
Novel Approaches to Discovery and Optimization in Physics:
Symbolic Regression, Bayesian Optimization, and Topological

Photonics

by

Samuel Kim

A.B., Harvard University (2015)
S.M., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Samuel Kim. All Rights Reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,

royalty-free license to exercise any and all rights under copyright, including to
reproduce, preserve, distribute and publicly display copies of the thesis, or release

the thesis under an open-access license.

Authored by: Samuel Kim
Department of Electrical Engineering and Computer Science
March 24, 2023

Certified by: Marin Soljačić
Professor of Physics
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Novel Approaches to Discovery and Optimization in Physics:

Symbolic Regression, Bayesian Optimization, and Topological

Photonics

by

Samuel Kim

Submitted to the Department of Electrical Engineering and Computer Science
on March 24, 2023, in partial fulfillment of the

requirements for the degree of
DOCTOR OF PHILOSOPHY

Abstract

Computational tools including high-fidelity simulations, optimization algorithms, and
more recently, machine learning, have become increasingly important in furthering sci-
entific and engineering innovations as available computational power and computing
methodologies have both advanced significantly. However, as our understanding of
the world and the systems we study correspondingly increase in complexity, there
is still a need for designing novel computational methods. In this thesis, I describe
three major innovations in which I use optimization and machine learning to automate
scientific discovery, optimization, and inverse design.

First, I propose a neural network-based method to perform symbolic regression
and automatically learn the underlying equations from high-dimensional and complex
datasets. The neural network-based model can integrate with other deep learning ar-
chitectures, thus taking advantage of the powerful capabilities of deep learning for the
task of scientific discovery. Second, I demonstrate the usage of Bayesian neural net-
works as a surrogate model in Bayesian optimization to enable global optimization of
high-dimensional, non-convex problems including topology optimization of photonic
crystals and chemical property optimization of molecules. On these complex tasks,
my method is able to outperform more commonly used surrogate models and improve
optimization in terms of both sampling efficiency and computational cost of training.
Finally, I develop a framework for global optimization and automated discovery of
3D topological photonic crystals using a combination of a low-dimensional level-set
parameterization and standard gradient-free optimization algorithms. My approach
is able to discover novel 3D photonic crystals in several topology settings requiring
no prior knowledge of topological candidates, thus indicating a path towards the
automated discovery of novel topological photonic crystal designs.

3

4

Acknowledgments

First and foremost, I am extremely grateful to my advisor, Professor Marin Soljačić.

Even before starting grad school, I was inspired by his audacious vision for the future

of machine learning and his daringness in tackling new topics. At a time where it

seemed liked the scientific community was still figuring out how machine learning

could intersect with physics, Marin had big visions for using AI to solve science and

offered me the opportunity to explore this intersection. I am grateful for his patience,

guidance, and mentorship.

I have had the privilege of learning from numerous distinguished and accomplished

researchers at MIT. Professor Steven Johnson has been a great source of knowledge

and excitement in photonics and computational methods. His class on Mathematical

Methods in Nanophotonics was one of my favorite classes at MIT, and he has always

been excited to help me throughout my research. Dr. Thomas Christensen has been

a fantastic mentor over the last year and a half of my Ph.D., teaching me everything

I know about topological photonics and guiding me to be a better researcher. I am

grateful for my thesis commitee, Professor Luca Daniel and Professor Isaac Chuang,

who have given me valuable guidance on my thesis and pushed me to become a better

researcher.

I am thankful to the entire Soljačić research group, who have all been a delight to

hang out and work with, and in particular, the machine learning subgroup within the

group–Peter Y. Lu, Charlotte Loh, Rumen Dangosvki, and Andrew Ma. Even when

not collaborating directly, we have spent countless number of hours brainstorming,

bouncing ideas off of each other, and sharing research papers, especially though the

pandemic lockdown when we perhaps needed it the most. It has also been a plea-

sure mentoring and working with numerous undergraduate students through MIT’s

UROP program who have all been extremely talented and ambitious, including Sri-

jon Mukherjee, Ilan Mitnikov, Michael Gilbert, Amber Li, Michael Zhang, Cem Tepe,

and Anka Hu.

In terms of funding, I am most grateful for the National Defense Science and

5

Engineering Graduate (NDSEG) Fellowship, which fully supported me for three years,

put trust in me as an aspiring researcher, and given me significant flexibility in my

research direction.

Many thanks to my collaborators at Google, Jasper Snoek and Jamie Smith, who

have been an amazing resource for their expertise in machine learning. I would also

like to thank my former colleagues at the Johns Hopkins Applied Physics Laboratory

(JHU APL)–including David Shrekenhamer, Jacob Alldredge, Joe Miragliotta, Ra’id

Awadallah, and the rest of the Experimental and Computational Physics group–who

have all been terrific mentors to me, introduced me to the world of electromagnetic

metamaterials and computational electromagnetics, and supported me in my plans

in pursuing graduate school.

Of course, I am deeply indebted to all my friends and family who have supported

me through this journey. My blocking group from college–Erik Schluntz, Joey Kim,

Andy Gonzalez, Nick Merrill, Ian Choi, Crystal Stowell, Tiffany Lim, Amanda Reilly,

and Miranda Chang–have always been an anchor for me, even when we are spread

out across the country. My roommates Tin (Stan) D. Nguyen, Arish Shah, and Dylan

McCormick, my partner Amy Miao, and my family have all been a huge support and

kept me sane.

Taekwondo has been a huge part of my life, and I would like to sincerely thank all

of the taekwondo communities I have been a part of and all the people I have trained

with. Thanks to the MIT Sport Taekwondo club, including the “old people” crew

and the instructors–Stan Nguyen, Tahin Syed, Renee Zhao, Joy Zeng, Jialin Ding,

Nick Hensel, Ashley Wang, and Isaac Fenta. Thanks also to the t.Bos competition

team at C.W. Taekwondo Boston, including the freestyle crew–Andrew Hurd, Leah

Rosenzweig, Kyra Chan, Kevin Lu, and Elizabeth Zou. Finally, thanks to Master

Dan Chuang, has been so welcoming and supportive of my training throughout many

ups and downs.

6

Contents

1 Introduction 25

2 Integration of Neural Network-Based Symbolic Regression in Deep

Learning for Scientific Discovery 29

2.1 Introduction . 29

2.2 EQL Architecture . 32

2.2.1 Related Work . 35

2.2.2 Sparsity . 35

2.2.3 Skip Connections . 39

2.3 Experiments . 40

2.3.1 Symbolic Regression on Analytic Expressions 40

2.3.2 MNIST Arithmetic . 41

2.3.3 Dynamical System Analysis 42

2.3.4 Particle System . 47

2.3.5 Training . 48

2.4 Results . 48

2.4.1 MNIST Arithmetic . 48

2.4.2 Kinematics . 51

2.4.3 SHO . 52

2.4.4 Particle Systems . 56

2.5 Introduction to Parametric Equations 57

2.6 Parametric EQL Network Variants 60

2.6.1 Stacked Architecture (SEQL) 60

7

2.6.2 Hyper EQL (HEQL) Architecture 63

2.7 Results . 64

2.7.1 Analytic Expressions . 64

2.7.2 PDEs . 67

2.7.3 Spring System . 71

2.8 Parametric Equations Discussion . 75

2.9 Conclusion . 77

3 Bayesian Optimization and Deep Learning for Scientific Problems

with High-Dimensional Structure 81

3.1 Introduction . 81

3.2 Related Work . 83

3.3 Bayesian Optimization . 85

3.3.1 Prerequisites . 85

3.3.2 Acquisition Function . 86

3.3.3 Continued Training with Learning Rate Annealing 87

3.3.4 Auxiliary Information . 87

3.4 Surrogate Models . 88

3.5 Results . 90

3.5.1 Multilayer Nanoparticle . 90

3.5.2 Photonic Crystal Topology . 92

3.5.3 Organic Molecule Quantum Chemistry 95

3.6 Discussion . 98

3.7 Conclusion . 101

4 Automated Discovery and Optimization of 3D Topological Photonic

Crystals 103

4.1 Introduction . 103

4.2 Methods . 106

4.2.1 Photonic Crystal Parameterization 106

4.2.2 Objective . 110

8

4.2.3 Optimization . 112

4.2.4 PhC Simulation . 115

4.3 Results and discussion . 118

4.3.1 Γ-enforced topological nodal lines 118

4.3.2 Weyl points . 122

4.3.3 Chern insulators . 126

4.4 Conclusion . 128

5 Conclusion 133

References 135

A EQL Network 159

A.1 EQL Network Details . 159

A.2 Computational Efficiency . 160

A.3 Experiment Details . 161

A.3.1 MNIST Arithmetic . 161

A.3.2 Kinematics . 162

A.3.3 SHO . 162

A.4 Additional MNIST Arithmetic Data 163

B Parametric EQL Network 167

B.1 Training Details . 167

B.2 Additional Results . 169

B.2.1 Analytic Expression . 169

B.2.2 Differential Equations . 170

C Bayesian Optimization 173

C.1 Datasets . 173

C.1.1 Nanoparticle Scattering . 174

C.1.2 Photonic Crystal . 174

C.1.3 Organic Molecule Quantum Chemistry 176

9

C.2 Bayesian Optimization and Acquisition Function 178

C.3 Continued Training . 179

C.4 Models and Hyperparameters . 180

C.4.1 Additional Surrogate Models 180

C.4.2 Implementation Details . 181

C.5 Additional Results . 182

C.5.1 Test Functions . 182

C.5.2 Nanoparticle Scattering . 182

C.5.3 Photonic Crystal . 186

C.5.4 Organic Molecule Quantum Chemistry 192

C.5.5 Additional Discussion . 194

C.6 Compute . 195

D Topological Photonic Crystal Optimization 197

D.1 Abbreviations and notation . 197

10

List of Figures

2-1 Equation Learner (EQL) network architecture for symbolic

regression. The architecture resembles a fully-connected neural net-

work, but with the activation functions replaced by the primitive func-

tions. Here we show only 4 activation functions (identity or “id",

square, sine, and multiplication) and 2 hidden layers for visual sim-

plicity, but the network can include more functions or more hidden

layers to fit a broader class of functions. 33

2-2 (a) 𝐿0.5 and (b) 𝐿*
0.5 regularization, as described in Equations (2.4) and

(2.5), respectively. The threshold for the plot of Equation (2.5) is set

to 𝑎 = 0.1 for easy visualization, but we use a threshold of 𝑎 = 0.01 in

our experiments. 37

2-3 Schematic of the MNIST addition architecture. An encoder

consisting of convolutional layers and fully-connected layers operate

on each MNIST image and extract a single-dimensional latent variable.

The two encoders share the same weights. The two latent variables are

then fed into the EQL network. The entire system is fed end-to-end

and without pre-training. 42

11

2-4 Dynamical systems architecture. (a) Architecture to learn the

equations that propagate a dynamical system, including a dynamics

encoder with convolutional layers and a propagating decoder with a

recurrent architecture. (b) Each EQL cell in the propagating decoder

consists of a separate EQL network for each dimension of y to be

predicted. In our case, y = {𝑢, 𝑣} where 𝑢 is the position and 𝑣 is

velocity, so there are 2 EQL networks in each EQL cell. 43

2-5 Dynamical systems tasks. (a) Kinematics describes the dynamics of

an object where a force 𝐹 is applied to a mass 𝑚. (b) Simple harmonic

oscillator describes a mass 𝑚 on a spring with spring constant 𝑘. In

both cases, 𝑢 is the displacement of the mass and 𝑣 is the velocity. . . 45

2-6 MNIST arithmetic results. The ability of the encoder to differenti-

ate between digits as measured by the latent variable 𝑧 versus the true

digit 𝜓 for digits 𝜒 drawn from the MNIST (a) training dataset and

(b) test dataset. The correlation coefficients are −0.985 and −0.988,

respectively. The ability of the entire architecture to fit the label 𝑦 as

measured by the predicted sum 𝑦 versus the true sum 𝑦 for digits 𝜒

drawn from the MNIST (c) training dataset and (d) MNIST test dataset. 49

2-7 Kinematics results. (a) Latent parameter 𝑧 of the dynamic encoder

architecture after training plotted as a function of the true parameter

𝑎. We see a strong linear correlation. (b,c) Predicted propagation

{ŷ𝑖} = {�̂�𝑖, 𝑣𝑖} with the EQL cell and a conventional network using

ReLU activations. “True" refers to the true propagation {y𝑖}. 51

12

2-8 Results of training on the SHO system. (a) Latent parameter 𝑧 of

the dynamic encoder architecture after training plotted as a function of

the true parameter 𝜔2. We see a good linear correlation. (b) Position 𝑢

and (c) velocity 𝑣 as a function of time for various models. “True" refers

to the analytical solution. “EQL" refers to the propagation equation

discovered by the EQL network. “ReLU" refers to propagation by

a conventional neural network that uses ReLU activation functions.

“Euler" refers to finite-difference solution using the Euler method. . . 53

2-9 Learning parametric equations. (a, b) Learning the function 𝑓1

which contains a discontinuity at 𝑡 = 0. (c, d) Learning the function

𝑓2 which corresponds to a sinusoid with a frequency that varies non-

smoothly as a function of 𝑡. (a, c) Predictions after training the EQL,

SEQL, and HEQL networks in the range −3 < 𝑥 < 3 for various values

of 𝑡. Values outside of this range (highlighted in red) are extrapolated.

(b, d) Learned functions for the varying coefficents. 59

2-10 Equation Learner (EQL) Architectures and Variants for Para-

metric Equations. (a) Architecture of the base EQL network with

relaxed 𝐿0 regularization. The weights W are re-parameterized as an

element-wise product of the gate variables z and the weight values

W̃. (b) The core of the symbolic layer, where the activation func-

tions consist of the primitive functions for symbolic regression, where

each element may contain a different primitive function and primitive

functions may take multiple inputs. (c) Architecture of the stacked

EQL (SEQL) network. Note that the indexing 𝑥(𝑗) is for the time step.

Each horizontal row represents an EQL network for each time step.

The gate z is shared across time steps. (d) Architecture of the hyper

EQL (HEQL) network. Note that in all schematics, the final (linear)

layer is omitted for visual simplicity. 61

13

2-11 Results for learning the advection-diffusion equation using the HEQL

network. (a) Prediction values and errors of 𝑢𝑡. (b) Predicted coeffi-

cient functions and prediction errors. 69

2-12 Results for learning Burgers’ equation using the SEQL network. (a)

Predicted vs. actual values of 𝑢𝑡. (b) Predicted coefficient functions

and prediction errors. 70

2-13 The combined architecture used for high-dimensional system tasks in-

volving a convolutional encoder followed by an EQL network. 71

2-14 Results for learning the spring force 𝐹 . (a) Predictions for se-

lect values of 𝑡. Outputs with |𝜓2 − 𝜓1| > 4 (highlighted in red) are

extrapolated. (b) Coefficient functions in the equation �̂� (𝑡, 𝑧1, 𝑧2) =

𝑘1(𝑡) · 𝑧1 − 𝑘2(𝑡) · 𝑧2 learned by the SEQL network. (c) Latent variable

encodings for the force function 𝐹 learned by (left) the convolutional

SEQL network and (right) the ReLU network. 73

2-15 Latent variable encodings for the function 𝑓(𝑡, 𝜓1, 𝜓2) = −5−𝑡
2
·(𝜓2−𝜓1)

learned by (a) the convolutional SEQL network and (b) the ReLU

network. 73

2-16 Results for learning the spring energy 𝐸. (a) Predictions for

select values of 𝑡. Outputs with |𝜓2 − 𝜓1| > 4 (highlighted in red) are

extrapolated. (b) Coefficient functions in the equation 𝑓(𝑡, 𝑧1, 𝑧2) =

𝑘1(𝑡) · 𝑧21 + 𝑘2(𝑡) · 𝑧22 − 2𝑘3(𝑡) · 𝑧1𝑧2 learned by the HEQL network. . . 75

3-1 (a) A cross-section of a three-layer nanoparticle parameterized by the

layer thicknesses. (b) An example of the scattering cross-section spec-

trum of a six-layer nanoparticle. (c) Whereas GPs are trained to di-

rectly predict the objective function, (d) multi-output BNNs can be

trained with auxiliary information, which here is the scattering spec-

trum. 90

14

3-2 BO results for two different objective functions for the nanoparticle

scattering problem. Training with auxiliary information (where ℳ is

trained to predict z) is denoted with “-aux”. Adding auxiliary informa-

tion to BNNs significantly improves performance. 91

3-3 (a) A 2D photonic crystal (PC). The black and white regions repre-

sent different materials, and the periodic unit cells are outlined in red.

Examples of PC unit cells drawn from the (b) PC-A distribution and

(c) the PC-B distributions. The PC-A data distribution is translation

invariant, whereas unit cells drawn from the PC-B distribution all have

white regions in the middle of the unit cell, so the distribution is not

translation invariant. (d) Example of a PC density of states (DOS). (e,

f) Comparison of the process flow for training the surrogate model in

the case of (e) GPs and (f) Bayesian Convolutional NNs (BCNN). The

BCNN can train directly on the images to take advantage of the struc-

ture and symmetries in the data, and predict the multi-dimensional

DOS. 92

3-4 Three sets of comparisons for BO results on the (top row) PC-A and

(bottom row) PC-B datasets. (a) BNNs with inductive biases outper-

form all other GP baselines and the random baseline. Note that GP-

aux is comparable to random sampling. (b) The inductive bias of con-

volutional layers and the addition of auxiliary information significantly

improve performance of BCNNs. (c) Additional comparisons. (d) Data

augmentation boosts performance if the augmentations reflect a sym-

metry present in the dataset but not enforced by the model architec-

ture. “TI” refers to a translation invariant BCNN architecture, whereas

“TD” refers to a translation dependent architecture. “-augment” signi-

fies that data augmentation of the photonic crystal image is applied,

which includes periodic translations, flips, and rotations. 94

15

3-5 Quantum chemistry task and results. (a) The GP is trained on the

SOAP descriptor, which is precomputed for each molecule. (b) The

BGNN operates directly on a graph representation of the molecule,

where atoms and bonds are represented by nodes and edges, respec-

tively. The BGNN can be trained on multiple properties given in

the QM9 dataset. (c) BO results for various properties. Note that

GraphEnsemble is a type of BGNN. (d) Time per BO iteration on the

GPU. (Note the logarithmic scale on the y-axis.) GraphGP takes

orders of magnitudes longer than BGNNs for moderate 𝑁 97

4-1 Overview of topological photonic crystal (PhC) optimization.

(a) Flowchart of the optimization process in each iteration. Optimiza-

tion continues until a convergence criterion or reaching a maximum

number of iterations. (b) The structure of the PhC is parameterized by

a continuous vector consisting of the geometry coefficients (the Fourier

sum coefficients), the filling fraction, and the unit cell lattice param-

eters. (c) Symmetry-based tools can be used to calculate the band

connectivity and topology from the high-symmetry (HS) k-points, pro-

viding a computationally efficient evaluation of the topology constraint

(here, exemplified for a hypothetical PhC in space group (SG) 148).

(e) If the PhC is found to have the desired topological indicator as com-

puted from the band symmetries, then the bandstructure is calculated

along the HS k-lines (shown in purple in the inset). This example

shows a complete bandgap highlighted in yellow. (d) Optimization

performance of complete bandgaps in SG 27 over multiple trials, as

measured by the best value of the objective found so far as a function

of iteration. Optimization consists of a 2-step process: global opti-

mization with multiple trials, followed by local optimization using the

best candidates from global optimization. Colors represent different

trials from random initializations. 107

16

4-2 Flowchart of the local optimization algorithm. Due to the non-

differentiable objective function, Sbplx is subject to premature con-

vergence. To ameliorate this, we periodically switch to ISRES to es-

cape local maxima and continue optimization. Each rectangular node

represents a sub-stage of 500 iterations, and the framework evaluates

whether the objective has improved in that sub-stage to determine the

algorithm for the next sub-stage. 113

4-3 Global and local optimization of PhCs in SG 13 with Γ-enforced

topology. (a–b) Evolution of the the complete HS gap, i.e., the op-

timization objective, during the (a) global and (b) local optimization

stages. Different curves correspond to different trials from random ini-

tializations. Of the 10 trials shown in (a), the 5 best trials are used

as initialization for the local optimization stage. The three trials with

best eventual local optimization result are color-highlighted (red, pur-

ple, and green). The unit cell evolution during local optimization for

the green trial is shown at select iterations (stars). A detailed movie of

the unit cell evolution is included in the Supporting Information. (c–

d) Band structures and unit cells for the color-highlighted (red, purple,

and green) optimization curves at the final iteration of global (c) and

local (d) optimization. 116

4-4 Nodal line location and dispersion in optimized candidates

of SG 13. (a) Nodal line frequency dispersion compared to the HS

bands. The right-most candidate exhibits a maximally-isolated nodal

line. (b) The nodal lines (color-coded by frequency) in the BZ (outlined

in black) run along the 𝑘𝑦 direction. Purple lines represent the HS k-

lines over which the bandgap is maximized 119

17

4-5 Permittivity dependence of nodal line properties. (a) We com-

pare the HS gap attainable by simply scaling the permittivity of an

original design (brown lines) versus the HS gap attainable by re-optimizing

the structure at the new target permittivity (green lines), using the

original structure as initialization point. The starting design is that

associated with Fig. 4-4(b), originally optimized at 𝜀 = 16. Substan-

tial improvements are attainable by re-optimizing. (b) Nodal line fre-

quency dispersion as a function of the HS bandgap for the re-optimized

structures, showing a monotonic decrease of nodal line dispersion with

HS gap size. 121

18

4-6 Weyl point optimization in noncentrosymmetric SGs. Selected

results for optimized PhCs designs with Weyl points in SGs 27, 37,

81, and 82, visualized by their dispersions along HS k-lines (red lines,

nontrivial valence bands; blue lines, conduction bands; yellow shading,

HS gap; dashed black line, Weyl point frequency), density of states

(DOS), and Weyl point locations in the BZ. (a–b) Optimized PhC

Weyl point designs in SGs 81 and 82: the unit cells of each design

are shown (for SG 82, we show the conventional unit cell, not the

primitive). The BZs feature 4 ideal Weyl points in the 𝑘𝑧 = 𝜋/𝑐 plane

(with equivalent copies in the 𝑘𝑧 = −𝜋/𝑐 plane) in SG 81 and in the

𝑘𝑧 = 0 plane in SG 82, without intersecting Fermi pockets. The density

of states (DOS) exhibits a parabolic frequency dependence at the Weyl

point frequency. (c,d) Optimized results in SG 82 with HS bandgaps,

but non-ideal Weyl points. (c) The Weyl point frequency lies on the

valence HS band edge, preventing frequency-isolation. (d) Although

the Weyl point frequency lies in the center of the HS bandgap, the DOS

is asymmetric and non-parabolic, due to conduction band minima right

above the Weyl point frequency that do not intersect the considered

HS k-lines. (e-f) Optimized PhC designs in SGs 27 and 37. In both

cases, the Weyl points overlap spectrally with large Fermi pockets that

extend over the interior of the BZ without intersecting any HS k-line. 123

19

4-7 Optimization of photonic Chern insulators. BZs and HS k-lines

for (a) SG 75 and (b) SG 168, respectively. PhC structure and band

structure (complete gap highlighted in yellow) for (c) SG 75, 𝐶 = 1,

(d) SG 75, 𝐶 = 2, and (e) SG 168, 𝐶 = 1. (f) Supercell calculation for

the SG 168 candidate in (e) to calculate surface states. The supercell

consists of 1×16×1 unit cells. At the interface, the sign of the applied

applied magnetic field B is flipped: i.e., the orange units cells have

B = +𝐵ẑ (𝐶 = +1) and the blue unit cells have B = −𝐵ẑ (𝐶 = −1).

(g) Surface state dispersion at the interface, extracted from supercell

calculation (projected bulk states indicated in gray). 126

A-1 The ability of the encoder to differentiate between digits as measured

by the latent variable 𝑧 versus the true digit 𝜓 for digits 𝜒 drawn from

the MNIST (a) training dataset and (b) test dataset. The ability of

the entire architecture to fit the label 𝑦 as measured by the predicted

sum 𝑦 versus the true sum 𝑦 for digits 𝜒 drawn from the MNIST (c)

training dataset and (d) MNIST test dataset. 164

A-2 The ability of the encoder to differentiate between digits as measured

by the latent variable 𝑧 versus the true digit 𝜓 for digits 𝜒 drawn from

the MNIST (a) training dataset and (b) test dataset. The ability of

the entire architecture to fit the label 𝑦 as measured by the predicted

sum 𝑦 versus the true sum 𝑦 for digits 𝜒 drawn from the MNIST (c)

training dataset and (d) MNIST test dataset. 165

B-1 (Left) Learning rate and (right) regularization weight schedules during

training relative to base_lr and base_rw. 168

B-2 Prediction errors of the parametric coefficients for the (left) HEQL and

the (right) SEQL on the analytical expressions (top) 𝑓4 and (bottom)

𝑓1. 171

20

B-3 Results for learning the advection-diffusion equation using the SEQL

network. (a) Predicted vs. actual values of 𝑢𝑡. (b) Predicted coefficient

functions and prediction errors. 172

B-4 Results for learning Burgers’ equation using the HEQL network. (a)

Predicted vs. actual values of 𝑢𝑡. (b) Predicted coefficient functions

and prediction errors. 172

C-1 Effect of 𝑚 = |𝒳pool| used in the inner optimization loop to maximize

the acquisition function on overall BO performance. 𝑦best is taken from

the narrowband objective function using the ensemble architecture.

The “aux” in the legend denotes using auxiliary information and the

numbers represent the architecture (i.e. 8 layers of 256 units or 16

layers of 512 units). 178

C-2 Effect of restarting the BNN training from scratch in each BO iteration.179

C-3 BO results for the Branin and Hartmann-6 functions. 182

C-4 Additional optimization result curves for the nanoparticle scattering

task. (Top) Various BNNs. Note that results using auxiliary informa-

tion are denoted by a solid line, while those that do not are denoted by

a dashed line. Also note that the y-axis is zoomed in to differentiate

the curves. (Bottom) Various non-BO algorithms. Ensemble-aux is

replicated here for ease of comparison. 184

C-5 Comparison of 𝑦best at 𝑁 = 1000 for the nanoparticle narrowband

objective function for a variety of neural network sizes. All results are

ensembles, and “aux” denotes using auxiliary information. 185

C-6 Examples of optimized nanoparticles and their scattering spectrum

using the “Ensemble-aux” architecture for the (a) narrowband and

(c) highpass objectives. Orange shaded regions mark the range over

which we wish to maximize the scattering. 185

21

C-7 Examples of optimized photonic crystal unit cells over multiple trials

for (a) PC-A distribution and (c) PC-B distribution. (b,d) Examples

of the optimized DOS. Note that the DOS has been minimized to

nearly zero in a thin frequency range. Orange shaded regions mark

the frequency range in which we wish to minimize the DOS. All results

were optimized by the “Ensemble-aux” architecture. 188

C-8 (a) Various metrics tracked during BO of the PC-A dataset distribu-

tion on a validation dataset of 1000 datapoints. (b) Uncertainty cal-

ibration curves measured at various points during BO. Note that the

calibration curve for GP-aux is only shown for 𝑁 = 50, as it becomes

computationally intractable for larger 𝑁 189

C-9 Additional BO results for several different objective functions on the

chemistry dataset. GP and GraphEnsemble-aux curves are repli-

cated from the main text for convenience. 192

C-10 Additional BO results for VAE-GP using different pre-trained VAEs. 193

C-11 (a) Various metrics tracked during BO of the PC-A dataset distribution

on a validation dataset of 1000 datapoints. (b) Uncertainty calibration

curves measured at various points during BO. 194

22

List of Tables

2.1 MNIST Arithmetic Expected and Extracted Equations 49

2.2 MNIST Arithmetic Generalization Results 50

2.3 Kinematics Expected and Extracted Equations 52

2.4 SHO Expected and Extracted Equations 54

2.5 Particle System Results. Equations listed for the GNN and Graph

EQL are only the first component of the edge model. 𝑐𝑖 and 𝑏𝑖 are

arbitrary constants. 56

2.6 Learned equations by the EQL network on simple parametric equations. 57

2.7 Additional analytic parametric equations for benchmarking 64

2.8 Results for training on parametric analytic expressions. Learned equa-

tions are extracted for various values of 𝑡. 66

2.9 MSE after training on PDE datasets. 66

2.10 Learned equations on select 𝑥 values for the advection-diffusion equation. 68

2.11 Learned equations for Burgers’ equation. 70

2.12 Learned equations of the SEQL on select 𝑡 values for the spring force

function 𝐹 (𝑡, 𝜓1, 𝜓2) = −5−𝑡
2

· (𝜓2 − 𝜓1) in the latent space and trans-

formed to the original parameter space. 72

2.13 Learned equations of the HEQL on select 𝑡 values for the function

𝐸(𝑡, 𝜓1, 𝜓2) =
5−𝑡
4

· (𝜓2 − 𝜓1)
2 in the latent space and transformed to

the original parameter space. 74

A.1 Benchmark results for the EQL network. 160

B.1 Results for analytic expression benchmarks. 169

23

C.1 Summary of dataset dimensionalities. Note that alternate inputs for

photonic crystal and organic molecule datasets are binary images and

molecule graphs, respectively. 173

C.2 List of properties from the QM9 dataset used as labels 177

C.3 BO results for the nanoparticle scattering task. * denotes that 𝑦best is

measured at 𝑁 = 100 due to computational constraints 183

C.4 Various architectures for BNNs and BCNNs used in the PC problem.

Numbers represent the number of channels and units for the convolu-

tional and fully-connected layers, respectively. All convolutional layers

use 3× 3-sized filters with stride (1, 1) and periodic boundaries. “MP”

denotes max-pooling layers of size 2 × 2 with stride (2, 2), and “AP”

denotes average-pooling layers of size 2× 2 with stride (1, 1). “Conv”

denotes BCNNs whereas “FC” denotes BNNs (containing only fully-

connected layers) that act on the level-set parameterization x rather

than on the image v. “TI” denotes translation invariant architectures,

whereas “TD” denotes translation dependent architectures (i.e. not

translation invariant). 186

C.5 Select BO results for the PC problem. * denotes that 𝑦best is measured

at 𝑁 = 130 due to computational constraints. † denotes that 𝑦best is

measured at 𝑁 = 750 due to computational constraints. 187

C.6 BO results for the four different quantum chemistry objective func-

tions. * denotes that 𝑦best is measured at 𝑁 = 100 due to computa-

tional constraints. 191

24

Chapter 1

Introduction

Computational sciences have enabled the study, analysis, and design of extremely

complex systems in science and engineering. For example, Maxwell’s equations, which

may seem simple at the surface, are incredibly rich in physics and give rise to numerous

phenomena in electromagnetics, optics, and photonics, not to mention the ubiquity

in which it touches all of the other sub-fields of physics. Sophisticated simulation

methods and optimization techniques have been able to harness the endless potential

in Maxwell’s equations to investigate novel phenomena and design new devices. On

the other hand, deep learning and machine learning have become extremely powerful,

easily outperforming humans on tasks previously thought to be impossible, and can

potentially also make large impact on the sciences. While I have studied a large

variety of seemingly disparate topics over the course of my PhD, they all share a

common backbone of applying computational approaches to problems in physics.

More specifically, my projects fall in three themes: (1) machine learning for scientific

discovery, (2) optimization algorithms for problems in science and engineering, and

(3) computational design in photonics.

In Chapter 2, I explore the use of machine learning to aid and even automate the

process of scientific discovery. As experiments and datasets grow larger and more

complex, there is a need to turn to computational algorithms to aid scientists in

sifting through the data and glean insights. I propose the use of a neural network

architecture that can discover equations from data in a process called symbolic re-

25

gression. Symbolic regression is a powerful technique to discover analytic equations

that describe data, which can lead to explainable models and the ability to predict

unseen data. In contrast, neural networks have achieved amazing levels of accuracy

on image recognition and natural language processing tasks, but they are often seen

as black-box models that are difficult to interpret and typically extrapolate poorly.

I demonstrate how we can integrate this architecture with various types of powerful

deep learning architectures and train end-to-end through backpropagation to enable

symbolic regression on high-dimensional data. I also propose several extensions of this

architecture to enable symbolic regression on data described by parametric equations

in which the underlying equation structure may remain constant but the coefficients

may vary in arbitrarily complex ways. The neural network-based architecture for

symbolic regression is able to extrapolate well outside of the training data set com-

pared with standard neural networks while extracting meaningful equations that are

interpretable by humans, paving the way to automate scientific exploration and dis-

covery. Perhaps machine learning methods will eventually be able to make strides in

many unsolved questions such as the mechanism of high-temperature superconduc-

tivity or a model for turbulent flow. This chapter is partially based on work that has

been published in Ref. [99] and reported in Ref. [263].

In Chapter 3, I propose a method to combine deep learning and Bayesian opti-

mization (BO) to tackle the optimization and inverse design of problems with high-

dimensional structure. Bayesian optimization (BO) is a popular paradigm for global

optimization of expensive black-box functions, but there are many domains where the

function is not completely a black-box. The data may have some known structure

(e.g. symmetries) and/or the data generation process may be a composite process

that yields useful intermediate or auxiliary information in addition to the value of

the optimization objective. However, surrogate models traditionally employed in BO,

such as Gaussian Processes (GPs), scale poorly with dataset size and dimensionality

and do not easily accommodate known structure. Instead, we use Bayesian neural

networks, a class of scalable and flexible surrogate models with inductive biases, to ex-

tend BO to complex, structured problems with high dimensionality. We demonstrate

26

BO on a number of realistic problems in physics and chemistry, including topology

optimization of photonic crystal materials using convolutional neural networks, and

chemical property optimization of molecules using graph neural networks. On these

complex tasks, we show that neural networks often outperform GPs as surrogate mod-

els for BO in terms of both sampling efficiency and computational cost. As this work

is able to optimize extremely high-dimensional problems without the use of gradi-

ents or a hand-crafted low-dimensional parameterization, it indicates a path towards

more flexible and automated inverse design with reduced requirements for domain

expertise. This work has been published in Ref. [100].

Finally, in Chapter 4, I focus on the optimization and design of 3D topological

photonic crystals. The combination of powerful gradient-based optimization methods

and the flexibility of nanoscale fabrication techniques have motivated and enabled

topology optimization of photonic crystals that can give rise to extremely complex

geometries. However, photonic crystal design is still a difficult problem since the

objective is non-differentiable and non-convex. Here I propose a method for global

optimization of 3D topological photonic crystals using a combination of strategies

to handle the difficult search space and a flexible level-set function to parameterize

the photonic crystal with a handful of parameters while still allowing for complex

geometries. Whereas most reported topological photonic crystals have been typically

carefully designed by hand with significant physical insight, my method is able to

automatically discover novel topological photonic crystals. Furthermore, we propose

several different types of topological photonic crystals that significantly surpass the

performance of any photonic crystal that has been reported so far. This work has

been published in Ref. [101].

27

28

Chapter 2

Integration of Neural Network-Based

Symbolic Regression in Deep

Learning for Scientific Discovery

2.1 Introduction

Discovering the governing equations of nature is key to many scientific disciplines, as

many complex phenomena can be reduced to general models that can be described in

terms of relatively simple mathematical equations. For example, classical electrody-

namics can be described by Maxwell’s equations, harmonic oscillators by Hooke’s law,

and non-relativistic quantum mechanics by the Schrödinger equation. These models

elucidate the underlying dynamics of a particular system and can provide general

predictions over a very wide range of conditions. While scientists have often spent

years developing insights to discover these equations, machine learning has become

alluring in its potential to tackle and automate extremely complex tasks.

Modern machine learning techniques have become increasingly powerful for many

tasks including image recognition and natural language processing. In recent years,

the power of deep learning has expanded to creating photorealistic or artistic images

from captions [185] and predicting a protein’s 3D structure [95] more quickly and

29

accurately than any other algorithm. However, the neural network-based architec-

tures in these state-of-the-art techniques are black-box models that often make them

difficult for use in scientific exploration. In order for machine learning to be widely

applied to science, there needs to be interpretable models that can extract mean-

ingful information from complex datasets and make useful predictions outside of the

training dataset.

Symbolic regression is a type of regression analysis in machine learning that

searches the space of mathematical expressions to find the best model that fits the

data, and can thus fit a much wider range of datasets than other models such as linear

regression. Assuming that the resulting mathematical expression correctly describes

the underlying model for the data, it is easier to interpret and can extrapolate better

than black-box models such as neural networks. Symbolic regression is typically car-

ried out using techniques such as genetic programming, in which the structure of the

mathematical expression is found using evolutionary algorithms to best fit the data,

while ensuring that the equation is viable through various heuristics [107]. The equa-

tions are pieced together through basic building blocks known as primitive functions,

which include constants and simple functions (e.g. addition, multiplication, sine).

Schmidt and Lipson [199], one of the most popular earlier works in this direction,

demonstrated how symbolic regression could discover equations of motions including

Hamiltonians and Lagrangians for various physical systems from experimental data.

However, due to the combinatorial nature of the problem, these genetic program-

ming approaches do not scale well to high-dimensional problems and can be prone to

overfitting, often requiring numerous hand-built heuristics and rules.

Alternative approaches to finding the underlying laws of data have been explored.

For example, a method called SINDy combines sparsity with regression techniques

and numerically-evaluated derivatives to find partial differential equations (PDEs)

that describe dynamical systems [19, 193, 197].

There has been significant work on designing neural network architectures that

are either more interpretable or contain inductive biases that make them more suit-

able for scientific exploration. Neural networks with unique activation functions that

30

correspond to primitive functions have been proposed to perform symbolic regression

[144, 195]. A deep learning architecture called the PDE-Net has been proposed to

predict the dynamics of spatiotemporal systems and produce interpretable differen-

tial operators through constrained convolutional filters [125, 126]. Trask et al. [223]

proposed a neural network module called the Neural Arithmetic Logic Unit (NALU)

that introduces inductive biases towards simple arithmetic operations so that the ar-

chitecture can extrapolate well on specific tasks. Neural network-based architectures

have also been used to extract relevant and interpretable parameters from dynami-

cal systems and use these parameters to predict the propagation of a similar system

[269, 134]. Additionally, Chari et al. [23] use symbolic regression as a separate module

to discover kinematic equations using parameters extracted from videos various types

of motion.

There have also been numerous approaches at introducing the power of deep learn-

ing into symbolic regression to enable it for more complex tasks. For example, AI-

Feynman checks for a number of physics-inspired invariances and symmetries using

both hand-built rules and neural networks to simplify the data [226]. Neural network

autoencoders have been combined with SINDy to enable equation discovery on high-

dimensional dynamical systems [22]. PDE-Net 2.0 incorporates a symbolic network

to discover PDEs using convolutional networks with constrained filters [126]. Lu et al.

[135] incorporates a symbolic network with a neural network encoder to discover ODE

and PDE systems from partial observations. Cranmer et al. [31] performs traditional

symbolic regression on graph neural network weights in a 2-step process to discover

the dynamics of many-body systems.

Here we present a neural network architecture for symbolic regression that is inte-

grated with other deep learning architectures so that it can take advantage of powerful

deep learning techniques while still producing interpretable and generalizable results.

Our base neural network is similar to EQL network containing primitive functions as

activation functions, which was developed in parallel to our work [144, 195]. Because

this symbolic regression method can be trained through backpropagation, the entire

system can be trained end-to-end without requiring multiple steps.

31

Sections 2.2-2.4 details how the EQL network can be integrated into deep learning

including convolutional networks and recurrent networks to perform symbolic regres-

sion on high-dimensional and dynamical systems. This work has been published [99].

Ref. [28] further extended this for recursive programs, implicit functions, and image

classification. Furthermore, Sections 2.5-2.8 details an extension to the EQL network

to tackle parametric equations in which the coefficients may vary in complex, non-

symbolic ways while the base structure of the equation remains constant. This has

also been reported [263].

Source code for the original EQL experiments is made publicly available in Ten-

sorflow1 and PyTorch2. Code for the extensions to parametric equations is also avail-

able3.

2.2 EQL Architecture

The symbolic regression neural network we use is similar to the Equation Learner

(EQL) network proposed in [144, 195]. As shown in Figure 2-1, the EQL network is a

fully-connected neural network where the 𝑖th layer of the neural network is described

by

g𝑖 = W𝑖h𝑖−1 (2.1)

h𝑖 = 𝑓 (g𝑖) (2.2)

where W𝑖, g𝑖, and h𝑖 are the weight matrix, pre-activation units, and post-activation

units of the 𝑖th layer, and h0 = x is the input data. The final layer does not have an

activation function, so for a network with 𝐿 hidden layers, the output of the network

𝑦 is described by

𝑦 = h𝐿+1 = W𝐿+1h𝐿.

The activation function 𝑓(g), rather than being the usual choices in neural net-

1https://github.com/samuelkim314/DeepSymReg
2https://github.com/samuelkim314/DeepSymRegTorch
3https://github.com/samuelkim314/topo-phc-opt

32

https://github.com/samuelkim314/DeepSymReg
https://github.com/samuelkim314/DeepSymRegTorch
https://github.com/samuelkim314/topo-phc-opt

Figure 2-1: Equation Learner (EQL) network architecture for symbolic re-
gression. The architecture resembles a fully-connected neural network, but with the
activation functions replaced by the primitive functions. Here we show only 4 activa-
tion functions (identity or “id", square, sine, and multiplication) and 2 hidden layers
for visual simplicity, but the network can include more functions or more hidden lay-
ers to fit a broader class of functions.

33

works such as ReLU or tanh, may consist of a separate function for each component

of g and may include functions that take two or more arguments while producing one

output (such as the multiplication function):

𝑓(g) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑓1(𝑔1)

𝑓2(𝑔2)
...

𝑓𝑛ℎ
(𝑔𝑛𝑔−1, 𝑔𝑛𝑔)

⎤⎥⎥⎥⎥⎥⎥⎦ (2.3)

Note that the additive bias term can be absorbed into 𝑓(g) for convenience. These

activation functions in (2.3) are analogous to the primitive functions (such as sine or

the square function) in symbolic regression. Allowing functions to take more than

one argument allows for multiplicative operations inside the network.

While the schematic in Figure 2-1 only shows 4 activation functions in each hidden

layer for visual simplicity, 𝑓(g) in 2.3 can include other functions including exp (𝑔) and

sigmoid(𝑔) = 1
1+𝑒−𝑔 . Additionally, we allow for activation functions to be duplicated

within each layer (i.e., multiple components in 𝑔 can use the same activation function).

This reduces the system’s sensitivity to random initializations and creates a smoother

optimization landscape so that the network does not get stuck in local minima as

easily. This also allows the EQL network to fit a broad range of functions. More

details can be found in Appendix A.1.

By stacking multiple layers (i.e. 𝐿 ≥ 2), the EQL architecture can fit complex

combinations and compositions of a variety of primitive functions. Note that 𝐿 is

analogous to the maximum tree depth in genetic programming approaches and sets

the upper limit on the complexity of the resulting expression. While this model is

not as general as conventional symbolic regression, it is powerful enough to represent

most functions that are typically seen in science and engineering. More importantly,

because the EQL network can be trained by backpropagation, it can be integrated

with other neural network-based models for end-to-end training.

34

2.2.1 Related Work

Sine has been used as an activation function in neural networks [112, 213, 166, 271].

More generally, Fourier neural networks use a combination of sines and cosines with

varying frequencies to mimic the behavior of a Fourier series [228]. These architectures

were proposed as an alternative to the more popular sigmoidal activation functions,

but are still generally difficult to train and do not match the state-of-the-art on real-

world datasets.

