
MIT Open Access Articles

Holistic deep learning

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bertsimas, Dimitris, Villalobos Carballo, Kimberly, Boussioux, Léonard, Li, Michael L.,
Paskov, Alex et al. 2023. "Holistic deep learning."

As Published: https://doi.org/10.1007/s10994-023-06482-y

Publisher: Springer US

Persistent URL: https://hdl.handle.net/1721.1/153166

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/153166
https://creativecommons.org/licenses/by/4.0/

Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-023-06482-y

1 3

Holistic deep learning

Dimitris Bertsimas1 · Kimberly Villalobos Carballo2 · Léonard Boussioux2 ·
Michael Lingzhi Li3 · Alex Paskov2 · Ivan Paskov2

Received: 15 March 2023 / Revised: 7 August 2023 / Accepted: 24 October 2023
© The Author(s) 2023

Abstract
This paper presents a novel holistic deep learning framework that simultaneously
addresses the challenges of vulnerability to input perturbations, overparametrization, and
performance instability from different train-validation splits. The proposed framework
holistically improves accuracy, robustness, sparsity, and stability over standard deep
learning models, as demonstrated by extensive experiments on both tabular and image data
sets. The results are further validated by ablation experiments and SHAP value analysis,
which reveal the interactions and trade-offs between the different evaluation metrics. To
support practitioners applying our framework, we provide a prescriptive approach that
offers recommendations for selecting an appropriate training loss function based on their
specific objectives. All the code to reproduce the results can be found at https:// github. com/
kimvc7/ HDL.

Keywords Deep learning · Optimization · Robustness · Sparsity · Stability · Regularization

Editor: Nathalie Japkowicz.

 * Dimitris Bertsimas
 dbertsim@mit.edu

 Kimberly Villalobos Carballo
 kimvc@mit.edu

 Léonard Boussioux
 leobix@mit.edu

 Michael Lingzhi Li
 mlli@mit.edu

 Alex Paskov
 apaskov@mit.edu

 Ivan Paskov
 ipaskov@mit.edu

1 Sloan School of Management and Operations Research Center, Massachusetts Institute
of Technology, Cambridge 02139, MA, USA

2 Operations Research Center, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
3 Technology and Operations Management, Harvard Business School, Boston 02163, MA, USA

http://orcid.org/0000-0002-1985-1003
https://github.com/kimvc7/HDL
https://github.com/kimvc7/HDL
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06482-y&domain=pdf

 Machine Learning

1 3

1 Introduction

Neural networks have become increasingly popular due to their remarkable
achievements in computer vision and natural language processing. Their generalization
power has been demonstrated in wide-ranging applications, from classifying photos
to recommending products. However, neural networks face challenges in real-world
applications for high-stakes decision-making, including healthcare, policy-making, and
autonomous driving.

First, many standard neural networks are not robust – they can be easily fooled
by natural or artificial noise in the input data (Szegedy et al., 2014), making them
vulnerable to perturbations that may arise in real-world applications. Moreover, neural
networks, similar to other machine learning models, often suffer from instability during
the training process – different train-validation splits could generate models with
very different performance (May et al., 2010; Xu & Goodacre, 2018). This reduces
the policymakers’ trust in these models and hinders post-hoc interpretations. Another
critical difficulty is that neural networks are not sparse – the high number of parameters
utilized for neural networks prevents efficient computation and storage (Thompson
et al., 2020). Most neural networks have millions of non-zero parameters to be stored
and accessed for evaluation. This is problematic in many decision-making settings with
limitations or restrictions on hardware capabilities. Reducing the number of parameters
could make them more applicable in a broader range of scenarios (Changpinyo et al.,
2017; Narang et al., 2017).

The questions around improving robustness, stability, and sparsity metrics have all
been previously studied in the neural network literature. However, they have been almost
exclusively studied in isolation, with a limited understanding of the tradeoffs between
these desired qualities and their effect on natural accuracy (accuracy with respect to the
unperturbed data samples). This paper aims to simultaneously address all these objectives
through a novel comprehensive methodology named Holistic Deep Learning (HDL). In
particular, HDL carefully combines state-of-the-art techniques that address these individual
challenges and demonstrates their collective efficacy through extensive experiments on
diverse data sets. Our findings provide a promising pathway toward developing efficient
and reliable machine learning models across many dimensions for real-world applications.

Specifically, our contributions are as follows:

1. We design HDL, a novel framework that jointly optimizes for neural network robustness
(adversarial accuracy), stability (worst accuracy across train-validation splits), and
sparsity (parameters with value zero) metrics by appropriately modifying the objective
function.

2. Through extensive ablation experiments and SHAP value analysis (Lundberg & Lee,
2017) across 45 UCI data sets (Dua & Graff, 2017) and 3 image data sets (MNIST
(Deng, 2012), Fashion MNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky et al.,
2009)), we analyze the individual performance of each metric as well as the interactions
and trade-offs between them. We corroborate that imposing robustness, stability, and
sparsity improves the corresponding metrics across all data sets. In addition, we show
that:

• Imposing stability and sparsity further improves robustness,
• Imposing stability and robustness further improves sparsity,
• Imposing robustness further improves stability,

Machine Learning

1 3

• Imposing stability and robustness further improves natural accuracy.

 The effect of sparsity on natural accuracy is more complex and highly varies
across data sets. However, we show that it is often possible to simultaneously improve
robustness, stability, and sparsity without sacrificing performance on natural accuracy.

3. We propose a prescriptive approach to provide recommendations on selecting the
appropriate loss function depending on the practitioner’s objective. In particular,
simultaneously imposing robustness, stability and sparsity in the loss function leads to
the best results when jointly optimizing for all the metrics.

The paper is organized as follows: Sect. 2 outlines the current literature of robust, sparse,
and stable methods; Sect. 3 describes the Holistic Deep Learning framework, and Sect. 4
shows the results of the computational experiments.

2 Related work

2.1 Robust neural networks

Many state-of-the-art deep neural networks are highly vulnerable to small perturbations in
the input data (Szegedy et al., 2014), which can be a threat to some real-world applications
like self-driving cars or face recognition. Adversarial robustness evaluates a neural
network’s resistance against these altered inputs, referred to as adversarial examples,
intentionally designed to worsen the network’s performance (Goodfellow et al., 2014;
Carlini & Wagner, 2017; Madry et al., 2017).

Multiple methods have been developed in recent years to enhance the adversarial
robustness of neural networks. One of the most popular heuristics is augmenting the data
set during training with adversarial examples (Madry et al., 2017; Goodfellow et al., 2014).
Others include neuron randomization (Prakash et al., 2018; Xie et al., 2017), input space
projections (Lamb et al., 2018; Kabilan et al., 2021; Ilyas et al., 2017) and regularization
(Bertsimas et al., 2021; Ross & Doshi-Velez, 2018; Hein & Andriushchenko, 2017; Yan
et al., 2018). A less common but more theoretically rigorous approach is to minimize a
provable upper bound of the loss achieved with adversarial examples (Raghunathan et al.,
2018; Singh et al., 2018; Zhang et al., 2018; Weng et al., 2018; Dvijotham et al., 2018;
Lecuyer et al., 2019; Cohen et al., 2019; Anderson et al., 2020; Bertsimas et al., 2021).

