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ABSTRACT

The topology problem in store and forward computer networks is that of keeping
all nodes informed of the current operational status of each communication link in the
network. The failure or repair of one or more communication links is called a topology
change. Two efficient algorithms are presented for solving this problem. They require O(!)
communication and O(n) time for simple topology changes in a network with [ links and
n nodes. The algorithms send messages only in response to topology changes, and each
message usually contains information only about the links whose status has changed. The
algorithms work properly in the presence of arbitrarily complex topology changes.

The routing information problem is that of keeping each node informed of the the
packet transmission delay on each directed link in the network. Nodes need this information
in order to make intelligent routing decisions. The two topology algorithms discussed above
are used to also solve the routing information problem. The level of difficulty in solving this
problem is found to depend greatly on the particular properties of the topology algorithm
used.
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CHAPTER 1

Introduction
1.1 Computer Network Model

A computer network consists of a set of computers called nodes which are connected
by bidirectional communication channels called links. An example of such a network is
shown in Figure 1.1.1. The bidirectional arrows at each node indicate that messages enter
and leave the network at those points. The function of the network is to accept a message
at some source node and to deliver it to the appropriate destination node. The external
source which supplies messages to a node may be a computer or a user’s terminal and is
not significant in our work. We shall view nodes as being both sources and destinations of
messages and will not be concerned with how these messages are generated or used. What

we are calling a computer network is usually referred to as a “sub-network” in the literature

[1]-

This thesis will be exclusively concerned with packet switched networks. A packet
network is one which divides a long message into bundles, called packets, which are then
sent separately from the source node to the destination node. An important job of the
network is to decide which of several possible routes a packet traveling from one node to
another should take. This is known as the routing problem. For example, in Figure 1.1.1
node 1 could send a packet to node 4 through either node 3 or node 2. At each node
processor, a routing algorithm is used to make these decisions. A major goal of this thesis
is to provide the routing algorithm at each node with information upon which to base its

routing decisions. The specific contents of this information will be discussed shortly.

In order to state the problem precisely, it is useful to introduce several concepts

from graph theory [2]. We can view the network of Figure 1.1.1 as an undirected graph with
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Figure 1.1.1: A Computer Network Model

6 nodes and 5 links (also called arcs and edges). The information contained in this graph,
i.e. which links are connected to which nodes, is known as the network topology. A given
link is said to be incident on two nodes which are called the end nodes of that link. Two
nodes are connected if a path exists between them. A node is said to be connected to a link
if a path exists between the node and either of the link’s end nodes. A maximum connected
set of nodes is a largest pessible set of mutually connected nodes. In Figure 1.1.1 there are
two maximum connected sets of nodes, {1,2,3,4} and {5,6}. Each of these sets is called a
component. A maximum connected set of links is the set of all links which are incident on
one or more members of a given maximum connected set of nodes. We will often use the

term maximum connected set to refer to either links, nodes, or both.

The number of links and nodes in a network are not independent. It can be shown

that in a connected network with n nodes, the number of links, /, must be bounded by:

n—lsls_-n(n——l)

Figure 1.1.2 shows two extreme situations for a 4 node network. The left hand network
contains the maximum number of links and is called fully connected. The right hand

network is as sparsely connected as possible. One of the major motivations for using packet
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Figure 1.1.2: Connectivity Example

switching networks is to interconnect many nodes without needing a communication channel
between each pair. Thus, in practice, the number of links in an n node network is usually
much closer to the lower bound than the upper bound. For example, a common computer

network, the ARPANET, at one time had 62 nodes and 74 links [4].

So far, we have been discussing general packet switching networks. However, this
thesis is concerned with networks that have some additional restrictions. Our work is
applicable to wide-area networks with topologies which do not usually change very often.
The classic example of this type of network is the ARPANET [3]. The wide area assumption
implies that communication over the network is expensive (i.e. a significant fraction of the
total cost of the network) and should be minimized. We are concerned with networks
where the topology is usually static, but may change occasionally due to a link or node
failing or being repaired. This work may be applicable to broadcast networks pravided that
their topology can be represented by a graph which does not change rapidly. We exclude
situations, such as mobile packet radio, where the network topology is in a nearly continuous

state of change.



1.2 The Topology Problem

At any time while a network is in operation, one of its links or nodes may mal-
function. We call this event a link or node failure. For links, this may occur because the
link has been physically damaged or because the error rate on the link has become so high
as to make it unusable. Also, at any time a link or node which had failed may become

operational again. Each of these failures or repairs is known as a topology change.

It is usually very desirable for each node in a network to be kept aware of the
current network topology. A node needs to know which other nodes it is disconnected from
so that it will not try to send packets to those nodes. The routing algorithm at each node
needs to know which links are not operating so that it can avoid routing packets on them.
Unfortunately, due to the inherent communication delay in the network, no node can be
sure that it is aware of the present network topology. However, we can design algerithms
which guarantee that a finite time after a link topology change occurs, each node connected
to that link is made aware of the change. The major focus of this thesis is to design
algorithms which have this property, perhaps subject to some additional assumptions and

requirements. We refer to this as the topology problem.

Solutions to the topology problem can consider link topology changes to be a general
case. When a node failure occurs, we assume that each link incident on that node also fails.
When a node is repaired, at least one of its incident links should also begin operating. In

this way, all node failures and repairs can be considered to be a set of link topology changés.

We can define the topology problem more precisely by first considering how a
link topology change occurs. At each end node of a link, there is a device called a data
link controller {(DLC). The two DLC’s associated with a link are responsible for sending
and receiving information over it. When the link is operating, they provide error free
communication by means of some protocol protection mechanism. However, at any time,
either of a link’s DLC’s may decide that the link is not operating. We require that both

of a link’s DLC’s eventually reach the same decision about the operating status of a link,
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although not necessarily at the exact same time. Each link is either operating (up) or not
operating (down) at a given time. We can resolve the conflict during the short interval
when the two DLC’s may have different opinions by considering the link to be down during

that time.

Using this definition of link status, we can define the topology problem precisely.

Topology Problem. If no status changes have occurred for a sufficient but finite time,
each node in a maximum connected set of nodes must know the correct status of each link

incident on a member of that set.

This is typically accomplished by broadcasting topology information using special message
packets. We define broadcasting as the process of sending a message to every node in the
network which can be reached from a given source node. Several methods of doing this
will be discussed later. The requirement that no status changes occur for a sufficient but
finite time is meant to exclude situations where the topology is rapidly and continuously
changing. Our solutions to the topology problem will work properly even if a large number
of changes occur in a short time. However, in order for the algorithms which we design to
terminate (stop sending messages and adopt a consistent topology) there must eventually
be a stagnant period during which no link status changes occur. This corresponds to placing
a constraint on the average time between link status changes in a network, but not placing

any restrictions on the short term behavior of a link.

At this point it is useful to examine a simple example which illustrates one of the
reasons why the topology problem is difficult to solve (refer to Figure 1.2.1). Assume that
link [ fails and then, a very short time later, is repaired. Also assume that we adopt the
simpleb rule that when a node finds outv about a topology change it sends a message to each
of its neighbors notifying them of the change. Thus, node 3 first sends a message to 1
and 2 telling them that link ! has failed. A short time later it sends two more messages
telling them that ! has been repaired. Assume that node 2 receives the two messages from

node 3 very quickly and sends them on to node 1. Assume that node 1 receives the two
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Figure 1.2.1: Topology Problem Example

messages from node 2 before receiving the first DOWN message from node 3. Now assume
that before the final UP message arrives at node 1, the link connecting nodes 1 and 3 fails,
and the UP message is never received. The last message that node 1 received said that link
[ was DOWN, yet the final state of link { is UP. Node 1 has received the topology change
messages out of order. Although each link maintains order while it is operating, topology
changes can result in messages being received out of order. It is quite easy to design a
solution which will work for this particular example, but to find one which works for all

possible cases is difficult.

