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Abstract: This paper presents a general review of the results of the experimental and theoretical work
carried out by our research group to study the 5P3/2 → 6PJ electric quadrupole transition in atomic
rubidium. The experiments were carried out with room-temperature atoms in an absorption cell. A
steady-state population of atoms in the 5P3/2 excited state is produced by a a narrow-bandwidth
preparation laser locked to the D2 transition. A second CW laser is used to produce the forbidden
transition with resolution of the 6PJ hyperfine states of both rubidium isotopes. The process is
detected by recording the 420(422) nm fluorescence that occurs when the atoms in the 6PJ state
decay directly into the 5S ground state. The fluorescence spectra show a strong dependence on
the relative polarization directions of the preparation laser and the beam producing the forbidden
transition. This dependence is directly related to a strong anisotropy in the populations of the 5P3/2

intermediate magnetic substates, and also to the electric quadrupole selection rules over magnetic
quantum numbers. A calculation based on the rate equations that includes velocity and detuning
dependent transition rates is adequate to reproduce these results. The forbidden transition is also
shown to be an ideal probe to measure the Autler–Townes splitting generated in the preparation of
the 5P3/2 state. Examples of spectra obtained with cold atoms in a magneto-optical trap (MOT) are
also presented. These spectra show the expected Autler–Townes doublet structure with asymmetric
line profiles that result as a consequence of the red-detuning of the trapping laser in the MOT.

Keywords: electric quadrupole transition; atomic rubidium; polarization dependence; magnetic
sublevel populations; Autler–Townes effect

1. Introduction

Alkali atoms, with a simple electronic structure, are naturally a good testing ground
in the experimental and theoretical study of electromagnetic transitions beyond the electric
dipole approximation. Examples of experiments to observe such transitions in room-
temperature or hot vapors of alkali atoms include the study of s to d excitations [1–3], and
also of the relatively strong p to p transitions in rubidium [4–9]. There are also experiments
in which electric dipole forbidden transitions were observed in cold atoms in magneto-
optical traps [10–12].

The purpose of this article is to present a review of the main results of the experiments
and calculations carried out in our research group to study the 5P3/2 → 6PJ (J = 3/2, 1/2)
electric quadrupole transition in atomic rubidium. To observe this transition, one has to
have a significant atomic population in the 5P3/2 initial state, which is itself an excited
state. A narrow bandwidth laser is used to prepare this population. A second laser is
then tuned to excite the electric quadrupole transition. This forbidden transition was first

Photonics 2023, 10, 1335. https://doi.org/10.3390/photonics10121335 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics10121335
https://doi.org/10.3390/photonics10121335
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0002-2090-7385
https://orcid.org/0000-0002-5867-1187
https://orcid.org/0000-0002-2432-5729
https://orcid.org/0000-0002-0044-4985
https://orcid.org/0000-0001-7634-6516
https://orcid.org/0000-0001-8382-9727
https://orcid.org/0000-0002-1806-6986
https://orcid.org/0000-0002-5939-9568
https://doi.org/10.3390/photonics10121335
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics10121335?type=check_update&version=2


Photonics 2023, 10, 1335 2 of 17

reported in [5], where it was shown that the hyperfine structure of the 6P3/2 state could
be resolved, and also that optical pumping and selection of velocity effects determined
the overall structure of the electric dipole forbidden spectra. A three-step description was
also proposed, which takes advantage of the large disparity in intensities between the
strong preparation step and the weak electric quadrupole excitation. The second article [6]
is a detailed study of the dependence of the electric quadrupole spectra on the relative
polarization directions of the laser preparing the 5P3/2 initial state of the transition, and
of the laser producing the forbidden transition. Results for the 5P3/2 → 6P1/2 transition
are given in [7]. A complete calculation was then presented in [8] to explain in detail the
use of the electric quadrupole transition as a probe of the Autler–Townes effect induced
by the strong mixing of states produced by the preparation step. Finally, in [9], a dynamic
model that includes velocity-dependent terms in the rate equation approximation is used
to reproduce the positions and intensities of the main transitions and also of the satellites
that result from selection of velocity effects.

The structure of this review paper is the following: in Section 2 the overall design
of the experiments is shown. The experimental setup is presented in Section 3. Details
of the three-step description and of the relationship between the polarization directions
and the selection rules are described in Section 4. Examples of experimental spectra and
their comparison with the results of the model are shown in Section 5. Here, recent results
of spectra obtained in a magneto-optical trap serve to compare the use of the electric
quadrupole transition as an ideal probe of the Autler–Townes effect. Finally, the overall
conclusions are given in Section 6.