While these methods successfully improve the network’s robustness, the extent to
which they do so often depends on the data set, the network size, and the magnitude of
the input perturbations. In particular, heuristic methods generally work well for small
perturbations, while the upper bound methods yield better results when the input noise is
larger (Bertsimas et al., 2021; Athalye et al., 2018). However, there is a trade-off between
effectiveness and efficiency. The methods providing the strongest adversarial robustness
are often computationally demanding, making it challenging to implement them for large
data sets or complex network architectures.

 Machine Learning

1 3

2.2 Sparse neural networks

In machine learning, sparse models make predictions based on a limited number
of parameters. Sparsity is often desirable, as it may save memory, enhance model
interpretability, and reduce overfitting (Bertsimas et al., 2020).

There are two typical approaches to sparsity in deep learning. The first one, train-
then-sparsify, consists of removing unnecessary neurons or connections after training
the network, sometimes followed by retraining (Janowsky, 1989; LeCun et al., 1989).
This approach has been widely investigated, and several schemes exist to choose which
connections to prune (Hoefler et al., 2021). Han et al. (2015), for example, propose to
prune the connections with the smallest weights. Other methods include formulating a
convex optimization problem (Aghasi et al., 2020), removing filters for which the total
absolute sum is low (Li et al., 2016), and eliminating channels that have limited impact on
the network’s discriminatory ability (Zhuang et al., 2018). The second approach, sparsify-
during-training, is achieved by learning a sparse architecture while training the network.
Multiple methodologies exist (Bellec et al., 2017; Mocanu et al., 2017; Mostafa & Wang,
2019), including the method to approximate the �0 norm with continuous functions and
add a regularization term to the loss function (Louizos et al., 2017; Savarese et al., 2020).
We refer the reader to Gale et al. (2019) and Hoefler et al. (2021) for more comprehensive
surveys on sparsity.

2.3 Stable neural networks

The stochastic nature of data samples can lead to instability and high dependence of
machine learning models on the specific train-validation split. This can negatively impact
the interpretability of the resulting model and its ability to make reliable predictions
(Bertsimas & Paskov, 2020), a key factor to establishing trust in any algorithm.

The sensitivity of machine learning models to the choice of training split has mostly
been studied through the lens of cross-validation and distributionally robust optimization.
Cross-validation can be used to measure the variability from the selection of training
split but at a significant increase in computational cost (Krogh & Vedelsby, 1994; Hastie
et al., 2001) that is often intractable for deep learning settings. Distributionally robust
optimization has been used to quantify the worst-case generalization error in the presence
of shifts in distribution or regime (Staib & Jegelka, 2019; Goldwasser et al., 2020; Sagawa
et al., 2019), but it often requires pre-defined groups over the training data and expensive
group annotations for each data sample to avoid overly pessimistic uncertain distributions
(Sagawa et al., 2019; Liu et al., 2021). A different approach has been studied by Bertsimas
and Paskov (2020) and Bertsimas et al. (2022), who instead optimize over the worst
training set of fixed size without making any probabilistic assumptions. Although their
method was presented in the context of linear and tree-based models, their framework also
applies to neural networks.

Machine Learning

1 3

3 The holistic deep learning approach

3.1 The HDL framework

We introduce the HDL framework for a classification problem over points x ∈ ℝ
M whose

target y ∈ [K] is one of K different classes (we use the notation [n] to denote the set
{1,… , n}). We illustrate our approach over a fully-connected neural network for simplicity
of notation, but the framework remains the same for convolutional neural networks.

For x ∈ ℝ
M , define [x]+

m
= max{0, xm} (the ReLU function). Given weight matrices

W
�
∈ ℝ

r
�−1×r� and bias vectors b� ∈ ℝ

r
� for � ∈ [L] , such that r0 = M, rL = K , the cor-

responding feed-forward neural network with L layers and ReLU activation functions is
defined by the equations:

where W denotes the parameters (W� ,b�) for all � ∈ [L] . Consider a data set {(xn, yn)}Nn=1 ,
where yn ∈ [K] is the target class of xn . For each point xn , the class predicted by the net-
work is argmax k z

L
k
(W, xn).

The nominal DL approach is to minimize the cross-entropy loss of the network zL
described in Eq. (2), which can be written as:

where Δeyn
k
= ek − eyn

 and ek refers to the one-hot vectors with a 1 in the kth coordinate and
0 everywhere else. In our HDL framework, we propose instead to minimize the following
optimization problem:

where ⊙ corresponds to the element-wise product, � is the standard sigmoid function,
z
L(⋅, x) was defined in (2), � (resp. �) is the regularization coefficient corresponding to the

sparsity (resp. robustness) loss component, and a is the size of the data subsets used for the
stability requirement (see Sect. 2.3). We observe that robustness adds a term to the output,
while stability and sparsity add new parameters (� and s respectively) to be optimized. This

(1)z
1(W, x) = W

1
x + b

1,

(2)z
�(W, x) = W

�
[z�−1(W, x)]+ + b

� , ∀ 2 ≤ � ≤ L,

(3)min
W

1

N

N∑
n=1

log

(
K∑
k=1

e(Δe
yn
k)

⊤
�
L(W,�)

)
,

(4)

min
s,𝜃,W

𝜆

�W��
j=1

𝜎
�
𝛽sj

�

�������
Sparsity

+ 𝜃
���
Stability

+
1

a

N�
n=1

⎡⎢⎢⎢⎢⎣
log

K�
k=1

e(
Δe

yn
k)

⊤
�
L(W⊙𝜎(𝛽s),�)+

Robustness

���

𝜌‖∇
�

�
Δe

yn
k

�⊤
�
L(W⊙ 𝜎(𝛽s), �)��1 − 𝜃

���
Stability

⎤
⎥⎥⎥⎥⎦

+

,

 Machine Learning

1 3

loss function allows us to simultaneously train robust, sparse, and stable feed-forward neu-
ral networks at scale. In the next section, we provide more details about each metric.

3.2 Robustness

This section describes our method to introduce the robust component into neural network
training. Since our ultimate goal is to incorporate the sparsity, robustness, and stability of
neural networks together in a tractable way, we avoid algorithms that improve robustness at
the expense of a significant increase in the training time or the algorithm’s complexity (for
instance, the algorithms that perform training with adversarial examples usually require
significantly longer times to optimally find such examples at each gradient descent iteration
(Madry et al., 2017; Bertsimas et al., 2021)). We follow the approach from Bertsimas et al.
(2021) of using a linear approximation of the neural network to estimate the robust objective.
This approach is simple to implement, produces good adversarial accuracy, and does not
require the extensive training time of other algorithms.

