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Many physics and engineering applications demand Partial Differential Equations (PDE)

property evaluations that are traditionally computed with resource-intensive high-fidelity

numerical solvers. Data-driven surrogate models provide an efficient alternative but come

with a significant cost of training. Emerging applications would benefit from surrogates with

an improved accuracy–cost tradeoff, while studied at scale. Here we present a “physics-

enhanced deep-surrogate” (“PEDS”) approach towards developing fast surrogate models for

complex physical systems, which is described by PDEs. Specifically, a combination of a low-

fidelity, explainable physics simulator and a neural network generator is proposed, which

is trained end-to-end to globally match the output of an expensive high-fidelity numerical

solver. Experiments on three exemplar testcases, diffusion, reaction–diffusion, and electro-

magnetic scattering models, show that a PEDS surrogate can be up to 3× more accurate

than an ensemble of feedforward neural networks with limited data (≈ 103 training points),

and reduces the training data need by at least a factor of 100 to achieve a target error of

5%. Experiments reveal that PEDS provides a general, data-driven strategy to bridge the

gap between a vast array of simplified physical models with corresponding brute-force nu-

merical solvers modeling complex systems, offering accuracy, speed, data efficiency, as well

as physical insights into the process.
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1 Introduction

In mechanics, optics, thermal transport, fluid dynamics, physical chemistry, climate models, crum-

pling theory, and many other fields, data-driven surrogate models—such as polynomial fits, radial

basis functions, or neural networks—are widely used as an efficient solution to replace repetitive

calls to slow numerical solvers 1–6. However the reuse benefit of surrogate models comes at a

significant training cost, in which a costly high-fidelity numerical solver must be evaluated many

times to provide an adequate training set, and this cost rapidly increases with the number of model

parameters (the “curse of dimensionality”) 7. In this paper, we explore one promising route to in-

creasing training-data efficiency: incorporating some knowledge of the underlying physics into the

surrogate by training a generative neural network (NN) “end-to-end” with an approximate physics

model. We call this hybrid system a “physics-enhanced deep surrogate” (PEDS). We demon-

strate multiple-order-of-magnitude improvements in sample and time complexity on three exem-

plar test problems involving the diffusion equation’s flux, the reaction-diffusion equation’s flux,

and Maxwell’s-equations’ complex transmission coefficient for optical metamaterials—composite

materials whose properties are designed via microstructured geometries 8, while conforming to

general robustness (SI, General robustness). In inverse design (large-scale optimization) of nanos-

tructured thermal materials, chemical reactors, or optical metamaterials, the same surrogate model

capturing important geometric aspects of the system may be re-used thousands or millions of

time 6, 9, 10, making surrogate models especially attractive to accelerate computational design 11, 12.

To obtain an accurate surrogate of a PDE, we apply a deep NN to generate a low-fidelity

geometry, optimally mixed with the downsampled geometry, which is then used as an input into

an approximate low-fidelity solver and trained end-to-end to minimize the overall error, as de-

picted in Fig. 1 (Sec. 2). The low-fidelity solver may simply be the same numerical method as

the high-fidelity PDE solver except at a lower spatial resolution, or it may have additional simpli-

fications in the physics (as in the reaction–diffusion example below, where the low-fidelity model
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discards the nonlinear term of the PDE). When only real-world data is available, the low-fidelity

model may come from a guess. By design, this low-fidelity solver yields unacceptably large errors

in the target output (perhaps > 100%), but it is orders of magnitude faster than the high-fidelity

model while qualitatively preserving at least some of the underlying physics. We provide an inclu-

sion criterion for the choice of low-fidelity model that guarantees a universal approximation and

a methodology that prevents PEDS from degrading the low-fidelity solver. The NN is trained to

nonlinearly correct for these errors in the low-fidelity model, but the low-fidelity model “builds

in” some knowledge of the physics and geometry that improves the data efficiency of the training.

For example, the low-fidelity diffusion model enforces conservation of mass, while the low-fidelity

Maxwell model automatically respects conservation of energy and reciprocity 13, and we can also

enforce geometric symmetries; all of these augment the “trustworthiness” 14 of the model. Com-

pared to a NN-only baseline model (SI, Implementation details of PEDS and baseline), we find

that, with a very small dataset of ≈ 1000 points and for several very different PDEs, PEDS consis-

tently increases the accuracy by up to 3× compared to the NN baseline, and reduces the need for

training data by an order of magnitude. For the number of parameters of the surrogate models we

tested, it amounts to a Cartesian product of less than two points in each input direction. To obtain

a ≈ 5% error, comparable to fabrication uncertainty, PEDS reduces the data need by a factor of

at least 100 compared to competing approaches. In the more challenging case of our surrogate of

the complex optical transmission, PEDS seems to improve the asymptotic rate of learning (≈ 5×
larger power law), so that the benefits increase as accuracy tolerance is lowered (Fig. 3 and Sec. 2).

We show through an ablation study of the surrogate for Maxwell’s equations that adding infor-

mation from the downsampled structure increases the accuracy by 15% in a low-data regime. We

extensively compared PEDS against traditional surrogate models and find that they outperforms all

models for more complex problems (SI, Comparison to mainstream surrogate models). Further-

more, when the low-fidelity solver layer is very inaccurate, we find that PEDS gains significant

additional benefits by combining it with active-learning techniques from our earlier work 8, and

in fact the benefits of active learning (AL) seem to be even greater for PEDS than for competing
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approaches. Although the resulting PEDS surrogate is more expensive to evaluate than a NN by

itself due to the low-fidelity solver, it is still much faster than the high-fidelity solver with two to

four orders of magnitude speedup. Furthermore, since the NN generates a downsampled version

of the geometry, this output can be further examined to gain insight into the fundamental nonlinear

physical processes captured by the low-fidelity solver.

2 Results

PEDS general approach The PEDS surrogate model f̃(p) aims to predict fhf (hf(p))—an output

property of interest as it would be computed from a computationally intensive high-fidelity (hf)

solver fhf . The hf solver computes the PDE solution for a high-fidelity geometry hf(p), with

p being some parameterization of the geometry (or other system parameters). PEDS is depicted

schematically in Fig. 1, and is implemented in the following stages:

Before delving into implementation details and results, we present the core principles of

PEDS which are common between all surrogates.

1. Given the parameters p of the geometry, a deep generative NN model yields a grid of pixels

describing a low-fidelity geometry. We call this function generatorNN(p).

2. We also compute a low-fidelity downsampling (e.g. via sub-pixel averaging 15) of the ge-

ometry, denoted downsample(p); other prior knowledge could also be incorporated here as

well.

3. We define G as a weighted combination G(p) = w·generatorNN(p)+(1−w)·downsample(p),

with a weight w ∈ [0, 1] (independent of p) that is another learned parameter.