The fundamental problemn which the above example brought out was the difficulty in
distinguishing between old and new information about the status of a link. Several obvious
solutions immediately present themselves. We could tag each change message with a time
stamp indicating when it was created. Or, some sequence number or counter could be used
for this purpose. These are certainly reasonable suggestions, and indeed algorithms which
incorporate them are used in actual networks {3, 6]. However, each of these solutions carries
with it a set of additional problems. This will be discussed in more detail shortly. Practical
algorithms can be devised which work properly most, or nearly all of the time. However, we

seek algorithms which are theoretically guaranteed to solve the topology problem despite
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arbitrary link topology changes and without placing any short term limit on the frequency

of topology changes or the transmission delay of messages.

Another fundamental difficulty in solving the topology problem occurs when two
sets of nodes are disconnected for a long time by one or more link failures. When these two
sets (or components) are reconnected, they may have little or no knowledge of each others
topology. We must find a way for both of them to adopt a single, consistent view of the

network topology.

We are interested in algorithms which solve the topology problem and, in addition,
have some very special properties. We desire algorithms which are event driven. This means
that they transmit rnessa.ge;s only in response to topology changes. If no topology changes
occur, no messages should be sent. The reason for this is to reduce the number of messages
that the algorithm sends. Algorithms which use time-outs usually do so because they are
not guaranteed to work unless messages are transmitted periodically. If the time-outs are
short, then many messages are sent. If they are long, the algorithm may be extremely
slow in some situations. By avoiding timers altogether, we need not be concerned with
this trade-off. We are interested in algorithms which are efficient in terms of the number
of messages that are sent in response to probable topology changes such as a single link
failure or repair. The simultaneous (or virtually simultaneous) failure of many links is such
a rare event that we are not particularly concerned with the efficiency in such a case. The
exception to this is a node failure in which all of the links incident on that node may fail
at approximately the same time. Most nodes have only a few adjacent links, so that even

when a node fails the number of topology changes is quite small.

In addition to being event driven, we seek algorithms which, whenever possible,
send messages only about links which have changed status. Occasionally, this will not be
possible. For example, in Figure 1.1.1if a link between nodes 3 and 5 was suddenly repaired,
node 5 would be connected to four new nodes. Node 5 may not have any information about

the topology of the left hand connected set. Thereiore, information about links whose status
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has not changed would have to be broadcast in this case. This occurs whenever the network
has been partitioned into two or more maximum connected sets which are reconnected at
a later time. We refer to algorithms which try to change an existing topology in response
to a topology change as delta-topology algorithms. The alternative is to rebuild the entire
network topology each time a change occurs. The motivation for delta-topology algorithms
is to reduce the number and size of messages that must be sent in response to most topology

changes.

We also seek algorithms which do not use counters or sequence numbers to distin-
guish between old and new information and which do not use time-outs to decide when to
transmit messages. Timers are avoided since they can be set incorrectly and must often be
changed as the network grows or changes. If counters or sequence numbers are included in
the algorithm messages, they must use finite length fields. These fields must either wrap
around or be reset at some time. Resetting is difficult to achieve since the topology may
change during the reset operation, perhaps making some nodes unreachable. When wrap
around occurs we are faced with the problem of determining which of two counter values
is the greater. Simply choosing a large bit field for the counter, in addition to being rather
inelegant, is not a practical solution to this problem. When a partition occurs, two sets of
nodes can develop arbitrarily different counter values. When the two sets are reconnected
we must compare whatever counters we are using. Some of the counters may have wrapped
around and we are again faced with the problem of determining which is greater. Also,
after a node has failed it has no way of knowing what counter value it had been using.
This does not mean to imply that algorithms which use counters cannot work. Indeed, the
current ARPANET algorithm uses these methods extensively and usually works quite well.
However, it is very difficult to design algorithms using these methods which are guaranteed
to work properly in unusual low probability situations. For an excellent discussion on the
use of counters, sequence numbers, timers, etc. in solving a generalization of the topology

problem see [7].

Over the lifetime of a network, low probability events do occur, and cannot be
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ignored [8]. We are interested in examining if the topology problem can be solved without
resorting to counters, timers, etc. in the hope that this will help in designing algorithms
which are guaranteed to work. We are also interested in understanding the trade-offs

involved in this approach.
1.3 Criteria for Performance Analysis

In designing algorithms which solve the topology problem, it is useful to have some
criteria by which to measure goodness. For our purposes, the most important characteristic
of a topology algorithm is the worst case amount of communication that it uses in responding
to a probable topology change event. We define the communication complexity, C, to be
the number of messages that an algorithm sends in response to a particular event. C will
usually depend on such constants as n and /, the. number of nodes and links in the network.
It is customary to consider the number of “elementary messages” that an algorithm sends.
This is to stop an algorithm from “cheating” by sending a few large messages instead of
many small ones. The algorithms that we will present typically use very short messages—
usually about the same number of bits as the DLC will add on for framing and error control.
We are not very concerned about taking into acccunt the size of messages, and are perfectly
content to consider C to be the actual number of messages sent. In addition to the actual
value of C, we are concerned with its order, that is, how it grows with increasing n or /.

When we write C ~ O(n) this means that there is a constant & such that C < nk [9].

Another traditional measure of the goodness of a distributed algorithm is its time
complexity, T'. For a given topology change event, T is the maximum number of time units
until the algorithm terminates, if the transmission of each message is assumed to take at
most one time unit. As with C, we are mainly concerned with the value that T takes on
for probable topology changes such as a single link failure. We can also define the order of
T in a similar manner as was done for C. The important time for topology algorithms is
how long it takes for each node in a maximum connected set to become aware that a link

has failed. Depending on the particular algorithm, this time may be much smaller than

14



T. However, T does give an upper bound on this time. We are mainly concerned with the
order of T'. For example, we would not want T to grow exponentially with the size of the

network for a common topology change.

We mentioned ea.rlier that the topology problem should be solved after no status
changes have occurred for a sufficient but finite time. T determines the required time for a
particular network topology. The algorithms that we will present can be expected to take
anywhere from a fraction of a second to a few seconds to run. However, the average time
between topology changes in the types of networks that we are concerned with is at least
hours, and is probably days, weeks or months. Thus, having a good estimate of T is not

particularly important, provided that it is much less than the mean time between failures.
1.4 The Routing Information Problem

Many types of routing algorithms require some measure of the delay or cost of
sending a message packet in each direction, on each link in the network, in order to make
their routing decisions [1, 4]. We refer to this as requiring global information. Each node
periodically or continuously measures the delay in transmitting packets on each of its ad-
jacent links. We are not concerned with how or how often these measurements are made.
They can be absolute, averaged, scaled, etc.. We refer to these measurementé as “delay
measurements” or more generally as “routing information.” The actual values are not our
concern as long as they have some significance to the particular routing algorithm being
used, and can be adequately represented using a finite length field. At any time, a node
may produce a new value for the routing delay on one of its outgoing links. The node would
like to broadcast the new value to each node to which it is connected and be sure that each
connected node receives the new delay measurement even when topology changes occur.
We call this the routing information problem. Any routing algorithm which requires global

information must solve this problem in some way.

