MIT
Libraries | D>pace@MIT

MIT Open Access Articles

SeeSaw: Interactive Ad-hoc Search Over Image Databases

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Moll, Oscar, Favela, Manuel, Madden, Samuel, Gadepally, Vijay and Cafarella, Michael.
2023. "SeeSaw: Interactive Ad-hoc Search Over Image Databases.” Proceedings of the ACM on
Management of Data, 1 (4 (SIGMOD)).

As Published: https://doi.org/10.1145/3626754
Publisher: ACM
Persistent URL: https://hdl.handle.net/1721.1/153299

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/153299
https://creativecommons.org/licenses/by/4.0/

SeeSaw: Interactive Ad-hoc Search Over Image Databases

OSCAR MOLL, MIT CSAIL, USA

MANUEL FAVELA, MIT, USA

SAMUEL MADDEN, MIT CSAIL, USA

VIJAY GADEPALLY, MIT Lincoln Laboratory, USA
MICHAEL CAFARELLA, MIT CSAIL, USA

As image datasets become ubiquitous, the problem of ad-hoc searches over image data is increasingly important.
Many high-level data tasks in machine learning, such as constructing datasets for training and testing object
detectors, imply finding ad-hoc objects or scenes within large image datasets as a key sub-problem. New
foundational visual-semantic embeddings trained on massive web datasets such as Contrastive Language-
Image Pre-Training (CLIP) can help users start searches on their own data, but we find there is a long tail of
queries where these models fall short in practice. SeeSaw is a system for interactive ad-hoc searches on image
datasets that integrates state-of-the-art embeddings like CLIP with user feedback in the form of box annotations
to help users quickly locate images of interest in their data even in the long tail of harder queries. One key
challenge for SeeSaw is that, in practice, many sensible approaches to incorporating feedback into future
results, including state-of-the-art active-learning algorithms, can worsen results compared to introducing
no feedback, partly due to CLIP’s high-average performance. Therefore, SeeSaw includes several algorithms
that empirically result in larger and also more consistent improvements. We compare SeeSaw’s accuracy to
both using CLIP alone and to a state-of-the-art active-learning baseline and find SeeSaw consistently helps
improve results for users across four datasets and more than a thousand queries. SeeSaw increases Average
Precision (AP) on search tasks by an average of .08 on a wide benchmark (from a base of .72), and by a .27 on
a subset of more difficult queries where CLIP alone performs poorly.
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1 INTRODUCTION

Increasingly inexpensive cameras and storage make it ever easier to collect image data. Large
quantities of video and images are now captured from dedicated cameras as well as mobile phones,
vehicles, and drones. Nevertheless, the ability of an engineer or team to explore their own image
data and discover ad-hoc items of interest lags far behind their ability to collect that data.

For example, an engineer at an autonomous vehicle company with a large repository of data may
wish to find examples of people in wheelchairs to extend an object detector or to find examples of
bikes in the snow to test an existing detector. Or, an ornithology researcher may want to search
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their camera archives to know which of all their camera locations seem to show more sightings of
a particular type of bird [20, 46, 50].

Whether the goal is to extend the capabilities of an object detector model, to enhance test cases
for existing models, or simply to explore a large trove of image data, finding relevant images within
a dataset of images or video is a key problem for many users. For example, depending on the dataset,
wheelchairs or bikes in the snow may be rare, appearing in only one in a thousand images or less.
Hence, ad-hoc searches can be challenging without efficient image search tools.

A well-known high-level approach to the search problem is representing the contents of the
database as well as the queries as vectors: a text query becomes a query vector g, and an image in the
database becomes an image vector x, and the relevance of an image x to a query q is estimated by its
inner product g - x, which measures the geometric alignment of the query and the database element
(every vector is unit normed). The most relevant results for a query vector g are the solution to
argmax, x - ¢, the elements with a maximum inner product with g. One advantage of this modeling
approach is the availability of scalable and low-latency vector stores. These stores create an index
of all vectors x ahead of time and then solve the search at query time without a full scan of the
database of x, enabling interactive searches for any query.

This vector paradigm relies on mapping queries and images to vectors, and the deep learning-
based method to achieve the goal of mapping images and text to vectors today is through cross-modal
or visual-semantic embeddings [7, 14, 15, 22, 38]. The accuracy of this approach depends on the
quality of the cross-modal embedding used to capture the important concepts in an image.

