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Abstract

The present master’s thesis addresses the use of Artificial Intelligence (AI) and Ma-
chine Learning (ML) algorithms to predict geology based on Tunnel Boring Machine
(TBM) data. The use of mechanized tunneling has become frequent over the last
decade, and their performance is critical for project management and safety. Numer-
ical simulation methods have become prevalent in predicting TBM performance met-
rics, and the use of AI/ML techniques for prescient applications using TBM-generated
data has become ubiquitous. The current research aims to propose an exploratory
look into the correlation between specific TBM parameters and ground conditions.
The methodology seeks to classify rings based on three main ground classes: rock,
soil, and mixed, through the observation of clear patterns, found to be representa-
tive of these ground classes, which are demonstrated. A techno-economic assessment
of the current use of AI/ML tools for geology prediction in TBM-based tunneling
construction, is also presented, analyzing both the potential and shortcomings of the
technology. For the purpose of the study, the Porto Metro project (Portugal) is intro-
duced, used as a case study for the proposed methodology. As the mining and drilling
market is projected to almost double from 2020-2030, and with the increasing use of
TBMs, improving ground condition prediction is paramount to the advancement of
tunneling automation efforts. The present thesis aims to further develop the field and
open dialogue on the use and effectiveness of using purely AI/ML modelling methods
for this application.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Tunnel boring machines (TBM) are frequently used in tunnel construction. Such

mechanized tunneling has been demonstrated to be a safer, more environmentally

friendly, and effective alternative to traditional excavation methods such as blasting

[Jung et al., 2019, Sun et al., 2018]. As the use of these machines becomes widespread,

foreseeing tunnel boring machine performance in many ground conditions has been a

continual research focus within geotechnical engineering [Xu et al., 2019]. Prediction

of TBM performance, especially penetration and advance rates, can greatly reduce

risks and costs of the operation [Sun et al., 2018, Xu et al., 2019, Maidl et al., 2013].

As the mining and tunnel markets are projected to almost double in the decade

from 2020-2030, and the use of TBMs becomes ubiquitous, it is especially important

to increase safety and efficiency [Allied Market Research, 2022]. As geological risks

are the most prominent in TBM operations, it is critical to develop tools to predict

ground conditions [Jung et al., 2019].

As tunneling automation continues to advance, Artificial Intelligence (AI) and

Machine Learning (ML) algorithms have become increasingly prevalent for predict-

ing geology ahead of the tunnel face. However, while several approaches have been

suggested, there is still limited evidence to support the real-time implementation of

these technologies for ground condition prediction during TBM tunneling projects.
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In this regard, a review of current research using AI/ML techniques for predictive

applications in TBM operations will be attempted. The review will assess the fea-

sibility of applying these modelling approaches to TBM tunneling projects and the

potential for real-time ground condition prediction.

The need for more fundamental research on the parameter-data output by Tun-

nel Boring Machines (TBMs) and the relations between machine parameters, as well

as how they may relate to surrounding geology have not been widely discussed. In

this sense, the current thesis aims to propose an exploratory look into these intricate

relationships and their correlation to ground conditions. Erharter (2021) comments

on how, in tunneling, predicting rockmass conditions ahead of the face is crucial for

taking appropriate countermeasures, and that although machine learning (ML) mod-

els have been used to forecast geology, but such projections are mostly delayed and

slightly altered versions of input data, lacking true predictive value, which reinforces

the need for further research in the field [Erharter and Marcher, 2021].

Tunnel boring machines (TBMs) advance in a step-by-step manner, which is

closely related to the progress of the main jacks. This step-by-step advancement

is often linked to the installation of pre-fabricated concrete liner rings. The fact that

this happens in steps provides valuable information for predicting and accessing the

geology in a systematic manner. It is therefore logical to try to assess and predict

geologic conditions related to the sectionc defined by these rings, and the term "ring"

will be used throughout this thesis to refer to these sections. Figures 1-1 and 1-2

illustrate the TBM with its main jacks and a sample geologic profile, respectively.

The geologic profile is divided into rings, highlighting the importance of this concept

in the thesis.
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Figure 1-1: The image shows the Gripper TBM, with both sets of mechanical jacks visible in black,
as provided by Robins.
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Figure 1-2: Sample geologic section (between rings 611-689) showing the division into 1 meter
sections, or rings [Metro do Porto, 2010b].
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The methodology presented aims to assist and increase reliability and the validity

of AI/ML models for geology prediction in Tunnel Boring Machine (TBM) tunneling.

By surveying several TBM parameters and their output graphical relations, as well

as of four main ground classes: rock, soil, rock-like mixed and soil-like mixed. Out

of the 26 parameter combinations evaluated, for all evaluated rings, pairwise distinc-

tions that were found to present the most clear classificatory patterns were identified

and listed. An example of the proposed methodology combining AI/ML models to

graphical correlations is also presented.

Artificial intelligence (AI) has increasingly permeated and advanced several fields

of study, especially within engineering. As efforts to automate tunneling construction

grow in importance and demand, the use of AI will be ever more common. There

have been concerns that the more general use of AI/ML tools may result in instances

of confirmation bias 1. Thus, the systematic approach proposed seeks to assist in

validating current AI/ML approaches.

To develop my methodology for classifying tunnel rings by analyzing TBM-data in

time-series and scatter plots, to establish correlations between geological conditions

and ground classes such as rock, soil, rock-like mixed and soil-like mixed. This will

improve ground condition predictions. The study also proposes a techno-economic

assessment (TEA) to evaluate the effort of AI/ML modeling on cost, schedule, and

safety of tunneling projects. Recommendations for future use of AI/ML modeling in

tunneling projects.

1.2 Porto Metro Project

The proposed AI/ML methods wil be applied to the Porto Metro Project as a

case study. Porto Metro or Metrô do Porto in Portuguese, is the metro system in

the city of Porto (2nd largest city in Portugal) [Metro do Porto, 2010b]. Inaugurated

in 2002, it operates throughout the historical city center, reaching the suburbs and

1The tendency to search for, interpret and record information to confirm preexisting conceptions
and hypothesis, while devaluing contradictory evidence [Menardi and Torelli, 2014].
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outskirts of the city [Metro do Porto, 2010a]. With 6 lines (lettered from A-F), 82

stations and extending over 67 kilometers (approximately 42 miles), the system serves

over 80,000 people every day [Metro do Porto, 2010b].

Functioning both under and above ground, Porto Metro has 7.7 kilometers (4.8

miles) of tunnels over 14 stations [Metro do Porto, 2010b]. Built in a heavily popu-

lated urban area, that is also a UNESCO World Heritage Site, the construction of the

metro system was a difficult and ambitious endeavor, especially in regard to the con-

struction of tunnels and underground stations [Metro do Porto, 2010a]. The present

thesis will look more closely at the construction of the C Line (Green) of the Porto

Metro System, accounting for 24 stations, from ISMAI to Campanha (see Figure 1-1),

the underground line has little over one mile of tunnels. The figure below Figure 1-3

shows all of the lines and station in Porto Metro system currently.

1.3 Thesis Outline

The present introductory chapter provided a brief overview of the study’s back-

ground, motivation, research objectives. It also introduced the Porto Metro project

and the specific tunneling section that will be evaluated, setting the context for the

following chapters. Chapter 2 will provide an extensive bibliographical review on the

history of tunneling, the Tunnel Boring Machine (TBM) and the Porto Metro project.

The chapter aims to provide a comprehensive understanding of the historical and

technical background behind tunneling and the analyzed project, contextualizing the

subsequent chapters.

Chapter 3 will focus on the geological and geotechnical conditions in Porto, Portu-

gal. Site investigation methods and results are discussed, as well as the ground clas-

sification system used for the project (distinguishing between geomechanical groups

numbered from g1-g6, aiming to classify rings between rock, soil and mixed). The

chapter will provide a detailed understanding of the geological history of the city of

Porto, its most relevant geotechnical aspects and other contributing factors that influ-

enced the tunnel built for Line C of the Porto Metro System. Chapter 4 will present
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Figure 1-3: Map of Porto Metro [Metro do Porto, 2010b].
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the methodology used to evaluate parameter pairs most relevant for the classifica-

tion of rings and the relevant pairwise comparisons for finding graphical correlations

between TBM parameters that can be potentially translated to ground class predic-

tions. The chapter will then discuss the results obtained from this analysis. Chapter

5 will present an example of the proposed methodology, using scattergrams to iden-

tify geologic ground classes and, in parallel, to validate ground-class labels (rock, soil,

rock-like mixed and soil-like mixed) obtained from a Confidence Learning ML model.

Chapter 6 showcases a techno-economic assessment of the current use of AI/ML mod-

eling for predicting geological conditions ahead of the tunnel face. The chapter will

evaluate the effectiveness and efficiency of the proposed technology and conduct a

cost-benefit analysis of implementing the technology to future TBM-based tunnel

projects. Chapter 7 will present the conclusions and provide suggestions for future

research in the field. The chapter will summarize the key findings and contributions

of the study, discuss their implications for the Porto Metro project and tunneling in

general, and suggest areas for further research and development.
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Chapter 2

Background

2.1 Tunneling

2.1.1 Historical Aspects

Tunneling has its roots in prehistoric times. It is hypothesized that tunnels were

first used for enlarging caves used as human shelter and for water transport purposes

[Caricola et al., 2020]. For the ancient world and its prolific civilizations, tunnels were

an indispensable engineering development that contributed to the creation of empires

[Goel et al., 2012]. From the Babylonians creating tunnels as early as 2200 BC to

the Egyptians, ancient civilizations used techniques to develop tunneling efforts, redi-

recting the flow of rivers, creating aqueducts, new irrigation systems, passageways,

temples and flooding infrastructure [Balasubramanian, 2014]. With the expansion of

both the Greek and Roman empires, tunnels became an essential structure for devel-

opment [Castellani and Dragoni, 1997]. From the use of aqueducts to drain lakes and

marshland to 4,000 feet long road tunnels, tunnels became the backbone of the em-

pires’ expansion throughout Europe. Below is an image (Figure 2-1) of the Pausilippo

tunnel that connected Naples and Pozzuoli, built in 36 B.C [Munfakh, 2003].

By then, tunnels were mainly constructed within rock, that was broken off using

methods like fire quenching, where the rock was heated and subsequently cooled then

pieces could be more easily removed [Oleson, 2008]. These structures were prefer-
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Figure 2-1: Pausilippo tunnel as depicted by Louis-Jean Desprez (1781-1784). The tunnel, built by
the Romans was 4,800-foot-long, 25-foot-wide and 30-foot-high [Renard, 2020].

entially built in materials like limestone and sandstone [Hodge, 1992, Pollio, 2011].

Throughout the Middle Ages, tunneling was mainly used for mining and military

purposes, returning to its uses for transportation and basic infrastructure only in the

17th century [Lane, 2019]. Europe restarted building large scale tunneling projects

to address its cities growing transportation demands. By 1681, France had finished

building the Canal du Midi (shown in Figure 2-2), a 515 feet long tunnel with a cross

section of 22 by 27 feet, which saw the first extensive use of explosives for tunnel
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construction [Mukerji, 2021].

Figure 2-2: Canal du Midi, France [Grand Site Canal du Midi, 2020].

The following two centuries saw the rise of tunnel construction both in Europe

and North America, initially with canal tunnels, as most of the logistical operations

were conducted through waterways and later for rail [Lane, 2019]. By the mid 1800’s

the establishment of railroads as the main form of transport for people and goods was

well underway, and tunnels became commonplace as tracks disseminated in quickly

industrializing nations [Curley et al., 2011]. The Allegheny Portage Railroad, built

in 1833, saw the implementation of the first tunnel for rail in the US [Harper, 2011]

(see Figure 2-3).

As railroads continued expanding across the United States and Europe, ambi-

tious tunneling projects, that introduced new technologies and revolutionized the

industry were under way [Curley et al., 2011]. In the USA, the Hoosac Tunnel,

connecting Boston to Albany, was completed in 1876 after 21 years of construc-

tion [Curley et al., 2011, Brierley, 1976]. The project introduced new methods of

tunneling through hard rock, especially with the use of explosives and power drills

[Brierley, 1976, Kirkland, 1947]. Around the same time, even more ambitious projects
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Figure 2-3: Allegheny Portage Railroad tunnel [National Parks Service, 2022].

were being executed in the Alps in Europe. The Mont Cenis Tunnel, a 14 year long

endeavor, also introduced new methods that would contribute to the advancement

of the industry [O’Reilly, 2002]. Most notable were the use of rail-mounted drill car-

riages, air compressors, air drills and the use of fully catered workers camps, complete

with housing, schools, hospitals, recreation centers and repair shops [O’Reilly, 2002,

Dal Piaz and Argentieri, 2021]. As also experienced in historical endeavors (Ro-

mans, Babylonians, etc.), tunnel ventilation became an increasingly pernicious issue

[Amato et al., 2000]. Thus, the development of forced air systems [Curley et al., 2011].

Below, Figures 2-4, 2-5 and 2-6 show the Hoosac and Mont Cenis tunnels respectively,

and a schematic of the boring machine used in the Alps.

As transportation through the Alps continued to be an important priority for

politicians and engineers in Europe, the Saint Gotthard tunnel, built from 1872 to

1882, continued the endeavor of expanding the Alpine railroads [West, 2005], fol-

lowed by Simplon (1898-1906) and Lötschberg (1906-1911) tunnels [Ring, 2011]. En-

during challenging conditions, such as high in-situ stresses and weak material (gyp-

sum and schist), swelling, incomplete geological surveying and accidents, the tun-
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Figure 2-4: Hoosac Tunnel, Massachusetts, 1908 [Burns, 2022].

Figure 2-5: Mont Cenis tunnel, France [Cottet Dumoulin and Schueler, 2020].

nels also brought innovations like compressed-air locomotives and the development of

better geological and geotechnical surveying methods [Dal Piaz and Argentieri, 2021,
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Figure 2-6: Scheme of boring machine used in the construction of the Mont Cenis tunnel
[Routledge, 1903].

Gradenwitz, 1913]. Below is an image on the Simplon Tunnel while under construc-

tion (Figure 2-7).

One of the most important and transformative contributions of tunneling was

underwater construction [Beaver, 1972]. Considered impossible for centuries, bor-

ing under riverbeds only became a reality in 1825 with the construction of the

Wapping-Rotherhithe Tunnel [Long, 2014]. The tunnel used novel technology (de-

velopment of the protective shield), envisioned by the French-British engineer Marc

Brunel [Mathewson and Kentley, 2006, Place and Cox, 2008]. Wapping-Rotherhithe

was built through the clayey material that composed the Thames riverbed, using a

horseshoe sections and brick lining [Mathewson and Kentley, 2006]. The tunnel was

completed in 1841 after countless mishaps and issues with funding, and delivered

the world’s first subaqueous tunnel, 1,200 feet long [Mathewson and Kentley, 2006,

Long, 2014]. An image of the Wapping-Rotherhithe Tunnel can be seen below (Figure

2-8).
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Figure 2-7: Simplon tunnel construction, 1900s [Wonders, 2010].

After the success of the first underwater tunnel, many more followed in the second

half of the 19th century [Lane, 2019]. By 1869 a second tunnel was completed under

the Thames, a small pedestrian tunnel that introduced circular shield boring (Brunel-

Barlow shield) and the use of iron as lining material [Roach and Brunel, 1998]. In

1880, the first tunnel to be built under the Hudson River started [Spielmann, 1880].

They attempted to build using the Brunel-Barlow shield and combining air compres-

sion techniques, however, it failed and killed more than 20 workers after less than

two thousand feet had been built [Hansen, 2010]. Six years later, London achieved

the incredible feat of constructing an underwater tunnel more than seven miles long,

using the same technique, for the city’s subway system, without losing any lives

[Wolmar, 2009]. Combining circular shields with air compression was refined and

became ubiquitous in subaqueous tunnels throughout most for the 1900’s. This tech-

nique, known as the Greathead shield is represented below (Figure 2-9).
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Figure 2-8: Wapping-Rotherhithe Tunnel, horseshoe section of 22 ft by 37 ft. London, 1841
[Mediastorehouse, 2019].

As cities expanded in Europe and North America, demand for more robust trans-

portation systems surged [Rodrigue, 2020]. As cars became a synonym of city life,

they introduced harmful gases that prompted better ventilation systems in tunnels

[Kolymbas, 2005, Lewis, 2013]. As the first vehicular tunnel was built under the Hud-

son river in New York City in 1927, engineers struggled to resolve the ventilation issue

[Fein, 2012]. Clifford Holland, an American civil engineer involved in the project, re-

solved the matter with the introduction of large-capacity industrial fans placed at

each end of the tunnel [Fein, 2012, Gillespie, 2011]. The forced-air system substan-

tially improved ventilation and served as an important case for similar subsequent

projects, such as the tunnel in Queens and the Lincoln tunnel, as well as the Sum-

ner and Callahan tunnels built in Boston [Gillespie, 2011]. To this day the Holland

tunnel is a crucial part of New York City’s infrastructure, transporting more than

35 million people annually [Cuny University, 2021]. Figure 2-10 shows the Holland

Tunnel in its first operating year, when more than 8 million vehicles travelled through

it [The Port Authority, 2016].
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Figure 2-9: Greathead tunneling technique, joining shields and air compression
[Diamond and Kassel, 2018].

Currently, underwater tunnels are built mostly using immersed tube construction,

where prefabricated concrete or steel sections are placed and subsequently merged to

previous sections, having the water pumped out [Grantz, 1997, Shaw, 2022]. This

method, developed to build the Michigan Central Railway Tunnel (1910) (Figure 2-

11), is deemed safer and more cost effective than the aforementioned shield and air

compression construction [Godfrey, 1910, Gleit, 2016].

2.1.2 Tunnel Construction Methods

Tunnels are a distinct and essential type of infrastructure in modern society.

Unlike most engineering structures, tunnels are commonly built in natural materials

that have no controlled properties [Diamond and Kassel, 2018]. Therefore, knowledge
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Figure 2-10: Holland Tunnel in 1928 [The Port Authority, 2016].

Figure 2-11: Michigan Central Railway Tunnel (also known as Detroit River Tunnel), 1910.
[Gleit, 2016].
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of geological conditions are crucial throughout the building process [Kolymbas, 2005].

Empirical verification and preliminary site surveys (bore hole coring and other on-site

and laboratory testing) are insufficient to determine the underlying geological makeup

that will be distressed by construction [Lane, 2019, Sowers and Royster, 1978].

Successful tunnel construction is contingent on the experience and engineering

judgement of project engineers and geologists, machine-operators, miners, and con-

struction workers [Goel et al., 2012]. Therefore, there is significant interest in advanc-

ing tunneling construction through increased automation [Chen et al., 2018]. With

mining and drilling operations expected to increase by 4% (year on year) by 2030,

efforts to improve safety and efficiency are paramount [Allied Market Research, 2022].

From soft clay to hard rock, tunnels are dug in a diverse range of materials

[Goel et al., 2012, Beaver, 1972]. The method of construction is directly determined

both by site and project conditions [Lane, 2019, Beaver, 1972]. Aspects like geo-

logical makeup and groundwater conditions as well as tunnel shape, depth, diam-

eter, length, tunnel location and other logistical and safety concerns need to be

considered in the project [Goel et al., 2012, Beaver, 1972]. Tunnel construction can

be divided into three basic methods: cut-and-cover, tunnel boring and immersed

[Balasubramanian, 2014, Shaw, 2022].

The cut-and-cover method, one of the most traditional and oldest tunneling meth-

ods, is used for shallow tunnels (commonly 10-12 meters deep (30-40 ft) and usu-

ally not exceeding 40 meters (130 ft) from the surface), basically built as a trench

[Goel et al., 2012, Balasubramanian, 2014]. Although straightforward, the cut-and-

cover method generates considerable surface disturbance, and can thus is only im-

plemented in specific conditions [Diamond and Kassel, 2018, Balasubramanian, 2014,

Beaver, 1972]. This method is mainly used for underpasses (both pedestrian and rail),

some sections of mined tunnels, metro stations and utility tunnels [Beaver, 1972,

Goel et al., 2012]. Below, figures 2-12 and 2-13 show examples of the construction of

the Paris metro system and a modern tunnel being constructed through the cut-and-

cover method.

Bored tunnels, now usually built with the use of Tunnel Boring Machines (TBMs),
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Figure 2-12: Paris Metro, early 20th century [Archives Photographiques, 1906].

Figure 2-13: Section of the SR 99 tunnel, built through the cut-and-cover method. Seattle, 2015
[Washington State Department of Transportation, 2020].

are usually used for deep structures [Zheng et al., 2016]. Significantly automating

the tunneling process, increasing productivity while reducing costs, TBMs are widely

used in large infrastructural projects, especially transportation (metro systems and
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stations) [Ishii, 2017]. Being capable of excavating through most materials, from

hard rock to sand and soils, TBMs have been adopted for tunnel boring worldwide

[Zheng et al., 2016]. From diameters of up to 16 meters (52 ft) wide, they have

replaced traditional drilling and blasting methods of tunnel construction in rock and

"hand mining" in soils [Bennett et al., 1985]. As the world has become increasingly

urban in the past century, demand for tunneling methods that are both efficient,

resilient and minimally disruptive, grew [Beaver, 1972, Chester et al., 2019]. With the

TBM considered a significant technological advancement to that aim [Beaver, 1972].

Historically the most ancient type of tunnel construction, boring has been per-

formed since prehistoric times [De Feo et al., 2014]. With all major civilizations from

the Babylonians to the Romans developing technology to build underground struc-

tures, boring has been an important landmark of human civilizational development

[De Feo et al., 2014]. Figure 2-14 shows an ancient Persian tunnel dated from 700

B.C.E. Today, tunnel boring is done in locus without removing material above the

tunnel (in contrast with the cut-and-cover method) [Crighton et al., 1992]. Usually

constructed using a u-shaped (horseshoe) cross-section, this type of tunnel uses novel

support systems like prefabricated concrete rings, shotcrete, etc., and can be built

systematically without much disruption to the surface [Crighton et al., 1992]. Below,

figure 2-15 shows a modern tunnel being constructed through the use of a Tunnel

Boring Machine (TBM).

2.2 Tunnel Boring Machines (TBM)

2.2.1 Historical Aspects

The idea of Tunnel Boring Machines began with the French-British engineer Isam-

bard Brunel, who invented the first Tunneling Shield (1818) [Roach and Brunel, 1998].

It is believed that Brunel came up with the idea while observing a ship-worm (Teredo

navalis), a marine bivalve mollusc that feeds on plant-based materials, burrowing

itself within the wooden structures of ships, creating immense tunnels (see Figure
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Figure 2-14: Gadhara Aqueduct in Jordan, 90-210 A.D. [Pafnutius, 2023].

2-16) [Chapman et al., 2017, Diamond and Kassel, 2018]. He particularly noted that

the animal’s morphology, especially their shells, protected their mouths and softer tis-

sue while pushing through timber creating long holes [Mathewson and Kentley, 2006].

Brunel thought to emulate the animal by building a machine that would similarly be

able to tunnel through soft soil, in a contemporary case of biomimicry1.

Although Brunel built the first soft soil shield boring machine (known as the

Brunel Shield), going through hard rock was still not possible through mechanized

methods [Maidl et al., 2008]. It was only in 1851, more than 35 years later, that the

Wilson Patent Stone Cutting Machine was developed (see a model of it in Figure 2-

17), an instrument that could tunnel through hard rock [Maidl et al., 2008]. A steam

1The imitation of natural biological designs or processes in engineering or invention
[Merriam-Webster, ].
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Figure 2-15: Saint Lucia tunnel between Bologna and Florence, 2020 [Formiche, 2020].

Figure 2-16: Shipworm digging through wood, inspiring the creation of Tunnel Boring Machines
[Fickling, 2020].
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powered engine would go through rock using roller cutters, similar to modern-day

Tunnel Boring Machines (TBMs) [Maidl et al., 2008].

Figure 2-17: Model of Wilson Patent Stone Cutting Machine model used in the Hoosac Tunnel
construction [Kelley, 2017].

For more than a century after little progress was made, as creating new TBM tech-

nology proved highly cost-intensive and technically complex, and tunneling through

rock was widely carried out using explosives in the well-known drilling and blasting

procedure [Chapman et al., 2017]. Only in the 1950s in the construction project of

the Oahe Dam in South Dakota, U.S.A., engineers Jerome Ackerman, James S. Rob-

bins and F. K. Mittry (project contractor) came up with the first designs for what

would become the modern TBM [Chappell and Parkin, 2004]. Designing the machine

to have frontal cutterheads organized in rows and disc cutters that were successfully

used to dig through shale rock[Maidl et al., 2013]. These two main components, a

frontal rotating cutterhead and a circular protective shield where the tunnel struc-

ture would be supported are the main concepts that developed modern-day TBMs

(see Figure 2-18 [Maidl et al., 2013].

Throughout the 20th century the development of more sophisticated tunnel bor-

ing machine technology ensued, still based on the two main concepts employed by
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Figure 2-18: First hard-rock TBM, developed in 1952 for the Oahe Dam construction in the Missouri
River [Tunnel Business Magazine, 2017].

Ackerman, Robbins and Mittry (cutterhead and shield) [Chappell and Parkin, 2004].

These advancements saw the beginning of diverse machinery designs that were made

to cut through specific types of rock and soil, where variations in design allowed for

increased productivity and safety in worksites [Chapman et al., 2017]. Following, the

main types of TBM designs will be discussed.

2.2.2 Tunnel Boring Machine (TBM) Designs

The "Mittry Mole" as the first TBM became known was absolutely successful,

tunneling machines became more available and frequently adopted around the world.

Created to automate tunnel construction, TBMs become known as the best, most

cost effective and safest way to construct underground structures [Zlatanic, 2022]. As

urbanization flourished, especially after World War 2, tunnels became an important

way to add much needed infrastructure to growing cities [Railsystem, 2018]. To cite

a few different designs we have the Gripper TBM, Single and Double-Shield TBMs,
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Earth-Pressure Machines, Slurry TBM amongst others [Railsystem, 2018].

