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The Singularities of Selberg- and
Dotsenko–Fateev-Like Integrals
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Abstract. We discuss the meromorphic continuation of certain hyperge-
ometric integrals modeled on the Selberg integral, including the 3-point
and 4-point functions of BPZ’s minimal models of 2D CFT as described
by Felder & Silvotti and Dotsenko & Fateev (the “Coulomb gas formal-
ism”). This is accomplished via a geometric analysis of the singularities of
the integrands. In the case that the integrand is symmetric (as in the Sel-
berg integral itself) or, more generally, what we call “DF-symmetric,” we
show that a number of apparent singularities are removable, as required
for the construction of the minimal models via these methods.
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1. Introduction

Let

�N = {(x1, . . . , xN ) ∈ [0, 1]N : x1 ≤ · · · ≤ xN} (1.1)

denote the standard N -simplex, which we consider as a subset of C
N . We

study in this note Selberg-like integrals, by which we mean definite integrals
of the form

SN [F ](α,β,γ)

=
∫

�N

F (x1, . . . , xN )
N∏

j=1

x
αj

j (1− xj)βj

∏
1≤j<k≤N

(xk − xj)2γj,k dx1 · · · dxN ,

(1.2)

for N ∈ N
+, F ∈ C∞(�N ), and α = {αj}N

j=1,β = {βj}N
j=1,γ = {γj,k =

γk,j}1≤j<k≤N ⊂ C such that the integrand above is absolutely integrable on
�N . Integrals of this form are relevant to an array of topics in mathemati-
cal physics [17]. However, it is often necessary to consider exponents α,β,γ
for which the integral above is not absolutely convergent, in which case a
meromorphic extension needs to be performed. In some applications, only the
behavior of this extension at generic exponents is required. In others, such as
the application—discussed below—to the construction of the minimal models
of 2D CFT, it is necessary to consider particular values, e.g. γj,k = −1. Un-
fortunately, for these particular values, previous work on the subject is not
sufficient.

We will identify indexed collections of complex numbers (and tuples
thereof) with column vectors. For example, we identify γ with an element
of C

N(N−1)/2 and

(α,β,γ) ∈ C
N × C

N × C
N(N−1)/2 (1.3)

with an element of C
2N+N(N−1)/2. Similar identifications will be made through-

out the rest of the paper without further comment. Let

ΩN =
{

(α,β,γ) ∈ C
2N+N(N−1)/2 :

N∏
j=1

x
αj

j (1− xj)βj

∏
1≤j<k≤N

(xk − xj)2γj,k ∈ L1(�N )
}

(1.4)
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denote the (open, nonempty) subset of C
2N+N(N−1)/2 consisting of the (α,β,

γ) ∈ C
2N+N(N−1)/2 for which the integrand in eq.(1.2) is absolutely integrable

on �N . We begin with SN [F ] defined as a function SN [F ] : ΩN → C. It can
be checked —see §2—that letting

αj,∗(α,β,γ) =
j∑

j0=1

αj0 + 2
∑

j0,k∈{1,...,N}
1≤j0<k≤j

γj0,k,

βj,∗(α,β,γ) =
N∑

j0=N−j+1

βj0 + 2
∑

j0,k∈{1,...,N}
N−j+1≤j0<k≤N

γj0,k

(1.5)

for each j ∈ {1, . . . , N}, and letting

γj,k,∗(α,β,γ) = 2
∑

j0,k0∈{1,...,N}
j≤j0<k0≤k

γj0,k0 (1.6)

for each pair of j, k ∈ {1, . . . , N} with j < k,

ΩN =
[ N⋂

j=1

{�αj,∗ > −j}
]
∩
[ N⋂

j=1

{�βj,∗ > −j}
]

∩
[ ⋂

1≤j<k≤N

{�γj,k,∗ > −(k − j)}
]
. (1.7)

So, ΩN is nonempty, open, and convex (in particular, connected) and contains
all (α,β,γ) ∈ C

2N+N(N−1)/2 such that the real parts of the components of
α,β,γ are sufficiently large.

To simplify the formula above, let γ0,k,∗ = αk,∗ and γN+1−j,N+1,∗ = βj,∗.
Then

ΩN =
⋂

0≤j<k≤N+1

{(α,β,γ) ∈ C
2N+N(N−1)/2 : �γj,k,∗ > −(k − j)}. (1.8)

Our first goal is to prove that SN [F ] can be analytically continued to a
subset

Ω̇N ⊆ C
2N+N(N−1)/2 (1.9)

having full measure in C
2N+N(N−1)/2.

In order to describe precisely the structure of the singularity at
C

2N+N(N−1)/2\Ω̇N , we introduce some terminology. Let T(N) denote the col-
lection of maximal families I of consecutive subsets I � {0, . . . , N + 1} such
that
• 2 ≤ |I| ≤ N + 1 for all I ∈ I and
• if I, I ′ ∈ I satisfy I ∩ I ′ 
= ∅, then either I ⊆ I ′ or I ′ ⊆ I.

“T” stands either for “tree” in “full binary trees” or “Tamari” in Tamari lattice
[18,37], and the elements of T(N) can be thought of as specifying the valid ways
of adding a maximal number of nonredundant parentheses to a string of N +2
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identical characters. There are #T(N) = CN+1 such ways, where CN+1 is the
(N + 1)st Catalan number. To each I ∈ I, we associate the facet

fI = {(x1, . . . , xN ) ∈ �N : xj = xk for all j, k ∈ I} (1.10)

of �N , where x0 = 0 and xN+1 = 1. Let oI ∈ N denote the order of vanishing
of F at fI . (So, oI = 0 unless F is vanishing identically at fI .)

Theorem 1.1. There exist entire functions SN ;reg,I[F ] : C
2N+N(N−1)/2 → C

associated with the I ∈ T(N) such that

SN [F ](α , β , γ ) =
∑

I∈T(N)

SN ;reg,I[F ](α , β , γ )
∏
I∈I

Γ(oI + |I| − 1 + γmin I,max I,∗)

(1.11)

for all (α,β,γ) ∈ ΩN .

Here, Γ : C\{−n : n ∈ N} → C is the gamma function. As a consequence
of the theorem, there exists an entire function SN ;reg[F ] : C

2N+N(N−1)/2 → C

such that

SN [F ](α,β,γ) = SN ;reg[F ](α,β,γ)
∏

0≤j<k≤N+1

Γ(k − j + γj,k,∗)

(1.12)

for all (α,β,γ) ∈ ΩN .

Corollary 1.1.1. The function SN [F ] : ΩN → C admits an analytic continua-
tion ṠN [F ] : Ω̇N → C to the domain

Ω̇N = C
2N+N(N−1)/2
α ,β ,γ

∖[( N⋃
j=1

{αj,∗ ∈ Z
≤−j−δj}

)
∪
( N⋃

j=1

{βj,∗ ∈ Z
≤−j− δj}

)

∪
( ⋃

1≤j<k≤N

{γj,k,∗ ∈ Z
≤−(k−j)−dj,k}

)]
, (1.13)

where Z
≤n = {m ∈ Z : m ≤ n} and δj = δj [F ] = o{0,...,j}, δj = δj [F ] =

o{N−j+1,...,N+1}, and dj,k = dj,k[F ] = o{j,...,k}.

The set Ω̇N contains all elements of C
2N+N(N−1)/2 lying outside of a

locally finite arrangement of affine hyperplanes.
Consider F ∈ C[x1, . . . , xN ]. Letting [F ]d1,...,dN

denote the coefficient of
xd1

1 · · ·xdN

N in F , and letting refl : (x1, . . . , xN ) �→ (1−x1, . . . , 1−xN ), we have

δj [F ] = min{d1 + · · · + dj : [F ]d1,...,dj ,dj+1,...,dN
�= 0 for some dj+1, . . . , dN ∈ N},

(1.14)
δj [F ] = min{dN + · · · + dN+1−j : [F ◦ refl]d1,...,dN−j ,dN+1−j ,...,dN

�= 0 for some d1, . . . , dN−j ∈ N}. (1.15)
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Figure 1. The Pochhammer contour in C\{0, 1}, up to ho-
motopy

Example. The simplest case is when N = 1 and F = 1 identically, when the
integral is given by

S1(α, β, γ) = B(α + 1, β + 1) =
∫ 1

0

xα(1− x)β dx =
Γ(1 + α)Γ(1 + β)

Γ(2 + α + β)
,

(1.16)

defined initially for �α,�β > −1 via the definite integral and then extended
meromorphically via the formula on the right-hand side above (or via another
method). This is Euler’s β-function. One method of meromorphic continuation
involves the Pochhammer contour (a.k.a. Pochhammer double loop)

b−1a−1ba ∈ π1(C\{0, 1}), (1.17)

where a, b are the generators of π1(C\{0, 1}) corresponding to one (say, coun-
terclockwise) circuit around each of 0, 1, respectively.

Then, b−1a−1ba can be lifted to a closed contour p in the cover M of
C\{0, 1} corresponding to the commutator subgroup of π1(C\{0, 1}). Then,
choosing the basepoint of p appropriately,

B(α + 1, β + 1) =
1

1− e−2πiα

1
1− e−2πiβ

∫
p

xα(1− x)β dx, (1.18)

where we are now considering xα(1− x)β as an analytic function on M. The
theorem above tells us that there exist entire S1;reg,(••)•, S1;reg,•(••) such that

B(α + 1, β + 1) = Γ(1 + α)S1;reg,(••)•(α, β) + Γ(1 + β)S1;reg,•(••)(α, β).
(1.19)

This splitting is not so obvious from the formula B(α + 1, β + 1) = Γ(1 +
α)Γ(1 + β)/Γ(2 + α + β).

Example. Now consider the case when N = 2 and F = 1. It can be computed
that the Selberg-like integral is then

S2(α,β,γ)

=
Γ(1 + α1)Γ(1 + β2)Γ(2 + 2γ1,2 + α1 + α2)Γ(1 + 2γ1,2)

Γ(2 + α1 + 2γ1,2)Γ(3 + α1 + α2 + β2 + 2γ1,2)
3F2(a, b; 1),

(1.20)

where a = (a1, a2, a3) = (1 + α1,−β1, 2 + 2γ1,2 + α1 + α2) and b = (b1, b2) =
(2 + α1 + 2γ1,2, 3 + α1 + α2 + β2 + 2γ1,2), where pFq denotes the generalized
hypergeometric function. For N = 2, the theorem above reads

S2(α , β , γ ) = Γ(1 + α1)Γ(2 + α1 + α2 + 2γ1,2)S2;reg,((••)•)•(α , β , γ )
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Figure 2. The 3-dimensional associahedron, with its faces
labeled by the associated functions in Eq. (1.5), Eq. (1.6). The
C4 = 14 vertices are in correspondence with the 14 elements
T(3)

+Γ(1 + α1)Γ(1 + β2)S2;reg,(••)(••)(α , β , γ )

+Γ(1 + β2)Γ(2 + β1 + β2 + 2γ1,2)S2;reg,•(•(••))(α , β , γ )

+Γ(1 + 2γ1,2)Γ(2 + β1 + β2 + 2γ1,2)S2;reg,•((••)•)(α , β , γ )

+Γ(1 + 2γ1,2)Γ(2 + α1 + α2 + 2γ1,2)S2;reg,(•(••))•(α , β , γ ),

(1.21)

but once again this splitting is not so obvious from the exact formula Eq.
(1.20). This example is explored more in the appendix.

The proof below is lower-brow than the twisted homological constructions
of [23,24, §5], Aomoto [3], and others [38,40], as it is based on the method de-
scribed in [39, Chp. 10]. This involves the geometric analysis of the singularities
of the Selberg(-like) integrand. The key observation is that if the N -simplex
is blown up to the N -dimensional associahedron [36][30,34, §1.6] (see Fig. 2,
Fig. 6), then the Selberg integrand—which is not polyhomogeneous on �N—
becomes one-step polyhomogeneous (a.k.a “classical”) on the resolution. See §2
for details. This observation appears, in an essentially equivalent form (albeit
with different terminology), already in [23,24,31], though the term “associa-
hedron” does not appear there. Closely related observations have appeared in
the physics literature [6,7,27,28].

The application of polyhomogeneity to the proof of the theorem above
is given in §3. The classicality of the lift of the Selberg integrand on the as-
sociahedron allows us to reduce the problem to what is essentially a product
of one-dimensional cases. The faces of the associahedron are in bijective corre-
spondence with the quantities defined in Eq. (1.5), Eq. (1.6). The correspon-
dence is depicted in Fig. 2 in the case N = 3.

The quantities αj,∗, βj,∗, γj,k,∗ are the orders of the Selberg integrand at
the corresponding faces. Each I ∈ T(N) is associated with a minimal facet of
the associahedron, and the I ∈ I are associated with the faces containing that
facet. Thus, we have a geometric interpretation of each of the terms in Eq.
(1.11).
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The theorem cannot be sharpened while maintaining generality. Indeed,
the proof of the theorem shows that if F > 0 everywhere in �N (including the
boundary), then

SN ;reg[F ](α,β,γ) 
= 0 (1.22)

for any (α,β,γ) ∈ R
2N+N(N−1)/2 for which both of

• γj,k,∗ ∈ Z
≤−(k−j) for precisely one pair of j, k ∈ {0, . . . , N + 1} with

j < k,
• γj,k,∗ > −(k − j) for all other j, k

hold, as for such (α,β,γ) the quantity SN ;reg[F ](α,β,γ) is proportional to
a convergent integral of a positive integrand over the corresponding face of
the associahedron. Consequently, SN [F ] : ΩN → C cannot be analytically
continued to the complement of any strictly smaller collection of hyperplanes
than that in Eq. (1.13).

However, for the desired application, we do not need full generality. Of
special importance is the case when α,β,γ are each “constant,” meaning that,
for some α, β, γ ∈ C,
• αi = α and βi = β for all i ∈ {1, . . . , N}, and
• γj,k = γ for all j, k ∈ {1, . . . , N} with j < k.

In this case, we simply write

SN [F ](α, β, γ) =
∫

�N

F (x1, . . . , xN )
N∏

j=1

xα
j (1− xj)β

∏
1≤j<k≤N

(xk − xj)2γ dx1

· · · dxN . (1.23)

We now consider F ∈ C[x1, . . . , xN ]SN , i.e. symmetric polynomial F . This
case includes, of course, Selberg’s original example, in which F = 1, as well as
the 3-point coefficients of the (1, s)- and (r, 1)-primary fields and their descen-
dants in the BPZ minimal models. It also includes certain Selberg-like integrals
considered by Aomoto [3], Kadell [21,22], and others [2]. The computation of
such integrals is listed as an open problem in [23].

Below, we will introduce a more general notion of “DF-symmetric” Selberg-
like integrals, this including the other 3-point coefficients. For the purposes of
an introductory discussion we focus on the—already interesting—symmetric
case.

The integral Eq. (1.23) is defined initially on the subset UN [F ] ⊂ C
3
α,β,γ

given by

UN [F ] =
{

(α, β, γ) ∈ C
3 : �j(α + (j − 1)γ) > −1− δj [F ] and

�j(β + (j − 1)γ) > −1− δj [F ] for all j ∈ {1, . . . , N}, and �γ

> − 1
N − 1

}
, (1.24)

which contains

UN = UN [1] =
{

(α, β, γ) ∈ C
3 : min{�α,�β}
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+ min{0, (N − 1)γ} > −1 and �γ > − 1
N − 1

}
. (1.25)

An immediate corollary of the theorem above is that the function SN [F ] :
UN [F ] → C defined by Eq. (1.23) admits an analytic continuation ṠN [F ]
(α, β, γ) : U̇N [F ] → C to the domain U̇N [F ] � UN [F ] given by

U̇N [F ] = C
3
α,β,γ

∖[( N⋃
j=1

{j(α + (j − 1)γ) ∈ Z
≤−j−δj}

)

∪
( N⋃

j=1

{j(β + (j − 1)γ) ∈ Z
≤−j− δj}

)

∪
(N−1⋃

j=1

{j(j + 1)γ ∈ Z
−j}
)]

. (1.26)

Example. Consider F = 1, i.e. the Selberg integral. In this case, Selberg proved
in [35] that SN (α, β, γ) = SN [1](α, β, γ) is given by

SN (α, β, γ) =
1

N !

N∏
j=1

Γ(1 + α + (j − 1)γ)Γ(1 + β + (j − 1)γ)Γ(1 + jγ)
Γ(2 + α + β + (N + j − 2)γ)Γ(1 + γ)

.

(1.27)

See [17] for a review of the history of this result.

The example of the Selberg integral suggests that, in the symmetric case,
Eq. (1.26) is not the maximal domain of analyticity. Set

degj [F ] = max{d1 + · · ·+ dj : [F ]d1,...,dj ,dj+1,...,dN


= 0 for some dj+1, . . . , dN ∈ N}. (1.28)

(Since F is symmetric, degj [F ] = degj [F ◦ refl].) Then:

Theorem 1.2. For any F ∈ C[x1, . . . , xN ]SN , there exists an entire function
SN ;Reg[F ] : C

3
α,β,γ → C such that

SN [F ](α, β, γ) =
[ N∏

j=1

Γ(1 + δ̄j + α + (j − 1)γ)Γ(1 + ¯δj + β + (j − 1)γ)Γ(1 + jγ)

Γ(2 + d̄j + α + β + (N + j − 2)γ)Γ(1 + γ)

]

×SN ;Reg[F ](α, β, γ) (1.29)

for all (α, β, γ) ∈ UN , where δ̄j = �j−1δj [F ]�, ¯δj = �j−1 δj [F ]�, and d̄j =
�(N − j + 1)−1 degj [F ]� for each j ∈ {1, . . . , N}.
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Thus, SN [F ](α, β, γ) admits an analytic continuation S̊N [F ](α, β, γ) :
ŮN [F ] → C to the domain ŮN [F ] � U̇N [F ] defined by

ŮN [F ] = C
3
α,β,γ

∖[( N⋃
j=1

{α + δ̄j + (j − 1)γ ∈ Z
≤−1}

)
∪

( N⋃
j=1

{β + ¯δj + (j − 1)γ ∈ Z
≤−1}

)

∪
(N−1⋃

j=1

{(j + 1)γ ∈ Z
≤−1, γ /∈ Z}

)]
.

(1.30)

Observe that Eq. (1.30) allows γ = −1.
In the case of the original Selberg integral, Theorem 1.2 describes pre-

cisely the singularities and zeroes of the meromorphic continuation of the orig-
inal integral, and SN ;Reg = SN ;Reg[1] is just constant. The functions S2[F ] and
S2;Reg[F ] are explored in §A.

The proof of the theorem above consists of several steps:

(1) The first step is the removal of the fictitious singularities of ṠN [F ](α, β, γ)
only in γ (as required e.g. in the Coulomb gas formalism with both kinds
of screening charges). The basic idea is to employ the relation—which can
be found in a heuristic form in [8, Ap. A]—between the symmetrization
of SN [F ](α,β,γ) and the “DF-like” integral

IN [F ](α,β,γ) =
∫

�N

[ N∏
j=1

x
αj

j (1− xj)βj

]

×
[ ∏

1≤j<k≤N

(xk − xj + i0)2γj,k

]
F dx1 · · · dxN ,

(1.31)

where �N = [0, 1]N . We can analytically continue IN [F ] via an argument
similar to that used to prove Theorem 1.1. Unlike that of SN [F ](α,β,γ),
this extension has no singularities associated with hyperplanes of constant
γ. The true singularities of the extension of SN [F ](α, β, γ) associated with
hyperplanes of constant γ show up in the relation with the extension of
IN [F ](α, β, γ).

(2) The second step removes the other unwanted singularities away from the
loci of two or more unwanted singularities, via some identities proven
via Aomoto [3] in the F = 1 case (and [8, Ap. A], at a physicist’s level
of rigor). The use of these identities for computing the original Selberg
integral is sketched in [17]. It seems there cannot be a similar computation
of SN [F ] in the deg F > 1 case, so a statement about the singularities is
the best we can do.

The simplex �N ⊂ R
N can be thought of as a subset of

(C\{0, 1})N = (CP 1\{0, 1,∞})N (1.32)
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via the embedding R ↪→ C ↪→ CP 1, and the rough idea of this step of the
proof is to relate the integrals above to the result of replacing �N with
L�N�N for L one of the six linear fractional transformations preserving
CP 1\{0, 1,∞}. Only three of these are essentially different, and one of
these three is just the identity and therefore uninteresting. The other
two integrals each have meromorphic extensions with different manifest
singularities. Using Proposition 4.2, these functions can be related to each
other, and this can be used to remove most of the apparent singularities
that are not present in all three functions. Some singularities are present
in the relations between the integrals, and these cannot be removed.

Once this has been done, the final step is the application of Hartog’s
theorem to remove the remaining removable singularities, which now lie
on a codimension two subvariety of C

3.
This argument is carried out in §4.1. The version more relevant to [8] (with
the additional steps needed) is in §4.2.

We call IN [F ] a “DF-like” integral because similar integrals appear, albeit
at a somewhat formal level, in [8]. A similar construction appears in [10].

Let ΣT(N) denote the collection of maximal collections I of pairs (x0, S)
of x0 ∈ {0, 1} and nonempty subsets S ⊆ {1, . . . , N} such that, given (x0, S),
(x0, Q) ∈ I, either S ⊆ Q or Q ⊆ S.

Theorem 1.3. There exist entire functions IN ;reg,I[F ] : C
2N+N(N−1)/2
α ,β ,γ → C

associated with the I ∈ ΣT(N) such that

IN [F ](α , β , γ ) =
∑

I∈ΣT(N)

[ ∏
(1,S)∈I

Γ
(
|S| +

∑
j∈S

βj + 2
∑

j,k∈S,j<k

γj,k

)]

×
[ ∏

(0,S)∈I

Γ
(
|S| +

∑
j∈S

αj + 2
∑

j,k∈S,j<k

γj,k

)]
IN ;reg,I[F ](α , β , γ )

(1.33)

for all (α,β,γ) for which the left-hand side is a well-defined integral.

In particular, IN [F ](α,β,γ) admits an analytic extension İN [F ](α,β,γ)
to an open, dense set

V̇N = C
2N+N(N−1)/2
α ,β ,γ

∖[( ⋃
S⊆{1,...,N}

{αS,∗ ∈ Z
≤−|S|}

)

∪
( ⋃

S⊆{1,...,N}
{βS,∗ ∈ Z

≤−|S|}
)]

. (1.34)

1.1. Some Comments on the Coulomb Gas Formalism

Here, we discuss a particular application to the Coulomb gas formalism (a.k.a.
“free field realization,” “Feigin–Fuchs representation,” etcetera) of 2D CFT [5,
8,9,15][17,33, Chp. 9]. This approach of Dotsenko–Fateev to the construction
of the “minimal models” of Belavin–Polyakov–Zamolodchikov (BPZ) [4] has
been the subject of substantial interest, but it appears that it has not yet
been placed on entirely rigorous mathematical footing. The construction in
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[15,16] of the 3-point coefficients of the (1, s)- and (r, 1)-primary fields and
their descendants in the minimal models is satisfactorily rigorous, but it has
remained an open problem to handle the rest of the primary fields at a similarly
satisfactory degree of rigor. From our perspective, the issue is an insufficient
treatment of the meromorphic continuation of Selberg-like integrals, which are
instead treated somewhat formally in the original works.

The issue is that Dotsenko & Fateev (DF) take some of the γ’s to be
−1—see, e.g., [8, Appendix A][16, p. 27][17, §2]—and then the integrand above
is, say for F = 1, no longer integrable over the integral’s domain. As a conse-
quence, the integrals in [8, Appendix A] are formal. Dotsenko & Fateev suggest
making sense of them via meromorphic continuation in the exponents of the
integrand, but they do not prove that a suitable meromorphic continuation
exists, nor do they discuss the singularities of the extension in sufficient detail
to justify their manipulations. Here, we have constructed a suitable extension
and analyzed its singularities in detail.

