
MIT Open Access Articles

Holistic deep learning

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bertsimas, Dimitris, Villalobos Carballo, Kimberly, Boussioux, Léonard, Li, Michael L., 
Paskov, Alex et al. 2023. "Holistic deep learning."

As Published: https://doi.org/10.1007/s10994-023-06482-y

Publisher: Springer US

Persistent URL: https://hdl.handle.net/1721.1/153166

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/153166
https://creativecommons.org/licenses/by/4.0/


Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-023-06482-y

1 3

Holistic deep learning

Dimitris Bertsimas1  · Kimberly Villalobos Carballo2 · Léonard Boussioux2 · 
Michael Lingzhi Li3 · Alex Paskov2 · Ivan Paskov2

Received: 15 March 2023 / Revised: 7 August 2023 / Accepted: 24 October 2023 
© The Author(s) 2023

Abstract
This paper presents a novel holistic deep learning framework that simultaneously 
addresses the challenges of vulnerability to input perturbations, overparametrization, and 
performance instability from different train-validation splits. The proposed framework 
holistically improves accuracy, robustness, sparsity, and stability over standard deep 
learning models, as demonstrated by extensive experiments on both tabular and image data 
sets. The results are further validated by ablation experiments and SHAP value analysis, 
which reveal the interactions and trade-offs between the different evaluation metrics. To 
support practitioners applying our framework, we provide a prescriptive approach that 
offers recommendations for selecting an appropriate training loss function based on their 
specific objectives. All the code to reproduce the results can be found at https:// github. com/ 
kimvc7/ HDL.
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1 Introduction

Neural networks have become increasingly popular due to their remarkable 
achievements in computer vision and natural language processing. Their generalization 
power has been demonstrated in wide-ranging applications, from classifying photos 
to recommending products. However, neural networks face challenges in real-world 
applications for high-stakes decision-making, including healthcare, policy-making, and 
autonomous driving.

First, many standard neural networks are not robust – they can be easily fooled 
by natural or artificial noise in the input data (Szegedy et  al., 2014), making them 
vulnerable to perturbations that may arise in real-world applications. Moreover, neural 
networks, similar to other machine learning models, often suffer from instability during 
the training process – different train-validation splits could generate models with 
very different performance (May et  al., 2010; Xu & Goodacre, 2018). This reduces 
the policymakers’ trust in these models and hinders post-hoc interpretations. Another 
critical difficulty is that neural networks are not sparse – the high number of parameters 
utilized for neural networks prevents efficient computation and storage (Thompson 
et  al., 2020). Most neural networks have millions of non-zero parameters to be stored 
and accessed for evaluation. This is problematic in many decision-making settings with 
limitations or restrictions on hardware capabilities. Reducing the number of parameters 
could make them more applicable in a broader range of scenarios (Changpinyo et  al., 
2017; Narang et al., 2017).

The questions around improving robustness, stability, and sparsity metrics have all 
been previously studied in the neural network literature. However, they have been almost 
exclusively studied in isolation, with a limited understanding of the tradeoffs between 
these desired qualities and their effect on natural accuracy (accuracy with respect to the 
unperturbed data samples). This paper aims to simultaneously address all these objectives 
through a novel comprehensive methodology named Holistic Deep Learning (HDL). In 
particular, HDL carefully combines state-of-the-art techniques that address these individual 
challenges and demonstrates their collective efficacy through extensive experiments on 
diverse data sets. Our findings provide a promising pathway toward developing efficient 
and reliable machine learning models across many dimensions for real-world applications.

Specifically, our contributions are as follows: 

1. We design HDL, a novel framework that jointly optimizes for neural network robustness 
(adversarial accuracy), stability (worst accuracy across train-validation splits), and 
sparsity (parameters with value zero) metrics by appropriately modifying the objective 
function.

2. Through extensive ablation experiments and SHAP value analysis (Lundberg & Lee, 
2017) across 45 UCI data sets (Dua & Graff, 2017) and 3 image data sets (MNIST 
(Deng, 2012), Fashion MNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky et al., 
2009)), we analyze the individual performance of each metric as well as the interactions 
and trade-offs between them. We corroborate that imposing robustness, stability, and 
sparsity improves the corresponding metrics across all data sets. In addition, we show 
that:

• Imposing stability and sparsity further improves robustness,
• Imposing stability and robustness further improves sparsity,
• Imposing robustness further improves stability,
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• Imposing stability and robustness further improves natural accuracy.

   The effect of sparsity on natural accuracy is more complex and highly varies 
across data sets. However, we show that it is often possible to simultaneously improve 
robustness, stability, and sparsity without sacrificing performance on natural accuracy.

3. We propose a prescriptive approach to provide recommendations on selecting the 
appropriate loss function depending on the practitioner’s objective. In particular, 
simultaneously imposing robustness, stability and sparsity in the loss function leads to 
the best results when jointly optimizing for all the metrics.

The paper is organized as follows: Sect. 2 outlines the current literature of robust, sparse, 
and stable methods; Sect. 3 describes the Holistic Deep Learning framework, and Sect. 4 
shows the results of the computational experiments.

