
CBMM Memo No. 144 December 3, 2023

The Janus effects of SGD vs GD: high noise and
low rank

Mengjia Xu1,2, Tomer Galanti1, Akshay Rangamani1, Lorenzo Rosasco1,3,4, Tomaso
Poggio1,∗

1Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, MA, USA
2Department of Data Science, New Jersey Institute of Technology, Newark, NJ, USA

3MaLGaCenter - DIBRIS - Universit‘a di Genova, Genoa, Italy
4MaLGaCenter - DIMA - Universit‘a di Genova, Genoa, Italy

Abstract

It was always obvious that SGD has higher fluctuations at convergence than GD. It has also been
often reported that SGD in deep RELU networks has a low-rank bias in the weight matrices. A recent
theoretical analysis linked SGD noise with the low-rank bias induced by the SGD updates associated
with small minibatch sizes [1]. In this paper, we provide an empirical and theoretical analysis of the
convergence of SGD vs GD, first for deep RELU networks and then for the case of linear regression,
where sharper estimates can be obtained and which is of independent interest. In the linear case,
we prove that the components of the matrix W corresponding to the null space of the data matrix X
converges to zero for both SGD and GD, provided the regularization term is non-zero (in the case of
square loss; for exponential loss the result holds independently of regularization). The convergence
rate, however, is exponential for SGD, and linear for GD. Thus SGD has a much stronger bias than GD
towards solutions for weight matrices W with high fluctuations and low rank, provided the initialization
is from a random matrix (but not if W is initialized as a zero matrix). Thus SGD under exponential loss,
or under the square loss with non-zero regularization, shows the coupled phenomenon of low rank and
asymptotic noise.

This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.

1 Introduction
Over the past few years, deep neural networks have challenged machine learning theory with several
puzzles. One of them is the role and properties of minibatch SGD vs GD. It seems generally accepted
that, apart from computational advantages, SGD is similar to GD in its basic properties. There are,
however, clear differences. In particular, SGD updates never reach equilibrium (for fixed learning rate,
small mini-batch size and weight decay λ > 0): the gradient of the loss is never zero, as shown in
Figure 1 – unlike GD [1]. Hence, Neural Collapse as described by [2] does not strictly take place. This
in turn implies that SGD, unlike GD, asymptotically shows both a specific “SGD noise” and a coupled
low rank bias (assuming random initialization). Because of this double faced property exhibited by
SGD, but not by GD, we refer to it as the “Janus effect”, drawing inspiration from the ancient Roman
God with two faces.

1.1 Related Work
Stochastic gradient descent (SGD) is one of the standard workhorses for optimizing deep models [3].
Though initially proposed to remedy the computational bottleneck of GD, recent studies suggest an
implicit bias in SGD, which prevents the overparameterized models from converging to the minima
that cannot generalize well [4, 5]. Empirical studies suggest that (i) SGD outperforms GD [6], (ii)
small batch SGD generalizes better than large batch SGD [7], and (iii) GD with additional external
noise cannot compete with SGD [6]. However, despite many efforts, the potentially important, yet
implicit, effects induced by SGD relative to GD have not been fully understood. In particular, we are
unaware of any study comparing SGD with GD with respect to biases towards large fluctuations and,
especially, low rank.

One area of recent research focuses on characterizing the implicit regularization of gradient-based
optimization and its relationship to generalization in deep learning. Several papers have examined the
potential bias of gradient descent or stochastic gradient descent toward rank minimization. Empirically,
it was shown in [8, 9, 10, 11, 12] that replacing weight matrices with low-rank approximations results
in only a small drop in accuracy. This implies that the weight matrices at convergence may be close to
low-rank matrices. Following this line of work, various attempts were made to understand the origins
of this low-rank bias, and its potential relation with generalization.

Initially, it was believed that the implicit regularization in matrix factorization could be charac-
terized in terms of the nuclear norm of the corresponding linear predictor [13]. This conjecture was
later refuted [14]. Subsequent conjecture posits that rank minimization may play a key role in explain-
ing generalization in deep learning. For instance, [15] conjectured that the implicit regularization in
matrix factorization can be explained by rank minimization, and also hypothesized that some notion
of rank minimization may be crucial to explaining generalization in deep learning. Additionally, [14]
established evidence that the implicit regularization in matrix factorization is a heuristic for rank
minimization.

An empirical study suggested that during minimization SGD spans a small subspace, implying an
effective bias on the rank of the weight matrices [16]. Furthermore, several studies [17, 18, 19] have
examined the rank of weight matrices in neural networks that globally minimize a L2 regularized loss.
Specifically, [17] demonstrated that for data on a one-dimensional manifold, the weight matrices of a
two-layer network become rank one at the global minimum, a finding later extended in [18] to show
that the weight matrix has rank ≤ d when the data lies on a d-dimensional space. Additionally, [19]
discovered that for sufficiently deep ReLU networks to fit the data, the weight matrices at the top-most
layers become low-rank at the global minimum.

Despite recent progress in characterizing low-rank weight matrices at the global minimum, the
underlying reasons behind the bias towards low rank during optimization have remained elusive. Prior
research [20] has shown that training univariate linear networks on binary classification tasks with
exponentially-tailed losses via gradient flow (GF) results in the model converging to weight matrices
of rank one, provided that the data is linearly separable. In a more recent study [21], the authors
extended this result and showed that when successfully training a ReLU network with multiple linear
layers at the top, using GF, the top layers converge to rank one weight matrices.

Here, we describe an empirical and theoretical analysis of SGD vs GD convergence, first for deep
RELU networks and then for the case of linear regression. We explain the difference between GD and
small minibatch SGD: the latter is characterized by asymptotic intrinsic fluctuations in the weight

2

matrices in the bottom and middle layers which are coupled with a bias towards small rank. In the
one-layer linear case we provide a complete analysis of convergence of SGD vs GD: the components of
the matrix W corresponding to the null space of the data matrix X converges to zero for both SGD
and GD, but the decay is much faster for SGD. Thus SGD is much more effective at pruning features
that are not supported by the data.

