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ABSTRACT

A density matrix formulation for optical absorption is
developed within the framework of the Xg scattered wave
theory. 1In this approach, the transition state orbitals are
used as an approximation to the natural orbitals of the
system. It is shown that this concept enters in a natural
way into the formalism. Through the use of commutation
relations, we show that the three oscillator strength
forms, f(x), f(ﬁ), and f(ﬁv) are equivalent in the X, theory,
in contrast to the Hartree-Fock method. In the present
work, the f£(VV) form is used exclusively for computation
since in the scattered wave method this form may be evaluated
without integrating over the intersphere region. The method
is first applied to intensities in the simple diatomic
molecules H,7t, H2, and COt, with results generally accurate
to 5% (at tﬁe egiilibrium nuclear separation) in H2+, and
of order of magnitude accuracy for the weak transitions
in cot. 1In H,, the li. > I, transition is very accurately
described, bu% the lrg> Iy intensity_is not satisfactory
due to the diffuse character of the lHu state. We then
computed intensities in the transition metal complexes
Mn04‘1, FeC14‘1, CoCl4'2, and Cr(CO)g. Relative intensities
of the dipgle allowed charge transfer transitions in FeCl4‘1
and CoCl, “ are reasonably accurate. The crystal field in-
tensity in CoC14‘2 is unsatisfactory due to the low exci-
tation energy, AE<lev. Intensity considerations in Cr(CO)g
yield a new spectral assignment. In Mn04‘1, the scale factor
between the theoretical and the experimental intensities is
17, which is quite large. We postulate that this is due
to an incorrect boundary condition for the cluster. The
discrepancies in the absolute intensities between theory
and experiment in transition metal complexes are discussed
in terms of correlation effects, local field effects, and
boundary conditions.
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CHAPTER T
INTRODUCTION

In the history of modern ohysics, the complexities of
optical spectra in atoms and molecules have played a major
role. The appearance of discrete spectral lines in atoms
contradicted classical radiation theory and led to the
development of guantum mechanics.l The first major success
of the theory was then in understanding atomic multiplet
structure.2 The fields of atomic and molecular spectroscopy
have expanded enormously since this time, but many problems
still persist. 1In particular, the calculation from first
principles of excitation energies in molecules is still a
difficult task. Even more difficult is the accurate deter-
mination of theoretical absorption intensities.3

On the other hand, reliable calculations of spectral
intensities in molecules would be very valuable. Such ‘calcu-
lations would establish spectral assignments which were
uncertain due to overlapping bands, or due to errors in
calculated excitation energies. These spectral assignments,

in turn, can yield valuable information about the bonding
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and reactivity of different states (ground and excited) of the
molecule.4

We are also interested in such issues as the comparative
intensities of dipole allowed and vibrationally induced
(vibronic) transitions, and the effects of the molecular
environment on spectral intensities. 1In addition, since
experimental measurements of absolute intensities are often
difficult, further theoretical progress may stimulate new
experimental efforts in this area.3

To solve these problems, a new theoretical framework
for determining optical absorption intensities in molecules
was developed based on the X, scattered wave method.s'6
This new approach was applied to a series of systems from
simple diatomic molecules like H2+-and H2 to transition metal
complexes, with emphasis on the latter. We will calculate
the intensities of electric dipole allowed transitions in
these molecules. We will also discuss transitions which
become dipole allowed via molecular vibrations.7 We will
not treat higher order multipole transitions and spin for-
bidden transitions which generally have much lower intensities.4

A theory of spectra based on a molecular orbital approach

8,9 Localized states in

has a wide range of applicability.
solids (for example, impurity states and exciton states in
semiconductors) or localized states at surfaces (in the

neighborhood of a chemisorptive bond) may be represented in

a molecular orbital framework through the use of a small
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cluster of atoms. Many important systems of this type contain
transition metal atoms coordinated at least in part by non-
metallic ligands. In addition, the active centers of many
biological macromolecules (hemoglobin, myoglobin, and cyto-
chromes) also contain transition metal atoms coordinated by
non-metallic ligands. For example, the biological molecules
just mentioned all contain a heme complex in which an iron
atom is coordinated by a planar array of four nitrogen atoms,
with a fifth ligand which attaches the heme complex to a
protein polypeptide chain below this plane, via an amino
acid. In the case of hemoglobin, any one of a number of
ligands (02, CO, NO, and so on) may be attached to the complex.
Many of the systems cited above have interesting optical
properties. For example, metallic impurities such as Cu,
Ag, Au, and Mu may be introduced substitutionally into a host
lattice of ZnS and CdS to produce specific luminescence bands
(Cu impurities in ZnS produce green and blue emission bands,
for instance). In myoglobin, CO chemisorbed on the heme
complex may be photo-desorbed with ultraviolet 1ight.lO An
analysis of spectral assignments and intensities in such
systems would be valuable, and will be the subject of future
work. For the present, we note that these systems are closely
related to the transition metal complexes we will study.