2  Related work

2.1  Robust neural networks

Many state-of-the-art deep neural networks are highly vulnerable to small perturbations in 
the input data (Szegedy et al., 2014), which can be a threat to some real-world applications 
like self-driving cars or face recognition. Adversarial robustness evaluates a neural 
network’s resistance against these altered inputs, referred to as adversarial examples, 
intentionally designed to worsen the network’s performance (Goodfellow et  al., 2014; 
Carlini & Wagner, 2017; Madry et al., 2017).

Multiple methods have been developed in recent years to enhance the adversarial 
robustness of neural networks. One of the most popular heuristics is augmenting the data 
set during training with adversarial examples (Madry et al., 2017; Goodfellow et al., 2014). 
Others include neuron randomization (Prakash et al., 2018; Xie et al., 2017), input space 
projections (Lamb et al., 2018; Kabilan et al., 2021; Ilyas et al., 2017) and regularization 
(Bertsimas et al., 2021; Ross & Doshi-Velez, 2018; Hein & Andriushchenko, 2017; Yan 
et  al., 2018). A less common but more theoretically rigorous approach is to minimize a 
provable upper bound of the loss achieved with adversarial examples (Raghunathan et al., 
2018; Singh et  al., 2018; Zhang et  al., 2018; Weng et  al., 2018; Dvijotham et  al., 2018; 
Lecuyer et al., 2019; Cohen et al., 2019; Anderson et al., 2020; Bertsimas et al., 2021).

While these methods successfully improve the network’s robustness, the extent to 
which they do so often depends on the data set, the network size, and the magnitude of 
the input perturbations. In particular, heuristic methods generally work well for small 
perturbations, while the upper bound methods yield better results when the input noise is 
larger (Bertsimas et al., 2021; Athalye et al., 2018). However, there is a trade-off between 
effectiveness and efficiency. The methods providing the strongest adversarial robustness 
are often computationally demanding, making it challenging to implement them for large 
data sets or complex network architectures.
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2.2  Sparse neural networks

In machine learning, sparse models make predictions based on a limited number 
of parameters. Sparsity is often desirable, as it may save memory, enhance model 
interpretability, and reduce overfitting (Bertsimas et al., 2020).

There are two typical approaches to sparsity in deep learning. The first one, train-
then-sparsify, consists of removing unnecessary neurons or connections after training 
the network, sometimes followed by retraining  (Janowsky, 1989; LeCun et  al., 1989). 
This approach has been widely investigated, and several schemes exist to choose which 
connections to prune  (Hoefler et  al., 2021). Han et  al. (2015), for example, propose to 
prune the connections with the smallest weights. Other methods include formulating a 
convex optimization problem  (Aghasi et  al., 2020), removing filters for which the total 
absolute sum is low (Li et al., 2016), and eliminating channels that have limited impact on 
the network’s discriminatory ability (Zhuang et al., 2018). The second approach, sparsify-
during-training, is achieved by learning a sparse architecture while training the network. 
Multiple methodologies exist (Bellec et al., 2017; Mocanu et al., 2017; Mostafa & Wang, 
2019), including the method to approximate the �0 norm with continuous functions and 
add a regularization term to the loss function (Louizos et al., 2017; Savarese et al., 2020). 
We refer the reader to Gale et al. (2019) and Hoefler et al. (2021) for more comprehensive 
surveys on sparsity.

2.3  Stable neural networks

The stochastic nature of data samples can lead to instability and high dependence of 
machine learning models on the specific train-validation split. This can negatively impact 
the interpretability of the resulting model and its ability to make reliable predictions 
(Bertsimas & Paskov, 2020), a key factor to establishing trust in any algorithm.

The sensitivity of machine learning models to the choice of training split has mostly 
been studied through the lens of cross-validation and distributionally robust optimization. 
Cross-validation can be used to measure the variability from the selection of training 
split but at a significant increase in computational cost (Krogh & Vedelsby, 1994; Hastie 
et  al., 2001) that is often intractable for deep learning settings. Distributionally robust 
optimization has been used to quantify the worst-case generalization error in the presence 
of shifts in distribution or regime (Staib & Jegelka, 2019; Goldwasser et al., 2020; Sagawa 
et al., 2019), but it often requires pre-defined groups over the training data and expensive 
group annotations for each data sample to avoid overly pessimistic uncertain distributions 
(Sagawa et al., 2019; Liu et al., 2021). A different approach has been studied by Bertsimas 
and Paskov (2020) and Bertsimas et  al. (2022), who instead optimize over the worst 
training set of fixed size without making any probabilistic assumptions. Although their 
method was presented in the context of linear and tree-based models, their framework also 
applies to neural networks.
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3  The holistic deep learning approach

3.1  The HDL framework

We introduce the HDL framework for a classification problem over points x ∈ ℝ
M whose 

target y ∈ [K] is one of K different classes (we use the notation [n] to denote the set 
{1,… , n} ). We illustrate our approach over a fully-connected neural network for simplicity 
of notation, but the framework remains the same for convolutional neural networks.

