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Abstract
With the introduction of IATA’s New Distribution Capability (NDC), airlines will no longer be limited to discrete fare classes 
for their fare product distribution but could show fare quotes from continuous ranges to booking requests. NDC will also 
allow airlines to present different fare quotes to passengers from different demand segments as identified by the airline. In 
theory, airlines can better extract passenger willingness to pay, and thus, see gains in revenue, by offering segmented con-
tinuous fare quotes to different passengers requesting to book. This paper describes the revenue management (RM) methods 
for Segmented Continuous Pricing and examines their potential effects on airlines’ revenue through simulations in the Pas-
senger Origin–Destination Simulator (PODS). We describe a class-based algorithm for continuous pricing, a straightforward 
extension from the traditional methods used with existing RM systems. Our simulation results show that in a calibrated 
scenario in which only one airline adopts Segmented Continuous Pricing and has an 80% accuracy in identifying business 
versus leisure passenger booking requests, the first-mover airline can see as much as a 17% revenue gain, at the expense of 
competitors. The revenue gains come primarily from the leisure passenger segment by offering lower fares than competitors 
closer to departure. The first-mover airline loses bookings but does not see losses in revenue from the business passenger 
segment. We also explore potential response strategies by the competing airlines. We discover that competitors can reverse 
the first-mover’s revenue gain by removing their fare restrictions while still using traditional RM methods. We conclude 
that although adopting Segmented Continuous Pricing is promising in theory, its gains in practice will depend heavily on 
the competitive situation and the responses made by competing airlines.

Keywords Airline revenue management · New distribution capability · Dynamic pricing · Segmented continuous pricing

Introduction

Most airline revenue management systems still rely on fare 
classes associated with fixed price points for flight itiner-
aries. The New Distribution Capability (NDC) will allow 
airlines to adopt pricing methods that are no longer con-
strained by fixed price points and to offer fare quotes from 
a continuous range. With continuous pricing, it will also be 
possible for airlines to charge different prices to business and 
leisure passengers if the airline is able to distinguish booking 

requests from each demand segment. The combination of 
customer segmentation and continuous pricing is the topic 
of this paper: Segmented Continuous Pricing.

Previous studies by Papen (2020) and Liotta (2019) 
focused on testing the effects of continuous pricing mecha-
nisms without customer segmentation. In those studies, 
all passengers are quoted a single fare from a continuous 
range. With NDC enabling airlines to generate segmented 
fare quotes, it is useful to extend the research to examine the 
combined effect of continuous pricing and customer seg-
mentation and explore the competitive effects in realistic 
settings.

The main contribution of this paper is to explain the 
underlying mechanisms and provide an analysis of the poten-
tial effects of Segmented Continuous Pricing, in which air-
lines offer different continuous fare quotes to business and 
leisure passengers, respectively. First, we present a frame-
work for continuous pricing methods and the mathematics 
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behind the pricing models. The key differences between 
Segmented and Unsegmented continuous pricing are high-
lighted. Then, the Segmented Continuous Pricing methods 
are tested in the Passenger Origin–Destination Simulator 
(PODS). The effects of Segmented Continuous Pricing are 
examined under asymmetric competition (where one air-
line takes the role of a first mover). We also explore some 
possible counter measures by competitors using traditional 
revenue management methods, using an asymmetric com-
petitive scenario that is calibrated in Long (2022).

Literature review

The term “dynamic pricing” has recently become popular in 
the airline industry, but its definition often varies. Wittman 
and Belobaba (2018) offered a general definition of dynamic 
pricing: “Firms practice dynamic pricing when they charge 
different customers different prices for the same product, 
as a function of an observable state of nature.” Wittman 
and Belobaba (2019) constructed a definitional framework 
for dynamic pricing and described three mechanisms for its 
implementation: assortment optimization, dynamic price 
adjustment, and continuous pricing.

In assortment optimization, firms decide which subset of 
a finite set of price points is made available to the customer 
at different times over the booking process. With dynamic 
price adjustment, airlines can choose to quote fares that 
deviate from the fixed price points to certain segments of 
passengers based on additional transactional information 
they receive. Wittman (2018) developed the Probabilistic 
Fare-Based Dynamic Adjustment (PFDynA) method for 
dynamic price adjustment, and Wittman and Belobaba 
(2018) demonstrated in simulations that airlines can gain 
revenues when dynamic price adjustment is deployed. A 
working group organized by the Airline Tariff Publishing 
Company (ATPCO) proposed a set of new specifications for 
“Dynamic Pricing Engines” that allow airlines to mark up or 
mark down their pre-filed fares for certain booking requests 
(Dezelak and Ratliff 2018).