State-of-the-art cross-modal embedding models consist of large neural networks trained on
massive datasets of corresponding image-text pairs. A notable example is CLIP [37], which is a
model pre-trained on a crawl of hundreds of millions of web images and their alt-text attributes
as a low cost proxy for a caption.

Zero-shot CLIP. With CLIP, users can often cold start many searches using text alone in new
datasets without fine-tuning any model, an approach called zero-shot learning. Zero-shot CLIP is
surprisingly accurate even when used on datasets it was not trained on, including many of our
evaluation datasets.

Limitations of existing approaches. In the case of CLIP, despite the high average zero-shot
quality of the model, the quality of the results on a specific dataset varies substantially between
queries. For example, using CLIP embeddings on the Berkeley Deep Drive (BDD) dataset [51] of
street scenes, we can easily find scenes with bicycles. For wheelchairs, however, which only occur
in a handful of scenes, using CLIP alone requires looking through more than 100 images before the
first wheelchair is found. Figure 1 shows the accuracy distribution in queries from four evaluation
datasets, measured as AP, a common accuracy metric. The step on the right edge for each dataset
corresponds to a substantial number of queries with optimal results (AP = 1). The trailing slope
on the left shows a long tail of queries with lower accuracy. The annotations on the dashed line
quantify the fraction and amount of queries with AP < .5 using zero-shot CLIP, which is large in
some of the datasets. We note that the “queries” used in these plots correspond only to labeled
categories in these datasets. From a user’s point of view, the plotted distribution is not as relevant as
the distribution seen on their queries of interest; i.e., high accuracy on bicycles does not compensate
for poor results on wheelchair if that is the query of interest.

Query alignment. CLIP sometimes provides low-relevance results for two reasons. First, the
CLIP embedding of the string (e.g., “wheelchair”) may not be close enough to the relevant image
vector embeddings; we call this a query alignment deficit. Figure 2a shows a visual representation of
lack of query alignment: all the image vectors, represented as circles arranged along an imaginary
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Fig. 1. The solid line plots the cumulative distribution function of Zero-shot CLIP Average Precision (AP)

across four evaluation datasets introduced later. The horizontal dashed line marks the fraction and absolute
number of queries with AP < .5, for each dataset.
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Fig. 2. Two causes of suboptimal search results: alignment deficit (left), and locality deficit (right). Both
circles and arrows are unit norm, lying on the unit sphere (dashed circle).

circular arc (due to image vectors being normalized unit size). The blue colored circles represent
vector embeddings of the relevant images (or, as we introduce later, relevant patches within images),
in this case images of wheelchairs in BDD. The initial query maps, via the string embedding, to the
vector represented by the solid arrow. In the diagram, this initial query vector aligns with the gray
circles at the top more than with the blue circles to the right. Therefore, these non-relevant results
would appear first in a search, ahead of the relevant results, causing difficulties to users

Concept locality. A second possible problem causing poor results is that embeddings for images
of interest (e.g., wheelchairs) may not be clustered tightly together in the database, as shown in
(Figure 2b). In this diagram, we see that no single query arrow would be able to align well with all
three blue image vectors because they are diffused among non-relevant gray vectors. Regardless of
what vector a user may conjure up, the results will never be wholly relevant. We call this situation a

concept locality deficit. Queries often present both types of deficits, so they benefit from improving
either.

Our solution: SeeSaw. SeeSaw’s goal is to allow users to search their data leveraging embed-
dings such as CLIP and helping users improve their results when needed. Users work in a loop
with SeeSaw providing feedback in the form of boxes around relevant regions of images. This
process results in better-aligned query vectors, such as the dashed line vector in Figure 2a, thereby
improving results. A user interacts with SeeSaw following the pseudo-code of Listing 1: a search
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starts with a text string, which is converted the text into a vector value gy using an embedding
model like CLIP (line 2). gy is used as the query vector for a lookup operation into the vector store
(line 2), which locates the most relevant vector x in the store for the query vector, i.e., the one with
the largest inner product. The corresponding image is presented to the user, who provides feedback.
The query vector is now updated to value ¢; via query_align in line 7, which includes previous
feedback. In the next round, g is updated to value g3, and so on. Ideally, results improve on every
round of feedback. In reality, each loop consists of a batch of a user specified size.

input : text_query
1 feedback_map « {}
2 query_vector «— CLIP.embed_string(text_query)
3 while True do
4 img_id « vector_store.lookup(query_vector)
img_feedback «— ULshow(img_id)
feedback_map.update(img_id, img_feedback)
query_vector «— query_align(feedback_map)

(=S - e |

end
Listing 1: high-level structure of search with user feedback. SeeSaw focuses on the
logic of query_align

Related work. The general idea of leveraging user feedback to locate results is known as
relevance feedback in information retrieval [24, 41],[32, Ch.9], and as active search within active
learning [16]. However, SeeSaw must address two challenges not present in prior work: first, we
find that basic implementations of query_align as well as state-of-the-art active search [23] can
decrease result relevance when the starting point is zero-shot CLIP, even when all approaches start
with the same high-quality CLIP embeddings. Second, practical approaches also need to provide
interactive latency for large datasets, meaning the computational work needed on every round
should grow sub-linearly with the dataset size, which is not true of state-of-the-art active search
approaches.