It is apparent that the routing information problem is quite similar to the topology

problem in many respects. We can consider it to be a generalization of the topology problem
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: ;vhich allows directed links to have any one of a set of possible delay values. One such value
would correspond to infinite delay meaning that the link has failed. However, there are also
some important differences between the two problems. A change in the value of a delay
measurement has a much lower priority then a topology change. Typically such a delay
change will result in a slight change in the current routing being used by the network [10].
We are not overly concerned that this delay change be broadcast as quickly as possible. A
delay change is a much more commc: event than a topology change. A normally functioning
network can be expected to generate delay changes as an ordinary consequence of changing
traffic patterns. Since delay changes are quite common, we are even more concerned with

minimizing communication than we were with topology changes.

The properties that we desire in routing information algorithms are the same as
those desired in a topology algorithm. We want event driven algorithms which transmit
messages only when delay values change. We would also like to send delay information
about only those links whose delay value has changed, whenever possible. Timers, time-
outs, counters and sequence numbers will not be used for the same reasons mentioned
earlier. The most important characteristics of the routing information algorithms that we
will consider are that they are guaranteed to work in the presence of arbitrary topology
changes, and that they minimize communication during normal operation. Of course, we
also want routing information algorithms which are independent of the particular routing

algorithm used.

In practical networks [6], and in the literature [11], the topology problem and the
routing information problem are usually solved as an integral part of the routing algorithm.
This usually involves significantly complicating an already complex routing algorithm and
develops a solution which is highly dependent on the particular routing method used. In
this thesis we are interested in studying the topology and routing information problems
separately from the actual routing algorithm. In this way we can develop solutions which
are more widely applicable. By dividing the overall problem, we hope to make it easier

to soive. For example, once the topology problem has been solved, we may be able to use
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this solution to simplify the routing information problem. Solving both of these problems
greatly simplifies the design of the actual routing algorithm since all of the information that

is needed to make routing decisions is available and reliable at each node.
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CHAPTER 2

Summary and Analysis of Previous Work

In this chapter we present and analyze one algorithm for solving the combined
routing information and topology problem, and two algorithms for solving the topology
problem alone. Each method accomplishes slightly different tasks and so direct comparison
is difficult. The last two algorithms are event driven and can therefore be analyzed in terms
of their time and communication complexity. We present this analysis to serve as a basis

for comparison to the algorithms which will be discussed in Chapter 3.
2.1 The ARPANET Update Policy

The current algorithm used on the ARPANET solves both thé topology and routing
information problems together, and is known as the Update policy of the routing algorithm.
The algorithm is not, strictly speaking, event driven. It does transmit messages in response
to topology or delay changes, but it also requires that this information be transmitted at
least once a minute even if it has not changed. The algorithm uses a combination of time-
outs sequence numbers and packet aging to insure reliability in nearly all situations. It is a
carefully designed practical solution to the problems that we have discussed. The following

1s a brief summary of some of the important properties of this protocol [5].

Each node measures delay on each of its outgoing links over a 10 second interval.
If the measured delay value differs from the previously transmitted value by more than
a certain threshold, a new message called an update packet is formed which contains the
new measurement. The threshold is a monotonically decreasing function of time which
eventually becomes zero, so that after a certain time an update packet will be created even
if the delay on a link has not changed. A faiied link is considered to have a very large delay

and is handled immediately.
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Each update packet produced at a node is labeled with the identity of the node, a
sequence number, and an age field. Update packets are then broadcast to every connected
node using “flooding.” In flooding, each node broadcasts a received packet on all its links
including the one on which the packet was received. This echo message serves as an ac-
knowledgement. If it is not received within a time-out period, the packet is retransmitted.
When a node receives an update packet, it always sends an acknowledgement echo to the
transmitting node, but must decide whether to accept this new packet based on the se-
quence number and age fields. Each node keeps the sequence number and age for the last
packet that it accepted from a given node. The age fields are all incremented with each
clock tick until they reach a maximum value. When a node receives an update packet from
some other node it checks the age field of the last packet received from that node. If the
age field is at its maximum then the old update is “too old,” and the new one is accepted
and forwarded to all neighbors. Otherwise, the sequence numbers of the old packet and
the one just received are compared (modulo 2). The new packet is only accepted if it has
a higher sequence number than the previously accepted packet. The first packet received

from a given node is always accepted.

When a node fails, it must be prohibited from restarting until all of the update
packets which it had previously sent have reached maximum age. Then, any new messages
that it transmits will be accepted. After a node becomes operational, it will receive an
update packet from each connected node, since they must be transmitted at least once in a
given time interval. Thus a node will automatically receive the latest delay measurements

a finite time after being reconnected to a set of nodes.

The ARPANET procedure works well but has some disadvantages. The most im-
portant is that there are certain very low probability events for which the algorithm will not
function properly [8]. In addition, it involves proper settings of several different parameters:
the maximum age of packets, the minimum interval between creation of update packets,
the maximum interval between creation of update packets, etc. . Trying to determine the

optimum settings for each of these parameters can result in contradictory goals. Also, as
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the size of the network grows some of these parameters need to be changed; they are not
self-adjusting. In addition, it is theoretically possible for packets to avoid aging and to
circulate indefinitely. Perlman (7] has suggested several modifications to the update policy

which improve performance and reduce dependency on timing parameters.

Since the ARPANET update procedure is not purely event driven it cannot be said
to have a true time or communication complexity. However, we can still analyze its behavior
in some simple situations. When a single link changes delay above a threshold, it results in
a flood operation which sends one packet in each direction on each link. Therefore for this
case, C = 2l. If each of these packets takes at most one time unit then the last message
must be received within d + 1 time units, where d is the diameter of the network in hops.
The +1 accounts for the final echo acknowledgement. The diameter of an n node network
is upper bounded by n — 1 therefore in this case T = n. In summary, for the ARPANET

update procedure responding to a delay change on a single link we have:
C=20~0() T =n~O(n)

2.2 The Finn Algorithm

An algorithm which can be adapted to solve the topology problem was presented
by Finn in 1979 [12]. The algorithm, as it was originally presented, does not actually
result in each node knowing the network topology. Rather, each node determines which
other nodes it is connected to. In addition, the Finn algorithm has a special property called
resynchronization which will be described shortly. Roskind [13] modified the Finn algorithm
so that it would also compute the network topology. The modification does not alter the
structure or logic of the algorithm, but does require that additional information be stored
at each node and be transmitted in each algorithm message. We proceed to analyze some of
the characteristics of this algorithm. What we will refer to as the Finn algorithm is actually

Roskind’s modification.

We are interested in the Finn algorithm because it has several of the properties

which we have called desirable. The algorithm is purely event driven. It sends messages
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only when link topology changes occur. The algorithm is also free from timers and time-
outs. It uses counters while it is running, but after termination old counter values are not
needed. In addition, the maximum value of these counters is strictly bounded and wrap-
around presents no problems. Unfortunately, the algorithm is not of the delta-topology
type. It responds to each topology change, no matter how minor, by ignoring the old
network topology, and completely reconstructing a new topology. When a single link fails
or is repaired the entire network topology is rebuilt. The algorithm unquestionably works
properly in any topology change situation, but is not at all efficient in communication. This
1s not surprising since efficiency was not one of Dr. Finn’s goals in designing the algorithm.
He was interested in proving that such as algorithm could be used to provide a perfectly
reliable end to end packet delivery protocol. Such protocols are outside of the scope of this
thesis.