For a given (x, y) pair, the robust problem using the cross-entropy loss and the �∞-norm
uncertainty sets can be upper bounded as:

Since zL
k
(W, x) is piece-wise linear, we expect the outputs zL

k
(W, x) and zL

k
(W, x + �) to be

in the same linear piece when x + � is close to x . In other words, the linear approximation

is exact for small enough � . Therefore, we approximate the upper bound in (5) as

Even though the expression in Eq. (7) is not always an upper bound of Eq. (5) for an
arbitrary value of � , Bertsimas et al. (2021) experimentally show that generally the average
loss obtained using this expression is indeed an upper bound of the average adversarial loss.
In fact, for small � , their experiments demonstrate that this approach achieves competitive
results with state-of-the-art methods while requiring significantly less computational time
across various tabular and image data sets. However, we emphasize that the methodology
developed in this paper could also be performed with other methods for robust training,
like adversarial training or upper bound minimization, which might be more appropriate
for large uncertainty sets.

3.3 Sparsity

In this work, we use the specific retraining procedure proposed by Savarese et al. (2020),
which deterministically approximates the �0 regularization utilizing a sequence of sigmoid

(5)max
�∶‖�‖∞≤𝜌

log
�
k

e(Δe
y

k
)⊤zL(W,x+�)

≤ log
�
k

emax
�∶‖�‖∞≤𝜌 (Δe

y

k
)⊤zL(W,x+�).

(6)zL
k
(W, x + �) ≈ zL

k
(W, x) + �

⊤∇
x
zL
k
(W, x)

(7)

log
�
k

emax
�∶‖�‖∞≤𝜌 (Δe

y

k
)⊤zL(W,x+�)

≈ log
�
k

emax
�∶‖�‖∞≤𝜌 (Δe

y

k
)⊤zL(W,x)+�⊤∇

x
(Δe

y

k
)⊤zL(W,x)

= log
�
k

e(Δe
y

k
)⊤zL(W,x)+𝜌‖(Δey

k
)⊤∇

x
z
L(W,x)‖1 .

Machine Learning

1 3

functions and adding them as a penalty term in the loss function. Notably, the implementation
is easily compatible with our robustness and stability requirements, since this methodology
relies on a penalty term added in the loss function. Therefore, we can use gradient descent
to simultaneously optimize the objective function comprising the robustness, stability, and
sparsity penalties.

Adding �0 regularization explicitly penalizes the number of non-zero weights in the model
to induce sparsity. However, the �0-norm induces a priori a non-convex and non-differentiable
loss function R(W) , as follows:

where |W| is the number of parameters, wj is the jth coordinate of W , � is the regularization
weight and L a loss function (e.g., cross-entropy loss).

The goal is to relax the discrete nature of the �0 penalty to preserve an efficient
continuous optimization while allowing for exact zeros in the neural network weights.
To do this, Savarese et al. (2020) propose to first parameterize the weights wj = H(sj)
where H(⋅) is the Heaviside step function, and then approximate the non-differentiable
step function with the sigmoid function: �(�sj) → H(sj) when � → ∞ . Therefore, � is the
hardness parameter that controls how close the approximation is to the �0 regularization,
and the final loss function can be written as:

To achieve a sparse network, we use this loss function (9) over multiple training rounds to
gradually reach a sparse initialization before training the final sparse neural network. To
obtain each initialization before a new training round, we start with our initialized auxiliary
sparsity s0 and hardness � = 1 parameters. Over the T training iterations, we gradually
increase � until it reaches a maximum value 𝛽 when the training procedure is completed
with sparsity sT . Then, we take s�

0
= min(𝛽sT , s0) to generate the new initialization for

the next round of training. This minimization function essentially keeps the information
of the suppressed weights, i.e., �(�sj) ≈ 0 , while reverting those not suppressed to their
starting position. This process is completed over multiple rounds to find better and sparser
initializations for the neural network.

We implement the methodology as suggested by Savarese et al. (2020). In the results
section, we measure sparsity in terms of the percentage of neuron connections (weights)
set to 0.

3.4 Stability

Using the measure of stability defined in Sect. 2.3, we apply the methodology developed in
Bertsimas et al. (2022) for building stable neural networks. At a high level, this corresponds
to constructing a model that is robust to the specific subset of data used to train it. One way
to think about this is to view the training data set as a sample from the true data distribution
and then require the model to be robust to the specific sample. Considering the partition of
the data into train-validation sets as a sampling mechanism from this true data distribution

(8)R(W) =
1

N

�
N�
n=1

L
�
yn, z

L(W, xn)
��

+ �‖W‖0, ‖W‖0 =
�W��
j=1

�
�
wj ≠ 0

�
,

(9)R(W) ≈
1

N

(
N∑
n=1

L
(
yn, z

L(W⊙ 𝜎(𝛽s), xn)
))

+ 𝜆

|W|∑
j=1

𝜎(𝛽sj).

 Machine Learning

1 3

(each split choice gives a different training set), we desire to build models that are robust to
every partition.

To achieve this, we first associate each observation (xn, yn) with a binary variable zn ,
n ∈ [N] that indicates whether or not (xn, yn) is part of the training set. We then choose the
network’s parameters as to minimize the worst-case loss over all possible allocations of
these zn’s, resulting in a model that is explicitly built to do well not just over one training
set, but over all possible training sets. We start from the same minimization problem
introduced in Sect. 3.1, i.e.,

To obtain network stability we require the model to be robust to every training set of fixed
size a, which results in the following optimization problem:

The value of a indicates the desired proportion between the size of the training and
validation sets. For example, by setting a = 0.7N we recover the typical 70/30 train-
validation split. Since the inner maximization problem is linear in z, the problem is
equivalent to optimizing over the convex hull of Z . This implies that the binary constraints
on zn can be relaxed to 0 ≤ zn ≤ 1 , and we obtain a linear maximization problem in the
variables zn . Computing its dual problem we obtain that the value of the inner maximization
problem is equivalent to:

Therefore, the stability problem becomes

Note that the variables un can be solved in closed form as un = [L(yn, z
L(W, xn)) − �]+ .

The final minimization problem with stability then becomes:

which is now an unconstrained problem that can be solved with standard gradient descent
optimization algorithms.

min
W

1

N

N∑
n=1

L(yn, z
L(W, xn)).