2 Deep RELU networks
In a previous paper [1] we discussed several differences between SGD and GD. In particular, in the
presence of regularization, SGD does not converge to a perfect equilibrium: there is always, at least
generically, SGD noise. We concluded that the underlying reason is a rank constraint in the SGD
update that depends on the size of the mini-batches – an observation that seems to have escaped
previous studies. This rank constraint also implies a stronger SGD bias towards low rank solutions
that reinforces a similar bias that SGD shares with GD – due to maximization of the margin under
normalization (that can be inferred from [19]). The argument can be seen by considering the SGD
update equations. The normalized weight matrices Vk and the product of the Frobenius norm ρ are
first initialized, and then iteratively updated simultaneously in the following manner

ρ← ρ− η
2

B

∑
(xn,yn)∈S′

(1− ρf̄n)f̄n − 2ηλρ

Vk ← Vk −
2

B
ρ

B∑
j=1

[(
1− ρf̄ij

)(
−Vkf̄ij +

∂f̄ij
∂Vk

)] (1)

where S ′ is selected uniformly as a subset of S of size B, η > 0 is the learning rate.
A study of Equations 1 is in the Appendix. The main result is Lemma 1. Its qualitative predictions

can be understood directly from Equations 1. Observe that the first Equation shows that for large t
ρf = 1 when λ = 0, whereas 1− ρf > 0 for λ > 0.

Lemma 1 shows that there cannot be convergence to a unique set of weights {Vk}Lk=1 that satisfy
equilibrium for all minibatches. More details of the argument are illustrated in [22]. When λ = 0,
interpolation of all data points is expected: in this case, the GD equilibrium can be reached without
any constraint on the normalized weight matrices Vk. This is also the situation in which SGD noise
is expected to essentially disappear: compare the histograms on the left and the right hand side of
Figure 10 in [1]. Thus, during training, the solution {Vk}Lk=1 is not the same for all samples: there is
no convergence to a unique solution but instead fluctuations between solutions during training.

2.1 Testing key qualitative predictions of the theory
The analysis of section D leads to a few predictions that we have tested in our experiments.

(1) Fluctuations in f̄n during training should be minimal for λ = 0 – just due to the finite learning
rate of gradient descent – and increase for increasing λ. Separately, µ, which is the average
margin over all the training data, increases according to the theory with increasing λ because
µ = (M +λ)ρ. The corresponding margin f̄n for different λ in the case of binary classification on
CIFAR10 trained with SGD are shown in Figure 1. As predicted, the variance of the fluctuations
is small with λ = 0 and grows with increasing λ. Notice that the asymptotic fluctuations in
fn across different n, are due to fluctuations in the Vk weight matrices for k < L, that is, for
weight matrices that did not undergo neural collapse. From an analysis of the equations (see [1],
it seems likely that the fluctuations in ρ are negligeable.

(2) According to Lemma 1 there should be no SGD specific noise when the mini-batch size is equal to
the training dataset size – that when SGD becomes GD – and no dependence of these fluctuations
on λ. Our experiments confirm this prediction, see Figure 2. There are fluctuations and their
variance is large because, using the same hyper-parameters of the other experiments, GD does
not converge to zero square loss and in fact is quite far from it with a significant percentage of
incorrect classifications on the training set.

3

(3) According to Equation 24 the size of ∥V̇k∥ depends on λ, because λ > 0 ensures ℓn > 0. It
should be minimal at the top layer, assuming that the top layer is close to converging to Neural
Collapse, since the rank of the top layer is small (2 in our case). Figure 3 confirms our prediction
and shows the dependency on k and λ.

(4) Larger rank of Vk leads to larger ∥V̇k∥ as predicted by Equation 1: compare Figure 4(a) and
Figure 4(b).

(5) In the case of exponential-type loss functions such as the logistic loss, the presence of the SGD-
specific noise is expected, even when λ = 0, because of Equation 16. The cross-entropy loss
margin results with different λ are shown in Figure 5 (a), while the square loss results are shown
in (b). Even for λ = 0 there cannot be interpolation: the value of e−ρf̄n

1+e−ρf̄n
in the Equation 16

is always positive (and controlled by ρ). Of course the size of the fluctuations is expected to
increase further with increasing λ, as shown in Figure 5 (a).

Figure 1: (a) Margin distributions – that is histograms of f(xn) – over 10000 training data samples for
binary classification on the CIFAR10, trained with SGD and our deep ReLU networks with varying λ.
(b) A zoomed-in view of the blue rectangular region in (a) reveals more detailed margin changes with
λ ranging from 0 (without regularization) to 1e-04. The margins exhibit little noise (i.e., very small
standard deviations) when λ = 0 and 1e-06. An increase of λ from 5e-05 to 0.01, leads to an increase
in the average margin, but, more interestingly to an increase in the standard deviation of the noise
distribution.

3 Linear Regression

3.1 SGD and GD
Consider the linear regression problem of finding the best linear network W ∈ Rm×d that satisfies
Wx = y from a set of N training data xi ∈ Rd with i = 1, · · · , N , and corresponding target yi ∈ Rm

with i = 1, · · · , N . We always assume to be in an overparameterized setting where N < d. The
empirical loss/risk with weight decay is given by

L(W) =

N∑
i=1

∥Wxi − yi∥2 + λ∥W∥2, (2)

where λ denotes the weight decay regularization parameter.
The loss L is minimized by gradient flow

Ẇ = − ∂L
∂W

= − 2

N

N∑
i=1

(Wxi − yi)x
T
i − 2λW. (3)

4

Figure 2: Margin distribution over all training data for binary classification on the CIFAR10, trained
with GD using our deep ReLU model and varying λ. (a) We used the same training hyperparameters
as previous experiments, but with a large batch size (B) of 10000, which matches the entire training
data size (N). The fluctuations here are not SGD-specific (see text); GD here is far from zero square
loss with about 20% classification errors on the training set. (b) Training our model with a constant
larger learning rate η = 0.05, B = 10000, and 5000 epochs; GD achieved small classification errors
(< 1%) that is comparable to the performance achieved with SGD. The fluctuations w.r.t. different λ
are much smaller than those observed in (a).

The corresponding gradient descent iteration is

W (t+ 1) = W (t)− η
∂L
∂W

= −2η

N

N∑
i=1

(W txi − yi)x
T
i − 2ηλW (t), (4)

The Stochastic Gradient descent (SGD) iteration corresponds to

W (t+ 1) = W (t)− η
∂L
∂W

= −2η

B

∑
i∈St

(W (t)xi − yi)x
T
i − 2ηλW (t), (5)

where one minibatch St of size B ≤ N is selected uniformly as a subset of the training dataset S; η > 0
is the learning rate which we assume fixed in this paper (unlike typical setups in which η decreases
with iterations). Gradient descent is the special case of St = S (i.e., minibatch size B = N). In the
following we consider a realization of the stochastic process associated with SGD. In fact there is no
difference in the analysis of this section if we just assume that the mini-batches of size 1 are selected
deterministically from 1 to N .

