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Background:

To examine current clinical research on the use of transcranial magnetic stimulation (TMS) in 

the treatment of pediatric and young adult autism spectrum disorder in intellectually capable 

persons (IC-ASD). 

Methods: 

We searched peer-reviewed international literature to identify clinical trials investigating TMS as 

a treatment for behavioral and cognitive symptoms of IC-ASD. 

Results: 

We identified sixteen studies and were able to conduct a meta-analysis on twelve of these 

studies. Seven were open-label or used neurotypical controls for baseline cognitive data, and 

nine were controlled trials. In the latter, waitlist control groups were often used over sham TMS. 

Only one study conducted a randomized, parallel, double-blind, and sham controlled trial. 

Favorable safety data was reported in low frequency repetitive TMS, high frequency repetitive 

TMS, and intermittent theta burst studies. Compared to TMS research of other neuropsychiatric 

conditions, significantly lower total TMS pulses were delivered in treatment and neuronavigation 

was not regularly utilized. Quantitatively, our multivariate meta-analysis results report 

improvement in cognitive outcomes (pooled Hedges’ g=0.735, 95% CI=0.242, 1.228; p=0.009) 

and primarily Criterion B symptomology of IC-ASD (pooled Hedges’ g=0.435, 95% CI=0.359, 

0.511; p<0.001) with low frequency repetitive TMS to the dorsolateral prefrontal cortex.

Conclusions: 
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The results of our systematic review and meta-analysis data indicate that TMS may offer a 

promising and safe treatment option for pediatric and young adult patients with IC-ASD. 

However, future work should include use of neuronavigation software, theta burst protocols, 

targeting of various brain regions, and robust study design before clinical recommendations can 

be made. 

Keywords: Autism, Transcranial Magnetic Stimulation, Pediatric, Neurodevelopmental, 

Neuromodulation, Brain Stimulation  
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potentials (MRCP), parvalbumin (PV), excitation-to-inhibition (E/I), electroencephalogram 

(EEG).
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Background:

Since the first studies of repetitive transcranial magnetic stimulation (rTMS) for treatment-

resistant major depressive disorder (MDD) in adults offered evidence of therapeutic response 

with excitatory high frequency rTMS (HF-rTMS)  (≥10 Hz) of the left dorsolateral prefrontal 

cortex (LtDLPFC), (George, 1995; Milev, 2016; Pascual-Leone, 1996; Rossi, 2009) interest in 

the therapeutic opportunity of transcranial magnetic stimulation (TMS) has grown as have 

options for TMS modalities. Anti-depressant response to of inhibitory low frequency rTMS (LF-

rTMS) (≤1 Hz) of the right dorsolateral prefrontal cortex (RtDLPFC) has been demonstrated, 

(Klein, 1999) though greater evidence supports MDD treatment via HF-rTMS of the LtDLPFC. 

(Lefaucheur, 2014) Theta burst stimulation (TBS) is another therapeutic TMS treatment with 

patterned pulses delivered in bursts of three at a higher frequency compared to rTMS (50Hz). 

TBS requires less stimulation time, functions at a lower overall intensity compared to rTMS 

protocols, with promising safety profiles in pediatric patients based on a recent systematic 

review. (Elmaghraby et al., 2021) Two patterns of TBS are currently utilized, the inhibitory 

continuous (cTBS) and excitatory intermittent (iTBS). (Chung et al., 2015) Options for 

delivering “deep TMS” (dTMS) further into cortical tissue have been explored as well. Rather 

than the traditional figure eight coil, dTMS uses the double cone coil and the H-coil were 

developed to allow for greater depth of cortical penetration. (Carmi et al., 2018; Tofts & 

Branston, 1991) Safe and efficacious use of dTMS has been demonstrated, resulting in FDA 

approval to treat MDD as well as obsessive compulsive disorder (OCD) via stimulation of 

medial prefrontal cortex (mPFC) and the anterior cingulate cortex (ACC). (Berlim et al., 2014; 

Blomstedt et al., 2013; Carmi et al., 2018, 2019; Levkovitz et al., 2015)  Given these robust 

findings, as well as emerging protocols documenting the safety, efficacy, non-invasive nature, 
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and ease of administration of TMS as a neuromodulatory treatment in both adult and pediatric 

patients, (Allen et al., 2017; Connolly, 2012; Damji et al., 2013; Milev, 2016; Rajapakse & 

Kirton, 2013; Rossi, 2009) there is a growing interest regarding the possibility of using TMS for 

other neuropsychiatric conditions such as autism spectrum disorder (ASD).

ASD is a neurodevelopmental disorder which presents with deficits in social interaction and 

communication along with restricted/repetitive pattern of behaviors and interests (RRBs). 

(American Psychiatric Association, 2013) The condition is highly prevalent, affecting 1-2% of 

the population worldwide. (Lazoff et al., 2010) Individuals may present with or without 

intellectual disability, though substantial supports are often required in either case. (Howlin et 

al., 2004; Tillmann et al., 2019) Despite the burden of disease on individuals and health systems, 

(Becker et al., 2020) issues of diagnosis and treatment persist due to under-recognition, (Joshi et 

al., 2010) heterogeneity in clinical phenotypes, and the variability of symptom manifestation 

across development. (Jannati et al., 2020) Additionally, current pharmacologic interventions in 

ASD are limited to the management of co-occurring psychopathology and not for the core 

features of the disorder. (Hutton, 2008; Zhou et al., 2021) 

Recent systematic reviews and meta-analytic research investigating the use of TMS and other 

neuromodulatory techniques in treatment and diagnosis (Jannati et al., 2021) of ASD regardless 

of age or intellectual capacities, suggest that TMS could be effective in the diagnosis of ASD, 

treatment of RRBs, and improving executive functioning (EF) deficits. However, heterogeneity 

in study design and possible publication bias are notable limiting factors in making clinical 

recommendations, points further highlighted in recent consensus statements by Oberman and 
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Cole. (Barahona-Correa, 2018; Cole et al., 2019; Khaleghi et al., 2020; Oberman & Enticott, 

2015) In this study, we aim to further advance current knowledge regarding the use of TMS by 

conducting a systematic review and meta-analysis of the literature with a focus on TMS as a 

therapeutic tool for intellectually capable individuals with ASD (IC-ASD) with the purpose of 

developing future TMS trials which would advance and optimize the therapeutic potential of 

TMS. We have chosen a younger patient population for this TMS review due to the 

developmental nature of the disorder (Oberman, Pascual-Leone, et al., 2014), increasing 

prevalence rates of IC-ASD in this patient population, (Maenner, 2020), potential for greater 

effects of TMS early in development when the brain is considered to be more plastic, (Oberman 

& Enticott, 2015) and to mitigate study design heterogeneity by focusing on a specific 

population of individuals with ASD. Our study also further advances the literature by including 

studies published since the seminal 2018 meta-analysis by Barahona-Correa and colleagues. 

(Barahona-Correa, 2018) To our knowledge, no systematic review or meta-analysis exists which 

specifically investigates TMS as a therapeutic tool in the management of pediatric and young 

adults with IC-ASD. 

Methods:

We conducted a systematic review of peer-reviewed international literature utilizing the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. 

Our review was conducted via PubMed and EMBACE published through 03/22/2022 using the 

following search criteria: [Transcranial Magnetic Stimulation or TMS] AND [Autism Spectrum 

Disorder or Autism or ASD]. The authors screened, reviewed, and assessed the reference lists of 

the retrieved papers to ensure that all relevant articles were included in our review. 
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Bibliographies were also cross referenced to ensure that no articles were missed. Our review was 

not registered. Following publication, our meta-analysis data and code will be publicly available 

on the Open Science Framework.

