𝛼, 𝛽 > 0 (i.e. such

that 𝛾 = (𝛼, 𝛽)), we consider in this section the task of calibrat-

ing the parameters 𝜽 = (log𝛼, log 𝛽, log𝜎, log𝜂) with 𝑁 = 1000

agents, 𝑠 = 10
−1

, and assuming that only the log-returns time series

𝑟𝑡 , 𝑡 = 1, . . . ,𝑇 are observed, with 𝑇 = 100. We simulate a pseudo-

observation y = (y1, . . . , y𝑇 ) = (𝑟1, . . . , 𝑟𝑇 ) from the ABM de-

scribed previously at parameter 𝜽 ∗ = (log𝛼∗, log 𝛽∗, log𝜎∗, log𝜂∗)
= (0.1, 0.5, 0.5, 0.2), and attempt to draw inferences in a gradient-

assisted manner about the parameters 𝜽 that are consistent with

the observed data y.

3.3.1 Establishing the inference problem. While there exist many

different gradient-assisted calibration methods, we focus on a vari-

ational approach to Bayesian parameter inference termed Gener-

alised Variational Inference (GVI) [24] – a likelihood-free Bayesian

inference approach. that has previously been used to calibrate the

parameters of a differentiable ABM [34, 36]. Here, a variational

procedure targets a “generalised” posterior [7]

𝜋𝑤,y (𝜽 ) ∝ 𝑒−𝑤 ·ℓ (y,𝜽 )𝜋 (𝜽 ), (18)

where 𝜋 (𝜽 ) is a prior distribution over parameters 𝜽 , ℓ (y, 𝜽 ) is a
loss function capturing the compatibility between the observed data

y and the behaviour of the ABM at parameter vector 𝜽 , and𝑤 > 0

is a hyperparameter. This posterior can then be approximated by

finding a distribution𝑞 in some variational familyQ of distributions

that minimises the Kullback-Liebler divergence to the generalised

posterior given in Equation 18:

𝑞∗ = arg min

𝑞∈Q

{
𝑤 E𝑞 [ℓ (y, 𝜽 )] + KL (𝑞∥𝜋)

}
. (19)

3.3.2 Setting𝑤, ℓ , and 𝜋 . In our experiments, we take 𝜋 (𝜽 ) to be

a standard multivariate Normal density (i.e. a four-dimensional

Normal distribution with mean zero and covariance matrix given

by the identity matrix) and 𝑤 = 10
3
. The loss function ℓ is taken

to be the maximum mean discrepancy (MMD) [8, 19] test statistic

between the distributions P𝜽 and P𝑇 of simulated and observed of

returns, respectively, defined and computed as

MMD(P𝜽 , P𝑇 ) := ∥E𝑥∼P𝜽 𝑘 (𝑥, ·) − E𝑦∼P𝑇 𝑘 (𝑦, ·)∥
2

(20)

≈ 1

𝑇 (𝑇 − 1)
∑︁
𝑡≠𝑡 ′

[
𝑘x𝑡 ,x𝑡 ′ + 𝑘y𝑡 ,y𝑡 ′

]
− 2

𝑇 2

𝑇∑︁
𝑡,𝑡 ′=1

𝑘x𝑡 ,y𝑡 ′ , (21)

where 𝑘 is a Gaussian radial basis function kernel with scale pa-

rameter given by the median of the pairwise Euclidean distances

between the y𝑡 , and 𝑘x𝑡 ,y𝑡 ′ := 𝑘 (x𝑡 , y𝑡 ′ ). This relates to prior work

on calibrating financial ABMs in which a test statistic measures

the similarity between true and simulated time series data [3]. We

note that while this estimator for the MMD scales quadratically in

𝑇 , alternative estimators could be used in place that are of reduced

complexity [see, e.g., 29].