One further topic for future work should be mentioned --
photoemission. Once a reasonable model for the final

(continuum) states is obtained, the methods developed here
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are applicable to determining photo-emission intensities in
molecules and clusters. The author's preliminary attempts to

evaluate photo-emission intensities in CH, are described in

4
Appendix D. Suggestions for future approaches in this area
are presented in Chapter 9.

The organization of the work is as follows. A summary of
the previous experimental and theoretical work on optical
intensities is given in Chapters II and III. In Chapter IV,
we discuss the conventional theoretical methods for treating
intensities, and the problems these methods encounter especially
in complex systems. In Chapter V, the Xg scattered wave theory
of electronic structure is presented. This theory was developed
by Slater and Johnson as an alternative to the conventional
configuration interaction (CI) and Hartree-Fock LCAO (linear
combination of atomic orbitals) theories for electronic

structure.3’5’6’ll

We present our new approach for calculating
intensities in Chapter VI, and we apply this method to simple
molecules and to transition metal complexes in Chapter VII.
Chapters VIII,IX, and X contain our conclusions, suggestions
for future work, and appendices respectively.

We can gain perspective on the comparative accuracies
of the various theories of electronic structure by considering
the problem of evaluating excitation energies in molecules.
The résults will be suggestive of the value of the different

theories for determining optical intensities.

The conventional Hartree-Fock theory uses a single
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determinantal wave function to find the many electron eigen~
states and energies of a system.3 The spin orbitals of a
single determinant are varied to obtain the minimum total
energy for a particular state. Therefore, as applied rigorous-—
ly, separate variational calculations are required for initial
and final state wave functions wm and wn. Yet even in
rigorous form the Hartree-Fock theory predicts total energies
in molecules to about 2ev. accuracy, which is often in-
sufficient for problems of chemical interest. In complex
molecules, such as those containing transition metal atoms,
various approximations are required, and excited states are
evaluated using the inaccurate virtual orbital theory.1l A
further analysis of Hartree-Fock theory and the approximations
made to implement it is given in Chapter IV.

The method of configuration interaction (CI) utilizes
a linear combination of determinants to describe the many
electron wave functions and energies of the initial and
final states.3 This more accurate method yields excitation
energies accurate to within less than lev. in simple molecules
like CN, but the method is intractable in complex systems
(see Chapter 1IV).

More recently, the X g scattered wave method hag been
developed to calculate electronic properties in both simple

énd complex molecules.s'6

The ¥, method is based on a
statistical expression for the total energy of a system.

As a consequence, it is not necessary to assume a particular
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form for the many electron wave functions in the theory.

Tn addition, a local exchange term is used in the expression
for the molecular total energy, unlike the more complex
non-local exchange of Hartree-Fock theory. The Xa theory
yields accurate excitation energies (to less than lev.) and
accurate molecular potential energy curves in most cases.

In view of these successes, the X, theory provides a
good basis for a theory of optical intensities. A comparative
study of intensities over the range of systems we have chosen
should reveal which errors are intrinsic to the approximation
methods used, and which arise only in the more complex
systems.

Progress in evaluating intensities in transition metal

4,12 The current

complexes is Qarticularly desirable.
theoretical situation in this area is very unsatisfactory.

Of the various approximate Hartree-Fock calculations on transi-
tion metal complexes, only the intensity results of Van der
Avoird and Ros on CuCl4_ are in relative agreement with

the experimental values (that is, the theoretical and ex-
perimental intensities are related by a single proportionality

13,14 . Since this calculation does not predict

constant) .
excitation energies accurately, its validity for evaluating
intensities‘is doubtful. In no case do the experimental and
theoretical intensities agree in absolute value. For many

cases, theoretical intensities in relative agreement with

experiment would be sufficient to clarify spectral assignments,
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and to determine the various types of optical absorption
occurring in a system.