All articles were screened for predetermined inclusion and exclusion criteria by four authors. 

Authors worked collaboratively on each article selected, no automation tools were utilized 

Articles were included if they met the following criteria: (1) original research in a peer-reviewed 

journal, (2) the study sample included individuals below 18 years of age with IC-ASD, (3) 

investigated TMS as a therapeutic modality in the management of IC-ASD via open label trials, 

controlled trials, or cross over studies, and (4) devices used in the study were FDA-approved for 

sale in the United States. Articles were excluded if they met the following exclusion criteria: (1) 

ASD sample with intellectual disability (IQ < 65), (2) focused on other disorders that were not 

ASD,  (3) studied transcranial direct current stimulation or utilized TMS practices other than 

rTMS or TBS, (4) published in a language other than English, (5) did not include interpretable 

data, (6) were purely diagnostic in study design or (7) performed a literature review or meta-

analysis. Notably, studies were included which investigated individuals above 18 years of age if 

the study population also contained individuals below 18 years. 

Statistical Methods:

We performed two meta-analyses of standardized mean differences (SMD) in studies which 

conducted LF-rTMS to the DLPFC: one for behavioral outcomes and one for cognitive 

outcomes. To compute the SMDs, we extracted either the mean difference and standard 

deviation of the difference or the baseline and endpoint means and standard deviations, t-
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statistics, and p-values for each outcome. Given the small sample sizes of the included studies 

and the dependent nature of our comparison groups (pre-TMS vs. post-TMS), the standardized 

mean difference was calculated as Hedges’ g for pre-post scores using the following formula: 

g = (1 - 3
4 * df - 1) × (xpost - xpre

sdwithin ); and the accompanying sample variance was calculated as var

(g) = (1 - 3
4 * df - 1)2

×  ([1
N +  (

xpost - xpre
sdwithin )2

2 * N ] × 2 × (1 - r)) (Borenstein, 2009), where xpre is 

the pre-treatment mean score, xpost is the post-treatment mean score, sdwithin is the within 

group standard deviation, df is the degrees of freedom used to estimate sdwithin, and N is the 

sample size (# of pairs). The correlation coefficient, r, for pre-post scores was calculated as 
sd2pre +  sd2post - sd2diff
2 ×  sdpre × sdpost

 

(Barahona-Correa, 2018). For studies where insufficient information was available to calculate r, we imputed r using the average of 

all the calculated correlations. Only studies that provided sufficient data to make these calculations were 

included in the meta-analysis. Ten studies measuring behavioral outcomes (Casanova et al., 

2012, 2020, 2021; E. M. Sokhadze et al., 2012, 2018) and eight studies measuring cognitive 

outcomes (Casanova et al., 2014, 2020; E. M. Sokhadze et al., 2009, 2010, 2016, 2018; Wang et 

al., 2016) possessed data for inclusion. As attempts to obtain unpublished data from the authors 

of the studies with insufficient data were unsuccessful, they were excluded from the meta-

analysis.

Given the dependencies among effect sizes, our analyses utilized random-effects multivariate 

meta-analysis models using the restricted maximum likelihood (REML) method with 

unstructured between-study covariance matrices as implemented in Stata (meta mvregress) 

(Statacorp, 2021). Due to the small number of effect sizes included in the meta-analysis, we 

applied Jackson-Riley adjustments to the standard errors of the regression coefficients, which are 
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multivariate generalizations of the Knapp-Hartung adjustment in univariate meta-regression 

(Jackson & Riley, 2014; Statacorp, 2021).  Our models utilized within-study standard errors and 

within-study correlations to define the within-study covariance matrices. Because our outcomes 

of interest were derived from only two rating scales (ABC and RBS-R) and one cognitive test 

(Kaniza Oddball Test), we assumed high within-study correlations between our outcomes and set 

the correlations to 0.8. We used the Cochran multivariate Q-test to assess the total heterogeneity 

across all effect sizes. A significant Q-test suggests that the effect sizes analyzed are not 

estimating the same population effect size. We quantified the amount of between-study variance 

using the Jackson-White-Riley I2 index (I2
JWR) (Jackson et al., 2012).The value of this 

multivariate heterogeneity statistic lies between 0 and 100 and estimates the percentage of 

variation among effect sizes that can be attributed to heterogeneity. Additionally, since the 

multivariate meta-regression command (meta mvregress) in Stata provides pooled effect sizes for 

subdomains only and not an overall effect, we utilized the robumeta command which estimates 

an overall effect size by implementing meta-regression with robust variance estimation; (Hedges 

et al., 2010; Statacorp, 2021). When used in conjunction, the meta mvregress and robumeta 

commands are complement in terms of what the other is lacking. Thus, when reporting results, 

estimates for each subdomain were calculated using the meta mvregress command and overall 

estimates were calculated using the robumeta command. 

We used the Egger method and funnel plots to assess for small-study effects and publication bias 

(Egger et al., 1997) and used selection models to correct for publication bias based on reported p-

values (Iyengar & Greenhouse, 1988; Vevea & Hedges, 1995). The selection models were 

implemented using JASP (JASP Team, n.d.).While these statistics assessing and correcting for 
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small-study effects and publication bias can provide some insight, they are univariate approaches 

and do not take into account the dependencies of effect sizes. Thus, the results should be 

interpreted with some caution. 

Lastly, we estimated multivariate meta-analysis regression model with the effect sizes as the 

dependent variables and total number of pulses administered (standardized) as the independent 

variable. The variable for total pulses tested whether the magnitude of effect significantly 

differed as total pulses increased. All multivariate meta-analyses were two-tailed and performed 

at the 0.05 alpha level using Stata: Version 17 (Statacorp, 2021). 

Results:

As outlined in Figure 1, in our initial search 782 articles were screened. 329 articles remained for 

screening after duplicates were removed. Of these, 90 were not specific to IC-ASD, 123 

investigated interventions other than TBS or rTMS, 55 were review or opinion articles, 4 were 

non-human, and 1 was not available in English. 56 articles were assessed for full text eligibility; 

21 focused primarily on adults, 11 were purely diagnostic in their focus, and 8 included 

individuals with intellectual impairment (IQ < 65). Thus, 16 articles were included for final 

qualitative synthesis. Of those 16 articles, 12 utilized LF-rTMS targeting the DLPFC, 

incorporated waitlist control groups which had no statistically significant changes in symptoms 

over the study duration, had extractable base and endpoint data and were thus, included in the 

meta-analysis.

Qualitative Review Summary:
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Qualitative results of our review are outlined in Tables 1 and 2. Table 1 includes studies with 

waitlist control groups and sham TMS controls. Table 2 includes studies without a control group 

and those which included baseline neurotypical (NT) controls. In studies reviewed, sample sizes 

ranged from an n=13 (E. M. Sokhadze et al., 2009) to n=124. (E. M. Sokhadze et al., 2018) The 

maximum age of participants was 23 years with the single exception being the study by Ameis 

and colleagues which had a maximum age of 35 years and an average age of 22.6 years. (Ameis 

et al., 2020) Biologic sex was reported in all studies, with 105 females and 471 males with 

autism included in the research. Regarding assessment of intellectual capacities, 1/16 studies did 

not report quantitative measures of IQ, but identified patients as IC-ASD via DSM-IV. (Enticott, 

2012) The diagnosis of IC-ASD was confirmed by clinical assessment and use of DSM-IV or 

DSM-V criteria based on the year the study was conducted in all studies. The autism diagnostic 

interview-revised (ADI-R) was incorporated in 14/16 studies (Casanova et al., 2012, 2014, 2020, 

2021; Enticott, 2012; E. M. Sokhadze, El-Baz, Sears, et al., 2014; E. M. Sokhadze, El-Baz, 

Tasman, et al., 2014; E. M. Sokhadze et al., 2009, 2010, 2012, 2016, 2018; G. E. Sokhadze et al., 

2017; Wang et al., 2016) and the autism diagnostic observation schedule (ADOS) in 2/9. (Ameis 

et al., 2020; Ni et al., 2021)  See Tables 1 and 2 for ascertainment criteria of each study.