SeeSaw insights. SeeSaw addresses both challenges based on three main insights: The first
insight is that we should merge user labels with the original CLIP query rather than relying on
either alone. SeeSaw accomplishes through its implementation of query_align of line 7, within
which it searches for a query vector minimizing a custom loss function. This loss function goes
beyond reflecting accuracy on the observed feedback as a standard supervised-learning approach
would: SeeSaw additionally encourages similarity between the aligned query and the original
embedding of the concept being searched through a novel regularization term, ensuring the CLIP
text query is used for both the initial search and also within the minimization problem. We refer to
this idea as CLIP alignment.

The second insight is that the process to improve the query should reflect the data distribution
of the entire database rather than only that of user feedback: since user feedback data in SeeSaw
up to iteration t is based on those vectors in Xp nearest to qo, ¢1,... and g;_;, the observed data
is skewed toward this very specific region of the database. One hypothetical way to address this
problem is sampling randomly from the dataset and labeling these nodes, but this approach imposes
labeling requirements on the user, and for many hard-to-find objects this approach would find no
positive examples. SeeSaw cheaply approximates this hypothetical process by adding a second
database-dependent regularization term to the loss function. We show this regularization term
is conceptually equivalent to synthesizing a new training set where elements are instead picked
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randomly and uniformly from the vector database, and their unobserved labels are approximated
through label-propagation[54]. We refer to this as database alignment or DB alignment.

SeeSaw models both CLIP alignment and DB alignment into a loss function that can be quickly
minimized so that SeeSaw can produce a better-aligned query vector with little input from the user
and with low latency, and so that SeeSaw can leverage fast vector stores for search. Moreover, the
amount of work SeeSaw does at query time within the loop in Listing 1 grows only with the size of
the observed dataset, unlike active learning approaches we evaluate that rely on linear time scoring
of the full database after each feedback iteration.

In addition to the above techniques to improve query alignment, SeeSaw employs a third insight:
a multi-vector, multi-scale representation of images derived from separately embedding patches of
different sizes and positions within a single image. This representation is motivated by observing
that in complex images the object of interest may not be the most prominent feature in an image;
this is a common cause of accuracy problems for zero-shot CLIP. This technique is conceptually
simple and orthogonal to CLIP and DB alignment, but in practice, because this representation
multiplies the number of vectors in the database by an order of magnitude, only search techniques
whose latency does not depend linearly on the vector database size can be integrated easily with it.

Contributions. In summary, our contributions are:

(1) We introduce SeeSaw’s custom query alignment algorithms for user-in-the-loop image search:
CLIP alignment combined with database alignment, which provide high quality results with a
fixed and limited amount of user feedback while avoiding any linear time computational costs
at query time that could hinder interactivity on larger datasets.

(2) We combine the query alignment algorithms with a multi-scale feature representation for
images that is possible due to the scalability of the alignment algorithms.

(3) We demonstrate with extensive benchmarks across 4 datasets and hundreds of queries, that
SeeSaw consistently improves retrieval metrics; overall SeeSaw improves Average Precision
(AP) from .19 to .46 on a subset of more challenging queries.

(4) We demonstrate that alternative techniques to implementing relevance feedback can often
either reduce search accuracy with respect to the zero-shot CLIP approach, or scale poorly with
data, or both.

2 SYSTEM

SeeSaw! consists of the following components: 1) a graphical user interface, 2) a pre-trained visual
semantic embedding model (CLIP [38]), 3) an indexed vector store for max inner product queries
(Annoy [5]), and 4) a server layer, which we will call the query aligner, mediating between the
other components and implementing the query alignment described above. Figure 3 shows how
data moves between these components.

2.1 CLIP

SeeSaw uses the CLIP [37] pre-trained visual-semantic embedding model for preprocessing and
during querying. SeeSaw embeds images into vectors using the visual component of CLIP during
preprocessing. During querying, SeeSaw uses the string embedding component of CLIP to translate
string inputs from the user into query vectors.

