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Summary 27 
The discovery of novel structural classes of antibiotics is urgently needed to address the ongoing 28 
antibiotic resistance crisis1-9. Deep learning approaches have aided in exploring chemical 29 
spaces1,10-15; yet, these models are typically black box in nature and do not provide chemical 30 
insights. Here, we reasoned that the chemical substructures associated with antibiotic activity 31 
learned by neural network models can be identified and used to predict structural classes of 32 
antibiotics. We tested this hypothesis by developing an explainable, substructure-based approach 33 
for the efficient, deep learning-guided exploration of chemical spaces. We determined the 34 
antibiotic activities and human cell cytotoxicity profiles of 39,312 compounds and applied 35 
ensembles of graph neural networks to predict antibiotic activity and cytotoxicity for 12,076,365 36 
compounds. Using explainable graph algorithms, we identified substructure-based rationales for 37 
compounds with high predicted antibiotic activity and low predicted cytotoxicity. We 38 
empirically tested 283 compounds and found that compounds exhibiting antibiotic activity 39 
against Staphylococcus aureus were enriched in putative structural classes arising from 40 
rationales. Of these structural classes of compounds, one is selective against methicillin-resistant 41 
S. aureus (MRSA) and vancomycin-resistant enterococci, evades substantial resistance, and 42 
reduces bacterial titers in mouse models of MRSA skin and systemic thigh infection. Our 43 
approach enables the deep learning-guided discovery of structural classes of antibiotics and 44 
demonstrates that machine learning models in drug discovery can be explainable, providing 45 
insights into the chemical substructures that underlie selective antibiotic activity. 46 

Introduction 47 
The ongoing antibiotic resistance crisis threatens to render current antibiotics ineffective and 48 
increase morbidity from bacterial infections. This crisis has been exacerbated by a lack of new 49 
antibiotics, without which global deaths due to resistant infections are projected to reach 10 50 
million per year by 2050.16 Antibiotic candidates have been discovered in the past decade 51 
through various approaches based on natural product mining2,3, high-throughput screening4, 52 
evolution and phylogeny analyses5,6, structure-guided and rational design7,8, and in silico screens 53 
using machine learning1,12-14. Nevertheless, developing effective approaches to antibiotic 54 
discovery that better leverage the large structural diversity of chemical space remains a 55 
challenge, and novel approaches to antibiotic discovery are urgently needed. 56 

We recently developed a deep learning approach to antibiotic discovery and showed that it 57 
identifies potential antibiotics from large chemical libraries, resulting in the discovery of halicin1 58 
and abaucin14 from the Drug Repurposing Hub17 (comprising ~6,000 molecules) and other 59 
antibacterial compounds from ~107 million molecules in the ZINC15 library18. This approach 60 
relies on Chemprop, a platform for graph neural networks10,11, which are typically black-box 61 
models19, or models that are not readily interpreted or explained. By definition, interpreting or 62 
explaining such models reveals the patterns of decision-making steps the models perform to 63 
arrive at their predictions (interpretability), or renders such predictions human-understandable 64 
(explainability)20. Here, we aimed to vastly expand graph neural network models for antibiotic 65 
discovery by training on large datasets measuring antibiotic activity and human cell cytotoxicity, 66 
and we hypothesized that model predictions could be explained on the level of chemical 67 
substructures using graph search algorithms (Fig. 1a). As antibiotic classes are typically defined 68 
based on shared substructures, we reasoned that substructure identification may, by better 69 
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explaining model predictions, allow for the efficient exploration of chemical spaces and facilitate 70 
the discovery of novel structural classes, in lieu of lone compounds.  71 

Models for antibiotic activity 72 
In this study, we focus on discovering structural classes of antibiotics that are effective against 73 
Staphylococcus aureus, a Gram-positive pathogen resistant to many first-line antibiotics and a 74 
major cause of difficult-to-treat nosocomial and bloodstream infections21. We first screened an 75 
original set of 39,312 compounds containing most known antibiotics, natural products, and 76 
structurally diverse molecules, with molecular weights between 40 Da and 4,200 Da, for growth 77 
inhibitory activity against a methicillin-susceptible strain, S. aureus RN4220 (Fig. 1b, Extended 78 
Data Fig. 1, and Supplementary Data 1). These compounds were screened for overnight growth 79 
inhibitory activity in nutrient-rich media at a final concentration of 50 μM, and their effects were 80 
binarized as active or inactive using an 80% normalized growth inhibition cut-off, resulting in a 81 
total of 512 active compounds (1.3% of all compounds).  82 
Using Chemprop, we trained ensembles of graph neural networks on our screening data to make 83 
binary classification predictions of whether or not a new compound will inhibit bacterial growth 84 
based on its chemical structure. Each graph neural network operates by performing convolution 85 
steps that depend on the atoms and bonds of each input chemical structure, which is viewed as a 86 
mathematical graph with vertices (atoms) and edges (bonds; Fig. 1a)10,11. After successive 87 
convolution steps which pool together information from neighboring atoms and bonds, each 88 
model generates a final prediction score between 0 and 1, representing its estimate of the 89 
probability that the molecule is active. To provide additional data that may improve model 90 
performance, each model was supplied a list of RDKit-computed molecular features for each 91 
input (e.g., the number of hydrogen donors and acceptors and partition coefficient estimates; see 92 
Supplementary Data 1). The prediction scores from multiple models within an ensemble were 93 
then averaged to improve robustness. Each model was trained and validated, then tested, on the 94 
same 80%-20% splits of the training dataset. For an ensemble of ten models applied to the 95 
withheld test data, the area under the precision-recall curve (AUPRC) was 0.364, indicating good 96 
performance while accounting for the imbalance of active compounds in the training data (Fig. 97 
1c). We observed decreased performance, as measured by the AUPRC for the test set, of 98 
alternative models including an ensemble of ten Chemprop models without RDKit features and 99 
the best-performing random forest classifier model based on Morgan fingerprints as the 100 
molecular representation (Extended Data Fig. 2). While the statistical significance of these 101 
differences in performance varied (Supplementary Table 1), these findings indicate that 102 
Chemprop models with RDKit-computed molecular features produce promising predictions of 103 
antibiotic activity and can outperform simpler or shallower (i.e., random forest) deep learning 104 
models.  105 

Models for human cell cytotoxicity 106 
To better identify compounds that are selective against S. aureus, we developed orthogonal 107 
models that predict cytotoxicity in human cells. We first counter-screened our training set of 108 
39,312 compounds for cytotoxicity in human liver carcinoma cells (HepG2), human primary 109 
skeletal muscle cells (HSkMCs), and human lung fibroblast cells (IMR-90). HepG2 cells are 110 
commonly used to study hepatotoxicity and general cytotoxicity, while HSkMCs and IMR-90 111 
cells may better model in vivo toxicity than do immortal cell lines. Cellular viability was 112 
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measured after 2-3 days of treatment with each compound at 10 μM, a concentration appropriate 113 
to, and widely used for, human cell cultures15. Compound activities were then binarized using a 114 
stringent 90% cell viability cut-off, resulting in a total of 3,341 (8.5%), 1,490 (3.8%), and 3,447 115 
(8.8%) compounds classified as cytotoxic for HepG2 cells, HSkMCs, and IMR-90 cells, 116 
respectively, and of the 512 active antibacterial compounds, 306 were non-cytotoxic for all three 117 
cell types (Fig. 1d,f,h and Supplementary Data 1). As above, these data were used to train binary 118 
classification models that predict the probability of whether or not a new compound is cytotoxic 119 
to HepG2 cells, HSkMCs, or IMR-90 cells based on the compound’s chemical structure. For 120 
ensembles of 10 Chemprop models trained and validated, then tested, on the same 80%-20% 121 
splits of the data, the AUPRC values for the HepG2, HSkMC, and IMR-90 models were 0.176, 122 
0.168, and 0.335, respectively (Fig. 1e,g,i). This indicated positive, but less predictive, 123 
performance than our models for antibiotic activity, a result which may arise due to our more 124 
stringent criteria for declaring compounds as non-cytotoxic. The cytotoxicity models were most 125 
predictive for IMR-90 cells, which may arise from having more cytotoxic compounds—and 126 
more learning examples—against this cell type in the screening data. Similar to our findings for 127 
antibiotic activity, for cytotoxicity of all cell types we found decreased AUPRCs using 128 
alternative models, including an ensemble of ten Chemprop models without RDKit features and 129 
the best-performing random forest classifier models using Morgan fingerprints (Extended Data 130 
Fig. 3), with varying statistical significance of these differences in performance (Supplementary 131 
Table 1). Further benchmarking using two Tox21 datasets22 and a human metabolites database23, 132 
as well as experimental testing of 190 compounds, support that these models can productively 133 
filter out cytotoxic compounds (Supplementary Note 1 and Methods). 134 

Filtering and visualizing chemical space 135 
Satisfied with the performance of our models, we retrained ensembles of 20 Chemprop models 136 
with the entirety of each of the training datasets, resulting in four ensembles predicting antibiotic 137 
activity, HepG2 cytotoxicity, HSkMC cytotoxicity, and IMR-90 cytotoxicity. We applied the 138 
ensembles to predict the antibiotic activities and cytotoxicity profiles of 12,076,365 compounds, 139 
comprising 11,277,225 compounds from the Mcule purchasable database24—in which most 140 
compounds can be readily purchased without recourse to in-house chemical synthesis—in 141 
addition to 799,140 compounds from a Broad Institute database (Fig. 2a-e and Supplementary 142 
Data 2). We filtered chemical compounds of interest based on the predicted antibiotic activities 143 
and cytotoxicity, retaining at first only the 3,004 compounds with antibiotic prediction scores 144 
>0.4 from the Mcule purchasable database and, due to better access to compounds in this 145 
database, the 7,306 compounds with antibiotic prediction scores >0.2 from the Broad Institute 146 
database (Fig. 2a,b). We then retained only those compounds with HepG2, HSkMC, and IMR-90 147 
cytotoxicity prediction scores <0.2, a stringent filter resulting in 3,646 compounds—1,210 148 
compounds from the Mcule purchasable database and 2,436 compounds from the Broad Institute 149 
database—or 0.03% of all compounds assessed (Fig. 2a,c-e). 150 

In contrast to compounds passing the aforementioned filters (“hits”), we consolidated 3,355 151 
compounds with low (<10-6) antibiotic prediction scores (“non-hits”). These prediction score 152 
cutoffs were chosen to generate computationally tractable groups of ~103 compounds, but the 153 
following results are general across different prediction score cutoffs (Extended Data Fig. 4). We 154 
visualized the chemical space using t-distributed stochastic neighbor embedding25 (t-SNE) 155 
applied to Morgan fingerprints as the molecular representation. This revealed that hits were 156 
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structurally dissimilar to non-hits, and the training set, which includes compounds from diverse 157 
classes of known antibiotics, largely separates non-hits from hits (Fig. 2f). Intriguingly, as 158 
indicated by t-SNE and our subsequent substructure-based analyses (Fig. 3), multiple hits were 159 
structurally dissimilar to active compounds in the training set, suggesting that our models 160 
generalize to unseen chemical spaces.  161 

Rationales predict antibiotic classes 162 

As graph neural networks make predictions based on the information contained in the atoms and 163 
bonds of each molecule, we hypothesized that compounds with high antibiotic prediction scores 164 
contain substructures (“rationales”) that largely determine their scores. Identifying such 165 
rationales would provide guarantees of model explainability for the hits of interest: namely, any 166 
hit’s high antibiotic prediction score would be directly attributable to its rationale, such that the 167 
rationale—when viewed as a molecular input to Chemprop in its own right—possesses a high 168 
antibiotic prediction score. The ability to classify such rationales would render Chemprop’s 169 
predictions more human-understandable and enable subsequent machine learning-guided 170 
substructure analyses.  171 
Given our trained Chemprop models, we computed such rationales by employing graph-based 172 
search algorithms. These graph search algorithms allowed us to determine, in the context of a 173 
single molecule, the smallest rationale with a prespecified threshold number of atoms identified 174 
to have positive predictive value (Fig. 3a, Extended Data Fig. 5, and Methods). We aimed to 175 
determine rationales containing at least eight atoms and exhibiting high antibiotic prediction 176 
scores >0.1 using Monte Carlo tree searches, which have been used to inform deep learning 177 
models including AlphaGo26. Monte Carlo tree searches comprise of selecting an initial 178 
substructure, iteratively pruning the substructure, and selecting for deletions resulting in high 179 
prediction scores when the subgraphs are passed as inputs into Chemprop (Fig. 3a, Extended 180 
Data Fig. 5, and Methods). This graph search outputs a rationale explaining a threshold amount 181 
(at least 0.1) of the compound’s prediction score if it converges; otherwise, no rationale is found, 182 
and the hit of interest is not explainable in this way. While other approaches centered on 183 
maximal common substructure (MCS) identification have been used to study the chemical motifs 184 
shared among groups of compounds in high-throughput screens and cheminformatics analyses27, 185 
we found that MCS-based approaches did not necessarily yield substructures that were 186 
diagnostic of high predicted antibiotic activity when applied to deep learning model predictions 187 
(Supplementary Note 2 and Extended Data Fig. 6). 188 