4. If there are any additional constraints/symmetries that the physical problem imposes on the

geometry, they can be applied as projections P [G]. For example, mirror symmetry could be
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Figure 1: Diagram of PEDS: (Main) From the geometry parameterization, the surrogate generates

a low-fidelity structure that is combined with a downsampled geometry (e.g. downsampled by

pixel averaging) to be fed into a low-fidelity solver (symbolized by a cartoon picture of James

Clerk Maxwell). (Inset) The training data is generated by solving more costly simulations directly

on a high-fidelity solver (symbolized by a photograph of James Clerk Maxwell).

enforced by averaging G with its mirror image.

5. Finally, given the low-fidelity geometry P [G(p)], we evaluate the low-fidelity solver f lf to

obtain the property of interest: f̃(p) = f lf(P [G(p)]).

In summary, the PEDS model f̃(p) is

f̃(p) = f lf (P [w · generatorNN(p) + (1− w) · downsample(p)]) . (1)

For technical and implementation details of the PEDS framework, see Methods section and SI.
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Evaluation of PEDS across disparate exemplar surrogates In this work, we illustrate PEDS

with three well-known PDEs, as shown in Extended Data Table 1, which are implicated in wide

varieties of important applications. First, we study the linear diffusion equation (Figure 2, left and

middle), which has applications in materials science, information theory, biophysics and proba-

bility, among others. In particular, we train a surrogate model for the thermal flux, which is a

useful design property for thermoelectrics. Second, we build a surrogate model for the nonlinear

reaction-diffusion equation. This PDE is used in chemistry and its surrogates can influence the

design of chemical reactors (Figure 2, left and right). Third, we model the complex transmission

of Maxwell’s equations through a parameterized structure, which is typically used in the design of

optical metamaterials 6, 8, 10. See Methods section for details.

Figure 2: (Left) Geometry with 5 by 5 air holes with varying widths. There are Dirichlet boundary

conditions on top (blue line) forcing the temperature to 0 and at the bottom (red line) forcing

to 1, and periodic boundary conditions on the sides. (Middle and Right) Temperature field for

the diffusion equation and the reaction diffusion equation, respectively. The orange dotted line is

where the flux is evaluated to compute κ.

Overall benefits of PEDS Most importantly, in a low-data regime (≈ 103 data points for 10 to

25 input parameters), we found for several very different PDEs that PEDS consistently increased

the accuracy by up to 3× and reduced the training data needed by at least an order of magnitude.
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All PEDS surrogates reduce the need for training data by a factor of > 100 to attain an error

level of 5% comparable to uncertainties in experiments (Extended data Table 2, Fig. 3), which is

sufficient for design purposes. In the case of Fourier(16) and Fourier(25), the mixing weight w of

the neural generated structures is around 0.1, whereas for Fisher(16) and Fisher(25), the mixing

weight w is around 0.45. Since the low-fidelity solver is more inaccurate for the nonlinear reaction–

diffusion equation where the linear relaxation results in errors > 0.35%, the neural generator has

approximately a 5× larger weight, indicating it has the stronger impact of including the nonlinear

effects in PEDS. We report the exact optimal combining weights in (SI, Table 1) for Fourier(16),

Fourier(25), Fisher(16), and Fisher(25). Performance in a low-data regime are summarized in

Extended data Table 2 for accuracy improvement, computed as the fractional error (FE) on a test

set (SI, fractional error). For Fourier(16), Fourier(25), Fisher(16), Fisher(25), and Maxwell(10),

the error of PEDS goes down to typical levels of experimental uncertainties of 3.7%, 3.8%, 4.5%,

5.5%, and 19% respectively.

We compared Fourier(16), Fourier(25), Fisher(16), Fisher(25), and Maxwell(10) against a

NN-only baseline, which consists of an ensemble of neural networks with the same number of

parameters as PEDS generators with an additional fully connected layer to replace PEDS low-

fidelity solver layer (Extended data Table 2). With 1000 training points, PEDS is an improvement

compared to the neural network baseline of up to 3× (Extended data Table 2, PEDS (≈ 103) and

NN-only (≈ 103)). Furthermore, the neural network baseline still cannot reach the reported PEDS

accuracies when given an order of magnitude more data, which means that PEDS saves at least an

order of magnitude in data (Extended data Table 2, NN-only (≈ 104)). Except Maxwell(10), the

NN-only baselines cannot reach PEDS error with two orders of magnitude more data (Extended

data Table 2, NN-only (≈ 105)). In particular for Fourier surrogates, going from 104 to 105 points

reduces the error by less that 0.1%. Except Maxwell(10), which is further discussed in Section 2,

PEDS achieves error of 5% in low-data regime (1000 training points), and reduces the data need

by a factor of at least 100. We studied the general robustness of PEDS—the generalization error—
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with random split and stratified split (with respect to the magnitude of the target property) of the

test set against the baselines of NN-only and prediction by the mean (SI, General robustness). We

report that PEDS’ error is 5x more robust for random splits in the test set. Also, PEDS consistently

shows significant improvement compared to the baselines for either random or stratified test set

splits.

We further compared PEDS to a low-fidelity solver baseline, which uses the low-fidelity

solver with downsample(p) as input, without mixing with the low-fidelity geometry generated by

the neural network (Extended data Table 3). PEDS also boosts the accuracy of the low-fidelity

solver by 3.6×, 2.2×, 8.5×, 6.7×, and 6.5×, respectively (Extended data Table 3, Improvement).

For the reaction–diffusion equation, the low-fidelity solver has a coarser resolution and a linear

approximation of the physics (neglecting the nonlinear term of reaction–diffusion equation), but

the neural network generator captures the necessary nonlinearity to get improvement > 5× (Ex-

tended data Table 3, Improvement). The speedups vary between two and four orders of magnitude

(Extended data Table 3, Speedup). For Maxwell(10), using a coarser low-fidelity solver gener-

ally gains two orders of magnitude in 2D, which should translate into a four orders of magnitude

speedup for three-dimensional problems. We see the biggest speedups when the low-fidelity solver

is not only coarser than the high-fidelity solver, but also when it is a linear relaxation of the physics

(reaction–diffusion equation). In that case, the speedup is four orders of magnitudes.

Detailed analysis of Maxwell(10) case study In previous section, we showed the general perfor-

mance of PEDS in the low-data regime. For Maxwell(10), where the low-accuracy solver has a

very large error (> 100%), we study the training curve asymptotically and when combining with

AL 8. In contrast to the previous section, where we performed static training that takes a training set

sampled at random, here we discuss results from AL experiments by dynamic Bayesian training,

where the training set is iteratively expanded using an AL algorithm 8. Essentially, AL attempts

to sample training points where the model uncertainty is highest, thereby reducing the number of
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costly point acquisitions by querying the high-fidelity solver. Our previous work showed an order

of magnitude improvement in terms of data efficiency by using AL, when compared to a black-box

NN 8. Consistently, in this study, we also report substantial improvements from active learning for

PEDS.