Study Design:

As seen on Table 1, 9/16 studies incorporated control groups for the duration of the study which 

included waitlist groups in 6/9 (Casanova et al., 2012; E. M. Sokhadze, El-Baz, Sears, et al., 

2014; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 2009, 2012, 2018) 

and sham TMS in 3/9. (Ameis et al., 2020; Enticott, 2012; Ni et al., 2021) Randomization 

occurred in 7/9 studies; (Ameis et al., 2020; Casanova et al., 2012; Enticott, 2012; Ni et al., 
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2021; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 2012, 2018) the two 

studies which were not randomized assigned patients to the waitlist control based on 

commitment to the research and feasibility of follow up. (E. M. Sokhadze, El-Baz, Sears, et al., 

2014; E. M. Sokhadze et al., 2009) 7/9 were unblinded trials. (Casanova et al., 2012; Enticott, 

2012; E. M. Sokhadze, El-Baz, Sears, et al., 2014; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; 

E. M. Sokhadze et al., 2009, 2012, 2018) Ni and colleagues conducted a randomized, single 

blind and sham controlled trial. (Ni et al., 2021) Ameis and colleagues conducted the lone 

randomized, parallel, double blind, and sham controlled trial. (Ameis et al., 2020) 

As seen on Table 2, 7/16 studies did not use control groups for the duration of the study. 

(Casanova et al., 2020, 2021; E. M. Sokhadze, El-Baz, Sears, et al., 2014; E. M. Sokhadze et al., 

2010, 2016; G. E. Sokhadze et al., 2017; Wang et al., 2016) 3/7 incorporated the use of NT 

controls. (Casanova et al., 2020, 2021; E. M. Sokhadze et al., 2016) Notably, NT controls were 

not exposed to TMS. Rather, they underwent cognitive testing to compare initial results in the 

IC-ASD group to NT controls; only IC-ASD participants were exposed to TMS. 3/7 studies also 

investigated autonomic dysregulation in response to LF-rTMS and found improvement in 

autonomic measures such as skin conductance level (SCL) and heart rate variability (HRV) 

which was positively correlated with improvements in behavioral measures. (Casanova et al., 

2014; G. E. Sokhadze et al., 2017; Wang et al., 2016) 

 

TMS Parameters:

15/16 studies used rTMS (Ameis et al., 2020; Casanova et al., 2012, 2014, 2020, 2021; Enticott, 

2012; E. M. Sokhadze, El-Baz, Sears, et al., 2014; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; 
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E. M. Sokhadze et al., 2009, 2010, 2012, 2016, 2018; G. E. Sokhadze et al., 2017; Wang et al., 

2016) with 14/15 being LF-rTMS (0.5-1 Hz). (Casanova et al., 2012, 2014, 2020, 2021; Enticott, 

2012; E. M. Sokhadze, El-Baz, Sears, et al., 2014; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; 

E. M. Sokhadze et al., 2009, 2010, 2012, 2016, 2018; G. E. Sokhadze et al., 2017; Wang et al., 

2016) Ameis and colleagues were the only study to investigate the effects of HF-rTMS, utilizing 

20 Hz of stimulation. (Ameis et al., 2020) The DLPFC was targeted in 14/16 studies: (Ameis et 

al., 2020; Casanova et al., 2012, 2014, 2020, 2021; E. M. Sokhadze, El-Baz, Sears, et al., 2014; 

E. M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 2009, 2010, 2012, 2016, 

2018; G. E. Sokhadze et al., 2017; Wang et al., 2016) specifically the LtDLPFC in 13/16, 

RtDLPFC in 11/16, and bilateral DLPFC (BiDLPFC) in 9/16. The 2012 study by Enticott and 

colleagues represents the only study to modulate the left primary motor cortex (M1) and the 

supplemental motor area (SMA). The study was cross-over in design with participants receiving 

either Left M1, SMA, and sham TMS over three weekly sessions. (Enticott, 2012)  Ni and 

colleagues conducted the only TBS study, using the excitatory iTBS protocol (Huang et al., 

2005) to stimulate the posterior superior temporal sulcus (pSTS) bilaterally. Specific information 

regarding dosing schedules can be found in Tables 1 and 2. 

Of studies which targeted the DLPFC, the site of TMS modulation was 5 cm anterior, and in the 

parasagittal plane, to site of first dorsal interossei muscle (FDI) maximal stimulation in 13/14 

studies. (Casanova et al., 2012, 2014, 2020, 2021; Enticott, 2012; E. M. Sokhadze, El-Baz, Sears, 

et al., 2014; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 2009, 2010, 

2012, 2016, 2018; G. E. Sokhadze et al., 2017; Wang et al., 2016) Studies by Ameis and Ni 

incorporated MRI guided individual neuronavigation. (Ameis et al., 2020; Ni et al., 2021; Rusjan 
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et al., 2010) Additionally, compared to other studies investigated, the studies by Ni and Ameis 

administered significantly more total TMS pulses over the study period; delivering 30,000 rTMS 

pulses over a 4 week course of treatment (Ameis et al., 2020) and 38,400 iTBS pulses over an 8 

week period, respectively. (Ni et al., 2021) Comparatively, the next highest number of pulses 

recorded were 3,240 occurring over an 18-week period. This was done in 6/14 studies targeting 

the DLPFC. (Casanova et al., 2020, 2021; E. M. Sokhadze, El-Baz, Sears, et al., 2014; E. M. 

Sokhadze, El-Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 2016, 2018) While no significant 

adverse effects or seizures were reported over all studies investigated, only the studies by Ni and 

Ameis reported specific adverse effects. Both studies reported mild and transient side effects, the 

most frequent of which was mild headache and pain at the TMS application site. (Ameis et al., 

2020; Ni et al., 2021) 

Outcome Measures:

9/16 studies measured cognitive and behavioral outcomes of TMS intervention; (Casanova et al., 

2012, 2020, 2021; E. M. Sokhadze, El-Baz, Sears, et al., 2014; E. M. Sokhadze, El-Baz, Tasman, 

et al., 2014; E. M. Sokhadze et al., 2009, 2010, 2016, 2018) 3/16 exclusively investigated 

cognitive measures (Ameis et al., 2020; Enticott, 2012; E. M. Sokhadze et al., 2012) and 4/16 

exclusively behavioral measures. (Casanova et al., 2014; Ni et al., 2021; G. E. Sokhadze et al., 

2017; Wang et al., 2016) Behaviorally, the social responsiveness scale (SRS-2) (Constantino & 

Gruber, 2012) was included in 6/16 behavioral studies (Casanova et al., 2012; Ni et al., 2021; E. 