Different Tunnel Boring Machine designs were developed to address challenges

of specific ground conditions. For instance, soft-soil TBMs like earth-pressure bal-

anced machines and bentonite slurry TBMs contain a pressurized cavity in their

front shields that allows them to dig through ground underneath the water table

[Mair and Taylor, 1997]. Although still facing difficulties, these modified TBMs are

still favored over conventional pressurized air and lock/decompression chambers dig-

ging methods, that were both more dangerous for workers and moved at a much

slower pace [Zhao et al., 2012]. Below is an image depicting a Slurry TBM (Figure

2-19).

Figure 2-19: Slurry TBM [Ugitech, 2019].

The Gripper TBM as its name suggests, is used to tunnel through hard rock

[Herrenknecht, 2021]. The TBM advances by gripping the rock surface through

the use of 2 main hydraulic jack systems, where one fixes the TBM against the

rock surface and the second securing the machine’s mobile section (see Figure 2-20)

[Herrenknecht, 2021]. In tunneling through hard rock, both the Gripper and shielded
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or other open-type TBMs may be used [Maidl et al., 2008]. They all use distinct disc

cutters (placed in the TBM cutter head), which create a powerful compressive force

to fracture the rock [Maidl et al., 2013]. With open-type TBMs the lack of shield

makes room for the machine to support itself on surrounding rock, making it useful

for hard rock tunneling [Ugitech, 2019].

Figure 2-20: Gripper TBM, where both sets of mechanic jacks can be seen in black (Courtesy of
Robins).

With single shield TBMs the machine uses thrust force (through modified cylin-

ders) to move forward through the tunnel face (see Figure 2-21). It is used for tunnel-

ing through soft ground as it uses each installed concrete ring as support for digging

through the next segment [Robbins, 2021]. Double shield TBMs (Figure 2-22) oper-

ate similarly to single shield TBMs (using thrust cylinders) but have a retractable

additional front shield that aides and extends the reach of the shield-face cutter-

heads [Stack, 1995]. They also operate in two forms, gripping tunnel walls when

the ground is stable and using thrust against the liner to tunnel through less stable

ground [Stack, 1995].

All Tunnel Boring Machines have support decks extending behind the tunnel-face,

trailing through completed segments of the project [Chapman et al., 1992]. These

back-up systems usually contain long conveyor belts for muck removal, slurry pipelines

for softer soils, alongside central control rooms and places for electrical systems man-

agement, dust removal and ventilation, TBMs carry diverse sensors and measuring

systems that record thrust force, weight and volume of excavated material, pressure
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Figure 2-21: Single-shield TBM [Robbins, 2021].

Figure 2-22: Cross-section of a double-shield TBM [Zhao et al., 2012].

and a multitude of other parameters [Chapman et al., 1992, Stack, 1995]. Figure 2-23

below compares various TBM designs. And the following image (Figure 2-24) shows

a cross section of a TBM with its main components.

2.3 Porto Metro

The Porto Metro, a component of the mass transport system in the city of Porto
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Figure 2-23: Comparison between different TBM shields and the ground-types they are employed
in [Robbins, 2021].

Figure 2-24: Cross-section of TBM with parts highlighted and identified. In the image we can see
the machine’s main digging and thrust components [Ugitech, 2019].

in Portugal, operates on a network of light rail that runs throughout the historical

city center and it’s outskirts [Metro do Porto, 2010a]. With more than five miles of

underground tunnels and a total of 42 miles, the metro has 82 stations, both above

and below ground [Metro do Porto, 2010b]. Founded in 1993 the Metro do Porto S.A.,

which runs the system is a publicly owned enterprise with both municipal, state, and
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federal shareholders [Metro do Porto, 2010a].

Starting operations in 2002, the Porto Metro system has been expanding to

a total of six lines functioning today [Metro do Porto, 2010a]. The mass trans-

port structure reaches seven different municipalities amongst Porto’s metropolitan

area, being the city of Porto, Matosinhos, Póvoa de Varzim, Vila Nova de Gaia,

Maia, Gondomar, and Vila do Conde [Bombardier, 2003]. Currently operated by

ViaPORTO, a private operator company owned by Portugal’s Grupo Barraqueiros

[Railway Technology, 2008].Responsible for the transport of more than 9000 people

an hour, with over 102 metro cars, six operating lines and more than 500 staffers,

Porto Metro is the second largest metro system in Portugal (behind only Lisbon)

[Railway Technology, 2008].

Its 6 lines are lettered (from A-F) with Line A (also known as the blue line) being

completed in 2002, for the 2004 Euro Football Championship [Metro do Porto, 2010a,

Metro do Porto S.A., 2006]. Followed by Line B (red), inaugurated in 2005, and

alongside Line A took advantage of the extinct narrow-gauge railway systems that

operated there since 1875 [Metro do Porto, 2010a, Metro do Porto S.A., 2006]. Line

C (green), which is the focus of this study, started running in 2005 right after Line B,

and reached the municipal center of Maia, in Porto’s suburbs [Metro do Porto, 2010a,

Metro do Porto S.A., 2006]. Followed by Line D (yellow) in 2005, which faced consid-

erable setbacks in construction (particularly in crossing the Douro River), having some

of its stations closed until April, 2006 due to safety concerns [Metro do Porto, 2010a,

Metro do Porto S.A., 2006]. After being cleared, the line was expanded further into

the city in 2011 [Metro do Porto, 2010a].

Line E (purple) was launched in 2006, being the first to connect the city of

Porto’s Airport to the center, later expanding to the local football (soccer) stadium

[Metro do Porto, 2010a, Metro do Porto S.A., 2006]. Finally, the newest expansion

of the network, Line F (orange line) began operating in 2011 connecting the city

of Porto to nearby Gondomar [Metro do Porto, 2010a, Metro do Porto S.A., 2006].

Below (Figure 2-25) is a map of the full system.
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Figure 2-25: Porto Metro full system map throughout the city of Porto’s metropolitan area
[Mapa Metro, 2010].

2.3.1 The Project

Talks of updating Porto’s public transport infrastructure were well underway

throughout the 1990s [Metro do Porto, 2010a]. City planners and the government

intended to relieve the usage of cars in Porto, especially throughout the histori-

cal city center, while also providing a comprehensive transport link between Porto

and its surrounding metropolitan area [Metro do Porto, 2010a]. They finally decided

on a 45-mile long train network system that began works by the late 1990s and

was inaugurated in the early 2000s (as mentioned above) [Metro do Porto, 2010a,

Metro do Porto, 2010b, Metro do Porto, 2019].
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Out of the total 45 miles, 12.5 run through the city centre, incorporating the sub-

urban railway lines and creating a comprehensive and fully integrated network that

reaches most of Greater Porto [Mapa Metro, 2010]. By 1998, the government had

awarded the Normetro Consortium the project, from conception to construction and

full operations for five years [Metro do Porto, 2010a]. The consortium encompassed

Bombardier Transportation (responsible for supplying power, electrical and mechan-

ical systems and telecommunications), Soares da Costa and Semaly (which worked

on project coordination and construction), ABB Sadelmi (employing all the fixed in-

stallations) and Transdev (coordinating operations and maintenance of the system)

[Metro do Porto, 2010a].

2.3.2 Infrastructure

As the 5 miles of underground tunnels projected below the historical city cen-

ter began development, great caution was exerted to minimally disrupt the sur-

face [Metro do Porto, 2010b, Metro do Porto, 2010a]. This avoided damaging historic

buildings and streets [Metro do Porto, 2010b]. With stations built every 750 meters,

the system aimed to ensure quick access and user comfort [Metro do Porto, 2010a,

Metro do Porto S.A., 2006]. Figure 2-26 shows an underground station amongst the

tunnels of line D.

Porto Metro uses novel Eurotrams, a low-floor articulated wagon train, alongside

Flexity Swift Light Rail Vehicles (LRVs), that are used in lines B and C reaching up

to 60 mph [Railway Technology, 2008]. The LRVs contain a larger number of seats

and function with modern mechanical motors that can recover up to 30% of consumed

energy during breaking [Railway Technology, 2008].

Most services run with two LRVs coupled together [Metro do Porto, 2010b]. The

Eurotram has of four compartments, two in each carriage joined together by small

corridors and an articulation system to join carriages [Railway Technology, 2008].

They have a capacity of 80 seated and 134 standing passengers (see Figure 2-27)

[Railway Technology, 2008].
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Figure 2-26: Marques Underground Station (Line D)[Guedes, 2017].

Figure 2-27: Eurotram used in the Porto Metro system [Guedes, 2017].
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2.3.3 Ticketing

The Porto Metro system uses the "Andante" ticketing system (represented in

Figure 2-28), which functions as an all-encompassing cross-networking ticket for both

metro and bus lines, as well as the railway [Transportes Publicos de Portugal, 2015].

Designated stations provide both single-use (blue ticket) and multiple-use cards (gold

ticket) that can be bought and topped up [Transportes Publicos de Portugal, 2015].

Validated tickets allow unlimited trips for an hour, which can increase depending on

the zone of entrance [Transportes Publicos de Portugal, 2015].

Figure 2-28: Andante Ticketing stations in a Porto Metro station [Guedes, 2017].

During peak traffic hours, an additional fee is charged, while a reduction in price

is offered for off-peak hours [Transportes Publicos de Portugal, 2015]. The system

also supplies users with a day pass (called Andante 24), especially used by tourists

[Transportes Publicos de Portugal, 2015]. The fare gates are located within the metro

stations and ticketing is verified by random inspections carried out by staff members

[Transportes Publicos de Portugal, 2015].

The city of Porto and the greater metropolitan area is divided by counties which

are subsequently reached into sub-zones [Marchesi, 2019]. This organization greatly

improved the city’s public transport system, as it suffered for many years from inade-

quate supply and convoluted integration between bus and train lines [Marchesi, 2019].

Being a major commercial and touristic city, Porto has long required a rehabilitation
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of its transport system, which came through the creation of the city’s metro system

[Marchesi, 2019].

2.3.4 Communication Systems

As aforementioned, within the Normetro consortium, Bombardier is responsi-

ble for communication systems, which include power supply, radio communications,

keeping depot equipment and rail signalling [Bombardier, 2003, Bombardier, 2012].

Porto Metro uses traditional light rail signalling, wherein the metro system is mon-

itored remotely from a central command center and drivers have the autonomy to

make real-time decisions [Intelligent Transport, 2019, Bombardier, 2012].

2.3.5 Financial considerations

Despite being regarded as a crucial and effective means of transportation, the

Porto Metro public transportation system has incurred a cost of over 3.5 billion euros

to the public funds since 2007 [Metro do Porto, 2010b]. This amount is equivalent to

over 1% of Portugal’s annual GDP2 [Metro do Porto S.A., 2006].

According to sources such as [Metro do Porto S.A., 2006] and [Bombardier, 2003],

the first phase of the Porto Metro project (Lines A-D) was a joint venture between

the city of Porto and Greater Porto area. However, the cost of the project ended

up being over twice the originally estimated amount, resulting in a surcharge of over

1.5 billion euros, which is 140% higher than the initial projection. The Porto Metro

system has not been profitable since its inception, which is a common occurrence

for mass transit systems worldwide, with reported losses every year. In 2006, the

deficit was at its lowest point, reaching 122 million euros [Metro do Porto S.A., 2006,

Intelligent Transport, 2019].

2Gross Domestic Product, meaning the sum of all market value generated by the development
of goods and services within a particular country’s borders measured in a specific amount of time
(usually a year) [U.S. Bureau of Economic Analysis (BEA), 2022].
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Chapter 3

Geological and Geotechnical Aspects

3.1 The Geomorphology of Portugal

Despite being one of the smaller countries of the European continent, Portu-

gal, with an area of 35,603 square miles, is vastly diversified in terms of geomor-

phological landscapes [Central Intelligence Agency, 2022]. This is the result of a

protracted and intricate geological evolution process that include two Wilson Cy-

cles 1 and many significant changes especially since the Paleozoic [Vieira et al., 2020,

Feio and Daveau, 2004]. Its geographical placement along the Eurasian boundary as

well as strong climatic fluctuations shaped its distinct morphogenetic environment

[Vieira et al., 2020, Ferreira, 2005]. Figure 3-1 shows the lithological characteristics

of Portugal.

The well known Iberian Massif, that is the result of the flattening of the ex-

tinct Variscan Cordillera (see Figure 3-2) was the result of the first Wilson cycle

(Variscan cycle) [Feio and Daveau, 2004]. The second cycle, known as the Tethys or

Atlantic cycle defined the other three main morphostructural units that constitute the

Portuguese territory today: the Meso-Cenozoic Basins, Cenozoic Basins and the for-

mation of the marine archipelagos of Azores and Madeira [Dias, 2013, Dias R., 2013].

These three main morphostructural components of the country are currently classified

1Geologic concept that relates the cyclical opening and closing of ocean basins as an important
aspect of the formation and breakup of super-continents [Wilson, 2019].
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Figure 3-1: General lithology of Portugal. In the legend, 1, 2 and 4 are sedimentary formations; 3
represents igneous rocks; 5 shows the intrusive formations; 6 the porphyrys; the continuous line (7)
shows the main geologic faults present in the country while the dashed line (in 8) gives the limits of
the Iberian Massif [Vieira et al., 2020]).

amongst 10 regional geomorphological subdivisions [Vieira et al., 2020].

The consecutive incidence of wet and dry climate phases resulted in comprehensive

weathering of bedrock and the severe erosion that led to soil formation [Ferreira, 2005].

These cyclical climatic changes were the main drivers of the vast planation structures

formed in the region during the pre-Quartenary [Feio and Daveau, 2004]. Portugal’s
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Figure 3-2: Schematic image showing the formation process of the Variscan Cordillera
[Johnston and Gutierrez-Alonso, 2010]).

interior much less affected by tectonic activity, saw the development of polygenetic

landforms2 and stepped planation formations that created the mountains seen today

[Vieira et al., 2020]. Figure 3-3 below show the Eurasian tectonic plate and Portugal’s

positioning within it.

The cold climate of the Quaternary period contributed to the lowering of sea level

and the deterioration of planation surfaces which helped entrench rivers and elevate

the relief throughout the European landmass [Feio and Daveau, 2004]. The period

is also responsible for the formation of the volcanic islands of Azores and Madeira

[Vieira et al., 2020]. Portugal is a very geomorphologically diverse country, the re-

sult of the lithological response to both tectonic movement and climatic alterations

[Ferreira, 2005]. This unique and interesting geologic history formed the landforms

we see today, comprised mainly of volcanic, granitic, schist and karst formations

2Landscapes that are the result of several endogenetic and exogenic geological processes
[Kamp and Owen, 2013].

65



Figure 3-3: Tectonic placement of Portugal. In the image, the white arrows (1 in the legend)
represent the movement of coinciding tectonic plates; the continuous (2) and dashed (3) white
lines show the known and approximate locations of geologic faults, respectively. Finally the blurred
segment (4) between the Iberian Peninsula and African continent shows the region where continental
plates collide [Vieira et al., 2020]).

[Pereira, 1997]. Figure 3-4 shows Portugal’s landmass relief [Vieira et al., 2020].

3.2 The City of Porto

Porto, which was declared a World Heritage Site by UNESCO in 1996 is one of the

oldest cities in Portugal (dating back 900 years to the Bronze Age) [Vieira et al., 2020].

With a population of 237,559 residents and 1.6 million visitors every year it is one of

the most important tourist destinations in Europe [World Population Review, 2022].

Porto dealt with rapid urban expansion during the 19th century which alongside chal-

lenging natural conditions like floods, slope stability issues and coastal erosion made

the city a difficult building site [Patatas et al., 2011]. Figure 3-5 shows an early de-

piction of Porto.
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Figure 3-4: Topographic map of Portugal. Where the darker lines (represented by 1 in the legend)
show the currently active geological faults within the territory and the faded lines (2) represent the
geologic lines that may conform to active faults [Vieira et al., 2020]).

Placed between the Douro river and the sea, Porto was initially used as a defensive

city, placed in the granitic hill of Pena Ventosa [Ribeiro da Silva, 2004]. After Roman

occupation and use of the city as an important port, known as "Portus Cale" (which

originated the name Portugal), the city kept expanding alongside the river bank

[Disney, 2009]. It served as an economically relevant city throughout the Portuguese
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Figure 3-5: Porto. Depicted by H. Duncalf and William Henry Toms, English royal envoys sent to
the city in 1736 [Arquivo Municipal do Porto, 2022]).

"Discoveries" of the 15th and 16th centuries, especially due to wine and other exports

[Disney, 2009]. Figure 3-6 below shows part of Porto’s historical city center.

Figure 3-6: Porto’s historical city center today [Vieira et al., 2020]).
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3.2.1 Geological Conditions

Placed along the Iberian Massif, Porto has complex geological conditions. Directly

located in the PTFASZ shear zone (Porto-Tomar-Ferreira do Alentejo) the city is

placed in a lithological region formed during the Precambrian [Dias and Ribeiro, 1995,

Romão et al., 2008]. Comprised mainly of sedimentary rock (sandstone, limestone)

alongside metamorphic formations (gneiss, amphibhibolite) and post-tectonic gran-

ites, the city has even been known as "Porto Granite" [Noronha and Leterrier, 1995,

Noronha and Leterrier, 2000]. Porto is a geologically diverse city, being formed by

stepped planes formed in the Pliocene-Quaternery period, covered by fluval and ma-

rine deposits dating back to the last Ice Age [Araújo, 1984]. Figure 3-7 shows the

geomorphology of Portugal’s northeast region, where Porto is located.

Figure 3-7: Partial geomorphological map of Portugal. The city of Porto is located in the bottom-left
corner, where the main rivers flowing by the city can be seen. Also notable is that Porto is located
well within the Portuguese litoral platform [Vieira et al., 2020].
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Affected by strong weathering, the bedrock in Porto was shaped by changes

in climate [Araújo, 2014]. Above the bedrock, sandstone blocks and alluvial for-

mations are followed by coarse material that has been deposited (up to 160 feet)

[Araújo, 2014]. By the coast, marine deposits are associated with an interglacial pe-

riod and its sand-silt composition spreads across the Douro river valley [Araújo, 2004,

Ribeiro et al., 2010]. The following map Figure 3-8 shows the topography of the re-

gion around Porto and its main geologic faults.

Figure 3-8: Topographical map of the Porto region and main geologic faults. Where the main road
networks are represented by the red lines and geologic faults in black. The historic city center is
shown by the black and white circle, located in the margins of the Douro River [Vieira et al., 2020]).

Between the city of Porto and neighboring Vila Nova de Gaia, lies the Douro river

estuary, which includes the biggest drainage basin in the Iberian Peninsula (shared

by Portugal and Spain) [Vieira et al., 2020]. Modified by sea-level retraction and

subsequent rise in the Quaternary period, the Douro river valley and its outlet to

the ocean has been one of the most important natural aspects to drive the human
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occupation of Porto [Araújo et al., 2013]. Determining many boundaries and changes

of the urban landscape as well as building social and cultural alignment along the

river, Porto was the site of important developments in military and naval engineering,

helping Portugal reach its centuries-long prominence in navigation and development

of maritime trading routes [Dias et al., 2000]. Below is a map (Figure 3-9) depicting

the main geologic composition of the city of Porto and its surrounding area.

Figure 3-9: Main geological subdivisions around the city of Porto. From the map it is clear that
the Porto regions is composed mainly of medium grained, two mica granite, named Oporto Granite
(represented in light pink). There is also presence of fluvial and lacustrine deposits from the Douro
River basin (light green) [Vieira et al., 2020]).

Constructing several coastal harbors, river dams, military bases and the early
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riverbed dredging for navigation purposes, led to significant sediment carrying and

loss, contributing greatly to coastal erosion [Dias et al., 2000]. As these issues be-

come graver and seeing that Porto still harbors important portuary infrastructure,

there have been recent (2000-2005) engineering interventions (e.g. jetties, break-

water systems, etc.) aiming to mitigate the loss of landmass [Vieira et al., 2020,

Bastos et al., 2012]. The infrastructure placed increased navigable pathways for ships

and aided in decreasing coastal erosion especially in flood-prone areas around the

city, including beaches that had been losing land since the 1950s [Vieira et al., 2020,

Bastos et al., 2012, Instituto Portuário e dos Transportes Marítimos, 2009]. However,

it also generated strong sediment accumulation in other localities (like the Sao Paio

Bay), gravely impacting the aquatic ecosystem [Dias, 1993, Bastos et al., 2012]. Al-

though abating coastal erosion in some regions of the city, flooding and sea-level rise

due to anthropogenic-led climate change is expected to continue challenging the city

of Porto must be considered in the building of new infrastructure or new develop-

ments in the city [Araújo, 2014]. Figure 3-10 shows the geomorphological map of the

city of Porto.

3.3 Porto Metro Project

As aforementioned (see section 3.2.1), the city of Porto has a diverse geologic

history and thus formations. Regarding the Porto Metro project (Line C) the region

is mostly comprised of igneous formations especially the Oporto Granite (abundant

in the city - see Figure 3-11). The encountered geological profile is typical of intensely

weathered regions, with joints and faults along the tunnel line [Sousa, 2010]. This

extremely irregular formation leads to considerable uncertainty in the projected ge-

ologic profile generated from boring holes and other geologic information gathered

before tunnel construction [Sousa, 2010].

Extreme weathering leads not only to unpredicted conditions on-site but also in-

tense discrepancies in material density, permeability, strength amongst other geome-

chanical parameters [Sousa, 2010]. The highly weathered Oporto granite produces
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Figure 3-10: The top map shows Porto’s geomorphology while the bottom represents the city’s
relief cross-section. Varying from 40 to 140 meters above sea level, Porto is mostly composed of
granitoid formations (represented by the crosses from Pinheiro Manso to Campanhã), followed by
metassedimentar formations (slashes) in Parque da Cidade and after Campanhã. Some landfills,
metamorphic and superficial formations are also present along the city [Vieira et al., 2020]).

different hydrological patterns and water-flow paths, leading to highly uncertain geo-

logic conditions, which can be a considerable source of accidents, stoppages and delays

in an infrastructure project of this magnitude [Sousa, 2010]. Figure 3-12 below shows

the tunnel section evaluated in this thesis, alongside the relevant borings conducted

throughout the alignment.
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Figure 3-11: Distribution of Oporto Granite amongst the Douro River valley. The metropolitan area
of the city of Porto is indicated in red [Sousa, 2010].

3.3.1 Projected Geological Profile

Below, Figures 3-13, 3-14, 3-15, 3-16 showcase the projected geological profile

determined by Line C’s designers. As the scale of the profile does not allow for it

to be presented in a single sheet, the evaluated tunnel sections will be presented as

cuts from the main section. Firstly the stretch from Ring 533 to Ring 610 (Figure

3-13) followed by Rings 611-689 (Figure 3-14), Rings 690-814 (Figure 3-15) and Rings

815-942 (Figure 3-16).

3.3.2 Encountered Geology

It is clear that there were significant discrepancies between predicted and encoun-

tered geological conditions [Sousa, 2010]. This section will present these differences
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through the geological profiles and a graphical comparison of what was projected and

what was found on site (Figures 3-17, 3-18, 3-19, 3-20).

3.3.3 Face mappings

The present section will show the estimated geologic profile based on the face

mappings executed throughout the construction of the tunnel. It is important to

note that the grey sections of the face mappings corresponds to the hidden section

of the face. Table 3.1 lists the location of all the face mappings available from Rings

533 to 942 (see Figures 3-21, 3-22, 3-23, 3-24). Following the order presented above,

the face mappings and corresponding profiles will be presented in sections (Rings 533

- 610; 611 - 689; 690 - 814; 815 - 942).

The ring’s face mappings were closely looked at and mapped alongside the geologic

profile. Both projected and encountered ground conditions will be important to

determine the validity of machine learning models aiming to predict geology ahead of

the tunnel face and further automate TBM operations. In the present study models

that aim to classify rings between rock, soil, rock-like mixed and soil-like mixed using

machine-generated data to find patterns that could potentially indicate changes in

upcoming ground conditions.

Rings Start point (m) Face Map Locations (m)

533-615 906.7 907.4; 941.0; 959.2; 983.0; 998.4; 1019.4; 1022.5
616-653 1024.0 1027.8; 1033.4; 1043.2; 1050.2; 1054.4; 1071.2
654-689 1075.0 1093.6; 1102.0; 1117.4
690-756 1025.0 1158.0; 1175.0; 1184.0; 1193.0; 1195.0; 1211.0; 1218.0
757-812 1220.0 1230.0; 1240.0; 1258.0; 1271.0; 1288.0
813-868 1298.0 1299.0; 1305.0; 1328.0; 1340.0; 1352.0; 1366.0
869-942 1375.0 1389.0; 1401.0; 1414.0; 1435.0; 1437.0

Table 3.1: Location of face mappings (in meters) along Rings 533 - 942.
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Figure 3-12: Line C (partial) tunnel section showcasing the location of surveyed borings. The pink
lines represent the final tunnel alignment. Red and orange circles show locations of boring holes.
Courtesy of Normetro.
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Figure 3-13: Geotechnical Profile Rings 533-610. Where the x axis shows the longitudinal distance
and y the altitude (both measured in meters). The distance between two consecutive rings is 1
meter. This complete profile is based on several boring holes (represented in the figure alongside
boring logs). Where g1, g2, g3 and g4 are rock-like materials and g5 represents soils. Courtesy of
Normetro.
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Figure 3-14: Geotechnical Profile Rings 611-689. Distance and altitude are represented by the x
and y axis respectively (both measured in meters). The distance between two consecutive rings is
1 meter. This complete profile is based on several boring holes (represented in the figure alongside
boring logs) and other geotechnical investigations. Where g1, g2, g3 and g4 are rock-like materials
and g5 represents soils. Courtesy of Normetro.
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Figure 3-15: Geotechnical Profile Rings 690-814. Distance and altitude are represented by the x
and y axis respectively (both measured in meters). This complete profile is based on several boring
holes (represented in the figure alongside boring logs) and other geotechnical investigations (distance
between two consecutive rings is 1 meter). Where g1, g2, g3 and g4 are rock-like materials and g5
represents soils. Courtesy of Normetro.
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Figure 3-16: Geotechnical Profile Rings 815-942. Distance and altitude are represented by the x
and y axis respectively (both measured in meters). The distance between two consecutive rings is
1 meter. This complete profile is based on several boring holes (represented in the figure alongside
boring logs) and other geotechnical investigations. Where g1, g2, g3 and g4 are rock-like materials
and g5 represents soils. Courtesy of Normetro.
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Figure 3-17: Predicted geomechanical conditions (top) versus encountered geomechanical (bottom)
conditions for Rings 533-610. Where g1, g2, g3 and g4 are rock-like materials and g5 represents soils.
As seen in the image, from Rings 535 to 561 they encountered only soil-like material (g5) different
from what was predicted. This pattern is followed by the section between rings 561 and 610, where
g3 and g4 sections were different from what was predicted. Courtesy of Normetro.
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Figure 3-18: Predicted geomechanical conditions versus encountered geomechanical conditions for
Rings 611-689. Where g1, g2, g3 and g4 are rock-like materials and g5 represents soils. As seen in
the image, from Rings 535 to 561 they encountered only soil-like material (g5) different from what
was predicted. This pattern is followed by the section between rings 630 and 661, where g3 and g4
sections were different from what was predicted and g2 material was found. Also, from rings 661
to 688 predicted and encountered geology diverged, with soil-like material (g5) more abundant than
originally imagined. Courtesy of Normetro.
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Figure 3-19: Predicted geomechanical conditions versus encountered geomechanical conditions for
Rings 690-814. Where g1, g2, g3 and g4 are rock-like materials and g5 represents soils. From rings
690 to 745 they encountered unexpected rock-like material (g4). From rings 746 - 814 they found
similar patterns to what was predicted but different concentrations, coming accross more rock-like
material (g3, g4) than what was expected. Courtesy of Normetro.

