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operators, with application to quantum

information

Aram W. Harrow

Center for Theoretical Physics, Massachusetts Institute of Technology,
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Abstract

Consider the n! different unitary matrices that permute n d-dimensional quan-
tum systems. If d ≥ n then they are linearly independent. This paper discusses
a sense in which they are approximately orthogonal (with respect to the Hilbert-
Schmidt inner product, ⟨A,B⟩ = trA†B/ tr I) if d ≫ n2, or, in a different
sense, if d ≫ n. Previous work had shown pairwise approximate orthogonality
of these matrices, but here we show a more collective statement, quantified in
terms of the operator norm distance of the Gram matrix to the identity matrix.
This simple point has several applications in quantum information and random
matrix theory: (1) showing that random maximally entangled states resemble
fully random states, (2) showing that Boson sampling output probabilities resem-
ble those from Gaussian matrices, (3) improving the Eggeling-Werner scheme for
multipartite data hiding, (4) proving that the product test of Harrow-Montanaro
cannot be performed using LOCC without a large number of copies of the state to
be tested, (5) proving that the purity of a quantum state also cannot be efficiently
tested using LOCC, and (6, published separately with Brandão and Horodecki)
helping prove that poly-size random quantum circuits are poly-designs.

Dedicated to the memory of Mary Beth Ruskai
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1 Introduction

1.1 Permutations and quantum states

When quantum states have symmetries under permutation or collective rotation, it is
possible to reduce the number of parameters in a problem. But this may come at a
cost in complexity, for example if the small number of parameters label basis states
in irreducible representations which lack simple constructions.

The main focus of the paper is inspired by the following point: matrices on (Cd)⊗n
that commute with collective unitary rotations are known to be linear combinations of
the permutations of the n qudits (see below for precise definitions). If d≫ n, then this
indeed reduces the number of parameters from d2n to n!. However, these parameters
are coefficients of permutation matrices that are not quite orthogonal to one another
(again, in a sense that we will clarify below). We will argue that they are almost
orthogonal, in a manner that suffices for most applications, when d≫ n2.

To make these claims more precise, we introduce some definitions. Denote the
symmetric group on n elements by Sn. This has a representation Pd on (Cd)⊗n in
which the n qudits are permuted. Formally, if π ∈ Sn, then

Pd(π) =
∑

i1,...,in∈[d]

|i1, . . . , in⟩
〈
iπ(1), . . . , iπ(n)

∣∣ , (1)

where [d] := {1, . . . , d}. The definition is chosen so that Pd(π1)Pd(π2) = Pd(π1π2),
that is, Pd is a representation.

Let Md denote the set of d × d complex matrices and Ud the subset of unitary
matrices. One place where the permutation matrices arise is when considering opera-
tors A ∈ M⊗n

d that commute with every X⊗n for X ∈ Ud. Such A can be written as
(see Thm 4.1.13 of [1] or Cor 4 of [2])

A =
∑
π∈Sn

aπPd(π), (2)

for some coefficients aπ ∈ C. This decomposition is useful because it reduces the
number of parameters needed to describe A. However, it is inconvenient that the
terms in (2) are not orthogonal. We will see this in more detail in our applications
below, where (2) becomes useful precisely when we can establish an approximate
orthogonality for the Pd(π) matrices.

We will use the following normalized Hilbert-Schmidt inner product:

⟨A,B⟩ := trA†B

tr I
=

trA†B

dn
= ⟨Φd|⊗n (I ⊗A†B) |Φd⟩⊗n , (3)

where |Φd⟩ = 1√
d

∑d
i=1 |i, i⟩ is the standard maximally entangled state. We also use

the convention that ψ := |ψ⟩ ⟨ψ|.

2
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1.2 Overview of results

In Section 2 we will show that the n! different Pd(π) are approximately orthogonal,
not only pairwise (which is rather trivial to show), but in a certain global sense as well.
Specifically we define the n!-dimensional Gram matrix G(n,d) whose π1, π2 entry is the
inner product ⟨Pd(π1), Pd(π2)⟩ and argue that it is close to the identity in operator
norm. Previous work typically focused on entrywise bounds on G−1, and while these
often obtained much sharper results, our applications will rely on the operator norm
estimates presented here.

One easy consequence of this approximate orthogonality relation is to control-
ling various norms of linear combinations of permutation matrices, as we discuss in
Section 3. A less obvious, but still easy, application is showing that the lower moments
of random bipartite states are close to the moments of random maximally entangled
states, which we describe in Section 4. This is related to the well-known fact that the
entries of Haar-random unitaries appear to be nearly Gaussian, again when we exam-
ine only the low moments. This in turn has application to improving the parameters
in boson sampling, as we discuss in Section 5.

The next family of results involves limitations on multi-party quantum operations
where the parties are connected by only classical communication. More generally,
we consider measurements that remain valid when the partial transpose operator is
applied to a subset of systems, and that commute with rotations of the form U⊗n.
It turns out that these operators are severely constrained and we use this to ana-
lyze the Eggeling-Werner data hiding scheme and the complexity of purity testing in
Section 7 and establish limitations on product tests in Section 8. A further applica-
tion has appeared in [3], where this approximate orthogonality is used to analyze the
convergence speed of the low-order moments of random unitary quantum circuits.

Two appendices explore further topics. Appendix A fleshes out some calculations
used in Section 2 and Appendix B explains how replacing Haar uniform unitaries with
other distributions, such as random classical reversible operations, does not yield the
same structure.

2 Approximate orthogonality

2.1 Statement of results

This section gives a quantitative statement of the approximate orthogonality of
permutation operators.

First we relate the inner product between a pair of permutations to a natural
metric on the group of permutations. Observe that

trPd(π) = dc(π), (4)

where c(π) counts the number of cycles of π. Let Tn ⊂ Sn be the set of
(
n
2

)
transpo-

sitions, and let Γn := Γ(Sn, Tn) be the Cayley graph of Sn defined by this generating
set; i.e. the vertices are Sn and there is an edge between π1 and π2 iff π−1

1 π2 ∈ Tn.
Define |π| to be the minimum number of transpositions necessary to obtain π from e.

3
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Since graph distance is invariant under multiplication by Sn, | · | satisfies the triangle
inequality:

|π1π2| ≤ |π1|+ |π2|, (5)

Observe also that |π| = n− c(π). We now calculate

⟨Pd(π1), Pd(π2)⟩ =
trPd(π

−1
1 π2)

dn
= dc(π

−1
1 π2)−n = d−|π−1

1 π2|. (6)

Thus, Pd(π1) and Pd(π2) are approximately orthonormal when d is large and/or when
π1 and π2 are far apart in the transposition metric.

