
MIT Open Access Articles

Brain-Hack: Remotely Injecting False Brain-Waves 
with RF to Take Control of a Brain-Computer Interface

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Armengol-Urpi, Alexandre, Kovacs, Reid and Sarma, Sanjay. 2023. "Brain-Hack: 
Remotely Injecting False Brain-Waves with RF to Take Control of a Brain-Computer Interface."

As Published: https://doi.org/10.1145/3605758.3623497

Publisher: ACM|Proceedings of the 5th Workshop on CPS&IoT Security and Privacy

Persistent URL: https://hdl.handle.net/1721.1/153146

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/153146
https://creativecommons.org/licenses/by/4.0/


Brain-Hack: Remotely Injecting False Brain-Waves with RF
to Take Control of a Brain-Computer Interface

Alexandre Armengol-Urpi
armengol@mit.edu

Massachusetts Institute of Technology
Cambridge, MA, USA

Reid Kovacs
rkovacs@mit.edu

Massachusetts Institute of Technology
Cambridge, MA, USA

Sanjay E. Sarma
sesarma@mit.edu

Massachusetts Institute of Technology
Cambridge, MA, USA

ABSTRACT
The promise of Brain-Computer Interfaces (BCIs) is counterbal-
anced by concerns about vulnerabilities. Recent studies have re-
vealed that EEG-based BCIs are susceptible to security breaches.
However, current attack approaches are challenging to execute in
real-world settings because they need access to, at a minimum,
the EEG data stream. In this work, we introduce an unexplored
vulnerability of current EEG-based BCIs that consists of remotely
injecting false brain-waves into the recording device. We do this
by transmitting amplitude-modulated radio-frequency (RF) signals
that are received by the physical structure of the EEG equipment.
We demonstrate the versatility of our system by successfully attack-
ing three different categories of EEG devices: research-grade (Neu-
roelectrics), open-source (OpenBCI), and consumer-grade (Muse).
We test our attack system by taking control of three different BCIs:
a virtual keyboard speller, a drone-control interface, and a neuro-
feedback meditation interface. Our system was successful in each
case, forcing the input of any desired character with the virtual
keyboard, crashing the drone, and reporting false meditative states,
respectively. To the best of our knowledge, this is the first time that
an EEG device is remotely hacked at the physical layer. This work
shows the risks that can arise from this type of attacks, which can
not only be dangerous by seizing control of a BCI, but could also
lead to severe misdiagnoses in clinical EEG tests.

CCS CONCEPTS
• Security and privacy → Hardware attacks and countermea-
sures; • Human-centered computing → Human computer
interaction (HCI); • Hardware;
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1 INTRODUCTION
A Brain-Computer Interface (BCI) provides users with a direct con-
nection between their brain and an external device, such as a com-
puter, wheelchair, or robot. The electroencephalogram (EEG) has
become the most common input signal for BCIs, because of its low
cost and ease of use. BCIs initially emerged as tools to help disabled
people restore their damaged hearing, sight, movement, or com-
munication capabilities. Current development of BCIs is focused
on expanding its use cases to enable new and innovative forms of
communication between brains and devices. For example, some
BCIs allow users to correct robot mistakes [1], play video games
[2], improve commercial eye trackers [3], or create hands-free in-
terfaces for virtual [4] or augmented reality [5]. Recent advances
in hardware design have led to the appearance of consumer-grade
BCI devices, tailored to assist users with meditation [6], focus [7, 8],
and IoT interaction [9].

This trend toward the development of broader BCI applications
seems to indicate that BCIs will be increasingly present in our lives.
This projection, however, is in contrast with the surprisingly little
amount of research addressing the security of these systems. Secu-
rity attacks on BCIs can cause harmful consequences, especially if
the BCI is devoted, for instance, to vehicle safety [10], wheelchair
control [11], drone control [12], prosthetics [13], or patient com-
munication [14, 15].

Figure 1 illustrates the typical building blocks of a BCI. First, the
neural activity is captured by the EEG recording device. Then, the
signals are transmitted to a device that processes them by extract-
ing useful features and classifying them into a specific command.
Finally, the command is sent to an external device or application
and the action is manifested. Usually, the loop is closed when visual
feedback is given to the user. As shown in Figure 1 and as explained
later in Section 2, all the literature related to BCI security vulnera-
bilities focuses on the latter blocks of the BCI systems, and none
of them addresses potential attacks to the physical layer, such as
the hardware dedicated to signal acquisition. Moreover, existing
research assumes the attacker has access to either the raw EEG data,
the classification model, or the external device that provides stimuli
or feedback to the user. Our work bypasses all these assumptions
by remotely compromising the physical layer of the BCI.

In this work, we show an unexplored vulnerability of current
BCIs by remotely injecting fake brain-waves into the EEG recording
device. We do this by sending Radio-Frequency (RF) signals that are
received by the EEG equipment and inserted into the BCI system.
To the best of our knowledge, this is the first time that a BCI is
remotely compromised at the physical layer. Although we frame
this article in the context of BCIs, the same vulnerability exists in
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Figure 1: Workflow of a common Brain-Computer Interface.
In purple we enclose the parts of the BCI whose security
vulnerabilities have been studied by related work. Our work,
in contrast, focuses on interfering in the physical layer of
the system, that is the signal acquisition block (encircled in
orange).

other EEG-based setups, such as clinical EEG recordings, where an
attack using our system could result in severe misdiagnosis.

In particular, we successfully attacked three different EEG sys-
tems: a research-grade device (Neuroelectrics Enobio [16]), an open-
source device (OpenBCI Ganglion [17]), and a consumer-grade de-
vice (Muse 2 [18]). Additionally, we tested our hacking technique
on three different BCI applications: a virtual keyboard speller, a
drone-control interface, and a neuro-feedback meditation interface.
With these examples, we show that our system can successfully
take control of BCIs by typing any phrase in the speller, crashing
the drone, and inducing a signal indicating a false meditative state,
respectively.

To achieve this injection, amplitude-modulated (AM) signals are
wirelessly transmitted to the EEG headset. The wires of the EEG
headset act as unassuming antennas that receive the signal. Due to
non-linearities in the amplifier response, the modulating frequency
will be captured by the recording device and the BCI will read the
injection as a neurological signal. If the transmitter is of sufficient
power, the injected signal will exceed the power of the real neural
activity of the user, obfuscating the true signal.

