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ABSTRACT

The computational modelling of initiation of crazes
in a matrix of polystyrene containing composite particles
of varying morphology and material composition is
discussed. The importance of each step in the stress
history of the material is quantitatively determined. The
stress history begins with the development of residual
stresses due to the thermal mismatch between the matrix and
the particle. These stresses are subsequently partly
relaxed due to the non-linear creep behavior of the matrix.
Finally, a tensile stress is applied producing a further
stress concentration at the matrix/particle interface. A
craze initiation criterion (Argon—Hannoosh) is used to
determine whether the above sequence will result in the
initiation of crazes. This analysis is conducted on four
mul tiphase inclusions to determine which is the optimum
craze initiator. The results give trends that are found
to compare favorably with experiments.
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1. INTRODUCTION

1.1. Background

The incorporation of a rubber phase into a brittle
polymer matrix has long been recognized to significantly
toughen the material. The first patent on this type of
processing was in 1927. Although the rubber phase was known'
to act as a stress raiser and to toughen the polymer, it was
not understood why. Maxwell and Rahm were the first to note
that crazes (to be described below) extended from these high
stress regions. In 1965, Bucknall and Smith identified these
crazes to he the actual source of toughness ir the material.
Here it must be noted that crazes are a source of toughness
only when their initiation and growth is controlled. When
a small percentage of.a rubber phase is introduced into the
polymer, the craze sites are known and controllable, and,
therefore, the polymer will be toughened. Otherwise, crazes
will act as a precursor to fracture as in the case of
surface defects and surface crazing. In these cases, a
crack may develop within the craze and propagate through the
material to result in fracture. Thus, crazes can play a
vital role as either an ingredient of toughness or as sites
for fracture initiation.

A craze is a narrow band of voids connected by drawn
polymer fibrils (Figure 1). It grows perpendicular to the
highest tensile stress and can carry up to the yield stress
of the material. Thus, a craze is not a crack either in
form or behavior. This is because a craze preserves the
continuity of the material as a whole through its
load-carrying fibrils. Crazing can be thought of as a form
of dilational plasticity. This process absorbs much
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FIGURE 1. Diagram of a Craze.



energy, therefore becoming the major source cf toughness in

many polymers.

Although the structure of a craze as well as its
important role in polymer toughening are known, the exact
mechanism responsible for initiating a craze is still under
debate. Many researchers have attempted to develop an
initiation criterion, however to develop one which will
encompass all of the apparent craze dependent factors --
dilational stress, distortional stress, temperature, time --
igs a difficult task. Sternstein and Ongchin (1969) were the
first to propose a multi-axial criterion for craze initiation
based on their biaxial experiments with polymethymethacrylate
(PMMA) . According to this criterion crazes initiate when,

g,=|o-g|= A +BM/(T+xg) , (-1)

where J, and O, are the nonzero principal stresses, (Jis
the stress bias, A(T) and B(T) are temerature dependent
material parameters. The criterion states that once the
stress bias reaches a certain level which is dependent on
the negative pressure, the material will craze. This
criterion did predict their experimental results, however
it fails to account for a triaxial state of stress because
of the basic ambiguity in the definition of the stress
bias. Oxborough and Bowden (1974) have presented a
somewhat modified version of the above criterion which does

encompass a triaxial stress state, and is:
Ee, = O -Vv(O+0,) = C(t T -DWTVC+G+C) . (1-2)

This is a critical strain criterion which states that once
the major principal strain, €, reaches a certain level
which decreases as the negative pressure increases, the
material will craze. The above two criteria are based upon
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a constant stress state.

A third criterion was proposed by Argon and Hannoosh
(1977) which considers craze initiation to be a sequential
process (Section 5). The first stage involves the formation
of pores due to a localized microshear process. The
porosity level which will develop in the material due to
the presence of a local deviatoric stress, s, is:

t
/é :f,éo exF[AG(s)/KT] 4t ) (1-3)
0

where AG(s) is the free energy required to form a pore
(expanded upon in Section 5). The second stage requires a
combination of negative pressure (i.e. a positive mean
stress) and a deviatoric shear stress to plastically expand
the pores, which states that: '

g = %ﬁ[\n(t/p)][g(s/v,/s)] (1-4)

This criterion is discussed in detail in Section 5. For
now, it is only important to notice that it states that
craze initiation is a two stage process with the first
stage involving the formation of pores, and the second
involving the subsequent plastic expansion of these pores.
A fourth criterion has been suggested by Kawagoe and
Xitagawa (K-K, 1981) based on the Cottrell mechanism of
microcrack formation in crystalline solids. Here it is
suggested that a wedge-shaped microcrack is formed by
intersecting slip bands which subsequently expand
elastically into a cylindrical cavity under a negative
pressure. By minimizing the work of the system with
respec’s to the crack length, Kawagoe and Kitagawa Jere able
to obtain the stable and unstable craze nucleus length and
therefore an initiation criterion, that is:
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Tls-s.+M0)= spy/L Y1 HB0-28 (-4 § ,(1-5)

whereJ and s are the dilational and deviatoric stress, [l

and ) are the shear modulus and Poissons ratio as previously
defined. The new parameters are S;, the friction stress
resulting from kink or void formation; M, a material constant;
L, the length of the slip band; and 7’, the surface energy

of microcrack. Both the K-K and Argon-Hannoosh criteria

have pointed out that the micromechanism for craze

initiation involves a shearing of a region followed by a
dilation of that region, however, only Argon presents a
sequential process.

For comparative purposes, the K-K experimental data
with the four corresponding criteria predictions are shown
in Figure 2. All four criteria reasonably predict the
results of the experiments in air however, only the
Argon-Hannoosh and K-K criteria predict the results of
experiments in kerosene. It is only the Argon-Hannoosh and
K-K criteria which are based on a micromechanism for craze
initiation; the S-0 and the 0-B criteria are empirical
criteria developed on the basis of experiments in air. This
may be why they fail to predict the experiments in a crazing
agent.

A single criterion has not yet been widely recognized
as representing the mechanism for craze initiation. However,
since the Argon and Hannoosh criterion has been shown to
predict the experimental results of various materials under
different stress states as well as provide an explanation of
the micromechanism responsible for craze initiation, it will
be the criterion used in this thesis. Also, this thesis
will deal with a material undergoing a stress history, and
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therefore a sequential craze initiation criterion is needed.

This thesis will examine the stress nistory in a poly-
styrene matrix containing composite particles of polybutadiene/
polystyrene of various morphologies synthesized by Cohen,
Argon, and their coworkers. The stress histories will be
linked to the initiation of crazes as discussed in the above
paragraphs. This is because the craze initiation step often
controls the toughening of a polymer containing composite
particles. It will be pointed out that not only is the
stiffness mismatch between the particle and the matrix
important in the initiation process, but the thermal
expansion mismatch also plays an important role. This
ability to initiate a craze will identify an optimum poly-
butadiene/polystyrene morphology, and will be compared with
thé experimental results of Gebizlioglu, et al (1983).

1.2. Material Description

Composite particles containing rubbery phases have
been known to increase the toughness of polymers for some
time. The most widely used particle morphology is that
found in High Impact Polystyrene (HIPS). This particle
is, essentially, a collection of occluded polystyrene (PS)
spheres in a topologically continuous matrix of
polybutadiene (PB) as shown in Figure 3. HIPS is a high
energy absorbing material giving strains up to 40% bvefore
fracture. This material will not be further discussed iun
this thesis but will be used as a standard for comparison.
Instead, other heterogeneous polymers synthesized at
M.I.T., some with fracture strains far greater than those
of HIPS, will be discussed. Some of these have strains to
fracture in excess of 100%. Pour materials will be



(a) micrograph,

FIGURE 3.

HIPS Particle.
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analyzed: three contain particles or various morphologies
made up of PB/PS and the fourth contains an idealized
homogeneous PB particle: all are within a PS matrix. All
particles are spherical and are in practice, larger than
1/Mm in diameter. Particles much smaller than this have been
observed to be poor craze initiators.

The first morphology to be discussed will be referred
to as the Homogenized particle. It is in practice a
collection of randomly wavy rods of PB in a block copolymer
with PS, making up a spherical particle in a majority phase
of PS as shown in PFigure 4. Since the PB is randomly
oriented it can be considered to behave isotropically. It
will be analyzed as an equivalent homogsneous, isotropic
inclusion possessing material properties which are a
combination of those of PB and PS (thus the name
Homogenized). The properties are listed in Table 1 and
were determined with Chow's (1978) method discussed in
Appendix 1.

The second particle consists of Concentric Spheres of
PB and PS (CS PB/PS) shown in Figure 5. It is composed of
a collection of alternating layers of PB and PS block
copolymer domains (properties listed in Table 1). The
volume ratio of PB to PS is 1/3 and is given by the
molecular weight ratio of PB to PS in the block copolymer.
This, of course, is a composite microstructure and is
analyzed as such.

The third particle also consists of Concentric
Spheres of PB and PS but incorporating additional Low
Molecular Weight PB (CS LMWPB/PS),as shown in Figure 6. It
is much like the second one; however, it contains
additional low molecular weight PB dispersed in the PB
spherical shells, resulting in a smaller volume fraction of
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(a) micrograph,

(b) schematic ftor modelling purposes.

FIGURE 4. Homogenized Particle.
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TABLE 1. MATERIAL PROPERTIES

MATERIAL BULK MODULUS SHEAR MODULUS VOLUMETRIC COEFFICIENT

(MPa) (MPa) THERMAL EXPANSION
(°c™
PS T 3.265(10%) 1.25(10%) 2.0(107™)
PB 1.938(10%) 0.62 7.5(107")
LMWPB 1.938(10%) 0.31 7.5(107)
HOMOGENIZED 2.880(10%) 0.88(10%) 3.07(1071)

H2 2.849(10°) 0.86(10°%) 5.17(1071)
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(a) micrograph,

(b) schematic for modelling purposes.

FIGURE 5. CS PB/PS Particle.



(a) micrograph,

(b) schematic for modelling purposes.

FIGURE 6. (€S LMWPB/PS Particle.
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PS, and giving a volume ratio of PB to PS5 orf 2/5 among the
concentric spherical shells. It is also analyzed as a
composite.

The fourth particle is an idealized, homogeneous
particle of PB. It is a completely homogeneous, isotropic
particle composed of 100% PB. It is pictured in Figure 7.

All of the above particles are assumed to have a
perfect bond betwe.n themselves and the matrix. This is a
valid assumption for the first three particles because they
are composed of block copolymers and therefore there does
exist a high concentration of chemical bonds between the
two phases of polybutadiene and polystyrene. For the PB
particle,if it were to exist, the lack of a primary
chemical bond across the interface would be its greatest
disadvantage. This is because a weakly bonded particle
will readily decohere from the matrix, creating a cavity
from which it is more probable that a crack will propagate
than a craze. When a strong bond exists between the
particle and the matrix, the particle will be able to
support some of the load because of its high bulk modulus.
Since the pure PB particle is an idealized one, an
assumption of perfect bonding will also be applied for
comparative purposes. The assumption of a perfect bond
makes the analysis specific. Other assumptions such as
transmission of only normal tractions across the interface
are also possible but have no basis in experimental facts.