(10)

min
W

max
z∈Z

1

a

N∑
n=1

znL(yn, z
L(W, xn)),

where Z =

{
z ∶

N∑
n=1

zn = a, zn ∈ {0, 1}, n ∈ [N]

}
.

min
�,un

� +
1

a

N∑
n=1

un subject to � + un ≥ L(yn, z
L(W, xn)), un ≥ 0, n ∈ [N].

min
W,�,un

� +
1

a

N∑
n=1

un subject to � + un ≥ L(yn, z
L(W, xn)), un ≥ 0, n ∈ [N].

min
W,�

� +
1

a

N∑
n=1

[
L(yn, z

L(W, xn)) − �
]+
,

Machine Learning

1 3

4 Experiments

This section presents extensive computational experiments comparing the nominal DL
approach (abbreviated DL) with 7 other models resulting from our holistic methodology.
We showcase the merit of our HDL framework and investigate the influence of each
studied component – robustness, sparsity, and stability – on the overall performance across
4 evaluation metrics:

• Natural accuracy: Average accuracy on the testing set across the 10 different train-
validation splits with respect to the original input data.

• Adversarial robustness: Average adversarial accuracy on the testing set across the
10 different train-validation splits with respect to adversarial attacks resulting from
perturbations of the original input data. We consider only attacks bounded in the L∞
norm by some radius � using Projected Gradient Descent as in Madry et al. (2017).

• Stability: Worst accuracy on the testing set across the 10 different train-validation splits
with respect to the original input data.

• Sparsity: Percentage of network parameters with value 0.

The exact optimization problem solved for each model results from combinations of the
loss functions described in the previous section, and the specific formulations can be found
in Table 1.

Data
We computed experiments on classification tasks with 45 UCI data sets from the UCI

Machine Learning Repository (Dua & Graff, 2017). These data sets give various problem
sizes and difficulties to form a representative sample of real-world tabular problems, with
the largest data set having 245,056 observations and the highest number of features being

Table 1 Loss functions used for DL and all methods in the HDL framework

Method Optimization Problem

DL minW
1

N

∑N

n=1
log

�∑
k e

(Δe
yn
k
)⊤zL(W,xn)

�

Robust minW
1

N

∑N

n=1
log

�∑
k e

(Δe
yn
k
)⊤zL(W,x)+𝜌‖∇

x
(Δe

yn
k
)⊤zL(W,x)‖1

�

Stable
minW,𝜃 𝜃 + 1

a

∑N

n=1

�
log

�∑
k e

(Δe
yn
k
)⊤zL(W,xn)

�
− 𝜃

�+

Sparse minW,s 𝜆
∑�W�

j=1
𝜎(𝛽sj) +

1

N

∑N

n=1
log

�∑
k e

(Δe
yn
k
)⊤zL(W⊙𝜎(𝛽s),xn)

�

Robust + Sparse minW,s �
∑�W�

j=1
�(�sj)

+
1

N

∑N

n=1
log

�∑
k e

(Δe
yn
k
)⊤zL(W⊙𝜎(𝛽s),x)+𝜌‖∇

x
(Δe

yn
k
)⊤zL(W,x)‖1

�

Stable + Sparse
minW,𝜃,s 𝜆

∑�W�
j=1

𝜎(𝛽sj) + 𝜃 + 1

a

∑N

n=1

�
log

�∑
k e

(Δe
yn
k
)⊤zL(W⊙𝜎(𝛽s),xn)

�
− 𝜃

�+

Stable + Robust
minW,𝜃 𝜃 + 1

a

∑N

n=1

�
log

�∑
k e

(Δe
yn
k
)⊤zL(W,x)+𝜌‖∇

x
(Δe

yn
k
)⊤zL(W,x)‖1

�
− 𝜃

�+

HDL minW,�,s �
∑�W�

j=1
�(�sj) + �

+
1

a

∑N

n=1

�
log

�∑
ke

(Δe
yn
k
)⊤zL(W⊙𝜎(𝛽s),x)+𝜌‖∇

x
(Δe

yn
k
)⊤zL(W,x)‖1

�
− 𝜃

�+

 Machine Learning

1 3

856. We also benchmarked our methodologies on three image data sets: MNIST, Fashion-
MNIST, and CIFAR10.

Implementation
Our code is written in Python 3.8 (Van Rossum & Drake, 2009). Neural networks

are coded using Tensorflow v1 (Abadi et al., 2015). We trained each model on a system
equipped with an Intel Xeon Gold 6248 processor, which included 4 CPU cores and one
Nvidia Volta V100 GPU.

Training methodology
For each data set, we used 20% of the data to obtain a fixed test set, and we randomly

generated 10 different 80%-20% train-validation splits with the remaining data points. The
same 10 train-validation partitions were used across all methods for a fair comparison.
Given a choice of model and evaluation metric, we selected the hyperparameters that led
to the best average performance in the validation set for the metric in question. We then
reported the average performance of the chosen parameter configuration on the test set
with respect to the given metric. For all evaluation metrics, the average performance is
computed over the 10 train-validation splits initially generated.

Neural network architectures
For our experiments on UCI data sets, we used a feedforward neural network

architecture with 2 hidden layers, each with 128 neurons and ReLU activations. For our
experiments on the image data sets, we used a convolutional neural network with the
AlexNet architecture (Krizhevsky et al., 2012). We used the Glorot uniform initialization
(Glorot & Bengio, 2010) for the network weights W and 0 as initialization for the sparsity
variable s0 . The choice of architecture and initialization was made to reflect typical settings
utilized in the machine learning community (e.g. Madry et al. (2017); Savarese et al.
(2020); Bertsimas et al. (2021)) while maintaining moderate size networks that facilitate
exhaustive experimentation across dozens of data sets. Importantly, the same architecture
is used across all methods been evaluated.

Hyperparameter search
For each model, we cross-validated the values of the following hyperparameters:

• Adam learning rate: { 1e−2, 1e−3} for UCI data sets, {1e−3, 1e−4} for image data sets.
• Number of epochs: 150 for UCI data sets, 50 for vision data sets.
• Batch Size: 32 for UCI data sets, 64 for image data sets.
• Robustness radius � : {1e−1, 1e−2, 1e−3, 1e−4, 1e−5}.
• Sparsity regularization parameter � : {1e−6, 1e−8, 1e−10}.
• Sparsity temperature parameter 𝛽 ∶ {200, 1000}.
• Stability parameter a: {0.7, 0.8, 0.9, 1}.

4.1 UCI data sets

We split the 45 UCI data sets into 6 roughly even-sized groups based on their difficulty
level. Specifically, we consider the ranges 0%-70% , 70%-80% , 80%-90% , 90%-95% , 95%-
98% and 98%-100% of natural accuracy achieved by the nominal DL approach. We first

Machine Learning

1 3

investigate the performance of the HDL framework with respect to a single evaluation
metric. In Fig. 1, we evaluate all methods in terms of natural accuracy, adversarial accuracy
with � = 0.1 , stability, and sparsity.

Figure 1a and c show that those data sets for which the nominal approach achieves
accuracy in the 70%-90% range are the ones that benefit the most from the HDL framework
(especially the Robust, Stable, and Stable+Robust models) when the evaluation metric
corresponds to natural accuracy or stability. For the data sets with natural accuracy above
90% , none of the models significantly improve over the natural accuracy or stability
achieved by the nominal DL model. However, for data sets in the 98%-100% range sparsity
slightly improves accuracy and robustness slightly helps for stability.