M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 2009, 2010; G. E. Sokhadze et 

al., 2017) and reported in 4/6, (Casanova et al., 2012; Ni et al., 2021; E. M. Sokhadze et al., 

2010; G. E. Sokhadze et al., 2017) repetitive behavioral scale-revised (RBS-R) (Lam & Aman, 
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2007) was used in all thirteen studies, and the aberrant behavioral checklist (ABC) (Aman et al., 

1985) was used in 12/13. (Casanova et al., 2012, 2014, 2020, 2021; E. M. Sokhadze, El-Baz, 

Sears, et al., 2014; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 2009, 

2010, 2016, 2018; G. E. Sokhadze et al., 2017; Wang et al., 2016) Of those which reported SRS-

2 results, Sokhadze 2010 and Casanova 2012 found no significant changes in SRS-2 measures in 

response to LF-rTMS of the LtDLPFC or of the LtDLPFC and RtDLPFC, respectively. 

(Casanova et al., 2012; E. M. Sokhadze et al., 2010) Sokhadze 2017 reported statistically 

significant reductions in the SRS-2 domains of social awareness and social cognition at the end 

of the 18-week trial. (G. E. Sokhadze et al., 2017) Ni and colleagues, observed statistically 

significant improvement in the total SRS-2 score at 8 weeks following iTBS treatments to the 

bilateral STS following the open-label phase of the study in the active-active group (8 weeks of 

active treatment), but not in sham-active group (4 weeks of active treatment). Baseline SRS-2 

score in the active-active group 107.3 (24.0) at week 1 to 98.5 (28.7) at week 8. Notably, when 

divided into subdomains, statistically significant improvement in the SRS-2 scale was observed 

only in the domains of autistic mannerisms and social communication in the active-active group. 

(Ni et al., 2021) Post-TMS results from the RBS-R were reported in all thirteen studies with only 

one study not reporting a reduction in total score. (Casanova et al., 2021) Regarding subscales, 

reductions in stereotypic, ritualistic, and compulsive subscales were reported in 8/13, 6/13, and 

4/13 studies, respectively. (Casanova et al., 2012, 2014, 2020, 2021; E. M. Sokhadze, El-Baz, 

Tasman, et al., 2014; E. M. Sokhadze et al., 2016; G. E. Sokhadze et al., 2017; Wang et al., 

2016) Notably, similar to their SRS-2 findings, Ni and colleagues reported reductions in total 

RBS-R score by week 8 in the active-active group of their study; improvements were not 

observed in the sham-active group. (Ni et al., 2021) Results from the ABC were reported in 
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11/13 studies; statistically significant reductions in hyperactivity, irritability, social withdrawal / 

lethargy, stereotypic behavior, and inappropriate speech were reported in 10/13, 7/13, 5/13, 1/13, 

and 1/13 studies, respectively. (Casanova et al., 2012, 2014, 2020, 2021; E. M. Sokhadze, El-

Baz, Sears, et al., 2014; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 

2009, 2016, 2018; G. E. Sokhadze et al., 2017; Wang et al., 2016)

12/16 studies investigated cognitive outcomes (Ameis et al., 2020; Casanova et al., 2012, 2020, 

2021; Enticott, 2012; E. M. Sokhadze, El-Baz, Sears, et al., 2014; E. M. Sokhadze, El-Baz, 

Tasman, et al., 2014; E. M. Sokhadze et al., 2009, 2010, 2012, 2016, 2018) with 10/12 

incorporating use of event related potentials (ERP) via the Kanizsa oddball task. (Casanova et 

al., 2012, 2020, 2021; E. M. Sokhadze, El-Baz, Sears, et al., 2014; E. M. Sokhadze, El-Baz, 

Tasman, et al., 2014; E. M. Sokhadze et al., 2009, 2010, 2012, 2016, 2018) The task involves the 

presentation of targets, non-targets, and distracters for the participant to identify. Behavioral 

response changes which occur during the task are then measured. They include the following: 

ERP, reaction time, error rates, and accuracy. (Kanizsa, 1976) In these studies, the rate of 

commission, omission, and total errors was measured pre- and post-TMS after subjects were 

exposed to the Kanizsa oddball task.   Improvements in the rate of omission, commission, and 

total errors were reported in 3/10, 5/10, and 8/10 studies, respectively. (Casanova et al., 2012, 

2020, 2021; E. M. Sokhadze, El-Baz, Sears, et al., 2014; E. M. Sokhadze, El-Baz, Tasman, et al., 

2014; E. M. Sokhadze et al., 2009, 2010, 2012, 2016, 2018) In their assessment of cognitive 

outcomes, Ameis and colleagues were the lone study (Ameis et al., 2020) to use the Behavioral 

Rating Inventory for Executive Function (BRIEF)-Self Report (SR) Version or BRIEF-Adult, 

(Rosenthal et al., 2013) the CANTAB spatial working memory task, (CANTAB Cognitive 
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Research Software, n.d.) and Vineland Adaptive Behavior Scale–II (VABS-II), a standardized 

measure of daily functioning. (Sparrow & Cicchetti, 1985) Overall, they found no significant 

difference between active and sham rTMS on EF, defined as the higher order cognitive functions 

necessary for flexibly shifting focus, regulating and controlling behavior, and working memory. 

(Pellicano, 2012). However, individuals with lower baseline adaptive functioning per the VABS-

II experienced significant improvement in the active vs sham rTMS group. (Ameis et al., 2020) 

Lastly, the 2013 study by Enticott and colleagues which investigated the use of LF-rTMS to the 

left primary motor cortex and SMA sought to improve movement-related cortical potentials 

(MRCP) often impaired in IC-ASD. (Enticott, 2012; Rinehart et al., 2006) rTMS to the SMA and 

left primary motor strip was found to be associated with a gradient increase to the early 

component and late component of MRCPs respectively. Overall, they noted that this 

improvement in movement related electrophysiological activity may be due to LF-rTMS 

influence on cortical inhibitory processes. (Enticott, 2012)

Meta-Analysis Results:

Of the 16 articles identified, twelve had extractable data for meta-analysis of behavioral or 

cognitive outcomes in patients administered TMS treatment. (Casanova et al., 2012, 2014, 2020, 

2021; E. M. Sokhadze et al., 2009, 2010, 2012, 2016, 2018; Wang et al., 2016)

Behavioral Outcomes: 

Fifty-two behavioral measures from ten studies were included in the meta-analysis of behavioral 

outcomes and the results are reported in Table 1, Table 2, Table 3, Figure 2A, and Figure 2B. 

The multivariate meta-analysis with robust variance estimation showed an overall significant 

improvement in behavioral outcomes after treatment with TMS (pooled Hedges’ g=0.435, 95% 
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CI=0.359, 0.511; p<0.001). The Q-test was significant (p<0.001) and the joint I2
JWR

 was 98.92%, 

indicating high heterogeneity and suggesting the outcomes were not estimating a common 

Hedges’ g. There was significant evidence of small-study effects as determined by Egger’s test 

(p<0.001) in Stata and publication bias as determined by selection modeling in JASP (p<0.001). 

Selection modeling indicated that the pooled effect size after adjusting for publication bias was 

0.443 (95% CI: 0.385, 0.500; p<0.001). However, this result should be interpreted with caution 

because there was no way to account for dependencies among effect sizes. 