The reason why it is necessary to take some of the γ’s to be −1 is that,
for fixed central charge, there are two sorts of vertex operators Vα± used in
screening operators. Both are necessary to produce all solutions of the BPZ
equations. The relevant vertex operators are those of conformal weights h± =
1. If the central charge is c, the two screening charges have conformal weights
given in terms of α± by

h± = α2
± − 2α±α0, (1.35)

according to the conventions in [33, §9.2.1], where c = 1 − 24α2
0, so, by Vi-

eta, α−α+ = −1. The correlation functions involving these screening charges
are Dotsenko–Fateev integrals with γj,k = α−α+ = −1, as follows from the
commutation properties of vertex operators. See [33, §9] for further exposition.

A construction of Kanie–Tsuchiya [23,24], rediscovered by Mimachi–
Yoshida [31,32,41], yields the existence of some meromorphic continuation
defined for almost all values of the exponents. This extension is not quite suf-
ficient for our purposes: it has removable singularities that, while removable,
are nontrivial to actually prove removable. In particular, the Kanie–Tsuchiya
construction has an apparent isolated singularity at γ = −1 (see [24, §5, above
Thm. 5]), along with at a few other problematic affine hyperplanes in the space
of possible parameters. One of the advantageous features of the meromorphic
continuation here is that it lacks these problematic apparent singularities and
therefore applies to the cases considered in the physics literature.

Most of the rigorous work on the analysis of integrals of Dotsenko–Fateev
type—see e.g. [11–14,25] for some recent work—focuses on screened multipoint
correlation functions with at most one screening charge screening per inser-
tion point. Such integrals are related to the N = 1 case of SN (α,β,γ). Not
much has been done about the N > 1 case. Moreover, while a fair amount of
work has gone into the study of general hypergeometric integrals associated
to hyperplane arrangements—the literature on this topic is large, so we just
cite [1,39]—it does not seem possible to deduce the specific, concrete results
below from results in the current literature.
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Note that Ω̇N = Ω̇N [1], as defined in Eq. (1.13), does not contain (α,β,γ)
with γj,k = −1 for |j−k| = 1, so Theorem 1.1 is insufficient for the construction
of the BPZ minimal models. This is one of the motivations for proving the
sharper theorems above.

The Γ(2 + d̄j + α + β + (N + j − 2)γ) term in the denominator of Eq.
(1.29) implies that S̊N [F ](α, β, γ) = 0 for all

(α, β, γ) ∈ ŮN [F ] ∩ {α + β + (N + j − 2)γ ∈ Z
≤−2−d̄j for some j ∈ {1, . . . , N}}.

(1.36)

When constructing the 3-point coefficients of the BPZ minimal models, this
is one mechanism preventing the fusion of (0, s)-primary fields (which are not
included in the model) with the primary fields that are included. In BPZ’s
terminology, this is the truncation of the operator algebras, as originally argued
for on the basis of the constraint of OPE associativity — see [4, §6][33, Chp.
7.3.2].

For the full application to [5,8], we use the following notion of “DF-
symmetric” polynomials. Given λ ∈ C and S ⊆ {1, . . . , N}, let DFSym(N, S, λ)
denote the set of F ∈ C[x1, x

−1
1 , . . . , xN , x−1

N ] such that:

• given any σ ∈ SN such that σ : S → S, i.e. in the Young subgroup
associated to S,

F = F ◦ σ (1.37)

where we are identifying σ with the map C
N � {xi}N

i=1 → {xσ(i)}N
i=1 ∈

C
N , and

• for any j ∈ S and k ∈ {1, . . . , N}\S,

λ
( ∂

∂xj
F
)∣∣∣

xj=xk

=
∂

∂xk

(
F
∣∣∣
xj=xk

)
∈ C[x1, x

−1
1 . . . , x̂j , x̂

−1
j . . . , xN ].

(1.38)

In particular, DFSym(N, {1, . . . , N}, λ) = C[x1, x
−1
1 , . . . , xN , x−1

N ]SN , so in
this sense DF-symmetry is a generalization of ordinary symmetry. Our dis-
allowal of Laurent polynomials F in the symmetric case was without loss of
generality, as, were F Laurent, we could shuffle factors of x1 · · ·xN between
the polynomial and the rest of the Selberg integrand. However, it is useful here
to allow general Laurent polynomials.

For each λ and S, DFSym(N, S, λ) is a (unital) C-subalgebra of C[x1, x
−1
1

. . . , xN , x−1
N ]. It is nontrivial. If S is a proper subset of {1, . . . , N}, then

λ−
∑
j∈S

xj + λ+

∑
k∈{1,...,N}\S

xk ∈ DFSym(N, S, λ),

λ−
∑
j∈S

1
xj

+ λ+

∑
k∈{1,...,N}\S

1
xk
∈ DFSym(N, S, λ)

(1.39)

is a nonzero member for λ+ defined by λ−1
− (λ− + λ+) = λ, so DFSym(N, S, λ)

contains polynomials of all degrees.
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The key method of constructing DF-symmetric Laurent polynomials is
the following:

Example. For any M ∈ N
+ and matrix-valued polynomials ϕ,ψ ∈ xC

M×M [x]
such that the coefficients of ϕ are strictly upper-triangular, the coefficients of
ψ are strictly lower-triangular. Suppose that the A’s all commute with each
other and that the B’s all commute with each other. (We do not assume that
the A’s commute with the B’s.) Then, the matrix elements of

exp
(
λ−
∑
j∈S

ψ(x−1
j ) + λ+

∑
k∈{1,...,N}\S

ψ(x−1
k )
)

exp
(
λ−
∑
j∈S

ϕ(xj) + λ+

∑
k∈{1,...,N}\S

ϕ(xk)
)

(1.40)

lie in DFSym(N, S, λ), where λ = λ−1
− (λ− + λ+). The vertex operators which

Dotsenko and Fateev integrate to define the minimal model 3-point coeffi-
cients have this form up to some scalar factors which are part of the Selberg
integrand. In this example, the coefficients of ϕ are annihilation operations
on some Fock space, and the coefficients of ψ are creation operators, with all
operators truncated to some finite-dimensional subspace of the Fock space.
That the creation operators in Eq. (1.40) are all to the left of the annihilation
operators is normal ordering.

See [5,10,23,24][33, Chp. 9].

For a set S ⊆ {1, . . . , N} and α±, β±, γ±, γ0 ∈ C, let αDF0,S, βDF0,S ∈ C
N

be given by

αj =

{
α+ (j ∈ S),
α− (j /∈ S),

βj =

{
β+ (j ∈ S),
β− (j /∈ S),

(1.41)

and let γDF0,S ∈ C
N(N−1)/2 be given by

γj,k =

⎧⎪⎨
⎪⎩

γ+ (j, k ∈ S),
γ0 (j ∈ S, k /∈ S or vice versa),
γ− (j, k /∈ S).

(1.42)

Let

ẆDF0,S
N [F ] = {(α−, α+, β−, β+, γ−, γ0, γ+) ∈ C

7 :

(αDF0,S,βDF0,S,γDF0,S) ∈ V̇N [F ]}, (1.43)

where V̇N [F ] is defined by Eq. (1.34). Define, for (α−, α+, β−, β+, γ−, γ0, γ+) ∈
ẆDF0,S

N [F ],

İDF0,S
N [F ](α−, α+, β−, β+, γ−, γ0, γ+) = İN [F ](αDF0,S,βDF0,S,γDF0,S).

(1.44)
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Now let ẆDF,S
N [F ] denote the set of (α+, β+, γ+) ∈ C

3 such that γ+ 
= 0 and,
setting

γ− = γ−1
+ , α− = −γ−α+, β− = −γ−β+ (1.45)

— cf. [8, eq. A.2] — it is the case that (α−, α+, β−, β+, γ−,−1, γ+) ∈ ẆDF0,S
N [F ].

This is an open and dense subset of C
3. Let

İDF,S
N [F ](α+, β+, γ+) = İDF0,S

N [F ](−γ−1
+ α+, α+,−γ−1

+ β+, β+, γ−1
+ ,−1, γ+).

(1.46)

for (α+, β+, γ+) ∈ ẆDF,S
N [F ]. Set N+ = |S| and N− = N −N+.

Theorem 1.4. Fix γ+ ∈ C\{0, 1} and S ⊆ {1, . . . , N}. Suppose that

F ∈ DFSym(N, S, γ−1
+ (1− γ+)). (1.47)

Then, there exists an entire function IDF,S
N ;Reg[F ](α+, β+, γ+) : C

2
α+,β+

→ C such
that

İDF,S
N [F ](α+, β+, γ+) =

[∏
±

N±∏
j=1

sin(π(α± + β± + (N± + j − 2)γ±))

sin(π(α± + (j − 1)γ±)) sin(π(β± + (j − 1)γ±))

]

×IDF,S
N ;Reg[F ](α+, β+, γ+) (1.48)

when α−, β−, γ− are related to α+, β+, γ+ by Eq. (1.45), and the left-hand side
is well-defined.

If desired, it is possible to replace the sines with Γ-functions with appro-
priate integral shifts.

Example. When F = 1, Dotsenko and Fateev claim in [8, Eqs. A.8, A.35].1

that the integral above is given by

İDF,S
N [1](α+, β+, γ+) ∝ γ

2N−N+
∓

[ N±∏
j=1

e−iπ(j−1)γ± Γ(jγ±) sin(πjγ±)
Γ(γ±) sin(πγ±)

]

×
[ N∓∏

j=1

e−iπ(j−1)γ∓ Γ(jγ∓ −N±) sin(πjγ∓)
Γ(γ∓) sin(πγ∓)

]

[ N±∏
j=1

Γ(1 + α± + (j − 1)γ±)Γ(1 + β± + (j − 1)γ±)
Γ(2− 2N∓ + α± + β± + (N± − 2 + j)γ±)

]

×
[ N∓∏

j=1

Γ(1 + α∓ + (j − 1)γ∓ −N±)Γ(1 + β∓ + (j − 1)γ∓ −N±)
Γ(2−N± + α∓ + β∓ + (N∓ − 2 + j)γ∓)

]

(1.49)

for each choice of sign.

1There seem to be a couple typos in [8, Eq. A.35] Equation (1.49) has these fixed. The first
few cases of Eq. (1.49) have been numerically checked, so as to verify that the fixes are
correct.
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2. Associahedra

We use the term ‘mwc’ to mean manifold-with-corners in the sense of Melrose—
e.g. [20,26], these possessing C∞-structure. Roughly, a mwc is locally dif-
feomorphic to an open neighborhood of [0,∞)N , and there is an additional
requirement that boundary hypersurfaces be embedded. In this section, we
define the mwcs that will be used to resolve the singularities of Selberg- and
Dotsenko–Fateev-like integrands:

• in §2.1, we define the associahedra K�,m,n, used to meromorphically con-
tinue the Selberg-like integrals, and

• in §2.2 we define the mwcs A�,m,n, used to meromorphically continue the
DF-like integrals.

Since K0,N,0 is the usual N -dimensional associahedra, we refer to the mwcs
defined below as associahedra as well, hence the title of this section. If M
is a mwc, we use F(M) to denote the set of faces of M , where by faces we
mean only the boundary hypersurfaces. We use “facet” to refer to the higher
codimension boundary components.

It is worth comparing Melrose’s notion of mwc to that of polyhedron. A
mwc is locally a polyhedron, but the converse is not true, as the basic require-
ment of M being locally diffeomorphic to a relatively open neighborhood of
[0,∞)N means that every facet f � M is the intersection of at most N faces.
While the (closed) ball, tetrahedron, cube, and dodecahedron are all mwcs,
the octahedron and icosahedron are not. It is necessary for the argument in
§3 that the associahedra A�,m,n and K�,m,n are not just polyhedra, but rather
mwcs. The reason is that, since [0,∞)N is a product of half-closed intervals,
any mwc is locally diffeomorphic to a product of open or half-closed intervals.
This product structure is exploited in §3. In contrast, the octahedron is not, in
any reasonable sense, a product of one-dimensional manifolds-with-boundary
near its vertices.

To summarize, the notion of “mwc” used here plays a similar role in our
analysis to that of “polyhedra in general position” in [39, §10.7], but the notions
are not equivalent. For the purposes of this paper, we find it more natural (and
technically simpler, as it avoids the need for polyhedral realizations) to use the
language of mwcs.

We keep track of the full C∞-structure of these mwcs below. Were it
required, we could keep track of Cω- (i.e. real analytic) structure, but since
this would require going somewhat beyond the existent literature on mwcs,
and since this level of precision is not needed for the rest of the paper, we will
restrict ourselves to the smooth category.

If f is a facet of M , then the blowup [M ; f] is a mwc, and the blowdown
map

bd : [M ; f] →M (2.1)

is smooth. For convenience, we can identify the interior [M ; f]◦ with M◦. (If F
is a codimension ≤ 1 facet of M , then we can identify [M ; F] with M itself.)
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Naturally, if f has codimension ≥ 2, then

F([M ; f]) = {[F; f ∩ F] : F ∈ F(M)} ∪ {ff}, (2.2)

where ff = bd−1(f) is the front face of the blowup. Then, given boundary-
defining-functions (bdfs) xF ∈ C∞(M ; R+) of the faces F ∈ F(M), we can
choose bdfs x[F;f∩F], xff of the faces of [M ; f] such that, for each F ∈ F(M),

xF ◦ bd =

{
x[F;f∩F]xff (f ⊆ F),
x[F;f∩F] (otherwise).

(2.3)

(We identify polyhomogeneous—in particular, smooth—functions on [M ; f]
with their restrictions to the interior, so, going forwards, we can drop the
“◦bd.”) Specifically, in addition to defining x[F;f∩F] = xF if f 
⊆ F, we can take

xff =
∑

F∈F(M),f⊆F

xF, (2.4)

and, if f ⊆ F, then

x[F;f∩F] = xF

( ∑
F∈F(M),f⊆F

xF

)−1

. (2.5)

This follows from the analogous result for blowing up a facet of [0,∞)N . Note
that because M is a mwc and not just a polyhedron, if F1, . . . ,Fd ∈ F(M)
are distinct faces with ∩δFδ 
= ∅, then the connected components of ∩δFδ are
codimension d facets of M . (The 2D lens is an example of a mwc with two
faces whose intersection is disconnected.)

If U is an open subset of a mwc, then U can be considered as a mwc in
its own right. We will say that some function x ∈ C∞(U ; [0,∞)) is a bdf in U
of F ∈ F(M) if it is a bdf of the face F∩U of U , assuming that F∩U 
= ∅, in
which case it is automatically a face of U . Let Rt = Rt ∪ {−∞,+∞} denote
the “radial” compactification of R. This is a (C∞-)manifold-with-boundary,
with 1/t serving as a bdf for {∞} in {t > 0} and −1/t serving as a bdf for
{−∞} in {t < 0}.
2.1. The Associahedra K�,m,n

We now define the mwc K�,m,n for 
,m, n ∈ N not all zero. The blowup pro-
cedure below is a generalization of that in [23]. We begin with the set

��,m,n = {(x1, . . . , xN ) ∈ R
N

: x1 ≤ · · · ≤ x� ≤ 0
≤ x�+1 ≤ · · · ≤ x�+m ≤ 1 ≤ x�+m+1 ≤ · · · ≤ xN}, (2.6)

where N = 
 + m + n. This is a compact sub-mwc of R
N

. Naturally,

��,m,n
∼= ��,0,0 ×�0,m,0 ×�0,0,n. (2.7)

Also, ��,0,0
∼= ��, �0,m,0

∼= �m, and �0,0,n
∼= �n.

For example, in the case N = 2, we have six cases. These are �2,0,0,
�0,2,0,�0,0,2, each of which is diffeomorphic to the triangle �2, and �1,1,0,
�1,0,1,�0,1,1, each of which is diffeomorphic to the square �2.
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If 
, n = 0, in which case m = N , then ��,m,n is just the standard
N -simplex �N .

We call a subset I ⊆ Z/(N + 3)Z consecutive if it is of the form {k mod
(N +3), · · · , k+κ mod (N +3)Z} for some k ∈ Z/(N +3)Z and κ ∈ N. (Thus,
the empty set will not be considered consecutive.)

We label the facets (of any codimension, possibly zero) of ��,m,n using
(unordered) partitions I of Z/(N + 3)Z into consecutive subsets I, with no
two of 0, 
 + 1, 
 + m + 2 ∈ Z/(N + 3)Z appearing together in any element
I ∈ I. Specifically,

f0,I =

{
(x1, . . . , xN ) ∈ ��,m,n :

(
I ∈ I ⇒

{
j ∈ I ⇒ tj = ±∞ (0 ∈ I)

j, k ∈ I ⇒ tj = tk (0 /∈ I)

)}
, (2.8)

where
• tj = xj for j = 1, . . . , 
,
• t�+1 = 0,
• t�+1+j = x�+j for j = 1, . . . , m,
• t�+m+2 = 1, and
• t�+m+2+j = x�+m+j for j = 1, . . . , n.

The dimension of f0,I is given by

dim f0,I = |I| − 3. (2.9)

For notational simplicity, if I0 ⊆ I is I with the singletons removed, then we
define fI0 = f0,I. Thus, f∅ denotes the “bulk” of��,m,n, and the faces of��,m,n

are of the form f{I} for I a consecutive pair. Rephrasing Eq. (2.9),

codim fI =
∑
I∈I

(|I| − 1). (2.10)

As a bdf of f{I} for I = {k mod Z/(N +3)Z, k +1 mod Z/(N +3)} when
k ∈ {1, . . . , N + 1}, we can take

xf{I} = tk+1 − tk. (2.11)

For the remaining two cases of F{0,1} (which only exists if 
 ≥ 1) and f{N+2,N+3}
(which only exists if n ≥ 1), we can take xf{0,1} = −1/x1 and xf{N+2,N+3} =
1/xN .

Let F�,m,n = F�,m,n(�) denote the family of facets fI of ��,m,n such
that I = {I} for some consecutive subset I ⊂ Z/(N + 3)Z of size |I| ≥ 2 not
containing any two of 0, 
 + 1, 
 + m + 2. In other words, F�,m,n is the set of
facets fI for I defining a partition of Z/(N +3)Z into a single interval of length
at least two (not containing any two of 0, 
 + 1, 
 + m + 2) and a number of
singletons which are being omitted from the notation.

For each d ∈ {0, . . . , N}, let F�,m,n;d denote the set of elements of F�,m,n

of dimension d. Then, the mwc K�,m,n is defined by the iterated blowup

K�,m,n = [��,m,n; F�,m,n,0; · · · ; F�,m,n,N ] = [· · · [��,m,n; F�,m,n;0] · · · ; F�,m,n;N ].

(2.12)

I.e., we first blow up the elements of the collection F�,m,n;0 (which may be
empty, namely if 
,m, n are all nonzero), and then, proceeding from higher
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to lower codimension, iteratively blow up the lifts of the facets in F�,m,n;d

(meaning the closures of the lifts of the interiors).
We should check that the blowup Eq. (2.12) is well-defined, which con-

cretely means that, for each d, the blow-ups in the step in which we blow up
the lifts of the elements of F�,m,n;d commute. This can be done via a somewhat
tedious inductive argument, which we only sketch.

When the time has come to blow up the facets f 
= f ′ in the lifted F�,m,n;d,
their intersection is—if nonempty—either a point (which we denote K0,0,0) or
else an associahedron K�∩,m∩,n∩ (which will not change upon performing fur-
ther blowups) of dimension < N , and a neighborhood thereof is diffeomorphic
to

[0, 1)N−d
t ×K�∩,m∩,n∩ × [0, 1)N−d

t′ , (2.13)

with f corresponding to {t = 0} and f ′ corresponding to {t′ = 0}; the blowups
of these two faces in the product above commute, with the result being natu-
rally diffeomorphic to

[[0, 1)N−d
t , {0}]×K�∩,m∩,n∩ × [[0, 1)N−d

t′ ; {0}]. (2.14)

In order to prove the claimed decomposition, Eq. (2.13), it is first useful
to note when f ∩ f ′ = ∅. If I, I ′ satisfy |I| = N − d + 1 = |I ′| and I ∩ I ′ 
= ∅,
then the corresponding facets

f = cl[��,m,n;F�,m,n,0;··· ;F�,m,n,d−1]f
◦
{I} (2.15)

f ′ = cl[��,m,n;F�,m,n,0;··· ;F�,m,n,d−1]f
◦
{I′} (2.16)

of [��,m,n;F�,m,n,0; · · · ;F�,m,n,d−1] satisfy f ∩ f ′ = ∅. Indeed, I ∩ I ′ 
= ∅

implies

f{I} ∩ f{I′} = f{I∪I′} ∈ F�,m,n(�), (2.17)

and since this is blown up in an earlier stage of the construction, f and f ′

cannot intersect.
So, if our two facets f, f ′ to be blown up have nonempty intersection,

then they must be the lifts of f{I} and f{I′} for I, I ′ satisfying I ∩ I ′ = ∅.
The intersection f ∩ f ′ lies in the preimage of f{I} ∩ f{I′} = f{I,I′}. This facet
of ��,m,n is of the form ��∩,m∩,n∩ for 
∩ + m∩ + n∩ = 2d − N ≥ 0. As
seen inductively, the lift of this facet after performing the blow-ups so far is
K�∩,m∩,n∩ , although this is not crucial for the proof that the construction is
well-defined. Since this has dimension 2d−N , a neighborhood of this facet in
our partially blown-up manifold automatically has the form

L = [0, 1)2N−2d ×K�∩,m∩,n∩ , (2.18)

so it just needs to be checked that f, f ′ sit inside of this in the expected way.
The d-dimensional facets of L containing (0, · · · , 0) ×K�∩,m∩,n∩ all have the
form [0,∞)N−d × K�∩,m∩,n∩ for one of the

(
2N−2d
N−d

)
divisors [0,∞)N−d ⊆

[0,∞)2N−2d. Thus, we can decompose

[0, 1)2N−2d = [0, 1)#t × [0, 1)#
′

t′ × [0,∞)δ
t′′ , (2.19)
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Figure 3. The associahedra K1,1,0 (left) and K0,2,0 (right),
realized as polyhedra roughly in accordance with the blowup
procedure. In the first figure, the horizontal axis is roughly
w1 = 1/(1− x1), increasing to the right. In the second figure,
it is just (roughly) x1. In both figures, the vertical axis is
(roughly) x2

for some δ ∈ N, such that f corresponds to {t = t′′ = 0} and f ′ corresponds
to {t′ = t′′ = 0}. But, if δ 
= 0, then f ∩ f ′ is too big, so δ = 0. Thus, since
f, f ′ both have dimension d, it must be the case that # = #′ = N − d. This
completes our sketch.

We now discuss the combinatorial structure of K�,m,n. All of the faces of
��,m,n are in F�,m,n;N−1, so every face of K�,m,n is the front face of one of our
blowups. So, the faces of K�,m,n are in bijection with the elements of F�,m,n

and thus with I as above. Such a subset is uniquely specified by its endpoints
j, k ∈ Z/(N + 3)Z, since only two consecutive subsets of Z/(N + 3)Z have the
same endpoints as I, namely I itself and I� ∪ {j, k}, and the latter contains
two of 0, 
 + 1, 
 + m + 2. Let J�,m,n denote the set of unordered pairs {j, k}
arising in this way. For {j, k} ∈ J�,m,n, let I(j, k) = I(k, j) denote the unique
consecutive subset of Z/(N + 3)Z having these endpoints and containing at
most one member of {0, 
 + 1, 
 + m + 2}. For such j, k, let Fj,k = Fk,j denote
the corresponding face of K�,m,n, and let xFj,k

= xFk,j
denote a bdf of that

face constructed inductively as in the introduction to this section. (Note that
these bdfs may depend on the particular order in which the elements of the
F�,m,n;d are blown up.)

There are 2−1N(N + 3) faces in K�,m,n.

Example. Consider the case N = 2. Then, up to essential equivalence, the
cases to consider are K1,1,0 and K0,2,0. These are depicted in Fig. 3. The mwc
K1,1,0 is identical to A1,1,0; in §2.2 we introduce notation for labeling the faces
of the A�,m,n, and this notation appears in Fig. 4 alongside that used for the
K�,m,n.