The main goal of this paper is to extend the pairwise approximate orthogonality of
(6) to a certain notion of global approximate orthogonality. In particular we will show
that the Pd(π) are close to an orthonormal basis. In general, a collection of vectors
with pairwise small inner products does not have to be close to an orthonormal basis,
as we will discuss further in Appendix B. The key fact we will use about the Pd(π)
matrices is that they are close to an orthonormal basis.

Define the n!× n! Gram matrix G(n,d) by

G(n,d)
π1,π2

= ⟨Pd(π1), Pd(π2)⟩ = d−|π−1
1 π2|, (7)

Observe that G(n,d) has ones on the diagonal, and positive powers of 1/d in every
off-diagonal entry. Thus we have

lim
d→∞

G(n,d) = In!, (8)

corresponding to the fact that different permutations approach orthogonality as d →
∞.

To make this fact useful, we need to know how quickly this limit converges as a
function of n. Naively, we can observe that there are n!−1 off-diagonal terms per row,
each ≤ 1/d, so they add up to something small if d ≫ n!. But much better bounds
are possible.
Lemma 1 (approximate orthogonality).

1. G(n,d) is always positive semidefinite, has trace n!, and is invertible if and only if
n ≤ d.

2.
1

n!
∥G(n,d) − In!∥1 ≤

√
2
n

d
. (9)

3.

λmin(G
(n,d)) =

n−1∏
j=1

(
1− j

d

)
≥ 1− n(n− 1)

2d
(10a)

λmax(G
(n,d)) =

n−1∏
j=1

(
1 +

j

d

)
≤ e

n(n−1)
2d (10b)

4
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Our applications will mostly rely on the following simplified bounds:

∥G(n,d) − In!∥∞ ≤ n2

d
if n2 ≤ d (11)

∥G(n,d) − In!∥1→1 ≤ e
n2

2d − 1, (12)

where the 1 → 1 norm of a matrix means the maximum sum of absolute values of
entries of any row.

We see that there are a few different regimes. If n > d, then G(n,d) is singular and
is far from In!. Because of the qualitative difference between the n > d and n ≤ d
regimes, the n ≤ d case is referred to as the “stable range” in the context of Schur-
Weyl duality. If n ≤ O(d), then the average eigenvalue of G(n,d) is close to 1, even
though the top and bottom eigenvalues will be exponentially large and exponentially
close to zero respectively. Finally, if n ≤ O(

√
d), then G(n,d) will be close to In! in

operator norm.
There are two proofs of Lemma 1, both requiring some facts from representation

theory. Using precise statements about the dimensions of irreps of Ud and Sn, we can
calculate the exact formula for the eigenvalues of G and their multiplicities. We will
do this below in Lemma 2. However, part 1 of Lemma 1 and eqs. (10b) and (11) can
also be proved using only a few simple facts about the symmetric and antisymmetric
subspaces. We give this proof here.

First we recall some facts about the symmetric and antisymmetric subspaces.
Define ∨nCd to be the symmetric subspace of (Cd)⊗n, meaning the set of vectors
that is invariant under each Pd(π). We will also use the antisymmetric subspace
∧nCd, which is the set of vectors invariant under each Pd(π) sgn(π), where sgn(π)
is defined to be the sign of π. The dimensions of these subspaces are known to be
given by dim∨nCd =

(
d+n−1
n

)
=: d[n] and dim∧nCd =

(
d
n

)
. For readers unfamil-

iar with the properties of the symmetric subspace, Ref. [2] gives a review from a
quantum-information perspective.

Proof of parts 1 and 3 of Lemma 1. For part 1, we observe that G is a Gram matrix,
so is automatically positive semi-definite. It has dimension n! and ones along its diag-
onal, so G has trace n!. It is invertible if and only if the matrices Pd(π) are linearly
independent. If n ≤ d, then the linear independence of these matrices can be seen by
considering their action on the state |1⟩ ⊗ |2⟩ ⊗ · · · ⊗ |n⟩ ∈ (Cd)⊗n. To show that G is

singular when n > d, we define the vector |ζ⟩ :=
√

dn

n!

∑
π∈Sn

sgn(π) |π⟩. Now calculate

⟨ζ|G |ζ⟩ = 1

n!

∑
π1,π2

dc(π
−1
1 π2) sgn(π1) sgn(π2)

=
∑
π∈Sn

dc(π) sgn(π)

=
∑
π∈Sn

trPd(π) sgn(π)

5
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= dim∧nCd =
(
d

n

)
.

When n > d, this expression is 0. Since G is positive semidefinite, it follows that it
must have an eigenvalue equal to 0.

For part 3, we observe that the sum of the π1 row of G is∑
π2∈Sn

Gπ1,π2
=
∑
π2∈Sn

dc(π
−1
1 π2)−n (13a)

=
∑
π∈Sn

dc(π)−n (13b)

= d−n
∑
π∈Sn

trPd(π) (13c)

=
n!

dn
d[n] =

d+ n− 1!

d! · dn
(13d)

=

n−1∏
j=1

(
1 +

j

d

)
(13e)

Finally, we use the inequality 1 + x ≤ ex (which holds for all x) to upper-bound the

last equation with e
n(n−1)

2d . This yields (12) which implies (11) and in turn (10b).

Remark 1. An even simpler proof of a nearly equivalent bound was found by Kevin
Zatloukal. The idea is that | · | describes a metric on a Cayley graph of degree

(
n
2

)
.

Thus, there are at most
(
n
2

)k
permutations with |π| = k, and we have

∑
π∈Sn

d−|π| ≤
∑
k≥0

(
n

2

)k
d−k =

(
1−

(
n
2

)
d

)−1

.

Most of the rest of the paper is devoted to applications of (11). For our applications,
we do not need any more precise information about the distribution of eigenvalues.
However, for completeness, we will describe the exact spectrum of G(n,d). The answer
turns out to involve the representation theory of the symmetric and unitary groups.
Lemma 2. For each λ ∈ Par(n, d), G(n,d) has dim2 Pλ eigenvalues, each equal to

n! dimQd
λ

dimPλdn
=

∏
(i,j)∈λ

(
1 +

j − i

d

)
. (14)

Here Qd
λ and Pλ are irreps of Ud and Sn respectively; see Appendix A for full

details. From Lemma 2, we immediately obtain Parts 1 and 3 of Lemma 1. Part 2
is nontrivial, but was previously derived in Lemma 6 of [4]. That paper also gave
asymptotically matching lower bounds on ∥G− I∥1 that we will omit here.

6
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Lemma 2 has been proven previously [5–7] but using different techniques. In
Appendix A we give a new proof using the terminology of quantum information, and
based on the fact that G is a Gram matrix.