Stratified multivariate analyses by behavioral scale showed similar patterns (Table 1, Table 2, 

Table 3, and Figures 2A & 2B). For all seven scales (ABC Hyperactivity, Irritability, and 

Lethargy/Social Withdrawal; RBS-R Compulsive Behavior, Ritualistic/Sameness Behavior, 

Stereotypic Behavior, and Total), the pooled Hedges’ g effect sizes, while small to moderate in 

size, indicated significant improvement with TMS treatment (all p<0.001) and ranged from 0.297 

for ABC Hyperactivity to 0.638 for RBS-R Total. Heterogeneity was low for the all three ABC 

scales and the RBS-R Compulsive Behavior and Ritualistic/Sameness Behavior with I2
JWR 

statistics ranging from 0.00% to 5.42% (Table 3). Heterogeneity for the remaining two RBS-R 

scales was considerably higher with I2
JWR=37.14% for Stereotypic Behavior and I2

JWR=69.89% 

for Total. Furthermore, when we included total pulses in the model there was a significant 

association between total pulses and the effect of TMS when looking at the ABC Hyperactivity 

scale (p=0.02). The effect of TMS on ABC Hyperactivity significantly increased as total pulses 

increased. There was no association between total pulses and the effect of TMS for any of the 

other scales.   
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Cognitive Outcomes: 

Eleven cognitive measures from eight studies were included in the meta-analysis of cognitive 

outcomes and the results are reported in Table 1, Table 2, Table 3, and Figure 2C. The 

multivariate meta-analysis with robust variance estimation showed an overall significant 

improvement in cognitive outcomes after treatment with TMS (pooled Hedges’ g=0.735, 95% 

CI=0.242, 1.228; p=0.009). The Q-test was significant (p<0.001) and the joint I2
JWR

 was 97.39%, 

indicating high heterogeneity and suggesting the outcomes were not estimating a common 

Hedges’ g. There was significant evidence of small-study effects as determined by Egger’s test 

in Stata (p<0.001) and publication bias as determined by selection modeling in JASP (p<0.001). 

Selection modeling indicated that the pooled effect size after adjusting for publication bias was 

1.671 (95% CI: 1.334, 2.009; p<0.001). However, this result should be interpreted with caution 

because there was no way to account for dependencies among effect sizes. 

Stratified multivariate analyses by cognitive task showed similar patterns (Table 1, Table 2, 

Table 3, and Figure 2C). The pooled Hedges’ g effect sizes for Commission Error Rate (0.759; 

p=0.007) and Total Error Rate (0.777; p=0.008) indicated significant improvement with TMS 

treatment. Heterogeneity was high for both scales with I2
JWR=78.37% for Commission Error Rate 

and I2
JWR=80.16% for Total Error Rate.  When we included total pulses in the model there was 

no significant association between total pulses and the effect of TMS for either of the tasks (both 

p>0.05).    

Discussion:

24            



                                          ACCEPTED MANUSCRIPT                                      

Our review and meta-analysis found some consistencies within current TMS research for the 

treatment of IC-ASD in this patient population. Regarding TMS parameters, inhibitory TMS 

dosing was used in 14/16 studies, (Casanova et al., 2012, 2014, 2020, 2021; Enticott, 2012; E. 

M. Sokhadze, El-Baz, Sears, et al., 2014; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. 

Sokhadze et al., 2009, 2010, 2012, 2016, 2018; G. E. Sokhadze et al., 2017; Wang et al., 2016) 

with studies by Ameis and Ni being the only excitatory TMS treatments.(Ameis et al., 2020; Ni 

et al., 2021) In recent work on TMS in ASD, LF-rTMS is more often researched compared to 

HF-rTMS or iTBS based on the neurobiological hypothesis of parvalbumin (PV) deficiency 

attributed to ASD. (Hashemi et al., 2017; Lee et al., 2017; Steullet et al., 2017) PV containing 

cells are susceptible to oxidative injury and make up the largest subgroup of cortical inhibitory 

interneurons. Reduced numbers of PV-expressing cells have been reported in human postmortem 

brain samples (Hashemi et al., 2017) and animal models of ASD. (Lee et al., 2017) Additionally, 

reduced levels of PV expression are associated with ASD-like behavioral deficits and sensory-

motor symptoms associated with ASD. In animal models, long term reversal of PV deficits by 

pharmacologic or cell type specific gene rescue normalizing or diminishes these symptoms.(Lee 

et al., 2017; Mukherjee et al., 2019; Selimbeyoglu et al., 2017) Thus, researchers have identified 

a possible excitatory/inhibitory (E/I) imbalance in IC-ASD, also termed “electrophysiological 

endophenotype” as a target of intervention in the treatment of ASD. (Rojas & Wilson, 2014; E. 

M. Sokhadze et al., 2009; Steullet et al., 2017) The E/I imbalance may represent glutaminergic 

cortical excitotoxicity, (Rojas, 2014) hyperplasticity due to dysfunction of N-methyl-D-aspartate 

receptor mediated long-term depression and potentiation-like plasticity mechanisms, or 

inhibitory GABAnergic dysfunction; all of which may be modulated by specific TMS protocols 

and monitored via electroencephalogram (EEG) guided ERP. (Buzsáki & Wang, 2012; Jeste & 
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Nelson, 2009) Abnormal oscillations in high gamma band have been observed in this patient 

population, as well as changes in TMS derived biomarkers of cortical inhibition in response to 

the inhibitory cTBS; (Casanova et al., 2020, 2021; Jannati et al., 2020; Kirkovski et al., 2022; 

Oberman et al., 2016; Oberman, Rotenberg, et al., 2014) adding further evidence of an abnormal 

E/I balance in IC-ASD which may be modified by inhibitory TMS protocols. (Buzsáki & Wang, 

2012; Casanova et al., 2020; Jeste & Nelson, 2009) Encouragingly, multiple studies have 

reported normalization of gamma wave activity with use of LF-rTMS in IC-ASD persons. 

(Brown et al., 2005; Casanova et al., 2020; Floris et al., 2016; Rippon et al., 2007; Snijders et al., 

2013; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 2009, 2016) 

Regarding the two studies with excitatory TMS dosing, Ameis and colleagues utilized 20 Hz HF-

rTMS in an effort to improve EF in IC-ASD individuals. (Ameis et al., 2020) Their rationale was 

driven by previous rTMS research in schizophrenia which used similar rTMS parameters and 

demonstrated improvements in cognitive and functional impairments in schizophrenia 

comparable to those observed in IC-ASD. (Maxwell et al., 2015) While improvements across the 

entire group were negligible in their study, individuals with significant adaptive functional 

impairment demonstrated robust EF improvements compared to sham. (Ameis et al., 2020) This 

is of clinical interest given that, based on the excitotoxic PV hypothesis of ASD, it may be 

assumed that HF-rTMS would have minimal clinical effect. However, these findings by Ameis 

and colleagues suggest that phenotypic expression of low adaptive functioning abilities in IC-

ASD may be an indicator of clinical response in the realm of EF to HF-rTMS compared to IC-

ASD individuals with higher adaptative functioning. Furthermore, guided by previous 

neuroimaging research demonstrating pSTS hypofunction in ASD, (Yang et al., 2015) Ni and 
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colleagues utilized the iTBS protocol in their work. They found that significant clinical response 

was more likely for individuals with baseline higher intellectual functioning, better social 

cognitive performance, and less attention deficit hyperactivity disorder symptomology, and when 

treatment occurred over the course of 8 weeks rather than 4 weeks. (Ni et al., 2021) The direct 

correlation between time in treatment and clinical response was observed by Sokhadze in 2018 

as well. (E. M. Sokhadze et al., 2018) Thus, future research is warranted regarding greater 

clarification and identification of possible ASD subtypes, their neurobiologic underpinnings, 

outcome measures specific to a site of TMS modulation, (Cole et al., 2019) as well as the 

possible correlation between clinical response and time in TMS treatment. 