All of these particles are contained in a matrix of
polystyrene. The matrix will primarily exhibit elastic
behavior, however it will also creep under sustained load.
This creep behavior will be further discussed in Section 3.
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PIGURE 7. Idealized P3 Particle schematic.
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PIGURE 8. Svherical Particle Terminology



1.3. Stress History Descriotion

As mentioned above, each particle introauces a
thermal expansion and a stiffness mismatch to the matrix.
The magnitude oZ the mismatches differ with each particle
because the morphology and/or the material compnsition of
each differs. These mismatches induce stresses in the
material which in turn will contribute to the initiation or
crazes.

The thermal expansion mismatch is introduced during
the processing of the material. At the glass transition
temperature of PS (95°C) both the PS and the PB should be
fully relaxed and free of internal stress. All material is
given an excursion to this temperature to remove unknown
internal stresses due to the previous processing steps
consisting of solvent casting and differential removal of
solvent by evaporation. The material is cooled from TS of
PS to room temperature at 20°C. The two components of the
particles, i.e. PB and PS, have very different coefficients
of thermal expansion in the temperature range below 95°C
where PS acts as a stiff solid while PB acts as a rubber
(captured liquid). This different behavior thus induces a
thermal stress between the inclusion and the matrix in order
to assure compatibility.

Subsequently, this stress is partially relaxed because
of the creep behavior of the PS matrix. It will be shown
that, for lengths of time of interest, this stress
relaxation can sometimes be significant.

The mechanical mismatch is introduced when an external
stress is imposed on the material. In most cases the stress
of interest is an applied far field tensile stress. The



mismatch occurs because each component material, PB and PS5,
possess different elastic properties causing a nonunirorm
distribution of the stress in the matrix. The end result is
a stress concentration around the particle, and particularly
at the equatorial plane as shown in Figure 8.
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2. THERMAL RESIDUAL STRESSES

2.1. Problem Description

Thermal residual stresses develop in both the matrix
and the particle when there is a temperature change below T%
of PS. Because of the different free thermal expansion
characteristics of the particle and the matrix, each
responds differently to a temperature change. However,
since continuity between the particle and the matrix must
always be maintained, stresses will develop because of the
differential thermal expansions.

2.2. Solution

2.2.1. Isotropic Particle

To determine the magnitude of these stresses, first
consider two concentric spheres of radius a and radius b
(Figure 9). The inner sphere of radius a represents the
isotropic particle, and the material from radius a to b
represents the average amount of isotropic matrix allocated
per particle. Now, separate the two materials and subject
each to the same temperature differential, AT. Ths
expansion that each undergoes at radius r=a is:

u"? = d?AT a ; u.Pm = quT a,

where the subscript p indicates particle, and the subscript
m indicates matrix. (This notation will be used
throughout the thesis.)

A radial stress (J must be exerted along r=a on both
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&

FIGURE 9. Concentric spheres of radius
a and b; isotropic particle in isotropic
matrix idealization.

PIGURE 10. Concentric spheres of radius
a and b; composite particle in isotropic
matrix idealization.

PB | PS‘—
1.“”’!‘”'.
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PIGURE 11. Geometry and boundary conditions %o be modelled
with finite elements for thermal expansion
problem. The rollers represent zero displace-
ment normal to the line and therefore induce
spherically symmetric displacements.



the particle and the matrix in order to place the particle
of altered size back within the matrix. The problem
description is now complete: There exist two concentric
spheres of different isotropic materials of radius a and
radius b with a uniform stress at r=a and zero stress at
r=b. Determine the stress distribution throughout both
materials.

To begin with the inner sphere, the solution is
straight forward. Note that it is simply a solid sphere
subjected to a uniform external pressure, 0, therefore:

O_p G& = G-dP = (J— ¢

P p
Using the stress-strain relation for bulk behavior of the
particle,

€, = T/%,

and the strain-displacement relation
urP =(U/3KF) a ,

the total displacement of the inner sphere at radius r=a
is:

u,? = (CT/3KP ) a + cxPAT a . (2-1)

To obtain the solution for the outer shell of
material from a to b, note that it is simply a hollow
sphere subjected to internal pressure 0 . The governing
equilibrium equation for a spherically symmetric problem
is:

dO:,/ dr +2(O_P—(ja)/l‘=0.
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Then stress-strain and strain-displacement relations yield:
d* u/ dr* + (2/r) duw/dr - (2/r?*) u =0
"he solution of which for the single radjal displacement u is:

w=¢C, /r* + C,r, (2-2)
where ¢ and C are constants determined by applying
boundary conditions. Using strain-displacement and stress-
strain relations, equation (2-2) yields:

€o=C, /1> + C, ; (a)
€. = -2 c /r® + C, s ) (b)
" (2-3)
g,=-2EC/ [(1+nr’] + B C,/ (1-21); . (e)
=8 C/ LU+ 1 + B C/ (1-2V) . (d)
The constants C, and C, are found using the following
boundary conditions:
1. @ r=a, O'p=o‘;
2. @ r=b,J.= 0 .
The result:
C, = -1 (+¥)a / 2B (1-0)]} , (a)
(2-4)
C ==1 (1-2p) ¢/ [E(1=c)]} , (D)



S N S T T

32

where c=(a/b)3 . Substituting equations (2-4) into
equations (2-2) and adding the thermal expansion term gives

the total displacement in the matrix at r=a:

um_-zoé . l(/+Vm +2(/—2V )c| t K AT . (2-5)

_Since a perfect bond between matrix and particle is
agsumed, the radial displacements at r=a must be
continuous:

u,(a) = uP\a) . (2-6)

This relationship yields a solution for J :

Mo (Y=Y )AT
= ‘g £ ’ (2"7)
I + L i{p[ | 4 V&

I=¢ Hml2()-2v,) J

where Y =3« is the volumetric coefficient of thermal
expansion. Therefore, the stress distribution in the
particle and matrix are:

Particle: (,=(C,= ()= 0 ; (2)
(& a
Matrix: G}—( p3-'0>[::; ; (®) (2-8)
(L& a
0= (7 mte)= . (e
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2.2.2. Solution -- Concentric Spherical Shell Particles

Consider a particle of radius a in a matrix extending
from radius a to radius b. The particle is not isotropic
but is itself composed of concentric spheres of two alter-
nating materials as shown in Figure 10. A closed form
solution for the stresses developed due to the thermal
mismatch between the materials is possible but tedious to
obtain because of the complex internal structure of the
particle and the thermal mismatch between the layers within
the particle. However, a very good solution can easily be
obtained with a finite element analysis. Both the geometry
and the loading ot the problem are spherically symmetric;
therefore, only a small section of the problem must be
modelled. This section, with appropriate boundary
conditions, is pictured in Figure 11. The finite element
code ABAQUS was used in the analysis. The stress
distribution within the particle as well as in the matrix
was obtained. The accuracy of the solution was determined
by conducting a finite element analysis on an isotropic
particle and comparing the results with the elasticity
golution. The error was less than 1%. For a more detailed
explanation of the finite element modelling, analysis and
accuracy see Appendix 5.

2.3. Results of Thermal Residual Stress Analysis

2.3.1. Isotropic Particles

The solution for the case of an isotropic particle in
an isotropic matrix will yield the results for the
Homogenized and the homogeneous PB particles. The stress
within the particle and the stress distribution in the
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matrix will be obtained. Also, the erfect of concentration
of particles on both of these stress states will be
discussed.

The stress within an isobtropic particle, such as the
Homogenized and homogeneous PB particles, due to a thermal
mismatech is a uniform hydrostatic stress as shown by
equation (2-8). The results for each particle in an
infinite matrix are shown in Table 2. One can see that the
homogeneous PB particle carries a much higher stress than
the Homogenized particle. This is due to its greater
thermal mismatch with its surroundings as is clear from
Table 1. The Homogenized particle contains 77% PS making it
more compatible with the PS matrix than the 100% PB
particle, and hence, has a much smaller internal negative
pressure.

The stress state in the matrix at the particle/matrix
interface, also shown in Table .2, is seen to be purely
deviatoric for the case of an infinite matrix. This 1is
clearly seen by equations (2-8 b,c); by substituting a
concentration of e¢=0, the equations become CL:CT and
Since O’az‘%, one obtains a mean normal stress of zero
leaving a purely deviatoric stress state outside the
particle.

Including the concentration oI particles in the
solution alters the stress state in both the particle and
the matrix. The stress state in the particle remains
purely hydrostatic although it decreases slightly in
magnitude with increasing concentration (Figures 12 and 13).
The concentration effect is more significant on both the
form and the magnitude of the stress state in the matrix.
The state changes from a purely deviatoric state to one of
both deviatoric and hydrostatic. The radial stress
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TABLE 2.

THERMAL RESIDUAL STRESSES FOR PARTICLES
IN AN INFINITE MEDIUM

PARTICLE PARTICLE STRESS MATRIX STRESS AT
PARTICLE BORDER
O MPa) O(1Pa) T, MP2)
PB 34.5 34.5 -17.8
HOMOGENIZED 7.95 7.95 -3.97
CS PB/PS _— 9.68 -4.84
CS IMWPB/PS -— 14.9 ~7.45

H2 8.64 8.64 ~4.32
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decreases slightly with increasing concentration, and the
tangential stresses increase greatly in magnitude
(remaining compressive) with increasing concentration
(Pigures 12 and 13). This results in a compressive mean
stress (previously zero) and a slightly greater equivalent
stress in the matrix at the interface (Figures 12 and 13).

2.3.2. Concentric Spherical Shell Particles

As described in Section 2.3, a finite element
analysis was used to obtain the thermal mismatch solution
when considering a composite particle. The stress
distribution within the particle as well as that within the
matrix was obtained. Also, by changing the location of thé
outer radius, concentration effects were determined.

The stress state within the two composite particles,
without, and with additional low M,, PB, CS PB/PS and CS
LMWPB/PS, due to the compounded thermal mismatch is very
complex. Tigures 14 and 15 show the increasing negative
pressure (i.e. mean normal stress) carried by the PB layers
as the particle center is approached. Since the shear
modulus of PB is three orders of magnitude less than that
of PS (Table 1), the PB layers do not support any
significant deviatoric stress. The P35 layers carry both a
deviatoric and a mean stress, also increasing as the
particle center is approached. 1In the IMWPB/PS particle,
the negative pressure of the innermost layer of PB exceeds
the cavitation strength of PB. The significance of this is
not yet fully appreciated. However, it is very likely that
the inner layer may indeed partially cavitate yet still be
contained. It would therefore unload onto the surrounding
material, eventually increasing the stress state in the
matrix. This highly non-uniform stress distribution within
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these particles is one of the most notable differences
between the composite and isotropic particles.

