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Assessing compounding risks
across multiple systems and
sectors: a socio-environmental
systems risk-triage approach

C. Adam Schlosser1*, Cypress Frankenfeld1, Sebastian Eastham1,2,

Xiang Gao1, Angelo Gurgel1, Alyssa McCluskey1, Jennifer Morris1,

Shelli Orzach1, Kilian Rouge1, Sergey Paltsev1 and John Reilly1

1Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change,

Cambridge, MA, United States, 2Massachusetts Institute of Technology Laboratory for Aviation and the

Environment, Cambridge, MA, United States

Physical and societal risks across the natural, managed, and built environments

are becoming increasingly complex, multi-faceted, and compounding. Such risks

stem from socio-economic and environmental stresses that co-evolve and force

tipping points and instabilities. Robust decision-making necessitates extensive

analyses and model assessments for insights toward solutions. However, these

exercises are consumptive in terms of computational and investigative resources.

In practical terms, such exercises cannot be performed extensively—but

selectively in terms of priority and scale. Therefore, an e�cient analysis platform

is needed through which the variety of multi-systems/sector observational and

simulated data can be readily incorporated, combined, diagnosed, visualized,

and in doing so, identifies “hotspots” of salient compounding threats. In

view of this, we have constructed a “triage-based” visualization and data-

sharing platform—the System for the Triage of Risks from Environmental and

Socio-Economic Stressors (STRESS)—that brings together data across socio-

environmental systems, economics, demographics, health, biodiversity, and

infrastructure. Through the STRESS website, users can display risk indices that

result fromweighted combinations of risk metrics they can select. Currently, these

risk metrics include land-, water-, and energy systems, biodiversity, as well as

demographics, environmental equity, and transportation networks. We highlight

the utility of the STRESS platform through several demonstrative analyses over the

United States from the national to county level. The STRESS is an open-science

tool and available to the community-at-large. We will continue to develop it with

an open, accessible, and interactive approach, including academics, researchers,

industry, and the general public.

KEYWORDS

environmental, socio-economic, compounding risks, visualization platform, equity,

triage, screening tools

1. Introduction

Climate and our natural as well as managed environments are changing. Society is

growing and its aging infrastructure to provide reliable energy, water, and transportation

systems is increasingly strained and challenged by needed expansion, upgrades, and

modernization. Further, the global economy, energy systems, and supply chains are faced

with the challenge of transformational changes at a global scale. Simply put, the world

is facing increasing and interwoven physical and transitional risks. In order to confront
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these challenges, the scientific community, stakeholders, and

citizen scientists must view the world as complex, interwoven

networks that co-evolve and are increasingly inter-connected.

Multi-Sector Dynamics (MSD, Figure 1) explores interactions and

interdependencies among human and natural systems and how

these systems co-evolve in response to short-term shocks and

long-term influences and stresses (e.g., Reed et al., 2022). For

example, economic growth might put a pressure on public services

and squeeze out low-income households (e.g., Frank, 2009),

carbon policies can lead to different distributional impacts on

households (e.g., García-Muros et al., 2022), and failed economies

lead to widespread poverty, unemployment, tax base decline,

and transform demographic geographies (e.g., Hochstenbach and

Musterd, 2018). Under a changing global environment, weather

may become more extreme, leading to increasing extreme events,

such as droughts and floods (e.g., Stott, 2016). Efforts to curb

emissions will affect air pollution, but can also exert unintended

and unequal stress on communities (e.g., Kiesecker et al., 2019).

Similarly, water pollution, or efforts to reduce it, while having

clear health benefits can have unequal social and economic impacts

(e.g., Mueller and Gasteyer, 2021). As the world economy changes,

perhaps turning away from fossil fuels to toward other energy

resources, resource use could change drastically leading to regional

increases and declines in related industries. A growing global

population that is becoming wealthier will put greater pressure on

energy, land, and water resources.

In this vein, among the major challenges that Federal and

State agencies face in addressing and identifying these problems

lies in the difficulty of combining data to: assess hazards, impacts,

stressors, exposures, vulnerabilities, and inequities; quantify overall

risk; and set priorities. Currently, much of the needed data is

disaggregated across multiple agencies, universities, and research

groups, and presented at different geographical scales in varying

formats. Finding and accessing all these data are also a challenge

in itself. More importantly, combining these data and creating

metrics to address “overall risk” is unintuitive. Recent studies

have introduced and formalized a conceptual basis of “risk” across

various scientific disciplines (e.g., Cappelli et al., 2021; Reed

et al., 2022) primarily on climate change factors (e.g., Otto et al.,

2017). On a more granular level, communities around the world

will face multiple risk factors over the coming decades that do

not evolve from climate change alone (e.g., Moss et al., 2016;

Pescaroli and Alexander, 2018; Aven and Zio, 2021). In addition,

the vulnerability, exposure, and resilience of communities—their

ability to successfully cope with risk factors—varies. Poorer

communities have fewer financial resources on which to draw, and

minority communities often do not receive the attention or aid of

other communities. Communities with many elderlies or children

have a larger proportion of more dependent persons. The overall

health of a community and access to health care also results in

varying ability to cope with stressors, such as exposure to heat or

pollution. Gathering data and projections necessary to understand

environmental change and a community’s vulnerabilities is itself

a significant undertaking. Recruiting experts, evaluating available

data and projections, and determining vulnerable infrastructure,

populations, and economic activity even at a very low level can

require hundreds of thousands of dollars, if not many millions.

With these considerations in mind, an efficient, low-cost,

screening-level assessment platform that can identify “hot-spots”

of co-existing, co-evolving situations and inform where resources

and efforts can be most appropriately deployed would be valuable.

This type of platform could be used to prioritize efforts in

vulnerable regions to increase resilience against the identified

potential compounding stresses. Overall, we refer to this as a

“risk-triage” approach, with “triage” aligning with its definitional

context of “...assigning of priority order to projects on the basis

of where funds and other resources can be best used, are most

needed, or are most likely to achieve success” (Merriam Webster

Dictionary, 2021). Under these considerations, we have developed

a System for the Triage of Risks from Environmental and Socio-

Economic Stressors (STRESS) platform (URL—mst.mit.edu). The

STRESS platform’s motivating goals are to: characterize the extent

that various risk factors (i.e., threats, hazards, impacts, stressors,

exposures, vulnerabilities, and inequities) co-exist; compile metrics

that quantify these risk factors in flexible and combinable fashion;

identify how the aggregate risk landscape changes when individual

risk factors are combined; and provide any user of the platform the

ability explore various risk-factor combinations of their choosing.

From this screening-level assessment, “hotspots” of risk can be

identified that point to deeper diagnoses of risks at a more granular

and detailed level, and these steps should lead to action to improve

resilience. Identifying the most vulnerable region provides an

opportunity to intervene before there are serious effects.

This paper describes a collection of data, constructed

metrics, and an interactive, visualization platform to enable

citizens, scientists, stakeholders, businesses, communities, state and

Federal governments to identify particularly vulnerable regions,

populations, infrastructure, and resources. In Section 2, we

discuss conceptual considerations that motivate the risk-triage

platform development, the supporting data collection, as well as a

description of the subset of data used for the combinatory metrics

and website that implements the conceptual model. To highlight

the current capabilities of the platform, Section 3 provides selected

examples and demonstrative analyses over the United States from

the national to county level. In Section 4, we provide a summary

and closing remarks describe our continued efforts to expand the

platform’s presented capabilities.

2. Materials and methods

2.1. Conceptual considerations

Stakeholders, legislators, decision-makers, as well as the

community-at-large face increasingly complex exposures and

compounding effects from co-evolving environmental, economic,

and societal pressures. A number of online data, visualization,

and analysis platforms are currently available to the community-

at-large for exploring a wide range of climate, social, and

environmental hazards (e.g., Pickard et al., 2015; Temper et al.,

2015; Iturbide et al., 2020; U.S. EPA, 2020, 2022; Zuzak et al., 2021;

NOAA NCEI, 2022). All these platforms carry unique perspectives

and strengths, yet what they lack is the ability to combine and

weight user-selected metrics to quantitatively assess compounding
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FIGURE 1

Schematic representation of the multi-sector dynamic framework that recognizes the co-evolving nature of socio-economic and physical systems.

These systems must be considered as connected to gain insights into the various landscapes of vulnerabilities, compounding risks, and

environmental instabilities and inequalities.

hazards. The extent of data that is accessible to visualize and

quantify these pressures and stresses is substantial. Yet as noted,

flexible and user-specified combinatory diagnostics such as these

would provide valuable perspectives and identify salient priorities

and vulnerabilities for investment and action. To use additional

examples as conceptual motivation, imagine a situation in which

a particular region of interest (e.g., nation, state, or county) is

prone to high flood risk. Any flood risk metric by itself would

identify areas at high risk, however, infrastructure, demographics,

and poverty could make some areas less able to withstand a flood

and less resilient to recover than others. However, compiling and

combining all the necessary data to make a quantitative assessment

with all these combined factors (and potentially weighted according

to a decision-maker’s judgement) is not readily available. Similarly,

communities might use such a tool identify their vulnerabilities

with respect to an array of stressors and their combinations. A

platform that can combine compounding factors that identify the

most risk-prone areas is valuable and insightful as a triage-response

assessment. In more general terms, we can conceptualize this data-

fusion need (Figure 2) to set the stage for our triage framework.