2.2 Related work

As noted above, Lemma 2 has been previously proved, in several places [5–8]. Ref. [7]
used the same representation-theoretic argument, pointing out that it can be applied
to any representation of any group, while [5, 6] used properties of the symmetric group
to obtain a simple, nearly self-contained, calculation.

Define the Weingarten matrix Wg(n,d) to be (G(n,d))−1. The Weingarten matrix
was first introduced by Collins and Śniady [8, 9], although they used a different nor-
malization convention. Their goals were to calculate matrix elements of E[(U ⊗ Ū)⊗n]
and to derive asymptotic properties such as freeness for related families of random
matrices. The relevance of the Weingarten matrix can be seen from Cor 2.4 of Ref. [8],
which gives the following exact expression for this expectation value:

E
U
[U⊗n ⊗ U∗,⊗n] =

∑
σ,τ∈Sn

(I ⊗ Pd(σ))Φ
⊗n
d (I ⊗ Pd(τ))

† Wg(n,d)(σ, τ) |vσ⟩ ⟨vτ | . (15)

Following [9], note that Wg(σ, τ) only depends on σ−1τ so we can also denote this
matrix element by Wg(σ−1τ) and we can refer to Wg(·) as the Weingarten function.
See [10] for an accessible recent review, and [11] for a discussion of applications.

Several papers have studied the asymptotic behavior of Wg as d→ ∞. Ref. [8] (in
Cor 2.7) derived its leading order behavior:

Wg(n,d)(σ) = Moeb(σ)d−n−|σ| +On(d
−n−|σ|−2), (16)

where Moeb(σ) is the Möbius function. If σ has ck cycles of length k and Ck :=
2k!/k!(k+1)! is the kth Catalan number then Moeb(σ) :=

∏
k((−1)k−1Ck)

ck+1 . Since
Moeb(e) = 1, (16) is another way of saying that in the d → ∞ limit, Wg (or equiva-
lently G) approaches the identity matrix. (16) does not address the question of how
large d needs to be as a function of n in order for the approximation to be accurate.
Later works addressed this question, culminating in [12] which showed that (16) is
nearly sharp when d ≫ n7/4. However, as a pointwise estimate on the entries of a
rank-n! matrix, this does not immediately imply bounds on the spectrum.

To get some intuition for (15) in the regime where Wg ≈ I, we will compare with
the case of Gaussian random matrices. Let X be a random complex d × d Gaus-
sian matrix whose entries are i.i.d. and satisfy E[Xij ] = 0 and E[|Xij |2] = 1/d. The
following formula is known as Wick’s theorem (or Isserlis’ theorem):

E
X
[X⊗n ⊗X∗,⊗n] =

∑
π∈Sn

(I ⊗ Pd(π))Φ
⊗n
d (I ⊗ Pd(π))

† (17)

This resembles (15) but with Wg replaced by the identity matrix. Thus (15) and the
fact that Wg ≈ I together imply that low moments of unitary matrices are close to

7
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moments of complex Gaussian matrices. This can be seen as a generalization of the
Poincaré-Maxwell-Borel Lemma which states that applying a low-dimensional projec-
tor to a uniformly random point in a high-dimensional sphere yields an approximately
Gaussian distribution. Indeed Wg ≈ I ≈ G precisely in the regime where subma-
trices of unitary matrices look Gaussian. Similar observations were made earlier by
Novak [13] and Matsumoto [14]. We explore this point further in Sections 4 and 5.

3 Spectra and norms of sums of permutations

One easy consequence of our main result (Lemma 1) is that we can control various
norms of sums of permutations. Suppose that ϵ = n2/d ≤ 1 and consider some operator
A =

∑
π aπPd(π) with aπ ∈ R. We would like to estimate various norms of A.

The 2-norm is:
trA2

dn
= ⟨a,Ga⟩, (18)

which is ∈ [1 − ϵ/2, eϵ/2]∥a∥22. This follows directly from the operator inequalities
(1− ϵ/2)I ≤ G ≤ eϵ/2I.

To bound the ∞-norm of A, let π = argmaxπ |aπ|. Then

| tr
[
Pd(π)

†A
]
|

dn
=

∣∣∣∣∣ ∑
σ∈Sn

aσGπ,σ

∣∣∣∣∣ ≥ |aπ|

1−
∑
σ ̸=π

Gπ,σ

 ≥ ∥a∥∞(1− ϵ), (19)

where the last inequality follows from (12). Using ⟨A,B⟩ ≤ ∥A∥∞∥B∥1 with B =
Pd(π)/d

n, we obtain

∥A∥∞ ≥ (1− ϵ/2)∥a∥∞. (20)

On the other hand, the only obvious upper bound is the trivial ∥A∥∞ ≤ ∥a∥1. This is
tight when the aπ all have the same sign, or when the aπ sgn(π) do. Similarly we obtain

∥A∥1 ≥ (1− ϵ)dn∥a∥∞. (21)

This method does not seem to yield good bounds on the 1-norm of A. The triangle
inequality yields the rather weak bound ∥A∥1 ≤ dn∥a∥1 which is usually improved
upon by ∥A∥1 ≤

√
dn∥A∥2 ≤ dn

√
1 + ϵ∥a∥2.

4 Random maximally entangled states

Random pure states are known to be nearly maximally entangled. This is an easy
consequence of random matrix theory but was first discussed in the context of quantum
states by Page [15]. Ref. [16] introduced many applications to quantum information
theory were discovered [16]; see also [17] for a comprehensive review.

In this section we describe one way to formalize this intuition, by proving that
the low moments of random bipartite states resemble those of random maximally
entangled states.

8

8            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

Theorem 3. Let |ψ⟩ be a random unit vector in Cd2 , U a Haar-uniform unitary in
Ud and |φU ⟩ := (U ⊗ I) |Φd⟩. If n2 ≤ d then(

1− n2

2d

)
E
U
[φ⊗n
U ] ≤ E

ψ
[ψ⊗n] ≤

(
1 +

n2

d

)
E
U
[φ⊗n
U ] (22)

Again we use the convention that ψ := |ψ⟩ ⟨ψ|. The proof follows immediately from
the representation-theory facts in Appendix A).

Proof. Using Schur’s Lemma we can derive expressions for both sides of Equation (22).

E
ψ
[ψ⊗n] =

1(
d2+n−1

n

) ∑
λ∈Par(n,d)

|λ, λ⟩ ⟨λ, λ| ⊗ I⊗2
Qd

λ

⊗ ΦPλ
. (23)

E
U
[φ⊗n
U ] =

∑
λ∈Par(n,d)

dimPλ
dimQd

λ · dn
|λ, λ⟩ ⟨λ, λ| ⊗ I⊗2

Qd
λ

⊗ ΦPλ
. (24)

The ratio between these coefficients, for a fixed λ, is the the same one appearing in
Equation (14), namely

dimQd
λn!d

n

dimPλ d2 · · · (d2 + n− 1)
=

n−1∏
k=1

(
1 +

k

d2

)−1

·
∏

(i,j)∈λ

(
1 +

j − i

d

)
. (25)

This is again ≥ 1− n2/2d and ≤ 1 + n2/d, assuming n2 ≤ d.