The third mechanism in this dynamic pricing framework 
is continuous pricing, where firms can choose a price from 
a continuous range without having any pre-filed menu of 
discrete price points. Continuous pricing requires signifi-
cant changes to existing revenue management and distribu-
tion tools for its implementation (Wittman and Belobaba 
2019). Westermann (2006) suggested a continuous pricing 
mechanism in which revenue-maximizing fares are calcu-
lated based on passenger WTP, competitor fares and other 
contextual information. Westermann (2013) explained how 
continuous pricing can be realized in an NDC environment.

Details of practical implementations have been presented 
by Bala (2014), who discussed the potential benefits and 

risks of implementing continuous pricing and proposed 
an “automated fare filing” process, in which filed fares are 
updated continuously to approximate the effect of con-
tinuous pricing. More recently, Lufthansa Group (2020) 
described the implementation of a limited form of continu-
ous pricing applied to existing fare structures and used in 
direct distribution channels.

There has also been substantial research devoted to the 
theoretical concepts required for possible future implemen-
tations. Liotta (2019) explained several algorithms for gen-
erating continuous fare quotes and simulated the revenue 
benefit from continuous pricing over traditional airline rev-
enue management. Papen (2020) also showed in simulations 
that airlines can see increases in revenues with Unsegmented 
continuous pricing, where airlines offer a single fare quote 
from a continuous range to all passengers. Szymanski et al. 
(2021) explored different algorithms for determining unseg-
mented continuous fare quotes, both class-based and class-
less approaches.

NDC enables the use of contextual information in deter-
mining the offered price and allows airlines to use the 
information to distribute personalized offers (Westermann 
2013). Belobaba (2016) suggested that airlines can segment 
the market demand by trip purpose, price sensitivity, and 
time sensitivity. Teichert et al. (2008) used behavioral and 
social-demographic factors to identify passenger segments 
and argued for segmenting passengers into more than just 
two categories (i.e., business and leisure travelers), as they 
do not sufficiently capture the passenger heterogeneity. 
Bruning et al. (2009) studied segmentation of passengers in 
NAFTA countries (USA, Canada, and Mexico), and iden-
tified five passenger segments through a cluster analysis. 
Similar studies have also been conducted on passengers in 
Serbia (Kuljanin and Kalić 2015) and Greater China (Chen 
and Chao 2015; Pan and Truong 2020), and different discri-
minant factors were identified.

Although there have been studies done on continuous 
pricing and passenger segmentation respectively, little 
research has been done on the combination of both elements 
in the context of airline revenue management. This paper 
provides a comprehensive analysis of the combined effect 
of passenger segmentation and continuous pricing in airline 
revenue management through simulations in PODS.

Methods and models for continuous pricing

We first introduce a high-level framework for continuous 
pricing methods to illustrate the distinctions between two 
types of continuous pricing algorithms: “Class-Based Con-
tinuous Pricing” (CBC) and “Classless Continuous Pricing.” 
In this paper, we focus on the formulation and simulated 
performance of the CBC algorithm. The segmented fare 
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quotation process for continuous pricing is described, and 
the implementation of Segmented Continuous Pricing is 
explained.

Class‑based vs. classless continuous pricing

There are two types of continuous pricing algorithms: Class-
Based Continuous Pricing (CBC) and Classless Continuous 
Pricing. Both methods generate continuous fare quotes to 
passengers, but CBC still requires airlines to keep histor-
ical data of bookings and fare values by fare class while 
Classless Continuous Pricing does not. Figure 1 provides an 
overview of the main differences between traditional class-
based RM, Class-Based Continuous Pricing, and Classless 
Continuous Pricing.

The difference between CBC and traditional class-based 
RM lies in the fare quote generation. As illustrated in Fig. 1, 
CBC relies on booking and revenue data by fare class just 
like traditional RM, and thus, it can use the same forecasters 
and optimizers. In bid price control for traditional RM, the 
airline determines its fare class availabilities by comparing 
the adjusted fare values of the requested itinerary with the 
sum of the bid prices over the flight legs to be traversed. This 
is equivalent to comparing the unadjusted nominal fare val-
ues and the sum of the traversed bid prices plus a marginal 
revenue fare modifier that reflects the optimizer fare decre-
ment from the fare adjustment process.

Assuming a negative exponential demand model, the fare 
modifier is calculated by the following equation:

where fq is the fare value of the lowest fare class, and 
FRAT5t is the airline’s estimate of the median conditional 
willingness to pay (WTP) of total (unsegmented) demand 
relative to the lowest fare class during timeframe t  in the 
booking horizon. Specifically, each FRAT5 value is the fare 
ratio to which 50% of demand is expected to sell up—a 
FRAT5 equal to 2.5 with lowest fare $100 reflects a median 
WTP estimate of $250.