The active-learning algorithm iteratively builds a training set by filtering randomly generated

points with respect to a trained measure of uncertainty 8. The hyperparameters of this algorithm

are (i) ninit, which is the number of points the surrogate models are initially trained with; (ii) T , the

number of exploration iteration; (iii) M and K, which are such that M ×K points are randomly

generated at each iteration and only K points with highest uncertainty σ(p) are explored (SI, Ac-

tive learning implementation details). We run the expensive high-fidelity solver to get the PDE

solutions of the explored points. We have trained surrogates as well as an ensemble of 5 indepen-

dent surrogates. We found that models optimizing the negative log-likelihood perform similarly

to models optimizing the mean squared error in the case static training. This is not surprising,

because the mean squared error is part of the negative log-likelihood objective. Furthermore, the

uncertainty model can be used as an approximation of the model error at evaluation time.

We compared PEDS to a NN-only baseline using the fractional error as an evaluation met-

ric (SI, Implementation details of PEDS and baselines). In Fig. 3, we show that PEDS clearly

outperforms all other models when combined with active learning. In low-data regime, it is 2.9×
more accurate than the baseline. Asymptotically, in high-data regime, it converges to the true value

with a power law exponent 5× better, with a slope of -0.5, in contrast to -0.1, for the baseline on

the loglog plot.

From a data-efficiency perspective, the PEDS+AL solver achieves 20% error on the test set,

while using only about 5% of the training data needed to train the NN-only baseline, and 12.5% of

the training data needed to train the NN-only baseline with AL (Fig. 3). Only PEDS+AL reaches
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Figure 3: (Left) Fractional error (FE) on the test set: PEDS outperforms the other baseline models

significantly when combined with active learning (AL). (Right) Geometry of the unit cell of the

surrogate model. Each of the 10 air holes have independent widths, the simulation is performed

with periodic boundary conditions on the long sides, the incident light comes from the bottom and

the complex transmission is measured at the top of the geometry.

a low 3.5% error with a training data size of ≈ 500k (Fig. 3). However, if we extrapolate the

other curves in Fig. 3, it is clear that they would require at least two orders of magnitude more

data to achieve similar low error. This completes the claim that PEDS saves at least two orders of

magnitude in training data to achieve and error comparable to fabrication uncertainty.

Evaluating the baseline (with an ensemble of neural networks) takes 500 µs, while PEDS

evaluates in 5 ms, which is about a ten times slower. However the high-fidelity solver is about a

hundred times slower, evaluating at ≈ 1 s. In order to simulate the data set quickly, and without

loss of generality, we showed results for PEDS in 2D (Fig. 3 (right). As PEDS is already faster
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than the high-fidelity model by two orders of magnitude, this difference will be even starker for

3D simulations. The simulation of the equivalent structure in 3D evaluates in about 100 ms with

the low-fidelity model, and in 2462 s with the high-fidelity model. In this occurrence, PEDS would

represent a speed-up by at least four orders of magnitude. For ablation experiments, an analysis of

generated geometries, and a comparison to mainstream surrogate models, see SI.

3 Discussion

The significance of the PEDS approach is that it can easily be applied to a wide variety of physical

systems. It is common across many disciplines to have models at varying levels of fidelity, whether

they simply differ in spatial resolution (as in Fourier(16), Fourier(25), and Maxwell(10)) or in the

types of physical processes they incorporate (as in Fisher(16) and Fisher(25)). For example, in

fluid mechanics the low-fidelity model could be Stokes flow (neglecting inertia), while the high-

fidelity model might be a full Navier–Stokes model (vastly more expensive to simulate) 16, with

generator NN correcting for the deficiencies of the simpler model. As another example, we are

currently investigating a PEDS approach to construct a surrogate for complex Boltzmann-transport

models 17 where the low-fidelity heat-transport equation can simply be a diffusion equation. The

last layer, in principle, does not require a direct solver. It can also backpropagate from a nonlinear

solver using the implicit function theorem. The only criteria needed from the low-fidelity solver

are the inclusion criterion and the criterion that it evaluates significantly faster than the high-fidelity

solver. We leave the evaluation of nonlinear solver in the last layer for future work.

Knowledge of priors can also be introduced in the low-fidelity geometry that is mixed with

the neural generator output. PEDS provides a data-driven strategy to connect a vast array of simpli-

fied physical models with the accuracy of brute-force numerical solvers, offering both more insight

and more data efficiency than physics-independent black-box surrogates. The low-fidelity model

in PEDS contains the physics and has the same generality as its class of low-fidelity model. The
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model is no longer a black box and the neural network generator can be inspected after training

to ensure that the output makes intuitive physical sense (Analysis of generated geometries) or the

generator can be sparsified 18, 19. For further intuition on why PEDS’ accuracy is not limited by

the low-fidelity solver’s accuracy, see SI on when/how the universal approximation theorem can be

extended to PEDS. In future work, we will consider how the regularization from the low-fidelity

solver layer may be optimal, similar to the results of other models such as ridge regression 20.

When compared to related works, PEDS should not be confused with physics-informed neu-

ral networks (PINNs), which solve the full PDE (imposed pointwise throughout the domain) for

the entire PDE solution (not a surrogate for a finite set of outputs like the complex transmission or

the thermal flux) 21, 22, and which do not employ any pre-existing solver. Current PINNs tend to

be slower than conventional high-fidelity PDE solvers (e.g. based on finite elements) 23, but offer

potentially greater flexibility. Universal ordinary differential equations (UODEs) 19 and machine-

learning-accelerated 24 methods also tackle a different problem from PEDS: they identify unknown

dynamics in an ODE by replacing the unknown terms with neural networks trained on data. In

contrast to DeepONet 9, 25 and Fourier neural operators 26 which are solvers to PDES, PEDS is a

surrogate model which predicts an output property given a parameterization. Consequently, PEDS

works with experimental property data when the generative high-fidelity model is unknown. Note

that using a DeepONet as a surrogate model reduces to our NN-only baseline. Since the output of

a surrogate model is independent of spatio-temporal coordinates, the trunk net reduces to a con-

stant. In the future, PEDS will be studied in the context of model discovery. Our approach has

some similarities with input space mapping (SM) 27, especially neural SM 28 and coarse mesh/fine

SM 29, where the input of a fine solver is mapped into the input of a coarse solver. However

SM uses the same parameterization for the fine solver and the coarse solver, rather than mapping

to “downsampled” resolution, and does not mix the generated input with a downsampled guess

adaptively. We show that PEDS substantially outperforms SM in the SI (SM baseline). Finally, in

contrast to error-correction techniques at the output level of the surrogate 30–33, generative-model-
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only techniques 34, 35, and reduced-order models 36, PEDS includes the solver in an end-to-end

fashion during the training process. In PEDS, the output of the low-fidelity solver layer is not

further transformed, which preserves key properties of the low-fidelity solver such as conservation

of energy or mass. Mappings between coarse and fine descriptions of a system is also leveraged in

the renormalization group technique in physics 37, but in the latter context this is accompanied by a

change of scale—often to investigate self-similar phenomena—and not necessarily a change in the

number of degrees of freedom. PEDS can hierarchically combine models with varying levels of

complexity such as low- and mid-fidelity solvers, or linearized solver and coarse nonlinear solver.