As an example, suppose that d = dAdB corresponding to a decomposition into
two systems A and B. One way to estimate entanglement is via the second moment:
E[trψ2

A]. While an exact expression for this is already known, a simple corollary of
Theorem 3 yields the bounds

E[trψ2
A] ≤ (1 + 4d)E[tr(φU )2A] =

1 + 4/d

dA
. (26)

By comparison, an exact calculation yields E[trψ2
A] =

dA+dB
d(d+1) which differs only in

sub-leading terms. Similar bounds apply to higher moments of tr
[
ψ2
A

]
or to related

quantities.
Applying a random U⊗n to half of |Φd⟩⊗n yields Equation (24). A dual question

is applying a random permutation Pd(π). We will discuss this further in Remark 2 in
Appendix A.

5 Boson sampling anticoncentration

Boson Sampling is the process of sending n photons through an array of beam-splitters
that couple m optical modes and then measuring each mode. It was introduced as a
computational task in [18] and is significant because it appears to not be universal for

9
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quantum computing while remaining hard to simulate classically, assuming some plau-
sible conjectures. This gives a plausible route to quantum computational supremacy
using current technology; see [19] for a recent demonstration.

To understand the output distribution of Boson Sampling, first observe that the
beam-splitters define a unitary U ∈ Um, often taken to be Haar random. Suppose the
n ≪ m photons are input into n modes corresponding to a set T ⊂ [m]. Then the
probability of finding them into n output modes S ⊂ [m] is

Pr[S] = |Per(US,T )|2, (27)

where US,T denotes the submatrix of U with rows corresponding to S and columns
corresponding to T . (There is also a O(n2/m) probability of finding two or more
photons in the same mode. In this case S becomes a multiset, we interpret US,T to
allow repeated rows, and the RHS of Equation (27) is divided by s1! . . . sm! where
si is the number of photons in mode i. We avoid considering this case by choosing
n≪

√
m.) Recall that the permanent of a matrix V is

Per(V ) =
∑
π∈Sn

n∏
i=1

Vi,π(i). (28)

Several steps in the analysis of Boson Sampling are simplified by approximating
the submatrices V := US,T by a Gaussian matrix X. We define X to be an n × n
matrix of i.i.d. complex Gaussians such that

E[Xi,j ] = E[Vi,j ] = E[X2
i,j ] = E[V 2

i,j ] = 0

E[|Xi,j |2] = E[|Vi,j |2] =
1

m

(29)

By definition these moments of V and X match, but what about higher moments? In
Section 2.2 we argued that higher moments are close as well in the regime where G ≈ I.
In this section we will show how this implies that low moments of the permanent are
also close. Note that the notation in this section is chosen to be consistent with the
boson sampling literature and (n,m) here will turn out to correspond to (n, d) in the
rest of the paper.
Theorem 4. If n2t2 ≤ 2m and V,X are defined as above then

1− n2t2

m
≤ E[|Per(V )|2t]

E[|Per(X)|2t]
≤ 1 +

n2t2

m
. (30)

Section 5.1 of [18] establishes a similar but incomparable result, finding that the
distribution of unitary submatrices of size m1/6 are close in variational distance to
an i.i.d. Gaussian distribution. Theorem 4 by contrast works for submatrices with
dimension as large as O(m1/2) but controls only low moments and not the entire dis-
tribution. However, for some applications, such as the “anticoncentration” conjecture,
this can be enough.

10
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Nezami [20] used representation theory to give formulas for the moments of both
|Per(X)|2 and |Per(V )|2. These can be used to establish bounds similar to (30) but
slightly stronger1. The contribution of this work then is an independent and somewhat
simpler proof of a nearly equivalent result.

Proof. Define

|Sn⟩ =
1

n!

∑
π∈Sn

|π⟩ where |π⟩ = |π(1)⟩ ⊗ · · · ⊗ |π(n)⟩ ∈ (Cn)⊗n. (32)

Then Per(V ) = ⟨Sn|V ⊗n |Sn⟩. Since the distribution of V is invariant under V 7→
eiϕV , E[Per(V )] = 0 and similarly for X. Thus we will focus instead on

E[|Per(V )|2t] = E[⟨Sn|⊗2t
V ⊗nt ⊗ V ∗,⊗nt |Sn⟩⊗2t

]. (33)

If we interpret |Sn⟩ as being a vector in (Cm)⊗n then we can replace V with U in the
RHS of (33), obtaining

E[|Per(V )|2t] = E[⟨Sn|⊗2t
U⊗nt ⊗ U∗,⊗nt |Sn⟩⊗2t

]. (34)

Now apply (15) to evaluate the expectation over U and obtain

E[|Per(V )|2t] = ⟨Sn|⊗2t
∑

σ,τ∈Snt

(I ⊗ Pm(σ))Φ⊗nt
m (I ⊗ Pm(τ))† Wg(nt,m)(σ, τ) |Sn⟩⊗2t

.

(35)
By contrast, for the moments of a complex Gaussian,

E[|Per(X)|2t] = ⟨Sn|⊗2t
∑
π∈Snt

(I ⊗ Pm(π))Φ⊗nt
m (I ⊗ Pm(π))† |Sn⟩⊗2t

. (36)

For π ∈ Snt we need to evaluate

απ := ⟨Φm|⊗nt (I⊗Pm(π)) |Sn⟩⊗2t
=

1√
mnt

⟨Sn|⊗t Pm(π) |Sn⟩⊗t =
1

n!t
√
mnt

∑
σ,σ′∈St

n

1σ′=πσ.

(37)
Before evaluating απ, we can make some observations about the moments of the

permanent. Substituting into (35) and (36) we have

E[|Per(V )|2t] = ⟨α|Wg(nt,m) |α⟩ and E[|Per(X)|2t] = ⟨α|α⟩ . (38)

1Specifically eqns (9), (13) and (19) from [20], along with the fact that ρλ(RCRC) ≥ 0, directly imply
that

1 −
n2t2

2m
≈

nt−1∏
i=0

(
1 +

i

m

)−1

≤
E[|Per(V )|2t]
E[|Per(X)|2t]

≤
min(n,t)∏

i=1

max(n,t)∏
j=1

(
1 +

j − i

m

)−1

≈ 1 −
nt|n− t|

m
(31)

This observation is due to Sepehr Nezami.