3.3.3 Approximating the posterior. To target this posterior, we con-
struct a flexible variational family Q by training a normalising flow

𝑞𝜙 [37, 39, 40] with trainable parameters 𝜙 to approximate 𝜋𝑤,y. In
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Figure 1: Training loss for the generalised variational infer-
ence scheme with score-based (blue) and pathwise (orange)
gradient estimators. Dark lines show themoving average loss
by averaging over 10 epochs.

particular,
1
, we use a flow with a standard Normal base density

𝑝 (𝑢) and 5 transforms consisting of (a) a feedforward network with

hidden layer sizes 50, 50, followed by (b) an affine coupling block

[11], and (c) a permutation layer. In this case, the minimisation

problem given in Equation 19 becomes

𝜙𝑤,y,𝜋 = argmin

𝜙

{
𝑤 E𝑞𝜙 [ℓ (y, 𝜽 )] + KL

(
𝑞𝜙 ∥𝜋

) }
. (22)

Throughout, we make use of the BlackBIRDS package [35] to

construct and train the generalised posterior estimates in a gradient-

assisted manner.

The minimisation problem given in Equation 22 can be per-

formed using gradient-based methods. In particular, to investigate

the benefits of using differentiable implementations of discrete

ABMs, we consider two gradient-based approaches:

(1) In the first instance, we use an estimator for the gradient

of the objective in Equation 22 that does not assume dif-

ferentiability of the ABM. This entails the use of the score-

based/REINFORCE gradient estimator [27] for the first term

in Equation 22, which we discussed previously in subsec-

tion 2.1, and is used widely in reinforcement learning appli-

cations:

∇𝜙E𝑞𝜙 [ℓ (y, 𝜽 )] ≈ 1

𝐽

𝐽∑︁
𝑗=1

(
ℓ (y, 𝜽 ( 𝑗 ) ) − 𝑏

)
∇𝜙 log𝑞𝜙 (𝜽 ( 𝑗 ) ), (23)

where we introduce a control variate 𝑏 ∈ R as a variance

reduction measure [27, 41].

(2) Secondly, we exploit the differentiability of the ABM and of

the loss function given in Equation 21 to construct a pathwise

Monte Carlo gradient estimator via the reparameterisation

trick:

∇𝜙E𝑞𝜙 [ℓ (y, 𝜽 )] ≈ 1

𝐽

𝐽∑︁
𝑗=1

∇𝜙 ℓ (y, 𝜽𝜙 (𝑢 ( 𝑗 ) )), (24)

1
See https://github.com/joelnmdyer/gradient_assisted_calibration_abm.

where 𝑢 ( 𝑗 ) ∼ 𝑝 (𝑢) is a sample from the base density 𝑝 (𝑢)
and 𝜽𝜙 (𝑢 ( 𝑗 ) ) is the transformed sample from the flow 𝑞𝜙 .

This second approach exploits the differentiability of the

ABM in that the dependence of ℓ (y, 𝜽 ) = MMD(P𝜽 , P𝑇 ) on
𝜽 is indirect and mediated by x ∼ 𝑝 (· | 𝜽 ), where 𝑝 (· | 𝜽 ) is
the ABM’s likelihood function; thus, by the chain rule, deriva-

tives of x will appear during the computation of each term

∇𝜙 ℓ (y, 𝜽𝜙 (𝑢 ( 𝑗 ) )), 𝑗 = 1, . . . , 𝐽 , appearing in Equation 24.

In both cases described above, we exploit the reparameterisation

trick to construct the following Monte Carlo gradient estimator

for the regularisation term KL(𝑞𝜙 ∥𝜋) appearing in the objective

Equation 22:

∇𝜙KL(𝑞𝜙 ∥𝜋) = ∇𝜙E𝑢∼𝑝 (𝑢 )
[
log𝑞𝜙 (𝜽𝜙 (𝑢)) − log𝜋 (𝜽𝜙 (𝑢))

]
≈ 1

𝑅

𝑅∑︁
𝑟=1

∇𝜙

[
log𝑞𝜙

(
𝜽𝜙 (𝑢 (𝑟 ) )

)
− log𝜋

(
𝜽𝜙 (𝑢 (𝑟 ) )

)]
, (25)

where 𝑢 (𝑟 ) ∼ 𝑝 (𝑢) once again. Additionally, we train with the

AdamW optimiser [26] using a learning rate of 10
−3

and using

𝐽 = 10 and 𝑅 = 10
4
. Finally, we train for 300 epochs.