For x ∈ ℝ
M , define [x]+

m
= max{0, xm} (the ReLU function). Given weight matrices 

W
�
∈ ℝ

r
�−1×r� and bias vectors b� ∈ ℝ

r
� for � ∈ [L] , such that r0 = M, rL = K , the cor-

responding feed-forward neural network with L layers and ReLU activation functions is 
defined by the equations:

where W denotes the parameters (W� ,b�) for all � ∈ [L] . Consider a data set {(xn, yn)}Nn=1 , 
where yn ∈ [K] is the target class of xn . For each point xn , the class predicted by the net-
work is argmax k z

L
k
(W, xn).

The nominal DL approach is to minimize the cross-entropy loss of the network zL 
described in Eq. (2), which can be written as:

where Δeyn
k
= ek − eyn

 and ek refers to the one-hot vectors with a 1 in the kth coordinate and 
0 everywhere else. In our HDL framework, we propose instead to minimize the following 
optimization problem:

where ⊙ corresponds to the element-wise product, � is the standard sigmoid function, 
z
L(⋅, x) was defined in (2), � (resp. �) is the regularization coefficient corresponding to the 

sparsity (resp. robustness) loss component, and a is the size of the data subsets used for the 
stability requirement (see Sect. 2.3). We observe that robustness adds a term to the output, 
while stability and sparsity add new parameters ( � and s respectively) to be optimized. This 

(1)z
1(W, x) = W

1
x + b

1,

(2)z
�(W, x) = W

�
[z�−1(W, x)]+ + b

� , ∀ 2 ≤ � ≤ L,

(3)min
W

1

N

N∑
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loss function allows us to simultaneously train robust, sparse, and stable feed-forward neu-
ral networks at scale. In the next section, we provide more details about each metric.

3.2  Robustness

This section describes our method to introduce the robust component into neural network 
training. Since our ultimate goal is to incorporate the sparsity, robustness, and stability of 
neural networks together in a tractable way, we avoid algorithms that improve robustness at 
the expense of a significant increase in the training time or the algorithm’s complexity (for 
instance, the algorithms that perform training with adversarial examples usually require 
significantly longer times to optimally find such examples at each gradient descent iteration 
(Madry et al., 2017; Bertsimas et al., 2021)). We follow the approach from Bertsimas et al. 
(2021) of using a linear approximation of the neural network to estimate the robust objective. 
This approach is simple to implement, produces good adversarial accuracy, and does not 
require the extensive training time of other algorithms.

For a given (x, y) pair, the robust problem using the cross-entropy loss and the �∞-norm 
uncertainty sets can be upper bounded as:

Since zL
k
(W, x) is piece-wise linear, we expect the outputs zL

k
(W, x) and zL

k
(W, x + �) to be 

in the same linear piece when x + � is close to x . In other words, the linear approximation

is exact for small enough � . Therefore, we approximate the upper bound in (5) as

Even though the expression in Eq. (7) is not always an upper bound of Eq. (5) for an 
arbitrary value of � , Bertsimas et al. (2021) experimentally show that generally the average 
loss obtained using this expression is indeed an upper bound of the average adversarial loss. 
In fact, for small � , their experiments demonstrate that this approach achieves competitive 
results with state-of-the-art methods while requiring significantly less computational time 
across various tabular and image data sets. However, we emphasize that the methodology 
developed in this paper could also be performed with other methods for robust training, 
like adversarial training or upper bound minimization, which might be more appropriate 
for large uncertainty sets.

3.3  Sparsity

In this work, we use the specific retraining procedure proposed by Savarese et  al. (2020), 
which deterministically approximates the �0 regularization utilizing a sequence of sigmoid 

(5)max
�∶‖�‖∞≤𝜌

log
�
k

e(Δe
y

k
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≤ log
�
k

emax
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y

k
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(6)zL
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k
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functions and adding them as a penalty term in the loss function. Notably, the implementation 
is easily compatible with our robustness and stability requirements, since this methodology 
relies on a penalty term added in the loss function. Therefore, we can use gradient descent 
to simultaneously optimize the objective function comprising the robustness, stability, and 
sparsity penalties.

Adding �0 regularization explicitly penalizes the number of non-zero weights in the model 
to induce sparsity. However, the �0-norm induces a priori a non-convex and non-differentiable 
loss function R(W) , as follows:

where |W| is the number of parameters, wj is the jth coordinate of W , � is the regularization 
weight and L a loss function (e.g., cross-entropy loss).