2 RELATEDWORK
2.1 Privacy and Security of BCIs
In contrast with the growing popularity of BCIs in medical and
non-medical areas, few studies have been conducted on the privacy
and security of these systems. In terms of privacy, Martinovic et. al.
[19] showed for the first time that private information – such as
PIN numbers or area of living – can be retrieved from BCI users
by analyzing their brain-wave responses to tailored visual stimuli.
Frank et. al. [20] proposed a subliminal attack that can deduce
confidential information by probing the victim below their cognitive
perception and analyzing their brain activity. Earlier works have
used EEG signals to study sexual orientation, religious beliefs and
deviant sexual interests of the user [21–23].

In terms of BCI security, there are several studies that show how
to modify the raw EEG data with small perturbations to take control

of the BCI. Zhang et. al. [24] showed that P300 and Steady-State
Visually Evoked Potentials (SSVEP) spellers are very vulnerable
to adversarial perturbations. They show how an attacker could
spell anything they want by adding custom noise to the EEG data.
Similarly, Bian et. al. [25] propose to use square wave signals as
adversarial perturbations to attack and control SSVEP-based BCIs.
Meng et. al. [26] introduced the idea of using backdoor attacks to
poison the training data of EEG-based BCIs. Test samples with the
backdoor key are then classified into the target class determined
by the attacker. Finally, studies from Zhang et. al. [27] and more
recently from Liu et. al. [28] have shown the vulnerability of CNN
classifiers in EEG-based BCIs. They demonstrated that these deep
learning models can easily be fooled with EEG data contaminated
with small deliberate perturbations.

There is another group of related work that identifies potential
privacy and security flaws of BCIs but without actually implement-
ing the attacks. They are mostly in the form of reviews or white
papers and seek to raise awareness of the emerging risks of mali-
cious brain-hacking. They analyze the different building blocks of
BCIs and study how each of them could be attacked. Some of this
related research also proposes countermeasures to prevent such
attacks or strategies to mitigate the risks involved [29–36].

As explained above, all BCI attacks proposed in the related lit-
erature assume the attacker has access to either the EEG data in
training, the EEG data in testing, the EEG feature classification
model or the external device that provides feedback or visual stim-
uli to the victim. Our work, in contrast, does not require any of
these assumptions, since the attack is performed remotely to the
physical layer of the system.

2.2 IEMI Attacks on Analog Sensors
There are a variety of Electromagnetic Interference (EMI) noise
sources that may interact with electronic devices through the induc-
tion of voltages on conductors. Systems designed to measure small
analog signals are particularly sensitive to such noise sources, as
the noise may obscure the desired measurement. In the case of EEG
devices, EMI noise can impact the quality of the measurement [37].
This type of noise is often produced by power electronics, which
are commonly subject to extensive EMI filtering. It is also common
to include an input filter to remove unwanted frequencies from the
sensor, but it is difficult to build a filter to remove all out-of-band
signal [38].

However, this phenomenon can be leveraged to manipulate sen-
sors with intentional electromagnetic interference (IEMI) [39]. Due
to hardware required for analog sensing, this approach can provide
an unimpeded path to the manipulation of an otherwise protected
system. Many systems make critical choices based on such sensor
readings, often using sensors as feedback for some form of actua-
tion. Such sensors include devices to measure ambient conditions
(temperature, humidity, pressure), for localization (altitude, GPS
position), for human interaction (microphones, touch screens), and
medical diagnostics (electrophysiology). IEMI attacks have been
applied broadly to these types of systems. For example, they have
been used to fake physical interactions with smartphone touch-
screens [40], also to inject silent voice commands in smartphones
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[41], to manipulate the image information captured by cameras
[42, 43], or to induce spurious serial communications [44].

Some of these attacks deserve particular attention because they
impact systems that are crucial for safety. For example, IEMI attacks
have been used to spoof Anti-Lock Breaking Systems (ABS) in cars
[45], to paralyze drones [46], to manipulate the temperature sensor
measurements of infant incubators [47], to cause pacemakers to
stop pacing [48], or to take control of PWM-controlled actuators
and change the flight trajectory of unmanned aerial vehicles[49],
for example.

Once the signal is induced into the system via the sensor, or
the physical layer, the signal is typically amplified, conditioned,
quantized, and recorded in the analog and digital layers[38]. If the
frequency of the noise source is known, filters can be employed to
remove the interference. It is common for sensing systems to em-
ploy filters to mitigate expected noise sources. However, if the IMEI
is within the frequency range of the desired signal, it is impossible
to remove through filtering, as a filter would also remove the de-
sired signal. If the interference is at a significantly higher frequency
than the measured signal, it is possible that the interference could
bypass an input filter through high-frequency coupling. Finally,
the corrupted signal will reach the amplifier. The high-frequency
injection will experience non-linear effects within the amplifier
[38]. In the case of an amplitude modulated signal, the non-linear
effects of the amplifier leads to a form of demodulation, ultimately
adding the modulating frequency to the baseband signal [48].

3 WORKING PRINCIPLE
In this section, we describe the different elements that take part in
our attack approach and explain the effects that take place for it to
succeed in the task of injecting fake brain-waves remotely.

3.1 Functioning of an EEG device
An electroencephalogram (EEG) is an electro-physiological mea-
surement technique used to observe brain activity. Information is
propagated and processed in the brain through electro-chemical
processes that yield externally observable electric fields. These fields
can be measured as the voltage induced in small metal electrodes
positioned around the head.

The fields generated by the communication of these cells are
quite small, on the order of tens of micro-volts when measured
outside the head. Due to amplitude of these signals, amplifiers with
significant gain must be employed. These systems also typically
have many electrodes, each with their own wires which are highly
susceptible to noise. This property is exactly what we take advan-
tage of for this injection technique.

Typical EEG systems employ instrumentation amplifiers for each
channel to overcome noise challenges and improve signal quality.
This amplifier configuration has a differential input, meaning that
the difference between the two input signals is amplified and the
common-mode is rejected. In an EEG, the two inputs would be
a recording electrode and a reference placed on bone. Typically,
these amplifiers exhibit some non-linearities that we will exploit to
inject our false brain-waves, as explained in Sections 3.2 and 3.5.
All recording electrodes are typically amplified with respect to the
same reference electrode.

In order to disrupt an EEG-based BCI system, the measured
brain signals must be overshadowed by a larger injection. Due to
the small magnitude of typical EEG signals, typical systems can be
fooled with a relatively low-power injection that is harmless to a
BCI user. It is demonstrated that this can be achieved wirelessly
with radio-frequency transmission.

EEG electrodes are most commonly positioned on the head using
a cap or helmet, but intracranial sensors have also been used since
they offer improved signal quality [50–52]. All EEG devices used
in this experiment are non-invasive, scalp electrodes. Although, it
may be possible to achieve the same effect in intracranial electrode
arrangements or fully implanted systems.