We first validated that the calculation of rationales could recapitulate the discovery of structural 189 
classes of antibiotics not found in the training data using leave-one-out analyses with quinolones 190 
and β-lactams, two structural classes highly enriched in the training data. We trained ensembles 191 
of Chemprop models similarly to our final models for antibiotic activity, but with all 31 or 505 192 
compounds containing the quinolone bicyclic core or β-lactam ring, respectively, withheld from 193 
the training. When the corresponding trained models were applied to the withheld test sets and 194 
the prediction score threshold was set to 0.2, active quinolone and β-lactam compounds were 195 
predicted to have antibacterial activity, with modest true positive rates of 0.294 and 0.060, 196 
respectively; additionally, for a subset of these compounds, the models produced rationales that 197 
contain the relevant core rings (Supplementary Data 2). These analyses underscore our 198 
approach’s ability to identify new antibiotic scaffolds, including those not previously seen by the 199 
model during training, based on the arrangements of molecular atoms and bonds in chemical 200 
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structures. Importantly, similar results cannot be accomplished using traditional quantitative 201 
structure-activity relationship (QSAR) analyses, which assume knowledge of an active scaffold a 202 
priori and aim to design chemical analogs containing the scaffold.28 203 
Applying this rationale analysis to the filtered hits emerging from our full model, we computed 204 
rationales for 380 of the 3,646 hits (10.4%). As expected, many rationales coincided with known 205 
fragments of structural classes, including the quinolone bicyclic core and the cephalosporin and 206 
β-lactam rings (Fig. 3b, Extended Data Fig. 6, and Supplementary Data 2). Intriguingly, we also 207 
found rationales that were not associated with any known antibiotic classes. We therefore aimed 208 
to better filter structurally novel hits of interest and investigate their corresponding rationales.  209 

Novel, filtered substructures 210 

Building on the emergence of known antibiotic classes from our analyses and the ability of 211 
graph-based rationales to predict substructures diagnostic of high antibiotic prediction scores 212 
(Fig. 3a,b and Extended Data Fig. 5), we sought to identify structurally novel antibiotic classes 213 
predicted by our models. In order to consider chemical structures with favorable medicinal 214 
chemistry properties, we removed all hits containing PAINS and Brenk alerts29,30, which refer to 215 
substructures that may be promiscuously reactive, mutagenic, or pharmacokinetically 216 
unfavorable. This narrowed down the 3,646 predicted hits to 2,209 hits (Fig. 2a). Next, we 217 
focused on procuring compounds dissimilar to those in the training set. We computed the 218 
maximal Tanimoto similarity of each hit to any active compound in the training set and 219 
shortlisted hits with maximal similarity scores ≤0.5 as a rudimentary cut-off (Fig. 3c), as well as 220 
those not containing a β-lactam ring or a quinolone bicyclic core. This yielded a final set of 221 
1,261 hits, of which 162 were from the Mcule purchasable database and 1,099 were from the 222 
Broad Institute database (Fig. 2a). For this more focused set of hits, our rationale calculations 223 
revealed that 186 hits (14.8%) possessed rationales (Supplementary Data 2).  224 

In order to leverage these rationales for clear predictions of structural classes, we reasoned that 225 
studying the chemical scaffolds shared across rationales would highlight the most salient 226 
predictions of structural classes. This is especially useful for down-sampling, as typical 227 
rationales possess large numbers (>17) of atoms and differ from each other by minor 228 
modifications. We computationally identified chemical scaffolds with at least 12 atoms that were 229 
conserved across rationales (see Methods for details). With this approach, we found that 16 of 230 
the 186 hits with rationales (8.6%) could be grouped using five distinct scaffolds, G1-G5 (Fig. 231 
3d), with each group containing at least two hits with associated rationales. Intriguingly, three of 232 
the five scaffolds were chlorine-containing, suggesting that our models view the presence of a 233 
chlorine atom in these chemical contexts as an important factor influencing antibiotic activity.  234 

Due to the tractable number of hits remaining from our filtering steps and analyses, we directly 235 
tested our model predictions by procuring nine hits associated with the rationales in groups G1-236 
G5. As a positive control, we procured 12 cephalosporin- and quinolone-like hits, which shared 237 
common substructures with cephalosporin- and quinolone-containing rationales (Extended Data 238 
Fig. 6). For comparison, we also procured 45 hits (out of the filtered 1,261 hits) with computed 239 
rationales that were not associated with G1-G5, 187 hits (out of the filtered 1,261 hits) with no 240 
computed rationale, and 30 structurally dissimilar compounds with low (<0.1) prediction scores. 241 
This approach resulted in a set of 283 compounds (Fig. 3e and Supplementary Data 2), which we 242 
experimentally tested.  243 
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A structural class of antibiotics from rationales 244 
Testing for growth inhibition, we found that four out of the nine procured hits (44%) associated 245 
with groups G1-G5 exhibited activity against S. aureus, with minimal inhibitory concentrations 246 
(MICs) ≤32 μg/mL (Fig. 3f,g, Supplementary Table 2, and Extended Data Fig. 7). Intriguingly, 247 
none of the 45 procured hits with rationales not associated with G1-G5, and 17 of the 187 248 
procured hits with no rationale (9.1%), exhibited activity (Fig. 3e and Supplementary Table 2). 249 
The working true discovery rates associated with all tested structurally novel hits with rationales 250 
(7.4%) and across all tested structurally novel hits (8.7%) were higher than the fraction of active 251 
compounds in our training set (1.3%), suggesting the utility of our approach when generalizing 252 
to diverse chemical spaces. These values suggest that compound testing efforts can be as 253 
productive as testing one-off hits when they focus on the structural classes predicted by deep 254 
learning models. Additionally, as expected, all 12 cephalosporin and quinolone-like hits inhibited 255 
growth and exhibited antibiotic cross-resistance in methicillin-resistant S. aureus (MRSA, strain 256 
USA300), confirming their likely mechanisms of action (Supplementary Table 2). Consistent 257 
with a low false omission rate for the model, none of the 30 procured compounds with low 258 
prediction scores inhibited the growth of S. aureus (Fig. 3e). 259 

Of the four hits found to be active against S. aureus associated with G1-G5, no compound had 260 
previously been studied against the pathogens considered here (Supplementary Note 3), and 261 
together, these hits are associated with three rationale groups—G1, G2, and G5 (Fig. 3d and 262 
Extended Data Fig. 7). Of note, G2 was associated with two validated (active) hits (compounds 1 263 
and 2; Fig. 3f), indicating that this rationale group may represent an active structural class, and 264 
compounds 1 and 2 simultaneously satisfy the Lipinski’s rule of five31 and the Ghose criteria32 265 
for druglikeness, suggesting favorable oral bioavailability and druglike properties for further 266 
development (Supplementary Table 3). Additional properties, including O’Shea and Moser’s 267 
physicochemical observations for antibiotics33 (Supplementary Table 3), may further narrow 268 
down chemical space and inform subsequent development, especially when considering 269 
candidates from larger libraries such as ZINC15 (ref. 18) and specific routes of administration. 270 
While we have not filtered our hits based on these or other physicochemical properties, we note 271 
that the validated hits were smaller and less polar than typical Gram-positive antibiotics 272 
(Supplementary Table 3).  273 

Performing additional growth inhibition experiments, we found that compounds 1 and 2, as well 274 
as nearly all of the other structurally novel validated hits, were also active against MRSA 275 
USA300 with MICs comparable to their methicillin-susceptible analogues (Fig. 3g and 276 
Supplementary Table 2). Counter-screening all structurally novel validated hits for cytotoxicity 277 
against HepG2 cells, HSkMCs, and IMR-90 cells, we found that 20 out of the 21 structurally 278 
novel, validated hits were non-cytotoxic at a concentration of 10 µM. Compounds 1 and 2 279 
exhibited half-maximal inhibitory concentration (IC50) values ≥128 μg/mL for all cell types, 280 
indicating robust selectivity against S. aureus (Fig. 3g and Supplementary Table 2). In contrast, 281 
the therapeutic windows of all the other structurally novel validated hits, including the two other 282 
validated hits associated with G1 and G5, were less than those of compounds 1 and 2 (Fig. 3g  283 
and Supplementary Table 2).  284 
As a final empirical filter, we measured the S. aureus MICs of the validated hits associated with 285 
G1-G5 in media supplemented with 10% fetal bovine serum as a control for binding of the 286 
compounds to serum proteins (Fig. 3g). We found that the MICs of compounds 1 and 2 increased 287 
4- to 8-fold to 16 μg/mL, but remained substantively (≥8-fold) less than their human cell IC50 288 
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values; in contrast, the MICs of the other two compounds increased to ≥64 μg/mL in serum 289 
(Extended Data Fig. 7). Together with their favorable MIC values in serum-free media (≥64-fold 290 
less than their human cell IC50 values), these observations suggested that compounds 1 and 2 291 
were the most selective of all the validated hits and merited further study. 292 

Mechanism of action and resistance  293 
Compounds 1 and 2 share an N-[2-(2-chlorophenoxy)ethyl]aniline core, which was predicted to 294 
be diagnostic of antibiotic activity based on our Monte Carlo tree search-based rationales (Fig. 295 
3f). The common substructure suggests that the compounds may share a similar mechanism of 296 
action, which we studied using traditional microbiological assays. Time-kill experiments for log-297 
phase S. aureus RN4220 and B. subtilis 168 showed that treatment with both compounds at 298 
supra-MIC concentrations led to decreases in colony forming units (CFU)/mL compared to non-299 
treatment after four hours, which was typically similar to, but less bactericidal, than vancomycin 300 
treatment (Fig. 4a). Moreover, MRSA USA300 exhibits at least 16-fold increased MICs relative 301 
to the methicillin-susceptible strain for ampicillin, ciprofloxacin, and tetracycline but exhibits 302 
only two-fold increased MICs for compounds 1 and 2 (Extended Data Fig. 8), suggesting that 303 
these compounds may not share similar mechanisms of action with β-lactams, fluoroquinolones, 304 
and tetracyclines. These compounds were specific against Gram-positive bacteria, as they did not 305 
inhibit the growth of Escherichia coli, Acinetobacter baumannii, or Pseudomonas aeruginosa, 306 
with the exception of permeable or efflux-impaired E. coli (lptD4213 and ΔtolC832), for which 307 
both compounds exhibited MICs of 2 μg/mL (Supplementary Tables 2 and 4).  308 

We therefore further investigated the mechanisms of action of these compounds through the 309 
evolution of resistant mutants. We serially passaged S. aureus RN4220 treated with each of 310 
compounds 1 and 2 in liquid culture, and found that MICs remained essentially unchanged after 311 
30 days (Fig. 4b). In contrast, cultures exhibited ≥64-fold increased MICs to ciprofloxacin after 312 
30 days (Fig. 4b). Additionally, in suppressor mutant generation experiments, we plated S. 313 
aureus RN4220 at high inocula on solid media in the presence of supra-MIC levels of 314 
compounds 1 and 2, and found that colonies grew at 4× but not 8× MIC after 5 days (Fig. 4c), 315 
suggestive of low-level resistance (frequency of resistance at 4× MIC, ~10-8). For comparison, 316 
suppressor mutants grew in ciprofloxacin at concentrations corresponding to 4× and 8× MIC 317 
(Fig. 4c; frequency of resistance at 4× and 8× MIC, ~10-6 and ~10-7, respectively). In order to 318 
study these cells further, we subcultured cells from the endpoints of both experiments and 319 
selected individual colonies in biological duplicate for sequencing. Whole-genome sequencing of 320 
these colonies indicated that the main mutations to arise were inconsistent between colonies and 321 
largely in genes involved in osmoregulation and virulence pathways, as opposed to mutations 322 
arising consistently across different colonies (as in DNA topoisomerase for ciprofloxacin; see 323 
Supplementary Data 3). Taken together, these findings suggest that compounds 1 and 2 can 324 
evade substantial resistance. 325 
In order to investigate the phenotypic effects of compounds 1 and 2 further, we combined 326 
microscopic observation with cellular physiology measurements. As we have previously done for 327 
other classes of antibiotics34-37, we first performed single-cell imaging; here, we focused on B. 328 
subtilis, whose rod-like shape exhibits more salient morphological changes than does S. aureus. 329 
Single-cell imaging revealed that cells treated with compound 1 or 2 lysed (Fig. 4d), consistent 330 
with the bactericidal activity of these compounds (Fig. 4a) and suggestive of a cell envelope-331 
targeting mechanism of action. To study this suggestion further, we used a dye sensitive to the 332 
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membrane proton motive force (PMF), DiSC3(5), in bulk culture experiments. In S. aureus and 333 
B. subtilis, the PMF is generated by two components, the membrane potential, ΔΨ, and the pH 334 
gradient, ΔpH, across the membrane, and bacterial cultures treated with DiSC3(5) display 335 
increases (decreases) in fluorescence when ΔΨ (ΔpH) is disrupted38. We found that treatment 336 
with both compounds 1 and 2 resulted in fluorescence quenching of DiSC3(5) in S. aureus and B. 337 
subtilis, indicating that both compounds disrupt ΔpH (Fig. 4e). Furthermore, we found that the 338 
growth inhibitory effects of both compounds were antagonized by higher media pH levels, which 339 
result in increases in ΔpH (ref. 1; Fig. 4f). Together, these findings establish dissipation of ΔpH 340 
as a primary mechanism of action of compounds 1 and 2. Notably, while halicin has been shown 341 
to exhibit a similar mechanism of action1 and bacterial membrane-sensitive mechanisms of 342 
action have often been de-prioritized in antibiotic drug discovery due, in part, to potential lack of 343 
selectivity39, compounds 1 and 2 selectively target Gram-positive bacteria over Gram-negative 344 
bacteria and human cells. Additional studies measuring DiSC3(5) in S. aureus cells and 345 
leveraging Chemprop to predict PMF alterations suggest, intriguingly, that the mechanism of 346 
action of compounds 1 and 2 might be accurately predicted from chemical structure (Methods 347 
and Supplementary Data 4).      348 

Given that compounds 1 and 2 exhibit a structural scaffold distinct from those of known 349 
antibiotics and dissipate ΔpH, we further expected that these compounds would be active against 350 
diverse antibiotic-resistant pathogens. We found that both compounds were active (MIC ≤16 351 
μg/mL) against 40 CDC isolates of different bacterial species containing various resistance 352 
factors, including vancomycin, aminoglycoside/tetracycline (AG/TC), and oxazolidinone 353 
resistance (Fig. 4g and Supplementary Table 4). Across these isolates, the median MICs for 354 
compounds 1 and 2 were 4 and 3 μg/mL, respectively, and both compounds exhibited MIC 355 
ranges of 2 to 16 μg/mL. Of note, both compounds were active against vancomycin-resistant 356 
enterococci (VRE), a serious antimicrobial resistance threat40 (Fig. 4g and Supplementary Table 357 
4). Moreover, time-kill experiments indicate that both compounds were effective against B. 358 
subtilis persisters, resulting in the eradication of a log-phase culture after treatment with 359 
kanamycin (Extended Data Fig. 8). These findings suggest that compounds 1 and 2 can 360 
overcome common resistance determinants and antibiotic tolerance in Gram-positive bacteria. 361 