The goal is to relax the discrete nature of the �0 penalty to preserve an efficient 
continuous optimization while allowing for exact zeros in the neural network weights. 
To do this, Savarese et  al. (2020) propose to first parameterize the weights wj = H(sj) 
where H(⋅) is the Heaviside step function, and then approximate the non-differentiable 
step function with the sigmoid function: �(�sj) → H(sj) when � → ∞ . Therefore, � is the 
hardness parameter that controls how close the approximation is to the �0 regularization, 
and the final loss function can be written as:

To achieve a sparse network, we use this loss function (9) over multiple training rounds to 
gradually reach a sparse initialization before training the final sparse neural network. To 
obtain each initialization before a new training round, we start with our initialized auxiliary 
sparsity s0 and hardness � = 1 parameters. Over the T training iterations, we gradually 
increase � until it reaches a maximum value 𝛽  when the training procedure is completed 
with sparsity sT . Then, we take s�

0
= min(𝛽sT , s0) to generate the new initialization for 

the next round of training. This minimization function essentially keeps the information 
of the suppressed weights, i.e., �(�sj) ≈ 0 , while reverting those not suppressed to their 
starting position. This process is completed over multiple rounds to find better and sparser 
initializations for the neural network.

We implement the methodology as suggested by Savarese et al. (2020). In the results 
section, we measure sparsity in terms of the percentage of neuron connections (weights) 
set to 0.

3.4  Stability

Using the measure of stability defined in Sect. 2.3, we apply the methodology developed in 
Bertsimas et al. (2022) for building stable neural networks. At a high level, this corresponds 
to constructing a model that is robust to the specific subset of data used to train it. One way 
to think about this is to view the training data set as a sample from the true data distribution 
and then require the model to be robust to the specific sample. Considering the partition of 
the data into train-validation sets as a sampling mechanism from this true data distribution 

(8)R(W) =
1

N

�
N�
n=1

L
�
yn, z

L(W, xn)
��

+ �‖W‖0, ‖W‖0 =
�W��
j=1

�
�
wj ≠ 0

�
,

(9)R(W) ≈
1

N

(
N∑
n=1

L
(
yn, z

L(W⊙ 𝜎(𝛽s), xn)
))

+ 𝜆

|W|∑
j=1

𝜎(𝛽sj).
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(each split choice gives a different training set), we desire to build models that are robust to 
every partition.

To achieve this, we first associate each observation (xn, yn) with a binary variable zn , 
n ∈ [N] that indicates whether or not (xn, yn) is part of the training set. We then choose the 
network’s parameters as to minimize the worst-case loss over all possible allocations of 
these zn’s, resulting in a model that is explicitly built to do well not just over one training 
set, but over all possible training sets. We start from the same minimization problem 
introduced in Sect. 3.1, i.e.,

To obtain network stability we require the model to be robust to every training set of fixed 
size a, which results in the following optimization problem:

The value of a indicates the desired proportion between the size of the training and 
validation sets. For example, by setting a = 0.7N we recover the typical 70/30 train-
validation split. Since the inner maximization problem is linear in z, the problem is 
equivalent to optimizing over the convex hull of Z . This implies that the binary constraints 
on zn can be relaxed to 0 ≤ zn ≤ 1 , and we obtain a linear maximization problem in the 
variables zn . Computing its dual problem we obtain that the value of the inner maximization 
problem is equivalent to:

Therefore, the stability problem becomes

Note that the variables un can be solved in closed form as un = [L(yn, z
L(W, xn)) − �]+ . 

The final minimization problem with stability then becomes:

which is now an unconstrained problem that can be solved with standard gradient descent 
optimization algorithms.

min
W

1

N

N∑
n=1

L(yn, z
L(W, xn)).

(10)

min
W

max
z∈Z

1

a

N∑
n=1

znL(yn, z
L(W, xn)),

where Z =

{
z ∶

N∑
n=1

zn = a, zn ∈ {0, 1}, n ∈ [N]

}
.

min
�,un

� +
1

a

N∑
n=1

un subject to � + un ≥ L(yn, z
L(W, xn)), un ≥ 0, n ∈ [N].

min
W,�,un

� +
1

a

N∑
n=1

un subject to � + un ≥ L(yn, z
L(W, xn)), un ≥ 0, n ∈ [N].

min
W,�

� +
1

a

N∑
n=1

[
L(yn, z

L(W, xn)) − �
]+
,
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4  Experiments

This section presents extensive computational experiments comparing the nominal DL 
approach (abbreviated DL) with 7 other models resulting from our holistic methodology. 
We showcase the merit of our HDL framework and investigate the influence of each 
studied component – robustness, sparsity, and stability – on the overall performance across 
4 evaluation metrics:

• Natural accuracy: Average accuracy on the testing set across the 10 different train-
validation splits with respect to the original input data.

• Adversarial robustness: Average adversarial accuracy on the testing set across the 
10 different train-validation splits with respect to adversarial attacks resulting from 
perturbations of the original input data. We consider only attacks bounded in the L∞ 
norm by some radius � using Projected Gradient Descent as in Madry et al. (2017).

• Stability: Worst accuracy on the testing set across the 10 different train-validation splits 
with respect to the original input data.

• Sparsity: Percentage of network parameters with value 0.

The exact optimization problem solved for each model results from combinations of the 
loss functions described in the previous section, and the specific formulations can be found 
in Table 1.