Figure 1b shows the adversarial robustness achieved with perturbation parameter
� = 0.1 . We see a substantial adversarial robustness improvement in all methods that
included the robust component. Moreover, combining robustness with stability and/or spar-
sity leads to higher adversarial accuracy than that achieved with robustness alone. In terms
of parameter sparsity, Fig. 1d shows that all models with imposed sparsity (Sparse, Stable+
Sparse, Robust+Sparse, and HDL) have a much lower percentage of nonzero parameters

(a) Natural accuracy. (b) Adversarial accuracy with ρ = 0.1.

(c) Stability. (d) Sparsity.

Fig. 1 Evaluation of the different methods depending on the natural accuracy of the nominal DL approach
on the UCI data sets

 Machine Learning

1 3

compared to the models without it. And importantly, both robustness and stability help
achieve sparser models when combined with sparsity.

Since we are also interested in models that are simultaneously accurate, sparse, robust,
and stable, we consider a multi-objective metric using the rank of each method (ranks start
at 1, with lower ranks corresponding to better performance). For each method, we use
the natural accuracy, adversarial accuracy, stability, and sparsity achieved in the valida-
tion set respectively to rank all its hyperparameter configurations 4 times. Then for each
hyperparameter configuration, we compute the average rank across the 4 metrics and select

Fig. 2 Average multi-objective rank

Table 2 Results for the Fashion-MNIST data set. For each method, the parameters with the highest average
rank in the validation set were chosen

Bold numbers correspond to the highest value in each row

Method DL Rob. Stab. Sparse Rob. + Stab. + Stab. + HDL
Sparse Sparse Rob.

Avg. accuracy 91.8 92.0 91.9 91.4 92.1 91.4 92.0 92.1
Adv. acc. � = 0.01 78.7 81.1 78.3 80.8 86.9 80.2 86.8 87.1
Stability 91.5 91.7 91.8 91.3 91.9 91.2 91.7 91.8
Sparsity 0 0 0 36.2 26.6 48.4 0 26.8

Table 3 Results for the MNIST data set. For each method, the parameters with the highest average rank in
the validation set were chosen

Bold numbers correspond to the highest value in each row

Method DL Rob. Stab. Sparse Rob. + Stab. + Stab. + HDL
Sparse Sparse Rob.

Avg. Accuracy 99.2 99.3 99.2 99.1 99.2 99.2 99.3 99.3
Adv. Acc. � = 0.1 49.6 78.4 51.5 42.6 74.7 27.7 79.5 76.0
Stability 99.1 99.2 99.2 99.1 99.1 99.0 99.3 99.2
Sparsity 0 0 0 16.1 27.9 31.7 0 28.0

Machine Learning

1 3

the configuration that leads to the method’s highest average rank. Finally, we rank the 8
selected models (for the 8 different methods) with respect to each evaluation metric on
the testing set to obtain their out-of-sample average rank. As shown in Fig. 2, all 7 models
from the HDL framework outperform the nominal DL approach with respect to this holis-
tic metric. Moreover, the HDL model typically achieves the best results across data set
complexities.

4.2 Image data sets

In this section, we evaluate all methods using the MNIST, Fashion-MNIST, and CIFAR10
data sets. For each method, we select the parameters based on the multi-objective metric
utilized for the UCI data sets in the validation set and report the performance across
metrics. In Tables 2 and 3, we see that for MNIST and Fashion-MNIST, the HDL model
outperforms the DL model for all objectives. In particular, HDL achieves higher accuracy
using only around 70% of the parameters. The results for the CIFAR10 data set (Table 4)
are a bit different since adding sparsity slightly hurts natural accuracy. However, the
accuracy achieved by the HDL model is comparable to those achieved by the non-sparse
models and the number of parameters is reduced by 47%.

Table 4 Results for the CIFAR10 data set. For each method, the parameters with the highest average rank
in the validation set were chosen

Bold numbers correspond to the highest value in each row

Method DL Rob. Stab. Sparse Rob. + Stab. + Stab. + HDL
Sparse Sparse Rob.

Avg. Accuracy 70.1 70.1 70.1 69.8 69.2 69.3 69.8 69.3
Adv. Acc. � = 0.01 26.7 27.1 26.6 27.3 27.4 27.7 29.1 30.6
Stability 69.7 69.7 69.8 69.3 68.9 68.5 69.4 68.8
Sparsity 0 0 0 28.7 47.2 47.8 0 47.8

Table 5 Average slowdown
factors of computational time
with respect to the nominal DL
method

Method Batches/sec No. iterations Total slowdown
Slowdown factor Increase factor factor

Robust 2.7 1 2.7
Stable 1.0 1 1.0
Sparse 1.2 5 5.9
Robust+Sparse 3.2 5 16.1
Stable+Sparse 1.1 5 5.5
Stable+Robust 2.7 1 2.7
HDL 3.2 5 16.2

 Machine Learning

1 3

4.3 Computational times

Since modifying the loss function often affects the training computational time, we
quantify the slowdown effect for all the methods in the HDL framework. Specifically, for
each of the 45 UCI data sets as well as the 3 image data sets introduced in the previous
section, we calculate how many times slower each method is when compared to the
nominal DL approach in terms of batches per second as well as number of iterations
needed. The average slowdown factors are shown in Table 5. We observe that robustness
and sparsity both decrease the number of batches per second by approximately a factor
of 3, while stability preserves the same speed as the DL approach. In addition, since we
used 5 training rounds for the methods incorporating sparsity, they require 5 times as many
training iterations as the other methods. On average, the HDL method is only 16 times
slower, and methods that don’t optimize for sparsity only increase the computational time
by less than 3 times.

(a) Accuracy. (b) Adversarial accuracy with ρ = 0.1.

(c) Stability. (d) Sparsity.

Fig. 3 SHAP values on various metrics across different UCI data set categories. Blue/red indicates that the
feature has a positive/negative SHAP value on a specific category of UCI data set

Machine Learning

1 3

4.4 SHAP values

To gain a deeper understanding of the interplay between individual loss components
(robustness, stability, sparsity) and the metrics we measure, we employ the SHAP values
method (Lundberg & Lee, 2017). We compute the SHAP values for each UCI data set
and average the results over three data set categories: Low Accuracy (< 80%), Medium
Accuracy (80%-95%), and High Accuracy (> 95%), with 15 data sets each. The results are
shown in Fig. 3.

Our findings confirm that robustness, stability, and sparsity techniques improve the
corresponding metrics across all data set categories. More intriguingly, these techniques
also positively impact metrics beyond their intended purposes. For example, sparsity
and stability enhance adversarial accuracy, while robustness and stability yield sparser
networks. This indicates that combining techniques does not necessarily result in any
adverse effects and that it is feasible to attain networks with good performance across all
metrics. Additionally, the benefits of these techniques are more pronounced in data sets
with low initial accuracy, particularly for the accuracy and stability metrics. Lastly, we
observe that sparsity generally hurts accuracy and stability, although this highly varies
across data sets, as observed in Sect. 4.1.