TMS coil placement technique was investigated as well. 14/16 studies targeted the DLPFC 

(Ameis et al., 2020; Casanova et al., 2012, 2014, 2020, 2021; E. M. Sokhadze, El-Baz, Sears, et 

al., 2014; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 2009, 2010, 

2012, 2016, 2018; G. E. Sokhadze et al., 2017; Wang et al., 2016) with 13/14 using the 

traditional “5 cm rule” of coil placement at 5 cm anterior, and in the parasagittal plane, to the site 

of FDI maximal stimulation. (Casanova et al., 2012, 2014, 2020, 2021; E. M. Sokhadze, El-Baz, 

Sears, et al., 2014; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 2009, 

2010, 2012, 2016, 2018; G. E. Sokhadze et al., 2017; Wang et al., 2016) Current TMS literature 

suggests that when the “5 cm rule” is used, the DLPFC is not accurately targeted in 33% 

(George, 2010) to 68% of individuals, (Herwig et al., 2001) leading 

In our review, Ameis and Ni conducted the only two studies to incorporate use MRI guided TMS 

targeting. (Ameis et al., 2020; Ni et al., 2021) In light of this information and regular use 
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neuronavigation in other TMS research areas, (Cole et al., 2020; Li et al., 2020) consideration of 

either MRI guided or Beam F3 targeting in future research is warranted.   

The results of our meta-analysis were divided into two sections, behavioral and cognitive. In the 

behavioral realm, the ABC and RBS-R results were indicative of mild to moderate clinical 

improvements. Cognitively, the Kanizsa oddball task was used most often. (Kanizsa, 1976) The 

results of our meta-analysis indicate large and significant improvements in rates of total errors 

and commission errors with LF-rTMS treatment. However, our study was limited quantitatively 

as we were able to retrieve only published and statistically significant data which primarily 

characterized criterion B symptoms of ASD. Additionally, only 12/16 studies were able to be 

included in the meta-analysis due to availability of data, TMS protocols, and target of treatment. 

However, reported improvements in RRB via this treatment modality is encouraging in light of 

the fewer pharmacological options in treatment of criterion B symptoms. (American Psychiatric 

Association, 2013; Zhou et al., 2021) 

Limitations:

Our study has several limitations.  In controlled studies, blinding was done inconsistently, 

randomization did not occur in 2/9 studies due to feasibility concerns, (E. M. Sokhadze, El-Baz, 

Sears, et al., 2014; E. M. Sokhadze et al., 2009) and waitlist controls were often utilized over 

sham TMS. Waitlist controls demonstrate IC-ASD symptom stability over time rather than fully 

investigating for a placebo response as would be observed with sham controls. 4/16 (E. M. 

Sokhadze et al., 2010, 2016; G. E. Sokhadze et al., 2017; Wang et al., 2016) studies had no 

control group and 3/16 incorporated NT individuals as controls only for baseline data. (Casanova 
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et al., 2020, 2021; E. M. Sokhadze et al., 2016) Thus, only 2/16 studies in our systematic review 

were randomized control trials, (Ameis et al., 2020; Ni et al., 2021) and all studies included in 

the meta-analysis were open label in design. This is of significant importance in pediatric TMS 

research design as recent literature reports a lack of separation from sham TMS when 

investigating the use of TMS in the treatment of adolescent refractory MDD. (Croarkin et al., 

2021) In our review, Ameis and colleagues conducted the only double blinded, sham controlled, 

and parallel study; a design urgently needed in future research. (Ameis et al., 2020) We were 

also limited in our investigation into the core social features of IC-ASD. The RBS-R well 

characterizes a wide breath of Criterion B symptomology (Lam & Aman, 2007) and was 

measured in all reviewed behavioral studies. Significant improvements in the ABC subscales of 

hyperactivity and irritability were also frequently reported, though are likely influenced primarily 

by Criterion B symptomology. In contrast, improvements in socially mediated symptoms were 

not as well characterized. Significant improvements in the ABC subdomain of lethargy/social 

withdrawal were reported in 5/13 behavioral studies. (Casanova et al., 2021; E. M. Sokhadze, El-

Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 2016, 2018; G. E. Sokhadze et al., 2017) The 

SRS-2 well characterizes social symptom burden, (Constantino & Gruber, 2012) but was only 

used in 6/16 behavioral studies (Casanova et al., 2012; Ni et al., 2021; E. M. Sokhadze, El-Baz, 

Tasman, et al., 2014; E. M. Sokhadze et al., 2009, 2010; G. E. Sokhadze et al., 2017) and results 

were reported in 4/6. (Casanova et al., 2012; Ni et al., 2021; E. M. Sokhadze et al., 2010; G. E. 

Sokhadze et al., 2017) Moreover, 2/4 found no statistically significant improvement in SRS-2 

scores. (Casanova et al., 2012; E. M. Sokhadze et al., 2009) Additionally, because we relied on 

data reported by authors, we were restricted by what investigators chose to present. There are 

also very few studies with small sample sizes that could lead to inflated estimates of effect sizes 
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due to a publication bias which favors the publication of positive over negative studies. While 

attempts were made to adjust for publication bias using selection models, the results need to be 

interpreted with caution given there was not a way to correct for dependencies among effect 

sizes. Likewise, the small number of studies and lack of control for dependencies among effect 

sizes also limits the confidence we can place on Egger’s test for small-study effects. 

Other limitations include a lack of reporting on patient sociodemographic factors, an absence of 

multi-center trials, limited involvement of other research groups as M. F. Casanova or E.M. 

Sokhadze were authors on 13/16 studies. (Casanova et al., 2012, 2014, 2020, 2021; E. M. 

Sokhadze, El-Baz, Sears, et al., 2014; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. 

Sokhadze et al., 2009, 2010, 2012, 2016, 2018; G. E. Sokhadze et al., 2017; Wang et al., 2016)   

Moreover, as observed in other areas of IC-ASD research, biologically female IC-ASD patients 

were underrepresented. (Mo et al., 2021) In studies investigated, the ratio of male to female was 

nearly 4.5:1 rather than 3:1 as reported in recent literature. (Loomes et al., 2017) In addition, 

while the average age of the study by Ameis and colleagues was 22, their maximum age was 35; 

serving as an outlier in our systematic review. (Ameis et al., 2020) Lastly, results from 

behavioral measures may be limited by informant- vs self-reporting. Close family members are 

often used as informants. However, many family members of individuals with ASD carry the 

diagnosis or demonstrate autistic traits without meeting criteria of the disorder (Rubenstein et al., 

2019) and often under report symptoms in others which they experience. (De la Marche et al., 

2015) Additionally, due to interpersonal and social deficits observed in ASD, self-appraisal of 

social/emotional symptoms can be uniquely challenging. (Rankin et al., 2016)  

30            



                                          ACCEPTED MANUSCRIPT                                      

Conclusions:

Overall, the results of our review and meta-analysis indicate that TMS and TBS may be a safe 

therapeutic option for pediatric and young adult individuals with IC-ASD. Additionally, that 

RRBs as well as cognitive and EF deficits may be therapeutically targeted via TMS pulses to the 

DLPFC. Notably, the study by Ni and colleagues shows promise for improvement in social 

symptoms via targeted TBS pulses to the pSTS. (Ni et al., 2021) However, the results of our 

study are limited by a lack of randomized sham-controlled trials, an inability to include 

randomized control trials in our meta-analysis, likely TMS pulse underdosing, inconsistent use of 

neuronavigation, and under-representation of biologically female individuals. Regardless, given 

current limitations and side effect profiles associated with psychopharmacologic treatment of 