We have introduced an additional notation for the faces of K�,m,n, indi-
cating I in the subscript using the following conventions:
• The elements 0, 
 + 1, 
 + m + 2 ∈ Z/5Z are depicted using a ‘◦,’ and 0 is

omitted if not included in I.
• The other elements of Z/5Z are depicted using a ‘•.’
• Except for 0, the elements of Z/5Z are depicted in order. If 0 is to be

depicted, it is listed either first or last.
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Figure 4. The mwc K1,1,1, with labeled faces, realized as a
polyhedron roughly in accordance with the blowup procedure.
Here w1 = 1/(1 − x1) and y3 = (x3 − 1)/x3. The faces in
the line of sight are F1,2 = F(•◦)•◦•, F1,3 = F(•◦•)◦•, F3,4 =
F•◦(•◦)•, F3,5 = F•◦(•◦•), and F0,5 = F•◦•◦(•◦)

Figure 5. The mwc K1,2,0, with labeled faces, realized as a
polyhedron roughly in accordance with the blowup procedure.
As above, w1 = 1/(1 − x1). The faces in the line of site are
F1,2 = F(•◦)••◦, F1,3 = F(•◦•)•◦, and F4,5 = F•◦•(•◦)

The elements included in I are enclosed in parentheses.

Example. Consider the case N = 3. Then, up to essential equivalence, the
cases to consider are K1,1,1, K1,2,0, and K0,3,0. These are depicted in Fig. 4,
Fig. 5, Fig. 6. The mwc K1,1,1 is identical to A1,1,1.

We have modified the “•” notation from the previous example and used
it to label the faces in the figures, alongside the notation used in the rest of this
section. For instance, when considering K0,3,0, “◦(• • •)◦” denotes {2, 3, 4} ⊂
Z/6Z. When considering K1,2,0, “◦(•◦•)•◦” denotes {1, 2, 3}. When considering
K1,1,1, “•) • ◦(•◦” denotes {0, 1, 5}.

The K�,m,n satisfy the following “universal property:”
• For any subsets S ⊆ {1, . . . , 
}, Q ⊆ {
 + 1, . . . , 
 + m}, R ⊆ {
 + m +

1, . . . , N} that are not all empty, let forg : ��,m,n → �|S|,|Q|,|R| denote
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Figure 6. The mwc K0,3,0, with labeled faces, realized as a
polyhedron roughly in accordance with the blowup procedure.
The faces in the line of sight are F4,5 = F◦••(•◦) and F3,5 =
F◦•(••◦). Cf. [23, Fig. 5.2], where the full blowup procedure is
depicted

the forgetful map forgetting the variables xj for j /∈ S ∪ Q ∪ R. Then,
forg lifts to a smooth b-map [26]

forg : K�,m,n → K|S|,|Q|,|R|. (2.20)

Given any face F of K|S|,|Q|,|R|, forg
∗
xF vanishes to first order at each

face in forg
−1

(F).
This can be proven by inducting on the number of blowups.

Proposition 2.1. Suppose that μ ∈ C∞(��,m,n; Ω��,m,n) is a strictly positive
smooth density on ��,m,n. Then, the lift of μ to K�,m,n has the form[ ∏

{j,k}∈J�,m,n

x
|j−k|−1
Fj,k

]
μ (2.21)

for a strictly positive μ ∈ C∞(K�,m,n; ΩK�,m,n). Here, for j, k ∈ Z/(N + 3)Z,
we use the notation |j − k| = min{|j0 − k0|, |k0 − j0| : j0, k0 ∈ Z : j0 ≡
j mod (N + 3), k0 ≡ k mod (N + 3)}.

In the product, each unordered pair is counted only once.

Proof. We recall the following lemma:
• Suppose that M is a mwc and μ ∈ C∞(M ; ΩM) is a strictly positive

smooth density on M . Then, if f is a facet of M of codimension d ∈ N
+,

the lift of μ to [M ; f] has the form xd−1
ff ν and ν a strictly positive smooth

density on [M ; f].
Working in local coordinates, this follows from the case of blowing up a facet
in [0,∞)N . In this case, we can use cylindrical coordinates (that is, spherical
coordinates if the facet we are blowing up is the corner). The result follows
from the form of the Lebesgue measure in cylindrical coordinates.
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The proposition follows from an inductive application of the lemma, once
we note that |j − k| is the codimension of Fj,k. �

Proposition 2.2. The Lebesgue measure on R
N , which defines a strictly positive

smooth density on �◦
�,m,n, has the form

[ �∏
j=1

(1− xj)2
][ N∏

j=�+m+1

x2
j

]
μ (2.22)

for μ ∈ C∞(��,m,n; Ω��,m,n) a strictly positive smooth density on ��,m,n.

Proof. It is the case that the 1-form dxj ∈ Ω1�◦
�,m,n defines an extendable

1-form on ��,m,n if j ∈ {
 + 1, · · · , 
 + m}, and the extension is nonvanishing.
The same holds for

• dwj = (1− xj)−2 dxj for wj = 1/(1− xj) if j ∈ {1, . . . , 
} and
• dyj = x−2

j dxj for yj = (xj − 1)/xj if j ∈ {
 + m + 1, · · · , N},
since ��,m,n is a submanifold of R

N
. The μ in Eq. (2.22) can therefore be

taken to be |dw1 ∧ · · · ∧ dw� ∧ dx�+1 ∧ · · · ∧ dx�+m ∧ dy�+m+1 ∧ · · · ∧ dyN |,
which lies in C∞(��,m,n; Ω��,m,n) and is strictly positive. �

We now record the results of lifting the factors xi, 1 − xi, and xj − xk

comprising the Selberg integrand to K�,m,n. Beginning with the first two cases:

• If i ∈ {1, . . . , 
}, then

−xi ∈
[ N+3∏

j=�+m+3

�∏
k=i

x−1
Fj,k

][ i∏
j=1

�+m+1∏
k=�+1

xFj,k

]
C∞(K�,m,n; R+), (2.23)

1− xi ∈
[ N+3∏

j=�+m+3

�∏
k=i

x−1
Fj,k

]
C∞(K�,m,n; R+). (2.24)

• If i ∈ {
 + 1, . . . , 
 + m}, then

xi ∈
[ �+1∏

j=1

�+m+1∏
k=i+1

xFj,k

]
C∞(K�,m,n; R+), (2.25)

1− xi ∈
[ i+1∏

j=�+2

N+2∏
k=�+m+2

xFj,k

]
C∞(K�,m,n; R+). (2.26)

• If i ∈ {
 + m + 1, . . . , N}, then

xi ∈
[ i+2∏

j=�+m+3

�∏
k=0

x−1
Fj,k

]
C∞(K�,m,n; R+), (2.27)

−(1 − xi) ∈
[ i+2∏

j=�+m+3

�∏
k=0

x−1
Fj,k

][ �+m+2∏
j=�+2

N+2∏
k=i+2

xFj,k

]
C∞(K�,m,n; R+). (2.28)
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If N = 1, then these are all trivial to prove. By applying the universal property
of the associahedra, the N ≥ 2 case follows from the N = 1 case.

In a similar manner, by working out the case of K0,2,0 in detail and
applying the universal property, we get, for k > j:
• If j, k ∈ {
 + 1, . . . , 
 + m}, then

xk − xj ∈
[ �+1∏

j0=1

�+m+1∏
k0=k+1

xFj0,k0

][ j+1∏
j0=�+2

N+2∏
k0=k+1

xFj0,k0

]
C∞(K�,m,n; R+).

(2.29)

Indeed, in the case of 
, n = 0 and m = 2, this says that x2 − x1 ∈ xF1,3xF2,3

xF2,4C
∞(K0,2,0; R+). Indeed, if we construct K0,2,0 by first blowing up F1,3

and then blowing up F2,4, we get

xF1,3 = x2, xF2,3 =
x2 − x1

2x2 − x2
2 − x1

, xF2,4 =
2x2 − x2

2 − x1

x2
,

(2.30)

so that xF1,3xF2,3xF2,4 = x2−x1, on the nose. On the other hand, if we reverse
the order of the blowups, then we get

xF1,3 =
x2 − x2

1

1− x1
, xF2,3,0 =

x2 − x1

x2 − x2
1

, xF2,4 = 1− x1, (2.31)

so we still get xF1,3xF2,3xF2,4 = x2 − x1.
From this, we can deduce the following.

• If j, k ∈ {1, . . . , 
}, then, in terms of wi = −xi/(1 − xi), (xk − xj) =
(1− wj)−1(1− wk)−1(wj − wk), so,

xk − xj ∈
[ �∏

j0=j

N+3∏
k0=�+m+3

x−1
Fj0,k0

][ j∏
j0=1

�+m+1∏
k0=k

xFj0,k0

]
C∞(K�,m,n; R+).

(2.32)

• If j, k ∈ {
 + m + 1, . . . , N}, then, in terms of yi = 1/xi, (xk − xj) =
y−1

j y−1
k (yj − yk), so

xk − xj ∈
[ j+2∏

j0=�+2

N+2∏
k0=k+2

xFj0,k0

][ k+2∏
j0=�+m+3

�∏
k0=0

x−1
Fj0,k0

]
C∞(K�,m,n; R+).

(2.33)

The next three follow from the K1,1,0, K1,0,1, and K0,1,1 cases. We illus-
trate the K1,1,0 case, and the others are similar.
• If j ∈ {1, . . . , 
} and k ∈ {
 + 1, . . . , 
 + m}, then (xk − xj) = (1 −

wj)−1(wj + xk − xkwj), so

xk − xj ∈
[ �∏

j0=j

N+3∏
k0=�+m+3

x−1
Fj0,k0

][ j∏
j0=1

�+m+1∏
k0=k+1

xFj0,k0

]
C∞(K�,m,n; R+).

(2.34)
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In the case 
,m = 1, n = 0, this says that (x2−x1) ∈ x−1
F1,5

xF1,3C
∞

(K1,1,0; R+). Indeed, the bdf xF1,3 of F1,3 in K1,1,0 is defined by:

xF1,3 = (1− w1) + x2 = − x1

1− x1
+ x2, (2.35)

and xF1,5 = xF0,1 = w1 = 1/(1− x1). So,

x−1
F1,5

xF1,3 = x2 − x1 − x1x2. (2.36)

The supposed C∞(K1,1,0; R+) term above is therefore (x2−x1)(x2−x1−
x1x2)−1 = (1−x2x1/(x2−x1))−1. One way (besides checking in a system
of local coordinate charts) to see that this is smooth (and positive) on
K1,1,0 is the identity

− x2x1

x2 − x1
=

xF1,2xF1,3xF2,3

xF1,2 + xF2,3xF0,1

. (2.37)

The faces F0,1,F2,3 are disjoint from F1,2 (see Fig. 3), so the denominator
on the right-hand side of Eq. (2.37) is nonvanishing, so the quotient is
indeed smooth.

Likewise,
• If j ∈ {
 + 1, . . . , 
 + m} and k ∈ {
 + m + 1, . . . , N}, then (xk − xj) =

y−1
k (1− xjyk), so

xk − xj ∈
[ j+1∏

j0=�+2

N+2∏
k0=k+2

xFj0,k0

][ �∏
j0=0

k+2∏
k0=�+m+3

x−1
Fj0,k0

]
C∞(K�,m,n; R+).

(2.38)

• If j ∈ {1, . . . , 
} and k ∈ {
 + m + 1, . . . , N}, then (xk − xj) = y−1
k (1 −

wj)−1(1− wj + wjyk), so

xk − xj ∈
[ �∏

j0=j

N+3∏
k0=k+3

x−1
Fj0,k0

][ �∏
j0=0

k+2∏
k0=�+m+3

x−1
Fj0,k0

]
C∞(K�,m,n; R+).

(2.39)

We associate to each face F• ∈ F(K�,m,n) an affine functional

ρ• : C
2N+N(N−1)/2 � (α,β,γ) �→ ρ•(α,β,γ) ∈ C. (2.40)

Suppose that we are given some α,β ∈ C
N and γ = {γj,k = γk,j}1≤j<k≤N ∈

C
N(N−1)/2. If one of
(I) j, k ∈ {1, . . . , 
}

(II) j, k ∈ {
 + 2, . . . , 
 + m + 1},
(III) j, k ∈ {
 + m + 3, . . . , N + 2}
holds, then, letting k denote the larger of {j, k},

ρj,k = k − j + 2
∑

j′≤j0<k0≤k′
γj0,k0 , (2.41)

where, for each i ∈ {j, k}, i′ = i if i ∈ {1, . . . , 
}, i′ = i− 1 if i ∈ {
+2, . . . , 
+
m + 1}, and i′ = i− 2 if i ∈ {
 + m + 3, . . . , N + 2}. The other cases are:
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• If j ∈ {1, . . . , 
 + 1} and k ∈ {
 + 1, . . . , 
 + m + 1} and j 
= k, then

ρj,k = k − j − 1 +
�∑

i=j

αi +
k∑

i=�+2

αi−1 + 2
∑

j≤j0<k0≤k−1

γj0,k0 . (2.42)

• If j ∈ {
 + 2, . . . , 
 + m + 2} and k ∈ {
 + m + 2, . . . , N + 2} and j 
= k,
then

ρj,k = k − j − 1 +
�+m+1∑

i=j

βi−1 +
k∑

i=�+m+3

βi−2 + 2
∑

j−1≤j0<k0≤k−2

γj0,k0 .

(2.43)

• If j ∈ {0, . . . , 
} and k ∈ {
 + m + 3, . . . , N + 3} and at least one of
j 
= 0, k 
= N + 3 holds, then

ρj,k = k − j − N − 4 −
j∑

i=1

αi −
j∑

i=1

βi −
N+2∑
i=k

αi−2 −
N+2∑
i=k

βi−2 − 2

j∑
j′=1

N∑
i=1,i�=j′

γi,j′

−2
N∑

k′=k−2

N∑
i=1,i�=k′−2

γi,k′ + 2
∑

1≤j′<k′≤j

γj′,k′

+2
∑

k−2≤j′<k′≤N

γj′,k′ + 2

j∑
j′=1

N∑
k′=k−2

γj′,k′ . (2.44)

Proposition 2.3. Given any α,β ∈ C
N and γ = {γj,k = γk,j}1≤j<k≤N ∈

C
N(N−1)/2, the Selberg-like integrand

N∏
i=1

|xi|αi |1 − xi|βi
∏

1≤j<k≤N

(xk − xj)
2γj,k |dx1 · · · dxN | ∈ C∞(�◦

�,m,n; Ω�◦
�,m,n)

(2.45)

lifts, via the blowdown map bd : K�,m,n →��,m,n, to an extendable density of
the form

[ ∏
{j,k}∈J�,m,n

x
ρj,k

Fj,k

]
μ�,m,n(α,β,γ), (2.46)

for some strictly positive smooth density μ�,m,n(α,β,γ) ∈ C∞(K�,m,n;
ΩK�,m,n), depending entirely on α,β,γ.

Proof. Each ρj,k is an affine function of α,β,γ, so it suffices to check 2N +
N(N−1)/2+1 cases, the case when all three of α,β,γ are zero and 2N+N(N−
1)/2 cases where the triple (α,β,γ) ranges over a basis of C

2N+N(N−1)/2.
Write

ρj,k(α,β,γ) = ρ
(0)
j,k + ρ

(1)
j,k(α,β,γ), (2.47)
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where ρ
(0)
j,k = ρj,k(0,0,0) and ρ

(1)
j,k(α,β,γ) = ρj,k(α,β,γ) − ρ

(0)
j,k is the linear

part of ρj,k. Thus, we want to show that, upon lifting to K�,m,n,

|dx1 · · · dxN | ∈
[ ∏

{j,k}∈J�,m,n

x
ρ
(0)
j,k

Fj,k

]
C∞(K�,m,n; ΩK�,m,n), (2.48)

N∏
i=1

|xi|αi |1− xi|βi

∏
1≤j<k≤N

(xk − xj)2γj,k

∈
[ ∏

{j,k}∈J�,m,n

x
ρ
(1)
j,k(α ,β ,γ )

Fj,k

]
C∞(K�,m,n; R+), (2.49)

with it sufficing to check Eq. (2.49) on a basis of C
2N+N(N−1)/2.

• Equation (2.48) is simply a restatement of Proposition 2.2.
• For a basis of C

2N+N(N−1)/2, we look at (α,β,γ) such that all of the
components α1, . . . , αN , β1, . . . , βN , γ1,2, · · · of α,β,γ are all 0 except
for one, which we set to 1. The result then follows, via a bit of algebra,
from Eq. (2.23) through Eq. (2.39). �

Let T(
,m, n) denote the collection of maximal families I of consecutive
subsets I � Z/(N + 3)Z such that
• 2 ≤ |I| ≤ N + 1 for all I ∈ I,
• no two of 0, 
 + 1, 
 + m + 2 are in any I ∈ I together, and
• if I, I ′ ∈ I satisfy I ∩ I ′ 
= ∅, then either I ⊆ I ′ or I ′ ⊆ I.

The elements of T(
,m, n) can be thought of as specifying valid ways of adding
parentheses to group together the elements of Z/(N + 3)Z without grouping
any of 0, 
+1, 
+m+2 together. The minimal facets of K�,m,n are in bijective
correspondence with the elements of T(
,m, n), with

fI =
⋂

I(j,k)∈I

Fj,k (2.50)

the facet corresponding to I.

2.2. The Associahedra A�,m,n

We now define the mwc A�,m,n for 
,m, n ∈ N not all zero. We begin with the
N = 
 + m + n hypercube �N = [0, 1]N . Parametrizing �N by (t1, . . . , tN ),
the hypercube is identified with

[−∞, 0]�x1,...,x�
× [0, 1]mx�+1,...,x�+m

× [1,∞]nx�+m+1,...,xN
(2.51)

via the coordinate changes ti = 1/(1− xi) for xi ∈ [−∞, 0] and i ∈ {1, . . . , 
}
and ti = (xi − 1)/xi for xi ∈ [1,∞] and i ∈ {
 + m + 1, . . . , N}.

The facets of �N we label by sextuples (S,Q, S′, Q′, S′′, Q′′) consisting
of (possibly empty) subsets S,Q ⊆ {1, . . . , 
}, S′, Q′ ⊆ {
 + 1, . . . , 
 + m}, and
S′′, Q′′ ⊆ {
 + m + 1, . . . , N} such that S ∩Q = S′ ∩Q′ = S′′ ∩Q′′ = ∅. Let

FS,Q,S′,Q′,S′′,Q′′ =
{

(t1, . . . , tN ) ∈ �N :
j ∈ S ∪ S′ ∪ S′′ ⇒ tj = 0
j ∈ Q ∪Q′ ∪Q′′ ⇒ tj = 1

}
. (2.52)
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For instance, �N = F∅,∅,∅,∅,∅,∅.
Now let F�,m,n = F�,m,n(�) denote the family of facets defined by

F�,m,n = ({FS,∅,∅,∅,∅,Q′′}S,Q′′ ∪ {F∅,Q,S′,∅,∅,∅}Q,S′

∪{F∅,∅,∅,Q′,S′′,∅}Q′,S′′)\{�N} (2.53)

where S, S′, S′Q,Q′, Q′′ range over all subsets as above. For each d ∈ {0, . . . , N−
1}, let F�,m,n;d denote the set of elements of F�,m,n of dimension d. Then,
A�,m,n is defined by the iterated blowup

A�,m,n = [�N ;F�,m,n] = [�N ;F�,m,n;0; · · · ;F�,m,n;N−1]. (2.54)

As in the previous section, we should check that, for each d = 1, . . . , N ,
having already blown up F�,m,n;d0 for d0 < d, the blowups of the closures of
the lifts of the interiors of all of the F ∈ F�,m,n;d all commute. One way to see
this is to split

�N =
⋃

S,S′,S′′
��,m,n(S, S′, S′′), (2.55)

where S varies over all subsets of {1, . . . , 
}, S′ varies over all subsets of {
 +
1, . . . , 
 + m}, and S′′ varies over all subsets of {
 + m + 1, . . . , N}, and

��,m,n(S, S′, S′′) =
{

(t1, . . . , tN ) ∈ �N :
i ∈ S ∪ S′ ∪ S′′ ⇒ ti ∈ [0, 2/3)
i /∈ S ∪ S′ ∪ S′′ ⇒ ti ∈ (1/3, 1]

}
.

(2.56)

Once we have established that blowing up F�,m,n;0, · · · ,F�,m,n;d−1 is fine, then

[�N ;F�,m,n;0; · · · ;F�,m,n;d−1]

=
⋃

S,S′,S′′
[��,m,n(S, S′, S′′);F�,m,n;0; · · · ;F�,m,n;d−1] (2.57)

naturally, with the left-hand side being well-defined if the right-hand side
is. Thus, it suffices to check that the blowups [��,m,n(S, S′, S′′);F�,m,n;0; · · · ;
F�,m,n;d] are all well-defined. To see this, identify

��,m,n(S, S′, S′′) =
([

0,
2
3

)S

{ti}i∈S

×
(1

3
, 1
](S′′)�

{ti}i∈(S′′)�

)

×
([

0,
2
3

)S′

{ti}i∈S′
×
(1

3
, 1
]S�

{ti}i∈S�

)

×
([

0,
2
3

)S′′

{ti}i∈S′′
×
(1

3
, 1
](S′)�

{ti}i∈(S′)�

)
(2.58)

and note that the blowup prescription is just that of performing the total
boundary (tb) blowup [20] on each of the three factors. (Note that this is not
the same as the total boundary blowup of the product of the factors.) Here,

• S� = {1, . . . , 
}\S,
• (S′)� = {
 + 1, . . . , 
 + m}\S′,
• and (S′′)� = {
 + m + 1, . . . , N}\S′′.



E. Sussman Ann. Henri Poincaré

Figure 7. The 3-cube �3 and the three blowups A1,1,1 =
K1,1,1, A1,2,0, A0,3,0 thereof. The ��,m,n(S, S′, S′′) are eight
subcubes corresponding to the eight vertices of �3. One such
cube is depicted in red

Figure 8. The eleven faces of A1,2,0 and the fourteen faces
of A0,3,0

Thus,

A�,m,n =
⋃

S,S′,S′′

[([
0,

2
3

)S

×
(1

3
, 1
](S′′)�)

tb

×
([

0,
2
3

)S′

×
(1

3
, 1
]S�)

tb
×
([

0,
2
3

)S′′

×
(1

3
, 1
](S′)�)

tb

]
.

(2.59)

The faces of A�,m,n are in bijection with the elements of F�,m,n. We label
the faces of A�,m,n as follows:
• for S ⊆ {1, . . . , 
} and Q ⊆ {
 + m + 1, . . . , N}, the face corresponding

to FS,∅,∅,∅,∅,Q is labeled as FS,Q;∞ = FQ,S;∞,
• for Q ⊆ {1, . . . , 
} and S ⊆ {
 + 1, . . . , 
 + m}, the face corresponding to

F∅,Q,S,∅,∅,∅ is labeled as FS,Q;0 = FQ,S;0, and
• for S ⊆ {
 + m + 1, . . . , N} and Q ⊆ {
 + 1, . . . , 
 + m}, the face corre-

sponding to F∅,∅,∅,Q,S,∅ is labeled as FS,Q;1 = FQ,S;1.
Here, S,Q are not allowed to both be empty.

For any subsets S ⊆ {1, . . . , 
}, Q ⊆ {
 + 1, . . . , 
 + m}, R ⊆ {
 + m +
1, . . . , N} that are not all empty, let forg : ��,m,n → �|S|,|Q|,|R| denote the
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forgetful map forgetting the coordinates xi for i /∈ S ∪Q ∪R, Then, forg lifts
to a smooth b-map

forg : A�,m,n → A|S|,|Q|,|R|, (2.60)

and given any face F of A|S|,|Q|,|R|, the pullback forg
∗
xF vanishes to first order

at each face F0 satisfying

F0 ⊆ forg
−1

(F). (2.61)

This is the “universal property” of the A�,m,n. Via the decomposition in Eq.
(2.59), it follows from the corresponding universal property of the total bound-
ary blowup of a product, which is essentially given by Proposition B.2.

Proposition 2.4. Suppose that μ is a strictly positive smooth density on ��,m,n.
Then, the lift of μ to A�,m,n has the form:[ ∏

S⊆{1,...,�}
Q⊆{�+m+1,...,N}

x
|S∪Q|−1
FS,Q;∞

][ ∏
S⊆{1,...,�}

Q⊆{�+1,...,�+m}

x
|S∪Q|−1
FS,Q;0

]

[ ∏
S⊆{�+1,...,�+m}

Q⊆{�+m+1,...,N}

x
|S∪Q|−1
FS,Q;1

]
μ (2.62)

for a strictly positive smooth density μ ∈ C∞(A�,m,n; ΩA�,m,n) on A�,m,n.