Toxicology, chemical properties, and in vivo efficacy 362 

Given the favorable in vitro selectivity of compounds 1 and 2 (Fig. 3g), we investigated whether 363 
these compounds may be useful for the treatment of Gram-positive pathogens in clinical 364 
contexts. We first investigated their toxicological and chemical properties, including hemolysis, 365 
metal ion binding, genotoxicity, and chemical stability. Hemolysis is a severe toxic liability; 366 
metal iron binding may suggest compound reactivity, an undesirable property; genotoxicity often 367 
arises from alkylating agents; and chemical stability is predictive of compound availability in 368 
solution. We found that compounds 1 and 2 are non-hemolytic, do not chelate iron, are not 369 
genotoxic, are chemically stable in solutions of various pH, and are non-toxic when applied 370 
topically (1%) to ex vivo human skin and injected intraperitoneally (80 mg/kg) in mice (Extended 371 
Data Fig. 9 and Methods). 372 

We next investigated the efficacy of compound 1 in the treatment of MRSA when administered 373 
topically and systemically to mice. We tested topical administration in a neutropenic mouse 374 
superficial skin infection1,6,14 model using an aminoglycoside and tetracycline-resistant clinical 375 
isolate of MRSA. Treatment with compound 1 decreased mean bacterial load by ~1.2 logs 376 
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relative to vehicle (Fig. 5a), demonstrating efficacy similar to that of complestatin and 377 
corbomycin, two Gram-positive antibiotics recently discovered through phylogeny and evolution 378 
analyses6. We further tested systemic administration of compound 1 in a mouse neutropenic 379 
thigh infection model41 using an oxazolidinone-resistant clinical isolate of MRSA. Treatment 380 
with compound 1 at 80 mg/kg significantly decreased mean bacterial load by ~1.2 logs relative 381 
to vehicle treatment (Fig. 5b). The efficacy of compound 1 in a thigh infection model indicates 382 
that compounds 1 and 2, and structural analogs thereof, represent a promising chemical series for 383 
development as novel antibiotic candidates. Indeed, structure-activity relationship analyses 384 
indicate that the structure-activity space of our rationale of interest is not flat, supporting the 385 
suggestion that compounds 1 and 2 hold promise for further optimization (Supplementary Note 4 386 
and Extended Data Fig. 10). 387 

Discussion 388 

The need to discover novel structural classes of antibiotics is pressing given the antibiotic 389 
resistance crisis. This challenge has manifested in the 38-year interval between the introduction 390 
of the fluoroquinolone class of antibiotics in 1962 and the next new structural class, the 391 
oxazolidinones, in 2000.42 In the present study, we identified putative structural classes of 392 
antibiotics using graph-based explanations of deep learning model predictions of antibiotic 393 
activity and cytotoxicity in a space of 12,076,365 compounds. Our approach revealed multiple 394 
compounds with antibiotic activity against S. aureus. Of these, we found that one structural class 395 
exhibits high selectivity, overcomes resistance, possesses favorable toxicological and chemical 396 
properties, and is effective in both the topical and systemic treatment of MRSA in mouse 397 
infection models. Mechanistic and structure-activity relationship analyses additionally suggest 398 
that this structural class can be further optimized for higher selectivity against Gram-positive 399 
pathogens and increased permeability against Gram-negative pathogens. 400 

This work demonstrates a deep learning approach to discovering structural classes of antibiotics, 401 
one which systematically builds on predictions of lone compound hits and allows for the 402 
efficient, substructure-based exploration of vast chemical spaces. In addition to down-sampling 403 
chemical space, a useful feature of our approach is the ability to automate the identification of 404 
unprecedented structural motifs, particularly in the context of deep learning models. This 405 
capability provides a source of chemical novelty that can suggest chemical spaces to explore and 406 
productively augment current discovery pipelines, for instance, by generating chemical 407 
fragments of interest for de novo design efforts. Importantly, this capability cannot be 408 
accomplished using alternative approaches, such as traditional QSAR analyses, that build on 409 
known scaffolds and do not identify novel scaffolds based on generalizing the patterns of 410 
molecular atoms and bonds in chemical structures28. We anticipate that a better understanding of 411 
graph-based rationale predictions could aid the discovery and design of additional, much-needed 412 
classes of antibiotics—for instance, those active against Gram-negative bacteria—as well as drug 413 
classes that target other biological processes and diseases, including anti-viral and anti-cancer 414 
drugs. 415 
An alluring implication of the present study is that deep learning models in drug discovery can 416 
be made explainable. Indeed, a fundamental limitation of the black-box models that are 417 
commonly used in machine learning has been that such models typically do not provide 418 
information into the underlying decision-making processes20. Yet, model explainability may lead 419 
to generalizable insights that could better inform the use and development of next-generation 420 
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approaches to exploring chemical spaces. Our study demonstrates that graph neural networks can 421 
be better understood and explained using graph-based searches for chemical substructure 422 
rationales that recapitulate model predictions. This provides meaningful chemical insights into 423 
what was learned by a particular model or ensemble of models. We anticipate that future work 424 
will build on this and similar approaches43,44 to further analyze and understand the predictions 425 
generated by deep learning models, for instance by using methods centered on perturbing model 426 
inputs45 for additional tests of explainability, as well as perturbing neural network structure for 427 
interpretability.  428 

The approach presented here—which includes in silico predictions of compound cytotoxicity and 429 
stringent medicinal chemistry filtering steps that might inform work in other areas of drug 430 
discovery—could be further refined to consider more detailed representations of chemical space 431 
and factors important to antibiotic activity, such as protein binding in serum. By iterating the 432 
tasks of data generation, model retraining, and substructure identification, more complete 433 
representations of chemical space may be constructed, and promising predictions may be better 434 
identified and triaged. The discovery of structural classes using explainable deep learning could 435 
facilitate the process of identifying and optimizing potential leads by focusing on key scaffolds 436 
of interest, with which we may begin to efficiently explore novel chemical spaces and gain 437 
specific insights into the chemical substructures that underlie biological activity.  438 
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Fig. 1. Ensembles of deep learning models for predicting antibiotic activity and human cell 532 
cytotoxicity. 533 

a, Schematic of the approach. Graph neural networks predict the chemical properties of >109 534 
molecules in silico, in contrast to expensive and time-consuming experimental screening of large 535 
chemical libraries. Here, the growth inhibition activities of 39,312 chemically diverse 536 
compounds are used to train the model, the model is applied to virtual chemical databases 537 
comprising 12,076,365 molecules that can be readily procured, and compounds with high 538 
prediction scores (“hits”) are analyzed according to structural class, procured, and tested. This 539 
approach can be iterated, and the model can be retrained to generate new predictions. 540 
b, S. aureus RN4220 growth inhibition data for a screen of 39,312 compounds at a final 541 
concentration of 50 μM. Data are from two biological replicates. Active compounds are those for 542 
which the mean relative growth is <0.2. 543 

c, Precision-recall curves for an ensemble of 10 Chemprop models, augmented with RDKit 544 
features, trained and tested on the data in (b). The black dashed line represents the baseline 545 
fraction of active compounds in the dataset (1.3%). Blue curves and the 95% confidence interval 546 
(CI) indicate variation from bootstrapping. AUC, area under the curve. 547 

d, f, h, HepG2 (d), HSkMC (f), and IMR-90 (h) viability data for screens of 39,312 compounds 548 
at a final concentration of 10 μM. Data are from two biological replicates for each cell type. 549 
Cytotoxic compounds are those for which the mean relative viability is <0.9. 550 
e, g, i, Precision-recall curves for an ensemble of 10 Chemprop models, augmented with RDKit 551 
features, trained and tested on the data in (d,f,h). Black dashed lines represent the baseline 552 
fractions of cytotoxic compounds in the datasets (e, 8.5%; g, 3.8%; i, 8.8%). Blue curves and the 553 
95% confidence interval (CI) indicate variation from bootstrapping.  554 
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Fig. 2. Filtering and visualizing chemical space. 555 
a, In silico filtering procedure. Trained graph neural networks are applied to make predictions of 556 
antibiotic activity for 12,076,365 compounds from the Mcule purchasable database and a Broad 557 
Institute database. Compounds with high (>0.4 for the Mcule database, and >0.2 for the Broad 558 
Institute database) prediction scores for antibiotic activity are retained, and similar graph neural 559 
networks are applied to predict the cytotoxicity of these compounds for HepG2 cells, HSkMCs, 560 
and IMR-90 cells. Compounds with low (<0.2) cytotoxicity prediction scores for all cell types 561 
are retained, then computationally tested for the presence of promiscuously reactive or 562 
unfavorable chemical substructures (PAINS and Brenk substructures). Finally, the remaining 563 
compounds are filtered for structural novelty, as defined by a Tanimoto similarity score of <0.5 564 
with respect to any active compound in the training dataset and lack of a quinolone bicyclic core 565 
or β-lactam ring. 566 

b, Rank-ordered antibiotic activity prediction scores of all 12,076,365 compounds for which 567 
antibiotic activity was predicted.  568 

c-e, Rank-ordered HepG2 (c), HSkMC (d), and IMR-90 (e) cytotoxicity prediction scores of 569 
10,310 compounds with high antibiotic activity prediction scores.  570 

f, t-Distributed neighbor embedding (t-SNE) plot of compounds with high and low antibiotic 571 
prediction scores, in addition to compounds in the training set. The plot shows the chemical 572 
similarity or dissimilarity of various compounds, and active compounds in the training set (red 573 
dots) are seen to largely separate compounds with high prediction scores (green, black, and 574 
purple dots) from compounds with low prediction scores (brown dots).  575 
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Fig. 3. Graph-based rationales reveal scaffolds for prospective antibiotic classes. 576 
a, Illustration of the Monte Carlo tree search method resulting in chemical structure rationales 577 
(graph substructures) with high predicted antibiotic activity. 578 
b, A rationale (red) determined using a Monte Carlo tree search for cefmenoxime, an example hit 579 
compound. Here, the rationale overlaps with the cephalosporin core and results, by itself, in an 580 
antibiotic prediction score of 0.149. For comparison, the cephalosporin core is shown in black.  581 

c, Rank-ordered Tanimoto similarity scores of all hits with respect to active compounds in the 582 
training set. A threshold of 0.5 was used to threshold predicted hits that are structurally distinct 583 
from active compounds in the training set.  584 
d, Rank-ordered numbers of hits with rationales in rationale groups with conserved scaffolds, for 585 
186 hits with rationales found in 1,261 structurally novel hits containing no unfavorable 586 
substructures. Here, 16 hits with rationales were associated with five scaffolds, G1-G5.  587 

e, Rank-ordered antibiotic activity prediction scores of 253 compounds with high (>0.2) 588 
antibiotic prediction scores and 30 compounds with low (<0.1) antibiotic prediction scores 589 
procured for empirical testing. True positives are colored in purple, and true negatives are 590 
colored in brown.  591 

f, Chemical structures of compounds 1 and 2, two structurally novel hits associated with 592 
rationale group G2 that possess no unfavorable substructures and were found to inhibit the 593 
growth of S. aureus RN4220. The rationales (red) are identical for both compounds, resulting in 594 
an antibiotic prediction score of 0.144. 595 

g, S. aureus MIC and human cell IC50 values of compounds 1 and 2, shown on a log scale. Bars 596 
show the means of two biological replicates (points) and are colored by the bacterial strain, 597 
human cell type, or media condition tested. Asterisks indicate values larger than 128 µg/mL.  598 
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Fig. 4. Resistance and mechanism of action of a structural class. 599 
a, Time-kill measurements for log-phase S. aureus RN4220 and B. subtilis 168 treated with 600 
compounds 1 and 2, vancomycin, or untreated. Data are from two biological replicates, and 601 
points indicate mean values. Where applicable, CFU/mL values less than 102 were truncated to a 602 
value of 102 to reflect the lower limit of quantification. 603 
b, MIC fold changes in serial passaging experiments, in which S. aureus RN4220 was passaged 604 
in liquid LB every 24 h for 30 days. Two biological replicates (individual curves) are shown for 605 
each compound, and fold change is on a log scale. 606 

c, Growth of suppressor mutants in evolution experiments, in which S. aureus RN4220 was 607 
plated at 109 CFU on LB agar plates containing compound, incubated for 5 days, then streaked 608 
on fresh compound-containing LB agar plates. Each image represents two biological replicates.  609 
d, Phase contrast images of log-phase B. subtilis 168 cells treated with compounds 1 and 2 (16 610 
μg/mL) for 3 h. Scale bar, 3 μm. Results shown represent three biological replicates. 611 
e, DiSC3(5) fluorescence in log-phase S. aureus RN4220 and B. subtilis 168 during treatment 612 
with DMSO (1%), valinomycin and nigericin (~1 mg/mL), and compounds 1 and 2 (32 μg/mL). 613 
Cells were treated at time 300 s (vertical lines). Results shown represent three biological 614 
replicates.  615 
g, OD600 measurements from S. aureus RN4220 cultures incubated overnight with compounds 1 616 
and 2 across different media pH levels. Each growth curve shows one biological replicate, and 617 
results shown represent two biological replicates.  618 