ASD, (Alfageh et al., 2019; Hutton, 2008; J. R. Smith & Pierce, 2022; Zhou et al., 2021) 

continued research into TMS as a therapeutic option in IC-ASD is warranted. Moreover, it is 

possible that future research investigating modulation of other neural networks and cortical 

regions may result in improvement to other IC-ASD symptom domains. (Guo et al., 2019; Joshi 

et al., 2019; Williams, 2016) Specifically, attempts to target the default mode, salience, and 

affective networks may be of benefit as they are commonly associated with complex cognitive 

and emotional tasks which may be challenging for individuals with ASD. (Lavin et al., 2013; 

Singh et al., 2020; R. Smith et al., 2019; Williams, 2016) Given the high prevalence of 

suicidality, mood and anxiety disorders in autistic youth, future research should also consider 

targeting these co-morbidities via TMS. (Hollocks et al., 2019; O’Halloran et al., 2022; 

Schwartzman et al., 2021) Lastly, relative to current TMS research on other neuropsychiatric 

conditions, the number of TMS pulses administered in 14/16  IC-ASD TMS studies were 

significantly lower; (Casanova et al., 2012, 2014, 2020, 2021; Enticott, 2012; E. M. Sokhadze, 
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El-Baz, Sears, et al., 2014; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 

2009, 2010, 2012, 2016, 2018; G. E. Sokhadze et al., 2017; Wang et al., 2016) raising concern 

for underdosing. (Carmi et al., 2019; Cole et al., 2020; Li et al., 2020) 

Regarding use of specific TMS modalities, 15/16 studies in our review utilized rTMS. (Ameis et 

al., 2020; Casanova et al., 2012, 2014, 2020, 2021; Enticott, 2012; E. M. Sokhadze, El-Baz, 

Sears, et al., 2014; E. M. Sokhadze, El-Baz, Tasman, et al., 2014; E. M. Sokhadze et al., 2009, 

2010, 2012, 2016, 2018; G. E. Sokhadze et al., 2017; Wang et al., 2016) However, given the 

promising work from Ni and colleagues (Ni et al., 2021) and that TBS has been safely used in 

similar patient populations, (Elmaghraby et al., 2021) can be rapidly administered in accelerated 

protocols, has been researched as a diagnostic tool to detect IC-ASD in pediatric patients, (Cole 

et al., 2020; Huang et al., 2005; Jannati et al., 2020; Pedapati et al., 2016) use of TBS should be 

strongly considered in future work. Moreover, given the absence of seizure activity uncovered in 

our review and very low frequency reported in others, (Elmaghraby et al., 2021) further research 

into TBS and dTMS as a therapeutic option in IC-ASD is warranted. (Cole et al., 2020) 

Although, known ethical considerations must be taken into account. (Davis, 2014; Maslen et al., 

2014) 

In summary, the field of IC-ASD TMS research would undoubtably benefit from greater use of 

neuronavigation software, (Herwig et al., 2001; Nauczyciel et al., 2011) robust study design, 

(Croarkin et al., 2021) gender matching, use of agreed upon and consistent TMS protocols, as 

well as increased reporting of sociodemographic factors. Additionally, incorporation, focus, and 

reporting on outcomes measures related to criterion A of IC-ASD as well as adaptive functioning 
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is needed to obtain a greater understanding of phenotypic expression of IC-ASD and response to 

treatment. Based on our review, meta-analysis, and previous meta-analysis work, (Barahona-

Correa, 2018) further investigation into the use of TMS targeting various networks and cortical 

regions for the treatment of ASD related social impairments and RRBs, cognitive deficits, 

common psychopathologic co-morbidities, and executive functioning deficits is warranted. 
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Table 1: Qualitative Summary of Included Studies with Waitlist or Sham Controls

Study Age N Ascertainment criteria Demographics
Study Design

TMS Hz or TBS Target and
Duration

Treatment frequency Total Pulses Blinding
Control

Behavioral 
Outcome

Cognitive
Outcome

E. M. Sokhadze
2009

3 weeks
Open label trial

17.2 
+/- 4.6

13 ASD; ADI-R
IQ ≥85

0 female
13 male 

8 TMS group
5 waitlist 

0.5 LtDLPFC
3 weeks

2/week 900 Unblinded
Waitlist 

Non-ASD control group for 
initial comparisons

ABC: ↓ hyperactivity 
RBS-R: ↓ total score

SRS: NR
Within group outcomes

No significant difference was observed 
post TMS in error rate

Casanova 
2012

12 weeks
Open label trial 

13.0 
+/-2.7

45 ASD; ADI-R
IQ ≥80

6 female
39 male

25 TMS group
20 waitlist

1 LtDLPFC
0-6 weeks
RtDLPFC

7-12 weeks

Weekly 1,800 Unblinded
Waitlist

ABC: ↓ irritability 
RBS-R: ↓ restricted and repetitive 

behaviors, total score
SRS: No statistically significant change

Within group outcomes

Error rate: ↓ omission error rate and 
total error rate 

Enticott
2012

3 weeks
Open label trial

17.6
+/- 4.1

11 ASD; ADI-R
IQ not formally tested, but 

IC-ASD per DSM-5

0 female
11 male

Cross-over study 

1 Left M1
SMA

3/week alternating targets 
or sham

2,700 Unblinded
Sham TMS

No behavioral outcomes Movement time
rTMS to the SMA and left M1 was 

found to be associated with a gradient 
increase to the early component and 

late component of MRCPs respectively

E. M. Sokhadze
2012

12 weeks
Open label trial

13.5
+/- 2.5

40 ASD; ADI-R
IQ ≥75

8 female 
32 male

20 TMS group
20 waitlist

1 LtDLPFC
0-6 weeks
RtDLPFC

7-12 weeks

Weekly 1,800 Unblinded
Waitlist

No behavioral outcomes Error rate: ↓ omission error rate and 
total error rate 

E. M. Sokhadze
2014a

18 weeks
Open label trial

14.5
+/- 2.9

54 ASD; ADI-R
IQ ≥80

10 female
44 male

27 TMS group
27 waitlist

1 LtDLPFC
0-6 weeks
RtDLPFC

7-12 weeks
BiDLPFC

12-18 weeks

Weekly 3,240 Unblinded
Waitlist

ABC: ↓ hyperactivity and irritability
RBS-R: ↓ stereotyped behaviors and total 

score
Within group outcomes

Error rate: ↓ commission error rate and 
total error rate

E. M. Sokhadze
2014b

18 weeks
Open label trial

14.6
+/- 3.1

42 ASD; ADI-R
IQ ≥80

8 female
34 male

20 TMS group
22 Waitlist

1 
20 mins post 

treatment received 
neurofeedback

LtDLPFC
0-6 weeks
RtDLPFC

7-12 weeks
BiDLPFC

12-18 weeks

Weekly 3,240 Unblinded
Waitlist

ABC: ↓ hyperactivity and social 
withdrawal/lethargy

RBS-R: ↓ ritualistic, stereotyped behaviors, 
and total score

SRS: NR
Within group outcomes

Error rate: ↓ commission error rate and 
total error rate 

E. M. Sokhadze
2018

18 weeks
Open label trial

[Continuation of 2009 
study]

13.1 106 ASD; ADI-R
IQ ≥80

19 female
87 male

80 TMS group
26 waitlist

1 LtDLPFC
0-6 weeks
RtDLPFC

7-12 weeks
BiDLPFC

12-18 weeks

Weekly 6-week arm
N=25; 1,080
12- week arm
N=27; 2,160
18-week arm
N=28; 3,240

Unblinded
Waitlist

ABC: ↓ hyperactivity, irritability, and social 
withdrawal/lethargy

RBS-R: ↓ Ritualistic, stereotyped 
behaviors, and total score
Within group outcomes

Reported only at baseline and 18 weeks of 
treatment

Error rate: ↓ commission., omission, 
and total error rate 

Ameis
2020

4 weeks
Randomized control 

trial

22.6
+/- 4.5

40 ASD; ADOS
IQ ≥70 

Significant EF impairment

12 female
28 male

20 BiDLPFC
0-4 weeks

5/week 30,000 Double blinded
Sham TMS

No behavioral outcomes BRIEF-SR
CANTAB

No evidence for the efficacy of active 
for sham rTMS for the improvement of 

EF was found. However, rTMS was 
found to be effective in the treatment of 
EF deficits in ASD persons with more 
severe adaptive functioning deficits.