In addition to solving the topology problem the Finn algorithm has a set of prop-
erties collectively called resynchronization. For the purposes of this thesis we will consider
an algorithm to accomplish resynchronization if it has the following properties:

1) All nodes in a connected set must start running the algorithm before any node
stops running the algorithm.

2) When a node stops running the algorithm, it sends a message to each of its neigh-
bors. Upon receipt of this message, each neighbor will either stop running the
algorithm or will have started running a new version of the algorithm.

3) Before the algorithm can terminate at any node, at least one message must have
been sent in each direction on each link.

It is not at all clear, at this point, why we should want a topology algorithm to
have these particular properties. Indeed, if all we are interested in is solving the topology
problem, there is little motivation to consider resynchronization. In Chapter 4 we shall
consider the routing information problem. We will show that the solution to this problem
is greatly simplified if a topology algorithm is available which has the resynchronization
properties. Until then, we shall accept resynchronization as a desirable property of topology

algorithms when solving the routing information problem is also being considered.
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We will present a very simplified picture of the Finn algorithm. Each node is either
in normal mode (not running the algorithm) or resync. mode (running the algorithm).
When a node detects a status change, it enters resync. mode and sends a message to each of
its neighbors. The message consists of a resync. count, a node table N, and an edge table
E. These tables are also stored at each node. We will not be concerned with the resync.
count. The node table N, at some node n, contains an entry for each node in the network.
Each entry N; can take on one of three possible values.

N; = 0: Node ¢ has not been heard from since the beginning of the algorithm.

N; =1: A message has been received from node 1.

N; = 2: Node 1 has received an algorithm message on each of its working links.
The E table stored at each node contains an entry for each link in the network. Each entry
E); can take on one of two possible values.

E; = 0: Link [ is not operating.

E; = 1: Link [ is operating.

When a node n starts the algorithm, it knows that it is connected to itself, and
sets N, = 1. The rest of the entries in N and E start out at zero. When a node receives
a message over a link [, it knows that link / is working and can set EZ; = 1. When node
n has received a message over each of its working links, it sets N, = 2. Other than the
above internal changes to NV and F, a node only modifies these tables as a result of the
information contained in an algorithm message. A received message contains a neighboring
node’s N and E' tables. The node combines its own tables with those received by taking
an entry by entry maximum. This has the effect of a node adding a neighbor’s knowledge
of the network topology to its own. The node then stores these combined tables and also
transmits them to each neighbor. Each time a node receives a message, it modifies its £
and N tables accordingly, and then transmits these tables to each neighbor. Thus, any time
a node gains further knowledge of the network topology it informs each neighbor. In this

way, complete knowledge of the network topology is gradually gained by each node.

Eventually, each node n makes its own entry in its node table N, = 2, and sends
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this to each neighbor. When a node’s N table contains entries which are all 0 or 2, it has
heard from every connected node and can terminate the algorithm, after transmitting its
tables. This can be seen as follows. When a node n makes its own value N, = 2, it must
have heard from each of its neighbors, and must have N; > 1 V neighbors ¢. Therefore,
the message that it sends when it attains a value of N, = 2 must also contain N; > 1 for
each of its neighbors, i. Any time a node has N, = 2 for some node n, it must also have
N; > 1 for each of node n’s neighbors, . Therefore, if a node has all entries in its N table
equal to O or 2 there cannot be any other connected nodes which it has not heard from. It
can be shown that when the termination condition is reached, the topology table E is also

complete and correct.

The algorithm also contains a mechanism for detecting further changes in the topol-
ogy while it is running. When this occurs, each node begins building the topology over

again.

We are interested in finding the time and communication complexity of the Finn
algorithm. As the algorithm is presented by Finn and Roskind, it can require unbounded
communication. This is due to a node transmitting messuges each time it receives a message.
If we make no assumptions about transmission delays, it is easy to see that a group of nodes
will keep exchanging messages while they wait for some other message to arrive over a slow
path. If there is no limit on the transmission delay on the slow path, there can be no bound
on the number of messages sent. This problem can be solved by adopting the simple rule
that nodes only send messages when their ¥V tables change. It is clear that the algorithm

must still work since we are only eliminating duplicate messages.

We consider first the case of a single link topology change, and try to find an upper
bound on the number of messages sent. Let a network have ! links and n connected nodes,
after the topology change. We are only concerned with these connected nodes. We will
establish a bound on the maximum number of times that a node’s N table can change.

Each entry N; can go from O to 1, and then from 1 to 2. This means that the table can
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change at most 2n times. However, except for the node which started the algorithm, each
node begins with at least two N;’s = 1 (itself, and the first node that it received a message
from). Therefore, a node’s N table can change at most 2n — 2 times. This means that each
node sends at most 2n — 2 messages on each of its links. We define a port to be an end of a
link. Thus there are 2/ ports in the network. Each node sends (2n — 2) messages on each of
its ports. Therefore, a total of 2/(2n — 2) messages are sent on the network. The node which
starts the algorithm also sends one additional message on each of its ports. This message
has at only one N; = 1 (itself). Since the starting node can have at most n — 1 ports, the

communication complexity for a single link topology change is bounded by:
C<2A(n-2)+(n-1)

or:

C<(dl+1)(n-1)
C ~ O(nl)

It can be shown that this bound is satisfied with equality for a fully connected network with
appropriate message timing. In addition to the large number of messages that the algorithm
sends, each individual message is quite large. The messages in the Finn algorithm contain
information about each node in the network. If message size were incorporated into C, it

would become even larger.

We can obtain a best case bound by noticing that there is a constraint on how
rapidly (in terms of the number of changes) a node’s N table can change. Define k to be
the number of entries in a node’s N table for which N; = 2. At the start of the algorithm,
k = 0. When a node terminates the algorithm, k£ = n. Each time k changes a node must
transmit a message to each neighbor since the node’s N table must have changed. It can
be shown that a node’s value of k can increase by at most 2 in response to receiving a
single algorithm message. A node’s value of k must go from O to n and can increase by at
most 2 each time it changes. Therefore, a node’s vaiue of k must change at least 3 times.

Each node sends at least 3 messages on each of its links. Therefore, the total number of
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messages sent is lower bounded by 2[3. This lower bound is not at all tight; the Finn

algorithm usually sends at least twice as many messages as this bound requires.

In summary, the bounds on C for the Finn algorithm are:
In<C<(4l+1)(n-1)

C ~ O(ln)

For an arbitrary number of topology changes, the worst case is for the algorithm to be
nearly finished with one change when the next topology change occurs. Therefore, for &
topology changes we have:

C < k(4 +1)(n - 1)

The time complexity of the Finn Algorithm for a single topology change can be
bounded very simply. Let d be the diameter of the network. After d time units, each node
has started the algorithm. After one more time unit, each node n has N, = 2. After d more
time units, each node has N; = 2 for each connected node 1, and after one more time unit
the algorithm must have terminated at each node. The diameter of the network is upper

bounded by n — 1, so we have the following bound on the time complexity.
T < 2n T ~ O(n)

2.3 The kSTRA Algorithm

Roskind [13] has developed a topology algorithm for dealing with a few special
cases of the topology problem which is very efficient in communication. This algorithm,
called kSTRA (k Spanning Tree Resynchronization Algorithm), works properly for a small
number of link topology changes provided that there are no node failures or component
reconnects. In all other cases, the Finn algorithm must be run. The kSTRA algorithm is
not self sufficient, and must work in conjunction with the Finn algorithm. kSTRA is event
driven and is delta-topology, but it uses a counter which must be stored between successive

runs. This counter is strictly bounded (in fact, it is binary), but it presents difficulties if
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we try to generalize kSTRA to deal with component reconnects and node failures. We are
interested in kSTRA because its structure is similar to one of the algorithms which will
be presented in the next chapter. Indeed, kSTRA served as the major inspiration for this

work.