h, MIC values of compounds 1 and 2 against CDC MRSA and VRE isolates, shown on a log 619 
scale. Bars show the means of two biological replicates (points). Asterisks denote bars 620 
corresponding to VRE isolates. All other bars correspond to MRSA isolates.   621 
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Fig. 5. In vivo efficacy. 622 
a, b, In vivo study of a neutropenic mouse wound infection model using MRSA CDC 563 (a) 623 
and a neutropenic mouse thigh infection model using MRSA CDC 706 (b), as described in 624 
Methods. In a, treatment was administered topically beginning 1 h post-infection and at 4, 8, 12, 625 
20, and 24 h post-infection. n = 5 mice were used in each group, and the fusidic acid and 626 
compound 1 treatment arms were tested against vehicle treatment on separate occasions; points 627 
for both vehicle groups are overlaid. In b, treatment was administered single-dose 628 
intraperitoneally at 1 h post-infection, and n = 6 mice were used in each treatment group. 629 
Horizontal lines indicate mean log10 CFU/g values. One-sided, two-sample permutation test 630 
compared to vehicle treatment: **p ≤ 10-2.  631 
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Methods 632 
Deep learning model. The deep learning approach used in this work builds on that applied in 633 
ref. 1. For each compound, RDKit was used to generate a graph-based molecular representation 634 
from the compound’s simplified molecular-input line-entry system (SMILES) string. A feature 635 
vector for each atom and bond in the compound was generated based on the following 636 
computable features: atom features include the atomic number, number of bonds for each atom, 637 
formal charge, chirality, number of bonded hydrogen atoms, hybridization, aromaticity, and 638 
atomic mass; bond features include the bond type (single, double, tripe, or aromatic), 639 
conjugation, ring membership, and stereochemistry. The model then implements the bond-based 640 
message-passing convolutional neural network described in refs. 1 and 11, which builds on the 641 
atom-based message-passing approach developed in ref. 10. Here, each message (a real number) 642 
associated with a bond is updated by summing the messages from neighboring bonds, 643 
concatenating the current bond’s message with the sum, and then applying a single neural 644 
network layer with a nonlinear activation function. After a fixed number of message-passing 645 
steps, the messages across the molecule are summed to produce a final message representing the 646 
molecule. This message is passed through a feed-forward neural network that outputs a 647 
prediction of the compound’s activity. For models predicting antibiotic activity, the final output 648 
is a real number between 0 (does not inhibit bacterial growth) and 1 (inhibits bacterial growth), 649 
describing the probability that the compound inhibits growth of S. aureus RN4220. For models 650 
predicting cytotoxicity, the final output is a real number between 0 (is not cytotoxic) and 1 (is 651 
cytotoxic), describing the probability that the compound is cytotoxic to HepG2 cells, HSkMCs, 652 
or IMR-90 cells. For models predicting proton motive force-altering activity, the final output is a 653 
real number between 0 (does not alter the proton motive force) and 1 (alters the proton motive 654 
force), describing the probability that the compound either increases or decreases DiSC3(5) 655 
fluorescence in S. aureus RN4220. 656 

Model optimization. Building on ref. 1, three model optimizations were employed to improve 657 
model performance. First, 200 additional molecule-level features computed with RDKit, as 658 
summarized in Supplementary Data 1, were added to the graph-based representation of each 659 
compound. This step was performed in order to provide additional information about global 660 
properties of each compound, which the local message-passing approach may not encapsulate. 661 
Second, we used hyperparameter optimization in order to select best-performing 662 
hyperparameters for each antibiotics model. For all Chemprop models with RDKit features 663 
predicting antibiotic activity, a limited grid search was used to find hyperparameters resulting in 664 
good performance; the parameter search ranges used are indicated in Supplementary Table 5. 665 
The same hyperparameters were used for the Chemprop models without RDKit features and 666 
without further optimization. For random forest classifiers based on Morgan fingerprints (radius 667 
= 2 and number of bits = 2,048), we used an exhaustive grid search in the preselected region of 668 
hyperparameter space indicated in Supplementary Table 5. We note here that, in contrast to our 669 
Chemprop embedding (which produces vectors of dimension NF, where N is the number of 670 
atoms in a molecule and F is the number of features), the Morgan fingerprint representation 671 
encodes only a count of F substructures and produces vectors of dimension F; for this reason, 672 
Morgan fingerprints are better suited as inputs to random forest models and the t-SNE analyses 673 
described below. For all Chemprop models predicting cytotoxicity, a more limited grid search 674 
suggested that the same hyperparameters as those for Chemprop models predicting antibiotic 675 
activity were suitable, and no further optimization was performed. For all models, the final 676 
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hyperparameters used are tabulated in Supplementary Table 5. Finally, we used ensembling to 677 
increase the robustness of the model predictions. For each Chemprop model, 20 models were 678 
trained on a different random split of the training data. For benchmarking, the highest-scoring 10 679 
models, according to the AUPRC on the withheld test set, were used in the ensemble. For 680 
predictions, all 20 models were used in the ensemble. We note here that training for all final 681 
models was performed using data from the full screening dataset of 39,312 compounds; 682 
requirements for structural novelty were enforced after making predictions (as described below), 683 
as opposed to removing known structural motifs from model training. 684 

Model evaluation. Screening data for 39,312 compounds were acquired experimentally, as 685 
described below. To evaluate model performance using the AUPRC, the training dataset was 686 
partitioned, such that 80% of the compounds (~31,647 compounds) were reserved for training 687 
and validation and 20% of the compounds (~7,911 compounds) were withheld for testing and 688 
calculation of PRCs. Active compounds in each group were distributed similarly as in the overall 689 
dataset (1.3% for antibiotic activity, 8.5% for HepG2 cytotoxicity, 3.8% for HSkMC 690 
cytotoxicity, and 8.8% for IMR-90 cytotoxicity). For each Chemprop model, training was 691 
performed for 30 epochs using random 80%-10%-10% training-validation-testing splits of the 692 
training subset, with each model being assigned a different random seed. All models were then 693 
pooled together to complete an ensemble. The ensemble of models was then applied to the 694 
withheld testing subset, and prediction scores of the ensemble were taken as the average of the 695 
prediction scores of all models in the ensemble. Random forest classifiers were trained using the 696 
software package scikit-learn. Bootstrapping with 100 subsamples, where each subsample had 697 
size equal to the test set, was used to calculate 95% AUPRC confidence intervals and variations 698 
of PRCs. The area under the receiver operating characteristic curve (AUROC) values shown in 699 
Supplementary Table 1 were calculated using the sklearn package in Python, and exact p-values 700 
for DeLong’s test of the statistical significance of the difference in AUROC values46 were 701 
calculated using a Python implementation47.  702 

After selection of the best-performing type of model based on our benchmarks (for each 703 
predicted output property, an ensemble of Chemprop models with RDKit features), 20 models 704 
were retrained on the entire training dataset and applied to make predictions on a total of 705 
12,076,365 compounds. While previous work has used a similar model for E. coli to predict the 706 
antibiotic activity of 107 million molecules in the ZINC15 database18, here we were interested in 707 
assessing compounds that could be readily procured, without recourse to in-house or specialized 708 
chemical synthesis. We therefore applied the final models to the entire Mcule purchasable 709 
database of 11,277,249 compounds (ver. June 2020)24, combined with an in-house database of 710 
799,140 compounds from the Broad Institute.  Prediction score thresholds for hits and non-hits 711 
were chosen to generate computationally tractable groups of ~103 compounds, but we note that 712 
the ability of our final models of antibiotic activity to discriminate between hits and non-hits is 713 
generally similar across different prediction score cutoffs (Extended Data Fig. 4).  714 

Given the lower AUPRC values of all our models predicting cytotoxicity, as compared to 715 
our models predicting antibiotic activity, we aimed to further validate the performance of our 716 
cytotoxicity models. The final, trained cytotoxicity models were further benchmarked on two 717 
Tox21 datasets22 and a human metabolites database23, as described in Supplementary Note 1 and 718 
Supplementary Tables 7 and 8. Here, 7,151 compounds independently screened for cytotoxicity 719 
against HepG2 cells and 5,726 compounds screened for mitochondria toxicity from the Tox21 720 
dataset were evaluated, and we found AUPRC values of ~0.3 for both datasets and all three 721 
Chemprop models (HepG2, HSkMC, and IMR-90). Consistent with the expected model 722 
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performance, evaluating 3,126 human metabolites that are putatively non-cytotoxic resulted in 723 
false-positive rates of ~1% to ~10%, with lower false positive rates associated with higher 724 
cytotoxicity prediction score thresholds (Supplementary Note 1). Additionally, we procured and 725 
tested 100 structurally dissimilar compounds that were predicted to be cytotoxic by all 726 
Chemprop models (prediction score >0.4 across all models) and 90 compounds that were 727 
predicted to be non-cytotoxic (prediction score <0.05 across all models). Assessing these 728 
compounds tested the models’ generalizability, as the Tanimoto similarity values were <0.5 with 729 
respect to all cytotoxic compounds for any cell type in the training set (Supplementary Data 1). 730 
We found that 24 and 8 compounds, respectively, were cytotoxic to all three cell types (reducing 731 
cell viability by ≥10%), suggesting a working true positive rate of 0.75. Taken together, these 732 
findings support the suggestion that our models can be productively used to filter out cytotoxic 733 
compounds, thereby augmenting our antibiotic discovery efforts. 734 

t-SNE and visualization. For t-SNE analyses, we used sklearn.manifold’s TSNE() function in 735 
conjunction with Morgan fingerprint representations of all compounds (radius = 2 and number of 736 
bits = 2048) to visualize compounds in two dimensions. Following previous work1,14, the Jaccard 737 
distance, which is another name for Tanimoto distance for binary variables, was used as the 738 
distance metric; the Tanimoto distance is defined as Tanimoto distance = 1 – Tanimoto 739 
similarity, and the Tanimoto similarity between two fingerprints is given by the quotient of the 740 
number of 1-bits in the intersection of both fingerprints divided by the number of 1-bits found in 741 
their union. All calculations of Tanimoto similarity used in this work are based on Morgan 742 
fingerprint representations of all compounds (radius = 2 and number of bits = 2,048). The choice 743 
of the Jaccard metric for the t-SNE plot implies that the distance between points reflects the 744 
Tanimoto similarity of the corresponding compounds, with greater t-SNE distance indicating 745 
lower Tanimoto similarity1. We note here that the Tanimoto similarity depends on the global 746 
chemical structures of both inputs, and thus, does not necessarily quantify hits with common 747 
substructures or rationales. A perplexity parameter of 30 was found to produce clear 748 
visualizations and used for all plots. The initialization of embedding used was PCA. 749 

Monte Carlo tree search for substructure rationales. We employed graph neural network-750 
based rationale explanations to determine, for each molecule with high predicted antibiotic 751 
activity, the smallest subgraph resulting in the molecule being classified as active (Fig. 3, 752 
Extended Data Figs. 5 and 6, and Supplementary Data 2). Formally, a rationale should satisfy 753 
three properties. First, its maximum size must be no more than a set number of atoms. Second, it 754 
must be a connected subgraph. Third, its predicted property must be greater than an activity 755 
threshold. We used Chemprop’s built-in “interpret” function to produce rationales yielding a 756 
minimal prediction score of 0.1. Given any input molecule with high prediction score, the 757 
rationale search proceeds by running a Monte Carlo tree search (MCTS; described below). An 758 
initial substructure size of 8 atoms was chosen to produce reasonably-sized outputs, a batch size 759 
of 500 parallel runs were used, and at each node, 10 rollout steps were performed wherein the 760 
rationale was expanded to distinct nodes. The expanded rationale was then scored with the same 761 
trained Chemprop models used to make the initial hit prediction. For searches in which no 762 
rationale producing a prediction score above 0.1 could be obtained after 10 minutes of search 763 
using all available CPUs on a Google Cloud c2-standard-60 instance, no rationales were deemed 764 
to have been computed for the hit of interest.  765 

Finding the rationale of a molecule is a discrete optimization problem, which can be 766 
solved by the MCTS algorithm. The root of the search tree is the original active molecule and 767 
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each state in the search tree is a subgraph derived from a sequence of bond or ring deletions. To 768 
ensure that each state is chemically valid and remains connected, we only allow deletion of one 769 
peripheral bond or ring from each state. A bond or ring is called peripheral if a molecule remains 770 
connected after deleting it. 771 

During the search process, each state S in the search tree stores the following statistics: 772 
• N(S) is the number of times state S has been visited during the search process, and is a 773 

quantity used for exploration-exploitation tradeoff in the MCTS algorithm. 774 
• W(S) is the total long-term reward, which indicates how likely state S will eventually 775 

lead to a valid rationale. 776 
• R(S) is the predicted activity score of S, viewed as a subgroup and input to Chemprop 777 

in its own right, which indicates the immediate reward by choosing this state. 778 
Guided by these statistics, the MCTS algorithm searches for rationales through an 779 

iterative process. Each iteration consists of two phases: 780 
1. Forward pass: The MCTS algorithm selects a path from the root (the starting 781 

compound) to a leaf state, Sleaf (a candidate rationale). At each intermediate state S, a 782 
deletion action is selected based on the mean action value:  783 

𝑆! = argmax"∈$%&'((*)
,(")-.!/(")
0-1(")

, 784 

where the parameter cs controls the trade-off between the long-term reward, W(s), and 785 
immediate reward, R(s). This parameter is set according to the well-known PUCT 786 
(predictor upper confidence bound applied to trees) equation48.  787 

2. Backward pass: The state statistics are updated for each visited state in the selected 788 
path: N(S) ⟵	N(S) + 1; W(S) ⟵	W(S) + R(Sleaf). 789 

Based on the backward pass update, W(S) represents the sum of the predicted activity of 790 
all valid rationales (leaf nodes) derived from state S. Different from the immediate reward R(S), 791 
W(S) measures long-term reward because it focuses on the predicted activity of the leaf nodes. 792 
The intuition is that the immediate reward is useful for filtering poor choices: states are unlikely 793 
to contain a rationale if R(S) is low. Among states with similar R(S) values, W(S) aids in 794 
selecting those with higher long-term reward. To better illustrate the MCTS algorithm, we 795 
provide an example in Extended Data Fig. 5 using compound 1: Extended Data Fig. 5a illustrates 796 
the MCTS forward pass, and Extended Data Fig. 5b shows a complete search path from the root 797 
to a rationale. 798 