Generally speaking, we can view a situation where there is an

extensive ecosystem of data that covers a wide range of metrics

that describe the states of various systems. However, these data

come in various formats, configurations, units, and spatiotemporal

attributes (i.e., span of data, resolution, and averaging to name

a few), and in order for these metrics to be combined, one

would need to collect, inspect, and “normalize” the data in such

a way as to justify their combinatory use (center of Figure 2).

Then, in order to provide an intuitive, exploratory, and interactive

capability, the platform should allow the user to select and design
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FIGURE 2

Conceptual framework of the risk-triage approach. The supporting web platform consists of a metadata collection obtained from various

repositories and sources whose data di�er in attributes, formats, content, units, granularities, etc. (i.e., Appendix A). From this ecosystem of data, a

subset of the data is chosen that span across the multi-sector dynamics (MSD) purview (e.g., Reed et al., 2022). These data are further refined and

normalized into a set of metrics that can be used for combinatory analyses. The platform is designed to be flexible and interactive—such that the

user can select their own combination and weights (conceptually depicted by the line thicknesses) of these metrics. The result is an aggregate metric

where the user can download the resulting set of data and map image created by the platform (URL: mst.mit.edu).

their own combinations, visualize the aggregate metrics (for more

rapid inspection), and download the resultant data fields for

further analysis.

We believe that under the conception of a “risk-triage”

capability, a visualization and data-sharing platform should include

metrics of stressors, risks, vulnerabilities, and resilience across

socio-economic, climate, water, land, energy, demographic, and

infrastructure sectors, and that any metric should characterize

the conditions and resources needed to cope with both gradual

and sudden stressors. For example, the tool should encompass

a gradual event such as economic decline from the fading of

a communities’ dominant industry, or a sudden, extreme event

like a large flood. The platform likewise needs to be flexible: it

must encompass and have the ability to quantitatively combine

and visualize different types of metrics. The tool should include

metrics that indicate current and the potential of future stresses.

However, it cannot be expected to provide precise predictors

of what and when something will happen, but rather, the tool

can convey a quantitative description of multiple factors that

can be viewed individually and in any desired combination—so

that the impact of compounding effects can be assessed under

current conditions and future pathways. These futures could

be a result of plausible (and uncertain) trajectories of climate,

weather extremes, socio-economic growth, land cover/use, land

and ecosystem productivity, water resources, and air quality to

name a few.

2.2. Data

As depicted in our conceptual design of the platform (Figure 2).

Our initial data mining efforts have focused on gathering a

larger and supporting collection of data that (currently) span

the following broad risk-factor categories: climate, water, energy,

land, economics, demographics, infrastructure, and environmental

opinions. There are numerous data bases available from various

Federal, non-profit, and open-science research institutions that

provide a wide range of social, economic, and environmental

variables (e.g., Pickard et al., 2015; Temper et al., 2015; Iturbide

et al., 2020; U.S. EPA, 2020, 2022; Zuzak et al., 2021; NOAA NCEI,

2022). Appendix A provides a more complete description of the

various data portals, platforms, and repositories from which we

have extracted data. The initial focus of our data collection has been

over the United States at the county-level scale. Our collection of

data currently includes over 100 variables that quantify a variety

of fluxes, flows, states, and conditions across various landscapes

of socio-environmental sectors, demographics, and public opinion.

We have and will continue to collect publicly available data from

the community-at-large. Therefore, it is important to note that our

data collection is ongoing, and we will continue to expand and

refine this initial collection, and subsequent papers will provide

these details. Nevertheless, given our conceptual design described

in the previous section, we have relied on these data to provide

a “one-stop” collection of data (i.e., as depicted as the left end of

Figure 2). Any of these data can be viewed on the platform and also

downloaded such that a user can apply these data for additional

analyses (and demonstrated in Section 3).

However, in view of our conceptual approach andmethodology

to create a combinatory set of data (center of Figure 2), we note

that all these data are not provided in a consistent form such that

they can be selectively combined. Therefore, we must further refine

these data to synthesize a collection ofmetrics that allow for flexible,

aggregate diagnostics. The method by which this is done is detailed

in the next section. To perform this transformation for all the data

we have collected may ultimately be desirable, but for this initial

assessment is untenable and unwarranted. In order to assess and

highlight the insights gained thru this approach, we have selected

a subset of our larger data collection to serve as the basis for the

combinatory risk metrics analysis and visualization. Conceivably,

any variable from the risk-factor categories (described above) can

be represented and selected. We have selected variables from the

following risk-factor categories: water; land; climate; economy;

energy; health; and demographics. From these, we have further

refined and constructed 17 variables for use as combinatory risk

metrics—and have focused on the contemporary conditions. Thus,

within this subset of data we have utilized only the data that

represents the most recent (or “current”) conditions. These details
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TABLE 1 Description and data-source information for the risk metrics that have been constructed for the combinatory analyses.

Variable Description Data sources Time period

Exposure to airborne

particulate matter

Annual PM2.5 concentration

data in the U.S. at a resolution

of 1 km weighted by

population and summed to

the county (µg/m3).

PM2.5 Data: Gridded concentrations of fine particulate matter

(PM2.5) from Di et al. (2019, 2021)

Land area data located at https://sedac.ciesin.columbia.edu/data/set/

gpw-v4-land-water-area-rev11/data-download

Population density: https://sedac.ciesin.columbia.edu/data/set/gpw-

v4-population-density-adjusted-to-2015-unwpp-country-totals-

rev11 (CIESIN, 2018)

Statistic constructed from

2015 data.

Water Stress Approximate proportion of

the available water used.

Estimated as withdrawal

divided by total runoff.

Runoff: derived from ERA5 reanalysis

Water withdrawal: USGS (https://water.usgs.gov/watuse/data/),

includes both surface and groundwater withdrawals to determine total

freshwater withdrawals.

Values for combinatory

metric are the average of

2010 and 2015 estimates.

Water Quality EPAWater Quality Index EPAWater Quality Index Lower values represent better quality and

higher values represent worse quality The EPA created the Water

Quality Index from six data sources: the WATERS program database,

Estimated Use of Water in the United States, the National Atmospheric

Deposition Program, the Drought Monitor Network, the National

Contaminant Occurrence Database, and the Safe Drinking Water

Information System. https://edg.epa.gov/EPADataCommons/public/

ORD/CPHEA/EQI_2006_2010/

Values are representative of

2006–2010 period

Flood Risk First Street Foundation

county-level flood risk factor

The county’s value is based on the average value across all land parcels

that have a flood risk factor value between 2 and 10 (any value lower

than 2 is not included). Data available at: https://registry.opendata.aws/

fsf-flood-risk/

Values are representative for

2020 climate

Highly Erodible Cropland Cropland that can erode at

excessive rates. From USDA

assessment—it considers soils

that have an erodibility index

of eight or more.

The data are from the USDA National Resources Conservation Service,

RCA Report website:

www.nrcs.usda.gov/wps/portal/nrcs/detail/?cid=stelprdb1187041

Thematic maps at: https://www.nrcs.usda.gov/Internet/NRCS_RCA/

maps/m14598hel17.png

Original shapefiles from Tcheuko, Lucas—FPAC-NRCS, Beltsville,

MD <Lucas.Tcheuko@usda.gov>

Values are representative for

2017

Land disturbance EPA Land Quality Index that

represents five disturbance

factors: agriculture, pesticides,

facilities, radon, and mining

activity.

The index combines data from the 2007 Census of Agriculture, 2009

National Pesticide Use Database, EPA Geospatial Data 12 Download

Service, Map of Radon Zones, and Mine Safety and Health

Administration. The Land Quality Index is 1 of 5 Environmental

Quality Indices by the EPA. Data Downloaded from https://edg.epa.

gov/EPADataCommons/public/ORD/CPHEA/EQI_2006_2010/

Values are representative of

2006–2010 period

Temperature stress Temperature of the hottest

month out of all months

Surface-air temperature from reanalysis (1980–2019). See Appendix A

for further details on reanalysis data.

Values for combinatory

metrics are for the

2000–2019 average.

Fossil fuel employment Fraction of population

employed in fossil fuel

industry

The 2020U.S. Energy & Employment Report by the National

Association of State Energy Officials, the Energy Futures Initiative, and

the BW Research Partnership, includes job data for electric power

generation, transmission, distribution & storage, fuels, energy

efficiency, and motor vehicles

Values are taken from the

2020 report.