2. The 5P3/2 → 6PJ (J = 3/2, 1/2) Electric Quadrupole Transitions in Rubidium

The energy levels relevant to this work are shown in Figure 1. The electric dipole
forbidden transition occurs between the 5P3/2 and the 6PJ (J = 1/2, 3/2) fine structure
states. The initial state of this transition is also the first excited state of the atom, so it
is necessary to excite a significant population of atoms from the ground state into this
state. The electric quadrupole transition occurs at 911 nm to excite to the 6P3/2 state, and
at 917 nm if one wants to reach the 6P1/2 state. Production of the forbidden transition
is probed by the detection of the 420(422) nm photons that result from the direct electric
dipole decay of the 6P3/2(1/2) state into the ground state.

A three-level atom description of the interaction between the two radiation fields and
an atom is used as the starting point of the calculations [5,6]. This model considers that the
coupling between the 5P and 6P states by the forbidden transition is very weak. Therefore,
the intensity of the preparation stage will determine the regime that must be used in the
calculation. For low intensities the three-level system predicts single decay lines for each F3
hyperfine state, while for stronger coupling, the Autler–Townes effect takes place [13], and
the fluorescence lines split into doublets.

The bandwidths of the lasers used are narrow enough to allow resolution of the hyper-
fine structure of all three 5S, 5P3/2 and 6PJ fine structure states. Therefore, in Figure 1b their
hyperfine structure is presented. For the experiments with room-temperature atoms [5–9],
the preparation laser selects the value of the total angular momentum F1 of the ground
state. The hyperfine structure and the selection rules for electric dipole transitions de-
termine the characteristics of the 5S → 5P3/2 preparation step. In particular, important
optical pumping effects, combined with the selection of velocities present in the interaction
with room-temperature atoms, determine the 5P3/2 hyperfine states that are significantly
populated, and thus determine the structure of the electric quadrupole transition spectra.
A distinction must be made in the preparation step between the cyclic transition (indicated
by a continuous arrow), and the other non-cyclic transitions (an example shown by the
dashed arrows). In the cyclic transition decay occurs only into the same hyperfine ground
state; while in the non-cyclic transitions, decay to the other ground hyperfine (dark) state
also occurs. Therefore, with the cyclic transition, optical pumping redistributes populations



Photonics 2023, 10, 1335 3 of 17

among the different magnetic sublevels, while for non-cyclic transitions, optical pumping
effects effectively remove atoms from the preparation step.

(a) (b)

5S

5P3/2

6P1/2

6P3/2

780 nm

911/917 nm

420/422 nm

{

{

F1

F2

F3

Figure 1. Energy level diagram of atomic rubidium. (a) Fine structure states that participate in the
production of the electric dipole forbidden transition. (b) Representative hyperfine structure of the
fine structure states in (a).

3. Experimental Setup

Details of the experimental setup used in this work are given in [5–8]. For complete-
ness, it is shown schematically in Figure 2.

Figure 2. Schematic representation of the setup used for the experiments with room-temperature
atoms in an absorption cell. ECDL: external cavity diode laser; M: mirror; L: lens; F: filter; PMT:
photomultiplier tube; λ/2: half-wave plate.
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An external cavity diode laser at 780 nm produces the 5S→ 5P3/2 preparation transi-
tion. For most of the experiments, its frequency was locked to the F1 = I + 1/2 → F2 =
I + 3/2 cyclic transition for zero-velocity atoms. Its linear polarization sets the direction
of the quantization (z)-axis, and its propagation direction is then taken as the x-axis. For
the 5P3/2 → 6P3/2 experiments, a beam from a 911 nm external cavity laser is sent to the
cell in a counter-propagating configuration. Its frequency is scanned across the region that
produces electric quadrupole transitions to the different 6P3/2 hyperfine states. For the
5P3/2 → 6P1/2 experiments, the external cavity diode laser is replaced by a TiSa laser that
emits at 917 nm. A half-wave plate is used to set the direction of linear polarization of either
of these lasers, relative to that of the 780 nm laser. The 420(422) nm fluorescence that results
from the 6P3/2(1/2) → 5S decay was detected with a photomultiplier tube (PMT). The
direction of detection of the fluorescence photons is perpendicular to both the quantization
axis and the laser propagation direction. A lens is used to focus the fluorescence photons
into the cathode of the PMT. A bandpass filter centered at 420 nm is placed in the path of
the fluorescence photons before they reach the PMT.

The cell used in the experiments was kept at room temperature. Results are also
presented of electric quadrupole spectra recorded with cold atoms in a magneto-optical
trap (MOT) in continuous operation. The regular six-beam MOT configuration [14] was
used. In this case, the trapping and repumping beams are also used for the preparation step.
The 911 nm laser is sent to the cold atomic cloud, and the blue fluorescence passes through
the bandpass filter and is focused into the PMT cathode. In this case a PMT operating in
counting mode was used.