3.2 Non-Linear Amplifier Response
Instrumentation amplifiers such as those utilized in EEG devices
exhibit non-linearities for frequencies outside their operating range.
This is the characteristic that we will exploit in order to inject the
false brain-wave signals into the EEG device. If the input signal is
𝑥 , then the output of the amplifier can be expressed as follows:

𝑥𝑜𝑢𝑡 =

∞∑︁
𝑛=1

𝐴𝑛𝑥
𝑛 = 𝐴1𝑥 +𝐴2𝑥

2 +𝐴3𝑥
3 + ... (1)

In theory, the non-linear output can be represented as an infi-
nite power series. However, the third and higher order terms are
negligible and can be disregarded. We find opportunities to exploit
the system via the second order term, as seen in Section 3.5.

3.3 Reception of Radio-Frequency Signals
The main principal behind our hacking approach is to utilize the
physical structure of the EEG device as a receiving antenna that
captures remotely transmitted radio-frequency signals. In partic-
ular, the primary elements that are best-suited to act as receiving
antennas are the exposed cables that link the EEG electrodes to
the recording device. According to basic antenna theory [53], the
length of an emitting or receiving antenna (cable length in our case)
should be in the same order of magnitude as the wavelength of the
desired signal to send or receive. Since brain signal frequencies are
on the order of tens of Hertz [54], we can compute the required ca-
ble length by the electromagnetic radiation relation 𝜆 = 𝑐/𝑓 , where
𝜆 is the radiation wavelength, 𝑓 is its frequency, and 𝑐 = 3×108𝑚/𝑠
is the speed of light. If 𝑓 is on the order of tens of Hertz, the result-
ing wavelength and, as a consequence, the required cable length
to capture such signals is on the order of thousands of kilometers.
Hence, sending RF energy at the frequency of brain activity is un-
feasible because the length of the EEG cables is fixed and on the
order of centimeters. Therefore, we need to resort to a different
technique which is very common in the radio-communications
field: amplitude modulation.

3.4 Amplitude Modulation
It is clear that in order to capture electromagnetic radiation at the
EEG cables, the wavelength of such signals should be in the same
order of magnitude as the length of the cables, as explained above.
If these are, for example, 1 meter long, this translates to sending
electromagnetic waves on the order of 300 MHz (𝑓 = 𝑐/𝜆). Since
the goal is to inject signals into the device at about 1 to 60 Hz, we
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implemented the solution of encoding the desired low-frequency
signal by multiplying it with a fast oscillating wave (or carrier
wave). In other words, the carrier wave is amplitude-modulated at
the frequency of the desired signal injection. Mathematically, the
radio signal sent can be modeled as:

𝑥 (𝑡) = (1 +𝑀 (𝑡))𝑐𝑜𝑠 (2𝜋 𝑓𝑐𝑡 + 𝜙) (2)

where𝑀 (𝑡) represents the signal that modulates the carrier and
that we want to inject into the EEG recording, and 𝑐𝑜𝑠 (2𝜋 𝑓𝑐𝑡 + 𝜙)
is the carrier signal with frequency 𝑓𝑐 . Since we want to inject
periodic signals that are interpreted as oscillating brainwaves,𝑀 (𝑡)
can be written as𝑀 (𝑡) = 𝑐𝑜𝑠 (2𝜋 𝑓𝑖𝑡 + 𝜙). Therefore the signal that
will be transmitted takes the form:

𝑥 (𝑡) = 𝑐𝑜𝑠 (2𝜋 𝑓𝑐𝑡) + cos(2𝜋 𝑓𝑐𝑡 + 𝜙) cos(2𝜋 𝑓𝑖𝑡) (3)

and can be expanded to:

𝑥 (𝑡) = 𝑐𝑜𝑠 (2𝜋 𝑓𝑐𝑡) +
1
2
cos

(
2𝜋 (𝑓𝑐 − 𝑓𝑖 )𝑡 + 𝜙

)
+ 1
2
cos

(
2𝜋 (𝑓𝑐 + 𝑓𝑖 )𝑡 + 𝜙

)
(4)

where 𝑓𝑖 is modulating frequency and the frequency of the signal
that is injected into the EEG device. In the frequency domain, 𝑋 (𝑓 )
would be represented as seen in Figure 2.

Figure 2: Representation of the transmitted amplitude mod-
ulated radio signal in the frequency domain.

3.5 AM signals in Non-Linear Region of
Amplifiers

As described in section 3.2, the amplifiers within an EEG device
exhibit a non-linear response outside of their intended operating
range. After passing through the amplifier stage of the EEG device,
the measured signal can be modeled as follows:

𝑥𝑜𝑢𝑡 = 𝐴1
[ (
𝑀 (𝑡) + 1

)
𝐶 (𝑡)

]
+𝐴2 [(𝑀 (𝑡) + 1)𝐶 (𝑡)]2 (5)

where𝑀 (𝑡) refers to the modulating signal and𝐶 (𝑡) refers to the
carrier signal. The first order term yields the expression in equation
3. The frequencies from this term are well beyond the operating
range of a typical amplifier for this application. The second order
term contains a multiplication of the included signals, resulting
in frequency components at 2𝑓𝑐 , 2𝑓𝑖 , 2𝑓𝑐 ± 2𝑓𝑖 , 2𝑓𝑐 ± 𝑓𝑖 , and, most
importantly, ±𝑓𝑖 . Demonstrated mathematically,

𝑥𝑜𝑢𝑡,2 = 𝐴2 [(𝑀 (𝑡) + 1)𝐶 (𝑡)]2

= 𝐴2
[
cos(2𝜋 𝑓𝑐𝑡) +

1
2
cos

(
2𝜋 (𝑓𝑐 − 𝑓𝑖 )𝑡 + 𝜙

)
+ 1
2
cos

(
2𝜋 (𝑓𝑐 + 𝑓𝑖 )𝑡

) ]2
=
𝐴2
2

cos
(
2𝜋 (𝑓𝑐 − (𝑓𝑐 − 𝑓𝑖 ))𝑡

)
+ (higher frequency terms)

=
𝐴2
2

cos
(
2𝜋 𝑓𝑖𝑡

)
+ (higher frequency terms)

All of the frequencies in the received signal are filtered out or
aliased due to the relatively slow sampling of the EEG device, except
for the signal at 𝑓𝑖 . Thus, the modulating frequency is resolved by
the EEG device and can be easily sampled, as these devices have a
sampling rate on the order of 500Hz.

This resulting injection may still be present despite the imple-
mentation of an input EMI filter. It is difficult to design an EMI filter
that effectively removes all frequencies above a desired cutoff. Due
to high-frequency coupling and parasitic elements, the filter may
still pass signals that are orders of magnitude above the desired
cutoff [55], as in this attack.