11
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In the n2t2 ≪ m regime, our control of the spectrum of Wg lets us relate these
quantities. Indeed

1− n2t2

m
≤ λmax(G

(nt,m))−1 ≤ E[|Per(V )|2t]
E[|Per(G)|2t]

≤ λmin(G
(nt,m))−1 ≤ 1 +

n2t2

m
, (39)

where the outer inequalities are valid when n2t2 ≤ 2m.

We can also use these formulas to calculate some moments of Gaussian matrices. It
is not trivial since απ will depend on π for t > 1. However, the case t = 2 is relatively
quick. Then (37) will depend on the parameter ℓ = w(π) := |π({1, . . . , n}) ∩ {n +
1, . . . , 2n}|. Let’s fix π ∈ S2n, choose σ ∈ S2

n at random and calculate the probability

that πσ ∈ Sn × Sn. This is
(
n
ℓ

)−1
. Thus we find

απ =
1(

n
w(π)

)
mnt/2

. (40)

We also want to calculate |w−1(ℓ)|. This is given by a hypergeometric distribution.

|w−1(ℓ)| =
(
n

ℓ

)4

ℓ!2(n− ℓ)!2 = n!2
(
n

ℓ

)2

. (41)

To apply this to the Gaussian case, we substitute into(36).

E[|Per(X)|4] =
∑
ℓ

n!2
(
n

ℓ

)2(
n

ℓ

)−2

m−2n = (n+ 1)
n!2

m2n
. (42)

This yields an alternate proof of Lemma 56 of [18].

6 Partial transposes of permutation operators

This section will introduce some mathematical tools that will be relevant to applica-
tions involving multipartite quantum systems and specifically the proofs in Sections 7
and 8.

A frequently used tool in understanding locality is the PPT (Positive Partial
Transpose) restriction [21, 22]. The PPT criteria for seperability of states and mea-
surements is useful in part because it has an efficient semidefinite program and these
same attributes also make it more amenable to proofs. In this section we study the
spectrum of permutation operators with the partial transpose applied to some of the
subsystems. The goal is to establish lemmas that will be later used in the applications.

If {M, I − M} is a two-outcome measurement that can be implemented by
LOCC (local operations and classical communication [23]), then a useful relaxation
is to require that M and I −M remain positive semi-definite whenever any collec-
tion of subsystems is partially transposed. We call the measurements satisfying this
condition “PPT”, meaning that measurement operators are Positive under Partial

12
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Transposition2. Let M act on n systems, and let S ⊆ [n]. Then we let MΓS denote
M with the indices in S transposed. In this notation, an equivalent characterization
of the PPT condition is that

0 ⪯MΓS ⪯ I ∀S ⊆ [n] (43)

In this section, we discuss partial transposes of the operators Pd(π).
The relevance of the PPT constraint is that taking the partial transpose of part

of a permutation matrix can result in the largest eigenvalue increasing dramatically.
Thus, if Γ denotes the partial transpose, then requiring that 0 ≤ MΓ ≤ I can be a
potent constraint in addition to the usual 0 ≤M ≤ I.

We will consider taking the partial transpose of an arbitrary set S ⊂ [n] and will
denote this operation ΓS . We also define S̄ := [n]− S, so that (S, S̄) partition [n].
Lemma 5. For any π ∈ Sn, let k = |S ∩ π(S̄)|. Then Pd(π)

ΓS has dn−2k non-zero
singular values, each equal to dk.

This is a generalization of the well-known fact that FΓ2
1,2 = dΦ, where Φ is a

projection on the maximally entangled state. In fact, we can say somewhat more about
the structure of Pd(π)

ΓS (see [24, 25]), but Lemma 5 is all we need for our argument.

Proof of Lemma 5. Let X = (Pd(π)
ΓS )†Pd(π)

ΓS = Pd(π)
ΓS̄Pd(π)

ΓS . Then the square
of the singular values of Pd(π)

ΓS are the eigenvalues ofX. To represent tensor products
of n systems, we will use a superscript (i) to indicate that a system should be placed
in the ith position, so that we can list the systems in an order that is more convenient.
We now calculate

X =
∑

x1,...,xn∈[d]

y1,...,yn∈[d]

⊗
i∈S

|xi⟩
〈
xπ(i)

∣∣yπ(i)〉 ⟨yi|(i) ⊗
⊗
i∈S̄

∣∣xπ(i)〉 ⟨xi|yi⟩ 〈yπ(i)∣∣(i)

=
∑

x1,...,xn∈[d]

y1,...,yn∈[d]

 ∏
i∈π(S)∪S̄

δxi,yi

⊗
i∈S

|xi⟩ ⟨yi|(i) ⊗
⊗
i∈S̄

∣∣xπ(i)〉 〈yπ(i)∣∣(i)

=
∑

x1,...,xn∈[d]

y1,...,yn∈[d]

 ∏
i∈π(S)∪S̄

δxi,yi

⊗
i∈S

|xi⟩ ⟨yi|(i) ⊗
⊗
i∈π(S̄)

|xi⟩ ⟨yi|(π
−1(i))

We see that a δxi,yi appears for all i in π(S)∪ S̄, or equivalently, all i not contained in
π(S̄) ∩ S. Additionally we see that each |xi⟩ ⟨yi| appears zero times for i ∈ S̄ ∩ π(S),
twice for i ∈ π(S̄) ∩ S and once otherwise; i.e. for i ∈ (S ∩ π(S)) ∪ (S̄ ∩ π(S̄)). (To
justify these arguments, recall that (S, S̄) and (π(S), π(S̄)) both partition [n].)

We now consider the partition of [n] into S̄ ∩ π(S), (S ∩ π(S)) ∪ (S̄ ∩ π(S̄)) and
S∩π(S̄) and determine the contributions from each. Note that since π is a permutation,
we have |S̄ ∩ π(S)| = |S ∩ π(S̄)|(= k),

2In some cases one might want to constrain only the yes or no operators to being PPT. In this paper we
will always take PPT to mean that all measurement outcomes are PPT.
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• For i ∈ S̄ ∩ π(S), we have an appearance of δxi,yi , but not of |xi⟩ ⟨yi|. Thus this
term contributes the scalar multiple d.

• For i ∈ (S∩π(S))∪ (S̄∩π(S̄)), we have a δxi,yi constraint as well as a |xi⟩ ⟨yi| term.
Thus, we have one appearance of the d × d identity operator Id =

∑
xi∈[d] |xi⟩ ⟨xi|

at position i.
• Finally, for i ∈ π(S̄)∩S, there is no xi = yi constraint and the total contribution is∑

xi,yi∈[d]

|xi⟩ ⟨yi|(i) ⊗ |xi⟩ ⟨yi|π
−1(i)

= dΦ(i,π−1(i)).