Fletcher and Hinde [44] proposed a general activation function that was a linear

combination of sine and sigmoid functions to improve representational power of a

one-layer neural network. [54] use a mixture of sine, softplus, and identity functions

for the activation functions, combined with regularization to shift the weights towards

the linear units and simplify the model.

2.2.2 Sparsity

A key ingredient of making the results of symbolic regression interpretable is enforcing

sparsity regularization such that the system finds the simplest possible equation that

fits the data. The goal of sparsity regularization is to set as many weight parameters

to 0 as possible such that those parameters are inactive and can be removed from the

final expression. In genetic programming-based symbolic regression approaches, this

is typically done by limiting the number of terms in the expression. Enforcing sparsity

in neural networks is an active field of research as modern deep learning architectures

using billions of parameters start to become computationally prohibitive, especially

for edge computing devices [129, 152, 270]. Gale et al. [50] evaluates several recent

developments in neural network sparsity techniques.

A straightforward and popular way of enforcing sparsity is adding to the loss

function a regularization term that is a function of the neural network weight matrices:

𝐿𝑞 =
𝐿+1∑︁
𝑖=0

𝐿𝑞 (W𝑖) (2.4)

35

where 𝑖 indexes the layer. 𝐿𝑞 acts element-wise on the matrix as follows:

𝐿𝑞(W) =
∑︁
𝑗,𝑘

𝐿𝑞 (𝑤𝑗,𝑘) =
∑︁
𝑗,𝑘

|𝑤𝑗,𝑘|𝑞

where 𝑗, 𝑘 indexes the elements in the weight matrix W.

Setting 𝑞 = 0 in (2.4) results in 𝐿0 regularization, which penalizes weights for be-

ing non-zero regardless of the magnitude of the weights (in other words, it counts the

number of non-zero weights) and thus drives the solution towards sparsity. However,

𝐿0 regularization is equivalent to a combinatorics problem that is NP-hard, and is

not compatible with gradient descent methods commonly used for optimizing neural

networks [157]. A much more popular and well-known sparsity technique is 𝐿1 regu-

larization with 𝑞 = 1, which was used in the original EQL network [144]. Although

it does not push solutions towards sparsity as strongly as 𝐿0 regularization, 𝐿1 regu-

larization is a convex optimization problem that can be solved using a wide range of

optimization techniques including gradient descent to drive the weights towards 0.

Here, we modify sparsity regularization and implement two different versions of

the EQL that use a smoothed 𝐿0.5 regularization and a relaxed 𝐿0 regularization, re-

spectively. We now describe both of these regularization techniques and how they are

compatible with gradient descent training methods. Our experiments and results in

Sections 2.3–2.4 use the smoothed 𝐿0.5 regularization, although we note that we have

found similar results using the smoothed 𝐿0 regularization. The parametric versions

of the EQL network used in Sections 2.5–2.7 use the smoothed 𝐿0 regularization as

it lends itself to a compact technique for group sparsity.

Smoothed 𝐿0.5 Regularization

Any setting of regularization with 𝑞 ̸= 0 penalizes the magnitude of the weights, even

the commonly used 𝐿1 which also drives the solution towards sparsity. Thus, 𝐿0.5 has

been proposed to enforce sparsity more strongly without penalizing the magnitude

of the weights as much as 𝐿1 [253, 252]. 𝐿0.5 regularization is still compatible with

gradient descent (although it is no longer convex) and has been applied to neural

36

Figure 2-2: (a) 𝐿0.5 and (b) 𝐿*
0.5 regularization, as described in Equations (2.4) and

(2.5), respectively. The threshold for the plot of Equation (2.5) is set to 𝑎 = 0.1 for
easy visualization, but we use a threshold of 𝑎 = 0.01 in our experiments.

networks [42, 247]. Experimental studies suggest that 𝐿0.5 regularization performs

no worse than other 𝐿𝑞 regularizers for 0 < 𝑞 < 0.5, implying that 𝐿0.5 is optimal

for enforcing sparsity [252]. Our experiments with 𝐿0.3 and 𝐿0.7 regularizers show no

significant overall improvement compared to the 𝐿0.5 regularizer, in agreement with

this study. In addition, our experiments show that 𝐿0.5 drives the solution towards

sparsity more strongly than 𝐿1, producing simpler expressions.

However, 𝐿0.5 regularization has a singularity in the gradient as the weights go

to 0, which can make training difficult for gradient descent-based methods. To avoid

this, we use a smoothed version of 𝐿0.5 proposed in [247], which we label as 𝐿*
0.5.

The 𝐿*
0.5 regularizer uses a piecewise function to smooth out the function at small

magnitudes:

𝐿*
0.5(𝑤) =

⎧⎪⎨⎪⎩|𝑤|1/2 |𝑤| ≥ 𝑎(︁
− 𝑤4

8𝑎3
+ 3𝑤2

4𝑎
+ 3𝑎

8

)︁1/2

|𝑤| < 𝑎

(2.5)

where 𝑎 ∈ R+ is the transition point between the standard 𝐿0.5 function and the

smoothed function.

A plot of the 𝐿0.5 and 𝐿*
0.5 regularization are shown in Figure 2-2. The smoothed

𝐿*
0.5 regularization avoids the extreme gradient values to improve training conver-

gence. In our experiments, we set 𝑎 = 0.01. When the EQL network is integrated

with other deep learning architectures, the regularization is only applied to the weights

37

of the EQL network.

Relaxed 𝐿0 Regularization

While vanilla 𝐿0 regularization is non-differentiable, recent works have explored train-

ing sparse neural networks with a relaxed version of 𝐿0 regularization through stochas-

tic gate variables, allowing this regularization to be compatible with backpropagation

[129, 215]. We briefly review the details here, and refer the reader to Louizos et al.

[129] for more details.

In relaxed 𝐿0 regularization, the weights of the neural network are reparameterized

as

W = W̃ ⊙ z

where z has the same dimensions as W and can be interpreted as a gate variable,

and the multiplication is component-wise. Ideally each element of z is a binary “gate"

such that 𝑧 ∈ {0, 1}. However, this is not continuous (and thus non-differentiable),

so we allow 𝑧 to be a stochastic variable drawn from the hard concrete distribution:

𝑢 ∼ 𝒰(0, 1)

𝑠 = sigmoid ([log 𝑢− log(1− 𝑢) + log𝛼] /𝛽)

�̄� = 𝑠(𝜁 − 𝛾) + 𝛾)

𝑧 = min(1,max(0, �̄�))

where 𝛼 is a trainable variable that describes the location of the hard concrete dis-

tribution, and 𝛽, 𝜁, 𝛾 are hyperparameters that describe the distribution. In the case

of binary gates, the regularization penalty would simply be the sum of z (i.e., the

number of non-zero elements in W). However, in the case of the hard concrete distri-

bution, we can calculate an analytical form for the expectation of the regularization

penalty over the distribution parameters. The sparsity regularization loss is then

ℒ𝑅 =
∑︁
𝑗

sigmoid
(︂
log𝛼𝑗 − 𝛽 log

−𝛾
𝜁

)︂

38

where 𝑗 is indexing through all of the weight components. While ref. [129] applies

group sparsity to the rows of the weight matrices with the goal of computational

efficiency, we apply parameter sparsity (to individual elements) with the goal of sim-

plifying the expression in symbolic regression.

The advantage of 𝐿0 regularization is that it enforces sparsity without placing a

penalty on the magnitude of the weights by placing a penalty on the expected number

of non-zero weights. In the EQL network, this also allows us to train the system

without needing a final stage where small weights are set to 0 and frozen. Additionally,

for the case of learning parametric equations, it lends itself to a straightforward

definition of group sparsity across time-steps as we will see in Section 2.6.1. In our

experiments, we use the hyperparameters for the 𝐿0 regularization suggested by ref.

[129], although these can be optimized in future work.

While the reparameterization to achieve relaxed 𝐿0 regularization requires us to

double the number of trainable parameters in the neural network, the regularization

is only applied to the EQL network, which is small compared to the rest of the

architecture when integrating the EQL network with other deep learning modules.

We benchmark the EQL network using 𝐿0 regularization with the aforementioned

trial functions and list the results in Table A.1. The success rates appear to be as good

or better than the network using 𝐿0.5 regularization for most of the trial functions that

we have picked. We have also integrated the EQL network using 𝐿0 regularization into

the MNIST arithmetic and kinematics architectures, and have found similar results

as the EQL network using 𝐿0.5 regularization.

2.2.3 Skip Connections

We can also add skip connections to the EQL network to introduce an inductive

bias towards simpler equations while simultaneously enabling the discovery of more

complex equations. The most well-known type of skip connections were introduced

in ResNets, which take the output of a layer and add it to the layer ahead with

the goal of allowing gradient information to efficiently propagate though many layers

and enabling extremely deep architectures [70]. While these would be feasible to

39

implement in the EQL network, they would serve to increase the complexity of the

equation as information flows through the network. In contrast, we turn to the

skip connections introduced by DenseNets which concatenates, rather than sums, the

output of the previous layer with that of the next layer [79]. More specifically, we

modify Equation 2.2 as:

h(𝑖) =
[︀
𝑓
(︀
g(𝑖)

)︀
;h(𝑖−1)

]︀
(2.6)

Skip connections introduce a slight inductive bias towards learning simpler func-

tions, since functions can route “directly” to the output without needing to go through

the identity primitive function of successive layers. Additionally, skip connections

minimize instabilities during training that can arise as a result of gradients exploding

as they pass through the primitive functions. Thus, skip connections allow us to train

EQL networks with more layers, which in turn can learn more complex equations.

Note that in the experiments in Section 2.3, we do not use skip connections in the

EQL network, although they can in principle be applied to facilitate training. The

experiments on parametric equations in Section 2.7 do use skip connections.

2.3 Experiments

2.3.1 Symbolic Regression on Analytic Expressions

To validate the EQL network’s ability to perform symbolic regression, we first test

the EQL network on data generated by analytic expressions such as exp (−𝑥2) or

𝑥21 + sin (2𝜋𝑥2). The data is generated on the domain 𝑥𝑖 ∈ [−1, 1]. Because of the

network’s sensitivity to random initialization of the weights, we run 20 trials for each

function. We then count the number of times the network has converged to the

correct answer ignoring small terms and slight variations in the coefficients from the

true value. Additionally, equivalent answers (such as sin(4𝜋+𝑥) instead of sin(2𝜋+𝑥))

are counted as correct. These results are shown in Appendix A.1.

The network only needs to be able to find the correct answer at least once over

a reasonable number of trials, as one can construct a system that picks out the

40

desired equation from the different trials using a combination of equation simplicity

and extrapolation ability. We find that when we measure the extrapolation ability by

measuring the equation error evaluated on the domain 𝑥𝑖 ∈ [−2, 2], this extrapolation

error of the correct equation tends to be orders of magnitude lower than that of other

equations that the network may find, making it simple to pick out the correct answer.

The network is still able to find the correct answer when 10% noise is added to the

data. We also test an EQL network with 3 hidden layers which still finds the correct

expression and is able to find even more complicated expressions such as (𝑥1 + 𝑥2𝑥3)
3.

We also benchmark the EQL network using 𝐿0 regularization with the aforemen-

tioned trial functions and list the results in Table A.1. The success rates appear to

be as good or better than the network using 𝐿0.5 regularization for most of the trial

functions that we have picked.

2.3.2 MNIST Arithmetic

In the first experiment, we demonstrate the ability to combine symbolic regression and

image recongition through an arithmetic task on MNIST digits. MNIST, a popular

dataset for image recognition, can be notated as 𝒟 = {𝜒, 𝜓}, where 𝜒 are 28 ×

28 greyscale images of handwritten digits and 𝜓 ∈ {0, 1, ..., 9} is the integer-value

label. Here, we wish to learn a simple arithmetic function, 𝑦 = 𝜓1 + 𝜓2, with the

corresponding images {𝜒1, 𝜒2} as inputs, and train the system end-to-end such that

the system learns how to “add" two images together.

The deep learning architecture is shown in Figure 2-3. The input consists of two

MNIST digits, 𝑥 = {𝜒1, 𝜒2}. During training, 𝜒𝑖 is randomly drawn from the MNIST

training dataset. Each of {𝜒1, 𝜒2} are fed separately into an encoder to produce

single-dimensional latent variables {𝑧1, 𝑧2} that are not constrained and can take on

any real value, 𝑧𝑖 ∈ R. Alternatively, one can think of the architecture as having a

separate encoder for each digit, where the two encoders share the same weights, as

illustrated in Figure 2-3. The encoder consists of two convolutional layers with max

pooling layers, followed by two fully-connected layers and a batch normalization layer

at the output. More details on the encoder can be found in Appendix A.3. The latent

41

Figure 2-3: Schematic of the MNIST addition architecture. An encoder con-
sisting of convolutional layers and fully-connected layers operate on each MNIST
image and extract a single-dimensional latent variable. The two encoders share the
same weights. The two latent variables are then fed into the EQL network. The
entire system is fed end-to-end and without pre-training.

variables {𝑧1, 𝑧2} then feed into the EQL network. The EQL network has a single

scalar output 𝑦 which is trained on the true label 𝑦 = 𝜓1 + 𝜓2.

The entire network is trained end-to-end using a mean-squared error (MSE) loss

between the predicted label 𝑦 and the true label 𝑦. In other words, the encoder is not

trained separately from the EQL network. Note that the encoder closely resembles

a simple convolutional neural network used for classifying MNIST digits except that

it outputs a scalar value instead of logits that encode the digit. While there is no

constraint on the properties of 𝑧1,2, we expect it to map one-to-one to the true label

𝜓1,2.

2.3.3 Dynamical System Analysis

In the next set of experiments, we apply the EQL network to analyzing physical

time-varying systems. A potentially powerful application of deep learning in science

exploration and discovery is discovering parameters in dynamical systems in an un-

supervised setting and using these parameters to predict the propagation of similar

systems. For example, [269] uses multilayer perceptrons to extract relevant properties

from a system of bouncing balls (such as the mass of the balls or the spring constant

of a force between the balls) and simultaneously predict the trajectory of a different

42

Figure 2-4: Dynamical systems architecture. (a) Architecture to learn the equa-
tions that propagate a dynamical system, including a dynamics encoder with con-
volutional layers and a propagating decoder with a recurrent architecture. (b) Each
EQL cell in the propagating decoder consists of a separate EQL network for each
dimension of y to be predicted. In our case, y = {𝑢, 𝑣} where 𝑢 is the position and
𝑣 is velocity, so there are 2 EQL networks in each EQL cell.

43

set of objects. [134] accomplishes a similar goal but using a dynamics encoder (DE)

with convolutional layers and a propagating decoder (PD) with deconvolutional layers

to enable analysis and prediction of spatiotemporal systems such as those governed

by PDEs. This DE-PD architecture is designed to analyze spatiotemporal systems

that may have an uncontrolled dynamical parameter that varies among different in-

stances of the dataset such as the diffusion constant in the diffusion equation. The

parameters encoded in a latent variable are fed into the PD along with a set of initial

conditions, which the PD propagates forward in time based on the extracted physical

parameter and learned dynamics.

Here, we present a deep learning architecture shown in Figure 2-4 which is based

on the DE-PD architecture. The DE takes in the full input series {x𝑡}𝑇𝑥
𝑡=0 over 𝑇𝑥

time steps and outputs a single-dimensional latent variable 𝑧. Unlike the original

DE-PD architecture presented in [134], the DE here is not a VAE. The DE here

consists of several convolutional layers followed by fully-connected layers and a batch

normalization layer. More details are given in Appendix A.3. The parameter 𝑧 and

a set of initial conditions y0 are fed into the PD which predicts the future time

steps {ŷ𝑡}
𝑇𝑦

𝑡=1 based on the learned dynamics. The PD consists of an “EQL cell"

in a recurrent structure, such that each step in the recurrent structure predicts a

single time step forward. The EQL cell consists of separate EQL networks for each

of feature, or dimension, in ŷ𝑡.

The full architecture is trained end-to-end using a MSE loss between the predicted

dynamics {ŷ𝑡}
𝑇𝑦

𝑡=1 and the target series {y𝑡}𝑇𝑦

𝑡=1. Similar to the architecture in Section

2.3.2, the DE and PD are not trained separately, and there is no restriction or bias

placed on the latent variable 𝑧. We explore two different physical systems (kinematics

and simple harmonic oscillator) as described in the following sections.

Kinematics

Kinematics describes the motion of objects and is used in physics to study how objects

move under an applied force. A schematic of a physical scenario described by 1-D

kinematics is shown in Figure 2-5(a) in which an object on a frictionless surface has

44

Figure 2-5: Dynamical systems tasks. (a) Kinematics describes the dynamics of
an object where a force 𝐹 is applied to a mass 𝑚. (b) Simple harmonic oscillator
describes a mass 𝑚 on a spring with spring constant 𝑘. In both cases, 𝑢 is the
displacement of the mass and 𝑣 is the velocity.

a force applied to it where the direction of the force is parallel to the surface. The

relevant parameter to describe the object’s motion can be reduced to 𝑎 = 𝐹
𝑚

for a

constant force 𝐹 and object mass 𝑚. Given position 𝑢𝑖 and velocity 𝑣𝑖 at time step

𝑖, the object’s state at time step 𝑖+ 1 are given by

𝑢𝑖+1 = 𝑢𝑖 + 𝑣𝑖Δ𝑡+
1

2
Δ𝑡2

𝑣𝑖+1 = 𝑣𝑖 + 𝑎Δ𝑡

(2.7)

where Δ𝑡 is the time step.

Acceleration 𝑎 varies across different time series in the dataset. In our simulated

dataset, we draw initial state and acceleration from uniform distributions:

𝑢0, 𝑣0, 𝑎 ∼ 𝒰(−1, 1)

We set Δ𝑡 = 1. The initial parameters 𝑢0, 𝑣0 are fed into the PD, and 𝑧 is expected

to correlate with 𝑎.

Simple Harmonic Oscillator (SHO)

The second physical system we analyze is the simple harmonic oscillator (SHO),

a ubiquitous model in physics that can describe a wide range of physical systems

45

including springs, pendulums, quantum potentials, and electric circuits. In general,

the dynamics of the SHO can be given by the coupled first-order ordinary differential

equation (ODE)
𝑑𝑢

𝑑𝑡
= 𝑣

𝑑𝑣

𝑑𝑡
= −𝜔2𝑢

(2.8)

where 𝑢 is the position, 𝑣 is the velocity, and 𝜔 is the resonant frequency of the

system. In the case of a spring as shown in Figure 2-5(b), 𝜔 =
√︀
𝑘/𝑚 where 𝑘 is the

spring constant and 𝑚 is the mass of the object on the end of the spring.

The SHO system can be numerically solved using a finite-difference approximation

for the time derivatives. For example, the Euler method for integrating ODEs gives:

𝑢𝑖+1 = 𝑢𝑖 + 𝑣𝑖Δ𝑡

𝑣𝑖+1 = 𝑣𝑖 − 𝜔2𝑢𝑖Δ𝑡
(2.9)

In our experiments, we generate data with parameters drawn from uniform dis-

tributions:

𝑢0, 𝑣0 ∼ 𝒰(−1, 1)

𝜔2 ∼ 𝒰(0.1, 1)

The state variables 𝑢 and 𝑣 are measured at a time step of Δ𝑡 = 0.1 to allow the system

to find the finite-difference solution. Because of this small time step, we also need to

propagate the solution for more time steps to find the right equation (otherwise the

system learns the identity function). To avoid the recurrent architecture predictions

exploding towards ±∞, we start the training by propagating only 1 time step, and

add more time steps as the training continues. A similar strategy is used by [126]

except that we are not restarting the training.

The initial parameters 𝑢0, 𝑣0 are fed into the PD, and 𝑧 is expected to correlate

with 𝜔2.

46

2.3.4 Particle System

Finally, we examine the system of interacting particles. We follow the setup provided

by Cranmer et al. [31] in which multiple particles travel in an enclosed space with an

interaction force between each pair of particles (i.e. spring force or Coulomb force).

The system is parameterized by the properties of each particle (i.e. mass, charge) and

the force between them (i.e. spring constant). Cranmer et al. [31] trained a graph

neural network (GNN) to predict the instantaneous acceleration of each particle, with

nodes corresponding to each particle. The GNN contained both edge models 𝜑𝑒 and

node models 𝜑𝑣. After training the GNN on the data, a traditional symbolic regression

software was used on the edge models and node models to discover the force equa-

tion governing the system and the properties of each particle, respectively. Sparsity

regularization is applied to the edge models to encourage interpretable equations.

In our experiments, we use the spring force dataset, where the potential is governed

by the equation

𝑈𝑖𝑗 = (𝑟𝑖𝑗 − 1)2 (2.10)

where 𝑟 is the distance between particles 𝑖 and 𝑗. We also use the 1/𝑟 force dataset,

where the potential is governed by the equation

𝑈𝑖𝑗 = 𝑚1𝑚2 log 𝑟𝑖𝑗. (2.11)

We use the same GNN architecture as the original work, but replace each of the edge

and node models with EQL networks. While the original model required a 2-stage

process to extract the governing equations, we expect our architecture to be able to

discover the equations end-to-end in a single stage.

47

2.3.5 Training

The neural network is implemented in TensorFlow [3]. The network is trained using

backpropagation with the RMSProp optimizer [222] and the following loss function:

ℒ =
1

𝑁

∑︁
(𝑦𝑖 − 𝑦𝑖)

2 + 𝜆𝐿*
0.5

where 𝑁 is the size of the training dataset and 𝜆 is a hyperparameter that balances

the regularization versus the mean-squared error.

Similar to [144], we introduce a multi-phase training schedule. In an optional first

phase, we train with a small value of 𝜆, allowing for the parts of the network apart

from the EQL to evolve freely and extract the latent parameters during training.

In the second phase, 𝜆 is increased to a point where it forces the EQL network to

become sparse. After this second phase, weights in the EQL network below a certain

threshold 𝛼 are set to 0 and frozen such that they stay 0, equivalent to fixing the

𝐿0 norm. In the final phase of training, the system continues training without 𝐿*
0.5

regularization (i.e. 𝜆 = 0) and with a reduced maximum learning rate in order to

fine-tune the weights.

Specific details for each experiment are listed in Appendix A.3.

2.4 Results

2.4.1 MNIST Arithmetic

Figure 2-6(b) plots the latent variable 𝑧 versus the true label 𝜓 for each digit after the

entire network has been trained. Note that while system is trained on digits drawn

from the MNIST training dataset, we also evaluate the trained network’s performance

on digits drawn from the MNIST test dataset to confirm the encoder’s generalizability.

We see a strong linear correlation for both datasets, showing that the encoder has

successfully learned a linear relation between 𝑧 and 𝜓 despite not having access to

the digit label 𝜓. Also note that there is a scaling factor between 𝑧 and 𝜓 due to the

48

Figure 2-6: MNIST arithmetic results. The ability of the encoder to differentiate
between digits as measured by the latent variable 𝑧 versus the true digit 𝜓 for digits
𝜒 drawn from the MNIST (a) training dataset and (b) test dataset. The correlation
coefficients are −0.985 and −0.988, respectively. The ability of the entire architecture
to fit the label 𝑦 as measured by the predicted sum 𝑦 versus the true sum 𝑦 for digits
𝜒 drawn from the MNIST (c) training dataset and (d) MNIST test dataset.

Table 2.1: MNIST Arithmetic Expected and Extracted Equations
True 𝑦 = 𝜓1 + 𝜓2

Encoder 𝑦 = −1.788𝑧1 − 1.788𝑧2 + 9.04
EQL 𝑦 = −1.809𝑧1 − 1.802𝑧2 + 9

lack of constraint on 𝑧. A simple linear regression shows that the relation is

𝜓 = −1.788𝑧 + 4.519 (2.12)

The extracted equation from the EQL network for this result is shown in Table 2.1.

The “Encoder" equation is what we expect based on the encoder result in Equation

2.12. From these results, we conclude that the EQL network has successfully extracted

the additive nature of the function. Plotted in Figure 2-6(c-d) are the predicted sums 𝑦

versus the true sums 𝑦. The mean absolute errors of prediction for the model drawing

digits from the MNIST training and test datasets are 0.307 and 0.315, respectively.

49

Table 2.2: MNIST Arithmetic Generalization Results
Accuracy [%]

Source of 𝑤𝑖 to form
𝑥 = {𝑤1, 𝑤2}

Network after
the encoder 𝑦 < 15 𝑦 ≥ 15

MNIST training dataset EQL 92 87
ReLU 93 0.8

MNIST test dataset EQL 91 83
ReLU 92 0.6

While the architecture is trained as a regression problem using an MSE loss, we

can still report accuracies as if it is a classification task since the labels 𝑦 are integers.

To calculate accuracy, we first round the predicted sum 𝑦 to the nearest integer and

then compare it to the label 𝑦. The trained system achieves accuracies of 89.7% and

90.2% for digits drawn from the MNIST training and test datasets, respectively.

To demonstrate the generalization of this architecture to data outside of the train-

ing dataset, we train the system using a scheme where MNIST digit pairs 𝜒1, 𝜒2 are

randomly sampled from the MNIST training dataset and used as a training data point

if they follow the condition 𝜓1 + 𝜓2 < 15. Otherwise, the pair is discarded. In the

test phase, MNIST digit pairs 𝜒1, 𝜒2 are randomly sampled from the MNIST training

dataset and kept in the evaluation dataset if 𝜓1 + 𝜓2 ≥ 15. Otherwise, the pair is

discarded. For comparison, we also test the generalization of the encoder by follow-

ing the above procedures but drawing MNIST digit pairs 𝜒1, 𝜒2 from the MNIST test

dataset. Generalization results of the network are shown in Table 2.2. In this case,

the EQL network has learned the equation 𝑦 = −1.56𝑧1 − 1.56𝑧2 + 8.66.

First, note the difference between the accuracy evaluated on pairs 𝑦 < 15 and pairs

𝑦 ≥ 15. For the architecture with the EQL network, the accuracy drops by a few

percentage points. However, for the architecture where the EQL network is replaced

by the commonly used fully-connected network with ReLU activation functions (which

we label as “ReLU"), the accuracy drops to below 1% showing that the results of

the EQL is able to generalize reasonably well in a regime where the ReLU cannot

generalize at all. Note that this is not a result of the encoder since the system sees

all digits 0 through 9.

50

Second, the accuracy drops slightly when digits are drawn from the MNIST test

dataset versus when the digits are drawn from the MNIST training dataset, as ex-

pected. We did not optimize the hyperparameters of the digit extraction network

since the drop in accuracy is small, so the architecture could be optimized further if

needed.

Finally, the accuracy drops slightly for pairs 𝑦 < 15 when using the EQL versus

the ReLU network. This is unsurprising since the larger size and symmetric activation

functions of the ReLU network constrains the network less than the EQL and may

make the optimization landscape smoother.

2.4.2 Kinematics

Figure 2-7: Kinematics results. (a) Latent parameter 𝑧 of the dynamic encoder
architecture after training plotted as a function of the true parameter 𝑎. We see a
strong linear correlation. (b,c) Predicted propagation {ŷ𝑖} = {�̂�𝑖, 𝑣𝑖} with the EQL
cell and a conventional network using ReLU activations. “True" refers to the true
propagation {y𝑖}.

Figure 2-7(a) shows the extracted latent parameter 𝑧 plotted as a function of the

true parameter 𝑎. We see a linear correlation with correlation coefficient close to

51

−1, showing that the dynamics encoder has extracted the relevant parameter of the

system. Again, there is a scaling relation between 𝑧 and 𝑎, which we can extract

through linear regression:

𝑎 = −0.884𝑧 − 0.091 (2.13)

An example of the equations found by the EQL cell after training is shown in

Table 2.3. The “DE" equations are what we expect based on the true equation and

the extract relation in Equation 2.13. We can see that the EQL equations match

closely with what we expect.

Table 2.3: Kinematics Expected and Extracted Equations

True 𝑢𝑖+1 = 𝑢𝑖 + 𝑣𝑖 +
1
2
𝑎

𝑣𝑖+1 = 𝑣𝑖 + 𝑎

DE �̂�𝑖+1 = 𝑢𝑖 + 𝑣𝑖 − 0.442𝑧 − 0.045
𝑣𝑖+1 = 𝑣𝑖 − 0.884𝑧 − 0.091

EQL �̂�𝑖+1 = 1.002𝑢𝑖 + 1.002𝑣𝑖 − 0.475𝑧
𝑣𝑖+1 = 1.002𝑣𝑖 − 0.918𝑧 − 0.102

The predicted propagation {ŷ𝑖} is plotted in Figure 2-7(b-c). “True" is the true

solution that we want to fit, and “EQL" is the solution propagated by the EQL

network. For comparison, we also train a neural network with a similar architecture

to the one shown in Figure 2-4 but where the EQL cell is replaced by a standard

fully-connected neural network with 2 hidden layers of 50 neurons each and ReLU

activation functions (which we label as “ReLU"). While both networks match the

true solution very closely in the training regime (left of the dotted line), the ReLU

network quickly diverges from the true solution outside of the training regime. The

EQL cell is able to match the solution reasonably well for several more time steps,

showing how it can extrapolate beyond the training data.

2.4.3 SHO

The plot of the latent variable 𝑧 as a function of the true parameter 𝜔2 after training

on the SHO system is shown in Figure 2-8(a). Note that there is a strong linear

correlation between 𝑧 and 𝜔2 as opposed to between 𝑧 and 𝜔. This reflects the fact

52

Figure 2-8: Results of training on the SHO system. (a) Latent parameter 𝑧
of the dynamic encoder architecture after training plotted as a function of the true
parameter 𝜔2. We see a good linear correlation. (b) Position 𝑢 and (c) velocity 𝑣 as
a function of time for various models. “True" refers to the analytical solution. “EQL"
refers to the propagation equation discovered by the EQL network. “ReLU" refers to
propagation by a conventional neural network that uses ReLU activation functions.
“Euler" refers to finite-difference solution using the Euler method.

53

Table 2.4: SHO Expected and Extracted Equations

True
𝑢𝑖+1 = 𝑢𝑖 + 0.1𝑣𝑖

𝑣𝑖+1 = 𝑣𝑖 − 0.1𝜔2𝑢𝑖

DE
�̂�𝑖+1 = 𝑢𝑖 + 0.1𝑣𝑖

𝑣𝑖+1 = 𝑣𝑖 − 0.0464𝑢𝑖 + 0.0927𝑢𝑖𝑧

DE, 2nd Order
�̂�𝑖+1 = 𝑢𝑖 + 0.1𝑣𝑖

𝑣𝑖+1 = 0.998𝑣𝑖 − 0.0464𝑢𝑖 + 0.0927𝑢𝑖𝑧 + 0.0046𝑣𝑖𝑧

EQL
�̂�𝑖+1 = 0.994𝑢𝑖 + 0.0992𝑣𝑖 − 0.0031

𝑣𝑖+1 = 0.995𝑣𝑖 − 0.0492𝑑+ 0.084𝑢𝑖𝑧 + 0.0037𝑣𝑖𝑧 + 0.0133𝑧2

that using 𝜔2 requires fewer operations in the propagating equations than 𝜔, the

latter of which would require a squaring function. Additionally, the system was able

to find that 𝜔2 is the simplest parameter to describe the system due to the sparsity

regularization on the EQL cell. We see a strong linear correlation with a correlation

coefficient of −0.995, showing that the dynamics encoder has successfully extracted

the relevant parameter of the SHO system. A linear regression shows that the relation

is:

𝜔2 = −0.927𝑧 + 0.464 (2.14)

The equations extracted by the EQL cell are shown in Table 2.4. The “DE"

equation is what we expect based on the dynamics encoder result in Equation 2.14.

Immediately, we see that the expression for �̂�𝑖+1 and the first three terms of 𝑣𝑖+1

match closely with the Euler method approximation using the latent variable relation

extracted by the dynamics encoder.

An interesting point is that while we normally use the first-order approximation

of the Euler method for integrating ODEs:

𝑣𝑖+1 = 𝑣𝑖 +Δ𝑡
𝑑𝑣

𝑑𝑡

⃒⃒⃒⃒
𝑡=𝑖

+𝒪(Δ𝑡2)

it is possible to expand the approximation to find higher-order terms. If we expand

54

the Euler method to its second-order approximation, we get:

𝑣𝑖+1 = 𝑣𝑖 +Δ𝑡
𝑑𝑣

𝑑𝑡

⃒⃒⃒⃒
𝑡=𝑖

+
1

2
Δ𝑡2

𝑑2𝑣

𝑑𝑡2

⃒⃒⃒⃒
𝑡=𝑖

+𝒪(Δ𝑡3)

≈ 𝑣𝑖 −Δ𝑡𝜔2𝑢𝑖 −
1

2
Δ𝑡2𝜔2𝑣𝑖

The expected equation based on the dynamics encoder result and assuming the

2nd order expansion is labeled as “DE, 2nd Order" in Table 2.4. It appears that the

EQL network in this case has not only found the first-order Euler finite-difference

method, it has also added on another small term that corresponds to second-order

term in the Taylor expansion of 𝑣𝑖+1. The last term found by the EQL network,

0.0133𝑧2 is likely from either cross-terms inside the network or a lack of convergence

to exactly 0 and would likely disappear with another thresholding process.

The solution propagated through time is shown in Figure 2-8(b-c). As before,

“ReLU" is the solution propagated by an architecture where the EQL network is

replaced by a conventional neural network with 4 hidden layers of 50 units each and

ReLU activation functions. For an additional comparison, we have also calculated

the finite-difference solution using Euler’s method to integrate the true ODEs which

is labeled as “Euler".

Within the training regime, all of the methods fit the true solution reasonably well.

However, the conventional neural network with ReLU activation functions completely

fails to extrapolate beyond the training regime. This is not particularly surprising

as previous works report that neural networks generally struggle in learning periodic

functions, and that periodic inductive biases are required to improve learning [271].

The Euler method and the EQL network are both able to extrapolate reasonably well

beyond the training regime, although they both start to diverge from the true solution

due to the large time step and the accumulated errors from numerical integration.

A more accurate method such as the Runge-Kutta method almost exactly fits the

analytical solution, which is not surprising due to its small error bound. However,

it is more complex than the Euler method and would likely require a larger EQL

network to find an expression similar to the Runge-Kutta method. Interestingly, the

55

Table 2.5: Particle System Results. Equations listed for the GNN and Graph EQL
are only the first component of the edge model. 𝑐𝑖 and 𝑏𝑖 are arbitrary constants.

Spring force 1/𝑟 force
Expected (aligned) 𝑐1Δ𝑥

(︀
1− 1

𝑟

)︀
+ 𝑏1 𝑐1𝑚2Δ𝑥/𝑟2 + 𝑏1

Expected (general) 𝑐1Δ𝑥
(︀
1− 1

𝑟

)︀
+ 𝑐2Δ𝑦

(︀
1− 1

𝑟

)︀
+ 𝑏1 𝑐1𝑚2Δ𝑥/𝑟2 + 𝑐2𝑚2Δ𝑦/𝑟2 + 𝑏1

GNN [31] 0.60Δ𝑥
(︀
1− 1

𝑟

)︀
+ 1.36Δ𝑦

(︀
1− 1

𝑟

)︀
(4.59𝑚2Δ𝑦 − 15.5𝑚2Δ𝑥) /𝑟2

Graph EQL 0.05Δ𝑥
(︀
1− 1

𝑟

)︀
−0.02𝑚2Δ𝑥/𝑟2

EQL network solution has a smaller error than the Euler solution, demonstrating that

the EQL network was able to learn higher-order corrections to the first-order Euler

method. This could possibly lead to discovery of more efficient integration schemes

for differential equations that are difficult to solve through finite-difference methods.

2.4.4 Particle Systems

The results are shown in Table 2.5 for 2D versions of the datasets and with 4 particles

For the extracted equations we only list the first component of the edge model (as the

second component generally follows a similar form for the other spatial dimension, and

the remaining components are zero). Because the original GNN is trained without

any inductive bias, the learned force equations do not necessarily need to align with

the Cartesian axes of the original data. Indeed, Cranmer et al. [31] report that the

extracted equations are generally rotated versions of the expected equations, and use

a rotation to back out the original equations. However, the Graph EQL network

incorporates inductive biases inside the architecture in the form of the primitive

activation functions combined with sparsity regularization in the EQL network. This

discovers a simpler equation which corresponds to the unrotated version of the spring

force, thus pointing to the advantage of the end-to-end nature of the Graph EQL

network. We see similar results when scaling up the complexity of the 1/𝑟 force

dataset, i.e. when we have 8 particles or when the dimensionality is 3, and for more

complex datasets, i.e. a 1/𝑟2 force.

56

Table 2.6: Learned equations by the EQL network on simple parametric equations.
True EQL

𝑓1 = 𝑡𝑥2 + 3 sgn(𝑡)𝑥
0.02𝑥2 − 0.14𝑡+ 1.86𝑥𝑡+ 1.01𝑥2𝑡+ 0.03𝑡2 − 0.01𝑥2𝑡2

− 0.02𝑡3 − 0.01𝑥𝑡3 + (0.09− 1.80𝑥+ 0.01𝑥2) sin(1.91𝑡)
+ 0.77𝑥 sin(3.71𝑡) + 0.32 sin(3.22𝑥𝑡)− 0.10

𝑓2 = sin(𝑗(𝑡)𝑥) 0.720 sin(2.05𝑥)

2.5 Introduction to Parametric Equations

Next, we look at another type of complexity, which are datasets described by para-

metric equations in which the underlying equation structure may stay the same but

coefficients may vary along one or more dimensions. PDEs are ubiquitous in de-

scribing the dynamics of many systems, but even the most simple settings can re-

quire varying coefficients. For example, solving for electromagnetic modes or electron

wavefunction in a material requires solving Maxwell’s equation with spatially-varying

permittivity or the Schrödinger equation with varying potential, respectively. Param-

eters may be influenced or even controlled by external factors that are not captured

in the data [268]. The nonlinear Schrödinger equation with varying coefficients has

found applications in describing Bose-Einstein condensates [257]. Additionally, the

varying coefficients may change in complex ways that are not easily expressible sym-

bolically, which would result in standard symbolic regression tools failing to discover

interpretable equations. Various approaches have been proposed to discover specifi-

cally parametric PDEs, including group sparsity combined with SINDy [192], genetic

algorithms combined with averaging over local windows [250], and linear regression

with kernel smoothing over adjacent coefficients [137].

In Sections 2.5-2.8 we generalize symbolic regression to parametric equations.

The ability to learn parametric equations may greatly expand the scope of symbolic

regression, especially in cases where the coefficients may vary over the dataset in

arbitrarily complex ways that are difficult to express symbolically. Such behavior

would greatly impede the performance of traditional symbolic regression approaches

that attempt to find the simplest equation describing the dataset. To illustrate this,

we train the EQL network on two simple parametric equations listed in Table 2.6.

57

The first function is a parabolic curve described as:

𝑓1(𝑥, 𝑡) = 𝑡𝑥2 + 3 sgn(𝑡)𝑥

where sgn is the sign function (also known as the signum function):

sgn(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1 if 𝑡 < 0

0 if 𝑡 = 0

1 if 𝑡 > 0

.

The function notably contains a discontinuity at 𝑡 = 0 and thus cannot be described

in terms of smooth functions. The results of fitting the EQL network are shown in

Figure 2-9(a) and Table 2.6. The EQL network learns an overly complicated equation

with over a dozen terms that likely signify its attempt to fit the discontinuity. While

it seems to fit reasonably well inside the training regime (in the range −3 < 𝑥 < 3),

it fails to extrapolate well since it has not learned the correct equation. (In principle,

the function 𝑓1 is simple enough such that an EQL network with sigmoidal activation

functions could approximate it with reasonable accuracy, but we choose this example

to illustrate some difficulties of symbolic regression.)

In the second example, we look at a sinusoidal curve where the frequency varies

non-smoothly as a function of time:

𝑓2(𝑥, 𝑡) = sin(𝑗(𝑡)𝑥)

where we have defined a “jagged” function:

𝑗(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.5𝑡+ 2.5 if 𝑡 < 0

−0.5𝑡+ 2.5 if 0 ≤ 𝑡 < 1.5

𝑡+ 0.25 otherwise

.

The jagged function 𝑗(𝑡) is illustrated in Figure 2-9(d). As seen in Table 2.6, the

58

Figure 2-9: Learning parametric equations. (a, b) Learning the function 𝑓1
which contains a discontinuity at 𝑡 = 0. (c, d) Learning the function 𝑓2 which
corresponds to a sinusoid with a frequency that varies non-smoothly as a function of
𝑡. (a, c) Predictions after training the EQL, SEQL, and HEQL networks in the range
−3 < 𝑥 < 3 for various values of 𝑡. Values outside of this range (highlighted in red)
are extrapolated. (b, d) Learned functions for the varying coefficents.

59

EQL network is unable to learn the parametric form of the sinusoidal frequency, and

thus fits poorly.

In this section we extend the EQL network and enable neural network-based sym-

bolic regression to parametric equations that may have varying coefficients. We pro-

pose two novel architectures, the stacked EQL network (SEQL) and the hyper EQL

network (HEQL), which can each discover parametric equations with various ad-

vantages. We demonstrate our method on various analytic equations, PDEs, and a

high-dimensional dataset consisting of images of particles.

In Section 2.6 we first propose several modifications to the EQL network that

improve its training behavior. In Sections 2.6.1 and 2.6.2 we propose 2 variants of the

EQL architecture that can discover parametric equations. Note that in our discussion

and notation in this section, we assume that the coefficients are parameterized with

respect to time as this provides a convenient intuition applicable to many systems.

However, the parameterization could also be with respect to other quantities (e.g.

space).

2.6 Parametric EQL Network Variants

In this work, we propose two variants of the EQL network to learn parametric equa-

tions: the Stacked EQL (SEQL) and the Hyper EQL (HEQL).

2.6.1 Stacked Architecture (SEQL)

The first extension we propose to analyze parametric equations is to train a separate

EQL network for each time step, an architecture that we call the stacked EQL (SEQL)

network. Suppose we have a dataset that is indexed by the time step 𝑗:

𝒟 =

{︂{︀
𝑥(𝑖,𝑗), 𝑦(𝑖,𝑗)

}︀𝑁(𝑗)

𝑖=1

}︂𝑁𝑡

𝑗=1

(2.15)

where 𝑁𝑡 is the number of time steps and 𝑁 (𝑗) is the number of data points in the 𝑗th

time step (note that 𝑁 (𝑗) does not need to be constant across time steps). For layer

60

Figure 2-10: Equation Learner (EQL) Architectures and Variants for Para-
metric Equations. (a) Architecture of the base EQL network with relaxed 𝐿0

regularization. The weights W are re-parameterized as an element-wise product of
the gate variables z and the weight values W̃. (b) The core of the symbolic layer,
where the activation functions consist of the primitive functions for symbolic regres-
sion, where each element may contain a different primitive function and primitive
functions may take multiple inputs. (c) Architecture of the stacked EQL (SEQL)
network. Note that the indexing 𝑥(𝑗) is for the time step. Each horizontal row rep-
resents an EQL network for each time step. The gate z is shared across time steps.
(d) Architecture of the hyper EQL (HEQL) network. Note that in all schematics, the
final (linear) layer is omitted for visual simplicity.

61

𝑖 of the SEQL network, we can construct 𝑁𝑡 separate weight matrices,
{︁
W̃

(𝑖,𝑗)
}︁𝑁𝑡

𝑗=1
,

such that Equations 2.2 are modified as:

g(𝑖,𝑗) = W(𝑖,𝑗)h(𝑖−1,𝑗) (2.16)

h(𝑖,𝑗) = 𝑓
(︀
g(𝑖,𝑗)

)︀
. (2.17)

In other words, we parameterize a separate EQL network for each time step, as shown

in Figure 2-10(c).