The frequency scale of all experimental spectra presented here was calibrated by
directly relating the main peaks to the known hyperfine structure of the 6P3/2 states in
both 85Rb and 87Rb [15,16]. We estimate that nonlinearities in the laser frequency scans
contribute to uncertainties no greater than 2 MHz in the line positions, and this should
have but a minor role in the interpretation of the results. Typical frequency scans took 5 s,
and the spectra presented here are the average of tens of such spectra.

4. Theory
4.1. Three-Step Description

The large difference in the coupling intensity of the preparation step with an electric
dipole transition and the electric quadrupole excitation, followed by the emission of a blue
decay photon, makes it possible to separate the process in three steps to obtain an equation
that describes the whole process. The preparation step excites the 5S→ 5P3/2 transition,
and therefore it sets the relative populations of the 5P3/2F2M2 magnetic sublevels. The
electric quadrupole transition then weakly perturbs these populations, producing a small
population of atoms in the 6P3/2F3M3 states. The fluorescence photons resulting from the
direct decay into the 5SF1M1 ground state are then used to detect the production of the
electric quadrupole transition. The probability of detecting this photon from the F3 state
can be written as [5–7]

I(F3) ∝ ∑
F1,M1,M2,M3,λ

σ(F2, M2)|〈F2M2|Tq|F3M3〉|2|〈F3M3|Dλ|F1M1〉|2. (1)

Here, the sum is over all the magnetic projections of the F2 and F3 hyperfine states, over all
the values of F1M1 allowed by an electric dipole decay and over two polarization directions
λ perpendicular to the direction of observation. The first term σ(F2, M2) represents the
population of the F2M2 magnetic sublevel that is determined in the preparation step. The
second factor then is the square of the electric quadrupole transition matrix element. Finally,
the last factor gives the probability of decay into the 5SF1M1 ground state. It is convenient
to analyze each term separately [6].
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4.2. Calculation of the σ(F2, M2) Relative Populations

In an absorption cell, a single linearly polarized beam produces the strong preparation
transition. In the vast majority of the experiments presented here, its frequency is locked
to the F1 = I + 1/2 → F2 = I + 3/2 cyclic transition for zero-velocity atoms. Because
of its cyclic nature, the atoms decay back to the same F1 active ground state. One would
expect a steady-state population of these F2 hyperfine states. Therefore, excitation of the
electric quadrupole transition from this state should give rise to the dominant fluorescence
lines. However, in a room-temperature sample, this laser can also excite atoms with specific
velocity projections to the other two F2 = I + 1/2 and F2 = I − 1/2 hyperfine states. These
states can also decay to the other 5S hyperfine state. Once they are in this dark state,
these atoms no longer participate in the preparation cycle. Therefore, one would expect
a smaller population of these two F2 hyperfine states. The fluorescence peaks observed
from the decay of these velocity-selective states are what will referred to as the satellite lines.
Furthermore, the relative populations of these two states, compared to the population of
the dominant state produced by the cyclic transition, should decrease with an increase in
the preparation laser intensity.

The populations of the magnetic sublevels of the three F2 hyperfine states are obtained
by solving the rate equations in the steady state approximation [9]. The terms required for
the spectral energy density between states 5SF1 and 5P3/2F2 are expressed as the product
of the laser light intensity times a Lorentzian line function [17]:

ρ(δF1F2 , vz) ∝ IrΓ5P3/2

 1

1 + 16π2

Γ2
5P3/2

(
δF1F2 −

vz
λp

)2


where vz is the projection of the atom velocity along the laser beam propagation direction,
Ir is the ratio of the laser intensity to the D2 saturation intensity in rubidium, δF1F2 =
νp − (νF2 − νF1) is its frequency detuning and λp = 780.24 nm is its wavelength. In this
expression, Γ5P3/2 = 2π × 6 MHz is the spontaneous decay rate of the 5P3/2 state. As a
result, one obtains the 5S and 5P3/2 populations as functions of the laser detuning and the
atom velocity.