We now consider briefly the theory of optical intensities.
Absorption intensities in molecules are generally given in
terms of the absorption oscillator strength f which is

defined as15

£ _ 2mAE N 2mAE

1.1) = 2888  glew | LI, Raluo o |%= S .S
3h2dm Lk My j=1 7j ni> 3h2d

In this equation, dm is the initial state degeneracy, wmk and
I‘bni the initial and final state many particle wave functions,
AE is the excitation energy for the transition, and the sum
ovér i, k goes over all degenerate partners of the initial
and final states. The matfix element is expressed in Dirac
notation, with the integration being over the nuclear as well
as the electronic coordinates. The vector §j is the position
vector of electron j. N is the total number of electrons

in the system. f is a measure of the amount of energy
absorbed per unit energy input to the molecule. S is called
the absolute line strength It is a more symmetrical quantity
than f, and is easily related to the spontaneous emission
probability from the upper state wn to the lower state wm’

to the corresponding radiative lifetime of the excited state,
as well as to the stimulated emission oscillator strength.

1Gyld Since all

These relations were formulated by Einstein.
these quantities are interrelated, the measurement of any
one of them is sufficient to obtain the absorption oscillator

strength.
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Although f is generally defined in terms of a matrix
element of the position operator §, equivalent definitions
for exact wave functions may be formulated in terms of the
momentum operator —ih%, or the gradient of the one electron
potential ~3V.3 In the scattered wave method, £(VV) assumes
a particularly simple structure, and we have therefore used
this form exclusively for our calculations. The f(ﬁv) form,
however, is generally thought to be unreliable for use with

approximate wave functions,18

An additional purpose of the
present study is then to evaluate the accuracy of £(VV)
compared with the other forms of f.

The many particle wave functions wm and wn include a
factor dependent on the respective vibrational sublevels
v' and v". In the Born Oppenheimer approximation19
1.2) y_ = lp:r{(l,z,...N,Rl...RM) Pipn Ty « waliy)

wm is factored into an electronic part which depends para- -

metrically on the nuclear positions Rl" and into a second

-Ry»
part which is simply the vibrational wave function for sublevel
v'. The electronic coordinates 1,2,...N include the spin co-
ordinates, and the previous integration therefore includes sums
over spin coordinates.5 In principle, then, it is necessary to
know both the wvibrational and electronic wave functions to
evaluate the oscillator strength fv'v" between specific
vibrational sublevels. As we shall see in Chapter IV, an

approximate value for f summed over v" sublevels and averaged

over v' sublevels may be found by evaluating Y and v, at
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the equilibrium nuclear positions, and integrating only over
electronic coordinates in equation l1l.l1l. Only the electronic
parts of the wave functions are used in this case. The result
is a measure of the total area under an absorption curve (for
absorption versus frequency) for a single electronic transi-

7,15

tion. The fv'v" appears as the vibrational superstructure

of the peak.20 In the present work, we will concentrate on
obtaining the total f values for electronic transitions. For
some molecules, we will evaluate f at different internuclear
distances, but not at a sufficient number of points to directly
evaluate fv'v"' This would be an especially difficult task in
polyatomic molecules, since the number of data points required
goes up as the power of the number of normal mode coordinates.
In diatomic molecules, the vibrational wave functions may
be evaluated using the experimental Rydberg-Klein-Rees po-
tential curves.3 In polyatomic molecules, one similarly
attempts to match force constants to the observed vibrational
frequencies, and then compute the vibrational wave functions.
This is again more difficult than in the diatomic case.21

In diatomic mblecules, it is 6ften the practice to
obtain the "experimental" f value at equilibrium nuclear
separation R from a set of measured radiative lifetimes

between vibrational sublevels tv' ne (An example of this is

v
found in the Popkie and Henneker "experimental" f wvalues

for some simple diatomics discussed in Chapter 2.)22 The

present discussion of diatomics forms a basis for the more
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general discussion of vibrational effects on spectra developed

in Chapter IV. Let the internuclear distance for the diatomic

be R. Then22

_ 2mAE S (Re)

1.3) £(Re)
€ 302 d_
{ p¥ "}Z el 2

1.4) s(R) = = |<®.%¥ @...n,Rm)|[. J[w © (1...N,R)) |

ik My ‘3‘1 n,

= ZIMMR[*

LK ck

1.5) £ =2m 0 LBy (R, (R Vo R |
* v'v" 3h2 dm i,k v! ik v"

The integration in equation 1.4 is only over electronic
coordinates; in equation 1.5, only the internuclear distance

R is integrated over. M(R) is the transition moment. Equations
1.3 and 1.4 are definitions. Equation 1.5 then follows from

equation 1.1. £ w 1s directly related to the measured

v'v

lifetime between vibrational sublevels tv To invert

lv“ .
the data and obtain f(R,), the functional form for M(R) must
be found. It is perfectly general to expand M(R) as a Taylor

i 1:;22
series

1.6) M(R) = IM;R"
i
One must then assume a gpecific polynomial form for M(R) (for
example, a quadratic form) to determine f£(Re). Accurate
vibrational wave functions for the states are also required.
From a theoretical point of view, the evaluation of the
electronic oscillator strength at fixed nuclear position

f(R) in the case of a diatomic molecule requires a knowledge

only of the electronic parts wm and wn of the total wave
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function. The conventional theories of electronic structure
outlined at the beginning of the chapter are used to obtain
approximate forms for the electronic wave functions. However,
a theory of optical properties using many electron wave
functions is inappropriate for the X, scattered wave theory.5
A new density matrix approach to optical absorption was there-
fore developed by the author which is better adapted to the
concepts of the ¥, scattered wave theory (Chapter VI).