If we naïvely train 𝑁𝑡 separate EQL networks, then it is possible that each net-

work may learn a different equation in each time step. Additionally, each network

would only see approximately 1
𝑁𝑡

of the total data, thus reducing data efficiency. To

counteract this, we enforce that the different networks learn the same equation by

implementing group sparsity through weight sharing of the gate variable z. For the

𝑖th layer of the 𝑗th time step, we further modify Eq. 2.17 as:

h(𝑖,𝑗) = 𝑓
(︁(︁

W̃
(𝑖,𝑗) ⊙ z(𝑖)

)︁
h(𝑖−1,𝑗)

)︁
(2.18)

Note that z is not parameterized with respect to the time step 𝑗. For an architecture

with 𝐿 hidden layers, there are (𝐿+ 1) ·𝑁𝑡 weight matrices and 𝐿+ 1 gate matrices.

Another modification we make to the architecture is weight regularization across

time steps to introduce an inductive bias towards smoothness in the coefficients. We

use 𝐿2 regularization loss between adjacent time steps. Looking at just a single

element 𝑤𝑘,𝑙 of W in a single layer for notational simplicity, the inter-layer 𝐿2 loss is

simply

𝐿𝑆,𝑘,𝑙 =
𝑁𝑡−1∑︁
𝑗=1

(︁
𝑤

(𝑗+1)
𝑘,𝑙 − 𝑤

(𝑗)
𝑘,𝑙

)︁2

(2.19)

and the total inter-layer regularization loss is

ℒ𝑆 =
∑︁
𝑖,𝑘,𝑙

𝐿
(𝑖)
𝑆,𝑘,𝑙 (2.20)

where 𝑖 indexes the layer. This regularization pushes coefficients in adjacent time-

62

steps closer together and can more effectively counteract noisy datasets.

2.6.2 Hyper EQL (HEQL) Architecture

We also propose a second variant of the EQL network, the Hyper EQL (HEQL)

network, in which the weights W̃ are re-parameterized as a function of the varying

coefficient, i.e., W̃(𝑡). While a number of models can be used to parameterize the

weights, we use a fully-connected neural network as it is a flexible model that can

fit arbitrary functions and can be trained with backpropagation, allowing the entire

system to be trained end-to-end. We call this fully-connected neural network the

meta-weight unit (MWU). The architecture is shown in Figure 2-10(d).

This idea is similar to that of hypernetworks, in which a neural network is used

to generate the weights of another neural network [64]. The general idea of using a

network to parameterize or interact with the weights of another network has been

most notably leveraged for meta-learning [6, 155, 186, 76], and has also been applied

to a variety of other architectures, including the Neural ODE [24] and HyperPINN

[34].

The HEQL has a separate MWU in each layer (including the linear output layer)

which takes the parametric variable 𝑡 as an input and outputs the weight matrix

W̃
(𝑖)
(𝑡) for that layer. The gate variables z are not modified and are thus not a

function of 𝑡. As a result, all of the “time steps” share the same sparsity regularization,

thus avoiding the need for any further modifications to implement group sparsity.

The advantage of this architecture compared to the SEQL is that the HEQL does

not replicate the EQL network for each time step, thus saving on computational

memory especially for large 𝑁𝑡. The architecture can also make predictions on a

continuous domain of 𝑡 and does not need require the data to align along a fixed

grid in time, unlike the prior work on discovering parametric PDEs [192, 250, 137].

More specifically, rather than viewing the dataset as Equation 2.15, we have greater

flexibility and can view the dataset as

𝒟 =
{︀
𝑥(𝑖), 𝑦(𝑖), 𝑡(𝑖)

}︀𝑁

𝑖=1
. (2.21)

63

Table 2.7: Additional analytic parametric equations for benchmarking
Label Equation
𝑓3 𝑡𝑥
𝑓4 𝑡𝑥2 + 3 sin(𝑡)𝑥
𝑓5 sin

(︀
5+𝑡
2
𝑥
)︀

Although we do not explicitly regularize the functional space of the parametric

coefficients, neural networks tend to generalize well despite typically being overpa-

rameterized, which is a topic of significant interest [156, 121, 123, 83]. In practice,

this means that the predictions of neural networks for regression tasks tend to be

smooth, and so the function of the parametric coefficient will also tend to be smooth.

2.7 Results

We now look at several different problem settings with parametric quantities that

can be analyzed by our system. For simplicity, we highlight some of the results here,

and the remainder can be found in the appendix. Section 2.7.1 demonstrates some

simple benchmarks to highlight the aspects of learning parametric equations. Section

2.7.2 shows results on PDE datasets taken from other works. Finally, section 2.7.3

presents results on 1D images of a spring system to demonstrate the ability to perform

symbolic regression on higher-dimensional systems.

2.7.1 Analytic Expressions

To verify the ability of the SEQL and HEQL networks to discover parametric equa-

tions, we benchmark the networks on the analytical expressions discussed in Section

2.5 and listed in Table 2.6. We also benchmark additional expressions listed in Table

2.7. While we train the networks on data drawn from the domain 𝑥 ∈ [−3, 3], we eval-

uate the networks on a wider domain 𝑥 ∈ [−5, 5] to test extrapolation performance.

Figure 2-9 shows the results for learning 𝑓1 and 𝑓2 using the SEQL and HEQL

networks. The true function and the predicted function are plotted for various values

of 𝑡. In all cases, the SEQL/HEQL predictions are visually indiscernible from the

64

true function in both the training regime and the test regime, demonstrating that the

architectures are able to extrapolate. As in the case of the original EQL network, the

learned equations can be extracted from the trained network by simply processing the

learned weights with software for symbolic mathematics. In particular, we use SymPy,

a Python package for symbolic mathematics, to simplify the resulting expression

[149]. For clarity, we also omit negligible terms (i.e., those with coefficient magnitudes

< 0.005) in the final expression.

65

Table 2.8: Results for training on parametric analytic expressions. Learned equations are extracted for various values of 𝑡.
Training (Test) MSE Learned equations

Benchmark SEQL HEQL 𝑡 True SEQL HEQL

𝑓1

−2.619 −2.619𝑥2 − 3𝑥 −2.62𝑥2 − 3.00𝑥− 0.05 −2.63𝑥2 − 3.02𝑥− 0.03
2.37× 10−6 3.79× 10−6 −1.095 −1.095𝑥2 − 3𝑥 −1.10𝑥2 − 3.00𝑥− 0.02 −1.12𝑥2 − 3.02𝑥− 0.01
(6.97× 10−6) (2.04× 10−5) 0.381 0.381𝑥2 + 3𝑥 0.38𝑥2 + 3.00𝑥+ 0.01 0.39𝑥2 + 3.01𝑥+ 0.01

1.905 1.905𝑥2 + 3𝑥 1.91𝑥2 + 3.00𝑥+ 0.03 1.91𝑥2 + 3.02𝑥+ 0.03

𝑓2

−2.619 sin(1.191𝑥) 0.999 sin(1.191𝑥) 1.000 sin(1.190𝑥)
4.07× 10−7 1.27× 10−8 −1.095 sin(1.953𝑥) 0.999 sin(1.952𝑥) 1.000 sin(1.952𝑥)
(8.98× 10−7) (1.22× 10−7) 0.381 sin(2.310𝑥) 0.997 sin(2.310𝑥) 1.000 sin(2.309𝑥)

1.905 sin(2.155𝑥) 0.999 sin(2.155𝑥) 1.000 sin(2.155𝑥)

𝑓3

−2.619 −2.62𝑥 −2.62𝑥 −2.62𝑥− 0.02
2.81× 10−15 2.53× 10−6 −1.095 −1.10𝑥 −1.10𝑥 −1.10𝑥
(5.28× 10−15) (4.43× 10−6) 0.381 0.38𝑥 0.38𝑥 0.38𝑥

1.905 1.90𝑥 1.91𝑥 1.91𝑥

𝑓4

−2.619 −2.62𝑥2 − 1.50𝑥 −2.62𝑥2 − 1.51𝑥− 0.08 −2.62𝑥2 − 1.50𝑥+ 0.01
3.09× 10−6 5.97× 10−6 −1.095 −1.10𝑥2 − 2.67𝑥 −1.09𝑥2 − 2.68𝑥− 0.08 −1.10𝑥2 − 2.66𝑥+ 0.02
(9.47× 10−6) (3.17× 10−5) 0.381 0.38𝑥2 + 1.12𝑥 0.38𝑥2 + 1.12𝑥+ 0.01 0.38𝑥2 + 1.12𝑥

1.905 1.90𝑥2 + 2.83𝑥 1.90𝑥2 + 2.85𝑥+ 0.06 1.90𝑥2 + 2.83𝑥

𝑓5

−2.619 sin(1.19𝑥) sin(1.19𝑥) sin(1.19𝑥)
6.26× 10−8 1.40× 10−8 −1.095 sin(1.95𝑥) sin(1.95𝑥) sin(1.95𝑥)
(1.21× 10−7) (3.63× 10−8) 0.381 sin(2.69𝑥) sin(2.69𝑥) sin(2.69𝑥)

1.905 sin(3.45𝑥) sin(3.45𝑥) sin(3.45𝑥)

Table 2.9: MSE after training on PDE datasets.
𝑢𝑡 MSE Coefficient MSE

Benchmark SINDy SEQL HEQL SINDy SEQL HEQL
Advection-diffusion, with cross terms 2.34× 10−7 2.87× 10−5 1.99× 10−5 3.99× 10−2 2.99× 10−3 1.44× 10−3

Advection-diffusion, no cross terms 2.34× 10−7 2.12× 10−5 1.57× 10−5 1.73× 10−2 2.30× 10−3 1.37× 10−3

Burgers’, with cross terms 5.11× 10−8 5.66× 10−6 5.54× 10−6 3.95× 10−7 8.81× 10−6 9.83× 10−6

Burgers’, no cross terms 2.30× 10−4 2.55× 10−7 8.02× 10−6 1.73× 10−3 8.41× 10−6 4.44× 10−5

66

The extracted equations for learning the parametric parabolic function 𝑓1 for var-

ious time steps are shown in Table 2.8. Upon inspection of the extracted equations

over multiple time steps, we see that the architectures has successfully discovered

the function 𝑓 1 = 𝑎(𝑡)𝑥2 + 𝑏(𝑡)𝑥 + 𝜖(𝑡) where 𝑎(𝑡) and 𝑏(𝑡) are the varying coef-

ficients and 𝜖 is a small number that can either be eliminated with further train-

ing or ignored upon inspection. The predicted parametric coefficients 𝑎(𝑡) and 𝑏(𝑡)

match the true coefficients extremely closely, as seen in Figure 2-9(b). Note that the

SEQL/HEQL networks are able to learn the discontinuous sgn function without any

apparent smoothing at 𝑡 = 0. Discontinuous coefficients would be difficult to learn

using other methods for parametric equations that rely on local averaging [250] or

smoothing [137].

For learning the sinusoidal function 𝑓2, both the SEQL and HEQL networks have

learned the equation 𝑓 2 = sin(𝑎(𝑡)𝑥) as seen in Table 2.8 where 𝑎(𝑥) is plotted in

Figure 2-9(d). Again, the predictions match the true function extremely well across

time steps and outside of the training regime. Although sinusoidal functions are

typically difficult to learn through linear regression techniques, the SEQL and HEQL

networks are able to learn this function across multiple spatial frequencies.

Note that because the varying coefficient is inside the sgn and sin functions for 𝑓1

and 𝑓2, respectively, other methods for learning parametric equations such as those

proposed in Refs. [137] or [19] that rely on linear regression techniques would not be

able to discover these types of equations. In contrast, the multi-layer architecture of

the SEQL and HEQL networks allow for the varying coefficient to be inside nested

functions, enabling discovery of much more complex parametric equations. Inter-

estingly, there is no clear trend on whether the SEQL or HEQL tends to perform

better.

2.7.2 PDEs

Next, we investigate learning partial differential equations (PDEs) with varying coef-

ficients from data. Prior works in discovering parametric equations have focused on

the setting of PDEs [192, 250, 137], as PDEs are ubiquitous in describing dynamics

67

Table 2.10: Learned equations on select 𝑥 values for the advection-diffusion equation.
𝑥 True SEQL HEQL

−4.375 −0.89𝑢− 0.79𝑢𝑥 + 0.10𝑢𝑥𝑥 −0.86𝑢− 0.77𝑢𝑥 + 0.11𝑢𝑥𝑥 −0.86𝑢− 0.76𝑢𝑥 + 0.11𝑢𝑥𝑥
−1.875 0.89𝑢− 2.21𝑢𝑥 + 0.10𝑢𝑥𝑥 0.83𝑢− 2.14𝑢𝑥 + 0.07𝑢𝑥𝑥 0.86𝑢− 2.16𝑢𝑥 + 0.09𝑢𝑥𝑥
0.625 −0.89𝑢− 0.79𝑢𝑥 + 0.10𝑢𝑥𝑥 −0.86𝑢− 0.77𝑢𝑥 + 0.11𝑢𝑥𝑥 −0.86𝑢− 0.77𝑢𝑥 + 0.11𝑢𝑥𝑥
3.125 0.89𝑢− 2.21𝑢𝑥 + 0.10𝑢𝑥𝑥 0.83𝑢− 2.14𝑢𝑥 + 0.07𝑢𝑥𝑥 0.88𝑢− 2.17𝑢𝑥 + 0.10𝑢𝑥𝑥

in a variety of fields. For ease of comparison, we benchmark our architectures on two

of the datasets provided by Rudy et al. [192], the advection-diffusion equation and

Burgers’ equation with varying coefficients. In this setting, the partial differential

terms (e.g. 𝑢𝑥, 𝑢𝑥𝑥) are pre-computed from the dataset and concatenated with the

input 𝑢.

We note that SINDy is not able to automatically calculate cross terms (e.g. 𝑢𝑢𝑥)

and so the cross terms were also pre-computed and fed into SINDy in the original

work [192]. We label this approach as “with cross terms” in Table 2.9. In contrast,

the SEQL and HEQL architectures are able to automatically discover cross terms

as necessary, and so we also carry out experiments that omit the cross terms in the

input, labelled “no cross terms.”

Advection-Diffusion Equation

The advection-diffusion equation describes numerous physical transport systems and

has been applied to describe the movement of pollutants, reservoir flow, heat, and

semiconductors. We use an adaptation of the equation that includes a spatially-

dependent velocity field, as in [192]:

𝑢𝑡 = 𝑓 ′(𝑥)𝑢+ 𝑓(𝑥)𝑢𝑥 + 𝜖𝑢𝑥𝑥. (2.22)

where 𝑓(𝑥) = −1.5+ cos
(︀
2𝜋𝑥
5

)︀
and 𝜖 = 0.1. Note that the parametric quantities vary

with respect to space rather than time.

Table 2.10 shows the equations that the SEQL and HEQL have learned after

training for few instances of 𝑥. We see that both networks have learned an equation

of the form �̂�𝑡 = 𝑓
′
(𝑥)𝑢+ 𝑓(𝑥)𝑢𝑥+ �̂�(𝑥)𝑢𝑥𝑥, and have thus successfully discovered the

68

Figure 2-11: Results for learning the advection-diffusion equation using the HEQL
network. (a) Prediction values and errors of 𝑢𝑡. (b) Predicted coefficient functions
and prediction errors.

equation structure. The predicted �̂�𝑡 along with the learned parametric coefficients

(𝑓
′
(𝑥), 𝑓(𝑥), �̂�(𝑥)) are shown in Figure 2-11 for the HEQL network. The predicted

values match the actual values very closely. Again, note that the predicted coefficients

by the fully-connected neural network are smooth as a function of 𝑥 despite the lack

of explicit regularization.

Burgers’ Equation

Burgers’ equation is an important differential equation originally proposed to model

turbulent flow but has been applied to other processes such as traffic flow and bound-

ary layer behavior. Here we analyze Burgers’ equation with an oscillating coefficient

for the non-linear term, as in [192]:

𝑢𝑡 = 𝑓(𝑡)𝑢𝑢𝑥 + 𝜖𝑢𝑥𝑥. (2.23)

where 𝑓(𝑡) = −
(︁
1 + sin(𝑡)

4

)︁
and 𝜖 = 0.1.

As before, both the SEQL and HEQL networks are able to accurately discover

69

Figure 2-12: Results for learning Burgers’ equation using the SEQL network. (a)
Predicted vs. actual values of 𝑢𝑡. (b) Predicted coefficient functions and prediction
errors.

Table 2.11: Learned equations for Burgers’ equation.
𝑥 True SEQL HEQL

0.627 −1.15𝑢𝑢𝑥 + 0.10𝑢𝑥𝑥 −1.15𝑢𝑢𝑥 + 0.10𝑢𝑥𝑥 −1.16𝑢𝑢𝑥 + 0.10𝑢𝑥𝑥
3.137 −1.00𝑢𝑢𝑥 + 0.10𝑢𝑥𝑥 −1.00𝑢𝑢𝑥 + 0.10𝑢𝑥𝑥 −1.01𝑢𝑢𝑥 + 0.10𝑢𝑥𝑥
5.647 −0.85𝑢𝑢𝑥 + 0.10𝑢𝑥𝑥 −0.86𝑢𝑢𝑥 + 0.10𝑢𝑥𝑥 −0.85𝑢𝑢𝑥 + 0.10𝑢𝑥𝑥
8.157 −1.24𝑢𝑢𝑥 + 0.10𝑢𝑥𝑥 −1.24𝑢𝑢𝑥 + 0.10𝑢𝑥𝑥 −1.25𝑢𝑢𝑥 + 0.10𝑢𝑥𝑥

70

Figure 2-13: The combined architecture used for high-dimensional system tasks in-
volving a convolutional encoder followed by an EQL network.

the correct equation as shown in Table 2.11. We see in Figure 2-12 that the SEQL

network is able to accurately predict the function and the parametric coefficients.

Note that while ref. [192] needs to pre-compute product terms of the individual

spatial derivatives such as 𝑢𝑢𝑥 and 𝑢2𝑥𝑢
3
𝑥𝑥𝑥 and then perform a linear regression over

these terms, the SEQL is able to learn non-linear relations on its own using the

multiplication primitive function. So the SEQL is only given 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, . . . as inputs,

but is able to learn the form of the nonlinear PDE.

2.7.3 Spring System

Finally, we demonstrate the ability of the parametric EQL networks to perform sym-

bolic regression on structured, high-dimensional data by integrating with other deep

learning architectures and training end-to-end.

We consider a dataset that consists of pairs of 1D images of point particles that

interact through a spring-like force. The input data is a 1D grayscale image with 64

pixels which represents a 1D spatial domain 𝜓 ∈ [−4, 4]. Each image contains a single

particle, represented by a Gaussian with mean centered at its position 𝜓𝑖 and a fixed

variance of 0.1. We look at two different targets for symbolic regression: the spring

force 𝐹 = −𝑘(𝑡)(𝜓2−𝜓1) and the spring energy 𝐸 = 𝑘(𝑡)
2
(𝜓2−𝜓1)

2, where 𝑘(𝑡) = 5−𝑡
2

.

The spring constant decreases over time, which we can imagine is representative of a

spring degrading with use.

To approach this problem, we use the architecture shown in Figure 2-13. Each

71

Table 2.12: Learned equations of the SEQL on select 𝑡 values for the spring force
function 𝐹 (𝑡, 𝜓1, 𝜓2) = −5−𝑡

2
· (𝜓2 − 𝜓1) in the latent space and transformed to the

original parameter space.
𝑡 True Learned Latent Learned Transformed

−2.619 −3.81(𝜓2 − 𝜓1) −4.66𝑧1 + 4.66𝑧2 3.82�̂�1 − 3.82�̂�2

−1.095 −3.05(𝜓2 − 𝜓1) −3.72𝑧1 + 3.72𝑧2 3.05�̂�1 − 3.05�̂�2

0.381 −2.31(𝜓2 − 𝜓1) −2.82𝑧1 + 2.82𝑧2 2.31�̂�1 − 2.31�̂�2

1.905 −1.55(𝜓2 − 𝜓1) −1.89𝑧1 + 1.89𝑧2 1.55�̂�1 − 1.55�̂�2

image is fed into a separate encoder, where the two encoders share the same weights.

The encoder consists of 2 convolutional layers followed by 3 fully-connected layers and

a batch normalization layer. The encoders each output a single-dimensional latent

variable 𝑧1, 𝑧2, which are then fed into the parametric EQL network (which can be

either the HEQL or the SEQL). The batch normalization layer serves to constrain

the range of the latent variable so that the EQL network does not need to scale to

arbitrarily-sized inputs when training end-to-end. The EQL network has a single

scalar output, which is trained to match either the spring force or the spring energy.

The entire network is trained end-to-end and is only shown the inputs and the output,

but must learn an appropriate representation 𝑧𝑖. While there are no constraints on

the latent representation 𝑧𝑖, we expect it to have a one-to-one mapping to the true

position of the particle, 𝜓𝑖.

For all tests, 512 training data points with 𝜓1, 𝜓2 ∈ [−3, 3] were sampled for

each of 128 fixed values of 𝑡 ∈ [−3, 3]. To evaluate the extrapolation ability of these

architectures, training data points were restricted to pairs with |𝜓2 − 𝜓1| ≤ 4, while

no such restriction was imposed on testing data. In addition, we compare against

a baseline test of a model consisting of the same encoder architecture with a dense

ReLU network replacing EQL network. We call this baseline the ReLU network.

Results for learning the spring force is shown in Figure 2-14. Both the SEQL

network and the ReLU network successfully predict the force inside the training do-

main, but only the SEQL network is able to extrapolate outside of the training regime

whereas the ReLU network completely fails to extrapolate. Additionally, the EQL

network learns the governing equation as shown in Table 2.12, with the learned para-

72

F

(a)

(b)

(c) SEQL ReLU

Figure 2-14: Results for learning the spring force 𝐹 . (a) Predictions for select
values of 𝑡. Outputs with |𝜓2 − 𝜓1| > 4 (highlighted in red) are extrapolated. (b)
Coefficient functions in the equation �̂� (𝑡, 𝑧1, 𝑧2) = 𝑘1(𝑡) · 𝑧1 − 𝑘2(𝑡) · 𝑧2 learned by
the SEQL network. (c) Latent variable encodings for the force function 𝐹 learned by
(left) the convolutional SEQL network and (right) the ReLU network.

Figure 2-15: Latent variable encodings for the function 𝑓(𝑡, 𝜓1, 𝜓2) = −5−𝑡
2
· (𝜓2−𝜓1)

learned by (a) the convolutional SEQL network and (b) the ReLU network.

73

Table 2.13: Learned equations of the HEQL on select 𝑡 values for the function
𝐸(𝑡, 𝜓1, 𝜓2) = 5−𝑡

4
· (𝜓2 − 𝜓1)

2 in the latent space and transformed to the original
parameter space.

𝑡 True Learned Latent Learned Transformed
−2.619 −1.90(𝜓2 − 𝜓1)

2 6.59𝑧21 + 6.59𝑧22 − 13.18𝑧1𝑧2 + 0.02 1.91�̂�
2

1 + 1.91�̂�
2

2 − 3.82�̂�1�̂�2 + 0.02

−1.095 −1.52(𝜓2 − 𝜓1)
2 5.27𝑧21 + 5.27𝑧22 − 10.55𝑧1𝑧2 + 0.01 1.53�̂�

2

1 + 1.53�̂�
2

2 − 3.06�̂�1�̂�2 + 0.01

0.381 −1.16(𝜓2 − 𝜓1)
2 4.01𝑧21 + 4.01𝑧22 − 8.02𝑧1𝑧2 + 0.01 1.16�̂�

2

1 + 1.16�̂�
2

2 − 2.33�̂�1�̂�2 + 0.01

1.905 −0.77(𝜓2 − 𝜓1)
2 2.64𝑧21 + 2.64𝑧22 − 5.28𝑧1𝑧2 + 0.01 0.77�̂�

2

1 + 0.77�̂�
2

2 − 1.53�̂�1�̂�2 + 0.01

metric coefficient plotted in Figure 2-14(b). Note that the SEQL network learns the

expression �̂� = 𝑘1(𝑡)𝑧1−𝑘2(𝑡)𝑧2, where we do not necessarily have 𝑘1 = 𝑘2. Upon in-

spection, however, we see that 𝑘1(𝑡) ≈ 𝑘2(𝑡) and so the SEQL network has discovered

an approximately equal expression to what we expect.

Additionally, while the SEQL network discovers an equation in terms of 𝑧1,2, it

also learns a linear mapping of the latent variable to the true position as shown in

Figure 2-15(a). While there is no explicit constraint or regularization placed on the

latent space, because the EQL network must learn to use the latent variable to form

the equation, the end-to-end training of the architecture forces the mapping to be

an analytical transformation of the original variable, which in this case is a linear

mapping. In contrast, the latent variable mapping for the ReLU network is shown in

Figure 2-15(b). While it is one-to-one, it is not linear since there is no bias to make

the mapping linear. Using this linear mapping, we can perform a linear regression

to find the approximate relationship between 𝑧 and �̂� and reconstruct the discovered

equation in terms of �̂�, which is shown in the right-most column of Table 2.12.

We see similar results for the spring potential data, this time using the HEQL

network, in Figures 2-16 and Table 2.13. Again, the HEQL network is able to

extrapolate outside of the training regime whereas the ReLU network fails to ex-

trapolate. Note that in this case, the HEQL learns the equation �̂�(𝑡, 𝑧1, 𝑧2) =

𝑘1(𝑡)𝑧
2
1 + 𝑘2(𝑡)𝑧

2
2 − 2𝑘3(𝑡)𝑧1𝑧2 + 𝜖(𝑡) where 𝑘1 ≈ 𝑘2 ≈ 𝑘3 and 𝜖 is small. Thus,

the HEQL network has discovered the correct equation.

74

E

(a)

(b)

Figure 2-16: Results for learning the spring energy 𝐸. (a) Predictions for select
values of 𝑡. Outputs with |𝜓2 − 𝜓1| > 4 (highlighted in red) are extrapolated. (b)
Coefficient functions in the equation 𝑓(𝑡, 𝑧1, 𝑧2) = 𝑘1(𝑡) · 𝑧21 + 𝑘2(𝑡) · 𝑧22 − 2𝑘3(𝑡) · 𝑧1𝑧2
learned by the HEQL network.

2.8 Parametric Equations Discussion

We note that in our experiments we used analytic expressions for the varying co-

efficients for simplicity. However, our method is not constrained to these types of

expressions, and the parametric coefficient can more generally be any arbitrary func-

tion. Thus, our method can be applied to systems that we know are partially governed

by an analytic equation, but partially governed by some other mechanism that may

be too complex or noisy to capture. This is similar in spirit to methods for solving

PDEs that replace part of the equation with a neural network, often to correct for

discretization errors [170, 105].

Comparing the two architectures, for a moderate number of time steps (e.g. 𝑁𝑡 <

512) the SEQL has fewer parameters than the HEQL; despite this, however, the

HEQL trains on each minibatch 3.7× faster than the SEQL on the analytic equations

for our settings of hyper-parameters and network sizes. This is likely because the

limiting factor is the computation of the activation functions, which must be processed

75

separately for each component of ℎ (whereas in a conventional neural network the use

of a single activation function is able to take advantage of vectorization optimizations).

For a larger number of time steps, (e.g. 𝑁𝑡 > 512), the HEQL is more memory-efficient

as well since the SEQL parameters scale linearly with the number of time steps. Thus,

the HEQL is able to scale to larger datasets.

In terms of the data format, prior methods rely on gridded data [192, 250] while

both the SEQL and the HEQL allow a variable grid along the varying dimension. The

HEQL architecture takes this flexibility a step further in that it is able to interpolate in

time and make predictions at arbitrary time points, whereas the stacked architecture is

fixed to certain time points. On the other hand, we find that the stacked architecture

is less sensitive to the random initialization and converges more quickly to the solution.

Thus, we have a tradeoff between performance and flexibility. One possible direction

for future work to bridge this gap is to introduce different learning rate schedules

for the EQL network and the MWU in the HEQL architecture, as the EQL network

typically requires large learning rates to escape local minima and converge, whereas

large learning rates may be detrimental to the MWU.

As mentioned in Section 2.7, the SEQL and HEQL architectures are also more

flexible than previous approaches in the types of equations that can be discovered.

For example, the previous approaches rely on variants of linear regression, and are

thus not able to discover varying coefficients that are inside other functions such as

sin(𝑓(𝑡)𝑥). Additionally, our approach is able to automatically discover cross terms

whereas the SINDy framework relies on these terms being precomputed.

The parametric architectures presented here can be viewed as implementing func-

tional regularization. Functional regularization, which imposes regularization on the

learned function rather than on the parameters, is attractive as it is much more in-

tuitive and can lead to more natural methods for tasks such as continual learning

[12, 165]. It has been has been explored in neural networks through regularizing the

predictions on batch of the data [12] and through defining the prior over functions

rather than weights in the case of Bayesian neural networks [216, 191]. In the case of

the EQL network, the coefficients of the resulting equation are typically very simple

76

functions (oftentimes the identity function) of the weights themselves. This means

that in practice, the 𝐿2 smoothing regularization in the stacked EQL network archi-

tecture often implicitly applies to the function space, even though we are explicitly

applying the regularization in the weight space. In the case of the parametric EQL

architecture, the output of fully-connected neural networks will tend to be smooth

due to modern training methods such as stochastic gradient descent (which is a deep

topic of great interest in the literature), and so the MWU itself acts as a regularization

on the function space of the EQL network.

2.9 Conclusion

We have shown how we can integrate symbolic regression with deep learning architec-

tures and train the entire system end-to-end to take advantage of the powerful deep

learning training techniques that have been developed in recent years. Namely, we

show that we can learn arithmetic on MNIST digits where the system must learn to

identify the images in an image recognition task while simultanesouly extracting the

mathematical expression that relates the digits to the answer. Additionally, we show

that we can simultaneously extract an unknown parameter from a dynamical system

and extract the propagation equations. In the SHO system, the results suggest that

we can discover new techniques for integrating ODEs, potentially paving the way for

improved integrators, such as integrators for stiff ODEs that may be difficult to solve

with numerical methods. Finally, we have proposed two different variants of the EQL

network—the stacked architecture (SEQL) and the hyper architecture (HEQL)—to

enable neural network-based symbolic regression of parametric systems where coef-

ficients may vary. To this end, we demonstrated our system on parametric analytic

equations and PDEs, as well as a dataset encoded as images. Altogether, these meth-

ods have the potential to combine the power of deep learning and symbolic regression

to enable scientific discovery on complex and high-dimensional datasets.

One direction for future work is to study the role of random initializations and

make the system less sensitive to random initializations. As seen by the benchmark

77

results of the EQL network in Appendix A.1, the EQL network is not always able to

find the correct mathematical expression. This is because there are a number of local

minima in the EQL network that the network can get stuck in, and gradient-based

optimization methods are only guaranteed to find local minima rather than global

minima. Local minima are not typically a concern for neural networks because the

local minima are typically close enough in performance to the global minimum [25].

However, for the EQL network, we often want to find the true global minimum. In

this work, we have alleviated this issue by increasing stochasticity through large learn-

ing rates and by decreasing the sensitivity to random initializations by duplicating

activation functions. Additionally, we run multiple trials and find the best results,

either manually or through an automated system [144, 195]. In future work, it may be

possible to find the true global minimum without resorting to multiple trials as it has

been shown that over-parameterized neural networks with certain types of activation

functions are able to reach the global minimum through gradient descent in linear

time regardless of the random initialization [39].

Another path to improving convergence of the EQL network is to consider trans-

formations of the primitive functions. For example, Ziyin et al. [271] use what they

call a Snake function, defined as 𝑥 + 1
𝑎
sin2(𝑎𝑥) where 𝑎 is a learnable parameter,

to learn periodic functions, as it maintains monotonicity while improving learning of

periodic functions. The Snake function is also designed to work with commonly used

initialization schemes such as Kaiming init, which assume a mean and variance of the

preactivation values. Ramachandran et al. [183] performed an exhaustive search over

combinations of many commonly used functions, and found that activations such as

cos(𝑥) − 𝑥 and sinc(𝑥) + 𝑥 performed extremely well on CIFAR datasets, pointing

towards their nice convergence properties.

One limitation of the EQL network (and of symbolic regression through gradient-

based methods in general) is the learning of functions with non-differentiable points,

such as the division operator. Since rational functions are widely prevalent in science

and engineering equations, a future direction should explore a robust way to learn

these types of functions. For example, Padé Activation Units (PAU) use rational

78

functions as activation units with the coefficients to be learned during training, al-

though the proposing work initialized the coefficients to approximate commonly used

activation functions (e.g., ReLU and Swish) to enable more flexible representation of

these monotonic activations [154]. The neural arithmetic logic unit (NALU) offers

a way to learn multiplication and division operators by reparameterizing the hidden

units using logarithms [223] and follow-up work improve the stability and limitations

of the original NALU [198]. Finally, Costa et al. [28] combine the EQL network

with evolutionary strategies to enable learning of non-differentiable functions and

programs.

Other directions for future work include expanding the types of deep learning

architectures that the EQL network can integrate with. For example, supporting

spatio-temporal systems can lead to PDE discovery. The spatial derivatives could

be calculated using known finite-difference approximations or learnable kernels [125].

Additionally, the encoder can be expanded to capture a wider variety of data such as

videos [23], audio signals, and text. These capabilities will allow deep learning to be

applied in scientific exploration and discovery.

79

80

Chapter 3

Bayesian Optimization and Deep

Learning for Scientific Problems with

High-Dimensional Structure

3.1 Introduction

Bayesian optimization (BO) is a methodology well-suited for global (as opposed to

local) optimization of expensive, black-box (e.g. derivative-free) functions and has

been successfully applied to a wide range of problems in science and engineering

[227, 60, 106] as well as hyperparameter tuning of machine learning models [210,

217, 104, 225, 189]. BO works by iteratively deciding the next data point to label

in order to maximize sampling efficiency and minimize the number of data points

required to optimize a function, which is critical in many contexts where experiments

or simulations can be costly or time-consuming.

However, in many domains, the system is not a complete black box. For exam-

ple, certain types of high-dimensional input spaces such as images or molecules have

some known structure, symmetries and invariances. In addition, the function may

be decomposed into other functions; rather than directly outputting the value of the

objective, the data collection process may provide intermediate or auxiliary informa-

81

tion from which the objective function can be cheaply computed. For example, a

scientific experiment or simulation may produce a high-dimensional observation or

multiple measurements simultaneously, such as the optical scattering spectrum of a

nanoparticle over a range of wavelengths, or multiple quantum chemistry properties

of a molecule from a single density functional theory (DFT) calculation. All of these

physically-informed insights into the system are potentially useful and important fac-

tors for designing surrogate models through inductive biases, but they are often not

fully exploited in existing methods and applications.

BO relies on specifying a surrogate model which captures a distribution over po-

tential functions to incorporate uncertainty in its predictions. These surrogate models

are typically Gaussian Processes (GPs), as the posterior distribution of GPs can be

expressed analytically. However, (1) inference in GPs scales cubically in time with

the number of observations and output dimensionality, limiting their use to smaller

datasets or to problems with low output dimensionality without the use of kernel ap-

proximations, and (2) GPs operate most naturally over continuous low-dimensional

input spaces, so kernels for high-dimensional data with complex structure must be

carefully formulated by hand for each new domain. Thus, encoding inductive biases

can be challenging.

Neural networks (NNs) and Bayesian neural networks (BNNs) have been proposed

as an alternative to GPs due to their scalability and flexibility [211, 214]. Alterna-

tively, neural networks have also been used to create continuous latent spaces so that

BO with vanilla GPs can be more easily applied [110, 224]. The ability to incorpo-

rate a variety of constraints, symmetries, and inductive biases into BNN architectures

offers the potential for BO to be applied to more complex tasks with structured data.

This work demonstrates the use of deep learning to enable BO for complex, real-

world scientific datasets, without the need for pre-trained models. In particular:

• We take advantage of auxiliary or intermediate information to improve BO for

tasks with high-dimensional observations.

• We demonstrate BO on complex input spaces including images and molecules

82

using convolutional and graph neural networks, respectively.

• We apply BO to several realistic scientific datasets, including the optical scat-

tering of a nanoparticle, topology optimization of a photonic crystal material,

and chemical property optimization of molecules from the QM9 dataset.

We show that neural networks are often able to significantly outperform GPs as

surrogate models on these problems, and we believe that these strong results will

also generalize to other contexts and enable BO to be applied to a wider range of

problems. We note that while our methods are based on existing methods, we use a

novel combination of these methods to tailor existing BO frameworks to real-world,

complex applications.

3.2 Related Work

Various methods have been formulated to scale GPs to larger problems. For example,

Bruinsma et al. [18] proposes a framework for multi-output GPs that scale linearly

with 𝑚, where 𝑚 is the dimensionality of a low-dimensional sub-space of the data.

Maddox et al. [139] uses multi-task GPs to perform BO over problems with large

output dimensionalities. Additionally, GPs have been demonstrated on extremely

large datasets through the use of GPUs and intelligent preconditioners [52, 235] or

through the use of various approximations [181, 239, 120, 140].

Another approach to scaling BO to larger problems is by combining it with other

methods such that the surrogate model does not need to train on the entire dataset.

For example, TuRBO uses a collection of independent probabilistic models in differ-

ent trust regions, iteratively deciding in which trust region to perform BO and thus

reducing the problem to a set of local optimizations [41]. Methods such as LA-MCTS

build upon TuRBO and dynamically learn the partition function separating different

regions [236].

GPs have been extended to complex problem settings to enable BO on a wider

variety of problems. Astudillo and Frazier [9] decompose synthetic problems as a

83

composition of other functions, and take advantage of the additional structure to

improve BO. However, the multi-output GP they use scales poorly with output di-

mensionality, and so this approach is limited to simpler problems. This work has also

been extended [10, 139]. GP kernels have also been formulated for complex input

spaces including convolutional kernels [229, 159, 245] and graph kernels [202, 231].

The graph kernels have been used to apply BO to neural architecture search (NAS)

where the architecture and connectivity of a neural network itself can be optimized

[189].

Deep learning has been used as a scalable and flexible surrogate model for BO. In

particular, Snoek et al. [211] uses neural networks as an adaptive basis function for

Bayesian linear regression, which allows BO to scale to large datasets. This approach

also enables BO in more complex settings including transfer learning of the adaptive

basis across multiple tasks, and modeling of auxiliary signals to improve performance

[171]. Additionally, Bayesian neural networks (BNNs) that use Hamiltonian Monte

Carlo to sample the posterior have been used for single-task and multi-task BO for

hyperparameter optimization [214].

Another popular approach for BO on high-dimensional spaces is latent-space ap-

proaches. Here, an autoencoder such as a VAE is trained on a dataset to create a

continuous latent space that represents the data. From here, a more conventional

optimization algorithm, such as BO using GPs, can be used to optimize over the

continuous latent space. This approach has been applied to complex tasks such as

arithmetic expression optimization and chemical design [110, 58, 60, 224, 36]. Note

that these approaches focus on both data generation and optimization simultaneously,

whereas our work focuses on just the optimization process.

Random forests have also been used for iterative optimization such as sequential

model-based algorithm configuration (SMAC) as they do not face scaling challenges

[82]. Tree-structured Parzen Estimators (TPE) are also a popular choice for hyper-

parameter tuning [13]. However, these approaches still face the same issues with

encoding complex, structured inputs such as images and graphs.

Deep learning has also been applied to improve tasks other than BO. For example,

84

active learning is a similar scheme to BO that, instead of optimizing an objective

function, aims to optimize the predictive ability of a model with as few data points

as possible. The inductive biases of neural networks has enabled active learning on

a variety of high-dimensional data including images [49], language [205], and partial

differential equations [262]. BNNs have also been applied to the contextual bandits

problem, where the model chooses between discrete actions to maximize expected

reward [14, 187].

3.3 Bayesian Optimization

3.3.1 Prerequisites

Now, we briefly introduce the BO methodology; more details can be found in the lit-

erature [17, 200, 53]. We formulate our optimization task as a maximization problem

in which we wish to find the input x* ∈ 𝒳 that maximizes some function 𝑓 such that

x* = argmaxx 𝑓(x). The input 𝑥 is most simply a real-valued continuous vector, but

can be generalized to categorical variables, images, or even discrete objects such as

molecules. The function 𝑓 returns the value of the objective 𝑦 = 𝑓(𝑥) (which we also

refer to as the “label” of 𝑥), and can represent some performance metric that we wish

to maximize. In general 𝑓 can be a noisy function.

A key ingredient in BO is the surrogate model that produces a distribution of

predictions as opposed to a single point estimate for the prediction. Such sur-

rogate models are ideally Bayesian models, but in practice, a variety of approxi-

mate Bayesian models or even frequentist (i.e. empirical) distributions have been

used. In iteration 𝑁 , a Bayesian surrogate model ℳ is trained on a labeled dataset

𝒟train = {(x𝑛, 𝑦𝑛)}𝑁𝑛=1. An acquisition function 𝛼 then uses ℳ to suggest the next

data point x𝑁+1 ∈ 𝒳 to label, where

x𝑁+1 = argmax
x∈𝒳

𝛼 (x;ℳ,𝒟train) . (3.1)

The new data is evaluated to get 𝑦𝑁+1 = 𝑓(x𝑁+1), and (x𝑁+1, 𝑦𝑁+1) is added to

85

𝒟train.

3.3.2 Acquisition Function

An important consideration within BO is how to choose the next data point x𝑁+1 ∈ 𝒳

given the model ℳ and labelled dataset 𝒟train. This is parameterized through the

“acquisition function” 𝛼, which we maximize to get the next data point to label as

shown in Equation 3.1.

We choose the expected improvement (EI) acquisition function 𝛼EI [93]. When the

posterior predictive distribution of the surrogate model ℳ is a normal distribution

𝒩 (𝜇(x), 𝜎2(x)), EI can be expressed analytically as

𝛼EI(x) = 𝜎(x) [𝛾(x)Φ(𝛾(x)) + 𝜑(𝛾(x))] , (3.2)

where 𝛾(x) = (𝜇(x) − 𝑦best)/𝜎(x), 𝑦best = max({𝑦𝑛}𝑁𝑛=1) is the best value of the

objective function so far, and 𝜑 and Φ are the PDF and CDF of the standard normal

𝒩 (0, 1), respectively. For surrogate models that do not give an analytical form for

the posterior predictive distribution, we sample from the posterior 𝑁MC times and

use a Monte Carlo (MC) approximation of EI:

𝛼EI-MC(x) =
1

𝑁MC

𝑁MC∑︁
𝑖=1

max
(︀
𝜇(𝑖)(x)− 𝑦best, 0

)︀
. (3.3)

where 𝜇(𝑖) is a prediction sampled from the posterior of ℳ [246]. While works such as

[111] fit the output of the surrogate model to a Gaussian to use Eq. 3.2 for acquisition,

this is not valid when the model prediction for 𝑦 is not Gaussian, which is generally

the case for composite functions (see Section 3.3.4).

EI has the advantage over other acquisition functions in that the MC approxima-

tion (1) remains differentiable to facilitate optimization of the acquisition function

in the inner loop (i.e. the MC approximation of upper confidence bound (UCB) is

not differentiable and can result in ties) and (2) is inexpensive (i.e. naive Thomp-

son sampling for ensembles would require re-training a model from scratch in each

86

iteration).

3.3.3 Continued Training with Learning Rate Annealing

One challenge is that training a surrogate model on 𝒟train from scratch in every

optimization loop adds a large computational cost that limits the applicability of BO,

especially since neural networks are ideally trained for a long time until convergence.