In an infinite matrix, the stress state in the matrix
at the particle/matrix interface is like that for an
isotropic particle -- purely deviatoric. The actual magni-
tudes are shown in Table 2. One can see that the two
composite particles fall between the Homogenized and the
homogeneous PB particles in degree of mismatch by comparing
the resulting stresses. The homogeneous PB particle, in
essence, represents the highest degree of mismatch as it
does not contain any PS. The CS IMWPB/PS particle contoins
twice the amount of PB by volume as the CS PB/PS particle,
therefore producing a higher stress state. For comparative
purposes a particle containing the same volume ratio of PB
and PS as the CS PB/PS particle, but homogenized form (H2
particle in Table 1) was analyzed. The H2 stresses are
lower than the CS PB/PS stresses, therefore the differing
morphologies of the two particles must produce the
differing degrees of mismatch.

The concentration of particles also alters the stress
state for the material containing a composite particle.
The stress distribution within the particle falls to a
lower overall magnitude, but otherwise remains the same.
The stress in the matrix at the interface changes as much as
it did for that containing an isotropic particle. The
tangential stresses increase in magnitude (remaining
compressive) with increasing concentrations, while the
radial stresses decrease in magnitude (Figures 16 and 17).
These changes occur at approximately the same rates as
those due to the isotropic particle. This results in a
barely distinguishable change in the equivalent stress
while still causing a rather noticable positive pressure in
the matrix (Pigures 16 and 17).
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3. RELAXATION OF RESIDUAL STRESSES

3.1. Description of Creep Behavior in Polystyrene Matrix

The PS matrix will creep when under a sustained
residual stregss such as that produced by the thermal
expansion mismatch. At room temperature the linear
viscoelastic stress relaxation should be quite small, but
appreciable non~linear relaxation can occur at high local
stress levels. This relaxation was described by Argon and
Bessonov (1976) who have given strain rate-stress laws for
the behavior. The inelastic shear strain rate may be
written as:

Y =, expl-£.6KT] :

where the activation free enthalpy/_\.(‘r$ is given as,

- 3 5'/

s _Jmuwsta 5o, s \S16

AG = - - T
16 (]-v) / 35(/ V) (ILL )

The various terms in the above expression are defined as

follows:

Y = net inelastic shear strain rate
Y = pre-exponential factor |
AG = activation free enthalpy
M = shear modulus
(J = net angle of rotation of a molecular segment
between initial and activated configuration
a = mean molecular radius
Y = Poisson's ratio
s = deviatoric stress (shear)
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The activation frese enthalpy may be rewritten as
AG = (7 - (%)m’)amu‘a’gg
16(1-y)
where %‘:61077H/1h0)= the athermal shear strength. The
above variables were measured in collective groups during
controlled experiments by Argon and Bessonov. The following
constant was obtained for PS:

I6 (I=y)  _ 2 MPA
il D Fe0T) S
At room temperature, T = 295°K, this gives

3wl o _
B(l-v) kT~ 99

The strain rate expression finally becomes

" ’f / /e
6—‘—-/3—-7 =/§€. exp[-56.3(/—(ég§) ] (3-1)

where X, = 3(/0%)sec (5‘3 = 238 MPa. This is the creep
rate that PS exhibits under sustained "load", at room
temperature (i.e. well below the glass transition
temperature).

Since a sustained "load" exists in the form of the
residual thermal stress state, the PS is creeping. The
problem now is to determine how this creep behavior affects
the residual stresses.
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3.2. Solution

3.2.1. Isotrovic Particles

To obtain a solution for the stresses as a function
of time during the creep of the PS matrix, basic kinematics
will first be considered. One can write the total strain
as the sum of the elastic, thermal, and creep strains:

€= €reEr e

—_ € T [A
§—€+§+g

8

€,=€,.

where €f=t_é:«it. The thermal strains are considered to
be imposed initially by cooling from TS to room temperature
where they set up an initial thermal strain misflit which
remains constant in time. Therefore, after the initial
conditions are established, the total strain will be
considered as the sum of the elastic and creep strains:

€= €+ €

e
.= € €, (3-2)
é;: 69‘

Introducing the elastic stress-strain relation, the
strains may be written as

/
€,= —E—'[G',.—ZVO(;] + €y
€=+

(=

) (3‘3 a’b)
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These can be rewritten to give expressions for the
stresses as a function of the total strain and the creep
strain:

£ B
— e _ <€ _ < )
(2o |V V€€ +2VIERED) |

g,=

—~

_ E . .
G=(—anivy) | (€€ )+ V(€ ~€)

—

(3—4 avb)

Now, in order to obtain expressions for éf and é; in terms
of €°, which has been defined in equation (3-1),
assumption of material incompressibility during creep flow
is first introduced:

ZC - c
2€6+ € 0, X

-3 n he )

Then the definition of effective strain rate is used to
relate the effective rate with the radial rate:

.é Uz
[366‘] :

nm *

é€=t¢ +-2'€e .

The appropriate signs are determined by the deviatoric
gtress state. In this case, the initial radial deviatoric
stress state is positive, and the initial tangential
deviatoric stresses are negative. This results in:

€ =+ éf= - 26, (3-6)

Writing equations (3-4) in rate form and substituting in
equation (3-6), expressions in terms of total strain rates
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and effective creep rates are obtained for the stress

rates:

6 =(m[(/_wér+zvég—(/-zwe°]

(3-7 a,b)
i = E . .
o (1-2v)(1+ V) St V&

(/—zv)é°]

N |~

The total strain rates are still unknown, and are found

from the equilibrium equations. This problem is spherically
symmetric, therefore only one equilibrium equation needs to
be satisfied:

¢, , 2(6.-&)
d r

03

This can be rewritten in terms of strain rates through the
use of equaticns (3-5) and (3-T7):

d TJ4 dég - _{_/_:_2_}_/_) _d_ r3é°
dr dr| ~ (y-vy) dv . (3-8)

Integrating twice yields:,

. =2V A 3 C,
€= 7:7[1(1-)—-3"(/-%)}- P Coy (3-9)

where, A = éc(a) known;
C .

I(r) =L-,': €“dr = known;

C

,» C, are unknown.

The two unknown constants C, and C, are determined by
applying boundary conditions:
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1. @r =a, 0. .« 0,, where C;: particle stress rate;

N
®

where u_ = particle border

r = a, u;u?, P

displacement rate;

5. @r g.=o0 . (3-10)

[t}
o'

This yields complicated algebraic expressions for C and C ,
that are symbolically,

A
C, = C;(Emi EP;Vv c,€),

(3-11)
C&=01(Emy EP’V’ C,E)

Substitution of equation (3-11) into equation (3-9) yields
the complete solution for the total tangential strain rate.
Because of the spherical symmetry of the probiem, and
expression for the radial strain rate may be determined
from the tangential strain rate with the following relation
(see Appendix 2):

= d_E.B
é‘. ée+ r ar
Subsequently, the stress rates may be determined from
equations (3-7 a,b). A detailed solution up to and
including this point is given in Appendix 2.

The resulting equations are solved with a scheme
which progresses with time. For example,
t1at t t:
€,= €,t AL . (3-12)
Each time increment, At,is determined at the end of each
iteration by setting the total creep strain to be less than
five percent of the elastic strain:
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pt = 0.05€Y €€

The computations are carried out with a short FORTRAN
program which is explained and listed in Appendix 3. The
end result gives the strains and stresses as a function of
time.

3.2.2. Concentric Spherical Shell Particles

The solution for the stress state as a function of
time for the isotropic particle was found to be quite
lengthy. To obtain a solution for the concentric shell
particle by a similar method would be even more SO because
not only must the creep behavior of the PS matrix be
considered, but also that of the PS shells within the
particle. Therefore, a finite element analysis was
conducted to obtain the solution.

The same basic finite element mesh may be used for
the creep problem as that used for the thermal stress
problem because the geometry and behavior remain
spherically symmetric. The modelling of the material, of
course, differs because now the creep behavior of the PS
must be incorporated. The details of the analysis are
described in Appendix 5. The solution yields the stress,
elastic strain and creep strain as a function of time.
Again, accuracy was checked by conducting a finite element
analysis on an isotropic particle and comparing the results
with the solution obtained from the Section 3.2 method.
The results were shown to be very accurate as depicted in
Figure 18.
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3.3. Results of Relaxation Analysis

3.3.1. Isotropic Particles

The solution for the isotropic particle shows that
the strain rates and stress rates are Jependent upon the
material properties of both the matrix and the particle,
but are primarily dependent upon the deviatoric stress
state in the matrix. In other words, the higher the
deviatoric stress state in the matrix, the éreater the
creep strain rate and subsequently the greater the
relaxation of the stresses.

This is most clearly seen by comparing the relax-
ation around the fictitious PB particle with that around
the Homogenized particle. The initial deviatoric stress
due to the thermal mismatch is 51.8 MPa in the infinite
matrix at the interface with the PB particle and 11.9 MPa
at that with the domogenized particle. Referring to
Pigures 19 and 20, one can see the dramatic effect this
initial field has on the relaxation rate. [Note: the
curves are normalized with respect to their own radial
gtress at time t=0.] Not only is the exponential decay
more -pronounced for the PB particle, but also the time
scale is two orders of magnitude smaller. Howéver, both
particles do result in the same basic trend which is a
large decrease in the magnitude of the compressive
tangential stresses and a very small decrease in the radial
stress. These two effects combine to yield the development
of a negative pressure (initially, this is zero for the
infinite matrix) and a decrease in the deviatoric stress
state. The negative pressure in the matrix is given by in
the figures. The development of a negative pressure 1s
beneficial to the initiation of crazes because the presence
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of a negative pressure is required to plastically expand
voids which are nucleated by the deviatoric stress: The
development of a porosity level (voids) due to the presence
of a deviatoric stress will be further discussed in Section

5.

The effect of the concentration of particles on the
relaxation behavior is not great although there do exist
gome mincr differences. The basic trend of a small decrease
in the radial stress and a large decrease in the tangential
stress magnitude remains the same. However, the presence
of a larger deviatoric stress state does cause the creep
rates to be slightly greater. Another difference is the
initial presence of a positive pressure, O , around the
particles. As the stresses relax, this positive pressure
decreases in magnitude and with time becomes a negative
pressure. However, it is only for the idealized PB
particle, which possesses very high initial stresses, that
the rates are high enough for the positive pressure to
develop into a negative pressure in reasonable lengths of
time. The stress relaxation behavior for the PB and
Homogenized particles in various finite matrices is
depicted in Figures 18 and 21.