This could be implemented by learning mixing parameters for the different models and requiring

them to be sparse with a L1 regularization to reduce the evaluation costs. In a similar way, PEDS

can be used in a multiscale setting as in Ref. 38.

In addition to applying the PEDS approach to additional physical systems, there are a number

of other possible technical refinements. For example, one could easily extend the PEDS NN to

take an image of the high-fidelity-structure geometry rather than its parameterization, perhaps

employing convolutional neural networks to represent a translation-independent “coarsification”

and/or a multiresolution architecture. This type of surrogate could then be employed for topology

optimization in which “every pixel” is a degree of freedom 39. Another interesting direction might

be to develop new low-fidelity physics models that admit ultra-fast solvers but are too inaccurate to

be used except with PEDS; for instance, mapping Maxwell’s equations in 3D onto a simpler (scalar-

like) wave equation or mapping the materials into objects that admit especially efficient solvers

(such as impedance surfaces 40 or compact objects for surface-integral equation methods 41).

Methods

Inclusion criterion for PEDS The existence criterion of an arbitrary accurate physics-enhanced

deep surrogate is that the span of the high-fidelity property be included in the span of the property
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computed with the low-fidelity solver. This criterion should guide the choice of the low-fidelity

solver for PEDS. If this condition is not met by the low-fidelity solver, then it is not expressive

enough to capture the full range of output of the target property function.

Optimization starting point PEDS can be initialized very close to the low-fidelity solver by

setting w = 0.05. Using the low-fidelity model as an initial guess for PEDS training imposes a

lower bound (= low-fidelity solver performance) on the performance of PEDS on the training set.

Results show that indeed PEDS performance never degrades below the low-fidelity solver. In fact,

we find that PEDS performs significantly better than the low-fidelity solver alone on a held-out test

set. Most optimization algorithms will not converge in practice to a solution worse than the starting

point. Some algorithms can guarantee a sufficient decrease condition like CCSA 42, LBFGS 43, etc,

to ensure that PEDS does not degrade the low-fidelity solver. The choice of physical inductive bias

to add as constraints in the optimization has been determined by an ablation study (Sec. 2, Ablation

Study).

Dataset acquisition PEDS is a supervised model that is trained on a labeled dataset. It is not

necessary to know the generative high-fidelity model for PEDS. The data can be generated from

real-world experiments. But in the case of our illustrative examples, we build the training set by

querying the high-fidelity solver with parameterized geometries S = {(pi, thfi ), i = 1...N}, where

pi are parameterized geometries in the training set and thfi = fhf (pi). The upfront cost of building

the training dataset is the most time-consuming part of developing a supervised surrogate model

f̃(p). By building some approximate low-fidelity physics knowledge into the surrogate, we will

show that PEDS greatly reduces the number N of queries to expensive simulations. Note that

the generation of the high-fidelity data is embarrassingly parallel when the high-fidelity model is

known.
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Training loss A basic PEDS training strategy could simply minimize the mean squared error
∑

(p,thf)∈S |f̃(p) − thf |2 (for a training set S) with respect to the parameters of the NN and the

weight w. When the data may have outliers, we use a Huber loss 44.

Lδ(a) =





1
2
a2 for |a| ≤ δ,

δ ·
(
|a| − 1

2
δ
)
, otherwise.

(2)

We also employ a more complicated loss function that allows us to easily incorporate active-

learning strategies 8. We optimize the Gaussian negative log-likelihood of a Bayesian model 45

−
∑

(pi,t
hf
i )∈S

log PΘ(t
hf
i |pi) ∝

∑

(pi,t
hf
i )∈S

[
log σ(pi) +

(thfi − f̃(pi))
2

2σ(pi)2

]
(3)

where PΘ is a Gaussian likelihood defined by Θ which includes the parameters of the generator

model parameters and the combination weight w, and the heteroskedastic “standard deviation”

σ(p) > 0 is the output of another NN (trained along with our surrogate model).

Ensemble model We also train surrogates that are an ensemble of 5 independent surrogates. The

prediction of the ensemble is the average of the predictions of each individual model. A model

error can be inferred at inference time from the diversity of predictions 45.

Stochastic gradient descent In practice, rather than examining the entire training set S at

each training step, we follow the standard “batch” approach 46 of sampling a random subset of

S and minimizing the expected loss with the Adam stochastic gradient-descent algorithm 47 (via

the Flux.jl 48 software in the Julia language).
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Adjoint method The low-fidelity solver is a layer of the PEDS model, which is trained end-to-

end, so we must backpropagate its gradient ∇gf
lf with respect to the low-fidelity geometry input g

through the other layers to obtain the overall sensitivities of the loss function. This is accomplished

efficiently using the known “adjoint” methods 39. Such methods yield a vector-Jacobian product

that is then automatically composed with the other layers using automatic differentiation (AD) (via

the Zygote.jl 49 software).

In particular, the low-fidelity solver layer is differentiable because each pixel of the low-

fidelity geometry is assigned to a sub-pixel average of the infinite-resolution structure, which in-

creases accuracy 15 and makes downsample(p) piecewise differentiable. In the same way, hf(p) is

differentiable for the high-fidelity geometry.