83



Figure 3-20: Predicted geomechanical conditions versus encountered geomechanical conditions for
Rings 815-942. Where g1, g2, g3 and g4 are rock-like materials and g5 represents soils. Expected
geology contrasted widely with conditions confronted in the construction process. Soil-like material
(g5) was greatly overestimated especially from rings 815 - 850. Location of rock-like ground (g3,
g4) was also uncertain and diverged from the encountered geology throughout most of the section.
Courtesy of Normetro. 84



Figure 3-21: Face mappings and corresponding geologic section: Rings 533-610. Courtesy of
Normetro.
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Figure 3-22: Face mappings and corresponding geologic section: Rings 611-689. Courtesy of
Normetro.
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Figure 3-23: Face mappings and corresponding geologic section: Rings 690-814. Courtesy of
Normetro.
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Figure 3-24: Face mappings and corresponding geologic section: Rings 815-942. Courtesy of
Normetro.
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Chapter 4

Methodology & Results

The purpose of this chapter is to explore the different methods and models used for

ground forecasting in TBM tunneling that are advancing automation efforts. While

geotechnical site investigations are highly important, they are insufficient to deter-

mine a comprehensive geological profile of the tunnel alignment, which is only fully

developed on site. Therefore, the use of data-driven geologic predictions are becoming

increasingly necessary to improve real-time decision-making in mechanized tunneling.

The chapter will highlight the potential of time series plots and scattergrams in

identifying relevant patterns that can be correlated to geology, potentially inform-

ing on ground conditions ahead of the tunnel face. The TBM generates a massive

data-set on more than 150 parameters at ten-second intervals, but are rarely used

to proactively adapt machine operation in real-time. By leveraging machine learning

and AI algorithms, it is possible to predict geology a few meters ahead of the tunnel

face, which can aid machine operators, prevent accidents, and minimize delays. Ul-

timately, the chapter aims to demonstrate how the use of these techniques alongside

the proposed methodology can improve TBM tunneling efficiency, reduce risks, and

increase automation.
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4.1 Contextual Aspects of Mechanized Tunneling Au-

tomation

Tunneling in urban areas requires minimal surface intrusion due to high popula-

tion density [Bobet et al., 2019]. To avoid ground subsidence, traditional tunneling

projects focus on maintaining ground pressure during and after construction, which

can be particularly challenging when dealing with mixed ground or saturated soils

[Rostami, 2016, Hencher, 2004]

The unpredictability of real-time geological conditions is a significant challenge

in modern tunnelling, despite the development of specific TBMs for such purposes

(see section 2.2.2) [Fu et al., 2023]. Illustrating this, a TBM accident in Sao Paulo,

Brazil in 2022 was caused by unforeseen geological conditions, resulting in the need

for a modified tunnel lining which, subsequently, burst into sewage pipes, ultimately

contributing to the collapse of a busy highway (See Figure 4-1) [Garcia, 2022].

TBMs and related systems have significantly reduced tunnel construction costs

and time, contributing to the increasing trend of urbanization [Bobet et al., 2019].

With 68% of the world’s human population expected to live in cities by 2050 and

indices as high as 90% in OECD countries 1, tunneling projects are expected to

increase [Szabo, 2016]. As a consequence, research into automating tunnel construc-

tion is growing, including the use of AI models to predict upcoming ground condi-

tions based on TBM sensor data [Fu et al., 2023, Sun et al., 2018, Xu et al., 2019,

Jung et al., 2019]. This development is seen as potentially game-changing. Figure

4-2 displays global expectations of urbanization.

4.1.1 TBM Data

TBMs are equipped with intricate sensors that measure various data-points

throughout the cutterhead and body during tunnel construction [Mooney et al., 2012].

1Organisation for Economic Co-operation and Development, an organization of mostly rich, de-
veloped countries dating back to the 1960s. With 38 members the OECD was created to dynamize
economic progress and world trade [OECD, 2019].
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Figure 4-1: Images showing an accident that occurred in the construction of a new metro line in
Sao Paulo, Brazil. The accident was caused by unforeseen geological conditions encountered by
the TBM (left-hand side) during tunnel construction. A slight course modifications led by adverse
ground conditions along the original tunnel line, made the machine’s vibration felt on the surface,
collapsing a nearby highway and bursting sewage pipes [Garcia, 2022]).

Refer to Table 4.1 for the main types of data collected by the machine.

TBM data modeling involves not only collecting and recording sensor data but also

analyzing, organizing, and validating it throughout the tunneling process to improve

safety and productivity in real-time [Zhang et al., 2019a, Koopialipoor et al., 2019,

Guo et al., 2022]. As AI and Machine Learning become more prevalent in data-

driven technology, their use in tunneling is starting to emerge, mainly in model-

ing applications for real-time ground-condition predictions ahead of the tunnel face

[Sheil et al., 2020a]. Due to its complexity, numerous variables and unpredictable

conditions, efforts to improve tunneling through data-driven decision-making are still

in their infancy.
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Figure 4-2: Graph showing the UN’s prediction on urbanization rates by 2050
[Ritchie and Roser, 2018]).

4.1.2 The Future of Tunneling

In seeking to improve tunnel construction, stakeholders are increasing operational

speed and cost-effectiveness, given the growing need for transport and space in cities

[National Research Council, 2009, Vertovec, 2015]. However, the protracted pace of

conventional TBM operations has led to challenges in meeting increasing demand.

To illustrate this, Figure 4-3 shows the projected growth of the global TBM market

over the next decade.

Efforts to improve tunnel construction aim to reduce time spent underground,

with increased productivity approaches ranging from full autonomous operation of the

machine to incremental improvements like reducing the need for installing supporting
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Data Type Description Examples

Location Information on the machine’s location
Geo-location,

position, heading
and orientation, etc

.

Speed/Progressing Information on TBM speed Velocity, Advance rates, etc.

Performance Data on the machine’s
performance rates

Power consumption,
torque screw, thrust force,

amongst other
operational parameters.

Geology Data on ground conditions

Rock/soil type and
sometimes composition,
groundwater data and
subsurface conditions.

Safety Data on machine and operator safety Temperature, humidity,
air quality, etc.

Maintenance Information regarding the
need for machine maintenance

Wear and tear of cutterheads
and other components,

operating status
of machine components.

Table 4.1: General classification of TBM-output data.

Figure 4-3: Graph showing the predicted growth of the Tunnel Boring Machine (TBM) Market
[Pasalkar, 2023]).
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concrete rings [Sebbeh-Newton et al., 2021]. These improvements are critical as the

need for underground infrastructure increases due to urbanization and global climate

change [Cedergren, 2013].

At the forefront of this contemporary age of tunneling, Malaysia’s contributions

to tunneling include the variable density Tunnel Boring Machine (see Figure 4-4),

which can modify the density of excavated material by varying slurry pressure in

the cutterhead [Mass Rapid Transit Corporation, 2013]. This TBM can be used in

unpredictable or frequently altering ground conditions as well as in contaminated soil

[Herrenknecht, 2013].

Figure 4-4: A computational rendering of the variable density TBM operating in Malaysia
[Mass Rapid Transit Corporation, 2013]).

Malaysia deployed the first fully Autonomous Tunnel Boring Machine (ATBM)

system (Figure 4-5), controlled by an Artificial Intelligence (AI) system to increase

productivity, precision and worksite safety [Byrd, 2016, Berhad, 2019]. Further re-

search and development is needed to better integrate AI systems and the TBM’s

constant data output, but have shown promising results .
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Figure 4-5: Image of the ATBM being setup in a large public transport infrastructure construction
site in Malaysia, 2018 [Byrd, 2016]).

4.2 An Introduction to Artificial Intelligence and Ma-

chine Learning

AI refers to machine-generated simulations of human thought and intelligence

[Nilsson, 1982]. Machine Learning (ML) is focused on producing statistical models

and algorithms that allow for computational systems to automatically increase per-

formance through experience [Girasa and Girasa, 2020, Alzubi et al., 2018]. Three

main types of machine learning are supervised learning, semi-supervised learning,

and unsupervised learning. The present study will focus on a semi-supervised ML

algorithm, known as Confidence Learning (explained in further detail in section 5.2).

Data labeling in machine learning refers to the process of assigning predefined

tags or categories to data to make them understandable and usable for ML algo-

rithms [Nilsson, 1982]. It involves manual or automated annotation of data, which

95



simplifies the recognition process for ML models, making it easier for the model to

recognize patterns and make predictions [Alzubi et al., 2018]. Specifically, data la-

beling adds metadata to raw data, allowing them to be used as an input for ML

models [Nilsson, 1982, Alzubi et al., 2018]. Refer to Table 4.2 for characteristics

and commonly used algorithms for each type of machine learning [Suthaharan, 2016,

Rajoub, 2020].

Machine Learning Type Description Algorithms

Supervised Learning

Most commonly used.
Trains a model based on

data that were
previously labeled.

Linear Regression,
Decision Trees,

Neural Networks,
k-Nearest Neighbors,

Support Vector Machines (SVMs)

Unsupervised Learning

Combines supervised
and unsupervised learning

using some labeled
data and a large

amount of
unlabeled data.

Self-training,
Co-training,

Multi-task learning,
Generative Adversarial Networks (GANs).

Semi-Supervised Learning

Trains a model based on
unlabeled data-sets,
where the outcome

is not known.

Clustering,
Principal Component

Analysis (PCA),
Autoencoder,
Single Value

Decomposition (SVD).

Table 4.2: Machine Learning classification and examples [Dasgupta and Nath, 2016].

4.2.1 Previous work in Geology Prediction using TBM Data

Tunnel Boring Machines (TBMs) are a safe and efficient method of tunnel con-

struction, especially in densely populated areas, offering advantages over conventional

drilling and blasting [Singh and Singh, 2006]. However, the uncertainty of ground

conditions can lead to delays, increased costs, and accidents, emphasizing the need

for better geotechnical investigation [Ruwanpura et al., 2004, Záruba, 2012].

Geotechnical site investigations are important but insufficient to determine a com-

prehensive geological profile of tunnel alignment [Soldo et al., 2019]. Data-driven
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geological predictions can improve real-time decision-making in TBM operations,

advancing tunnel automation technology [Sebbeh-Newton et al., 2021]. TBM activ-

ity is highly dependent on trained operators to monitor generated parameter data

[Garcia et al., 2021]. The main operational thresholds observed by the operator

are predetermined, which can be uncertain or incoherent with real-world conditions

[Sun et al., 2018].

Currently, TBM data are rarely used to proactively adapt machine operation de-

spite having sensors that generate data on more than 150 parameters at ten-second

intervals [Sun et al., 2018]. Adverse ground conditions are responsible for most oc-

currences of machine jamming and damage, over-excavation and cost increases in

TBM operations [Sousa and Einstein, 2012, Sousa and Einstein, 2021]. With more

than 30% of incidents directly related to human error, efforts to increase automation

have the potential to revolutionize the industry [Hammerer, 2015].

Machine Parameter Information

TBM performance depends on the machine’s ability to adapt to subsurface

changes [Yu et al., 2022]. However, geological variations and machine intermittence

can make the acquired data inconsistent and inefficient [Yu et al., 2022]. Mathe-

matical models that predict ground conditions and forecast geology in real-time can

reduce risks and improve decision-making [Liu et al., 2020]. Artificial Intelligence can

aid machine operators by predicting geology a few meters ahead of the tunnel face,

minimizing delays and accidents [Zheng et al., 2023].

To mitigate risks and uncertainties associated with tunnel construction, mathe-

matical models that predict ground conditions and forecast geology in real-time can

be used [Liu et al., 2020]. These models can improve the decision-making process and

prevent accidents by predicting geology a few meters ahead of the tunnel face, which

makes Artificial Intelligence a useful tool to aid machine operators and minimize

delays [Zheng et al., 2023]. As cities grow alongside demand for tunneling, it is be-

coming increasingly essential to focus on the risks associated with this infrastructure

[Flyvbjerg, 2010].
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Use of Data-Driven Modeling in Geology Prediction

Studies spanning over several decades have aimed to improve prediction of ground

conditions in tunneling construction. Earlier research focused on using TBM penetra-

tion rates to estimate costs and construction time [Li et al., 2017]. Recently, models

based on TBM data focus on risk reduction, such as predicting ground subsidence

and other accident indicators [Liu et al., 2023].

AI techniques have improved data-driven modelling by making models more reli-

able, given enough data to train machine learning algorithms [Reichstein et al., 2019].

As the TBM generates huge data-sets stemming from more than 200 sensors, it is an

ideal use case for training AI/ML models [Sheil et al., 2020b].

ML algorithms analyze and detect patterns in the data without explicit knowledge

of physical interactions or mathematical relationships in the system being studied

[Carleo et al., 2019], making data-driven modeling particularly useful for problems

with uncertainty and complexity where detailed modeling can be computationally

costly or unfeasible [Zhang et al., 2019b]. However, as will be presented with the

proposed methodology, aligning these computational methods to physical interpreta-

tion of data can improve the quality and validity of AI/ML models.

Recent Studies

Table 4.3 below shows some of the most recent studies on geology prediction in

tunnel operations using TBM-generated machine learning models.
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Table 4.3: Papers on use of Machine Learning (ML) algorithms for geology prediction
using TBM-generated data.

Source ML Type Model

Data

(Parameters

Used)

Cao et. al., 2019 Unsupervised Concept Drift 331

Zhang et. al., 2019 Unsupervised
K-means

Clustering
5

Shi et. al., 2019 Supervised
Deep Neural

Network (DNN)
53

Zhao et. al., 2019 Supervised
Artificial Neural

Network (ANN)
72

Liu et. al., 2020 Supervised AdaBoost-CART 10

Kim et. al., 2020 Supervised
Deep Neural

Network (DNN)
10

Nagresha et. al., 2020 Supervised
Recurrent Neural

Network (RNN)
5

Sebbeh-Newton

et. al., 2020
Supervised Random Forest (RF) -

Wang et. al., 2020 Supervised XGBoost 155

Liu et. al., 2021 Supervised
Long-Short Term

Memory (LSTM)
12

Bai et. al., 2021
Supervised/

Unsupervised

LR, DTR,

SVR, GBR
25

Continued on next page
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Table 4.3 – Continued from previous page

Source ML Type Model

Data

(Parameters

Used)

Gong et. al., 2021 Computer Vision
Convolution Neural

Network (CNN)
3

Hou et. al., 2021 Supervised
Stacking Ensemble

Classifier
10

Wu et. al., 2021 Unsupervised Spectral Clustering 10

Yu et. al., 2021 Semi-Supervised Sparse Autoencoder 20

Zhang, 2022 Semi-Supervised
Generative Adversarial

Network (GAN)
69

Yu et. al., 2022 Semi-Supervised
Convolution Dense

Autoencoder
177

Yin et. al., 2022 Unsupervised
Gaussian Mixture

Model (GMM)
5

Jin et. al., 2022 Supervised
Long-Short Term

Memory (LSTM)
-

Yang et. al., 2022 Unsupervised
K-means

Clustering
6

Fu et. al., 2022 Unsupervised
Shared Nearest

Neighbor (SNN)
-

Pan et. al., 2022 Supervised
Deep Neural

Network (DNN)
-

Continued on next page
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Table 4.3 – Continued from previous page

Source ML Type Model

Data

(Parameters

Used)

Wang et. al., 2023 Supervised
Reccurent-unit Neural

Network (C-GRU)
-

Fu et. al., 2023 Supervised
Long-Short Term

Memory (LSTM)
12

Liu et. al., 2023 Supervised
Deep Neural

Network (DNN)
5

4.2.2 Porto Metro Data

In this study, TBM-data from the construction of Line C of the Porto Metro

project were utilized. The data consisted of 182 parameters recorded every ten sec-

onds over an approximately one-mile length (Rings 354 - 1611). Data pre-processing

involved removing instances where the Advance Rate was zero, to focus on patterns

and correlations between ground conditions and TBM-generated data. The machine

is typically stopped due to the installation of structural concrete rings placed every

meter of excavation, or the occurrence of technical difficulties, accidents. Figure 4-6

below shows a diagram of the EPBM TBM used in the Porto Metro project studied

in this thesis.
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Figure 4-6: Diagram of the EPBM TBM used during the excavation of the Line C tunnel of the
Porto Metro project [Guglielmetti et al., 2008].

Unnecessary data can be removed to improve the accuracy of AI/ML models

and graphical visualizations, as well as to focus on correlations. Figure 4-7 shows

a sample of a ring’s data-set where machine parameter data is recorded. MATLAB

version R2022b was used to generate results.

Figure 4-7: Sample data-set for a soil tunnel section (Ring 877). Where W0001-W107 represent
different parameters.
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4.3 Relating Ground Conditions to Machine-Generated

Data

4.3.1 Proposed Approach

Results from this study aimed to evaluate the validity of machine learning models

in determining ground classes from TBM-generated parameter data. The goal was

to assign each ring to either rock, soil, and mixed ground classes using a systematic

framework, which is presented below.

1. Studied the parameters recorded by the machine and their physical implications.

2. Determined parameters that offer insight into ground conditions.

3. Plotted these parameters against time and machine status (linear plots).

4. Established which pairs of parameters are important to compare through the

use of scatter-plots.

5. Plotted these pairwise parameters in scatter-plots and 3-D histograms.

6. Checked most significant correlations and parameter pairs.

7. Labeled (rock, soil or mixed) each evaluated ring based on graphical represen-

tations.

8. Verified label accuracy and cross-referenced to available geological and geotech-

nical information as well as face-mappings carried out during construction.

4.3.2 Evaluated Parameters

Out of 182 parameters recorded by the TBM, 26 were selected for analysis based

on their physical implications and possible correlation to geological conditions. Tables

4.4 and 4.5 display the parameters plotted against time and machine status and those

plotted against each other in scattergrams, respectively. The selection process of each
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parameter is explained, and an evaluation of its accuracy in determining the potential

ground class of the ring (rock, soil, or mixed) is provided. A coefficient ranging from

one to ten is used to assess the relevance of each parameter in AI/ML models aimed

at predicting geology using TBM-generated data.

Parameters Plotted Against Time

Thrust Force x Cutting Wheel Speed of Rotation
Pressure Force Cutting Wheel x Thrust Force

Torque Cutting Wheel x Pressure Force Cutting Wheel
Penetration x Torque Screw
Penetration x Thrust Force

Penetration x Advanced Speed

Penetration x Actually Excavated Material Flow Belt, Quantity of Excavated Material (Advance),
Quantity of Excavated Material (Total)

Actually Excavated Material x Quantity Excavated Material 1
Cutting Wheel Speed of Rotation x Cutting Wheel High Pressure, Thrust Pressure

Penetration x Torque Cutting Wheel, Pressure Force Cutting Wheel, Thrust Force,
Torque Screw, Actually Excavated Material, Quantity of Excavated Material

Thrust Pressure x Thrust Pressure Groups A, B, C, D, E, F
Thrust Pressure Groups A, B, C, D, E, F

Table 4.4: Time-series plots.

Scatter Plots

Torque Cutting Wheel x Pressure Force Cutting Wheel
Thrust Force x Pressure Force Cutting Wheel

Penetration x Torque Screw
Penetration x Actually Excavated Material

Penetration x Advance Speed
Penetration x Thrust Force

Penetration x Screw Conveyor Speed Measuring
Penetration x Screw Conveyor Pressure

Penetration x Earth Pressure 1
Penetration x Quantity Excavated Material 1 (Total)

Penetration x Quantity Excavated Material 2 (Advance)
Penetration x Quantity Excavated Material 2 (Total)
Advance Speed x Screw Conveyor Speed Measuring
Thrust Force x Cutting Wheel Speed of Rotation

Table 4.5: Scatter plots.
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4.3.3 Importance of Chosen Parameters

The parameters evaluated were selected based on existing literature and physical

understandings of their correlation to ground conditions.

"Thrust force", which indicates the pressure exerted on the ground during tun-

neling, is a widely used indicator of geological conditions. Studies on squeezing ground

have assessed thrust force, as shown in previous works [Mohammadzamani et al., 2019,

Ramoni and Anagnostou, 2010, Hasanpour et al., 2018]. Zhou et al. (2015) have

demonstrated the use of thrust force in predicting total thrust in mechanical models,

which can reflect global trends and geological conditions [Zhou et al., 2015]. Thrust

force, measured in kilo-Newtons (kN), is a crucial parameter for analyzing TBM op-

erations.

"Pressure force cutting wheel" evaluates the force applied to the TBM’s cutterhead

while digging. It, along with other related parameters such as cutting wheel speed

of rotation and torque, have been used to verify or understand geological conditions

during tunneling. Studies have looked at using the pressure force cutting wheel to

improve cutterhead design [Entacher et al., 2012], improve performance in breaking

through hard-rock [Pan et al., 2018, Wang et al., 2020], and predict penetration rates

[Li et al., 2022].

Also related to TBM cutterheads, "Torque cutting wheel" measures the rotational

force exerted in TBM cutterheads. This important metric has been widely used to

improve cutterhead design and inform machine operators and project stakeholders on

the impact of the digging process on the machine [Li et al., 2022, Liu et al., 2015]. As

cutterhead damage and replacement can cause significant TBM stoppages and repairs,

it is crucial to evaluate and understand this metric in order to enhance tunneling

productivity. The torque cutting wheel transmits torque from the TBM’s drive system

to its cutterheads for excavation [Gehring, 2009]. The cutters are designed to fracture

the ground and remove excavated material, and the torque cutting wheel applies the

necessary force to the cutters [Cigla et al., 2001].

"Penetration rate" provides valuable information about ground conditions encoun-
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tered during tunneling and have been widely explored in efforts to automate tunnel

construction. Studies such as Gao et al. (2021) using ML [Gao et al., 2021], Jain

et al. (2015) correlating ground conditions to machine-generated data in Mumbai

[Jain et al., 2015], and Sousa (2010) exploring automation and prediction of ground

conditions [Sousa, 2010] have all utilized penetration rates. By monitoring changes in

penetration rate, machine operators can optimize the excavation process and adjust

relevant TBM parameters to ensure maximum efficiency [Mahdevari et al., 2014]. Ad-

ditionally, penetration rate data can be used to calibrate geological models and refine

geotechnical understanding, reducing the risk of construction delays, cost overruns,

and safety issues [Gong et al., 2007]. Correlation with geology is critical, making pen-

etration rate one of the most important TBM parameters [Benato and Oreste, 2015].

Within the TBM, torque screw, controls the speed and force of the cutting head

and machine advancement [Girmscheid, 2003]. It is usually measured through torque

sensors installed on the drive motors and/or gearboxes powering the TBM (typically

at the rear of the machine) [Girmscheid, 2003]. The torque screw is a long, threaded

rod that is driven into rotation by the drive motor, using it to push the cutterhead

forward [Girmscheid, 2003].

As torque screw serves as a better indicator of the resistance encountered by

the TBM as it advances, it produces a more direct and accurate measure of ground

reactionary forces [Sutcliffe, 1996]. Which in turn can be translated into useful infor-

mation on geological conditions. It is measured in kilo-newtons-meter [kNm].

Thrust force, measured by pressure sensors on hydraulic jacks, is an impor-

tant TBM parameter that can help correlate geology and predict ground conditions

[Girmscheid, 2003, Farrokh and Rostami, 2008]. It is the force exerted by the TBM

on the tunnel face to advance and is influenced by factors such as ground geology,

TBM type and design, and pre-established operating parameters [Girmscheid, 2003].

Hydraulic pressure, advance rate, and torque cutting wheel can also provide informa-

tion on thrust force [Girmscheid, 2003].

"Advance speed", measured in millimeters per minute [mm/min], is a crucial pa-

rameter in TBM operations, representing the rate at which the machine progresses
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through the ground. Sensors throughout the machine’s body, including those mea-

suring cutting wheel rotation, cutterhead movement, and machine displacement, are

used to monitor advance speed [Sutcliffe, 1996]. While not widely explored in the

literature as a means of predicting geology, real-time monitoring of advance speed

can provide valuable insights into the geological conditions being encountered and

inform machine operators and project engineers to adjust the TBM’s operating pa-

rameters, optimizing performance and ensuring safe and efficient tunnel excavation

[Eftekhari et al., 2010, Girmscheid, 2003, Cigla et al., 2001].

The "Actually excavated material flow belt" informs on the conveyor system used

to transport excavated material out of the tunnel [Girmscheid, 2003]. Through the

analysis of the material being excavated and transported, operators can gain insight

into the geology of the surrounding material. Thus identify potential hazards and

changes in ground conditions that may affect the excavation process. Quantity of

Excavated Material (Advance) refers to the amount of material excavated during a

given time period [Sutcliffe, 1996]. This measure can provide information on the

efficiency of the TBM and effectiveness of the excavation process [Girmscheid, 2003].