In Class-Based Continuous Pricing, the airline offers a 
continuous fare quote that equals the sum of traversed flight 
leg bid prices ( BPl ) and the fare modifier. Both the bid prices 
and FRAT5 values are for the current timeframe, as both will 
change over the remainder of the booking horizon. For sim-
plicity, in the remainder of this paper we omit the subscript 
t, which is implied. To prevent extreme fares, the generated 
fare quote can be limited to be between the lowest filed fare 
fQ . and the highest filed fare fY . In the PODS simulations 
below, these constraints on the continuous fare quotes are 
always applied. The offered fare is, thus, calculated by

Figure 2 provides a detailed illustration comparing the 
processes of CBC and traditional RM that are used in this 

MRmodifier(t) =
fQ
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)

ln(2)
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Fig. 1  Differences between Traditional RM, CBC, and Classless Continuous Pricing. (Papen 2020)
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paper. In this example, Q-forecasting and discrete fare 
adjustment is used since there is no differentiation between 
the fare quotes for different passengers. The adjusted fares 
and re-partitioned forecasts are then fed into the same tra-
ditional class-based ProBP optimizer to calculate the bid 
prices. The processes only diverge in the last step after the 
bid price calculation.

Classless Continuous Pricing, on the other hand, does 
not depend on any information from the pre-determined fare 
classes. Classless Continuous Pricing optimizes over book-
ing timeframes instead of fare classes. Q-forecasting is used 
as the forecaster, but the observed bookings are recorded by 
timeframes only rather than by both fare classes and time-
frames. For more details on the Classless Continuous Pricing 
method and its revenue effects, see Liotta (2019) and Papen 
(2020).

Unsegmented vs. segmented continuous pricing

With the continuous pricing method described above, a single 
fare quote is generated at each point in the booking horizon 
and offered to all passengers shopping for a ticket. Although 
the fare quote generation process does consider the combined 
willingness to pay of all passengers arriving at each timeframe 
through the FRAT5 inputs, it does not consider the differences 

in willingness to pay between different types of passengers. 
Furthermore, the continuous fare quotes are not differentiated 
through restrictions or advance purchase requirements. Pas-
sengers cannot self-select into different segments like they 
do with differentiated fares in traditional class-based revenue 
management.

With Segmented Continuous Pricing, an airline can gen-
erate different continuous fare quotes for distinct passenger 
groups with various levels of willingness to pay, if the airline 
can identify passenger requests from each segment with a cer-
tain identification accuracy. We assume two segments of pas-
senger demand: business and leisure, with business passengers 
having higher willingness to pay than leisure passengers.

The difference between Unsegmented Continuous Pricing 
and Segmented Continuous Pricing lies in the fare quotation 
step only. Instead of adding a single unsegmented MR modifier 
to the bid prices, different MR modifiers are used to generate 
the segmented fare quotes for business and leisure passengers, 
respectively. The segmented MR modifiers are calculated by:

BusinessMRModifier =
fQ
(

SegWTPB − 1
)

ln (2)
,

Fig. 2  RM processes for traditional ProBP and class-based continuous ProBP
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where SegWTPB and SegWTPL are the segmented willing-
ness to pay estimates for business and leisure passengers, 
respectively, at any given timeframe in the booking horizon. 
Similar to the FRAT5 values, these segmented WTP values 
represent the airline’s estimates of the median conditional 
WTP of the passengers, relative to the lowest fare class, in 
each demand segment. It is important to note that these seg-
mented willingness to pay estimates are used for calculating 
the segmented MR modifiers only. The previously described 
aggregated FRAT5 values are still used for forecasting, fare 
adjustment, and bid price calculations.

Each passenger shopping for a ticket is identified as a 
business or leisure passenger at the time of booking request 
and is shown only one fare quote according to the identifica-
tion result. The differences between the fare generation pro-
cesses for Unsegmented and Segmented Continuous Pricing 
are highlighted in Fig. 3

Passenger segment identification accuracy

In Segmented Continuous Pricing, the airline is assumed to 
have some ability to correctly identify the passenger segment 
of an incoming booking request. In practice, characteristics 
of the booking request can help airlines distinguish between 
business and leisure travel requests. For example, requests 
made far in advance of departure (e.g., 30 days), for round-
trip travel involving a longer stay at the destination (e.g., 

LeisureMRModifier =
fQ
(

SegWTPL − 1
)

ln (2)
,

6 days or over a weekend), for multiple passengers on the 
same itinerary (e.g., 4) are much more likely to be for leisure 
than business travel.

However, such an identification process can have imper-
fect accuracy and lead to misidentification of booking 
requests. In the PODS simulations below, scenarios with 
both perfect and imperfect identification accuracies are 
tested. In cases where the identification has imperfect accu-
racy, misidentification is assumed to be equally likely to hap-
pen to both business and leisure passengers. For example, 
with an assumed 80% identification accuracy, 20% of the 
business passengers from the total business demand will 
be identified to be leisure passengers, and vice versa. The 
misidentified passengers will be quoted the continuous fare 
generated for the other segment.