To minimize the training time of BNNs in each optimization loop, we use the model

that has been trained in the 𝑁th optimization loop iteration as the initialization

(also known as a “warm start”) for the (𝑁 + 1)th iteration, rather than training

from a random initialization. In particular, we use the cosine annealing learning rate

proposed in Loshchilov and Hutter [127] which starts with a large learning rate and

drops the learning rate to 0. For more details, refer to Section C.3 in the Appendix.

3.3.4 Auxiliary Information

Typically we assume 𝑓 is a black box function, so we train ℳ : 𝒳 → 𝒴 to model

𝑓 . Here we consider the case where the experiment or observation may provide some

intermediate or auxiliary information z ∈ 𝒵, such that 𝑓 can be decomposed as

𝑓(x) = ℎ(𝑔(x)), (3.4)

where 𝑔 : 𝒳 → 𝒵 is the expensive labeling process, and ℎ : 𝒵 → 𝒴 is a known

objective function that can be cheaply computed. Note that this is also known as

“composite functions” [9, 10]. In this case, we train ℳ : 𝒳 → 𝒵 to model 𝑔, and the

approximate EI acquisition function becomes

𝛼EI-MC-aux(x) =
1

𝑁MC

𝑁MC∑︁
𝑖=1

max
(︀
ℎ
(︀
𝜇(𝑖)(x)

)︀
− 𝑦best, 0

)︀
. (3.5)

which can be seen as a Monte Carlo version of the acquisition function presented in

Astudillo and Frazier [9]. We denote models trained using auxiliary information with

the suffix “-aux.” Because ℎ is not necessarily linear, ℎ
(︀
𝑢(𝑖)(x)

)︀
is not in general

87

Gaussian even if 𝑢(𝑖) itself may be, which makes the MC approximation convenient

or even necessary.

3.4 Surrogate Models

Bayesian models are able to capture uncertainty associated with both the data and the

model parameters in the form of probability distributions. To do this, there is a prior

probability distribution 𝑃 (𝜃) placed upon the model parameters, and the posterior

belief of the model parameters can be calculated using Bayes’ theorem upon observing

new data. Fully Bayesian neural networks have been studied in small architectures,

but are impractical for realistically-sized neural networks as the nonlinearities between

layers render the posterior intractable, thus requiring the use of MCMC methods

to sample the posterior. In the last decade, however, there have been numerous

proposals for approximate Bayesian neural networks that are able to capture some

of the Bayesian properties and produce a predictive probability distribution. In this

work, we compare several different options for the BNN surrogate model. In addition,

we compare against other non-BNN baselines. We list some of the more notable

models here, and model details and results can be found in Section C.4.1 of the

Appendix.

Ensembles combine multiple models into one model to improve predictive perfor-

mance by averaging the results of the single models Ensembles of neural networks have

been reported to be more robust than other BNNs [163], and we use “Ensemble”

to denote an ensemble of neural networks with identical architectures but different

random initializations, which provide enough variation for the individual models to

give different predictions. Using the individual models can be interpreted as sampling

from a posterior distribution, and so we use Eq. 3.5 for acquisition. Our ensemble

size is 𝑁MC = 10.

Other BNNS. We also compare to variational BNNs including Bayes by Back-

prop (BBB) [14] and Multiplicative Normalizing Flows (MNF) [128]; BOHAMIANN

[214]; and NeuralLinear [211]. For BBB, we also experiment with KL annealing,

88

denoted by “-Anneal.”

GP Baselines. GPs are largely defined by their kernel (also called “covariance

functions”) which determines the prior and posterior distribution, how different data

points relate to each other, and the type of data the GP can operate on. In this work,

we will use “GP” to refer to a specific, standard specification that uses a Matérn 5/2

kernel, a popular kernel that operates over real-valued continuous spaces. To operate

on images, we use a convolutional kernel, labeled as “ConvGP”, which is implemented

using the infinite-width limit of a convolutional neural network [159]. Finally, to oper-

ate directly on graphs, we use the Weisfeiler-Lehman (WL) kernel as implemented by

[189], which we label as “GraphGP”. The WL kernel is able to operate on undirected

graphs containing node and edge features making it appropriate for chemical molecule

graphs, and was used by Ru et al. [189] to optimize neural network architectures in

a method they call NAS-BOWL. Additionally, we compare against “GP-aux” which

use multi-output GPs for problems with auxiliary information (also known as com-

posite functions) [9]. In the Appendix, we also look at GPs that use infinite-width

and infinite-ensemble neural network limits as the kernel [159] as well as TuRBO

which combines GP-based BO with trust regions [41].

VAE-GP uses a VAE trained ahead of time on an unlabelled dataset representa-

tive of 𝒳 . This allows us to encode complex input spaces, such as chemical molecules,

into a continuous latent space over which conventional GP-based BO methods can

be applied, even enabling generation and discovery of novel molecules that were not

contained in the original dataset. Here, we modified the implementation provided by

[224] in which they use a junction tree VAE (JTVAE) to encode chemical molecules

[86]. More details can be found in the Appendix.

Other Baselines. We compare against two variations of Bayesian optimization,

TuRBO [41] and TPE [13]. We also compare against several global optimization

algorithms that do not use surrogate models and are cheap to run, including LIPO

[142], DIRECT-L [48], and CMA-ES.

We emphasize that ensembles and variational methods can easily scale up to

high-dimensional outputs with minimal increase in computational cost by simply

89

(a) (b)

GP BNN-aux

Layer thicknesses

𝒙 ∈ ℝ6

Objective

𝑦 ∈ ℝ

(c)
Layer thicknesses

𝒙 ∈ ℝ𝟔

Scattering spectrum

𝒛 ∈ ℝ201

Objective

𝑦 ∈ ℝ

(d)

𝑥1 𝑥3

𝑥2

Figure 3-1: (a) A cross-section of a three-layer nanoparticle parameterized by the
layer thicknesses. (b) An example of the scattering cross-section spectrum of a six-
layer nanoparticle. (c) Whereas GPs are trained to directly predict the objective
function, (d) multi-output BNNs can be trained with auxiliary information, which
here is the scattering spectrum.

changing the output layer size. Neural Linear and GPs scale cubically with output

dimensionality (without the use of covariance approximations), making them difficult

to train on high-dimensional auxiliary or intermediate information.

3.5 Results

We now look at three real-world scientific optimization tasks all of which provide

intermediate or auxiliary information that can be leveraged. In the latter two tasks,

the structure of the data also becomes important and hence BNNs with various in-

ductive biases significantly outperform GPs and other baselines. For simplicity, we

only highlight results from select architectures (see Appendix for full results along

with dataset and hyperparameter details). All BO results are averaged over multiple

trials, and the shaded area in the plots represents ± one standard error over the trials.

3.5.1 Multilayer Nanoparticle

We first consider the simple problem of light scattering from a multilayer nanoparticle,

which has a wide variety of applications that demand a tailored optical response [56]

including biological imaging [196], improved solar cell efficiency [74, 204], and catalytic

materials [219]. In particular, the nanoparticle we consider consists of a lossless

silica core and 5 spherical shells of alternating TiO2 and silica. The nanoparticle is

90

Figure 3-2: BO results for two different objective functions for the nanoparticle scat-
tering problem. Training with auxiliary information (where ℳ is trained to predict z)
is denoted with “-aux”. Adding auxiliary information to BNNs significantly improves
performance.

parameterized by the core radius and layer thicknesses as shown in Figure 3-1(a),

which we restrict to the range 30 nm to 70 nm. Because the size of the nanoparticle

is on the order of the wavelength of light, its optical properties can be tuned by the

number and thicknesses of the layers. The scattering spectrum can be calculated

semi-analytically, as detailed in Section C.1.1 of the Appendix.

We wish to optimize the scattering cross-section spectrum over a range of visi-

ble wavelengths, an example of which is shown in Figure 3-1(b). In particular, we

compare two different objective functions: the narrowband objective that aims to

maximize scattering in the small wavelength range 600 nm to 640 nm and minimize it

elsewhere, and the highpass objective that aims to maximize scattering above 600 nm

and minimize it elsewhere. While conventional GPs train using the objective function

as the label directly, BNNs with auxiliary information can be trained to predict the

full scattering spectrum, i.e. the auxiliary information z ∈ R201, which is then used

to calculate the objective function, as shown in Figure 3-1(c,d).

BO results are shown in Figure 3-2. Adding auxiliary information significantly

improves BO performance for BNNs. Additionally, they are competitive with GPs,

making BNNs a viable approach for scaling BO to large datasets. In Appendix C.5,

we see similar trends for other types of BNNs. Due to poor scaling of multi-output

GPs with respect to output dimensionality, we are only able to run GP-aux for a

small number of iterations in a reasonable time. Within these few iterations, GP-

aux performs poorly, only slightly better than random sampling. We also see in the

91

(a)

(c)

(b)

(d)
BCNN-aux

Density of States

𝒛 ∈ ℝ500

Unit cell image

𝒗 ∈ ℝ32×32

Level set parameters

𝒙 ∈ ℝ51
Level set parameters

𝒙 ∈ ℝ51

GP

Objective

𝑦 ∈ ℝ
Objective

𝑦 ∈ ℝ

(e) (f)

Figure 3-3: (a) A 2D photonic crystal (PC). The black and white regions represent
different materials, and the periodic unit cells are outlined in red. Examples of PC
unit cells drawn from the (b) PC-A distribution and (c) the PC-B distributions. The
PC-A data distribution is translation invariant, whereas unit cells drawn from the PC-
B distribution all have white regions in the middle of the unit cell, so the distribution
is not translation invariant. (d) Example of a PC density of states (DOS). (e, f)
Comparison of the process flow for training the surrogate model in the case of (e)
GPs and (f) Bayesian Convolutional NNs (BCNN). The BCNN can train directly on
the images to take advantage of the structure and symmetries in the data, and predict
the multi-dimensional DOS.

Appendix that BO with either GPs or BNNs are comparable with, or outperform

other global optimization algorithms, including DIRECT-L and CMA-ES.

3.5.2 Photonic Crystal Topology

Next we look at a more complex, high-dimensional domain that contains symmetries

not easily exploitable by GPs. Photonic crystals (PCs) are nanostructured materials

that are engineered to exhibit exotic optical properties not found in bulk materials,

including photonic band gaps, negative index of refraction, and angular selective

transparency [89, 254, 87, 201]. As advanced fabrication techniques are enabling

smaller and smaller feature sizes, there has been growing interest in inverse design and

topology optimization to design even more sophisticated PCs [84, 148] for applications

in photonic integrated circuits, flat lenses, and sensors [173, 117].

Here we consider 2D PCs consisting of periodic unit cells represented by a 32×32

pixel image, as shown in Figure 3-3(a), with white and black regions representing

vacuum (or air) and silicon, respectively. Because optimizing over raw pixel values

92

may lead to pixel-sized features or intermediate pixel values that cannot be fabricated,

we have parameterized the PCs with a level-set function 𝜑 : 𝒳 → 𝒱 that converts a

51-dimensional feature vector x = [𝑐1, 𝑐2, ..., 𝑐50,Δ] ∈ R51 representing the level-set

parameters into an image v ∈ R32×32 that represents the PC. More details can be

found in Section C.1.2 in the Appendix.

We test BO on two different data distributions, which are shown in Figure 3-3(b,c).

In the PC-A distribution, x spans 𝑐𝑖 ∈ [−1, 1] ,Δ ∈ [−3, 3]. In the PC-B distribution,

we arbitrarily restrict the domain to 𝑐𝑖 ∈ [0, 1]. The PC-A data distribution is

translation invariant, meaning that any PC with a translational shift will also be

in the data distribution. However, the PC-B data distribution is not translation

invariant, as shown by the white regions in the center of all the examples in Figure

3-3(c).

The optical properties of PCs can be characterized by their photonic density of

states (DOS), e.g. see Figure 3-3(d). We choose an objective function that aims

to minimize the DOS in a certain frequency range while maximizing it everywhere

else, which corresponds to opening up a photonic band gap in said frequency range.

As shown in Figure 3-3(e,f), we train GPs directly on the level-set parameters 𝒳 ,

whereas we train the Bayesian convolutional NNs (BCNNs) on the more natural unit

cell image space 𝒱 . BCNNs can also be trained to predict the full DOS as auxiliary

information z ∈ R500.

The BO results, seen in Figure 3-4(a), show that BCNNs outperform GPs by a

significant margin on both datasets, which is due to both the auxiliary information

and the inductive bias of the convolutional layers, as shown in Figure 3-4(b). Because

the behavior of PCs is determined by their topology rather than individual pixel

values or level-set parameters, BCNNs are much better suited to analyze this dataset

compared to GPs. Additionally, BCNNs can be made much more data-efficient since

they directly encode translation invariance and thus learn the behavior of a whole class

of translated images from a single image. Because GP-aux is extremely expensive

compared to GP (500× longer on this dataset), we are only able to run GP-aux

for a small number of iterations, where it performs comparably to random sampling.

93

(a) (b) (c) (d)

Figure 3-4: Three sets of comparisons for BO results on the (top row) PC-A and
(bottom row) PC-B datasets. (a) BNNs with inductive biases outperform all other
GP baselines and the random baseline. Note that GP-aux is comparable to ran-
dom sampling. (b) The inductive bias of convolutional layers and the addition of
auxiliary information significantly improve performance of BCNNs. (c) Additional
comparisons. (d) Data augmentation boosts performance if the augmentations re-
flect a symmetry present in the dataset but not enforced by the model architecture.
“TI” refers to a translation invariant BCNN architecture, whereas “TD” refers to a
translation dependent architecture. “-augment” signifies that data augmentation of
the photonic crystal image is applied, which includes periodic translations, flips, and
rotations.

94

We also compare to GPs using a convolutional kernel (“ConvGP-NNGP”) in Figure

3-4(a). ConvGP-NNGP only performs slightly better than random sampling, which is

likely due to a lack of auxiliary information and inflexibility to learn the most suitable

representation for this dataset.

For our main experiments with BCNNs, we use an architecture that respects trans-

lation invariance. To demonstrate the effect of another commonly used deep learning

training technique, we also experiment with incorporating translation invariance into

a translation dependent (i.e. not translation invariant) architecture using a data aug-

mentation scheme in which each image is randomly translated, flipped, and rotated

during training. We expect data augmentation to improve performance when the

data distribution exhibits the corresponding symmetries: in this case, we focus on

translation invariance. As shown in Figure 3-4(c), we indeed find that data augmen-

tation improves the BO performance of the translation dependent architecture when

trained on the translation invariant PC-A dataset, even matching the performance of

a translation invariant architecture on PC-A. However, on the translation dependent

PC-B dataset, data augmentation initially hurts the BO performance of the trans-

lation dependent architecture because the model is unable to quickly specialize to

the more compact distribution of PC-B, putting its BO performance more on par

with models trained on PC-A. These results show that techniques used to improve

generalization performance (such as data augmentation or invariant architectures) for

training deep learning architectures can also be applied to BO surrogate models and,

when used appropriately, directly translate into improved BO performance. Note

that data augmentation would not be feasible for GPs without a hand-crafted kernel

as the increased size of the dataset would cause inference to become computationally

intractable.

3.5.3 Organic Molecule Quantum Chemistry

Finally, we optimize the chemical properties of molecules. Chemical optimization is

of significant interest in both academia and industry with applications in drug design

and materials optimization [80]. This is a difficult problem where computational ap-

95

proaches such as density functional theory (DFT) can take days for simple molecules

and are intractable for larger molecules; synthesis is expensive and time-consuming,

and the space of synthesizable molecules is large and complex. There have been many

approaches for molecular optimization that largely revolve around finding a contin-

uous latent space of molecules [58] or hand-crafting kernels to operate on molecules

[106].

Here we focus on the QM9 dataset [190, 184], which consists of 133,885 small

organic molecules along with their geometric, electronic, and thermodynamics quan-

tities that have been calculated with DFT. Instead of optimizing over a continuous

space, we draw from the fixed pool of available molecules and iteratively select the

next molecule to add to 𝒟train. This is a problem setting especially common to mate-

rials design where databases are incomplete and the space of experimentally-feasible

materials is small.

We use a Bayesian graph neural network (BGNN) for our surrogate model, as

GNNs have become popular for chemistry applications due to the natural encoding

of a molecule as a graph with atoms and bonds as nodes and edges, respectively. For

baselines that operate over continuous spaces (i.e. GPs and simple neural networks),

we use the Smooth Overlap of Atomic Positions (SOAP) descriptor to produce a

fixed-length feature vector for each molecule, as shown in Figure 3-5(a) [33, 72].

We compare two different optimization objectives derived from the QM9 dataset:

the isotropic polarizability 𝛼 and (𝛼 − 𝜖gap) where 𝜖gap is the HOMO-LUMO energy

gap. Other objectives are included in Appendix C.5.4. Because many of the chemical

properties in the QM9 dataset can be collectively computed by a single DFT or

molecular dynamics calculation, we can treat a group of labels from QM9 as auxiliary

information z and train our BGNN to predict this entire group simultaneously. The

objective function ℎ then simply picks out the property of interest.

As shown in Figure 3-5(c), GraphGP and the BGNN variants significantly out-

perform GPs, showing that the inductive bias in the graph structure leads to a much

more natural representation of the molecule and its properties. In the case of max-

imizing the polarizability 𝛼, including the auxiliary information improves BO per-

96

Molecule

SOAP descriptor

𝒙 ∈ ℝ7380
Molecule graph

𝑿 ∈ ℝ𝑚×𝑛, 𝑨 ∈ ℝ𝑚×𝑚,

𝑬 ∈ ℝ𝑚×𝑚×𝑠

GP BGNN-aux

DFT properties

𝒛 ∈ ℝ𝑛𝑧

Objective

𝑦 ∈ ℝ
Objective

𝑦 ∈ ℝ

Molecule

(a) (b) (c)

(d)

Figure 3-5: Quantum chemistry task and results. (a) The GP is trained on the SOAP
descriptor, which is precomputed for each molecule. (b) The BGNN operates directly
on a graph representation of the molecule, where atoms and bonds are represented by
nodes and edges, respectively. The BGNN can be trained on multiple properties given
in the QM9 dataset. (c) BO results for various properties. Note that GraphEnsemble
is a type of BGNN. (d) Time per BO iteration on the GPU. (Note the logarithmic
scale on the y-axis.) GraphGP takes orders of magnitudes longer than BGNNs for
moderate 𝑁 .

formance, showing signs of positive transfer. However, it does not have a significant

impact on the other objectives, which may be due to the small size of the available

auxiliary information (only a handful of chemical properties from the QM dataset)

as compared with the nanoparticle and photonic crystal tasks. In a more realistic

online setting, we would have significantly more physically-informative information

available from a DFT calculation, e.g. we could easily compute the electronic density

of states (the electronic analogue of the auxiliary information used in the photonics

task).

As seen in Figure 3-5(d), we also note that the GraphGP is relatively computa-

tionally expensive (15× longer than GPs for small 𝑁 and 800× longer than BGNNs

for 𝑁 = 100) and so we are only able to run it for a limited 𝑁 in a reasonable time

frame. We see that BGNNs perform comparably or better than GraphGPs despite

incurring a fraction of the computational cost.

VAE-GP uses a modified version of the latent-space optimization method imple-

mentation provided by Tripp et al. [224]. Rather than optimizing over a continuous

97

latent space of the VAE, we feed the data pool through the VAE encoder to find their

latent space representation, and then apply the acquisition function to the latent

points to pick out the best unlabeled point to sample. We keep as many hyper-

parameters the same as the original implementation as possible, with the exception

of the weighted re-training which we forgo since we have a fixed data pool that was

used to train the VAE. This setup is similar to GraphNeuralLinear in that a

deep learning architecture is used to encode the molecule as a continuous vector, al-

though GraphNeuralLinear is only trained on the labelled data. The results for

this experiment show that VAE-GP performs worse than BNNs on two of the three

objective functions we tested and slightly better on one objective. We also note that

the performance of VAE-GP depends very heavily on the pre-training of the VAE, as

choosing different hyper-parameters or even a different random seed can significantly

deteriorate performance (see Figure C-10 in the Appendix).

3.6 Discussion

Introducing physics-informed priors (in the form of inductive biases) into the model

are critical for their performance. Well-known inductive biases in deep learning in-

clude convolutional and graph neural networks for images and graph structures, re-

spectively, which significantly improve BO performance. Another inductive bias that

we introduce is the addition of auxiliary information present in composite functions,

which significantly improves the performance of BO for the nanoparticle and photonic

crystal tasks. We conjecture that the additional information forces the BNN to learn

a more consistent physical model of the system since it must learn features that are

shared across the multi-dimensional auxiliary information, thus enabling the BNN

to generalize better. For example, the scattering spectrum of the multilayer particle

consists of multiple resonances (sharp peaks), the width and location of which are

determined by the material properties and layer thicknesses. The BNN could po-

tentially learn these more abstract features, and thus, the deeper physics, to help it

interpolate more efficiently, akin to data augmentation [172]. Auxiliary information

98

can also be interpreted as a form of data augmentation. Indeed, tracking the predic-

tion error on a validation set shows that models with auxiliary information tend to

have a lower loss than those without (see Appendix C.5). It is also possible that the

loss landscape for the auxiliary information is smoother than that of the objective

function and that the auxiliary information acts as an implicit regularization that

improves generalization performance.

Interestingly, GP-aux performs extremely poorly on the nanoparticle and pho-

tonic crystal tasks. One possible reason is that we are only able to run GP-aux for

a few iterations, and it is not uncommon for GP-based BO to require some critical

number of iterations to reach convergence especially in the case of high-dimensional

systems where the size of the covariance matrix scales with the square of the di-

mensionality. It may also be possible that GP-aux only works on certain types of

decompositions of functions and cannot be applied broadly to all composite functions,

as the inductive biases in GPs are often hard-coded.

There is an interesting connection between how well BNNs are able to capture

and explore a multi-modal posterior distribution and their performance in BO. For

example, we have noticed that larger batch sizes tend to significantly hurt BO perfor-

mance. On the one hand, larger batch sizes may be resulting in poorer generalization

as the model finds sharper local minima in the loss landscape. Another explanation

is that the stochasticity inherent in smaller batch sizes allows the BNN to more eas-

ily explore the posterior distribution, which is known to be highly multi-modal [45].

Indeed, BO often underperforms for very small dataset sizes 𝑁 but quickly catches

up as 𝑁 increases, indicating that batch size is an important hyperparameter which

must be balanced with computational cost.

All our results use continued training (or warm restart) to minimize training costs.

We note that re-initializing ℳ and training from scratch in every iteration performs

better than continued training on some tasks (results in the Appendix), which points

to how BNNs may not sufficiently represent a multi-modal posterior distribution or

that continued training may skew the training distribution that the BNN sees. Future

work will consider using stochastic training approaches such as SG-MCMC methods

99

for exploring posterior distributions [241, 264] as well as other continual learning

techniques to further minimize training costs, especially for larger datasets [167].

When comparing BNN architectures, we find that ensembles tend to consistently

perform among the best, which is supported by previous literature showing that en-

sembles capture uncertainty much better than variational methods [163, 63] especially

in multi-modal loss landscapes [45]. Ensembles are also attractive because they re-

quire no additional hyperparameters and they are simple to implement. Although

training costs increase linearly with the size of the ensemble, this can be easily paral-

lelized on modern computing infrastructures. Furthermore, recent work that aims to

model efficient ensembles that minimize computational cost could be an interesting

future direction [69, 242]. NeuralLinear variants are also quite powerful and cheap,

making them very promising for tasks without high-dimensional auxiliary informa-

tion. Integrating Neural Linear with multi-output GPs is an interesting direction for

future work. The other BNNs either require extensive hyper-parameter tuning or

perform poorly, making them difficult to use in practice. Additional discussion can

be found in Appendix C.5.5.

As seen in Appendix C.5.4, VAE-GP performs worse than our method on two of

the chemistry objectives and better on one objective. While latent-space optimization

methods are often applied to domains where one wants to simultaneously generate

data and optimize over the data distribution, these methods can also be applied to

the cases in this work, where a data pool (e.g. QM9 dataset for the chemistry task) or

separate data generation process (e.g. level-set process for the photonic crystal task)

is already available. In these cases, the VAE is not used as a generative model, but

rather as a way to learn appropriate representations. While latent-space approaches

are able to take advantage of well-developed and widely available optimization al-

gorithms, they also require unsupervised pre-training on a sizeable dataset and a

suitable autoencoder model with the necessary inductive biases. Such models are

available in chemistry where there have been significant development, but are more

limited in other domains such as photonics. On the other hand, our method is able to

incorporate the data structure or domain knowledge in an end-to-end manner during

100

training, although future work is needed to more carefully evaluate how much of an

advantage this is and whether it depends on specific dataset or domain characteristics.

For settings where we do not need a generative model, it would also be interesting

to replace the autoencoder with a self-supervised model [71, 124] or semi-supervised

model [103] to create a suitable latent space.

3.7 Conclusion

We have demonstrated global optimization on multiple tasks using a combination of

deep learning and BO. In particular, we have shown how BNNs can be used as surro-

gate models in BO, which enables the scaling of BO to large datasets and provides the

flexibility to incorporate a wide variety of constraints, data augmentation techniques,

and inductive biases. We have demonstrated that integrating domain-knowledge on

the structure and symmetries of the data into the surrogate model as well as exploit-

ing intermediate or auxiliary information significantly improves BO performance, all

of which can be interpreted as physics-informed priors. Intuitively, providing the

BNN surrogate model with all available information allows the BNN to learn a more

faithful physical model of the system of interest, thus enhancing the performance of

BO. Finally, we have applied BO to real-world, high-dimensional scientific datasets,

and our results show that BNNs can outperform our best-effort GPs, even with strong

domain-dependent structure encoded in the covariance functions. We note that our

method is not necessarily tied to any particular application domain, and can lower

the barrier of entry for design and optimization.

Future work will investigate more complex BNN architectures with stronger in-

ductive biases. For example, output constraints can be placed through unsupervised

learning [97] or by variationally fitting a BNN prior [259]. Custom architectures

have also been proposed for partial differential equations [182, 134], many-body sys-

tems [31], and generalized symmetries [81], which will enable effective BO on a wider

range of tasks. The methods and experiments presented here enable BO to be effec-

tively applied in a wider variety of settings. There are also variants of BO including

101

TuRBO which perform extremely well on our tasks, and so future work will also

include incorporating BNNs into these variants.

We have made our datasets and code publicly available1.

1https://github.com/samuelkim314/DeepBO

102

https://github.com/samuelkim314/DeepBO

Chapter 4

Automated Discovery and

Optimization of 3D Topological

Photonic Crystals

4.1 Introduction

The past few decades have seen tremendous advances in optimization and inverse

design techniques for nanophotonic components and, in particular, photonic crys-

tals (PhCs) [85, 153, 115]. These advances have been spurred partly by the in-

crease in computing capacity and methodological innovations, and partly by emerging

micro- and nanofabrication capabilities that have significantly expanded the overall

design space for device structures. A central and persisting effort has focused on

the optimization of PhCs with large photonic bandgaps, with approaches includ-

ing gradient-based [38, 29, 96], semi-definite programming (SDP) [146, 148], and

gradient-free [57, 256] techniques. Systematic explorations through pre-defined tem-

plates have revealed insights into the connection between PhC structure and their

associated bandgap [141, 21]. In more recent years, topological PhCs have emerged

as a particularly exciting research direction, and with the more recent introduction

of topological band theory to photonics [131, 164, 218], the PhC’s topology has also

103

emerged as a quantity of interest for design. Here, we revisit the question of op-

timizing photonic bandgaps in this new context, seeking the automated discovery

and optimization of large, topologically nontrivial bandgaps and well-isolated, robust

topological degeneracies.

Topological PhCs are attractive due to their promised robustness for photonic

devices and the plethora of associated exotic optical phenomena [131, 164, 218]. In

contrast to their electronic counterparts, topological PhCs offer the exciting prospect

of a flexible and tunable design space, with structural morphology subject only to

the limits of fabrication constraints. This design freedom has not only endowed pho-

tonics with the underlying technological promise of topological protection, but also

positioned it as a promising platform for the fundamental exploration of spinless

topological physics. Exemplifying this, the first experimental realization of a Chern

insulator without Landau levels—the quantum anomalous Hall effect [65, 180]—was

achieved in a gyromagnetic 2D PhC [238]. Similarly, the first experimental observa-

tion of a Weyl point was achieved in a 3D high-index PhC [132], simultaneously with

its observation in TaAs [251, 138]. Gapless photonic topology has since grown to en-

compass a wide variety of phases, including unconventional Weyl points [94, 203, 265],

Dirac points [234, 62, 233], and nodal lines [130, 255, 51, 248, 258, 168, 232, 169].

These advances in photonic topology have been achieved largely by using anal-

ogy, physical intuition, and symmetry requirements. Similarly, optimization of as-

sociated designs have depended mainly on parameter sweeps [249] and trial-and-

error. Although recent studies have applied topology optimization to topological

PhCs [27, 116, 160], these efforts have all relied on optimization of a continuous proxy

objective to implicitly encourage topology-associated behavior (e.g., power flow [27],

directionality of Purcell enhancement [160], or density of states [116]) in lieu of ex-

plicitly enforcing a discrete topological constraint. In addition to requiring a different

formulation of this proxy for each topological effect, a significant downside of this ap-

proach is the frequent need for an initial candidate for optimization which is already

topological [27, 160] to avoid designs that maximize the proxy objective but lack the

intended band topology. There are two significant challenges to explicitly enforc-

104

ing band topology. First, they are inherently discrete and discontinuous, rendering

commonly-used optimization algorithms that assume differentiability nominally in-

applicable. Second, the conventional evaluation of topological invariants from band

holonomy [4] (i.e., parallel transport of wave functions, involving notions of band con-

nections and curvatures) is computationally costly since they require simulating the

full Brillouin zone (BZ) (e.g., 2D Chern number) or a dense subset of it (e.g., Berry

phase or 3D Chern vector).

In this work, we propose to use a combination of gradient-free optimization al-

gorithms, a symmetry-constrained level-set parameterization of the structure, and a

computationally efficient symmetry-based evaluation of band topology to automate

the discovery and optimization of novel topological PhCs. An overview of the op-

timization process’ elements is shown in Fig. 4-1, the flow of which is summarized

in Fig. 4-1(a). By using a level-set function expressed as a symmetry-constrained

Fourier sum, we can parameterize even highly complex geometries using only a low-

dimensional parameter space [Fig. 4-1(b)], which in turn makes both global and local

gradient-free optimization algorithms feasible. To efficiently evaluate the band topo-

logical constraints, we incorporate the recently introduced frameworks of topological

quantum chemistry [16] and symmetry indicators [176, 108], which have also been

applied to PhCs [35, 26]. Furthermore, we use a global optimization algorithm in

conjunction with a stochastic local optimization stage to escape local optima dur-

ing optimization while also handling the non-continuous objective function stemming

from the topology of the PhC. We focus on 3D topological PhCs and present novel ex-

amples in three settings: (i) Γ-enforced topological nodal lines, (ii) ideal (i.e., frequen-

cy-isolated) Weyl points in the interior of the BZ, and (iii) photonic Chern insulators

with chiral surface states. In the last setting, we find a photonic Chern insulator with

the largest known complete bandgap, and achieve this without explicitly relying on

the supercell modulation technique that underlies earlier designs. While we focus on

a handful of concrete topological properties, our method can in principle be applied

to any symmetry-identifiable band topology.

For convenience, commonly used abbreviations and notation throughout this chap-

105

ter are listed in Appendix D.

4.2 Methods

4.2.1 Photonic Crystal Parameterization

A key choice in the optimization of any system is the parameterization, i.e., the degrees

of freedom. In the context of photonic crystals (PhCs), this entails a parameterization

of the dielectric function 𝜀(r) across the unit cell. Historically, a widely employed ap-

proach has involved restricting the PhC structure to simple “basic” geometric shapes

(e.g., circles, squares, spheres, or cubes of dielectric material) requiring very few ge-

ometric parameters (e.g., radius or width), which in turn enables optimization using

gradient-free techniques or even plain parameter sweeps [88]. Such approaches have

been surprisingly effective, achieving for example (trivial) complete three-dimensional

bandgaps of nearly 35% with an index contrast of 4 in a diamond lattice of spherical

holes [75]. At the opposite end of the spectrum, topology optimization (referring to

the optimization of the geometric and topological shape of a structure; not to be

confused with topology of bands) is an extremely flexible approach that divides the

design region into a grid of pixels or voxels, each representing a continuous design

parameter. The associated dimensionality of the design space can be very high, rang-

ing from thousands to millions. To make this optimization tractable, gradient-based

algorithms [38, 29] or subspace methods combined with semi-definite programming

(SDP) [146, 148] have been used, enabling optimization of PhC bandgaps in both 2D

and 3D.

To represent the permittivity 𝜀(r) over the coordinates r of the unit cell, we adopt

a level-set parameterization. Level-set functions are significantly more flexible than

combinations of simple shapes while making the problem more tractable than voxel-

based discretizations for gradient-free optimization algorithms. Concretely, we intro-

duce a level-set function 𝜑(r) whose intersection with a level-set offset Δ determines

106

n = [2F₁–, Γ■ , L₁+ + L₁–, T₂– T₃–]

n = [2F₁–, Γ₂–Γ₃–, 2L₁+, T₂+T₃+]

ν1 = 1, ν2 = 2

Nontrivial (✓)

ν1 = 0, ν2 = 0

Trivial (✗)

 ✓

✗

Optimization algorithm
suggests new design

Photonic crystal
geometry

Band
symmetry &

topology

Band structure

Objective = penalty

Objective = L(ωnk)

ψ =
c
f
R

Fourier coe�cients

Filling fraction

Lattice parameters

(a) (b)

Γ L TF

Fr
eq

ue
nc

y
ω

a/
2π

c

(d)

Iteration
0

–20

–15

–10

–5

0

5

10

2000 4000 0 2000 4000

Global optimization

Co
m

pl
et

e
ga

p
(%

)

Local optimization

(c)

(e)

UpdateUpdate

EvaluateEvaluate

Evaluate
Evaluate

F₁–F₁– L₁+L₁+

L₁+L₁+

L₁+L₁+

Γ■Γ■

T₂– T₃–T₂– T₃–

T₂+T₃+T₂+T₃+Γ₂+Γ₃+Γ₂+Γ₃+

L₁–L₁–
F₁–F₁–

F₁–F₁–

F₁–F₁–

SG 148SG 148

SG 27SG 27

Y RX S U ZΓ ZΓ T
0.1

0.2

0.3

0.4

0.5

X UY T S R

L(ωnk) L(ωnk) 6.3%6.3%

SG 27SG 27

SG 27SG 27

Figure 4-1: Overview of topological photonic crystal (PhC) optimization.
(a) Flowchart of the optimization process in each iteration. Optimization continues
until a convergence criterion or reaching a maximum number of iterations. (b) The
structure of the PhC is parameterized by a continuous vector consisting of the ge-
ometry coefficients (the Fourier sum coefficients), the filling fraction, and the unit
cell lattice parameters. (c) Symmetry-based tools can be used to calculate the band
connectivity and topology from the high-symmetry (HS) k-points, providing a com-
putationally efficient evaluation of the topology constraint (here, exemplified for a
hypothetical PhC in space group (SG) 148). (e) If the PhC is found to have the
desired topological indicator as computed from the band symmetries, then the band-
structure is calculated along the HS k-lines (shown in purple in the inset). This
example shows a complete bandgap highlighted in yellow. (d) Optimization perfor-
mance of complete bandgaps in SG 27 over multiple trials, as measured by the best
value of the objective found so far as a function of iteration. Optimization consists of
a 2-step process: global optimization with multiple trials, followed by local optimiza-
tion using the best candidates from global optimization. Colors represent different
trials from random initializations.

107

the boundary between regions of permittivity 𝜀1 and 𝜀2:

𝜀(r) =

⎧⎪⎨⎪⎩𝜀2 Re𝜑(r) > Δ

𝜀1 Re𝜑(r) ≤ Δ

, (4.1)

Going forward, we will take 𝜀1 = 1, corresponding to vacuum or air, and denote 𝜀2

simply by 𝜀. The advantages of a level-set function is that it allows a relatively low-

dimensional parameterization while retaining a versatile geometric design space. The

technique has been widely employed in photonic optimization, with level-set functions

parameterized by spherical harmonics [150], Hamilton-Jacobi formulations [96], and

eigenfunctions of a correlation function [256].

Here, exploiting the periodic nature of PhCs, we parameterize the level-set func-

tion 𝜑(r) by a finite Fourier summation of plane waves with spatial frequencies at the

reciprocal lattice vectors {G} = {𝑛1G1 + 𝑛2G2 + 𝑛3G3 | 𝑛𝑖 ∈ Z}, i.e., by:

𝜑(r; cG) =
∑︁
{G}

𝑐Ge
iG·r, (4.2)

with complex expansion coefficients c = {𝑐G}. The Fourier parameterization has a

number of advantages: (i) it automatically incorporates lattice periodicity, (ii) impos-

ing an upper cutoff 𝐺max on the norm of included reciprocal lattice vectors translates

to limiting the spatial variation of the permittivity profile (i.e., small feature sizes) and

approximates feature-size constraints, and (iii) symmetry constraints can be straight-

forwardly incorporated which additionally translates to a reduction in the number of

free expansion coefficients.

The third point—symmetry-constraints—is crucial in our context, given the close

connection between symmetry and band topology that we aim to exploit. We briefly

summarize how symmetry constraints can be imposed on the Fourier coefficients,

following Ref. 26. Concretely, the permittivity 𝜀(r) must be invariant under every

symmetry operation 𝑔 in the space group (SG) 𝒢, such that 𝑔𝜀(r) = 𝜀(𝑔−1r) = 𝜀(r)—

or equivalently 𝜑(𝑔−1r) = 𝜑(r) for every 𝑔 ∈ 𝒢. This imposes the coefficient con-

108

straints 𝑐Ge−i𝑔G·w = 𝑐𝑔G, with 𝑔 expressed in Seitz notation 𝑔 = {W|w} with rota-

tion part W and translation part w. These constraints impose a set of interrelations

among the Fourier coefficients, linking 𝑐G of symmetry-related reciprocal lattice vec-

tors star(G) = {𝑔G | 𝑔 ∈ 𝒢}, i.e., linking coefficients associated with distinct stars

of G. Overall, this reduces the unconstrained Fourier summation in Eq. (4.2) to a

symmetry-constrained sum:

𝜑(r; cstar(G)) =
∑︁

{star(G)}

𝑐star(G)

∑︁
G∈star(G)

𝑐
star(G)
G eiG·r. (4.3)

Here, 𝑐star(G)
G denotes fixed, symmetry-determined coefficients among reciprocal lat-

tice vectors from the same star while 𝑐star(G) denotes the remaining free coefficients,

each associated with a specific star. We only need to optimize the free parameters

cstar(G). Note that the number of parameters thus depends on the SG; roughly, more

symmetries (larger group order) translate to fewer free parameters. Generally, these

parameters are complex; in the presence of inversion symmetry, however, they can be

restricted to be real parameters.

In practice, we limit the included stars of G to those that have a representative

element with components 𝑛𝑖 ∈ {0,±1,±2}. In addition, we parameterize the level-

set boundary using the filling fraction 𝑓 rather than the level-set offset Δ, since the

mapping between Δ and 𝑓 is monotonic and the filling fraction is more intuitive to

interpret. This choice is also motivated by the empirical observation that a filling

fraction parameterization leads to better optimization performance (likely because

uniform sampling of Δ and 𝑐star(G) produces structures with normally distributed

filling fractions of small variance and mean close to 0.5, which is an undesirable bias).

We bound the values of 𝑓 and 𝑐star(G) to 𝑓 ∈ [0, 1] and 𝑐star(G) ∈ [−1, 1]. Altogether,

the symmetry-constrained level-set Fourier parameterization of Eq. (4.3) allows a

great deal of shape design freedom, as illustrated e.g., in Fig. 4-1(b), while requiring

only very few parameters (in the range 11–69 for the problems considered here).

We also include the unit cell’s lattice vectors {R1,R2,R3} as part of the overall

structure specification, which can be parameterized (up to an immaterial overall rota-

109

tion) by their lengths {𝑎, 𝑏, 𝑐} and mutual angles {𝛼 = ∠(R2,R3), 𝛽 = ∠(R3,R1), 𝛾 =

∠(R1,R2)}. We exploit the scale-invariance of the dispersion-free Maxwell’s equa-

tions to eliminate one of these parameters, setting 𝑎 = 1 without loss of generality.

The remaining 5 parameters are typically constrained further by the choice of space

group (SG): e.g., SGs in the cubic crystal system (195–230) have no free lattice pa-

rameters whereas SGs in the monoclinic crystal system (3–15) have 3 free parameters

(𝑏, 𝑐, and 𝛽). [8] As a practical matter, we restrict the free lattice vector lengths and

angles to 𝑏, 𝑐 ∈ [0.75, 1.25] and 𝛼, 𝛽, 𝛾 ∈ [90∘, 150∘] during optimization. Intuitively,

we expect that a nearly isotropic BZ will tend to host larger HS bandgaps; empir-

ically, we observe that restricting 𝑏, 𝑐 to near unity indeed improves optimization

convergence.

Unless otherwise specified, we adopt a scalar, fixed permittivity of 𝜀 = 16, roughly

representative e.g., of silicon at visible frequencies or certain ceramic-filled plastics at

microwave frequencies [132]. The permittivity could in principle be included as an

additional optimization parameter; in practice, however, bandgap optimization tends

to automatically favor increased permittivity, rendering its optimization trivial.

4.2.2 Objective

In the topological settings explored in this work, we wish to maximize the bandgap

along high-symmetry (HS) k-lines in the Brillouin zone (BZ). However, bandgap

optimization is a notably difficult problem as the bandgap objective is not fully dif-

ferentiable (especially at points of band crossing) and is a highly non-convex problem

with numerous local optima [29, 146]. Earlier works were only able to optimize the

bandgap if the structure used as an initial point for optimization already had at least

an incomplete gap [38, 29]. To address this limitation, Cox and Dobson [29] com-

bined gradients with evolutionary algorithms to better search the entire parameter

space, while Men et al. [146] transformed the objective and constraints to improve

the differentiability of the problem. However, these methods are still prone to getting

trapped in local maxima. We note that using the SDP and subspace method devel-

oped by Men et al. [148] to maximize the bandgap in SG 13, we were not able to find

110

a single example with a complete HS bandgap over dozens of trials. Furthermore,

in optimizing topological PhCs we introduce additional constraints in the form of

the topological indicator of the bands of interest. Topology is inherently a discrete

quantity and so the constraints are non-continuous, making this problem difficult to

address using existing approaches.

To address these challenges, we propose an optimization framework shown in

Fig. 4-1(a) which uses gradient-free optimization algorithms. This optimization frame-

work allows us to (1) simultaneously optimize the lattice parameters as we are inter-

ested in SGs that do not have cubic lattices, (2) easily search the global space which

is highly non-convex and has numerous local maxima, (3) handle non-differentiable

objectives, and (4) incorporate non-continuous constraints corresponding to the topo-

logical indicators of the bands.

In particular, we choose the objective function 𝐿(𝜔𝑛k)—i.e., the quantity we wish

to maximize—as the relative bandgap:

Δ𝜔𝑛 = 2
min
k
𝜔𝑛+1(k)−max

k
𝜔𝑛(k)

min
k
𝜔𝑛+1(k) + max

k
𝜔𝑛(k)

(4.4)

where 𝜔𝑛(k) is the 𝑛th band from the bottom. The objective function 𝐿(𝜔𝑛k) is

in general a function of k across the entire BZ. However, to make optimization of

3D PhCs computationally efficient, we restrict the domain of k to the high-symmetry

(HS) k-lines as shown in Fig. 4-1(e), discretized into approximately 300 equally spaced

k-points. The HS k-lines typically lie along the edges of the BZ, and empirically the

extrema of the bands typically lie along the HS k-lines, allowing us to make this

simplification [88, 148, 145].