4.5 Prescriptive approach

In this section, we develop a prescriptive approach that allows users to choose a training
loss function based on the specific objective they wish to maximize, which can be a single

Fig. 4 Optimal policy tree for
maximizing natural accuracy

Fig. 5 Optimal policy tree for maximizing robustness (� = 0.1)

 Machine Learning

1 3

evaluation metric or a weighted combination of several metrics. Depending on the data set
characteristics and the performance scores of the nominal DL model, we propose a tree-
based recommendation model to suggest the most suitable HDL loss function for optimal
results with respect to the desired objective.

We train our models using an Optimal Policy Tree (OPT) algorithm (Amram et al.,
2022), which uses observational data of the form (xi, yi, zi) . While it is possible to
include variability and complexity indicators of the data set as part of xi (Lorena et al.,
2019), given the extensive and diverse range of data sets in consideration, we choose to
capture complexity using the performance metrics achieved by the nominal DL approach
on the corresponding classification tasks. In our case, each observation (i.e., data set) i
encompasses:

• Data set features xi ∈ ℝ
8 : number of features, number of target classes, nominal DL

accuracy, nominal DL adversarial accuracy with � = 0.001 , nominal DL adversarial
accuracy with � = 0.01 , nominal DL adversarial accuracy with � = 0.1 , nominal DL
stability, nominal DL worst case accuracy.

• Prescriptions zi ∈ 1,… , 8 : DL, Robust, Stable, Sparse, Robust+Sparse, Stable+Sparse,
Stable+Robust, HDL.

• Outcomes yi ∈ ℝ
8 , which represent the performance improvement of each method

compared to the nominal DL model with respect to the metric set by the user.

Our prescriptive task is to find the optimal policy that, given the information x of a data set,
prescribes the method z leading to the best metric score y. We randomly split the 45 UCI

Table 6 Performance of prescription trees on the testing set

Objective Method Test data sets objective value

Cnae-9 Hill- Libras- Magic- Thyroid-

valley move gamma ann

Nat. Acc. DL 93.70 47.21 79.44 87.11 98.86
Prescribed 94.07 53.61 80.00 87.28 99.05
Optimal 94.07 53.61 82.50 87.28 99.05

Robustness (� = 0.1) DL 0.00 7.54 0.00 15.07 48.42
Prescribed 3.80 36.39 2.50 64.59 91.79
Optimal 3.80 40.16 4.72 64.59 91.79

Stability DL 91.20 43.44 75.00 86.65 98.28
Prescribed 93.06 45.08 81.94 87.01 98.54
Optimal 93.06 49.18 81.94 87.01 98.81

Sparsity DL 0.00 0.00 0.00 0.00 0.00
Prescribed 73.43 34.89 71.00 57.52 53.22
Optimal 73.43 41.94 71.00 57.52 53.22

(Nat. Acc. +Robustness
+Stability
+Sparsity)/4

DL 46.25 24.55 38.61 47.21 61.39
Prescribed 57.75 39.35 52.76 58.06 73.03
Optimal 62.07 40.66 52.82 59.62 73.03

Machine Learning

1 3

data sets into a training set (40 data sets) and a test set (5 data sets from different difficulty
levels). We cross-validated the optimal tree depth and complexity using the training set.

Figures 4 and 5 represent the OPTs obtained for maximizing two different objectives:
natural accuracy and adversarial accuracy. The tree in Fig. 4 highlights that the Stable
and Stable+Robust methods are the best suited to obtain high natural accuracy, with the
former being preferred when the nominal DL approach has very low adversarial accuracy
(� = 0.1). To maximize robustness, the tree in Fig. 5 prescribes HDL, Stable+Robust,
or Robust+Sparse depending on the adversarial accuracy achieved by the nominal DL
method.

In addition, we obtained single-leaf trees when maximizing the stability and sparsity
objectives. The recommended methods are Stable+Robust for optimizing stability and
Stable+Sparse for maximizing sparsity. Lastly, HDL was always the prescribed method
when the desired objective was the equally weighted average of all 4 previous metrics.

Finally, Table 6 reports the out-of-sample performance of these prescription trees on the
5 UCI data sets from the test set (cnae-9, hill-valley, libras-movement, magic-gamma, and
thyroid-ann). We emphasize that the performance of the prescribed methods is higher than
that of the nominal DL approach across all objectives and data sets, and it often matches
the performance of the best method.

4.6 Significance analysis

To further validate the improvements achieved by the HDL framework, we analyze the
significance of our results with one-sided Welch’s t-tests with different variance groups.
Specifically, for each evaluation metric and each leaf of the corresponding optimal
prescriptive tree, we consider all the UCI and image data sets that fall within that leaf.
For those data sets, we test the null hypothesis that the average performance achieved
by the prescribed method is equal to that one achieved by the nominal DL approach,
with alternative hypothesis corresponding to the average performance achieved by the
prescribed method being higher. As shown in Table 7, all p-values are below the 0.05
significance level, concluding that the prescribed methods have statistically significant
higher performance than the nominal DL approach across all performance metrics.

Table 7 Significance results
for the null hypothesis that the
average performance achieved by
the prescribed method is equal to
that one achieved by the nominal
DL approach, with alternative
hypothesis corresponding to the
average performance achieved
by the prescribed method being
higher

Objective Leaf prescription p-value

Nat. Acc. Stable 0.025
Stable+Robust 0.0462

Robustness (� = 0.1) HDL 1.508 e−6

Stable+Robust 0.001
Robust+Sparse 1.727 e−5

Stability Stable+Robust 0.0161

Sparsity Stable+Sparse 1.188 e−38

(Nat. Acc. +Robustness
+Stability
+Sparsity)/4

HDL 4.472 e−26

 Machine Learning

1 3

5 Conclusions

This paper presents a unifying methodology to obtain deep learning models that are accurate,
robust, stable, and sparse by appropriately modifying the objective function to be minimized.
Across multiple computational experiments, we show how these 4 metrics interact and demon-
strate that we can often train models that simultaneously improve adversarial accuracy, worst-
case accuracy, and parameter sparsity without sacrificing natural accuracy. Finally, we provide
prescriptive trees that use general features of the data set (e.g. dimension, number of target
classes, nominal accuracy, etc.) to recommend which method is more appropriate depending
on the desired objective to be maximized, and we show that the improvements achieved by the
prescribed methods are statistically significant.

For future research we aim to explore how HDL performs with respect to other
data set indicators like variability and complexity, as this could offer further guidance
on which method to select. We would also like to test our framework in real world
applications; for instance in the area of healthcare, where trustworthy models are crucial
and memory constraints are often required for practical use. Consequently, improving the
interpretability of the HDL framework would be essential to make it more suitable for such
applications. We deem adversarial robustness, stability and sparsity as critical qualities in
the development of more reliable machine learning algorithms, and we hope this work will
motivate further research in this important field.