PEDS for diffusion equation Our first two surrogate models are for the diffusion equation from

Extended data Table 1. They are called Fourier(16) and Fourier(25), and they predict the thermal

flux κ(p) from the diffusion equation for 16 and 25 input variables, respectively. As showed in

Fig. 2 (left), the 2D nanostructured material defines the coefficient matrix D(p) where the param-

eter vector p contains the 25 (resp. 16) independent side lengths of a five by five (resp. four by

four) grid of air holes etched in the medium. The thermal conductivity coefficients in D are set

to 1 in the medium and 0.1 in the holes. The boundary conditions are periodic in x-direction and

Dirichlet boundary conditions in the y direction, fixing the temperature to 1 at the bottom and to 0

at the top, as illustrated by thick red and blue lines in Fig. 2 (left). The Dirichlet boundary condi-

tions are equivalent to the source term s0 in Extended data Table 1. Both the high-fidelity and the

low-fidelity solvers employ a finite-difference solver that represents the geometry by a grid of dis-

cretized thermal conductivity. Sub-pixel averaging is employed at the boundary between the holes

and the medium. For both Fourier(16) and Fourier(25), the high-fidelity solver has a resolution of

100. The low-fidelity solver has a resolution of 4 or 5, which corresponds to a single pixel per

16



hole position. Each high-fidelity data point acquisition requires ≈ 35 ms, and each low-fidelity

data point acquisition requires ≈ 65 µm and ≈ 75 µm, respectively, which represents a speed-up

of ≈ 500× (Extended data Table 3, Speedup). We compute the low-fidelity solver baseline error,

by computing the solution with the low-fidelity solver and the geometry downsample(p), where

p is the geometry parameterization (i.e. without mixing with a neural generator output). Despite

the much lower resolution, the low fidelity solvers have a fairly low error of 13.5% and 8.5%, re-

spectively. This good performance of an averaged structure comes from the fact that the diffusion

equation is a smoothing equation. Nonetheless, such errors would still be dominant compared to

typical experimental uncertainties of ≈5%. Fourier(16) and Fourier(25) were trained to predict the

flux through a plane as in Fig. 2 (middle) by minimizing Huber loss in Eq. 2 with δ = 10−3 to

lower the sensitivity to outliers.

PEDS for reaction–diffusion equation Our next two surrogate models solve the reaction–diffusion

equation from Extended data Table 1, and are called Fisher(16) and Fisher(25). They predict the

flux κ(p) through the same geometry as Fourier(16) and Fourier(25), respectively. As can be seen

in Extended data Table 1 the reaction–diffusion equation has an additional nonlinear term ku(1−u)

compared to the diffusion equation. k is a coefficient that controls the amount of nonlinearity in

the PDE. In Fig. 2 (middle and right), we see how much the nonlinearity impacts the PDE solution.

The high-fidelity nonlinear solver is using finite difference and Newton’s method in conjunction

with a continuation method that increases κ from 0.1 to 10 in 5 multiplicative steps. The low-

fidelity solvers of Fisher(16) and Fisher(25) are identical to that of Fourier(16) and Fourier(25),

respectively. Importantly, the low-fidelity solver not only has a coarse resolution, but also uses an

approximate physics that neglects the nonlinear term from the reaction–diffusion equation. Each

high-fidelity data point requires ≈ 700 ms that is around 104× slower than the low-fidelity solver

(Extended data Table 3, Speedup). The low-fidelity solvers have error of 38.1% and 36.7% respec-

tively. Fisher(16) and Fisher(25) were trained to predict the flux through a plane as in Huber loss
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in Eq. 2 with δ = 10−3 to lower the sensitivity to outliers.

PEDS for Maxwell’s equations Similarly to Ref. 8, our third surrogate model Maxwell(10)

predicts the complex transmission thf (p) of a 2D “meta-atom” unit cell with a parameterized ge-

ometry p, which consists of ten layers of air holes with independent widths etched in a substrate

(of dielectric constant ε = 2.1 corresponding to silica), with periodic boundary conditions in x

and outgoing radiation boundary conditions in the y direction and an incoming normal-incident

planewave from below, as shown in Fig. 3 (right). In terms of the vacuum wavelength λ of the

incident wave (for the largest λ considered below), the period in x is 0.95λ and the total thickness

is 11λ (with hole heights of 0.75λ and interstices of 0.35λ); the fact that the structure is several

wavelengths in diameter causes the transmission thf (p) to be a complicated oscillatory function

that makes the surrogate training challenging 8. A “metasurface” consists of a collection of many

of these meta-atoms, designed to perform some optical function such as focusing 12. The full so-

lution for a metasurface can be approximated in terms of the transmissions of individual periodic

‘unit cells via a local periodic approximation 6, 10. A schematic unit cell with 3 holes is showed in

Fig. 1, and an example 10-hole structure from the training set is shown in Fig. 3 (right).

Both the high-fidelity and low-fidelity solvers for Maxwell(10) employ finite-difference frequency-

domain (FDFD) discretizations of Maxwell’s equations 50, using perfectly matched layers (PMLs) 51

to implement outgoing boundary conditions. Similarly to the solvers of the two previous equations,

FDFD represents the geometry by a grid of discretized ε “pixels,” which is a function of the pa-

rameters (hole widths) p, hf(p), and downsample(p) for the high-fidelity solver and the baseline

coarse solver, respectively. An FDFD resolution of 40 pixels per wavelength is used as our high-

fidelity solver. This resolution is typical for high-fidelity solvers in electromagnetism, because

it is comparable to the manufacturing accuracy in nanophotonics and hence suffices for practical

metalens design 11, 12 within fabrication uncertainty. (Sharp/narrowband resonances can shift if one
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refines the resolution further, but the positions and the bandwidths of the resonances are accurate

to within a few percent.) Each high-fidelity-solver data point required ≈ 1 s (on a 3.5 GHz 6-Core

Intel Xeon E5); an analogous simulation in 3D takes several hours. Our PEDS surrogate uses an

FDFD solver at a coarser resolution of 10 pixels per wavelength, which is about 100× faster in 2D

and > 104× faster in 3D, but has much worse accuracy. It differs from the high-fidelity solver’s

transmission by 124% on our test set, which is significantly more than the four other surrogates

presented in this article. Maxwell(10) model was trained to predict the complex transmission for

3 frequencies by minimizing the negative Gaussian likelihood loss function to enable comparison

with and without using AL 8. The input of the model p is the concatenation of the 10 widths and

the one-hot encoding of the frequency.
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Tables

Equation name Equation formula Model(input dimension)

Diffusion ∇ ·D∇u = s0 Fourier(d)

Reaction-diffusion ∇ ·D∇u = −ku(1− u) + s0 Fisher(d)

2D Maxwell (Helmholtz) ∇2u + ω2εu = s1 Maxwell(d)

Extended data Table 1: Governing equations of the surrogate models for our example problems.

d is the input dimension, i.e. the number of input variables in the surrogate model, which ranges

from 10 to 25.
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Model(input dim) PEDS (≈ 103) NN-only (≈ 103) NN-only (≈ 104) NN-only (≈ 105)

Fourier(16) 3.7% 5.1% 4.8% 4.8%

Fourier(25) 3.8% 4.7% 4.4% 4.4%

Fisher(16) 4.5% 10.1% 9.9% 9.5%

Fisher(25) 5.5% 14.4% 14.0% 12.7%

Maxwell(10) 19% (AL) 56% 19% 15%

Extended data Table 2: PEDS error versus NN-only baselines’ errors (fractional error on the test

set). We report the orders of magnitude of training points in parenthesis. With more than an

order of magnitude extra data, NN-only baseline still has much higher error than PEDS. Except

Maxwell(10), all baselines still cannot achieve PEDS error with two orders of magnitude extra

data. The improvement when going from 104 to 105 points with Fourier surrogates are smaller

than 0.1%. In the Maxwell case, we show in section 3.3 that it is crucial to include active learning

(AL) in addition to PEDS.