Simulation study and results

The potential benefits and competitive effects of imple-
menting Segmented Continuous Pricing were tested with 
the Passenger Origin–Destination Simulator (PODS). In 
this section, we first provide a brief overview on the PODS 
simulation mechanism, followed by descriptions of the 
experiments where only one airline in a competitive network 
implements Segmented Class-Based Continuous (CBC) 
Pricing. We focus on testing the Class-Based method for 
Segmented Continuous Pricing. We believe the CBC results 
are more relevant for airlines looking to invest in Continuous 
Pricing as they are more likely to start with a Class-Based 

Fig. 3  Comparison between Unsegmented and Segmented Continuous Pricing
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method rather than a Classless method that requires exten-
sive changes to their current RM systems. Lastly, we present 
the simulation results with detailed analyses and discussion 
on the competitive effects of Segmented Continuous Pricing. 
For analysis of effects of Unsegmented Continuous Pricing, 
see Papen (2020) and Szymański et al. (2021).

Passenger origin–destination simulator

The Passenger Origin–Destination Simulator (PODS) rep-
licates the real-world interactions between passengers and 
airline RM systems and provides an integrated platform for 
testing different RM methods. We present here the details 
of the simulation environment most relevant to the current 
work. For a more comprehensive overview of PODS, see 
Fiig et al. (2010) or Wittman (2018).

Fundamentally, the PODS software consists of two main 
building blocks: passenger choice model and airline RM sys-
tems. As illustrated in Fig. 4, the software iteratively simu-
lates the interactions between passengers and airlines and 
reports detailed performance metrics to provide insights on 
the effects of the tested RM methods.

The airline RM system in PODS has two major compo-
nents: a forecaster and an optimizer. The forecaster uses 
the recorded historic booking data from previous simu-
lated departures to forecast the demand by itinerary (path) 
and fare class for each future departure date. Given the 
forecasted demand, the optimizer calculates bid prices 
and/or fare quotes to maximize the expected revenue for 
the airline. Like airline RM systems in the real world, the 
RM systems in PODS do not know the true underlying 
passenger demand characteristics: the PODS RM systems 
only use estimates of passenger WTP (i.e., FRAT5 values) 
as inputs. The underlying WTP of business and leisure 
passengers generated in the PODS simulation does not 
change over different timeframes in the booking horizon. 

However, the mix of business and leisure passengers in the 
total demand does change from timeframe to timeframe. 
Thus, the aggregate WTP (as well as FRAT5 values) will 
increase over the booking horizon.

The simulation tests reported in this paper were per-
formed in Network U10. As illustrated in Fig. 5, Network 
U10 is an international network with four competing air-
lines. Airline 3 is intended to represent a low-cost carrier 
(LCC). It is smaller than the other three competitors as it 
only serves domestic O-D markets. Each airline operates 
from a hub city and serves both the local O-D markets as 
well as the coast-to-coast O-D markets through connections 
at the hub. There are 572 O-D markets served in Network 
U10 with a total of 40 spoke cities in addition to the 4 hubs.

In each O-D market, every airline offers the same 10-class 
fare structure in an all-economy cabin. In Network U10, 
there are three different fare products (FP) for several types 
of O-D markets. In domestic O-D markets, the airlines use 
either FP1 or FP2. In markets where Airline 3 is present, 
the less differentiated FP2 fare structure is used to simulate 
the effect of competition from an LCC with a simplified 
fare structure. In domestic markets without the presence of 
Airline 3, the more restricted and more differentiated FP1 
fare structure is applied. The restricted FP3 fare structure is 
used in all international O-D markets.

The details on fare structures and restrictions for the three 
fare products are provided in Table 1. R1, R2, R3, and R4 
represent the various restrictions that are associated with 
each of the fare classes. Among the four restrictions, R1 is 
the strongest restriction that adds the most disutility to the 
fare, followed by R3, R4, and R2 in the order of decreasing 
associated disutilities. The average lowest fares of the three 
fare products are $166, $157, and $476, while the average 
fare values of the highest FCL1 are $669, $520, and $1444, 
respectively, resulting in high-to-low fare ratios of about 
3.5:1.

Fig. 4  Schematic of interactions between passengers and airlines in PODS (Wittman 2018)
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Simulation setup: RM methods

Probabilistic Bid Price (ProBP) is the network RM opti-
mizer used in our simulations, and the class-based con-
tinuous pricing optimizers are derived from traditional 
ProBP. Developed by Bratu (1998), ProBP is an itera-
tive convergence algorithm that determines the bid price 
of each flight leg in an airline’s network. The bid price 
control logic is then applied to determine the fare class 
availabilities for each itinerary request. To update the bid 
prices in the simulation tests, ProBP is executed daily after 

decrementing the forecast input by the number of fore-
casted bookings for that day.