Ni
2021

8 weeks
Randomized control 

trial

13.0
+/- 2.8

75 ASD; ADOS
IQ ≥70 

ADHD co-morbidity 
included 

10 female
65 male

Two groups: 4 weeks sham then 
active (sham-active) and no sham 

(active-active)

iTBS Bilateral pSTS
0-8 weeks

2/week Sham-active
19,200

Active-active
38,400

Single Blinded
Sham TBS

RBS-R: ↓ total score
SRS: ↓ autistic mannerisms, social 

communication, and total score
Between group outcomes

Clinical response not observed in sham-
active group

No cognitive outcomes 

NR: Not reported

Table 2: Qualitative Summary of Included Studies without Controls or with Neurotypical Controls

Study Age N Ascertainment criteria Demographics
Study Design

TMS Hz or TBS Target and
Duration

Treatment frequency Total Pulses Behavioral 
Outcome

Cognitive
Outcome

Other 
Outcome

E. M. Sokhadze
2010

3 weeks
Open label trial

15.6
+/- 5.8

13 ASD; ADI-R
IQ ≥80

1 female
12 male 

0.5 LtDLPFC
3 weeks

2/week 900 RBS-R: ↓ total score
SRS and ABC: Not statistically 

significant

Error Rate: ↓ total error rate

Casanova 
2014

18 weeks
Open label trial 

13.1 
+/- 2.2

18 ASD; ADI-R
IQ ≥80

4 female
14 male

0.5 LtDLPFC
0-6 weeks
RtDLPFC

7-12 weeks
BiDLPFC

12-18 weeks

Weekly 2,880 ABC: ↓ irritability and hyperactivity
RBS-R: ↓ stereotypic behaviors and total 

score

No cognitive outcomes Improved autonomic dysregulation. 
Changes in SCL and HRV were 

positively correlated with improvement 
in RBS-R and ABC scores

Wang 
2016

12 weeks
Open label trial

12.9
+/- 3.8

33 ASD; ADI-R
IQ ≥65

5 female 
28 male

0.5 LtDLPFC
0-6 weeks
RtDLPFC

7-12 weeks

Weekly 1,920 ABC: ↓ stereotypic behavior and 
hyperactivity

RBS-R: ↓ stereotypic behaviors, 
ritualistic / sameness, and total score

No cognitive outcomes Improved autonomic dysregulation. 
Changes in SCL and HRV were 

positively correlated with improvement 
in RBS-R and ABC scores

E. M. Sokhadze
2016

18 weeks
Open label trial

Initial cognitive data 
compared to 

neurotypical controls

13.6
+/- 3.2

23 ASD; ADI-R
IQ ≥80

6 female 
17 male

1 LtDLPFC
0-6 weeks
RtDLPFC

7-12 weeks
BiDLPFC

12-18 weeks

Weekly 3,240 ABC: ↓ hyperactivity, lethargy/social 
withdrawal, irritability

RBS-R: ↓ stereotypic behaviors, 
ritualistic / sameness, compulsive 

behavior, and total score

Error rate: ↓ commission error 
rate and total error rate 

G. E. Sokhadze
2017

18 weeks 
Open label trial

12.5
+/- 2.9

27 ASD; ADI-R
IQ ≥80

6 female
21 male

0.5 LtDLPFC
0-6 weeks
RtDLPFC
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Table 3. Detailed results of the multivariate meta-analyses examining behavioral and cognitive outcomes in ASD patients treated with TMS.
Outcome Hedges’ g 

Effect Size
Standard 

Error
95% CI Test Statistic P-value I2JWR

A. Behavioral Measures
ABC Hyperactivity 0.297 0.043 (0.210, 0.383) t=6.90 <0.001 3.64%
ABC Irritability 0.329 0.042 (0.245, 0.414) t=7.85 <0.001 0.00%
ABC Lethargy/Social Withdrawal 0.299 0.049 (0.199, 0.399) t=6.03 <0.001 5.42%
RBS-R Compulsive Behavior 0.355 0.047 (0.260, 0.450) t=7.53 <0.001 0.00%
RBS-R Ritualistic/Sameness 0.422 0.041 (0.339, 0.505) t=10.23 <0.001 0.00%
RBS-R Stereotypic Behavior 0.397 0.049 (0.297, 0.498) t=7.98 <0.001 37.14%
RBS-R Total Score 0.638 0.079 (0.478, 0.797) t=8.04 <0.001 69.89%
Overall 0.435 0.033 (0.359, 0.511) t=7.99 <0.001 98.92%

B. Cognitive Measures
Commission Error Rate 0.759 0.221 (0.261, 1.259) t=3.44 0.007 78.37%
Total Error Rate 0.777 0.232 (0.254, 1.301) t=3.36 0.008 80.16%
Overall 0.735 0.207 (0.242, 1.228) t=6.77 0.009 97.39%

I2JWR=Jackson-White-Riley multivariate heterogeneity statistic

Table 3. Detailed results of the multivariate meta-analyses examining behavioral and cognitive outcomes in ASD patients treated with TMS.
Outcome Number of 

Studies
Hedges’ g 
Effect Size

Standard 
Error

95% CI Test 
Statistic

P-value† I2JWR

A. Behavioral Measures
ABC Hyperactivity 10 0.297 0.043 (0.210, 0.383) t=6.90 <0.001 3.64%
ABC Irritability 8 0.329 0.042 (0.245, 0.414) t=7.85 <0.001 0.00%
ABC Lethargy/Social Withdrawal 6 0.299 0.049 (0.199, 0.399) t=6.03 <0.001 5.42%
RBS-R Compulsive Behavior 4 0.355 0.047 (0.260, 0.450) t=7.53 <0.001 0.00%
RBS-R Ritualistic/Sameness 7 0.422 0.041 (0.339, 0.505) t=10.23 <0.001 0.00%
RBS-R Stereotypic Behavior 8 0.397 0.049 (0.297, 0.498) t=7.98 <0.001 37.14%
RBS-R Total Score 9 0.638 0.079 (0.478, 0.797) t=8.04 <0.001 69.89%
Overall 10 0.435 0.033 (0.359, 0.511) t=7.99 <0.001 98.92%

B. Cognitive Measures
Commission Error Rate 5 0.759 0.221 (0.261, 1.259) t=3.44 0.007 78.37%
Total Error Rate 6 0.777 0.232 (0.254, 1.301) t=3.36 0.008 80.16%
Overall 8 0.735 0.207 (0.242, 1.228) t=6.77 0.009 97.39%

† Results for each subdomain were calculated via the meta mvregressfunction in Stata and results for the overall estimate were calculated via the 
robumeta function in Stata. 
I2JWR=Jackson-White-Riley multivariate heterogeneity statistic
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