Together, we conclude that

X = d2k
⊗

i∈S∩π(S̄)

Φ(i,π−1(i)) ⊗
⊗

i∈(S∩π(S))∪(S̄∩π−1(S̄))

I
(i)
d ,

which has the claimed eigenvalues.

Since our bounds are often in terms of |π|, it is convenient to express Lemma 5
using this quantity. This is possible because we often are free to choose S arbitrarily.
In some cases, we will need to choose a single S that works for multiple permutations.
This too is straightforward but yields a weaker bound.
Lemma 6. For any π1, . . . , πk ∈ Sn there exists S ⊆ [n] such that

k∑
i=1

|πi(S) ∩ S̄| ≥
1

4

k∑
i=1

|πi|. (44)

In the special case where we have a single π ∈ Sn we can find S such that

|π(S) ∩ S̄| ≥ |π|
2
. (45)

Proof. Suppose S is chosen uniformly at random from the subsets of [n]. For each
i ∈ [k], let mi denote the number of derangements of of πi, i.e. the number of x such
that πi(x) ̸= x. For such x, the probability that x ∈ πi(S) ∩ S̄ is 1/4. By linearity of
expectation, the expectation of |πi(S)∩S̄| ismi/4. Now suppose that πi has c1 1-cycles,
c2 2-cycles, and so on. Then since a single cycle of length j ≥ 2 has j derangements,

mi = n− c1 =
∑
j≥2

jcj and |πi| =
∑
j≥2

(j − 1)cj . (46)

Together this implies thatmi ≥ |πi|. Thus (44) holds in expectation, and also therefore
holds for at least one choice of S.

For the k = 1 case we will choose S based on the cycle decomposition of π. For a
cycle containing elements x1, x2, . . . , xj we put x1, x3, x5, . . . into S. A cycle of length
j then contributes ⌊j/2⌋ to |π(S) ∩ S|. Since ⌊j/2⌋ ≥ (j − 1)/2 we obtain (45).

14
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Let M =
∑

πmπPd(π) satisfy the PPT condition (43) and assume that n ≤ d1/2.

From the bound ∥M∥ ≤ 1 and eq. (20) we have |mπ| ≤ 1/(1−n2/2d) ≤ 1+ n2

d . Using

the PPT condition and the stronger condition n ≤ d1/4 we can show a much stronger
bound when π is far from e.
Lemma 7. If M =

∑
πmπPd(π) satisfies (43) and n2

√
d
≤ 1 then

|mπ| ≤
(
1 +

n2√
d

)
d−|π|/2 (47)

Proof. Let
π := argmax

π
|mπ|d|π|/2. (48)

Use Lemma 5 to choose S so that |π(S) ∩ S̄ ≥ |π|/2 and thus

∥Pd(π)ΓS∥1 = dn−|π(S)∩S̄| ≤ dn−|π|/2. (49)

Then

1 ≥
∣∣∣∣tr Pd(π)ΓS

dn−|π|/2M
ΓS

∣∣∣∣ from Hölder, (43) and (49) (50)

= d|π|/2
∣∣〈MΓS , Pd(π)

ΓS
〉∣∣ (51)

= d|π|/2 |⟨M,Pd(π)⟩| (52)

≥ d|π|/2|mπ| − d|π|/2
∑
π′ ̸=π

|mπ′ |Gπ,π′ (53)

≥ d|π|/2|mπ|(1−
∑
π′ ̸=π

d
|π|−|π′|

2 d−|π−1π′|) by (48) (54)

≥ d|π|/2|mπ|(1−
∑
π′ ̸=π

d−|π−1π′|/2) by the triangle inequality, (5) (55)

≥ d|π|/2|mπ|(2− en
2/2

√
d) by Equation (13) (56)

≥ d|π|/2|mπ|/(1 + n2/
√
d) using n2 ≤

√
d. (57)

7 Multipartite data hiding

Let ρ0, ρ1 be density matrices on n d-dimensional systems that commute with all U⊗n.
If ∥ρ0 − ρ1∥1 is large, then of course, given ρb for b ∈ {0, 1}, there is some (global)
measurement that can estimate b with some non-negligible bias. Here we will argue
that, on the other hand, LOCC measurements, or even PPT measurements, cannot
learn anything about b. This data-hiding scheme is due to Eggeling and Werner[26]
who shows that it was secure when n is fixed and d → ∞. Our contribution is to
extend their analysis to the case when n is up to O(

√
d) by using our approximate

orthogonality relationship.
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Theorem 8. Let ρ0, ρ1 be any density matrices on (Cd)⊗n that commute with all
U⊗n, and let {M, I −M} be a PPT measurement. If n ≤ d1/4 then

| trM(ρ0 − ρ1)| ≤
6n2√
d
. (58)

Proof. Let M0,M1 be the PPT measurement operators corresponding to guessing 0, 1
respectively. Let M =M0 −M1. Then

−I ≤MΓS ≤ I (59)

for any S ⊆ [n], where ΓS corresponds to taking the partial transpose of indices S.
Let ∆ = ρ0 − ρ1, so that the bias achieved by the measurement is trM∆. Observe
that tr∆ = 0 and that [∆, U⊗n] = 0 for all U .

We can assume WLOG that [M,U⊗n] = 0 as well. This is because

trM∆ = E
U
trMU⊗n∆(U†)⊗n = E

U
tr
(
(U†)⊗nMU⊗n)∆.

Thus, we can write M =
∑

π∈Sn
mπPd(π).

The bias is now bounded by

trM∆ =
∑
π ̸=e

mπ tr[Pd(π)∆] because tr∆ = 0 (60)

≤
∑
π ̸=e

|mπ|∥Pd(π)∥∞∥∆∥1 triangle inequality and Hölder (61)

=
∑
π ̸=e

|mπ| (62)

≤ 2
∑
π ̸=e

d−|π|/2 using Lemma 7 (63)

≤ 3(en
2/

√
d − 1) (64)

≤ 6n2/
√
d using n2 ≤

√
d. (65)

Theorem 8 applies to any two states ρ0, ρ1 satisfying the symmetry condition,
although it is only interesting when ∥ρ0−ρ1∥1 is large. Coming up with one such pair
is straightforward, but how many can be constructed simultaneously? Here we can
use Schur-Weyl duality (c.f. Appendix A) to show that any state commuting with all
U⊗n must be of the form ∑

λ∈Par(n,d)

pλρλ ⊗ τQd
λ
, (66)

where τQd
λ

:= IQd
λ
/ dimQd

λ. This permits N =
∑

λ∈Par(n,d) dimPλ perfectly

orthogonal states. Since d ≥ n, Par(n, d) includes all partitions of n, and thus
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∑
λ∈Par(n,d) dimP 2

λ = n!. As a result, N ≥
√
n!. On the other hand, Par(n, n) ≤ e2c

√
n

for c ≈ 1.28, so N ≤
√
n!ec

√
n. This analysis also implies that 1

2 log(n!) qubits can be
hidden in such states. If we are content with pairwise approximate distinguishability
then exponentially more states can be hidden [27].