3.6 Geometric Dependence of the Optimal
Carrier Frequency

When EEG headsets are worn, the electrode cables are not always
perfectly straight, in fact, they usually form small loops or get
tangled. This changes the geometry of the “receiving antenna” of
the device, and, as a consequence, the optimal carrier frequency
also changes. Therefore, the configuration of the cables dictates
the required carrier frequency for a successful injection. It follows
that each time the device is used, the optimal carrier frequency will
slightly vary. In general, the functioning carrier frequency is not
unique and there is a range of usable carriers. This calibration is not
needed for devices that have a fixed structurewithout cables, such as
theMuse headband. In Figure 3, we show an example of how shifting
the carrier frequency changes the amplitude of the injected waves
for a particular cable arrangement of the Neuroelectrics Enobio
headset. We can see there is a wide band where the transmission is
successfully injected into the device. Specifically, the system has a
greater response (greater power of injected signal) at around 500 -
550 MHz. We determined that this optimal range did not change
greatly between experiments, but some adjustment was necessary
if the maximum power transmission is desired.

4 SYSTEM DESIGN
Here we present the design and usage of the Brain-Hack system.
We describe the components of the system and the EEG devices
that are compromised. Additionally, we provide an overview of the
system and the technique used for identifying optimal settings.

4.1 Materials
4.1.1 EEG Devices. This section describes the EEG systems used
to test and validate the injection technique described in this work.
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(a) Neuroelectrics
EEG device with a
particular arrange-
ment of its electrode
cables.

(b) Injected wave amplitude as a function of
the carrier frequency. We can see there is a
large band where the sent signal is success-
fully injected.

Figure 3: Geometric dependence of a usable carrier frequency.
On the EEG cap, only channel 1 is connected to position Oz.
Reference and ground are placed in FCz and left mastoid
respectively.

Neuroelectrics Enobio. The Neuroelectrics Enobio EEG head-
set is a device designed as a research tool [16]. It may be found
as a part of a psychology or neuroscience study. Compromising
this device would enable an attacker to influence the results of a
study or inject concerning signals into a clinical EEG analysis. In
particular, we used Enobio 8, which has eight signal channels, and
its electrode cables measure 32 cm.

OpenBCI Ganglion. OpenBCI designs and sells low-cost and
open-source EEG equipment [17]. These headsets are typically used
in simpler research applications or employed as a BCI. The Ganglion
board has four signal channels, and one-meter electrode cables are
used in these experiments. The OpenBCI platform may be used in
low-cost BCI applications due to its price. For example, an attacker
could assume control of household items [56] or even a wheelchair
[11].

InteraXon Muse 2. The Muse is a device designed to provide
consumers with neuro-feedback during meditation sessions [18].
A typical user would meditate with the device and app, allowing
for the system to play sounds that indicate the level of mental
activity. By compromising this system, an attacker would be able
to influence the result of the meditation. For example, an attack
could cause the app to suggest to the user that they never fell into
a meditative state. The headband has 4 signal channels, with two
sensors located in the frontal region (AF7 and AF8) and the other
two in the temporal regions (TP9 and TP10). It has 3 reference
sensors around location Fpz.

4.1.2 Software-Defined Radio. A Software-Defined Radio (SDR) is
a radio-frequency (RF) communication system in which the com-
ponents have been implemented in software using digital signal
processing. Without an SDR, such RF transmissions would be more
difficult to produce and vary as they would need to be implemented
in analog circuitry. Typically, the software is deployed on a com-
puter or embedded system. The SDR employed here is a Nuand

Figure 4: The 3 EEG recording devices used (and hacked) in
this work. Neuroelectrics Enobio (left), OpenBCI Ganglion
(middle), and InteraXon Muse 2 (right).

BladeRF micro xA9 [57]. The BladeRF is a portable, relatively low-
cost, and consumer-available SDR. The BladeRF is well-supported
and would be straightforward for an attacker to obtain and imple-
ment. In this work, all experiments were carried out with a transmit-
ting power of 12.41 dBm (measured at 480 MHz). The BladeRF can
be easily programmed using GNU Radio[58], an open-source radio
toolkit. In the case of this experiment, GNU Radio is used to pro-
duce a simple user interface for varying the carrier frequency and
modulating signal. This allowed for quick testing and exploration
of possible carriers.

Figure 5: Nuand BladeRF SDR and a log-periodic antenna.

4.1.3 Log-Periodic Antennas. To transmit the RF signals, log-periodic
antennas were used. The antennas were implemented in FR4 (Flame-
Retardant Glass-Reinforced Epoxy Resin), as a printed circuit board
(PCB) with a single SMA connector for signal input. The PCB anten-
nas are designed to work in the frequency range of 400 MHz to 1000
MHz. Log-periodic antennas were ideal for this application due to
their directionality. Also, due to the PCB-based implementation,
this solution is extremely flexible. The antenna could be redesigned
to meet the required frequency range of a given EEG system, if
necessary.

4.1.4 Power Amplifier. In order to be able to receive the radio-
frequency signals from longer distances, we used a power amplifier
placed between the SDR and the antenna. In particular, we used the
BT-100 Bias-tee power amplifier from Nuand [59]. This amplifier
provided a gain of 8.37 dB (measured at 480 MHZ).

4.2 System Overview
Brain-Hack system consists of a computer running GNU Radio to
choose the desired carrier and modulating frequencies. The com-
puter is connected to the BladeRF SDR, followed by the bias tee
power amplifier, which is plugged into the log-periodic antenna.
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The antenna transmits the radio-frequency signals defined in soft-
ware by GNU Radio, which are received by the physical structure
of the EEG recording device. As explained in Section 3.5, the low-
frequency modulating signals are inserted into the recording device,
becoming part of the recorded signals. Hence, the received signals
contain simultaneously real EEG waves as well as fake injected
signals. These are processed by a second computer linked to the
EEG device, and the BCI algorithm outputs a specific command
based on the captured signals. If Brain-Hack is successful, the out-
put command will be correlated to the information contained by
the fake brain-waves injected.

4.3 System Calibration
It is clear that the carrier frequency determines the optimal trans-
mission. In section 3.6, the geometric dependence of the carrier is
explored. Due to this variation, a working carrier frequency must
be chosen empirically or from prior knowledge of the system. In a
lab setting, such as if the attacker were to procure the target system
ahead of an attack, a working carrier frequency can be determined
by sweeping through a reasonable range while monitoring the out-
put of the target system. When the output of the target system
shows a local maximum of injection power, a working carrier has
been found. To determine the carrier in real-time, the attacker can
transmit a jamming frequency and sweep the carrier over a rea-
sonable range while observing the action of the target system. An
expected range of the carrier 𝑓𝑐 can be determined mathematically
and is related to the length 𝐿 of the electrode wires used in the
system: 𝑓𝑐 = 𝑐/𝐿, where 𝑐 is the speed of light. This will give an
approximate number of a working carrier frequency.