Similarly, quantity of excavated material (Total) is a cumulative measure referring to

the total material excavated by the TBM [Girmscheid, 2003].

"Cutting wheel speed of rotation" measures the speed of the cutterhead, which

directly impacts the rate of excavation [Wu et al., 2021]. Cutting wheel high pressure

measures the pressure of the slurry (or water) used to remove excavated material from

the tunnel face [Wu et al., 2021]. Lastly, thrust pressure measures the force being

applied by the machine to advance into the rock or soil [Hasanpour et al., 2018].

Thrust pressure, as aforementioned, represents the pressure exerted by the TBM

against the tunnel face in advancing. Thrust pressure groups A-F refer to different

levels of thrust pressure that are used by the TBM to excavate through different

geological formations [Bilgin, 2016]. These parameters are typically recorded at the

machine’s hydraulic jacks or cylinders [Entacher et al., 2012].
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4.3.4 Correlating Graphical Data to Ground Conditions

Through physical understanding of machine parameters and the results we have

obtained, it has become clear that comparing specific parameters and plotting them

against each other produces interesting graphical patterns that can be attributed to

specific ground classes. These patterns provide valuable insight into the geological

conditions that the tunneling machine is operating in, and can be used to optimize

the tunneling process.

Time series plots of TBM performance parameters, such as thrust, torque, cutter-

head speed, and advance rate, demonstrate cyclical patterns that are characteristic of

different ground classes. For example, in soft soil conditions, the TBM will typically

encounter a smoother and more consistent cycle than in harder rock conditions, where

the cycle is more irregular and erratic, which can be identified graphically. By ana-

lyzing these patterns, it may be possible to predict changes in geological conditions

and adjust TBM operation accordingly.

Similarly, scattergrams show correlations between different variables that output

characteristic patterns that can be attributed to either soil, rock, or mixed ground

conditions. By analyzing these correlations, it is possible to identify changes in ge-

ological conditions that affect TBM performance, such as the transition from soft

ground to hard rock.

The use of time series plots and scattergrams can be a powerful tool for correlating

TBM-generated data with geology, allowing for a better understanding of ground

conditions and the ability to adjust TBM operations accordingly. These techniques

can aid in predicting changes in geological conditions and optimizing the tunneling

process, ultimately leading to more efficient and effective tunnel construction.

4.3.5 Tunnel Sections Analyzed

Parameter data from over 20 rings were plotted for 26 different parameter com-

bination comparisons. Below, Table 4.6 lists the rings evaluated in this study.
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Ring Section Selected Rings

Up to 533 461, 477, 513
533 - 610 552, 557, 598
611 - 689 613, 615, 619, 623, 630, 650
690 - 814 720, 784
815 - 942 816, 834, 842, 851, 853, 877, 886
After 942 1134, 1233, 1310

Table 4.6: Rings analyzed in the present study, from Ring 461 to 1310.

4.4 Results

As for each parameter combination there are 20 rings with the same number

of plots, the presented results will display a sample of all the generated plots. This

section will present, for all proposed parameters, a ring classified as rock, soil, rock-like

mixed and soil-like mixed.

4.4.1 Time-series Plots

Time-series plots can help analyze TBM operational data and ground class desig-

nation for accurate geology prediction in real-time. By tracking machine parameters

over time, it is possible to identify changes in geology and TBM performance, as well

as the evolution of ground classes along the tunnel rings. This information can be used

to adjust excavation strategies, refine geological predictions, leading to more accurate

tunnel designs and better risk management. This section will provide examples of

these plots for rock, soil, and mixed ground classes, offering a physical interpretation

for each parameter pair comparison.

Time x Thrust Force x Cutting Wheel Speed of Rotation

The speed at which the cutting wheel rotates is an important parameter that

can provide information about the type of ground being excavated. By comparing

the thrust force and the speed of rotation, distinct patterns can be observed between

different types of ground.

For example, if the speed of rotation increases, it suggests the presence of harder
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material like rock, which requires the machine to work harder and advance at a slower

speed. Conversely, if the speed is more consistent, it indicates the potential presence

of soils. Figures 4-8 and 4-9 illustrate examples of rock, rock-like mixed, soil, and

soil-like mixed rings.
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(a) Ring 842: Rock. Very concentrated "peaks" and "valleys" can be noted. The red arrow indicates the specific
patterns seen in both variables in harder, rock-like material.

(b) Ring 598: Rock-like mixed. Where both rock-like and soil-like patterns can be observed. Arrow 1 indicates a
positive correlation between the parameters, and Arrow 2 shows negative correlation between parameters.

Figure 4-8: Time series plots relating Thrust Force and Cutting Wheel Speed of Rotation for rock
and rock-like mixed.
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(a) Ring 557: Soil. Where cutting wheel speed of rotation can be seen to vary much more starkly (see indication).

(b) Ring 613: Soil-like mixed. Again variability is present. As soil-like material is much more heterogeneous, the
machine must constantly adapt to keep running at consistent speeds.

Figure 4-9: Time series plots relating Thrust Force and Cutting Wheel Speed of Rotation for soil
and soil-like mixed.
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Time x Pressure Force Cutting Wheel x Thrust Force

Thrust force is an important parameter that can predict the total thrust on

Tunnel Boring Machines (TBMs) and potentially relate it to surrounding ground

conditions. To better correlate machine-generated data to ground class classification,

comparing thrust force to pressure force cutting wheel can reveal distinct patterns,

especially between rock and soil. The pressure force cutting wheel is expected to

follow similar patterns to the thrust force. Sample plots for rock, soil, and mixed

rings are illustrated in Figures 4-10 and 4-11.
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(a) Ring 842: Rock. Again one can see significant variation in both parameters, where the "up" and "down" movement
of the curves is prevalent. The red circle indicates a region where one can see similar behavior patterns in both
evaluated parameters.

(b) Ring 598: Rock-like mixed. The red circle indicates a region where one can see overlap between parameters. While
the arrow indicates a region where both pressure force cutting wheel and thrust force are following the same pattern.

Figure 4-10: Time series plots relating Pressure Force Cutting Wheel and Thrust Force for rock and
rock-like mixed.
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(a) Ring 557: Soil. Arrow 1 indicates a region where parameters show overlap, indicating the positive relationship
between them. Arrow 2 shows that both parameters have similar patterns throughout the ring.

(b) Ring 613: Soil-like mixed. The red circle indicates a sample region where both parameters follow similar patterns.

Figure 4-11: Time series plots relating Pressure Force Cutting Wheel and Thrust Force for soil and
soil-like mixed.
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Time x Torque Cutting Wheel x Pressure Force Cutting Wheel

The combination of torque cutting wheel and pressure force cutting wheel can be a

useful metric for predicting geology by correlating machine data to ground conditions.

Both parameters relate to forces applied on the cutterheads. Figures 4-12 and 4-13

demonstrate the correlations for rock and soil-like material.
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(a) Ring 842: Rock. The red circle indicates a sample region where parameter graphs follow the same pattern,
indicating a region of harder, rock-like material.

(b) Ring 598: Rock-like mixed. Arrow 1 indicates parameter overlap, where parameters are strongly positively
correlated. Arrow 2 indicates a sample region where parameter graphs follow the same pattern, without overlap.

Figure 4-12: Time series plots relating Torque Cutting Wheel and Pressure Force Cutting Wheel
for rock and rock-like mixed.
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(a) Ring 557: Soil. Both the red circle and arrow indicate regions of significant parameter overlap, indicative of a
strong positive correlation and softer material.

(b) Ring 613: Soil-like mixed. Here throughout the ring both parameters display a similar pattern and positive
correlation. The red circle indicates a region where parameters overlap and have negative correlations.

Figure 4-13: Time series plots relating Torque Cutting Wheel and Pressure Force Cutting Wheel
for soil and soil-like mixed.
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Time x Penetration x Torque Screw

Torque cutting wheel and penetration/torque screw play distinctive roles in the

excavation process and operate in different sections of the machine. The results

obtained for this parameter comparison will be presented in Figures 4-14 and 4-15.
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(a) Ring 842: Rock. Observations are highly variable for both parameters.

(b) Ring 598: Rock-like mixed. The red circle indicates a sample region where parameters follow the same patterns.

Figure 4-14: Time series plots relating Penetration and Torque Screw for rock and rock-like mixed.
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(a) Ring 557: Soil. Parameters can be seen to overlap as indicated by Arrow 1 and throughout the ring. Arrow 2
shows a region where there is significant changes between parameters before overlapping again.

(b) Ring 613: Soil-like mixed. Throughout the ring, the parameters are strongly correlated and follow an overlapping
distribution.

Figure 4-15: Time series plots relating Penetration and Torque Screw for soil and soil-like mixed.
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Time x Penetration x Thrust Force

In attempting to correlate thrust force with geology, the basic principle is that

harder rock formations will call for greater thrust force for the TBM to advance.

Conversely, softer and weaker ground formations will require less thrust force. This

parameter relationship has not been widely explored in the literature and results

obtained in this thesis will be presented in the following figures (4-16, 4-17).

126



This page intentionally left blank.



(a) Ring 842: Rock. Penetration is seen to greatly fluctuate. Thrust force remains fairly constant at higher values.

(b) Ring 598: Rock-like mixed. Penetration and thrust force follow similar parameters to rock material. Where both
vary significantly at higher values of thrust pressure and lower penetration rates. Arrows 1 and 2 show the changes
in thrust force as penetration increases and decreases.

Figure 4-16: Time series plots relating Penetration and Thrust Force for rock and rock-like mixed.
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(a) Ring 557: Soil. Penetration and thrust force are highly variable, however, follow similar patterns (see arrow 1).
Penetration remains at higher values, sometimes peaking (as indicated in Arrow 2), with thrust force varying.

(b) Ring 613: Soil-like mixed. Penetration varies significantly while thrust force remains fairly constant.

Figure 4-17: Time series plots relating Penetration and Thrust Force for soil and soil-like mixed.
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Time x Penetration x Advance Speed

Penetration and torque screw can offer insights into geological conditions by

identifying changes in ground conditions, such as the presence of harder or softer rock

layers or changes in soil consistency. A decrease in penetration rate with constant

machine advance speed may indicate the machine has encountered a layer of hard

rock, while an increase in penetration rate with constant advance speed may indicate

a softer soil layer. Sample results for rock, soil, rock-like mixed, and soil-like mixed

rings are presented in Figures 4-18 and 4-19.
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(a) Ring 842: Rock. Fluctuations in penetration are observed. Again, the characteristic density and short
"up"/"down" variations can be seen. Meanwhile, advance speed also varies considerably at lower values.

(b) Ring 598: Rock-like mixed. Penetration and thrust force exhibit analogous patterns in rock-like material, with
both parameters exhibiting notable fluctuations at lower advance speed and penetration rates, yet following similar
patterns (as highlighted in red).

Figure 4-18: Time series plots relating Penetration and Advance Speed for rock and rock-like mixed.
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(a) Ring 557: Soil. The overlapping of penetration and advance speed (perfect overlap shown by the red arrow)
indicates a correlation between the two parameters, commonly observed in softer soil-like materials. Here the TBM
is advancing faster without a significant increase in penetration rates.

(b) Ring 613: Soil-like mixed. The intermingling of penetration and advance speed reflects a relationship between the
two parameters. Almost complete overlap between parameters.

Figure 4-19: Time series plots relating Penetration and Advance Speed for soil and soil-like mixed.
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Time x Penetration, Actually Excavated Material Flow Belt, Quantity of

Excavated Material (Advance), Quantity of Excavated Material (Total)

The parameters chosen: Penetration, Actually Excavated Material Flow Belt,

Quantity of Excavated Material (Advance), and Quantity Excavated Material (Total)

are all measurements that can provide valuable insights into encountered ground

conditions. As explained above, penetration measures the distance the TBM advances

into the material in front of the tunnel face. By comparing the total amount of

material excavated with other data, such as borehole logs or geological surveys, a

more accurate picture of ground conditions can be obtained.

Analyzing these parameters together can provide a more complete understanding

of the geological conditions encountered during excavation. For example, if the pene-

tration rate is decreasing while the rate of advance is also decreasing, it may indicate

that the TBM is encountering harder or more challenging geological conditions (i.e.

rock). By analyzing the actually excavated material flow belt, operators can gain

insight into the characteristics of the material being excavated, which can help in

identifying changes in geological conditions.

Overall, by analyzing these parameters together, TBM operators can gain a better

understanding of the geological conditions and make necessary adjustments to the

excavation process. The following graphs will show this relationship for both soil,

rock and mixed rings (see Figures 4-20, 4-21).
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(a) Ring 842: Rock. Here penetration rates are highly variable and do not follow the pattern seen in the other
evaluated parameters.

(b) Ring 598: Rock-like mixed. Penetration rates do not behave in tandem with other parameters (as indicated in
red). However, it is presented in a graphical pattern similar to what is being recorded in the other parameters.

Figure 4-20: Time series plots relating Penetration, Actually Excavated Material Flow Belt, Quantity
of Excavated Material (Advance) and Quantity of Excavated Material (Total) for rock and rock-like
mixed.
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(a) Ring 557: Soil. Here penetration and actually excavated material present similar patterns, almost completely
overlapping.

(b) Ring 613: Soil-like mixed. An overlap can be seen between penetration rates and actually excavated material (see
the indicated circle). However, penetration varies significantly more than in the previous ring.

Figure 4-21: Time series plots relating Penetration, Actually Excavated Material Flow Belt, Quantity
of Excavated Material (Advance) and Quantity of Excavated Material (Total) for soil and soil-like
mixed.
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Time x Actually Excavated Material x Quantity of Excavated Material 1

By analyzing only these two parameters together, in contrast to the previous

example, it is possible to gain clearer insight into the efficiency of the excavation

process, as well as encountered geology. Next, figures 4-22, 4-23 will show an example

for rock, soil, rock-like mixed and soil-like mixed rings respectively.
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(a) Ring 842: Rock. From the graph it is notable that actually excavated material varies widely, while quantity of
excavated material remains relatively constant and low.

(b) Ring 598: Rock-like mixed. Here actually excavated material varies although less than what was seen in rock,
while the quantity of excavated material rises throughout the ring.

Figure 4-22: Time series plots relating Actually Excavated Material and Quantity of Excavated
Material 1 for rock and rock-like mixed.
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(a) Ring 557: Soil. Actually excavated material varies significantly throughout the ring, while quantity of excavated
material rises.

(b) Ring 613: Soil-like mixed. Variation occurs in actually excavated material. Quantity of excavated material remains
fairly low.

Figure 4-23: Time series plots relating Actually Excavated Material and Quantity of Excavated
Material 1 for soil and soil-like mixed.
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Time x Cutting Wheel Speed of Rotation, Cutting Wheel High Pressure,

Thrust Pressure

Cutting Wheel Speed of Rotation, Cutting Wheel High Pressure, and Thrust

Pressure are all critical parameters for TBM operations. Based on aforementioned

physical characteristics, variation in thrust pressure and cutting wheel high pressure

can potentially inform variations in rock or soil conditions, while changes in cutting

wheel speed may indicate alterations in hardness and abrasiveness of the excavated

material. Below this relationship is demonstrated through figures 4-24, 4-25.
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(a) Ring 842: Rock. Parameters vary slightly but remain fairly constant throughout the ring. The red circle indicates
a sample region where both cutting wheel speed of rotation and cutting wheel high pressure is mirrored.

(b) Ring 598: Rock-like mixed. Here a lot of variation can be observed, especially in thrust pressure. The red circle
and arrow indicate regions where there is positive and negative correlation between cutting wheel speed of rotation
and cutting wheel high pressure.

Figure 4-24: Time series plots relating Cutting Wheel Speed of Rotation, Cutting Wheel High
Pressure and Thrust Pressure for rock and rock-like mixed.
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(a) Ring 557: Soil. Variation in parameters can be seen, especially in thrust pressure, consistent with softer material.
Circles 1 and 2 showcase this variability in thrust pressure and the mirroring occurring between cutting wheel speed
of rotation and cutting wheel high pressure.

(b) Ring 613: Soil-like mixed. Cutting wheel speed of rotation and cutting wheel high pressure vary mirroring each
other, while thrust pressure varies significantly.

Figure 4-25: Time series plots relating Cutting Wheel Speed of Rotation, Cutting Wheel High
Pressure and Thrust Pressure for soil and soil-like mixed.

145



Time x Penetration x Torque Cutting Wheel, Pressure Force Cutting

Wheel, Thrust Force, Torque Screw, Actually Excavated Material, Quan-

tity of Excavated Material

Torque cutting wheel, pressure force cutting wheel, and thrust force, alongside

penetration are also measured on the TBM’s cutterhead and inform on the torque

pressure and force applied to the cutterhead, moving it forward. Torque screw, mea-

sured on the machine’s screw conveyor, is responsible for recording material removal

from the tunnel. Actually excavated material indicates the amount of material exca-

vated and transported away from the tunnel face, while quantity of excavated material

represents to the total amount of material excavated, cumulatively, during the entire

tunneling process.

As all of these parameters relate either to machine advancement or the material

being excavated out of the tunnel, analyzing them together was expected to provide

insights on the geological conditions encountered by the TBM. For instance, pene-

tration rates can correlate directly to ground conditions being harder or softer, while

torque cutting wheel and pressure force cutting wheel represent the resistance of the

material being excavated. Thrust force can help identify high ground stress or diffi-

cult geological conditions, while torque screw can indicate the efficiency of the TBM’s

excavation and transport processes.

Overall, these parameters are already used to optimize the tunneling process and

adjust excavation techniques in real-time to the geological conditions encountered by

the TBM. Next, figures 4-26, 4-27 will show the resulting graphs.
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(a) Ring 842: Rock. Here the graphs are very meshed into each other making it difficult to distinguish specific
behavior. However, as seen in previous parameter comparisons, penetration varies significantly and is separated from
the other parameters.

(b) Ring 598: Rock-like mixed. Parameters follow a similar pattern than what was observed in rock, with penetration
reaching higher values. As indicated by the red arrow, all parameters are following similar patterns.

Figure 4-26: Time series plots relating Penetration, Torque Cutting Wheel, Pressure Force Cutting
Wheel, Thrust Force, Torque Screw, Actually Excavated Material and Quantity of Excavated Ma-
terial for rock and rock-like mixed.
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(a) Ring 557: Soil. The parameters follow similar distributions, rising and falling in tandem. Circles 1 and 2 show
how penetration and torque screw are intimately related, where they rise and fall together.

(b) Ring 613: Soil-like mixed. Here behavior similar to soils can be observed, where all parameters seem to follow a
similar pattern throughout the ring.

Figure 4-27: Time series plots relating Penetration, Torque Cutting Wheel, Pressure Force Cutting
Wheel, Thrust Force, Torque Screw, Actually Excavated Material and Quantity of Excavated Ma-
terial for soil and soil-like mixed.
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Time x Thrust Pressure x Thrust Pressure Groups A, B, C, D, E, F

Analyzing thrust pressure alongside corresponding thrust pressure groups (A-

F) can provide insights into the geological conditions encountered by the TBM. For

instance, if the machine is using a higher thrust pressure group, it may indicate that

the geological formation is more resistant to excavation, such as harder rock or mixed

ground conditions. The distinction between thrust pressure groups A through F can

vary based on the machine manufacturer, however, Group A commonly represents the

lowest and Group F the highest thrust forces. Conversely, if the machine is using a

lower thrust pressure group, this may indicate that the geological formation is softer

and easier to excavate.

By analyzing the relationship between thrust pressure and the corresponding pres-

sure groups, alongside thrust pressure, it is possible to gain a better understanding

of the geological conditions and adjust the excavation process accordingly. Below,

figures show the results obtained for this parameter 4-28, 4-29 comparison.
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(a) Ring 842: Rock. Thrust pressures are varying very little, with observations seen to be concentrated at higher
values of pressure.

(b) Ring 598: Rock-like mixed. Thrust pressure varies significantly while remaining constant at higher values of thrust
pressure groups A-F.

Figure 4-28: Time series plots relating Thrust Pressure and Thrust Pressure Groups A, B, C, D, E,
F for rock and rock-like mixed.
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(a) Ring 557: Soil. Thrust pressure groups vary significantly. While thrust pressure varies around a certain threshold.

(b) Ring 613: Soil-like mixed. All thrust pressure groups vary together, reducing variability towards the end of the
ring.

Figure 4-29: Time series plots relating Thrust Pressure and Thrust Pressure Groups A, B, C, D, E,
F for soil and soil-like mixed.
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Time x Thrust Pressure Groups A, B, C, D, E, F

Thrust pressures in tunnel boring machines (TBMs) are classified into different

groups, namely A, B, C, D, E, and F. These groups correspond to different levels

of pressure that the TBM can exert on the tunnel face during excavation. Group A

TBMs are typically used in soft ground conditions and exert a low thrust pressure,

while Group F TBMs are used in hard rock conditions and can exert the highest

thrust pressure. The selection of the appropriate thrust pressure group depends on

the geological conditions of the tunnel being excavated, as well as the size and power

of the TBM being used.

Thrust pressure groups A through F as mentioned above, are the different levels

of thrust pressure used to excavate through different ground conditions. They are

chosen based on anticipated geological conditions, with harder or more heterogeneous

formations requiring higher thrust pressure groups and softer or more homogeneous

ground requiring lower thrust pressure groups. Below a sample from rock, soil, rock-

like mixed and soil-like mixed rings is presented (see Figures 4-30 and 4-31).
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(a) Ring 842: Rock. There is minimal variation in the thrust pressure groups, and most of the observations indicate
higher pressure values.

(b) Ring 598: Rock-like mixed. Thrust pressure groups show a considerable degree of variation but remains consistent
at higher pressure levels.

Figure 4-30: Time series plots relating Thrust Pressure Groups A, B, C, D, E, F for rock and rock-
like mixed.
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(a) Ring 557: Soil. There is notable variability among different groups of thrust pressure.

(b) Ring 613: Soil-like mixed. All groups of thrust pressure exhibit similar patterns of variation, resulting in reduced
variability towards the middle and end of the ring.

Figure 4-31: Time series plots relating Thrust Pressure Groups A, B, C, D, E, F for soil and soil-like
mixed.
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4.4.2 Scatter Plots

Scattergrams are crucial in predicting geology and classifying ground conditions

for TBM operations. By plotting variables against each other, they enable pattern

observation and outlier identification. This aids in making informed decisions about

operating parameters.

The section includes illustrations of the selected ground classes, including both

rock-like and soil-like mixed rings. Each of the 17 proposed scattergrams, as well

as histogram pairings for each parameter, will be presented. For each comparison of

parameter pairs, graphs for rock, soil, and mixed ground classes will be displayed, in

that order. Additionally, physical interpretations for each graph are proposed.

To clarify the terminology used to describe the main characteristics of data points

in a scattergram, Table 4.7 is presented. This table defines outlier, cluster, and

correlation, which are important terms to understand when interpreting scattergrams.

By understanding these terms, we can better analyze and interpret the relationships

between variables represented in scattergrams.

Torque Cutting Wheel x Pressure Force Cutting Wheel

A positive correlation between torque cutting wheel and pressure force cutting

wheel can indicate more resistant geological formations that require increased torque

and pressure to advance the TBM, while a negative correlation may suggest less

resistant ground formations such as soil. Visual representations of these correlations

for each ground class can be found in Figures 4-32 and 4-33.
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Representative Image Terminology

Highly concentrated

Concentrated

Somewhat spread-out

Spread-out

Table 4.7: Terminology used to describe characteristics of data-points.
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(a) Ring 842: Rock. Data-points are highly concentrated at high values of pressure force cutting wheel and torque
cutting wheel. Also, considerable variability can be observed, with sparse data-points around the edges of data
clusters.

(b) Ring 598: Rock-like mixed. The data-points are concentrated around higher values of pressure force cutting wheel
and torque cutting wheel.

Figure 4-32: Scatter plots and histograms relating Torque Cutting Wheel and Pressure Force Cutting
Wheel for rock and rock-like mixed.
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(a) Ring 557: Soil. Data-points are concentrated at a smaller range of torque cutting wheel, with a defined oval shape.

(b) Ring 613: Soil-like mixed. The data are concentrated within a specific range of torque cutting wheel, without
recording of outlier values.

Figure 4-33: Scatter plots and histograms relating Torque Cutting Wheel and Pressure Force Cutting
Wheel for soil and soil-like mixed.
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The data-point concentration observed in rock indicates that geological formation

is relatively consistent in resistance to excavation, outputting highly concentrated

data points around higher values of both parameters.

On the other hand, the more spread-out data points in the scattergram for soil

suggest that the geological formation is highly variable, requiring fluctuating levels of

torque and pressure to excavate. Analyzing the relationship between torque cutting

wheel and pressure force cutting wheel can provide valuable insights into the geological

conditions and potentially inform a ground class distinction system.

Thrust Force x Pressure Force Cutting Wheel

As previously discussed, higher pressure force cutting wheel indicates resistant

material while the contrary would indicate softer geological formation. Below a sample

from rock, soil, rock-like mixed and soil-like mixed rings is presented (see Figures 4-34,

4-35).
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(a) Ring 842: Rock. Data are highly concentrated around higher values of thrust force.

(b) Ring 598: Rock-like mixed. Concentration can be seen at lower thrust-force, while pressure force cutting wheel
remains high.

Figure 4-34: Scatter plots and histograms relating Thrust Force and Pressure Force Cutting Wheel
for rock and rock-like mixed.
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(a) Ring 557: Soil. Data-points are highly concentrated around lower values of both thrust force and pressure force
cutting wheel.

(b) Ring 613: Soil-like mixed. Data-points are concentrated around a wide range of pressure force cutting wheel
values.