As a notational convenience, we are setting xF∅,∅;x0
= 1 for each x0 ∈

{0, 1,∞}.
Proof. Follows via induction on the number of blowups, as in the proof of
Proposition 2.1. �

Proposition 2.5. The Lebesgue measure on R
N , which defines a strictly positive

smooth density on �◦
�,m,n, has the form

[ �∏
j=1

(1− xj)2
][ N∏

j=�+m+1

x2
j

]
μ (2.63)

for some strictly positive smooth density μ ∈ C∞(��,m,n; Ω��,m,n) on ��,m,n.

Proof. Follows from the same computation as in Proposition 2.2. �

Proposition 2.6. For each pair of distinct i, j ∈ {1, . . . , N} such that either
i, j ∈ {1, . . . , 
}, i, j ∈ {
 + 1, . . . , 
 + m}, or i, j ∈ {
 + m + 1, . . . , N}, the set
Hj,k = clA�,m,n

{p ∈ �◦
�,m,n : xj = xk} is a p-submanifold of A�,m,n.

See [29, §1.2] for the definition of “p-submanifold.”

Proof. Consider the neighborhood bd−1(��,m,n(S, S′, S′′)) ⊆ A�,m,n. If one
of j, k is in S ∪ S′ ∪ S′′ and the other is not, then the intersection of Hj,k

with bd−1(��,m,n(S, S′, S′′)) is a submanifold disjoint from the boundary and
therefore a p-submanifold. It therefore suffices to consider the case when j, k ∈
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S ∪ S′ ∪ S′′ (and the case when neither are in S ∪ S′ ∪ S′′ is similar). For
notational simplicity, we only consider the case when j, k ∈ S′. Then,

Hj,k ∩ bd−1(��,m,n(S, S′, S′′))

=
([

0,
2
3

)S

×
(1

3
, 1
](S′′)�)

tb
×
(
H̃j,k ∩

([
0,

2
3

)S′

×
(1

3
, 1
]S�)

tb

)
×
([

0,
2
3

)S′′

×
(1

3
, 1
](S′)�)

tb
, (2.64)

where H̃j,k is the closure of {xj = xk} in ([0, 2/3)S′ × (1/3, 1]S
�
)tb, which is

a p-submanifold [29] (this also follows from Proposition B.1). Thus, Hj,k ∩
bd−1(��,m,n(S, S′, S′′)) is a p-submanifold of bd−1(��,m,n(S, S′, S′′)). As the
neighborhoods bd−1(��,m,n(S, S′, S′′)) cover A�,m,n, the conclusion follows.

�

This result is illustrated in Fig. 9.
We now record the results of lifting xi and 1− xi to A�,m,n, these being

derivable via the universal property.

• If i ∈ {1, . . . , 
}, then

−xi ∈
[ ∏

i∈Q⊆{1,...,�}
S⊆{�+m+1,...,N}

x−1
FS,Q;∞

][ ∏
i∈S⊆{1,...,�}

Q⊆{�+1,...,�+m}

xFS,Q;0

]
C∞(A�,m,n; R+),

(2.65)

(1− xi) ∈
[ ∏

i∈Q⊆{1,...,�}
S⊆{�+m+1,...,N}

x−1
FS,Q;∞

]
C∞(A�,m,n; R+). (2.66)

• If i ∈ {
 + 1, . . . , 
 + m}, then

xi ∈
[ ∏

S⊆{1,...,�}
i∈Q⊆{�+1,...,�+m}

xFS,Q;0

]
C∞(A�,m,n; R+), (2.67)

(1− xi) ∈
[ ∏

i∈S⊆{�+1,...,�+m}
Q⊆{�+m+1,...,N}

xFS,Q;1

]
C∞(A�,m,n; R+). (2.68)

• If i ∈ {
 + m + 1, . . . , N}, then

xi ∈
[ ∏

i∈S⊆{�+m+1,...,N}
Q⊆{1,...,�}

x−1
FS,Q;∞

]
C∞(A�,m,n; R

+), (2.69)

−(1 − xi) ∈
[ ∏

S⊆{�+1,...,�+m}
i∈Q⊆{�+m+1,...,N}

xFS,Q;1

][ ∏
i∈S⊆{�+m+1,...,N}

Q⊆{1,...,�}

x−1
FS,Q;∞

]
C∞(A�,m,n; R

+).

(2.70)

Let I1 = {1, . . . , 
}, I2 = {
+1, . . . , 
+m}, and I3 = {
+m+1, . . . , N}.
For j, k ∈ I• for the same • ∈ {1, 2, 3}, let yj,k denote a defining function of
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Hj,k, with the sign chosen so as to have the same sign as xj − xk. Then, for
all distinct j, k ∈ {1, . . . , N},

(xj − xk) ∈ Yj,kXj,kC∞(A�,m,n; R+), (2.71)

where Xj,k = Xk,j is given by

Xj,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∏
S⊆I3

j∈Q⊆I1 or k∈Q⊆I1

x−1
FS,Q;∞

][∏
j,k∈S⊆I1

Q⊆I2

xFS,Q;0

]
(j, k ∈ I1),

[∏
S⊆I1

j,k∈Q⊆I2

xFS,Q;0

][∏
j,k∈S⊆I2

Q⊆I3

xFS,Q;1

]
(j, k ∈ I2),

[∏
S⊆I2

j,k∈Q⊆I3

xFS,Q;1

][∏
j∈S⊆I3 or k∈S⊆I3

Q⊆I1

x−1
FS,Q;∞

]
(j, k ∈ I3),

[∏
j∈S⊆I1
Q⊆I3

x−1
FS,Q;∞

][∏
j∈S⊆I1
k∈Q⊆I2

xFS,Q;0

]
(j ∈ I1, k ∈ I2),

[∏
S⊆I1

k∈Q⊆I3

x−1
FS,Q;∞

][∏
j∈S⊆I2
k∈Q⊆I3

xFS,Q;1

]
(j ∈ I2, k ∈ I3),

[∏
S⊆I1,Q⊆I3

{j,k}∩S∪Q�=∅

x−1
FS,Q;∞

]
(j ∈ I3, k ∈ I1),

(2.72)

and Yj,k = yj,k if, for some • ∈ {1, 2, 3}, we have j, k ∈ I•, and Yj,k = ±1
otherwise.

We associate to each face F• ∈ F(A�,m,n) an affine functional

�• : C
2N+N(N−1)/2 � (α,β,γ) �→ �F•(α,β,γ) ∈ C. (2.73)

Suppose that we are given some α,β ∈ C
N and γ = {γj,k = γk,j}1≤j<k≤N ∈

C
N(N−1)/2. Then, �•(α,β,γ) is defined as follows:
• For S ⊆ {1, . . . , 
} and Q ⊆ {
 + 1, . . . , 
 + m},

�S,Q;0 = |S|+ |Q| − 1 +
∑

j∈S∪Q

αj + 2
∑

j,k∈S∪Q
j>k

γj,k. (2.74)

• For S ⊆ {
 + 1, . . . , 
 + m} and Q ⊆ {
 + m + 1, . . . , N},
�S,Q;1 = |S|+ |Q| − 1 +

∑
j∈S∪Q

βj + 2
∑

j,k∈S∪Q
j>k

γj,k. (2.75)

• For S ⊆ {
 + m + 1, . . . , N} and Q ⊆ {1, . . . , 
},
�S,Q;∞ = −|S| − |Q| − 1−

∑
j∈S∪Q

αj −
∑

j∈S∪Q

βj − 2
∑
j>k

j∈S∪Q or k∈S∪Q

γj,k.

(2.76)

Then, letting Δ ⊂ ��,m,n be defined by Δ = ∪3
•=1 ∪j �=k,j,k∈I• {xj = xk}:

Proposition 2.7. Given any α,β ∈ C
N and γ = {γj,k = γk,j}1≤j<k≤N ∈

C
N(N−1)/2,

N∏
i=1

|xi|αi |1− xi|βi

∏
1≤j<k≤N

(xk − xj + i0)2γj,k |dx1 · · · dxN | ∈ C∞(�◦
�,m,n\
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Δ; C⊗ Ω(�◦
�,m,n\Δ)) (2.77)

lifts, via the blowdown map bd : A�,m,n → ��,m,n, to[ ∏
S⊆{1,...,�}

Q⊆{�+1,...,�+m}

x
�S,Q;0
FS,Q;0

]

[ ∏
S⊆{�+1,...,�+m}

Q⊆{�+m+1,...,N}

x
�S,Q;1
FS,Q;1

][ ∏
S⊆{�+m+1,...,N}

Q⊆{1,...,�}

x
�S,Q;∞
FS,Q;∞

][ ∏
1≤j<k≤�

(yk,j + i0)2γj,k

]

×
[ ∏

�+1≤j<k≤�+m

(yk,j + i0)2γj,k

][ ∏
�+m+1≤j<k≤N

(yk,j + i0)2γj,k

]
μ�,m,n

(2.78)

for some strictly positive smooth density μ�,m,n ∈ C∞(A�,m,n; ΩA�,m,n) on
A�,m,n, depending entirely on α,β,γ.

Proof. Follows from the preceding computations, along with Proposition 2.5.
�

If M is an orientable mwc, we say that a collection P of interior p-
submanifolds each of codimension one is consistently orientable if we can
choose an orientation on each such that, for any p ∈M , the subset∑

P∈P,p∈P

++N∗
p P ⊂ T ∗

p M (2.79)

does not contain zero, where ++N∗P ⊂ +N∗P ⊂ T ∗M is the induced posi-
tively oriented conormal bundle, sans the zero section, and T ∗M is the extend-
able cotangent bundle of M . Whether or not this holds does not depend on the
choice of orientation of M . Choosing defining functions {yP }P∈P ⊂ C∞(M ; R)
for the P ∈ P such that

dyP (p) ∈ +N∗
p P (2.80)

for each p ∈ P , we say that the {yP }P∈P are consistently oriented defining
functions.

Example. In �◦
0,3,0 = (0, 1)3, consider P = {H◦

1,2,H
◦
2,3,H

◦
3,1}. The functions

x2 − x1, x3 − x2, x1 − x3 are not consistently oriented defining functions, as

0 = d(x2 − x1) + d(x3 − x2) + d(x1 − x3), (2.81)

but x2 − x1, x3 − x2, and x3 − x1 are.

Let

P = {Hj,k}j,k∈I1,j �=k ∪ {Hj,k}j,k∈I2,j �=k ∪ {Hj,k}j,k∈I3,j �=k. (2.82)

Proposition 2.8. The collection P defined by Eq. (2.82) is consistently ori-
entable, and {yk,j}j<k is a set of consistently oriented defining functions.
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Figure 9. The sets Hj,k ∈ P in A1,2,0 and A0,3,0. Pictured
are H1,2, H1,3, and H2,3, where the axes are oriented as in
Fig. 7. In A0,3,0, the intersection H1,2 ∩H1,3 ∩H2,3 has been
indicated with an extra dashed line

Proof. We will show that, for any p ∈ A�,m,n and {λj,k}p∈Hj,k∈P ∈ [0,∞), if
the 1-form ∑

Hj,k∈P s.t. p∈Hj,k

λj,kdyk,j ∈ Ω1(A�,m,n) (2.83)

vanishes at p, then λj,k = 0 for all Hj,k ∈ P such that p ∈ Hj,k. Put differently,
we want to show that if P is any partition of {1, . . . , N} into nonempty subsets
S ⊂ I1, I2, I3, then, given any {λj,k}j,k∈S∈P,j<k ⊂ R

≥0 not all zero, then
∑

j,k∈S∈P
j<k

λj,k dyk,j (2.84)

is nonvanishing on ∩j,k∈S∈P,j<kHj,k. If P consists only of singletons, then this
is vacuously true, so it suffices to consider the case when at least one member
of P has cardinality > 1.

This is certainly true for p ∈ �◦
�,m,n, as dyk,j ∝ dxk − dxj on �◦

�,m,n ∩
Hj,k, where the coefficient of proportionality is positive. Indeed, by the results
above,

xk − xj = fj,kyk,j (2.85)

for some fj,k ∈ C∞(A�,m,n; R≥0) that is nonvanishing in the interior, so

dyk,j = f−1
j,k (dxk − dxj)− f−1

j,k yk,j dfj,k (2.86)

in �◦
�,m,n, which is equal to f−1

j,k (dxk− dxj) on Hj,k ∩�◦
�,m,n, as claimed. This

argument does not work for p ∈ ∂A�,m,n, as fj,k may vanish there.
A homogeneity argument can be used to show that, for any p ∈ ∂A�,m,n,

there exists a tubular neighborhood T : U → U0 of a neighborhood U0 ⊂ F0 of
p in F0, where F0 is the smallest facet containing p, such that the intersections
U ∩ P of this neighborhood with the P ∈ P are all vertical subsets, meaning
of the form T−1(B) for some B ⊂ U0. This implies that if the 1-form above
vanishes at p, then it also vanishes on the fiber of the tubular neighborhood
over p and hence somewhere in �◦

�,m,n ∩ (
⋂

Hj,k�p Hj,k). �
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We illustrate the preceding argument with an example. Consider the case
when the only one of 
,m, n that is nonzero is m, and consider p ∈ ∩Hj,k∈PHj,k.
The set ∩Hj,k∈PHj,k ⊂ A0,N,0 (the “small diagonal”) is a p-submanifold lo-
cated away from all but the very first two blowups involved in the construc-
tion of A0,N,0. Near this p-submanifold, A0,N,0 is canonically diffeomorphic to
[�0,N,0, {0}, {1}], the result of blowing up two opposite corners of the N -cube.
We consider the situation near the blowup of

{0} = F∅,∅,{1,...,N},∅,∅,∅, (2.87)

and the situation near the opposite corner is similar. In the interior of the front
face of that blowup, we can use � = x1 as a bdf and coordinates x̂j = xj/x1 for
j = 2, . . . , N as parametrizing the face itself. In terms of these coordinates,

∩Hj,k∈P Hj,k = {x̂2, · · · , x̂N = 1} (2.88)

locally, and, for 1 ≤ j < k ≤ N , we can write yk,j = ỹk,jC
∞(A0,N,0; R+)

for ỹk,j given locally by ỹk,j = �−1(xk − xj) = x̂k − x̂j , where x̂1 = 1. This
satisfies

dỹk,j =

{
dx̂k (j = 1),
dx̂k − dx̂j (j 
= 1).

(2.89)

So, if λk,j ≥ 0, then
∑

1≤j<k≤N λj,kdỹk,j = 0 ⇒ λj,k = 0 for all k, j. Since the
yk,j differ from the ỹk,j by a (smooth) positive factor, the yk,j have the same
property on ∩Hj,k∈PHj,k.

There is a more direct argument using the coordinates in Proposition
B.1 (with the decomposition Eq. (2.59)). Namely, using Eq. (2.59), the result
follows from the analogous result for [0, 1)N

tb. Given any σ ∈ SN , consider
the coordinates �, x̂σ(2), · · · , x̂σ(N) defined in Proposition B.1, these giving a
C∞-atlas as σ varies over all permutations. In these coordinate systems, the
relevant p-submanifolds are, locally,

Hj,k = {x̂j+1 · · · x̂k = 1} ⊂ [0, 1)N
tb, (2.90)

so have defining functions yk,j = −1 + x̂j+1 · · · x̂k. This satisfies

dyk,j =
k∑

i=j+1

dx̂i

x̂i
(2.91)

on Hj,k. The 1-forms, ωj,k =
∑k

i=j+1 x̂−1
i dx̂i, defined by the right-hand side

of Eq. (2.91) satisfy

{λj,k}1≤j<k≤N and j,k∈S∈P ⊂ [0,∞) and
∑

1≤j<k≤N and j,k∈S∈P

λj,kωj,k = 0

⇒ λj,k = 0 for all j < k inS ∈ P, (2.92)

from which the result follows.
Let ΣT(
,m, n) denote the collection of maximal families I of pairs (x0, S)

of x0 ∈ {0, 1,∞} and nonempty S ⊆ {1, . . . , N} such that
• if (x0, S), (x0, Q) ∈ I, either S ⊆ Q or Q ⊆ S,
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•

(x0, S) ∈ I⇒

⎧⎪⎨
⎪⎩

S ∩ I3 = ∅ (x0 = 0),
S ∩ I1 = ∅ (x0 = 1),
S ∩ I2 = ∅ (x0 =∞).

(2.93)

The minimal facets of A�,m,n are in bijective correspondence with the elements
of ΣT(
,m, n), with

fI =
⋂

(x0,S)∈I, S∪Q⊆S
FS,Q;x0 (2.94)

the facet corresponding to I.

3. Meromorphic Continuation

We now turn to the analytic extension of Selberg-like integrals to dense, open
subsets of the space of possible exponents. As discussed in the introduction,
the results in this section are apparently sharp for generic Selberg-like inte-
grals, but for e.g. symmetric Selberg-like integrals they are only preliminary.
Nevertheless, the results we prove here will be useful in establishing the sharp
results later. For our discussion of the symmetric and DF-symmetric cases,
it is useful to consider somewhat more general integrals than Eq. (1.2). Let

,m, n ∈ N satisfy 
 + m + n = N ∈ N

+. Fix a finite collection D of indexed
sets

{dF}F∈F(K�,m,n) ⊆ R. (3.1)

Define

S�,m,n[F ](α,β,γ) =
∫

��,m,n

[ N∏
i=1

|xi|αi |1− xi|βi

]

[ ∏
1≤j<k≤N

(xk − xj)2γj,k

]
F dx1 · · · dxN , (3.2)

for (α,β,γ) ∈ Ω�,m,n[D], where

• Ω�,m,n[D] denotes the set of (α,β,γ) ∈ C
N
α ×C

N
β ×C

N(N−1)/2
γ such that

[ N∏
i=1

|xi|αi |1− xi|βi

][ ∏
1≤j<k≤N

(xk − xj)2γj,k

]

[ ∏
F∈F(K�,m,n)

xdF
F

]
∈ L1(��,m,n, dx1 · · · dxN ) (3.3)

for all {dF}F∈F(K�,m,n) ∈ D, and
• F has the form

F =
∑

{dF}F∈F(K�,m,n)

[ ∏
F∈F(K�,m,n)

xdF
F

]
F{dF}F∈F(K�,m,n)

(3.4)

for some F{dF}F∈F(K�,m,n)
∈ C∞(K�,m,n).
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We denote the set of such F by AD(K�,m,n). From the definition Eq. (2.6) of
��,m,n, the integrand is nonvanishing there, so the absolute values in Eq. (3.2)
amount to a choice of branch.

Observe that Ω�,m,n[D] is a nonempty, open, and connected subset of
C

2N+N(N−1)/2. In the case N = 1, we consider Ω�,m,n[D] as a subset of C
2
α,β .

We write Ω[F ] to denote Ω�,m,n[D] for arbitrary D such that F ∈ AD

(K�,m,n). Let

Ω�,m,n = Ω�,m,n[{{0}F∈F(K�,m,n)}]. (3.5)

If ϕ ∈ C∞(��,m,n), then we can consider ϕ as an element of C∞(K�,m,n),
so S�,m,n[ϕ] : Ω�,m,n → C is well-defined, and Ω�,m,n[ϕ] ⊇ Ω�,m,n. If f ∈
C[x1, . . . , xN ], then the lift of fϕ is also a classical symbol on K�,m,n (it is
smooth if 
, n = 0, but not necessarily otherwise), so

S�,m,n[fϕ] : Ω�,m,n[f ] → C (3.6)

is well-defined, except now we may have Ω�,m,n[fϕ] 
⊆ Ω�,m,n if 
 
= 0 or n 
= 0.
In the special case when 
, n = 0 and m = N , we use the abbreviations

Ω0,N,0 = ΩN , Ω0,N,0[•] = ΩN [•], and

S0,N,0[F ](α,β,γ) = SN [F ](α,β,γ), (3.7)

this being consistent with our earlier notation.
As in the introduction, when α,β,γ are constant, we just write ‘α’ in

place of ‘α,’ ‘β’ in place of ‘β,’ and ‘γ’ in place of ‘γ.’ Let U�,m,n[•] denote the
set of (α, β, γ) ∈ C

3 such that (α,β,γ) ∈ Ω�,m,n[•] holds when α = α, β = β,
and γ = γ.

Similar abbreviations will be used throughout the rest of this paper.
In addition to the general Selberg-like integral above, we have the follow-

ing general integral of Dotsenko–Fateev type:

I�,m,n[F ](α,β,γ) =
∫

��,m,n

[ N∏
i=1

|xi|αi |1− xi|βi

]

[ ∏
1≤j<k≤N

(xk − xj + i0)2γj,k

]
F dx1 · · · dxN (3.8)

for (α,β,γ) ∈ V�,m,n[D], where now D denotes a finite collection of indexed
sets {dF}F∈F(A�,m,n) ⊆ C,

• V�,m,n[D] denotes the set of (α,β,γ) ∈ C
2N+N(N−1)/2 for which the

integrand in Eq. (3.8) lies in L1(��,m,n, dx1 · · · dxN )—that is the set of
(α,β,γ) such that

[ N∏
i=1

|xi|αi |1− xi|βi

][ ∏
1≤j<k≤N

|xk − xj |2γj,k

]

[ ∏
F∈F(K�,m,n)

xdF
F

]
∈ L1(��,m,n, dx1 · · · dxN ) (3.9)

for all {dF}F∈F(A�,m,n) ∈ D, and
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• F has the form Eq. (3.4) for F{dF}F∈F(A�,m,n)
∈ C∞(A�,m,n).

In Eq. (3.8), xγ = eπiγeγ log |x| if x < 0 and xγ = eγ log x if x > 0. We apply
abbreviations for Dotsenko–Fateev-like integrals that are analogous to those
used for Selberg-like integrals.

Let W�,m,n[•] denote the set of (α, β, γ) ∈ C
3 such that (α,β,γ) ∈

V�,m,n[•] holds when α = α, β = β, and γ = γ. Let WDF0
�,m,n[F ] denote the set

of (α−, α+, β−, β+, γ−, γ0, γ+) ∈ C
7 such that (αDF0,βDF0,γDF0) ∈ V�,m,n[F ].

Let

IDF0;S
�,m,n [F ](α−, α+, β−, β+, γ−, γ0, γ+) = I�,m,n[F ](αDF0,βDF0,γDF0).

(3.10)

This section is split into many short subsections. The general analytic
framework in which the extension is performed is discussed in §3.1, and the
specific application to Selberg-like integrals is contained in §3.2. We prove a
family of identities relating I�,m,n, I�,n,m, In,�,m, · · · in §3.3. As preparation for
our discussion of singularity removal in the DF-symmetric case, we discuss
in §3.4 an alternative regularization procedure suggested by Dotsenko–Fateev
that works for some suboptimal range of parameters (in particular allowing
γ0 = −1, but not allowing the real parts of α−, α+, β−, β+ to be too negative).
It should be remarked that this regularization technique can be combined
with that in §3.1 to yield proofs of the main theorems without the techni-
calities associated with needing to understand the analyticity of products of
distributions like (y ± i0)λ in λ. As this lacks the purely analytic flavor of the
proof in §3.1, it is not the approach we follow here. The I�,m,n are related to
the Selberg-like integrals S�,m,n in §3.5. A key lemma used in the removal of
singularities is in §3.6. This lemma is a generalization of a result proven by
Aomoto [3] and discussed heuristically by Dotsenko–Fateev [8]. For complete-
ness and later convenience, we record in §3.7 the symmetric and DF-symmetric
cases of the results in §3.2 regarding the Dotsenko–Fateev integrals.