Data
We computed experiments on classification tasks with 45 UCI data sets from the UCI 

Machine Learning Repository (Dua & Graff, 2017). These data sets give various problem 
sizes and difficulties to form a representative sample of real-world tabular problems, with 
the largest data set having 245,056 observations and the highest number of features being 

Table 1  Loss functions used for DL and all methods in the HDL framework

Method Optimization Problem

DL minW
1

N

∑N

n=1
log

�∑
k e

(Δe
yn
k
)⊤zL(W,xn)

�

Robust minW
1

N

∑N

n=1
log

�∑
k e

(Δe
yn
k
)⊤zL(W,x)+𝜌‖∇

x
(Δe

yn
k
)⊤zL(W,x)‖1

�

Stable
minW,𝜃 𝜃 + 1

a

∑N

n=1

�
log

�∑
k e

(Δe
yn
k
)⊤zL(W,xn)

�
− 𝜃

�+

Sparse minW,s 𝜆
∑�W�

j=1
𝜎(𝛽sj) +

1

N

∑N

n=1
log

�∑
k e

(Δe
yn
k
)⊤zL(W⊙𝜎(𝛽s),xn)

�

Robust + Sparse minW,s �
∑�W�

j=1
�(�sj)

+
1

N

∑N

n=1
log

�∑
k e

(Δe
yn
k
)⊤zL(W⊙𝜎(𝛽s),x)+𝜌‖∇

x
(Δe

yn
k
)⊤zL(W,x)‖1

�

Stable + Sparse
minW,𝜃,s 𝜆

∑�W�
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𝜎(𝛽sj) + 𝜃 + 1

a

∑N

n=1

�
log

�∑
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(Δe
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k
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�
− 𝜃
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�
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856. We also benchmarked our methodologies on three image data sets: MNIST, Fashion-
MNIST, and CIFAR10.

Implementation
Our code is written in Python 3.8 (Van  Rossum & Drake, 2009). Neural networks 

are coded using Tensorflow v1 (Abadi et al., 2015). We trained each model on a system 
equipped with an Intel Xeon Gold 6248 processor, which included 4 CPU cores and one 
Nvidia Volta V100 GPU.

Training methodology
For each data set, we used 20% of the data to obtain a fixed test set, and we randomly 

generated 10 different 80%-20% train-validation splits with the remaining data points. The 
same 10 train-validation partitions were used across all methods for a fair comparison. 
Given a choice of model and evaluation metric, we selected the hyperparameters that led 
to the best average performance in the validation set for the metric in question. We then 
reported the average performance of the chosen parameter configuration on the test set 
with respect to the given metric. For all evaluation metrics, the average performance is 
computed over the 10 train-validation splits initially generated.

Neural network architectures
For our experiments on UCI data sets, we used a feedforward neural network 

architecture with 2 hidden layers, each with 128 neurons and ReLU activations. For our 
experiments on the image data sets, we used a convolutional neural network with the 
AlexNet architecture (Krizhevsky et al., 2012). We used the Glorot uniform initialization 
(Glorot & Bengio, 2010) for the network weights W and 0 as initialization for the sparsity 
variable s0 . The choice of architecture and initialization was made to reflect typical settings 
utilized in the machine learning community (e.g. Madry et  al. (2017); Savarese et  al. 
(2020); Bertsimas et al. (2021)) while maintaining moderate size networks that facilitate 
exhaustive experimentation across dozens of data sets. Importantly, the same architecture 
is used across all methods been evaluated.

Hyperparameter search
For each model, we cross-validated the values of the following hyperparameters:

• Adam learning rate: { 1e−2, 1e−3} for UCI data sets, {1e−3, 1e−4} for image data sets.
• Number of epochs: 150 for UCI data sets, 50 for vision data sets.
• Batch Size: 32 for UCI data sets, 64 for image data sets.
• Robustness radius � : {1e−1, 1e−2, 1e−3, 1e−4, 1e−5}.
• Sparsity regularization parameter � : {1e−6, 1e−8, 1e−10}.
• Sparsity temperature parameter 𝛽 ∶ {200, 1000}.
• Stability parameter a: {0.7, 0.8, 0.9, 1}.

4.1  UCI data sets

We split the 45 UCI data sets into 6 roughly even-sized groups based on their difficulty 
level. Specifically, we consider the ranges 0%-70% , 70%-80% , 80%-90% , 90%-95% , 95%-
98% and 98%-100% of natural accuracy achieved by the nominal DL approach. We first 
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investigate the performance of the HDL framework with respect to a single evaluation 
metric. In Fig. 1, we evaluate all methods in terms of natural accuracy, adversarial accuracy 
with � = 0.1 , stability, and sparsity.

Figure  1a and c show that those data sets for which the nominal approach achieves 
accuracy in the 70%-90% range are the ones that benefit the most from the HDL framework 
(especially the Robust, Stable, and Stable+Robust models) when the evaluation metric 
corresponds to natural accuracy or stability. For the data sets with natural accuracy above 
90% , none of the models significantly improve over the natural accuracy or stability 
achieved by the nominal DL model. However, for data sets in the 98%-100% range sparsity 
slightly improves accuracy and robustness slightly helps for stability.