Figure 4-35: Scatter plots and histograms relating Thrust Force and Pressure Force Cutting Wheel
for soil and soil-like mixed.
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Penetration x Torque Screw

It has been noted that if penetration rate is raised against low torque screw

values, this may indicate that the material being excavated is softer and easier to

move through (i.e. soil, soil-like mixed rings). Conversely, if penetration is low and

torque screw is high, the indication is that the material would be harder and more

difficult to excavate. If there is a strong positive correlation between penetration

and torque screw, this may suggest that the TBM is encountering consistent and

homogeneous geology (typically rock). However, if the scattergram shows a lot of

variation or no clear pattern, it may indicate that the geological conditions are more

complex and heterogeneous (typically soils). The following images will show a sample

of this relationship for each chosen ground class (Figures 4-36, 4-37).
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(a) Ring 842: Rock. Observations are highly concentrated at lower values for both torque screw and penetration.

(b) Ring 598: Rock-like mixed. Data-points are concentrated at lower values of torque screw and penetration, however
more sparse when compared to rock rings.

Figure 4-36: Scatter plots and histograms relating Penetration and Torque Screw for rock and rock-
like mixed.
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(a) Ring 557: Soil. Distinct vertical lines can be seen, typical of soil rings where there are fixed penetration rates,
determined by the machine operator. Data-points are concentrated around higher values of penetration and lower
torque screw values.

(b) Ring 613: Soil-like mixed. The vertical lines, where penetration rates were fixed can still be seen, indicating that
there is soil-like material. Data-points are highly concentrated at higher penetration and lower torque screw values.

Figure 4-37: Scatter plots and histograms relating Penetration and Torque Screw for soil and soil-
like mixed. 169



Penetration x Actually Excavated Material

Penetration as was just mentioned is measuring the machine advancement in mil-

limeters per rotation. Actually excavated material relates to material being removed

and transported out of the tunnel face, measured in cubic meters (m³).

Both are measured through sensors, with penetration measured in the cutterhead

and actually excavated material measured using load cells or pressure sensors on the

conveyor system transporting material out of the tunnel. The resulting graphical

representations are as presented below (figures 4-38, 4-39).
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(a) Ring 842: Rock. Data-points are highly concentrated around low values of both penetration and actually excavated
material.

(b) Ring 598: Rock-like mixed. Concentration is seen at low values for both parameters.

Figure 4-38: Scatter plots and histograms relating Penetration and Actually Excavated Material for
rock and rock-like mixed.
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(a) Ring 557: Soil. Again vertical lines, suggesting controlled values of penetration rates. Data are highly concentrated
at lower values of actually excavated material and higher penetration rates.

(b) Ring 613: Soil-like mixed. Vertical lines can be seen especially around lower values of penetration. The distribution
is somewhat spread out.

Figure 4-39: Scatter plots and histograms relating Penetration and Actually Excavated Material for
soil and soil-like mixed.
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Penetration x Advance Speed

Penetration, as explained before measures the distance that the TBM excavates

per revolution of the cutterhead, while advance speed is the rate at which the TBM

advances through the tunnel face, measured in meters per minute (m/min). Both pa-

rameters are calculated directly on the machine during excavation, where penetration

is recorded in the cutterhead and advance speed through several different techniques

including lasers and GPS sensors.

As a general rule, rock formations tend to have lower penetration rates and slower

advance speed due to high material resistance to excavation. In reverse, soils usu-

ally permit for higher penetration rates and faster advance speed based on the lower

strength and resistance to excavation. Examining the scattergram distributions (pre-

sented in figures 4-40 and 4-41) show tendencies that provide insights into the nature

of the ground conditions being excavated.
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(a) Ring 842: Rock. Data-points are concentrated at lower values of both penetration and advance speed.

(b) Ring 598: Rock-like mixed. Concentration happens at higher values of penetration and advance speed.

Figure 4-40: Scatter plots and histograms relating Penetration and Advance Speed for rock and
rock-like mixed.
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(a) Ring 557: Soil. Penetration varies widely and data-points are concentrated around higher values of advance speed.

(b) Ring 613: Soil-like mixed. Advance speed and penetration vary significantly and are highly concentrated around
higher values for both parameters.

Figure 4-41: Scatter plots and histograms relating Penetration and Advance Speed for soil and soil-
like mixed.
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Penetration x Thrust Force

Measuring and analyzing the relationship between penetration and thrust force

can assist TBM operators in optimizing the excavation process and identifying areas of

the tunnel where geological conditions may require special attention. Below, samples

from each studied ground class will be presented in figures 4-42, 4-43.
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(a) Ring 842: Rock. Data-points are highly concentrated at the highest values of thrust force, while penetration
remains low.

(b) Ring 598: Rock-like mixed. Concentration around mid-high values of thrust force and lower values of penetration.
Extremely similar to what was seen in rock.

Figure 4-42: Scatter plots and histograms relating Penetration and Thrust Force for rock and rock-
like mixed.
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(a) Ring 557: Soil. Distinct vertical lines can be seen suggesting fixed values for penetration. Thrust force remains
fairly constant and low throughout the ring.

(b) Ring 613: Soil-like mixed. Data-points are highly concentrated around higher values of thrust force and penetra-
tion.

Figure 4-43: Scatter plots and histograms relating Penetration and Thrust Force for soil and soil-like
mixed.
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Penetration x Screw Conveyor Speed Measuring

Comparing these two parameters can potentially provide insights on the exca-

vation process, revealing the TBM’s efficiency in the excavation process. Generally,

higher screw conveyor speed would convey higher rates of excavated material, which,

added to higher penetration rates, should indicate a faster excavation progress.The

images below show a sample of this parameter comparison for each of the evaluated

ground classes (figures 4-44, 4-45).
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(a) Ring 842: Rock. Data-points are highly concentrated at low penetration and screw conveyor speed measuring.

(b) Ring 598: Rock-like mixed. Data-points are concentrated around higher penetration and screw conveyor speed
measuring values.

Figure 4-44: Scatter plots and histograms relating Penetration and Screw Conveyor Speed Measuring
for rock and rock-like mixed.
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(a) Ring 557: Soil. Distinct vertical lines showing that penetration rates are fixed around certain values. Screw
conveyor speed measuring rises alongside penetration. Little outlier data-points are observed.

(b) Ring 613: Soil-like mixed. Penetration rates are fixed around certain values while screw conveyor speed measuring
rises alongside penetration rates.

Figure 4-45: Scatter plots and histograms relating Penetration and Screw Conveyor Speed Measuring
for soil and soil-like mixed.
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Penetration x Screw Conveyor Pressure

Evaluating the relationship between these two parameters can provide insight on

geology. The pressure required to move excavated material varies widely depending

on the type and condition of the soil or rock. As a general rule, softer soils require

less pressure to move, while harder ground conditions will require more. Next, the

sample graphs for each of the chosen ground classes will be presented (figures 4-46,

4-47).
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(a) Ring 842: Rock. The data-points are highly concentrated at low values of penetration and screw conveyor pressure.

(b) Ring 598: Rock-like mixed. The data-points are highly concentrated around higher values of penetration and
screw conveyor pressure.

Figure 4-46: Scatter plots and histograms relating Penetration and Screw Conveyor Pressure for
rock and rock-like mixed.
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(a) Ring 557: Soil. The scatter plot displays noticeable vertical lines, indicating that penetration rates remain constant
at specific values. The screw conveyor pressure rises in tandem with the penetration rates. Few data points that
deviate from the trend-line are present.

(b) Ring 613: Soil-like mixed. Penetration rates remain constant at specific values, while screw conveyor pressure
slightly rises in conjunction with penetration.

Figure 4-47: Scatter plots and histograms relating Penetration and Screw Conveyor Pressure for soil
and soil-like mixed.
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Penetration x Earth Pressure 1

This relationship is especially important for correlating TBM-generated data

with ground conditions on-site. Next, the resulting graphical representation of this

comparison parameters in presented in figures 4-48 and 4-49.
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(a) Ring 842: Rock. Data-points are highly concentrated around lower values for both penetration and earth pressure.

(b) Ring 598: Rock-like mixed. Data-points are spread-out within a threshold of penetration rates and lower earth
pressure.

Figure 4-48: Scatter plots and histograms relating Penetration and Earth Pressure 1 for rock and
rock-like mixed.
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(a) Ring 557: Soil. Somewhat spread-out data-points with vertical lines indicating fixed penetration rates and lower
values of earth pressure 1.

(b) Ring 613: Soil-like mixed. Data-points are somewhat spread-out around higher values of both penetration and
earth pressure 1. Vertical lines can again be seen, indicating fixed values for penetration rates.

Figure 4-49: Scatter plots and histograms relating Penetration and Earth Pressure 1 for soil and
soil-like mixed.
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Penetration x Quantity Excavated Material 1 (Total)

Comparing penetration and quantity of excavated material 1 (total) can give

insights into the geology encountered during tunneling. In harder rock formations,

the TBM will advance at a slower rate excavating less material per unit of time,

which results in a lower penetration rate and lower quantity of excavated material 1

(total). For softer soils, the TBM may advance at a faster rate and excavate more

material per unit of time, resulting in a higher penetration rate and higher quantity

of excavated material 1 (total). The graphs presented next show a sample for each of

the evaluated ground classes (figures 4-50, 4-51).
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(a) Ring 842: Rock. Distinct columnar shape is displayed, where observations are concentrated around low penetration
rates and varying quantity of excavated material (as it is a cumulative parameter).

(b) Ring 598: Rock-like mixed. Observations are sparse but record higher penetration rates.

Figure 4-50: Scatter plots and histograms relating Penetration and Quantity Excavated Material 1
(Total) for rock and rock-like mixed.
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(a) Ring 557: Soil. Observations vary considerably around specific values of penetration (seen through the presence
of vertical line concentrating data-points). Distinct "S" shape is observed.

(b) Ring 613: Soil-like mixed. The data-points show considerable variation around specific values of penetration,
which can be observed through the presence of a vertical line concentrating the data-points. Distinct "S" shape is
observed.

Figure 4-51: Scatter plots and histograms relating Penetration and Quantity Excavated Material 1
(Total) for soil and soil-like mixed.
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Penetration x Quantity Excavated Material 2 (Advance)

Measured in millimeters per revolution, penetration notes the distance advanced

by the TBM during a set time period. On the other hand, quantity of excavated

material 2 (Advance) measures the volume of material excavated by the TBM during

an equivalent period of time, typically calculated in cubic meters per revolution or

per minute.The images below show a sample of this parameter comparison for each

of the evaluated ground classes (figures 4-52 and 4-53).
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(a) Ring 842: Rock. Distinct columnar shape is displayed, where observations are concentrated around low penetration
rates and varying quantity of excavated material (as it is a cumulative parameter).

(b) Ring 598: Rock-like mixed. Observations are sparse but record higher penetration rates.

Figure 4-52: Scatter plots and histograms relating Penetration and Quantity Excavated Material 2
(Advance) for rock and rock-like mixed.
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(a) Ring 557: Soil. Observations vary considerably around specific values of penetration (seen through the presence
of vertical line concentrating data-points). Distinct "S" shape is observed.

(b) Ring 613: Soil-like mixed. The data-points show considerable variation around specific values of penetration,
which can be observed through the presence of a vertical line concentrating the data-points. Distinct "S" shape is
observed.

Figure 4-53: Scatter plots and histograms relating Penetration and Quantity Excavated Material 2
(Advance) for soil and soil-like mixed.
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Penetration x Quantity Excavated Material 2 (Total)

As previously discussed, penetration measures, in mm/rpm, the distance ad-

vanced by the TBM, while quantity of excavated material 2 (total) is looking at the

total amount of material being excavated (measured in cubic meters). This rela-

tionship is basically identical to the two parameter comparisons immediately stated

above, thus provides similar insights on geology. Figures 4-54 and 4-55 present an

example of the comparison between penetration and quantity of excavated material

2 (total) for soil, rock, and mixed rings.
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(a) Ring 842: Rock. Distinct columnar shape is displayed, where observations are concentrated around low penetration
rates and varying quantity of excavated material (as it is a cumulative parameter).

(b) Ring 598: Rock-like mixed. The recorded observations are infrequent, but they exhibit elevated levels of penetra-
tion.

Figure 4-54: Scatter plots and histograms relating Penetration and Quantity Excavated Material 2
(Total) for rock and rock-like mixed.
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(a) Ring 557: Soil. Observations vary considerably around specific values of penetration (seen through the presence
of vertical line concentrating data-points). Distinct "S" shape is observed.

(b) Ring 613: Soil-like mixed. The data-points show considerable variation around specific values of penetration,
which can be observed through the presence of a vertical line concentrating the data-points. Distinct "S" shape is
observed.

Figure 4-55: Scatter plots and histograms relating Penetration and Quantity Excavated Material 2
(Total) for soil and soil-like mixed.
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Advance Speed x Screw Conveyor Speed Measuring

Two important parameters measured by the TBM during excavation are advance

speed (TBM’s forward movement) and screw conveyor speed (movement of excavated

material away from TBM). Sensors on the machine record data on speed, torque, and

power consumption, and the generated data are used to monitor TBM performance

and parameter adjustment to optimize the tunneling process. The figures (figures

4-56 and 4-57) below show the resulting graphs for all the evaluated ground classes

(rock, soil, rock-like mixed and soil-like mixed rings).
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(a) Ring 842: Rock. Distinct lines can be seen at certain advance speed rates, where observations are concentrated.
Varies significantly in rock.

(b) Ring 598: Rock-like mixed. Most observations are concentrated at certain advance speed rates, as seen by the
distinct vertical lines.

Figure 4-56: Scatter plots and histograms relating Advance Speed and Screw Conveyor Speed Mea-
suring for rock and rock-like mixed.
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(a) Ring 557: Soil. Certain advance speed rates display distinct vertical lines, indicating the concentration of most
observations.

(b) Ring 613: Soil-like mixed. Concentration of most observations is evident at distinct vertical lines corresponding
to certain advance speed rates.

Figure 4-57: Scatter plots and histograms relating Advance Speed and Screw Conveyor Speed Mea-
suring for soil and soil-like mixed.
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Thrust Force x Cutting Wheel Speed of Rotation

In comparing thrust force and cutting wheel speed of rotation, important indica-

tors of TBM performance, can provide understandings on ground conditions through-

out tunnel excavation. Thrust force determines the force exerted by TBM’s thrust

cylinders against the tunnel face. While cutting wheel speed of rotation measures

the rotational speed of the cutting wheel, one of the main components responsible for

excavating the tunnel face.

As both parameters have been explored in previous graphs, their comparison is

expected to present insights into the geological conditions surpassed by the TBM.

Figures 4-58 and 4-59 show sample results for the observed ground classes (rock,

rock-like mixed, soil and soil-like mixed rings).
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(a) Ring 842: Rock. High concentration of data-points around the highest value of thrust force. Cutting wheel speed
of rotation is more variable.

(b) Ring 598: Rock-like mixed. Most observations are concentrated around a thrust pressure threshold, where cutting
wheel speed of rotation varies.

Figure 4-58: Scatter plots and histograms relating Thrust Force and Cutting Wheel Speed of Rota-
tion for rock and rock-like mixed.
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(a) Ring 557: Soil. Observations concentrated around certain thresholds of both thrust force and cutting wheel speed
of rotation.

(b) Ring 613: Soil-like mixed. The data points are concentrated around specific values of both thrust force and cutting
wheel speed of rotation.

Figure 4-59: Scatter plots and histograms relating Thrust Force and Cutting Wheel Speed of Rota-
tion for soil and soil-like mixed.
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4.5 Interpretation & Conclusions

The aim of this chapter was to find ways to aid the prediction of geological

conditions ahead of the TBM tunnel face, using the machine’s performance data. Two

methods were proposed to achieve this: employing time-series graphs and scatterplots.

Time-series graphs showed distinct patterns between the chosen ground classes

(rock, soil, rock-like mixed and soil-like mixed). Rock rings exhibited significantly

more variability when parameters were plotted, changing with higher frequency than

in other ground classes, making the time-series plots for rock characteristically com-

posed of short and compact "peaks" and "valleys". Also, in rock, the variability seems

to be constrained around shorter ranges for the observed parameter comparisons. In

soil rings, data presented wider value ranges but often showed a positive correlation

between parameters, with some parameter pairs completely overlapping. Rock-like

mixed and soil-like mixed rings showed data-point concentration at wider ranges,

with positive correlation between parameters, similarly to what was seen in soil rings.

A parameter comparison that exemplifies these patterns is Time x Penetration and

Advance Speed (see Figures 4-18 and 4-19).

Scatterplots, also revealed significant differences between the compared ground

classes (rock, soil, rock-like mixed and soil-like mixed), and since patterns were more

easily discernible, they were deemed the best tool to be used for classifying rings.

Rock rings had characteristic highly concentrated observations, where data clustered

around high-density regions within the plot. In contrast, soil rings had data-points

that were somewhat spread-out and variable, with wider ranges of observation values

and less concentration or clustering around specific thresholds. Rock-like mixed rings

showed similar data-point concentration as in rock rings, however significantly more

spread-out than what is seen in rock. Soil-like mixed rings followed patterns similar

to soil, with somewhat spread-out data-points and wider ranges of observations. A

particular case where this can be seen is in the comparison between Penetration x

Screw Conveyor Speed Measuring (Figures 4-44 and 4-45).

Out of all the parameters compared in the scattergrams, five parameter pairs have
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been identified as particularly insightful and will be used in the Chapter 5 to develop

an AI/ML-based ground class prediction system.

The first comparison that offers valuable insights is Penetration x Torque Screw.

When penetration rates are high and torque screw values are low, the material is

likely to be softer and easier to excavate. On the other hand, low penetration rates

and high torque screw values suggest harder, rock-like materials. For this parameter

comparison, rock graphs showed highly concentrated observations around specific

thresholds of both parameters, which was characteristic for rock rings throughout

the scattergrams. For soils, data-points were located at a wider range of values for

both parameters. Also, vertical lines can be seen forming within the data-points,

which is consistent with penetration rates being controlled by operators. In rock-like

mixed rings, there is still considerable concentration around a certain value-range but

data-points fluctuated more widely than what was seen in rock. For soil-like mixed

rings, the distribution was somwhat concentrated, with values ranging similarly to

soils, also showing the observed vertical lines (fixed penetration rates).

The second comparison is for Penetration x Screw Conveyor Speed Measuring

which offered insight into the efficiency of the excavation process and the behavior of

the material being extracted from the tunnel face. The graphs reveal that increased

screw conveyor speeds that do not result in higher penetration rates indicate harder

material (rock), while in softer soils, higher speeds directly result in higher penetra-

tion rates. Here, rock rings showed again highly concentrated data-points, clustering

around lower thresholds of both parameter values. In soil rings, the data-points were

located on a broader spectrum of values for both parameters, concentrating around

higher penetration rate values. In addition, vertical lines again appeared within the

data-points, which reflects with the operators directly managing penetration rates.

In rock-like mixed rings, there was significant concentration around a certain range

of values, but the data points showed more variability than in pure rock rings. As

for soil-like mixed rings, the distribution was somewhat concentrated around certain

thresholds, within somewhat lower ranges than that of soils.

The third comparison, Penetration x Earth Pressure 1, is highly relevant for exca-

215



vation, where Earth Pressure 1 measures the resistance exerted on the TBM during

the excavation process. In rock rings, the characteristically highly-concentrated data-

point observations are present, with high-density clustering around lower penetration

rate and high values of Earth Pressure 1. For soils, data-points are concentrated

around higher value penetration and mid to low-ranging values of Earth Pressure

1. Again, characteristic vertical lines were observed, indicating fixed values of pene-

tration rate. Rock-like mixed rings showed spread-out data-points that varied much

more widely, with some clustering around lower values of both parameters. Soil-like

mixed rings, similarly to rock-like mixed, had somewhat spread-out observations how-

ever having some concentration around higher values of penetration rate and Earth

Pressure 1.

For Advance Speed x Screw Conveyor Speed Measuring, rock displayed concen-

trated observations around lower values of both parameters. Here distinct vertical

lines can be seen in all ground classes, suggesting that operators have set values for

advance speed. In soils, the data are spread-out across a wide range of advance speed

values, while screw conveyor speed measuring is shown to increase slightly with in-

creasing values of advance speed. For rock-like mixed rings, observations are more

spread-out, more similar to what was displayed in soil rings. Soil-like mixed, also

resembling data-point distributions present in soil rings were more spread-out along

the advance speed axis, remaining at lower values of screw conveyor speed.

The fifth and final comparison is for Thrust Force x Cutting Wheel Speed of Ro-

tation. This comparison is vital for understanding the excavation process in different

geological conditions and determining specific ground classes. The correlation be-

tween the two parameters suggests that as thrust force increases and cutting wheel

speed decreases, the machine is likely encountering hard material (rock). Conversely,

for soils, higher cutting wheel speed is noted, as well as a concentration of data-

points at lower thrust force values. Here in all of the rings, an interesting inverted

"L" shape of the data plots is notable (especially clear in rock and soil rings). For

rock rings, data-points are highly concentrated at higher values of both parameters,

with a clear inverted "L". Here, most observations for thrust force lie near 45,000
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kN. In soils, data-points remain in a thrust force range of 20,000-30,000 kN. Here the

characteristic inverted "L" can also be observed, although much smaller in size than

other ground classes. Rock-like mixed rings showed highly-concentrated data-points

in the threshold between 20,000-35,000 kN, and while a shape similar to an inverted

"L" can be seen, it is not as clear as in rock and soil rings. For soil-like mixed rings,

observations are highly-concentrated at higher thrust force (around 35,000 kN) and

cutting wheel speed of rotation.
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Chapter 5

Novel Approach to Improving

Geological Prediction in TBM

Operations

5.1 Intent

As presented in previous chapters, the Porto Metro Project has been a significant

infrastructure development for the city of Porto, Portugal. With tunnel construction

on the rise, the needs for increased productivity and safety in the construction process

are paramount. And, at the basis of this is information on geology.

AI/ML models have been used on TBM-generated data to classify and label tunnel

sections, furthering efforts to streamline tunneling automation. Although outputting

coherent results and seen as an instrumental tool in automating tunnel operations,

these models have not been proven using real-time data and have been speculated to

generate significant confirmation biases. The accuracy of these models can also be

limited by unreliable labels generated.

To overcome this limitation, the present chapter aims to show how the use of

scattergrams can aid in the validation of labels generated by a Confidence Learning

(CL) model developed in collaboration with a peer researcher, Saadeldin Moustafa.
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With the CL model both high and low-quality labels are generated. These were then

compared to the ground classification labels generated by the scattergrams.

5.2 Methodologies

5.2.1 Confidence Learning

Confidence learning, or CL, is a powerful machine learning technique that assigns

a confidence value to each labeled example in a data-set, indicating the algorithm’s

certainty in classifying each label [Northcutt et al., 2021b, Zhang et al., 2014]. Tra-

ditional machine learning approaches assume that labeled points in the data-set are

accurate, which can lead to poor model performance due to mislabeled or incor-

rectly labeled data-points [Menardi and Torelli, 2014]. To address this, CL applies a

probabilistic framework that allows the algorithm to "learn" from both correct and

incorrectly labeled data-points [Northcutt et al., 2021b].

Each sample point in the data-set is assigned a confidence value that denotes the

degree of uncertainty associated with that particular label [Northcutt et al., 2021a,

Xia et al., 2021]. A low confidence value is assigned to a mislabeled example, indicat-

ing the algorithm’s uncertainty in that label determination [Xia et al., 2021]. Con-

versely, a high confidence rate is assigned to a correctly labeled example, indicating the

algorithm’s confidence in that classification [Grunwald et al., 1998] [Xia et al., 2021].

The confidence values are then used to determine the weight of the contribu-

tion of each data-point to model training efforts [Northcutt et al., 2021a]. High

confidence labels have a greater effect on the model, while low confidence labels

are given a smaller influence on the overall performance [Northcutt et al., 2021b].

This enables the algorithm to focus on improving from the most relevant examples

[Northcutt et al., 2021a, Zerilli et al., 2022].

CL is a widely used and powerful machine learning technique that can be ef-

fectively applied in the classification of tunnel rings based on geological conditions

through the analysis of data generated by tunnel boring machines (TBMs). The
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Confident Learning (CL) framework was implemented in the Porto Metro data-set

using a systematic approach that involves two main steps: counting and rank &

prune [Northcutt et al., 2021a, Bardhan et al., 2021]. Initially, the CL model out-

puts a vector of probabilities for classification labels [Northcutt et al., 2021a], rock,

mixed, and soil, for the particular Porto Metro case study. It is interesting to

note that confidence learning can include both supervised and unsupervised methods

[Loquercio et al., 2020].

In supervised learning, the confidence model is trained using the same input fea-

tures as the main model, but with the target variable replaced by the residual errors

between the predicted and actual values obtained [Loquercio et al., 2020]. This is

often done using a regression model, such as linear regression or gradient boosting

(e.g. XGBoost, LightGBM, CatBoost, etc.) [Shehadeh et al., 2021].

Gradient Boosting is an iterative machine learning algorithm that produces

an ensemble of weak prediction models, usually decision trees, to form a final

predictive model [Zhang and Zhan, 2017].

Each tree is trained to predict the residual error of the previous model, with the

goal of minimizing a loss function through gradient descent optimization [Bottou, 2010].

The resulting model is a combination of all the individual predictions [Bottou, 2010].

Gradient boosting has many applications, including ranking, recommendation sys-

tems, being well-suited for complex data patterns and is known for its high predictive

accuracy [Shehadeh et al., 2021]. When it comes to unsupervised learning, different

methods are available for training the confidence model, such as clustering or density

estimation [Northcutt et al., 2021a].

The Porto Metro case study employed supervised machine learning algorithms,

specifically two gradient booster models, Extreme Gradient Boosting (XGBoost) and

Adaptive Boosting (Adaboost), used to derive out-of-sample probabilities.

Extreme Gradient Boosting, or simply XGBoost, is a fast and effective en-

semble learning algorithm that leverages gradient boosting to create high-

performing predictive models [Wade and Glynn, 2020]. It uses decision trees

to combine multiple weak models and minimize a loss function through gra-
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dient descent optimization [Wade and Glynn, 2020]. XGBoost is well-known

for its capability to handle large datasets with high-dimensional features

[Wade and Glynn, 2020].