For some applications, such as Γ-enforced topology, 𝑛 is fixed. However, for other

applications where we are agnostic to the particular band and simply wish to maximize

a gap, we search over multiple bands by using the objective function:

Δ𝜔 = max
𝑛

Δ𝜔𝑛 (4.5)

111

where 𝑛 can vary from 1 up to an upper limit we set based on computational con-

straints.

In the context of topological PhCs, we want to constrain bands 1 through 𝑛 (where

𝑛 may be fixed or variable) to have a particular topological index. To enforce the

topology of the bands, we check the topological index in each iteration as shown in

Fig. 4-1(c), as symmetry indicators allow us to quickly calculate the index from only

the special HS k-points (the details of which are explained in the section on “PhC

Simulation”). If the bands are indeed topological, we then calculate the entire band

structure along the HS k-lines from which we set 𝐿(𝜔𝑛k) = Δ𝜔𝑛 or 𝐿(𝜔𝑛k) = Δ𝜔,

as appropriate. Otherwise, we assign a penalty term of −2 to the objective, as this

is the minimum possible value of the relative bandgap. Incorporating the constraint

into the objective function allows us to use a variety of optimization algorithms that

are not necessarily designed for nonlinear constraints. The overall process in each

iteration is summarized in Fig. 4-1(a)

4.2.3 Optimization

As shown in Fig. 4-1(d), the optimization framework consists of 2 stages: a global

optimization stage to search the entire parameter space, and a local optimization

stage that takes the best candidates from the first stage and fine-tunes them within

a small region in the parameter space.

The first stage of optimization uses a randomized and locally-biased variant of

the DIviding RECTangles (DIRECT) algorithm (which we will refer to as DIRECT-

L-RAND) as implemented by NLopt [91, 48]. DIRECT is a gradient-free global

optimization algorithm that systematically divides the parameter space into smaller

and smaller hyperrectangles, and is thus able to handle highly non-convex functions.

The locally-biased variant of DIRECT focuses more on local search rather than global

search, and the randomized variant uses some randomization in how it decides which

dimension to split the hyperrectangle. The randomized variant allows us to run

the algorithm over multiple trials to take advantage of high-performance computing

cluster resources. We also use a random initial point to further introduce diversity

112

Find xbest using Sbplx

xbest improved?

xbest improved?

xbest improved?

ISRES-search for xbest in
hypercube neighborhood

(width 0.05)

xbest = x0 from global
optimization

InitializationInitialization UpdateUpdate

UpdateUpdate

ISRES-search for xbest in
hypercube neighborhood

(width 0.10)

UpdateUpdate

No

Yes

Yes

Yes

No

No

Figure 4-2: Flowchart of the local optimization algorithm. Due to the non-
differentiable objective function, Sbplx is subject to premature convergence. To ame-
liorate this, we periodically switch to ISRES to escape local maxima and continue
optimization. Each rectangular node represents a sub-stage of 500 iterations, and the
framework evaluates whether the objective has improved in that sub-stage to deter-
mine the algorithm for the next sub-stage.

over different trials. In principle, the non-randomized variants, DIRECT or DIRECT-

L, can be used in place of DIRECT-L-RAND, although they are insensitive to the

initial point and different trials will generally converge to the same solution.

As shown in Fig. 4-3(a), the global optimization stage not only is able to quickly

find candidates with the desired topological index, but also produces a variety of

possible candidates from which we can start the local search. The PhC geometries

as well as their band structures are quite diverse, demonstrating the effectiveness of

stochastic global exploration.

The second stage is a local optimization to refine the best candidates found from

the first stage. We primarily use the Sbplx algorithm, a variant of Nelder-Mead, as

implemented by the NLopt library [91, 188]. Nelder-Mead is a popular gradient-free

113

local optimization algorithm that builds an 𝑑+1-dimensional simplex (where 𝑑 is the

dimension of the problem) to approximate the objective function and find a new point

(which is subsequently used to adjust the simplex). Sbplx (a re-implementation of the

Subplex algorithm) decomposes the problem into low-dimensional subspaces so that

the simplex method can search more efficiently and robustly. A challenge with such

methods is that they are not guaranteed to converge for non-convex or discontinuous

functions (although in practice they seem to work reasonably well [188]). Indeed, the

non-differentiability stemming from the discrete nature of topology combined with

the non-convexity of our problem leads to frequent failure modes in the optimization

algorithm, including getting stuck in non-feasible regions of the parameter space, de-

creasing the step size to the point where it no longer improves the objective, or even

diverging and jumping to a point far away from the initial point. Thus, to avoid

the local optimization prematurely converging, we periodically restart the search al-

gorithm starting from the best point found so far to reset the trust region and step

size. We also occasionally switch to Improved Stochastic Ranking Evolution Strategy

(ISRES) [194, 91] to escape local maxima. ISRES is a stochastic evolutionary-based

global optimization algorithm that uses a combination of a mutation rule and dif-

ferential variation, and can incorporate nonlinear constraints (although we do not

explicitly incorporate constraints in our problem). The bounds of ISRES are set to

be a small hypercube around the best point found so far so that it behaves like a

stochastic local optimization.

More specifically, the local optimization stage is broken up into sub-stages of 500

iterations each. The first sub-stage uses the Sbplx algorithm. If a sub-stage using

Sbplx does not improve the objective, then the next sub-stage switches to ISRES. If a

sub-stage using ISRES does improve the objective, the next sub-stage switches back

to Sbplx. A detailed flowchart of the local optimization process is shown in Fig. 4-2.

As seen in Fig. 4-3(b), the local optimization stage is effective in quickly and sig-

nificantly increasing the bandgap. The vast difference in performance between global

and local optimization stages indicates the difficulty of the bandgap problem and sug-

gests that the set of feasible parameters that support complete HS bandgaps is small

114

relative to the parameter space. The diversity of the results from global optimization

and the fact that the different trials do not converge to the same structure during

local optimization also demonstrates that the bandgap problem likely has many local

optima, many of which do not have complete HS bandgaps. Thus, multiple trials with

different random initializations are necessary to find the globally optimal structure.

Our framework is similar to multi-start local optimization algorithms which apply

local optimization algorithms multiple times from different points to find the global

maxima in non-convex problems. The difference is that we apply multiple trials

of stochastic global optimization to pick the starting points for local optimization

rather than randomly sampling the starting points. This is necessary due to (1)

the extremely large number of local maxima in the parameter space and (2) the

topology constraints. Only a small fraction of randomly sampled points obey the

desired topology constraints (typically < 10% and often < 1%), so the global search

is necessary to find valid starting points with the desired topology. Thus, unlike prior

work that optimizes topological PhCs from a known topological structure [249, 160],

our method is able to automatically discover new topological PhCs.

4.2.4 PhC Simulation

We use the MIT Photonics Bands (MPB) software to solve for the eigenmodes of the

PhC unit cell and calculate the band structure and associated symmetry eigenval-

ues [92]. Specifically, we use a 16×16×16 spatial resolution during optimization and

a 32 × 32 × 32 resolution when calculating the full BZ. For the symmetry-based

evaluation of band topology, we use the Julia packages Crystalline.jl [26], which

implements the methodology of topological quantum chemistry [16] and symmetry

indicators [108, 174]; and MPBUtils.jl, which implements additional MPB-specific

functionality [2]. The choice of HS k-paths is not unique for a particular SG; we use

the SeeK paths as defined by Hinuma et al. [73] and as implemented in Brillouin.jl [1].

We briefly summarize the salient ideas of the symmetry-based evaluation of band

topology (see, e.g., Refs. 20 and 176 for existing reviews of the general methodology

and Ref. 26 for its adaptation to PhCs). Given a selection of bands {𝑛}, we first

115

Iteration
0 500 1000 1500 2000

Co
m

pl
et

e
ga

p
(%

)

−40

−35

−30

−25

−20

−15
(a)

(c) (d)

(b)

−15

−5

5

15

10

−10

0

0 1000 2000 3000

Iteration

Co
m

pl
et

e
ga

p
(%

)

D Y2ZΓ E ZAΓ ΓC2B

0.3

0.4

EZΓ Y2Γ Z C2D ΓB A

0.3

0.4

ZΓ Γ Z ΓD B E Y2A C2

0.3

0.4

ΓD EΓ Z Y2ΓBZ A C2
0.2

0.3

Y2DZΓ Γ E ZA ΓB C2

0.25

0.35

DZ EΓ C2B A Y2Γ Z Γ

0.25

0.35

Fr
eq

ue
nc

y
ω
a/

2π
c

Fr
eq

ue
nc

y
ω
a/

2π
c

Global optimization Local optimization

Figure 4-3: Global and local optimization of PhCs in SG 13 with Γ-enforced
topology. (a–b) Evolution of the the complete HS gap, i.e., the optimization ob-
jective, during the (a) global and (b) local optimization stages. Different curves
correspond to different trials from random initializations. Of the 10 trials shown in
(a), the 5 best trials are used as initialization for the local optimization stage. The
three trials with best eventual local optimization result are color-highlighted (red,
purple, and green). The unit cell evolution during local optimization for the green
trial is shown at select iterations (stars). A detailed movie of the unit cell evolution is
included in the Supporting Information. (c–d) Band structures and unit cells for the
color-highlighted (red, purple, and green) optimization curves at the final iteration of
global (c) and local (d) optimization.

116

compute the band symmetry eigenvalues ⟨E𝑛k|𝑔D𝑛k⟩ at the special k-points of the

BZ, using the Bloch eigenmodes of the E- and D-field, over the symmetry operations

𝑔 of each k-point’s little group (i.e., the operations that leaves the k-point invariant,

modulo reciprocal lattice vectors). From the set of symmetry eigenvalues, we next

compute the combination of irreducible representations (irreps) that the bands trans-

form as at each k-point. The overall information is aggregated into an integer-valued

symmetry vector:

n = [𝑛1
k1
, 𝑛2

k1
, . . . , 𝑛1

k𝑁
, 𝑛2

k𝑁
, . . . , 𝜇], (4.6)

where 𝑛𝛼
k𝑖

denotes the number of bands in the selection that transform as the 𝛼th

irrep 𝐷𝛼
k𝑖

of the little group at k𝑖, and 𝜇 denotes the total number of bands in the

selection.

For a given PhC, we build up a set of symmetry vectors iteratively, starting

from the lowest bands. For each candidate symmetry vector, we test its consistency

against the set of compatibility relations imposed by the SG—i.e., constraints on how

band symmetries can connect across the Brillouin zone [15, 98]—and if incompatible,

additional bands are included until a compatible band grouping is found. Each such

compatible symmetry vector signals a set of bands which are (pointwise) gapped

from all other bands along all HS k-lines. The associated assignment of topology

to each such symmetry vector can be achieved using the formalism of symmetry

indicators [176, 108] and topological quantum chemistry [16]. In brief, for each SG,

a choice of a set of trivial generators {a𝑖} and a set of nontrivial generators {b𝑗}𝑑
BS

𝑗=1

exists such that any compatible vector can be expressed as their integer combination

according to [212]:

n =
∑︁
𝑖

𝑐𝑖a𝑖 +
∑︁
𝑗

𝜈𝑗b𝑗, (4.7)

where 𝑐𝑖 ∈ Z are integer coefficients and 𝜈𝑗 ∈ Z𝜆𝑗
are coefficients from the ring of

integers modulo 𝜆𝑗, i.e., from Z𝜆𝑗
= {0, 1, . . . , 𝜆𝑗 − 1}. Here, 𝜆𝑗 are the minimal

integers that allow an integer-coefficient expansion of 𝜆𝑗b𝑗 in {a𝑖} (i.e., 𝜆𝑗b𝑗 is trivial

from the perspective of symmetry). The symmetry indicator, which characterizes the

symmetry-identifiable topology, is precisely the expansion coefficients 𝜈𝑖: that is, we

117

associate with every n the symmetry indicator 𝜈 = (𝜈1, . . . , 𝜈𝑑BS) which is an element

of the indicator group Z𝜆1 × . . . × Z𝑑BS . Nontrivial band topology corresponds to

nonzero 𝜈 and symmetry-identifiable topology consequently exists only in SGs with

indicator group different from Z1. In practice, we compute the compatibility relation

tests as well as the symmetry indicators using a procedure described elsewhere [40, 26].

A sketch of the application of the framework to a hypothetical PhC in SG 148 (R3)

with indicator group Z2 × Z4 is shown in Fig. 4-1(c).

We emphasize that the computational efficiency of this symmetry-based approach

is crucial to our optimization technique. With it, we can evaluate both the band

connectivity and topology using just a handful of special k-points (6–8 for the SGs

considered here); without it, this would require simulating a densely discretized subset

of the BZ, rendering the evaluation of the penalty term computationally prohibitive.

4.3 Results and discussion

This section presents a number of optimized PhCs with nontrivial topology, including

Γ-enforced nodal lines, Weyl points, and Chern insulating gaps.

4.3.1 Γ-enforced topological nodal lines

We start by considering the optimization of PhCs exhibiting so-called Γ-enforced

topological nodal lines, a recently introduced type of photonic band topology that

can be inferred solely from the number of bands below the first gap along the high-

symmetry (HS) k-lines of the BZ [26]. In the presence of time-reversal symmetry,

this band topology can exist in six SGs (13, 48, 49, 50, 68, and 86) and arises as

a direct result of a uniquely photonic zero-frequency polarization singularity at the

Γ-point. It is associated with an apparent bandgap between bands 2 and 3 along HS

lines of the BZ which, however, vanishes along nodal lines in the interior of the BZ.

Conceptually, it is analogous to filling-enforced topology [175], i.e., topology that can

be inferred from band connectivity alone. Here, we focus on optimizing the gap along

the HS k-lines (which we denote as the “HS bandgap”) with the aim of obtaining

118

(a)

Z

Y2

C2

A

D

Γ

B

E

0.3175 0.3225 0.3275

0.38

0.34

0.30

Fr
eq

ue
nc

y
ω
a/

2π
c

(b)

HS conduction bands HS valence bands

Nodal line dispersion

ωa/2πc

Nodal lines

Figure 4-4: Nodal line location and dispersion in optimized candidates of SG
13. (a) Nodal line frequency dispersion compared to the HS bands. The right-most
candidate exhibits a maximally-isolated nodal line. (b) The nodal lines (color-coded
by frequency) in the BZ (outlined in black) run along the 𝑘𝑦 direction. Purple lines
represent the HS k-lines over which the bandgap is maximized

“ideal” frequency-isolated nodal lines. We explore each of the six SGs that support

Γ-enforced nodal lines. In all cases, Γ-enforced topology occurs only between bands

2 and 3, so we use the objective in Eq. (4.4) with 𝑛 = 2.

Running our optimization algorithm for each of these six SGs, across 10–20 global

trials and 5000 subsequent local iterations for the top 3–5 global candidates, we find

Γ-enforced topological designs in every SG. However, only in SG 13 (P2/c; generated

by inversion and a glide operation {2010|0, 0, 12} in the monoclinic crystal system) are

we able to find full bandgaps across the HS k-path. Notably, SG 13 is a (maxi-

mal) subgroup of the remaining SGs; the inability to obtain HS bandgaps in these

supergroups suggests that their additional symmetry constraints act counter to gap

formation. Additionally, as shown in Fig. 4-3, the optimization framework is able to

find full HS bandgaps in nearly half of the trials.

The best candidate we have found in SG 13 is presented in the bottom-most

panel of Fig. 4-3(d), which contains a 12.7% HS gap between bands 2 and 3. Snap-

shots of the evolution of the structure is shown in Fig. 4-3(b), and a more detailed

movie is included in the Supporting Information. We can see that the structure con-

119

verges to what resembles a double gyroid structure, a well-known design for complete

bandgaps [130]. The symmetry indicator of the bottom 2 bands is (𝜈1, 𝜈2) = (1, 1), in-

dicating the presence of a pair of nodal lines, each protected by a 𝜋-Berry phase [212].

Performing a full BZ computation over a dense k-grid, we see a pair of nodal lines

running along the 𝑘𝑦 axis in Fig. 4-4(b), consistent with the predictions by Song et al.

[212]. Unsurprisingly, the nodal lines are far away in the BZ from the HS k-lines

along which we maximized the bandgap, since the band crossings that form nodal

lines are antithetical to the optimization objective. In other words, optimizing the

HS bandgap pushes the nodal line away from the HS k-lines.

The nodal line is frequency dispersive, exhibiting a relative 4.2% variation across

its span. While there exist isofrequency contours around the nodal line at the nodal

line frequencies due to its dispersion, there do not exist any nodal line frequency

pockets elsewhere in the BZ, making the nodal line well isolated in frequency. Ideally,

we would like to also minimize the frequency dispersion of the nodal line [255], as it is

necessary to realize the characteristic linear DOS dispersion of nodal lines. However,

this would require formulating an objective that is a function of the entire BZ rather

than just the HS k-lines, which is computationally prohibitive; we leave such efforts

to future work.

Because Γ-enforced topology is diagnosable from the connectivity alone (i.e., if the

appropriate bands are connected, they must be topological), optimization methods

such as the SDP solver [148] that were not formulated specifically for topological PhCs

can be applied for this setting without requiring additional constraints. However,

starting from random initializations, the SDP solver was not able to find any complete

HS gaps in SGs 13, 48, and 68 over multiple trials and over a range of lattice bases.

The difficulty in finding bandgaps points towards the nonconvexity of the problem

and the necessity of global optimization methods.

Optimization under variable permittivity To study the minimum index re-

quired to support an ideal nodal line, we take the best candidate (which has a 12.7%

HS gap) and calculate the band structure as a function of index for the optimized

120

Permittivity ε
2 4 6 8 10 12 14 16

H
S

ba
nd

ga
p

(%
)

−40

−30

−20

−10

0

10

ε-scaled
Reoptimized

(a)

HS bandgap (%)
6 8 10 12

N
od

al
 li

ne
 d

is
pe

rs
io

n
(%

)

4

5

6

7

ε = 12 ε = 14
ε = 16

ε = 10

(b)

Figure 4-5: Permittivity dependence of nodal line properties. (a) We compare
the HS gap attainable by simply scaling the permittivity of an original design (brown
lines) versus the HS gap attainable by re-optimizing the structure at the new target
permittivity (green lines), using the original structure as initialization point. The
starting design is that associated with Fig. 4-4(b), originally optimized at 𝜀 = 16.
Substantial improvements are attainable by re-optimizing. (b) Nodal line frequency
dispersion as a function of the HS bandgap for the re-optimized structures, showing
a monotonic decrease of nodal line dispersion with HS gap size.

structure in Fig. 4-5. As expected, the HS bandgap increases monotonically with the

index contrast. The same structure has a HS bandgap of 0 at a relative permittivity

of 𝜀 ≈ 10.6. Alternatively, if we take the same structure and re-optimize it using our

local optimization algorithm in Fig. 4-2, we can further improve the bandgap at a

fixed permittivity, decreasing the minimum permittivity required for a complete HS

bandgap to 𝜀 ≈ 8.3. Looking at the nodal line for the optimized structures at different

permittivities in Fig. 4-5(b), the nodal line frequency dispersion scales inversely with

the attainable HS bandgap. In other words, the nodal line spans a greater fraction

of the bandgap in frequency as permittivity decreases, remaining isolated inside the

bandgap down to 𝜀 = 12.

Many previous proposals for PhCs containing nodal lines either require metallic

materials or very high index-contrast dielectrics [130, 168, 169]. Our work paves the

way for demonstrating nodal lines in PhCs with lower index, potentially enabling

experimental realization in a wider range of frequencies.

121

4.3.2 Weyl points

Next, we pursue designs of PhCs with frequency-isolated Weyl points, also known as

ideal Weyl points. Weyl points can arise in three different regions of the BZ: (i) at

HS k-points, stabilized by spatial or time-reversal symmetries [143, 261], (ii) along

HS k-lines, corresponding to the intersection of bands transforming as different ir-

reps [240, 266], and (iii) at generic k-points in the interior of BZ, stabilized by a

nontrivial symmetry indicator [212]. To date, proposed designs of frequency-isolated

ideal photonic Weyl points fall in the first two classes. Here, we seek designs in the

latter class, i.e., Weyl points at generic momenta. As before, we use the bandgap

metric along HS k-lines as a proxy for isolating the Weyl points from other bulk

bands. Additionally, because we are agnostic to the number of bands below the gap,

we allow the objective 𝐿(𝜔𝑛k) to look over multiple bands, as in Eq. (4.5).

Space group constraints Song et al. [212] showed that for spinless, time-reversal

invariant particles in non-centrosymmetric crystals (i.e., lacking inversion centers),

all symmetry-indicated nontrivial band topology is associated with Weyl points in

the interior of the BZ. We therefore initially restrict our attention to the 12 non-

centrosymmetric SGs with nontrivial indicator group. However, only a subset of these

groups are suitable for finding well-isolated Weyl points since the Nielsen–Nimomiya

theorem requires Weyl points to occur in pairs of opposite chirality, which in general

do not need to have the same frequency [230]. However, the existence of additional

symmetries, e.g., mirrors or rotations, can map opposite-chirality Weyl points onto

each other, thereby pinning them to the same frequency and allowing ideal single-

frequency Weyl points. Consulting the results of Ref. 212 for each SG individually,

we find that only six SGs (27, 37, 81, 82, 103, and 184) can host ideal, symmetry-

indicated Weyl points. We perform global and local optimizations for PhCs in each

of these SGs, and find designs with HS bandgaps in SGs 27 (Pcc2), 37 (Ccc2), 81

(P4), and 82 (I4). SGs 27 and 37 are centering-variants, both generated by a 2-fold

rotation and an orthogonal glide plane; similarly, 81 and 82 are centering-variants,

both generated by 4-fold rotoinversion.

122

MX A ZRΓΓ Z
0.4

0.5

0.6

RX AM 0 1DOS (a.u.)

P MSX ΓΓ N

0.6

0.7

ΓS0 RX MG 0 1DOS (a.u.)

0 1DOS (a.u.)

P SX MΓΓ N

0.5

0.6

ΓS0 RX MG 0 1DOS (a.u.)

Y RX S U ZΓ ZΓ T

0.4

0.5

X U Y T S R

Y C0Γ

0.4

0.5

Γ ZΣ0 A0 YTE0 ZRS TΓ

(e)

(f)

(a)

(b)

(c)

(d)

ω
a/

2π
c

ω
a/

2π
c

ω
a/

2π
c

ω
a/

2π
c

ω
a/

2π
c

ω
a/

2π
c

ΓS0 RX MG

PPNN

MM

SS00
RR

GG

ΓΓ

SS

XX

ZZ

RR

MM

AA
ΓΓ XX

ZZ
UU TTRR

ΓΓ
SSXX

YY

00
00

00
00

TT
ZZ

RR

ΣΣ
CC

AA
EE

ΓΓ

SS
YY

P SX MΓΓ N
0.6

0.7SG 81 (P-4)SG 81 (P-4)

SG 82 (I-4)SG 82 (I-4)

SG 82 (I-4)SG 82 (I-4)

SG 27 (Pcc2)SG 27 (Pcc2)

SG 82 (I-4)SG 82 (I-4)

SG 37 (Ccc2)SG 37 (Ccc2)

Figure 4-6: Weyl point optimization in noncentrosymmetric SGs. Selected re-
sults for optimized PhCs designs with Weyl points in SGs 27, 37, 81, and 82, visualized
by their dispersions along HS k-lines (red lines, nontrivial valence bands; blue lines,
conduction bands; yellow shading, HS gap; dashed black line, Weyl point frequency),
density of states (DOS), and Weyl point locations in the BZ. (a–b) Optimized PhC
Weyl point designs in SGs 81 and 82: the unit cells of each design are shown (for SG
82, we show the conventional unit cell, not the primitive). The BZs feature 4 ideal
Weyl points in the 𝑘𝑧 = 𝜋/𝑐 plane (with equivalent copies in the 𝑘𝑧 = −𝜋/𝑐 plane)
in SG 81 and in the 𝑘𝑧 = 0 plane in SG 82, without intersecting Fermi pockets. The
density of states (DOS) exhibits a parabolic frequency dependence at the Weyl point
frequency. (c,d) Optimized results in SG 82 with HS bandgaps, but non-ideal Weyl
points. (c) The Weyl point frequency lies on the valence HS band edge, preventing
frequency-isolation. (d) Although the Weyl point frequency lies in the center of the
HS bandgap, the DOS is asymmetric and non-parabolic, due to conduction band
minima right above the Weyl point frequency that do not intersect the considered
HS k-lines. (e-f) Optimized PhC designs in SGs 27 and 37. In both cases, the Weyl
points overlap spectrally with large Fermi pockets that extend over the interior of the
BZ without intersecting any HS k-line.

123

Ideal Weyl point designs We show results for a range of optimized designs from

these SGs in Fig. 4-6. In SGs 81 and 82 we find several designs with ideal Weyl points

and without any intersecting trivial bulk bands, i.e., without any “Fermi pockets”.

Figure 4-6(a) highlights one such design from SG 81. The band structure has a 6.3%

HS gap between bands 4 and 5, with Weyl points closing the gap in the interior

of the BZ. The ideality of the Weyl points is also clearly exhibited in the density of

states (DOS), calculated using the tetrahedron method implementation from Ref. 118,

which displays the characteristic parabolic dependence DOS(𝜔) ∝ (𝜔−𝜔0)
2 associated

with ideal Weyl points at frequency 𝜔0. To determine the Weyl point locations, we

perform a full BZ dispersion calculation and identify the Weyl points with the k-

points where the conduction–valence frequency difference vanishes. We observe 4

Weyl points in the BZ at 𝑘𝑧 = 𝜋/𝑐 (8 are shown; note, however, that the 𝑘𝑧 =

±𝜋/𝑐 planes are equivalent), consistent with expectations for a symmetry indicator

(𝜈1, 𝜈2) = (0, 1) [212]. Similar to the nodal line optimization, the Weyl points are

pushed away from the HS k-lines in the 𝑘𝑧 = 𝜋 plane, since the Weyl points represent

a band-closing point which, if near a HS k-line, would act counter to the HS gap

metric.

We have also found an example of a well-isolated, ideal Weyl point in SG 82, as

shown in Fig. 4-6(b). The bandstructure displays a gap of 5.0% between bands 6

and 7, and the DOS drops to 0 at the Weyl point frequency as expected. In this SG,

the Weyl points are fixed to the 𝑘𝑧 = 0 plane in the BZ. Again, the Weyl points are

pushed away from the HS k-lines by the optimization process.

Limitations of the high-symmetry bandgap metric While our optimization

procedure has discovered several designs for ideal Weyl points, the HS bandgap metric

is not infallible. Concretely, even when large complete HS bandgaps are achieved,

the corresponding Weyl points may not necessarily be truly frequency-isolated. We

identify two related failure modes. First, the success of the HS bandgap metric

hinges on an assumption of minimally varying dispersions between HS lines, i.e., on

the absence of non-Weyl-related local optima of the dispersion at generic k-points.

124

Although this is the tacit assumption underlying all the visualizations of the band

structure along HS lines, it is well-known that this assumption can be violated [68,

32, 145]. Second, and relatedly, the frequency-location of the Weyl points relative to

the HS bandgap is not pinned; specifically, although the existence of Weyl points is

guaranteed by topology, their frequency location is not guaranteed to fall near the

center of the HS bandgap.

Figure 4-6(c-f) summarizes a few examples of these failure modes, where despite

obtaining a large HS gap, the optimization procedure does not yield truly ideal Weyl

points. Figure 4-6(c,d) shows the dispersions and DOS for two designs in SG 82 with

bandgaps of 2.0% and 3.3%, respectively. In Fig. 4-6(c) the Weyl point lies on the

edge of the HS gap, illustrating the second failure mode mentioned above. Despite

this, the DOS still exhibits an approximately parabolic dependence near the Weyl

point and vanishes exactly at the Weyl point frequency. Even when the Weyl point

occurs near the center of the HS gap, it may still be non-ideal, as illustrated by

the design candidate considered in Fig. 4-6(d): the DOS is both asymmetrical and

distorted from the expected parabolic shape due to the conduction band dropping

close to, but not intersecting with, the Weyl point frequency elsewhere in the BZ, in

illustration of the first failure mode mentioned earlier.

A more pronounced type of this failure mode, i.e., spectral intersection with Fermi

pockets despite an otherwise “centered” Weyl point, was widespread in the optimized

designs found in SG 27 and 37. Exemplifying this, Fig. 4-6(e) shows an optimized

PhC in SG 27 with a HS gap of 6.3%, and Fig. 4-6(f) shows a PhC in SG 37 with

a HS gap of 6.2%. In both settings, the Weyl points are pinned to the 𝑘𝑧 = 𝜋 plane

(and, equivalently, 𝑘𝑧 = −𝜋 plane), and the Weyl point frequency lies in the middle

of the HS gap. Despite this, neither case exhibits ideal Weyl points; instead, the Weyl

points are occluded by Fermi pockets that reside in the interior of the BZ, i.e., there

exist local optima of the bands inside the BZ. We visualize these Fermi pockets in

Fig. 4-6(e,f) by plotting the isofrequency contours at the Weyl point frequency 𝜔0.

Overall, the HS bandgap metric serves as a meaningful and largely effective proxy

for optimizing Weyl points, as evidenced by our findings of ideal Weyl point designs

125

–1/2–1/2

00k
z c k xa

1/21/2

0.56

0.58

0.54

Fr
eq

ue
nc

y
 ω

a/
2π

c

0.56

0.58

0.54

–1/2 0

kxa
1/2

ω(kx, kzc = 0.3)

Bulk bandsBulk bands

Interface
states

yz

x
B = +Bz

C = +1

B = –Bz

C = –1

.

Z
R

M

AΓΓ
X

X ZM AZΓ RΓ

0.45

0.5

RX AM

M R ZZ AXΓ Γ

0.52

0.56

0.6

RX AM

K LAM H AΓ Γ
0.5

0.55

0.6

ML KH

(a) (b)

(c)

(d)

(e)

(f)

(g) SG 168 (P6)SG 168 (P6)

SG 75 (P4)SG 75 (P4)

SG 75 (P4)SG 75 (P4)

SG 75 (P4)SG 75 (P4)

SG 168 (P6)SG 168 (P6)

Fr
eq

ue
nc

y
 ω

a/
2π

c

M

A
H

K

Γ
L

SG 168 (P6)SG 168 (P6)

Figure 4-7: Optimization of photonic Chern insulators. BZs and HS k-lines for
(a) SG 75 and (b) SG 168, respectively. PhC structure and band structure (complete
gap highlighted in yellow) for (c) SG 75, 𝐶 = 1, (d) SG 75, 𝐶 = 2, and (e) SG 168,
𝐶 = 1. (f) Supercell calculation for the SG 168 candidate in (e) to calculate surface
states. The supercell consists of 1 × 16 × 1 unit cells. At the interface, the sign
of the applied applied magnetic field B is flipped: i.e., the orange units cells have
B = +𝐵ẑ (𝐶 = +1) and the blue unit cells have B = −𝐵ẑ (𝐶 = −1). (g) Surface
state dispersion at the interface, extracted from supercell calculation (projected bulk
states indicated in gray).

in SGs 81 and 82. Overcoming the limitations of the HS gap metric is in principle

possible, e.g., by replacing it by a full BZ gap metric (at considerable computational

cost) or by supplementing the HS paths with additional paths, either from the outset

or adaptively. The DOS, which can be computed efficiently using the tetrahedron or

Gilat–Raubenheimer methods [118], could potentially also serve as an effective proxy.

4.3.3 Chern insulators

As a final showcase, we pursue designs of time-reversal broken 3D PhCs with nonzero

Chern numbers, i.e., photonic 3D Chern insulators. There have been numerous pro-

posals [180, 237, 7, 208, 122] and associated experiments [238, 209, 177, 260, 178]

126

of photonic 2D Chern insulators. The 3D generalization, however, has only recently

seen more development with only three distinct designs known [133, 37, 119]. Two

of these designs require supercell modulations [133, 37], which are undesirable from

a fabrication perspective, while the third requires non-dielectric (metallic) materi-

als [119]. In all cases, the proposed designs feature relatively small (≲ 2%) bandgaps.

3D Chern insulators are characterized by a Chern vector C = (𝐶1, 𝐶2, 𝐶3) rather than

a single Chern number, with components 𝐶𝑖 giving the Chern number of a k-slice or-

thogonal to G𝑖 [230]. Since the associated bands are assumed to be fully gapped, the

slice-Chern numbers 𝐶𝑖 are invariant with respect to the slice position 𝑘𝑖.

Nontrivial Chern phases require breaking time-reversal symmetry. To achieve this

in the PhC context, we consider a gyroelectric material under a ẑ-oriented external

magnetic field with a permittivity tensor of the form [130]:

𝜀(𝑔) =

⎡⎢⎢⎢⎣
𝜀⊥ i𝑔 0

−i𝑔 𝜀⊥ 0

0 0 𝜀‖

⎤⎥⎥⎥⎦ , (4.8)

where 𝜀⊥ = (𝜀2‖+𝑔
2)1/2. We take 𝜀‖ = 16 and 𝑔 = 12 corresponding to a dimensionless

effective magnetic field intensity of |B| = 𝑔/𝜀‖ = 0.75. Note that the determinant

of 𝜀(𝑔) is independent of 𝑔 and |B|, ensuring that the overall band structure is not

shifted as a whole by the applied magnetic field [130].

Although the slice-Chern numbers can be computed by discretization [47], the

computational cost is prohibitive for optimization purposes. Instead, we focus our

attention to PhCs in SGs 75 (P4) and 168 (P6), where the slice-Chern number 𝐶𝑧

can be computed from the bands’ 𝑛-fold rotation-eigenvalues modulo 𝑛 [43], or equiv-

alently, from the symmetry indicators 𝜈(75)1 ∈ Z4 and 𝜈
(168)
1 ∈ Z6. Furthermore,

under suitable convention choices, the symmetry indicators map directly to 𝐶𝑧, i.e.,

𝐶
(75)
𝑧 = 𝜈

(75)
1 (mod 4) and 𝐶(168)

𝑧 = 𝜈
(168)
1 (mod 6).1 The remaining components, i.e.,

1This mapping involves a fixed convention for the choice of nontrivial generators in Eq. (4.7) [212].
Specifically, we take b(75)

1 = −êΓ2
+êΓ4

−ê𝑍2
+ê𝑍4

and b
(168)
1 = +ê𝐻2

−ê𝐻3
+ê𝐾2

−ê𝐾3
−ê𝐿1

+ê𝐿2
−

ê𝑀1 + ê𝑀2 . Equivalently, the symmetry indicators are given by 𝜈
(75)
1 = 2𝑛𝑀2 +𝑛𝑀3 −𝑛𝑀4 − 2𝑛Γ1 −

𝑛Γ3
+𝑛Γ4

− 2𝑛𝑋1
mod 4 and 𝜈

(168)
1 = 𝑛Γ1

− 2𝑛Γ2
+5𝑛Γ3

+2𝑛Γ4
+3𝑛Γ5

+2𝑛𝐻1
− 2𝑛𝐻2

− 3𝑛𝐿1
mod 6,

127

𝐶𝑥,𝑦, necessarily vanish since the Chern vector must transform as a pseudovector

under the elements of the space group [43].

Figure 4-7 summarizes the results of applying our technique to the optimization

of 3D Chern insulating phases with target Chern vectors C = (0, 0, 𝐶𝑧) for 𝐶𝑧 = 1

and 𝐶𝑧 = 2. For SG 75, we find PhC designs with 𝐶𝑧 = 1 and a HS gap of 1.5%

between bands 4 and 5 [Fig. 4-7(c)]. Interestingly, the optimization finds a design

with larger HS gap of 2.1% between bands 6 and 7 for a target Chern number of

𝐶𝑧 = 2 [Fig. 4-7(d)]. Conversely, in SG 168, we are unable to find a 𝐶𝑧 = 2 design

with a complete HS gap, but find a PhC design with a large 5.1% 𝐶𝑧 = 1 HS gap

between bands 7 and 8 [Fig. 4-7(e)].

In more detail, we consider a (010) interface with the applied magnetic field’s sign

flipped at the interface [Fig. 4-7(f)]. This flip preserves the band structure and, more

specifically, the gap; but negates the associated Chern number, yielding a gap Chern

number of Δ𝐶𝑧 = 1 − (−1) = 2. By the bulk–boundary correspondence principle,

two chiral surface states must therefore traverse the gap. To verify this, we computed

the surface band structure across the remaining good wave numbers (𝑘𝑥, 𝑘𝑧) using a

supercell of 8 + 8 unit cells along 𝑦, as shown in Fig. 4-7(g). A pair of chiral surface

states traverse the gap, consistent with expectations, and effectively behave as a pair

of 1D edge states at each 𝑘𝑥 value. Additionally, we observe that the complete HS

gap metric is highly effective in this example, in fact equaling the full BZ gap. For

computational reasons, our 𝑦-supercell was implemented as periodic; as a result, a set

of redundant oppositely-traversing dispersion copies, residing at a second interface,

were manually removed from the band structure visualization for clarity.

4.4 Conclusion

We have presented a combined global and local optimization framework which exploits

several off-the-shelf optimization algorithms to effectively handle the non-continuous

and non-differentiable objective functions that arise in the bandgap optimization of

with irrep labels given in CDML notation [30].

128

topological PhCs. We incorporate a level-set function expressed as a symmetry-

constrained Fourier sum with a relatively low parameter-space dimensionality that

makes optimization by gradient-free methods tractable, while simultaneously instat-

ing a symmetry-constrained search space. We have applied our method in several

distinct symmetry settings, hosting several distinct types of nontrivial band topology.

In doing so, we have discovered several novel topological photonic designs featuring

nodal lines, ideal Weyl points, and nontrivial 3D Chern insulators. To our knowl-

edge, these are the first proposed structures with nodal lines and Weyl points in the

interior of the BZ, a design task that would be computationally intractable without

the use of the symmetry-based topological band analysis tools that we use here. As

an example of the applicability and potential of our framework, our best Chern in-

sulator design has the largest known bandgap of any 3D photonic Chern insulator,

and achieves this without explicitly incorporating the supermodulation techniques

employed in previous designs.

As we also discuss in the Results section, the HS bandgap maximization objective

serves as an effective proxy for frequency-isolation of nodal lines and Weyl points.

Nevertheless, this proxy can lead to non-ideal degeneracies that that overlap spec-

trally with other “trivial” bulk band features. Future work could focus on further

optimization of the frequency isolation, especially in the local optimization stage

given the computational cost of considering the full BZ. For example, an objective

function for Weyl points could optimize the shape of the DOS directly such that

it realizes the characteristic parabolic frequency-dependence over a desired range to

exclude the possibility of Fermi pockets at or near the Weyl point frequency. Anal-

ogously, a modified objective function for nodal lines could incorporate terms that

minimize frequency dispersion across the line while simultaneously maximizing the

bandgap to nearby Fermi pockets.

While we explore just three different kinds of band topology, the method we

present is general and can be applied to any other topological feature that can be an-

alyzed from band symmetry. For example, the optimization scheme is not restricted

to nodal lines and Weyl points in the interior of the BZ, but could be easily ex-

129

tended to nodal lines crossing or Weyl points lying on HS k-lines [267], simply by

adjusting the objective function or symmetry setting accordingly. More generally,

other topological features of potential interest include the quantum spin Hall effect,

higher-order topological insulators (e.g., hinge states and corner states) [11, 162], and

symmetry-protected degeneracies more broadly [261]. Furthermore, our exploration

of optimization techniques can provide insight into bandgap optimization of non-

topological (i.e., trivial) 3D and 2D PhCs, as well as of other quasiparticles, such as

in engineered phononic crystals.

The Fourier level-set parameterization and its incorporation of a maximal (spatial)

frequency cutoff has the advantage that it generally avoids rapid structural variations

and fine details. Nevertheless, such constraints could potentially be incorporated with

higher fidelity and stricter tolerances by exploiting standard techniques in topology

optimization [206, 113]. In the context of PhCs, robust optimization techniques using

min-max formulations for the objective function have been used to ensure satisfac-

tory performance in the case of over- or underetching during fabrication [147, 148]. In

photonics design more broadly, density filters and projection steps can be applied pe-

riodically throughout optimization to remove small features and gaps [66]. A separate

but related concern of particular importance for 3D structures is the incorporation

of connectivity constraints to avoid floating structures or holes. We note that several

of our proposed Weyl point and Chern insulator structures exhibit floating features,

reflecting the absence of a connectivity enforcement in the Fourier level-set parame-

terization. While enforcement of connectivity constraints remains relatively underex-

plored in the 3D PhC context—-perhaps in reflection of earlier topology optimizations

of trivial bandgaps having automatically tended towards connected designs [148]—

such constraints can in principle be explicitly incorporated in our framework [114].

On the other hand, it is well-established that PhCs with unconnected geometric fea-

tures can host large (trivial) bandgaps [141, 21] and such disconnected structures

may be realizable with emerging fabrication techniques such as implosion fabrica-

tion, wherein dielectric or metallic structures are embedded in a low-index hydrogel

scaffold [161, 151].

130

In principle, any global or local optimization algorithm can be used in our frame-

work. Although we have explored several choices for each stage, we have not exhaus-

tively compared different algorithms, and further improvements may well be achiev-

able by simply using more optimal algorithms, e.g., algorithms that explicitly handle

non-continuous constraints. Similarly, gradient-based optimization algorithms could

be used in the local optimization stage to speed up convergence. As a particularly ex-

citing outlook, we note opportunities to exploit Bayesian optimization, a model-based

algorithm typically used for global optimization of expensive non-convex functions.

Recently, Bayesian optimization using Bayesian neural networks was demonstrated

to outperform several gradient-free global optimization algorithms in the design of

PhCs [100]. Bayesian optimization can also be extended to take advantage of gradi-

ent information [5] and non-continuous constraints [55] to improve convergence.

In principle, any global or local optimization algorithms can be used in our

method, allowing the flexibility to easily re-implement this method with different

packages or languages. Additionally, we have not exhaustively compared different

algorithms, so there may be room for improvement using more optimal algorithms

or algorithms that can explicitly handle non-continuous constraints. For example,

gradient-based optimization algorithms can be used in the local optimization stage to

speed up convergence while the global optimization stage avoids getting trapped in

local optima. In another example, Bayesian optimization (BO) is a model-based al-

gorithm typically used for optimization of expensive non-convex functions. BO using

Bayesian neural networks to operate on an image representation of the PhC directly

has been shown to outperform many other gradient-free global optimization algo-

rithms [100]. BO can be extended to take advantage of gradients [5], function bounds

[158] and constraints [55]. Because we can control the runtime vs accuracy trade-

off of our simulations (i.e., simulating only HS k-points, k-lines, or the entire BZ),

multi-fidelity Bayesian optimization methods would also be applicable to maximize

computational utility [46].

Code is publicly available2.

2https://github.com/samuelkim314/topo-phc-opt

131

https://github.com/samuelkim314/topo-phc-opt

132

Chapter 5

Conclusion

In this thesis, I have proposed several deep learning- and optimization-based tools for

automating the process of scientific discovery and inverse design with applications in

physics, chemistry, and engineering.

The work in this thesis on the EQuation Learner (EQL) neural network archi-

tecture and its variants–the Stacked EQL (SEQL) and the Hyper EQL (HEQL) for

parametric equations–can enable symbolic regression and the process of automatically

discovering governing equations from data on high-dimensional and complex datasets.