Figure  1b shows the adversarial robustness achieved with perturbation parameter 
� = 0.1 . We see a substantial adversarial robustness improvement in all methods that 
included the robust component. Moreover, combining robustness with stability and/or spar-
sity leads to higher adversarial accuracy than that achieved with robustness alone. In terms 
of parameter sparsity, Fig. 1d shows that all models with imposed sparsity (Sparse, Stable+
Sparse, Robust+Sparse, and HDL) have a much lower percentage of nonzero parameters 

(a) Natural accuracy. (b) Adversarial accuracy with ρ = 0.1.

(c) Stability. (d) Sparsity.

Fig. 1  Evaluation of the different methods depending on the natural accuracy of the nominal DL approach 
on the UCI data sets



 Machine Learning

1 3

compared to the models without it. And importantly, both robustness and stability help 
achieve sparser models when combined with sparsity.

Since we are also interested in models that are simultaneously accurate, sparse, robust, 
and stable, we consider a multi-objective metric using the rank of each method (ranks start 
at 1, with lower ranks corresponding to better performance). For each method, we use 
the natural accuracy, adversarial accuracy, stability, and sparsity achieved in the valida-
tion set respectively to rank all its hyperparameter configurations 4 times. Then for each 
hyperparameter configuration, we compute the average rank across the 4 metrics and select 

Fig. 2  Average multi-objective rank

Table 2  Results for the Fashion-MNIST data set. For each method, the parameters with the highest average 
rank in the validation set were chosen

Bold numbers correspond to the highest value in each row

Method DL Rob. Stab. Sparse Rob. + Stab. + Stab. + HDL
Sparse Sparse Rob.

Avg. accuracy 91.8 92.0 91.9 91.4 92.1 91.4 92.0 92.1
Adv. acc. � = 0.01 78.7 81.1 78.3 80.8 86.9 80.2 86.8 87.1
Stability 91.5 91.7 91.8 91.3 91.9 91.2 91.7 91.8
Sparsity 0 0 0 36.2 26.6 48.4 0 26.8

Table 3  Results for the MNIST data set. For each method, the parameters with the highest average rank in 
the validation set were chosen

Bold numbers correspond to the highest value in each row

Method DL Rob. Stab. Sparse Rob. + Stab. + Stab. + HDL
Sparse Sparse Rob.

Avg. Accuracy 99.2 99.3 99.2 99.1 99.2 99.2 99.3 99.3
Adv. Acc. � = 0.1 49.6 78.4 51.5 42.6 74.7 27.7 79.5 76.0
Stability 99.1 99.2 99.2 99.1 99.1 99.0 99.3 99.2
Sparsity 0 0 0 16.1 27.9 31.7 0 28.0
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the configuration that leads to the method’s highest average rank. Finally, we rank the 8 
selected models (for the 8 different methods) with respect to each evaluation metric on 
the testing set to obtain their out-of-sample average rank. As shown in Fig. 2, all 7 models 
from the HDL framework outperform the nominal DL approach with respect to this holis-
tic metric. Moreover, the HDL model typically achieves the best results across data set 
complexities.

4.2  Image data sets

In this section, we evaluate all methods using the MNIST, Fashion-MNIST, and CIFAR10 
data sets. For each method, we select the parameters based on the multi-objective metric 
utilized for the UCI data sets in the validation set and report the performance across 
metrics. In Tables 2 and 3, we see that for MNIST and Fashion-MNIST, the HDL model 
outperforms the DL model for all objectives. In particular, HDL achieves higher accuracy 
using only around 70% of the parameters. The results for the CIFAR10 data set (Table 4) 
are a bit different since adding sparsity slightly hurts natural accuracy. However, the 
accuracy achieved by the HDL model is comparable to those achieved by the non-sparse 
models and the number of parameters is reduced by 47%.

Table 4  Results for the CIFAR10 data set. For each method, the parameters with the highest average rank 
in the validation set were chosen

Bold numbers correspond to the highest value in each row

Method DL Rob. Stab. Sparse Rob. + Stab. + Stab. + HDL
Sparse Sparse Rob.

Avg. Accuracy 70.1 70.1 70.1 69.8 69.2 69.3 69.8 69.3
Adv. Acc. � = 0.01 26.7 27.1 26.6 27.3 27.4 27.7 29.1 30.6
Stability 69.7 69.7 69.8 69.3 68.9 68.5 69.4 68.8
Sparsity 0 0 0 28.7 47.2 47.8 0 47.8

Table 5  Average slowdown 
factors of computational time 
with respect to the nominal DL 
method

Method Batches/sec No. iterations Total slowdown
Slowdown factor Increase factor factor

Robust 2.7 1 2.7
Stable 1.0 1 1.0
Sparse 1.2 5 5.9
Robust+Sparse 3.2 5 16.1
Stable+Sparse 1.1 5 5.5
Stable+Robust 2.7 1 2.7
HDL 3.2 5 16.2
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4.3  Computational times

Since modifying the loss function often affects the training computational time, we 
quantify the slowdown effect for all the methods in the HDL framework. Specifically, for 
each of the 45 UCI data sets as well as the 3 image data sets introduced in the previous 
section, we calculate how many times slower each method is when compared to the 
nominal DL approach in terms of batches per second as well as number of iterations 
needed. The average slowdown factors are shown in Table 5. We observe that robustness 
and sparsity both decrease the number of batches per second by approximately a factor 
of 3, while stability preserves the same speed as the DL approach. In addition, since we 
used 5 training rounds for the methods incorporating sparsity, they require 5 times as many 
training iterations as the other methods. On average, the HDL method is only 16 times 
slower, and methods that don’t optimize for sparsity only increase the computational time 
by less than 3 times.