3.3.2. Concentrié Spherical Shell Particles

The relaxation behavior of the stresses in the matrix
at the interface with the Concentric Shell particles is
very similar to that with the isotropic particles. The
relaxation around the CS PB/PS particle and around the
CS IMWPB/PS particle are highly dependent upon the initial
level of deviatoric stress set up by the thermal mismatch
(Figures 22 and 23). One may have thought that since the
PS shells within the particle are relaxing as well as the
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PS matrix, a faster overall relaxasion o1 stresses would
result, but this is not the case.

In order to show that the stress relaxation does
indeed depend almost entirely on the deviatoric stress and
very weakly on the particle properties, the same initial
stresses were set up in the matrix surrounding two
different particles -- one a Concentric Shell narticle and
the other an, isotropic Homogenized particle -~ and allowed
to relax. PFigure 24 shows that these two sets of relaxation
curves are very close indicating a very strong dependence
on the initial deviatoric stress and a very weak dependence
on particle properties. Since the overall relaxation
behavior depends almost solely on the déviatoric stress,
and not on the relaxation or elastic properties of the
particles themselves, the overall relaxation behavior
around the composite particles is similar to that around
the isotropic particles.

The CS LMWPB/PS particle contains a larger percentage
of PB and therefore creates a larger thermal mismatch and,
subsequently, a larger deviatoric stress than the C3 PB/PS
particle. This explains why the relaxation rate of the CS
ILMWPB/P3S particle is much greater than that of the CS PB/PS
particle. If the particle propertiss had been as crucial
to relaxation as originally thought, one may have thought
the CS PB/PS particle would cause a faster relaxation
because of its greater percentage of PS. But, as shown, 1t
is the initial mismatch which determines the relaxation
behavior.

It is easy to ccnclude that the effect of particle
cencentration on the relaxation will also be similar to the
isotropic particle results. The relaxation trends are the
same as in the infinite matrix; a very slight decrease in
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the radial stress, and a somewhat greater decrease in the
tangential stress as shown in Figure 25. A positive
pressure does exist initially. Since the deviatoric
stresses initially are not large enough to induce a high
creep rate, the positive pressure will not reach the zero
value in reasonable lengths of time. These are not
surprising results.
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4. UNIFORM APPLIZD TENSILE STRESS

4.1. Problem Description

We are now interested in the effect of an applied
tensile stress on the stress distribution around the
particles. Figure 26 depicts the problem in idealized
form. Stress concentrations will develop at the equatorial
interface in the matrix because the particle has a lower
shear modulus, and therefore the matrix must carry a
greater percentage of the load. This is much like the
problem of a cavity in a matrix. The stress concentration
factor due to a spherical cavity is 2.05. The concentration
factor caused by the particles will be lower than this
because the particles are capable of carrying some of the
load, primarily by their stiff bulk behavior.

4.2. Soluti

4.2.1. Isotropic Particle

The stress distribution around a spherical elastic
inclusion in an infinite elastic matrix with a uniform
tensile stress applied at infinity has been determined by
Goodier (1933). His solution assumes the matrix and the
particle to be homogeneous and isotropic as well as
perfectly bonded to one another. All of these are assump-
tions which have already been made concerning this
material, and therefore the Goodier solution may be used.
His solution is quite lengthy and is given in Appendix 4.
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PIGURE 26. Schematic of particle in an infinite matrix

subjected to a uniform tensile stress at
infinity.
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A finite element analysis is conducted to determins
the stress distribution around the Concentric Sphere
particles due to a tensile stress applied at "infinity".
The axial symmetry of the geometry and loading are taken
advantage of in the finite element modelling (Figure 27).
Details of the finite element analysis are given in
Appendix 5. The accuracy of the solution is determined by
conducting a finite element analysis on an isotropic
particle and comparing it with Goodier's elasticity
solution. The results indicated less than 3% error in the
axial stress concentration factor.

4.2.5. Particle in a Fini atrs

To obtain the solution with a finite boundary imposed
on the problem, a finite element analysis was conducted.
This was first done by Broutman and Panizza (1971). An
analysis similar to the "method of images" of fluid
mechanics is condhcted by forcing the free side of the
axisymmetric model to displace uniformly (Figure 28). This
accounts for the concentration effects assuming the
particles are uniformly distributed.

4.3. Resultlsg
4.3.1. Infinite Matrix

The mechanical mismatch between the particle and the
matrix causes a nonuniform stress distribution in the
region surrounding the particle (approximately 4 radii --
Goodier, 1933) in an otherwise uniform stress field. This
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Geometry and boundary conditions to be

modelled with rinite elements for the problem

of a particle in an infinite matrix subjected to
uniform tension at infinity. The rollers
represent zero displacement normal to the line
and therefore induce the reflective symmetry.
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mismatch is optimal whsn the particle is in fact a cavity.
The tensile stress concentration for a spherical cavity is
2.05 as mentioned in the problem description. The

. solutions described in Sections 4.2 and 4.3 yield the
stress concentration factors due to the four particles, as
well as the stress fields surrounding the particles.

The stress concentration factors were found to
increase as the particles ability to support shear
decreased (Table 3). The PB particle which has the lowest
shear modulus, 0.62 MPa, had the highest concentration
factor, 1.88. The Homogenized particle (shear modulus -~
0.88(103) MPa) had the lowest concentration factor, 1.16.
This, of course, is a sensible result because the particles
with lower shear moduli cannot carry a significant portion
of the load, and therefore the matrix must support more
stress, raising the concentration factor. Figures 29, 30,
and 31 show the displacements of the Homogenized, C3 PB/PS,
and CS IMWPB/PS particles and their surrounding matrices
when a tensile stress is applied. These figures give a
pictorial view of the extensive shearing (almost flowing)
behavior of the PB layers of the concentric sphere
particles. This shows the limited ability of these
particles as compared with the Homogenized particle in
supporting shear stresses; this makes their stress
concentration factors much higher.

Although the concentration factor due to the
Homogenized particle is lower than that due to the other
particles, the actual stress due to its applied tension is
higher. This is because the flow stress of the Homogenized
particle's material is 30 MPa versus 10 MPa for the other
three materials. The stress state due to uniform tension
igs listed in Table 3 for the equatorial interface of the
four particles.
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TABLE 5.

EQUATORIAL STRESS STATE DUE TO APPLIEZD TENSION

PARTICLE PB

Flow Stress (MPa) 10.

Concentration

Factor, k 1.88

Equatorial

Stresses (MPa):
O, 2.86
O; 18.8
o 17.3

7.35

Homogenized CS PB/PS

30.

1.50

54.8

0.24

33.9

12.2

10.

0.39

16.9

0.54

16.4

5.94

CS LMWPB/PS

10.

1.76

1.%0

17.6

0.46

16.7

6.45
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It is also of interest to observe the stress state at
the polar interfaces. Here, the behavior of the concentric
shell particles differ from the isotropic particles. At
the poles of the concentric shell particles there exists a
deviatoric stress concentration almost as high as that at
the equator. This does not occur at the isotropic particle
poles. The stress state at the polar interface for each of
the particles is shown in Table 4. The equator, however,
remains the.optimal craze nucleation site because the
tensile stress induces a negative pressure at the equator
and a positive pressure at the poles.

In order to ascertain that another site between the
equator and the pole is not a better craze nucleation site
than the equator, it is necessary to examine the stress
field surrounding each particle. Pigures 32-39 show the
contour lines of the negative pressure and the deviatoric
stress for each particle. One can easily pick out the
regions where the stress is concentrated. Since the stress
state due to the thermal mismatch and subsequent relaxation
is spherically symmetric, it is at these regions of stress
concentration due to mechanical mismatch that crazes are
most likely to initiate. Therefore, the contour maps are
useful to quickly select those regions around the particle
~ to be examined in the Initiation Criterion -- the equator
and possibly the pole.

4.3.2. Finite Matrix

Accounting for the effect of a finite matrix
increases the magnitude of each comoonent of stress.
Broutman and Panizza determined the effect of Rubber
Particle Volume Percent on interfacial stresses. Their



POLAR STRESS STATE DUE TO APPLIED TENSION

PARTICLE

Flow Stress (MPa)

Polar

Stresses (MPa)
(o)
O;
U
Te

17

" TABLE 4.

PB

2.48
~8.35
-8.35
10.8'

~4.T4

Homogenized CS PB/PS

30.

25.7

-4.50

-4.50

30.2

5.56

10.

7.83

-6.28

"6028

14.1

"=1.58

CS LMWPB/PS

10.

6.37
~7.92
-7.92
14.3

-3.16
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results for the equatorial and polar interfaces ars snown
in Figure 40. Analyses for a concentration of ¢=0.21 orf PB
particles and c¢=0.21 of CS LMWPB/PS particles was conducted
as described in Section 4.4. These results are listed in
Table 5. The results agree with the trend shown in the
Broutman and Panizza curves. One can see there is a
slight increase in magnitude of the stress states except
for the PB polar tangential stresses which remain the same.
The concentration effects on Applied Tension will not
dramatically alter the complete stress history analysis
unless concentrations greater than 0.30 are considered as
shown on the Broutman and Panizza curves.




FIGURE 40.
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TABLE 5.

FINITE MATRIX (c=0.21) EFFECTS ON STRESS CONCENTRATIONS

PARTICLE: PB CS ILMWPB/PS

Flow Stress (MPa) 10. 10.

Equatorial Stresses:

O¢ (MPa) 3.24 1.58
J, (MPa) 20.3 | , 18.8
Ty (MPa) 1.16 1.0
J. (MPa) 18.2 17.5
C (MPa) 8.25 713

Polar Stresses:

T. (MPa) 2.82 6.64
Cxa (MPa) -8.33 -8.13
U4 (MPa) -8.33 -8.13
J, (MPa) 11.2 14.8

g (MpPa) -4.61 -3.21
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5. INITIATION OF CRAZES
5.1. Theory

The application of a tensile stress is the final step
in a typical stress history. Now, 1t must be determined
whether this stress history and final stress state will
initiate a craze. As mentioned in the Introduction, the
Argon-Hannoosh criterion wi1ill be used to determine craze
initiation. This criterion is ideal for a stress history'
as it provides a sequential process which can follow a
stress state that varies with time; whereas, the other
criteria mentioned can only be applied to a stress state at
any given instant in time. Before expanding on what
exactly is meant by this, the Argon-Hannoosh theory on the
mechanism resulting in craze initiation will be briefly
reviewed.