Energy expenditure Expenditures in all energy

sectors given as a fraction of

GDP

State Energy Data System (SEDS) is the source of the U.S. Energy

Information Administration’s (EIA) comprehensive state energy

statistics.

Values are taken from 2022

reporting on 2020 statistics

Endangered species Metric is the number of

species and includes only

plants and fungi the

calculation

An international network and data infrastructure funded by the world’s

governments and aimed at providing anyone, anywhere, open access to

data about all types of life on Earth. Portal URL: GBIF.org. The GBIF

occurrence download is https://doi.org/10.15468/dl.gew2z6

Data is based on latest

updates provided by GBIF

portal (Jan 2022).

Wildfire risk Based on data for mean burn

probability (BP)

https://wildfirerisk.org/download/---based/on Scott et al. (2020). Values based on 2020 report

that reflect conditions at

2014.

Population under 18 Fraction of population under

the age of 18

The U.S. Census Bureau—https://api.census.gov/data/2016/acs/acs5/

variables.html

Values are taken from the

2016 report.

Population over 65 Fraction of population over

the age of 65

The U.S. Census Bureau—https://api.census.gov/data/2016/acs/acs5/

variables.html

Values are taken from the

2016 report.

Nonwhite population Fraction of population

non-white

The U.S. Census Bureau—https://api.census.gov/data/2016/acs/acs5/

variables.html

Values are taken from the

2016 report.

Population below poverty

level

Fraction of population with

annual household income

below poverty level

The U.S. Census Bureau—https://api.census.gov/data/2016/acs/acs5/

variables.html

Values are taken from the

2016 report.

(Continued)
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TABLE 1 (Continued)

Variable Description Data sources Time period

Unemployment rate labor force unemployed The U.S. Census Bureau—https://www.bls.gov/lau/ Values are taken from the

2016 report.

Homelessness The number of people

experiencing homelessness

per 10,000 people. Obtained

by dividing the US Housing

and Urban Development

people experiencing

homelessness by the Census

Bureau’s population counts.

The U.S. Department of Housing and Urban Development’s Office of

Policy Development and Research (PD&R).

https://www.huduser.gov/portal/datasets/ahar/2020-ahar-part-1-pit-

estimates-of-homelessness-in-the-us.html

Values are taken from the

2019 report.

and the collection of data we have used for this demonstration

of combinatory metrics is described in Table 1. It is important to

emphasize that this collection of combinatory metrics (center of

Figure 2) will continue to be expanded under the STRESS platform’s

goal to provide a comprehensive assessment of compounding and

co-evolving risks.

2.3. Combinatory analyses

A primary consideration for the combinatory metrics that

allows for construction of an aggregate metric is that each of the

metrics described above carries inconsistent units, and therefore

in their constructed form, any combinatory, comparative, and/or

prioritizing diagnostics are untenable. To provide a capacity for

these metrics to be combined quantitatively that assures numerical

consistency, there are two possible procedures that could be

exercised. The first option would be to numerically recast all

these metrics under a common-scale categorization of “risk” (e.g.,

Messer et al., 2014; Strzepek et al., 2021). The advantage of this

approach is that it preserves the absolute nature of risk, and when

combining all the metrics of interest, the resultant metric would

highlight all areas “at risk” that have compounded accordingly.

The difficulty of this approach is that the rescaling of the raw

values according to a common risk scale, and combined under user-

specified configurations, would be prone to subjective judgement

and lead to distortions of one or more metrics over others.

In addition, the process by which each variable is cast into a

generic risk scale would be exhaustive and require extensive, expert

judgement. A second option, which we have adopted for our initial

platform development, is to normalize the metric by ranking their

values across any pooled sample of the data. There are a number

of options by which to normalize and rank a pooled set of raw

data values (e.g., Strzepek et al., 2021). Considering the intent of

the STRESS platform to provide a prioritization of risk, we have

taken a percentile ranking approach. This also aligns with our

“triage” methodology, which is to identify high-priority regions. As

such, for any selected pooling of data (in this case, county-level

data pooled across the United States), the following conversion is

made. Given the raw value of the data, Vr , we construct a percentile

ranking value, Vp,c, for each county (c) value using the expression:

Vp,c = 100 ·
Vr,c −min (Vr)

max (Vr) −min (Vr )
.

The minimum (min) and maximum (max) values are obtained

from the pooled county-level data collection across the

United States or for a particular state (as determined by the

user). The values of Vp ranges from 0 to 100 and is unitless, with a

value of 0 indicating that the corresponding region has the lowest

risk relative to all the other regions across the pooled data, and a

value of 100 indicating the highest relative risk.

As previously noted, the intent of the STRESS platform is

to provide the capability to perform user-specified, combinatory

analyses and visualization. The use of composite metrics and

analyses has been documented and used extensively to explore

the complexity and inter-dependencies of various environmental

issues (e.g., Saisana et al., 2005; Greco et al., 2019). The main

issues are the choice weighting and aggregation methods across

metrics, indicators, and/or variates that are of interest. Among

the two more widely used approaches to determining weights

(e.g., Sharpe and Andrews, 2012), “explicit” methods consist of

evaluating surveys of responses from expert judgement using a

Budget Allocation Process or an Analytic Hierarchy Process. The

alternative and more objective approaches evaluate the relative

importance of indicators based on data compression analyses.

Various statistical methods such as Principal Component Analysis

(PCA) or Factor Analysis (FA) can be applied for this purpose (e.g.,

Ram, 1982). These methods place a higher weight on “orthogonal”

modes of variability that describe the maximum portion of

aggregate variance, and thus a subset of metrics can have more

importance in the final weighting. More recently approaches based

on artificial intelligence models have been used for this purpose

(e.g., Paulvannan Kanmani et al., 2020; Jiménez-Fernández et al.,

2022). However, considering the intent of our platform to provide

a flexible, user-inspired tool to explore multiple combinations of

physical and transition risks, the debatable issue to the approaches

above is that the portion of explained variance does not necessarily

directly correspond to the highest value or importance of any

metric, and an exhaustive set of expert judgements that span all

possible combinations of our collected metrics is elusive. Given

this, a final option is to give the user the choice of weights

and aggregate the resultant metric accordingly. A wide variety of

aggregation methods are used to combine indicators once their

relative importance has been chosen. The most common is linear

aggregation, though more complex non-compensatory methods

are also possible (e.g., Greco et al., 2019). We have initially adopted

a linear aggregation, and therefore at the user’s discretion, any

combination of these normalized risk metrics can be combined,
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FIGURE 3

Shown is an example of the combinatory metric analysis provided by the risk-triage framework. In the top panel (A), the maps show the results for

each metric of exposure to air particulates, water stress, water quality, and land disturbance. In the bottom panel (B), the result of the four metrics,

combined with equal weighting, is shown. In all panels, the risk metric is unitless and is the result of the normalization procedure (described in Section

2.2). Shades of orange and red indicate the counties with the highest relative risk, while shades of blue indicate the lowest relative degree of risk.

at various selected weights—such that the resulting aggregate risk

metric Va based on a total of N normalized metrics combined,

described by:

Va =

∑N
i=1 WiVp,i

∑N
i= 1 Wi

.

Where the assigned weight,Wi, for each individual normalized

risk metric (Vp,i) selected by the user is a constant value

(from 0.1 to 1) across all counties. From this procedure, the

STRESS platform also constructs a distribution of the resultant

data that is displayed. The resultant combinatory metrics offer

an intuitive and collective ability to identify regions most in

need of attention. As previously mentioned, the intent of the

platform is to provide the user with the flexibility to choose

or consider a range of combinations and weights. We allow

users to view and download a single metric or a selection of

aggregate metrics given their focus and interests. In this way,

a user of the platform could be able to identify, for example,

the “top-10” riskiest locations/regions with the most vulnerable

populations, resources, and infrastructure across all potential

stressors, allowing for specific risks and weights within those

categories. Or one could create a more focused assessment, for

example, of infrastructure most at risk from extreme flooding

with highly vulnerable populations. In the section that follows, we

provide examples of how this procedure can be used to assess a

variety of combinatory, socio-environmental assessments, research,

and outreach applications.

3. Results

As previously discussed, in the context of “triage”, the STRESS

platform is intended to provide a rapid assessment, allowing

reasonable prioritization, on the basis that an efficient “hotspot”

analysis is more effective than exhaustive, extensive deep-dive

assessments that are time-and-resource consuming. In fact, the

intent of the “risk-triage” approach is to identify more specific

targets for these deep-dive assessments. A user can choose various

combinations to assess the co-existence of multiple risk factors—

and to be able to gauge the “severity” in such a way that

provides a quantitative basis for identifying “hotspots” of risk.

Our approach to construct these combinatory risk metrics is

flexible and extensible by design. In the sections that follow, we

demonstrate this flexibility through a number of visualization and

tabular examples.