(a) Accuracy. (b) Adversarial accuracy with ρ = 0.1.

(c) Stability. (d) Sparsity.

Fig. 3  SHAP values on various metrics across different UCI data set categories. Blue/red indicates that the 
feature has a positive/negative SHAP value on a specific category of UCI data set
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4.4  SHAP values

To gain a deeper understanding of the interplay between individual loss components 
(robustness, stability, sparsity) and the metrics we measure, we employ the SHAP values 
method (Lundberg & Lee, 2017). We compute the SHAP values for each UCI data set 
and average the results over three data set categories: Low Accuracy ( < 80% ), Medium 
Accuracy ( 80%-95% ), and High Accuracy ( > 95% ), with 15 data sets each. The results are 
shown in Fig. 3.

Our findings confirm that robustness, stability, and sparsity techniques improve the 
corresponding metrics across all data set categories. More intriguingly, these techniques 
also positively impact metrics beyond their intended purposes. For example, sparsity 
and stability enhance adversarial accuracy, while robustness and stability yield sparser 
networks. This indicates that combining techniques does not necessarily result in any 
adverse effects and that it is feasible to attain networks with good performance across all 
metrics. Additionally, the benefits of these techniques are more pronounced in data sets 
with low initial accuracy, particularly for the accuracy and stability metrics. Lastly, we 
observe that sparsity generally hurts accuracy and stability, although this highly varies 
across data sets, as observed in Sect. 4.1.

4.5  Prescriptive approach

In this section, we develop a prescriptive approach that allows users to choose a training 
loss function based on the specific objective they wish to maximize, which can be a single 

Fig. 4  Optimal policy tree for 
maximizing natural accuracy

Fig. 5  Optimal policy tree for maximizing robustness ( � = 0.1)
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evaluation metric or a weighted combination of several metrics. Depending on the data set 
characteristics and the performance scores of the nominal DL model, we propose a tree-
based recommendation model to suggest the most suitable HDL loss function for optimal 
results with respect to the desired objective.

We train our models using an Optimal Policy Tree (OPT) algorithm (Amram et  al., 
2022), which uses observational data of the form (xi, yi, zi) . While it is possible to 
include variability and complexity indicators of the data set as part of xi (Lorena et  al., 
2019), given the extensive and diverse range of data sets in consideration, we choose to 
capture complexity using the performance metrics achieved by the nominal DL approach 
on the corresponding classification tasks. In our case, each observation (i.e., data set) i 
encompasses:

• Data set features xi ∈ ℝ
8 : number of features, number of target classes, nominal DL 

accuracy, nominal DL adversarial accuracy with � = 0.001 , nominal DL adversarial 
accuracy with � = 0.01 , nominal DL adversarial accuracy with � = 0.1 , nominal DL 
stability, nominal DL worst case accuracy.

• Prescriptions zi ∈ 1,… , 8 : DL, Robust, Stable, Sparse, Robust+Sparse, Stable+Sparse, 
Stable+Robust, HDL.

• Outcomes yi ∈ ℝ
8 , which represent the performance improvement of each method 

compared to the nominal DL model with respect to the metric set by the user.

Our prescriptive task is to find the optimal policy that, given the information x of a data set, 
prescribes the method z leading to the best metric score y. We randomly split the 45 UCI 

Table 6  Performance of prescription trees on the testing set

Objective Method Test data sets objective value

Cnae-9 Hill- Libras- Magic- Thyroid-

valley move gamma ann

Nat. Acc. DL 93.70 47.21 79.44 87.11 98.86
Prescribed 94.07 53.61 80.00 87.28 99.05
Optimal 94.07 53.61 82.50 87.28 99.05

Robustness ( � = 0.1) DL 0.00 7.54 0.00 15.07 48.42
Prescribed 3.80 36.39 2.50 64.59 91.79
Optimal 3.80 40.16 4.72 64.59 91.79

Stability DL 91.20 43.44 75.00 86.65 98.28
Prescribed 93.06 45.08 81.94 87.01 98.54
Optimal 93.06 49.18 81.94 87.01 98.81

Sparsity DL 0.00 0.00 0.00 0.00 0.00
Prescribed 73.43 34.89 71.00 57.52 53.22
Optimal 73.43 41.94 71.00 57.52 53.22

(Nat. Acc. +Robustness
+Stability
+Sparsity)/4

DL 46.25 24.55 38.61 47.21 61.39
Prescribed 57.75 39.35 52.76 58.06 73.03
Optimal 62.07 40.66 52.82 59.62 73.03
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data sets into a training set (40 data sets) and a test set (5 data sets from different difficulty 
levels). We cross-validated the optimal tree depth and complexity using the training set.