Model(input dim) PEDS error (≈ 103) Low-fidelity error Improvement Speedup

Fourier(16) 3.7% 13.5% 3.6× 500×
Fourier(25) 3.8% 8.5% 2.2× 500×
Fisher(16) 4.5% 38.1% 8.5× 104×
Fisher(25) 5.5% 36.7% 6.7× 104×
Maxwell(10) 19% (AL) 124% 6.5× 102× / 104×

Extended data Table 3: With ≈ 103 training points, PEDS consistently improves error (fractional

error on the test set) by 2–8× compared to the low-fidelity solver. “Improvement” is the reduction

in error by PEDS compared to the low-fidelity. Speedups are shown for 2D simulations, and

speedup for 3D simulations is also reported for Maxwell(10)
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Figure Captions

Figure 1 Diagram of PEDS: (Main) From the geometry parameterization, the surrogate generates

a low-fidelity structure that is combined with a downsampled geometry (e.g. downsampled by

pixel averaging) to be fed into a low-fidelity solver (symbolized by a cartoon picture of James

Clerk Maxwell). (Inset) The training data is generated by solving more costly simulations directly

on a high-fidelity solver (symbolized by a photograph of James Clerk Maxwell).

Figure 2 (Left) Geometry with 5 by 5 air holes with varying widths. There are Dirichlet bound-

ary conditions on top (blue line) forcing the temperature to 0 and at the bottom (red line) forcing

to 1, and periodic boundary conditions on the sides. (Middle and Right) Temperature field for

the diffusion equation and the reaction diffusion equation, respectively. The orange dotted line is

where the flux is evaluated to compute κ.

Figure 3 (Left) Fractional error (FE) on the test set: PEDS outperforms the other baseline models

significantly when combined with active learning (AL). (Right) Geometry of the unit cell of the

surrogate model. Each of the 10 air holes have independent widths, the simulation is performed

with periodic boundary conditions on the long sides, the incident light comes from the bottom and

the complex transmission is measured at the top of the geometry.
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Raphaël Pestourie1,∗, Youssef Mroueh2,3, Chris Rackauckas4,
Payel Das2,∗ & Steven G. Johnson4

1 School of Computational Science and Engineering, Georgia Institute of Tech-
nology, Atlanta, GA 30332, USA
2 IBM Research AI, IBM Thomas J Watson Research Center, Yorktown Heights,
NY 10598, USA
3 MIT-IBM Watson AI Lab, Cambridge, MA 02139, USA
4 MIT, Cambridge, MA 02139, USA
∗Correspondence to: rpestourie3@gatech.edu; daspa@us.ibm.com.

Contents

1 Optimal mixing weights for Fourier(16), Fourier(25), Fisher(16),
and Fisher(25) 2

2 Implementation details of PEDS and baselines for Maxwell(10) 2

3 Active learning implementation details 3

4 Parallelization 3

5 SM baseline 3

6 Coarse solver and gradient 4

7 Implementation details of PEDS and baselines for Fourier/Fisher(16)
and Fourier/Fisher(25) 5

8 Ablation study 6

9 Analysis of generated geometries 6

10 Frequency dependence 6

11 Scattering richness 8

12 Comparison to mainstream surrogate models 8

1

ar
X

iv
:2

11
1.

05
84

1v
4 

 [
cs

.L
G

] 
 1

4 
D

ec
 2

02
3



13 Fractional error 9

14 Code 9

15 Runtime benchmarking 9

16 General robustness 9

17 Exemplar comparison of PEDS against a middle-fidelity solver 10

18 Universal Approximation Theorem for PEDS 12

1 Optimal mixing weights for Fourier(16), Fourier(25),
Fisher(16), and Fisher(25)

We show the optimal mixing coefficients for Fourier(16), Fourier(25), Fisher(16),
and Fisher(25) in Table 1. Each column corresponds to a model in the ensemble.
The weights for the diffusion equation are smaller because the low-fidelity is
more accurate. The weights for the nonlinear reaction–diffusion equation are
≈ 5× greater because the neural generator has the stronger impact of correcting
for the nonlinear effects.

Model 1 Model 2 Model 3 Model 4 Model 5
Fourier(16) 0.0931965 0.0859197 0.0904296 0.0877423 0.0900292
Fourier(25) 0.0990645 0.10286 0.102562 0.101054 0.103778
Fisher(16) 0.451373 0.448773 0.452949 0.455903 0.452241
Fisher(25) 0.471411 0.472364 0.467987 0.468141 0.467343

Table 1: Optimal mixing coefficients for Fourier(16), Fourier(25), Fisher(16),
and Fisher(25). Each column corresponds to a model in the ensemble. The
weights for the diffusion equation are smaller because the low-fidelity is more
accurate. The weights for the nonlinear reaction–diffusion equation are ≈ 5×
greater because the neural generator has the stronger impact of correcting for
the nonlinear effects.

2 Implementation details of PEDS and baselines
for Maxwell(10)

The generator neural network of PEDS has two hidden layers with 256 nodes
and relu activation functions, and outputs a flattened version of the coarse ge-
ometry of dimension 1100 with a hardtanh activation function (hardtan(x) =
max(min(x, 1), 0)). The network that outputs the variance of the models, takes
the generated coarse geometry as input, has 3 hidden layers with relu activation
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functions and outputs a scalar with a relu activation function. The correspond-
ing baseline, which is a neural-network only (NN-only) method, was chosen to
be as close as possible to PEDS architecture, it replaces the coarse solver with a
fully connected layer, and outputs two scalars with a tanh activation function.
Note that it does not have the information of the downsampled structure. The
mapping neural network of the input SM implementation has two hidden layers
with 256 nodes and relu activation functions, and outputs the coarse geometry
parameters of dimension 10 with a hardtanh activation function. The variance
network is similar to PEDS except that the inputs are the SM output geometry
parameters. The batch size was set to 64 and the learning rate to 10−3. Every
training went through 10 epochs.

3 Active learning implementation details

The active learning training [1] used the following parameters ninit = 256, T = 8,
M = 4, and K took powers of 2 ranging from 26 to 216.

4 Parallelization

In order to accelerate the training of the surrogate model, we parallelized the
training at the batch loop level. For ensemble learning, we used 320 computing
units which were split into 5 groups (one group per model in the ensemble) of 64
computing units. With a batch size of 64, each worker evaluates the surrogate
only once per batch loop (a batch size of a multiple of 64 would work well too).