Appendix A Results tables

We present the evaluation results for natural accuracy, adversarial accuracy, stability, and
sparsity on the test sets across all data sets and methods discussed in the paper. The natural
accuracy results can be found in Table 8, adversarial accuracy results in Table 9, stability
results in Table 10, and sparsity results in Table 11.

Machine Learning

1 3

Table 8 Natural accuracy results for all UCI and vision data sets, where n denotes the data size, p denotes
the data dimension, and k denotes the number of classes. Darker blue corresponds to higher nominal DL
natural accuracy for the UCI data sets

 Machine Learning

1 3

Table 9 Adversarial accuracy results for all UCI and vision data sets, where n denotes the data size, p
denotes the data dimension, and k denotes the number of classes. We use � = 0.1 for all data sets except
CIFAR10 and Fashion-MNIST, for which we set � = 0.01 . Darker blue corresponds to higher nominal (DL)
natural accuracy

Machine Learning

1 3

Table 10 Stability (worst case accuracy) results for all UCI and vision data sets, where n denotes the data
size, p denotes the data dimension, and k denotes the number of classes. Darker blue corresponds to higher
nominal (DL) natural accuracy

 Machine Learning

1 3

Acknowledgements We would like to thank the editor and the reviewers of the paper for their valuable
comments, which contributed to enhance the paper.

Author contributions DB directed overall research and edited the manuscript. KVC led model development,
wrote code, designed and performed experiments, analyzed results, and wrote the manuscript. LB wrote
code, designed and performed experiments, analyzed results, and wrote the manuscript. MLL designed and
performed experiments, analyzed results, and wrote the manuscript, AP, IP performed experiments and
helped write the manuscript.

Table 11 Sparsity results for all UCI and vision data sets, where n denotes the data size, p denotes the data
dimension, and k denotes the number of classes. Darker blue corresponds to higher nominal (DL) natural
accuracy

Machine Learning

1 3

Funding ’Open Access funding provided by the MIT Libraries’. The authors have no relevant financial or
non-financial interests to disclose.

Data and code availability All the code and data to reproduce the results can be found at https:// github. com/
kimvc7/ HDL.

Declarations

Conflict of interest The authors declare that no funds, grants, or other support were received during the
preparation of this manuscript.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abadi, M., Agarwal, A., et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous sys-
tems. https:// www. tenso rflow. org/, software available from tensorflow.org.

Aghasi, A., Abdi, A., & Romberg, J. (2020). Fast convex pruning of deep neural networks. SIAM Jour-
nal on Mathematics of Data Science, 2(1), 158–188.

Amram, M., Dunn, J., & Zhuo, Y. D. (2022). Optimal policy trees. Machine Learning, 111, 2741–2768.
Anderson, R., Huchette, J., Ma, W., et al. (2020). Strong mixed-integer programming formulations for

trained neural networks. Mathematical Programming (pp. 1–37).
Athalye, A., Carlini, N., & Wagner, D. (2018). Obfuscated gradients give a false sense of security: Cir-

cumventing defenses to adversarial examples. arXiv: 1802. 00420.
Bellec, G., Kappel, D., Maass, W., et al. (2017). Deep rewiring: Training very sparse deep networks.

CoRR. arXiv: 1711. 05136.
Bertsimas, D., & Paskov, I. (2020). Stable regression: On the power of optimization over randomization

in training regression problems. Journal of Machine Learning Research, 21(230), 1–25.
Bertsimas, D., Pauphilet, J., & Parys, B. V. (2020). Sparse regression: Scalable algorithms and empirical

performance. Statistical Science, 35(4), 555–578. https:// doi. org/ 10. 1214/ 19- STS701
Bertsimas, D., Boix, X., Carballo, K. V., et al. (2023). Robust Upper Bounds for Adversarial Training.

arXiv: 2112. 09279.
Bertsimas, D., Dunn, J., & Paskov, I. (2022). Stable classification. Journal of Machine Learning

Research, 23(296), 1–53.
Carlini, N., & Wagner, D. (2017). Towards evaluating the robustness of neural networks. In 2017 IEEE

Symposium on Security and Privacy (SP) (pp. 39–57).
Changpinyo, S., Sandler, M., & Zhmoginov, A. (2017). The power of sparsity in convolutional neural

networks. arXiv: 1702. 06257.
Cohen, J., Rosenfeld, E., & Kolter, Z. (2019). Certified adversarial robustness via randomized smooth-

ing. In International Conference on Machine Learning, PMLR (pp. 1310–1320).
Deng, L. (2012). The mnist database of handwritten digit images for machine learning research. IEEE

Signal Processing Magazine, 29(6), 141–142.
Dua, D., & Graff, C. (2017). UCI machine learning repository. http:// archi ve. ics. uci. edu/ ml.

https://github.com/kimvc7/HDL
https://github.com/kimvc7/HDL
http://creativecommons.org/licenses/by/4.0/
https://www.tensorflow.org/
http://arxiv.org/abs/1802.00420
http://arxiv.org/abs/1711.05136
https://doi.org/10.1214/19-STS701
http://arxiv.org/abs/2112.09279
http://arxiv.org/abs/1702.06257
http://archive.ics.uci.edu/ml

 Machine Learning

1 3

Dvijotham, K., Stanforth, R., Gowal, S., et al. (2018). A dual approach to scalable verification of deep net-
works. In UAI, p 3.

Gale, T., Elsen, E., & Hooker, S. (2019). The state of sparsity in deep neural networks. CoRR. arXiv: 1902. 09574.
Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks.

In: Teh YW, Titterington M (eds) Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, Proceedings of Machine Learning Research, vol 9. PMLR, Chia Laguna
Resort, Sardinia, Italy (pp. 249–256), https:// proce edings. mlr. press/ v9/ gloro t10a. html.

Goldwasser, S., Kalai, A. T., Kalai, Y., et al. (2020). Beyond perturbations: Learning guarantees with arbi-
trary adversarial test examples. Advances in Neural Information Processing Systems, 33, 15859–15870.

Goodfellow, IJ., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv:
1412. 6572.

Han, S., Pool, J., Tran, J., et al. (2015). Learning both weights and connections for efficient neural network.
Advances in Neural Information Processing Systems, 28.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning. Springer Series in
Statistics, Springer New York Inc.

Hein, M., & Andriushchenko, M. (2017). Formal guarantees on the robustness of a classifier against adver-
sarial manipulation. Advances in Neural Information Processing Systems, 30.

Hoefler, T., Alistarh, D., Ben-Nun, T., et al. (2021). Sparsity in deep learning: Pruning and growth for effi-
cient inference and training in neural networks. The Journal of Machine Learning Research, 22(1),
10882–11005.

Ilyas, A., Jalal, A., Asteri, E., et al. (2017). The robust manifold defense: Adversarial training using genera-
tive models. CoRR. arXiv: 1712. 09196.