Another application concerns the distinguishability of n copies of the same ran-
dom state from n copies of independently random states. As density matrices, these
correspond to E[ψ⊗n] and (I/d)⊗n respectively. If collective measurements are allowed
then projecting onto the symmetric subspace will almost perfectly distinguish these
states. But the situation is different with LOCC measurement.
Corollary 9 (Local purity tests). If a PPT measurement is used to distinguish E[ψ⊗n]
from (I/d)⊗n it will achieve bias ≤ O(n2/

√
d).

Recently and independently of this work, sharper upper and lower bounds were
found by Chen, Cotler, Huang and Li [28] who showed that n = Θ(

√
d) copies are

necessary and sufficient for local purity testing.

8 Limitations of local product tests

Suppose we are given n copies of a k-partite pure state |ψ⟩ ∈ (Cd)⊗k. We would like
to know if |ψ⟩ is close to being a product state |ψ1⟩ ⊗ · · · ⊗ |ψk⟩ or far from any such
state. A natural test for this is to project all n copies of each of the k subsystems onto
the n-fold symmetric subspace ∨nCd. If all the projections succeed, output “product”,
otherwise output “not product”. This test was proposed by [29] and analyzed by [30].
The test can be easily shown to be optimal among a reasonable class of such product
tests (see Section 5 of [30]), but the projections require entangling operations across
the n copies.

How effective can be make product tests without such entangling operations? If an
LOCC test existed, then it would imply that QMA = QMA(2) [31], and, depending on
the accuracy of the test, this might falsify the Unique Games Conjecture [32] or the
Exponential Time Hypothesis [30]. In [30] it was proved that such a test cannot exist
for n = 2. Here we show it cannot exist even for larger values of n, and even in the
easiest case where k = 2.

To be more precise we say that a product test consists of a two-outcome mea-
surement {M, I −M}, corresponding to outcomes “product” and “not product.” The
completeness c is min tr[Mψ⊗n] over all product states ψ while the soundness s is
max tr[Mψ⊗n] over all states ψ with overlap ≤ 1/2 with any product state. (The con-
stant 1/2 is arbitrary, however note that no state is orthogonal to all product states.)
Define the bias to be b = c − s. The standard product test from [29] was proved in
[30] to have bias ≥ Ω(1) with n = 2 and k arbitrary. However, we will see that this
cannot be achieved by a PPT test unless n grows with d.
Theorem 10. If {M, I −M} is a PPT product test for k = 2 acting on n copies of
a state, then its bias b is ≤ O(n2/d1/4).

Our relation between n and d is tight up to polynomial factors, since when n ≫
d2 then state tomography can be carried out even with no communication between
subsystems.
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Proof of Theorem 10. Assume that n ≤ d1/8 since otherwise the theorem holds
trivially. Let

∆ = E
|ψA⟩,|ψB⟩∈Cd

[ψ⊗n
A ⊗ ψ⊗n

B ]− E
|ψ⟩∈Cd2

[ψ⊗n]. (67)

Our goal is to show that trM∆ is small for any PPT measurement {M, I −M}.
First, we observe that ∆ commutes with U⊗n ⊗ V ⊗n, and so without loss of gen-

erality we can assume that M does as well. Thus, the arguments leading to (2) imply
that

M =
∑

πA,πB∈Sn

mπA,πB
Pd(πA)⊗ Pd(πB). (68)

For convenience, we will refer to the pair (πA, πB) as a single permutation π ∈ S2n.
Formally, we can embed Sn × Sn into S2n as the set of permutations that does not
mix {1, . . . , n} and {n+ 1, . . . , 2n}.

We will need to develop a variant of Lemma 7 to show that

mπ ≤ 2d−|π|/4. (69)

This will imply our desired result as follows:

trM∆ =
∑

πA,πB∈Sn

mπA,πB
tr(Pd(πA)⊗ Pd(πB))∆ (70)

=
∑

(πA,πB )̸=(e,e)

mπA,πB
tr(Pd(πA)⊗ Pd(πB))∆ since tr∆ = 0 (71)

≤
∑

(πA,πB )̸=(e,e)

|mπA,πB
| (72)

≤ 2
∑

(πA,πB )̸=(e,e)

d−
|πA|+|πB |

4 (73)

≤ 2

(∑
π∈Sn

d−
|π|
4

)2

− 1

 (74)

≤ 2((en
2/2d1/4)2 − 1) (75)

≤ 4n2

d1/4
(76)

Now we return to the proof of (69), which essentially repeats the proof of Lemma 7
but uses the multiple-permutation version of Lemma 6. The new feature of this setting
is that the locality constraint here is between A1B1 : A2B2 : · · · : AnBn while the
permutations πA and πB act on A1 . . . An and B1 . . . Bn respectively. Thus our PPT
condition is that ∥MΓS∥ ≤ 1 where ΓS is a shorthand for the transpose of systems⋃
i∈S{Ai, Bi}.
Following the proof of Lemma 7, let

π := arg max
π=πA×πB

|mπ|d|π|/4 (77)
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and use Lemma 6 to find S ⊆ [n] such that

|S ∩ πA(S̄)|+ |S ∩ πB(S̄)| ≥
|π|
4

=
|πA|+ |πB |

4
(78)

The rest of the proof is almost identical.

∥Pd(π)ΓS∥1 = dn−|S∩πA(S̄)| · dn−|S∩πB(S̄)| ≤ d2n−|π|/4. (79)

1 ≥
∣∣∣∣tr Pd(π)ΓS

d2n−|π|/4M
ΓS

∣∣∣∣ (80)

= d|π|/4 |⟨M,Pd(π)⟩| (81)

≥ d|π|/4|mπ| − d|π|/4
∑

π′∈Sn×Sn

π′ ̸=π

|mπ′ |Gπ,π′ (82)

≥ d|π|/4|mπ|(1−
∑

π′∈Sn×Sn

π′ ̸=π

d
|π|−|π′|

4 d−|π−1π′|) (83)

≥ d|π|/4|mπ|(1−
∑

π′∈Sn×Sn

π′ ̸=π

d−
3
4 |π

−1π′|) by the triangle inequality, (5)

(84)

≥ d|π|/4|mπ|

(
2−

(
e

n2

2d3/4

)2
)

by Equation (12)

(85)

≥ 1

2
d|π|/4|mπ| (86)

A Full spectrum of the Gram matrix

In this appendix we give a self-contained proof of Lemma 2. The idea is to decompose
the permutation action Pd into irreps of Sn. We begin with some terminology from
representation theory.