3.2 Low rank bias of SGD
Assume asymptotic equilibrium, that is Ẇ = 0 (or W (t + 1) − W (t) = 0). For simplicity assume
B = 1. Since we assume overparameterization, if λ = 0 this implies Wxi = yi ∀i, that is exact
interpolation of the training data. If λ > 0, exact interpolation is impossible (see Lemma 1 in [1]),
that is ∥(Wxi − yi∥ ≠ 0 ∀i. Then 0 = −(Wxi − yi)x

T
i − λW ∀i, which yields

W = −yixT
i (λI + xix

T
i)

−1 ∀i, (6)

Since the inverse of (λI + xix
T
i) exists (see for instance the Sherman–Morrison formula) and has

full rank, the rank of W is the rank of yixT
i . Thus the assumption Ẇ = 0 implies that W has rank 1–

– which is not consistent, in general, with a small square error in regression (for d > 1). Therefore, Ẇ
cannot be zero for t → ∞ and the assumption of Ẇ = 0 must be wrong: there is no Neural Collapse
and there is instead a bias towards low rank. The situation is different for GD (corresponding to SGD

5

Figure 3: Layer-wise SGD noise ||V̇k||F (∀k ∈ [L]) in logarithmic scale by 10 different λ at “convergence”.
||V̇k||F is small when λ is 0 or 1e-06. An increase of λ from 1e-05 to 0.01 generates larger fluctuations,
especially for the first four convolution layers. The last two fully connected layers tend to consist of
low-rank matrices, corresponding to smaller ∥V̇k∥.

with B = N). In this case the matrix
∑N

i=1(Wxi − yi)x
T
i can be expected to be full rank or close to

it, since it is the sum of N rank 1 matrices. In this case the assumption Ẇ = 0 does not lead to a
contradiction: asymptotic equilibrium can be reached and there is no low rank bias.

More succinctly, the GD and SGD update for each minibatch has the form

W (t+ 1)−W (t) = −2 η

B
(W (t)−W ∗)XXT − 2ηλW (t) (7)

where X is the matrix composed of the xi belonging to the minibatch, and W ∗ is defined by Y = W ∗X.
For GD, XXT is generically full rank, whereas it is rank deficient for SGD with B < N . It is well
known that when W is initialized as W 0 = 0, both SGD and GD converge to the correct rank and to
the regularized solution. However, when W is initialized as a random matrix (possibly of small norm)
then the convergence of SGD and GD is quite different as shown in Figures A.1 and A.2.

SGD noise and low rank bias are two faces of the same phenomenon specific to SGD and absent for
GD. The formal version of this intuition is the following obvious observation, cast here as a theorem.

Theorem 1. Consider the linear regression problem WX = Y . Assume that W ∈ Rm,d is found by
SGD with minibatch of size B or by GD, both with learning rate η and regularization parameter λ.
Assume overparametrization, that is the data matrix is X ∈ Rd,N with d > N . Let π be the projection
on the span of the data (the columns of X), W ∥ = Wπ the weight matrix restricted to the data span,
and W⊥ = W (I − π) the weight matrix W restricted to the null space of X, so that W = W ∥ +W⊥.
Then for minibatches of size 1,

• if W at initialization is the zero matrix (or more generally Wπ = W), both SGD and GD will
converge to the same regularized solution;

• if W at initialization is a non-zero matrix (more generally Wπ ̸= W), such as a random matrix,
SGD and GD will also converge to the regularized solution. However, the convergence of W⊥

(that is, components of W that are in the null space of XXT) to zero is much faster for SGD

6

Figure 4: (a) Layer-wise ||V̇k||F in logarithmic scale by 10 different λ at the convergence. The SGD
noise across layers, as measured by ||V̇k||F , is small when λ is set to 0 or 1e-06. An increase of λ from
1e-05 to 0.01 generates larger fluctuations, especially for the first four convolution layers. The last
two fully connected layers tend to consist of low-rank matrices, corresponding to smaller ∥V̇k∥. (b)
Layer-wise rank of Vk by 10 different λ at the convergence trained with SGD (batch size is 128). The
rank of the weight matrix Vk across different layers decrease by increasing the weight decay parameter
(λ). The last (“deeper”) four layers achieved much smaller ranks compared to the first two layers, i.e.,
the top layers tend to consist of low-rank weight matrices, corresponding to smaller ∥V̇k∥ as shown in
(a).

than GD. The rate is (1− ηλ)N for SGD and (1− ηλ) for GD (assuming η to be constant during
the epoch).

Proof. Equation 7 can be rewritten as

W ∥(t+ 1) = W ∥(t)[(1− 2ηλ)I − ηλ

B
XXT]− 2ηλY XT (8)

and
W⊥(t+ 1)−W⊥(t) = −2ηλW⊥(t) (9)

The two equation are independent; equation 9 shows that the elements of W⊥ decay to zero for
each minibatch with a factor 1− ηλ. The theorem follows considering a full epoch.

Remarks

• For minibatch size B > 1 the convergence rate per epoch of the null space of W to zero is
(1− ηλ

B)
N
B .

• The SGD update equations can be fully deterministic, running through the data from 1 to N in
the same order in each epoch. This is equivalent to randomly choosing a minibatch without rep-
etition until all data are sampled. Despite the absence of any random process there is asymptotic
noise in the predicted y.

3.3 Linear regression experiments: overparametrization, low rank, random
initialization

We consider the case of a linear, overparametrized one layer network with input dimension d > N . We
assume that the learning rate of GD is set η = 0.5max(svd). The learning rate for SGD is the same
at initialization and then decays as ≈ 1√

t
(see Appendix E) where t is epochs. It is well-known that

SGD and GD converge to the regularized solutions (which is the minimum norm solution for λ → 0)

7

Figure 5: Margin distributions over all training data for binary classification on the CIFAR dataset
trained with cross entropy loss in (a) and square loss in (b) using different λ. The results in (a)
verified the prediction presented in Section 2.1, i.e., the presence of the SGD-specific noise is expected
to be significant even when λ = 0, unlike the square loss case.

at the same rate when W is initialized from W0 = 0 (see Figure A.1 in Appendix). We also initialize
W0 to be a random matrix of small norm. In this case (see Figure A.2), the small singular values
decay to zero for SGD much faster than for GD. At the same time the norm of the gradient is almost
always larger for SGD than GD – as expected from Equation 5. The small singular values are almost
always much smaller for SGD than GD: there is a strong shrinkage of small eigenvalues for SGD vs
GD, which is correlated with increasing gradient noise – that is norm of ∥Ẇ∥ – and with λ. This effect
is qualitatively similar to a bias towards low rank1. SGD maintains its bias in the case the problem is
to find a small number of active regressors among many useless coordinates (see Figure A.3). Online
gradient descent in which each example is used only once (just one epoch for GD and SGD) gives
similar results (Figure A.4). Figure A.5 shows the asymptotic noise in the training of SGD that does
not decrease (for contant η). Notice that the update equations used here are deterministic running
through the data from 1 to N : this is equivalent to randomly choosing a minibatch without repetition
until all data are sampled.