A final problem of interest is the dependence of optical
absorption in molecules on the surrounding environment.
The environment effects optical absorption in two ways.7'20'23
1) Specific molecular interactions alter the states (both ground
and excited) of the absorbing molecule. A detailed knowledge
of the boundary conditions appropriate to a given environment
is therefore necessary to determine the molecular eigenstates
and the associated oscillator strengths. 2) The electromagnetic
wave incident on a material is modified by the medium surround-
ing an absorbing molecule (local field effects). This implies
that equation 1.1 for the absorption intensity is not correct.

These effects are most significant in solution spectra,
where the absorbing molecule is embedded in a fairly dense

medium.7'23

In the case of ions in solution (or ionic
crystals), the additional problem of how the oppositely
charged ions interact, and how these ions interact with the

electromagnetic field is introduced. In vapor spectra, where

the density of the medium is low, these problems are not
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important. We will discuss boundary conditions and local
field effects in detail in Chapter IV, though many problems
remain unsolved.

In conclusion, the difficulties in obtaining reliable
absorption oscillator strengths are formidable. In view of
its previous success, the X, scattered wave theory is a good

prospect for further advances on this problem.
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CHAPTER II
EXPERIMENTAL BACKGROUND

First we consider experimental intensities for atoms.
For light atoms and ions, oscillator strengths may bé ob-
tained by the accurate beam foil method developed by Bashkin
and co-workers.24 In this method, ions are sent through a
thin foil of carbon. In the process, the ions may be excited,
ionized further, or neutralized. A measurement of the result-
ing radiative lifetime € of the excited state then yields an
oscillator strength generally accurate to 3-11%, better than
any other method used.25 A number of authors have applied

this technique to the ions C+, N+, F+, and Ne+ (see Table

l).26—29

There is good agreement among the various experimen-
tal results.

Experimental f values have also been obtained by several
workers for s+p transitions in the alkali atoms Li, Na, and
K.30 For lithium, Anderson and co-workers have used the beam
foil technique.31 Link has used an accurate flourescence

method to obtain the Li 2s+2p, Na 3s+3p, and K 4s->4p oscillator

sttengths.32 Other less reliable methods have also been used
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to obtain f values in these atoms. Ellis and Goscinski have
summarized the different experimental intensities for alkali
atoms, including the estimated uncertainties in the experimen-

50 Some of the uncertainties are

tal values (see Table 2).
quite large (for example, Na 4s-+4p.and K 5s+5p).
We now consider experimental intensities in some simple

molecules. The intensities for the two lowest bands in H2 are

not available from experiment, since the lowest lying Lyman

1 3

band (XlZg+B Eu) overlaps the higher Werner band (XIZg+clHﬁ).3
The experimental £ value for the sum of the two bands is rough-
ly 0.65 as determined by Mulliken and Rieke from dispersion

measurements for hydrogen gas.7'34

This is only a rough
estimate of the true £ value.

Extensive measurements have been made of radiative
lifetimes in the 13 electron systems Cz-, N2+, CN, and CO+.35
"Experimental" oscillator strengths are obtained by an analy-
sis of the radiative lifetimes between vibrational sublevels

t

— Popkie and Henneker's "experimental" f values (at

the ground state equilibrium nuclear separation R,) are given

in Deble ¥.2°

As discussed in Chapter I, the tv‘v“ data may
be inverted to obtain f (experiment) only if a specific
functional form for the transition moment M(R) is assumed.
There are, in addition, substantial problems in measuring the
radiative lifetimes in these systems.3S Since the lifetimes

are in the 10 microsecond region, there is sufficient time

for de-excitation by collisions with other molecules. For
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example, N2+

may de-excite when colliding with neutral Nz,
either by a change of the vibrational state of N2+ or by
electron transfer. As a result, measured lifetimes often

35 ;36

differ by a factor of two or more. The experimental

inaccuracies are indicated by the two different £ values for
n,* in Table 3.%7

Johnson, Capelle, and Broida have measured the radiative
lifetimes tov" of 210 by flourescence with a pulsed tunable
dye laser.37 An f00 value of 0.021 was obtained, which will
be compared with the theoretical value in Chapter 3. These
workers have found that the radiative lifetimes of AlO using
this method are independent of the vapor pressure of the
gases (including the AlO vapor pressure) in the observation
chamber. This indicates that collisional quenching (the
collisional de-excitation of a molecule, such as in the N2+
case) is negligible. Since this is the source of much of the
error in measuring radiative lifetimes, we may conclude that
the A0 lifetimes are reasonably accurate.