3.1. National level screening

One visual example of the STRESS platform’s capabilities

is the ability to efficiently indicate where environmental risks

compound (Figure 3). In this demonstration, the current risks to

land disturbances, water availability and quality, as well as exposure

to poor air quality can be displayed individually (top panels of

Figure 3A), and prominent hotspot regions that face higher levels

of each of these separate risks can be discerned (orange/red shaded
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FIGURE 4

Maps produced from the STRESS platform illustrate the “hotspot” visualization and analysis capability of the user-defined, use-inspired interface.

Panel (A) shows the result of quantitatively combining the current level of risks in water availability and quality, land disturbance, and exposure to

poor air quality. Orange and red shades indicate “hotspot” areas of these three risks co-existing to the highest degree relative to all U.S. counties. Also

shown is the graphical overlay of high-voltage transmission lines (green ≥ 230 kV and orange ≥ 345 kV) across the nation’s energy grid. Panel (B)

shows the result of combining risk metrics that convey the current levels of employment in fossil energy as well as demographic metrics of poverty,

unemployment, and non-white population. Also shown as an overlay (blue lines) is the extent of major riverine and marine “highways” with the

thickness of the lines depicting the relative total value of goods transported (coal, petro, food, chemical, manufacturing, and raw materials).

areas). In viewing these as separate mappings, it is not readily

apparent to what degree the more severe areas of these individual

environmental risks co-exist and potentially compound. Through

the ability of the STRESS platform to combine all four metrics

(Figure 3B—all with equal weighting), the landscape of the relative

compounding risks is more clearly discernable, with the more

prominent visible “hotspots” located across California, the upper

and lower Mississippi basin, the Ohio River basin, Texas, the

Southeast as well as Mid-Atlantic states.

These hotspot areas may all be exacerbated by human-

forced changes in climate, extreme events, land use, as well

as water and energy demands. Future electricity demand is

driven by socio-economic factors (e.g., GDP growth, population

growth, technology costs and resulting electricity prices) as well

environmental factors, particularly temperature, as driven by

climate change, which drives demand for heating and cooling (e.g.,

Auffhammer et al., 2017; Van Ruijven et al., 2019). The highest

density and connections of highest-voltage transmission lines are

particularly concentrated in the hotspots of the compounding

air-land-water risks across the Central U.S. (orange overlay lines

in Figure 4A denote Level 3 transmission lines ≥ 345 kV).

Concurrently, regions of the nation with the largest portion of

employment in the fossil fuel industry, along with high levels

of poverty and unemployment flank the lower portions of the

Mississippi River (Figure 4B). National and global actions to reduce

greenhouse emissions could limit risks to land, water, and air
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quality in the upper basin, but at the same time impacts on the

fossil fuel industry could have significant employment impacts in

the lower Basin where poverty and unemployment are already

disproportionate. Further, climate-related extremes (e.g., droughts,

floods, and events that damage transportation infrastructure) can

adversely affect the flow of goods along the country’s major river

route (Figure 4B, the heavy blue line along the Mississippi river).

Such disruptions would impact upstream and downstream regions

in multiple respects that include energy supplies, agricultural

products and inputs, as well as manufactured and raw materials,

and all these would have follow-on impacts in other parts of the

transportation network, industrial sectors, agriculture and land use,

as well as the energy sector. All of these highlight the potential

locations of and connections between contrasting regional effects

of a low-carbon energy transition.

The co-existence of these interconnected risks in the example

above provides motivation, location, and guidance for deeper-

dive studies on human-natural system interactions; grid resiliency;

and transportation infrastructure. To study these in more detail

requires models of greater sophistication and large computational

expense—but the presented triaging analyses identifies areas for

targeted study, and in doing so reduces the need for exhaustive

model simulations and analyses. There are, of course, many

other combinations and overlays of compounding risks that

can be visualized and explored with the triage platform that

highlight other regions and multi-sector linkages, and these can

guide model configurations, tested hypotheses, and experimental

frameworks for a variety of detailed use case studies. Our

ongoing efforts will continue to build upon our collection of

historical and contemporary variables and expand upon our list

of combinatory risk metrics in support of these screening-level

multi-sector assessments.

3.2. Water stress, flood risk, poverty, and
race

As mentioned, many combinations of the risk metrics

can be readily explored through the STRESS platform and

provide more quantitative insights as to the areas of concern.

For example, climate change, population growth, demographics,

poverty, economic activity, and low-carbon energy transformation

are but some of the major factors that can affect water demands.

Looking at the current landscape of the combined risk of water

stress and quality (Figure 5A), the risk is widespread and therefore

it is difficult to distinguish exactly which areas of highest priority

and/or concern would be. In considering only water stress and

quality risks—most of the western U.S., the upper and mid-

Mississippi regions, New England, the Mid Atlantic, and parts

of the Southeast all convey a scattered map with locations of

higher stress. The county-level results can be aggregated at the

state level and ranked according to various factors in order to

gain quantitative prioritization. For example, a “top 5 list” of the

highest-at-risk states can be constructed by counting only the

counties that are contained in the top 10% of the nationally pooled

distributions (shown at the side of the maps in Figure 5) and

summing those for every state according to either: total number of

counties, percentage of counties in the state, or total population of

those counties (Table 2—and tabulated from data downloaded from

the constructed aggregate metrics on the platform). Based on any of

these three categories, California stands out as the most salient state

at risk with the highest or 2nd highest ranking. Other states that

clearly stand out at higher risk are Illinois and Texas (with two top-

five rankings). For the remainder of the results, the choice of the

ranking criterion can have an important impact to a state’s ranking.

For example, over two-thirds of Delaware’s counties experience

combined water risk, placing it at the top of the percentage-of-

counties ranking—but due to its lower total population as well

as small total number of counties, it is at a distinct disadvantage

to be top ranked in those ranking categories. Similarly, Nebraska

having a high number of total counties gives the potential for a

higher total number of counties under risk, and as such, it places

2nd in that category. However, its low total population and high

total number of counties put it at a disadvantage to place in those

ranking categories.

There are other important sensitivities to these highest-at-

risk rankings. For example, the prioritization of a state to receive

attention and assistance to mitigate water risks might also include

a consideration of the extent of poverty. With this consideration

in mind, we combine the water stress, water quality, and extent

of poverty risk metrics, all with equal weighting. The results

(Figure 5B) reveal important shifts in the overall landscape of risk

as well as to the highest-at-risk state rankings (Table 3) discussed

above. Many of the regions across the northern U.S. at higher risk

from only water stress and quality are buffered, and most of the

highest at-risk counties are in states across the southern half of the

United States. This impact is also clearly seen in the top-five ranked

state results. With the addition of poverty into the risk assessment,

Illinois drops out of all the top rankings considered, in addition to

Connecticut, Delaware, and Montana. The most notable addition

to the highest rankings is New Mexico, making into all three of the

highest-ranking lists. Other additions contributing to this southern

shift of states within the top rankings include Georgia, Kentucky,

and West Virginia. One exception to this overall shift is Oregon, in

which one-third of its counties at water stress and poverty risk place

it just within the top ranking of that category (but absent in the

water-only risk results). Nevertheless, there are two states that stand

out as the highest ranked across both the combined risk metrics:

California and Texas.

Like water stress, resiliency to flooding is not simply a case

of the risk of flooding itself and its consequences which damages

property and contaminates water supplies, but also the ability of

communities to rebuild and repair damage, which can be hindered

by poverty (e.g., Hallegatte et al., 2018; McDermott, 2022) and

may also carry important equity dimensions. We can examine all

these facets through a successive combinatory analysis provided

by the STRESS framework. To first order, we find that as the risk

metric incorporates poverty and equity (i.e., non-white population)

successively, the hotspots (Figure 6) as well as the top-ranked

states (Table 4) move predominantly toward the southern half of

the United States. Most notably, the highest ranked states in the

Northeast, in terms of the physical risk of flooding, are diminished

when poverty and non-white population factors are incorporated.
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FIGURE 5

As in Figure 3, but highlighting the contrast between combinatory landscapes of: (A) water stress and water quality risks; and (B) water stress, water

quality, and population below the poverty level.

Conversely, there is a prominent clustering and high ranking from

all the risk factors combined (i.e., flood, water quality, poverty,

and non-white population) in the Carolinas and surrounding

states (West Virginia and Georgia). Irrespective of these notable

shifts in the landscapes of risk—West Virginia, North Carolina,

and Kentucky consistently rank high and experience all these

combinations of risk across the largest portion of their counties.