4 Discussion
Our analysis of minibatch SGD shows, consistently with the classical analysis, that SGD with fixed
learning rate does not strictly “converge”2: we observe sizeable fluctuations under the square loss in the
overparametrized case for very small λ, when degenerate solutions, that fit the data perfectly, abound
for λ = 0. This is not surprising, of course, since minibatch SGD uses random samples of the training
data. Furthermore, classical stochastic gradient descent with an explicit random noise term (instead
of random sampling of minibatches) is known to converge almost surely to a global minimum when
the objective function is convex or pseudoconvex, and otherwise converges almost surely to a local
minimum, provided that the learning rate η decrease with an appropriate rate.

As shown in Figure 2, the minibatch SGD specific noise disappears when the minibatch size increases
and SGD becomes GD. This also means that Neural Collapse, as described by [2], never truly happens
for the linear regression we have studied or for generic, intermediate layers in a neural network: NC1
is equivalent to all margins f(xn) ∀n to be the same at convergence, which cannot strictly happen
for SGD and λ > 0 (both conditions are required for NC1 to be possible[1]). On the other hand,
the origin of the minibatch SGD noise is not due to an explicit noise term, but can be described as
arising from a competition between a bias for small rank and the constraint of minimizing the error in

1Note that direct measurements of rank are fragile because of the discontinuous nature of rank its dependence on an
arbitrary threshold (machine precision for the function rank in Matlab).

2It does in expectation but its variance is never zero, see also [23].

8

fitting the data during learning W . An equivalent description is that minibatch SGD never finds an
asymptotic W that is the best fit to all the data but instead finds a sequence of very similar W , each
one optimized to fit the last data point(s).

It is interesting to notice that in our simulations of the linear case the choice of the mini batches
is not random but it is the same sequence going through the data from 1 to N in each epoch. We
did not notice any difference wrt random choice of nonoverlapping mini batches. Despite the absence
of any randomness (apart the initial choice of the sequence order), SGD is associated with significant
noise-like fluctuations arising from the nonlinear dynamics we described. In this sense, we believe, the
SGD noise is better described as deterministic chaos.

It is unclear whether the SGD-specific noise described here has a role in better generalization. Our
tentative answer is negative, since there is an empirical evidence that good solutions can sometimes be
found for λ = 0. It is possible, however, that the SGD-specific noise may help in searching for a global
minimizer, especially in underparametrized situations, when we expect isolated and not degenerate
global minima (see [1]).

A closely related open question is whether small rank implies better generalization. A direct effect
is possible though we do not know of any result showing that smaller rank yields better generalization
bounds for deep networks. In fact the standard Rademacher complexity of linear function classes with
L2 norm does not decrease with rank, though other measures with different norms may depend on
rank. The main effect, however, is likely to be indirect. We conjecture that the bias towards small rank
plays an important role in optimization, by eliminating "features" that are not supported by the data,
as we showed in the linear case. Furthermore, this effect may be especially critical in the optimization
of deep overparametrized networks, implying a significant advantage of SGD vs GD, even apart from
simple computational efficiency.

As it should be clear from our analysis, the mechanism underlying the SGD-specific fluctuations
we have identified is a competition between the two terms on the right side of Equations 15 and 16 in
the Appendix. Consider the case of classification under the square loss. If the term (−Vkf̄n + ∂f̄n

∂Vk
) in

the equation

V̇k =
2

N
ρ
∑
n

[(
1− ρf̄n

)(
−Vkf̄n +

∂f̄n
∂Vk

)]
. (10)

becomes small, the matrix Vk becomes closer to ∂f̄n
∂Vk

, which has rank 1. But small Vk rank implies
that the network cannot interpolate the data, which means that (1− ρf̄n) cannot be small.

The same competition arises in the case of the exponential loss, in this case independently of λ:

V̇k =
2

N
ρ
∑
n

e−ρf̄n

1 + e−ρf̄n
(−Vkf̄n +

∂f̄n
∂Vk

). (11)

This also means that SGD – unlike GD – is biased to find a trade-off between a small norm
approximation to the weight matrices and a small regression oor classification error.

The precise mechanism behind the bias of SGD vs GD towards low rank is clear in the linear case:
elements of W in the null space of the data matrix decay much more quickly to zero under SGD than
under GD. Although our analysis in the case of deep RELU networks does not rely on the solution of
the linear case, they are fully consistent with each other. It is thus likely that the exponential decay of
the null space under SGD is the reason for the strong bias towards low rank observed in deep networks.

9

References
[1] Mengjia Xu, Akshay Rangamani, Qianli Liao, Tomer Galanti, and Tomaso Poggio. Dynamics

in deep classifiers trained with the square loss: Normalization, low rank, neural collapse, and
generalization bounds. Research, 6:0024, 2023.

[2] X. Y. Han, Vardan Papyan, and David L. Donoho. Neural collapse under mse loss: Proximity to
and dynamics on the central path, 2021.

[3] Léon Bottou et al. Stochastic gradient learning in neural networks. Proceedings of Neuro-Nımes,
91(8):12, 1991.

[4] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

[5] Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in SGD. arXiv preprint
arXiv:1711.04623, 2017.

[6] Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in stochastic
gradient descent: Its behavior of escaping from sharp minima and regularization effects. In
Proceedings of the 36th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research. PMLR, 2019.

[7] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks. Advances in neural information processing
systems, 30, 2017.

[8] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

[9] Jose M. Alvarez and Mathieu Salzmann. Compression-aware training of deep networks. In Pro-
ceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17,
page 856–867, Red Hook, NY, USA, 2017. Curran Associates Inc.

[10] Murad Tukan, Alaa Maalouf, Matan Weksler, and Dan Feldman. No fine-tuning, no cry: Robust
svd for compressing deep networks. Sensors, 21(16), 2021.

[11] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by
low rank and sparse decomposition. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 67–76, 2017.

[12] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 254–263. PMLR, 10–15 Jul 2018.

[13] Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan
Srebro. Implicit regularization in matrix factorization, 2017.

[14] Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning. CoRR, abs/2012.09839, 2020.

[15] Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable
by norms. CoRR, abs/2005.06398, 2020.

[16] Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace.
CoRR, abs/1812.04754, 2018.

10

[17] Tolga Ergen and Mert Pilanci. Revealing the structure of deep neural networks via convex duality.
arXiv preprint arXiv:2002.09773, 2020.

[18] Greg Ongie and Rebecca Willett. The role of linear layers in nonlinear interpolating networks,
2022.

[19] Nadav Timor, Gal Vardi, and Ohad Shamir. Implicit regularization towards rank minimization
in relu networks. CoRR, abs/2201.12760, 2022.

[20] Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. CoRR,
abs/2006.06657, 2020.