After the Finn algorithm terminates, each node in a connected set is guaranteed
to have the same topology table, £. kSTRA uses this fact to generate the same set of
edge disjoint spanning trees at each node. The number of edge disjoint spanning trees that
exist in a network is limited by the degree of the lowest degree node in the graph which
describes the network topology. There are typically only one or two edge disjoint trees in a
network. The idea of kSTRA is to use these precomputed spanning trees to communicate
topology change information. For a node k to send a message to all other nodes in the
network requires at least n — 1 messages. If k used a spanning tree to send this message, it
would require exactly n —1 messages. Therefore, the use of a spanning tree to communicate
messages is optimal in this sense. kSTRA reduces the number of messages which must be

sent by communicating most of its messages over spanning trees.

The algorithm has three phases. The first is the notify phase. When a node &
detects a link status change, it finds an intact spanning tree (one which has not been
damaged by the status change) and uses the tree to notify each connected node of the
change. If no intact trees remain, the Finn algorithm is run. We call this process an update.
When the leaves of the tree are notified of the topology change, they send acknowledgements
along the tree which collect at node k. This is called the acknowledgement phase. When
node k receives acknowledgements on each of its adjacent spanning tree links, it is sure that
each connected node has acknowledged the update. Node k then starts the third phase,
called termination. It floods a message to all connected nodes, telling them that the update
1s over and that they can terminate the algorithm. A flood is used in the final phase to

provide the same type of termination which occurs in the Finn algorithm.

kSTRA also contains counters and version numbers to deal with topology changes

which occur while the algorithm is running. When this occurs, the various update messages
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eventually collect at a single node where a larger upda.tev is formed containing all of the

changes. This large update is then dealt with as before.

kSTRA provides a type of resynchronization, but does not have all of the properties
that we mentioned in the previous section. Specifically, kSTRA does not require that at
least one message is sent in each direction on each link before the algorithm can terminate.
While this is not important for solving the topology problem, it will be significant when we

consider the routing information problem in Chapter 4.

It is very simple to analyze the time and communication complexity of kSTRA for
single link topology changes. The algorithm sends two messages on each spanning tree link
during the notify and acknowledgement phases, and two messages on each network link

during the final flood. Therefore, the communication complexity is:
C=2n-1+2 C ~o(l)
The time complexity is bounded by three times the diameter since each phase must
propagate across the network. For simplicity we write:
T <3n T ~ O(n)

Since kSTRA does not work for general topology changes, it is pointless to analyze

the time and communication complexity for multiple changes.




CHAPTER 3

Algorithms for Broadcasting Topology Changes

Each of the three topology algorithms which were discussed in Chapter 2 had its
own advantages and disadvantages. The ARPANET update procedure has worked well for
several years, but can fail in some situations, and it is not event driven. The Finn algorithm
always works, but it is not efficient in communication. Roskind’s kSTRA algorithm is very
efficient in communication, but only works in a few special cases. In this chapter we present
two algorithms for solving the topology problem which attempt to combine the efficiency
of kSTRA with the generality of the Finn algorithm. The algorithms that we present will
be free from time-outs, counters, sequence numbers or timers, and will be event driven and
delta topology. The first algorithm, called the Flooding Topology Algorithm (FTA), has the
resynchronization property of the Finn algorithm. This will be used in Chapter 4 to provide
a simple solution to the routing information problem. FTA provides resynchronization and
efficiency at a price: it is considerably more complicated than any algorithm which we have
so far discussed. The second algorithm which we will discuss is called the Shortest Path
Topology Algorithm (SPTA). It does not have the resynchronization property, but it is
extraordinarily efficient for simple topology changes. In Chapter 4, SPTA will be extended

to deal with the routing information problem.
3.1 Topology Algorithm Assumptions

Before presenting the algorithms, we must have a clear understanding of the exact
conditions under which they will operate. Both algorithms make the same assumptions
about the behavior of the network links and nodes, and these assumptions are critical to
their operation. Several times we have referred to a link as being either operating or not
operating. Even this simple idea needs some clarification since at any time the two end

nodes of a link are making independent judgements about the link’s status.
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At each node of a link there is a data link controller (DLC) which governs the
transmission and reception of data over the link, and decides whether or not the link should
be used. Let [ be a link joining nodes n and m. The DLC’s at n and m have an established
protocol for the exchange of packets. If errors occur in a packet it is retransmitted, perhaps
several times, until it is correctly received. The DLC can then release the packet for' pro-
cessing at the node. To the outside world, the DLC’s provide an error free communication
path. In addition, the path preserves order in the following sense. If we consider all packets
traveling from n to m over [ to have sequence numbers, then if a packet arrives at m and

is released by m’s DLC, it must have a higher sequence number than any packet previously

released by m’s DLC.

If the error rate on a link becomes intolerably high (based on some criteria) the
DLC at a node may decide that the link is unusable. The exact criterion used is arbitrary.
It is also possible that the link has actually broken, in which case no information is received
on it. At any time, each DLC either considers a link to be operating and calls it up or not
operating and calls it down. This information is available to a topology algorithm running
at a node. We assume that a node does not receive messages over a link while its DLC

considers the link to be down.

We require that DLC’s obey certain rules in declaring links to be up or down. If
a node n determines that node m’s DLC has declared link ! to be down, then it must also
declare it to be down. Furthermore, before a link can be put back into operation, the
DLC’s at each end node must agree that the link is operating. These requirements imply
the following rule: a link must be called down by both end nodes before it can be called
up by either. Figure 3.1.1 illustrates the ordinary sequence of status changes when a link
fails and is repaired at a later time. Notice that during the intervals r and 7’ the two
nodes have inconsistent views of link {’s status. No assumptions are made about the size of
these intervals other than that they be finite; however for efficient operation of the topology
algorithms that we present, these intervals should not be much longer than the ordinary

transit time of a packet.




. — —UuP
link £'s status at node n
— DOWN
|
|
. ] _:’ 1 UP
link£'s status at node m ! !
I
L —— ' pown
T T

Figure 3.1.1: Ordinary DLC Status Change

Figure 3.1.2. illustrates an unusual but possible sequence of changes. Nodes n and
m decide that link [ should be put back into operation. Node n makes the status change,
but m (perhaps because the link fails, or a high error rate is suddenly detected) changes its
mind and leaves the link’s status as down. A short time later, n realizes that m is keeping
link { down and must also declare it to be down. The result is that two status changes
occur at one end node, and none occur at the other end ncde. This event will not occur
very often, perhaps almost never, but our algorithms must be designed to work properly if

it does.