Adaptive Boosting (Adaboost) is a ML algorithm that combines multiple

weak classifiers into a strong classifier [Hatwell et al., 2020]. The algorithm

iteratively trains weak classifiers on different subsets of the training data and

adjusts the weights of the misclassified samples to emphasize the importance

of these samples in subsequent iterations [Hatwell et al., 2020]. By doing so,

AdaBoost focuses on the hard-to-classify instances, which results in a more

accurate classification model [Hatwell et al., 2020]. Weak classifiers are then

combined into strong ones by weighted averaging [Hatwell et al., 2020].

Below, an overview of the model’s methodology is explained:

1. Counting: The first step involves counting data points that are likely to belong

to a different label class than their initially assigned class. This count helps the

CL framework calculate the joint probability distribution between "noise labels"

and "true labels," as well as a noise transition matrix [Northcutt et al., 2021a].

2. Rank & Prune: CL framework cleans the data-set. This is done through two

distinct approaches: completely removing mislabeled data points, or eliminating

data points based on their probability ranking [Northcutt et al., 2021a]. The

probability ranking is determined by a label quality score, which is calculated

based on the probability of a data point belonging to the initial noisy class as

determined in Step 1 [Northcutt et al., 2021a]. This score serves as an indicator

of the reliability of a data point and helps in deciding whether to keep or remove

it from the training data-set.

3. Learning: The final step of the CL framework involves the algorithm using

the now "cleaned" data-set to train and learn the original machine learning
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model. This step is crucial as it utilizes the most relevant and accurate ex-

amples in the data-set to further improve the model’s performance. By re-

moving the mislabeled or low-confidence data points from the training pro-

cess, the model can better focus on the most informative and reliable examples

[Northcutt et al., 2021a].

During the learning process, the algorithm updates the model’s parameters by

minimizing the chosen loss function [Zhang et al., 2014]. This process involves opti-

mizing the model’s weights and biases to minimize the difference between the pre-

dicted and actual labels for each example in the data-set [Northcutt et al., 2021b].

By utilizing the high-confidence examples more heavily in the training process, the

model can better generalize to new, unseen data and make more accurate predictions

[Grunwald et al., 1998].

The learning step of the CL framework is critical in improving the machine learning

model’s accuracy and generalization capabilities [Grunwald et al., 1998]. By utilizing

a cleaned data-set with high-confidence examples, the algorithm can better learn from

informative data points and disregard potentially erroneous examples, resulting in a

more robust and reliable model [Zerilli et al., 2022].

In the context of confidence learning models, high and low confidence labels are

used to describe the level of certainty that a model has in its predictions for a given

data point [Grunwald et al., 1998]. High confidence labels are associated with data

points that have a probability score close to 1, indicating a high degree of certainty

that the label is correct [Grunwald et al., 1998]. Whereas low confidence labels are as-

sociated with a probability score close to 0, indicating that the algorithm is uncertain

in its classification [Grunwald et al., 1998].

5.2.2 Scattergram Approach

The use of scatterplots to observe ground condition patterns based on TBM data

can be a valuable technique for geology prediction. By comparing different machine

parameter pairs, such as Penetration x Torque Screw, Penetration x Screw Conveyor
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Speed Measuring, Advance Speed x Screw Conveyor Speed Measuring, Thrust Force

x Cutting Wheel Speed of Rotation, and Penetration x Earth Pressure 1, we can

gain insight into the type of ground the machine is going through. As presented

in Chapter 4, these observations show distinct patterns that can be used to verify

ground classifications outputted by the confidence learning model presented.

From this analysis, we can observe that rock and rock-like material exhibit a more

concentrated and dense data-point distribution than soil and soil-like rings. This

means that the data points in a scatterplot for rock tend to cluster more tightly

around a central point, while soil data points are more spread out (exemplified in

Table 4.7).

The use of scatterplots and parameter comparisons is a powerful tool for observing

ground condition patterns and verifying machine-learning based ground classification.

In the following sections, both the confidence learning approach and the scatterplot

method will be presented for a series of high and low-confidence labels, which will

subsequently be compared. By understanding the strengths and weaknesses of each

method, we can better understand how they can be used together to improve our

understanding of ground conditions and optimize the tunneling process.

5.3 Applications

5.3.1 Confidence Learning Labels

For the Porto Metro case study, the labels generated by the Confidence Learning

(CL) framework were evaluated based on their quality score, which is a measure of

the probability that a data point belongs to a certain ground class. The quality score

is obtained in the first step of the CL framework, where the algorithm calculates the

joint probability distribution between the original noisy labels and the true labels

generated by the model.

When the quality score is superior to 90%, the label is considered to be high-

confidence. Meaning there is a high probability that the ground class assigned to
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that data point is correct. Conversely, when the quality score is less than 90%,

the label is considered to be low-confidence. Indicating a lower probability that the

ground class assigned to the data point is correct.

The choice of the 90% threshold for defining a label as either high or low-confidence

is based on the evaluation of the trade-off between precision and recall. A 90% high-

confidence threshold allows for significant precision in evaluating machine ground

classification, meaning that most high-confidence labels can be deemed correct. How-

ever, this may lead to a lower recall, meaning that some of the low-confidence labels

that are actually correct may be discarded.

Below, both high and low-confidence labels will be presented, with the scatter-

gram method being applied to verify ground classification outputted by the machine

learning framework. Lastly, a comparison between the two methods will be discussed.

High Confidence Labels

In the Confidence Learning (CL) model described earlier, the highest confidence

labels obtained for each ground class were generated and mapped, as shown in Table

5.1. These high-confidence labels were selected based on the model’s predictions and

were used to classify each verified tunnel section (ring).

Table 5.1: High Confidence Labels.

Rings Label Quality (%) Ground Class
461 98.60

Rock
842 99.91
1134 99.99
1310 99.99
477 99.99

Mixed
784 99.98
1233 99.95
1364 98.74
557 96.91

Soils
630 99.55
910 89.66
877 99.97

Out of these high confidence rings, a sample of rock, rock-like mixed, soil and
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soil-like mixed ring will be evaluated. The highest confidence labels were chosen for

each ground class. Thus, rings 1134, 784, 877, and 1233 were chosen to represent

each of the four ground classes, respectively.

Low Confidence Labels

In the CL model that was mentioned earlier, the labels with the lowest levels of

confidence were created and are listed in Table 5.2.

Table 5.2: Low Confidence Labels.

Rings Label Quality (%) Ground Class
453 0.10

Rock

552 2.40
745 0.70
772 0.75
853 0.60
960 0.10
421 0.20

Mixed440 1.40
720 0.20
816 2.80

Out of these low confidence rings, a sample of rock, rock-like mixed, soil and soil-

like mixed ring will be evaluated. The highest confidence labels were chosen for each

ground class. Thus, rings 816, 853, 552, and 720 were chosen to represent each of the

four ground classes, respectively.

5.3.2 Comparison Scattergrams for High Confidence Labeled

Rings

This section will present graphical comparisons for rings 1134, 784, 877 and 1233.

The following parameter comparisons will be used to validate the labels: Penetra-

tion x Torque Screw, Penetration x Screw Conveyor Speed Measuring, Penetration x

Earth Pressure 1, Advance Speed x Screw Conveyor Speed Measuring, Thrust Force

x Cutting Wheel Speed of Rotation.
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Penetration x Torque Screw

Figure 5-1 shows the graphical results for rock ring 1134, rock-like mixed ring

784, soil ring 877 and soil-like mixed ring 1233, respectively, for the parameter pair

comparison of Penetration x Torque Screw.

Figure 5-1: Parameter comparison scatterplots for Penetration x Torque Screw for high-confidence
labels.

The graphical representation clearly indicates that the data-points for rock rings

are highly concentrated at lower values of both penetration rate and torque screw,

whereas for soil rings, data are concentrated at higher values for both parameters.

Both mixed rings have more spread-out distributions.

Penetration x Screw Conveyor Speed Measuring

Figure 5-2 shows the graphical results for rock ring 1134, rock-like mixed ring
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784, soil ring 877 and soil-like mixed ring 1233, respectively, for the parameter pair

comparison of Penetration x Screw Conveyor Speed Measuring.

Figure 5-2: Parameter comparison scatterplots for Penetration x Screw Conveyor Speed Measuring
for high-confidence labels.

The graphs make it evident that the data-points related to rock rings are highly

concentrated at lower values of both the penetration rate and screw conveyor speed

measuring, whereas for soil rings, data clusters at higher values for both parameters.

The mixed rings have a more dispersed distribution, spread-out for soil-like mixed

and more concentrated for the rock-like mixed ring.

Penetration x Earth Pressure 1

Figure 5-3 shows the graphical results for rock ring 1134, rock-like mixed ring

784, soil ring 877 and soil-like mixed ring 1233, respectively, for the parameter pair
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comparison of Penetration x Earth Pressure 1.

Figure 5-3: Parameter comparison scatterplots for Penetration x Earth Pressure 1 for high-confidence
labels.

Here, the rock ring has data-points concentrated around higher values of earth

pressure while maintaining lower penetration rates. For soils, data are concentrated

around higher penetration rates and slightly lower earth pressure. This is in con-

trast to mixed rings, where both rock and soil-like mixed have a more spread-out

distribution.

Advance Speed x Screw Conveyor Speed Measuring

Figure 5-4 shows the graphical results for rock ring 1134, rock-like mixed ring

784, soil ring 877 and soil-like mixed ring 1233, respectively, for the parameter pair

comparison of Advance Speed x Screw Conveyor Speed Measuring.
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Figure 5-4: Parameter comparison scatterplots for Advance Speed x Screw Conveyor Speed Measur-
ing for high-confidence labels.

In all of the rings, distinct vertical lines can be seen, which suggest fixed values

for advance speed. In rock, the distribution is much more concentrated around lower

values of both advance speed and screw conveyor speed measuring. For soils, data-

points are considerably more spread-out, with observations concentrated at higher

values of both parameters. Both mixed rings show significant data-point concentra-

tion, especially in soil-like mixed.

Thrust Force x Cutting Wheel Speed of Rotation

Figure 5-5 shows the graphical results for rock ring 1134, rock-like mixed ring

784, soil ring 877 and soil-like mixed ring 1233, respectively, for the parameter pair

comparison of Thrust Force x Cutting Wheel Speed of Rotation.
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Figure 5-5: Parameter comparison scatterplots for Thrust Force x Cutting Wheel Speed of Rotation
for high-confidence labels.

For this parameter pair comparison, in rock, the distribution is highly concentrated

at higher values of thrust force. While soils present a concentrated distribution at

lower thrust force. Both mixed rings present a concentrated distribution at almost

identical thrust force and cutting wheel speed of rotation values. Interestingly, there

is a distinct inverted "L" shape notable.

Interpretation

Throughout the 5 chosen parameter pairs, rock rings demonstrated a highly

concentrated or concentrated distribution, indicating a pattern that can be correlated

to the ground class. Soils range from concentrated to spread-out, depending on the

parameter pair being analyzed, but are generally in clear contrast to patterns seen
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in rock rings. For mixed rings, it is harder to determine their specific ground-class,

with behaviors varying significantly throughout the compared parameters. However,

still presenting similar characteristics to either rock or soils.

5.3.3 Comparison Scattergrams for Low Confidence Labeled

Rings

In this section, graphical comparisons for four rings, namely 816, 853, 552, and

720 will be displayed. The comparisons will utilize the following parameter pairs:

Penetration x Torque Screw, Penetration x Screw Conveyor Speed Measuring, Pene-

tration x Earth Pressure 1, Advance Speed x Screw Conveyor Speed Measuring, and

Thrust Force x Cutting Wheel Speed of Rotation. They will subsequently used to

generate labels off of previously presented indicative patterns for each ground class.

Penetration x Torque Screw

Figure 5-6 shows the graphical results for rock ring 816, rock-like mixed ring

853, soil ring 552 and soil-like mixed ring 720, respectively, for the parameter pair

comparison of Penetration x Torque Screw.
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Figure 5-6: Parameter comparison scatterplots for Penetration x Torque Screw for low-confidence
labels.

The graphs show that rock rings have a high concentration of data-points with

lower values for both penetration rate and torque screw, while soil rings have a high

concentration of data-points with higher values for both parameters. In contrast, the

distributions for both mixed rings are more dispersed.

Penetration x Screw Conveyor Speed Measuring

Figure 5-7 shows the graphical results for rock ring 816, rock-like mixed ring

853, soil ring 552 and soil-like mixed ring 720, respectively, for the parameter pair

comparison of Penetration x Screw Conveyor Speed Measuring.
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Figure 5-7: Parameter comparison scatterplots for Penetration x Screw Conveyor Speed Measuring
for low-confidence labels.

The graphs demonstrate that the data-points pertaining to rock rings are highly

concentrated at lower values of both the penetration rate and screw conveyor speed,

while for soil rings, data are somewhat spread-out at higher values for both param-

eters. The rock-like mixed ring exhibits a more spread-out distribution, while the

soil-like mixed ring has a more concentrated distribution.

Penetration x Earth Pressure 1

Figure 5-8 shows the graphical results for rock ring 816, rock-like mixed ring

853, soil ring 552 and soil-like mixed ring 720, respectively, for the parameter pair

comparison of Penetration x Earth Pressure 1.
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Figure 5-8: Parameter comparison scatterplots for Penetration x Earth Pressure 1 for low-confidence
labels.

In this case, the data-points for the rock ring are highly concentrated at higher

values of earth pressure and lower penetration rates, whereas for soil rings, data are

spread-out around higher penetration rates and slightly lower earth pressure values.

The mixed rings, also show data-point concentration. With the rock-like mixed ring

concentrating around similar values of earth pressure than the rock ring and varying

penetration rates. And the soil-like mixed ring showing data-point concentration at

higher earth pressure values and varied penetration rates.

Advance Speed x Screw Conveyor Speed Measuring

Figure 5-9 shows the graphical results for rock ring 816, rock-like mixed ring

853, soil ring 552 and soil-like mixed ring 720, respectively, for the parameter pair

235



comparison of Advance Speed x Screw Conveyor Speed Measuring.

Figure 5-9: Parameter comparison scatterplots for Advance Speed x Screw Conveyor Speed Measur-
ing for low-confidence labels.

In each of the rings, there are noticeable vertical lines that indicate fixed values

for advance speed. The rock rings exhibit a concentrated distribution around lower

values of advance speed and screw conveyor speed measurement, while soils exhibit

more concentrated data points, especially at higher values of both parameters. The

mixed rings, particularly soil-like mixed, have some concentration of data points.

Thrust Force x Cutting Wheel Speed of Rotation

Figure 5-10 shows the graphical results for rock ring 816, rock-like mixed ring

853, soil ring 552 and soil-like mixed ring 720, respectively, for the parameter pair

comparison of Thrust Force x Cutting Wheel Speed of Rotation.
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Figure 5-10: Parameter comparison scatterplots for Thrust Force x Cutting Wheel Speed of Rotation
for low-confidence labels.

When comparing this specific parameter pair, the distribution in rock is heavily

focused on higher values of thrust force. Conversely, soils display a concentrated dis-

tribution at lower thrust force values. Both mixed rings demonstrate a concentrated

distribution with nearly identical values for both thrust force and cutting wheel speed

of rotation. Again, the inverted "L" shape can be observed.

Interpretation

The five parameter pairs analyzed revealed that rock rings exhibit a concentrated

or highly concentrated distribution, suggesting a correlation with the ground class.

Soil rings, on the other hand, vary in distribution from concentrated to spread-out,

depending on the parameter pair analyzed, but consistently differ from the patterns
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observed in rock rings. Mixed rings are more difficult to classify by ground class, as

their behaviors differ significantly across the analyzed parameters, but still present

similarities to either rock or soil.

5.4 Comparison & Conclusions

The following table (5.3), shows the comparison of the ground class labels gener-

ated by the Confidence Learning (CL) model and their comparison to what was seen

in the geologic profiles and face maps presented in Chapter 3.

Table 5.3: Comparison between ground class labels generated by the Confidence
Learning Model and Geologic Profiles.

Rings Label Quality (%) CL Ground Class Geologic Profile
Ground Class

High Confidence Labels
461 98.60 Rock Rock
842 99.91 Rock Rock
1134 99.99 Rock Rock
1310 99.99 Rock Rock
477 99.99 Mixed Rock-like Mixed
784 99.98 Mixed Rock-like Mixed
1233 99.95 Mixed Soil-like Mixed
1364 98.74 Mixed Soil-like Mixed
557 96.91 Soil Soil-like Mixed
630 99.55 Soil Soil-like Mixed
910 89.66 Soil Soil
877 99.97 Soil Soil

Low Confidence Labels
440 1.40 Rock Soil
816 2.80 Mixed Rock
421 0.20 Mixed Soil-like Mixed
453 0.10 Rock Rock-like Mixed
720 0.20 Mixed Soil-like Mixed
853 0.60 Mixed Rock-like Mixed
552 2.40 Rock Soil
745 0.70 Rock Soil
772 0.75 Rock Soil-like Mixed
960 0.10 Rock Soil
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Table 5.4 compares the ground class labels resulting from the scattergrams and

what was determined through the information contained in geologic information avail-

able in Chapter 3.

Table 5.4: Comparison between ground class labels generated by the Scattergrams
and Geologic Profiles.

Rings Scattergram Ground Class Geologic Profile
Ground Class

1134 Rock Rock
784 Rock-like Mixed Rock-like Mixed
877 Soil Soil
1233 Soil-like Mixed Soil-like Mixed
816 Rock Rock
853 Rock-like Mixed Rock-like Mixed
552 Soil Soil
720 Soil-like Mixed Soil-like Mixed

Lastly, Table 5.5 compares the information from Tables 5.3 and 5.4. Here, the

ground class labels resulting from high-confidence labeled rings, (1134, 784, 877, and

1233) and low-confidence labeled rings (816, 853, 552 and 720) are compared to the

ground classes obtained through the use of scattergrams.

Table 5.5: Comparison between ground class labels generated by the Scattergrams
and Geologic Profiles.

Rings Label Quality (%) CL Ground Class Scattergram Ground Class
1134 99.99 Rock Rock
784 99.98 Mixed Rock-like Mixed
877 99.97 Soil Soil
1233 99.95 Mixed Soil-like Mixed
816 2.80 Mixed Rock
853 0.60 Mixed Rock-like Mixed
552 2.40 Rock Soil
720 0.20 Mixed Soil-like Mixed

Although useful for outputting machine-generated labels, the Confidence Learning

(CL) model presented some discrepancies and low-confidence labels that had missclas-

sified several rings. These were then compared against both the geologic information
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(see Chapter 3) and the scatterplots, which verified and changed several ring ground

classifications.

Scatterplots, on the other hand, were found to be the most effective tool for

classifying rings among different ground classes, including rock, soil, rock-like mixed,

and soil-like mixed, being correct in all the evaluated rings (552, 720, 784, 816, 853,

877, 1134, 1233), when verified by the available geologic data (presented in Chapter 3).

They revealed notable differences between these ground classes, with rock data-points

exhibiting high-density clustering around specific threshold ranges for each compared

parameter. In contrast, soil data-points were more widely dispersed with greater

variability and less clustering. Mixed rings displayed patterns resembling those of

either rock or soil, with data-point concentration being present across parameter

comparisons, but less pronounced than in rock rings.
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Chapter 6

Techno-Economic Assessment (TEA)

6.1 Contextual Aspects

Techno-economic assessments or TEAs are study tools that seek to understand

and assess the technical feasibility of a project or technology while considering its

economic implications [Mahmud et al., 2021]. A typical TEA combines a cost-benefit

analysis with a technical study of the product/project being evaluated and also study-

ing market factors [Latapí Agudelo et al., 2019]. The techno-economic assessment

(TEA) aims to present decision-makers with the data and information needed to es-

tablish the validity and worth of a project or product [Rajabi Hamedani et al., 2019].

This informed-decision-making process is extremely important for launching new tech-

nologies into markets and attracting investment [Christensen et al., 2005].

Beginning in the early 20th century, techno-economic assessments (TEAs) were

developed for large infrastructure projects (usually publicly funded) by joining a team

of engineers and economists that would discuss cost-benefit analyses as well as the

technical implications of developing projects of this scale [Giacomella, 2021]. The

term TEA was coined in the 1950s being popularized only in the 1970s and 1980s as

the appraisal of technical and economic aspects of a project became more relevant

[Andersen, 1991, Latapí Agudelo et al., 2019].

One of the first detailed TEAs was carried out by the US Atomic Energy Commis-

sion for the construction of a nuclear power plant, where it compared the technical
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and economic feasibility of nuclear power as a potential substitute for fossil fuels

[Hennessey, 1973, Owen, 2011]. By the 1970s the United Nations (UN) began using

techno-economic assessments (TEAs) in all large infrastructure projects (like hydro-

electric power plants, roads and irrigation systems) that it either financed or was

otherwise involved in, especially in the Global South [Andersen, 1991, Sharif, 1988].

By the 1990s TEAs became ubiquitous in the private sector, especially in analyz-

ing new business ideas and products [Gompers and Lerner, 2001]. These assessments

were especially helpful in aiding the exponential growth of mobile telecommunications

and the internet [Dodgson et al., 2008, Lindmark, 2002]. Currently, techno-economic

assessments (TEAs) are employed in a wide array of industries and projects, buttress-

ing the incoming age of artificial intelligence (AI), climate change mitigation tech-

nologies, transportation and healthcare [Nagapurkar, 2019, Islam et al., 2022]. The

TEA has become an essential tool for decision-makers in gauging new technology.

6.2 The use of Artificial Intelligence (AI) in Tunnel

Boring Machines (TBMs)

In this section, a preliminary techno-economic assessment (TEA) of the use of

artificial intelligence (AI) in the operation of Tunnel Boring Machines (TBMs) will

be discussed. For the evaluation of the uses of AI technology in TBM operations, the

following list of steps will be used:

1. Defining Project Scope: determine the specific AI application to TBM op-

erations being evaluated.

2. Conducting Market Analysis: consult the present market and applications

of AI algorithms in TBMs, including market size and growth rate (CAGR 1),

the current main players in the domain, trends and challenges of the technology

within the specific industry.
1Compound Annual Growth Rate (CAGR) is a financial metric that evaluates the rate of return

of an investment in a specific period of time [Fernando, 2023]. CAGR is measured by the rate of
growth (year-on-year) of an investment over a set time period [Fernando, 2023].
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3. Identifying technical requirements: delineate the technical aspects of the

AI tools that could potentially be applied, including both hardware and soft-

ware, and note the feasibility and especially the scalability of the proposed

technology.

4. Cost Estimation: appraise the costs associated with the application of AI/ML

to improve TBM operations, including the costs of the operating system, re-

search, maintenance and support costs.

5. Benefit Analysis: identify the potential improvements associated with the

application of the proposed technology. Including (but not limited to) improved

efficiency (or predicted improvement), increased accuracy and worksite safety,

and estimating the return on investment (ROI) for applying the technology.

6. Risks: determine and weigh potential risks in using the AI/ML technology in

the proposed project, also considering any regulatory, compliance and security

shortcomings.

7. Conclusion: While considering the results and analyses obtained from the

aforementioned steps, conclude whether it makes sense for the technology to be

applied, understanding if the proposed approach is both technologically and eco-

nomically feasible and beneficial, further providing recommendations for next

steps on how to improve or update the TEA.

The following sections will present the detailed analysis carried out to determine

the viability of using Artificial Intelligence (AI) and Machine Learning (ML) to assist

real-time decision making for predicting geological conditions ahead of the tunnel

face.

6.3 TEA Project Scope

In this section the problem definition for the techno-economic assessment (TEA)

will be discussed. The proposed TEA seeks to evaluate the use of artificial intelligence
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(AI) through machine learning (ML) algorithms for geology prediction in tunnel bor-

ing machine (TBM) operations. The use of AI/ML for predicting ground conditions

ahead of the tunnel face has been widely explored in the literature in the past three

to four years (see section 4.2.1). As the tunneling industry is expected to grow by

approximately 10% per year in the decade from 2022 to 2032, efforts to automate

and increase safety and productivity in operations with the aid of AI/ML are being

intensely researched [Industry Research, 2022]. The scope of the TEA is listed as

follows:

1. Literature review on current work in AI/ML technology for geology prediction

in TBMs and potential benefits of this technology (see section 4.2).

2. Identifying relevant stakeholders and the potential effects and consequences

incurred if the technology is widely adopted.

3. Development of a simple road-map to envision how the technology will be put

into effect.

6.3.1 Literature Review

As presented in section 4.2, much research has been done in recent years explor-

ing the use of AI/ML applications to improving tunneling automation through the

analysis of data generated by Tunnel Boring Machines (TBMs). The large data-sets

output by the TBM have been used to create real-time analysis and response systems

that can potentially inform both machine operators and designers to local ground

conditions [Fu et al., 2022, Sun et al., 2018].

Although much progress has been made and increasingly automated TBMs are

being deployed, researchers suggest that much progress still needs to be made in

order to streamline this technology globally [Akinosho et al., 2020]. Better risk as-

sessments and cost-benefit analyses need to be developed to evaluate this technology

[Eskesen et al., 2004, Erharter and Marcher, 2021]. Furthermore, one of the biggest

hindrances to the furthering of the field is the lack of unification in data output by
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the TBM [Wang et al., 2023]. If data were generated in a single file template, rather

than a multitude of files, one for each parameter, using various file formats, it would

improve both the quality and productivity of tunneling analysis [Acosta, 2021].

If a master, or all-encompassing, file that could contain the total telemetry2 param-

eters, in a standirdized format, would facilitate comparison between different TBM

machines (independent of supplier, size, or other specifications) while significantly re-

ducing data pre-processing time [Acosta, 2021]. As the automation revolution is well

underway, and data being generated in massive amounts, the ability to share and

take insights from this collective data pool would be vastly beneficial for the industry

[Mayer-Schönberger and Cukier, 2013]. However, as competing manufacturers might

not be willing to freely share information and as governments increasingly regulate

data privacy, this might be hindered [Acosta, 2021].

To date, there has not been any techno-economic analysis done for predictive

technologies forecasting ground conditions in tunnel construction. Some work has

been done in related fields, especially within energy production. The table below

(Table 6.1) lists some of these TEAs.

Recent TEAs in the Energy Sector

Rao, K., et al., 2018.