[21] Thien Le and Stefanie Jegelka. Training invariances and the low-rank phenomenon: beyond linear
networks. In International Conference on Learning Representations, 2022.

[22] Tomer Galanti and Tomaso Poggio. Sgd noise and implicit low-rank bias in deep neural networks.
Technical report, Center for Brains, Minds and Machines (CBMM), 2022.

[23] T. Poggio and Y. Cooper. Loss landscape: Sgd can have a better view than gd. CBMM memo
107, 2020.

[24] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to ac-
celerate training of deep neural networks. Advances in neural information processing systems, 29,
2016.

[25] Tomaso Poggio, Andrzej Banburski, and Qianli Liao. Theoretical issues in deep networks. Pro-
ceedings of the National Academy of Sciences, 2020.

[26] Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss vs
cross-entropy in classification tasks. arXiv preprint arXiv:2006.07322, 2020.

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

11

A Linear theory: why SGD has a stronger low-rank bias than
GD (with ChatGPT)

To calculate and compare the decay rates for SGD and GD during one epoch, let’s use a specific
example and equations with the given parameters. We will assume the weight decay parameter is λ,
the learning rate is η, and there are 2 data points with a minibatch size of 1 for SGD.

The Data Matrix X is a matrix with first column

 1
0
0

 and second column

 0
1
0

. The weight

matrix W is initialized as W =

[
1 0 1
0 1 −1

]
.

• Gradient for the first column of X (X1) :

∇WL1 =

[
1 0 0
0 0 0

]
• Gradient for the second column of X (X2) :

∇WL2 =

[
0 0 0
0 1 0

]
Thus when updating with the first column, the gradient will only affect the first row of W . Similarly

for the second column.

A.1 SGD with Decay Rate
When Stochastic Gradient Descent (SGD) includes weight decay, the update rule for the weight matrix
W is modified to penalize large weights. The weight decay term adds a regularization term proportional
to the square of the norm of the weights, scaled by a parameter λ. The update rule for SGD with
weight decay becomes:

Wnew = W − η (∇WL+ λW)

where:

• η is the learning rate.

• ∇WL is the gradient of the loss with respect to W (as calculated earlier).

• λ is the weight decay parameter.

Let’s analyze the effect of this update rule on the last column of W . Consider

Initial W : W =

[
1 0 1
0 1 −1

]
From the earlier calculation, we have two gradients ∇WL1 and ∇WL2 based on the columns of X,
while the weight decay term λW affects all elements of W , including the last column. Consider now
the updates on the last column:

• First Column of X Update: the gradient update ∇WL1 does not directly affect the last column
of W , but the weight decay term λW does.

Wnew, last column = (1− ηλ) ·Wlast column

• Second Column of X Update: similarly, ∇WL2 does not affect the last column, but the weight
decay term does.

Wnew, last column = (1− ηλ) ·Wlast column

Thus

12

• The last column of W will change during iterations due to the weight decay term, even if the
gradients based on the data X do not directly influence it.

• The effect of weight decay is a uniform scaling of all elements of W by a factor of (1 − ηλ) in
each iteration.

• Over multiple iterations, this will lead to the last column of W gradually decreasing in magnitude,
moving towards zero if λ > 0 and η > 0.

A.2 SGD vs GD
In SGD, the weight matrix W is updated after each data point. Since there are two data points in our
example and the minibatch size is 1, SGD will perform two updates in one epoch.

• Update rule for SGD with weight decay:

Wnew = W − η (∇WLi + λW)

where ∇WLi is the gradient of the loss for the i-th data point.

• Since we are focusing on the decay due to λ, and assuming the gradient ∇WLi does not affect
the last column (as per our previous analysis), the update for the last column of W due to weight
decay alone is: Wnew, last column = (1− ηλ) ·Wlast column

• After 2 updates (one epoch): Wfinal, last column = (1− ηλ)2 ·Winitial, last column

In GD, the weight matrix W is updated once after going through the entire dataset.

• Update rule for GD with weight decay:

Wnew = W − η (∇WLtotal + λW)

where ∇WLtotal is the total gradient over the entire dataset.

• Focusing on the decay due to λ, and considering ∇WLtotal does not affect the last column, the
update for the last column of W due to weight decay alone is: Wnew, last column = (1 − ηλ) ·
Wlast column

• After one update (one epoch): Wfinal, last column = (1− ηλ) ·Winitial, last column

Hence, the obtained decay factors for SGD and GD are as follows.

• SGD decay factor after one epoch:
(1− ηλ)2

• GD decay factor after one epoch:
(1− ηλ)

Conclusion: Comparing the two, we see that the decay factor for SGD is the square of the decay factor
for GD after one epoch, given the setup of 2 data points and minibatch size of 1 for SGD. It implies a
faster decay rate for the last column of W in SGD compared to GD.

B Linear experiments

C Multilayer RELU networks and training
We introduce a model of the training procedure that uses square loss for binary classification, La-
grange multipliers (LM) for normalizing the weights and a regularization term controlled by λ. The
normalization technique we use is completely equivalent to the Weight Normalization [24], see the
proof in [25]. In the paper, we assume the network is overparametrized, so that there is convergence to
global minima with appropriate initialization, parameter values, and data. Under the assumption of

13

Traiectory of Eigenvalue with Smallest Norm at Final Epoch Over Epochs for SGD and GD
0.05

0
�

(.)
CD
'iii'

I- ·0.05
E

z

t;
Cl)

m ·0.1
E

5
3:
CD
::s ·0.15
'iij

CD
Cl

w

-0.2

·0.25

' ' '

•

"

"

•

�

•

1 2 3 4

' ' ' ' '

SGD Smallest Norm Eigenvalue
GD Smallest Norm Einenvalue

---.

.

.

.

.

• •

5 6 7 8 9 10

Epoch

Figure A.1: Solving Wx = y, for a data matrix X with d = 11 and N = 10; SGD and GD are used with
regularization λ = 0.01 and optimal learning rate η as described in the text. The number of epochs is
10. Initialization is from W = 0. The final MSE for SGD is 0.879681 and for GD is 1.524118. At the
final epoch, the eigenvalues with the smallest norm for both SGD and GD have a norm of 0.000000.

overparameterization, we also expect interpolation of all training data when λ = 0 [1]. In the presence
of weight decay (i.e., λ > 0), perfect interpolation of all data points cannot occur and is replaced by
“quasi-interpolation” of the labels (yn). In the special case of binary classification where yn = ±1,
quasi-interpolation is defined as ∀ n : |f(xn) − yn| ≤ ϵ, where ϵ > 0 is small. Our experiments and
analysis of the training dynamics show that the presence of regularization leads to a weaker dependence
on initial conditions, as has been observed in [26].