As described in the main text, we reasoned that further exploring the scaffolds of the 799 
rationales would better inform the chemical motifs underlying structural classes. The focus on 800 
scaffolds that are conserved across rationales is important, as we found that rationales were often 801 
large (>17 atoms), could contain most of the hit structures of interest, and may differ from hits 802 
and other structurally similar rationales by a small (<3) number of atoms. These observations 803 
imply that a direct matching of rationales will often result in groups of large rationales that may 804 
not be as productive or informative for structural class-based discovery efforts. Accordingly, 805 
here we have calculated the scaffold conserved between two randomly chosen rationales using 806 
RDKit’s FindMCS() function (as described in detail below) and assigned any remaining rationale 807 
to this scaffold if the scaffold contained at least 12 atoms—a threshold chosen to exclude small 808 
and generic substructures. We then repeated this process for at least 103 iterations, in order to 809 
sample the combinatorial space of all scaffolds defined by the rationales. Independent runs of 810 
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this sampling procedure resulted in samples with similar scaffolds. All rationales and scaffolds 811 
presented in this work are provided as SMILES arbitrary target specification (SMARTS) strings 812 
in Supplementary Data 2. 813 

Leave-one-out analyses. Compounds in the training set were checked for the presence of the 814 
quinolone bicyclic core or β-lactam ring using RDKit’s FindMCS() function as below, with 815 
respect to the molecules described by two SMILES: “C1=CC=C2C(=C1)C(=O)C=CN2” 816 
(quinolone) or “C1CNC1=O” (β-lactam). Compounds (active or inactive) whose MCSs shared 817 
≥11 (quinolone) or ≥4 (β-lactam) atoms with the respective substructures were withheld. The 818 
remaining training sets were checked visually to confirm the absence of any quinolone or β-819 
lactam structure, respectively. Given the similarity in size of the remaining training sets to the 820 
full training set, we used the same Chemprop model hyperparameters as with the final model 821 
(Supplementary Table 5) and trained ensembles of 20 Chemprop models with RDKit features to 822 
make binary classification predictions of antibiotic activity. The models were then applied to 823 
make predictions of the antibiotic activities of the respective withheld quinolone and β-lactam 824 
compounds (Supplementary Data 2).  825 

Maximal common substructure identification and analyses. The importance of maximal 826 
common substructures and their identification have been acknowledged in prior studies27,49. As 827 
mentioned in the main text, we found that MCS-based approaches did not necessarily yield 828 
substructures that were diagnostic of high predicted antibiotic activity when applied to deep 829 
learning model predictions (Supplementary Note 2, Supplementary Table 9, and Extended Data 830 
Fig. 6). Indeed, Supplementary Note 2 shows that MCSs shared between hits can have antibiotic 831 
prediction scores <0.005, demonstrating that MCSs have low predictive capability as compared 832 
to rationales. In Supplementary Note 2, we were interested in quickly identifying maximal 833 
common substructures (MCSs) enriched in sets of compounds. Methods for addressing this 834 
problem remain limited: the mismatch tolerant matching mode of the fmcsR package49 allows for 835 
integer atom or bond mismatches that often effectively lower the atom threshold for MCS 836 
matches, while typical molecular fingerprinting methods rely on the deconstruction of a chemical 837 
structure into rigid substructures. We therefore employed a simple method. Given an integer N0 838 
and a list, N, of compounds, we first chose, at random, two compounds n1 and n2 from N. Using 839 
RDKit’s FindMCS() function with the options of bondCompare set to 840 
rdFMCS.BondCompare.CompareOrderExact (bonds are equivalent if and only if they have the 841 
same bond type) and completeRingsOnly set to True (if an atom is part of the MCS and the atom 842 
is in a ring of the entire molecule, then that atom is also in a ring of the MCS), we computed the 843 
MCS, M, shared by n1 and n2. If the number of atoms of M was less than N0, then M was 844 
discarded and the combination of n1 and n2 not chosen again; otherwise, N was transversed, and 845 
whether or not each compound n ∈ N (n ≠ n1, n2) properly contained M was determined using the 846 
HasSubstructMatch() function in RDKit. If n properly contained M, then n was eliminated from 847 
N and said to be associated with M; otherwise, n remained in N. This process was repeated for a 848 
predetermined number of iterations or until a prespecified fraction of all compounds remained, 849 
which were not associated with any M. In the best case that all elements of N are associated with 850 
any MCS between any two members of N, this method requires |N|-1 MCS or substructure 851 
matching computations; in the worst case that no elements of N are associated with any suitable 852 
MCS, this method requires |N|(|N|-1)(|N|-2) MCS or substructure matching computations. We 853 
implemented this method in a Python notebook, available as described below in Code 854 
availability.  855 
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We applied the foregoing method on hits and non-hits with varying atom number 856 
thresholds and the number of iterations set to 5,000, which resulted in the identification of MCSs 857 
A1-A12, B1-B12, C1-C12, and D1-D12 (Extended Data Fig. 6). We note here that increasing 858 
the number of iterations did not substantially change the MCSs identified. MCSs A1-A12, B1-859 
B12, C1-C12, and D1-D12 are provided as SMARTS strings in Supplementary Data 2. 860 
 The MCS prediction scores shown in Extended Data Fig. 6 were calculated by calculating 861 
Chemprop model predictions for the SMARTS strings computed above, viewed as inputs in their 862 
own right. For a small subset of MCSs, the corresponding SMARTS strings were invalid inputs 863 
due to ambiguity in the bond type (single or double) of specific bonds. In these cases, the bond 864 
type was manually chosen either as single or double bonds to create valid SMILES strings, 865 
which were then inputted into the Chemprop models to generate MCS prediction scores.      866 

Computational hit analyses. The PAINS and Brenk alerts29,30 refer to chemical substructures 867 
that may be promiscuous or toxic. PAINS and Brenk substructures were calculated for each 868 
compound passing antibiotic activity prediction score and cytotoxicity prediction score 869 
thresholds (Fig. 2) using RDKit’s FilterCatalogParams.FilterCatalogs.PAINS and 870 
FilterCatalogParams.FilterCatalogs.BRENK classifications, respectively. We calculated 871 
Tanimoto similarity scores of each remaining compound with respect to all active compounds in 872 
the training set using the FingerprintSimilarity() function in RDKit, in conjunction with Morgan 873 
fingerprint representations of all compounds (radius = 2 and number of bits = 2048), as 874 
mentioned above. Compounds were then checked for the presence of the β-lactam ring or the 875 
quinolone bicyclic core using RDKit’s FindMCS() function as above, with respect to the 876 
molecules described by two SMILES: “C1CNC1=O” (β-lactam) or  877 
“C1=CC=C2C(=C1)C(=O)C=CN2” (quinolone). Compounds whose MCSs shared ≥4 (β-lactam) 878 
or 11 atoms (quinolone) with the respective substructures were discarded. The medicinal 879 
chemistry property predictions shown in Supplementary Table 3 were performed using 880 
SwissADME50. Of note, Lipinski’s rule of five31, which is often used as a guideline for oral 881 
bioavailability but also viewed as a guideline for druglikeness, demands that a compound 882 
possesses (1) number of H-bond donors ≤5; (2) number of H-bond acceptors ≤10; (3) molecular 883 
weight ≤500 Da; and (4) an octanol-water partition coefficient (log P) ≤5. The Ghose criteria32 884 
for druglikeness demand that a compound possesses (1) molecular refractivity ≥40 and ≤130; (2) 885 
number of atoms ≥20 and ≤70; (3) an octanol-water partition coefficient (log P) ≥-0.4 and ≤5.6; 886 
and (4) a molecular weight ≥160 and ≤480.  887 

Chemical compound sourcing. In order to systematically source compounds for testing, we 888 
developed a custom Python script which queries the PubChem database for vendors of each 889 
compound, according to its SMILES string. Of note, while the Mcule purchasable database 890 
contains compounds that are readily purchasable, compounds may not be purchasable from 891 
Mcule. The query results were tabulated for all compounds, and we shortlisted a subset of 892 
compounds which were available in high purity (>90%) and could be purchased from common 893 
vendors. Compounds were then sourced from multiple suppliers, including ChemBridge (San 894 
Diego, CA), Vitas-M (Hong Kong, China), and Enamine (Kyiv, Ukraine); catalogue details for 895 
each procured compound are provided in Supplementary Data 2.  896 

Bacterial strains. A list of all common bacterial strains used in this study is provided in 897 
Supplementary Table 6. Main strains include Staphylococcus aureus RN4220, FPR3757 (MRSA 898 
USA300; ATCC BAA-1556), Bacillus subtilis 168 (ATCC 23857), Escherichia coli BW25113, 899 
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Acinetobacter baumannii ATCC 17978, and Pseudomonas aeruginosa PAO1. The resistance 900 
phenotype of S. aureus FPR3757 was verified by comparing growth inhibition against S. aureus 901 
RN4220 on 2 and 4 μg/mL oxacillin salt-containing Mueller Hinton agar (Becton Dickinson 902 
225250; oxacillin, MilliporeSigma 28221). Additional bacterial isolates, as shown in 903 
Supplementary Table 4, were obtained from the Centers for Disease Prevention’s AR Isolate 904 
Bank (Atlanta, Georgia).  905 

Bacterial culture and growth. All cells were grown in liquid LB medium (Becton Dickinson 906 
244620). LB media containing 1.5% Difco agar (Becton Dickinson 244520) was used to grow 907 
individual colonies. Cells were grown from single colonies aerobically at 37°C in 14 mL Falcon 908 
tubes using 2 mL working volumes without antibiotic selection. Cell cultures were incubated in a 909 
light-insulated, humidity-controlled incubation chamber with shaking at 300 rpm.  910 

Antibiotics. Unless otherwise stated, stock solutions and serial dilutions of all antibiotics were 911 
freshly prepared in dimethyl sulfoxide (DMSO; MilliporeSigma D5879) before each experiment. 912 
Stock solutions and serial dilutions of kanamycin, ampicillin, fosfomycin, vancomycin, and 913 
teicoplanin were prepared with ultrapure Milli-Q water. Stock solutions of ciprofloxacin and 914 
tetracycline were prepared by dissolving in weak acid (0.1 M HCl), then diluted in ultrapure 915 
Milli-Q water.   916 

Compound screening and antibiotic activity training data generation. The compound library 917 
used in this work builds on the one used to screen for growth inhibition in E. coli in previous 918 
work from our lab51. Compounds were sourced and dissolved in DMSO to generate working 919 
stocks of 5 mM concentration. Stock solutions were maintained at -20°C for long-term storage. 920 
S. aureus RN4220 was grown overnight in LB media as described above, then diluted 1:10,000 921 
in fresh LB and plated into either (1) 96-well flat-bottom clear plates (Corning 9018) using 100 922 
μL final working volumes or (2) 384-well clear plates (Corning 3702) using 50 μL final working 923 
volumes. Compounds were added to a final concentration of 50 μM and automatically mixed to 924 
facilitate homogeneous distribution, and plates were incubated at 37°C without shaking 925 
overnight (16 to 24 h) in sealed plastic bags. The optical density (OD600) was then read using a 926 
SpectraMax M3 plate reader and SoftMax Pro software (version 7.1, Molecular Devices, San 927 
Jose, CA) to quantify cell growth. Plate data were normalized by the interquartile mean of each 928 
plate to calculate relative growth. All screens were performed in biological replicate. After 929 
screening all 39,312 compounds in this way, a subset of 51 randomly chosen active compounds 930 
were rescreened for secondary validation according to the same procedures described above. The 931 
replicate results for all 51 active compounds were consistent with the results of the main screen. 932 
Furthermore, we note here that the Pearson’s correlation coefficient between relative growth 933 
values of replicates in the screen, respectively, was R = 0.8 (p < 10-14), demonstrating good 934 
reproducibility between replicates (Fig. 1b).  935 

Cytotoxicity screening and testing. Cytotoxicity in human cells was assayed using a resazurin 936 
(alamarBlue) assay. HepG2 cells were obtained from ATCC (ATCC HB-8065), passaged <10 937 
times, and grown to log phase in high-glucose Dulbecco’s Modified Eagle Medium (DMEM; 938 
Corning 10-013-CV) supplemented with 10% fetal bovine serum (FBS; ThermoFisher 939 
16140071) and 1% penicillin-streptomycin (ThermoFisher 15070063). HSkMCs were obtained 940 
from ATCC (ATCC PCS-950-010), passaged <5 times, and grown to log phase in mesenchymal 941 
stem cell basal medium for adipose, umbilical and bone marrow-derived MSCs (ATCC PCS-942 
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500-030) supplemented with ATCC’s primary skeletal muscle growth kit (ATCC PCS-950-040) 943 
and 1% penicillin-streptomycin. IMR-90 cells were obtained from ATCC (ATCC CCL-186), 944 
passaged <10 times, and grown to log phase in Eagle's Minimum Essential Medium (EMEM; 945 
ATCC 30-2003) supplemented with 10% FBS and 1% penicillin-streptomycin. Cells were tested 946 
for mycoplasma contamination by the supplier, and the HepG2 and IMR-90 cell lines were 947 
authenticated by the supplier using short tandem repeat profiling. For IMR-90 cytotoxicity, data 948 
for a subset of 2,335 compounds, corresponding to the Pharmacon and natural products library 949 
used to screen for growth inhibition in E. coli in previous work from our lab1, have previously 950 
been generated by us for cells treated with 0.5% DMSO15; as the experimental conditions of the 951 
screen are similar to those considered here, these data were used and expanded upon for the 952 
current IMR-90 dataset in lieu of screening the same subset of compounds again. For all other 953 
compounds or cell types, cells were plated into either (1) 96-well clear flat-bottom black tissue-954 
culture-treated plates (Corning 3603) at a density of 104 cells/well using 100 μL working 955 
volumes or (2) 384-well clear flat-bottom black tissue-culture-treated plates (Corning 3764) at a 956 
density of 5,000 cells/well using 30 to 50 μL working volumes, then incubated at 37°C with 5% 957 
CO2. Twenty-four h after plating, test compounds were added to a final concentration of 10 μM 958 
(final DMSO concentration of 0.5%) and automatically mixed to facilitate homogeneous 959 
distribution of compounds. Cells were re-incubated for either 2 days (HepG2 and HSkMCs) or 3 960 
days (IMR-90), with the incubation period chosen to reflect the relative timescales of cell 961 
doubling for each cell type, after which resazurin (MilliporeSigma R7017) was added to each 962 
well to a final concentration of 0.15 mM. After an additional 4 to 24 h of incubation, the 963 
fluorescence excitation/emission at 550/590 nm was read using a SpectraMax M3 plate reader or 964 
an EnVision plate reader and EnVision Workstation software (version 1.14.3049.1193, 965 
PerkinElmer, Waltham, MA). Plate data were normalized by the interquartile mean of each plate 966 
to calculate relative cell viability (Fig. 1d,f,h). All screens were performed in biological replicate. 967 
We note here that the Pearson’s correlation coefficients between relative cell viability values of 968 
replicates in the screens, respectively, were R = 0.9 (HepG2), R = 0.96 (HSkMC) and R = 0.81 969 
(IMR-90; p < 10-14 for all cell types), demonstrating good reproducibility between replicates 970 
(Fig. 1d,f,h). For testing cytotoxicity model predictions, 190 compounds were procured from 971 
commercial vendors and assayed in the same manner for each cell type, with the exception that 972 
relative viability values were normalized by the mean of two DMSO (final concentration, 0.5%) 973 
controls.   974 