5 SSVEP-BASED BCIs
There is a wide range of possible attacks that can be performed
by our Brain-Hack system, which range from injecting false brain-
waves during clinical trials that can lead to severe misdiagnoses to
jamming a brain-controlled wheelchair to paralyze and shut down
the system. However, for simplicity, we will focus most part of
this work on attacking brain-computer interfaces based on detect-
ing SSVEPs to execute commands. SSVEPs stands for Steady-State
Visually Evoked Potentials and they are sinusoidal brain-waves
generated in the visual cortex when a person attends at a flickering
visual stimuli [60–62]. The key aspect of these type of brain signals
is that the frequency of the SSVEP is the same as the frequency
of the flickering stimuli. Hence, by flashing each stimuli at differ-
ent frequencies, one can create a BCI that detects what stimuli is
receiving the attention of the user. These stimuli can be rendered
in a screen, allowing users to select the flickering elements in the
screen just using their visual attention. If each visual stimulus in
the screen is related to a different command, the user can select
the desired command to execute by gazing at the corresponding
stimulus.

5.1 Taking Control of a SSVEP-based BCI
An SSVEP-based BCI detects what command the user is willing
to execute by processing the EEG signal recorded and identifying
the frequency with highest amplitude of those available for the
user. Therefore, in order for an attacker to take control of such type

of BCIs, they just need to inject a false SSVEP with an amplitude
larger than the real brain-wave. This way, the BCI will execute
the command desired by the attacker instead of the one desired by
the user. SSVEP amplitudes may range from 0.5𝜇𝑉 to around 10𝜇𝑉
[60].

6 ATTACK MODEL
Figure 6 shows an overview of our attack model. We discuss the
components of the attack model in more detail below.

Intent of attacker: The primary intention of the attacker is to
remotely assume control of a brain-computer interface and cause
harm by forcing the system to behave at the attacker’s will. This is
accomplished by injecting signals into an EEGmeasurement system
via amplitude-modulated radio-frequency signals transmitted from
a remote antenna. As a result, the injected signals are erroneously
interpreted as brain waves.

Attack Target: The attacker can target any EEG system. In
the case of this work, the attacker can target an SSVEP-based BCI
system. As described above, an SSVEP-based BCI uses frequency
peaks from measured EEG signals as a control input. The attacker
can transmit a modulated pure tone at a control frequency to inject
a false frequency peak. This false peak is interpreted as a valid
SSVEP response, causing the system to react to the attacker rather
than the user of the BCI. Further, the attacker can transmit a series
of frequencies or a fixed frequency that is not a possible control
input to simply block the user from interacting with the BCI.

Capabilities of attacker: The attacker must have a software
defined radio, a computer to control the SDR, and an antenna for
transmission. To minimize cost, open-source SDR platforms can be
used with a single-board computer, such as a Raspberry Pi, and a
low-cost antenna to bring the price to roughly $400. To successfully
execute the attack, a working carrier frequency must be known. An
approach to determining these values is described in section 4.3. To
force undesired outputs from a BCI, valid control signals must also
be known. These can be determined from prior knowledge, such as
experimenting with target hardware, or from real-time sweeping
during an attack. A control frequency sweep is feasible because of
the limited frequency range of SSVEP.

Access level of attacker: The attacker may gain access to the
target in one of two ways. First, the attacker can deploy the system
in a fixed location, likely indoors. As shown in this work, successful
transmission through walls is possible, and the system could be
stored in a nearby room or closet if the EEG or BCI use is indoor.
If control is desired, the system must have an internet connection
for remote access. Second, the attacker can carry the system with
them for mobile use, likely outdoors. The software defined radio
can be powered by a laptop or battery allowing the entire system
to fairly discrete. In this scenario, the attacker must be in proximity
to the target, but can remain unassuming in public spaces where
BCIs may be used for smartphone or wheelchair control. Addition-
ally, having a line-of-sight to the target allows for easier real-time
characterization of the system.

Attack application: The attacker will turn on the SDR and
enable AM transmission. In the case of a pre-installed, fixed-position
deployment of the system, the system will disrupt any EEG reading
within range of the device. In the case of a mobile deployment, the
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attacker will discretely position themselves such that they are close
enough to the target to disrupt their activity.

Attack outcomes: The attacker changes the apparent brain
state of the target, causing a physician or a BCI system to view
and interpret erroneous EEG patterns. In the case of this work, the
attacker forces a BCI-controlled drone crash, a BCI-based speller
type undesired words and a neuro-feedback meditation tool output
false meditative states. Additionally, this technique could lead to
clinical misdiagnoses, malicious control of BCI-based assistive tech-
nologies, and the revealing of personal information via BCI-based
smartphone interactions. As BCI technology becomes increasingly
ubiquitous, the possible applications of this technique increase in
number.

7 SYSTEM CHARACTERIZATION
Once having proven that our approach could successfully inject
false brain-waves into an EEG monitoring device, we wanted to
further characterize the system. Therefore, we conducted several
experiments to understand how the system behaves under different
conditions. All experiments were carried out with a transmitting
power of 12.41 dBm (measured at 480MHz).

7.1 Range
In this experiment, we wanted to measure how the amplitude of the
injected waves decays with distance to the transmitting antenna.
For this reason, we connected the electrodes of ground, reference
and channel to a board that simulates the impedance of a real head
at each electrode (about 4 𝑘Ω) [63]. The cables and device were
placed in no particular orientation and left on the table (see Figure
7a). The transmitting antenna was oriented with its plane (and
polarization) parallel to the ground. For this experiment we used
the Neuroelectrics Enobio device.

In Figure 7 we can see the results. Notice that the plotted results
follow the characteristic trend of electric field decay with distance
at rate 1/𝑑 . We can see that with the specified transmitting power,
the maximum range is up to 3 meters approximately.