In contrast to many of the previous examples, oscillator
strengths in transition metal complexes are generally measured
directly via the absorption intensities rather than by means
of radiative lifetimes. There are still problems in measuring
absolute spectral intensities, and, in addition, these intensi-
ties are often dependent on the surrounding medium. We will,

therefore, find it necessary to specify the medium in discus-

sing optical intensities in these systems.
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Mn04_l is a tetrahedrally coordinated molecule which may

appear either as a component of an ionic crystal or as an

9

anion in solution. The molecule has a characteristic purple

color which is associated with an absorption band of oscil-

lator strength f=0.03 occurring in the green part of the

9,11

spectrum AE=2.3 ev. Permanganate also has a weak Van

Vleck type paramagnetism indicating a closed shell electronic
structure for the ground state. Crystalline KMnO4 has an

orthorhombic structure, with each unit cell consisting of

E

four K and four Mn0, T ‘fons.>° X-ray diffraction measure-

4
ments on this structure have established that the manganese-

39,40

oxygen distance is between 1.542 and 1.63A. For most

of our calculations (Chapter VII), the intermediate value
found by Mooney of 1.59A will. be used.38
Holt and Ballhausenhave measured the optical absorption

41

of a dilute so0lid solution of KMnO, in KClO4. They found

4
three bands at 2.3, 4.0, and 5.5ev., and a weaker shoulder at
3.5ev. However, they did not report absolute band intensities,
so we have used the earlier experimental intensities of Tetlow
(1938-19239) on the same solid solution in Table lO.42 The
bands at 3.5ev. and 4.0ev. are unresolved in Tetlow's measure-
ments, so the intensities have been assigned in the proportions
found from the Holt and Ballhausen spectrum. The resulting
spectral intensities are necessarily approximate. Den Boef

and co-workers (1958) have measured the intensity of the 2.3ev.

band for KMnO4 in agueous solution, and have found substantial



27

agreement with Tetlow's value.43 This wouldlindicate,’on a
preliminary basis, that permanganate absorption is not strongly
dependent on the surrounding environment. However, this
proposition should be checked by measuring absorption spectra
in various crystalline environments and solutions. This is
particularly important since both the den Boef and Tetlow
measurements are quite old. In the isoelectronic chromate

ion Cr04h2, the oscillator strength for the lowest energy
dipole allowed transition is £=0.08 compared with £=0.03 for

the same transition in Mn04-1.44 This suggests that the

Mr104—'1 intensities are very sensitive to the precise form

of the wave functions. This will be an important point in

our later discussion of the MnoO , spectrum.

FeCL4“l is a tetrahedrally coordinated complex with high

net spin (S=i%).4 The Fe-~Cl bond length is 2.19621.45

Bird
and Day have measured the absorption spectrum of this system,
and found four peaks of moderate intensity (£=0.07-0.28, see
Table 14).4 For these experiments, samples of Fecl4_l anions
were prepared as tetramethylammonium N(CH3)4+ and tetraethylam-
monium N(C2H5)4+ salts which were then dissolved in ethanol.
Spectra were measured at 770K. At this temperature, a rigid
glass was obtained containing a dilute solution of E‘<‘-3(3]r.'4m1
anions. An excess of chlorine ions is required to suppress
the reaction of the 17'e(314"l with the solvent (solvolysis).

The glass often cracks, which introduces errors into the

spectrum. In addition, the effects of the medium on the
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spectral intensities in this rather complex system remain

unresolved.

. 2 . o
The electronic structure of CoCl4 is similar to the

1

FeCLﬁm structure, except for the addition of 2 electrons to

d orbitals which are unoccupied in FeClAml.4 The chlorine

tetrahedron in the CoCl4m2 compex is known to be distorted.46

47

The experimental Co=-Cl bond distance is 2.28R. The net

4
spin in this system is S=i%u Three spectral peaks have been

found at low energy AE=0.4, 0.7, and l.8ev. due to d+d crystal

48-50

field transitions. The peak intensities for the last two

4

are extremely small £=7.2 x 10" % and 5.1 x lfJ'—3 (see Table

48,49

16). The peak intensity at AE=0.4ev. has not been

measured, but is thought to be small and dependent on the
amount of tetragonal distortion of the CoCl4m“ complex.50