Q-forecasting and fare adjustment are used in conjunction 
with the continuous pricing optimizers since the continu-
ous fare quotes are not differentiated through restrictions 
or advance purchase requirements. In Q-forecasting, the 
observed bookings are converted to an equivalent demand 
at the lowest filed fare in each timeframe before departure. 
(Hopperstad and Belobaba 2004). The equivalent Q-demand 
for the timeframe is re-partitioned back into the higher fare 
classes to generate forecasts for each of the fare classes, 

Fig. 5  Airline flight networks in PODS Network U10

Table 1  Summary of fare 
restrictions and advance 
purchase requirements in PODS 
Network U10

Fare product 1
Domestic restricted

Fare product 2
Domestic less restricted

Fare product 3
International restricted

FCL AP R1 R2 R3 R4 AP R1 R2 R3 R4 AP R1 R2 R3 R4

1 0 0 0
2 0 Y 0 Y 0 Y
3 3 Y 3 Y 3 Y
4 7 Y 7 Y 0 Y
5 7 Y 7 Y 3 Y Y
6 7 Y Y 7 Y 7 Y Y
7 14 Y Y 14 Y 14 Y Y Y
8 14 Y Y 14 Y 14 Y Y
9 14 Y Y Y 14 Y 21 Y Y Y
10 21 Y Y Y 21 Y 21 Y Y Y
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using estimates of sell-up from the lower fare class. The 
re-partitioned timeframe forecasts from all booking time-
frames are then summed to generate a total demand-to-come 
forecast by path/class for the RM optimizer.

To account for potential buy-down to the lowest available 
fare class, fare adjustment in the optimizer is needed in addi-
tion to Q-forecasting (Fiig et al. 2010). The RM optimizers 
are fed with decremented fare values for lower fare classes to 
account for the opportunity costs (i.e., potential lost revenue) 
associated with passenger buy-down.

FRAT5 estimates of WTP for total demand at each time-
frame are used in both Q-forecasting and fare adjustment. It 
is important to note that the FRAT5 values fed as inputs to 
the Q-forecasting and fare adjustment algorithms represent 
the airline’s estimation of passengers’ median conditional 
WTP but not the actual underlying true WTP of the pas-
sengers in the simulation.

We first establish a baseline scenario in which all airlines 
in PODS Network U10 use traditional RM methods and the 
standard restricted fare structure shown in Table 1. The RM 

settings for the baseline experiment are listed in Table 2. 
The airlines use a set of pre-defined FRAT5 values (FRAT5 
C) as their conditional WTP estimates as shown in Fig. 6.

Simulation results

We focus here on the scenario with AL1 implementing Seg-
mented Class-Based Continuous Pricing and compare the 
results to the baseline scenario where all airlines use tradi-
tional class-based RM. We simulated two sets of segmented 
WTP estimates as inputs—constant and sloped-segmented 
WTP estimates. Long (2022) found that while the use of 
constant WTP estimates over the booking horizon can lead 
to revenue gains, even greater gains were possible by using 
sloped WTP estimates for both leisure and business demand 
segments.

The segmented WTP estimate and passenger identifi-
cation accuracy settings for the first-mover airline (AL1) 
are summarized in Table 3. The segmented WTP estimate 
curves used by AL1 for continuous fare quote generation, 
along with the FRAT5 C curve used for forecasting and fare 
adjustment, are shown in Fig. 7.

The airlines’ revenues and load factors are presented 
in Figs. 8 and 9. Compared to the baseline scenario, AL1 
sees + 16.8% more revenue from asymmetrically using 
Segmented Continuous Pricing with sloped business and 
leisure WTP estimate curves. The competing airlines with 
traditional RM systems see revenue losses of 1 to 4%. AL1 
also sees a substantial increase in its load factor while the 
international network carrier competitors (AL2 and AL4) 
see lower load factors than in the baseline.

Table 2  Airline RM settings in the baseline experiment

Baseline experiment RM settings

Airline AL1 AL2 AL3 AL4

Optimizer Traditional class-based ProBP
Forecasting Hybrid forecasting
Detruncation EM detruncation
Fare adjustment No FA
WTP estimate FRAT5 C

Fig. 6  Airline estimates of 
FRAT5 values by timeframe in 
the FRAT5 C curve
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Table 3  Settings on segmented 
WTP estimate and Pax ID 
accuracy in the asymmetric tests

Test scenario Business WTP estimate Leisure WTP estimate Pax ID
Accuracy (%)

Constant WTP estimate scenario
(B = 3.0, L = 1.2)

Constant 3.0 Constant 1.2 80

Sloped WTP estimate scenario
(B = 2.0–3.0, L = 1.2–2.0)

Sloped 2.0–3.0 Sloped 1.2–2.0 80
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Table 4 shows AL1’s changes in bookings and revenues 
in each passenger segment from the baseline. AL1’s + 16.8% 
revenue gain with sloped WTP estimate curves is much 
larger than the + 3.4% it saw using constant segmented WTP 
estimate curves (B = 3.0, L = 1.2). With constant-segmented 
WTP estimates, AL1 sees its revenue gains mainly from 
undercutting competitors in the leisure segment with its 
low-segmented leisure care quotes. However, AL1 loses 
bookings and revenue in the business segment with its high 
segmented business fare quotes, especially in the early 

timeframes. With sloped segmented WTP estimates, AL1’s 
low business fare quotes remain attractive to the business 
passengers in early timeframes and AL1 sees large recover-
ies in bookings and revenue from the business segment. At 
the same time, AL1 still sees large increases in bookings and 
revenue from the leisure passengers by offering less expen-
sive, unrestricted fare quotes targeted at leisure passengers.