While here we present experiments on datasets such as images, dynamic systems, and

parametric equations, there are many more types of structure and complexity that

can be integrated into symbolic regression. For example, AI-Feynman 2.0 tries dis-

cover invariants and symmetries present to map the data onto a lower-dimensional

space that can be more easily handled by symbolic regression [226]. Siamese neu-

ral networks [244] and manifold learning [136] have been used to discover invariants

and conserved quantities . PDE-Net uses a constrained convolutional neural network

architecture to automatically discover the differential terms for the governing PDE,

rather than needing hand-crafted finite-difference approximations [125]. Additionally,

while we demonstrate the use of simple convolutional encoders to automatically dis-

cover latent parameters in the dynamics datasets, there are a number of much more

powerful encoder architectures and even alternate approaches such as self-supervised

learning (e.g. contrastive learning) for more complex datasets. Many of these exten-

133

sions can also be incorporated into the EQL network architecture, in part due to the

general flexibility and expressiveness of deep learning.

Bayesian optimization is a powerful tool for global optimization and inverse design

in a variety of fields in science and engineering, and the work in this thesis paves a

path towards incorporating much of the intuition and knowledge that we have gained

into the optimization process in the form of inductive biases in the surrogate models,

which we have shown serves to improve optimization performance. While there have

been many works on using deep learning for optimization and inverse design in the

context of photonics, most of these typically rely on generating a dataset and training

a machine learning model on the data in advance of optimization. which largely limits

the scope of these approaches to use cases where one may need to repeatedly perform

optimization in the same design space many times. In contrast, our work is able

to automatically discover designs without pre-computed datasets and is thus more

broadly applicable. Furthermore, our approach can potentially take advantage of the

rapid advances in deep learning research such as transfer learning or self-supervised

learning for better initializations of the neural network weights. Uncertainty cali-

bration or nested hyper-parameter tuning could potentially be incorporated during

optimization as an inner loop or periodically to improve training dynamics. Addi-

tionally, we hope to apply our method to more realistic use cases such as optimization

topological photonic crystals, as discussed in Chapter 4.

Finally, we propose a framework for the automated discovery and global optimiza-

tion of topological photonic crystals, which is conventionally a difficult but exciting

goal to achieve. We hope to apply the framework to a number of other systems,

including 2D photonic crystals and other types of topology. Additionally, we hope to

incorporate fabrication constraints and eventually discover novel structures that can

be fabricated and experimentally measured.

134

References

[1] Brillouin.jl (v0.5.10). https://github.com/thchr/Brillouin.jl. Accessed 1
Feb. 2023.

[2] MPBUtils.jl (v0.1.11). https://github.com/thchr/MPBUtils.jl. Accessed 1
Feb. 2023.

[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. URL http://tensorflow.org/. Software available from tensorflow.org.

[4] A. Alexandradinata. Spatially-protected Topology and Group Cohomology in
Band Insulators. PhD thesis, Princeton University, 2015. URL http://arks.
princeton.edu/ark:/88435/dsp01kp78gj767.

[5] Sebastian E Ament and Carla P Gomes. Scalable first-order Bayesian
optimization via structured automatic differentiation. In Interna-
tional Conference on Machine Learning, pages 500–516. PMLR, 2022.
doi:10.48550/arXiv.2206.08366.

[6] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David
Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to
learn by gradient descent by gradient descent. Advances in neural information
processing systems, 29, 2016.

[7] Xianyu Ao, Zhifang Lin, and C. T. Chan. One-way edge mode in a
magneto-optical honeycomb photonic crystal. Phys. Rev. B, 80:033105, 2009.
doi:10.1103/PhysRevB.80.033105.

[8] M. I. Aroyo, editor. International Tables for Crystallography Volume A: Space-
group Symmetry. Wiley, 6 edition, 2016. doi:10.1107/97809553602060000114.

135

https://github.com/thchr/Brillouin.jl
https://github.com/thchr/MPBUtils.jl
http://tensorflow.org/
http://arks.princeton.edu/ark:/88435/dsp01kp78gj767
http://arks.princeton.edu/ark:/88435/dsp01kp78gj767
https://doi.org/10.48550/arXiv.2206.08366
https://doi.org/10.1103/PhysRevB.80.033105
https://doi.org/10.1107/97809553602060000114

[9] Raul Astudillo and Peter Frazier. Bayesian optimization of composite functions.
In International Conference on Machine Learning, pages 354–363. PMLR, 2019.

[10] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben
Letham, Andrew G Wilson, and Eytan Bakshy. Botorch: a framework for
efficient monte-carlo bayesian optimization. Advances in neural information
processing systems, 33:21524–21538, 2020.

[11] Wladimir A Benalcazar, B Andrei Bernevig, and Taylor L Hughes. Elec-
tric multipole moments, topological multipole moment pumping, and chiral
hinge states in crystalline insulators. Phys. Rev. B, 96(24):245115, 2017.
doi:10.1103/PhysRevB.96.245115.

[12] Ari S Benjamin, David Rolnick, and Konrad Kording. Measuring and regular-
izing networks in function space. arXiv preprint arXiv:1805.08289, 2018.

[13] James Bergstra, Daniel Yamins, and David Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision ar-
chitectures. In International conference on machine learning, pages 115–123.
PMLR, 2013.

[14] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
Weight uncertainty in neural networks. arXiv preprint arXiv:1505.05424, 2015.

[15] L. P. Bouckaert, R. Smoluchowski, and E. Wigner. Theory of Brillouin zones
and symmetry properties of wave functions in crystals. Phys. Rev., 50:58, 1936.
doi:10.1103/PhysRev.50.58.

[16] Barry Bradlyn, L. Elcoro, Jennifer Cano, M. G. Vergniory, Zhijun Wang,
C. Felser, M. I. Aroyo, and B. Andrei Bernevig. Topological quantum chemistry.
Nature, 547(7663):298–305, 2017. doi:10.1038/nature23268.

[17] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian opti-
mization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[18] Wessel Bruinsma, Eric Perim, William Tebbutt, Scott Hosking, Arno Solin, and
Richard Turner. Scalable exact inference in multi-output gaussian processes. In
International Conference on Machine Learning, pages 1190–1201. PMLR, 2020.

[19] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering govern-
ing equations from data by sparse identification of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 113(15):3932–7, apr 2016. ISSN 1091-6490. doi:10.1073/pnas.1517384113.

[20] Jennifer Cano and Barry Bradlyn. Band representations and topological
quantum chemistry. Annu. Rev. Condens. Matter Phys., 12:225–246, 2021.
doi:10.1146/annurev-conmatphys-041720-124134.

136

https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRev.50.58
https://doi.org/10.1038/nature23268
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1146/annurev-conmatphys-041720-124134

[21] Rose K Cersonsky, James Antonaglia, Bradley D Dice, and Sharon C Glotzer.
The diversity of three-dimensional photonic crystals. Nature communications,
12(1):1–7, 2021. doi:10.1038/s41467-021-22809-6.

[22] Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L Brunton.
Data-driven discovery of coordinates and governing equations. Proceedings of
the National Academy of Sciences, 116(45):22445–22451, 2019.

[23] Pradyumna Chari, Chinmay Talegaonkar, Yunhao Ba, and Achuta Kadambi.
Visual physics: Discovering physical laws from videos. arXiv preprint
arXiv:1911.11893, 2019.

[24] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
Neural ordinary differential equations. Advances in neural information process-
ing systems, 31, 2018.

[25] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and
Yann LeCun. The loss surfaces of multilayer networks. In Journal of Machine
Learning Research, volume 38, pages 192–204. Microtome Publishing, 2015.

[26] Thomas Christensen, Hoi Chun Po, John D Joannopoulos, and Marin Soljačić.
Location and topology of the fundamental gap in photonic crystals. Phys. Rev.
X, 12(2):021066, 2022. doi:10.1103/PhysRevX.12.021066.

[27] Rasmus E. Christiansen, Fengwen Wang, Ole Sigmund, and Søren Sto-
bbe. Designing photonic topological insulators with quantum-spin-Hall edge
states using topology optimization. Nanophotonics, 8(8):1363–1369, 2019.
doi:10.1515/nanoph-2019-0057.

[28] Allan Costa, Rumen Dangovski, Owen Dugan, Samuel Kim, Pawan Goyal,
Marin Soljačić, and Joseph Jacobson. Fast neural models for symbolic regression
at scale. arXiv preprint arXiv:2007.10784, 2020.

[29] Steven J Cox and David C Dobson. Band structure optimization of two-
dimensional photonic crystals in 𝐻-polarization. J. Comput. Phys., 158(2):
214–224, 2000. doi:10.1006/jcph.1999.6415.

[30] A. P. Cracknell, B. L. Davies, S. C. Miller, and W. F. Love. Kronecker Product
Tables. General Introduction and Tables of Irreducible Representations of Space
Groups., volume 1. New York: IFI/Plenum, 1979.

[31] Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cran-
mer, David Spergel, and Shirley Ho. Discovering symbolic models from deep
learning with inductive biases. Advances in Neural Information Processing Sys-
tems, 33:17429–17442, 2020.

[32] R. V. Craster, T. Antonakakis, M. Makwana, and S. Guenneau. Dangers
of using the edges of the Brillouin zone. Phys. Rev. B, 86:115130, 2012.
doi:10.1103/PhysRevB.86.115130.

137

https://doi.org/10.1038/s41467-021-22809-6
https://doi.org/10.1103/PhysRevX.12.021066
https://doi.org/10.1515/nanoph-2019-0057
https://doi.org/10.1006/jcph.1999.6415
https://doi.org/10.1103/PhysRevB.86.115130

[33] Sandip De, Albert P Bartók, Gábor Csányi, and Michele Ceriotti. Comparing
molecules and solids across structural and alchemical space. Physical Chemistry
Chemical Physics, 18(20):13754–13769, 2016.

[34] Filipe de Avila Belbute-Peres, Yi-fan Chen, and Fei Sha. Hyperpinn: Learning
parameterized differential equations with physics-informed hypernetworks. In
The Symbiosis of Deep Learning and Differential Equations, 2021.

[35] María Blanco de Paz, Maia G. Vergniory, Dario Bercioux, Aitzol García-
Etxarri, and Barry Bradlyn. Engineering fragile topology in photonic crystals:
Topological quantum chemistry of light. Phys. Rev. Research, 1:032005, 2019.
doi:10.1103/PhysRevResearch.1.032005.

[36] Aryan Deshwal and Jana Doppa. Combining latent space and structured ker-
nels for bayesian optimization over combinatorial spaces. Advances in Neural
Information Processing Systems, 34, 2021.

[37] Chiara Devescovi, Mikel García-Díez, Iñigo Robredo, María Blanco de Paz,
Jon Lasa-Alonso, Barry Bradlyn, Juan L Mañes, Maia G Vergniory, and Aitzol
García-Etxarri. Cubic 3D Chern photonic insulators with orientable large Chern
vectors. Nat. Commun., 12(1):1–12, 2021. doi:10.1038/s41467-021-27168-w.

[38] David C Dobson and Steven J Cox. Maximizing band gaps in two-dimensional
photonic crystals. SIAM J. Appl. Math., 59(6):2108–2120, 1999. URL https:
//www.jstor.org/stable/118418.

[39] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gra-
dient descent finds global minima of deep neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 1675–1685. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/du19c.html.

[40] Luis Elcoro, Zhida Song, and B. Andrei Bernevig. Application of induction
procedure and Smith decomposition in calculation and topological classification
of electronic band structures in the 230 space groups. Phys. Rev. B, 102:035110,
Jul 2020. doi:10.1103/PhysRevB.102.035110.

[41] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias
Poloczek. Scalable global optimization via local bayesian optimization. Ad-
vances in neural information processing systems, 32, 2019.

[42] Qinwei Fan, Jacek M. Zurada, and Wei Wu. Convergence of online gradi-
ent method for feedforward neural networks with smoothing L1/2 regular-
ization penalty. Neurocomputing, 131:208–216, may 2014. ISSN 0925-2312.
doi:10.1016/J.NEUCOM.2013.10.023. URL https://www.sciencedirect.
com/science/article/pii/S0925231213010825.

138

https://doi.org/10.1103/PhysRevResearch.1.032005
https://doi.org/10.1038/s41467-021-27168-w
https://www.jstor.org/stable/118418
https://www.jstor.org/stable/118418
https://proceedings.mlr.press/v97/du19c.html
https://doi.org/10.1103/PhysRevB.102.035110
https://doi.org/10.1016/J.NEUCOM.2013.10.023
https://www.sciencedirect.com/science/article/pii/S0925231213010825
https://www.sciencedirect.com/science/article/pii/S0925231213010825

[43] Chen Fang, Matthew J Gilbert, and B Andrei Bernevig. Bulk topological in-
variants in noninteracting point group symmetric insulators. Phys. Rev. B, 86
(11):115112, 2012. doi:10.1103/PhysRevB.86.115112.

[44] GP Fletcher and CJ Hinde. Learning the activation function for the neurons
in neural networks. In International Conference on Artificial Neural Networks,
pages 611–614. Springer, 1994. doi:10.1007/978-1-4471-2097-1_143.

[45] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A
loss landscape perspective. arXiv preprint arXiv:1912.02757, 2019.

[46] Peter I Frazier. A tutorial on Bayesian optimization. arXiv:1807.02811, 2018.
URL https://doi.org/10.48550/arXiv.1807.02811.

[47] Takahiro Fukui, Yasuhiro Hatsugai, and Hiroshi Suzuki. Chern numbers in
discretized Brillouin zone: Efficient method of computing (spin) Hall conduc-
tances. J. Phys. Soc. Jpn., 74(6):1674–1677, 2005. doi:10.1143/jpsj.74.1674.

[48] Joerg M Gablonsky and Carl T Kelley. A locally-biased form of the DIRECT
algorithm. J. Glob. Optim., 21(1):27–37, 2001. doi:10.1023/A:1017930332101.

[49] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learn-
ing with image data. arXiv preprint arXiv:1703.02910, 2017.

[50] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural
networks. arXiv preprint arXiv:1902.09574, 2019.

[51] Wenlong Gao, Biao Yang, Ben Tremain, Hongchao Liu, Qinghua Guo, Lingbo
Xia, Alastair P Hibbins, and Shuang Zhang. Experimental observation of pho-
tonic nodal line degeneracies in metacrystals. Nat. Commun., 9(1):1–7, 2018.
doi:10.1038/s41467-018-03407-5.

[52] Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G
Wilson. Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu
acceleration. Advances in neural information processing systems, 31, 2018.

[53] Roman Garnett. Bayesian Optimization. Cambridge University Press, 2022. in
preparation.

[54] Michael S Gashler and Stephen C Ashmore. Modeling time series data
with deep fourier neural networks. Neurocomputing, 188:3–11, 2016.
doi:10.1016/j.neucom.2015.01.108.

[55] Michael Adam Gelbart. Constrained Bayesian optimization and applications.
PhD thesis, Harvard University, 2015.

[56] Rajib Ghosh Chaudhuri and Santanu Paria. Core/shell nanoparticles: classes,
properties, synthesis mechanisms, characterization, and applications. Chemical
reviews, 112(4):2373–2433, 2012.

139

https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1007/978-1-4471-2097-1_143
https://doi.org/10.48550/arXiv.1807.02811
https://doi.org/10.1143/jpsj.74.1674
https://doi.org/10.1023/A:1017930332101
https://doi.org/10.1038/s41467-018-03407-5
https://doi.org/10.1016/j.neucom.2015.01.108

[57] Joel Goh, Ilya Fushman, Dirk Englund, and Jelena Vučković. Genetic op-
timization of photonic bandgap structures. Opt. Express, 15(13):8218, 2007.
doi:10.1364/oe.15.008218.

[58] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel
Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge
Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-
Guzik. Automatic chemical design using a data-driven continuous representa-
tion of molecules. ACS central science, 4(2):268–276, 2018.

[59] Daniele Grattarola and Cesare Alippi. Graph neural networks in tensorflow and
keras with spektral. arXiv preprint arXiv:2006.12138, 2020.

[60] Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian
optimization for automatic chemical design using variational autoencoders.
Chemical science, 11(2):577–586, 2020.

[61] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration
of modern neural networks. In International conference on machine learning,
pages 1321–1330. PMLR, 2017.

[62] Qinghua Guo, Oubo You, Biao Yang, James B Sellman, Edward Blythe,
Hongchao Liu, Yuanjiang Xiang, Jensen Li, Dianyuan Fan, Jing Chen,
et al. Observation of three-dimensional photonic Dirac points and
spin-polarized surface arcs. Phys. Rev. Lett., 122(20):203903, 2019.
doi:10.1103/PhysRevLett.122.203903.

[63] Fredrik K Gustafsson, Martin Danelljan, and Thomas B Schon. Evaluating scal-
able bayesian deep learning methods for robust computer vision. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 318–319, 2020.

[64] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint
arXiv:1609.09106, 2016.

[65] F. D. M. Haldane. Model for a quantum Hall effect without Landau levels:
Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett., 61:
2015–2018, 1988. doi:10.1103/PhysRevLett.61.2015.

[66] Alec M Hammond, Ardavan Oskooi, Mo Chen, Zin Lin, Steven G Johnson, and
Stephen E Ralph. High-performance hybrid time/frequency-domain topology
optimization for large-scale photonics inverse design. Opt. Express, 30(3):4467–
4491, 2022. doi:10.1364/OE.442074.

[67] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on
Github. Zenodo, DOI:10.5281/zenodo.2559634, February 2019. URL https:
//doi.org/10.5281/zenodo.2559634.

140

https://doi.org/10.1364/oe.15.008218
https://doi.org/10.1103/PhysRevLett.122.203903
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1364/OE.442074
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634

[68] J. M. Harrison, P. Kuchment, A. Sobolev, and B. Winn. On occurrence of
spectral edges for periodic operators inside the Brillouin zone. J. Phys. A:
Math. Theor., 40:7597, 2007. doi:10.1088/1751-8113/40/27/011.

[69] Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper
Snoek, Balaji Lakshminarayanan, Andrew M Dai, and Dustin Tran. Training in-
dependent subnetworks for robust prediction. arXiv preprint arXiv:2010.06610,
2020.

[70] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[71] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-
supervised learning can improve model robustness and uncertainty. Advances
in neural information processing systems, 32, 2019.

[72] Lauri Himanen, Marc O. J. Jäger, Eiaki V. Morooka, Filippo Federici Canova,
Yashasvi S. Ranawat, David Z. Gao, Patrick Rinke, and Adam S. Fos-
ter. DScribe: Library of descriptors for machine learning in materials sci-
ence. Computer Physics Communications, 247:106949, 2020. ISSN 0010-4655.
doi:10.1016/j.cpc.2019.106949. URL https://doi.org/10.1016/j.cpc.2019.
106949.

[73] Yoyo Hinuma, Giovanni Pizzi, Yu Kumagai, Fumiyasu Oba, and Isao Tanaka.
Band structure diagram paths based on crystallography. Comput. Mater. Sci.,
128:140–184, 2017. doi:10.1016/j.commatsci.2016.10.015.

[74] Chung-I Ho, Dan-Ju Yeh, Vin-Cent Su, Chieh-Hung Yang, Po-Chuan Yang,
Ming-Yi Pu, Chieh-Hsiung Kuan, I-Chun Cheng, and Si-Chen Lee. Plas-
monic multilayer nanoparticles enhanced photocurrent in thin film hydro-
genated amorphous silicon solar cells. Journal of Applied Physics, 112(2):
023113, 2012.

[75] KM Ho, Che Ting Chan, and Costas M Soukoulis. Existence of a pho-
tonic gap in periodic dielectric structures. Phys. Rev. Lett., 65(25):3152,
1990. doi:10.1103/PhysRevLett.65.3152. URL https://link.aps.org/doi/
10.1103/PhysRevLett.65.3152.

[76] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey.
Meta-learning in neural networks: A survey. arXiv preprint arXiv:2004.05439,
2020.

[77] Jilin Hu, Jianbing Shen, Bin Yang, and Ling Shao. Infinitely wide graph con-
volutional networks: semi-supervised learning via gaussian processes. arXiv
preprint arXiv:2002.12168, 2020.

141

https://doi.org/10.1088/1751-8113/40/27/011
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1016/j.commatsci.2016.10.015
https://doi.org/10.1103/PhysRevLett.65.3152
https://link.aps.org/doi/10.1103/PhysRevLett.65.3152
https://link.aps.org/doi/10.1103/PhysRevLett.65.3152

[78] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kil-
ian Q Weinberger. Snapshot ensembles: Train 1, get m for free. arXiv preprint
arXiv:1704.00109, 2017.

[79] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 4700–4708, 2017.

[80] James P Hughes, Stephen Rees, S Barrett Kalindjian, and Karen L Philpott.
Principles of early drug discovery. British journal of pharmacology, 162(6):
1239–1249, 2011.

[81] Michael Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont,
Yee Whye Teh, and Hyunjik Kim. Lietransformer: Equivariant self-attention
for lie groups. arXiv preprint arXiv:2012.10885, 2020.

[82] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-
based optimization for general algorithm configuration. In International con-
ference on learning and intelligent optimization, pages 507–523. Springer, 2011.

[83] Daniel Jakubovitz, Raja Giryes, and Miguel RD Rodrigues. Generalization error
in deep learning. In Compressed sensing and its applications, pages 153–193.
Springer, 2019.

[84] Jakob Søndergaard Jensen and Ole Sigmund. Topology optimization for nano-
photonics. Laser & Photonics Reviews, 5(2):308–321, 2011.

[85] J.S. Jensen and O. Sigmund. Topology optimization for nano-photonics. Laser
Photonics Rev., 5(2):308–321, 2010. doi:10.1002/lpor.201000014.

[86] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational
autoencoder for molecular graph generation. In International conference on
machine learning, pages 2323–2332. PMLR, 2018.

[87] John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert D.
Meade. Photonic Crystals: Molding the Flow of Light (Second Edition). Prince-
ton University Press, 2 edition, 2008. ISBN 0691124566.

[88] John D Joannopoulos, Steven G Johnson, Joshua N Winn, and Robert D Meade.
Photonic Crystals: Molding the Flow of Light. Princeton University Press, 2
edition, 2008. ISBN 0691124566.

[89] Sajeev John. Strong localization of photons in certain disordered dielectric
superlattices. Physical review letters, 58(23):2486, 1987.

[90] Steven G. Johnson. The nlopt nonlinear-optimization package, 2010. URL
http://github.com/stevengj/nlopt.

142

https://doi.org/10.1002/lpor.201000014
http://github.com/stevengj/nlopt

[91] Steven G Johnson. The NLopt nonlinear-optimization package, 2014. URL
https://github.com/stevengj/nlopt.

[92] Steven G Johnson and John D Joannopoulos. Block-iterative frequency-domain
methods for maxwell’s equations in a planewave basis. Opt. Express, 8(3):173–
190, 2001. doi:10.1364/OE.8.000173.

[93] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global
optimization of expensive black-box functions. Journal of Global Optimization,
13(4):455–492, Dec 1998. ISSN 1573-2916. doi:10.1023/A:1008306431147. URL
https://doi.org/10.1023/A:1008306431147.

[94] Christina Jörg, Sachin Vaidya, Jiho Noh, Alexander Cerjan, Shyam Augus-
tine, Georg von Freymann, and Mikael C Rechtsman. Observation of quadratic
(charge-2) Weyl point splitting in near-infrared photonic crystals. Laser Pho-
tonics Rev., 16(1):2100452, 2022. doi:10.1002/lpor.202100452.

[95] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,
Anna Potapenko, et al. Highly accurate protein structure prediction with al-
phafold. Nature, 596(7873):583–589, 2021.

[96] Chiu Y Kao, Stanley Osher, and Eli Yablonovitch. Maximizing band gaps in
two-dimensional photonic crystals by using level set methods. Appl. Phys. B:
Lasers Opt., 81(2):235–244, 2005. doi:10.1007/s00340-005-1877-3.

[97] Anuj Karpatne, William Watkins, Jordan Read, and Vipin Kumar. Physics-
guided neural networks (pgnn): An application in lake temperature modeling.
arXiv preprint arXiv:1710.11431, 2017.

[98] E. Kaxirax and J. D. Joannopoulos. Quantum theory of materials. Cambridge
University Press, 2019. doi:10.1017/9781139030809.

[99] Samuel Kim, Peter Y Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir
Čeperić, and Marin Soljačić. Integration of neural network-based symbolic re-
gression in deep learning for scientific discovery. IEEE Transactions on Neural
Networks and Learning Systems, 32(9):4166–4177, 2020.

[100] Samuel Kim, Peter Y Lu, Charlotte Loh, Jamie Smith, Jasper Snoek, and
Marin Soljačić. Deep learning for Bayesian optimization of scientific prob-
lems with high-dimensional structure. Transactions on Machine Learning Re-
search, 2022. ISSN 2835-8856. URL https://openreview.net/forum?id=
tPMQ6Je2rB. https://openreview.net/forum?id=tPMQ6Je2rB, Accessed 8
Feb. 2023.

[101] Samuel Kim, Thomas Christensen, Steven G. Johnson, and Marin Soljačić.
Automated discovery and optimization of 3d topological photonic crystals. ACS
Photonics, 2023. doi:10.1021/acsphotonics.2c01866. URL https://doi.org/
10.1021/acsphotonics.2c01866.

143

https://github.com/stevengj/nlopt
https://doi.org/10.1364/OE.8.000173
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1002/lpor.202100452
https://doi.org/10.1007/s00340-005-1877-3
https://doi.org/10.1017/9781139030809
https://openreview.net/forum?id=tPMQ6Je2rB
https://openreview.net/forum?id=tPMQ6Je2rB
https://openreview.net/forum?id=tPMQ6Je2rB
https://doi.org/10.1021/acsphotonics.2c01866
https://doi.org/10.1021/acsphotonics.2c01866
https://doi.org/10.1021/acsphotonics.2c01866

[102] Davis E. King. Dlib-ml: A machine learning toolkit. Journal of Machine
Learning Research, 10:1755–1758, 2009.

[103] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.
Semi-supervised learning with deep generative models. Advances in neural in-
formation processing systems, 27, 2014.

[104] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hut-
ter. Fast bayesian optimization of machine learning hyperparameters on large
datasets. In Artificial Intelligence and Statistics, pages 528–536. PMLR, 2017.

[105] Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner,
and Stephan Hoyer. Machine learning–accelerated computational fluid dynam-
ics. Proceedings of the National Academy of Sciences, 118(21), 2021.

[106] Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barn-
abas Poczos, Jeff Schneider, and Eric Xing. Chembo: Bayesian optimization of
small organic molecules with synthesizable recommendations. In International
Conference on Artificial Intelligence and Statistics, pages 3393–3403. PMLR,
2020.

[107] JohnR. Koza. Genetic programming as a means for programming computers
by natural selection. Statistics and Computing, 4(2):87–112, jun 1994. ISSN
0960-3174. doi:10.1007/BF00175355. URL http://link.springer.com/10.
1007/BF00175355.

[108] Jorrit Kruthoff, Jan de Boer, Jasper van Wezel, Charles L. Kane,
and Robert-Jan Slager. Topological classification of crystalline insulators
through band structure combinatorics. Phys. Rev. X, 7:041069, 2017.
doi:10.1103/PhysRevX.7.041069.

[109] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertain-
ties for deep learning using calibrated regression. In International conference
on machine learning, pages 2796–2804. PMLR, 2018.

[110] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar
variational autoencoder. In International conference on machine learning, pages
1945–1954. PMLR, 2017.

[111] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. In Advances
in neural information processing systems, pages 6402–6413, 2017.

[112] Alan Lapedes and Robert Farber. Nonlinear signal processing using neural
networks: Prediction and system modelling. Technical report, 6 1987. URL
https://www.osti.gov/biblio/5470451.

144

https://doi.org/10.1007/BF00175355
http://link.springer.com/10.1007/BF00175355
http://link.springer.com/10.1007/BF00175355
https://doi.org/10.1103/PhysRevX.7.041069
https://www.osti.gov/biblio/5470451

[113] Boyan S Lazarov, Fengwen Wang, and Ole Sigmund. Length scale and manu-
facturability in density-based topology optimization. Arch. Appl. Mech., 86(1):
189–218, 2016. doi:10.1007/s00419-015-1106-4.

[114] Quhao Li, Wenjiong Chen, Shutian Liu, and Liyong Tong. Structural topology
optimization considering connectivity constraint. Struct. Multidiscip. Optim.,
54(4):971–984, 2016. doi:10.1007/s00158-016-1459-5.

[115] Weibai Li, Fei Meng, Yafeng Chen, Yang fan Li, and Xiaodong Huang. Topology
optimization of photonic and phononic crystals and metamaterials: A review.
Adv. Theory Simul., 2(7):1900017, 2019. doi:10.1002/adts.201900017.

[116] Zin Lin, Lysander Christakis, Yang Li, Eric Mazur, Alejandro W. Rodriguez,
and Marko Lončar. Topology-optimized dual-polarization Dirac cones. Phys.
Rev. B, 97:081408, Feb 2018. doi:10.1103/PhysRevB.97.081408. URL https:
//link.aps.org/doi/10.1103/PhysRevB.97.081408.

[117] Zin Lin, Victor Liu, Raphaël Pestourie, and Steven G Johnson. Topology op-
timization of freeform large-area metasurfaces. Optics express, 27(11):15765–
15775, 2019.

[118] Boyuan Liu, J D Joannopoulos, Steven G Johnson, and Ling Lu. General-
ized Gilat–Raubenheimer method for density-of-states calculation in photonic
crystals. J. Opt., 20:044005, 2018. doi:10.1088/2040-8986/aaae52.

[119] Gui-Geng Liu, Zhen Gao, Qiang Wang, Xiang Xi, Yuan-Hang Hu, Maoren
Wang, Chengqi Liu, Xiao Lin, Longjiang Deng, Shengyuan A Yang, et al. Topo-
logical chern vectors in three-dimensional photonic crystals. Nature, 609(7929):
925–930, 2022. doi:10.1038/s41586-022-05077-2.

[120] Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When gaussian
process meets big data: A review of scalable gps. IEEE transactions on neural
networks and learning systems, 31(11):4405–4423, 2020.

[121] Jinlong Liu, Guoqing Jiang, Yunzhi Bai, Ting Chen, and Huayan Wang. Un-
derstanding why neural networks generalize well through gsnr of parameters.
arXiv preprint arXiv:2001.07384, 2020.

[122] Kexin Liu, Linfang Shen, and Sailing He. One-way edge mode in a gyromagnetic
photonic crystal slab. Opt. Lett., 37(19):4110, 2012. doi:10.1364/ol.37.004110.

[123] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Dar-
rell, and Saining Xie. A convnet for the 2020s. arXiv preprint arXiv:2201.03545,
2022.

[124] Charlotte Loh, Thomas Christensen, Rumen Dangovski, Samuel Kim, and
Marin Soljacic. Surrogate-and invariance-boosted contrastive learning for data-
scarce applications in science. arXiv preprint arXiv:2110.08406, 2021.

145

https://doi.org/10.1007/s00419-015-1106-4
https://doi.org/10.1007/s00158-016-1459-5
https://doi.org/10.1002/adts.201900017
https://doi.org/10.1103/PhysRevB.97.081408
https://link.aps.org/doi/10.1103/PhysRevB.97.081408
https://link.aps.org/doi/10.1103/PhysRevB.97.081408
https://doi.org/10.1088/2040-8986/aaae52
https://doi.org/10.1038/s41586-022-05077-2
https://doi.org/10.1364/ol.37.004110

[125] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-Net: Learning
PDEs from Data. In Proceedings of Machine Learning Research, pages 3208–
3216, jul 2018. URL http://proceedings.mlr.press/v80/long18a.html.

[126] Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learning pdes from
data with a numeric-symbolic hybrid deep network. Journal of Computational
Physics, 399:108925, 2019. doi:10.1016/j.jcp.2019.108925.

[127] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983, 2016.

[128] Christos Louizos and Max Welling. Multiplicative normalizing flows for varia-
tional bayesian neural networks. arXiv preprint arXiv:1703.01961, 2017.

[129] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning Sparse Neu-
ral Networks through L_0 Regularization. arXiv preprint arXiv:1712.01312,
dec 2017. URL https://arxiv.org/abs/1712.01312.

[130] Ling Lu, Liang Fu, John D Joannopoulos, and Marin Soljačić. Weyl points
and line nodes in gyroid photonic crystals. Nat. Photonics, 7(4):294–299, 2013.
doi:10.1038/nphoton.2013.42.

[131] Ling Lu, John D Joannopoulos, and Marin Soljačić. Topological photonics. Nat.
Photonics, 8(11):821–829, 2014. doi:10.1038/nphoton.2014.248.

[132] Ling Lu, Zhiyu Wang, Dexin Ye, Lixin Ran, Liang Fu, John D Joannopoulos,
and Marin Soljačić. Experimental observation of Weyl points. Science, 349
(6248):622–624, 2015. doi:10.1126/science.aaa9273.

[133] Ling Lu, Haozhe Gao, and Zhong Wang. Topological one-way fiber of second
Chern number. Nat. Commun., 9(1):1–7, 2018. doi:10.1038/s41467-018-07817-
3.

[134] Peter Y Lu, Samuel Kim, and Marin Soljačić. Extracting interpretable physical
parameters from spatiotemporal systems using unsupervised learning. Physical
Review X, 10(3):031056, 2020. doi:10.1103/PhysRevX.10.031056.

[135] Peter Y Lu, Joan Ariño Bernad, and Marin Soljačić. Discovering sparse inter-
pretable dynamics from partial observations. Communications Physics, 5(1):
1–7, 2022. doi:10.1038/s42005-022-00987-z.

[136] Peter Y Lu, Rumen Dangovski, and Marin Soljačić. Discovering conser-
vation laws using optimal transport and manifold learning. arXiv preprint
arXiv:2208.14995, 2022.

[137] Yingtao Luo, Qiang Liu, Yuntian Chen, Wenbo Hu, and Jun Zhu. Ko-pde:
Kernel optimized discovery of partial differential equations with varying coeffi-
cients. arXiv preprint arXiv:2106.01078, 2021.

146

http://proceedings.mlr.press/v80/long18a.html
https://doi.org/10.1016/j.jcp.2019.108925
https://arxiv.org/abs/1712.01312
https://doi.org/10.1038/nphoton.2013.42
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1038/s41467-018-07817-3
https://doi.org/10.1038/s41467-018-07817-3
https://doi.org/10.1103/PhysRevX.10.031056
https://doi.org/10.1038/s42005-022-00987-z

[138] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard,
X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding.
Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X, 5:031013, 2015.
doi:10.1103/PhysRevX.5.031013.

[139] Wesley J Maddox, Maximilian Balandat, Andrew G Wilson, and Eytan Bak-
shy. Bayesian optimization with high-dimensional outputs. Advances in Neural
Information Processing Systems, 34, 2021.

[140] Wesley J Maddox, Samuel Stanton, and Andrew G Wilson. Conditioning sparse
variational gaussian processes for online decision-making. Advances in Neural
Information Processing Systems, 34, 2021.

[141] Martin Maldovan, Chaitanya K Ullal, W Craig Carter, and Edwin L Thomas.
Exploring for 3d photonic bandgap structures in the 11 fcc space groups. Nature
materials, 2(10):664–667, 2003. doi:10.1038/nmat979.

[142] Cédric Malherbe and Nicolas Vayatis. Global optimization of lipschitz functions.
arXiv preprint arXiv:1703.02628, 2017.

[143] J. L. Mañes. Existence of bulk chiral fermions and crystal symmetry. Phys.
Rev. B, 85:155118, 2012. doi:10.1103/physrevb.85.155118.

[144] Georg Martius and Christoph H. Lampert. Extrapolation and learning equa-
tions. arXiv preprint arXiv:1610.02995, oct 2016. URL http://arxiv.org/
abs/1610.02995.

[145] Florian Maurin, Claus Claeys, Elke Deckers, and Wim Desmet. Probability
that a band-gap extremum is located on the irreducible Brillouin-zone contour
for the 17 different plane crystallographic lattices. Int. J. Solids Struct., 135:
26–36, 2018. doi:10.1016/j.ijsolstr.2017.11.006.

[146] Han Men, Ngoc Cuong Nguyen, Robert M Freund, Pablo A Parrilo, and Jaume
Peraire. Bandgap optimization of two-dimensional photonic crystals using
semidefinite programming and subspace methods. J. Comput. Phys., 229(10):
3706–3725, 2010. doi:10.1016/j.jcp.2010.01.023.

[147] Han Men, Robert M Freund, Ngoc C Nguyen, Joel Saa-Seoane, and Jaime
Peraire. Fabrication-adaptive optimization with an application to photonic
crystal design. Oper. Res., 62(2):418–434, 2014. doi:10.1287/opre.2013.1252.

[148] Han Men, Karen YK Lee, Robert M Freund, Jaime Peraire, and Steven G
Johnson. Robust topology optimization of three-dimensional photonic-
crystal band-gap structures. Opt. Express, 22(19):22632–22648, 2014.
doi:10.1364/OE.22.022632.

[149] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík,
Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Ja-
son K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger,

147

https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1038/nmat979
https://doi.org/10.1103/physrevb.85.155118
http://arxiv.org/abs/1610.02995
http://arxiv.org/abs/1610.02995
https://doi.org/10.1016/j.ijsolstr.2017.11.006
https://doi.org/10.1016/j.jcp.2010.01.023
https://doi.org/10.1287/opre.2013.1252
https://doi.org/10.1364/OE.22.022632

Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Jo-
hansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka,
Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and An-
thony Scopatz. Sympy: symbolic computing in python. PeerJ Computer Sci-
ence, 3:e103, January 2017. ISSN 2376-5992. doi:10.7717/peerj-cs.103. URL
https://doi.org/10.7717/peerj-cs.103.

[150] O. D. Miller, C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D.
Joannopoulos, M. Soljačić, and S. G. Johnson. Fundamental limits to
extinction by metallic nanoparticles. Phys. Rev. Lett., 112:123903, 2014.
doi:10.1103/PhysRevLett.112.123903.

[151] Brian Mills, Yannick Salamin, Gaojie Yang, Daniel Oran, Yi Sun, Shai Maayani,
Steven E Kooi, Amel Amin Elfadil Elawad, Josue J Lopez, Corban Swain, et al.
Implosion fabrication as a platform for three-dimensional nanophotonics. In
CLEO: Science and Innovations, pages STh4J–1. Optical Society of America,
2021. doi:10.1364/CLEO_SI.2021.STh4J.1.

[152] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout
sparsifies deep neural networks. In 34th International Conference on Ma-
chine Learning, ICML 2017, volume 5, pages 3854–3863. International Machine
Learning Society (IMLS), 2017. ISBN 9781510855144.

[153] Sean Molesky, Zin Lin, Alexander Y. Piggott, Weiliang Jin, Jelena Vucković,
and Alejandro W. Rodriguez. Inverse design in nanophotonics. Nat. Photonics,
12(11):659–670, 2018. doi:10.1038/s41566-018-0246-9.

[154] Alejandro Molina, Patrick Schramowski, and Kristian Kersting. Pad∖’e activa-
tion units: End-to-end learning of flexible activation functions in deep networks.
arXiv preprint arXiv:1907.06732, 2019.

[155] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In International Con-
ference on Machine Learning, pages 2554–2563. PMLR, 2017.

[156] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak,
and Ilya Sutskever. Deep double descent: Where bigger models and more
data hurt. Journal of Statistical Mechanics: Theory and Experiment, 2021
(12):124003, 2021.

[157] Balas Kausik Natarajan. Sparse Approximate Solutions to Linear Sys-
tems. SIAM Journal on Computing, 24(2):227–234, apr 1995. ISSN 0097-
5397. doi:10.1137/S0097539792240406. URL http://epubs.siam.org/doi/
10.1137/S0097539792240406.

[158] Vu Nguyen and Michael A. Osborne. Knowing the what but not the where in
Bayesian optimization. In Hal Daumé III and Aarti Singh, editors, Proceed-
ings of the 37th International Conference on Machine Learning, volume 119 of

148

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1103/PhysRevLett.112.123903
https://doi.org/10.1364/CLEO_SI.2021.STh4J.1
https://doi.org/10.1038/s41566-018-0246-9
https://doi.org/10.1137/S0097539792240406
http://epubs.siam.org/doi/10.1137/S0097539792240406
http://epubs.siam.org/doi/10.1137/S0097539792240406

Proceedings of Machine Learning Research, pages 7317–7326. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/nguyen20d.html.

[159] Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi,
Jascha Sohl-Dickstein, and Samuel S. Schoenholz. Neural tangents: Fast and
easy infinite neural networks in python. In International Conference on Learning
Representations, 2020. URL https://github.com/google/neural-tangents.

[160] Eric Nussbaum, Nir Rotenberg, and Stephen Hughes. Optimizing the chi-
ral Purcell factor for unidirectional single-photon emitters in topological pho-
tonic crystal waveguides using inverse design. Phys. Rev. A, 106:033514, 2022.
doi:10.1103/PhysRevA.106.033514.

[161] Daniel Oran, Samuel G Rodriques, Ruixuan Gao, Shoh Asano, Mark A
Skylar-Scott, Fei Chen, Paul W Tillberg, Adam H Marblestone, and Ed-
ward S Boyden. 3d nanofabrication by volumetric deposition and con-
trolled shrinkage of patterned scaffolds. Science, 362(6420):1281–1285, 2018.
doi:10.1126/science.aau5119.

[162] Yasutomo Ota, Feng Liu, Ryota Katsumi, Katsuyuki Watanabe, Katsunori
Wakabayashi, Yasuhiko Arakawa, and Satoshi Iwamoto. Photonic crystal
nanocavity based on a topological corner state. Optica, 6(6):786–789, 2019.
doi:10.1364/OPTICA.6.000786.

[163] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian
Nowozin, Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can
you trust your model’s uncertainty? evaluating predictive uncertainty under
dataset shift. In Advances in Neural Information Processing Systems, pages
13991–14002, 2019.

[164] Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad
Hafezi, Ling Lu, Mikael C. Rechtsman, David Schuster, Jonathan Simon, Oded
Zilberberg, and Iacopo Carusotto. Topological photonics. Rev. Mod. Phys., 91
(1):015006, 2019. doi:10.1103/revmodphys.91.015006.

[165] Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen,
Richard Turner, and Mohammad Emtiyaz E Khan. Continual deep learning
by functional regularisation of memorable past. Advances in Neural Informa-
tion Processing Systems, 33:4453–4464, 2020.

[166] Giambattista Parascandolo, Heikki Huttunen, and Tuomas Virtanen. Taming
the waves: sine as activation function in deep neural networks. 2016.

[167] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan
Wermter. Continual lifelong learning with neural networks: A review. Neural
Networks, 113:54–71, 2019.

149

https://proceedings.mlr.press/v119/nguyen20d.html
https://github.com/google/neural-tangents
https://doi.org/10.1103/PhysRevA.106.033514
https://doi.org/10.1126/science.aau5119
https://doi.org/10.1364/OPTICA.6.000786
https://doi.org/10.1103/revmodphys.91.015006

[168] Haedong Park, Stephan Wong, Xiao Zhang, and Sang Soon Oh. Non-Abelian
charged nodal links in a dielectric photonic crystal. ACS Photonics, 8(9):2746–
2754, 2021. doi:10.1021/acsphotonics.1c00876.

[169] Haedong Park, Wenlong Gao, Xiao Zhang, and Sang Soon Oh. Nodal lines in
momentum space: topological invariants and recent realizations in photonic and
other systems. Nanophotonics, 11(11):2779–2801, 2022. doi:10.1515/nanoph-
2021-0692.