Improvised Drilling and Blasting

Techniques at Underground Metal Mine

for Faster Advance to Enhance Linear

Excavation and Production–A

Techno-Economic Case Study.

Cui, Y., et al., 2019.

Techno-economic assessment

of the horizontal geothermal heat pump

systems: A comprehensive review.

Continued on next page

2Telemetry refers to a general term for technologies that compile information through mea-
surements and/or statistical data, forwarding it to information-technology (IT) systems remotely
[Rouse, 2015].
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Table 6.1 – Continued from previous page

Recent TEAs in the Energy Sector

Restrepo-Valencia, S., et. al., 2019.

Techno-economic assessment of

bio-energy with carbon capture

and storage systems in a typical

sugarcane mill in Brazil.

Maroušek, J., et al., 2020.

Techno-economic assessment of

potato waste management

in developing economies

Madlener, R., et. al., 2020.

An Exploratory Economic Analysis of

Underground Pumped-Storage Hydro Power Plants

in Abandoned Deep Coal Mines.

Zhou, W., et al., 2020.

Selection and techno-economic analysis

of hybrid ground source heat

pumps used in karst regions.

Sirdesai, N., et al., 2020.

Impact of Rock Abrasivity on

TBM Cutter-Discs During

Tunnelling in Various Rock Formations.

Pakenham, B., et al., 2021.

A review of life extension

strategies for offshore wind farms

using techno-economic assessments.

Frey, M., et al., 2022.

Techno-Economic Assessment of

Geothermal Resources in the Variscan

Basement of the Northern Upper Rhine Graben.

Continued on next page
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Table 6.1 – Continued from previous page

Recent TEAs in the Energy Sector

Daniilidis, A., et al., 2022.

Techno-economic assessment and

operational CO2 emissions of

High-Temperature Aquifer Thermal

Energy Storage (HT-ATES) using

demand-driven and

subsurface-constrained dimensioning.

6.3.2 Stakeholders

Tunneling is part of the backbone for transportation, energy, water and other

essential services. Thus, from governments to industry professionals, there are many

key stakeholders who will be affected by the automation of the tunneling process and

real-time prediction of ground conditions on-site. The following list will detail the

main stakeholder groups affected.

1. Tunnel Boring Machine (TBM) Manufacturers: Automation technology

concerns companies that design, produce and provide maintenance for TBMs

worldwide as it could enhance the safety, reliability and efficiency of their prod-

ucts.

2. Construction Industry: Companies working with large infrastructure projects,

especially those specializing in tunnel construction may benefit from increased

automation as it has the potential to reduce costs while increasing safety and

productivity. The use of AI/ML for real-time geology prediction can boost

optimization of the construction process.

3. Designers, Geologists and Geotechnical Engineers: The professionals

and specialists in the field can potentially be assisted by the proposed tech-
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nology, providing them with more accurate and comprehensive information on

subsurface conditions that will allow for improved informed decision-making.

4. Project Proprietors: Government agencies, private investors and other key

stakeholders will be interested in understating how the technology can assist in

the development of the project, on-time completion, especially if within prede-

termined budgets.

5. Community Advocates: Organized civil-society groups that are concerned

with the socioeconomic and environmental impacts of tunnel construction, in-

cluding workers unions. This technology would be of interest to them as it has

the possibility of reducing accidents, environmental damage but also of changing

industry jobs.

6. Governments and Regulators: Government agencies and regulators that are

responsible for overseeing infrastructure projects would be impacted as increased

TBM automation may assist in the compliance of safety and environmental

regulation. Also, they would be in charge of regulating and determining the

rules of the roll out of this technology.

7. Data Scientists and Machine Learning Engineers: Professionals working

at the forefront of data science and AI/ML development using Big Data are

not only part of the development of the technology but also interested parties

as it will provide the opportunity to develop new techniques and research to

real-world infrastructure applications.

6.3.3 Implementation

In developing and implementing machine learning (ML) for geologic prediction

for tunnel boring machines (TBM), feasibility studies must be conducted to deter-

mine if machine learning (ML) is the best alternative for ground condition prediction

ahead of the tunnel face. This analysis should include comprehensive information on
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the complexity of encountered geology, data availability and existing TBM control

systems.

It has still not been proven that machine learning (ML) is appropriate for this use

in the tunneling industry. As proposed models have not yet been integrated within

TBM operating systems, it is impossible to fully determine the potential value for

this technology.

The successful implementation of machine learning techniques for understand-

ing ground conditions ahead of the tunnel face, demands comprehensive application

planning, due diligence and direct coordination. Below, a set of steps on what imple-

mentation would look like is presented.

1. Data Collection and Treatment: Collection of relevant data and prepa-

ration. This includes previously presented geotechnical data, geologic maps,

boring logs and information on tunnel rings (see Chapters 3 and 4). Treat-

ment of data for application with the proposed methodology, for this case only

data-points where advance rate was different from zero were considered.

2. Integration with TBM Control Systems: This has not yet been done in

practice. As tunneling automation advances, this is the logical next step. In

integrating AI/ML algorithms in the machine’s control systems, it is expected

that models will be able to assist machine operators in identifying geological

conditions ahead of the tunnel face. In order to inform real-time decision-

making, it would be necessary to establish a connection between TBM control-

systems and data collection systems as well as machine learning models, ideally

through an adapted interface.

3. Validation: Preceding deployment, this integrated system would need to be

thoroughly tested and validated, which is where the field currently stands. As

more machine learning processes are being explored and tested for the purpose

of geologic prediction ahead of the tunnel face, further testing is required, es-

pecially in real-world conditions. For this, comprehensive testing would need
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to be done over several different ground conditions and geographical locations,

validating the methodology based on its accuracy and reliability.

4. Deployment: When comprehensive testing and system validation is under-

way, then AI/ML models can be utilized in actual tunnel construction projects.

However, this development is still years away from being applicable to tunnel-

ing projects. Also, adequate training would need to be provided to machine

operators, as well as continuous system monitoring to determine performance

and safety gains.

6.4 Market Analysis

6.4.1 Current Applications

The construction industry has long attempted to predict geological conditions,

particularly in tunneling, where knowledge of ground conditions ahead of the tunnel

face is critical for safety and productivity. Failure to identify conditions even a few

meters ahead of the tunnel can result in accidents. The advent of AI/ML technology

presents an opportunity to utilize the vast amounts of raw data generated by Tunnel

Boring Machines (TBMs) for data-driven decision making, a unique advantage not

commonly available in other areas of construction (where there is significantly less

data collection).

The application of machine learning to ground classification is a promising new

field of study with the potential of providing valuable insights into geological con-

ditions ahead of the tunnel face. A good example of this is the development of a

proprietary A-TBM system by MMC Gamuda, a Malaysian construction company

that has been a pioneer in the field [Byrd, 2016]. Although there have been only a

few instances of this technology being applied, MMC Gamuda’s A-TBM has demon-

strated its efficacy in improving tunnel construction processes, which will be explained

in further detail in section 6.4.3 [Byrd, 2016]. Figure 6-1 shows a control center for

MMC’s A-TBMs.
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Figure 6-1: Picture of MMC Gamuda’s Tunneling Centralized Command and Control Center
[Berhad, 2020]).

By using an automated system, adapting to changes in ground conditions during

tunneling and predicting maintenance needs can be done more efficiently and quickly.

The market for AI/ML applications for tunnel boring machines is projected to expand

as construction companies aim to enhance productivity, safety, and cost-effectiveness

of projects. Despite its potential benefits, challenges remain, including the require-

ment for precise and dependable algorithms and the seamless integration of these

algorithms into current TBM control systems.

6.4.2 Expected Market Growth

According to an industry report by Kenneth Research [Kenneth Research, 2021],

the global market for tunnel boring machines is expected to grow from USD 3.4

billion (2020) to USD 4.7 billion by 2025, at a CAGR of 6.6% [Globe Newswire, 2022].

Figure 6-2 shows this upward trend in TBM sales during the present decade. As

increased automation and technological improvements stimulate the market further,
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a CAGR of 9% is expected for autonomous tunnel boring machines, at the same

period [Kenneth Research, 2021].

Figure 6-2: Expected Tunnel Boring Machine market growth in the decade from 2020 - 2030
[Data Bridge Market Research, 2021]).

This projected rise in demand for autonomous TBMs3 is based on their advantages

over conventional TBMs. Tunneling efforts are also expected to significantly increase

in the coming years [Digital Journal, 2019, Mega, 2022]. With a CAGR of 7.6% by

2030 (see Figure 6-3), the tunnel industry is expected to significantly grow, feeding

the need for improved TBM-systems [Digital Journal, 2019].

The increasing urbanization in countries such as China, India, and the United

States is driving demand for larger and more reliable transportation networks, which

in turn drives the demand for tunnel construction and, consequently, the adoption

of more advanced and efficient tunneling technologies such as autonomous tunnel

boring machines [Avtar et al., 2019]. To meet this demand, it is expected that gov-

ernments will endorse the use of autonomous tunnel boring machines systems to

3An autonomous tunnel boring machine is a self-propelled excavation device that uses a rotating
cutting head to drill tunnels underground with minimal human intervention [Maidl et al., 2014].
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Figure 6-3: Predicted market growth of tunnel construction in the decade from 2018 - 2028
[Business Research Insights, 2021]).

upgrade infrastructure [Melenbrink et al., 2020]. As a result, the demand for au-

tonomous tunnel boring machines systems is likely to increase in the coming years

[Melenbrink et al., 2020].

Therefore, the joining of technological enhancements, burgeoning infrastructure

projects, and the escalating need for productive and cost-efficient tunneling options,

is pushing the market for autonomous tunnel boring machines forward.

6.4.3 Main Players

Still very much in its early stages, the automation of tunnel boring machines

(TBMs) has been shaped and driven by a few, highly specialized companies. These

companies are developing and deploying prototypes for this incoming TBM technol-

ogy, and are actively working on MVPs4 to bring to market:

MMC Gamuda has implemented an autonomous tunnel boring machine (A-TBM)

equipped with proprietary analytics technology for the Klang Valley Mass Rapid

Transit (KVMRT) project in Malaysia. MMC Gamuda’s system was trained with

data gathered from previous projects as well as a computational simulator. The

4MVP stands for Minimum Viable Product. It is a common product development strategy used
to fastly generate a basic version of a product with the minimum features necessary to satisfy early
customers [Lenarduzzi and Taibi, 2016].
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system accurately predicted maintenance requirements such as cutterhead wear and

breakage [Hamilton, 2020]. The team also reported increased stability and pro-

ductivity due to the system’s ability to collect data every three seconds and pro-

vide corrective feedback to the TBM5 [Berhad, 2020]. Adjusting advance speed

and screw conveyor to maintain pressure at the face, the system calculates op-

timal slurry pump speed, selecting the best driving methods based on real-time

ground conditions [Hamilton, 2020]. This A-TBM automatically adjusts to upcom-

ing conditions based on real-time data generated during excavation (see Figure 6-

4).[Berhad, 2020, Byrd, 2016, Hamilton, 2020].

Figure 6-4: MMC Gamuda’s A-TBM on the site of the Klang Valley Mass Rapid Transit (KVMRT),
using Herrenknecht hardware [Construction, 2021]).

One of the biggest players in the manufacturing of TBMs, Herrenknecht, is a

German company that has been building tunnel boring machines for over 40 years

[Schulter and Wagner, 2020]. Currently developing prototypes for an autonomous

5Meaning it effectively takes control of machine parameters, changing advance speed, torque cut-
ting wheel speed and others to autonomously steer the machine through changing ground conditions
[Hamilton, 2020].
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TBM system, Herrenknecht intends to use lasers, hi-def cameras, and sensors to navi-

gate through tunnels [Herrenknecht, 2022]. Having reported completion of successful

pilot tests of their autonomous TBM technology [Herrenknecht, 2022].

Another major player is Robbins. A US-based company that has been an impor-

tant player in the industry since the 1950s, it is currently working on an autonomous

TBM system called Robbins i-Bore [Hamilton, 2020]. Their proprietary system, sim-

ilar to Herrenknecht, uses laser guidance and mechanized drilling to bore tunnels

[Knights, 2017]. The company has said to have completed successful tests of their

technology in a couple projects around the world [Knights, 2017]. Below is an image

of TBM manufactured by Robbins (Figure 6-5).

Figure 6-5: Example of a Robbins TBM [Robbins, 2021]).

China Railway Engineering Equipment Group Co. Ltd (CREG) is also a signifi-

cant player in the TBM industry [Gao, 2018]. They have been developing their au-

tonomous TBM technology since 2017 and have since completed pilot tests in China

[Chan, 2022]. The CREG autonomous TBM system uses 3D scanning and laser-

guided navigation to excavate tunnels [Thomas, 2021]. A depiction of the expected

autonomous TBM system is presented (see Figure 6-6).

These are the current main players in the automation of TBMs. As the technology
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Figure 6-6: Virtual depiction of the CREG’s autonomous tunnel boring machine [Chan, 2022]).

continues to develop, it is likely that competitors will enter the market and compe-

tition will increase, ultimately leading to more efficient and cost-effective tunneling

solutions.

6.4.4 Market Macro-Trends

The TBM market is greatly affected by macro-level changes and trends, which can

affect its growth prospects in the present and future. These trends include various fac-

tors such as technological advancements, economic shifts, policy changes, and societal

preferences. The following list will take a closer look at a couple of these:

1. Infrastructure Investment: One of the primary drivers is the increasing de-

mand for infrastructure development around the world. Governments, especially

in the Global South and the US, are heavily invested in large-scale transport

infrastructure projects ranging from tunnels, to highways, and railways.

2. Urbanization: With the world’s population expected to be 70% urban by

2050, growing demand for transportation infrastructure, including underground

tunnels is apparent. Fast urbanization is greatly influencing demand for TBM
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machines in urban areas, where construction space is extremely limited.

3. Technological Advancements: Construction is just starting to feel the dis-

ruption brought on by increased automation and data-driven decision-making.

One of the beachhead markets for these technological advances are TBMs, which

are being greatly changed by improvements in machine learning, artificial intel-

ligence, and automation. These technologies are seeking to enable more efficient

TBM operation, reduce project timelines, and minimize costs.

4. Environmental Sustainability, ESG: The demand for better environmen-

tal, social and governance standards in industries worldwide has also been pres-

suring infrastructure development to be more sustainable. Governments and

construction companies are increasingly focusing on minimizing their socio-

environmental impact, including in tunneling. Autonomous TBMs can increase

safety for operators and existing infrastructure, and productivity, which trans-

lates into direct reduction of ESG impacts.

5. Growing Demand for High-Speed Rail: The growing demand for high-

speed rail networks is also a main driver of growth in the TBM market. High-

speed rail networks require extensive underground tunneling, and TBM ma-

chines are the preferred method for excavation.

6. Industry Consolidation: The TBM market is becoming increasingly consol-

idated, with a small number of players dominating the industry. Mainly driven

by high capital costs, this trend will also be important in shaping the industry’s

adaptation to automation technology.

Overall, the presented trends are shaping the future of tunneling automation ef-

forts. With increasing investments in infrastructure, and transportation systems for

cities, as well as growing demand for high-speed rail networks, tunneling is expected

to be an important construction activity driving market growth.
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6.4.5 Challenges to Implementation

Having the potential to bring significant progress in the tunneling and construc-

tion industries, the implementation of autonomous tunnel boring machines poses

significant challenges that need to be considered and addressed. In order to fully

realize the potential benefits of autonomous tunnel boring machines, it is essential

to understand these difficulties , and develop effective strategies to overcome them.

Some of these include:

1. Cost: The upfront cost of purchasing and implementing autonomous tun-

nel boring machine technology is significantly higher than traditional TBMs,

as their is need for specialized operators, control centers and IP/proprietary

technology, making it difficult for many companies to justify the investment

[Hamilton, 2020, Robbins, 2021]

2. Infrastructure: Autonomous TBMs require a robust set of sensors, communi-

cation networks, and control systems. The building and maintaining of such in-

frastructure can be highly costly and time-consuming [Melenbrink et al., 2020].

3. Technical complexity: The technology used is complex and requires skilled

personnel to operate and maintain it [Anderson et al., 2020]. As AI/ML is an

extremely relevant topic in several industries, skilled professionals are scarce

[Anderson et al., 2020]. Hindering companies that lack the technical expertise

needed to implement and operate such technology [Peres et al., 2020].

4. Safety: Safety is a major concern when it comes to autonomous tunnel boring

machines. Although showing promising results, the use of autonomous tech-

nology in such a high-risk environment requires careful planning and execution

[You et al., 2023]. The top priority must be ensuring the safety of both workers

and the general public [Berhad, 2019].

5. Regulation: There are currently no global standards or regulations govern-

ing the use of autonomous TBMs [Huang et al., 2021]. Which can lead to un-
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certainty, regulatory push-back, and legal challenges for companies looking to

implement the technology.

Despite potential resistance from industry stakeholders, including concerns over

safety, reliability, and job displacement, the possible benefits of autonomous tunnel

boring machines, including increased productivity, improved accuracy, and reduced

operating costs, significantly outweigh the technology’s risks and shortcomings. How-

ever, the high upfront costs of implementing autonomous TBMs, as well as the need

for specialized training for operators and control centers, can make it difficult for

many companies to justify the investment. Additionally, some stakeholders in the

industry may be hesitant to adopt new technology due to a lack of understanding or

familiarity with it.

Despite these challenges, many companies are continuing to heavily invest in re-

search and development in the field of autonomous TBMs, recognizing the potential

for significant long-term benefits. As the technology matures and becomes more

widely adopted, it is likely that many of these challenges will be overcome through

improved safety standards, increased efficiency, and the development of new training

and certification programs for operators.

6.5 Technical Requirements

6.5.1 Hardware and Software Requirements

In order to implement AI/ML models for geology prediction in tunneling, several

hardware and software specifications are required. They must be thoroughly evaluated

and analyzed in order to determine the scalability and feasibility of the technology.

In terms of hardware demands, to deploy autonomous tunnel boring machines,

comprehensive central monitoring systems and stations, which include powerful com-

puting systems and servers that can handle large data-sets and process complex algo-

rithms in real-time, are required. There should be sufficient memory and processing

capacity to manage high-performance computing, as well as robust communications

259



systems that created the link between construction sites and command centers. Addi-

tionally, for scalability, each particular business must evaluate its specific requirements

in terms of computational infrastructure and communications system.

In turn, software requirements include the advanced machine learning algorithms

tools for dataaq2q processing and pre-processing, as well as for visualization, and

analysis. Software components should be equipped to treat large and complex data-

sets, including vast amounts of live data being fed into automation systems from the

TBM, and should thus be capable of processing and analyzing this data in real-time.

The chosen AI/ML models must be able to analyze and interpret geological data,

integrating both previously obtained data like rock types, mineralogy, and other ge-

ological characteristics, and real-time TBM-data output, comprehensively predicting

conditions ahead of the tunnel face and adjusting the machine’s parameters to sup-

port them. The algorithm should be capable of detecting anomalies and identifying

patterns in the data, which can be used to predict ground conditions and identify

potential hazards.

As there are very few examples of this, or similar predictive technologies be-

ing applied to TBM-based tunneling projects, it is difficult to precisely determine

technical requirements. An interesting application of this technology is the case of

MMC Gamuda, where the basic setup was the deployment in two command centers,

a smaller, local control at the construction site and a more comprehensive central

command unit, where the data processed and transmitted to the machine. Figure

6-7 shows the basic setup of MMC’s A-TBM system, as applied in the Klang Valley

Mass Rapid Transit (KVMRT) project.

Furthermore, the computational model should be able to handle diverse data-sets,

including 3D data, seismic data, and other geophysical data, which can be applied

to refine existing geological/geothecnical information. It should then be capable to

process these robust data-sets in real-time, informing operators and other stakeholders

as well as modifying TBM parameters.

Another crucial demand is the AI/ML model being able to learn from new data

and adapt itself based on novel information, aiding in the refinement and increased ac-

260



Figure 6-7: MMC Gamuda’s analytics dashboard for its proprietary A-TBM system [Byrd, 2016]).

curacy. The technical requirements for utilizing AI/ML models for geology prediction

in tunnels should have the following main characteristics:

1. Data Collection and Preprocessing: Collection of relevant data related

to geology, such as borehole logs, maps, and geological surveys. Data pre-

processing should be done in order to adequately train the chosen AI/ML model,

usually data is cleaned, organized and normalized (removing most inconsisten-

cies).

2. Feature Engineering: selection of relevant features (or parameters) from the

pre-processed data that are most informative in predicting ground conditions

ahead of the tunnel face. Can include geophysical data, known geological struc-

tures, mineralogical data, and ground resistance parameters.

3. ML Model Selection: Some of the commonly used ML models for geology

prediction are decision trees, support vector machines, random forests, and neu-

ral networks. The ML model should be optimized for accuracy, and scallability.

4. Hardware Requirements: Will depend on the size of the data-set and the

261



complexity of the ML model. Overall, requires high-performance computing

systems with specialized hardware such as GPUs 6 and TPUs 7, commonly

used for training large-scale ML models.

5. Software Requirements: Can vary widely through each company and use

case but would typically include the programming language used for imple-

menting the algorithms, such as Python, R, or Matlab (using libraries such as

Scikit-Learn, TensorFlow, and PyTorch).

6.5.2 Feasibility and Scalability

The use of autonomous Tunnel Boring Machine systems has been gaining traction

in recent years due to their ability to improve safety, accuracy, and productivity.

However, the success of these systems depends on their capability to handle robust

and complex data-sets accurately. The models’ interpretation and analysis of these

data-sets are essential for monitoring and modifying TBM parameters while tunneling.

The feasibility of using AI/ML models for geology prediction in tunnels is strictly

dependent on data availability, the geological complexity of the project location, and

the availability of computational resources required for training the ML model. The

success of AI/ML models in accurately predicting ground conditions ahead of the

tunnel face is directly related to the quality and quantity of data available for training.

Additionally, the algorithm must be complex enough to identify and interpret intricate

geological structures but not too convoluted or highly specialized that it becomes

impractical to use.

There is no one-size-fits-all solution when it comes to autonomous TBM systems.

It is likely that models will be updated or developed on a case-by-case basis, through
6Graphics Processing Unit. Electronic circutry specifically designed to modify a computer’s

memory, speeding image generation processes to be outputted to a display device [Foley et al., 1996].
These types of circuits are utilized improve the machine’s graphical performance [Foley et al., 1996].

7Tensor Processing Unit. Application-specific integrated circuit (ASIC) developed by Google for
improving machine learning algorithms based on neural networks using their proprietary Tensor-
Flow software [Google, 2023]. In contrast to GPUs, TPUs are engineered for low-precision com-
putation at higher input/output rates [Armasu, 2016]. TPUs have been designed to optimize neu-
ral network operations, providing high efficiency and cost-effectiveness for machine learning tasks
[Wang et al., 2019].
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a plug-and-play system similar to what MMC Gamuda has presented. This means

that the success of AI/ML models in tunneling is essentially dependent on market

interest and consequent investment, as well as the proof of concept that these models

can significantly improve safety and productivity.

The availability of computational resources is crucial for the scalability of au-

tonomous TBM systems. The infrastructure required to support the system must be

able to handle the increasing computational demands as the data-sets and model com-

plexity grow. As technology continues to advance and more data become available,

the feasibility and scalability of these systems will continue to improve. Furthermore,

as more infrastructure projects adopt these systems, market competition will drive

further investment and development of the technology.

Autonomous systems have the potential to significantly improve the efficiency,

safety, and precision of infrastructure projects, potentially revolutionizing the way

they are carried out. However, successful implementation of these systems requires

careful consideration of their feasibility, scalability, and adaptability to ensure that

they can be effectively integrated into existing processes and technologies.

6.6 Cost Estimates

To appraise the costs related to applying AI/ML to TBM operations, several

factors should be considered out of which the most important will be highlighted

below:

1. Research and Development (R&D): Developing a comprehensive TBM au-

tomation system based on AI/ML models would require significant research and

development efforts, from specialized machine learning engineers and data sci-

entists to operators and controllers. Systematic elaboration of data processing,

algorithm development and model training must be established, as well as con-

trol station planning8. The overall cost of these efforts would depend on the

scope of the project and the level of complexity involved.
8Refers to the process of designing and organizing the control station for an autonomous system.
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2. Hardware and software costs: Autonomous tunnel boring machine opera-

tions require the use specialized hardware and software, such as sensors, pro-

cessors, and data storage/processing systems (servers, GPUs and TPUs). The

cost of these components directly depend on the level of automation and sys-

tem complexity. Costs include the purchase or leasing of hardware and software

components, as well as continuous maintenance and upgrades.

3. Operating costs: Ongoing operating costs associated with running and main-

taining the system are expected. This includes spending associated with energy

consumption, data storage, and system monitoring.

4. Training and support costs: To ensure the automation system is being

effectively operated, it will be necessary to provide training to TBM opera-

tors and other personnel. Incurring in costs associated with hiring trainers or

consultants, developing educational material, and conducting training sessions.

Ongoing support and learning is also necessary to address arising technical is-

sues.

With regard to these considerations, the cost of implementing an AI/ML system

for TBM operations could range widely, depending on the level of automation and

complexity involved, project location, contractors9, amongst several other factors.

However, it is important to mention the potential benefits of such a system (further

discussed in section 6.7), which includes improved safety and construction efficiency,

that can significantly outweigh costs over time. The table below (Table 6.2) presents

approximate cost estimates for the mapped cost categories explored above.

The cost of implementing an AI/ML system for TBM automation can vary widely,

from several hundred thousand to several million dollars, depending on the scope,

location, complexity and implementation of the project. Potential benefits, which

will be discussed in the following section (6.7), may greatly justify the investment for

both TBM manufacturers and contractor construction companies in the long run.
9Companies or organizations that are responsible for carrying out tunnel boring machine (TBM)

operations. Ranging from construction companies, engineering firms, to other specialized project
managers who are hired to oversee TBM operations.
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Table 6.2: Cost estimation for the implementation components of the use autonomous
tunnel boring machine systems, interpreted from the following sources [Janbaz, 2017,
Ferrein et al., 2012, Berhad, 2019].