In this study, we consider a binary classification problem given a training dataset S = {(xn, yn)}Nn=1

of N samples, where xn ∈ Rd are the inputs (normalized such that ∥xn∥ ≤ 1) and yn ∈ {±1} are
the labels. We use deep rectified homogeneous networks with L layers (see Figure A.8) to solve this
classification problem. For simplicity, we consider networks fW : Rd → Rp of the following form
fW (x) = WLσ (WL−1 . . . σ (W1x) . . .), where x ∈ Rd is the input to the network and σ : R → R,
σ(x) = max(0, x) is the rectified linear unit (ReLU) activation function that is applied coordinate-wise
at each layer. The last layer of the network is linear.

Due to the positive homogeneity of ReLU (i.e., σ(αx) = ασ(x) for all x ∈ R and α > 0), one can
reparametrize fW (x) by considering normalized3 weight matrices Vk = Wk

∥Wk∥ and define ρk = ∥Wk∥
obtaining fW (x) = ρLVLσ (ρL−1 . . . σ (ρ1V1x) . . .), see Figure A.8(a). Because of the homogeneity of
the ReLU, it is possible to pull out the product of the layer norms as ρ =

∏L
k=1 ρk and write fW (x) =

ρfV (x) = ρVLσ (VL−1 . . . σ (V1x) . . .), as shown in Figure A.8(b). Notice that the two networks – fW (x)
and ρfV (x) – are equivalent reparameterizations of the same function but their optimization generally
differ. We define fn := fV (xn).

Our definitions follow the convention used in [1] that the norm ρk of the convolutional layers is
defined as the norm of their filters rather than the norm of their associated Toeplitz matrices. The ρ
calculated in this way is the quantity that enters the generalization bounds.

In the model described in Figure A.8(b), we assume that all layers are normalized, except for the
last one. Thus, the weight matrices {Vk}Lk=1 are constrained by the LM term to be close to, and
eventually converge to, unit norm matrices (in fact to fixed norm matrices); notice that normalizing
VL and then multiplying the output by ρ, is equivalent to letting WL = ρVL be unnormalized. Hence,

3We choose the Frobenius norm here.

14

0.020154

Figure A.2: Solving Wx = y, for a data matrix X with d = 11 and N = 10; SGD and GD are used
with regularization λ = 0.01 and optimal learning rate η as described in the text. The number of
epochs is 50000. Initialization is from W random. The final MSE for SGD is 0.126220 and for GD is
0.138375. At the final epoch, the eigenvalues with the smallest norm for SGD has norm 0.000000 and
for GD has norm 0.020154.

fV is the network that at convergence has L− 1 normalized layers.
Based on the aforementioned definitions, we can write the Lagrangian corresponding to the mini-

mization of the regularized loss function under the constraint ∥Vk∥2 = 1 in the following manner

LS(ρ, {Vk}Lk=1) : =
1

N

∑
n

(ρfn − yn)
2 +

L∑
k=1

νk(∥Vk∥2 − 1) + λρ2

=
1

N

∑
n

(1− ρf̄n)
2 +

L∑
k=1

νk(∥Vk∥2 − 1) + λρ2,

(12)

where νk are the Lagrange multipliers and λ > 0 is a predefined parameter.

Separability and Margins. Two of the most important aspects of classification are separability and
margins. Given an input training or test data sample and its label pair (x, y) and the model fW , we say
that fW correctly classifies x if f̄n = ynfn > 0. Moreover, for a given dataset S = {(xn, yn)}Nn=1, separa-
bility is defined as the condition in which all training samples are classified correctly, ∀ n ∈ [N] : f̄n > 0.
Furthermore, when

∑N
n=1 f̄n > 0, we say that average separability is satisfied. The minimum of LS for

λ = 0 is usually zero under the assumption of overparametrization. This corresponds to separability.
Notice that if fW is a zero loss solution of the regression problem, then ∀ n : fW (xn) = yn, which

is also equivalent to ρfn = yn, where we denote ynfn = f̄n the margin for xn. 4 By multiplying both
sides of this equation by yn, and summing both sides over n ∈ [N], we obtain that ρ

∑
n f̄n = N .

Thus, the norm ρ of a minimizer is inversely proportional to its average margin µ in the limit of λ = 0,
with µ = 1

N

∑
n f̄n. It is also useful to define the margin variance σ2 = M − µ2 with M = 1

N

∑
n f̄

2
n.

Notice that M = 1
N

∑
n f̄

2
n = σ2 + µ2 and that both M and σ2 are not negative.

4Notice that the term “margin” is usually defined as minn∈[N] f̄n. Instead, we use the term “margin for xn” to
distinguish our definition from the usual one.

15

Figure A.3: Regression with sparse features. Solving Wx = y, for a data matrix X with d = 10 and
N = 5 with only two of components of x being relevant; SGD and GD are used with regularization λ =
0.01 and optimal learning rate η as described in the text. The number of epochs is 200. Initialization
is from random W .

D Theoretical Analysis

D.1 Gradient flow equations
We assume the deep networks with the ReLU units and weight normalization (in the Frobenius norm)
at each layer, enforced via Lagrange multipliers. We also assume square loss and binary classification.
The gradient flow equations in ρ (the product of the Frobenius norms of the unnormalized weight
matrices) and Vk (the normalized weight matrices) are as follows

ρ̇ = −∂LS(ρ, {Vk}Lk=1)

∂ρ
=

2

N

∑
n

(1− ρf̄n)f̄n − 2λρ

V̇k = −∂LS(ρ, {Vk}Lk=1)

∂Vk
=

2

N

∑
n

(1− ρf̄n)ρ
∂f̄n
∂Vk

− 2νkVk,

(13)

where f̄n = ynf(xn), yn = ±1 and n ∈ [N]. In the equation of V̇k, we can use the unit norm constraint
on the ∥Vk∥ to determine the Lagrange multipliers (νk). Using a structural property of the gradient,
the constraint ∥Vk∥2 = 1 implies ∂∥Vk∥2

∂t = V T
k V̇k = 0, which gives

νk =
1

N

∑
n

(ρf̄n − ρ2f2
n) =

1

N

∑
n

ρf̄n(1− ρfn). (14)

Thus the gradient flow is the following dynamical system

ρ̇ =
2

N

[∑
n

f̄n −
∑
n

ρ(f̄n)
2

]
− 2λρ and V̇k =

2

N
ρ
∑
n

[(
1− ρf̄n

)(
−Vkf̄n +

∂f̄n
∂Vk

)]
. (15)

16

Figure A.4: Regression with sparse features in an online setting. One epoch with N = 200, d = 10.
Solving Wx = y, for a data matrix X with d = 10 and N = 5 with only two of components of x being
relevant; SGD and GD are used with regularization λ = 0.01 and optimal learning rate η as described
in the text. Initialization is from random W .