2.2 Vector Store

After raw image data is processed into vectors, and is indexed by the vector store, the vector store
provides a maximum inner product lookup interface with low latency, which is important because

IThe source code this work is available at https://github.com/orm011/seesaw
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Fig. 3. SeeSaw component diagram. Top: preprocessing steps; Bottom: dataflow during interaction loop.

the user waits on results from the system. The vector store needs to be accurate, but does not need
to be exact: it is acceptable for the result in line 4 of Listing 1 to be among the top largest rather
than exactly the largest, as even if the exact result were returned, there is already error inherent to
the embedding representation as shown in Figure 4

Our implementation uses the Annoy store[5], which offers only approximate maximum innner
product lookup, which is also what most vector stores offer. We saw only a minor drop in accuracy
metrics in our benchmarks using Annoy vs an exact but slow scan.

2.3 User Interface (Ul) and Querying

Figure 3, bottom left, shows a screenshot of the SeeSaw UI for the hot air balloon query as one of
the components of SeeSaw. A user wishing to make a model to detect hot-air balloons can begin
the search process with SeeSaw through text by typing “hot-air balloon” into the search box. The
loop of Listing 1 runs, and through the UI, the user provides feedback on the results offered so far
(line 5). This flow of data is diagrammed in Figure 3.

2.4 Preprocessing

Before using SeeSaw, we perform a one-time pre-processing pass over the image data. Pre-processing
in SeeSaw consists of converting raw image data into semantic feature vectors using a pre-trained
visual embedding (CLIP, in our case). For SeeSaw, the runtime of this preprocessing pipeline
depends on four variables: the number of images in the dataset, the pixel sizes of the images in the
dataset, the inference cost of the embedding, and the number and type of Graphics Processing Units
(GPUs) available. On COCO, a dataset of 120000 images, SeeSaw preprocessing in our un-optimized
single GPU pipeline takes less than an hour. Because this task is data parallel, the runtime can be
reduced to minutes by using more GPUs. Furthermore, model optimization techniques just as JIT
compilation would further reduce this runtime for real applications with larger datasets.

The vector store, Annoy, takes less than 20 minutes to build the index over the vectors computed
above. These costs are incurred once per dataset and are then amortized across all subsequent
queries.
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3 APPROACH

The key idea of our approach is to improve query alignment by leveraging user feedback and by
enriching that feedback with two other sources of information: the CLIP embedding of the query
itself (§4.1) as well as the structured of the unlabeled database (§4.2). SeeSaw incorporates these
different sources of information within a single loss function, which is minimized with respect to
an internal query vector parameter on every round to yield the next query vector SeeSaw will use
internally. A secondary aspect of our approach is using a multi-vector, multi-scale representation
of the data which we cover in §4.3.

3.1 Motivation for Query Alignment

In the introduction we explained how both query alignment and concept locality are important
for searches to work well (diagrammed in Figure 2). SeeSaw focuses on query alignment, so it is
valuable to quantify the potential gains and the limitations of this approach. Because our evaluation
datasets have complete labels for different categories, which we will use as evaluation queries, we
can understand how far from the ideal any approach is. In this section, we show a large fraction of
labeled categories in the ObjectNet dataset presents a combination of high concept locality, and
a lot of the error is due to lower query alignment, and therefore adjusting alignment alone can
improve results substantially.

Ideal query vector. For a query such as “wheelchair” within ObjectNet, we can measure query
alignment deficit by comparing the accuracy of using the embedding of the string “a wheelchair”
to the accuracy of an ideal query vector to find wheelchairs within the database, one derived with
full knowledge of ObjectNet images and their ground-truth labels. We can compute an ideal query
vector by fitting a linear classifier model on the CLIP image embedding vectors X, where each
embedding is labeled with y = 1 or 0 depending on whether or not the image is labeled as having
a wheelchair in it. This linear model is certainly over-fit from a prediction perspective; but, in
this case, model fitting is a simple and efficient search method to find out whether there are any
high-accuracy query vectors.

Using the labels for “wheelchair” we can then compute the accuracy of results when using the
string-derived query vector or the ideal query vector. We will see shortly that there are queries
where even this best-fit vector has low accuracy: a strong indication of low concept locality;
and conversely, a common case is when the best-fit vector has high or perfect accuracy, but the
string-derived vector has low accuracy, a strong indication of high locality for the concept but low
alignment for the initial query, the kind of scenario where SeeSaw would work best.