7.2 Angle of Incidence
This experiment consisted of measuring the amplitude of the in-
jected signals as a function of angle of incidence. We define angle
of incidence as the angle formed by the direction of maximum
antenna radiation and the direction faced by the subject wearing
the EEG headset. This way we could retrieve the impact of our
Brain-Hack system depending on the direction of incidence. See
Figure 8a to visualize a schematic of the experiment setup. The
antenna was placed 1 meter away from the head of the user, and the
user’s chair rotated from 0◦ to 360◦. We took measurements both
with the antenna positioned horizontally and with the antenna
positioned vertically, see Figures 8b and 8c with the respective re-
sults. The channel measured with the Neuroelectrics and OpenBCI
devices was the occipital Oz, and the left temporal channel TP9
with the Muse headband. It appears that positioning the antenna
horizontally leads to stronger injected waves, and a larger coverage
angle. Note the bi-modality of the Neuroelectrics device, which,
with the horizontal antenna, can receive the signals both facing (0◦)
and facing away (210◦-240◦) the antenna. The shift of the resulting

coverage lobes towards the first quarter angles may be due to the
fact that the reference electrode of the Neuroelectrics device and of
the OpenBCI device, as well as the measuring channel of the Muse
headband were placed by the left ear. Since the antenna was facing
the left region of the user’s head while 𝛼 ∈ (0◦, 90◦] (user rotated
clockwise, see Figure 8a), this resulted in stronger signals for those
angles, hence the slight shift of the lobes towards the first quarter
of the polar plot.

7.3 Probabilities of Attack Success Versus
Distance

The purpose of this experiment was to conduct an statistical anal-
ysis of the effectiveness of our attack as a function of distance
between the antenna and the BCI user. This would allow us to com-
pute the probabilities of a successful attack for each of the different
distances. A successful attack is defined as recording an RF-injected
wave with higher amplitude than the amplitude of the real SSVEP
brain-waves, as explained in Section 5.1. This way, the BCI system
would execute the command associated to the frequency of the
wave injected by the attacker, instead of the command desired by
the user. For this experiment, the user sat in front of a computer
screen that rendered a visual stimulus consisting of a flickering
white square on a black background. This is one of the most com-
mon schemes used for SSVEP-based brain-computer interfaces [64],
and it was similar to what we would later use for a real attack
demonstration (see Section 8). The stimulating square comprised
a visual angle of 5◦ and flickered at 20 Hz. In order to obtain a
distribution of the amplitudes of real SSVEP waves, we recorded
a window of 5 seconds while the user attended at the flickering
square, and repeated the measurement 10 times. This way, we ob-
tained an average amplitude of 3.8𝜇𝑉 with a standard deviation
of 1.07𝜇𝑉 . Similarly, we set up our Brain-Hack system to remotely
inject signals of 20 Hz and recorded 10 5-second windows with the
EEG device for different distances. This allowed us to obtain an
average and standard deviation of the amplitudes of the injected
signals for each distance. We repeated the measurements placing
the antenna in the room next door to explore the performance of
the attack if an attacker was hiding in another room. You can see
the results in Figure 9 (Top). The solid lines represent the average
and the colored shadows the standard deviations. We can see that
the standard deviation is considerably small for the injected signals,
which means that the attack results are very repeatable. Once these
statistics have been obtained, we can compute the probability of
attack success for each distance. If we assume that the amplitudes
of the signals are normally distributed we can easily determine
that the probability of a successful attack is given by 𝑃𝑟 (𝐴𝑖 > 𝐴𝑟 ),
where 𝐴𝑖 and 𝐴𝑟 are random variables normally distributed that
represent the amplitudes of the injected and real brain-waves. If
𝐴𝑖 ∼ N(𝜇𝑖 , 𝜎2𝑖 ) and 𝐴𝑟 ∼ N(𝜇𝑟 , 𝜎2𝑟 ), we can define 𝑍 = 𝐴𝑖 − 𝐴𝑟

and then, 𝑃𝑟 (𝐴𝑖 > 𝐴𝑟 ) = 𝑃𝑟 (𝐴𝑖 − 𝐴𝑟 > 0) = 𝑃𝑟 (𝑍 > 0), where
𝑍 ∼ N(𝜇𝑖 − 𝜇𝑟 , 𝜎

2
𝑖
+𝜎2𝑟 ). This allows us to obtain the plot in Figure

9 (Bottom), where we show the probabilities of attack success for
each distance. The fact that the standard deviation of the signals is
very narrow, results in considerable jumps of probability from 0 to
1 very quickly. Moreover, we can see that at a distance of about 2
meters, the probabilities of attack success drop to zero. We want to
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Figure 6: A brief overview of Brain-Hack’s attack model. Blue blocks represent elements or actions performed by the attacker,
green blocks represent elements or processes performed by the attacked system, and red blocks indicate negative outcomes of
the attack.

(a) Setup to obtain the
measurements voltage
vs. distance. EEG con-
nected to “fake head”
board.

(b) Wave amplitude versus distance plot.
Notice the decay rate 1/𝑑 .

Figure 7: Amplitude of wave received versus distance to trans-
mitting antenna. In this case, the EEG electrodes were con-
nected to a “fake head” board that simulates the electrode
impedance of a real head.

point out that these results represent the probabilities of success
under the conditions that these particular experiments were carried
out. The effective range of the attack could be easily increased with
more transmitting power (current transmitting power is just of 17.4
mW).

7.4 Walking Axially
In this experiment, we wanted to demonstrate the robustness of
our attack to the body and head movement of the EEG device user.
For this reason, we set an experiment where the user wearing the
EEG device walked away axially from the transmitting antenna.
The path followed by the user was a straight line aligned with the
direction of maximum power transmission of the antenna. The
antenna height was set so it matched the height of the user’s head.
The user walked up to a distance of 2.5 meters from the antenna.
The injected frequency was 20 Hz. The result can be seen in Figure
10, where we show an spectrogram of the recorded signal with the

EEG device. We can clearly see that the 20 Hz wave was captured
at the EEG, decreasing its power with time and distance. This result
shows that even with the head and body movement of the user,
our system can still successfully inject the desired signal into the
device.

8 ATTACK MODEL DEMONSTRATION
In this section we show how our attack approach can be used to
take control of three different brain-computer interfaces: a speller,
a drone-control and a neuro-feedback tool for meditation. The
speller and drone-control applications functioned using SSVEP, as
explained in Section 5.

8.1 Virtual Keyboard Speller
As said above, we designed a speller application that functioned
using SSVEPs. The application flashed each letter key at a different
frequency, and the user could type just attending the desired key.
SSVEP-based spellers are well-known in the BCI community since
they allow patients with reduced mobility to communicate [65–68].