MIC and bacterial growth inhibition assays. We used the microbroth dilution method for 975 
determining MICs in this study, including the values shown in Fig. 3g. A 1:10,000 dilution of 976 
overnight cell culture in fresh LB was plated into 96-well flat-bottom clear plates using 99 μL 977 
working volumes. One μL of a serial dilution of compound in DMSO was added to each well, 978 
with two-fold serial dilutions across wells. Plates were sealed with breathable membranes 979 
(MilliporeSigma Z763624) and incubated at 37°C with shaking at 900 rpm. The MIC was 980 
determined as the concentration of compound resulting in inhibited growth of the culture (OD600 981 
< 0.2) after overnight (16 to 24 h) incubation. Where applicable, FBS was added to fresh LB to a 982 
final concentration of 10% before addition of bacterial inocula and compounds. All MIC 983 
experiments were replicated at least in biological duplicate, and optical density was read using a 984 
SpectraMax M3 plate reader.  985 

Cytotoxicity IC50 assays. Cells were cultured as described above in Cytotoxicity screening and 986 
seeded at a density of ~2×104 cells/well into 96-well clear flat-bottom black tissue-culture-987 
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treated plates. For each compound, 1 μL of two-fold serial dilutions in DMSO was added to 99 988 
μL of medium containing cells. Addition of 1 μL DMSO to 99 μL of medium containing cells 989 
was used as a negative control, and doxorubicin (Cayman Chemical Company 15007) was used 990 
as a positive control. To facilitate comparison across cell types, plates for all cell types were 991 
incubated for ~2 days. IC50 values were calculated as the minimal concentration used for which 992 
the fluorescence intensity values were decreased by at least 50% from those of negative controls 993 
(DMSO), with baseline values being those of blank wells containing medium with resazurin 994 
only. The effects of vehicle (1% DMSO) were found to be minimal (<10% decrease) on cell 995 
viability, as determined by comparing values from negative controls to those of untreated wells 996 
containing cells only. Experiments were performed at least in biological replicate on two 997 
independent occasions.  998 

Bacterial time-kill assays and CFU measurements. Cells were diluted 1:10,000 or 1:100 from 999 
an overnight culture into fresh LB and plated into 96-well flat-bottom clear plates using 99 μL 1000 
working volumes. Plates were then sealed with breathable membranes, and cells were grown to 1001 
early exponential phase, OD600 ~ 0.01 or 0.1—corresponding to ~106 or ~107 CFU/mL—in a 1002 
37°C incubator with shaking at 900 rpm. Unless otherwise indicated, 1 μL of compound in two-1003 
fold serial dilutions in DMSO was then added to each well to the final concentrations indicated, 1004 
and bacterial cell cultures were sealed and re-incubated at 37°C with shaking at 900 rpm. At the 1005 
indicated times, cells were removed from incubation, serially diluted in room-temperature LB, 1006 
and spotted on LB agar. We performed serial dilutions of cells in LB instead of other media, like 1007 
PBS, in order to better control for osmolarity and nutrient shifts (as we have previously 1008 
done34,35). Petri dishes containing plated cells on LB agar were allowed to dry at room 1009 
temperature before stationary incubation at 37°C overnight (16 to 24 h). CFUs were determined 1010 
by manual counting, and all measurements are based on counts containing at least six colonies.  1011 

Serial passaging experiments. S. aureus RN4220 was diluted 1:10,000 from an overnight 1012 
culture in fresh LB and plated into 96-well flat-bottom clear plates using 99 μL working 1013 
volumes. One μL of a serial dilution of compound in DMSO was added to each well, with two-1014 
fold serial dilutions across wells. Cells were incubated at 37°C with shaking at 900 rpm. After 24 1015 
h, plates were read using a SpectraMax M3 plate reader, and cells that grew (OD600 > 0.3) in the 1016 
presence of the highest concentration of compound were diluted into fresh LB at the optical 1017 
density equivalent of 1:10,000 of an overnight culture. Cells were then plated using 99 μL 1018 
working volumes into 96-well flat-bottom clear plates. One μL of a serial dilution of compound 1019 
in DMSO was again added to each well, with two-fold serial dilutions across wells, and this 1020 
process was repeated every 24 h over 30 days. Stock serial dilutions in DMSO of all compounds 1021 
used for passaging were prepared at day 0 and stored at -20°C. For all compounds tested, 64 or 1022 
128× baseline MIC was the highest concentration used. After 30 days, cells that grew in the 1023 
presence of the highest concentration of compound were streaked on blank LB agar plates to 1024 
isolate individual colonies. Individual colonies picked from LB agar plates were grown in blank 1025 
LB overnight, serial dilutions of all tested compounds were prepared fresh, and the MIC values 1026 
were determined again. MIC values were compared to those determined using overnight cultures 1027 
of non-passaged S. aureus RN4220 cells, in order to confirm MIC changes where applicable. As 1028 
a negative control, cells were serially passaged in 1% DMSO as described above, and without 1029 
selection, for 30 days, and all MICs were confirmed to be identical to those of the ancestral strain 1030 
in two biological replicates.  1031 
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Suppressor mutant generation experiments. S. aureus RN4220 was picked from single 1032 
colonies and grown overnight in fresh LB. For each replicate in each tested condition, 1 mL of 1033 
overnight culture (~109 CFU) was aliquoted and centrifuged at 3700 × g for 5 min. The cell 1034 
pellet was resuspended to a final volume of 50 μL in fresh LB, then pipetted onto the surface of 1035 
LB agar plates containing the indicated concentrations of compounds. Cells were then spread 1036 
using a bent, sterile inoculating loop, and plates were dried and inverted before stationary 1037 
incubation at 37°C for 5 days. At the end of 5 days, plates were removed from incubation, and 1038 
colonies that grew on each plate were picked and streaked on fresh compound-containing LB 1039 
agar plates (up to 6 colonies streaked per plate). These plates were then incubated overnight in a 1040 
stationary incubator at 37°C, and bacterial growth was assessed by eye.  1041 

Genomic sequencing. For serial passaging experiments, passaged cells were streaked onto blank 1042 
LB agar as described above. Following MIC determination and validation, cells from the same 1043 
liquid culture were struck again on blank LB agar and incubated overnight. Single colonies were 1044 
picked and grown in 2 mL blank LB overnight at 37°C with shaking at 300 rpm. One mL of cell 1045 
culture was then aliquoted and pelleted by centrifugation at 3700 × g for 5 min. The supernatant 1046 
was discarded, and cell pellets were frozen and kept at -80°C until sequencing. For suppressor 1047 
mutant generation experiments, plates with bacterial growth after the last overnight incubation 1048 
step were taken, and bacterial cells were sampled from each streak and used to inoculate 2 mL of 1049 
fresh LB. Liquid cultures were then incubated overnight at 37°C with shaking at 300 rpm, and 1050 
cell pellets were prepared as described above for serially passaged cells.   1051 

On the day of sequencing, gDNA was extracted after pre-treating cells with lysostaphin 1052 
(MilliporeSigma SAE0091) for 30 min, using a Qiagen DNeasy Blood and Tissue Kit (Qiagen 1053 
69504) according to the manufacturer’s instructions. Illumina (San Diego, CA) DNA library 1054 
preparations were used following the manufacturer’s instructions. gDNA extraction and 1055 
sequencing were performed at the Microbial Genome Sequencing Center (Pittsburgh, PA).  1056 

Sequencing analysis. Sequencing results were analyzed by aligning each read set to the finished 1057 
RN4220 genome (GCF_018732165.1) using the BWA-MEM algorithm. Pilon52 was used to call 1058 
variants for each read set. Variants with low mapping quality (<10) were filtered from the final 1059 
results (Supplementary Data 3).  1060 

Phase-contrast microscopy. As in previous work34-36, microscopy experiments were performed 1061 
with cells sandwiched between agarose pads and glass slides unless otherwise stated. B. subtilis 1062 
168 was grown from a 1:100 dilution of an overnight culture in 14-mL Falcon tubes to early 1063 
exponential phase (OD600 ~ 0.1), and cells were treated with the indicated compounds for the 1064 
indicated durations at 37°C with shaking at 300 rpm. Cells were concentrated by centrifugation 1065 
at 7000 × g for 5 min and resuspended in a smaller volume of supernatant. We placed 2 μL of the 1066 
resuspended bacterial culture between 3”×1”×1” microscope slides (Fisher Scientific 125444) 1067 
and 1 mm thick agarose (1.5%) pads made from growth media (agarose: MilliporeSigma 1068 
A2576). Cells were imaged immediately afterward at room temperature using a Zeiss Axioscope 1069 
A1 upright microscope equipped with a Zeiss Axiocam 503 camera and a Zeiss 100× NA 1.3 1070 
Plan-neofluar objective (Zeiss, Jena, Germany). Images were recorded using Zen Lite Blue 1071 
(version 2.3, Zeiss) software. All microscopy experiments were replicated at least in biological 1072 
duplicate. 1073 
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DiSC3(5) fluorescence. S. aureus RN4220 and B. subtilis 168 were picked from individual 1074 
colonies and grown in liquid LB overnight at 37°C with shaking at 300 rpm. Cells were then 1075 
diluted 1:100 from the overnight cultures into liquid LB and grown to mid-log phase, OD600 ~ 1076 
0.5, at 37°C with shaking at 300 rpm. DiSC3(5) (Invitrogen D306) was dissolved in DMSO and 1077 
added to liquid cultures at a final concentration of 1 μM. After additional incubation in the 1078 
presence of DiSC3(5) for 1 to 2 h, cells were plated in 200 μL working volumes in black, opaque 1079 
flat-bottom 96-well plates, after which fluorescence was measured every 10 to 30 s at an 1080 
excitation/emission of 622/670 nm using a SpectraMax M3 plate reader. Cells were then treated 1081 
with DMSO (1%) as a negative control, valinomycin (MilliporeSigma V0627) and nigericin 1082 
(MilliporeSigma N7143) at a final concentration of 1 mM as positive controls, and compounds 1 1083 
and 2 at a final concentration of 32 μg/mL. Fluorescence was measured immediately following 1084 
treatment according to the same specifications as above.  1085 

pH-dependent growth inhibition. S. aureus RN4220 was picked from individual colonies and 1086 
grown in liquid LB overnight at 37°C with shaking at 300 rpm. Cells were then diluted 1:10,000 1087 
into liquid LB titrated to pH 8.0 and 9.0 using ammonium hydroxide (MilliporeSigma 09859), 1088 
and MIC values were determined as detailed above in MIC and bacterial growth inhibition 1089 
assays.  1090 
Membrane-specific activity model development. Bacterial membrane-sensitive mechanisms of 1091 
action, such as that of compounds 1 and 2, have often been de-prioritized in antibiotic drug 1092 
discovery due, in part, to potential lack of selectivity39. In order to study the generality of this 1093 
mechanism of action, we further quantified and trained Chemprop models to predict membrane-1094 
specific activity. Additional screens of membrane disruption for a subsample of 475 active 1095 
antibacterial compounds emerging from our initial screen (Fig. 1b), used to treat exponentially-1096 
growing S. aureus cells at a final concentration of 50 µM, indicate that 35 compounds (7.3%) 1097 
induce alterations in the proton motive force, as measured by relative changes of ≥30% in 1098 
DiSC3(5) fluorescence (Supplementary Data 4). In brief, this subset of 475 active compounds, 1099 
comprising all compounds for which additional compound stock was available, was procured at 1100 
10 mM for stock solutions in DMSO. S. aureus RN4220 was picked from individual colonies 1101 
and grown in liquid LB overnight at 37°C with shaking at 300 rpm. Cells were then diluted 1102 
1:100 from the overnight cultures into liquid LB and grown to mid-log phase, OD600 ~ 0.8 to 1.0, 1103 
at 37°C with shaking at 300 rpm. As above, DiSC3(5) was dissolved in DMSO and added to 1104 
liquid cultures at a final concentration of 1 μM. After additional incubation in the presence of 1105 
DiSC3(5) for 1 h, cells were plated in 20 μL working volumes in black, clear- and flat-bottom 1106 
384-well plates, after which each of the 475 procured compounds were immediately added to a 1107 
final concentration of 50 μM. After a 5 min incubation at room temperature, fluorescence was 1108 
measured at an excitation/emission of 625/660-720 nm using a GloMax Discover microplate 1109 
reader and GloMax Discover software (version 4.0.0, Promega, Madison, WI). Relative 1110 
DiSC3(5) fluorescence was calculated by normalizing with respect to values for vehicle (DMSO) 1111 
treatment, and experiments were performed in biological duplicate (Supplementary Data 4).  1112 
Compounds increasing or decreasing DiSC3(5) fluorescence by 30% relative to DMSO control 1113 
were declared as active (35 compounds). This suggests that alteration of the proton motive force 1114 
is not necessarily a widespread mechanism of action of antibacterial compounds. Building on 1115 
these data, we trained Chemprop models to predict the probability that any given compound 1116 
induces alterations in the proton motive force. The 35 compounds declared active, together with 1117 
the inactive tested compounds and all inactive antibacterial compounds (which were assumed to 1118 
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not alter proton motive force), were used to train an ensemble of 20 Chemprop models. Model 1119 
hyperparameters were determined using Bayesian hyperparameter optimization (Chemprop’s 1120 
“hyperopt” function) with ten iterations (Supplementary Table 5). The trained models were then 1121 
applied to make binary classification predictions on the Broad Institute database of 799,140 1122 
compounds. We identified 5,759 compounds (0.72% of the Broad Institute database) with 1123 
activity prediction scores greater than the prediction scores of compounds 1 and 2 (0.040 and 1124 
0.043, respectively); these compounds were then shortlisted and filtered to ensure that the 1125 
Tanimoto similarity with respect to the 35 active training set compounds was <0.5, with no other 1126 
filters applied. Fifteen readily available filtered compounds were procured from the Broad 1127 
Institute and tested as above to determine proton motive force-altering activity (Supplementary 1128 
Data 4). Defining active compounds as above, we found that these models have an encouraging 1129 
working positive predicted value of 0.4, supporting the notion that the membrane-specific 1130 
mechanism of action of compounds 1 and 2 might be accurately predicted from chemical 1131 
structure (Supplementary Data 4). We anticipate that these and additional models based on 1132 
bacterial cytological profiling will guide further in silico screens of membrane-targeting 1133 
compounds. 1134 