Let S�,m,n = S� × Sm × Sn, which we consider as the subgroup of
SN leaving each of I1, I2, I3 invariant, where I1, I2, I3 are as in the previous
section, a.k.a. the Young subgroup associated with the partition {1, . . . , n} =
I1 � I2 � I3. Given a permutation σ ∈ S�,m,n, let

I�,m,n[F ](α,β,γ)σ =
∫

��,m,n

[ N∏
i=1

|xi|αi |1− xi|βi

]

[ ∏
1≤j<k≤N

(xσ(k) − xσ(j) + i0)2γσ(j),σ(k)

]
F dx1 · · · dxN ,

(3.11)

defined for (α,β,γ) ∈ V�,m,n[F ]. If we define ασ,βσ,γσ by ασ
j = ασ(j), βσ

j =
βσ(j), and γσ

j,k = γσ(j),σ(k), and

F σ(y1, . . . , yN ) = F (yσ−1(1), . . . , yσ−1(N)), (3.12)
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then I�,m,n[F ](α,β,γ)σ = I�,m,n[F σ](ασ,βσ,γσ). This relation will be very
useful below. More generally, for any σ ∈ SN , let

I�,m,n[F ](α,β,γ)σ = I�,m,n[F σ](ασ,βσ,γσ) (3.13)

S�,m,n[F ](α,β,γ)σ = S�,m,n[F σ](ασ,βσ,γσ), (3.14)

defined for (α,β,γ) ∈ V�,m,n[F ] in the former case or for

(α,β,γ) ∈ Ω�,m,n[F ]σ

= {(α,β,γ) ∈ C
2N+N(N−1)/2 : (ασ,βσ,γσ) ∈ Ω�,m,n[F σ]} (3.15)

in the latter case. We will use similar notation for other subsets of C
2N+N(N−1)/2

below, as well as for the meromorphic extensions of S�,m,n[F ] and I�,m,n[F ].

3.1. Some Generalities

Let N ∈ N be arbitrary. For a Fréchet space X , let O(CN ;X ) denote the
Fréchet space of entire X -valued functions on C

N , where the topology is that
of uniform convergence in compact subsets, as measured with respect to each
Fréchet seminorm on X , and similarly for X an LF-space. Let E ′(RN ) denote
the LCTVS of compactly supported distributions on R

N . By the Schwartz
representation theorem,

E ′(RN ) = ∪m∈RHm,s
c (RN ), (3.16)

where Hm
c (RN ) is the set of compactly supported elements of Hm(RN ).

Let N ∈ N
+, k ∈ {0, . . . , N}, and κ ∈ N. For any

ψ ∈ C∞
c (Rk

t1,··· ,tk
; E ′(RN−k

tk+1,··· ,tN
)) =

⋃
m,s∈R

C∞
c (Rk

t1,··· ,tk
;Hm,s

sc,c (RN−k))

(3.17)

let, for ρ = (ρ1, . . . , ρk),

IN,k,κ[ψ](ρ) =
∫ ∞

0

· · ·
∫ ∞

0

tρ1
1 · · · tρk

k 〈1, ψ(t1, . . . , tk,−)〉dt1 · · · dtk,

(3.18)

which we abbreviate as

IN,k,κ[ψ](ρ) =
∫

RN
k

tρ1
1 · · · tρk

k ψ(t) dN t. (3.19)

Here, R
N
k = [0,∞)k

t1,··· ,tk
×R

n−k
tk+1,··· ,tN

, and IN,k,κ[ψ](ρ) is defined initially for
�ρ1, · · · ,�ρk > −1, for which the right-hand side of Eq. (3.18) is a well-defined
integral.

Let Hm,s
sc,c (RN ) denote the set of compactly supported elements of Hm,s

sc

(RN ) = 〈r〉−sHm(RN ). Let

O(Ck × C
κ;C∞

c (Rk
t1,··· ,tk

; E ′(RN−k
tk+1,··· ,tN

)))

=
⋂
Ω

⋃
m,s∈R

O(Ω;C∞
c (Rk

t1,··· ,tk
;Hm,s

sc,c (RN−k))), (3.20)
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endowed with the strongest topology such that the inclusions⋂
Ω

O(Ω;C∞
c (Rk

t1,··· ,tk
;Hm,s

sc,c (RN−k)))

↪→ O(Ck × C
κ;C∞

c (Rk
t1,··· ,tk

; E ′(RN−k
tk+1,··· ,tN

))) (3.21)

are all continuous, where the left-hand side is an LF space. Here, Ω is varying
over bounded domains in C

k × C
κ. We are identifying functions on C

k × C
κ

with their restrictions to subdomains. In other words, an element of the space
defined by Eq. (3.20) is locally an analytic family of elements of C∞

c (Rk
t1,··· ,tk

;
Hm,s

sc,c (RN−k)) for some m, s ∈ R which are allowed to depend on Ω.

Proposition 3.1. Suppose that, for each ρ ∈ C
k and δ ∈ C

κ, we are given
some ψ(−;ρ, δ) as in Eq. (3.17), depending entirely on ρ, δ in the sense that
the map

C
k × C

κ � (ρ, δ) �→ ψ ∈ C∞
c (Rk; E ′(RN−k)) (3.22)

is entire, i.e. lies in O(Ck × C
κ;C∞

c (Rk
t1,··· ,tk

; E ′(RN−k
tk+1,··· ,tN

))). Define

IN,k,κ[ψ](ρ, δ) = IN,k,κ[ψ(ρ, δ)](ρ). (3.23)

Then, the function JN,k,κ[ψ] defined by

IN,k,κ[ψ](ρ, δ) =
[ k∏

j=1

Γ(ρj + 1)
]
JN,k,κ[ψ](ρ, δ) (3.24)

extends to an entire function on C
k
ρ × C

κ
δ . Moreover, the function

JN,k,κ[−] : O(Ck × C
κ;C∞

c (Rk
t1,...,tk

; E ′(RN−k
tk+1,...,tN

))) � ψ

�→ JN,k,κ[ψ] ∈ O(Ck × C
κ) (3.25)

is continuous.

Cf. [19][39, Lemma 10.7.9].

Proof. The k = 0 case is essentially tautologous.
We now proceed inductively on k. Let k ≥ 1, and assume that we have

proven the result for smaller k. Expanding ψ in Taylor series around t1 = 0,
there exist

ψ(j) ∈ O
(
C

k × C
κ;C∞

c

(
R

k−1
t2,...,tk

; E ′(RN−k
tk+1,...,tN

)
))

(3.26)

E(j) ∈ O
(
C

k × C
κ;C∞(

Rt1 ;C
∞
c (Rk−1

t2,...,tk
; E ′(RN−k

tk+1,...,tN
))
))

, (3.27)

which can be regarded as smooth functions (or generalized functions) of
t1, . . . , tN , depending analytically on parameters ρ ∈ C

k and δ ∈ C
κ. such

that

ψ(t1, · · · , tN ;ρ, δ) =
J∑

j=0

tj1ψ
(j)(t2, · · · , tN ;ρ, δ) + tJ+1

1 E(J+1)(t1, · · · , tN ;ρ, δ)

(3.28)
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for all J ∈ N. Let K ⊂ C
k+κ be an arbitrary nonempty compact set. There

exists some T > 0 such that suppψ(−;ρ, δ) ⊆ {−T ≤ t1 ≤ T} for all (ρ, δ) ∈
K. Then, if �ρ1, · · · ,�ρk > −1 and (ρ, δ) ∈ K,

IN,k,κ[ψ](ρ, δ) =
J∑

j=0

IN−1,k−1,κ[ψ(j)](ρ̂, δ)
ρ1 + j + 1

T ρ1+j+1

+
∫ T

0

tρ1+J+1
1 IN−1,k−1[E(J+1)(t1,−)](ρ̂, δ) dt1,

(3.29)

where ρ̂ = (ρ2, · · · , ρk). We now define JN,k,κ[ψ](ρ, δ) : {�ρ1 > −2 − J} ×
C

κ
δ → C by

JN,k,κ[ψ](ρ, δ) =
1

Γ(ρ1 + 1)

J∑
j=0

JN−1,k−1,κ[ψ(j)](ρ̂, δ)
ρ1 + j + 1

T ρ1+j+1

+
1

Γ(ρ1 + 1)

∫ T

0

tρ1+J+1
1 JN−1,k−1[E(J+1)(t1,−)](ρ̂, δ) dt1.

(3.30)

By construction, Eq. (3.24) holds when �ρ1, · · · ,�ρk > −1. By the continuity
clause of the inductive hypothesis, the integral in Eq. (3.29) is a well-defined
Bochner integral, for each individual (ρ, δ) ∈ {�ρ1 > −2−J}×C

κ. Moreover,
the right-hand side of Eq. (3.30) depends analytically on (ρ, δ) ∈ {�ρ1 >
−1 − J} × C

κ. By the inductive hypothesis, this is true for the sum on the
first line (multiplied by Γ(ρ1 + 1)−1), as the simple poles due to the factors
of 1/(ρ1 + j + 1) cancel with those of Γ(ρ1 + 1). So, in order to show that
the whole right-hand side of Eq. (3.30) depends analytically on (ρ, δ) in this
domain, we can show it for∫ T

0

tρ1+J+1
1 JN−1,k−1[E(J+1)(t1,−)](ρ̂, δ) dt1. (3.31)

Justifying differentiation under the integral sign, this is a C1-function of (�ρ1,
�ρ1) ∈ {(u, v) ∈ R

2, u > −1− J}, and it satisfies the Cauchy–Riemann equa-
tions, so it follows that the integral in Eq. (3.31) is analytic as a function of
ρ1 ∈ {�ρ1 > −1 − J}, for each fixed ρ̂ ∈ C

k−1 and δ ∈ C
κ. Adding ρ̂, δ-

dependence does not change the argument.
So, the formula Eq. (3.29) yields an analytic extension of IN,k,κ, and we

can take a union over all J ∈ N, the various partial extensions agreeing with
each other via analyticity. The continuity clause is evident from the formula
Eq. (3.30) and the inductive hypothesis. �

Consequently, IN,k,κ[ψ] admits an analytic continuation İN,k,κ[ψ] : Ω →
C to the set Ω = (Ck

ρ\
⋃

j∈{1,...,k}{ρj ∈ Z
≤−1})× C

κ
δ , and the map

İN,k,κ[−] : O(Ck × C
κ;C∞

c (Rk
t1,...,tk

; E ′(RN−k
tk+1,...,tN

))) � ψ �→ İN,k,κ[ψ] ∈ O(Ω)

(3.32)
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is continuous.
If P is a consistently orientable collection of codimension-1 interior p-

submanifolds on a mwc M , then, letting xF for F ∈ F(M) denote a bdf of the
face F, it is the case that, for any δ ∈ C

P and ρ ∈ C
F(M), the product

ω(ρ, δ) =
∏

F∈F(M)

xρF
F

∏
P∈P

(yP + i0)δP : Ċ∞
c (M ; ΩM) � μ �→ lim

ε→0+

∫
M

∏
F∈F(M)∏

P∈P
xρF

F (yP + iε)δP μ (3.33)

is a well-defined classical distribution on M , where {yP }P∈P are consistently
oriented defining functions. (Here, Ċ∞

c (M ; ΩM) is the set of compactly sup-
ported smooth densities on M that are Schwartz at each boundary hypersur-
face.) That is, ω is an extendable distribution on M and defines, for small
ε > 0, an element of C∞([0, ε)xF ;D′(F)) for each face F. We write the right-
hand side of Eq. (3.33) as

∫
M

ω(ρ, δ)μ. More generally, if μ ∈ C∞
c (M ; ΩM),

then

lim
ε→0+

∫
M

∏
F∈F(M)

∏
P∈P

xρF
F (yP + iε)δP μ =

∫
M

ω(ρ, δ)μ (3.34)

exists whenever ρF > −1 for all F ∈ F(M).
Let κ ∈ N. Suppose that we are given some entire family

μ : C
F(M) × C

P × C
κ → C∞

c (M ; ΩM) (3.35)

of compactly supported smooth densities μ(ρ, δ,λ) ∈ C∞
c (M ; ΩM) on M .

Consider the function

I[M,μ](ρ, δ,λ) : {(ρ, δ,λ) ∈ C
F(M) × C

P × C
κ : ρF

> −1 for all F ∈ F(M)} → C (3.36)

defined by

I[M,μ](ρ, δ,λ) =
∫

M

ω(ρ, δ)μ(ρ, δ,λ). (3.37)

Proposition 3.2. Suppose that, for some N0 ∈ N
+, we are given an affine map

L = (L1, L2, L3) : C
N0
	 → C

F(M)
ρ × C

P
δ × C

κ

λ such that, for each F ∈ F(M),
the affine functional

(L•)F : C
N0 � 	 �→ (L1	)F ∈ C (3.38)

is nonconstant. Then, there exist entire functions Ireg,f [M,μ](L•) : C
N0
	 → C

associated with the minimal facets f of M such that

I[M,μ](L	) =
∑

f

[ ∏
F∈F(M),F⊇f

Γ(1 + (L�)F)
]
Ireg,f [M,μ](L	) (3.39)

for all 	 ∈ C
N0 for which the left-hand side is defined by Eq. (3.37).

Proof. Pass to a partition of unity subordinate to a system of coordinate charts
on M and apply Proposition 3.1 locally. �
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Then, letting L = {(L•)F : F ∈ F(M)},
[ ∏

Λ∈L

1
Γ(1 + Λ(	))#Λ

]
I[M,μ](L	) (3.40)

extends to an entire function C
N0
	 → C, where #Λ ∈ N

+ is the maximum size
of any set S ⊆ F(M) of faces such that ∩F∈SF 
= ∅ and (L•)F = Λ for all
F ∈ S. Indeed, this follows from the proposition above since, for each facet f,[ ∏

Λ∈L

1
Γ(1 + Λ(	))#Λ

] ∏
F∈F(M),F⊇f

Γ(1 + (L	)F) (3.41)

is entire.

3.2. Specialization to Generic Selberg- and DF-Like Integrals

We now apply the results of the previous section to the specific case of the
integrals Eq. (3.2) and Eq. (3.8). Fix 
,m, n ∈ N satisfying 
 + m + n = N ,
N ∈ N

+.

3.2.1. The Selberg Case. Fix F ∈ AD(K�,m,n). Let ρj,k = ρj,k(α,β,γ) be
defined by Eqs. (2.41), (2.42), (2.43), and (2.44). Recalling the definition of
T(
,m, n) given in §2.1:

Proposition 3.3. There exist entire functions

S�,m,n;reg,I,{dF}F∈F(K�,m,n)
[F ] : C

2N+N(N−1)/2
α ,β ,γ → C, (3.42)

associated with pairs of minimal facets f of K�,m,n and collections {dF}F∈F(�,m,n)

∈ D of weights such that

S�,m,n[F ](α,β,γ) =
∑

I∈T(�,m,n)

∑
{dF}F∈F(K�,m,n)∈D

[ ∏
I(j,k)∈I

Γ(1 + ρj,k + dFj,k
)
]

×S�,m,n;reg,I,{dF}F∈F(K�,m,n)[F ](α,β,γ) (3.43)

for all (α,β,γ) ∈ Ω�,m,n[D].

Proof. This is a corollary of Proposition 2.3 and Proposition 3.2, using the fact
that the minimal facets of K�,m,n are in correspondence with the elements of
T(
,m, n) via Eq. (2.50). �

Consequently, there exists an analytic extension Ṡ�,m,n[F ] : Ω̇�,m,n[D] →
C of S�,m,n[F ] : Ω�,m,n[D] → C, where

Ω̇�,m,n[D] = C
2N+N(N−1)/2
α ,β ,γ

∖[ ⋃
{dF}F∈F(K�,m,n)∈D

( ⋃
{j,k}∈J�,m,n

{ρj,k + dFj,k
∈ Z

≤−1}
)]

. (3.44)

This is an open and connected subset of full measure; namely, it is the comple-
ment of a locally finite collection of complex (affine) hyperplanes in
C

2N+N(N−1)/2. In the case m = N , this agrees with Eq. (1.13).
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As a corollary of the previous proposition, there exists an entire function

S�,m,n;reg[F ] : C
2N+N(N−1)/2
α ,β ,γ → C (3.45)

such that

S�,m,n[F ](α,β,γ) =
[ ∏

{j,k}∈J�,m,n

Γ(1 + ρj,k + dmin
Fj,k

)
]
S�,m,n;reg[F ](α,β,γ)

(3.46)

holds for all (α,β,γ) ∈ Ω�,m,n[D], where dmin
F = min{dF : {dF0}F0∈F(K�,m,n) ∈

D}.
The case of the proposition above where m = N gives Theorem 1.1.

Indeed, if F ∈ C∞(�N ), F lifts to an element of C∞(K0,N,0), and the orders
of vanishing of F at the relevant facets of�N imply the same order of vanishing
at the lift in K0,N,0.

3.2.2. The Dotsenko–Fateev Case. Fix F ∈ AD(A�,m,n), where D is now a col-
lection of orders for the faces of A�,m,n. Recalling the definition of ΣT(
,m, n)
given in §2.2:

Proposition 3.4. There exist entire functions

I�,m,n;reg,I,{dF}F∈F(A�,m,n)
[F ] : C

2N+N(N−1)/2
α ,β ,γ → C (3.47)

associated with the I ∈ ΣT(
,m, n) such that

I�,m,n[F ](α,β,γ)

=
∑

I∈ΣT(�,m,n)

∑
{dF}F∈F(A�,m,n)∈D

([ ∏
(x0,S)∈I

Γ(1 + �S,Q;x0 + dFS,Q;x0
)
]

×I�,m,n;reg,I{dF}F∈F(A�,m,n)
[F ](α,β,γ)

)
(3.48)

for all (α,β,γ) ∈ V�,m,n[D], where we have abbreviated I1 ∩ S, I2 ∩ S, and
I3 ∩ S as S or Q as appropriate.

Proof. Follows from Proposition 2.7 and Proposition 3.2. �

Consequently, I�,m,n[F ] : V�,m,n[D] → C admits an analytic continuation
İ�,m,n[F ] : V̇�,m,n[D] → C, where
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V̇�,m,n[D] = C
2N+N(N−1)/2
α ,β ,γ

∖ ⋃
{dF}F∈F(A�,m,n)

⋃
x0∈{0,1,∞}

⋃
S,Q

{�S,Q;x0 + dFS,Q;x0
∈ Z

≤−1}.

(3.49)

Note that V̇�,m,n[F ] ⊇ ∩σ∈S�,m,n
Ω̇�,m,n[F ]σ, as every functional (α,β,γ) �→

�S,Q;x0(α,β,γ) has the form ρj,k(ασ,βσ,γσ) for some σ ∈ S�,m,n and {j, k} ∈
J�,m,n.

As a corollary of the previous proposition, there exists a function

I�,m,n;reg[F ] : C
2N+N(N−1)/2
α ,β ,γ → C (3.50)

such that, for all (α,β,γ) ∈ V�,m,n[D],

I�,m,n[F ](α,β,γ)

=
[ ∏

x0∈{0,1,∞}

∏
S,Q

Γ(1 + �S,Q;x0 + dmin
FS,Q;x0

)
]
I�,m,n;reg[F ](α,β,γ),

(3.51)

where S,Q vary over subsets of I1 = {1, . . . , 
}, I2 = {
 + 1, . . . , 
 + m}, and
I3 = {
 + m + 1, . . . , N}, depending on x0.

The m = N case of the previous proposition is Theorem 1.3.

3.3. A Simple Identity

For each permutation σ of {0, 1,∞}. Let

(
′,m′, n′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
,m, n) (σ = 1),
(n,m, 
) (σ = (0 1)),
(
, n,m) (σ = (0 ∞)),
(m, 
, n) (σ = (1 ∞)),
(n, 
,m) (σ = (0 1 ∞)),
(m,n, 
) (σ = (1 0 ∞)).

(3.52)

In other words, if the elements of {0, 1,∞} label the vertices of a triangle and
the edges are labeled accordingly—that is, ‘
’ labels the edge between 0 and
∞, ‘m’ labels the edge between 0 and 1, and ‘n’ labels the edge between 1 and
∞—then (
′,m′, n′) is the permutation of (
,m, n) resulting from applying σ
to the triangle and reading off the new labels.

Let Tσ : CP 1 → CP 1 denote the unique automorphism acting on {0, 1,∞}
via σ. These are

T1(z) = z, T(0 1)(z) = 1− z, T(0 ∞)(z) =
1
z
, T(1 ∞)(z) = − z

1− z
,

(3.53)

T(0 1 ∞)(z) =
1

1− z
, T(0 ∞ 1)(z) =

z − 1
z

. (3.54)
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Let σparam : C
2N+N(N−1)/2 → C

2N+N(N−1)/2 denote the affine map

σparam(α,β,γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α,β,γ) (σ = 1),
(β,α,γ) (σ = (0 1)),
(−2−α− β − 2γ�1,β,γ) (σ = (0 ∞)),
(α,−2−α− β − 2γ�1,γ) (σ = (1 ∞)),
(−2−α− β − 2γ�1,α,γ) (σ = (0 1 ∞)),
(β,−2−α− β − 2γ�1,γ) (σ = (1 0 ∞)),

(3.55)

where γ�1 ∈ C
N has jth component

∑
k �=j γj,k. Let rev ∈ S�′,m′,n′ denote

the permutation that reverses the order of the elements in each of the sets
{1, . . . , 
′}, {
′ + 1, . . . , 
′ + m′}, and {
′ + m′ + 1, . . . , N}. Let |σ| denote the
order of σ.

Proposition 3.5. If (α,β,γ) ∈ V̇�,m,n, then σparam(α,β,γ) ∈ V̇�′,m′,n′ , and if
(α,β,γ) ∈ Ω̇�,m,n, then σparam(α,β,γ) ∈ Ω̇rev|σ|

�′,m′,n′ , and

İ�,m,n[1](α,β,γ) = İ�′,m′,n′ [1](σparam(α,β,γ))rev
|σ|

,

Ṡ�,m,n[1](α,β,γ) = Ṡ�′,m′,n′ [1](σparam(α,β,γ))rev
|σ| (3.56)

for all (α,β,γ) ∈ Ω̇�,m,n.

Proof. It can be checked case-by-case that

{�S,Q;• ◦ σparam : • ∈ {0, 1,∞}, S,Q as above}
= {�S,Q;• : • ∈ {0, 1,∞}, S,Q as above}, (3.57)

where on the left-hand side (S,Q) varies over appropriate pairs of subsets of
{1, . . . , 
′}, {
′ +1, . . . , 
′ +m′}, and {
′ +m′ +1, . . . , N} and on the right-hand
side (S,Q) varies over appropriate pairs of subsets {1, . . . , 
}, {
+1, . . . , 
+m},
and {
 + m + 1, . . . , N}, depending on •. It can be seen from eq. (3.57) that

V̇�,m,n = (σparam)−1(V̇�′,m′,n′). (3.58)

The case of Ω̇�,m,n is similar but more complicated.
Equation (3.56) can be proven for (α,β,γ) ∈ Ω�,m,n by way of a change-

of-variables by substituting x = Tσ−1(y). The full result follows via analytic
continuation. �

3.4. An Imperfect Alternative

For I ∈ {(−∞, 0], [0, 1], [1,∞)} and r > 0, let ΓI,±,r : (0, 1) → C be defined
by

Γ[0,1],±,r(t) =

⎧⎪⎨
⎪⎩

t± irt (t ∈ (0, 1/3)),
t± ir/3 (t ∈ [1/3, 2/3]),
t± ir/3∓ ir(t− 2/3) (t ∈ (2/3, 1)),

(3.59)

Γ[1,∞),±,r(t) = Γ[0,1],∓,r(1 − t)−1, and Γ(−∞,0],±,r(t) = 1 − Γ[1,∞),∓,r(1 − t).
Note that the images of these contours are permuted among themselves by the
transformations Tσ above.
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Figure 10. The contours Γ(−∞,0],+,1, Γ[0,1],+,1, Γ[0,1],+,4,
Γ[1,∞),+,1. Cf. [8, Figure 16]. (For our purposes, the con-
tours drawn by Dotsenko & Fateev approach ±∞ with imag-
inary part too small. This is why our ΓI,±,r look different for
I 
= [0, 1]

Suppose that F ∈ C[x1, x
−1
1 , . . . , xN , x−1

N ]. For any compact K � C with
nonempty interior, let O = O[F,K] denote the set, which depends on 
,m, n ∈
N, though we suppress this dependence notationally, of (α,β) ∈ C

2N such
that
∫
Γ(−∞,0],+,0

· · ·
∫
Γ(−∞,0],+,�−1

[ ∫
Γ[0,1],+,0

· · ·
∫
Γ[0,1],+,m−1

[ ∫
Γ[1,∞),+,0

· · ·
∫
Γ[1,∞),+,n−1

( N∏
j=1

z
αj

j (1 − zj)
βj

) ∏
1≤j<k≤N

(zk − zj)
2γj,k F0 dzN · · · dz�+m+1

]
dz�+m · · · dz�+1

]
dz� · · · dz1

(3.60)

is an absolutely convergent Lebesgue integral whenever γj,k ∈ K for all j, k ∈
{1, . . . , N} with j < k, for every monomial F0 in F . In the definition of the
integral above, we are defining the integrand such that the branch cuts are not
encountered. For such (α,β,γ),

(α,β,γ) ∈ V̇�,m,n[F ], (3.61)

and the integral in Eq. (3.60) is equal to İ�,m,n(α,β,γ)[F ], assuming that we
choose our branches appropriately. The latter part of this statement can be
proven by checking that the integral defined above depends analytically on its
parameters and agrees with I�,m,n(α,β,γ)[F ] for (α,β,γ) ∈ V�,m,n[F ], which
in turn is proven via a contour deformation argument.