The spectral measurements discussed above are due to Cotton
and co-workers, Ferguson, and Quinn and Smith. Day and Jorgen-

sen have found a transition of moderate intensity at higher

47

energy, £=0.065 at AE=5.3ev. Most of these workers

made measurements on tetra-alkylammonium salts either in pure

crystalline form or in ethanol solution. In these cases, the

CoCl4_2 environment is similar to the FeCl4 environment in

the experiments of Bird and Day. The experimental errors

encountered in CoCl4 “ are therefore similar to those found
in FeCl4‘l.
Beach and Gray have measured the spectral intensities of

the octahedral complex Cr(CO)6 in both vapor form and in
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solution (see Table 18).3l The Cr-C and C-0 internuclear
o]

distances are 1.92A and 1.13£ respectively.52 There are

five major spectral peaks at 3.91, 4.44, 4.83, 5.48, and

5l

6.3lev., with a smaller intensity peak at 3.6%ev. Transi-

tions at 3.59 and 3.9lev. cause the photo-dissociation of

neutral CO from Cr(CO)6.52

Where comparisons are available,
solution spectra of Cr(CO)6 in EPA (a mixture of ethanol,
isopentane, and ethyl ether) yield iﬁtensities which are
lower than the vapor spectra values by 40-50% (with both
sets of measurements being made at 300°K). This is a clear

case where the molecular environment strongly affects

spectral intensities.
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CHAPTER III

PREVIOUS THEORETICAL WORK ON OPTICAL INTENSITIES

ATOMS

In Table 1, we give the comparative results of Hartree-
Fock theory, Sinanoglu's many elgctron theory (a type of
CI theory), and experiment for the oscillator strengths of
the ions C+, N+, F+, and Ne+.25_2g While there is good
agreement between many electron theory and experiment,
about a 10% discrepancy, the Hartree-Fock results are too
high by a factor of 2-3. This shows that the Hartree-Fock
theory does not give accurate absolute intensities even in
simple systems.

Ellis and Goscinski have reported oscillator strengths
for Li, Na, and K by the Xa method.30 These have been
compared with a summary of experimental f values and with the
Hartree-Fock values. The X, calculated intensities are in
good absolute agreement with experiment, the average error
being 5.12% (with the Latter correction potential), wversus
14.7% for the Hartree-Fock method. The transition state

was used to find the Xu orbitals for the calculation, and

the oscillator strength was evaluated using the length form.
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(See Chapters 5 and 6 for a thorough discussion of these
concepts.) The X, oscillator strengths are presented in
Table 2.

The oscillator strengths labeled f(Xa) in Table 2 are
calculated using the standard Xa orbitals. The orbitals
f(Xu' Latter), however, were computed using the Latter
30

correction for the potential, which is defined as follows.

At small and intermediate distances the standard X, potential

-2 (Z-N+1)

= , where 2

is used. At large distances r2r., V(r)=
is the nuclear charge, and N the number of electrons in the
atom. When an electron is far away from the nucleus, its
potential is assumed to be purely electrostatic as given

in the formula above. The distance s is fixed by regquiring
the continuity of V(r). It is known that many important
consequences of the Xy theory no longer hold when the Latter
correction potential is used.53 In particular, the virial
theorem which is satisfied both in the Xa theory and in an
exact theoretical framework, fails upon application of the
Latter correction potential. For these reasons, we will

use the standard X, theory without the Latter correction in
our own calculations. From Table 2, the accuracy of the

two theoretical approaches is comparable, except that f(Xa)
seems to display alarger error for very small intensities
f<0.01. The evaluation of Xa oscillator strengths for atoms

is elementary when compared with the general formulation for

determining intensities in polyatomic molecules which is
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developed in Chapter VI.

It would also be valuable to widen the range of atomic
systems for which X oscillator stfengths are available.
Alkali atoms, having only a single electron outside a
closed shell, are very simple systems from a gquantum
theoretical point of view. (This is evident if one com-
pares the accuracy of the Hartree-Fock intensities for the
alkali atoms with the accuracy of the Hartree-Fock values
for the ions C+, N+, F+, and Ne+. By this criterion, the
light ions are more complicated in structure than the
alkali atoms.) There are, therefore, far more critical

tests of the Xa intensities for atoms than those which

have been considered so far.
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Table 1

Oscillator Strengths in Several Light Ions?