Hemolysis measurements. Following previous work53, for the hemolysis experiments shown in 1135 
Extended Data Fig. 9, whole human blood containing EDTA (Innovative Resarch IWB1K2E) 1136 
was centrifuged at 120 × g at 4°C for 5 min and resuspended in Dulbecco’s PBS (DPBS; VWR 1137 
02-0119-0500). These washing steps were repeated until the supernatant was clear (at least 10 1138 
times). Red blood cells were then resuspended in DPBS to a density of 5 × 108 cells/mL, and 100 1139 
µL of cells was plated into each well of a 96-well round-bottom clear plate (Corning 3788). 1140 
Compounds were added to the indicated final concentrations, and DMSO was used as a vehicle. 1141 
Samples were incubated for 1 h at 37°C without shaking, after which plates were centrifuged at 1142 
1500 × g at room temperature for 5 min to pellet cells. 60 µL of the supernatant from each 1143 
sample was then transferred to a 96-well flat-bottom clear plate, and the optical density was read 1144 
at 405 nm using a SpectraMax M3 plate reader to quantify the amount of soluble hemoglobin. 1145 
Fractional hemolysis was determined by linearly interpolating absorbance values with respect to 1146 
a positive control (saturation with 10% Triton X-100) and a negative control (1% DMSO 1147 
vehicle). We found that treatment with compounds 1 and 2 did not induce substantial hemolysis 1148 
up to a final concentration of 128 μg/mL, the highest tested (64× MIC; Extended Data Fig. 9). 1149 

Iron chelation measurements. In Extended Data Fig. 9, iron chelation was assayed based on the 1150 
ferrous iron chelating assay kit from ZenBio (AOX-15) with modifications. Briefly, FeSO4 stock 1151 
solutions were prepared by adding 1.8 mL of ultrapure Milli-Q water to 5 mg FeSO4. Ferrozine 1152 
stock solution was prepared by adding 400 µL of ultrapure Milli-Q water to 5 mg ferrozine. Both 1153 
stock solutions were diluted 100-fold in water, and 99 µL of working FeSO4 solution was plated 1154 
into each well of a 96-well flat-bottom clear plate. One µL of test compound in DMSO or EDTA 1155 
(MilliporeSigma E7889) was added into each well to the final concentrations indicated and 1156 
mixed via pipette. After 10 min incubation at room temperature, 100 µL of working ferrozine 1157 
solution was added to each well, and the plate was incubated again at room temperature for 10 1158 
min. The absorbance at 562 nm was then read using a SpectraMax M3 plate reader. Fractional 1159 
ferrous iron chelating activity was determined by linearly interpolating absorbance values with 1160 
respect to untreated and EDTA-treated (128 µg/mL final concentration) controls. We found that 1161 
treatment with compounds 1 and 2 did not result in substantial iron chelation up to a final 1162 
concentration of 128 μg/mL (Extended Data Fig. 9). 1163 
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Bacterial Ames assay for genotoxicity. For the mutagenesis experiments shown in Extended 1164 
Data Fig. 9, a 5041 Modifed Ames ISO from Environmental Bio-Detection Products, Inc. was 1165 
used following the manufacturer’s instructions. Briefly, Salmonella typhimurium TA100 was 1166 
grown overnight (16-18 h) at 37°C with shaking at 300 rpm and treated with the provided 1167 
exposure media and compound samples at the final concentrations indicated. Treatment with the 1168 
provided sodium azide, a mutagen, was used as a positive control. Cells were added to the 1169 
provided reversion solution, and each sample was aliquoted into 48 wells of 96-well plates. 1170 
Plates were incubated at 37°C for 3 days, after which the number of revertant (yellow-colored) 1171 
wells corresponding to each sample was counted by eye. Additionally, we verified that each test 1172 
compound did not inhibit the growth of S. typhimurium TA100. An overnight bacterial culture 1173 
was diluted 1:10,000 in LB medium and plated using 99 µL working volumes into the wells of a 1174 
96-well flat-bottom clear plate. One µL of two-fold dilutions of each test compound in DMSO, 1175 
starting from a final concentration of 500 µM, was added across wells, and plates were sealed 1176 
and incubated overnight at 37°C to determine bacterial growth. In contrast to treatment with 5 1177 
μg/mL sodium azide, a potent mutagen, treatment with compounds 1 and 2 up to a final 1178 
concentration of 128 μg/mL did not induce substantial reversion of bacterial cultures (Extended 1179 
Data Fig. 9). 1180 

Chemical stability measurements. To assess the chemical stability of compound 1 in various 1181 
solutions, we injected the compound into acidic (pH 5.0), neutral (pH 7.0), and basic (pH 10.0) 1182 
media. Acetate buffer (0.1 M, pH 5.0), PBS (pH 7.1), and glycine buffer (0.08 M, pH 10.0) were 1183 
prepared as aqueous solutions using ultrapure Milli-Q water. Ten µL of a 500 µM stock solution 1184 
of compound 1 in DMSO was then added to 990 µL of buffer in 1.5 mL centrifuge tubes (final 1185 
compound concentration, 5 µM), vortexed, and incubated at 37°C with shaking at 300 rpm and 1186 
protected from light for 0, 45, or 120 min. Samples were then flash-frozen on dry ice and kept at 1187 
-80°C until processing at the Harvard Center for Mass Spectrometry using LC-MS, as described 1188 
in Liquid chromatography-mass spectrometry. We found that compound 1 was stable across the 1189 
three buffers used at 0, 45, and 120 min after compound addition, with no substantial decrease in 1190 
the concentration of free compound across all timepoints measured (Extended Data Fig. 9). 1191 

Liquid chromatography-mass spectrometry. All reagents used were LC-MS-grade. For 1192 
sample preparation, 100 μL of each sample was mixed with 100 μL of water containing 10 μM 1193 
of compound 2 as an internal standard. Next, 800 μL of methanol was added, and samples were 1194 
stored overnight at -20°C. Samples were centrifuged for 10 min at max speed at 4°C, and the 1195 
supernatants were transferred to microcentrifuge tubes and dried under N2 flow. Dried samples 1196 
were resuspended in 100 μL of acetonitrile:water (1:1 w/w) and centrifuged for 10 min at max 1197 
speed at 4°C. The supernatants were then transferred to microinserts. A standard curve was 1198 
prepared using seven 1/3 dilution series of a 100 μM solution of compound 1 in water. One 1199 
hundred μL of each standard was prepared similarly to samples, and the lower limit of 1200 
quantification was determined to be 150 nM.  1201 

All samples were run on an Agilent Triple Quadrupole. The column used was 1202 
Phenomenex Kinetex EVO C18, 2.6 μm, 100 Å, 150 × 2.1 mm. The source used was AJS ESI 1203 
negative. MS parameters were as follows: gas 350°C at 9 L/min, nebulizer 30 psi, sheath 350°C 1204 
at 10 L/min, nozzle at 1300 V, capillary at 2200 V. The mobile phases were A: water and 0.1% 1205 
NH4OH and B: acetonitrile, 0.03% NH4OH. The following gradient was used: 5 min at 0% B, 1206 
then to 50% B at 5 min, then to 100% B at 7.01 min, followed by 0% B at 12.01 min. The 1207 
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column was then equilibrated at 0% B for 5 min. The flow rate was 0.2 mL/min, the column was 1208 
maintained at 35°C, and 5 μL of each sample was injected. 1209 

Ex vivo human skin toxicity. WoundSkin 11 mm models were procured from Genoskin (Salem, 1210 
MA) from a 46-year-old Hispanic female donor. Upon arrival, 1 mL of the provided ex vivo 1211 
culture medium was added to each well containing WoundSkin sample and samples were 1212 
incubated at 37°C with 5% CO2 for 1 h. Compound 1 was prepared as a stock solution in DMSO, 1213 
then formulated using 50% polyethylene glycol 300 (PEG300, MilliporeSigma 202371) and 50% 1214 
water for injection as solvent. Thirty μL of a 1% formulation of compound 1 was administered 1215 
topically by pipetting directly onto each of six WoundSkin models. As controls, 30 μL of a 1216 
corresponding formulation of DMSO was administered topically by pipetting directly onto each 1217 
of six WoundSkin models. All models were incubated at 37°C with 5% CO2 for 24 h and 1218 
assessed for typical signs of toxicity, including tissue death, skin discoloration, and irritation. 1219 
Consistent with the predictions of our cytotoxicity models and its characterized selectivity 1220 
profile, we found that compound 1 was non-toxic when applied topically (1%) to ex vivo human 1221 
skin (Extended Data Fig. 9). 1222 

In vivo mouse toxicity. Studies were performed at the Wyss Institute at Harvard in accordance 1223 
with protocol IS00000852-6, approved by the Harvard Medical School Institutional Animal Care 1224 
and Use Committee and the Committee on Microbiological Safety. Female C57BL/6J mice, 6-8 1225 
weeks old, 22 ± 2 g, received from The Jackson Laboratory, were quarantined at least 2 days 1226 
prior to use. Compound 1 was prepared as a stock solution in DMSO, then formulated using 1227 
PEG300 and water for injection as solvent so that the final formulation was 10%:45%:45% 1228 
DMSO stock of compound 1:PEG300:water for injection (w/w). The formulation was injected 1229 
intraperitoneally to a final concentration of 80 mg/kg, and mice were observed for at least 24 h 1230 
for typical signs of toxicity, including impaired movement, lethality, and irritation. We found 1231 
that compound 1 was well-tolerated after intraperitoneal injection in all mice, with results 1232 
representative of three mice (n = 3) injected with compound 1.  1233 

Mouse topical wound infection model. Studies were performed at the Wyss Institute at Harvard 1234 
in accordance with protocol IS00000852-6, approved by the Harvard Medical School 1235 
Institutional Animal Care and Use Committee and the Committee on Microbiological Safety. 1236 
Female C57BL/6J mice, 6-8 weeks old, 22 ± 2 g, received from The Jackson Laboratory, were 1237 
quarantined at least 2 days prior to use. Animals were housed in a facility maintained at 20-26ºC 1238 
ambient temperature, 40-65% relative humidity, and a 12:12 light-dark cycle. Enrichment 1239 
devices were included in the animal environments as required and changed bi-weekly. As 1240 
illustrated in Extended Data Fig. 9, mice were rendered neutropenic by a 0.2 mL intraperitoneal 1241 
injection of cyclophosphamide (Cytoxan) at 150 mg/kg (Day -4) and at 100 mg/kg (Day -1) pre-1242 
infection. Each mouse was anesthetized and kept sedated during the initial procedure under 1243 
isoflurane vapors (3%). For each mouse, the fur on the back dorsal surface was shaved, then 1244 
sterilized with alcohol. An area of the shaved skin was abraded using a sterile gauze pad. 1245 
Following this procedure, the skin became visibly damaged and was characterized by reddening 1246 
and glistening, but no bleeding. The skin was then wiped with an alcohol swab and allowed to 1247 
dry completely. The resulting surface area for infection and treatment was ~1.5 cm2. The S. 1248 
aureus AR Bank # 0563 isolate was struck onto LB agar plates from a freezer stock and 1249 
incubated at 37°C overnight. Overnight cultures were grown from single colonies in LB to 109 1250 
CFU/mL (OD600 ~ 1), then diluted in LB to achieve the indicated inoculum concentration. The 1251 
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diluted overnight culture was serially diluted in PBS and plated onto LB agar to determine input 1252 
CFU. Five μL of the diluted culture, corresponding to an inoculum of ~105 CFU, was placed on 1253 
the skin to initiate the bacterial infection. Treatment was initiated at 1 h post-infection, then 1254 
continued at 4, 8, 12, 20, and 24 h post-infection. Compound 1 (1% final concentration) was 1255 
prepared as a stock solution in DMSO, then formulated using PEG300 and water for injection as 1256 
solvent so that the final formulation was 10%:45%:45% DMSO stock of compound 1257 
1:PEG300:water for injection (w/w). A 1% formulation of compound 1 was chosen for our 1258 
preliminary experiments, as higher concentrations of compound 1 were found to result in cloudy 1259 
suspensions, suggestive of limits to compound solubility. Fusidic acid (0.25% final 1260 
concentration) was used as a positive control, and appropriate vehicle treatments of 1261 
DMSO:PEG300:water for injection (10%:45%:45%) were included. For each treatment, ~40 μL 1262 
of formulation was applied topically on the infected skin at the indicated times. At ~25 hrs post-1263 
infection (~1 h following the last topical treatment), all mice were euthanized by CO2 1264 
asphyxiation, and wounds were wiped with an alcohol pad, excised, weighed, rinsed in sterile 1265 
saline, and homogenized together with 3 mL of sterile PBS using a Polytron PT10-35 with a 12 1266 
mm aggregate. Homogenized wounds were serially diluted and plated onto LB agar to determine 1267 
bacterial titers (CFU/g tissue), and each data point represents the mean of two technical 1268 
replicates for plating and CFU enumeration.  1269 