Table 5 shows the changes in bookings and revenues 
for each passenger segment of AL2, the largest competing 
airline with traditional RM. Contrary to AL1’s results, 

Fig. 7  Segmented WTP esti-
mate curves and FRA5 C sell-
up estimates used by AL1
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mented Continuous Pricing
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the competitor AL2 sees losses in both bookings and rev-
enues in the leisure segment as it loses leisure passengers 
to AL1. On the other hand, AL2 sees gains in business 
revenue and bookings as it accommodates some of the 
business passengers that are rejected by AL1’s more 
expensive segmented business fare quotes. Overall, the 
competitor AL2 sees small losses in total revenue and 
bookings.

Since AL1 sees higher total revenue without seeing 
losses in revenue from the business passenger segment 
in the sloped WTP estimate scenario, we assume that the 
first-mover airline would be more likely to use sloped 
WTP estimate curves with its asymmetric adoption of 
Segmented Continuous Pricing.

Competitors respond by removing restrictions

With asymmetric Segmented Continuous Pricing, AL1 
offers continuous fare quotes that are free of fare restric-
tions. This gives AL1 an advantage over the competitors as 
these unrestricted fares have no restriction disutilities and, 
thus, can be very attractive to the passengers. The competi-
tors with traditional RM systems may choose to remove the 
restrictions associated with their fares as a response, allow-
ing them to also offer fares with no restriction disutilities.

In this test, AL2/3/4 remove all the restrictions in their 
fares while keeping the advance purchase requirements, as 
presented in Table 6. All four airlines continue to use the 
same RM settings as in the above Sloped WTP Estimate 
Scenario.

The airlines’ revenues are shown in Fig. 10. With the 
competitors’ removal of fare restrictions, AL1 is not able 

Table 4  Comparison of AL1’s 
bookings and revenue from each 
passenger segment in different 
test scenarios

AL1’s Revenue & booking results in each passenger segment

Test scenario BUS revenue BUS bookings LSR revenue LSR bookings

Baseline (Trad. RM) $1.47M 3593 $1.59M 5746
Constant WTP estimate scenario − $0.37M

(− 25.1%)
− 1188
(− 33.1%)

 + $0.47M
(+ 29.8%)

 + 1250
(+ 21.8%)

Sloped WTP estimate scenario  + $0.06M
(+ 3.6%)

− 575
(− 16.0%)

 + $0.45M
(+ 28.9%)

 + 831
(+ 14.5%)

Table 5  Comparison of AL2’s 
bookings and revenue from each 
passenger segment in different 
test scenarios

AL2’s revenue & booking results in each passenger segment

Test scenario BUS revenue BUS bookings LSR revenue LSR bookings

Baseline (Trad. RM) $1.13M 3155 $1.26M 5174
Constant WTP estimate scenario  + $0.24M

(+ 21.2%)
 + 573
(+ 18.6%)

− $0.20M
(− 16.0%)

− 490
(− 9.5%)

Sloped WTP estimate scenario  + $0.10M
(+ 8.2%)

 + 285
(+ 9.0%)

− $0.17M
(− 13.5%)

− 360
(− 7.0%)

Table 6  Modified fare structure 
for AL2/3/4 with no non-AP 
fare restrictions

FCL Fare product 1
Domestic restricted

Fare product 2
Domestic less restricted

Fare product 3
International restricted

AP R1 R2 R3 R4 AP R1 R2 R3 R4 AP R1 R2 R3 R4

1 0 0 0
2 0 0 0
3 3 3 3
4 7 7 0
5 7 7 3
6 7 7 7
7 14 14 14
8 14 14 14
9 14 14 21
10 21 21 21
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to maintain its revenue gains from asymmetric adoption of 
Segmented Continuous Pricing and sees a large − 17.2% 
total revenue loss as compared to the baseline scenario in 
which it uses traditional RM. On the other hand, the com-
petitors see full revenue recoveries and see small revenue 
gains compared to the baseline scenario.

These changes in airlines’ total revenues are directly 
related to the changes in the airlines’ load factors, as shown 
in Fig. 11. AL1 sees a large drop in its load factor as it loses 
passengers to the competitors who now offer fares without 
restrictions. At the same time, the competitors see much 
higher load factors that contribute to their revenue recovery.