4.3. The Electric Quadrupole Transition

Once the σ(F2, M2) relative populations are known, the second term in Equation (1)
needs to be evaluated. For a single, linearly polarized laser beam that drives the 5P3/2 → 6PJ
transition, the electric quadrupole operator is proportional to [6];

Tq = (ε̂ ·~r)(~k ·~r). (2)

One then takes the propagation direction along the x-axis, so that its polarization vector
is written as [6] ε̂ = cos θêz + sin θêy, where θ is the angle between the linear polarization
direction of the 911 nm and the quantization axis. In this geometry one has

Tq = k(xz cos θ + xy sin θ). (3)

One can then use the Wigner–Eckart theorem to obtain the selection rules over the magnetic
quantum numbers of the hyperfine states. The first term xz can be written as a linear
combination of the spherical harmonics Y2,±1. The second term is expressed in terms
of Y2,±2. Therefore, electric quadrupole transitions with parallel polarizations obey the
selection rule ∆M‖ = ±1. If one uses perpendicular polarizations, the selection rules are
∆M⊥ = ±2.
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Equation (3) also indicates that the decay fluorescence intensity has a cos2 θ depen-
dence. This dependence can be equivalently cast in the form

I(F3) = I0[1 + A0P2(cos θ)] (4)

where P2(cos θ) is the second-order Legendre polynomial, and the coefficients I0 and A0 can
be explicitly written in terms of the populations σ(F2, M2) and of the squares of the electric
quadrupole transition reduced matrix elements. Therefore, one also needs the squares of
the reduced matrix elements that result from the use of the Wigner–Eckart theorem for the
electric quadrupole transition. They can be written as [11]

|
(
5P3/2F2||T||6PJ F3

)
|2 = (2F2 + 1)(2F3 + 1)

{
3/2 F2 I
F3 J 2

}2

|
(
5P3/2||T||6Pj

)
|2 (5)

where I is the nuclear spin, the curly bracket is the Wigner six-j symbol and
(
5P3/2||T||6Pj

)
is the reduced matrix element common to all 5P3/2 → 6PJ hyperfine transitions. Values of
the product of the first three terms in this expression that cover both rubidium isotopes
and all possible values of total angular momenta are presented in Tables 1 and 2.

Table 1. Squares of the geometric part of the reduced matrix elements for the 5P3/2 → 6P3/2 electric
quadrupole transition in both 85Rb and 87Rb.

87Rb

F2
F3 0 1 2 3

0 0 0
1
4 0

1 0
6
25 3

10
21
100

2
1
4

3
10 0

7
10

3 0 21
100

7
10

21
25

85 Rb

F2
F3 1 2 3 4

1
3

200
7
40

14
25 0

2
7

40
25
56

1
5

3
7

3
14
25

1
5

21
400

15
16

4 0 3
7

15
16

3
4

Table 2. Squares of the geometric part of the reduced matrix elements for the 5P3/2 → 6P1/2 electric
quadrupole transition in both 85Rb and 87Rb.

87Rb

F2
F3 0 1 2 3

1 0
3
40

3
8

21
20

2 1
4

27
40

7
8

7
10

85 Rb

F2
F3 1 2 3 4

2 1
20

1
4

7
10

3
2

3 7
10 1 21

20
3
4
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One then multiplies this transition by the detuning and velocity-dependent line profile [9]

g(δF2F3 , vz) =

 1

1 +
16π2

(
δF2F3+

vz
λq

)2

Γ2
6P

.

Here δF2F3 = νq − (νF3 − νF2) is the laser detuning and λq = 911 nm and Γ6P = 2π× 1.34 MHz
are the natural width of the 6P state [18]. The plus sign in the velocity term indicates that
this laser counterpropagates with respect to the 780 nm preparation laser.

4.4. Decay into the Ground State

The third term in Equation (1) can also be reduced using Wigner–Eckart’s theorem [6].
Taking into account that in the experimental setup, the detection of the fluorescence photons
is along the y-axis, the two polarization directions used in its description are êx and êz. It is
then straightforward to write the decay transition matrix elements in terms of the product
of a geometrical factor times a single 6PJ → 5S reduced matrix element [6].

As a result of the inclusion of the velocity-dependent line profiles in the preparation
of the σ(F2, M2) populations and in the electric quadrupole transition, one ends up with a
fluorescence emission probability that is also velocity-dependent. To calculate an electric
quadrupole spectrum one has to evaluate the integral of the product of this emission proba-
bility multiplied by Maxwell’s velocity distribution for a gas sample of room-temperature
atoms. Finally, in order to compare with the experimental results, the convolution of the
simulated spectra with a Gaussian window whose width was adjusted between 6 and
9 MHz was performed.