After carrying out the above process for 300 different queries, we measure accuracy for each
query using Average Precision scores, and plot the AP of the ideal and initial queries for all 300
ObjectNet labeled categories as the y and x coordinates of scatter-points in Figure 4.

Average Precision (AP). AP is an accuracy metric common for information retrieval [31],
because it rewards earlier relevant results more heavily than simpler metrics such as precision or
F-score, and without picking an arbitrary result cutoff. AP values range from 0 to 1. An AP of 1
means perfect accuracy: when all positive results appear before the negative search results.

The figure shows the median AP for the ideal queries (see vertical boxplot) is above .9, and more
than 25% reach 1, while the median AP of initial queries (see horizontal boxplot) is around .2, which
shows that concept locality in the embedding is high because the ideal vectors perform much better
than the string derived query vectors. Note several best-fit queries score 1, indicating those queries
have very high locality and improving alignment is all that is needed. This is not always the case,
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but even queries with low y coordinate values where locality may be a problem show benefits from
improving alignment (hence lie comfortably above the diagonal dashed line).

Note that these numbers do not mean we can easily find ideal vectors in practice, given the lack
of labeled data and the very few samples available from feedback to the system, but they show that
focusing on alignment makes sense for CLIP embeddings of this dataset.
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Fig. 4. Comparing the Average Precision (AP) of the ideal query vector vs the initial CLIP string embedding
for each labeled class on the ObjectNet dataset. Each point in the scatter plot represents one of the 300
categories in ObjectNet. The median AP for the ideal queries (see vertical boxplot) is above .9, and more than
25% reach 1, while the median AP of initial queries (see horizontal boxplot) is around .2; showing that even
though concept locality in the embedding is high, the initial query alignment can be relatively poor. Section
§3.1 explains the setup in more detail.

3.2 Motivation for CLIP Alignment Approach

One natural way to implement query alignment in the context of a text search is to use a CLIP
string vector g to locate a few examples that we ask the user to label. This results in a set of
examples (x,y) which we can use to learn a new query vector as part of query_align in line 7 in
Listing 1. In the simplest approach, we can simply train a standard logistic regression model on the
user’s labels for results seen so far. After round ¢ of feedback from the user, we pick g;+; as follows:

gr+1 = argmin Ly (w)
w

¢
Li(w) = Z LogLoss (y;, sigmoid(w 'x; + b)) + Alw|? (1)

i=1

Few-shot CLIP. The summation term is the logistic loss function added over elements with
user feedback, the weight vector w is learned, as is the scalar bias b, typical in standard logistic
regression and necessary to achieve well-calibrated output probabilities. In practice we find fitting

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.



SeeSaw: Interactive Ad-hoc Search Over Image Databases 260:9

both w and b as opposed to forcing b to be 0 substantially reduces the accuracy of the learned w as
a query, so we do not use the b parameter.

The extra term, A|w|?, where A is a scalar hyperparameter, penalizes large magnitudes in the
weight vector and is again a standard penalty applied to the loss function of logistic regression
to prevent selecting values of w that are very large when the data are fully separable [33]. In the
interactive setting we work in, with very few labeled examples, it is essentially guaranteed that the
labeled data will be separable because the number of labeled data items is small compared to the
dimension (512) of the CLIP embedding, so this penalty is always necessary.

This approach based on Equation 1 is called the few-shot CLIP approach, as opposed to the
zero-shot CLIP approach of using gy derived from a string with no feedback. Few-shot CLIP has
some advantages over zero-shot CLIP because the learned query vector g;4; is now based on actual
vectors from the database. Moreover, CLIP embeddings of images show high average few-shot
learning accuracy on many datasets: a handful of examples are often enough to train a linear model
with high accuracy [38]. However, we find the few-shot approach using Equation 1 in the way
we described is less accurate than the zero-shot CLIP approach, and the accuracy drop is evident
empirically on all our datasets, as we will explain and show later in Table 2. The few-shot approach
is a baseline in its own right, and we evaluate it together with other baselines in §5.4.

There are several reasons for the drop in accuracy of the few-shot CLIP approach from the
zero-shot CLIP approach: First, the absolute accuracy of zero-shot CLIP can be high, hence no
method can improve substantially on it. Second, g; in the few-shot approach is computed from very
few vectors from the database, depending on the batch size, unlike the ideal vectors computed in
Figure 4 which beat the zero-shot CLIP vector but are trained on thousands of samples. In machine
learning algorithms small samples lead to larger generalization error. Third, the vectors X;, y; from
relevance feedback up until round ¢ are not necessarily representative either of the region of the
vector space that contains relevant results, nor of the full database, where the learned g+, will be
used as a query.