3.3.4 Results. In Figure 1 we show the value of the loss function

KL(𝑞𝜙 ∥𝜋𝑤,y) as a function of the number of forward simulations

from the ABM for both the score-based and pathwise-based gradient

estimators discussed in subsubsection 3.3.3. Translucent lines show

the instantaneous loss, while the opaque lines show the moving

average of this loss curve by averaging over the previous 10 epochs.

Here, we take 𝑏 = 1 as the value of the control variate for the

score-based gradient estimator without significant fine-tuning, but

observed this to dramatically improve the quality of training over

the case of 𝑏 = 0. We furthermore take 𝑘 = 5 in the sigmoid

function 𝜍𝑘 appearing in Equation 14, which we observed to result

in informative gradient estimates without over-smoothing of the

discrete indicator function.

From this plot, we see that the pathwise gradient estimator, en-

abled through the differentiable implementation of the ABM, results

in both a more accurate approximation to the generalised poste-

rior we target than the score-based gradient estimator, in addition

to faster convergence to this superior approximation. Indeed, the

generalised posterior the algorithm targets is almost perfectly ap-

proximated with only roughly 10
3
simulations from the ABM with

the use of the pathwise gradient estimator. In contrast, the score-

based gradient estimator failed to generate an especially accurate

posterior density: the lowest value of the objective function that

the score-based optimisation procedure achieves is approximately

three orders of magnitude larger than the best value achieved by

the pathwise gradient estimator. Thus, while it was able to achieve

some improvement in the quality of the posterior approximation

in comparison to the initial approximation given by the untrained

normalising flow, the quality of the approximation did not improve

as a dramatically as the optimisation procedure that employed the

pathwise gradient estimator.

From Figure 2, we observe the practical consequences of this

difference in training performance. In Figure 2 we overlay contour

plots for samples from (a) the prior density (green), (b) the posterior

obtained with the pathwise gradient estimator (orange), and (c) the
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Figure 2: Samples from the prior and the posteriors obtained
with pathwise- and score-based derivatives with control vari-
ate of 1. Marginal densities are shown on the diagonal, while
the joint bivariates are on the off-diagonal. True generating
parameters shown with dashed lines.

posterior obtained with the score-based estimator (blue). The mar-

ginal densities are shown on the diagonal, while the off-diagonal

panels show the bivariate joint densities. From this, we see that

while both the score-based and pathwise derivatives result in pos-

terior densities that are a significant update to the prior density,

the pathwise gradient estimator results in a posterior that correctly

assigns relatively high credibility to the true generating parameters

𝜽 ∗; see Table 1 for the values of these log probability densities. In

contrast, the score-based estimator exhibits overconfidence in its

estimates of various parameters, resulting in the assignment of an

incorrectly (by the comparatively high loss in Figure 1) low cred-

ibility to 𝜽 ∗; see also Table 1. This Figure also demonstrates that

the pathwise Monte Carlo gradient estimator assists the posterior

approximator to correctly update the initial belief distribution (the

prior density) more or less strongly according to the evidence in

favour of different values for 𝜽 : the pathwise approach correctly

identifies that the parameters 𝜎 and 𝜂 are strongly constrained by

the data y and loss function ℓ , but that the parameters 𝛼 and 𝛽 are

far less strongly constrained by this new information.

Additionally, it is apparent that the dynamics present in the ob-

served data y are better captured when the generalised posterior is

targeted in a way that exploits the differentiable implementation

of the ABM, rather than by using the score-based training proce-

dure. Figure 3 shows sample price trajectories x̃ from the posterior

predictive distribution

𝑝𝑤,y,𝜋 (x̃) =
∫

𝑝 (x̃ | 𝜽 ) 𝑞𝜙𝑤,y,𝜋 (𝜽 ) d𝜽 (26)

Table 1: Log-posterior probability density of the true gener-
ating parameters by gradient-estimation method