In the following algorithms, when we refer to a link as “operating,” we mean that
both of its end nodes consider it to be up. When a link is called “not operating,” at least

one of its end nodes considers it down.
3.2 Flooding Topology Algorithm (FTA)

Before presenting FTA, we will briefly review the motivation that leads to its struc-
ture. We desire a topology algorithm which is event driven. In addition, we would like the
algorithm messages to contain information only about links whose operational status has

changed, whenever possible. Since information about a link may be generated each time its
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Figure 3.1.2: Unusual DLC Status Change

status changes, we need some way of either distinguishing old, outdated information from
new, current information, or a way of restricting the entry of new information into the net-
work. The most obvious way of accomplishing this is to use counters on the status update
information about a link, and then have a node only accept updates with a higher count
then it has previously seen. We wish to avoid counters because of the problems that they
pose when trying to reconnect two sets of nodes which have been disconnected for a period
of time. Since the counter must in practice be bounded, it could have wrapped around in
one set and not in the other. Also, if a node fails it may loose track of any counter which

it had been using.

This algorithm uses acknowledgements to limit the new information that can be
introduced about a given link. When each node has acknowledged the receipt of old infor-
mation, then new information can be sent. This scheme eliminates confusion between old
and new information, but requires we insure that acknowledgements eventually get back to,
and collect at a node. This is not easy since as acknowledgements travel back to the source,

any path being used may break.

In FTA, when several links change status, we combine this information into one
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large topology update message. By combining messages in this way, we help to ensure that
an acknowledgement about each change will be received. A node can then acknowledge this
combined update with a single message. Unfortunately, combining updates in this way also
creates a problem. A node which started an update about a given link may not be the node
to which acknowledgements will eventually collect, since its update may be combined with
one started by a different node. Thus a node is never quite sure when it can introduce a new
update about one of its adjacent links, since it doesn’t know when all of its neighbors have
acknowledged the old change. This problem can be solved by having the node at which all
acknowledgements collect broadcast a message of the form “the update is over” on every
working link in the network. Thus a node knows that once it receives and sends this final
message, all of its neighbors must also receive this final message before they receive any

new information that the node sends.

This leads to an algorithm with three phases.
1) Broadcast upaates to every node.
2) Receive acknowledgements from every node.
3) Broadcast “update over” message on every link.

This may sound like a large amount of information to be sent about a single topology
change, and indeed it is. In this sense the method is not very efficient in communication,
but it does allow us to send information about only links that change (most of the time),
and only when they change. This is where the real communications resource savings come

in.

FTA is conceptually a very simple algorithm, but a precise statement of the pro-
cedures to be followed at each node involves handling many special cases and is somewhat
complicated. We begin by examining the data structures used in the algorithm. Each node
n maintains a table T which contains an entry T(;) for each link 7 in the network. T'( 7)
1s the operational status for link 7 that FTA reports to the outside world; it does not nec-
essarily equal s(7), the actual DLC reported status of link j at node n. This is caused by

the rules that the algorithm establishes for allowing new information about a link to be
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reported, and will be discussed shortly.

We refer to an “update” as the process of making one or more changes to the
network topology under the direction of a controlling node c. The messages used by the
algorithm contain an update table U which lists the changes being made to the topology,
and the number of the controlling node that is directing this set of changes. The update
table U and the controlling node ¢ uniquely define a specific “version” of the algorithm. We
also use the term update to refer to an algorithm message containing an update table and

a controlling node.

Each entry U(J) in the U table tells a node what to do with the status of a link j.
U(J) can be one of the following: UP, DOWN, or NO_CHANGE. We say that the topology
at a node is changed when the information contained in the U table is used to modify the
T table. If U(s) = DOWN and T(j) is already equal to DOWN, we still refer to setting

U(j)l ;= T'(J) as installing a change in the topology.

Whenever a node has a U table which contains some U(j) # NO_CHANGE we say
that FTA is running at a node, otherwise it is said to be terminated. The algorithm is said
to have terminated when it has terminated at each node in the network, and no algorithm

messages are present on any link.

It was mentioned earlier that we establish rules to limit the introduction of new
information about the status of a link. A node introduces new information by combining
its current DLC status of a given link j with its U table. We establish the following rule
(or precedence) in the modification of an entry U(7) in a node’s U table. If the values that -
U(j) can take on satisfy: DOWN > UP > NO_CHANGE, then a node may never lower the
value of U(J) except when terminating the algorithm. This can be restated as follows. A
node may not start an update which will turn a given link up if there is a current update

which is attempting to turn the link down. Thus down takes precedence over up.

We mentioned earlier that when a node becomes aware of two different updates,

it combines them. We now discuss the specific ruies used to accomplish this. Let a node
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with an update table U receive a message containing an update table U’. The first step is
to take the maximum entry contained in the tables for each link 5. This enforces the above
precedence rule. We also adopt the following rule. If a link is being turned down, we do not
allow any other links listed as down in node n’s topology table to be turned up. A node uses
this same rule when it detects an up status change on one of its adjacent links. Essentially
this means that the algorithm first handles down changes, and after these are completed
it handles any up changes. This rule is used to simplify the reconnection of disconnected

components. This will explained in more detail shortly.

If a node becomes aware of two update tables which differ only in the controlling
node, it ignores the one with the lower controlling node number. Thus, when the U tables
of two updates are the same, the update with the higher controlling node number takes

precedence.

Having described what updates are and how they are combined, we can explain how
the algorithm modifies topologies according to the information contained in updates. The
algorithm is a set of rules for the transmission of messages and the modification of a node’s
topclogy table. A node produces messages in response to detecting a status change in an
adjacent link or in response to a received message. Before describing the exact procedures
to be followed at a node, we will examine how the algorithm behaves in response to a simple

failure event.

Consider the network shown in Figure 3.2.1 to be in steady state at time t. By this
we mean that each network node has an identical topology table T', and that the algorithm
is not running. At some later time t; link A either physically breaks, or experiences an
intolerably high error rate. This is detected, at different times, by nodes 2 and 5. Nodes 2
and 5 each start a version of the algorithm with U(A) = DOWN, and itself as the controlling
node. The two versions which are started have the same U table, but different controlling
nodes. Nodes 2 and 5 each send update messages of the form UPDATE(U,¢) on each of

their operating adjacent links. When a neighboring node, such as node 1, receives an update
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Figure 3.2.1: A Simple Network

message, it recognizes that this is a new update (in the sense that its own U table did not
previously have this information), and it propagates the update by repeating the message on
each of its operating links, except for the one on which it first received the update message.
The link on which a node first receives an update message for a particular algorithm version
18 called the respond link, r, for that version. Each node running a version of the algorithm

has a respond link except for the controlling node for that version.

Consider for the moment only the version of the algorithm started by node 5. Node
5 sends update messages to nodes 3, 4, and 6. Nodes 3, 4, and 6 each repeat this message
on each of their adjacent links, except for the link connecting them to node 5 (their respond
link). The update message propagates out to every node in the network in this fashion.
Eventually, for this simple failure event, a node which has sent an update message on a
link will receive on that link the exact same message (same U table and controlling node)
which 1t has sent. This echo serves as an acknowledgement. When 2 node has received
acknowledgements in this fashion on each of its operating links, except for its respond link,
it can then send an acknowledgement on its respond link. The acknowiedgement that it
sends is again merely an echo of the update message that it originally received. Thus the

only thing that distinguishes an acknowledgement message from an update message is how
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it is interpreted by the receiving node.