To further explain the competitive impacts, we focus on 
analyzing the results of AL2, the largest competing airline 
using traditional RM. Table 7 summarizes AL2’s reve-
nue and booking changes in each passenger segment as it 
removes fare restrictions along with the other traditional 

RM competitors. Since business passengers are more 
sensitive to fare restrictions, AL2 sees a large increase in 
business bookings, and consequently a much higher load 
factor, compared to both the Traditional RM baseline and 
the Sloped WTP Estimate Scenario. Despite the buy-down 
in the business segment, the increase in business book-
ings leads to a further gain in AL2’s business revenue that 
contributes to its full recovery in total revenue. Although 
AL2 also sees some small recovery in leisure bookings, it 
does not see recovery in leisure revenue with the leisure 
passengers paying less on average due to buy-down.

With the traditional RM airlines regaining their rev-
enues from the business segment, AL1 sees the opposite 
changes: it sees large losses in both bookings and revenues 
in the business segment. Since the competitors also offer 
unrestricted fares, AL1’s expensive segmented business 

Fig. 10  Airline revenue changes 
with AL2/3/4 removing non-AP 
restrictions
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Fig. 11  Airline load factors 
with AL2/3/4 removing non-AP 
restrictions

8
3
.1

8
7
.8

7
7
.5

8
3
.2

8
2
.1

8
8
.7

8
1
.7

8
2
.2

8
4
.8

8
1
.9

8
0
.8

8
6
.8

75

80

85

90

Baseline (Trad. RM) AL1 Asym. Seg. CP
(Sloped WTP Estimate)

AL1 Asym. Seg. CP
(AL2/3/4 No Restrictions)

Airline Load Factors

AL1 AL2 AL3 AL4

Table 7  AL2’s revenue and 
booking changes from baseline 
with non-AP restrictions 
removed

AL2’s revenue & booking results in each passenger segment

Test scenario BUS revenue BUS bookings LSR revenue LSR bookings

Baseline (Trad. RM) $1.13M 3155 $1.26M 5174
AL1 asym. seg. class-based CP
(Sloped WTP estimate)

 + $0.10M
(+ 8.2%)

 + 285
(+ 9.0%)

− $0.17M
(− 13.5%)

− 360
(− 7.0%)

AL1 asym. seg. class-Based CP
(AL2/3/4 restrictions removed)

 + $0.23M
(+ 18.9%)

 + 899
(+ 28.0%)

− $0.21M
(− 15.3%)

− 384
(− 6.5%)
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continuous fare quotes become even less attractive to the 
business passengers.

Table 8 summarizes AL1’s revenue and booking changes 
in each passenger segment with the traditional RM com-
petitors removing their fare restrictions. AL1 sees enormous 
losses in business bookings and revenue compared to the 
traditional RM baseline, as it only retains about half of the 
bookings and revenue from business passengers. AL1’s 
asymmetric continuous pricing still offers some advantage 
in attracting leisure bookings. However, the relatively small 
gains in the leisure segment cannot offset AL1’s dramatic 
losses in the business segment. Overall, AL1 still sees a 
large drop in total revenue and load factor.

These test results show that AL1 cannot maintain its 
revenue benefit from asymmetric Segmented Continuous 
Pricing and sees a large revenue loss compared to the base-
line when the competitors respond by removing their fare 
restrictions. (AL1’s relatively expensive but unrestricted 
business segmented fare quotes become highly undesirable 
to the business passengers when compared to the lower and 
now unrestricted fares offered by the competitors.) In Long 
(2022), tests were also conducted on a scenario where com-
petitors remove their AP requirements but not the non-AP 
restrictions as the competitive response. The results show 
that it is an unhelpful strategy, causing the competitors to 
see further revenue losses with AL1 still maintaining a large 
revenue advantage over the other airlines.

Summary

In this paper, we simulated and analyzed the potential 
competitive impacts of Segmented Continuous Pricing in 
the airline industry through experiments in the Passen-
ger Origin–Destination Simulator (PODS). We examined 
the effects of asymmetric use of Segmented Continuous 
Pricing where one airline moves ahead of others in adopt-
ing the method. In initial asymmetric tests with constant 
segmented WTP estimate inputs, the first-mover airline 
sees revenue gains that came mainly from undercutting the 
competitors in the leisure segment by offering inexpensive, 
unrestricted fare quotes to late-arriving leisure demand, 
which could lead to poor competitive stability. AL1 also 

saw large booking and revenue losses in the business seg-
ment, as it offers much higher segmented fare quotes to the 
business passengers. Such losses in the business segment 
would be undesirable for real-world network airlines.

In an attempt to mitigate these problems, we also tested 
the idea of using sloped segmented WTP estimate curves 
with asymmetric Segmented Continuous Pricing. The test 
results show that AL1 can see significant booking and rev-
enue recovery in the business segment using sloped busi-
ness WTP estimate curves that have lower values in the 
early timeframes. The extent of undercutting in the leisure 
segment can also be reduced with AL1 using sloped lei-
sure WTP estimate curves that have higher values in the 
late timeframes. With sloped WTP estimate curves, AL1 
sees a large revenue gain of about 17% from the baseline, 
while the competitors see revenue losses of about 1% to 
4%. It is important to note that the various WTP estimates 
in our simulations were parametric and not actually esti-
mated from historical booking data. In a simulation world, 
the tested FRAT5 and SegWTP estimated led to very good 
revenue gains for Segmented Continuous Pricing but could 
well over-estimate both the gains achievable in the real 
world and, in turn, the magnitude of competitive feedback.