4.5. Scalar Beams with Spatial Structure

Now, we want to focus on the case in which the excitation beam associated with
the electric quadrupole transition is a scalar beam with spatial structure. In such a
case, the electric quadrupole transition operator has to be written in its general form
Tq = (~∇~R ·~r)(e~r · ~E(~R)), where ~R denotes the position of the center of mass of the atom
with respect to the beam (~r still represents the internal coordinates of the atom), and ~E(~R)
is the complex electric field of the excitation beam. It is convenient to express the electric
quadrupole transition operator in terms of spherical (or irreducible) tensors as follows

Tq =
2

∑
p=−2

K(2)
p Q(2)

p (6)

whereK(2)
p and Q(2)

p = er2 4π
5 Y2,p are the spherical tensors [19,20] associated with the rank-2

tensorsKjk ≡ ∂jEk(~R) and Qjk = e 1
2 (3rjrk − δijr2), respectively. In this way, the quadrupole

spherical tensor Q(2)
p contains all the information associated with the atom internal degrees

of freedom, and the spherical tensor K(2)
p depends only on the atom center of mass and on

the spatial structure of the excitation beam. This information is enough to reconstruct the
probability to detect a blue photon I(F3). The transition matrix elements in Equation (1)
are rewritten by decoupling the nuclear and electronic angular momenta to obtain

I(F3, ~R) = I0

2

∑
p=−2

Bp

∣∣∣K(2)
p (~R)

∣∣∣2, (7)

where I0 contains the reduced matrix elements common to all 5P3/2 → 6PJ and 6PJ → 5S1/2
terms, and Bp depends on the geometric part defined in terms of Wigner three-j and six-j
symbols. Note that I(F3, ~R) depends on the spatial structure of the excitation beam (encoded
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in K(2)
p (~R)). This means that a strong gradient in the excitation beam spatial structure will

significantly modify the spectral lines.
In an experiment with a vapor cell at room temperature, as schematized in Figure 2,

the collected blue photons come from a finite volume element V . Integrating over this
volume allows us to correctly reconstruct the probability of detecting a blue photon with

I(F3) = I0

2

∑
p=−2

BpTp, (8)

where Tp ≡ $at
∫
V dV~R

∣∣∣K(2)
p (~R)

∣∣∣2 and $at is the atomic density, which is assumed to be
constant inside V , where a low-density medium is also assumed such that collisions and
re-absorption processes are negligible. Therefore, in this kind of experiment where I(F3)
no longer depends on ~R, the spatial structure of the excitation beam can still affect the
probability of detecting blue photons. In the remainder of this section we show analytic
results for the case of a scalar Bessel beam.

The electric field of a scalar Bessel beam of order m is [21]

~E(~R) = E0 eikx x
[

ε̂ ψm − x̂
1
2

k⊥
kx

(
ψm−1 e−iθ + ψm+1 eiθ

)]
(9)

where ψm ≡ Jm(k⊥ρ) eimφ, Jm is the Bessel function, ε̂ = cos(θ)ẑ + sin(θ)ŷ is the polar-
ization vector, E0 is the field amplitude and ρ =

√
y2 + z2 is the radial coordinate (note

that the generation of an ideal BB would require an infinite amount of energy [22]; here,
we assume that the beam has a finite radius ρB, i.e., the amplitude is zero for ρ > ρB)
and φ = arctan(z/y) is the azimuthal coordinate. Note that sometimes the scalar Bessel
beams are described by only the first term of Equation (9) (which is a solution of the wave
equation but it does not satisfy Maxwell’s equations). Here, we refer to that approximation
as paraxial scalar Bessel beam and we reserve the term scalar Bessel beam for the general case.

The generalized tensors Tp for the electric field of a scalar Bessel beam of order m can

be written (neglecting the terms containing k4
⊥

k4
x

) as

T0 = 3
k2
⊥

k2
x

cm αm cos2 θ (10a)

T1 = cmβm cos2 θ +
1
2

k2
⊥

k2
x

cm

[
αm + cos2 θ(2(αm − βm)− βm−1 − βm+1)

]
(10b)

T2 = cmβm sin2 θ +
1
4

k2
⊥

k2
x

cm

[
(βm−1 + βm+1) + sin2 θ(6αm − 4βm)

]
(10c)

where cm = γ

βm+ 1
4

k2
⊥

k2
x
(βm−1+βm+1)

, γ ∝ $at|E0|2 is a proportionality constant, and αm and βm

are dimensionless variables defined by m and by the excitation beams waists.
Therefore, in the paraxial limit (k⊥ � kx), the generalized tensors Tp only depend on

the polarization angle θ, and the result for the plane wave approximation is recovered (see
Equation (4)). On the other hand, in the non-paraxial limit, Equation (10) demonstrates that
the topological charge of the Bessel beam, m, will affect the values of the generalized tensors.
In agreement with previous results [23,24], our model predicts that both the polarization
angle θ and the orbital angular momentum of the excitation beam will change the intensity
of the quadrupole spectral lines.