As explained in the Introduction, the A-H criterion
proposes that craze initiation is a two stage process:
stage one involves pore formation on the scale of molecular
aggregates; while stage two involves the plastic expansion
of these pores. Argon (1975) suggested that the formation
of pores is due to an arrested localized micro-shear
process as depicted in Figure 41.' The total.free energy AG?M¢
required to form a micro-shear nucleus under a shear
gtress s that produces a flat microcrack and the energy
required to make this flat microcrack a stable, round

micro-cavity is:

A GPa,f(O./S)z’IT(/i/S )Q‘(bs) ral}Y (5-1)

In this expression;xi is the shear modulus; s is the
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Molecular

Micro-crack

Figure 41. PFormation of micro-shear
nucleus under deviatoric shear stress, s.
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deviatoric shear stress (=(14/3 )UJe, where Ueis the
equivalent tensile stress); ¢ is the relative displacement
across the sheared region; ® is a factor of order 0.10; L
'is a micro-shear patch length governed by the spacing of
molecular heterogeneities; and Y is the tensile yield
strength of the polymer. It can be assumed that the
porosity develops with time according to a simple integral
over time of the current stress dependent pore initiation
rate which leads to the relation for porosity/gz

t
ﬁ = /@'DIGXP[—AC‘{W&.(UQ\/KT} dt (5-2)
0

where /% is a characteristic frequency factor of the
region, and where (U, can in general be slowly varying in
time.

It is now necessary to determine the stress required
to expand the pores into craze nuclei. A plasticity
analysis shows that the negative pressure J required to
plastically expand a porous region in which the
surroundings of each pore are conceived as a thick wall
sphere, is J = (2Y/3) 1n( 14& ). If the region is
subjected in addition to a distant deviatoric stress Je
along with the negative pressure U, the negative pressure
required to plastically expand the pores is reduced by a
factor of Q:

0= (21/3) 1 1/p) CAGTA ). (5-3)

The reduction factor Q is dependent on the porosity level
and the average deviatoric stress in the region.
McClintock and Stowers (1970) and Gurson (1977) have given
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loci for the generalized yield of porous plastic media,
subjected to a combination of distant deviatoric shear 7,
and negative pressure J for different porosity levels
(see e.g., Figure 42). These loci determine the factor Q.
The craze initiation criterion is now complete. To
summarize, pore formation in stage 1 is charactarized by

the expression:
A= 4, exp[-Aa(o;)/KT]dt . g,=q,lt):
0

.giviﬂg the time dependent increase of micro-porosity under
deviatoric shear stress (.. Pore expansion in stage 2
occurs when the local porosity reaches a level that
satisfies the generalized "yield" condition for the porous
s0lid under the local negative pressure and deviatoric
stress C&, i.e.:

g = (2Y/3) 1n U//S) ( Q(G/Y) )-

5.2. Applicatio e Craze Initiati it
Specific Stress Histories

Applying the A-H criterion to the given stress
history is straight-forward. The development of micro-
porosity begins with the initial thermal mismatch and
continues as these stresses relax up to and including the
final application of a tensile stress. Since the stress ia3
updated at particular instants in time with a numerical
scheme and since the porosity rate is governed by the
current deviatoric stress, the porosity level must then be
obtained by numerical integration as a function of time.
In other words, at any time, t, for a program of updating
the local equivalent stress,
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0,= ‘G+'Gat, (5-52)

the current pore development rate,

¢ . .
/5 =/ enp [-Aarm(o;)/ﬂ] F =0, (5-5%)
gives current levels of micro-porosity,

teat

/2 fé*r/éﬂt . (5-5¢)

If it is assumed that initiation of crazes occurs finally
within say 100 seconds of application of the final tensile
stress, it is only necessary to use the above scheme for
evolution of porosity during the relaxation of residual
stresses where such relaxation is substantial. This is
because the applied tension is constant and the relaxation
of the residual stresses is only significant over much
longer spans of time than 100 seconds. Therefore, stress
relaxation need not be considered for this final time step.
This is not true in the case of the PB particle, however,
where the matrix will craze immediately after application
of tension. Since the stress will be considered constant
after tension is applied, the porosity rate will also be
constant /éAT(AT=After Tension) over this final step, and
the additional porosity from this time increment will
simply be

Bpar= far At . (5-6)
To summarize, the formation of a porosity level:

1. During relaxation of residual stresses, before
tension (BT)
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& '
ﬁsrszéo exp[ —AG(O;)/KTJ dt

where the integral is determined with the
updating scheme to account for relaxing
and t = time at which tension is applied.

2. After Tension (AT)

Apar = foar A8

where At = t; - t+ %, = estimated time at

which crazes are expected to initiate.

The total porosity is therefore

/5 = ABT + Aﬁgr . (5"'7)

To determine if crazes will now form, equation (5-3)
for plastic pore expansion is used. Basically, this
equation answers the question: Given a certain porosity
from (5-7) and a certain final stress state with a
deviatoric componznt of J,, and a negative pressure
component of U , is this stress state large enough to
plastically expand the pores? For this evaluation, Q is
obtained from known loci for g, for given /6 and Jp. If
equation (5-3) is not satisfied, it indicates that the
level of micro-porosity is insufficient to initiate a craze
by plastic cavity expansion under the given combination of
/gand O.. To determine at what time crazes will initiate,
one can modify t.r (assuming t, is a Xaown time) which in
turn will modify /2 which in turn will modify Q, etc. One
then checks to see if (5-3) is satisfied, if not the
iteration can continue until the time at which a craze ig
initiated, if indeed such is the case.
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5.3. Results

The method outlined in Section 5.2 was used to
determine whether craze initiation occurs for the four
particles of interest. The porosity level and the total
stress state existing at the assumed time of craze
initiation were determined for each particle. Whether or
not crazes subsequently initiate was determined by using
this information in the equation for plastic pore expansion

(5-3)-

The porosity levels in the matrix at the equatorial
particle border are listed in Table 6. The porosity before
tension is applied, /5mv was calculated during the '
relaxation of the thermal residual stresses(see Appendlx
3). A time span of approximately 8 days( 7(10°) seconds)
is a'lowed for the porosity development for the three real
particles: CS PB/PS, CS IMWPB/PS, and Homogenized. This
igs a realistic time span for a laboratory experiment,
because it is not unusual for a typical sample to be "on
the shelf" for several days before being used. The
stresses in the material containing the idealized PB
particle relaxed at a very high rate. The porosity level
before tension in this particle was taken at just 4.6(10")
seconds because only a negligible amount of porosity will
develop after this time span. After teasion is applied,
crazes generally appear within 100 seconds and, thus, a
time of 100 seconds was allowed for porosity development
after tension. These two levels were summed to give the
total porosity at the time of craze initiation.

As Table 6 shows, very little porosity is developed
in the materials with the real particles. Of these three
particles, the C3 LMWPB/PS particle has developed a



PARTICLE
TIME(SEC)

A (BT)

TIME(SEC)

Aﬂ(AT)

/B (TOTAL)
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TABLE 6.

POROSITY LEVEL IN MATRIX
AT EQUATORIAL PARTICLE/MATRIX INTERFACE

PB HOMOGENIZED

4.6(104)
2.0(10 )

1(10%)

S
7.0(10 )
0.0

1(10%)

CS PB/PS
S
7.0(10 )
3

6.8(10)

1(10%)

1.9010™"") 2.3(10°) 3.6(107)

2.0(107)

4.3(10™)

6.8(107%)

CS LMWPB/PS
7.0(105)
1.7(107")

1(10%)
2.1(10™")

W

1.7(10 )
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porosity level several orders of magnitude larger than the
other particles during the period of thermal stress
relaxation. However, the Homogenized particle exceeds this
level once tension is applied because its far-field tensile
stress is 30 MPa versus 10 MPa for the other particles. The
idealized PB particle develops a porosity level far in
excess of the three real particles because of its much
greater thermal mismatch. Unfortunately, the porosity
levels computed for the three real particls are far too low
“to aid in the initiation of crazes indicating that the
gtress relaxation history is not crucial in early pore
developmént but only in governing the final level of
stress. This will be discussed further below.

The complete stress state in the matrix at the
equatorial border at the assumed time of craze initiation
is shown in Table 7. These stresses are determined by
taking the thermal residual stresses remaining after the
allotted relaxation period and superposing them with those
stresses that occur once tension is applied. The negativs
pressure, J, for the particles ranges from 7 MPa to 13 MPa.
However, the deviatoric stress varies greatly amongst the
particles ranging from 15 MPa for the CS PB/PS particle to
41 MPa for the idealized PB particle. Since the porosity
rate is exponentially dependent upon the deviatoric stress
as shown in equation (5-2), this value is extremely
important in the craze initiation process. The results for
Ly in Table 6 show that the deviatoric stress, U., from
Table 7 was not high enough for the three real particles to
result in any substantial porosity development as stated
above.

In order to determine whether or not the craze
initiation criterion is satisfied, the factor, Q, giving
the reduction of the required negative pressure, must be



99

TABLE 7.
- COMPLETE EQUATORIAL STRESS STATE
IN MATRIX AT PARTICLE/MATRIX INTERFACE

PARTICLE PB  HOMOGENIZED CS PB/PS CS LMWPB/PS
g (MPa) 32.0 9.26 9.81 15.1
(%;MPa) 21.7 31.3' 13.3 15.8
Jy(MPa) 3.29 -3.28 -3.09 -1.36
J,(MPa) 25.2 30.73 14.9 16.8

T (MPA) 19.0 12.4 6.66 9.84
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determined. Subsequently, knowing Q, , and for each
particle, equation (5-3) is used to determine craze
initiation. Since Q is a function of the equivalent
stress, (J,, and the porosity,/g, as shown in Pigure 42, Q
was found to be 1.00 for the three real particles and 0.68
for the idealized PB particle. This is because of the
combination of a very low porosity level and a small
deviatoric stress for the real particles and corresponding
nigher values for the PB particle. Given the values for Q,
g, andlﬁ , the craze initiation criterion is not
quantitatively satisfied for any of these particles as
shown in Table 8. In other words, theoretically, the
materials containing these particles will not craze under
the given stress histories according to this model unless
another source of stress is found or a physical condition
ig discovered to aid nucleation. These theoretical
results, although apparently thorough, do not agree
quantitatively with the experiments of Gebizlioglu, et. al.
(1983) on such materials. Gebizlioglu has tested the three
real materials and found them to craze, each to a different
extent. This will be discussed in the next section.



CRAZE INITIATION CRITERION APPLICATION RESULTS

PARTICLE

PB
HOMOGENIZED
CS PB/PS

CS LMWPB/PS

Q

0.80

1

1

1

.00

.00

.00
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TABLE 8.

Q(2Y/3)1n(1/8)
(MPa) /g

60.
792.
2382.

1157.

g
(MPA)

11.6

12-4‘

6.66

9.84

CRAZE

INITIATION?

NO,

NO,

No,

No,

11.6 < 60.

12.4<792.

6.66<2382.

9.84<1157.