The demo consisted of two parts. First, the user typed the words
‘I LOVE MIT’ without any remote attack. We can see in Figure
11a that the task is completed successfully. In the second part of
the demonstration, the user wished to type the same words but,
in this case, the attack system was activated. While the user was
attending the corresponding letters to type ‘LOVE’, the Software-
Defined Radio was transmitting signals with encoded frequencies
to type ‘HATE’ instead. The radio was programmed so that the
power of the injected fake brain-waves was higher than that of the
real evoked SSVEPs, as seen in Figure 11b. This way, the classifier
algorithm –a simple FFT that chooses the frequency with highest
amplitude– would wrongly choose the key desired by the attacker
as the attended key. The result can be seen in Figure 11c. A link to
a video of the full demonstration can be found in the Appendices.
This example shows that our attack approach can make a user type
undesired sentences remotely, even hiding the system in a room
next-doors as seen in Section 7.3.
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(a) Schematic representation of the experiment, transverse view.
When 𝛼 = 0◦, the subject was facing the direction of maximum
radiation of the antenna. The subject rotated clockwise.

(b) Polar plot of the injected waves amplitude in 𝜇𝑉 as a function
of the angle of incidence 𝛼 . In this case, the antenna was placed
horizontally (parallel to the ground).

(c) Polar plot of the injected waves amplitude in 𝜇𝑉 as a function
of the angle of incidence 𝛼 . In this case, the antenna was placed
vertically (perpendicular to the ground).

Figure 8: Angle of incidence experiment.

8.2 Drone-Control
This demo consisted of a brain-computer interface to control a drone
(or small helicopter) in real time. The interface functioned also with
SSVEP, as seen in the speller demo, Section 8.1. The user was seated
in front of a computer screen which showed different flashing

Figure 9: (Top) Signal amplitudes of real (blue) and injected
(orange and purple) brain-waves as a function of distance be-
tween the antenna and the user. Solid lines represent average
values, shadows represent standard deviation. (Bottom) Prob-
abilities of attack success as a function of distance between
the antenna and the user. We assume that the amplitudes of
the signals are normally distributed.

Figure 10: Spectrogram of the EEG signal recorded when the
user walked away axially from the transmitting antenna.
We can see that the desired 20 Hz wave is successfully in-
jected into the EEG device. The power of the injected signal
decreased as the user walked away until reaching 2.5 meters
from the antenna.
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(a) In the first part of the demonstration, the user typed the desired
sentence (I LOVE MIT) without any remote attack. The user was
wearing the Neuroelectrics device.

(b) Fast Fourier Transform (FFT) of the EEG recorded during the
typing of the letter ‘L’. Attending the ‘L’ key generated a 20 Hz
SSVEP. Simultaneously, our SDR was transmitting radio-waves with
the frequency of 30 Hz encoded, which corresponded to letter ‘H’.
As seen, the power of the injected fake wave is larger than that of
the real SSVEP. Therefore, the speller classifier wrongly chose the
letter ‘H’ as the attended key.

(c) In the second part of the demo, the remote attack caused the
speller to type the word ‘HATE’ instead of ‘LOVE’. See the SDR and
the log-periodic antenna at the bottom right corner of the picture.

Figure 11: Demonstration of our attack to an SSVEP-based
speller.

(a) In the first part of the experiment, the user could freely control
the drone gazing at the visual stimulus associated to the desired
command. The user could complete the task since no hacking took
place. The user was wearing the Neuroelectrics device.

(b) In the second part of the experiment, the SDR hacking was turned
on (top right), which activated the Emergency stop command. Con-
sequently, the drone crashed to the ground (bottom left).

Figure 12: Demonstration of our attack to an SSVEP-based
drone-control interface.

visual stimuli. Each stimuli was linked to a particular command:
Take off/Land, Go forward, Turn left, Turn right and Emergency
stop, as seen in Figure 12a.

The task given to the user consisted of maneuvering the drone
from the ground and landing it on a red surface at approximate 1.5
meters high. In the first part of the experiment, the user completed
the task successfully since there was no hacking attack, as seen
in Figure 12a. Conversely, in the second part of the experiment
the SDR was programmed to send radio-waves modulated at the
frequency linked to the Emergency stop command. Hence, during
the normal flight of the drone, the command was activated and
the drone crashed to the floor, as seen in Figure 12b. A video of
the complete demo can be seen following the link available in the
Appendices. This experiment shows that the use of our system
could take complete control of a brain-controlled drone. Instead of
crashing the drone, this technique could cause much more harm by
directing the drone towards people around it.
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8.3 Meditation
This demonstration consisted of hacking the consumer-grade EEG
device, Muse. Muse comes with its mobile App that provides feed-
back during a meditation session in the form of sounds. At the end
of each session, a report shows how well the subject performed.
A graph shows the state of mind of the user during the session,
classifying it in three different mental states: Active, Neutral, and
Calm. The goal of this demonstration was to use our system to
inject into the device fake brain-waves that are known to appear
in deep meditation states. In particular, these are slow oscillatory
waves found in the lower band of the brain spectrum: delta (< 4 Hz)
and theta (4 - 8 Hz) waves [69, 70]. We discovered that by remotely
injecting fake delta waves (3 Hz) into the frontal left electrode (AF7)
and simultaneously injecting theta waves (8 Hz) into the left tem-
poral electrode (TP9), the Muse algorithm wrongly classified the
state of mind into "Calm", even if the subject remained with the
eyes open and no intention to meditate (see Figure 13).

The experiment was conducted as follows. First, the subject (who
has no experience with meditation practice whatsoever) completed
the calibration requested by the Muse App with the eyes closed and
trying to relax, as indicated. When the 5-minute session started,
the subject was instructed to remain still and with the eyes open
during the whole time. During the first half of the session (first 2.5
minutes), the Brain-Hack system was off. We can see in the Muse
App report that during the first half of the session the state of mind
was classified as “Active” (see Figure 13b). Then, after approximately
the first 2.5 minutes, the hacking system was activated. We can see
in Figure 13b that the Muse App reported a sudden change in state
of mind, jumping from “Active” to “Calm”. The App also played
many bird sounds (shown as well in the report as blue icons), which
appear when the subject is very calm for a long time.

This demonstration showed that Brain-Hack can make a Muse
device report that a “bad meditator” reaches an outstanding med-
itation state. This experiment demonstrates the versatility of our
system, which can take control of a consumer-grade EEG device
without any cables exposed, as opposed to the other two devices.
Moreover, this attack successfully proved that two different fre-
quencies can be injected into the device simultaneously, opening
the door to generating more complex brain signals, going beyond
simple sinusoidal signals.