5. Results and Discussion

Figure 3 shows an example of fluorescence spectra recorded when the preparation
laser is locked to the 5SF1 = 2 → 5P3/2F2 = 3 cyclic transition for atoms with a zero-
velocity component. The frequency of the 911 nm laser is scanned across the 5P3/2 →
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6P3/2 electric quadrupole transition region. The left-hand panel shows the spectra when
the linear polarization of the 911 nm laser is perpendicular to the polarization of the
preparation laser. The right-hand panel corresponds to parallel polarizations. The peaks
in the spectra are labeled by (F2, F3), where F2 is the total angular momentum of the 5P3/2
initial hyperfine state, and F3 is the total angular momentum of the 6P3/2 final state of the
electric quadrupole transition. Three peaks are readily identified in both spectra, which
result from the excitation of the zero-velocity group of atoms (F2 = 3) into the 6P F3 = 1,
2 and 3 excited states. However, there are three more peaks that result from excitation
of the group of atoms that is prepared in the 5P3/2F2 = 2 state. These correspond to the
electric quadrupole transitions F2 = 2 → F3 = 0, 1 and 3. Note the absence of the peak
corresponding to the F2 = 2 → F3 = 2, which is not an allowed electric quadrupole
transition. This absence results as a consequence of the null value of the six-j symbol in
Table 1. These satellites are clearly present in the spectrum recorded with perpendicular
polarizations. For parallel polarizations, only the (2, 3) satellite line can be identified. In
both spectra the (2, 1) transition appears as a shoulder to the low-frequency side of the main
(3, 2) line. The remarkable differences in the relative intensities of the dominant peaks when
the electric quadrupole transition is produced by linearly polarized light with the electric
field vector parallel or perpendicular to the quantization axis is a direct manifestation of
the selection rules over the magnetic quantum numbers [6]. For parallel polarizations, the
electric quadrupole transitions must obey ∆M = ±1, while for perpendicular polarization,
the selection rule is ∆M = ±2 . The top panels in Figure 3 show the spectra obtained by
solving the set of velocity-dependent rate equations [9]. The excellent agreement between
experiment and theory shows that the three-step description accurately reproduces the
position, relative intensity and polarization dependence of the main lines and also of the
velocity-dependent satellites.
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Figure 3. Electric quadrupole spectra for the 5P3/2 → 6P3/2 transition in 87Rb. The left panels are ob-
tained with perpendicular polarizations and the right panels are obtained with parallel polarizations
(see text). The top panels are spectra obtained by solving the set of velocity-dependent rate equations.
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A similar set of spectra, obtained for 85Rb, is shown in Figure 4. The preparation
laser was locked to the F1 = 3 → F2 = 4 cyclic transition for the group of atoms with a
zero-velocity component. The spectra are dominated by the three peaks resulting from
the electric quadrupole excitations from this F2 = 4 hyperfine state into F3 = 2, 3 and 4.
Once again, satellite lines appear, but now on the high-frequency side of the spectra. In
this case, these satellites result from electric quadrupole transitions originating from the
F2 = 3 and 2 hyperfine states into the F3 = 4 state. The relative intensity of these satellites
is not as large, compared to 87Rb, because for these spectra the power of the preparation
laser was about a factor of three larger than the one used for the spectra in Figure 3. The
reduction of the relative intensity results from optical pumping of atoms out of the F2 = 2
and 3 intermediate states [9]. The calculation includes this effect, and therefore produces
spectra that are in very good agreement with the experiment.
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Figure 4. Electric quadrupole spectra for the 5P3/2 → 6P3/2 transition in 85Rb. The left panels are ob-
tained with perpendicular polarizations and the right panels are obtained with parallel polarizations
(see text). The top panels are spectra obtained by solving the set of velocity-dependent rate equations.

Figure 5 shows spectra for the transition to the other fine structure state of the 6P
manifold in 85Rb, namely, the 5P3/2 → 6P1/2 electric quadrupole transition [7]. Spectra
obtained with parallel and perpendicular polarizations are presented in each panel. Here,
the 6P1/2 hyperfine structure consists of the F3 = 2 and F3 = 3 states. One can identify six
lines, resulting from electric quadrupole transitions from each of the 5P3/2F2 = 2, 3 and
4 hyperfine states prepared by selection of velocities. Once again, the main lines result
when the preparation step produces the 5SF1 = 3→ 5P3/2F2 = 4 cyclic transition. Sets of
two satellite lines appear towards the high-frequency side of these two main lines. The
satellites are better resolved in the spectrum with perpendicular polarizations. The results
of the velocity-dependent rate equation calculations shown in the top panels [9] are in very
good agreement with the experimental data.
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Figure 5. Spectra for the 5P3/2 → 6P1/2 electric quadrupole transition in 85Rb. The left panels are ob-
tained with parallel polarizations and the right panels are obtained with perpendicular polarizations
(see text). The top panels are spectra obtained by solving the set of velocity-dependent rate equations.