Transitions f (Hartree-Fock) £(MET) f (experiment)
cIr 2p 2p»2p? %p 0.263 0.125 0.114
NII 2p° 3p+2p> 3p 0.236 0.100 0.101, 0.109
NIT 2p° “p+2p° °p 0.170 0.137 0.131
rrr 2p* 3pr2p® 3p 0.322 0.140
NeII 2p° 2p+2p° 2s 0.176 0.073 0.035, 0.055

(MET is Sinanoglu's many electron theory.)

a Reference 25.



34

Table 2
Oscillator Strengths in Alkali Atoms®

Transition £f(xy) f(xy, Latter) Experimental £

Li 2s*2p 0.7529 0.7629 0.75 + 0.01
2s73p 0.00125 0.00479 0.0055 + 0.0002
3s+2p 0.2612 0.3269 0.345 + 0.035
3s*3p 1.1019 1.1615 1.23 + 0.12

Na 3s*3p 0.9305 0.9783 0.975 + 0.04
3s*4p 0.01731 0.01319 0.0140 + 0.002
4s-+3p 0.4647 0.5089 0.489 + 0.12
4s~4p 1.4004 1.4344 1.35 + 0.34

K 4s-4p 1.0298 1.0542 0.99 + 0.04
4s+5p 0.01618 0.0100 0.0089 + 0.0001
5s+4p 0.5044 0.5492 0.55 + 0.14
5s+5p 1.4742 1.5093 1.5 + 0.75

(f(xa) is the oscillator strength using the standard x

approximation.

f(xa, Latter) uses the X,

o

approximation at

small and intermediate distances, and the Latter correction

at large distances.

nuclear charge,

a Reference 30.

and N the number of electrons.)

Vir)

_ —2(Z-N+1)

r

ro, with Z the
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SIMPLE MOLECULES

The simplest molecule is H2+, which has only one electron.
Bates and co-workers have calculated the exact electronic
wave functions of the 169, 10u, and lHu states in this system
as a function of internuclear distance R yas well as the

resultant f values.54'55

Lamb, Young, and La Paglia have
compared these f values with approximate linear combination

of atomic orbitals (LCAO) and Gaussian lobe basis calcula-
tions.56 The basis set of six Gaussians at each nucleus and
one at the molecular midpoint allow for an accurate description
of both excitation energies (with an error of less than 0.27ev.)
and oscillator strengths. The simple LCAO results are dis-
tinctly inferior. In Table 6, the f values for the Gaussian
basis are listed for three different forms f(§), f(?), and
f(;,%) (the dipole length, momentum, and mixed forms of

the oscillator strength -- the last being the geometrical

mean of the first two forms). The exact f values of Bates

and co-workers are also given in Table 6. Since there are

no electron-electron interactions in H2+, this example allows
one to evaluate the accuracy with which a known Schrodinger
equation is solved by a given method. For the Gaussian

basis method, the discrepancies between the different oscil-
lator strength: forms result from the truncation of the basis
set (see Chapter IV). These discrepancies are significant for

R23.0 bohr radii. Similar truncation problems are encountered
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in the Xa scattered wave intensities (see Chapter 7, Section

A). Although the Gaussian basis method yields a generally

good description of intensities in H2+, it is still an

LCAO method. Such methods have serious deficiencies in com-

plicated systems.
The H2 molecule is a more complex system than H2+,
since there is a single electron-electron interaction in this

molecule. The appropriate configurations for the xlzg ground

state, and the Blzu and ClHu excited states are (lcg)z,

(lcglcu), and (1Gg1I[u).33 Kolos and Wolniewicz have done

very accurate CI calculations for these three states as well
as the 3Zu(lcrg+lou+) state, and f values for the bands were
obtained.?? Previously, Ehrenson and Phillipson used a
simple CI wave function for the ground state and a self-
consistent wave function for the loglou configuration to

33

calculate the (109)2~>(1c l1o,) oscillator strength. The

g
oscillator strength values from these calculations may be

found in Table 7. The Kolos-Wolniewicz approach of calculating
wave functions as explicit functions of the electron-electron
distance has not been applied to systems with more than two
electrons. Nonetheless, their calculations on H2 are among

the most accurate to have been done on atomic and molecular
systems.3 The total theoretical f value for the two bands

1z+lz and 1y +1H is 0.656, in good agreement with the less

g “u g u
accurate experimental value £=0.65.
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Popkie and Henneker have made an extensive study of di-