5 SM baseline

Our PEDS has similarities with input space mapping (SM) [2], especially neural
SM [3] and coarse mesh/fine SM [4], where the input of a fine solver is mapped
into the input of a coarse solver. However, SM uses the same parameterization
p (e.g. the widths of the holes) for the fine solver and the coarse solver, so the
input dimension and the output dimension of the neural generator are equal.
In contrast, PEDS uses a much richer coarse-geometry input (a grid of material
values, whose dimensionality is different in the coarse and fine geometries) and
can therefore incorporate more geometric and physical inductive biases, such
as symmetries and the downsampled structure. For comparison, we trained an
input SM baseline model, which is a combination of neural and coarse mesh/fine
mesh SM [4, 5]. In this model, the NN is learning a mapping that creates
modified geometry parameters p which are combined with an intuition-based
geometry and then fed to the coarse solver. Since the coarsified parameterized
geometry is implemented via sub-pixel averaging, this function is differentiable,
so the gradient can backpropagate all the way to the mapping NN.

The baseline corresponding to the previous “space-mapping” (SM) [3–5] ap-
proach combines a coarse Maxwell solver with a NN transforming only a low-
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dimensional parameterization of the fine geometry to a similar low-dimensional
parameterization of the coarse geometry.

As shown in Fig. 1, SM performs significantly worse than PEDS, and does
not gain much accuracy from ensembling nor from active learning, and is even
worse than the baseline NN. We found that SM can perform comparably to the
baseline NN if the coarse-solver resolution is doubled to 20, shown in Fig. 2, at
the expense of ≈ 10× more computational effort.

Figure 1: (Left) Fractional error (FE) on the test set with a coarse resolution
of 10: PEDS outperforms the other models significantly when combined with
active learning (AL). SM performs poorly compared to PEDS and does not gain
much accuracy from ensembling nor from active learning. (Right) Geometry of
the unit cell of the surrogate model. Each of the 10 air holes have independent
widths, the simulation is performed with periodic boundary conditions on the
long sides, the incident light comes from the bottom and the complex transmis-
sion is measured at the top of the geometry.

6 Coarse solver and gradient

In the present work, the coarse solver is similar to the fine solver except that it
uses a much coarser resolution of 10, which corresponds to a resolution of less
than 5 pixels per wavelength in the worst case, instead of 40 for the fine model.
The symmetry action was a simple mirror symmetry, implemented by averaging
of the geometry with its mirror flip.
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Figure 2: (Left) Fractional error (FE) on the test set with a coarse resolution of
20: PEDS outperforms the other models significantly when combined with active
learning (AL). SM performs poorly compared to PEDS and does not gain much
accuracy from ensembling nor from active learning. SM performs similarly to
the neural network baseline at this resolution. (Right) Geometry of the unit cell
of the surrogate model. Each of the 10 air holes have independent widths, the
simulation is performed with periodic boundary conditions on the long sides, the
incident light comes from the bottom and the complex transmission is measured
at the top of the geometry.

7 Implementation details of PEDS and baselines
for Fourier/Fisher(16) and Fourier/Fisher(25)

The generator neural network of PEDS has two hidden layers with 128 nodes and
relu activation functions, and outputs a flattened version of the coarse geometry
of dimension 16 and 25 with a hardtanh activation function (hardtan(x) =
max(min(x, 1), 0)), for 16 and 25 input parameters, respectively. Each hidden
layer is followed by a dropout [6] of rate 50%. The corresponding baseline, which
is a neural-network only (NN-only) method, was chosen to be as close as possible
to PEDS architecture, it replaces the coarse solver with a fully connected layer,
and outputs two scalars with a tanh activation function. Note that it does not
have the information of the downsampled structure. The batch size was set to
64 and the learning rate to 510−5. Every training went through 200 epochs.
And the dataset contains 1088 points (≈ 103).
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8 Ablation study

Next, we show results of ablation experiments in order to understand the effect
of mixing the generated structure with a downsampled structure. Specifically,
we performed an ablation study on an AL ensemble model in the low-data
regime (1280 training points); results are shown in Table 2. The edge cases
of using only the downsampled structure with the low-fidelity solver (Table 2,
coarsified only) performs the worst (124% error with respect to the high-fidelity
solver), corresponding to w = 0.0 in (??). Conversely, using the NN generator
only (Table 2, generator only), corresponding to w = 1.0 in (??), is still about
15% worse (0.20 error) than using adaptive mixing 0 < w < 1 (Table 2, PEDS).
Imposing mirror symmetry, via P [G] = (G+mirror image)/2 in (??) (Table 2,
PEDS with symmetry), did not improve the accuracy of the model in this case
(but is a useful option in general, since symmetry may have a larger effect on
the physics in other applications).

Generative model for low-fidelity geometry FE on test set PEDS improvement
w = 0.0 (coarsified only) 1.24 86%
w = 1.0 (generator only) 0.20 15%
PEDS with symmetry 0.18 5%
PEDS 0.17 —

Table 2: Ablation study of PEDS with ensembling and active learning for 1280
training points, showing the impact of mixing generated and coarsified geome-
tries, as well as imposing symmetry.

9 Analysis of generated geometries

Because the trained PEDS model includes a NN that generates “equivalent”
coarse-grained geometries to the input structure, it is interesting to analyze
these geometries and potentially extract physical insights.

10 Frequency dependence

The neural network generates structures that are qualitatively different as a
function of the input frequency (Fig. 3, right insets). As might be expected
on physical grounds (e.g. effective-medium theory [7]), the lowest frequency
(longer wavelengths) corresponds to the smoothest generated structures, be-
cause the wavelength sets the minimum relevant lengthscale for wave scattering.
To help quantify this, we performed a principal components analysis (PCA) of
generatorNN(p) for 10

5 uniform random p values (including random frequency).
We show the first few principal components in Fig. 3 (left). The first and sec-
ond components explain 67% and 13% of the variation, respectively. We show
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Figure 3: (Left) First 9 principal components which explain most of the vari-
ation in the complex transmission. (Right) Coordinate of randomly generated
structures on the two first principal components. Clusters can clearly discrim-
inate the input geometries (f = 0.5 in blue, f = 0.75 in orange, f = 1.0 in
green). (Insets) Example generated geometries corresponding to the three fre-
quencies of the surrogate model. The generated geometry is smoothest for the
smallest frequency.
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in Fig. 3 (right) that the coordinates of the first two components are sufficient
to classify generated geometries according to the input frequency.

11 Scattering richness

To explore the effect of additional scattering physics produced by multiple layers
of holes, we generated coarse geometries for different numbers of layers (equiv-
alently, fixing the parameters of the “deleted” layers to zero). We then de-
composed the resulting generatorNN(p) into the PCA components from above.
As we increase the number of layers, the average coordinates of some princi-
pal components monotonically increase in magnitude. Since we know that more
layers contain more scattering richness, the corresponding principal components
geometries provides some geometrical insight into how scattering richness trans-
lates into the generated structure. From our analysis of generated structures
for the smallest frequency, the first principal component geometry clearly con-
tributes to scattering richness, with an average coordinate (across 103 generated
structures) increasing -11 to 26 as the number of layers goes from 1 to 9.