[170] Jaideep Pathak, Mustafa Mustafa, Karthik Kashinath, Emmanuel Moth-
eau, Thorsten Kurth, and Marcus Day. Using machine learning to aug-
ment coarse-grid computational fluid dynamics simulations. arXiv preprint
arXiv:2010.00072, 2020.

[171] Valerio Perrone, Rodolphe Jenatton, Matthias Seeger, and Cédric Archambeau.
Scalable hyperparameter transfer learning. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems, pages 6846–6856,
2018.

[172] John Peurifoy, Yichen Shen, Li Jing, Yi Yang, Fidel Cano-Renteria, Brendan G
DeLacy, John D Joannopoulos, Max Tegmark, and Marin Soljačić. Nanopho-
tonic particle simulation and inverse design using artificial neural networks.
Science advances, 4(6):eaar4206, 2018.

[173] Alexander Y Piggott, Jesse Lu, Konstantinos G Lagoudakis, Jan Petykiewicz,
Thomas M Babinec, and Jelena Vučković. Inverse design and demonstration of
a compact and broadband on-chip wavelength demultiplexer. Nature Photonics,
9(6):374–377, 2015.

[174] Hoi Chun Po. Symmetry indicators of band topology. J. Phys.: Condens.
Matter, 32(26):263001, 2020. doi:10.1088/1361-648X/ab7adb.

[175] Hoi Chun Po, Haruki Watanabe, Michael P Zaletel, and Ashvin Vishwanath.
Filling-enforced quantum band insulators in spin-orbit coupled crystals. Science
Adv., 2(4):e1501782, 2016. doi:10.1126/sciadv.1501782.

[176] Hoi Chun Po, A. Vishwanath, and Haruki Watanabe. Symmetry-based indi-
cators of band topology in the 230 space groups. Nat. Commun., 8:50, 2017.
doi:10.1038/s41467-017-00133-2.

[177] Yin Poo, Rui-xin Wu, Zhifang Lin, Yan Yang, and C. T. Chan. Experimental
realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev.
Lett., 106:093903, 2011. doi:10.1103/PhysRevLett.106.093903.

[178] Yin Poo, Rui-xin Wu, Zhifang Lin, Yan Yang, and C. T. Chan. Experimental
realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev.
Lett., 106:093903, 2011. doi:10.1103/PhysRevLett.106.093903.

150

https://doi.org/10.1021/acsphotonics.1c00876
https://doi.org/10.1515/nanoph-2021-0692
https://doi.org/10.1515/nanoph-2021-0692
https://doi.org/10.1088/1361-648X/ab7adb
https://doi.org/10.1126/sciadv.1501782
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1103/PhysRevLett.106.093903
https://doi.org/10.1103/PhysRevLett.106.093903

[179] Wenjun Qiu, Brendan G DeLacy, Steven G Johnson, John D Joannopoulos,
and Marin Soljačić. Optimization of broadband optical response of multilayer
nanospheres. Optics express, 20(16):18494–18504, 2012.

[180] Srinivas Raghu and Frederick Duncan Michael Haldane. Analogs of quantum-
Hall-effect edge states in photonic crystals. Phys. Rev. A, 78(3):033834, 2008.
doi:10.1103/PhysRevA.78.033834.

[181] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel ma-
chines. Advances in neural information processing systems, 20, 2007.

[182] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed
deep learning (part i): Data-driven solutions of nonlinear partial differential
equations. arXiv preprint arXiv:1711.10561, 2017.

[183] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation
functions. arXiv preprint arXiv:1710.05941, 2017.

[184] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole
Von Lilienfeld. Quantum chemistry structures and properties of 134 kilo
molecules. Scientific data, 1(1):1–7, 2014.

[185] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
Hierarchical text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125, 2022.

[186] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learn-
ing. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=rJY0-Kcll.

[187] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits
showdown: An empirical comparison of bayesian deep networks for thompson
sampling. arXiv preprint arXiv:1802.09127, 2018.

[188] Thomas Harvey Rowan. Functional stability analysis of numerical algorithms.
PhD thesis, The University of Texas at Austin, 1990.

[189] Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable
neural architecture search via bayesian optimisation with weisfeiler-lehman ker-
nels. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=j9Rv7qdXjd.

[190] Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond.
Enumeration of 166 billion organic small molecules in the chemical universe
database gdb-17. Journal of chemical information and modeling, 52(11):2864–
2875, 2012.

151

https://doi.org/10.1103/PhysRevA.78.033834
https://openreview.net/forum?id=rJY0-Kcll
https://openreview.net/forum?id=j9Rv7qdXjd

[191] Tim GJ Rudner, Zonghao Chen, and Yarin Gal. Rethinking function-space vari-
ational inference in bayesian neural networks. In Third Symposium on Advances
in Approximate Bayesian Inference, 2020.

[192] Samuel Rudy, Alessandro Alla, Steven L. Brunton, and J. Nathan Kutz. Data-
driven identification of parametric partial differential equations. SIAM Jour-
nal on Applied Dynamical Systems, 18(2):643–660, apr 2019. ISSN 15360040.
doi:10.1137/18M1191944.

[193] Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz.
Data-driven discovery of partial differential equations. Science Advances, 3(4):
e1602614, apr 2017. ISSN 2375-2548. doi:10.1126/sciadv.1602614.

[194] Thomas Philip Runarsson and Xin Yao. Search biases in constrained evolu-
tionary optimization. IEEE Trans. Syst. Man Cybern., 35(2):233–243, 2005.
doi:10.1109/TSMCC.2004.841906.

[195] Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for
extrapolation and control. In International Conference on Machine Learning,
pages 4442–4450. PMLR, 2018.

[196] S Saltsberger, I Steinberg, and Israel Gannot. Multilayer mie scattering model
for investigation of intracellular structural changes in the nucleolus and cyto-
plasm. International Journal of Optics, 2012, 2012.

[197] Hayden Schaeffer. Learning partial differential equations via data discovery
and sparse optimization. Proceedings of the Royal Society A, 473(2197), 2017.
doi:10.6084/m9. URL http://rspa.royalsocietypublishing.org/content/
royprsa/473/2197/20160446.full.pdf.

[198] Daniel Schlör, Markus Ring, and Andreas Hotho. inalu: Improved neural arith-
metic logic unit. Frontiers in Artificial Intelligence, 3:71, 2020.

[199] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from exper-
imental data. Science (New York, N.Y.), 324(5923):81–5, apr 2009. ISSN
1095-9203. doi:10.1126/science.1165893. URL http://www.ncbi.nlm.nih.
gov/pubmed/19342586.

[200] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando
De Freitas. Taking the human out of the loop: A review of bayesian opti-
mization. Proceedings of the IEEE, 104(1):148–175, 2015.

[201] Yichen Shen, Dexin Ye, Ivan Celanovic, Steven G Johnson, John D Joannopou-
los, and Marin Soljačić. Optical broadband angular selectivity. Science, 343
(6178):1499–1501, 2014.

[202] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine
Learning Research, 12(9), 2011.

152

https://doi.org/10.1137/18M1191944
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1109/TSMCC.2004.841906
https://doi.org/10.6084/m9
http://rspa.royalsocietypublishing.org/content/royprsa/473/2197/20160446.full.pdf
http://rspa.royalsocietypublishing.org/content/royprsa/473/2197/20160446.full.pdf
https://doi.org/10.1126/science.1165893
http://www.ncbi.nlm.nih.gov/pubmed/19342586
http://www.ncbi.nlm.nih.gov/pubmed/19342586

[203] Xiaotian Shi and Jinkyu Yang. Spin-1 Weyl point and surface arc
state in a chiral phononic crystal. Phys. Rev. B, 101(21):214309, 2020.
doi:10.1103/physrevb.101.214309.

[204] Yanpeng Shi, Xiaodong Wang, Wen Liu, Tianshu Yang, Rui Xu, and Fuhua
Yang. Multilayer silver nanoparticles for light trapping in thin film solar cells,
2013.

[205] Aditya Siddhant and Zachary C Lipton. Deep bayesian active learning for
natural language processing: Results of a large-scale empirical study. arXiv
preprint arXiv:1808.05697, 2018.

[206] Ole Sigmund. Morphology-based black and white filters for topology optimiza-
tion. Struct. Multidiscip. Optim., 33(4):401–424, 2007. doi:10.1007/s00158-006-
0087-x.

[207] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in
convolutional neural networks on graphs. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3693–3702, 2017.

[208] Scott A. Skirlo, Ling Lu, and Marin Soljačić. Multimode one-way waveg-
uides of large Chern numbers. Phys. Rev. Lett., 113:113904, 2014.
doi:10.1103/PhysRevLett.113.113904.

[209] Scott A Skirlo, Ling Lu, Yuichi Igarashi, Qinghui Yan, John Joannopou-
los, and Marin Soljačić. Experimental observation of large Chern num-
bers in photonic crystals. Phys. Rev. Lett., 115(25):253901, 2015.
doi:10.1103/PhysRevLett.115.253901.

[210] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian op-
timization of machine learning algorithms. Advances in neural information
processing systems, 25:2951–2959, 2012.

[211] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish,
Narayanan Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scal-
able bayesian optimization using deep neural networks. In International con-
ference on machine learning, pages 2171–2180, 2015.

[212] Zhida Song, Tiantian Zhang, and Chen Fang. Diagnosis for nonmagnetic topo-
logical semimetals in the absence of spin-orbital coupling. Phys. Rev. X, 8(3):
031069, 2018. doi:10.1103/PhysRevX.8.031069.

[213] Josep M Sopena, Enrique Romero, and Rene Alquezar. Neural networks with
periodic and monotonic activation functions: a comparative study in classifi-
cation problems. In 1999 Ninth International Conference on Artificial Neural
Networks ICANN 99. (Conf. Publ. No. 470), volume 1, pages 323–328 vol.1.
IET, 1999. doi:10.1049/cp:19991129.

153

https://doi.org/10.1103/physrevb.101.214309
https://doi.org/10.1007/s00158-006-0087-x
https://doi.org/10.1007/s00158-006-0087-x
https://doi.org/10.1103/PhysRevLett.113.113904
https://doi.org/10.1103/PhysRevLett.115.253901
https://doi.org/10.1103/PhysRevX.8.031069
https://doi.org/10.1049/cp:19991129

[214] Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter.
Bayesian optimization with robust bayesian neural networks. Advances in neu-
ral information processing systems, 29:4134–4142, 2016.

[215] Suraj Srinivas, Akshayvarun Subramanya, and R. Venkatesh Babu. Train-
ing Sparse Neural Networks. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), pages 455–462. IEEE, jul
2017. ISBN 978-1-5386-0733-6. doi:10.1109/CVPRW.2017.61. URL http:
//ieeexplore.ieee.org/document/8014795/.

[216] Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional
variational bayesian neural networks. arXiv preprint arXiv:1903.05779, 2019.

[217] Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian
optimization. arXiv preprint arXiv:1406.3896, 2014.

[218] Guo-Jing Tang, Xin-Tao He, Fu-Long Shi, Jian-Wei Liu, Xiao-Dong Chen, and
Jian-Wen Dong. Topological photonic crystals: Physics, designs, and applica-
tions. Laser Photonics Rev., 16(4):2100300, 2022. doi:10.1002/lpor.202100300.

[219] Wenjie Tang and Graeme Henkelman. Charge redistribution in core-shell
nanoparticles to promote oxygen reduction. The Journal of chemical physics,
130(19):194504, 2009.

[220] The GPyOpt authors. GPyOpt: A bayesian optimization framework in python.
http://github.com/SheffieldML/GPyOpt, 2016.

[221] Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pages
181–209. Springer, 1998.

[222] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradi-
ent by a running average of its recent magnitude. COURSERA: Neural networks
for machine learning, 4(2):26–31, 2012.

[223] Andrew Trask, Felix Hill, Scott Reed, Jack Rae, Chris Dyer, and Phil Blun-
som. Neural Arithmetic Logic Units. Advances in neural information processing
systems, 31, 2018.

[224] Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-
efficient optimization in the latent space of deep generative models via weighted
retraining. Advances in Neural Information Processing Systems, 33, 2020.

[225] Ryan Turner, David Eriksson, Michael J. McCourt, Juha Kiili, Eero Laaksonen,
Zhen Xu, and Isabelle Guyon. Bayesian optimization is superior to random
search for machine learning hyperparameter tuning: Analysis of the black-box
optimization challenge 2020. In NeurIPS, 2020.

[226] Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired
method for symbolic regression. Science Advances, 6(16):eaay2631, 2020.

154

https://doi.org/10.1109/CVPRW.2017.61
http://ieeexplore.ieee.org/document/8014795/
http://ieeexplore.ieee.org/document/8014795/
https://doi.org/10.1002/lpor.202100300
http://github.com/SheffieldML/GPyOpt

[227] Tsuyoshi Ueno, Trevor David Rhone, Zhufeng Hou, Teruyasu Mizoguchi, and
Koji Tsuda. Combo: an efficient bayesian optimization library for materials
science. Materials discovery, 4:18–21, 2016.

[228] Malika Uteuliyeva, Abylay Zhumekenov, Rustem Takhanov, Zhenisbek Assyl-
bekov, Alejandro J Castro, and Olzhas Kabdolov. Fourier neural networks: A
comparative study. Intelligent Data Analysis, 24(5):1107–1120, 2020.

[229] Mark Van der Wilk, Carl Edward Rasmussen, and James Hensman. Convolu-
tional gaussian processes. arXiv preprint arXiv:1709.01894, 2017.

[230] D. Vanderbilt. Berry Phases in Electronic Structure Theory. Cambridge Uni-
versity Press, 2018. doi:10.1017/9781316662205.

[231] Ian Walker and Ben Glocker. Graph convolutional gaussian processes. In In-
ternational Conference on Machine Learning, pages 6495–6504. PMLR, 2019.

[232] Dongyang Wang, Biao Yang, Qinghua Guo, Ruo-Yang Zhang, Lingbo Xia, Xi-
aoqiang Su, Wen-Jie Chen, Jiaguang Han, Shuang Zhang, and Che Ting Chan.
Intrinsic in-plane nodal chain and generalized quaternion charge protected nodal
link in photonics. Light: Sci. Appl., 10(1):1–9, 2021. doi:10.1038/s41377-021-
00523-8.

[233] Hai-Xiao Wang, Yige Chen, Zhi Hong Hang, Hae-Young Kee, and Jian-
Hua Jiang. Type-II Dirac photons. npj Quant. Mater., 2:54, 2017.
doi:10.1038/s41535-017-0058-z.

[234] HaiXiao Wang, Lin Xu, HuanYang Chen, and Jian-Hua Jiang. Three-
dimensional photonic Dirac points stabilized by point group symmetry. Phys.
Rev. B, 93:235155, 2016. doi:10.1103/PhysRevB.93.235155.

[235] Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q Weinberger,
and Andrew Gordon Wilson. Exact gaussian processes on a million data points.
Advances in Neural Information Processing Systems, 32, 2019.

[236] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space
partition for black-box optimization using monte carlo tree search. Advances in
Neural Information Processing Systems, 33:19511–19522, 2020.

[237] Zheng Wang, YD Chong, John D Joannopoulos, and Marin Soljačić. Reflection-
free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett.,
100(1):013905, 2008. doi:10.1103/PhysRevLett.100.013905.

[238] Zheng Wang, Yidong Chong, John D Joannopoulos, and Marin Soljačić. Ob-
servation of unidirectional backscattering-immune topological electromagnetic
states. Nature, 461(7265):772–775, 2009. doi:10.1038/nature08293.

155

https://doi.org/10.1017/9781316662205
https://doi.org/10.1038/s41377-021-00523-8
https://doi.org/10.1038/s41377-021-00523-8
https://doi.org/10.1038/s41535-017-0058-z
https://doi.org/10.1103/PhysRevB.93.235155
https://doi.org/10.1103/PhysRevLett.100.013905
https://doi.org/10.1038/nature08293

[239] Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched
large-scale bayesian optimization in high-dimensional spaces. In International
Conference on Artificial Intelligence and Statistics, pages 745–754. PMLR,
2018.

[240] Haruki Watanabe and Ling Lu. Space group theory of photonic bands. Phys.
Rev. Lett., 121(26):263903, 2018. doi:10.1103/PhysRevLett.121.263903.

[241] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of the 28th international conference on machine learn-
ing (ICML-11), pages 681–688, 2011.

[242] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alterna-
tive approach to efficient ensemble and lifelong learning. arXiv preprint
arXiv:2002.06715, 2020.

[243] Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Świątkowski, Linh
Tran, Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and
Sebastian Nowozin. How good is the bayes posterior in deep neural networks
really? arXiv preprint arXiv:2002.02405, 2020.

[244] Sebastian J Wetzel, Roger G Melko, Joseph Scott, Maysum Panju, and Vijay
Ganesh. Discovering symmetry invariants and conserved quantities by inter-
preting siamese neural networks. Physical Review Research, 2(3):033499, 2020.

[245] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing.
Deep kernel learning. In Artificial intelligence and statistics, pages 370–378.
PMLR, 2016.

[246] James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition
functions for bayesian optimization. Advances in Neural Information Processing
Systems, 31:9884–9895, 2018.

[247] Wei Wu, Qinwei Fan, Jacek M. Zurada, Jian Wang, Dakun Yang, and Yan
Liu. Batch gradient method with smoothing L1/2 regularization for train-
ing of feedforward neural networks. Neural Networks, 50:72–78, feb 2014.
ISSN 0893-6080. doi:10.1016/J.NEUNET.2013.11.006. URL https://www.
sciencedirect.com/science/article/pii/S0893608013002700.

[248] Lingbo Xia, Qinghua Guo, Biao Yang, Jiaguang Han, Chao-Xing Liu, Weili
Zhang, and Shuang Zhang. Observation of hourglass nodal lines in photonics.
Phys. Rev. Lett., 122(10):103903, 2019. doi:10.1103/PhysRevLett.122.103903.

[249] Xin Xie, Jianchen Dang, Sai Yan, Weixuan Zhang, Huiming Hao, Shan Xiao,
Shushu Shi, Zhanchun Zuo, Haiqiao Ni, Zhichuan Niu, et al. Optimization and
robustness of the topological corner state in second-order topological photonic
crystals. Opt. Express, 29(19):30735–30750, 2021. doi:10.1364/OE.438474.

156

https://doi.org/10.1103/PhysRevLett.121.263903
https://doi.org/10.1016/J.NEUNET.2013.11.006
https://www.sciencedirect.com/science/article/pii/S0893608013002700
https://www.sciencedirect.com/science/article/pii/S0893608013002700
https://doi.org/10.1103/PhysRevLett.122.103903
https://doi.org/10.1364/OE.438474

[250] Hao Xu, Dongxiao Zhang, and Junsheng Zeng. Deep-learning of parametric
partial differential equations from sparse and noisy data. Physics of Fluids, 33
(3):037132, 2021.

[251] Su-Yang Xu, Ilya Belopolski, Nasser Alidoust, Madhab Neupane, Guang Bian,
Chenglong Zhang, Raman Sankar, Guoqing Chang, Zhujun Yuan, Chi-Cheng
Lee, Shin-Ming Huang, Hao Zheng, Jie Ma, Daniel S. Sanchez, BaoKai Wang,
Arun Bansil, Fangcheng Chou, Pavel P. Shibayev, Hsin Lin, Shuang Jia, and
M. Zahid Hasan. Discovery of a Weyl fermion semimetal and topological Fermi
arcs. Science, 349(6248):613–617, 2015. doi:10.1126/science.aaa9297.

[252] Zong-Ben Xu, Hai-Liang Guo, Yao Wang, and Hai Zhang. Representative of
L1/2 Regularization among Lq (0 < q ≤ 1) Regularizations: an Experimental
Study Based on Phase Diagram. Acta Automatica Sinica, 38(7):1225–1228,
jul 2012. ISSN 1874-1029. doi:10.1016/S1874-1029(11)60293-0. URL https:
//www.sciencedirect.com/science/article/pii/S1874102911602930.

[253] ZongBen Xu, Hai Zhang, Yao Wang, XiangYu Chang, and Yong Liang. L
1/2 regularization. Science China Information Sciences, 53(6):1159–1169, jun
2010. ISSN 1674-733X. doi:10.1007/s11432-010-0090-0. URL http://link.
springer.com/10.1007/s11432-010-0090-0.

[254] Eli Yablonovitch. Inhibited spontaneous emission in solid-state physics and
electronics. Physical review letters, 58(20):2059, 1987.

[255] Qinghui Yan, Rongjuan Liu, Zhongbo Yan, Boyuan Liu, Hongsheng Chen,
Zhong Wang, and Ling Lu. Experimental discovery of nodal chains. Nat.
Phys., 14(5):461–464, 2018. doi:10.1038/s41567-017-0041-4.

[256] Yi Yan, Pai Liu, Xiaopeng Zhang, and Yangjun Luo. Photonic crystal topologi-
cal design for polarized and polarization-independent band gaps by gradient-free
topology optimization. Optics Express, 29(16):24861–24883, 2021.

[257] Zhenya Yan and VV Konotop. Exact solutions to three-dimensional general-
ized nonlinear schrödinger equations with varying potential and nonlinearities.
Physical Review E, 80(3):036607, 2009.

[258] Erchan Yang, Biao Yang, Oubo You, Hsun-Chi Chan, Peng Mao, Qinghua Guo,
Shaojie Ma, Lingbo Xia, Dianyuan Fan, Yuanjiang Xiang, et al. Observation
of non-Abelian nodal links in photonics. Phys. Rev. Lett., 125(3):033901, 2020.
doi:10.1103/PhysRevLett.125.033901.

[259] Wanqian Yang, Lars Lorch, Moritz A Graule, Himabindu Lakkaraju, and Finale
Doshi-Velez. Incorporating interpretable output constraints in bayesian neural
networks. arXiv preprint arXiv:2010.10969, 2020.

[260] Yan Yang, Yin Poo, Rui xin Wu, Yan Gu, and Ping Chen. Experimental
demonstration of one-way slow wave in waveguide involving gyromagnetic pho-
tonic crystals. Appl. Phys. Lett., 102(23):231113, 2013. doi:10.1063/1.4809956.

157

https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1016/S1874-1029(11)60293-0
https://www.sciencedirect.com/science/article/pii/S1874102911602930
https://www.sciencedirect.com/science/article/pii/S1874102911602930
https://doi.org/10.1007/s11432-010-0090-0
http://link.springer.com/10.1007/s11432-010-0090-0
http://link.springer.com/10.1007/s11432-010-0090-0
https://doi.org/10.1038/s41567-017-0041-4
https://doi.org/10.1103/PhysRevLett.125.033901
https://doi.org/10.1063/1.4809956

[261] Zhi-Ming Yu, Zeying Zhang, Gui-Bin Liu, Weikang Wu, Xiao-Ping Li, Run-
Wu Zhang, Shengyuan A. Yang, and Yugui Yao. Encyclopedia of emer-
gent particles in three-dimensional crystals. Sci. Bull., 67(4):375–380, 2022.
doi:10.1016/j.scib.2021.10.023.

[262] Dongkun Zhang, Lu Lu, Ling Guo, and George Em Karniadakis. Quantifying
total uncertainty in physics-informed neural networks for solving forward and
inverse stochastic problems. Journal of Computational Physics, 397:108850,
2019.

[263] Michael Zhang, Samuel Kim, Peter Y Lu, and Marin Soljačić. Deep learning
and symbolic regression for discovering parametric equations. arXiv preprint
arXiv:2207.00529, 2022.

[264] Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon
Wilson. Cyclical stochastic gradient mcmc for bayesian deep learning. arXiv
preprint arXiv:1902.03932, 2019.

[265] Tiantian Zhang, Zhida Song, A. Alexandradinata, Hongming Weng, Chen Fang,
Ling Lu, and Zhong Fang. Double-Weyl phonons in transition-metal monosili-
cides. Phys. Rev. Lett., 120:016401, 2018. doi:10.1103/PhysRevLett.120.016401.

[266] Tiantian Zhang, Ling Lu, Shuichi Murakami, Zhong Fang, Hongming
Weng, and Chen Fang. Diagnosis scheme for topological degenera-
cies crossing high-symmetry lines. Phys. Rev. Research, 2:022066, 2020.
doi:10.1103/PhysRevResearch.2.022066.

[267] Tiantian Zhang, Ling Lu, Shuichi Murakami, Zhong Fang, Hongming
Weng, and Chen Fang. Diagnosis scheme for topological degenera-
cies crossing high-symmetry lines. Phys. Rev. Research, 2:022066, 2020.
doi:10.1103/PhysRevResearch.2.022066.

[268] Yunong Zhang, Danchi Jiang, and Jun Wang. A recurrent neural network for
solving sylvester equation with time-varying coefficients. IEEE Transactions on
Neural Networks, 13(5):1053–1063, 2002.

[269] David Zheng, Vinson Luo, Jiajun Wu, and Joshua B. Tenenbaum. Unsupervised
learning of latent physical properties using perception-prediction networks. In
34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, vol-
ume 1, pages 497–507. Association For Uncertainty in Artificial Intelligence
(AUAI), 2018. ISBN 9781510871601.

[270] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy
of pruning for model compression. arXiv preprint arXiv:1710.01878, 2017.

[271] Liu Ziyin, Tilman Hartwig, and Masahito Ueda. Neural networks fail to learn
periodic functions and how to fix it. Advances in Neural Information Processing
Systems, 33:1583–1594, 2020.

158

https://doi.org/10.1016/j.scib.2021.10.023
https://doi.org/10.1103/PhysRevLett.120.016401
https://doi.org/10.1103/PhysRevResearch.2.022066
https://doi.org/10.1103/PhysRevResearch.2.022066

Appendix A

EQL Network

A.1 EQL Network Details

The activation functions in each hidden layer consist of:

[1(×2), 𝑔(×4), 𝑔2(×4), sin(2𝜋𝑔)(×2), 𝑒𝑔(×2), sigmoid(20𝑔)(×2), 𝑔1 * 𝑔2(×2)]

where the sigmoid function is defined as:

sigmoid(𝑔) =
1

1 + 𝑒−𝑔

and the (×𝑖) indicated the number of times each activation function is duplicated. The

sin and sigmoid functions have multipliers inside so that the functions more accurately

represent their respective shapes inside the input domain of 𝑥 ∈ [−1, 1]. Unless

otherwise stated, these are the activation functions used for the other experiments as

well. The exact number of duplications is arbitrary and does not have a significant

impact on the system’s performance. Future work may include experimenting with a

larger number of duplications.

We use two phases of training, where the first phase has a learning rate of 10−2

and regularization weight 5× 10−3 for 2000 iterations. Small weights are frozen and

set to 0 after the first phase. The second phase of training has a learning rate of 10−3

159

for 10000 iterations.

To benchmark our symbolic regression system, we choose a range of trial functions

that our architecture can feasibly construct, train the network through 20 trials, and

count how many times it reaches the correct answer. Benchmarking results are shown

in Table A.1. As mentioned in section 2.3.1, we only need the network to find the

correct equation at least once since we can construct a system that automatically

picks out the correct solution based on equation simplicity and test error.

Table A.1: Benchmark results for the EQL network.
Success Rate

Function 𝐿0.5 𝐿0

𝑥 1 1
𝑥2 0.6 0.75
𝑥3 0.3 0.05
sin(2𝜋𝑥) 0.45 0.85
𝑥𝑦 0.8 1

1
1+𝑒−10𝑥 0.3 0.55
𝑥𝑦
2
+ 𝑧

2
0.05 0.95

exp(−𝑥2) 0.05 0.15
𝑥2 + sin(2𝜋𝑦) 0.2 0.8
𝑥2 + 𝑦 − 2𝑧 0.6 0.9

A.2 Computational Efficiency

With respect to the task of symbolic regression, we should note that this algorithm

does not offer an asymptotic speedup over conventional symbolic regression algo-

rithms, as the problem of finding the correct expression requires a combinatorial

search over the space of possible expressions and is NP-hard. Rather, the advantage

here is that by solving symbolic regression problems through gradient descent, we can

integrate symbolic regression with deep learning architectures.

Experiments are run on an Nvidia GTX 1080 Ti. Training the EQL network with

2 hidden layers (𝐿 = 2) for 20,000 epochs takes 37 seconds, and training the EQL

network with 3 hidden layers (𝐿 = 3) takes 51 seconds.

160

In general, the computational complexity of the EQL network itself is the same

as that of a conventional fully-connected neural network. The only difference are the

activation functions which are applied by iterating over g and thus takes 𝒪(𝑛) time

where 𝑛 is the number of nodes in each layer. However, the computational complexity

of a neural network is dominated by the weight matrix multiplication which takes

𝒪(𝑛2) time for both the EQL network and the conventional fully-connected neural

network.

A.3 Experiment Details

A.3.1 MNIST Arithmetic

The encoder network consists of a convolutional layer with 32 5 × 5 filters followed

by a max pooling layer, another convolutional layer with 64 5× 5 filters followed by

a max pooling layer, and 2 fully-connected layers with 128 and 16 units each with

ReLU activation units. The max pooling layers have pool size of 2 and stride length

of 2. The fully-connected layers are followed by 1-unit layer with batch normalization.

The output of the batch normalization layer is divided by 2 such that the standard

deviation of the output is 0.5. This decreases the range of the inputs to the EQL

network since the EQL network was constructed assuming an input domain of 𝑥 ∈

[−1, 1]. Additionally, the output of the EQL network, 𝑦*, is scaled as 𝑦 = 9𝑦* + 9

before being fed into the loss function so as the normalize the output against the

range of expected 𝑦 (this is equivalent to normalizing 𝑦 to the range [−1, 1]).

The ReLU network that is trained in place of the EQL network for comparison

consists of two hidden layers with 50 units each and ReLU activation.

We use two phases of training, where the first phases uses a learning rate of 10−2

and regularization weight 𝜆 = 0.05. The second phase uses a learning rate of 10−4

and no regularization. The small weights are frozen between the first and second

phase with a threshold of 𝛼 = 0.01. Each phase is trained for 10000 iterations.

161

A.3.2 Kinematics

To generate the kinematics dataset, we sample 100 values for 𝑎 and generate a time

series {x𝑡}𝑇𝑥−1
𝑡=0 and {y𝑡}𝑇𝑦

𝑡=0 for each 𝑎. The input series is propagated for 𝑇𝑥 = 100

time steps.

The dynamics encoder consists of 2 1D convolutional layers with 16 filters of

length 5 in each layer. These are followed by a hidden layer with 16 nodes and ReLU

activation function, an output layer with one unit, and a batch normalization layer

with standard deviation 0.5. The ReLU network that is trained in place of the EQL

network for comparison is the same as that of the MNIST task.

We use two phases of training, where the first phase uses a learning rate of 10−2

and a regularization weight of 𝜆 = 10−3 for a total of 5000 iterations. The system is

trained on 𝑇𝑦 = 1 time step for the first 1000 iterations, and then 𝑇𝑦 = 5 time steps

for the remainder of the training. The small weights are frozen between the first and

second phase with a threshold of 𝛼 = 0.1. The second phase uses a base learning rate

of 10−3 and no regularization for 10000 iterations.

A.3.3 SHO

To generate the SHO dataset, we sample 1000 datapoints values for 𝜔2 and generate

time series time series {x𝑡}𝑇𝑥−1
𝑡=0 and {y𝑡}𝑇𝑦

𝑡=0 for each 𝜔2. The input series is propagated

for 𝑇𝑥 = 500 time steps with a time step of Δ𝑡 = 0.1. The output series is propagated

for 𝑇𝑦 = 25 time steps with the same time step.

The dynamics encoder is the same architecture as used in the kinematics experi-

ment. Due to the greater number of time steps that the system needs to propagate,

the EQL network does not duplicate the activation functions for all functions. The

functions in each hidden layer consist of:

[1(×2), 𝑔(×2), 𝑔2, sin(2𝜋𝑔), 𝑒𝑔, 10𝑔1 * 𝑔2(×2)]

The ReLU network that is trained in place of the EQL network for comparison consists

of four hidden layers with 50 units each and ReLU activation functions.

162

We use three phases of training, where the first phase uses a learning rate of 10−2

and a regularization weight of 𝜆 = 4× 10−5 for a total of 2000 iterations. The system

starts training on 𝑇𝑦 = 1 time steps for the first 500 time steps and then add 2

more time steps every 500 iterations for a total of 𝑇𝑦 = 7 time steps. In the second

phase of training, we increase the number of time steps to 𝑇𝑦 = 25, decrease the base

learning rate to 2 × 10−3, and increase the regularization weight to 𝜆 = 2 × 10−4.

The small weights are frozen between the second and third phase with a threshold of

𝛼 = 0.01. The third and final phase of training uses a base learning rate of 10−3 and

no regularization.

A.4 Additional MNIST Arithmetic Data

The results presented in Figure 2-6 and Table 2.1 are drawn from one of several trials,

where each in each trial the network is trained from a different random initialization

of the network weights. Due to the random initialization, the EQL does not reach

the same equation every time. Here we present results from additional trials to

demonstrate the variability in the system’s behavior as well as the system’s robustness

to the random initializations.

The experimental details are described in Section 2.3.2 where digits 𝜒1,2 are drawn

from the entire MNIST training dataset. We refer to the results shown in Figure 2-6

and Table 2.1 as Trial 1.

The results for Trial 2 are shown in Figure A-1. Similar to Trial 1, Trial 2 produces

a linear relationship between the true digit 𝜑 and the latent variable 𝑧, although there

is a positive instead of negative correlation. As previously mentioned, there is no bias

placed on the latent variable 𝑧 so whether there is a positive or negative correlation

is arbitrary and depends on the random initialization of the weights. The trained

architecture produced the following expression from the EQL network:

𝑦 = 1.565𝑧1 + 1.558𝑧2 + 9 (A.1)

Note the positive coefficients in (A.1) which reflects the positive correlation shown in

163

Figure A-1: The ability of the encoder to differentiate between digits as measured by
the latent variable 𝑧 versus the true digit 𝜓 for digits 𝜒 drawn from the MNIST (a)
training dataset and (b) test dataset. The ability of the entire architecture to fit the
label 𝑦 as measured by the predicted sum 𝑦 versus the true sum 𝑦 for digits 𝜒 drawn
from the MNIST (c) training dataset and (d) MNIST test dataset.

Figure A-1(a-b). As shown in Figure A-1(c-d), the network is still able to accurately

predict the sum 𝑦.

The results for Trial 3 are shown in Figure A-2. Note that in this case, the

relationship between 𝜑 and 𝑧 is no longer linear. However, the encoder still finds a

one-to-one mapping between 𝜑 and 𝑧, and the EQL network is still able to extract

the information from 𝑧 such that it can predict the correct sum as shown in Figure

A-2(c-d).

The equation found by the EQL network is:

𝑦 = −4.64 sin(2.22𝑧1)− 4.63 sin(2.21𝑧2) + 9 (A.2)

This is consistent with the insight that the curve in Figure A-2(a-b) represents an

inverse sine function. Thus, (A.2) is first inverting the transformation from 𝜑 to 𝑧 to

produce a linear mapping and then adding the two digits together. So while the EQL

network does not always give the exact equation we expect, we can still gain insight

into the system from analyzing the latent variable and the resulting equation.

164

Figure A-2: The ability of the encoder to differentiate between digits as measured by
the latent variable 𝑧 versus the true digit 𝜓 for digits 𝜒 drawn from the MNIST (a)
training dataset and (b) test dataset. The ability of the entire architecture to fit the
label 𝑦 as measured by the predicted sum 𝑦 versus the true sum 𝑦 for digits 𝜒 drawn
from the MNIST (c) training dataset and (d) MNIST test dataset.

165

166

Appendix B

Parametric EQL Network

B.1 Training Details

Each of the SEQL and HEQL consists of 2 hidden layers. The activation functions

in each hidden layer consist of:

[1(×2), 𝑔(×4), 𝑔2(×4), sin(2𝜋𝑔)(×2), 𝑔1 * 𝑔2(×2)]

where the (×𝑖) indicates the number of times each activation function is duplicated.

The sin function has a multiplier inside so that the functions more accurately represent

their respective shapes inside the input domain of 𝑥 ∈ [−1, 1]. The exact number

of duplications is arbitrary and does not have a significant impact on the system’s

performance.

For the HEQL, the MWU consists of a fully-connected neural network with 3

hidden layers of 64, 64, and 256 hidden units, respectively. The hidden layers in the

MWU use the ReLU function as the activation.

All neural network architectures are implemented in Tensorflow [3]. The network

is trained using the RMSProp optimizer, and the following loss function:

ℒ =
1

𝑁

∑︁
(𝑦𝑖 − 𝑦𝑖)

2 + 𝜆𝐿𝑟, (B.1)

167

Figure B-1: (Left) Learning rate and (right) regularization weight schedules during
training relative to base_lr and base_rw.

where 𝑁 is the mini-batch size, 𝜆 is the regularization weight, and 𝐿𝑟 is the total

regularization. For the parameterized architecture 𝐿𝑟 = ℒ𝑅 is simply the sparsity

regularization, while the stacked architecture has an additional term 𝐿𝑟 = ℒ𝑅 + 𝜃ℒ𝑆

to incorporate the smooth weight regularization described in Section 2.6.1.

For both learning rate and regularization weight schedules, we use a one cycle pol-

icy, as shown in Figure B-1. We start off with a small learning rate and regularization

to ensure the EQL network settles into a stable configuration containing many differ-

ent terms such that the network weights do not explode. The learning rate is ramped

up to allow the EQL network escape local minima in search of global minima, and

the regularization is likewise increased to pare down the number of terms. Finally,

we expect the EQL network to have learned the correct equation structure partway

through training, and so we decrease learning rate and regularization to fine-tune the

weights and optimize primarily for MSE.

To extract the learned equation from the trained EQL network, we can simply

multiply the weights by the primitive functions using symbolic mathematics. We

implement this using SymPy, which can automatically simplify the expression [149].

Additionally, we use a threshholding procedure in the final expression where we drop

terms where the coefficient is smaller than a threshhold, which we set to 0.01.

168

Table B.1: Results for analytic expression benchmarks.
Mean (Standard Deviation) Test MSE over all trials

Benchmark SEQL HEQL
𝑓1 1.84× 10−5 (1.97× 10−5) 2.24× 10−5 (2.53× 10−6)
𝑓2 1.32× 10−4 (4.14× 10−4) 4.82× 10−8 (1.26× 10−8)
𝑓3 5.72× 10−15 (3.83× 10−16) 6.60× 10−6 (1.45× 10−6

𝑓4 8.32× 10−5 (4.74× 10−4) 1.04× 10−3 (6.04× 10−3)
𝑓5 2.53× 10−5 (1.51× 10−4) 4.87× 10−8 (2.29× 10−8)

B.2 Additional Results

B.2.1 Analytic Expression

For all tests, 512 training data points with 𝑥 ∈ [−3, 3] are sampled for each of 128

fixed values of 𝑡 ∈ [−3, 3] for a total of 512 · 128 = 65 536 training examples. To test

generalization, the parametric EQL architectures are evaluated on test data points

with 𝑥 ∈ [−5, 5].

Due to sensitivity of the parametric EQL architectures to the random initialization

of network weights, 80 trials were run for each function. In practice, the networks

only need to learn the correct equation once over a reasonable number of trials, since

it is possible to construct a validation method that selects the best equation from a

set of learned equations. For all the results in this paper, we simply select the trial

with the lowest generalization error. Other considerations that can be integrated in

the validation process are equation simplicity and prior beliefs about the equation

form, for example.

Additional metrics, the mean and standard deviation of the test MSE over all the

trials, are listed for the analytic benchmarks in Table B.1. Comparing these results

with the MSE of the best trial listed in Table 2.8, we see taht the aggregate metrics

over all the trials tend to be similar in magnitude to the metric of the best trial

for many of the benchmarks, which signifies that the model has learned the correct

equation is a large majority of the trials. When a model fails to learn the correct

equation, the MSE on the test dataset tends to be several orders of magnitude larger

than that of the best trial, which would skew the mean and standard deviation of

169

the MSE. Interestingly, there is no clear trend on whether the SEQL or the HEQL

performs better.

For simple benchmarks such as 𝑓3 = 𝑡𝑥, both the SEQL and HEQL architectures

are able to find the correct equation structure nearly 100% of the time, even if the

accuracy of the varying coefficients may vary slightly. However, in other cases such

as 𝑓4, the HEQL will sometimes learn the equation:

𝑓 4,𝐻𝐸𝑄𝐿 = 𝑎(𝑡)𝑥2 + 𝑏(𝑡)𝑥+ 𝑐(𝑡) sin(𝑑(𝑡)𝑥+ 𝑒(𝑡))

where 𝑑(𝑡) is small. This is likely because the architecture is using the approximately

linear region of the low-frequency sinusoid, and adding it to the 𝑏(𝑡)𝑥 term. We

also note that the SEQL is able to find the correct equation more often. Another

interesting failure mode is in the case of the sinusoid functions (i.e., 𝑓2 and 𝑓5) where

the HEQL will somtimes learn the equation:

𝑓 5,𝐻𝐸𝑄𝐿 = 𝑎(𝑡) sin(𝑏(𝑡)𝑥) + 𝑐(𝑡) sin(𝑑(𝑡)𝑥)

where 𝑏(𝑡) ≈ 𝑑(𝑡) and 𝑎(𝑡) + 𝑐(𝑡) ≈ 1. The symbolic manipulation is unable to

combine the two terms, but one can see upon inspection that the HEQL has learned

the correct form of the varying parameters.

B.2.2 Differential Equations

For the advection-diffusion equation, data was sampled from 256 different points in

the 𝑥-domain and 512 different points in the 𝑡-domain, for a total of 256·512 = 131 072

examples. The equation is solved numerically using a spectral method on the domain

𝑥 ∈ [−5, 5] and 𝑡 ∈ [0, 5] with 𝑓(𝑥) = −1.5 + cos
(︀
2𝜋𝑥
5

)︀
and 𝜖 = 0.1 using code from

Ref. [192].

For the Burgers’ equation, data was sampled from 512 different points in the 𝑥-

domain and 256 different points in the 𝑡-domain, for a total of 512 · 256 = 131 072

examples. The equation was solved numerically using a spectral method on the

170

Figure B-2: Prediction errors of the parametric coefficients for the (left) HEQL and
the (right) SEQL on the analytical expressions (top) 𝑓4 and (bottom) 𝑓1.

domain 𝑥 ∈ [−8, 8] and 𝑡 ∈ [0, 10] using code from Ref. [192]. Similar to the analytic

expression experiments, 80 trials were run for each equation and the trial with the

lowest generalization error was selected.

Figure B-3 displays results for SEQL on the advection-diffusion equation, and

Figure B-4 displays results for HEQL on Burgers’ equation. We see that for each

dataset, the results are visually similar that of the contrasting architecture (i.e. SEQL

versus HEQL).

171

Figure B-3: Results for learning the advection-diffusion equation using the SEQL
network. (a) Predicted vs. actual values of 𝑢𝑡. (b) Predicted coefficient functions and
prediction errors.

Figure B-4: Results for learning Burgers’ equation using the HEQL network. (a)
Predicted vs. actual values of 𝑢𝑡. (b) Predicted coefficient functions and prediction
errors.

172

Appendix C

Bayesian Optimization

C.1 Datasets

The dimensionalities of the datasets are summarized in table C.1. The continuous

input dimension for chemical molecules refers to the SOAP descriptor. While the

space of chemical molecule graphs in general do not have a well-defined dimension-

ality as chemical molecules can be arbitrarily large and complex, we limit the size of

molecules by only sampling from the QM9 dataset, and can define the dimensionality

as the sum of the adjacency, node, and edge matrix dimensionalities.