The set O is nonempty, open, and contains an affine cone. If

• αj has sufficiently large real part for j ∈ I1 ∪I2 and sufficiently negative
real part for j ∈ I3, and

• βj has sufficiently large real part for j ∈ I2 ∪I3 and sufficiently negative
real part for j ∈ I1,

then (α,β) ∈ O[F,K], where what “sufficiently large” means depends on K.
Consequently, given any subset S ⊆ S� ×Sm ×Sn, the set OS∩ defined by

OS∩ = {(α,β) ∈ C
2N : (ασ,βσ) ∈ O[F σ,Kσ] for all σ ∈ S} (3.62)
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is open and nonempty. If K contains e.g. −1, then O[F,K] contains some (α,β)
such that (α,β,γ) /∈ V�,m,n[F ]. So, Eq. (3.60) gives us an alternative definition
of İ�,m,n(α,β,γ)[F ] for some range of parameters.

Proposition 3.6. Consider • ∈ {1, 2, 3} and j, k ∈ I• with j < k and |j−k| = 1.
Suppose that γj,k ∈ Z. Let τ ∈ S�,m,n denote the transposition swapping j, k.
Then,

I�,m,n[F ](α , β , γ ) − I�,m,n[F ](α , β , γ )τ

=

∫
Γ(−∞,0],+,0;1

· · ·
∫
Γ(−∞,0],+,�−1;�

[ ∫
Γ[0,1],+,0;�+1

· · ·
∫
Γ[0,1],+,m−1;�+m

[ ∫
Γ[1,∞),+,0;�+m+1

· · ·
∫
Γ[1,∞),+,n−1;N

( N∏
j0=1

z
αj0
j0

(1 − zj0)
βj0

)

×
( ∏

1≤j0<k0≤N

(zk0 − zj0 )
2γj0,k0

)
F dzN · · · dz�+m+1

]
dz�+m · · · dz�+1

]
dz� · · · dz1,

(3.63)

whenever (α,β,γ) ∈ O∩{1,τ}, where ΓI,+,r;i = ΓI,+,r;i unless i = j, in which
case ΓI,+,r;i = ΓI,+,r;i({zi0}i0 �=j) is a small counterclockwise circle around zk

not winding around any of the other z’s or 0, 1.

Proof. It suffices to consider the case F = 1. Indeed, if F is a monomial,
then we can simply absorb it into a redefinition of α. The set O∩{1,τ} is
decreasing with the set of monomials in F , so once the result has been proven
for monomials, it follows for all Laurent polynomials.

For • = 2, the proposition follows via a straightforward countour defor-
mation argument. The case • ∈ {1, 3} can be reduced to • = 3 via Proposition
3.5. �

3.5. Symmetrization

Let F ∈ AD(A�,m,n).

Proposition 3.7. For any (α,β,γ) ∈ ∩σ∈S�,m,n
Ω̇�,m,n[F ]σ,

İ�,m,n[F ](α,β,γ) =
∑

σ∈S�,m,n

eiΘ(σ−1)Ṡ�,m,n[F ](α,β,γ)σ, (3.64)

where Θ(σ) = 2π
∑

1≤j<k≤N 1σ(j)>σ(k)γj,k.

Proof. By analyticity, it suffices to prove the result when the quantities above
are well-defined Lebesgue integrals. Decomposing ��,m,n into 
!m!n! copies of
��,m,n,

I�,m,n[F ](α , β , γ )

=
∑

σ∈S�,m,n

∫
��,m,n

N∏
j=1

|xj |ασ(j) |1 − xj |βσ(j)
∏

1≤j<k≤N

(xσ−1(k) − xσ−1(j) + i0)2γj,k

×F (xσ−1(1), · · · , xσ−1(N)) dNx. (3.65)
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The right-hand side is

∑
σ∈S�,m,n

eiΘ(σ−1)
∫

	�,m,n

N∏
j=1

|xj |ασ(j) |1 − xj |βσ(j)
∏

1≤j<k≤N

(xk − xj)2γσ(j),σ(k) (F σ) dNx,

(3.66)

which is the right-hand side of Eq. (3.64). �

Proposition 3.8. Suppose that α,β,γ are invariant under all σ ∈ S�,m,n, and
suppose now that F ∈ C[x1, . . . , xN ]S�,m,n . Then, for all (α,β,γ) ∈ Ω̇�,m,n[F ],

İ�,m,n[F ](α,β,γ)

=
[ �∏

k=1

1− e2πikγ1

1− e2πiγ1

][ m∏
k=1

1− e2πikγ2

1− e2πiγ2

][ n∏
k=1

1− e2πikγ3

1− e2πiγ3

]
Ṡ�,m,n[F ](α,β,γ),

(3.67)

where, for each • ∈ {1, 2, 3}, γ• = γj,k for all distinct j, k ∈ I•.

Here, we are treating (1− e2πiγ)−1(1− e2πikγ) as an entire function.

Proof. Applying the previous proposition,

I�,m,n[F ](α , β , γ )

=
[ ∑

σ∈S�

eπi o.o.(σ)γ
][ ∑

σ∈Sm

eπi o.o.(σ)γ
][ ∑

σ∈Sn

eπi o.o.(σ)γ
]
S�,m,n[F ](α , β , γ ),

(3.68)

where o. o.(σ) is the number of out-of-order pairs in σ. We appeal to the
algebraic identity

Z[ζ] �
∑

σ∈SN

ζo.o.(σ) =
N−1∏
n=0

n∑
m=0

ζm =
N∏

n=1

1− ζn

1− ζ
, (3.69)

which holds for all N ∈ N and encodes the bijection between SN and the set
of possible runs of the bubble sort algorithm. Plugging in ζ = eπiγ , Eq. (3.68)
becomes Eq. (3.67). �

3.6. The Aomoto–Dotsenko–Fateev Relations

Fix N ∈ N
+ and F ∈ C[x1, x

−1
1 , . . . , xN , x−1

N ]. For each j ∈ {1, . . . , N}, let
σj ∈ SN be the permutation that takes 1 and inserts it in the jth position while
maintaining the relative order of the other terms. That is, σj = (1 j j−1 · · · 2).

For any 
 ∈ N
+ and m,n ∈ N with 
 + m + n = N , let

Λ̇�,m,n[F ] = V̇�,m,n[F ] ∩ V̇�−1,m+1,n[F ]σ� ∩ V̇�−1,m,n+1[F ]σ�+m

= V̇�,m,n[F ] ∩ V̇�−1,m+1,n[F ]σ�+m ∩ V̇�−1,m,n+1[F ]σN ,
(3.70)

�̇�,m,n[F ] = (∩�
j=1Ω̇�,m,n[F ]σj ) ∩ (∩�+m

j=� Ω̇�−1,m+1,n[F ]σj )

∩(∩N
j=�+mΩ̇�−1,m,n+1[F ]σj ). (3.71)
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Note that �̇�,m,n[F ], Λ̇�,m,n[F ] are open, dense, and connected subsets of
C

2N+N(N−1)/2, being the complements of locally finite unions of complex affine
hyperplanes.

Proposition 3.9. For any (α,β,γ) ∈ �̇�,m,n[F ],

0 =
�∑

j=1

e±iθj Ṡ�,m,n[F ](α,β,γ)σj +
�+m∑
j=�

e±iϑj Ṡ�−1,m+1,n[F ](α,β,γ)σj

+
N∑

j=�+m

e±iϕj Ṡ�−1,m,n+1[F ](α,β,γ)σj (3.72)

holds for each choice of sign, where θj = 2π
∑

2≤j0≤j γ1,j0 , ϑj = πα + 2π∑
2≤j0≤j γ1,j0 , and ϕj = πα + πβ + 2π

∑
2≤j0≤j γ1,j0 .

Proof. Without loss of generality, we may assume F = 1. Let ��,m,n denote
the subset of (α,β,γ) ∈ C

2N+N(N−1)/2 defined by
��,m,n

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(α , β , γ ) : (α
σj , β

σj , γ
σj ) ∈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ω�,m,n (j ∈ {1, . . . , � − 1})

Ω�−1,m+1,n (j ∈ {� + 1, . . . , � + m − 1})

Ω�−1,m,n+1 (j ∈ {� + m + 1, . . . , N})

Ω�,m,n ∩ Ω�−1,m+1,n (j = �)

Ω�−1,m+1,n ∩ Ω�−1,m,n+1 (j = � + m)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(3.73)

Let ε > 0. For each �1, �2, �3 > 0 and γ, γ ∈ (−(N − 1)−1, 0) with
γ < γ, let �0,�,γ,γ (suppressing the 
,m, n dependence for brevity) denote the
set of (α,β,γ) ∈ C

2N+N(N−1)/2 such that
• γ < �γj,k < γ for all j, k ∈ {1, . . . , N} with j 
= k,
• �1 < �αj < �2 for each j ∈ {2, . . . , 
}, �αj > �1 for each j ∈ {
 +

1, . . . , 
 + m}, and �αj < −�3 for each j ∈ {
 + m + 1, . . . , N},
• �1 < �βj < �2 for each j ∈ {
 + m + 1, . . . , N}, �βj > �1 for each

j ∈ {
 + 1, . . . , 
 + m}, and �βj < −�3 for j ∈ {2, . . . , 
},
where � = (�1, �2, �3). The set �0,�,γ,γ is open and nonempty. By Eq. (1.7)
and the analogue of Eq. (1.7) for the m < N case, there exist �00, �0, �01 > 0
(depending on 
,m, n, γ, γ) such that

��,γ,γ
def
= {(α , β , γ ) ∈ �0,�,γ,γ and (α1, β1) ∈ Ω1,0,0 ∩ Ω0,1,0 ∩ Ω0,0,1} ⊂ ��,m,n

(3.74)

whenever �2 > �1 > �0 and �3 > �01�2 + �00. Observe that Ω1,0,0 ∩
Ω0,1,0 ∩ Ω0,0,1 is the subset of C

2
α,β defined by the inequalities −1 < �α,�β

and �α + �β < −1. The set

{(r1, r2) ∈ R
2 : −1 < r1, r2 and r1 + r2 < −1} (3.75)

is a nonempty triangle. So, ��,γ,γ is an open and nonempty subset of
C

2N+N(N−1)/2 and moreover of �̇�,m,n.
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For such � and (α,β,γ) ∈ ��,γ,γ , Eq. (3.72) (with F = 1) just reads

0 =
�∑

j=1

e±iθj S�,m,n[1](α,β,γ)σj +
�+m∑
j=�

e±iϑj S�−1,m+1,n[1](α,β,γ)σj

+
N∑

j=�+m

e±iϕj S�−1,m,n+1[1](α,β,γ)σj (3.76)

(note the absence of the dots over the S’s). By the analyticity of all of the
functions in Eq. (3.72) on �̇�,m,n, it suffices to prove that Eq. (3.76) holds for
such (α,β,γ).

By Fubini’s theorem, the right-hand side of Eq. (3.76) is
∫

	�−1,m,n

ω(x2, . . . , xN )
[ ∫ +∞

−∞
(−x1 ± i0)

α1(1 − x1 ± i0)
β1
( N∏

j=2

(xj − x ± i0)
2γ1,j

)
dx
]

dx2 · · · dxN , (3.77)

where ω(x2, . . . , xN ) = [
∏N

j=2 |xj |αj |1 − xj |βj ]
∏

2≤j<k≤N (xk − xj)2γj,k . The
claim then follows from

0 =
∫ +∞

−∞
(−x± i0)α(1− x± i0)β

( N∏
j=2

(xj − x± i0)2γj

)
dx, (3.78)

which holds for every (x2, . . . , xN ) ∈ (R\{0, 1})N−1 such that x2, . . . , xN are
pairwise distinct and all α, β, γ2, . . . , γN ∈ C for which

• the integrand of Eq. (3.78) lies in L1(R) and
• �γj ∈ (−1, 0) for all j ∈ {2, . . . , N}.

Denote the right-hand side of Eq. (3.78) by I± = I±(x2, . . . , xN ;α, β, γ2, . . . ,
γN ). For R > max{|x1|, . . . , |xN−1|},

0 =
∫

Γ∓(R)

(−z ± i0)α(1− z ± i0)β
N∏

j=2

(xj − z ± i0)2γj dz, (3.79)

where Γ±(R) = Γ±(R)(x2, . . . , xN ) ⊂ C is the semicircular contour (with N+1
semicircular insets placed so that the contour avoids x2, . . . , xN ) connecting
−R and +R, with the arc and semicircular insets in the half-plane {z ∈ C :
±�z ≥ 0}. See Fig. 11. In Eq. (3.79), the integrand is defined taking the branch
cut along the negative real axis, so

(x − z ± i0)2γj =

{
exp(2γj(log |x − z| + i arg(x − z))) (+ case, �z ≤ 0),

exp(2γj(log |x − z| − 2πi + i arg(x − z))) (− case, �z ≥ 0),

(3.80)

for any x ∈ R, where arg(x− z) ∈ [0, 2π). We orient Γ+ counter-clockwise and
Γ− clockwise.
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Figure 11. The contour Γ+(R) in the case 
 = 2,m = 1, n =
0

Let Γ++(R) denote the large arc of Γ+(R) and Γ+0(R) denote the rest,
and likewise let Γ−−(R) denote the large arc of Γ−(R) and Γ−0(R) denote the
rest. Then,

I± = lim
R→∞

∫
Γ∓0(R)

(−z ± i0)α(1− z ± i0)β
N∏

j=2

(xj − z ± i0)2γj dz.

(3.81)

On the other hand, for R sufficiently large,

∣∣∣
∫

Γ∓∓(R)

(−z ± i0)α(1− z ± i0)β
N∏

j=2

(xj − z ± i0)2γj dx
∣∣∣

≤ π(2R)1+�α+�β = O(R−ε) (3.82)

for some ε > 0 depending on (α, β) ∈ Ω1,0,0 ∩ Ω0,1,0 ∩ Ω0,0,1. Combining Eqs.
(3.79), (3.81), and (3.82), we get I± = 0. �

Proposition 3.10. For any F ∈ C[x1, x
−1
1 , . . . , xN , x−1

N ],

0 = İ�,m,n[F ](α,β,γ) + e+πi(α+2
∑�

j=2 γ1,j)İ�−1,m+1,n[F ](α,β,γ)σ�

+e+πi(α+β+2
∑�+m

j=2 γ1,j)İ�−1,m,n+1[F ](α,β,γ)σ�+m (3.83)

0 = İ�,m,n[F ](α,β,γ)σ� + e−πi(α+2
∑�

j=2 γ1,j)İ�−1,m+1,n[F ](α,β,γ)σ�+m

+e−πi(α+β+2
∑�+m

j=2 γ1,j)İ�−1,m,n+1[F ](α,β,γ)σN (3.84)

both hold, for all (α,β,γ) ∈ Λ̇�,m,n[F ].

Proof. Let S′
�,m,n denote the Young subgroup of S�,m,n consisting of permu-

tations which fix 1, i.e.

S′
�,m,n = {σ ∈ S�,m,n s.t. σ(1) = 1}. (3.85)

Via analyticity, it suffices to prove this for all (α,β,γ) ∈ ∩σ∈S′
�,m,n

�̇�,m,n[F ]σ.



E. Sussman Ann. Henri Poincaré

For such (α,β,γ), we can cite the previous proposition to get

0 =
∑

σ∈S′
�,m,n

eπiΘ(σ−1)
[ �∑

j=1

e±iθσ
j Ṡ�,m,n[F ](α,β,γ)σjσ

+
�+m∑
j=�

e±iϑσ
j Ṡ�−1,m+1,n[F ](α,β,γ)σjσ

+
N∑

j=�+m

e±iϕσ
j Ṡ�−1,m,n+1[F ](α,β,γ)σjσ

]
, (3.86)

where θσ
j = 2π

∑
2≤j0≤j γ1,σ(j0), ϑσ

j = πα + 2π
∑

2≤j0≤j γ1,σ(j0), and ϕσ
j =

πα + πβ + 2π
∑

2≤j0≤j γ1,σ(j0). The order of multiplication is such that σjσ

is a permutation satisfying (σjσ)(1) = j. In Eq. (3.86), Θ is defined as in
Proposition 3.7.

Every σ0 ∈ S�,m,n has the form σ0 = σjσ for some j ∈ {1, . . . , N} and
σ ∈ S�,m,n satisfying σ(1) = 1. It can be seen that

Θ(σ−1
0 ) = Θ(σ−1) + θσ

j . (3.87)

Using Proposition 3.7, we check that the two cases of Eq. (3.86) yield the two
results, Eqs. (3.83) and (3.84). For instance,

∑
σ∈S′

�,m,n

eπiΘ(σ−1)
�∑

j=1

e+iθσ
j Ṡ�,m,n[F ](α,β,γ)σjσ

=
∑

σ∈S�,m,n

eπiΘ(σ−1)Ṡ�,m,n[F ](α,β,γ)σ

= İ�,m,n[F ](α,β,γ).

(3.88)

Similar statements apply to the other two sums in Eq. (3.86) in the ‘+’ case,
thus yielding Eq. (3.83). Similar computations apply to the ‘−’ case. �

3.7. The Symmetric and DF-Symmetric Cases

Fix F ∈ AD(A�,m,n), not necessarily symmetric. We assume that dFS,Q;• ∈ Z

for all FS,Q;• ∈ F(A�,m,n). Let

δk = min{dFS,Q;0 : S ⊆ I1, Q ⊆ I2, |S ∪Q| = k} (3.89)

for each k ∈ {1, . . . , 
 + m},
δk = min{dFS,Q;1 : S ⊆ I2, Q ⊆ I3, |S ∪Q| = k} (3.90)

for each k ∈ {1, . . . , m + n}, and

dk = −min{dFS,Q;∞ : S ⊆ I3, Q ⊆ I1, |S ∪Q| = k} (3.91)

for each k ∈ {1, . . . , 
+n}. Here, we are ranging over all {dF}F∈F(A�,m,n) ∈ D.
Let Ẇ�,m,n[D] denote the set of (α, β, γ) ∈ C

3 such that (α,β,γ) ∈
V̇�,m,n[D] whenever α,β,γ have components given by αj = α and βj = β for
all indices j ∈ {1, . . . , N} and γj,k = γ for all j, k ∈ {1, . . . , N} with j < k.
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Proposition 3.11. There exists an entire function I�,m,n;Reg[F ] : C
3 → C such

that

İ�,m,n[F ](α, β, γ)

=
[ �+m∏

k=1

Γ(δk + k(1 + α + (k − 1)γ))
][m+n∏

k=1

Γ( δk + k(1 + β + (k − 1)γ))
]

×
[ �+n∏

k=1

Γ(−dk − k(1 + α + β + (2N − k − 1)γ))
]
I�,m,n;Reg[F ](α, β, γ)

(3.92)

for all (α, β, γ) ∈ Ẇ�,m,n[D].

Proof. Follows from Proposition 3.4. �

For later reference, consider the special case F ∈ C[x1, . . . , xN ]SN . Re-
ferring to Eq. (1.14), (1.15), and (1.28), set dFS,Q;0 = δj [F ], dFS,Q;1 = δj [F ],
and dFS,Q;∞ = degj [F ], for S,Q ⊆ {1, . . . , N} as usual, where, for each S and
Q, j = |S ∪ Q|. Then, as follows straightforwardly from Eqs. (2.23), (2.25),
(2.27),

F ∈
∏

F∈F(A�,m,n)

xdF
F C∞(A�,m,n). (3.93)

Thus, letting D denote the collection of the integers above, F ∈ AD(A�,m,n).
We can therefore apply the results above, with δj = δj [F ], δj = δj [F ], and
dj = −degj [F ].

We now turn to the “DF0-symmetric” case. For any S ⊆ {1, . . . , N}, let

ẆDF0,S
�,m,n [F ] = {(α−, α+, β−, β+, γ−, γ0, γ+) ∈ C

7 : (αDF0, βDF0, γDF0) ∈ V̇�,m,n[F ]}.

(3.94)

This is a dense, open, and connected subset of C
7 and depends on S only

through the numbers |S ∩ Ij |. Actually, we need a slightly refined version of
this later; let

ẆDF1,S
�,m,n [F ] = {(α−,1, α−,2, α−,3, α+,1,

α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ−, γ0, γ+) ∈ C
9

: (αDF1, βDF1, γDF0) ∈ V̇�,m,n[F ]}, (3.95)

where αDF1,βDF1 are defined as their DF0-counterparts, but defining the jth
component using α+,ν in place of α+ and β+,ν in place of β+ for ν ∈ Iν .

For (α−, α+, β−, β+, γ−, γ0, γ+) ∈ ẆDF0,S
�,m,n [F ], let

İDF0;S
�,m,n [F ](α−, α+, β−, β+, γ−, γ0, γ+) = İ�,m,n[F ](αDF0,βDF0,γDF0).

(3.96)

Let 
+ = S ∩ I1, 
− = 
− 
+, m+ = S ∩ I2, m− = m−m+, n+ = S ∩ I3, and
n− = n− n+. Set N+ = |S| and N− = N −N+.
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Suppose now that F ∈ AD(A�,m,n) is symmetric in the variables {xi}i∈S

and {xi}i/∈S separately. Let

δj−,j+ = min{dFS,Q;0 : S ⊆ I1, Q ⊆ I2, |(S ∪Q)\S| = j−, |(S ∪Q) ∩ S| = j+}
(3.97)

for j− ∈ {1, . . . , 
− + m−} and j+ ∈ {1, . . . , 
+ + m+},
δj−,j+ = min{dFS,Q;1 : S ⊆ I2, Q ⊆ I3, |(S ∪Q)\S| = j−, |(S ∪Q) ∩ S| = j+}

(3.98)

for j− ∈ {1, . . . , m− + n−} and j+ ∈ {1, . . . , m+ + n+}, and

dj−,j+ = −min{dFS,Q;∞ : S ⊆ I3, Q ⊆ I1, |(S ∪Q)\S| = j−, |(S ∪Q) ∩ S| = j+}
(3.99)

for j− ∈ {1, . . . , 
− + n−} and j+ ∈ {1, . . . , 
+ + n+}. A similar argument to
that above yields:

Proposition 3.12. There exists an entire function IDF0;S
�,m,n;Reg[F ] : C

7 → C such
that

İ
DF0
�,m,n[F ](α−, α+, β−, β+, γ−, γ0, γ+)

= I
DF0
�,m,n;Reg[F ](α−, α+, β−, β+, γ−, γ0, γ+)

×
[ �−+m−∏

j−=1

�++m+∏
j+=1

Γ(δj−,j+
+ j−(1 + α− + (j− − 1)γ−) + j+(1 + α+ + (j+ − 1)γ+) + 2γ0j−j+)

]

×
[m−+n−∏

j−=1

m++n+∏
j+=1

Γ( δj−,j+
+ j−(1 + β− + (j− − 1)γ−) + j+(1 + β+ + (j+ − 1)γ+) + 2γ0j−j+)

]

×
[ �−+n−∏

j−=1

�++n+∏
j+=1

Γ(−dj−,j+
− j−(1 + α− + β− + (2N− − j− − 1)γ−)

−j+(1 + α+ + β+ + (2N+ − j+ − 1)γ+) − 2γ0j−j+)
]

(3.100)

holds whenever (α−, α+, β−, β+, γ−, γ0, γ+) ∈ ẆDF0
�,m,n[F ].