Score Pathwise

log𝑞𝜙𝑤,y,𝜋 (𝜽
∗) -2.31 0.16

obtained using the pathwise (orange) and score-based (blue) Monte

Carlo gradient estimates. As before, 𝑝 (· | 𝜽 ) denotes the probability
density (likelihood) function of the stochastic ABM at parameters

𝜽 . The observed price trajectory is also shown in Figure 3 with the

black curve. From this, we see that the sample trajectories generated

by the pathwise posterior predictive distribution appear visually to

deviate less significantly from the ground truth data than those from

the score-based posterior predictive distribution. It is noteworthy,

however, that both the pathwise and score-based approaches have

seen considerable success in eliminating inappropriate regions of

the parameter space during training: Figure 4 shows sample price

trajectories x̃ from the prior predictive distribution,

𝑝 (x̃) =
∫

𝑝 (x̃ | 𝜽 ) 𝜋 (𝜽 ) d𝜽 , (27)

which we see to deviate considerably from the true price trajectory.

Thus while the introduction of approximations to the gradients

within the ABM appears to offer clear advantages in this case –

such as a higher quality approximation to the targeted posterior

density and a faster rate of convergence to this posterior – both

the score-based and pathwise gradient estimators are able to result

in reasonably accurate inferences.

3.3.5 Reducing memory consumption with forward-mode automatic
differentiation. As discussed in subsubsection 2.2.2, the use of reverse-
mode AD (RMAD) can often be hindered by the memory require-

ments of storing the computation graph in GPU memory. This is

accentuated when running the simulation for a large number of

time-steps, since the computation graph size grows linearly with

the number of time-steps. Given that financial ABMs often require

the simulation of a large number of agents over long time horizons,

the exclusive use of RMAD can pose a challenge to gradient-assisted

calibration and optimisation of differentiable ABMs.

To address this, we propose to employ a hybrid AD technique in

which forward-mode AD (FMAD) is used to obtain the Jacobian 𝐽𝜽
of the ABM outputs with respect to 𝜽 , and RMAD is used to obtain

the gradient through the variational posterior 𝑞𝜙 , yielding

∇𝜙E𝑞𝜙 [ℓ (y, 𝜽 )] = 𝐽𝜽 (E𝑞𝜙 [ℓ (y, 𝜽 )]) · ∇𝜙𝜽 , with (28)

𝐽𝜽 (E𝑞𝜙 [ℓ (y, 𝜽 )]) =
𝜕E𝑞𝜙 [ℓ (y, 𝜽 )]

𝜕𝜽
∈ R1×𝑑 . (29)

Here, (29) is the Jacobian obtained through FMAD and ∇𝜙𝜽 ∈ R𝑑×𝐹
is the gradient, obtained with RMAD, of the 𝑑 ABM parameters

generated by the normalising flow 𝑞𝜙 with parameters 𝜙 ∈ R𝐹 .
In Figure 5, we plot the memory consumption observed dur-

ing computation of the Jacobian given in Equation 29, using both

RMAD and FMAD for a fixed number of 10
6
agents in the ABM

we consider. From this, we see that the memory consumption of

293



Gradient-Assisted Calibration for Financial Agent-Based Models ICAIF ’23, November 27–29, 2023, Brooklyn, NY, USA

0 20 40 60 80 100

t

0

10−1

100

101

St

Predicted (score)

Predicted (path)

True

Figure 3: Sample trajectories for the asset price from the
posterior predictive distributions obtained from the score-
based (blue) and pathwise (orange) gradient estimators. True
asset price is shown with the black line.

FMAD indeed remains constant at merely 17 MB and is determined

by the allocation cost of the agents’ data. On the other hand, RMAD

scales linearly with the number of time steps simulated, growing

to over 30 GB for 10
3
time-steps. We highlight that this memory

requirement is likely to be a limitation when employing GPUs, and

that our proposed use of a hybrid FMAD-RMAD approach to Monte

Carlo gradient estimation may be used to scale gradient-assisted

calibration procedures to agent-based simulations involving large

populations for long periods of simulated time, while minimising

overall memory consumption.