Eventually, the controlling node, in this case node 5, will receive an acknowledge-
ment on each of its operating links, since it has no respond link. When this occurs, node
5 is sure that each network node to which it is connected has been made aware of this
update. Node 5 then sends a special UPDATE_OVER(U, c) message to each of its neigh-
bors. This message propagates out to each network node in the same way that an update
message does, except that no acknowledgements are needed. In our example, when the
UPDATE_OVER message has reached every node connected to the controlling node, the

algorithm terminates.

The propagate — acknowledgement phases can be understood more clearly by apply-
ing some of the graph theory used in Chapter 1. The propagate phase is really constructing
a directed, rooted spanning tree with the controlling node as the root. The spanning tree
is the collection of all the respond links in the network. Acknowledgements then travel
from the leaves of this tree to the root, using the respond links. When the controlling
node receives these acknowledgements, it is sure that every node in the spanning tree has
acknowledged the change. The propagate - acknowledgement phases together transmit
exactly one message on each directed link. The terminate phase cannot begin until each
of these messages is received. This is how FTA meets the resynchronization requirement

discussed earlier.

We mentioned earlier that node 2 had also started a version of the algorithm. What
has happened to it? After a node has received and propagated the version started by node
5, it will ignore any messages from the version started by node 2. This is due to our rule
for combining updates which says: if the U tables are identical, propagate the version with
the higher controlling node number. Thus the version started by node 2 will quietly “die,”

while the version started by node 5 will take over.

Since the version started by node 2 was never completed, any messages which it

produced were wasteful. It is interesting to consider whether these messages could have been
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Figure 3.2.2: Multiple Failure Example

avoided. When node 2 detects that link A is down, it knows that node 5 will eventually
detect this as well. Node 2 also knows that it has a path to node 5 which does not use
link A (for example 2-3-3). Therefore, if node 2 did not start a version of the algorithm,
node 5 still would, and each node would still correctly implement the change. This suggests
the following rule for a node to start an update. Let link A connect nodes n and m where
n < m; If link A fails, node n should not start an update if there is a path between n
and m which does not use link A. Unfortunately, this rule does NOT work properly. In
Figure 3.2.2, assume that links A and B fail at approximately the same time. If the above
rule is applied, neither node 1 nor node 2 will start an update. Node 5 will never find out
about either of the two changes. Therefore, each node adjacent to a failed link must start

an update.

This point was mentioned for two reasons. The first was to illustrate an important
property of topology algorithms: perfectly reasonable rules often don’t work properly when
multiple failures occur. The second thing to be learned from this example is that there is
a fundamental difference between turning a link up and turning it down. When a link is
being turned up, both end nodes can communicate with each other and decide on the best

action to take for minimizing the number of messages sent. For example, in FTA, when a

-
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link is being turned up only the end node with the higher node number will start an update.
When a link is turned down, no such arrangement can be made, and both end nodes must

start an update.

When multiple link status changes occur, several versions of the algorithm are
started, at least one at the site of each change. Eventually, at least one node will receive
two different updates and will combine them as described earlier. This combined update
represents a new version of the algorithm, which is then propagated. Updates continue
to be combined in this manner until at least one node becomes aware of each change
which can be introduced according to the combination rules. Exactly one version of the
algorithm (the one which contains each change and the highest controlling node number)
will continue on to completion, and the rest will die out. The versions which die out
represent unwanted, wasteful communication, but their presence is required, within this
type of algorithm structure, to ensure that the algorithm works properly in the presense of

an arbitrary set of topological changes.

There are times when an up change about a link ! will be suppressed for a time.
This can happen in two ways.
1) The up status change can occur while each of !’s end nodes are turning a link down.
2) A down change about some link can occur before link I’s up change completes.
In the first case, I’s up change is delayed until any down changes are completed. Then, a
new version of FTA is started to bring [ up. In the second case, an update is started to
turn / down, and after this completes, another update is started to bring ! up. Either way,

an update containing the correct status of / is eventually started.

Occasionally, when a link is turned up this will result in the reconnection of two
previously disconnected components. Since these two sets of nodes may have arbitrarily
different topologies, we need a way of having each node involved adopt a consistent, correct
topology. We adopt the following two rules.

1) A node records as down each link to which it is not connected according to its

topology table T.
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2) When a node detects a reconnect of two components, it includes in the update list

an up change for each link { for which T'({) = UP.
Therefore, when a reconnect occurs, the update list eventually contains an up change for
each operating link in a maximum connected set. When this update list is installed at any
two nodes in the set, they arrive at the same topology table. In this way, a consistent

topology is adopted throughout the set of nodes.

It is possible for a reconnect to be started and then to have some link fail. By
applying the update combination rules mentioned earlier, we can see that the reconnect
is stopped, and the link which was joining two components is turned down. However,
the update list also contains, by the above rules, an up change for every working link in
either component. We can now see how the rule for disallowing simultaneous up and down
changes is applied. That rule states that when a down change occurs we do not allow any
links listed as down in a node’s topology to be turned up. In the case of a component, the
links listed as down include all links in the neighboring component. This is true because
a node always considers disconnected links to be down. All of the up changes for links in
adjacent components are converted to down changes. However, an up change for a link
inside a given component is allowed to continue if each node in the component already lists
the link as up in its topology table. Thus, the up changes which remain have no effect on
the topology. These changes are left in the update list to enforce the rule that each U(y)

can not decrease. This property of U(7) is very useful in showing that FTA works correctly.

FTA Algorithm Data Structures: contained at node n

s(j) = the current DLC status of each adjacent link j
{UP, DOWN}

T(5) = node n’s current topology information for each link j
{UP, DOWN}

U(j) = achange in the status of link

{UP, DOWN, NO_CHANGE}

L(j) = whether n is waiting for an acknowledgement on link j
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{WAITING, NOT.WAITING}
c = the node controlling the current version of the algorithm
R = the adjacent respond link on which an acknowledgement will be sent
Notes:
1) A primed variable refers to one received from a neighboring node.
2) U or T by itself refers to a table of values for each link.
3) DOWN > UP > NO_.CHANGE

The functions node_connect and link_connect defined below are useful in detecting

disconnected links.

node_connect(i, k, T) = {;}CE)S gtzzfzisi and k are connected according to topology 7.

YES if node 1 is connected to link 7 according to topology T

Iink_connect(t',j, T)= {NO otherwise

We have already discussed the two principal messages that the algorithm uses.
However, there are two more which must be explained. We mentioned that when two end
nodes decide to bring a link up we would like only the one with the higher node number
to start an update. FTA accomplishes this synchronization by using a message called

BRING _LINK_UP. Exactly how it is used will be discussed shortly.

The message BRING_LINK_DOWN is used when it is necessary to turn down a
link which is working and which was being turned up. The situation in which this can
happen was described earlier. We want to send this message since bringing a link down
could conceivably cause a partition of the network into to components. We must make sure

that each disconnected component is aware that the link is being brought down.

Types of Messages
UPDATE(U,¢) : contains a table of status changes, and the number of
the controlling node for this version of the algorithm
UPDATE_OVER(U,c) : like UPDATE above, but tells a node to terminate

the algorithm
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BRING _LINK_UP: instructs a node to start an update to turn up the

link on which it was received.

BRING LINK_DOWN: instructs a node to start an update to turn down the

link on which it was received.

We now consider the procedures which are followed at each node n in response to
a link status change, or receiving an algorithm message. We begin with the initialization
which is done when a node processor is first started. The node is not running the algorithm,

and assumes all of its adjacent links are down.