4. Removing Singularities

As in previous sections, fix 
,m, n ∈ N not all zero, and let N = 
 + m + n
and I1 = {1, . . . , 
}, I2 = {
+1, . . . , 
+m}, and I3 = {
+m+1, . . . , N}. For
k ∈ N, let

�k : Cγ\{kγ ∈ Z
≤−1 and γ /∈ Z} → C (4.1)

denote the analytic function given by �k(γ) = Γ(1 + γ)−1Γ(1 + kγ) for kγ /∈
Z

≤−1. We can consider �
−1
k as an entire function.

4.1. The Symmetric Case

Fix F ∈ C[x1, . . . , xN ]SN , and let δj , δj , dj ∈ N be as above.
Let U̇�,m,n[F ] denote the set of (α, β, γ) ∈ C

3 such that (α,β,γ) ∈
Ω̇�,m,n[F ] whenever α,β,γ have components given by αj = α and βj = β
for all indices j ∈ {1, . . . , N} and γj,k = γ for all j < k. Thus, we can define

Ṡ�,m,n[F ](α, β, γ) = Ṡ�,m,n[F ](α,β,γ) (4.2)
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for any (α, β, γ) ∈ U̇�,m,n[F ].

Proposition 4.1. The function Sreg
�,m,n[F ] : U̇�,m,n[F ] → C defined by

Sreg
�,m,n[F ](α, β, γ) =

[ �+m∏
k=1

Γ(δk + k(1 + α + (k − 1)γ))
]−1

×
[m+n∏

k=1

Γ( δk + k(1 + β + (k − 1)γ))
]−1

[ �+n∏
k=1

Γ(−dk − k(1 + α + β + (N + k − 2)γ))
]−1

×
[ �∏

k=1

1
�k(γ)

][ m∏
k=1

1
�k(γ)

][ n∏
k=1

1
�k(γ)

]
Ṡ�,m,n[F ](α, β, γ)

(4.3)

extends to an entire function C
3
α,β,γ → C.

Proof. • Since the prefactor on the right-hand side of Eq. (4.3) consisting of
all of the Γ-function reciprocals is entire, Sreg

�,m,n[F ] extends to an analytic
function on U̇�,m,n[F ], the domain of Ṡ�,m,n[F ](α, β, γ).

• For all (α, β, γ) ∈ U̇�,m,n[F ], we have

[ �∏
k=1

1− e2πikγ

1− e2πiγ
�k(γ)

]

[ m∏
k=1

1− e2πikγ

1− e2πiγ
�k(γ)

][ n∏
k=1

1− e2πikγ

1− e2πiγ
�k(γ)

]
Sreg

�,m,n[F ](α, β, γ)

= I�,m,n;Reg[F ](α, β, γ) (4.4)

by Proposition 3.8. By Proposition 3.11, this extends to an entire function
C

3
α,β,γ → C.

The product �k(γ)(1− e2πikγ)(1− e2πiγ)−1, with its removable sin-
gularities removed, vanishes if and only if kγ ∈ N and γ /∈ N. Thus,
Sreg

�,m,n[F ] extends to an analytic function on

C
3
α,β,γ\ ∪M

k=2 {kγ ∈ N, γ /∈ N}, (4.5)

where M = max{
,m, n}.
Combining these two observations, Sreg

�,m,n[F ] extends to an analytic func-
tion on U̇�,m,n[F ] ∪ (C3

α,β,γ\ ∪M
k=2 {kγ ∈ N, γ /∈ N}).

The set ∪M
k=2{kγ ∈ N, γ /∈ N} is a union of hyperplanes, and it is disjoint

from
N⋃

k=1

{k(k + 1)γ ∈ Z
≤−k}, (4.6)



E. Sussman Ann. Henri Poincaré

so U̇�,m,n[F ]∪ (C3
α,β,γ\∪M

k=2 {kγ ∈ N, γ /∈ N}) is the complement in C
3
α,β,γ of a

locally finite collection of complex codimension-2 affine subspaces of C
3. The

result therefore follows from Hartog’s extension theorem. �

For any 
 ∈ N
+ and m,n ∈ N,

{(α, β, γ) ∈ C
3 : (α,β,γ) ∈ �̇�,m,n[F ]}

= U̇�,m,n[F ] ∩ U̇�−1,m+1,n[F ] ∩ U̇�−1,m,n+1[F ]. (4.7)

The symmetric case of Proposition 3.9 reads, after multiplying through by
1− e±2iγ ,
0 = (1 − e

±2πi�γ
)Ṡ�,m,n[F ](α, β, γ) + e

±πi(α+2(�−1)γ)
(1 − e

±2πi(m+1)γ
)Ṡ�−1,m+1,n[F ](α, β, γ)

+e
±πi(α+β+2(�−1+m)γ)

(1 − e
±2πi(n+1)γ

)Ṡ�−1,m,n+1[F ](α, β, γ) (4.8)

for all (α, β, γ) in the set defined by Eq. (4.7). Define

ON ;0 = {(α, β, γ) ∈ C
3 : α + jγ /∈ Z for any j ∈ {0, . . . , N − 1}}, (4.9)

ON ;1 = {(α, β, γ) ∈ C
3 : β + jγ /∈ Z for any j ∈ {0, . . . , N − 1}}. (4.10)

Proposition 4.2 (Cf. [3,8,17]).

• For all (α, β, γ) ∈ U̇N,0,0[F ] ∩ U̇0,N,0[F ] ∩ON ;1,

Ṡ0,N,0[F ](α, β, γ)

= (−1)N
[N−1∏

m=0

sin(π(α + β + (N + m− 1)γ))
sin(π(β + mγ))

]
ṠN,0,0[F ](α, β, γ).

(4.11)

• For all (α, β, γ) ∈ U̇0,N,0[F ] ∩ U̇0,0,N [F ] ∩ON ;0,

Ṡ0,N,0[F ](α, β, γ)

= (−1)N
[N−1∏

m=0

sin(π(α + β + (N + m− 1)γ))
sin(π(α + mγ))

]
Ṡ0,0,N [F ](α, β, γ).

(4.12)

Proof. We prove the second claim, and the proof of the first is similar. Suppose
that

(α, β, γ) ∈
N⋂

n=0

U̇0,N−n,n[F ] ∩
N−1⋂
n=0

U̇1,N−1−n,n[F ]. (4.13)

We can apply Eq. (4.8) for 
 = 1 and all pairs of m,n ∈ {0, . . . , N − 1} such
that m + n = N − 1. Combining the plus and minus cases of Eq. (4.8) to
eliminate the Ṡ1,N−n−1,n[F ] term,

1

2i

[
e
+πiα 1 − e+2πi(m+1)γ

1 − e+2πiγ
− e

−πiα 1 − e−2πi(m+1)γ

1 − e−2πiγ

]
Ṡ0,N−n,n[F ](α, β, γ)

= − 1

2i

[
e
+πi(α+β+2(N−n−1)γ) 1 − e+2πi(n+1)γ

1 − e+2πiγ
− e

−πi(α+β+2(N−n−1)γ) 1 − e−2πi(n+1)γ

1 − e−2πiγ

]

×Ṡ0,N−n−1,n+1[F ](α, β, γ) (4.14)
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if γ /∈ Z. We calculate:

1
2i

[
e+πiα 1− e+2πi(N−n)γ

1− e+2πiγ
− e−πiα 1− e−2πi(N−n)γ

1− e−2πiγ

]

=
2s(γ)s(α + (N − n− 1)γ)s((N − n)γ)

1− cos(2πγ)
(4.15)

and
1

2i

[
e+πi(α+β+2(N−n−1)γ) 1 − e+2πi(n+1)γ

1 − e+2πiγ
− e−πi(α+β+2(N−n−1)γ) 1 − e−2πi(n+1)γ

1 − e−2πiγ

]

=
2s(γ)

1 − cos(2πγ)
s(α + β + (2N − n − 2)γ)s((n + 1)γ), (4.16)

where s(t) = sin(πt). So, for (α, β, γ) as above such that none of the trigono-
metric factors on the right-hand side of Eq. (4.15) vanish,

Ṡ0,N−n,n[F ](α, β, γ)

= − s(α + β + (2N − n − 2)γ)s((n + 1)γ)

s(α + (N − n − 1)γ)s((N − n)γ)
Ṡ0,N−1−n,n+1[F ](α, β, γ). (4.17)

Applying this recursively for n = 0, . . . , N − 1, we end up with Eq. (4.12).
In summary, Eq. (4.12) holds for a nonempty, open subset of (α, β, γ) ∈

U̇0,N,0[F ] ∩ U̇0,0,N [F ] ∩ON ;0. By analyticity, the result follows. �

Proposition 4.3. The function SN ;Reg[F ](α, β, γ) defined by

SN ;Reg[F ](α, β, γ)

=
[ N∏

j=1

Γ(2 + d̄j + α + β + (N + j − 2)γ)

Γ(1 + δ̄j + α + (j − 1)γ)Γ(1 + ¯δj + β + (j − 1)γ)�j(γ)

]
SN [F ](α, β, γ)

(4.18)

extends to an entire function SN ;Reg[F ] : C
3
α,β,γ → C.

Proof. We begin by defining the following open (and dense) subsets of C
3:

QN;0 = {(α, β, γ) ∈ C
3

: δ̄j + α + (j − 1)γ /∈ N for any j ∈ {1, . . . , N}},

QN;1 = {(α, β, γ) ∈ C
3

: ¯δj + β + (j − 1)γ /∈ N for any j ∈ {1, . . . , N}},

QN;∞ = {(α, β, γ) ∈ C
3

: d̄j + α + β + (N + j − 2)γ /∈ Z
≤−2

for any j ∈ {1, . . . , N}},

UN;0 = {(α, β, γ) ∈ C
3

: δj + j(α + (j − 1)γ) /∈ Z
≤−j

for any j ∈ {1, . . . , N}},

UN;1 = {(α, β, γ) ∈ C
3

: δj + j(β + (j − 1)γ) /∈ Z
≤−j

for any j ∈ {1, . . . , N}},

UN;∞ = {(α, β, γ) ∈ C
3

: −dj − j(1 + α + β + (N + j − 2)γ) /∈ Z
≤0

for any j ∈ {1, . . . , N}}
= {(α, β, γ) ∈ C

3
: dj + j(1 + α + β + (N + j − 2)γ) /∈ N for any j ∈ {1, . . . , N}}.

(4.19)

We write

SN ;Reg[F ](α, β, γ) = Υ0(α, β, γ)Υ1(α, β, γ)

×
[ N∏

j=1

Γ(δj + j(1 + α + (j − 1)γ))Γ( δj
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Figure 12. The sets in S1,S2,S3 in R
3
α,β,γ ∩ {β = 1/5} in

the case N = 2

+j(1 + β + (j − 1)γ))�j(γ)
]−1

SN [F ](α, β, γ)

(4.20)

for

Υ0(α, β, γ) =
N∏

j=1

Γ(δj + j(1 + α + (j − 1)γ))Γ( δj + j(1 + β + (j − 1)γ))
Γ(1 + δ̄j + α + (j − 1)γ)Γ(1 + ¯δj + β + (j − 1)γ)

,

(4.21)

Υ1(α, β, γ) =
N∏

j=1

Γ(2 + d̄j + α + β + (N + j − 2)γ). (4.22)

By Proposition 4.1, the second line on the right-hand side of Eq. (4.20) defines
an entire function. Since Υ0 extends to an analytic function on UN ;0 ∩ UN ;1

and Υ1 extends to an analytic function on QN ;∞, SN ;Reg[F ] extends to an
analytic function on UN ;0 ∩ UN ;1 ∩QN ;∞.

In ON ;0 ∩ U̇0,N,0 ∩ U̇0,0,N , Proposition 4.2 gives

SN ;Reg[F ](α, β, γ)

= (−1)NΥ2(α, β, γ)Υ3(α, β, γ)

×
[ N∏

j=1

Γ(−dj − j(1 + α + β + (N + j − 2)γ))Γ( δj + j(1 + β

+(j − 1)γ))�j(γ)
]−1

Ṡ0,0,N [F ](α, β, γ), (4.23)

where

Υ2 =
N∏

j=1

Γ( δj + j(1 + β + (j − 1)γ))
s(α + (j − 1)γ)Γ(1 + δ̄j + α + (j − 1)γ)Γ(1 + ¯δj + β + (j − 1)γ)

(4.24)
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Υ3 =
N∏

j=1

s(α + β + (N + j − 2)γ)Γ(2 + d̄j + α + β + (N + j − 2)γ)

× Γ(−dj − j(1 + α + β + (N + j − 2)γ)). (4.25)

By Proposition 4.1, the function on the second line of Eq. (4.23) extends to an
entire function of α, β, γ. On the other hand, Υ2 extends to an analytic function
on QN ;0 ∩UN ;1, and Υ3 extends to an analytic function on UN ;∞. Combining
these observations, SN ;Reg[F ] analytically continues to QN ;0 ∩ UN ;1 ∩ UN ;∞.

Likewise, SN ;Reg[F ] extends analytically to UN ;0 ∩ QN ;1 ∩ UN ;∞, using
ON ;1 in place of ON ;0 and the other part of Proposition 4.2.

So, SN ;Reg[F ](α, β, γ) analytically continues to

U = (UN ;0 ∩ UN ;1 ∩QN ;∞) ∪ (UN ;0 ∩QN ;1 ∩ UN ;∞) ∪ (QN ;0 ∩ UN ;1 ∩ UN ;∞).
(4.26)

This is

U = C
3
∖[( ⋃

H1∈S1,H2∈S2,H3∈S3

H1 ∩H2 ∩H3)
]
, (4.27)

where
• S1 is the set of hyperplanes that are contained in the complement of one

of UN ;0, UN ;1, QN ;∞,
• S2 is the set of hyperplanes that are contained in the complement of one

of UN ;0, QN ;1, UN ;∞, and
• S3 is the set of hyperplanes that are contained in the complement of one

of QN ;0, UN ;1, UN ;∞.
Let

H = {H1 ∩H2 ∩H3 
= ∅ : H1 ∈ S1,H2 ∈ S2,H3 ∈ S3}, (4.28)

so that SN ;Reg[F ] defines an analytic function on U = C
3\∪H∈HH. Observe

that every H ∈ H is an affine subspace of C
3 of complex codimension two or

three (since S1 ∩ S2 ∩ S3 = ∅), and the collection H is locally finite.
Hartog’s theorem therefore implies that SN ;Reg[F ] analytically continues

to the entirety of C
3. �

This completes the proof of Theorem 1.2.

4.2. The DF-Symmetric Case

Given γ+ ∈ C\{0, 1} and α+, β+ ∈ C, let γ− = γ−1
+ , α− = −γ−α+, and

β− = −γ−β+ as in the introduction. Fix S ⊆ {1, . . . , N}.
Given γ+ 
= 0, 1 and F ∈ DFSym(N ; S, λ) for λ = γ−1

+ (γ+ − 1), let
ẆDF,S

�,m,n[F ; γ+] denote the set of (α+, β+) ∈ C
2 such that

(α−, α+, β−, β+, γ−,−1, γ+) ∈ ẆDF0,S
�,m,n [F ]. (4.29)

For (α+, β+) ∈ ẆDF,S
�,m,n[F ; γ+], let

İDF;S
�,m,n[F ](α+, β+, γ+) = IDF0;S

�,m,n [F ](α−, α+, β−, β+, γ−,−1, γ+). (4.30)
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Then, as adumbrated by Dotsenko and Fateev:

Proposition 4.4. For any σ ∈ S�,m,n,

İDF;S
�,m,n[F ](α+, β+, γ+) = İDF;S

�,m,n[F ](α+, β+, γ+)σ (4.31)

for all (α+, β+) ∈ ẆDF,S
�,m,n[F ; γ+].

Since ẆDF,S
�,m,n[F ] depends only on S through |S ∩ I1|, |S ∩ I2|, |S ∩ I3|,

ẆDF,S
�,m,n[F ; γ+] = ẆDF,S

�,m,n[F ; γ+]σ, (4.32)

so the right-hand side of Eq. (4.31) is defined for any (α+, β+) ∈ ẆDF,S
�,m,n[F ; γ+].

Proof. Since S�,m,n is generated by transpositions τ of adjacent elements of
I1, I2, I3, it suffices to consider the case when σ is such a transposition, τ . For
notational simplicity, we consider the case when τ is a transposition of some
j, j +1 ∈ I2 and j ∈ S. The other cases are similar but involve some notational
changes.

Let ẆDF,1,S
�,m,n [F ; γ+] ⊆ C

6 denote the set of (α1,+, α2,+, α3,+, β1,+, β2,+,

β3,+) ∈ C
6 such that

(α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3,

γ−,−1, γ+) ∈ ẆDF1,S
�,m,n [F ], (4.33)

where α−,ν = −γ−α+,ν and β−,ν = −γ−β+,ν . It suffices to prove that, for any
σ ∈ S�,m,n,

İ
DF,1,;S
�,m,n [F ](α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ+)

= İ
DF,1;S
�,m,n [F ](α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ+)

σ

(4.34)

for all (α1,+, α2,+, α3,+, β1,+, β2,+, β3,+) ∈ ẆDF,1,S
�,m,n [F ; γ+], where

İDF,1;S
�,m,n [F ](α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ+)

= İ�,m,n[F ](αDF,1, βDF,1, γDF),

(4.35)

where αDF,1,βDF,1 are defined as αDF1,βDF1, using α−,ν = −γ−α+,ν and
β−,ν = −γ−β+,ν .

First observe that there exists a nonempty, open subset

O ⊂ ẆDF,1,S
�,m,n [F ; γ+] (4.36)

(containing an affine cone) such that (αDF,1,βDF,1,γDF) ∈ O{1,τ} whenever
(α+,1, . . . , β+,3) ∈ O, where O{1,τ} is defined as in §3.4. We can choose O such
that �α±,2,�β±,2 > 0 everywhere in O.

Since ẆDF,S
�,m,n[F ; γ+] is connected, it suffices via analyticity to prove the

result for

(α1,+, α2,+, α3,+, β1,+, β2,+, β3,+) ∈ O. (4.37)

We write α± in place of α±,2 and β± in place of β±,2 below.
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We can apply Proposition 3.6 for (α+,1, . . . , β+,3) ∈ O. By Proposition
3.6, it suffices to check that, whenever all of the zk’s besides zj and zj+1 are
somewhere in the interior of the corresponding contour in Eq. (3.63),∫

Γ[0,1],+,j−�

∮
z

α+
j (1− zj)β+z

α−
j+1(1− zj+1)β−

( ∏
1≤j0<k0≤N

{j0,k0}∩{j,j+1}�=∅

(zk0 − zj0)
2γj0,k0

)
F dzj dzj+1 = 0, (4.38)

where the inner integral is taken over a small circle around zj+1, for each
zj+1 ∈ Γ[0,1],+,j−�\{0, 1}.

Since the integrand is holomorphic in zj in a punctured neighborhood of
zj+1, we apply the Cauchy residue theorem to deduce that the left-hand side
is proportional to ∫

Γ[0,1],+,j−�

G0
∂G

∂zj

∣∣∣
zj=zj+1

dzj+1, (4.39)

where

G0(z1, . . . , zN ) = z
α−
j+1(1− zj+1)β−

[ ∏
j0∈([N ]\S)\{j+1}

(zj+1 − zj0)
2γ−
]

[ ∏
j0∈S\{j}

(zj+1 − zj0)
−2
]
, (4.40)

G(z1, . . . , zN ) = z
α+
j (1− zj)β+

[ ∏
j0∈([N ]\S)\{j+1}

(zj − zj0)
−2
]

[ ∏
j0∈S\{j}

(zj − zj0)
2γ+

]
F. (4.41)

We are choosing branch cuts such that we do not encounter any as zj , zj+1

are integrated along Γ[0,1],+,j−� (except at the endpoints). Other than that, it
is not important what the precise choice of branch cuts are.

The integrand in Eq. (4.39) is computed to be

G0
∂G

∂zj

∣∣∣
zj=zj+1

=
[ α+

zj+1
− β+

1− zj+1
+ 2γ+

∑
j0∈S\{j}

1
zj+1 − zj0

−2
∑

j0∈([N ]\S)\{j+1}

1
zj+1 − zj0

+
∂zj

F

F

∣∣∣
zj=zj+1

]
H,

(4.42)

where H = G0G|zj=zj+1 . On the other hand,

∂H

∂zj+1
=
[α− + α+

zj+1
− β− + β+

1− zj+1

+(2γ+ − 2)
∑

j0∈S\{j}

1
zj+1 − zj0
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+(2γ− − 2)
∑

j0∈([N ]\S)\{j+1}

1
zj+1 − zj0

+
∂zj+1(F |zj=zj+1)

F |zj=zj+1

]
H.

(4.43)

Since 1− γ− = α−1
+ (α− + α+) = β−1

+ (β− + β+) = γ−1
+ (γ+ − 1) = λ, and since

F ∈ DFSym(N, S, λ),

G0
∂G

∂zj

∣∣∣
zj=zj+1

=
1
λ

∂H

∂zj+1
. (4.44)

Consequently,∫
Γ[0,1],+,j−�

G0
∂G

∂zj

∣∣∣
zj=zj+1

dzj+1 =
1
λ

∫
Γ[0,1],+,j−�

∂H

∂zj+1
dzj+1. (4.45)

The right-hand side is proportional to∫
p

∂H

∂zj+1
dzj+1 (4.46)

if α+, β+ /∈ Z, where p is a Pochhammer contour in C
2\{0, 1} staying suffi-

ciently close to Γ[0,1],+,j−�. Lifting to a cover of a neighborhood of Γ[0,1],+,j−�

on which H lifts to a single-valued analytic function, we can conclude (us-
ing analyticity) that the integral in Eq. (4.46) is zero. By analyticity, we can
remove the nonintegrality constraint on α+, β+ to conclude that∫

Γ[0,1],+,j−�

∂H

∂zj+1
dzj+1 = 0 (4.47)

for all (α+,1, . . . , β+,3) ∈ O.
�

Proposition 4.5 (Cf. [8]). Given the setup above, for arbitrary S:

• For all (α+, β+) ∈ ẆDF,S
N,0,0[F ; γ+]∩ẆDF,S

0,N,0[F ; γ+] such that β±+m±γ± /∈ Z

for any m± ∈ {0, . . . , N± − 1}
İDF,S
0,N,0[F ](α+, β+, γ+) = (−1)N İDF,S

N,0,0[F ](α+, β+, γ+)

×
[ N+−1∏

m+=0

sin(π(α+ + β+ + (N+ + m+ − 1)γ+))
sin(π(β+ + m+γ+))

]

[ N−−1∏
m−=0

sin(π(α− + β− + (N− + m− − 1)γ−))
sin(π(β− + m−γ−))

]
.

(4.48)

• For all (α+, β+) ∈ ẆDF,S
0,N,0[F ; γ+]∩ẆDF,S

0,0,N [F ; γ+] such that α± +m±γ± /∈
Z for any m± ∈ {0, . . . , N± − 1},
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İDF,S
0,N,0[F ](α+, β+, γ+) = (−1)N İDF,S

0,0,N [F ](α+, β+, γ+)

×
[ N+−1∏

m+=0

sin(π(α+ + β+ + (N+ + m+ − 1)γ+))
sin(π(α+ + m+γ+))

]

[ N−−1∏
m−=0

sin(π(α− + β− + (N− + m− − 1)γ−))
sin(π(α− + m−γ−))

]
.

(4.49)

For S = {1, . . . , N+}, we also have:

• For all (α+, β+) ∈ ẆDF,S
N+,N−,0[F ; γ+]∩ẆDF,S

0,N,0[F ; γ+] such that β++m+γ+ /∈
Z for any m+ ∈ {0, . . . , N+ − 1}

İDF,S
0,N,0[F ](α+, β+, γ+) = (−1)N+ İDF,S

N+,N−,0[F ](α+, β+, γ+)

×
[ N+−1∏

m+=0

sin(π(α+ + β+ + (N+ + m+ − 1)γ+))
sin(π(β+ + m+γ+))

]
.