9 ETHICS STATEMENT
Thiswork received IRB approval from our institution (MITCOUHES),
and the participant in the experiment gave informed consent. The
primary concern for this experiment was the electromagnetic ra-
diation transmitted towards the participant’s head. The FCC de-
termines that the only effects that may constitute a human health
hazard from exposure to RF energy are those resulting from tis-
sue heating, referred to as “thermal” effects [71]. According to the
FCC, the evidence for production of harmful biological impact aside
from thermal effects is ambiguous and unproven. Therefore, the
FCC specifies that the maximum exposure level allowed to avoid
harmful thermal effects is of 580𝜇W/cm2 [72]. We can compute
the power density values to which the participant was exposed
with the following formula: 𝑃𝐷 = 𝑃𝑡𝐺𝑡/4𝜋𝑅2, where 𝑃𝑡 , 𝐺𝑡 and
𝑅 are the transmitter power, the antenna gain and the distance to

(a) To successfully trick the Muse algorithm into believing that the
subject was in a state of deep meditation, we had to simultaneously
direct 3 Hz to the frontal electrode of the device (AF7) and 8 Hz to
the temporal one (TP9).

(b) Screenshot of theMuse App report after a 5-minute session. In the
first 2.5 minutes, the hacking system was not active, and the Muse
algorithm reports an ‘Active’ mind (the subject kept the eyes open
the whole session). In the second half of the session, Brain-Hack was
activated. As seen, there is a sudden drop of mind state from ‘Active’
to ‘Calm’. The birds depicted appear when the subject is very calm
for a long time.

Figure 13: Hacking a Muse EEG headband.

the antenna respectively. The measured transmitting power of our
radio was 12.41dBm or 17.4mW, and the gain of our antenna was
6dBi. At a distance of 15 cm (the closest we placed the antenna
to the participant), the resulting power density is of 36.9𝜇W/cm2,
which is still one order of magnitude lower than the FCC threshold.
Therefore, the electromagnetic radiation transmitted by our SDR
was always below any harmful level for the participant.

 

63



CPSIoTSec ’23, November 26, 2023, Copenhagen, Denmark Alexandre Armengol-Urpi, Reid Kovacs, & Sanjay E. Sarma

10 DISCUSSION
It is concerning that these BCI devices are easily compromised in
this manner. The goal of this paper is to contribute to the conversa-
tion in BCI security, and specifically to highlight this security flaw in
EEG-based BCI systems. With such systems becoming increasingly
common, it will be vital to employ some form of countermeasure
for this and other possible attacks.

10.1 Limitations
This work explores the use of amplitude-modulation to inject pure
sinusoids, the perfect way to spoof SSVEP-based systems. However,
this technique will not allow the attacker to control systems devoted
to more complex EEG processes such as motor imagery [73, 74] or
Event-Related Potentials (ERP) [75, 76].

Additionally, the determination of the optimal control and car-
rier frequencies may be challenging or expensive, depending on
the scenario. The attacker would be able to determine the control
frequencies using a smartphone with high-speed video capabilities,
and would need to be close enough to the blinking source to capture
the signal. In cases where the frequencies are fixed, the attacker
may be able to download relevant applications or purchase relevant
devices for analysis prior to the attack. While this prior information
aids the process, it is enabled by additional expenses.

Despite these limitations, we consider this technique to be a
viable path to disrupt BCI systems and these security holes should
be closed for the safety of the BCI users.

10.2 Countermeasures
There are multiple possible countermeasures that can be employed
to prevent this effect with minimal additional cost to the manufac-
turer of EEG systems and BCI devices.

Control Frequency Variation. A simple solution for SSVEP-
based applications would be to frequently change the frequencies
of the SSVEP control signals. In this case, the attacker would be able
to disrupt control, but they would not easily be able to remotely
control the system to their whim.

ResponseTimePersonalization.Additionally, an SSVEP-based
BCI could take advantage of the individual-specific phase or delay
response to blinking lights [77, 78]. With phase recognition, the
system could easily identify which signals are from the user and
which are falsely injected by the attacker. In other words, the phase
of the injected signal would not match that of the BCI user, and the
injected signal would be ignored.

Common-Mode Rejection. The antennas used in this work
are directional, but not precise enough to target specific regions of
the head. As such, all channels see the same injected signal. One
possible way to remove the injected signal would be to remove any
‘noise’ that is common to all channels, rather than only removing
noise common to each channel relative to a reference.

Shielding. Further, a simple and effective countermeasure for
this attack would be to use shielded cables and to shield the sensitive
electronics within the EEG system. This would improve signal
resistance to RF interference.

Active Electrodes.Another possible solution is the use of active
electrodes [79]. In this configuration, amplifiers are placed proximal
to the electrodes, amplifying the signal closer to the source. After

amplification, the captured signal will have a significantly higher
amplitude and a stronger injection would be required to overpower
the true signal.

10.3 Future Work
This work appears to open many possibilities for this setup. For
example, the Muse attack demonstrates the use of multiple frequen-
cies in the injection signal. This suggests that the system could
successfully deploy more complex, false signals into EEG devices.
With the addition of beam-forming antennas, complex injections
could be applied at various locations around the head, allowing
an attacker to spoof more intricate brain processes. Recordings
of known neurological signals would also allow the carrier to be
amplitude-modulated with arbitrary waveforms, further disrupting
EEG systems.

Additionally, it seems plausible that Brain-Hack is capable of
disrupting intracranial EEG systems. In the case of an implanted
system, the electrode wires will be shorter, the true signal would
be stronger, and would be shielded by the skull. The skull can be
penetrated by some electromagnetic energy in themicrowave range,
but this my cause other neurological issues[80]. Compromising
implanted devices would be deeply concerning and would call into
question the safety of such devices.

Finally, it was observed that the orientation and position of the
BCI can cause shifts in optimal carrier frequency. In a future work,
we would like to explore solutions to this problem. One possible
implementation would be to use a sawtooth carrier signal, creating
amplitude-modulated frequency components at integer multiples of
the carrier frequency. Additionally, the carrier could be frequency
modulated, allowing for a sweep of the AM signal across a desired
frequency range. These solutions would lead to having a higher
likelihood of hitting a working carrier frequency without the need
of calibration.

11 CONCLUSIONS
In this work, we exploit the physical structure of EEG devices to
inject false brain-waves and impose control signals, rendering the
BCI-user under the command of an attacker. This attack was suc-
cessfully applied to a variety of EEG devices, including a research-
grade device, the Neuroelectrics Enobio [16], a consumer-grade
device, the InteraXon Muse 2 [18], and an open-source develop-
ment device, the OpenBCI Ganglion[17].

We find these vulnerabilities concerning, especially considering
the growth of EEG-based consumer products and implants. The
countermeasures suggested here can be implemented relatively
simply, some offering additional benefits to signal quality and noise
reduction. We believe that developers of BCI systems have a re-
sponsibility to prioritize the safety of the end user. Hopefully, this
paper contributes to the conversation of BCI security and improves
the robustness of EEG systems.
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APPENDIX - DEMONSTRATION VIDEOS
A video of the two project demos (speller and drone-control) can
be seen here: https://youtu.be/IKgR03NYU9E
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