We note that on some occasions, when the initial embedding query g is of sufficiently poor
quality, the few-shot CLIP approach does improve results beyond what the zero-shot approach
offers. However, even in that case, the approaches we introduce offer strong advantages over either
approach alone, as we show in our evaluation.

4 DETAILED APPROACH

SeeSaw leverages the previous high-level insights into multiple techniques which we explain
in detail in this section. First, we integrate the zero-shot and few-shot approaches into a single
combined approach. We call this approach CLIP alignment. Second, we guide our query vector
improvement process to also account for the structure of the unlabeled vectors in the database,
which we call Database alignment. Finally, we add a multiscale image representation, where we
extract multiple vectors for different patches of the image at preprocessing time to allow us to
capture objects that appear in different scales and positions in images.

4.1 CLIP Alignment

Consider a search scenario where we first find a single positive example x; and then a single
negative example x1, in that order, using the CLIP string embedding as the initial query vector
qo- There are many possible query vectors that produce the same observed ordering of x, x;: for
example, clearly qo produces this order, as does x( used as a query itself, which is guaranteed to
score itself as the maximum possible score of 1. A third possible query vector is found by minimizing
a loss function such as logistic loss (similar to Equation 1) which would align somewhat with the
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positive example and away from the negative example. There are many more possible solutions
that produce this same observed ranking.

However, all these solutions will produce potentially different search results in the next round,
and these will have different qualities. How should we select the query vector? A typical approach
is cross-validation, where data is repeatedly separated into test and training sets to learn a model
that generalizes well on unseen data, but in this context with a handful of points, cross-validation
is not feasible.

Instead, we rely on a rule-of-thumb based on the principle of stability for machine learning
algorithms [43, p. 174]. The principle states that when choosing between two methods that both fit
the data equally well, the method more likely to generalize is the one that changes least when we
include or exclude a data point from the training set. Intuitively, a method that overly relies on any
one data point x is also most susceptible to generalization errors due to sample variance. In our
setting, the original query vector gy of zero-shot CLIP is not influenced by the observed data at all,
so there are reasons to prefer that vector as our next query by default.

CLIP alignment loss term. In reality, however, our initial query vector qo will often fall short,
as we showed in the x-axis of Figure 4, for example. In many cases we must strike a balance
between being unduly influenced by sample noise and incorporating information from feedback.
This observation is the basis of CLIP alignment, which we implement by adding an extra penalty
term to the loss function in Equation 1:

Lo(w) = Li(w) + e (1. —w - qo/|W]) )

The term (w - q9)/|w] is the cosine distance between the parameter w and the initial query qo
(which is normalized), encouraging the optimal w to geometrically align with the original CLIP
text query qo, in addition to minimizing the previous loss.

In other words, if two possible query vectors w; and w; have the same classification loss, the
one with the highest cosine similarity to the original query qo will be favored by this loss function.

Ac is a new hyper-parameter that governs the trade-off between fitting the feedback data and
preserving the new weight’s similarity to the original. A large A, parameter means we ignore the
user labels and a small one means we ignore the initial text query.

As more user examples come in, the user input is weighted more highly with respect to the
CLIP prior. We show in the evaluation section that the resulting query vectors from adding this
additional loss term are more accurate than either the original g (the zero-shot approach) or one
learned purely from the data (the few-shot approach), as in Equation 1, and this is the case even
when g has a poor initial performance.

4.2 Database (DB) Alignment

From a supervised learning point of view, a query minimizing Equation 2 on a large sample is also
likely to show a low error over the full database. However, in SeeSaw we minimize Equation 2 over
a small sample x; of examples previously shown to the user, for which we got feedback y;. Besides
their small size, these samples are not a random sample of the database Xp because they were
elements with high similarity to previous query vectors q;, q;—1..., ¢o- This is an instance of a domain
shift problem, where the target domain distribution Xp differs from the training set distribution
Xt, Yy, even if the mapping X — y being learned is the same [26].

SeeSaw uses this observation as a starting point to further improve query alignment with the
real database. At a high level, our key observation is that we can approximate an unbiased and
large sample of the data Xp, yp using the label propagation algorithm defined in [54], which we
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will explain below, and then use this new training set consisting of Xp and 7, when solving for w
in Equation 2.