(4.50)

• For all (α+, β+) ∈ ẆDF,S
0,N,0[F ; γ+] ∩ ẆDF,S

0,N+,N− [F ; γ+] such that α− +
m−γ− /∈ Z for any m− ∈ {0, . . . , N− − 1},

İDF,S
0,N,0[F ](α+, β+, γ+) = (−1)N− İDF,S

0,N+,N− [F ](α+, β+, γ+)

×
[ N−−1∏

m−=0

sin(π(α− + β− + (N− + m− − 1)γ−))
sin(π(α− + m−γ−))

]
.

(4.51)

Similarly, for S = {N −N+ + 1, . . . , N}, we have:

• For all (α+, β+) ∈ ẆDF,S
N−,N+,0[F ; γ+]∩ẆDF,S

0,N,0[F ; γ+] such that β−+m−γ− /∈
Z for any m− ∈ {0, . . . , N− − 1}

İDF,S
0,N,0[F ](α+, β+, γ+) = (−1)N− İDF,S

N−,N+,0[F ](α+, β+, γ+)

×
[ N−−1∏

m−=0

sin(π(α− + β− + (N− + m− − 1)γ−))
sin(π(β− + m−γ−))

]
.

(4.52)

• For all (α+, β+) ∈ ẆDF,S
0,N,0[F ; γ+] ∩ ẆDF,S

0,N−,N+
[F ; γ+] such that α+ +

m+γ+ /∈ Z for any m+ ∈ {0, . . . , N+ − 1},
İDF,S
0,N,0[F ](α+, β+, γ+) = (−1)N+ İDF,S

0,N−,N+
[F ](α+, β+, γ+)

×
[ N+−1∏

m+=0

sin(π(α+ + β+ + (N+ + m+ − 1)γ+))
sin(π(α+ + m+γ+))

]
.

(4.53)
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Proof. Follows from a repeated application of Proposition 3.10, as in the proof
of Proposition 4.2. The only difference with the proof of Proposition 4.2 is
that we appeal to Proposition 4.4 to show (instead of it being an automatic
consequence of symmetry) that

İ�,m,n[F ](αDF,S, βDF,S, γDF,S) = İ�,m,n[F ](αDF,S, βDF,S, γDF,S)σ�

(4.54)

İ�−1,m+1,n[F ](αDF,S, βDF,S, γDF,S)σ� = İ�−1,m+1,n[F ](αDF,S, βDF,S, γDF,S)σ�+m

(4.55)

İ�−1,m,n+1[F ](αDF,S, βDF,S, γDF,S)σ�+m = İ�−1,m,n+1[F ](αDF,S, βDF,S, γDF,S)σN .
(4.56)

�

Proposition 4.6. For γ+ ∈ C\{0, 1}, the functions IDF,S
N ;Reg[F ](α+, β+, γ+) de-

fined by

İDF,S
N [F ](α+, β+, γ+) =

[∏
±

N±∏
j=1

sin(π(α± + β± + (N± + j − 2)γ±))

sin(π(α± + (j − 1)γ±)) sin(π(β± + (j − 1)γ±))

]

×IDF,S
N ;Reg[F ](α+, β+, γ+) (4.57)

extend to entire functions IDF,S
N ;Reg[F ] : C

2
α+,β+

→ C.

Proof. The proof is very similar to that used to prove Proposition 4.3. Using
the previous proposition with Proposition 4.4, it suffices to note that the union
of all nine of the sets

Ẇ
DF,S−
N,0,0 [F ; γ+], Ẇ

DF,S−
0,N,0 [F ; γ+], Ẇ

DF,S−
0,0,N [F ; γ+], Ẇ

DF,S−
N−,N+,0[F ; γ+], Ẇ

DF,S−
N−,0,N+

[F ; γ+],

Ẇ
DF,S−
0,N−,N+

[F ; γ+], Ẇ
DF,S+
N+,N−,0[F ; γ+], Ẇ

DF,S+
N+,0,N−

[F ; γ+], Ẇ
DF,S+
0,N+,N−

[F ; γ+] ⊂ C
2
α+,β+

,

(4.58)

where S+ = {1, . . . , N+} and S− = S�, is the complement of locally finite set
of points, and then, the result follows via Hartog’s theorem.

�
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Appendix A: The N = 2 Case

We now consider the N = 2 case in some detail, beginning with the
formula

S2(α , β , γ ) =
Γ(1 + α1)Γ(1 + β2)Γ(2 + 2γ1,2 + α1 + α2)Γ(1 + 2γ1,2)

Γ(2 + α1 + 2γ1,2)Γ(3 + α1 + α2 + β2 + 2γ1,2)
· 3F2(a, b; 1),

(A.1)

a = (a1, a2, a3) = (1+α1,−β1, 2+2γ1,2 +α1 +α2) and b = (b1, b2) = (2+α1 +
2γ1,2, 3 + α1 + α2 + β2 + 2γ1,2). This is asymmetric in the role of the α’s and
β’s, but there is an analogous formula with the α’s and β’s on the right-hand
side switched. Some of the singularities of S2 are manifest in this formula, but
others are hidden in the 3F2 factor.

Consider now the Dotsenko–Fateev-like integral

IDF0
2 (α1, α2, β1, β2, γ)

=
∫ 1

0

∫ 1

0

xα1
1 xα2

2 (1− x1)β1(1− x2)β2(x2 − x1 + i0)2γ dx1 dx2. (A.2)

By the previous proposition:
Corollary A.0.1.

İDF0
2 (α1, α2, β1, β2, γ) = Γ(2 + 2γ + α1 + α2)Γ(1 + 2γ)[ Γ(1 + α1)Γ(1 + β2)3F2(a, b; 1)

Γ(2 + α1 + 2γ)Γ(3 + α1 + α2 + β2 + 2γ)

+e2πiγ Γ(1 + α2)Γ(1 + β1)3F2(a′, b′; 1)
Γ(2 + α2 + 2γ)Γ(3 + α1 + α2 + β1 + 2γ)

]
,

(A.3)

where a′ = (a′
1, a

′
2, a

′
3) = (1 + α2,−β2, 2 + 2γ + α1 + α2) and b′ = (b′

1, b
′
2) =

(2 + α2 + 2γ, 3 + α1 + α2 + β1 + 2γ).
The formula Eq. (A.3) is not suitable for analytic continuation to γ = −1,

for which we instead use the method described in §3.4. That yields

İ2(α1, α2, β1, β2, γ) =
Γ(1 + α1)Γ(1 + β1)

Γ(2 + α1 + β1)

∫
Γ

[
zα2+2γ(1− z)β2

×2F1

(
− 2γ, 1 + α1, 2 + α1 + β1;

1
z

)]
dz, (A.4)

where the Γ is a trapezoidal contour in the upper-half of the complex plane.
This formula can be used to numerically compute İDF0

2 (α1, α2, β1, β2, γ) for γ
with large negative real part, as long as α1, α2, β1, β2 have sufficiently large
positive real part relative to γ.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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We illustrate the method of proof of Theorem 1.1 with the computation
of the residues associated with α−+α++2γ ∈ Z

−2−d. Introducing coordinates
� = x2 and λ = x1/x2,

S2(α1, α2, β1, β2, γ) =

∫ 1

0

∫ x2

0

xα1
1 xα2

2 (1 − x1)
β1(1 − x2)

β2(x2 − x1)
2γ dx1 dx2

=

∫ 1

0

∫ 1

0

�1+α1+α2+2γλα1(1 − λ�)β1(1 − �)β2(1 − λ)2γ dλ d�.

(A.5)

Expanding (1− λ�)β1(1− �)β2 in Taylor series around � = 0, we have

(1− λ�)β1(1− �)β2 =
∞∑

k=0

k∑
κ=0

(
β1

κ

)(
β2

k − κ

)
λκ(−�)k. (A.6)

Then, computing the outer integral term by term and using the formula for
the β-function for the inner integral,

S2(α1, α2, β1, β2, γ) ∼
∞∑

k=0

(−1)k

2 + α1 + α2 + 2γ + k

k∑
κ=0

(
β1

κ

)(
β2

k − κ

)

Γ(1 + α1 + κ)Γ(1 + 2γ)
Γ(2 + α1 + 2γ + κ)

(A.7)

where the ‘∼’ means modulo an error which is not singular at (all but a positive
codimension subset of) the hyperplane under investigation. The right-hand
side of this has an apparent pole whenever α1 + α2 + 2γ ∈ Z

≤−2.
We now examine some special cases. Fix d ∈ N. First consider

S2[xd](α, β, γ) = S2(α, α + d, β, β, γ)

=
∫ 1

0

∫ x2

0

xα
1 xd+α

2 (1− x1)β(1− x2)β(x2 − x1)2γ dx1 dx2.

(A.8)

By Eq. (A.1),

S2[xd](α, β, γ) =
Γ(1 + α)Γ(1 + β)Γ(1 + 2γ)Γ(2 + 2α + 2γ + d)

Γ(2 + α + 2γ)Γ(3 + 2α + β + 2γ + d)
· 3F2(a, b; 1),

(A.9)

where now a = (a1, a2, a3) = (1 + α,−β, 2 + 2α + 2γ + d) and b = (b1, b2) =
(2+α+2γ, 3+2α+β +2γ + d). A numerically generated plot of the absolute
value of the right-hand side is given in the case d = 2 in Fig. 13. Applying
Theorem 1.1, in which α1,∗ = α, α2,∗ = d + 2α + 2γ, β1,∗ = β, β2,∗ = 2β + 2γ,
and γ1,2,∗ = 2γ, we deduce that S2[xd](α, β, γ) extends to an analytic function
on

C
3
α,β,γ

∖[
{α ∈ Z

≤−1} ∪ {α + γ ∈ 2−1
Z

≤−2−d} ∪ {β ∈ Z
≤−1}

∪{β + γ ∈ 2−1
Z

≤−2} ∪ {γ ∈ 2−1
Z

≤−1}
]
. (A.10)

In the d = 2 case, this can be seen in Fig. 13.
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Figure 13. The absolute values of the right-hand sides of
Eq. (A.9) (left) and Eq. (A.12) (right) plotted against α, for
β = 1/2 and γ = 1/3 fixed. The singularities predicted in
Eq. (A.10), Eq. (A.13) have been drawn as dotted vertical
lines, those associated with {α ∈ Z} in blue and those as-
sociated with {α + γ ∈ 2−1

Z} in red. It appears that all of
the poles that could be present are present. The apparent ze-
roes of S2[F ](α, 1/2, 1/3) in the depicted range of α have been
marked with dotted black lines and numerically computed to
be ≈ −2.48503 for F = x2 and ≈ −3.06833, −3.57013, and
−4.08562 for F = y2

On the other hand, consider

S2[yd](α, β, γ) = S2(α + d, α, β, β, γ)

=
∫ 1

0

∫ x2

0

xd+α
1 xα

2 (1− x1)β(1− x2)β(x2 − x1)2γ dx1 dx2.

(A.11)

By Equation (1.20),

S2[y
d](α, β, γ) =

Γ(1 + α + d)Γ(1 + β)Γ(1 + 2γ)Γ(2 + 2α + 2γ + d)

Γ(2 + α + 2γ + d)Γ(3 + 2α + β + 2γ + d)
· 3F2(a

′, b′; 1),

(A.12)

where a′ = (a′
1, a2, a3) = (1 + d + α,−β, 2 + d + 2α + 2γ) and b′ = (b′

1, b2) =
(2 + d + α + 2γ, 3 + d + 2α + β + 2γ). We again apply Theorem 1.1, but now
α1,∗ = d+α, α2,∗ = d+2α+2γ, in order to deduce that S2[yd](α, β, γ) extends
analytically to

C
3
α,β,γ

∖[
{α ∈ Z

≤−1−d} ∪ {α + γ ∈ 2−1
Z

≤−2−d} ∪ {β ∈ Z
≤−1}

∪{β + γ ∈ 2−1
Z

≤−2} ∪ {γ ∈ 2−1
Z

≤−1}
]
. (A.13)

See Fig. 13 for a numerically generated plot.
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Figure 14. The absolute value of the right side of Eq. (A.14),
plotted against α ∈ (−6, 0) (left) and α ∈ (−6.1,−4.75)
(right), for β = 1/2 and γ = 1/3 fixed. Singularities as-
sociated with {α ∈ Z} are marked with blue lines and
those with {α + γ ∈ Z} with red. The zeroes associated
with {α + β + γ ∈ Z} are marked in green and those with
{α + β + 2γ ∈ Z} in orange. The location of the second plot
is marked as an inset on the left plot (not to scale)

If we instead pick F (x, y) = xd + yd, which is in some sense the sym-
metrization of the previous two examples, the situation looks very different.
Combining the formulas above yields

S2[x
d + yd](α, β, γ) = (S2[x

d] + S2[y
d])(α, β, γ)

=
Γ(1 + α)Γ(1 + β)Γ(1 + 2γ)Γ(2 + 2α + 2γ + d)

Γ(2 + α + 2γ)Γ(3 + 2α + β + 2γ + d)

×
[
3F2(a, b; 1) +

Γ(1 + α + d)Γ(2 + α + 2γ)

Γ(1 + α)Γ(2 + α + 2γ + d)
· 3F2(a

′, b′; 1)
]
.

(A.14)

On the other hand, by Theorem 1.2, we know that S2[xd + yd] extends ana-
lytically to

C
3
α,β,γ

∖[
{α ∈ Z

≤−1−δ̄1} ∪ {α + γ ∈ Z
≤−2−δ̄2}

∪{β ∈ Z
≤−1−¯δ1} ∪ {β + γ ∈ Z

≤−1−¯δ2}
∪{γ ∈ 2−1

Z
≤−1, γ /∈ Z}

]
, (A.15)

where δ̄1, ¯δ1, δ̄2, ¯δ2 are as in the theorem. In this example, δ̄1, ¯δ1, ¯δ2 = 0, δ̄2 =
�d/2�, d̄2 = d, and d̄1 = �d/2�. See Fig. 14, in which d = 2.

In the sum Eq. (A.14), the poles of the individual summands at such
2α + 2γ ∈ Z

≤−2−d ∩ (2Z + 1) (which we can see from Fig. 13 exist) must
cancel. By Eq. (A.7), the residue of S2[xd + yd](α, β, γ) at such a point is
proportional to

k∑
κ=0

(
β

κ

)(
β

k − κ

)[ Γ(1 + α + κ)
Γ(2 + α + 2γ + κ)

+
Γ(1 + α + κ + d)

Γ(2 + α + 2γ + κ + d)

]
. (A.16)
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Figure 15. The function S2;Reg[x2 + y2](α, 1/2, 1/3) defined
by Eq. (1.29), plotted as a function of α ∈ C

This therefore has to vanish whenever −2−d−k is odd and (α, γ) ∈ {2α+2γ =
−2−d−k} ⊂ C

2
α,γ is such that the functions in Eq. (A.16) are well-defined. A

direct algebraic proof of this fact is not entirely trivial, but it is straightforward
to check case-by-case.

The function S2;Reg[xd + yd](α, β, γ) is plotted as a function of α ∈ C in
Fig. 15, still in the case d = 2—for fixed β, γ. As expected, it appears to have no
singularities, in accordance with Theorem 1.2. Unlike in the case F = 1, where
Selberg’s formula shows that S2;Reg[1](α, β, γ) is constant, S2;Reg[xd + yd] is
nonconstant.

Consider now İDF
2 (α+, β+) = İDF0

2 (α+,−α+, β+,−β+, 1), which is a DF-
symmetric integral with γ± = −1. This is given concretely by

İDF
2 (α+, β+) =

Γ(1 + α+)Γ(1 + β+)
Γ(2 + α+ + β+)

∫
Γ

[
zα++2γ(1− z)β+

×2F1

(
− 2γ, 1 + α+, 2 + α+ + β+;

1
z

)]
dz (A.17)

when the real parts of α+, β+ are sufficiently large. The Dotsenko–Fateev
claim, Eq. (1.49), is, up to a sign, that

İDF
2 (α+, β+) = −Γ(1 + α+)Γ(1 + β+)Γ(α+)Γ(β+)

2Γ(1 + α+ + β+)Γ(α+ + β+)
. (A.18)

Appendix B: Explicit Coordinates on [0, 1)N
tb

In this appendix, we discuss the total boundary (tb) blowup [0, 1)N
tb, the mwc

constructed by blowing up all of the facets of [0, 1)N , starting with those of
the lowest dimension.

For each nonempty subset S ⊆ {1, . . . , N}, let FS denote the face of
[0, 1)N

tb corresponding to the facet {j ∈ S ⇒ xj = 0} of [0, 1)N
x . Tracing
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through the construction of the total boundary blowup, we have the following
explicit choice of boundary-defining-functions (bdfs) of the various faces. If
N ≥ 3, these are different from the recursively defined boundary-defining-
functions discussed in the introduction to §2.

It is possible to prove:

Proposition B.1. The function

xFS
= xFS ,N =

∏
S0⊇S

[ ∑
j∈S0

xj

](−1)|S|−|S0|

(B.1)

serves as a bdf of FS .
Suppose that I is a (possibly empty) set of nested nonempty subsets of

{1, . . . , N}. Then,

fI = {xFS
= 0 for all S ∈ I} (B.2)

is a codimension |I| facet of [0, 1)N
tb. This defines a bijective correspondence

between the set of nested nonempty subsets of {1, . . . , N} and the set of facets
of [0, 1)N

tb.
If p lies in the interior of fI, then, letting σ ∈ SN denote any permutation

consistent with I,

� = xσ(1), x̂σ(2) = xσ(2)/xσ(1), · · · , x̂σ(N) = xσ(N)/xσ(N−1) (B.3)

give a local set of coordinates near p.

Here, we say that σ ∈ SN is consistent with I if, whenever j < k,
σ(j) ∈ S ∈ I⇒ σ(k) ∈ S.

We can cover [0, 1)N
tb with the N ! coordinate charts whose restrictions to

the interior are of the form

{0 < xσ(N) < 2xσ(N−1) < · · · < 2Nxσ(1) < 2N} ∩ (0, 1)N

→ [0, 1)xσ(1) × [0, 2)xσ(2)/xσ(1)
× · · · × [0, 2)xσ(N)/xσ(N−1)

, (B.4)

for σ ∈ SN .
The preceding proposition is used to prove:

Proposition B.2. For any M ∈ {1, . . . , N−1} and nonempty Q ⊆ {1, . . . , M},
xFQ,M =

∏
Q0⊆{M+1,...,N}

xFQ∪Q0 ,N (B.5)

in (0, 1)N
x .

Proof. A factor of
∑

j∈Q∪Q0
xj appears on the right-hand side of Eq. (B.5) to

the power ∑
Q1⊆Q0

(−1)|Q0|, (B.6)

which is, by the binomial theorem, +1 if Q0 = ∅ and 0 otherwise. Thus,∏
Q0⊆{M+1,...,N} xFQ∪Q0 ,N =

∑
j∈Q xj . �
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The full proof of Proposition B.1 is somewhat incidental to the rest of the
paper, so we merely illustrate the argument in the case N = 3. This generalizes
to the N ≥ 3 case, and applies in an even simpler form to the N = 2 case.

The total boundary blowup [0, 1)N
tb is defined as

[[0, 1)3; {x, y, z = 0}; {y, z = 0}; {x, z = 0}, {x, y = 0}], (B.7)

where the first blowup is that of {x, y, z = 0} and must be performed first.
The other three blowups can be performed in any order, and each order yields
a canonically diffeomorphic mwc. The input and output of the first blowup,
yielding [[0, 1)3; {x, y, z = 0}], are

y

z

x

y/(x + y + z)

z/(x + y + z)

x/(x + y + z)

x + y + z

respectively, where we are marking the faces with boundary-defining-functions
(using the Cartesian coordinates x, y, z in place of x1, x2, x3). The choice of
bdfs on the blowup is in accordance with the prescription in the introduction
of §2.

The next blowup, yielding

[[0, 1)3; {x, y, z = 0}; {y, z = 0}], (B.8)

has input and output

y/(x + y + z)

z/(x + y + z)

x/(x + y + z)

x + y + z

y/(y + z)

z/(y + z)

x/(x + y + z)

x + y + z (y + z)/(x + y + z)

Again, the choices of bdfs are in accordance with §2.
Next, we blow up the facet of [[0, 1)3; {x, y, z = 0}; {y, z = 0}] corre-

sponding to the y-axis. Because the previous blowup was located away from
the facet being blown up now, we can use the sum

x

x + y + z
+

z

x + y + z
=

x + z

x + y + z
(B.9)

of the bdfs of the adjacent faces in [[0, 1)3; {x, y, z = 0}] as a bdf of the front
face of the current blowup rather than

x

x + y + z
+

z

y + z
=

xy + 2xz + yz + z2

(y + z)(x + y + z)
, (B.10)
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which would be the prescription in §2. The choices in Eq. (B.9), Eq. (B.10) are
equivalent, in the sense that their quotient is a smooth, nonvanishing function
on [[0, 1)3; {x, y, z = 0}; {y, z = 0}; {x, z = 0}]. Given that Eq. (B.9) serves as
a bdf of the front face of the latest blowup, the quotient

x/(x + y + z)
(x + z)/(x + y + z)

=
x

x + z
(B.11)

serves as a bdf in [[0, 1)3; {x, y, z = 0}; {y, z = 0}; {x, z = 0}] for the lift of the
yz-plane, and

z/(y + z)
(x + z)/(x + y + z)

=
z(x + y + z)

(x + z)(y + z)
(B.12)

serves as a bdf for the lift of the xy-plane. In summary, the third blowup has
input and output

y/(y + z)

z/(y + z)

x/(x + y + z)

x + y + z (y + z)/(x + y + z)

y/(y + z)

z(x + y + z)(x + z)−1(y + z)−1

x/(x + z)

x + y + z (y + z)/(x + y + z)

(x + z)/(x + y + z)

The final blowup, yielding [0, 1)3tb = [[0, 1)3; {x, y, z = 0}; {y, z = 0}; {x, z =
0}, {x, y = 0}], is similar. We use (x + y)/(x + y + z) as a bdf of the blowup of
the face corresponding to the z-axis, and we can then use

x/(x + z)
(x + y)/(x + y + z)

=
x(x + y + z)

(x + y)(x + z)
y/(y + z)

(x + y)/(x + y + z)
=

y(x + y + z)
(x + y)(y + z)

(B.13)

as bdfs of the faces corresponding to the yz- and xz-planes, respectively. Thus,
we end up with

y(x + y + z)(x + y)−1(y + z)−1

z(x + y + z)(x + z)−1(y + z)−1

x(x + y + z)(x + y)−1(x + z)−1

x + y + z (y + z)/(x + y + z)

(x + z)/(x + y + z)

(x + y)/(x + y + z)
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as our final result.
This establishes the first part of Proposition B.1, at least in the N = 3

case.
The rest can be deduced. For example, consider the upper-left corner

of the hexagonal face f{{1,2,3}} in [0, 1)3tb. This is f{{1},{1,2},{1,2,3}}. Nearby,
z " y " x, so, in some neighborhood U of that corner, and

x + y + z ∈ zC∞(U ; R+), x + z ∈ zC∞(U ; R+), x + y ∈ yC∞(U ; R+).
(B.14)

Thus, the chosen bdfs depicted above are x+y+z ∈ zC∞(U ; R+), (x+y)/(x+
y + z) ∈ (y/z)C∞(U ; R+), and

x(x + y + z)(x + y)−1(x + z)−1 ∈ (x/y)C∞(U ; R+). (B.15)

This shows that z, y/z, x/y serve as a valid coordinate system within U . The
only permutation σ ∈ S3 consistent with I = {{1}, {1, 2}, {1, 2, 3}} is σ =
(1, 3), which reverses the order of 1, 2, 3. That is, σ(1) = 3, σ(2) = 2, and
σ(3) = 1. The coordinates �, x̂j defined in Eq. (B.3) are

� = x3 = z, x̂2 = x2/x3 = y/z, (B.16)

and x̂1 = x1/x2 = x/y. It can be seen that U can be taken to be any open set
not containing any of the other corners of f{{1,2,3}}. Each corner is analogous,
so the final clause of Proposition B.1 follows, at least in the considered N = 3
case, from the computations above.
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