The gradient flow for the logistic loss would result in

ρ̇ =
2

N

∑
n

e−ρf̄n

1 + e−ρf̄n
f̄n − 2λρ and V̇k =

2

N
ρ
∑
n

e−ρf̄n

1 + e−ρf̄n
(−Vkf̄n +

∂f̄n
∂Vk

). (16)

D.2 SGD
In the previous section, we derived the gradient flow equations of ρ and Vk. In order to iteratively
train these parameters over mini-batches, we consider a setting where Vk and ρ are trained as follows

ρ← ρ− η
∂LS′(ρ, {Vk}Lk=1)

∂ρ
= ρ− η

2

B

∑
(xn,yn)∈S′

(1− ρf̄n)f̄n − 2ηλρ

Vk ← Vk −
∂LS′(ρ, {Vk}Lk=1)

∂Vk
= Vk − η

2

B

∑
(xn,yn)∈S′

(1− ρf̄n)(−Vkf̄n +
∂f̄n
∂Vk

),

(17)

where one minibatch S ′ of size B < |S| is selected uniformly as a subset of the training dataset S and
the learning rate η > 0.

17

Figure A.5: Regression in an online setting. One epoch with N = 100000, d = 10. Solving Wx = y,
for a data matrix X with d = 10; SGD is used with regularization λ = 0.01 and optimal learning
rate η as described in the text. Initialization is from random W . The updates are fully deterministic
without any random component. At convergence there is asymptotic noise that does not decrease
(unless learning rate goes to zero).

D.3 No equilibrium
The Lemma below shows that the SGD cannot achieve equilibrium for all the mini-batches of size
B < N , because otherwise all the weight matrices would have very small rank which is incompatible,
for generic data sets, with quasi-interpolation.

Lemma 1. Let fW be a neural network. Assume that we iteratively train ρ and {Vk}Lk=1 using the pro-
cess described above with weight decay λ > 0. Suppose that training converges, that is ∂LS′ (ρ,{Vk}L

k=1)
∂ρ =

0 and ∀ k ∈ [L] :
∂LS′ (ρ,{Vk}L

k=1)
∂Vk

= 0 for all mini-batches S ′ ⊂ S of size B < |S|. Assume that
∀ n ∈ [N] : f̄n ̸= 0. Then, the ranks of the matrices Vk are at most ≤ 2.

Proof. Let fV (x) = VLσ(VL−1 . . . σ(V1x) . . .) be the normalized neural network, where Vl ∈ Rdl+1×dl

and ∥Vl∥ = 1 for all l ∈ [L]. We would like to show that the matrix ∂fV (x)
∂Vk

is of rank ≤ 1. We note that
for any given vector z ∈ Rd, we have σ(v) = diag(σ′(v)) · v (where σ is the ReLU activation function).
Therefore, for any input vector x ∈ Rn, the output of fV can be written as follows,

fV (x) = VLσ(VL−1 . . . σ(V1x) . . .)

= VL ·DL−1(x;V) · · ·D1(x;V) · V1 · x,
(18)

where Dl(x;V) = diag[σ′(ul(x;V)))] and ul(x;V) = Vlσ(Vl−1 . . . σ(V1x) . . .). We denote by ul,i(x;V)
the i’th coordinate of the vector ul(x;V). We note that ul(x;V) are continuous functions of V .
Therefore, assuming that none of the coordinates ul,i(x;V) are zero, there exists a sufficiently small
ball around V for which ul,i(x;V) does not change its sign. Hence, within this ball, σ′(ul,i(x;V)) are
constant. We define a set V := {V | ∀l ≤ L : ∥Vl∥ = 1} and Vl,i = {V ∈ V | ul,i(x;V) = 0}. We note
that as long as x ̸= 0, the set Vl,i is negligible within V. Since there is a finite set of indices l, i, the
set

⋃
l,i Vl,i is also negligible within V.

18

Figure A.6: Sparse regression with N = 10, d = 2; of the two components of y, one does not depend
on the data. Solving Wx = y; GD and SGD are used with regularization λ = 0.01, over 150 epochs,
and an optimal learning rate η as described in the text.

Let V be a set of matrices for which none of the coordinates ul,i(x;V) are zero. Then, the matrices
{Dl(x;V)}L−1

l=1 are constant in the neighborhood of V , and therefore, their derivative with respect to
Vk are zero. Let a⊤ = VL ·DL−1(x;V)VL−1 · · ·Vk+1Dk(x;V) and b = Dk−1(x) · Vk−1 · · ·V1x. We can
write fV (x) = a(x;V)⊤ · Vk · b(x;V). Since the derivatives of a(x;V) and b(x;V) with respect to Vk

are zero, by applying ∂a⊤Xb
X = ab⊤, we have ∂fV (x)

∂Vk
= a(x;V) · b(x;V)⊤ which is a matrix of rank at

most 1. Therefore, ∂f̄n
∂Vk

= yn
∂fV (xn)

∂Vk
is a matrix of rank at most 1. Therefore, for any input xn ̸= 0,

with measure 1, ∂f̄n
∂Vk

is a matrix of rank at most 1.

Since ∀ k ∈ [L] :
∂LS′ (ρ,{Vk}L

k=1)
∂Vk

= 0 for all mini-batches S ′ = {(xij , yij)}Bj=1 ⊂ S of size B < |S|,
we have

∂LS′(ρ, {Vk}Lk=1)

∂Vk
=

2

B
ρ

B∑
j=1

[(
1− ρf̄ij

)(
−Vkf̄ij +

∂f̄ij
∂Vk

)]
= 0. (19)

Since interpolation is impossible when training with λ > 0, there exists at least one n ∈ [N] for which
ρf̄n ̸= 1. We consider two batches S ′i and S ′j of size B that differ by sample, (xi, yi) and (xj , yj). We
have

∀ i, j ∈ [N] : 0 =
∂LS′

i
(ρ, {Vk}Lk=1)

∂Vk
−

∂LS′
j
(ρ, {Vk}Lk=1)

∂Vk

=
2

B
· ρ

[(
1− ρf̄i

)(
−Vkf̄i +

∂f̄i
∂Vk

)
−

(
1− ρf̄j

)(
−Vkf̄j +

∂f̄j
∂Vk

)]
.

(20)

19

Figure A.7: Sparse regression Wx = y with N = 6, d = 6; of the two components of y, one does not
depend on the data. GD and SGD are used with regularization λ = 0.01 and optimal learning rate η
as described in the text. Top: The scale for the singular values is logarithmic to check the prediction
for a slope that should be N times higher for SGD vs GD in the case of the smallest singular value in
the null space of the data. Here the slope for the best linear fit is −0.00153 for GD and −0.00893 for
GD with a goodness of fit (R-squared) above 0.9. The ratio of the slopes is ≈ 6 as predicted. Bottom:
The largest singular value is in the span of the data, does not decay to zero and yields very similar
rates of convergence for SGD and GD.