102

6. Discussion

The complete stress history of a heterogeneous
"rubber" particle in a homogeneous PS matrix and its efiect
on the initiation of crazes in that matrix has been
discussed. The importance of both the elastic and the
thermal misfits have been examined and quantitatively
determined for the four particles of interest -- the
ijdealized PB particle, the Homogenized particle, the CS
PB/PS particle, and the CS LMWPB/PS particle. The role of
the elastic misfit between an isotropic particle and an
isotropic matrix has long been recognized (Goodier, 1933) .
Here, this analysis has been extended to a composite
particle in an isotropic matrix with the aid of finite
elements. The impoftance of the thermal mismatch between
rubber particles and polymer matrices has not been
quantitatively jetermined before, although there does exist
some diffuse awareness of its role among some manufacturers
of high impact polymers and is even briefly mentioned in
Bucknall's book (1). Comparing the results of Section 2
and Section 4, one can see that the magnitudes of the
thermal residual stresses at room temperature (Table 2) are
in the same range as the magnitudes of the tensile induced
stresses(Table 3). Even though the thermal residual
gtresses surrounding a particle in an infinite matrix do
not produce a negative pressure, they do produce a
aubstantial deviatoric stress. As was discussed in Section
5, it is this deviatoric component which is essential to
the development of microporosity. Therefore, the thermal
residual stresses play a vital role in the process of craze
initiation and cannot be neglected in a thorough analysis.

Although the theoretical analysis does rot predict
the initiation of crazas which is observed in experimen®s,
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it does predict the correct trend for the three particles.
Gebizlioglu observes crazing in materials with the
Homogenized particle at a tensile stress of 30 MPa and in
the CS IMWPB/PS particle at a tensile stress of 10 MPa. The
theoretical analysis showed zero porosity development for
the Homogenized particle and a small amount of porosity
development for the CS LMWPB/PS particle during thermal
residual stress relaxation. However, after tension is
'~applied, the magnitude of the applied stress on the
material containing the Homogenized particle is large
enough for i%ts total porosity level to match that of the

CS IMWPB/PS. The tensile stress applied to 'the CS LMWPB/PS
material is small enough to add a negligible amount of
porosity as compared to the porosity developed during
relaxation. The application of a tensile stress also
creates a negative pressure at the equator of the order orf
10 MPa for both particles. Therefore, these two materials
are at approximately the same stage when crazing is
observed (even though according to theoretical analysis
crazing does not occur). The CS PB/?S particle does not
craze as readiiy under the 10 MPa tensile load. Our
theoretical results also match this trend because the total
porosity formed is geveral orders of magnitude below that
of the CS IMWPB/PS and the negative pressure is also lower.
Therefore, even though the theoretical predictions do not
correspond exactly with the experiments, they do follow the
correct trend.

There exist several factors which may account for the
discrepancy between the theoretical and experimental
results, a few of which we have been able to discard. The
possibility of any inadequacy in the Argon-Hannoosh Craze
Initiation Criterion can be ruled out as they have
demonstrated that this criterion accurately accounts for
craze nucleation in PS material possessing a controlled



104

surface roughness as well as PS pellets which were free or
stress concentrations (1977). This criterion has also been
independently verified by Kawagoe and Kitagawa to0 predict
both air and envircnmental crazing (1981). The possibility
of thermal anisotropy within the shells of the concentric
sphere particles was considered and found %o have little
effect on the stress state in the matrix. Mechanical
anisotropy within the particles may also exist, however
this should not be able to raise the stress state and/or
porosity to the level necessary for craze initiation. The
presence of additional stresses has also been considered.
There may exist an osmotic pressure in the CS LMWPB/PS
particle due to the movement of the low molecular welght PB
through the skeletal high molecular weight PB. However,
this stréss is thought to be self-equilibrated. The
strongest possibility which may account for the discrepancy
is the hypothesis that craze nucleation in these materials
is not a homogeneous process but, indeed, a heterogeneous
process. It may be heterogeneous in the sense that a
catalyst exists in the Iorm of a perturbation in the
interface between the particle and the matrix, or there may
even exist a new phase in this region. In a parallel
problem, the craze growth has been demonstrated by Argon
and Salama (1977) to be one of heterogeneously convoluting
the polymer-air interface and not by homogeneously
nucleating cavities .ahead of the craze tip. This
hypothesis that an interface containing perturbations may
reduce the high stress and porosity levels required to
initiate crazes could account for the discrepaucy between
the theoretical and experimental results for the material
containing the CS LMWPB/PS particle. It would not account
for the Homogenized particle because its interface with the
matrix is very well-defined. To verify this theory, a much
nore detailed analysis of the nature and behavior of the
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PB-PS interface will have to be conducted. Such very
detailed information on the nature of block copolymer

interfaces is only now developing.

In the material containing the Homogenized particle,
ocrazes are not seen to originate from the particles
themselves, but from the surface. Therefore, the
discrepancy between theoretical and experimental results
may be due to the neglect of tensile stress concentrations
due to surface roughness which may be higher than those
around the particle. This is feasible because the tensile
strnss concentration factor for this particle was only
1.16, and, also, the stress concentration due to the
thermal mismatch tetween the particle and the matrix does
not lend itself to porosity development.

Although the theoretical model did not match the
experimental results and predict the initiation of crazes,
it did predict the correct trend among the three particles.
The critical steps in the stress history of the materials
nave been identified and quantitatively examined. These
include the development of thermal residual stresses, the
non-linear reluxation of these stresses, and the
application of a tensile stress. The effect of the
development of a local micro-porosity during the stress
relaxation stage and subsequent tensile stress stage has
also been examined. These results indicated a shared role
between the thermal residual stresses and the tensile
stresses in setting up a stress concentration around the
particles. It has been suggested that the discrepancy
between the experimental and the theoretical results may be
due to a perturbated interface between the matrix and the
particle which would make the craze initiation process a
heterogeneous process rather than a homogeneous one as I
have treated it. These perturbations may reduce the stress
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and porosity levels found necessary for the initiation of
crazes. An analysis of the nature and the behavior of the
particle/matrix interface could determine 1f this is true
and is suggested for future research. The behavior of the
low molecular weight PB within the high molecular weight PB
skeleton while under loading is also suggested for future
research. These ideas, when investigated, may further
determine the role of "rubber" particles in polyumers in the
initiation of crazes.
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COMPUTATION OF HOMOGENIZED MATERIAL PROPERTIES

RELAXATION OF THERMAL RESIDUAL STRESSES DUE T0 CREEP
OF POLYSTYRENE MATRIX

COMPUTATION OF STRESS RELAXATION AND POROSITY
DEVELOPMENT

STRESS FIELD SURROUNDING A SPHERICAL PARTICLE DUE TO A
UNIFORM TENSILE STRESS AT INFINITY

FINITE ELEMENT ANALYSIS
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APPENDIX 1

COMPUTATION OF HOMOGZIZED MATERIAL PROPERTIES

Chow(1978) has generalized the work of BEsnelby to
include the effect of surrounding particles on a particle
in a composite matrix in order to obtain equations which
yield the average properties of the composite material as a

whola. When the particles are spherical, the equations are

ags follows:

Parameters:

(I + Vm)
’ ‘ = (4—51//-1) ,
(1= Vp) ) /3 7§— (/=Vn)

=4 (K M= )-8
G= 1+ (K= D(1=@)B 5
¢=

Bulk Modulus:
Kok
K= —®
&

@+ Km

Young's Modulus:

(K, /K =1) G +2(1L /u Nk |,
= / a2 « Cb
R R e

Coefficient of Thermal Expansion:

_ Ke _ (0009
k=T K [+ (KoK= D1 -0V + o]

For the Homogenized spherical particle of randomly
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wavy rods, the above equations yield (with Q = 0.23):

K. = 2.88(10°) MPa ;
5, = 2.40(10°) uPa ;
V. = 0.5061 ;
[l = 0.882(10°) MPa;
Y. = 3.074(107 )%

For the reference H2 particle used for comparative
purposes with the CS PB/PS particle, ¢ = 0.25. This
yields:

K. = 2.85(107) MPa ;
B, = 2.34(10%) MPa ;
Y. = 0.363 ’
I = 0.856(10°) MPa;
Y. = 3.172(107) %¢".

It is interesting to compare these results witn an
upper bound approximation using Voigt's method where

w=Y due 0 KTl K

for the Homogenized particle one would obtain

0.938(10>) MPa,
2.933(10°) MPa.

Ky
K,

Conducting a lower bound approximation using the Reuss

method
A

K= [Z¢z/#z:\ - Ke® [Z@ /kcr

gives for the Homogenized particle:
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2.476 MPa,
2.788(10°) Mra.

Ha

Lr

Comparing Chow's results with the upper and lower bounds,
one sees they are closer %o an upper pound. However, ZIor
the Bulk modulus (and, therefore, also for the coefficient
of thermal expansion which is ralated to the Bulk modulus)
the difference vetween upper and lower opounds is not very
gsignificant. Therefore the.thermal stress analysis can be
considered accurate as it depends upon the Bulk modulus and
the thermal expansion coefficient; and the more widely
differing shear responses of PB and PS are not effective in
this case. The stresses found due to the applied tension
may bes slightly higher because the effective shear modulus
may be lower than that calculated here.



111

APPENDIX 2

RILAXATION OF THERMAL RESIDUAL STRESSIES
DUE TO CRIEP OF PS MATRIX

The creep stress relaxation is of interest for the
case of two comcentric spheres of different 1sotrop1c
materials which contain spherically symmetric thermal
residual stresses. The inner sphere of radius a is an
elastic material and the outer shell is also elastic
however, it is subject to creep under sustained loading
such as an initially imposed residual stress due to a
thermal expansion misfit. The expression which describes
this creep behavior, for polystyrene, is (Argon and
Bessonov, 1972):

. T /6
€ %CXP[’%'@("(TBZ%) )] (A2-1)

il

The problem is to determine how this creep behavior of the
outer shell (matrix) affects the stresses in this shell and
the inner sphere (particle).

Basic kinematics will first be considered. The total
gtrain can be expressed as the sum of the elastic, thermal,
and creep strains. The thermal strains are initially
imposed and constant with time. They prescribe the initial
spherically symmetric elastic misfit. Therefore, for t>0,

€= €€, |
€= €3+€5 (a2-2)
€,= €
Introducing the elastic stress-strain relation, the total
gtrains may be written as
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g.- 210, |+€,

m
T
m|—

€, = —é— (1-v)g, - V0. | * € -

This can be rewritten to givs an expression Zor the
stresses as a function of the total strain and thes creep
strain:

o[- €) -]

_ E c c
%o S=2vX1+V) [<€°"€6) + e~ 6v>] :

We currently have as unknowns the components of stress,

(A2-4)

total strain and creep strain. In order to obvain an
expression for the creep strain rate components in terms ox
the effective creep strain which is known, equation (A2-1),
we employ the assumption of material incompressibility
during creep flow:

0 .