Janowsky, S. A. (1989). Pruning versus clipping in neural networks. Physical Review A, 39, 6600–6603.
https:// doi. org/ 10. 1103/ PhysR evA. 39. 6600

Kabilan, V. M., Morris, B., Nguyen, H. P., et al. (2021). Vectordefense: Vectorization as a defense to adver-
sarial examples. Soft Computing for Biomedical Applications and Related Topics (pp. 19–35).

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images. Tech. rep.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neu-

ral networks. In Proceedings of the 25th International Conference on Neural Information Processing
Systems - Volume 1. Curran Associates Inc., Red Hook, NY, USA, NIPS’12 (pp. 1097–1105).

Krogh, A., & Vedelsby, J. (1994). Neural network ensembles, cross validation, and active learning. Advances
in Neural Information Processing Systems, 7.

Lamb, A., Binas, J., Goyal, A., et al. (2018). Fortified networks: Improving the robustness of deep networks
by modeling the manifold of hidden representations. arXiv: 1804. 02485.

LeCun, Y., Denker, J., & Solla, S. (1989). Optimal brain damage. Advances in Neural Information Process-
ing Systems, 2.

Lecuyer, M., Atlidakis, V., Geambasu, R., et al. (2019). Certified robustness to adversarial examples with
differential privacy. In 2019 IEEE Symposium on Security and Privacy (SP), IEEE (pp. 656–672).

Li, H., Kadav, A., Durdanovic, I., et al. (2016). Pruning filters for efficient convnets. CoRR. arXiv: 1608.
08710.

Liu, E. Z., Haghgoo, B., Chen, A. S., et al. (2021). Just train twice: Improving group robustness with-
out training group information. In International Conference on Machine Learning, PMLR (pp.
6781–6792).

Lorena, A. C., Garcia, L. P., Lehmann, J., et al. (2019). How complex is your classification problem? A sur-
vey on measuring classification complexity. ACM Computing Surveys (CSUR), 52(5), 1–34.

Louizos, C., Welling, M., & Kingma, D. P. (2017). Learning sparse neural networks through l
0
 regulariza-

tion. arXiv: 1712. 01312.
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in

Neural Information Processing Systems, 30.
Madry, A., Makelov, A., Schmidt, L., et al. (2017). Towards deep learning models resistant to adversarial

attacks. arXiv: 1706. 06083.
May, R. J., Maier, H. R., & Dandy, G. C. (2010). Data splitting for artificial neural networks using SOM-

based stratified sampling. Neural Networks, 23(2), 283–294.
Mocanu, D. C., Mocanu, E., Stone, P., et al. (2017). Evolutionary training of sparse artificial neural net-

works: A network science perspective. CoRR. arXiv: 1707. 04780.
Mostafa, H., & Wang, X. (2019). Parameter efficient training of deep convolutional neural networks by

dynamic sparse reparameterization. In International Conference on Machine Learning, PMLR (pp.
4646–4655).

Narang, S., Elsen, E., Diamos, G., et al. (2017). Exploring sparsity in recurrent neural networks. arXiv:
1704. 05119.

http://arxiv.org/abs/1902.09574
https://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1712.09196
https://doi.org/10.1103/PhysRevA.39.6600
http://arxiv.org/abs/1804.02485
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1712.01312
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1707.04780
http://arxiv.org/abs/1704.05119
http://arxiv.org/abs/1704.05119

Machine Learning

1 3

Prakash, A., Moran, N., Garber, S., et al. (2018). Deflecting adversarial attacks with pixel deflection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 8571–8580).

Raghunathan, A., Steinhardt, J., & Liang, P. S. (2018). Semidefinite relaxations for certifying robustness to
adversarial examples. Advances in Neural Information Processing Systems, 31.

Ross, A., & Doshi-Velez, F. (2018). Improving the adversarial robustness and interpretability of deep neural
networks by regularizing their input gradients. In Proceedings of the AAAI Conference on Artificial
Intelligence.

Sagawa, S., Koh, P. W., Hashimoto, T. B., et al. (2019). Distributionally robust neural networks for group
shifts: On the importance of regularization for worst-case generalization. CoRR. arXiv: 1911. 08731.

Savarese, P., Silva, H., & Maire, M. (2020). Winning the lottery with continuous sparsification. Advances in
Neural Information Processing Systems, 33, 11380–11390.

Singh, G., Gehr, T., Mirman, M., et al. (2018). Fast and effective robustness certification. NeurIPS, 1(4), 6.
Staib, M., & Jegelka, S. (2019). Distributionally robust optimization and generalization in kernel methods.

Advances in Neural Information Processing Systems, 32.
Szegedy, C., Zaremba, W., Sutskever, I., et al. (2014). Intriguing properties of neural networks. In Interna-

tional Conference on Learning Representations, arXiv: 1312. 6199.
Thompson, N. C., Greenewald, K. H., Lee, K., et al. (2020). The computational limits of deep learning.

CoRR. arXiv: 2007. 05558.
Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. Scotts Valley: CreateSpace.
Weng, L., Zhang, H., Chen, H., et al. (2018). Towards fast computation of certified robustness for relu net-

works. In International Conference on Machine Learning, PMLR (pp. 5276–5285).
Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking machine

learning algorithms. arXiv: 1708. 07747.
Xie, C., Wang, J., Zhang, Z., et al. (2017). Mitigating adversarial effects through randomization. arXiv:

1711. 01991.
Xu, Y., & Goodacre, R. (2018). On splitting training and validation set: A comparative study of cross-vali-

dation, bootstrap and systematic sampling for estimating the generalization performance of supervised
learning. Journal of Analysis and Testing, 2(3), 249–262.

Yan, Z., Guo, Y., & Zhang, C. (2018). Deep defense: Training dnns with improved adversarial robustness.
Advances in Neural Information Processing Systems, 31.

Zhang, H., Weng, T. W., Chen, P. Y., et al. (2018). Efficient neural network robustness certification with
general activation functions. Advances in Neural Information Processing Systems, 31.

Zhuang, Z., Tan, M., Zhuang, B., et al. (2018). Discrimination-aware channel pruning for deep neural net-
works. Advances in Neural Information Processing Systems, 31.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1911.08731
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/2007.05558
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1711.01991
http://arxiv.org/abs/1711.01991

	Holistic deep learning
	Abstract
	1 Introduction
	2 Related work
	2.1 Robust neural networks
	2.2 Sparse neural networks
	2.3 Stable neural networks

	3 The holistic deep learning approach
	3.1 The HDL framework
	3.2 Robustness
	3.3 Sparsity
	3.4 Stability

	4 Experiments
	4.1 UCI data sets
	4.2 Image data sets
	4.3 Computational times
	4.4 SHAP values
	4.5 Prescriptive approach
	4.6 Significance analysis

	5 Conclusions
	Appendix A Results tables
	Acknowledgements
	References