Mouse systemic thigh infection model. Studies were performed at the Wyss Institute at Harvard 1270 
in accordance with protocol IS00000852-6, approved by the Harvard Medical School 1271 
Institutional Animal Care and Use Committee and the Committee on Microbiological Safety. 1272 
Female C57BL/6J mice, 6-8 weeks old, 18 ± 2 g, received from Charles River, were quarantined 1273 
at least 2 days prior to use and kept under the housing conditions described above. As illustrated 1274 
in Extended Data Fig. 9, mice were rendered neutropenic by a 0.2 mL intraperitoneal injection of 1275 
cyclophosphamide (Cytoxan) at 150 mg/kg (Day -4) and at 100 mg/kg (Day -1) pre-infection. S. 1276 
aureus AR Bank # 0706 was cultured overnight on tryptic soy agar plates at 37°C. Isolated 1277 
colonies were suspended in PBS to achieve an OD600 of 0.1, then further diluted 1:1000 in tryptic 1278 
soy broth to prepare the infecting inoculum of ~0.5 x 107 CFU/mL. Under anesthesia and 1279 
sedation, mice were intramuscularly injected with 50 μL of the infecting inoculum into the right 1280 
thigh. One hour post-infection, mice received a single intraperitoneal injection of compound 1 1281 
(80 mg/kg in 10% DMSO, 45% PEG300, 45% water; 200 µL, 6 mice), vancomycin (50 mg/kg in 1282 
endotoxin-free water; 200 µL, 6 mice), or vehicle control (10% DMSO, 45% PEG300, 45% 1283 
water; 200 µL, 6 mice). At ~25 hrs post-infection (~24 h after treatment), mice were euthanized 1284 
by CO2 asphyxiation, and thighs were aseptically removed and homogenized in 2 mL of ice-cold 1285 
sterile PBS using a Polytron PT10-35 with a 12 mm aggregate. For each sample, 200 μL of 1286 
homogenized thigh were serially diluted and plated onto LB and MRSA CHROMagar to 1287 
determine bacterial titers (CFU/mL thigh homogenate), and each data point represents one 1288 
technical replicate for plating and CFU enumeration.  1289 

Structure-activity relationship analyses. The analogues of compounds 1 and 2 procured for the 1290 
structure-activity relationship analyses shown in Supplementary Note 4 and Extended Data Fig. 1291 
10 were chosen based on the following criteria: (1) the compound of interest contains the 1292 
rationale shown in Extended Data Fig. 10; (2) the antibiotic prediction score for the compound of 1293 
interest was at least 0.15; and (3) the compound of interest did not contain any PAINS or Brenk 1294 
substructures, which may confound interpretation of structure-activity relationship results. This 1295 
resulted in a list of 17 additional commercially available compounds (Supplementary Data 2), 1296 
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which we procured from multiple suppliers including ChemBridge, Vitas-M, and Specs. The 1297 
compounds were dissolved in DMSO to prepare stock solutions and, where applicable, MIC and 1298 
IC50 values were determined as described above in MIC and bacterial growth inhibition assays 1299 
and Cytotoxicity IC50 assays. 1300 

Statistics and reproducibility. No statistical method was used to predetermine sample size for 1301 
all mouse experiments in this study, but our sample sizes are similar to those reported in previous 1302 
publications (refs. 1-4, 6-8, 14). We were not blinded to allocation during experiments and 1303 
outcome assessment, and data collection and analysis were not performed blind to the conditions 1304 
of the experiments. For mouse experiments, no significant bias was observed across initial 1305 
groups. No data were excluded from the analyses in this study. One-sided, two-sample 1306 
permutation tests for differences in mean value54 were performed using MATLAB (Mathworks, 1307 
Natick, MA) in Fig. 5a,b to test the hypothesis that log10 CFU/g or log10 CFU/mL titers were 1308 
different from vehicle values for mouse model experiments. Exact permutation tests, in which all 1309 
possible combinations were considered, were used for all comparisons.  1310 
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Extended Data Fig. 1. Molecular weight distribution of the 39,312 compounds screened. 1394 
Data are from an original set of 39,312 compounds containing most known antibiotics, natural 1395 
products, and structurally diverse molecules, with molecular weights between 40 Da and 4,200 1396 
Da. Frequency is shown on a log scale. 1397 

Extended Data Fig. 2. Comparison of deep learning models for predicting antibiotic 1398 
activity. 1399 

a, b, Precision-recall curves for predictions of antibiotic activity, for an ensemble of 10 1400 
Chemprop models without RDKit features (a) and the best-performing random forest classifier 1401 
model based on Morgan fingerprints (b), trained and tested using data from a screen of 39,312 1402 
molecules (Fig. 1 of the main text). The black dashed line represents the baseline fraction of 1403 
active compounds in the training set (1.3%). Blue curves and the 95% confidence interval 1404 
indicate the variation generated by bootstrapping. AUC, area under the curve.  1405 

Extended Data Fig. 3. Comparison of deep learning models for predicting human cell 1406 
cytotoxicity. 1407 

a, b, Precision-recall curves for predictions of HepG2 cytotoxicity, for an ensemble of 10 1408 
Chemprop models without RDKit features (a) and the best-performing random forest classifier 1409 
model based on Morgan fingerprints (b), trained and tested using data from a screen of 39,312 1410 
molecules (Fig. 1 of the main text). The black dashed line represents the baseline fraction of 1411 
active compounds in the training set (8.5%). Blue curves and the 95% confidence interval 1412 
indicate the variation generated by bootstrapping. AUC, area under the curve. 1413 

c, d, Precision-recall curves for predictions of HSkMC cytotoxicity, for an ensemble of 10 1414 
Chemprop models without RDKit features (c) and the best-performing random forest classifier 1415 
model based on Morgan fingerprints (d), trained and tested using data from a screen of 39,312 1416 
molecules (Fig. 1 of the main text). The black dashed line represents the baseline fraction of 1417 
active compounds in the training set (3.8%). Blue curves and the 95% confidence interval 1418 
indicate the variation generated by bootstrapping. 1419 

e, f, Precision-recall curves for predictions of IMR-90 cytotoxicity, for an ensemble of 10 1420 
Chemprop models without RDKit features (e) and the best-performing random forest classifier 1421 
model based on Morgan fingerprints (f), trained and tested using data from a screen of 39,312 1422 
molecules (Fig. 1 of the main text). The black dashed line represents the baseline fraction of 1423 
active compounds in the training set (8.8%). Blue curves and the 95% confidence interval 1424 
indicate the variation generated by bootstrapping. 1425 

Extended Data Fig. 4. Visualizing chemical space across different prediction score 1426 
thresholds. 1427 

a, b, t-Distributed neighbor embedding (t-SNE) plot of compounds with high and low antibiotic 1428 
prediction scores, in addition to compounds in the training set, for different prediction score 1429 
thresholds. The plot shows the chemical similarity or dissimilarity of various compounds, and 1430 
active compounds in the training set (red dots) are seen to largely separate compounds with high 1431 
prediction scores (green, black, and purple dots) from compounds with low prediction scores 1432 
(brown dots). 1433 
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Extended Data Fig. 5. Examples of rationale calculations using Monte-Carlo tree search. 1434 
a, Illustration of the MCTS forward pass using compound 1. The figure shows three possible 1435 
search paths from the root (compound 1) by deleting peripheral bonds or rings (highlighted in 1436 
red). Due to space limitations, only three steps from the root are shown. 1437 

b, Illustration of a complete search path from the root (compound 1) to a leaf node (the 1438 
rationale). Chemprop is used to predict the activity of each leaf node, and these predictions are 1439 
used to make updates to the statistics of each intermediate node in the backward pass.  1440 

Extended Data Fig. 6. Maximal common substructure identification reveals known 1441 
antibiotic classes, but are less predictive than Chemprop rationales across all hits. 1442 
a, b, Rank-ordered numbers of hits (a) and non-hits (b) associated with maximal common 1443 
substructures (MCSs) identified by a grouping method. Here, any hit associated with any of the 1444 
MCSs shown shares a minimum of 12 atoms with the MCS. Dashed lines in MCSs indicate 1445 
either single or double bonds. Each green or brown bar shows the prediction score of each MCS 1446 
viewed as a molecule in its own right. Where bars are thin, the corresponding MCS prediction 1447 
scores are approximately zero (including all brown bars in (b)). 1448 
c, d, Similar to (a), but here, any hit associated with any of the MCSs shown shares a minimum 1449 
of 10 (c) or 15 (d) atoms with the MCS.  1450 
e, Illustration of the rationales (red) determined using a Monte Carlo tree search for example hits 1451 
(black) associated with MCSs A1-A12. No hit associated with MCS A12 possessed a rationale. 1452 
f, MCS prediction scores (blue bars) and the average prediction scores of all rationales of all hits 1453 
associated with MCSs A1-A12 (red bars). Where blue bars are thin, the corresponding MCS 1454 
prediction scores are approximately zero. No hit associated with MCS A12 possessed a rationale. 1455 

Extended Data Fig. 7. Closest active training set compounds to, and selectivities of, four 1456 
validated hits associated with rationale groups G1-G5.  1457 

a, Closest active compounds (right), as measured by Tanimoto similarity, are from the training 1458 
set of 39,312 compounds. Compounds are colored according to associated rationale groups (as 1459 
indicated in parentheses), and the identifier and Tanimoto similarity score of each closest active 1460 
compound are displayed. 1461 

b, S. aureus MIC and human cell IC50 values of the four compounds in (a), shown on a log scale. 1462 
Bars show the means of two biological replicates (points) and are colored by the bacterial strain, 1463 
human cell type, or media condition tested. Asterisks indicate values larger than 128 µg/mL. 1464 

Extended Data Fig. 8. Comparison of MICs of different compounds against methicillin-1465 
susceptible and methicillin-resistant S. aureus, and eradication of kanamycin persisters by 1466 
treatment with compounds 1 and 2. 1467 

a, MICs of various antibiotics against S. aureus RN4220 (black) and S. aureus USA300 (blue) 1468 
on a log scale. Bars show the mean of two biological replicates (individual points). 1469 

b, Survival curves of B. subtilis 168 after combination treatment with kanamycin and compounds 1470 
1 and 2, respectively, as determined by plating and CFU counting. Initial CFU values are ~107. 1471 
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Each point is representative of the mean of two biological replicates. Cultures treated with 1472 
kanamycin in addition to compounds 1 and 2 were eradicated after 24 h (CFU/mL = 0), and these 1473 
values were truncated to a log survival value of -7 on this plot.  1474 

Extended Data Fig. 9. Toxicity, chemical properties, and in vivo efficacy of compounds 1 1475 
and 2. 1476 
a, Fractional hemolysis measurements of human red blood cells (RBCs) treated with compounds 1477 
1 and 2 at the indicated final concentrations. Vehicle (1% DMSO) was used as a negative 1478 
control, and Triton X-100, a detergent, was used as a positive control. Black points indicate 1479 
values from two biological replicates, and red bars indicate average values. 1480 
b, Ferrous iron chelation measurements of compounds 1 and 2. Vehicle (1% DMSO) was used as 1481 
a negative control, and ethylenediaminetetraacetic acid (EDTA), an iron chelator, was used as a 1482 
positive control. Black points indicate values from two biological replicates, and gray bars 1483 
indicate average values. 1484 
c, Ames test mutagenesis measurements of the fractions of revertant S. typhimurium TA100 1485 
cultures treated with compounds 1 and 2 at the indicated final concentrations. Vehicle (1% 1486 
DMSO) was used as a negative control, and 5 µg/mL sodium azide was used as a positive 1487 
control. Black points indicate values from two biological replicates, and purple bars indicate 1488 
average values. Higher fractions of revertant cultures indicate higher mutagenic potential (inset). 1489 

d, Chemical stability of compound 1 in various buffers as a function of incubation time at 37°C. 1490 
Values are normalized to the mean measurement at time zero, and each point is representative of 1491 
the mean of two biological replicates. Error bars indicate the full range of values arising from 1492 
two biological replicates.  1493 

e, Photographs of WoundSkin models 24 h after topical treatment with compound 1 (1%) or 1494 
DMSO vehicle. Images are representative of six biological replicates in each treatment group. 1495 
Scale bar, 2 mm.  1496 
f, Illustration of the in vivo study of a neutropenic mouse wound infection model using MRSA 1497 
CDC 563 shown in Fig. 5a of the main text. 1498 
g, Illustration of the in vivo study of a neutropenic mouse thigh infection model using MRSA 1499 
CDC 706 shown in Fig. 5b of the main text. 1500 

Extended Data Fig. 10. Exploration of a structural class through structure-activity 1501 
relationships. 1502 
a, The rationale of compounds 1 and 2, overlaid with chemical modifications (R1-R8) that 1503 
encompass all compounds used to test SAR (Supplementary Data 2). SAR, structure-activity 1504 
relationships. 1505 

b, Analogues of compounds 1 and 2 found to have varying degrees of activity against S. aureus. 1506 
Corresponding MIC and IC50 values are representative of two biological replicates. 1507 
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