Let Par(n, d) denote the set of partitions of n into d parts; that is λ ∈ Par(n, d) if

λ = (λ1, . . . , λd) ∈ Zd+ with λ1 ≥ · · · ≥ λd ≥ 0 and
∑d

i=1 λi. We also identify λ with
the set of (i, j) ∈ N2 with j ≤ λi. Schur-Weyl duality states that

(Cd)⊗n ∼=
⊕

λ∈Par(n,d)

Qd
λ ⊗ Pλ, (87)

where Qd
λ labels an irrep of Ud and Pλ labels an irrep of Sn. Let qdλ(U) and pλ(π)

denote the corresponding group actions of Ud and Sn. Assume for convenience that
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pλ(π) is always a real orthogonal matrix. We let USch denote the unitary isomorphism
mapping the LHS of (87) to the RHS; however, we generally abuse notation and omit
writing USch.

We will need to make use of the following formulas for the dimensions of these
irreps. Define λ̃ := λ+ (d− 1, d− 2, . . . , 1, 0). Then [1, 33]

dimQd
λ =

∏
1≤i<j≤d(λ̃i − λ̃j)∏d−1

m=1m!
(88)

dimPλ =
n!

λ̃1!λ̃2! · · · λ̃d!

∏
1≤i<j≤d

(λ̃i − λ̃j) (89)

We will need the ratio of these dimensions. One can directly calculate (and see also
[34])

n! dimQd
λ

dimPλ
=

d∏
i=1

λi + d− i!

d− i!
=

d∏
i=1

λi∏
j=1

d− i+ j (90)

This last double product can be abbreviated as the product over (i, j) ∈ λ, where λ
is overloaded to mean both the partition λ1, . . . , λd and the set {(i, j) : 1 ≤ j ≤ λi}.

Proof of Lemma 2. Let {|π⟩ : π ∈ Sn} denote a set of orthonormal vectors indexed
by the permutations and define |vπ⟩ = (I ⊗ Pd(π)) |Φd⟩⊗n. We also define the max-

imally entangled states |ΦPλ
⟩ ∈ Pλ ⊗ Pλ and

∣∣∣ΦQd
λ

〉
∈ Qd

λ ⊗ (Qd
λ)

∗ to be unit

vectors that are invariant respectively under pλ(π) ⊗ pλ(π) for all π ∈ Sn and
qdλ(U) ⊗ qdλ(U)∗ for all U ∈ Ud. (We can omit the ∗ for Pλ because we have taken
pλ(π) to be real orthogonal matrices.) By Schur’s Lemma, these conditions spec-

ify |ΦPλ
⟩ and

∣∣∣ΦQd
λ

〉
uniquely, up to a phase. To set this phase, let |Φd⟩⊗n :=∑

λ∈Par(n,d)

√
dimQd

λ dimPλ

dn |λ, λ⟩
∣∣∣ΦQd

λ

〉
|ΦPλ

⟩. Thus

|vπ⟩ =
∑

λ∈Par(n,d)

√
dimQd

λ dimPλ
dn

|λ, λ⟩
∣∣∣ΦQd

λ

〉
(I ⊗ pλ(π)) |ΦPλ

⟩ . (91)

Observe that ⟨vπ1
|vπ2

⟩ = ⟨Pd(π1), Pd(π2)⟩. Define the matrix K(n,d) :=∑
π∈Sn

|π⟩ ⟨vπ|, and observe that G(n,d) = K(n,d)(K(n,d))†. Thus G(n,d) is isospectral
to

(K(n,d))†K(n,d) =
∑
π∈Sn

|vπ⟩ ⟨vπ| (92)

= n!
∑

λ∈Par(n,d)

dimQd
λ dimPλ
dn

|λ, λ⟩ ⟨λ, λ| ⊗
∣∣∣ΦQd

λ

〉〈
ΦQd

λ

∣∣∣⊗ IPλ

dimPλ
⊗ IPλ

dimPλ
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Remark 2. The matrix
∑

π |vπ⟩ ⟨vπ| in Equation (92) has another interpretation. If

we apply a random Pd(π) to half of |Φd⟩⊗n then we obtain the state

1

n!

∑
π

|vπ⟩ ⟨vπ| =
(K(n,d))†K(n,d)

n!
, (93)

which is isospectral to G/n!.

B Partitions are not approximately orthogonal

Most conclusions in this paper do not depend strongly on the properties of Sn or Ud. As
noted in Remark 1, to show that ∥G−I∥ ≤ n2/2d, we need only that Gx,y = d−dist(x,y)

where dist(·, ·) is the graph distance on a graph of degree ≤ n2/2. Could we replace
Sn with other sets?

Of course for general N -dimensional vectors, one can have exp
(
O(Nϵ2)

)
) vec-

tors with pairwise inner product at most ϵ, but they must be collectively far from
an orthonormal basis. So pairwise distance certainly does not guarantee any kind of
approximate orthogonality in the collective sense we have discussed.

There is one natural analogue of Sn where approximate orthogonality also turns
out to fail. This example is due to Kevin Zatloukal. Let Pn be the set of partitions of
the set [n]. For example, P3 consists of five partitions: {{1}, {2}, {3}}, {{1, 3}, {2}},
{{1}, {2, 3}}, {{1, 2}, {3}}, and {{1, 2, 3}}. Given a partition Π, define [d]Π to be the
set of strings x1, . . . , xn ∈ [d]n where xi = xj whenever i, j are in the same block of
Π. The corresponding quantum state is

|EΠ⟩ := d−
number of blocks of Π

2

∑
x∈[d]Π

|x⟩ . (94)

These states were used in 0811.2597.
Let G[Pn] denote the Gram matrix of {|EΠ⟩} states, while we use G[Sn] to denote

the Gram matrix studied in the rest of the paper. ConcretelyG[Pn]Π1,Π2 = | ⟨Π1|Π2⟩ |2.
In both cases we have 1 on the diagonal and positive powers of 1/d for each off-diagonal
entry. In both cases, the dimension is exponential in n. (The number of partitions is
given by the Bell numbers, which are ≤ nn.) However the interpretation in terms of
distances in a low-degree graph does not exist. Indeed, if Π0 = {{1, 2, . . . , n}} and
ΠS = {S, [n] − S} for some nonempty S ⊂ [n], then | ⟨Π0|ΠS⟩ |2 = 1/d and there are
2n − 2 choices of S. As a result the norm of G[Pn] is large unless d≫ 2n.
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