4 RELATEDWORK
Substantial research effort has been directed towards calibration

methods for financial agent-based models [12]. Much of the original

effort in this area focused on approaches resulting in parameter

point estimates, for example through the use of Indirect Inference

[17] and the Simulated Method of Moments [16]. More recently,

this has included the use of Bayesian optimisation to minimise

a test statistic capturing the discrepancy between the observed

data and model output [3]. These approaches can be contrasted

with distribution-centric approaches, in which distributions over

parameterisations of the financial simulator are instead obtained,

rather than single point estimates. Examples of such approaches

include: the use of approximate Bayesian computation [15, 18, 32] to

sample from the posterior density over parameters with e.g. Markov

chain Monte Carlo; the use of conditional generative adversarial

networks to obtain an implicit distribution over parameterisations

of financial simulation models [33]; or neural conditional density

estimators and probabilistic classifiers to obtain surrogate posterior

densities over the parameters of financial agent-based models [13,

14]. Our work differs substantially from these methods however: we

focus on using variational inference to target a generalised posterior

– rather than targeting the classical Bayesian posterior, or point

estimates – and compare and contrast approaches that do or do

not make use of the differentiability of the financial agent-based
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Figure 4: Sample trajectories for the asset price from the prior
predictive distribution (green). True asset price is shown in
black.

simulator, rather than assuming that gradient information is never

available within the mechanistic agent-based simulator.

5 DISCUSSION & CONCLUSION
In this paper, we discussed the use of differentiable programming to

implement agent-based models in finance.We discussed some of the

primary difficulties in implementing differentiable versions of dis-

crete financial agent-based models, and demonstrated on a simple

agent-based model of an artificial market how discrete randomness

may be manipulated to propagate gradients through the internal

operations of the agent-based model. Through experiments, we

demonstrated that the introduction of approximations to the gradi-

ent within the discrete agent-based simulator facilitated a higher

quality and more quickly convergent gradient-assisted Bayesian

inference procedure, enabling us to more accurately recover the

ground-truth parameter values and price dynamics.

While our experiments made use of a Bayesian inference pro-

cedure, in which a generalised posterior [7] was targeted with a

variational approach [8, 24], we note that the use of gradients in

calibration tasks is not limited to this approach. For example, one

could remove the prior regularisation term in the objective Equa-

tion 22 and assume an adversarial approach similar to Storchan

et al. [38], in which the agent-based model would assume the role

of the generator in a GAN training framework. Furthermore, while

in our experiments we defined the loss ℓ (y, 𝜽 ) to be a discrepancy

between the real and simulated log-returns alone, this loss func-

tion may be adapted to the particular interests of the modeller.

For example, the loss ℓ may be extended to capture additional or

more specific stylised facts, such as the absence of significant linear

autocorrelations in returns, or long-memory behaviour in trading

volume and volatility [25].

There exists various additional avenues for future work. In con-

structing approximate gradients for discrete operations and discrete

randomness, additional hyperparameters are often introduced, such

as the parameter 𝑘 used in the sigmoid function 𝜍𝑘 introduced in

subsection 3.2 and the so-called “temperature” hyperparameter in

the categorical Gumbel-Softmax reparameterisation trick. It would
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mode automatic differentiation, respectively.

be of value to the community to develop principled and robust ap-

proaches to assigning values to these hyperparameters. Extensive

empirical investigations into the relative informativeness and stabil-

ity of different gradient approximations (e.g. Gumbel-Softmax [22]

vs. StochasticAD [2]), how to tune their hyperparameters optimally,

and the difficulty with which these hyperparameters can be tuned,

would also be useful for providing guidance to practitioners within

the agent-based modelling community. Further work should also

investigate whether, or the degree to which, differentiable program-

ming principles can be applied to other common components of

financial agent-based models, such as limit order book simulators

and market clearing mechanisms, for which extensions to existing

techniques for differentiating through discrete operations may be

required. Finally, while we believe that the techniques used in our

differentiable implementation of the agent-based model are generi-

cally applicable, we note that other common components of ABMs

may also require adaptation; for example, agent-agent interactions

may need to be recast as message passing procedures on a graph

to ensure scalability of the gradient computation (see e.g. [9]).
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