Note that while the “propagated” labels 7, are only an estimate of the unobserved labels, the
distribution of Xp faithfully reflects the distribution of the database vectors.

We found the propagation step improves the final classifier, but that the propagation algorithm
can reduce interactivity, as it must run after every round of feedback to propagate the new labels
and requires iterating over a full k-Nearest Neighbor graph (kNN graph) of the vectors in the
database.

DB alignment loss term. Hence, the version of database alignment we use in SeeSaw takes
the propagation approach only as a conceptual starting point but achieves the effect by adding a
second alignment term to the loss function Equation 2, producing Equation 3.

In this updated loss function, the matrix Mp in the expression w/ Mpw, which we will explain
in detail shortly, depends on the vectors in the database Xp, and on their kNN graph, but not on
the query qo, so it can be computed once per dataset ahead of time. Mp’s size is 512 X 512, and is
constant with respect to the size of the database: its size is only a function of the CLIP embedding
dimension of 512, not of dataset size.

Ls(w) = Lo(w) + Ap(w' Mpw)/|w/? ®)

In the remainder of this section, we explain how this regularization term relates to the original
high-level idea of learning w from a larger sample and how Mp is computed. We do not know the
labels, yp, but we do know the true distribution of the vectors Xp, and thanks to user feedback
we have a small set X;, y; of true labels. Label propagation [54, 55] is a semi-supervised learning
algorithm that takes the above as inputs and generates a soft (non-binary) approximation #, of yp
given Xp and y;.

The high-level assumption of the propagation algorithm is that similar points in Xp should have
similar values of yp. Implicitly, this leads to high-density clusters in Xp having homogeneous
values.

Operationally, label propagation requires using a k-nearest neighbor graph of elements in Xp,
which we compute using an implementation of NN-descent[12], an approximate but scalable way
to compute a kNN graph over large datasets. We can represent this kNN graph by its adjacency
matrix W. w;; in the adjacency matrix is a similarity score x; and item x; in the database. Following
[54] we use w;; = exp (—(X; — X;)?/20?) as our similarity metric i.e., we let the similarity metric
decay exponentially with the distance between embedding vectors decreases. o is a scalar hyper-
parameter controlling how fast the similarity metric drops. The propagation algorithm in [54]
minimizes the total differences between neighboring vertices in the kNN graph: }’; ; wi;(yi —y e
As explained in [54], this sum can be stated concisely as:

y' (D-W)y (4)

where W is the adjacency matrix, and D is a closely related “degree” matrix, a diagonal matrix
where each diagonal entry is the sum of the corresponding row in W, both matrices are derived
from computing a kNN graph for the vectors in Xp. Both D and W are square matrices of size
N x N where N is the size of the database Xp. In practice, W is large but sparse because it only has
k non-zero entries per row, one for each of the k neighbors

DB alignment approximation. We can obtain Equation 3 by observing the final w will be fitted
to these synthetic labels §j, using logistic regression, which fits a sigmoid to the data. Because we
empirically observe linear models fit CLIP embeddings well (Figure 4), i.e., concepts are clustered,
then it is reasonable to assume sigmoid(Xpw) ~ yp in practice, and therefore, we can replace y in
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Equation 4 with y(w) := sigmoid(Xpw), to obtain y” (w)(D—W)y(w). Instead of one minimization
to find 7 and a separate one to find w, we can now add a term y’ (w)(D — W)y(w) to Equation 2
and perform a single minimization with respect to w. The expression D — W is an N X N sparse
matrix, where at most k X N entries are non-zero, and where N is the size of the database. Xp is of
size N X 512, where 512 comes from CLIP, and the vector yp is of size N. It is easy to see that this
unified approach can be slow because it scales with N, the size of the dataset.

However, we can bypass this blow-up problem if we replace sigmoid(Xpw) with Xpw/|w|,
yielding w' X[ (D - W) Xpw/|wl|?.

WTXg (D — W) Xpw/|w|? can be interpreted on its own right as penalizing drastic variation of
the cosine score in highly dense regions of the graph. Normalizing w is meant to avoid w being
pulled to 0 in order to make the expression 0. Because the derivative of the cosine similarity between
vectors is minimized when the value of the cosine is 1, this term points w toward the center of
a dense region instead of its periphery when either direction explains the few labeled samples
equally well.