Assume that there exists a pair i, j ∈ [N] for which (1− ρf̄i)f̄i ̸= (1− ρf̄j)f̄j . Then, we can write

Vk =

[
(1− ρf̄i) · ∂f̄i

∂Vk
+ (1− ρf̄j) · ∂f̄j

∂Vk

]
[(1− ρf̄i)f̄i − (1− ρf̄j)f̄j]

. (21)

Since ∂f̄i
∂Vk

and ∂f̄j
∂Vk

are matrices of rank ≤ 1 (see the analysis above), we obtain that Vk is of rank ≤ 2.
Otherwise, assume that for all pairs i, j ∈ [N], we have α = (1− ρf̄i)f̄i = (1− ρf̄j)f̄j . In this case we
obtain that for all i, j ∈ [N], we have

(
1− ρf̄i

)
· ∂f̄i
∂Vk

=
(
1− ρf̄j

)
· ∂f̄j
∂Vk

= U. (22)

Therefore, since α = (1− ρf̄i)f̄i = (1− ρf̄j)f̄j , by Equation 19,

0 =
2

B
ρ

B∑
j=1

[(
1− ρf̄ij

)(
−Vkf̄ij +

∂f̄ij
∂Vk

)]
= −2ραVk + 2ρU. (23)

20

Figure A.8: An illustration of two equivalent parametrizations of our deep ReLU networks fW (x).
(a) Each layer’s weight matrix Wk was decomposed into its norm ρk and its normalized version Vk,
where the layer index k ∈ [L]. σ represents the ReLU activation function. (b) Each layer’s weight
matrix was normalized with the LM, except for the top layer’s weight matrix WL (that is decomposed
into a global ρ and the normalized weight matrix VL). Normalizing the weight matrices with Lagrange
Multipliers, as weight normalization (equivalent to LN) does, is different from the Batch Normalization,
although both normalization techniques capture the relevant property of normalization – to make the
dot product invariant to scaling.

Since the network cannot perfectly fit the dataset when trained with λ > 0, we obtain that there exists
i ∈ [N] for which (1− ρf̄i) ̸= 0. Since f̄i ̸= 0 for all i ∈ [N], this implies that α ̸= 0. We conclude that
Vk is proportional to U which is of rank ≤ 1.

All gradient descent methods try to converge to points in parameter space that have zero or very
small gradient, in other words they try to minimize ∥V̇k∥,∀k. Assuming separability (that is f̄n > 0)
and λ > 0, ℓn = (1− ρf̄n) > 0,∀n, then Equation 15 implies

∥V̇k∥ = ∥
2ρ

N

∑
n∈B

ℓn(
∂f̄n
∂Vk

− fnVk)∥, (24)

which predicts that the norm of the SGD minibatch update should depend on the rank of Vk.

D.4 Origin of SGD noise
Lemma 1 shows that there cannot be convergence to a unique set of weights {Vk}Lk=1 that satisfy
equilibrium for all minibatches. When λ = 0, interpolation of all data points (1 − ρf̄n = 0,∀n) is
expected in the overparametrized case we consider: in this case, equilibrium can be reached without
any constraint on the weight matrices. In this situation, the SGD noise is expected to disappear.
Thus, during training with λ > 0, the solution {Vk}Lk=1 is not the same for all samples: there is no
convergence to a unique solution but instead fluctuations during training5.

D.5 Experiments
In our experiments, we conducted binary classification with the CIFAR10 dataset [27] using the deep
ReLU networks (see Figure A.8(b)). Specifically, we extracted images with class labels “1” and “2”
from the CIFAR10 dataset, 10000 32×32 colour images were used for training and 2000 colour images
for testing. The specific model architecture and implementation details are described below.

Model architecture. Our deep ReLU networks consists of four convolutional layers and two fully
connected layers (L = 6), without biases in any of the layers. The four convolutional layers apply
3 × 3 convolutions with stride 2 and padding 0, the corresponding output channel numbers are 32,

5The absence of convergence of SGD to a unique solution is not surprising, in general, when the landscape is not
convex.

21

64, 128, and 128. The final two fully connected layers project the 3200-dimensional output of the last
convolutional layer to a 1024-dimensional vector before mapping it to 2 outputs. At the top layer,
there is a global learnable parameter ρ that is the product of the Frobenius norms of weight matrices
in all layers (see Figure A.8(b)). We used the ReLU activation function in all layers except for the last
layer. The total number of model parameters is 3, 519, 335.

Training and optimization. To implement the model introduced in Section A.8 (b). we used
the equivalent weight normalization (WN) algorithm, freezing the weights of the WN parameter “g”
[24] and normalized the {Vk}L−1

k=1 matrices at each layer using their Frobenius norm. We trained our
networks with the SGD optimizer (momentum 0.9), and tested two different types of loss functions
(i.e., square loss and exponential loss). The hyperparameters included an initialization scale of the
weight matrix at each layer set to 0.1, an initial learning rate (η) of 0.03 with a cosine annealing
learning rate scheduler, a batch size (B) of 128, and 2000 training epochs. Our experiments were run
on the NVIDIA RTX A6000 GPU (48GB VRAM).

E Learning rate for SGD
Consider the differential equation

dx

dt
+ γ(t)x = 0 (25)

with solution x(t) = x0e
−

∫
γ(t)dt. The condition

∫
γ(t)dt→∞ corresponds to

∑
γn =∞. Conditions

of this type are needed for asymptotic convergence to the minimum of the process x(t). Consider
now the “noisy” case dx

dt + γ(t)(x + ϵ(t)) = 0: we need γ(t)ϵ(t) → 0 to eliminate the effect of the
“noise” ϵ(t), implying at least γn → 0. The need for

∑
(γn)

2 = 0 may be seen considering the SDE
dx
dt + γnx = dW (t).

22

	Introduction
	Related Work

	Deep RELU networks
	Testing key qualitative predictions of the theory

	Linear Regression
	SGD and GD
	Low rank bias of SGD
	Linear regression experiments: overparametrization, low rank, random initialization

	Discussion
	Linear theory: why SGD has a stronger low-rank bias than GD (with ChatGPT)
	SGD with Decay Rate
	SGD vs GD

	Linear experiments
	Multilayer RELU networks and training
	Theoretical Analysis
	Gradient flow equations
	SGD
	No equilibrium
	Origin of SGD noise
	Experiments

	Learning rate for SGD