3.3. Cropland under risk of erosion and
water stress

The U.S. is a major producer and exporter of food and

agricultural products (e.g., USDA, 2021; FAO, 2022). Cropland in

the U.S. is exposed to several risks, among which is water stress, but

can vary considerably by region. An initial visualization (Figure 7)

and tabulation of the cropland area data (Table 5), which is readily

downloadable from the STRESS platform, indicates that among the

top-10 states that contain the highest amount of cropland area—all

but one (Montana) contain or flank the sharp east-west gradient

of Climate Moisture Index (CMI, see Appendix A.3 for further

details) that delineates regions of precipitation excess (CMI > 0) or

deficit (CMI< 0). For the case of when a county achieves a negative

CMI value, this would be indicative of a salient transition into a

“water stress” situation, in that irrigation will likely be required to

sustain water demand for rainfed crops.We tighten this convention

by assigning a threshold for a county under “water stress” when its

CMI drops below −0.1 (and therefore so is the cropland within

it). From this criterion, the decadal-scale shifts in CMI across

the timespan of the data (between the 1980–1999 and 2000–2019

averaging periods) reveal that in all but one state (North Dakota),
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TABLE 2 Summary of results from the combinatory risk metric combining water stress and water quality.

Number of counties
experiencing stress

Percentage of counties
experiencing stress

Total population of counties
experiencing stress

Top 5 ranked states California 35 (of 58) Delaware 67% California 38,219,489

Nebraska 21 (of 93) California 60% Illinois 8,911,663

Illinois 20 (of 102) Wyoming 57% Arizona 6,402,797

Texas 17 (of 254) Connecticut 50% North Carolina 4,120,372

Montana and

Colorado

16 (of 56 and 64,

respectively)

Utah 48% Texas 3,383,288

The table presents the top-five ranked states (listed highest to lowest in the column) with the combined water stress and quality risk based on the following criterion: (1) total number of counties

that are in the top 10% among the nationally-pooled county values; (2) percentage of counties of the state that are in the top 10% among the nationally-pooled county values; and (3) the totaled

population of counties that are experiencing the highest 10% of stress.

TABLE 3 As in Table 2—but for the combinatory risk metric of water stress, water quality, and population below the poverty level.

Number of counties
experiencing stress

Percentage of counties
experiencing stress

Total population of counties
experiencing stress

Top 5 ranked states North Carolina 35 (of 100) New Mexico 61% California 16,393,766

Texas 34 (of 254) Arizona 53% NewMexico 6,295,727

Kentucky 28 (of 120) California 41% Texas 5,065,099

California 24 (of 58) North Carolina 35% Colorado 4,937,036

New Mexico and

Georgia

20 (of 33 and 159,

respectively)

Oregon 33% West Virginia 3,927,185

the total area of cropland within the top-10 cropland area states

experiencing water stress increases (Table 5). The largest changes,

in terms of absolute and relative change, occur in Kansas (over

1.5M additional acres, a 6% increase), Iowa (over 2.1M additional

acres, an 8% increase), and Nebraska (over 1.1M additional acres,

a 6% increase). Another notable change is the emergence of Illinois

from initially none to over 293,000 acres of farmland located in

counties experiencing water stress (by our definition). Overall, over

the past four decades (1980–2019) 5.5 million acres of additional

farmland across the top-10 cropland-area states have been exposed

to water stress.

While these recent trends in water stress locate formidable

risks across the country’s largest cropland areas, in other areas,

several risks may co-exist and reinforce each other (such as land

conditions and water stress), threatening yields and increasing

the chances of potential negative impacts in agricultural income

and local livelihoods—especially in areas of poverty. The triage

platform allows an efficient assessment of major cropland areas

subject to multiple risks at the National and State levels, as also as

identifying if these places are already subject to social challenges,

high poverty levels or unemployment rates. Figure 8 highlights

these combinations. While panels a, b, and c show the distribution

of water stress, populations below poverty level and highly erodible

land taken individually, panels d, e, and f combine each two of these

variables. These combinations reduce the frequency of higher risk

areas, mainly in the Eastern side of the country, although several

“hot spots” arise. As example, water stress and highly erodible land

(panel e) reinforce each other at central areas along the borders of

New Mexico with Texas and Colorado as well as between Kansas

and Nebraska. Combining population below poverty level to these

(panel g), and comparing it with cropland area (panel h), allows to

identify the highest risk areas for cropland production due to water

stress and erosion and how they overlap with higher poverty levels,

highlighted in panels g and h. Among the most salient areas with

these multi-dimension risks include counties within California,

Texas, New Mexico, Montana, and Washington.

3.4. Exploring the intersection of physical
and transition risks

We can use the triage platform to provide insights about both

transition and physical risks. In terms of transition risk, we can

look at employment in fossil fuels (Figure 9A), which suggests

potential risk of economic hardship if the countrymoves away from

fossil fuels and toward low-carbon alternatives. We see that Texas,

Louisiana, Oklahoma, Kansas, Wyoming, North Dakota and West

Virginia stand out as having high shares of people employed in jobs

related to fossil fuels. We can then combine this metric with data

on the population below the poverty level (shown in Figure 9B).

Areas that already have a high poverty rate and have the potential

for significant job loss with a transition away from fossil fuel use are

particularly vulnerable to economic distress (Figure 9C). The triage

platforms can identify individual counties where this combined

risk is particularly high. These areas would be good candidates for

targeted job retraining programs or green jobs development to help

ameliorate the transition risks.

Looking at employment in fossil fuels also tells us where the

most fossil assets are located. Combining that information with

flood risk (shown in Figure 9D), we can identify fossil assets

at risk of flooding. The resulting combined map (Figure 9E)
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FIGURE 6

As in Figure 3, but highlighting the contrast between combinatory landscapes of: (A) aggregate flood risk and water quality risk; (B) aggregate flood

risk, water quality risk, and population below the poverty level; and (C) aggregate flood risk, water quality risk, population below the poverty level, and

non-white population.
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TABLE 4 Summary of results from the combinatory risk metrics considering: (1) flood and water quality; (2) flooding, water quality, and poverty; and (3)

flooding, water quality, poverty, and nonwhite population.

Flood and water quality Flood risk, water quality
and poverty

Food risk, water quality, poverty,
and non-white population

Top 5 ranked states West Virginia 67% West Virginia 60% North Carolina 62%

Vermont 50% Kentucky 54% South Carolina 51%

New Hampshire 50% North Carolina 48% Arizona 40%

North Carolina 45% Arkansas 35% West Virginia 31%

Kentucky 40% Arizona 33% Kentucky and

Georgia

30%

The table presents the top-five ranked states (listed highest to lowest in the column) with the combined risk based on the percentage of counties of the state that are in the top 10% among the

nationally-pooled county values.

FIGURE 7

(A) Map displays cropland area (acres) across U.S. counties. Gray shaded areas denote missing data and/or no cropland recorded for county. Map

results based on data retrieved from the USDA National Agricultural Statistics Service (NASS). See text for further information. In panel (B), the map

display Climate Moisture Index (CMI- unitless) multiplied by a factor of 10 across U.S. counties averaged for two 20-year time periods (left panels

1980–1999 and right panels 2000–2019) based on the meteorological driver data from the three reanalyses data sets compiled for the platform (top

panels NARR, middle panels ERA5, and bottom panels MERRA2). See text for further information regarding the calculation of CMI as well as the

reanalyses data.

indicates that areas of West Virginia and western Pennsylvania

have high risks of physical damage to fossil assets due to

flooding. Areas to the east and west of the lower Mississippi

River, as well as pockets along the Gulf Coast, also have high

physical risks. Fossil assets along the Gulf Coast face additional

physical risks due to sea level rise, hurricanes and storm surge.

Areas identified as facing high physical risks should be further

investigated to consider investments in protective measures and/or

relocation. Combining poverty with these aspects of transition and

physical risk related to fossil fuels (Figure 9F) reduce the aggregate

relative risk in counties across northern areas of the contiguous

United States.

3.5. Local impact assessment—An outreach
case study

The following case study applies the risk-triage approach

from a local (town/county) perspective. Background: The owner

of a company is being offered incentives to move their food

processing business to a town in Vandalia, IL which is in Fayette

County, IL. They are looking to locate in an area with access

to reliable infrastructure (including energy and transportation),

minimal flood/drought risk, and a decent economy to maintain

and support their employees. They may also be interested

in expanding into growing some of their own produce and

would like to know if the area is conducive to that activity.

The STRESS platform can help evaluate these concerns by

reviewing different landscapes of socio-economic, health, and

environmental risk.

3.5.1. Concern #1: flood/drought risk
Looking at Fayette, IL over the water stress dataset from 2010

to 2015, there doesn’t appear to be any indications of significant

water stress (Figure 10). Some of the surrounding counties may

experience significant water stress (Figure 10a). There is light to

moderate risk of drought when looking through the various years

and models of the hydrologic drought index (not shown). The
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TABLE 5 Summary of results from combinatory metrics considering: (1) cropland area (acres); (2) area of cropland experiencing “water stress” (acres) for

the 1980–1999 period (i.e., left panels in Figure 7); and (3) area of cropland under water stress (acres) for the 2000–2019 period (i.e., right panels in

Figure 7).