Initialization: performed when node n’s processor is rebooted
s(j) = DOWN V adjacent links 7
T(7) := DOWN V links 7
¢ := NONE
r - := NONE

When a node detects that an adjacent link has become operational, it simply in-
forms the other end node of this. This is the first step in the coordination procedure which
will result in an update being started only by the end node with the higher node number.

Of course, we only try to turn a link up when no down changes are occurring.

Event 1: s(I) changes from DOWN to UP
(link / becomes operational)
if U(7) # DOWN V links 7 and U(!) = NO.CHANGE
send BRING_LINK_UP on link {

end

When a node detects the failure of an adjacent link !, or when it is instructed to
bring a link down, it usually wants to start an update containing U (!) = DOWN. If a node
is not changing the status of link / and lists it as up in its topology table, then it certainly

wants to start an update. If the iink is being turned up, we want to start a down update
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to counter this. In all other cases, starting an update is not necessary either because one is

already in progress or because one has already been completed.

Event 2: s(l) changes from UP to DOWN
(link [ becomes non-operational)
Event 3: BRING_LINK_DOWN received on link !
if [U(I) = NO_CHANGE and T(l) = UP] or U(l) = UP

U(l) == DOWN
U(j) :== DOWN V¥ j:U(j) = UP and T(j) = DOWN
execute start_new_version
execute check_ack

end

When a node n receives BRING_LINK_UP from n’ over link [, its actions depend
on the node number of itself and its neighbor. As mentioned earlier, a link is only brought
up if no down updates are present. If node n has a lower node number than n', all that is
needed is to send BRING_LINK_UP back to n’. This will cause n’ to start an update. If n
has the higher node number, then it starts a new algorithm version. The specific functions

involved will be discussed shortly.

Event 4: BRING LINK_UP is received on link /
(connecting nodes n and n')
if U(j) # DOWN Y links j and U(l) = NO_CHANGE

ifn<n
send BRING LINK_UP on link [

else
U(l) = UP
(check for a reconnect)
if node_connect(n,n’,T) = NO

U()=UP Y j:T(j) = UP
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execute start_new_version
execute check_ack

end

The most complex part of the algorithm is its response to receiving an update
message from a neighbor. Most of the complexity is contained in the tests used to determine
the appropriate response to a given message. Assume that node n receives an update
messa;ge containing U’ and ¢’ from node n’. First we construct the combined update list
according to the rules discussed earlier. We must check to make sure that failed links are
not being turned up; and inform our neighbors if we are turning down any working links.
If the update list that node n received is exactly the same as the one that it had, then its
actions are dictated by the controlling node numbers. The decisions involved were discussed
earlier. If the received update has a higher version then n knows about, then node n should
propagate the received algorithm version. If the received update list provides n with no
new information, and was not an acknowledgement, then it is ignored. Finally, if U and U’
combine to form an update list different from both, then n must start a new version of the

algorithm, as was discussed.

Event 5: UPDATE(U’,c’) received on link {
(connecting n and n’)
(combine received U table with node n’s current U table)
U*(5) == max([U(5),U’(j)] ¥ links j
(make sure that node n is not trying to turn up any failed links)
for each adjacent link 7
if U*(y) = UP and s(y) = DOWN
U*(7) := DOWN
(if node n is turning down a working link, it should tell the other end node)
send BRING _LINK DOWN on each adjacent link 7 :
U(j) # DOWN and U*(j) = DOWN
if U(7) = DOWN for some link j




U*(i) := DOWNY i :U(f) = UP and T(i) = DOWN
else if node_connect(n,n’,T) = NO
U*(j):==UPV j:T(5)=UP
(tests for how to respond to the received message)
ifU(J)=U"() VY links jand U'(j) =U*(j) V links 5
(the received message has not changed node n’s update list

and is identical to it)

ifd >c¢
(this version has a higher controlling node
so we wish to propagate it)
c:=¢
execute propagate_new_version(l)
ifd=c
(received message is an acknowledgement)
L(l) :== NOT.WAITING
ifd<ec

(received message is obsolete, so ignore it)
end
else if U'(7) =U*(j) V links 5
(received message contains all changes that n knows about,
so propagate the received version)
U(7) ==U*(4) V links 5
c:=c
execute propagate_new_version(l)
else if U(7) =U*(5) V links 5
(the received message contained no new changes,
and was not an acknowledgement, so ignore it)
end

else
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(node n has formed a new update list which is different from
both U and U’, so start a new version)
U(j):=U*(y) V links
execute start_new_version
execute check_ack

end

When an UPDATE_OVER message is received, node n checks to see if the message
refers to the version of the algorithm which n is running. If it does, then node n can
terminate FTA. If it does not, then this means that more changes have occurred since the

UPDATE_OVER message was generated, and the received message should be ignored.

Event 6: UPDATE_OVER(U’,c’) received on link {
ifc=c"and U(j) =U'(5) V links
execute terminate

end

When a node starts a new version, it makes itself the controlling node and has no
respond link. It must then decide which of its adjacent links are involved (used) in this
version of the algorithm. FTA uses all links which are up and are not being turned down,

and those which are being turned up.

Procedure: start_new_version
c:=n
r:= NONE
L(7) == NOT_WAITING V adjacent links 5
L(7) == WAITING V adjacent links 5 : [T'(j) = UP and
U(j) = NO_CHANGE] or U(j) = UP
send UPDATE(U, c) on all adjacent links j : L(j) = WAITING

return

Propagating the current version of an algorithm is nearly identical to starting a
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deal with its most recent failure.
2) A down update could have been started about some link. As discussed earlier, this
would stop any other links from being turned up.
In either situation node n’s response is to transmit BRING _LINK_UP on each working
adjacent link which has been turned down. The effect of this is to start an update which
will turn these links up. In this way, an update which contains the correct status of these

links will eventually be installed by each node.

Procedure: terminate
send UPDATE_OVER(U, c) on all adjacent links 7 :
[T(j) = UP and U(j) = NO_CHANGE] or U(5) = UP
T(7) == DOWNY links j: U(5) = DOWN
T(7) :==UPYV links j: U(5) = UP
T(7) := DOWN Y links j : link_connect(n,;,T) = NO
U(j) = NO_CHANGE ¥ links 5
r .= NONE
c:= NONE
(check for corrections to the new topology)

send BRING _LINK_UP on all adjacent links 5 : s(j} = UP and T(j) = DOWN
End of Algorithm. §

The justification that FTA works correctly is quite long and complex. For that

reason, it has been placed in an appendix.
3.3 Analysis of FTA

Although FTA is a complex algorithm to describe, it is comparatively simple to
analyze. We begin with the most important measures of goodness: the time and commu-

nication complexities for single link topology changes. We consider a network with ! links

and n nodes.

The communication complexity in the case of a single link topology change depends
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new version except that node n has a respond link, and is not the controlling node.

Procedure: propagate_new_version
ri=1
L(j) = NOT_WAITING V adjacent links 7
L(j) := WAITING VY adjacent links 7 : [T(j) = UP and
U(j) = NO_CHANGE] or U(j) = UP
L(r) :== NOT_WAITING
send UPDATE(U, ¢) on all adjacent links j : L(j) = WAITING

return

The procedure used to see if all acknowledgements have been received is very
straight forward. There are two cases depending on whether a node has a respond link

(i.e. is the controlling node).

Procedure: check_ack
if L(j) = NOT.WAITING V adjacent links <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>