12 Comparison to mainstream surrogate models

In the following section we show that the method should be matching the com-
plexity of the problem. Neural network surrogates are not one model-fit-all
type of surrogates, but they are suitable for more complex models. For exam-
ple, the Maxwell surrogate is the most complex with 10 independent geometry
parameters [1], whereas the diffusion equation is smoothing and therefore low-
rank. For the more complex case of Maxwell’s equations, PEDS outperforms
NN-only, polynomial chaos expansion (Poly Chaos), radial basis function inter-
polation (RadialBasis) and gaussian processes (GP), by 66%, 74%, 44%, and
49%, respectively (Table 3). For the simpler cases of the diffusion equation and
the reaction-diffusion equation with a small nonlinear term, more traditional
surrogates such as Poly Chaos, RadialBasis and GP are competitive against
neural networks. Polynomial chaos expansion is performing best on the simple
cases and worst worst performer for the more complex surrogate, this is con-
sistent with their underperformance as nonlinearity increases [8]. When many
points are needed to be accurate as in the Maxwell case where PEDS’ outper-
forming accuracy of 19% is still much higher than the fabrication error, neural
networks training scales linearly with the number of training points; in contrast,
radial basis function, gaussian processes, or polynomial chaos expansion have
O(N3) complexity in the worst case scenario where N is the number of training
points. However, they can be significantly improved to O(NM2)—where M is
a hyperparameter of the algorithm–by exploiting the mathematical structure of
problem. On one hand, the neural networks in PEDS reduce the curse of dimen-
sionality [9], they perform nonlinear fits which makes them suitable for complex
applications. On the other hand, the choice of low-fidelity solver controls how
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much field knowledge is included inside PEDS, and adds a strong regularization
towards physical solutions that makes it more data efficient. These features
makes them suitable for complex applications.

Poly Chaos RadialBasis GP NN-only PEDS
fourier5 1.6 2.2 4.7 4.7 3.8
fisher5 1.7 3 5.5 14.4 5.5
Maxwell10 72 34 37 56 19 (AL)

Complexity

% error

Table 3: Comparison of PEDS and NN-only models against traditional surrogate
models: as the complexity of the generative process increases, neural network
surrogates perform best, but traditional surrogates are competitive in simpler
cases.

13 Fractional error

For evaluation, we use the fractional error FE between two vectors of complex
values uestimate and vtrue, which is

FE =
|uestimate − vtrue|

|vtrue|
(1)

where | · | is the L2-norm for complex vectors.

14 Code

The code was implemented in Julia language version 1.6, using MPI.jl for paral-
lelization with MPI, Flux.jl for the neural network training framework, Chain-
Rules.jl for custom differentiation rules, and Zygote.jl for other automatic dif-
ferentiation.

15 Runtime benchmarking

Runtime benchmarks were computed on 3.5 GHz 6-Core Intel Xeon E5.

16 General robustness

We further studied the general robustness of PEDS—the generalization error—
in the most difficult case of Maxwell’s equations. We consider models without
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PEDS NN-only Mean prediction
Fractional Error (FE) (in %) on test set 28.33 53.65 95.58
Improvement with respect to PEDS (times) N/A 1.89 3.40
FE (in %) with random splits (set 1/set 2) 28.28/28.38 54.67/52.49 97.38/95.68
Improvement with respect to PEDS (times) N/A 1.93/1.85 3.44/3.37
FE (in %) with stratified split (set high/set low) 20.19/36.35 46.02/62.28 92.35/101.87
Improvement with respect to PEDS (times) N/A 2.28/1.71 4.57/2.80

Table 4: General robustness on random data splits and stratified splits of the
test set for models without ensembling and without active learning on the
Maxwell(10) surrogate.

ensembling and without active learning to single out the effect of PEDS in com-
parison to Neural Networks (NN-only) and a baseline of predicting the mean.
We study the robustness on random data splits and stratified splits of the test
set (Table 2). We report that PEDS’ error is 5x more robust to random splits
in the test set, and PEDS improvement compared to the baseline is robust to
test set splits. On random splits, the NN-only and mean prediction baseline
show errors that vary by about 1% relative to the error on the full test set.
PEDS’ error varies 5 times less and is more robust to the choice of test set. On
stratified test sets, with data points with high absolute transmission in one set
and lower absolute transmission in the other, we see that it is harder to predict
lower absolute transmission accurately across the models, but PEDS is always
performing much better than the two baselines by a factor of about two at least.

17 Exemplar comparison of PEDS against a middle-
fidelity solver

We conducted the numerical comparison between the middle-fidelity solver and
PEDS in the case of the surrogate model for Maxwell’s equations. To showcase
the benefit of PEDS compared to a middle-fidelity solver, we gradually changed
the resolution of the middle fidelity solver from 38 to 30 and computed the
fractional error on the test set. In Fig. R1, we can see that the middle-fidelity
solver with a resolution of 36 has an error 20%, which corresponds approximately
to PEDS performance when training with only ≈1000 data points (19%). The
middle fidelity solver with a resolution of 36 takes 180 ms to evaluate. In
contrast, PEDS with a coarse resolution of 10 and including the neural network
inference takes 5 ms which is still 36 times faster than the middle-fidelity solver.
We conclude that using PEDS has a clear advantage over using a middle-fidelity
solver with respect to evaluation time.
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Figure 4: Comparison of error between various middle-fidelity solver and PEDS
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18 Universal Approximation Theorem for PEDS

The universal approximation theorem only offers a proof of existence of an arbi-
trarily accurate approximation using PEDS. The existence does not give much
practical advice regarding the choices of low-fidelity solver, neural network ar-
chitecture, dataset etc which impact performance most. However, it does give
a strong intuition why PEDS’ accuracy is not limited by that of the low fidelity
solver. When the implicit function theorem applies to the low-fidelity solver
function (when the Hessian is invertible), there exists an inverse function of the
low-fidelity solver locally. Then the universal approximation theorem of feed-
forward neural networks with rectified linear unit activation functions [10] can
be applied to this inverse function. Recent work on the universal approximation
theorem [11, 12] has extended the class of function that can be approximated
to discontinuous functions. In PEDS, the neural network attempts to learn the
inverse function of the low-fidelity solver which is defined when the conditions of
implicit function theorem are valid; these conditions may not be met everywhere
unless there is some regularization. Under some regularization, the hessian be-
comes invertible and we get the pseudo-inverse and not the inverse. In the case
of PEDS, the neural network approximates this pseudo inverse with a built-in
regularization such as in the kernel regime of stochastic gradient descent [13].

References
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