State Cropland area
(acres)

Cropland experiencing
“water stress”

1980–1999 (acres)

Cropland experiencing
“water stress”

2000–2019 (acres)

Change in cropland
experiencing “water

stress” (acres)

Texas 29,359,599 25,925,706 (88%) 26,700,990 (91%) 775,284

Kansas 29,125,505 23,999,420 (82%) 25,508,792 (88%) 1,509,372

North Dakota 27,951,676 27,652,883 (99%) 27,303,470 (98%) −349,413

Iowa 26,545,960 5,593,063 (21%) 7,744,015 (29%) 2,150,952

Illinois 24,003,086 – 293,863 (1%) 293,863

Nebraska 22,242,599 20,633,967 (93%) 21,767,371 (98%) 1,133,404

Minnesota 21,786,756 10,208,863 (47%) 10,250,377 (47%) 41,514

South Dakota 19,813,517 18,893,072 (95%) 18,917,555 (95%) 24,483

Montana 16,406,300 13,694,876 (83%) 13,769,486 (84%) 74,611

Missouri 15,599,446 758,126 (5%) 988,470 (6%) 230,343

Total 232,834,444 146,601,850 (63%) 152,255,920 (65%) 5,654,070

The table presents results for the top-ten ranked states in terms of total cropland area (listed highest to lowest). Table values in parentheses indicate percentage of total cropland area. A county

is considered to experience “water stress” (and thus its cropland area) if its climate moisture index (CMI) is below −0.1 (or a value of −1 in the panels shown in Figure 7). In terms of total

cropland across the U.S., these top-10 states comprise nearly 60% of the total national cropland area (396,372,177 acres). The rightmost column presents the change in cropland area (acres)

under water stress from the 1980–1999 to the 2000–2019 periods. The results for cropland area under water stress are the mean result from the three reanalyses’ CMI estimates.

FIGURE 8

Maps indicating U.S. conditions of: (A) water stress, (B) population below poverty line, (C) highly erodible land, as well as combinations of those in

panels (D–G); and (H) cropland areas.

climate moisture index is around 0 for this area (not shown) which

means it is not an area of extreme heat or cold on average. There

is a concern when looking at the 100-year flood as the results show

that this area is under high risk (Figure 10e).

3.5.2. Concern #2: reliable infrastructure
We can define reliable transportation infrastructure as access

to major highways and waterways that are in proximity and not

located in areas prone to extreme events that would degrade the
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FIGURE 9

Maps indicating transition and physical risks related to fossil fuels: (A) employment in fossil fuels (transition risk); (B) population below poverty level;

(C) combined fossil employment and poverty (transition risk); (D) flood risk; (E) combined fossil employment and flood risk (physical risk); and (F)

combined fossil employment, flood risk and poverty (both transition and physical risk).

quality and reliability of the infrastructure. We can also look

at the surrounding areas to evaluate if there is redundancy in

the infrastructure. The location of Fayette, IL has prime access

to major transportation infrastructure including road, rail, and

nearby major waterway. There are some redundancies in the

highways as it appears to have access from north to south

and east to west. Both highways and rail run through the

county (Figure 10f). The Mississippi River is near allowing freight

transport of food. While there is low concern regarding droughts

in this area, there is a significant flood risk which could impact

the transportation infrastructure. In addition to transportation

infrastructure, the STRESS platform provides information on

the energy infrastructure. Figure 10g shows major electrical

transmission lines run through Fayette, IL (>345 kV).

3.5.3. Concern #3: local economy
The per capita personal income from 2018 was ∼$30

k/person (Figure 10b). This is on the lower end of personal

income. When looking at the different areas of employment, it

appears that ∼6% of employed people are in the category of

agriculture, forestry, fishing and hunting while 18% are employed

by healthcare and social assistance. The STRESS platform also

provides information on population and unemployment. Fayette,

IL has ∼4% unemployment rate which is lower than the national

average (not shown). Unfortunately, 16% of the population in this

county is below the poverty level which is higher than the national

average (Figure 10d). The population under 18 is 21% and over 65 is

18%, which places it within an average population age distribution

relative to the national values.

3.5.4. Concern #4: ability to successfully grow
crops

Figure 10c shows Fayette, IL with poor water quality (0.8) but

low to negative irrigation deficit which shows that water availability

shouldn’t be a concern. Although, as mentioned previously, there

is significant concern of flooding. It is noted that there is no critical

habitat of concern in Fayette, IL.

3.5.5. Combined overall risk evaluated on the
STRESS platform

If we ranked all the metrics as listed below, we find that the

overall risk given our prioritized concerns is about at 57/100, which

we would consider a moderate risk. In comparison with the state of

IL, this is about average or a bit lower than average risk (Figure 11).

The resultant aggregate metric was obtained through the following

combinatory weights:

• Maximum: Water Stress, Water Quality, Flood Risk,

Temperature Stress, Poverty Level, and Unemployment

• Medium: Highly Erodible Cropland, Land Disturbance

• Minimum: Employment in Fossil Fuels, Population under 18,

Population over 65, and Non-white Population.

In conclusion, after evaluating Fayette, Il with the STRESS

platform, the company determined that while there is significant

risk of flooding and a poor economy, the overall risk given

the company’s prioritized concerns is average. It should also be

noted that the overall combined metrics did not include the

enormous benefit of access to reliable transportation infrastructure

(road, rail, and waterways). The risk of flooding in terms of the
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FIGURE 10

Maps display: (a) the average water stress (unitless) from 2010 to 2015 for the state of Illinois and the result for the county of Fayette, IL is highlighted

to note that it has an average water stress of 0; (b) the per capita personal income across Illinois (based on the 2019 Census data collected). Fayette,

IL is on the lower end of personal income with a value of $40 k/person; and (c) the level of water quality across Illinois. Fayette, IL has some concerns

regarding water quality with a ranking of 0.8 out of two where two is the worst ranking; (d) the percentage of population below the poverty level

across Illinois. Fayette, IL has a moderately high percentage (16%) of people below poverty level relative to other counties; (e) the 100-year flood risk

for Illinois, and depicting the high flood risk value of eight out of nine for Fayette, IL, and (f); flood map that includes overlays of major highway (thin

gray lines), railways (thick gray line); as well as waterways (blue lines); and (g) flood map that includes overlay of electrical transmission lines at 345

kV, and indicating that these transmission lines run through Fayette, IL.

manufacturing plant can be minimized by locating the building

outside the immediate flood zones. While poor economy was

listed as a risk, the company likes to view it as an opportunity

to help contribute to improving the situation by adding to

employment and stimulating the local economy. The opportunity

to look at growing crops appears to have some potential given

the high level of agriculture already in the area, but also some

concerns with water quality, land disturbance and flood potential.

Investment into growing their own crops would need to be

investigated further.

4. Discussion

We have described and demonstrated a System for the

Triage of Risks from Environmental and Socio-Economic Stressors

(STRESS) platform that is designed to serve as visualization tool

for multi-sector, combinatory risk analysis and data download.

STRESS’s motivating goals are to: characterize the extent that

various risk factors (i.e., threats, hazards, impacts, stressors,

exposures, vulnerabilities, and inequities) co-exist; compile metrics

that quantify these risk factors in flexible and combinable fashion;
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FIGURE 11

Map depicting the overall risk that results from combining all factors from Figs. and weighing them according to the business owner’s main concerns.

Fayette, IL has a moderate overall risk.

identify how the aggregate risk landscape changes when individual

risk factors are combined; and provide any user of the platform the

ability explore various risk-factor combinations of their choosing.

Overall, the objectives by which the STRESS platform has been

and continues to be developed are (1) describe “hotspots” and

prioritize further action and deeper inspection of risk or threats

rather than just report data, and (2) strive for comprehensiveness,

as data prepared by various agencies and institutes each have

a relatively narrowed auspice (3) create normalized risk metrics

that allow for user-defined, combinatory analyses across the wide

range of risk factors that span human and environmental systems.

The risk-triage platform is intended to be a tool in and of itself

and is publicly available. As we continue to develop our platform

across more of these landscapes, it can be used to motivate

and guide additional analysis and deeper dives by the research

community. The platform has also generated broader interest and

support from various stakeholders to incorporate and integrate

other landscapes of hazards and risks such as: biodiversity, human

health, and systemic racism. The platform has been designed to

readily incorporate additional data and model results as well as

support an open-science research community. Our source code is

on GitHub (github.com/cypressf/climate-risk-map). You can view

discussion of technical planning and discussion on our GitHub

issues link (github.com/cypressf/mit-climate-data-viz/issues).

We present several illustrative examples that highlight features

and capabilities of the STRESS platform. We show that in terms

of the combined air-energy-land-water risks, the most prominent

“hotspots” are located across California, the upper and lower

Mississippi basin, the Ohio River basin, Texas, the Southeast as well

as Mid-Atlantic states. Concurrently, we find regions of the nation

with the largest portion of employment in the fossil fuel industry,

along with high levels of poverty and unemployment flank the

lower portions of the Mississippi River. National and global actions

to reduce greenhouse emissions could limit risks to land, water,

and air quality in the upper basin, but at the same time impacts on

the fossil fuel industry could have significant employment impacts

in the lower Basin where poverty and unemployment are already

disproportionate. Overall, these highlight the potential locations

of and connections between contrasting regional effects of any

low-carbon energy transition strategy.