)

. e
€+ 26,

€ = —Zé: .

r

The definition of effective strain rate relates the
effective creep rate to its components:

. 2 2
=|—E,.E..
€ [3 LJ&‘J] (A2-5)
€ =té& =526

The appropriate signs are determined by the deviatoric
streas state. In this case, the initial radial deviatoric
gtr2ss state is positive, and the initial tangential
deviatoric stresses are negative. This results in:

é = €.=-2€, . ' (42-6)

Writing equations (A2-4) in rate form and substituting in
equation (A2-6), expressions in terms of total strain rates
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(unknowns) and effactive cresp rates (known) are obtained

-

for the stress rates:

: E . .
Oe = 2p01+V) (1-v)er2vé,~ U ‘2">€C] ‘,

£ [ + VE + —(/—EV) ”c]

(A2-T)

“(/-2v)(1+ V)
The total strain rates are to be found from the equilibrium
equations. Since this problem is spherically syametric,
the equlllbrlum equations reduce to one:
dd., 2(Ga=0a) o
ar r

This can be rewritten in terms of the total strain rates

(A2-8)

and the creep strain rates by employing the relations (A2-T)
which gives:

(1-v) def + zz/_da_ﬁ , 20-2V(E€s =

_ (- 2y) d6°+ 3(- ZV)

A relation between the total radial strain and the total
tangential strain may be found by beginning with their
gtrain-displacement relations:

&= /r 5 E=du/dr (A2-9)

and differentiating to obtain:

Eo— g d€s )
é‘.— ée+ P dr )
- 2.
d€: — dé dee
T S rgeete :

Therefore, the equilibrium equations may be written in
tarms of the total tangential gtrain rate (unknown) and the
creep strain rate (known): .
4 £L§£_+ f"%;éf - /-21/[ d\éc_+ 3 ,ég]
r Yy | dr r
multiplying by r3 and rearraaging yilelds:

A{P“Q_é_g] _ (1-2v) 4 {Paéc] | (A2-10)

dr ar (-y) dr
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This can be in egr ated twice
—4/ / 3 ¢ i a
G
1d€ / N
+ 3 - =] - a)
C\ Q[ 303 3[‘5J ée(\

ar

-

%0 obtain an expression Zor

(A2-11)

By collecting unknown constant coefficients and assigning

symbols to known expressions for simplicity,

- A ﬁlép . o d6; +-€ (0\
'C\-Q ar ) C1=3 ar la

/
A = éc(o\ | I(ﬂ"-f r €ftridr

the total strain rates can be written as:

. [=2V C.
€= /-v[ )-_(/‘T’] e

. =2V . A \
¢, = Lo Sz )]+ 55

(A2-12)

(A2-13)

(A2-14)
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Case 1. Particle in an Infinide MatrTix

Tor the particle in an infinite body, applicafion of
the Following boundary conditions will yield the appropriate
expressions for C, and C,:

/. 5)."=Q)O:= O- )
(A2-15)
2. dr=a , U..,..— ?,
3. @r>® O”‘é'-urz
Boundary condition 1 yields:

d‘,‘: (:L[(/—v)émZVé,‘ ¢ "ZV)ér-] )

b,= ﬁ[(/w)éacou a(1-v) %f—f’ L—(/ —2V)é (@ ] : (A2-16)

where E = B/((1=2v)(1+V)).
Boundary condition 2 yields:

=3 KFéE(a\ ) (A2-17)

By equating equations A2-16 and A2-17, we obtain an

- (/ - Zv)é‘m)} ')

expression foré;ﬂ

3K & = [(/4- V)€ o+ a(l- V)

- E a d€, o
59‘“‘23(}<,-K,.)[°(/ : \ </ 2/>€‘ )] ' (A2-18)

Applying boundary condition 3 yields an expression for C,:

)2V -
C, = =2 [g\— —uoo\] , (12-19)

Rewriting equation A2-12 for C in terms of C, and é,yields:
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(A2-20)

C, :
CJ_ = 3__0\3 + éa(a)

Substituting equations A2-19 and A2-18 into A2-20 results

in an expression for C :
1=2V[ A _Te] = & s E »9__'/—2r/)é<o\].
= [—3' L \] T 3ab 3(&;&@[“‘” = <
A Ko - K I(w}] (A2-21)

C = [—2V a3
! -V 3
Therefore, oy substituting equations A2-20 and A2-21 in%o
equations A2-14 and, subsequently, A2-14 into A2-T7, the
complete solution for the stress rates are found.

3 KP—Kmi-é(/-\))
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Case 2. DParticle in a Finite Matrix

Por the particle in a finite body, application of the
following boundary conditions will yield the appropriate
expressions for C, and C,:

[, @r=0, Cﬂ_=(f%)
2. ®dr=a, WF CA?‘—‘ 0}:0/3 Ke ) (A2-22)
3. ®r=b, C’)',,=O .

Applying boundary condition 1 yields:

g 2 Cs A
= = C - —
E {3o5(/+V) VY g=2y /+y}
(A2-23)
where B = E/((1-2V) (1+¥)).
Applying boundary condition 2 yields:
0. . _BR [ C, ]
—- = - + C
£ EEIANNCE (A2-24)

where R is the ratio of the particle Young's modulus to the
matrix Young's modulus, R = E?/E . By equating equations
A2-23 and A2-24, an expression for C, in terms of C, is

obtained:
R - Co - 2 C CL _ A .
/-—24[ 3a’+C‘]’3a’(/+y) Iy VA P

o g=29)-2 (e 20-2y)+R1+Y) A
C,= R()-lw))—(t-zv?){ ' 3a’(l—2yl,)(/+y) " |- (A2-25)
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Appl7ying boundary condision 3 yislds an expression Zor C,
in terms of C

{(, [/ 2/(1 (b\—-—(/ 7c})}+ -?_%%‘_Z_)* C{1-2)

2100 -5 i-))]- %V-b%mcl} o =(o/5

s _ [+ V] ,
c=% ‘“‘ﬂ//fzuj stEm e veavl- o)-C. -zv}— (a2-26)

Substltuulng equation A2 25 into A2-26 results in:

¢,z 3L |- T 15+ grim {1+ ve2vli=0)

(1 +0)(1-29,) [C 2(1-246) +R(1+9) _ A ]
(A2-27)

Bl O R AU
By grouping constant terms together,
Q= R{1-2v)-(-2%) ,
M= 2(-21)+ R(/+V)

F= /+Vv+2c(I-2V)
the unknown C, can be found to be:

3Q /+V F |=2V
C.= ZQQiM[IKm/"V A[3(/-(/)+ Q ?ﬂ  (42-29)

and the unknown C,

(=) (1=2V) M _ A -
C;." Q Cléq’(l—ZVﬂW+ V) 4V + (42-30)

(A2-28)

Therefore, by substituting A2-28 into A2-29 and A2-29 into
A2-30, the unknown constants in the total strain rate
expression A2-14 are found. By substituting equations A2-14
into the stress rate expressions A2-7, we have the solution
for the stress rate due to creep of +the matrix.
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Finally, in order to obtain the stress as a2 function
of “ime, the stress rate must be integrated ovar tvime.

This is shown in Appendix 3.
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APPENDIX 3

COMPUTATION OF STRESS RELAXATION
AND POROSITY DEVELOPMENT

A relatively short FORTRAN program RELAX has been
written to compute the relaxation of the thermal residual
stresses in the matrix surrounding an igotropic parvicle
and the development of microporosity in this same region
during this same time interval. The program is basically
gself-explanatory through its numerous comment cards. The
basic steps are as follows:

1. Read in material property data, time increment
data, radial position data, and initial elastic
strains at particle/matrix interface;

2. Calculate constants, based on given data, which
are frequently used;

3., Calculate initial radial distribution of strain
and stress from the initial thermal expansion
misfit;

4. Calculate creep rate and porosity rate for tais
iteration; '

5. Calculate radial and tangential strain rates for
this iteration;

6. Determine time increment to assure stability of
solution for that increment;

7. Calculate elastic strains, creep strains,
gtresses, and porosity for this increment;

8. TUpdate the time;

9. Repeat steps 4 through 8 NTM times;

10. Print results.



121

The radial postions necessary are determined by the inivial
radial variation of deviatoric stress. The positions are

chosen such thas

«©

Tty = g -\; éc_Lr\dr

-

o

may be accurately evaluated with trapezoidal integration.
The +time increment is chosen such that the maximum cre<p
strain increment does not exceed a certain percentage (PCT)
of the elastic strain:

At s (pem) 2/ €.

This increment is then used in a forward Buler time
integration:

trot .
e.g- T = *g. + toat

A listing of the progranm, extensively commented, follows.
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PROGRAM RELAX
THIS PROGRAM CALCULATES THE STRESSES IN THZ MATRIX SURROUNDING
AN INCLUSION AS THEY RELAX DUZ TO CREEP; IT ALSO CALCULATES THZ=
POROSITY AS IT DEVELOPS WHILE THE STRESSES RELAX '

R=RADIAL POSITION; ZR=RADIAL STRAIN; ETH=TANGENTIAL STRAIN;
SR=RADIAL STRESS; STH=TANGENTIAL STRESS; SZ=EQUIVALENT STRESS;
SM=MEAN STRESS; EC=CRZEP STRAIN; EPC=CREEP STRAIN RATE;
ZI1=INTEGRAL OF CREEP RATE/RADIUS TAKEN OVER RADIUS; POR=POROSITY;
PORP=POROSITY RATE; ERD=RADIAL STRAIN RATE; ETHD=TANGENTIAL RATZ

DIMENSION R(ZS),ER(ZS),ETH(ZS),SR(25),STH(25),SE(25),SM(25),
c EC(ZS),EPC(ZS),XI1(25),ERD(25),ETHD(25),POR(ZS),PORP(ZS)
ASSIGN INITIATION CRITERION CONSTANTS
DATA POR1,POR2/1.66E7,-1157.2697/
READ MATERIAL PROPERTIES
YM=YOUNGS MODULUS; PR=POISSON RATIO; PRP=PARTICLE POISSON RATIO;
A1=EXP(56.8); A2=(PREEXP COEF)*EXP(-56.8);
RATIO=2(1~-2*PRP)+(1+PR)*IMP/TH
READ(S,*) ¥M,PR,RATIO,PRP,A1,A2
READ NUMBER OF TIME INCREMENTS,
PERCENT SUCH THAT TIME INC.=PCT*ZELASTIC STRAIN/CREEP STRAIN
READ(S,#) NTM,PCT °
READ NUMBER OF RADIAL POINTS,LOCATION OF RADIAL POINTS
READ(S,*) NPT, (R(I),I=1,NPT)
READ INITIAL(ELASTIC) STRAINS
READ(5,*) ER1,ETH!
CALCULATE CONSTANTS WHICH ARE REZPEATEDLY USED
PR22=PR*2.
PR11=1 .+PR
PR2=1.-PR22
PR1=1.-PR
PPR=PR2/PR1
YMP=YM/PR2/PR11
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R3=R(1)**3
R33=3.*R3
PR2P=1.-2.%PRP
B3=R(NPT) #*3
C=R3/B3
P211=PR2/PR11
PR2H=0.5#*PR2
RP=PR11/PR1}
SR(1)=O.
7Z1=RATIO*PR2-PR2P
72=2%PR2P+HRATIO*PR11
Z3=PR11+2 .#C*PR2
Z4=2 . %C*Z1 /(2 .#C*Z1+22)
ZS=Z3/3./PR1+PR2P/Z1
BZ=Z4%*1 .5*B3
CZ1=PR2P*PR2/Z1
Z7=3.*R3*PR2P*PR11
CZ2=22/77
DO 5 JK=8,NPT
5 PORP(JK)=0.
¢ CALCULATE ER,Z2TH,SR,STH,SE,3M INITIALLY, GIVEN ER AID ETH AT INTER
DO 10 I=1,NPT

AR=R3/R(I)**3
EX:C/(1.-C)*SR(1)/YM*PR2
ER(I)=(ER1+EX)*AR-EX
ETH(I)=(ETH1+EX)*AR-EX
SR(I)=YMP*(PR1*ER(I)+PR22*ETH(I))
STH(I)=YMP*(ETH(I)+PR*ER(I))
SE(I)=ABS(SR(I)—STH(I))
SM(I)=(SR(I)+2.*STH(I))/3.
EC(I)=0.
POR(1)=0.