Component Estimated costs (USD)

Research &
Development (R&D) $50,000 - $500,000

Hardware &
Software $100,000 - $1,000,000

Operating costs $10,000 - $100,000
Training &
Support $10,000 - $100,000

6.7 Benefit Analysis

6.7.1 Potential Improvements

The proposed technology has the potential to bring numerous advancements to

the tunneling industry, especially in furthering the automation of tunnel boring ma-

chine (TBM) operations. One of these significant improvements is increased efficiency.

As the automation of TBM operations has been shown to reduce construction time re-

quired to complete a tunneling project (MMC Gamuda reported significant differences

between operations of its 10 A-TBMs when compared to conventional counterparts).

By utilizing AI/ML to analyze geology data in real-time and control adjustments

to TBM parameters, tunneling can become a more streamlined process. Automation

has the potential to address one of the biggest time consuming processes in mechanized

tunneling, which are stoppages made for the installation of precast concrete segments,

or rings, that are placed every 1.0 - 1.5 meters, greatly improving efficiency and

reducing construction time.

Another potential benefit of TBM automation lies in the increased accuracy of

geology prediction ahead of the tunnel face, which can significantly reduce the risk

of accidents and increase both worksite and overall project safety. Using these com-

putational models to identify potential hazards ahead of the tunnel face will assist

project managers in applying necessary countermeasures in a timely manner, thus
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reducing the accident risks and worksite injuries. Bettering understanding ground

conditions ahead of the construction can also lead to cost savings by reducing the

need for manual inspections and investigations.

Improving data analytics can guide important decision-making processes on the

excavation process, allowing algorithms to fully control and operate the TBM, ad-

justing machine parameters live, resulting in a more accurate and efficient excavation

process [Byrd, 2016]. For instance, MMC Gamuda’s A-TBM system utilizes its cus-

tom, proprietary software that fully takes control from the TBM operator and acts as

the machine’s controller, adapting to various ground conditions with minimal human

input [Byrd, 2016].

The system translates data-driven insights into control over steering, machine ad-

vance speed, penetration, and muck removal rates, resulting in significantly quicker

response times, enhancing accuracy and productivity. With the current A-TBM sys-

tem, human intervention has been reduced to in less than 1% of the time [Byrd, 2016].

The contractor’s experience with its 10 A-TBMs functioning at full capacity in the

Klang Valley Transit System project has shown the efficiency and functionality of the

technology, being able to reduce construction time by 20-30% [Byrd, 2016].

As the technology went from prototype to being applied in all of this decade-long

project’s building fronts, stakeholders have noticed the significant improvements in

productivity and safety [Byrd, 2016]. According to project engineers responsible for

the deployment of the A-TBM, other stakeholders did not have much faith in the suc-

cess of the technology, which quickly changed as A-TBMs consistently outperformed

traditional counterparts [Byrd, 2016].

6.7.2 Return on Investment (ROI)

To estimate the potential return on investment (ROI) of TBM automation, associ-

ated costs, maintenance, and support implications must be taken into account, along

with the potential benefits of increased efficiency, improved accuracy, and enhanced

worksite safety [?].

The benefits of TBM automation include reduced execution timelines, increased
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productivity, improved accuracy and safety, and cost and material savings, leading

to increased profitability for construction companies [?]. However, estimating the

ROI of TBM automation depends on various factors, such as the size of the project,

the current level of automation, specific technology used, and the cost of labor and

materials. As a result, providing a specific ROI estimate is difficult as it strictly

depends on a case-by-case basis. Nonetheless, the potential benefits of this technology

suggest it is a worthwhile investment for players in the tunneling industry.

In terms of estimating a range for ROI, studies by the International Tunnelling

and Underground Space Association (ITA) found that the tunneling automation

can result in cost savings of up to 50% compared to traditional drilling/blasting

[International Tunnelling and Underground Space Association, 2008]. Another study,

by the University of Cambridge found that the use of AI in TBM operations can re-

duce the time and cost of tunnel construction by up to 10% [Mair et al., 2007].

Based on these studies, it is reasonable to assume that the application of TBM

automation technology could result in significant cost savings for tunneling projects.

The exact ROI would depend on the specific project and technology used, but the

potential benefits in terms of increased efficiency, accuracy, and safety could outweigh

the initial investment costs.

6.8 Associated Risks

Some of the major risks associated with using AI/ML technology for tunneling

automation are as follows:

1. Data quality and availability: Limited or low-quality data will lead to in-

accurate predictions, which could result in accidents or costly mistakes.

2. Cybersecurity threats: Automation and allowing the TBM to be fully oper-

ated by AI/ML technology has the potential to increase the risk of cybersecurity

threats.
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3. Regulatory compliance: Compliance with current and upcoming regulation,

especially on automation efforts and the use of AI/ML, need to be observed.

4. Technical failures: Potential hardware and software malfunctioning, which

can lead to accidents, delays and increased costs.

5. Skilled workforce: Limited availability of skilled engineers and operators.

6. Resistance to change: Tunnel companies and other stakeholders are expected

to demonstrate initial resistances to the adoption of autonomous tunnel boring

machine systems.

6.8.1 Data

The accuracy and reliability of AI/ML models for tunneling automation are highly

dependent on the quality and completeness of the data used to train and operate

models. The use of inaccurate or low-quality data can lead to incorrect predictions and

recommendations, potentially resulting in TBM malfunction or incorrect operation.

If the data used to train an AI/ML model are biased towards a certain type of

rock or ground class, the model may become biased and unable to accurately predict

the behavior of the TBM in other conditions, or react to them in real-time. In such

cases, the TBM may not operate optimally, leading to increased operational costs,

and longer construction times.

Additionally, if the data used to train a model are insufficient or outdated, the

model may not be able to make accurate predictions using real-time tunneling oper-

ational data. In such cases, the AI/ML model may fail to recognize and account for

factors that can affect TBM performance, such as changes in ground conditions, shifts

in tunnel alignment, and varying excavation parameters. As a result, the TBM may

not operate efficiently, leading to increased construction costs, delays, and potential

safety risks.

Acosta (2019), has correctly noted that a significant hurdle to furthering the devel-

opment of autonomous tunnel boring machines is the lack of data unity [Acosta, 2021].
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Currently, data is outputted in a diversity of formats and files, which if united under

a master file formatting, would be greatly beneficial for analytics. Amassing this

structured telemetry data-set into particular files, would greatly advance computer

processing time, thus making real-time applications of AI/ML models highly efficient.

The use of Building Information Modeling (BIM), ever more present within civil

construction, can greatly further improvements in infrastructure development, and

should thus be considered as a simpler next step in improving tunneling construction.

BIM executes a digital representation of a project, integrating all relevant data into a

single platform, that can be visualized and manipulated by designers, engineers and

other project stakeholders. By adopting BIM more widely, tunneling operations can

become more efficient and accurate, as it allows for real-time collaboration, leading to

a reduction in errors and delays. BIM can also be used to simulate various scenarios,

making it easier to identify potential risks and optimize construction.

6.8.2 Cybersecurity Threats

As with any technology that relies on data, there is a risk of cybersecurity threats

such as hacking, data breaches, or malicious attacks. In the particular case of au-

tonomous TBMs, as this involves the use of sensitive data related to tunnel construc-

tion and the operation of the tunnel boring machine, cybersecurity is probably the

biggest concern.

The increased dependence on the internet of things (IoT) in tunneling operations,

especially for TBM automation, creates considerable risks. Hackers, malware and

other malicious agents can exploit vulnerabilities in software systems used, gaining

access to critical information and potentially machine control.

Cybersecurity risks include unauthorized access to sensitive data, such as geotech-

nical information or confidential project details, as well as tampering with the oper-

ation of the TBM or other equipment. A successful cyberattack could disrupt the

entire construction site, causing delays, accidents and other safety risks, and financial

losses. It is essential to have robust cybersecurity protocols in place to mitigate these

risks, including firewalls, comprehensive data encryption, and secure communication
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channels. Regular security assessments and updates are also necessary to identify and

diminish any potential vulnerabilities in the system.

6.8.3 Regulation

Tunnelling operations is subject to significant regulation. As increased automa-

tion and the use of AI/ML technology becomes more widespread, governments around

the world are updating and creating new regulation to address potential risks. For

infrastructure work, regulation widely varies based on the country where the project

will be implemented. Private companies will need to comply with governmental reg-

ulation, ensuring that their use of the automation technology complies with these

regulations and standards, increasing costs and the complexity of the project.

Risks to the potential for non-compliance with regulations, standards, and laws

governing tunneling operations are extremely serious and can even lead to the embargo

of the construction. The use of AI/ML technology for TBMs, although currently un-

regulated, may become subject to regulations related to safety, environmental impact,

and worker protection.

For instance, in the United States, the Occupational Safety and Health Admin-

istration (OSHA) sets clear standards for the construction industry, including reg-

ulations related to tunneling operations. Incoming automation technology used in

tunneling must comply with these standards as well as updated ones, promoting the

safety of workers and the general public.

As AI/ML continue to advance adoption in a range of industries, concerns about

data privacy and protection have been at the forefront of regulation discussions in

governments worldwide. The European Union (EU) has been at the forefront of this

regulatory crackdown, launching the General Data Protection Regulation (GDPR),

having worked mainly against data sharing amongst social media platforms. However,

the use of AI/ML technology in tunneling may also be subject to regulation related

to data privacy and security. Failure to comply with these regulations can result in

significant fines and legal liabilities.
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6.8.4 Technical Failure

AI/ML models can sometimes produce unexpected or inaccurate results, which

could lead to equipment malfunctions and other considerable safety incidents. Tunnel

Boring Machines (TBMs) are highly complex accounting for multiple subsystems that

must work simultaneously to allow for adequate advancement. Introducing AI/ML

technology, thus, adds considerable layers of complexity to the system, which increases

the potential for technical failures.

If the sensors and TBM communication systems used to collect data fail, compu-

tational models do not receive accurate or timely information, leading to incorrect

predictions and maneuvering. Moreover, the integration of AI/ML technology may

require modifications to the TBM system, which can introduce new points of fail-

ure or increase existing vulnerabilities. Technical failure has the potential to cause

significant delays and cost overruns, as well as considerably compromising worksite

safety.

To mitigate technical failure risks, it is crucial to conduct rigorous prototype

testing and validation of AI/ML models and the TBM subsystems before deploying

them in the field. This includes extensive model testing under a range of operating

conditions and scenarios, as well as identifying and addressing any potential fail-

ure points. Additionally, a comprehensive maintenance and repair plan should be

in place to ensure the proper functioning of autonomous TBM systems over time.

Regular monitoring and performance evaluations are also instrumental in identifying

and addressing technical issues before they escalate.

6.8.5 Lack of Skilled Labor

In successfully implementing AI/ML technology for tunneling automation, skilled

labor force is required. The availability of engineers and machine operators who

understand both the technology and the tunneling process, is extremely limited, which

may significantly increase costs and slow down comprehensive implementation.

The tunneling process requires a wide range of technical skills, from ground survey-
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ing and geotechnical analysis to material science, structural engineering, and equip-

ment maintenance. In order to successfully integrate AI/ML applications into this

complex process, it is necessary to have a workforce that has both an understanding

of tunneling at a high-level and the ability to work with this novel technology.

Seen in the industry long before the current shortage, several factors have his-

torically contributed to the lack of skilled labor available in the tunneling industry.

One of the most significant is the general worldwide decline in vocational education

programs that train workers in skilled operational trades. As fewer workers enter the

field, and seeing that those who do may not have the necessary skills to work with

advanced technologies, a clear shortage is in effect. Another challenge is workforce

aging, which is leading to a shortage of experienced workers in various fields, as older

workers exit the market.

To address these challenges, it would be necessary for stakeholders, from govern-

ments to industry players, to invest in training and qualifying programs, as well as

education initiatives that help workers acquire the necessary skills for understanding

new technologies, especially when considering AI/ML applications for tunneling. Ad-

ditionally, efforts to increase diversity and inclusion in the workforce, has the potential

to bring in necessary new perspectives and skills to the industry. By addressing the

shortage of skilled labor, the implementation of AI/ML technology in tunneling could

be more successful and contribute to increased efficiency, safety, and cost savings.

6.8.6 Implementation Pushback

The application of AI/ML technology for TBM-tunneling automation will require

significant modifications to the way work is done on-site. Thus, changes can be met

with considerable resistance from workers (especially specialized machine operators)

and other stakeholders. Major player companies must effectively communicate the

benefits and improvements brought on by the technology, as well as address any

concerns in order to successfully achieve comprehensive implementation.

Push-back is a common challenge when introducing new technologies, and the

adoption of AI/ML for tunneling automation is no exception. Workers and other
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stakeholders may resist changes in their workflow status-quo, commonly motivated

by fear of obsolescence or concerns about their ability to adapt to new processes.

Additionally, as seen in several other industries, workers may view the use of AI/ML

technology as an existential threat to their expertise and skills.

To successfully implement the proposed technology, contractors and TBM manu-

facturers need to effectively inform on the benefits of the technique to machine op-

erators, engineers, designers, and other stakeholders, and address any concerns that

may arise. As previously mentioned, this may involve providing training and support

to help employees adapt to new processes, ensuring that their expertise is still val-

ued in the new system. Companies should also consider gradual implementation. A

phased approach that allows workers to become comfortable with the technology and

its benefits over time is preferred to a complete substitution of TBMs.

In addition to addressing worker concerns, private companies will also need to

address concerns among other stakeholders, such as regulators and investors. Govern-

ments and their regulators may be hesitant to approve the use of AI/ML to automate

TBMs without sufficient evidence of its safety and effectiveness. And investors may

be hesitant to fund projects involving substantial changes in technology or processes.

Companies may need to provide evidence of the benefits of AI/ML technology, such

as improved safety and increased productivity, in order to address gain buy-in from

stakeholders.

6.8.7 Considerations on Automation Technology

As argued by Erharter (2021), the use of AI in TBM automation holds promise for

improving efficiency, accuracy, and safety, but there are still very significant challenges

to overcome before these systems can be widely adopted [Erharter and Marcher, 2021].

One of the primary challenges is the need for large amounts of high-quality data to

train the models. While it is relatively easy to collect data from sensors on the TBM, it

can be challenging to obtain complementary geological data. Erharter suggests that

more research is needed to develop better data collection and processing methods

[Erharter and Marcher, 2021].
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Another challenge is the complexity of the models needed to achieve consistent

prediction accuracy. While machine learning algorithms have shown promise in other

domains, such as image and speech recognition, they are not yet mature enough

to reliably predict geological conditions in a tunnel [Erharter and Marcher, 2021].

More research is needed to develop improved AI models that can take into ac-

count the complex interplay between geological conditions and TBM performance

[Erharter and Marcher, 2021].

While there is great potential for these systems to improve efficiency, accuracy, and

safety in tunneling projects, the use of AI in TBM automation is still in its early stages.

Erharter cautions that more research is needed to overcome challenges associated with

these systems and to ensure that they are reliable and accurate enough for widespread

adoption [Erharter and Marcher, 2021]. It is argued that there are significant changes

that can promote improved efficiency and safety in tunneling without necessarily using

AI/ML.

6.9 Conclusions and Recommendations

Tunneling is an essential and often complex process that requires meticulous plan-

ning, execution, and management. In seeking to achieve better efficiency and produc-

tivity, automating technologies for tunneling have been widely discussed within the

industry, especially as AI/ML advances to more engineering applications. However,

streamlining tunneling automation can be challenging, as it requires a systematic ap-

proach that focuses on identifying potential areas for intervention and improvement.

A critical component that can substantially advance tunneling automation is the

development of "intelligent" and predictive analytics tools that can optimize the per-

formance of Tunnel Boring Machines (TBMs). This can be achieved by gathering vast

amounts of data from various sources, including geotechnical surveys, real-time mon-

itoring, and machine sensors attached along the TBM. Machine learning algorithms

can then be utilized to create models that can forecast ground conditions ahead of

the TBM tunnel-face and, thus, recommend and even adjust the machine to optimal
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operating parameters. Increased automation intends to enhance productivity, reduce

machine downtime, and improve safety in construction sites.

After conducting the techno-economic assessment presented in this chapter, it is

notable that the proposed technology is not the only approach being considered in the

effort to improve tunneling operations. It is important to consider the technological

feasibility of widespread adoption of autonomous TBMs, considering their safety,

costs, risks and benefits.

The Techno-economic assessment (TEA) presented on the use of autonomous Tun-

nel Boring Machine technology in tunneling operations has shown that there is still

significant work to be done in the field, in order to fully prove and adopt the tech-

nology. From what was presented, it can be concluded that autonomous TBMs are

yet to be proven at scale, and the use of AI/ML in tunneling operations is still very

much in its infancy.

However, the study also showed that the use of AI/ML in tunneling operations

can lead to a significant increase in productivity, with an estimated 20-30% increase

(based on the case study in Malaysia). This increase in productivity is promising

and highlights the potential benefits of continuing to develop predictive technologies

for TBM-control systems. It is important to note that this is not the only way to

improve tunneling automation, and knowledge-sharing allied to further research are

essential for these technologies to be streamlined to other real-world applications.

Overall, while the TEA has shown that there is still work to be done, it has

also highlighted the potential benefits of using AI/ML in tunneling operations. With

further research and development, there is an opportunity to significantly improve

productivity, efficiency, and safety in tunneling operations.

It is important to closely evaluate interventions that explore the potential of

robotics and automation for tasks that are traditionally performed by humans. For

instance, robots can be used to lay concrete segments, install ventilation systems,

and carry out inspections. They can also be used for tasks that require high levels of

precision and accuracy, such as drilling and excavation. By automating these tasks,

tunneling operations can become faster, more efficient, and less reliant on human
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labor (which can lead to important considerations and trade-offs).

The use of Building Information Modeling (BIM) is becoming increasingly com-

mon in civil construction and can greatly improve infrastructure development, espe-

cially in tunneling construction. BIM creates a digital representation of a project that

integrates all relevant data into a single platform, allowing for real-time collaboration

and reducing errors and delays. BIM can also simulate various scenarios to identify

potential risks and optimize construction. To further the development of autonomous

tunnel boring machines, it is important to address the issue of data unity, as currently

data is outputted in various formats and files. By consolidating this data into specific

file formats, computer processing time can be greatly improved, leading to efficient

applications of AI/ML models in real-time.

While these models can potentially improve safety and accuracy, other technolo-

gies may be more feasible and beneficial for increasing tunneling productivity. Several

companies in the tunneling space are currently exploring ways to eliminate the need

for TBM stoppages during the installation of precast concrete segments (rings). This

stop-start process is the most time-consuming aspect of tunneling construction, and

reducing or eliminating it could significantly improve productivity. While geology

prediction is still important for ensuring safety, this alternative technology may be

much more relevant when considering productivity in the short-term. Ultimately, a

combination of both technologies may be necessary for further optimizing tunneling

operations, but careful consideration should be given to the cost-effectiveness and

practicality of each option.

Undoubtedly, geology prediction plays a vital role in preventing accidents and

ensuring worker safety. While it may not necessarily increase tunneling productivity,

in fact, the use of AI/ML for geology prediction in TBM may be deemed useless

if the results obtained are simply delayed and slightly altered versions of the input

data. While machine learning models trained on recorded TBM data can provide

highly accurate forecasts of rock mass conditions ahead of the tunnel face, the lack

of predictive value derived from these forecasts is a significant drawback.

As such, further research is needed in this particular field of TBM data analysis
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to overcome the current deficits in data-driven forecasts ahead of the tunnel face.

Ultimately, the use of AI/ML for geology prediction must be weighed against other

potential improvements, such as reducing the stop-start nature of TBM-tunneling, in

order to determine the most effective way to increase productivity while maintaining

satisfactory levels of safety.

Finally, in hoping to advance the field of TBM automation it is crucial to pro-

mote collaboration and knowledge-sharing among companies and stakeholders. This

can be achieved through partnerships (such as the example cited of the collabora-

tion between MMC Gamuda and Herrenknecht), knowledge exchange programs, and

training initiatives that bring together experts from different fields, including geology,

engineering, and data science. By establishing the best practices and state of the art

knowledge, the industry can identify new opportunities for innovation, improved work

quality, and increase overall efficiency of the tunneling process.

Advancing tunneling automation requires a multifaceted approach that addresses

various aspects of tunnel construction. By developing intelligent and predictive ana-

lytics tools, exploring the potential of robotics and automation, adopting BIM, and

promoting collaboration and knowledge-sharing, stakeholders can achieve better effi-

ciency, productivity, and safety in this key infrastructure sector.
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Chapter 7

Summary and Conclusions

Throughout history, tunnels have been a vital part of human civilization, from

ancient irrigation tunnels to transportation and mining tunnels. The Industrial Revo-

lution brought advancements in tunneling technology, including the rise of shield tun-

neling, which continued into the 20th century with the growing need for underground

infrastructure for transportation. Today, tunnels play a critical role in supporting

transit systems, energy production, water supply, sewage, and telecommunications

networks in cities worldwide.

As research and technology advances to supply an increasingly urbanized world

with infrastructure, Tunnel Boring Machines (TBMs) are being ever improved and

automated to build longer, deeper and more complex tunnels. While also ensuring

safety, cost-effectiveness and increased productivity. That is where Artificial Intel-

ligence (AI) and Machine Learning (ML) algorithms come into play. With TBMs

producing vast amounts of data in real-time throughout tunnel construction, efforts

to use this abundant information to inform machine operators, designers, engineers

and other stakeholders are under use.

Predicting ground conditions ahead of the tunnel face remains one of the biggest

challenges in tunnelling. Designers, operators, and engineers often have only a rough

idea of the geological profile and this uncertainty is heightened in urban areas where

previous construction may have altered anticipated ground conditions. Consequently,

there is a growing effort to utilize TBM-generated data for geological predictions in
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TBM operations.

Tunnel boring machines (TBMs) progress incrementally, in line with the main

jacks’ advancement, which is typically connected to the installation of pre-fabricated

concrete liner rings. It is therefore logical to try to assess and predict geologic con-

ditions related to the sections defined by these rings, and the term “ring” was used

throughout this thesis to refer to these sections.

The goal of this thesis was to assist in the making of geologic predictions ahead

of the TBM tunnel face based on the machine’s performance data. This was done in

three main ways: through the use of time-series plots, the Confidence Learning (CL)

model and the use of scattergrams.

The time-series plots displayed discernible patterns among the different ground

classes (rock, soil, rock-like mixed, and soil-like mixed). Rock rings exhibited greater

variability with more frequent fluctuations, resulting in plots typically characterized

by short and compact "peaks" and "valleys". Moreover, the variability in rock ap-

peared to be confined to smaller value ranges for the observed parameter comparisons.

On the other hand, in soil rings, the data exhibited wider ranges and often showed

positive correlations between parameters, with some parameter pairs completely coin-

ciding. Rock-like mixed and soil-like mixed rings were more similar to soil rings than

rock, with data-point concentration being less dense and occurring at wider ranges.

Scatterplots proved to be particularly effective in distinguishing the different

ground classes (rock, soil, rock-like mixed and soil-like mixed). In rock, the graphs

showed characteristic high-density areas where the observations were highly concen-

trated. In contrast, the data-points for soil rings were more spread out and had a

wider range of observations, resulting in less concentration. The mixed rings tended

to exhibit similar patterns to rock and soil respectively, with data-point concentra-

tions being noticeable throughout the parameter comparisons but not as prominent

as in rock rings.

The Confidence Learning (CL) model also proved to be a valuable tool for gener-

ating ground class labels for the tunnel rings. However, there were instances where

the produced labels exhibited low confidence and some discrepancies, leading to the
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misclassification of several rings. To address these issues, a comparison was made be-

tween the machine-generated labels and the geologic information presented in Chapter

3, as well as the scatterplots. The scattergrams were then utilized to verify machine-

generated labels, allowing for any discrepancies or errors to be rectified. By cross-

referencing the machine-generated labels with other sources of data, the accuracy

of the classifications was significantly improved. This highlights the importance of

utilizing multiple sources of information to verify the outputs of machine learning

models and ensure the accuracy of the results.

All three approaches (time-series plots, scatterplots and CL) were deemed success-

ful in identifying ground classes for rings based on TBM performance data. However,

scattergrams were considered the most suitable approach for classifying the rings with

the highest overall accuracy. If at all possible, combinations of AI/ML approaches

are recommended.

It is clear from the work presented that although increased automation shows

promise in reducing safety risks associated with tunnel construction, as well as boost-

ing productivity and cost-effectiveness of these large infrastructure projects, much

still needs to be done for fully automated Tunnel Boring Machines to be deployed

ubiquitously. In the subset of the field of tunneling automation through the use of

AI/ML applications for geologic/geotechnical predictions of ground conditions ahead

of the tunnel face, better understanding and evaluating the applicability of these

applications is necessary.

7.1 Future Research

While significant progress has been made in the use of artificial intelligence and

machine learning algorithms in tunneling, further research is still very necessary to

comprehensively apply these computational tools ubiquitously and safely. An area

that demands further attention is, specifically, the implementation of AI/ML ap-

proaches. Both the use of more coherent parameter comparisons and the use of full

data-sets is replacing the average values, currently used in models. To achieve this,
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researchers should focus on developing more comprehensive algorithms that can work

with larger data sets, incorporating more specialized variables or pairwise compar-

isons, that can potentially provide more accurate predictions.

The methodology proposed in this thesis aims to support researchers in enhancing

existing models and developing new software for validating ground classification based

on TBM-data. This can be achieved through joining an AI/ML algorithm to a closer

examination of key parameter comparisons, informing on areas where the model out-

puts low-confidence classification labels. The resulting more robust model can help

identify differences between chosen ground classes, leading to improved quality and

reliability of computational models.

Lastly, any new developed model that proves to be comprehensive and robust for

geology prediction in tunneling, should be extensively applied to real-world projects

and not just data-sets stemming from completed work. This is instrumental in proving

the validity of using AI/ML for geology prediction and the furthering of automation

efforts in tunnel construction. The technology shows great promise in improving the

quality, safety, and productivity of tunnel boring machine (TBM) operations. To

reach its full potential, the field requires intense collaboration between researchers,

engineers, construction companies, and other important stakeholders, to ensure the

technology is effectively integrated into the construction process.
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