Figures 4 and 5 represent the OPTs obtained for maximizing two different objectives: 
natural accuracy and adversarial accuracy. The tree in Fig.  4 highlights that the Stable 
and Stable+Robust methods are the best suited to obtain high natural accuracy, with the 
former being preferred when the nominal DL approach has very low adversarial accuracy 
( � = 0.1 ). To maximize robustness, the tree in Fig.  5 prescribes HDL, Stable+Robust, 
or Robust+Sparse depending on the adversarial accuracy achieved by the nominal DL 
method.

In addition, we obtained single-leaf trees when maximizing the stability and sparsity 
objectives. The recommended methods are Stable+Robust for optimizing stability and 
Stable+Sparse for maximizing sparsity. Lastly, HDL was always the prescribed method 
when the desired objective was the equally weighted average of all 4 previous metrics.

Finally, Table 6 reports the out-of-sample performance of these prescription trees on the 
5 UCI data sets from the test set (cnae-9, hill-valley, libras-movement, magic-gamma, and 
thyroid-ann). We emphasize that the performance of the prescribed methods is higher than 
that of the nominal DL approach across all objectives and data sets, and it often matches 
the performance of the best method.

4.6  Significance analysis

To further validate the improvements achieved by the HDL framework, we analyze the 
significance of our results with one-sided Welch’s t-tests with different variance groups. 
Specifically, for each evaluation metric and each leaf of the corresponding optimal 
prescriptive tree, we consider all the UCI and image data sets that fall within that leaf. 
For those data sets, we test the null hypothesis that the average performance achieved 
by the prescribed method is equal to that one achieved by the nominal DL approach, 
with alternative hypothesis corresponding to the average performance achieved by the 
prescribed method being higher. As shown in Table  7, all p-values are below the 0.05 
significance level, concluding that the prescribed methods have statistically significant 
higher performance than the nominal DL approach across all performance metrics.

Table 7  Significance results 
for the null hypothesis that the 
average performance achieved by 
the prescribed method is equal to 
that one achieved by the nominal 
DL approach, with alternative 
hypothesis corresponding to the 
average performance achieved 
by the prescribed method being 
higher

Objective Leaf prescription p-value

Nat. Acc. Stable 0.025
Stable+Robust 0.0462

Robustness ( � = 0.1) HDL 1.508  e−6

Stable+Robust 0.001
Robust+Sparse 1.727  e−5

Stability Stable+Robust 0.0161

Sparsity Stable+Sparse 1.188  e−38

(Nat. Acc. +Robustness
+Stability
+Sparsity)/4

HDL 4.472  e−26
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5  Conclusions

This paper presents a unifying methodology to obtain deep learning models that are accurate, 
robust, stable, and sparse by appropriately modifying the objective function to be minimized. 
Across multiple computational experiments, we show how these 4 metrics interact and demon-
strate that we can often train models that simultaneously improve adversarial accuracy, worst-
case accuracy, and parameter sparsity without sacrificing natural accuracy. Finally, we provide 
prescriptive trees that use general features of the data set (e.g. dimension, number of target 
classes, nominal accuracy, etc.) to recommend which method is more appropriate depending 
on the desired objective to be maximized, and we show that the improvements achieved by the 
prescribed methods are statistically significant.

For future research we aim to explore how HDL performs with respect to other 
data set indicators like variability and complexity, as this could offer further guidance 
on which method to select. We would also like to test our framework in real world 
applications; for instance in the area of healthcare, where trustworthy models are crucial 
and memory constraints are often required for practical use. Consequently, improving the 
interpretability of the HDL framework would be essential to make it more suitable for such 
applications. We deem adversarial robustness, stability and sparsity as critical qualities in 
the development of more reliable machine learning algorithms, and we hope this work will 
motivate further research in this important field.

Appendix A Results tables

We present the evaluation results for natural accuracy, adversarial accuracy, stability, and 
sparsity on the test sets across all data sets and methods discussed in the paper. The natural 
accuracy results can be found in Table 8, adversarial accuracy results in Table 9, stability 
results in Table 10, and sparsity results in Table 11.
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Table 8  Natural accuracy results for all UCI and vision data sets, where n denotes the data size, p denotes 
the data dimension, and k denotes the number of classes. Darker blue corresponds to higher nominal DL 
natural accuracy for the UCI data sets
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Table 9  Adversarial accuracy results for all UCI and vision data sets, where n denotes the data size, p 
denotes the data dimension, and k denotes the number of classes. We use � = 0.1 for all data sets except 
CIFAR10 and Fashion-MNIST, for which we set � = 0.01 . Darker blue corresponds to higher nominal (DL) 
natural accuracy
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Table 10  Stability (worst case accuracy) results for all UCI and vision data sets, where n denotes the data 
size, p denotes the data dimension, and k denotes the number of classes. Darker blue corresponds to higher 
nominal (DL) natural accuracy
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