10 CONTINUE
T=0.

C ITERATE OVER HTM TIME INCREMENTS OF DT



DC 100 J=1,37H
WRITE(6,500) J,T
C CALCULATE T4Z CREEP RATE FOR THIS TIMa
DO 20 I=1,NPT
XL=SZ(I)/238.
XLL=XL**0.8333
ZPC(I)=A1*A2#%+*XTL
20 CONTINUE
¢ CALCULATE THE POROSITY RATE FOR THIS TIME STEP
- DO 21 I=1,7
21 PORP(I)=POR1*EXP(POR2/SE(I))
C
C CALCULATE INTEGRAL I1 WITHE TRAPEZOIDAL INTEGRATION
c
XI1(1)=0.
T2=EPC(1)/R(1)
DO 25 II=2,NPT
K=II-1
T1=T2
72=EPC(II)/R(II)
RR=R(II)-R(X)
XI1(II)=XI1(X)+(T1+T2)*RR/2.
25 CONTINUE
C
C
¢ CALCULATE "CONSTANTS" C1D,C2D
X1=XI1(NPT)*RP
C1D=BZ*(~X1+EPC(1)*25)
C2D=CZ1*(C1D#CZ2~-EPC(1)/PR11)
DO 30 I={,NPT
RR3=R(I1)**3
C CALCULATE RADIAL AND TANGENTIAL STRAIN RATES
ETHD(I)=9PR*(XI1(I)-EPC(1)/3.*(1.—RS/RR3))—C1D/3./RR3+CZD
ERD(I):PPR*(XI1(I)+EPC(I)-EPC(1)/3.*(1.+2.*RB/RR3))+
1 2.#C1D/3./RR3+C2D
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WRIT=(5,501) R(I),ER(I),ETH(I),EC(I),SR(I),STS(I),SE(I),
1 SM(I),ERD(I),ETHD(I),EPC(I),POR(I)

DER=ABS(ZR(1)-EC(1))
ETH=A3S(ZTH(1)-EC(1))

(DETH.LT.DER) DE=DETH
PO=DE/EPC(1)*PCT
M=0
26 PO=P0/10.
M=M+1
IP(PO.GT.10.0) GO TO 26
DT=INT(PO)*10.**M
IF(DT.LT.10.0) DI=10.
c
C CALCULATE ER,ZTH,EC,SR,STH,SE,SM FOR NEXT INCREMENT
ER(I)=ER(I)+ERD(I)*DT
BTH(I)=ETH(I)+ETHD(I)*DT
EC(I)=EC(I)+EPC(I)*DT
POR(I)=POR(I)+PORP(I)*DT
SR(I)=YMP*(PR1*ER(I) + PR22*ETH(I) -PR2#EC(I))
STE(I)=IMP*(ETH(I) + PR#ER(I)+PR2E*EC(I))
SE(I)=ABS(SR(I)-STH(I))
SM(I)=(SR(I)+2.*STH(I))/3.
30 CONTINUZ
C INCREMENT TIME
P=T+DT
100 CONTINUE
C FORMAT STATEMENTS
500 FORMAT(1H1,//,5X,' INCREMENT: ',15,2%,'TIME: ',F11.2,"' SEC',
1 //,T2,'RADIUS',T22,'STRAINS',T61,'SQRESSES',T97,'STRAIN RATES'
2 /,T12,'RADIAL',T22,'TANGENT',T34,'CREEP',T45,'RADIAL',T55,
3 'TANGENT',T67,'MISES',T79,'MEAH',T89,'RADIAL',T99,’TANGEHT',
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' POROSITY',//)

4 m111,'CREED',7122
z,76 X,11(210.3,1%),/)

501 FORMAT(1X
STOP
END

21
I,
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STRESS FIELD SURROUNDING A SPHERICAL PARTICLE
DUE T0 A UNIFORM TENSILE STRESS AT INFINITY

A uniform stress field in a material due to a stress
applied at infinity is disturbed by the presence of a
particle. In 1933, Goodier determined the effect of a
spherical or cylindrical elastic inclusion on a uniform
gtress state. Referring to Figure A4, nis solution for the
effect of a spherical inclusion on the matrix stress state
due to a tensile stress applied at infinity follows
(subscript 1 indicates matrix; 2 indicates varticle):

T = applied tensile stress inr direction, G =0 ;

LA,.=_.A._~1_ [5 v C_ -9—?—?-] cos 26 :

ot =2y r*
ur—{%%-&-ﬁ—%] s5in286
24 128 - C
=4 —% /20% *"Zl—av'r“*i%?-)coszg};

_ v C 3B c 215, 5| .
036—2/.1["- -%_7 3 -_P? ‘l"(-‘;-, 2l ‘:,.) COSZQ] ,

- A 20-9C B 3C ‘ .
Ty® 2#[7‘“.—:5?% -9 B (-5 R) CO>29] |

0., 2/.1[ 2(9) L., 24 —5:.] 5in20

-2v r?
= 2 _J (-t - - - -
where A {)l&ra‘-:-[ E"LD"—(“ 29,) (=532 + (3+199, z_oo,o,_)/,a,_)
.,.((x-\).]% -—\7,_)/-,‘1- (a—zal,_)/A,]

B = TG-; (&f’&:) ’
gun D
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g = T‘O-; 5(1-2-").)(1141.-"(,014\1_
7 D

(7- 5% ) j, + (8-109)4:

o
I}

B

(1292 + (19, My

The complete stress state is obtained by superposing the
above stress state on the uniform tension.

Figure A4.
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TABLE A.

COMPARISON OF FINITE ELEMENT ANALYSIS SOLUTION
WITH ELASTICITY ANALYSIS SOLUTION

PARTICLE Thermal Stress, (MPa)

Pinite Element Elasticity

Analysis Analysis
PB —-— 34.5
HOMOGENIZED 7.93 7.95

PB(c=0.20) 28.7 28.7

Tensile Stress
Concentration Factor, k
Pinite RElement Elasticity

Analysis Analysis
1.92 1.88
1.17 1.16
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APPENDIX 5
FINITE ELEMENT ANALYSIS

Pinite element analyses were conducted using the
general purpose finite element program ABAQUS. A finite
element analysis was conducted to obtain the solution to
the following problems:

1. Thermal Residual Stresses for Concentric Sphere
Particles;

2. Relaxation of Residual Stresses for Concentric
Sphere Particles;

3. Uniform Applied Tensile Stress for Concentric
Sphere Particles;

4. TUniform Applied Tensile Stress for all particles
in a finite matrix.

The finite element analysis of each problem is similar in
the respect that the same type of element and same order oI
integration can be used in the modelling. They difrfer
because the symmetry, loading, and (for problem 2) material
behavior reguirements differ. TFor these reasons, the
finite element mesh and boundary conditions are identical
for problems 1 and 2; and problems 3 and 4 have similar
meshes with different boundary conditions. The accuracy of
the model for each of the first three problems is
determined by comparing the solution from the finite
element analysis of an isotropic particle with the
corresponding closed form solution.

All of the problems are axially gymmetric with
respect to the z-axis (Pigure A5-1) in geometry, loading,
znd boundary conditions. Therefore, axisymmetric elementu
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Figure A5-1. Schematic of a particle in a matrix. All
problems are axially symmetric in geometry, loading, and
boundary conditions with respect to the z eaxis.
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may be used and a "2 _D" mod=l is all that is necessary.
Also, all of the problems contain an "incomprassible"
material, rubber, which has a Poisson ratio of 0.499. In
order to prevent the locking oroblem oi finite elsmenss
with such characteristics, reduced integration is used in
the analysis. Therefore, axisymmetric slements with
reduced integration are used in the finite element analysis
of eacn of the four problems.

As mentioned above, the same mesh and boundary
conditions are used for problems 1 and 2. This is because
the problems are both spherically symmetric. The mesh
consists of a "fan" of axisymmetric elements which are
pernitted to displace radially only. This is pictured in
Figure A5-2. To determine the thermal residual stresses
requires an elastic analysis and thus -problem {1 only
requires the elastic material properties. Since problem 2
consists of creeping of the P3 matrix, the creep law,
equation 3-1, must be defined in an ABAQUS subroutine.

The mesh for problems 3 and 4 is a bit more
complicated because these problems are axially symmetric
about the z-axis with reflective symmetry ahout the y-axis.

The mesh and boundary conditions for problem 3 are shown
in Figure AS5-3. Additional boundary conditions along the
top edge and free side of the mesh must be prescribed to
reproduce the effects of a finite matrix. The top edge is
conditioned to displace uniformly in the z direction, and
the free side displaces uniformly in the y direction. This
condition is shown in Figure AS5-4.

A comparigon of the #inite element solution for an
isotropic particle with the elasticity or creep solution
for each problem was used to determine the size of mesh to
use. The resulting meshes produced very small errors. For
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Figure A5-2. "Fan" model used for the spherically
symmetric problems. Example shown is for a particle/matrix

volume ratio of 0.20.



(b) enlarged particle mesh
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Figure A5-4. Schematic showing additional boundary
conditions imposed on a mesh similar to Pigure A5-3 to
model finite matrix effects.
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problem 1, the error was less than 1% as shown in Table A
whicn compares the radial stress obtained from the finite
element analysis and elasticity analysis for thes PB and
Homogenized particles. For problem 2, the error was also
very small. Figure A5-5 depicts the relaxation behavior
from the creep analysis as 2 smooth curve; the discrete
points were obtained from the finite element analysis. The
points are seen to lie right along the curve. The applied
tensile stress comparison is also listed in Table A for the
PB and Homogenized particles. ™is indicated less than 3%
error. The very small error for each of the problems
indicates that the finite element modelling and analysis
nas been correctly and accurately executed.
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