Another inspection with the STRESS platform that considers

state-to-state rankings of severe water stress shows regions that

are robust (i.e., California, Illinois and Texas) but also sensitive

to the choice of criterion upon which to base a ranking of

water risk (Delaware and Nebraska). Further considerations that

include socio-demographic conditions, such as poverty, can have a

substantial impact on these rankings. The combination of poverty

and water-stress into the risk ranking results in a notable shift

to southern states that rank among the highest (New Mexico,

Georgia, Kentucky, and West Virginia). A similar impact is seen

when combining flood risk with poverty and ethnicity (i.e., non-

white population), with a southerly shift to “hotspots” of combined

risk that incorporate the socio-demographic dimensions. Further

echoing these water issues, when we alternatively combine these

metrics with the extent of cultivated lands, we find that over

the past few decades, at least an additional 5.5 million acres of

farmland are in counties exposed to increased water stress, with

Iowa, Kansas, and Nebraska the top three states. However, this

landscape changes considerably when combined with risks in land

erosion and poverty, and the “hotspots” move to counties within

California, Texas, New Mexico, Montana, and Washington. We

further illustrate the platform’s ability to explore multiple facets

of risk through a focus on transition risks. We show that there

is a large region across the south-central U.S. and Appalachia
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that experiences relatively high levels of fossil fuel employment

and poverty—and underscores a transition risk to low-carbon

energy proliferation.

These examples of co-existence of interconnected risks

provide guidance and motivation for deeper-dive use case

studies on human-natural system interactions; grid resiliency; and

transportation infrastructure. In another demonstration, we also

highlight the ability of the platform to scan multiple sectors and

overlays and provide a combinatory risk inspection at a county

level. The result provided a multi-dimension assessment of risk

for a (hypothetical) company who had interest in expanding their

business within a particular county (Fayette, IL). In this vein, we

have developed the platform to be flexible such that various metrics

can be augmented or changed in response to feedback or requests

from the research community and more importantly, government

and private stakeholders as well as citizen scientists. Such feedback

may also point to areas where new data or prediction capabilities

are needed.

In view of these aspects to our STRESS platform, as part of

our ongoing efforts we will continue to build upon our collection

of historical and contemporary variables and expand upon our

list of combinatory risk metrics. There are many other overlays

and different combinations of risk factors, not discussed in this

study, that can be explored with the triage platform that highlights

other regions or different use cases. Subsequent studies will

expand upon this assessment, and we will seek opportunities to

partner and complement these efforts to create as comprehensive

and inclusive a repository for data-driven science in multisector

dynamics. Thus far, our STRESS platform has been focused on

historical and contemporary landscapes of data and combinatory

metrics. Another key development task will be to expand the

STRESS platform to provide a comprehensive assessment of future

projections that incorporates uncertainty as well as historical

variability and trends. In doing so, we expect these advances to

provide insights that identify: the extent that trajectories from

current, co-existing risks can compound and intensify; and the

extent to which new and unprecedented risks can emerge as

“hotspots” for potential tipping points. Given the ability of the

STRESS platform to explore many different combinations of these

emerging risks, we also expect the insights that we obtain can

help prioritize and identify locations for deeper-dive studies that

can assess specific actions and adaptations that are needed to

reduce, remove, or reverse risks; as well as the extent to which

insights gained from one region/location could be applicable to

other locations facing similar risks.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found in the

article/Supplementary material.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it

for publication.

Funding

The inception and continued development of the STRESS

platform coverage of the United States is supported by the

Department of Energy’s Multi-Sector Dynamics program (DE-

FOA-0001968). In addition, the expansion of the platform’s

capabilities to health-equity impacts is supported by Biogen

Incorporated. The authors also thank further support from sponsor

membership of theMIT Joint Program on the Science and Policy of

Global Change (JPSPGC). The STRESS platform is maintained on

the svante high-performance computing cluster, a facility located

at the MIT’s Massachusetts Green High Performance Computing

Center and jointly supported by: the MIT JPSPGC; Department of

Earth, Atmosphere, and Planetary Sciences; Department of Civil

and Environmental Engineering; the Institute for Data, Systems,

and Society; and the Center for Global Change Science.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fclim.2023.

1100600/full#supplementary-material

References

Auffhammer, M., Baylis, P., and Hausman, C. (2017). Climate change is projected
to have severe impacts on the frequency and intensity of peak electricity demand across
the United States. PNAS 114, 1886–1891. doi: 10.1073/pnas.1613193114

Aven, T., and Zio, E. (2021). Globalization and global risk: how risk analysis needs
to be enhanced to be effective in confronting current threats. Reliability Eng. Syst. Saf.
205, 107270. doi: 10.1016/j.ress.2020.107270

Frontiers inClimate 18 frontiersin.org

https://doi.org/10.3389/fclim.2023.1100600
https://www.frontiersin.org/articles/10.3389/fclim.2023.1100600/full#supplementary-material
https://doi.org/10.1073/pnas.1613193114
https://doi.org/10.1016/j.ress.2020.107270
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Schlosser et al. 10.3389/fclim.2023.1100600

Cappelli, F. V., Costantini, V., and Consoli, D. (2021). The trap of climate
change-induced “natural” disasters and inequality. Global Environ. Change 70, 102329.
doi: 10.1016/j.gloenvcha.2021.102329

CIESIN (2018). Gridded Population of the World, Version 4 (GPWv4): Population
Density Adjusted to Match 2015 Revision UN WPP Country Totals, Revision 11.
Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC); Center
for International Earth Science Information Network - Columbia, University.

Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., et al. (2019). An ensemble-
based model of PM2.5 concentration across the contiguous united states with high
spatiotemporal resolution. Environ. Int. 130, 104909. doi: 10.1016/j.envint.2019.104909

Di, Q., Wei, Y., Shtein, A., Hultquist, C., Xing, X., Amini, H., et al. (2021).Daily and
Annual PM2.5 Concentrations for the Contiguous United States, 1-km Grids, v1 (2000 -
2016). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).

FAO (2022). Trade of Agricultural Commodities. 2000–2020. FAOSTAT Analytical
Brief Series No. 44. Rome: FAO.

Frank, M. W. (2009). Inequality and growth in the united states: evidence
from a new state-level panel of income inequality measures. Econ. Inq. 47, 55–68.
doi: 10.1111/j.1465-7295.2008.00122.x

García-Muros, X., Morris, J., and Paltsev, S. (2022). Toward a just energy transition:
a distributional analysis of low-carbon policies in the USA. Energy Econ. 105, 105769.
doi: 10.1016/j.eneco.2021.105769

Greco, S., Ishizaka, A., Tasiou, M., and Torrisi, G. (2019). On the methodological
framework of composite indices: a review of the issues of weighting, aggregation, and
robustness. Soc. Indic. Res. 141, 61–94. doi: 10.1007/s11205-017-1832-9

Hallegatte, S., Vogt-Schilb, A., Rozenberg, J., Bangalore, M., and Beaudet, C. (2018).
From poverty to disaster and back: a review of the literature. Econ. Dis. Clim. Change
4, 223–247. doi: 10.1007/s41885-020-00060-5

Hochstenbach, C., and Musterd, S. (2018). Gentrification and the
suburbanization of poverty: changing urban geographies through boom
and bust periods. Urban Geogr. 39, 26–53. doi: 10.1080/02723638.2016.12
76718

Iturbide, M., Gutiérrez, J., Alves, L., Bedia, J., Cerezo-Mota, R., Cimadevilla, E.,
et al. (2020). An update of IPCC climate reference regions for subcontinental analysis
of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 12,
2959–2970. doi: 10.5194/essd-12-2959-2020

Jiménez-Fernández, E., Sánchez, A., and Pérez, E. S. (2022). Unsupervised
machine learning approach for building composite indicators with
fuzzy metric. Exp. Syst. Appl. 200, 116927. doi: 10.1016/j.eswa.2022.
116927

Kiesecker, J., Baruch-Mordo, S., Kennedy, C. M., Oakleaf, J. R., et al. (2019). Hitting
the target but missing the mark: unintended environmental consequences of the Paris
climate agreement. Front. Environ. Sci. 7, 151. doi: 10.3389/fenvs.2019.00151

McDermott, T. K. J. (2022). Global exposure to flood risk and poverty. Nat.
Commun. 13, 3529. doi: 10.1038/s41467-022-30725-6

Merriam Webster Dictionary. (2021). “triage” Merriam-Webster.com. Available
online at: https://www.merriam-webster.com (accessed February 12, 2023).