The high dimensionalities of all of these problems make Bayesian neural networks

well-suited as surrogate models to enable scaling. Note that the nanoparticle scatter-

ing problem can be adjusted to be less or more difficult by either changing the input

dimensionality (i.e. the number of nanoparticle layers) or the auxiliary dimension

Table C.1: Summary of dataset dimensionalities. Note that alternate inputs for pho-
tonic crystal and organic molecule datasets are binary images and molecule graphs,
respectively.

Continuous
input
dimension

Alternate
input
dimension

Auxiliary
dimension

Nanoparticle scattering 6 N/A 201
Photonic crystal DOS 51 32× 32 = 1024 500
Chemical molecule 480 9 + 9× 9 + 9× 9 = 171 9

173

(i.e. the resolution or range of wavelengths that are sampled).

C.1.1 Nanoparticle Scattering

The multilayer nanoparticle consists of a lossless silica core surrounded by alternating

spherical layers of lossless TiO2 and lossless silica. The relative permittivity of silica

is 𝜀silica = 2.04. The relative permittivity of TiO2 is dispersive and depends on the

wavelength of light:

𝜀TiO2 = 5.913 +
0.2441

10−6𝜆2 − 0.0803
(C.1)

where 𝜆 is the wavelength given in units of nm. The entire particle is surrounded by

water, which has a relative permittivity of 𝜀water = 1.77.

For a given set of thicknesses, we analytically solve for the scattering spectrum, i.e.

the scattering cross-section 𝜎(𝜆) as a function of wavelength 𝜆, using Mie scattering

as described in Qiu et al. [179]. The code for computing 𝜎 was adapted from Peurifoy

et al. [172].

The objective functions for the narrowband and highpass objectives are:

ℎnb(z) =

∫︀
𝜆∈nb 𝜎(𝜆) 𝑑𝜆∫︀

elsewhere 𝜎(𝜆) 𝑑𝜆
≈

∑︀145
𝑖=126 𝑧𝑖∑︀125

𝑖=1 𝑧𝑖 +
∑︀201

𝑖=146 𝑧𝑖
(C.2)

ℎhp(z) =

∫︀
𝜆∈hp 𝜎(𝜆) 𝑑𝜆∫︀

elsewhere 𝜎(𝜆) 𝑑𝜆
≈

∑︀201
𝑖=126 𝑧𝑖∑︀125
𝑖=1 𝑧𝑖

(C.3)

where z ∈ R201 is the discretized scattering cross-section 𝜎(𝜆) from 𝜆 = 350 nm to

750 nm.

C.1.2 Photonic Crystal

The photonic crystal (PC) consists of periodic unit cells with periodicity 𝑎 = 1au,

where each unit cell is depicted as a “two-tone” image, with the white regions repre-

senting silicon with permittivity 𝜀1 = 11.4 and black regions representing vacuum (or

air) with permittivity 𝜀0 = 1.

The photonic crystal (PC) structure is defined by a spatially varying permittivity

174

𝜀(𝑥, 𝑦) ∈ {𝜀0, 𝜀1} over a 2D periodic unit cell with spatial coordinates 𝑥, 𝑦 ∈ [0, 𝑎]. To

parameterize 𝜀, we choose a level set of a Fourier sum function 𝜑, defined as a linear

combination of plane waves with frequencies evenly spaced in the reciprocal lattice

space up to a maximum cutoff. Intuitively, the upper limit on the frequencies roughly

corresponds to a lower limit on the feature size such that the photonic crystal remains

within reasonable fabrication constraints. Here we set the cutoff such that there are

25 complex frequencies corresponding to 50 real coefficients c = (𝑐1, 𝑐2, ..., 𝑐50).

Explicitly, we have

𝜑[c](𝑥, 𝑦) = Re

{︃
25∑︁
𝑘=1

(𝑐𝑘 + 𝑖𝑐𝑘+25) 𝑒
2𝜋𝑖(𝑛𝑥𝑥+𝑛𝑦𝑦)/𝑎

}︃
, (C.4)

where each exponential term is composed from the 25 different pairs {𝑛𝑥, 𝑛𝑦} with

𝑛𝑥, 𝑛𝑦 ∈ {−2,−1, 0, 1, 2}. We then choose a level-set offset Δ to determine the PC

structure, where regions with 𝜑 > Δ are assigned to be silicon and regions where

𝜑 ≤ Δ are vacuum. Thus, the photonic crystal unit cell topology is parameterized by

a 51-dimensional vector, [𝑐1, 𝑐2, ..., 𝑐50,Δ] ∈ R51. More specifically,

𝜀(𝑥, 𝑦) = 𝜀[c,Δ](𝑥, 𝑦) =

⎧⎪⎨⎪⎩𝜀1 𝜑[c](𝑥, 𝑦) > Δ

𝜀0 𝜑[c](𝑥, 𝑦) ≤ Δ

, (C.5)

which is discretized to result in a 32× 32 pixel image v ∈ {𝜀0, 𝜀1}32×32. This formu-

lation also has the advantage of enforcing periodic boundary conditions.

For each unit cell, we use the MIT Photonics Bands (MPB) software [92] to

compute the band structure of the photonic crystal, 𝜔(k), up to the lowest 10 bands,

using a 32× 32 spatial resolution (or equivalently, 32× 32 k-points over the Brillouin

zone −𝜋
𝑎
< 𝑘 < 𝜋

𝑎
). We also extract the group velocities at each k-point and compute

the density-of-states (DOS) via an extrapolative technique, adapted from Liu et al.

[118]. The DOS is computed at a resolution of 20,000 points, and a Gaussian filter

of kernel size 100 is used to smooth the DOS spectrum. To normalize the frequency

scale across the different unit cells, the frequency is rescaled via 𝜔
√
𝜀𝑎𝑣𝑔 → 𝜔𝑛𝑜𝑟𝑚,

175

where 𝜀𝑎𝑣𝑔 = 1
𝑎2

∫︀ 𝑎

0

∫︀ 𝑎

0
𝜀(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 ≈ 1

(32)2

∑︀
𝑖,𝑗 𝑣𝑖,𝑗 is the average permittivity over all

pixels. Finally, the DOS spectrum is truncated at 𝜔𝑛𝑜𝑟𝑚 = 1.2 and interpolated using

500 points to give z ∈ R500.

The objective function aims to minimize the DOS in a small frequency range and

maximize it elsewhere. We use the following:

ℎDOS(z) =

∑︀300
𝑖=1 𝑧𝑖 +

∑︀500
𝑖=351 𝑧𝑖

1 +
∑︀350

𝑖=301 𝑧𝑖
, (C.6)

where the 1 is added in the denominator to avoid singular values.

C.1.3 Organic Molecule Quantum Chemistry

The Smooth Overlap of Atomic Positions (SOAP) descriptor [33] uses smoothed

atomic densities to describe local environments for each atom in the molecule through

a fixed-length feature vector, which can then be averaged over all the atoms in the

molecule to produce a fixed-length feature vector for the molecule. This descriptor is

invariant to translations, rotations, and permutations. We use the SOAP descriptor

implemented by DScribe [72] using the parameters: local cutoff rcut = 5, num-

ber of radial basis functions nmax = 3, and maximum degree of spherical harmonics

lmax = 3. We use outer averaging, which averages over the power spectrum of

different sites.

The graph representation of each molecule is processed by the Spektral package

[59]. Each graph is represented by a node feature matrix X ∈ R𝑠×𝑑𝑛 , an adjacency

matrix A ∈ R𝑠×𝑠, and an edge matrix E ∈ R𝑒×𝑑𝑒 , where 𝑠 is the number of atoms

in the molecule, 𝑒 is the number of bonds, and 𝑑𝑛, 𝑑𝑒 are the number of features for

nodes and edges, respectively.

The properties that we use from the QM9 dataset are listed in Table C.2. We

separate these properties into two categories: (1) the ground state quantities which

are calculated from a single DFT calculation of the molecule and include geometric,

energetic, and electronic quantities, and (2) the thermodynamic quantities which are

typically calculated from a molecular dynamics simulation.

176

Table C.2: List of properties from the QM9 dataset used as labels
Property Unit Description

Ground State Quantities
𝐴 GHz Rotational constant
𝐵 GHz Rotational constant
𝐶 GHz Rotational constant
𝜇 D Dipole moment
𝛼 𝑎30 Isotropic polarizability
𝜖HOMO Ha Energy of HOMO
𝜖LUMO Ha Energy of LUMO
𝜖gap Ha Gap (𝜖LUMO − 𝜖HOMO)
⟨𝑅2⟩ 𝑎20 Electronic spatial extent

Thermodynamic Quantities at 298.15K
𝑈 Ha Internal energy
𝐻 Ha Enthalpy
𝐺 Ha Free energy
𝐶𝑉

cal
molK Heat capacity

The auxiliary information for this task consist of the properties listed in Table C.2

that are in the same category as the objective property, as these properties would be

calculated together. The objective function then simply picks out the corresponding

feature from the auxiliary information. More precisely, for the ground state objectives,

the auxiliary information is

z =
[︀
𝐴,𝐵,𝐶, 𝜇, 𝛼, 𝜖HOMO, 𝜖LUMO, 𝜖gap, ⟨𝑅2⟩

]︀
∈ R9,

and the objective functions are

ℎ𝛼(z) = 𝑧5

ℎ𝛼−𝜖gap(z) =
𝑧5 − 6

191
− 𝑧8 − 0.02

0.6

where the quantities for the latter objective are normalized so that they have the

same magnitude.

177

Algorithm 1 Bayesian optimization with auxiliary information
1: Input: Labelled dataset 𝒟train = {(x𝑛, z𝑛, 𝑦𝑛)}𝑁start=5

𝑛=1

2: for 𝑁 = 5 to 1000 do
3: Train ℳ : 𝒳 → 𝒵 on 𝒟train

4: Form an unlabelled dataset, 𝒳pool

5: Find x𝑁+1 = argmaxx∈𝒳pool
𝛼 (x;ℳ,𝒟train)

6: Label the data z𝑁+1 = 𝑔(x𝑁+1), 𝑦𝑁+1 = ℎ(z𝑁+1)
7: 𝒟train = 𝒟train ∪ (x𝑁+1, z𝑁+1, 𝑦𝑁+1)
8: end for

103 104 105

m = | pool|

0.156

0.157

0.158

0.159

0.160

0.161

0.162

y b
es

t

8x256
8x256-aux
16x512
16x512-aux

Figure C-1: Effect of 𝑚 = |𝒳pool| used in the inner optimization loop to maximize the
acquisition function on overall BO performance. 𝑦best is taken from the narrowband
objective function using the ensemble architecture. The “aux” in the legend denotes
using auxiliary information and the numbers represent the architecture (i.e. 8 layers
of 256 units or 16 layers of 512 units).

C.2 Bayesian Optimization and Acquisition Func-

tion

Our algorithm for Bayesian optimization using auxiliary information z is shown in

Algorithm 1. This algorithm reduces to the basic BO algorithm in the case where ℎ

is the identity function and 𝒵 = 𝒴 such that we can ignore mention of z in Algorithm

1.

As mentioned in the main text, the inner optimization loop in line 5 of Algorithm

1 is performed by finding the maximum value of 𝛼 over a pool of |𝒳pool| randomly

sampled points. We can see in Figure C-1 that increasing |𝒳pool| in the acquisition step

178

0 200 400 600 800 1000
N

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

y b
es

t

Narrowband

0 200 400 600 800 1000
N

0.150

0.152

0.154

0.156

0.158

0.160

0.162
Highpass

BBB-aux-restart
BBB-aux-norestart
Ensemble-aux-restart
Ensemble-aux-restart-cycle
Ensemble-aux-norestart
Ensemble-aux-norestart-cycle

Figure C-2: Effect of restarting the BNN training from scratch in each BO iteration.

tends to improve BO performance. Thus, there is likely further room for improvement

of the inner optimization loop using more sophisticated algorithms, possibly using

the gradient information provided by BNNs. Unless otherwise stated, we optimize

the inner loop of Bayesian optimization to choose the next data point to label by

maximizing EI on a pool of |𝒳pool| = 105 randomly sampled points.

C.3 Continued Training

As mentioned in Section 3.3.3 of the main text, the BNN is ideally trained from scratch

until convergence in each iteration loop, although this comes at a great computational

cost. An alternative is the warm restart method of continuing the training from the

previous iteration which enables the model’s training loss to converge in only a few

epochs. However, as shown in Figure C-2, we have found that naive continued training

can result in poor BO performance. This is likely because (a) training does not

converge for the new data point 𝒟new = (x𝑁+1, 𝑦𝑁+1) relative to the rest of the data

under a limited computational budget, resulting in the acquisition function possibly

labeling similar points in consecutive iterations, and (b) the BNN gets trapped in a

local minima in the loss landscape that is not ideal for learning future data points. To

mitigate this, we use the cosine annealing learning rate proposed in Loshchilov and

Hutter [127]. The large learning rate at the start of training allows the model to more

easily escape local minima and explore a multimodal posterior [78], while the small

learning rate towards the end of the annealing cycle allows the model to converge

179

more easily. Note that the idea of warm restart is similar to “continual learning,”

which is an open and active sub-problem in machine learning research [221, 167]. In

particular, we re-train the BNN using 10 epochs.

C.4 Models and Hyperparameters

C.4.1 Additional Surrogate Models

Variational BNNs model a prior and posterior distribution over the neural network

weights, but use some approximation on the distributions to make the BNN tractable.

In particular, we use Bayes by Backprop (BBB) (also referred to as the “mean field”

approximation), which approximates the posterior over the neural network weights

with independent normal distributions [14]. We also compare Multiplicative Normal-

izing Flows (MNF), which uses normalizing flows on top of each layer output for more

expressive posterior distributions [128].

BOHAMIANN proposed to use BNNs in BO by using stochastic gradient Hamil-

tonian Monte Carlo (SGHMC) to approximately sample the BNN posterior, combined

with scale adaptation to adapt it for an iterative setting [214].

NeuralLinear trains a conventional neural network on the data, but then re-

places the last layer with Bayesian linear regression such that the neural network

serves as an adaptive basis for the linear regression [211].

TuRBO (trust region Bayesian Optimization) is a method that maintains 𝑀

trust regions and performs Bayesian optimization within each trust region, maintain-

ing 𝑀 local surrogate models, to scale BO to high-dimensional problems that require

thousands of observations [41]. We use 𝑀 = 1 and 𝑀 = 5, labelled as “TuRBO-1”

and “TuRBO-5”, respectively.

TPE (Tree Parzen Estimator) is a method that instead of modeling 𝑝(𝑦|𝑥), models

𝑝(𝑥|𝑦) and 𝑝(𝑦) for the surrogate model and fits into the BO framework [13]. The

tree-structure of the surrogate model allows it to define leaf variables only when

node variables take particular values, which makes it well-suited for hyper-parameter

180

search (e.g. the learning rate momentum is only defined for momentum-based gradient

descent methods).

LIPO is a parameter-free algorithm that assumes the underlying function is a

Lipschitz function and estimates the bounds of the function [142]. We use the imple-

mentation provided by the dlib library [102].

DIRECT-L (DIviding RECTangles-Local) systematically divides the search do-

main into smaller and smaller hyperrectangles to efficiently search the space [48]. We

use the implementation provided by the NLopt library [90].

CMA-ES (covariance matrix adaptation evolution strategy) is an evolutionary

algorithm that samples new data based on a multivariate normal distribution and

refines the parameters of this distribution until reaching convergence. We us the

implementation provided by the pycma library [67].

C.4.2 Implementation Details

Unless otherwise stated, we set 𝑁MC = 30. All BNNs other than the infinitely-wide

networks are implemented in TensorFlow v1. Models are trained using the Adam

optimizer using the cosine annealing learning rate with a base learning rate of 10−3

[127]. All hidden layers use ReLU as the activation function, and no activation

function is applied to the output layer.

Infinite-width neural networks are implemented using the Neural Tangents library

[159]. We use two different types of infinite networks: (1) “GP-” refers to a closed form

expression for Gaussian process inference using the infinite-width neural network as

a kernel, and (2) “Inf-” refers to an infinite ensemble of infinite-width networks that

have been “trained” with continuous gradient descent for an infinite time. We compare

NNGP and NTK kernels as well as the parameterization of the layers. By default,

we use the NTK parameterization, but we also use the standard parameterization,

denoted by “-std”.

We implement BO using GPs with a Matérn kernel using the GPyOpt library

[220]. The library optimizes over the acquisition function in the inner loop using the

L-BFGS algorithm.

181

0 100 200 300 400 500
N

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

y b
es

t

Branin

Random
GP
Ensemble
BBB

0 100 200 300 400 500
N

0.5

1.0

1.5

2.0

2.5

3.0

3.5

y b
es

t

Hartmann-6

Figure C-3: BO results for the Branin and Hartmann-6 functions.

LIPO [142] is implemented in the dlib library [102]. DIRECT-L [48] is imple-

mented in the NLopt library [90]. CMA-ES is implemented in the pycma library

[67].

C.5 Additional Results

C.5.1 Test Functions

We test BO on several common synthetic functions used for optimization, namely the

Branin and 6-dimensional Hartmann functions. We use BNNs with 4 hidden layers

and 256 units in each hidden layer, where each hidden layer is followed by a ReLU

activation function. Plots of the best value 𝑦best at each BO iteration are shown in

Figure C-3. As expected, GPs perform the best. Ensembles and BBB also perform

competitively and much better than random sampling, showing that deep BO is viable

even for low-dimensional black-box functions.

C.5.2 Nanoparticle Scattering

Detailed BO results for the nanoparticle scattering problem are shown in Table C.3.

182

Table C.3: BO results for the nanoparticle scattering task. * denotes that 𝑦best is measured at 𝑁 = 100 due to computational
constraints

Model Narrowband Highpass

𝑦best at 𝑁 = 250 𝑦best at 𝑁 = 1000 𝑦best at 𝑁 = 250 𝑦best at 𝑁 = 100

Mean SE Mean SE Mean SE Mean SE
GP 0.1606 0.0005 0.1621 0.0001 1.0839 0.0017 1.0851 0.0008
GP-aux *0.1541 0.0019 - - *1.0110 0.0234 - -
Ensemble 0.1558 0.0011 0.1607 0.0003 1.0729 0.0025 1.077 0.0021
Ensemble-aux 0.1578 0.0014 0.1593 0.0013 1.0783 0.0003 1.0822 0.001
BBB 0.1596 0.0006 0.1596 0.0006 1.0753 0.0005 1.0753 0.0005
BBB-aux 0.1601 0.001 0.1601 0.001 1.076 0.0028 1.076 0.0028
BBB-Anneal 0.1598 0.001 0.1611 0.0001 1.0813 0.0003 1.0821 0.0005
BBB-aux-Anneal 0.1613 0.0003 0.1619 0 1.0826 0.0008 1.0834 0.0005
MNF 0.15 0.0005 0.1547 0.0004 1.027 0.005 1.0312 0.0036
MNF-aux 0.1549 0.0014 0.1569 0.0006 0.9957 0.0168 1.028 0.0157
Neural Linear 0.1543 0.002 0.1579 0.0015 1.0798 0.0007 1.0836 0.0007
BOHAMIANN 0.1616 0.0001 - - 1.0717 0.0031 - -
Inf-NNGP 0.1541 0.0011 0.157 0.0009 1.055 0.0036 1.0653 0.0022
Inf-NTK 0.1536 0.0008 0.1571 0.001 1.041 0.004 1.0612 0.0011
Inf-NNGP-std 0.1551 0.0006 0.1598 0.0006 1.0615 0.0043 1.069 0.0018
Inf-NTK-std 0.1564 0.0006 0.1607 0.0001 1.0607 0.0039 1.0761 0.0014
GP-NNGP 0.1582 0.0007 0.1609 0.0001 1.0621 0.0027 1.0694 0.0019
GP-NTK 0.1573 0.001 0.1611 0.0001 1.0667 0.0032 1.0732 0.0012
GP-NNGP-std 0.1562 0.0008 0.1595 0.001 1.0615 0.0058 1.0718 0.0024
GP-NTK-std 0.1592 0.0011 0.1608 0.0002 1.0641 0.0033 1.0704 0.0017
TuRBO-1 0.1572 0.0017 0.1619 0.0011 1.0831 0.022 1.0871 0.0005
TuRBO-1 0.1605 0.0011 0.1619 0.0001 1.0867 0.0016 1.0890 0.0003
TPE 0.1561 0.0007 0.1615 0.0001 1.0517 0.0035 1.0794 0.0010
Random 0.1527 0.0008 0.1555 0.0006 1.0053 0.0063 1.0362 0.0047
LIPO 0.1604 0.0016 0.1619 0.0006 1.0792 0.0066 1.087 0.0034
DIRECT-L 0.1544 0 0.156 0 1.0777 0 1.0801 0
CMA 0.1424 0.0046 0.143 0.0048 1.059 0.0117 1.076 0.0127

183

0 200 400 600 800 1000

0.1475

0.1500

0.1525

0.1550

0.1575

0.1600

0.1625

y b
es

t

Narrowband

0 200 400 600 800 1000
1.04

1.05

1.06

1.07

1.08

1.09
Highpass

Ensemble-aux
Ensemble
BBB-aux
BBB
Neural Linear
BOHAMIANN

0 200 400 600 800 1000
N

0.12

0.13

0.14

0.15

0.16

y b
es

t

0 200 400 600 800 1000
N

1.00

1.02

1.04

1.06

1.08 Ensemble-aux
LIPO
DIRECT-L
CMA

Figure C-4: Additional optimization result curves for the nanoparticle scattering task.
(Top) Various BNNs. Note that results using auxiliary information are denoted by a
solid line, while those that do not are denoted by a dashed line. Also note that the
y-axis is zoomed in to differentiate the curves. (Bottom) Various non-BO algorithms.
Ensemble-aux is replicated here for ease of comparison.

All the BNNs used for the nanoparticle scattering problem use an architecture

consisting of 8 hidden layers with 256 units each, with the exception of BOHAMIANN

where we used the original architecture consisting of 2 hidden layers with 50 units

each. The infinite-width neural networks for the nanoparticle task consist of 8 hidden

layers of infinite width, each of which are followed by ReLU activation functions.

We also experiment with KL annealing in BBB, a proposed method to improve the

performance of variational methods for BNNs in which the weight of the KL term in

the loss function is slowly increased throughout training [243]. For these experiments,

we exponentially anneal the KL term with weight 𝜎𝐾𝐿(𝑖) = 10𝑖/500−5 as a function of

epoch 𝑖 when training from scratch; during the continued training, the weight is held

constant at 𝜎𝐾𝐿 = 10−3.

KL annealing in the BBB architecture significantly improves performance for the

narrowband objective, although results are mixed for the highpass objective. Addi-

tionally, KL annealing has the downside of introducing more parameters that must

be carefully tuned for optimal performance. MNF performs poorly, especially on the

highpass objective where it is comparable to random sampling, and we have found

184

64 128 256
Layer width

1.0700

1.0725

1.0750

1.0775

1.0800

1.0825

1.0850

y b
es

t

layers4
layers4-aux
layers8
layers8-aux
layers16
layers16-aux

Figure C-5: Comparison of 𝑦best at 𝑁 = 1000 for the nanoparticle narrowband ob-
jective function for a variety of neural network sizes. All results are ensembles, and
“aux” denotes using auxiliary information.

Figure C-6: Examples of optimized nanoparticles and their scattering spectrum using
the “Ensemble-aux” architecture for the (a) narrowband and (c) highpass objec-
tives. Orange shaded regions mark the range over which we wish to maximize the
scattering.

that MNF is quite sensitive to the choice of hyperparameters for uncertainty estimates

even on simple regression problems.

The different variants infinite-width neural networks do not perform as well as the

BNNs on both objective functions, despite the hyper-parameter search.

LIPO seems to perform as well as GPs on both objective functions, which is

impressive given the computational speed of the LIPO algorithm. Interestingly

DIRECT-L does not perform as well as LIPO or GPs on the narrowband objective,

and actually performs comparably to random sampling on the highpass objective.

Additionally, CMA performs poorly on both objectives, likely due to the highly mul-

timodal nature of the objective function landscape.

We also look at the effect of model size in terms of number of layers and units

in Figure C-5 for ensembles. While including auxiliary information clearly improves

performance across all architectures, there is not a clear trend of performance with

185

Table C.4: Various architectures for BNNs and BCNNs used in the PC problem.
Numbers represent the number of channels and units for the convolutional and fully-
connected layers, respectively. All convolutional layers use 3 × 3-sized filters with
stride (1, 1) and periodic boundaries. “MP” denotes max-pooling layers of size 2× 2
with stride (2, 2), and “AP” denotes average-pooling layers of size 2 × 2 with stride
(1, 1). “Conv” denotes BCNNs whereas “FC” denotes BNNs (containing only fully-
connected layers) that act on the level-set parameterization x rather than on the
image v. “TI” denotes translation invariant architectures, whereas “TD” denotes
translation dependent architectures (i.e. not translation invariant).

Architecture
Convolutional
Layers

Fully-connected
Layers

Conv-TI 16-MP-32-MP-64-MP-128-MP-256 256-256-256-256
Conv-TD 8-AP-8-MP-16-AP-32-MP-32-AP 256-256-256-256
FC n/a 256-256-256-256-256

respect to the model size. Thus, the performance of BO seems to be somewhat

robust to the exact architecture as long as the model is large enough to accurately

and efficiently train on the data.

Examples of the optimized structures by the “Ensemble-aux” architecture are

shown in Figure C-6. We can see that the scattering spectra peak in the shaded

region of interest, as desired by the respective objective functions.

C.5.3 Photonic Crystal

The BNN and BCNN architectures that we use for the PC task are listed in Table C.4.

The size of the “FC” architectures are chosen to have a similar number of parameters

as their convolutional counterparts. Unless otherwise stated, all results in the main

text and here use the “Conv-TI” and “FC” architectures for BCNNs and BNNs,

respectively.

186

Table C.5: Select BO results for the PC problem. * denotes that 𝑦best is measured at 𝑁 = 130 due to computational constraints.
† denotes that 𝑦best is measured at 𝑁 = 750 due to computational constraints.

Model PC-A PC-B

𝑦best at 𝑁 = 250 𝑦best at 𝑁 = 1000 𝑦best at 𝑁 = 250 𝑦best at 𝑁 = 100

Mean SE Mean SE Mean SE Mean SE
GP 548 450 2109 448 781 394 3502 49
GP-aux *16 4 - - *9 1 - -
Ensemble 30 2 841 448 216 145 1318 465
Ensemble-aux 305 217 1310 509 2909 408 3633 130
ConvEnsemble 1140 471 2375 371 390 263 2070 505
ConvEnsemble-aux 2623 558 3468 120 3752 106 4002 92
BBB 75 31 350 207 704 502 780 485
BBB-aux 39 7 413 313 554 371 1605 544
ConvBBB 712 416 1486 490 928 600 930 599
ConvBBB-aux 2109 583 3124 43 1761 724 1928 711
NeuralLinear 1009 549 1235 481 685 488 2853 291
ConvNeuralLinear 1160 540 2524 479 1643 596 2722 647
Conv-Inf-NNGP 29 8 322 181 21 7 157 42
Conv-Inf-NTK 49 32 425 322 28 7 907 711
Conv-GP-NNGP 15 2 221 118 37 5 830 533
Conv-GP-NTK 20 10 194 139 34 12 85 45
Conv-Inf-NNGP-std 17 3 732 432 66 15 889 442
Conv-Inf-NTK-std 52 31 99 64 8 0 27 12
Conv-GP-NNGP-std 20 7 †101 59 100 55 †124 49
Conv-GP-NTK-std 13 5 †132 77 7 0 †686 575
Random 141 61 402 184 471 398 485 395
TuRBO-1 1150 638 4451 20 3865 289 4476 16
TuRBO-5 3738 92 4456 37 4128 49 4466 26
TPE 1001 648 3901 140 3045 571 4119 156
LIPO 940 1073 1280 1073 1837 1792 2266 1626
DIRECT-L 20 0 4351 1 8 0 2525 38
CMA 9 1 4078 126 10 3 1777 969

187

Figure C-7: Examples of optimized photonic crystal unit cells over multiple trials for
(a) PC-A distribution and (c) PC-B distribution. (b,d) Examples of the optimized
DOS. Note that the DOS has been minimized to nearly zero in a thin frequency range.
Orange shaded regions mark the frequency range in which we wish to minimize the
DOS. All results were optimized by the “Ensemble-aux” architecture.

The infinite-width convolutional neural networks (which act as convolutional ker-

nels for GPs) in the PC task consist of 5 convolutional layers followed by 4 fully-

connected layers of infinite width. Because the pooling layers in the Neural Tangents

library are currently too slow for use in application, we increased the size of the filters

to 5× 5 to increase the receptive field of each filter.

Detailed BO results for the PC problem are shown in Table C.5. For algorithms

that optimize over the level set parameterization R51, we see that GPs perform con-

sistently well, although BNNs using auxiliary information (e.g. Ensemble-Aux) can

outperform GPs. DIRECT-L and CMA perform extremely well on the PC-A distri-

bution but performs worse than GP on the PC-B distribution.

Adding convolutional layers and auxiliary information improves performance such

that BCNNs significantly outperform GPs. Interestingly, the infinite-width networks

perform extremely poorly, although this may be due to a lack of pooling layers in

their architecture which limits the receptive field of the convolutions.

Examples of the optimized structures by the “Ensemble-aux” architecture are

shown in Figure C-7. The photonic crystal unit cells generally converged to the same

shape: a square lattice of silicon posts with periodicity
√
2𝑎.

Validation Metrics

To explore more deeply why certain surrogate models perform well while others

do not, we track various metrics of the model during BO on a validation dataset with

1000 randomly sampled data points. In particular, we look at the mean squared error

188

(a)

(b)

Figure C-8: (a) Various metrics tracked during BO of the PC-A dataset distribution
on a validation dataset of 1000 datapoints. (b) Uncertainty calibration curves mea-
sured at various points during BO. Note that the calibration curve for GP-aux is
only shown for 𝑁 = 50, as it becomes computationally intractable for larger 𝑁 .

(MSE), the mean absolute error (MAE), the negative log-likelihood (NLL), and the

calibration error on the PC-A data distribution. Results are shown in Figure C-8(a).

The calibration error is a quantitative measure of the uncertainty of the model,

which is important for the performance of BO as the acquisition function uses the

uncertainty to balance exploration and exploitation. Intuitively, we expect that a

50% confidence interval contains the correct answer 50% of the time. In particular,

we use the forecast calibration as proposed by [109], which is an extension of the

calibration error proposed by [61] to regression tasks:

cal(𝐹1, 𝑦1, ..., 𝐹𝑇 , 𝑦𝑇) =
𝑚∑︁
𝑗=1

(𝑝𝑗 − �̂�𝑗)
2

where 𝐹𝑗 is the CDF of the predictive distribution, 𝑝𝑗 is the confidence level, and �̂�𝑗 is

the empirical frequency. We choose to measure the error along the confidence levels

𝑝𝑗 = (𝑗 − 1)/10 for 𝑗 = 1, 2, ..., 11. The CDF 𝐹𝑗(𝑦𝑗) an be analytically calculated for

models that have an analytical predictive distribution. For models that do not have

189

an analytical predictive distribution, we use the empirical CDF:

𝐹 (𝑦) =
1

𝑛

𝑛∑︁
𝑖=1

1𝜇(𝑖)≤𝑦

where 1 is the indicator function. We also plot the calibration, {(𝑝𝑗, �̂�𝑗)}𝑀𝑗=1, in Figure

C-8(b). Perfectly calibrated predictions correspond to a straight line.

Figure C-8 shows that the infinite neural network kernel (NTK) has the highest

prediction error, which is likely a contributing factor to its poor BO performance.

Interestingly, vanilla GPs have the lowest MSE, so the prediction error is not the only

indicator for BO performance. Looking at the calibration, the infinite neural network

kernel has the highest calibration error, and we see from Figure C-8(b) that it tends

to be overconfident in its predictions. GPs have a higher calibration error than the

ensemble neural network methods, and tends to be significantly underconfident in

its predictions. GP-aux has higher validation loss, calibration error, and NLL than

most, if not all, of the other methods, which explain its poor performance.

The ensemble NN methods tend to be reasonably well-calibrated. Within the

ensemble NNs, the "-aux" methods have lower MSE and calibration error than their

respective counterparts, and ConvEnsemble-aux has the lowest NLL calibration error

out of all the methods, although interestingly Ensemble-aux seems to have the lowest

MSE and MAE out of the ensemble NNs.

These results together show that calibration of Bayesian models is extremely im-

portant for use as surrogate models in BO.

190

Table C.6: BO results for the four different quantum chemistry objective functions. * denotes that 𝑦best is measured at 𝑁 = 100
due to computational constraints.

𝑦best at 𝑁 = 500

Model 𝜖gap −𝜖gap 𝛼 𝛼− 𝜖gap

Mean SD Mean SD Mean SD Mean SD
GP 0.41 0.04 −0.10 0.02 101.08 1.05 0.29 0.07
GraphGP *0.62 0.00 * − 0.10 0.02 *131.99 14.59 *0.24 0.03
Ensemble 0.62 0.00 −0.08 0.00 86.56 0.31 0.28 0.00
Ensemble-aux 0.62 0.00 −0.10 0.02 83.86 4.45 0.13 0.05
GraphEnsemble 0.62 0.00 −0.10 0.00 143.53 0.00 0.49 0.00
GraphEnsemble-aux 0.62 0.00 −0.10 0.00 143.53 0.00 0.49 0.00
GraphBBB 0.38 0.01 −0.11 0.01 94.46 1.16 0.25 0.01
GraphBBB-FC 0.62 0.00 −0.10 0.00 135.64 13.67 0.39 0.14
GraphNeuralLinear 0.62 0.00 −0.09 0.01 143.53 0.00 0.46 0.09
VAE-GP 0.62 0.06 - - 123.33 13.02 0.61 0.34
VAE-GP-2 - - - - 110.84 16.68 0.56 0.35
VAE-GP-latent128 - - - - 154.66 35.96 0.40 0.10
VAE-GP-latent128-beta0.001 - - - - 133.66 13.25 0.42 0.13
VAE-GP-latent32 - - - - 114.83 14.64 0.53 0.38
Random 0.38 0.02 −0.11 0.03 105.19 7.87 0.29 0.07

191

0 200 400
N

80

100

120

140

160

y b
es

t

0 200 400
N

0.2

0.4

0.6

0.8
gap

0 200 400
N

0.3

0.4

0.5

0.6

gap

GP
GraphEnsemble-aux
BBB FC
NeuralLinear
VAE-GP

Figure C-9: Additional BO results for several different objective functions on the
chemistry dataset. GP and GraphEnsemble-aux curves are replicated from the
main text for convenience.

C.5.4 Organic Molecule Quantum Chemistry

The Bayesian graph neural networks (BGNNs) used for the chemical property opti-

mization task consist of 4 edge-conditioned graph convolutional layers with 32 chan-

nels each, followed by a global average pooling operation, followed by 4 fully-connected

hidden layers of 64 units each. The edge-conditioned graph convolutional layers [207]

are implemented by Spektral [59].

More detailed results for the quantum chemistry dataset are shown in Table C.6

and Figure C-9. The architecture with the Bayes by Backprop variational approxima-

tion applied to every layer including the graph convolutional layers (“BBB”), performs

extremely poorly, even worse than random sampling in some cases. However, only

making the fully-connected layers Bayesian (“BBB-FC”) performs surprisingly well.

Ensembles trained with auxiliary information (“Ensemble-aux”) and neural lin-

ear (“NeuralLinear”) perform the best on all objective functions. Adding auxiliary

information to ensembles helps for the 𝛼 objective function, and neither helps nor

hurts for the other objective functions. Additionally, BNNs perform at least as well

or significantly better than GPs in all cases. GPs perform comparably or worse than

random sampling in several cases.

As noted in the main text, the performance of VAE-GP depends on the quality

of the pre-trained VAE, as shown in Figure C-10. The VAE-GP benchmark uses the

same pre-trained VAE, and “VAE-GP-2” refers to the same method using a different

random seed for the VAE. Even with the exact same method, VAE-GP-2 performs

192

0 100 200 300 400 500
N

80

100

120

140

160

y b
es

t

0 100 200 300 400 500
N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
gap

VAE-GP
VAE-GP-2
VAE-GP-latent128
VAE-GP-latent128-beta0.001
VAE-GP-latent32

Figure C-10: Additional BO results for VAE-GP using different pre-trained VAEs.

significantly worse on both objective functions. We also increase the latent space

dimensionality from 52 to 128 in the “VAE-GP-latent128” benchmark, which per-

forms even worse on the 𝛼− 𝜖gap benchmark although it performs significantly better

on the 𝛼 benchmark. We also adjust the learning rate momentum to 𝛽 = 0.001

in “VAE-GP-latent128-beta0.001”, and the latent space dimensionality to 32 in

“VAE-GP-latent32”. There is no clear trend with the different hyper-parameters,

which may point to the random seed of the VAE pre-training being a greater factor

in BO performance than the hyper-parameters.

Validation Metrics

As in Appendix C.5.3, we track the MSE, NLL, and calibration error during

optimization on the chemistry task. Results are shown in Figure C-11. The various

metrics correlate with the respective methods’ peformances during BO. For example,

VAE-GP has an extremely high MSE and calibration error on the 𝛼 objective, where

it performs poorly, but has an MSE and calibration error more comparable with that

of other methods as well as an extremely low NLL on the 𝛼− 𝜖gap objective, where it

performs extremely well. Likewise, the metrics for GraphGP are very high on the

𝛼− 𝜖gap objective, where it performs poorly. GraphEnsemble tends to be among the

better methods in terms of these metrics, which translates into good BO performance.

193

102

103

104

MSE

10 2

10 1

100

Calibration error

107

108

109

1010

1011

1012

NLL

0.0

0.2

0.4

0.6

0.8

1.0

p

Calibration Curve

0 100 200 300 400
N

10 2

2 × 10 2

3 × 10 2

4 × 10 2

ga
p

0 100 200 300 400
N

10 1

100

0 100 200 300 400
N

107

109

1011

0.00 0.25 0.50 0.75 1.00
p

0.0

0.2

0.4

0.6

0.8

1.0

p

Ideal
GraphGP
Ensemble
GraphEnsemble
VAE-GP

Figure C-11: (a) Various metrics tracked during BO of the PC-A dataset distribu-
tion on a validation dataset of 1000 datapoints. (b) Uncertainty calibration curves
measured at various points during BO.

C.5.5 Additional Discussion

BBB performs reasonably well and is competitive with or even better than ensembles

on some tasks, but it requires significant hyperparameter tuning. The tendency of

variational methods such as BBB to underestimate uncertainty is likely detrimen-

tal to their performance in BO. Additionally, Sun et al. [216] shows that BBB has

trouble scaling to larger network sizes, which may make them unsuitable for more

complex tasks such as those in our work. BOHAMIANN performs very well on the

nanoparticle narrowband objective and comparable to other BNNs without auxiliary

information on the nanoparticle highpass objective. This is likely due to its effective-

ness in exploring a multi-modal posterior. However, the need for SGHMC to sample

the posterior makes this method computationally expensive, and so we were only able

to run it for a limited number of iterations using a small neural network architecture.

Infinitely wide neural networks are another interesting research direction, as the

ability to derive infinitely wide versions of various neural network architectures such

as convolutions, and more recently graph convolutional layers [77] could potentially

194

bring the power of GPs and BO to complex problems in low-data regimes. However,

we find they perform relatively poorly in BO, are quite sensitive to hyperparameters

(e.g. kernel and parameterization), and current implementations of certain operations

such as pooling are too slow for practical use in an iterative setting. In particular,

BO using an infinite ensemble of infinite-width networks performs poorly compared to

normal ensembles, suggesting that the infinite-width formulations do not fully capture

the dynamics of their finite-width counterparts.

Non-Bayesian global optimization methods such as LIPO and DIRECT-L are quite

powerful in spite of their small computational overhead and can even outperform BO

on some simpler tasks. However, they are not as consistent as BO, performing more

comparably to random sampling on other tasks. CMA-ES performs poorly on all the

tasks here. Also, like GPs, these non-Bayesian algorithms assume a continuous input

space and cannot be effectively applied to structured, high-dimensional problems.

C.6 Compute

All experiments were carried out on systems with NVIDIA Volta V100 GPUs and

Intel Xeon Gold 6248 CPUs. All training and inference using neural network-based

models, graph kernels, and infinite-width neural network approximations are carried

out on the GPUs. All other models are carried out on the CPUs.

195

196

Appendix D

Topological Photonic Crystal

Optimization

D.1 Abbreviations and notation

For convenience, commonly used acronyms and mathematical notation in Chapter 4

are summarized below.

Abbreviation Word

PhC photonic crystal

SDP semi-definite programming

BZ Brillouin zone

SG space group

HS high-symmetry

DOS density of states

197

Notation Quantity

𝜀 permittivity

r spatial coordinate

k reciprocal lattice coordinate

𝜑 level-set function

G reciprocal lattice vectors

R lattice vectors

𝑎, 𝑏, 𝑐 lattice vector lengths

𝛼, 𝛽, 𝛾 lattice angles

𝜔𝑛k band frequency

𝐿(𝜔𝑛k) objective function

𝜈 symmetry indicator with 𝑣𝑗 ∈ Z𝜆𝑗

𝐶, C Chern number, Chern vector

198

	Introduction
	Integration of Neural Network-Based Symbolic Regression in Deep Learning for Scientific Discovery
	Introduction
	EQL Architecture
	Related Work
	Sparsity
	Skip Connections

	Experiments
	Symbolic Regression on Analytic Expressions
	MNIST Arithmetic
	Dynamical System Analysis
	Particle System
	Training

	Results
	MNIST Arithmetic
	Kinematics
	SHO
	Particle Systems

	Introduction to Parametric Equations
	Parametric EQL Network Variants
	Stacked Architecture (SEQL)
	Hyper EQL (HEQL) Architecture

	Results
	Analytic Expressions
	PDEs
	Spring System

	Parametric Equations Discussion
	Conclusion

	Bayesian Optimization and Deep Learning for Scientific Problems with High-Dimensional Structure
	Introduction
	Related Work
	Bayesian Optimization
	Prerequisites
	Acquisition Function
	Continued Training with Learning Rate Annealing
	Auxiliary Information

	Surrogate Models
	Results
	Multilayer Nanoparticle
	Photonic Crystal Topology
	Organic Molecule Quantum Chemistry

	Discussion
	Conclusion

	Automated Discovery and Optimization of 3D Topological Photonic Crystals
	Introduction
	Methods
	Photonic Crystal Parameterization
	Objective
	Optimization
	PhC Simulation

	Results and discussion
	Gamma-enforced topological nodal lines
	Weyl points
	Chern insulators

	Conclusion

	Conclusion
	References
	EQL Network
	EQL Network Details
	Computational Efficiency
	Experiment Details
	MNIST Arithmetic
	Kinematics
	SHO

	Additional MNIST Arithmetic Data

	Parametric EQL Network
	Training Details
	Additional Results
	Analytic Expression
	Differential Equations

	Bayesian Optimization
	Datasets
	Nanoparticle Scattering
	Photonic Crystal
	Organic Molecule Quantum Chemistry

	Bayesian Optimization and Acquisition Function
	Continued Training
	Models and Hyperparameters
	Additional Surrogate Models
	Implementation Details

	Additional Results
	Test Functions
	Nanoparticle Scattering
	Photonic Crystal
	Organic Molecule Quantum Chemistry
	Additional Discussion

	Compute

	Topological Photonic Crystal Optimization
	Abbreviations and notation