We explored a potential response strategy by the com-
peting airlines with traditional RM systems and assessed 
their effectiveness against the first-mover airline using 
Segmented Continuous Pricing with sloped WTP esti-
mates. Since the first-mover airline offers continuous fare 
quotes that are restriction free, it has an advantage over the 
competitors as the unrestricted fares can be highly attrac-
tive to the passengers. To respond, competitors with tra-
ditional RM could choose to remove the restrictions asso-
ciated with their fares, while keeping advance purchase 
rules. Our test results show that this can be an effective 
response strategy: the competitors can see full revenue 
recoveries, while the first-mover airline loses all the reve-
nue benefit from asymmetric Segmented Continuous Pric-
ing and sees a large revenue loss of about 17% compared 
to the traditional RM baseline. These simulation results 
suggest that the main advantage of asymmetric adoption 
of Segmented Continuous Pricing comes from the unre-
stricted continuous fare quotes rather than from the better 
pricing granularities, and the first-mover airline may suffer 

Table 8  AL1’s revenue and 
booking changes from baseline 
with competitors’ non-AP 
restrictions removed

AL1’s revenue & booking results in each passenger segment

Test scenario BUS revenue BUS bookings LSR revenue LSR bookings

Baseline (Trad. RM) $1.47M 3593 $1.59M 5746
AL1 asym. seg. class-based CP
(Sloped WTP estimate)

 + $0.06M
(+ 3.6%)

− 575
(− 16.0%)

 + $0.45M
(+ 28.9%)

 + 831
(+ 14.5%)

AL1 asym. seg. class-based CP
(AL2/3/4 restrictions removed)

− 0.72M
(− 47.8%)

− 1653
(− 45.2%)

 + $0.20M
(+ 11.0%)

 + 835
(+ 14.6%)
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from large revenue losses if the competitors respond by 
reducing the restrictions in their fare structures.

Although the simulation results suggest that using Seg-
mented Continuous Pricing could lead to revenue benefits in 
theory, we cannot overlook the potential competitive vulner-
abilities of asymmetric Segmented Continuous Pricing to 
competitor responses. The potential revenue benefits from 
Segmented Continuous Pricing appear to be highly depend-
ent on competitors’ decisions, raising concerns about com-
petitive stability in the long run. When the competitors try 
to recover their revenue losses by also offering unrestricted 
fares, the first mover could lose its revenue leverage from 
Segmented Continuous Pricing and see revenue loss instead. 
Consequently, the first-mover airline may need to explore 
ways to recover its losses, and such consecutive competitive 
responses could eventually lead to a spiral-down effect and 
negatively affect the revenues of all airlines competing in 
the same markets.

Directions for future research

As we found that asymmetric adoption of Segmented Con-
tinuous Pricing can be highly vulnerable to competitors’ 
responses, future work could be done on finding potential 
ways to incorporate competitive information in the continu-
ous pricing methods. For instance, such competitor-aware 
methods could use information on competitors’ lowest avail-
able fares to model the probability of spilling passenger to 
competitors, and thus, allows the first-mover airline to adjust 
its prices accordingly. This could potentially improve the 
robustness of the Segmented Continuous Pricing methods 
in competitive situations.

Furthermore, in the Segmented Continuous Pricing algo-
rithms presented in this paper, the segmentation process 
occurs in the fare quote generation step by using different 
segmented WTP estimate values for business/leisure passen-
gers. The demand forecaster, however, does not distinguish 
the bookings from the two segments and uses aggregated 
WTP estimates (the FRAT5 values) to generate the demand 
forecasts that are subsequently fed into the optimizer. It 
could be useful to develop a new forecaster that incorporates 
the segmented WTP information in the demand forecasting 
step and generates separate demand forecasts for each pas-
senger segment, as it may lead to more accurate estimates 
on the overall passenger demand, and potentially greater 
revenue advantage.

In addition to fare quote segmentation, we could also 
explore ways to combine product differentiation with the 
continuous pricing methods. In the tests conducted in this 
paper, airlines adopting Segmented Continuous Pricing offer 
one continuous fare quote to each passenger. While business 
and leisure passengers are offered different prices, the fares 

are not differentiated from each other by fare restrictions or 
ancillary services. With product differentiation, each pas-
senger could be offered multiple fare options at booking 
request. The fare options are differentiated from each other 
by having different restrictions and/or ancillary services and 
passengers can choose their most desired fare option. Future 
research work could also be done on new RM algorithms 
that integrate the continuous pricing methods with dynamic 
offer generation (DOG) to generate such fare options.
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