We define Mp = Xg (D — W) Xp, grouping the matrix in the middle of the expression. Mp can
be computed during dataset pre-processing by building a kNN graph, which gives us both w and
D, as we do for propagation, and then computing the product Xg (D — W) Xp. This product is
computed only once at preprocessing. If this preprocessing cost becomes prohibitive, we found
that using a sample of a few thousand vectors from Xp, instead of the full Xp database, produces a
very similar Mp (note that we did not enable this optimization in our experiments).

We note that it makes sense to ask: if we had access to these propagated labels 7;,, we could also
use these propagated labels directly as a score, instead of now fitting a linear w. However, fitting
a w as we do above is not only a runtime optimization, it also increases accuracy. The 7, do not
work as well in practice as the fitted w. As we saw in Figure 4, a linear model is a good description
for many queries, reflected in the low error for the best-fit linear models, which suggests restricting
the model to be linear may work in our favor.

4.3 Multiscale Representation

In this section we describe the multi-scale representation. In the evaluation, we show this basic
technique can greatly help zero-shot CLIP searches on their own, as well as when combined with
CLIP and DB alignment. Multi-scale representation maps images to multiple vectors, increasing
the size of the vector database. While this is not an issue for the vector database we use, it can
be an issue for techniques that scale poorly with the size of the database. Because CLIP and DB
alignment scale with the size of the data seen by the user, it is possible to combine them while
keeping latency interactive.

The CLIP image embedding model is trained on images of 224 x 224 pixels. However, in real-
world datasets, and also those from the COCO, LVIS and BDD datasets in our evaluation, the raw
images are typically larger, in the 800 X 1000 range. The simplest option to use CLIP with these
datasets is to rescale images to fit within this window, which we will call a coarse embedding.
CLIP itself was trained this way. This coarse embedding approach is how CLIP is most commonly
used. When analyzing the types of queries where SeeSaw performs poorly, however, we found this
coarse approach misses many objects depending on the object size within the image. For example,
wheelchairs and animals often occupy just a few tens of pixels in dash-cam images from the BDD
dataset.

Multi-scale patches. An alternative to the coarse embedding approach is to treat images as a
tiling of image patches at multiple size scales. Each patch is then encoded separately using CLIP,
yielding multiple vectors per image. In our experiments with this multi-scale representation, we
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used the simplest possible combination of scales: a large-scale patch covering the full image, i.e., the
coarse embedding, plus a finer-grained tiling of 1/2 the size of the image, as long as the resulting
patch was larger than 224 pixels. For example, an image of size 448 X 448 maps to one coarse tile of
size 448 x 448, plus 9 finer-grained tiles of size 224 X 224, corresponding to a patch of size 224 x 224
striding the image with a stride length of 224/2, i.e., a 10x increase in vectors per image. A smaller
image would only map to one vector. A larger square image would still only include 9 vectors,
though a wider image may add more along that dimension.

At query time, an image’s score is computed as the maximum score of any of its patches. This
choice means SeeSaw uses the vector store to find high-scoring patches, rather than high-scoring
images, helping SeeSaw return results where only a part of the image is relevant to the final result,
and its individual benefit is shown in the evaluation.

To integrate the multi-scale representation with the user’s box annotations, the region boxes
corresponding to patches on the image that we have indexed ahead of time are compared to the box
patches drawn as feedback by the user. Boxes that overlap with the user feedback are considered
positives, and boxes with no overlap are considered negatives for the purposes of creating a training
set Xy, y; for the next round.

4.4 Solving for w

qt+1 = argmin L(Ws Xlt':l’ yl?:l) (5)
w

Lw,xi_p,y;_y) =

. LogLoss (y;, sigmoid(w T x; + b)) fit user feedback
+A|w]? but avoid [w| — oo
W Qrext . .
+hext (1= ——— ligned with
text ( |W||qtext|) prefer w aligned with qex
T
+ApB (i MDX) prefer w aligned with DB
[w [w

Table 1. Loss function

The full loss function is written down in Equation 5 and Table 1

We minimize £ using the PyTorch [35] implementation of the L-BFGS [30] optimization algorithm
to solve for w, then we use the solution vector as the next query g;+; into the vector database.

L-BFGS finds the optimal solution in a few tens of steps (taking a few milliseconds) by using
second-order derivative information in addition to gradients. We use it for SeeSaw because it
converges quickly and also removes the need for learning rate tuning (and also the possibility of
divergence or no convergence). Note in particular that the loss function computations grow with
the amount of feedback the user provides, not with the size of the database.

5 EVALUATION

The main goals of this evaluation are:

(1) To compare SeeSaw to zero-shot CLIP, which uses clip alone and no feedback, few-shot CL