Messer, L. C., Jagai, J. S., Rappazzo, K. M., and Lobdell, D. T. (2014). Construction
of an environmental quality index for public health research. Environ. Health 13, 39.
doi: 10.1186/1476-069X-13-39

Moss, R., Fisher-Vanden, K., Delgado, A., Backhaus, S., Barrett, C., Bhaduri, B., et al.
(2016). Understanding Dynamics and Resilience in Complex Interdependent Systems.
U.S. Global Change Research Program Interagency Group on Integrative Modeling.
Available online at: https://climatemodeling.science.energy.gov/publications/
understanding-dynamics-and-resilience-complex-interdependent-systems

Mueller, J.T., and Gasteyer, S. (2021). The widespread and unjust drinking
water and clean water crisis in the United States. Nat. Commun. 12, 3544.
doi: 10.1038/s41467-021-23898-z

NOAA NCEI (2022). U.S. Billion-Dollar Weather and Climate Disasters. National
Centers for Environmental Information. Available online at: https://www.ncei.noaa.
gov/access/billions/

Otto, I.M., Reckien, D., Reyer, C.P.O, Marcus, R., LeMasson, V., Jones, L.,
Norton, A., et al. (2017). Social vulnerability to climate change: a review of
concepts and evidence. Reg. Environ. Change 17, 1651–1662. doi: 10.1007/s10113-017-
1105-9

Paulvannan Kanmani, A, Obringer, R., Rachunok, B., and Nateghi, R. (2020).
assessing global environmental sustainability via an unsupervised clustering
framework. Sustainability 12, 563. doi: 10.3390/su12020563

Pescaroli, G., and Alexander, D. (2018). Understanding compound, interconnected,
interacting, and cascading risks: a holistic framework. Risk Anal. 38, 2245–2257.
doi: 10.1111/risa.13128

Pickard, B.R., Daniel, J., Mehaffey, M., Jackson, L. E., and Neale, A. (2015).
EnviroAtlas: a new geospatial tool to foster ecosystem services science and
resource management. Ecosyst. Serv. 14, 45–55. doi: 10.1016/j.ecoser.2015.
04.005

Ram, R. (1982): Composite indices of physical quality of life, basic needs fulfilment,
and income: a principal component representation. J. Dev. Econ. 11, 227–247.
doi: 10.1016/0304-3878(82)90005-0

Reed, P.M., Hadjimichael, A., Moss, R. H., Brelsford, C., Burleyson, C. D.,
Cohen, S., et al. (2022). Multisector dynamics: advancing the science of complex
adaptive human-Earth systems. Earths Fut. 10, e2021EF002621. doi: 10.1029/2021EF00
2621

Saisana, M., Saltelli, A., and Tarantola, S. (2005). Uncertainty and
sensitivity analysis techniques as tools for the quality assessment of composite
indicators. J. R. Stat. Soc. Ser. A 168, 307–323. doi: 10.1111/j.1467-985X.2005.
00350.x

Scott, J. H., Gilbertson-Day, J. W., Moran, C., Dillon, G. K., Short, K. C., and
Vogler, K. C. (2020). Wildfire Risk to Communities: Spatial datasets of landscape-wide
wildfire risk components for the United States. Fort Collins, CO: Forest Service Research
Data Archive.

Sharpe, A., and Andrews, B. (2012). As Assessment of Weighting Methodologies for
Composite Indicators: The Case of the Index of Economic Well-being. CSLS Research
Report No. 2012-10, 49.

Stott, P. (2016). How climate change affects extreme weather events. Science 352,
1517–1518. doi: 10.1126/science.aaf7271

Strzepek, K., Schlosser, C. A., and Goudreau, J. (2021). Hydroclimatic Analysis of
Climate Change Risks to Global Corporate Assets in Support of Deep-Dive Valuation.
Joint Program Report Series Report 350. p. 16. Available online at: http://globalchange.
mit.edu/publication/17593

Temper, L., del Bene, D., and Martinez-Alier, J. (2015). Mapping the frontiers of
front lines of global environmental justice: the EJAtlas. J. Polit. Ecol. 22, 255–278.
doi: 10.2458/v22i1.21108

U.S. EPA (2020). Environmental Quality Index. Technical Report (2006-
2010). Washington, DC: U.S. Environmental Protection Agency, EPA/600/R-20/367.
Available online at: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=350545
(accessed June 5, 2022).

U.S. EPA (2022). EJSCREEN Environmental Justice Mapping and Screening
Tool, EJSCREEN Technical Documentation. Washington, DC: U.S. Environmental
Protection Agency Office of Policy, 115. Available online at: https://www.epa.
gov/system/files/documents/2023-01/EJScreen%20Technical%20Documentation
%20October%202022.pdf

USDA (2021). United States Agricultural Export Yearbook. USDA Foreign
Agricultural Service, 74. Available online at: https://www.fas.usda.gov/sites/default/
files/2022-04/Yearbook-2021-Final.pdf

Van Ruijven, B., Sue Wing, I., and De Cian, E. (2019). Amplification of
future energy demand growth due to climate change. Nat. Commun. 10, 2762.
doi: 10.1038/s41467-019-10399-3

Zuzak, C., Goodenough, E., Stanton, C., Mowrer, M., Ranalli, N., Kealey, D.,
et al. (2021). National Risk Index Technical Documentation. Washington, DC: Federal
Emergency Management Agency. Available online at: https://www.fema.gov/sites/
default/files/documents/fema_national-risk-index_technical-documentation.pdf
(accessed June 5, 2022).

Frontiers inClimate 19 frontiersin.org

https://doi.org/10.3389/fclim.2023.1100600
https://doi.org/10.1016/j.gloenvcha.2021.102329
https://doi.org/10.1016/j.envint.2019.104909
https://doi.org/10.1111/j.1465-7295.2008.00122.x
https://doi.org/10.1016/j.eneco.2021.105769
https://doi.org/10.1007/s11205-017-1832-9
https://doi.org/10.1007/s41885-020-00060-5
https://doi.org/10.1080/02723638.2016.1276718
https://doi.org/10.5194/essd-12-2959-2020
https://doi.org/10.1016/j.eswa.2022.116927
https://doi.org/10.3389/fenvs.2019.00151
https://doi.org/10.1038/s41467-022-30725-6
https://www.merriam-webster.com
https://doi.org/10.1186/1476-069X-13-39
https://climatemodeling.science.energy.gov/publications/understanding-dynamics-and-resilience-complex-interdependent-systems
https://climatemodeling.science.energy.gov/publications/understanding-dynamics-and-resilience-complex-interdependent-systems
https://doi.org/10.1038/s41467-021-23898-z
https://www.ncei.noaa.gov/access/billions/
https://www.ncei.noaa.gov/access/billions/
https://doi.org/10.1007/s10113-017-1105-9
https://doi.org/10.3390/su12020563
https://doi.org/10.1111/risa.13128
https://doi.org/10.1016/j.ecoser.2015.04.005
https://doi.org/10.1016/0304-3878(82)90005-0
https://doi.org/10.1029/2021EF002621
https://doi.org/10.1111/j.1467-985X.2005.00350.x
https://doi.org/10.1126/science.aaf7271
http://globalchange.mit.edu/publication/17593
http://globalchange.mit.edu/publication/17593
https://doi.org/10.2458/v22i1.21108
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=350545
https://www.epa.gov/system/files/documents/2023-01/EJScreen%20Technical%20Documentation%20October%202022.pdf
https://www.epa.gov/system/files/documents/2023-01/EJScreen%20Technical%20Documentation%20October%202022.pdf
https://www.epa.gov/system/files/documents/2023-01/EJScreen%20Technical%20Documentation%20October%202022.pdf
https://www.fas.usda.gov/sites/default/files/2022-04/Yearbook-2021-Final.pdf
https://www.fas.usda.gov/sites/default/files/2022-04/Yearbook-2021-Final.pdf
https://doi.org/10.1038/s41467-019-10399-3
https://www.fema.gov/sites/default/files/documents/fema_national-risk-index_technical-documentation.pdf
https://www.fema.gov/sites/default/files/documents/fema_national-risk-index_technical-documentation.pdf
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

	Assessing compounding risks across multiple systems and sectors: a socio-environmental systems risk-triage approach
	1. Introduction
	2. Materials and methods
	2.1. Conceptual considerations
	2.2. Data
	2.3. Combinatory analyses

	3. Results
	3.1. National level screening
	3.2. Water stress, flood risk, poverty, and race
	3.3. Cropland under risk of erosion and water stress
	3.4. Exploring the intersection of physical and transition risks
	3.5. Local impact assessment—An outreach case study
	3.5.1. Concern #1: flood/drought risk
	3.5.2. Concern #2: reliable infrastructure
	3.5.3. Concern #3: local economy
	3.5.4. Concern #4: ability to successfully grow crops
	3.5.5. Combined overall risk evaluated on the STRESS platform


	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