Electric quadrupole transitions can also be observed when the preparation laser is
locked to the 5SF1 = I − 1/2 → 5P3/2F2 = I − 3/2 low F cyclic transition. A spectrum
showing these transitions in 87Rb is shown in Figure 6 [9]. In this case, there is only
one electric quadrupole transition from the 5P3/2F2 = 0 hyperfine state, namely, into
the 6P3/2F3 = 2 state. However, the velocity-dependent calculation shows [9] that the
preparation laser efficiently populates the other 5P3/2F2 = 1, 2 states. A fit of Voigt profiles
with common widths allows the direct identification of seven lines in the experimental
spectrum (bottom panel). The calculation also has seven lines, with the assignment shown
in the top panel. In this case, the calculation does not reproduce the relative intensities of
all the lines well but does show the presence of three separate groups of transitions. In the
first group with three transitions, the experimental results show a stronger (1, 1) transition
while the calculation indicates that the (2, 1) transition should be stronger. Both experiment
and theory agree that the group in the center, with (1, 2) and (0, 2) transitions, should be
the one with the largest intensity. Finally, the experimental spectrum has two lines of nearly
equal intensity for the third group, and in this case the calculation results in a stronger (2, 3)
transition. It is important to notice the absence of the (2, 2) line in this spectrum, which is
forbidden as an electric quadrupole transition.

All 5P3/2 → 6P3/2 electric quadrupole spectra that were studied show a strong de-
pendence on the polarization configuration of both 780 nm and 911 nm lasers [6,7]. The
selection rules for electric quadrupole transitions over the magnetic quantum numbers,
together with an anisotropic distribution of the populations σ(F2, M2), are responsible
for this behavior. As indicated in Section 4, for relative directions between parallel and
perpendicular one expects a P2(cos θ) dependence on the angle between linear polariza-
tions [6]. Figure 6 of [6] presents a detailed study of the angular distribution of the main
line intensities for the 5P3/2 → 6P3/2 forbidden transition in 85Rb. One can find a similar
analysis for the 5P3/2 → 6P1/2 transition in 85Rb in [7]. The left panel of Figure 7 shows
the angular distribution of the intensities of the three main peaks of the 5P3/2 → 6P3/2
transition in 87Rb. The discrete symbols are the results of the intensities of the F3 = 1, 2



Photonics 2023, 10, 1335 12 of 17

and 3 main lines, normalized so that the sum of intensities is equal to one. The dashed
lines give the results of fits to functions of the form 4 where (I0, A0) are free parameters.
The continuous lines are the results of using the three-step description to calculate I0 and
A0. These parameters can be calculated using the populations σ(F2, M2) shown in the
right-hand panel that were calculated by solving the rate equations. These continuous
lines are the result of an ab initio calculation, and therefore contain no free parameters.
The small discrepancies between the ab initio calculation and the results of the fits can
be explained if one considers imperfections in the degree of polarization of each of the
two lasers used in the experiment, and also for the uncertainty in the determination of the
zero in the angular scale. The angular dependence was also used to test the theoretical
results for the production of the electric quadrupole transition with scalar paraxial Bessel
beams, in the sense that no significant difference was found with the angular distribution
obtained with a Gaussian beam. In order to excite the electric quadrupole transition with a
non-paraxial beam, the experimental setup of Figure 2 has to be modified. The design and
implementation of such an experiment are left for future studies.
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Figure 6. Spectra for the low F 5P3/2 → 6P3/2 electric quadrupole transition in 87Rb. The experimental
spectrum is shown in the bottom spectrum, and the results of the calculation with the corresponding
line assignment are shown in the top panel.
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Figure 7. Angular distribution of each of the main electric quadrupole lines in 87Rb. Left panel: the
symbols are the result of the normalized intensity of spectra at each angle. The dashed lines are fits of
functions of the form I(θ) = I0[1 + A0P2(cos θ)]. The continuous lines are the result of the calculated
angular distribution using the populations σ(M2) shown in the right panel.

The electric quadrupole transitions that are reviewed here are seven orders of mag-
nitude weaker than the 5S → 5P3/2 electric dipole transition. This inherent weakness
makes them ideal probes of the Autler–Townes splitting induced by the strong preparation
transition. This is studied in detail in [8], where it is shown that a simple three-level model
is not adequate to describe the dependence of the Autler–Townes profile intensities on
the preparation laser intensity. Velocity distribution effects, when added to the presence
of alternative decay routes from the 6P3/2 state, provided the ingredients needed for an
adequate description of the formation of the Autler–Townes doublets [8].

The electric quadrupole transition can also be observed in cold atoms in a magneto-
optical trap (MOT) in fully operational conditions. In this case, the MOT trapping and
repumping beams are used in the preparation step, and a single 911 nm beam produces the
forbidden transition. The intensity of these preparation beams is large enough to produce
an Autler–Townes splitting in the fluorescence spectra. Figure 8 shows the comparison
between a spectrum recorded in a MOT and that obtained in a cell. These experimental
results show the 5P3/2 → 6P3/2 electric quadrupole transition in 85Rb. For the cell spectrum,
the laser intensity is large enough to ensure that the satellite lines do not contribute
significantly, but are low enough to stay below the Autler–Townes regime. Furthermore,
this cell spectrum was recorded with the linear polarization of the 911 nm laser making an
angle of 60◦, close enough to the magic angle for which there is no contribution from the
coefficient of the angular dependent term in Equation (4). The spectrum obtained with the
MOT in the bottom panel shows three sets of asymmetric Autler–Townes doublets, with
the strongest component of each doublet aligned with each F3 transition. It is remarkable
that the relative intensities of the three doublets closely resemble the intensity distribution
at the magic angle observed in the top panel.
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Figure 8. Comparison between spectra for 85Rb recorded in a cell and in an operational magneto-
optical trap (MOT).

A similar comparison can be made with the 5P3/2 → 6P3/2 electric quadrupole tran-
sition for 87Rb atoms in a MOT and in a cell. Sample spectra showing two stages of the
Autler–Townes effect are shown in Figure 9. The comparison is made for commensurate
values of the Rabi frequency. These values are obtained directly from the spectra by fitting
an Autler–Townes profile to each hyperfine line. The left panels indicate that for a Rabi
frequency of about 4 MHz, the Autler–Townes doublet begins to appear. This occurs in
both the cell and the MOT. At about twice this value of the Rabi frequency (right panels),
the Autler–Townes doublets are clearly defined. The line profiles in the cell (top panel)
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are symmetric, indicating an effective zero-frequency detuning in the preparation step.
The asymmetry in the MOT spectra (bottom panel) is caused by the red detuning of the
trapping laser in the MOT. This detuning can be directly obtained from the AT profiles in
the spectrum. The relative intensities of the F3 hyperfine lines in the MOT correspond more
to a cell spectrum recorded at the magic angle.
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Figure 9. Comparison between spectra for 87Rb recorded in a cell (top panels) and in a magneto-
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6. Conclusions

This article presented the main results of a study of the 5P3/2 → 6PJ (J = 1/2, 3/2)
electric quadrupole transitions in atomic rubidium. Despite being weak, these transitions
can be observed using continuous-wave diode lasers. The use of counterpropagating beams
allows recording spectra in which the hyperfine structure of the 6PJ states is completely
resolved. When the preparation beam is locked to the large F1 = I + 1/2→ F2 = I + 3/2
cyclic transition, the dominant features in the spectra correspond to the electric quadrupole
transitions from this maximum F2 state. Weaker satellite peaks occur because of selection
of velocity effects in the preparation step of the transition. A three-step description of
the process was proposed, in which a dominant preparation excitation determines the
5P3/2F2M2 populations. The description is completed by independently calculating the
probabilities associated with the electric quadrupole transition and the direct decay into
the ground state by emission of a blue photon. When one includes velocity selection
effects in the solution of the rate equations in the preparation step, the results accurately
reproduce the behavior of both the main features and the satellite lines. These velocity
selection effects are key to understanding the spectrum obtained when the preparation laser
frequency is locked to the 5SF1 = 1→ 5P3/2F2 = 0 (low F) cyclic transition in 87Rb, which
has six features in addition to the single F2 = 0 → F3 = 2 electric quadrupole transition.
The relative intensities of all electric quadrupole lines are very sensitive to the relative
polarization directions of the laser beams. The theory clearly shows that this dependence
results from the F2M2 population distribution in the preparation step, combined with
the electric quadrupole selection rules over magnetic quantum numbers. The angular
dependence was found to be the same for Gaussian and paraxial scalar Bessel beams.
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The electric quadrupole transitions are ideal probes of the Autler–Townes effect in both
room-temperature and cold atoms. This general understanding of these electric dipole
forbidden transitions can be extended to other alkali atoms. The results presented here
should be useful in the characterization of atomic samples prepared under a wide variety
of conditions.
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