+ 22
2

Optical intensities were obtained from the Hartree-Fock wave

atomic molecules with 13 electrons (Cz_, N, , CN, and CO ).
functions of Cade and co-workers.58 These wave functions
were obtained by separate determinental ¢alculations for the
ground and excited states with an extensive basis set (rigorous
Hartree-Fock method). The resulting Hartree-Fock oscillator
strengths of Table 3 are about 3-5 times the experimental
values. However, we have found that the formula in Popkie
and Henneker's paper for f (Hartree-Fock) is too large by
a factor of 2 for 2H+2Z+ type transitions. (We discuss a
general method for calculating the necessary degeneracy factor
in Chapter VI.) Utilizing this correction, the Hartree-Fock
f values are 1.5-5 times the experimental values. The largest
discrepancy is in the B22u++X22g+ transition in N2+ with
f (Hartree-Fock)=0.193, f(experiment)=0.038. The theoretical
oscillator strengths of Table 3 were evaluated using the
mixed form £ (X,V) whichhyields better results than f(X) or
f(ﬁ) for these systems within the Hartree-Fock method;
yet significant discrepancies exist between theory and
experiment. In the current state of the problem, it is not
clear whether the theoretical or the experimental f values
have the larger error.

Very recently, Megssmer and Salahub have calculated the
intensities of the 1lII+5¢ (x22++A2H) and 5021 (X22++2Hr)

PO i & i i i
transitions in CO using the Xa method with overlapping
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spheres (see especially Chapter V ).59 The dipole length

form of £ was used in the calculation. The atomic wave
functions were matched to approximate single center forms
(Hankel functions) in the interatomic region. The integrations
were then done explicitly over all regions of space to obtain
the matrix elements (see Chapter VI C). These oscillator
strengths f(;) are given in Table 8. (We should emphasize
that in all atomic and molecular cases we report absorption
oscillator strengths independent of whether measurements

were made of emission processes or of absorption) For the
1II+50 transition, the Xu theory f(g) value of 0.0088 may be
compared with the Hartree-Fock f value of 0.0177 (uncorrected)
and 0.0089 (corrected) as well as with the experimental £

value 0.0056.22'59

The Xa scattered wave theory £ wvalue

is very close to the rigorous Hartree-Fock result (corrected),
the latter being evaluated with the mixed form of f. These
theoretical results arein very good agreement with the experi-
mental f value, especially in view of the uncertainty in the
experimental value. For the 50+2I transition, the respective
intensities are f (Hartree-Fock)=0.105 (uncorrected), 0.053
(corrected), and Xu theory f(x)=0.048. Experimental intensities
are not available for this transition. Messmer and Salahub
found that the oscillator strength was very sensitive to the
type of matching functions used, and that Hankel functions

59

are superior to Bessel functions in the calculations. The

f(§) form in the X, theory has not as yet been applied to
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more complex systems, so its overall value is still to be
determined. These preliminary results are very encouraging.
Later, we will compare these f values with the author's £(VV)
values on cot (Chapter VII A4).

2

Michels has done a limited CI calculation for the B Z++

25+ 60

X transition in Al0. Using accurate vibrational wave
functions, he has found an f00 value of 0.012. Johnson,
Capelle, and Broida obtained an experimental fOO value of
0.021, or about 2 times the theoretical value.37 Several
CI calculations of intensities have been made on diatomic
and triatomic molecules. Comparison with experimental
intensities, where these are available, generally yields
values of comparable accuracy to the AlO results.sl'62
We may conclude that for diatomic molecules of moderate
complexity, the accuracies of limited CI theory, the rigorous
Hartree-Fock method, and the Xa scattered wave method seem
comparable. For very simple molecules like H,, an extensive
CI calculation is the best method, but this type of
calculation is not easily generalizable to more complex

systems. Further theoretical and experimental work is again

necessary to clarify the situation.
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Table 3

Hartree-Fock Electronic Oscillator Strengths for
Some 13 Electron Systems.

Theoretical and experimental values given at ground state

equilibrium separation Re.a

Transition fHF f (experiment)
(2?1 +x?zg™)
u
& 0.0166
N; 0.252 0.0029, 0.0064
82z -x°zg™)
u
o 0.224
N; 0.193 0.038
(a1, +x%5)
1
CN 0.0168 0.0058
co™ 0.0177 0.0056

= Reference 22.



Table 3
(continued)

Configurations for these systems:b

x5t 10g® 102 20¢° 202 30g
u u "

2 2 2 2 2 2
A Hu log lcu 20g 20u 3og

2. + 2 2 2 2
B Zu log lcu 20g 20u 309
x2zt 162 20 30% 40 50
A2H. 102 202 302 402 502

Reference 3.
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TRANSITION METAL COMPLEXES

Permanganate has been studied theoretically by many
workers, but the spectrum in this system (apart from the
X, scattered wave results) is still not understood. Different
spectral assignments have been made by Wolfsberg and Helmholz,
Ballhausen and Liehr, Viste and Gray, and Mortola and co-

63-66 All of these calculations were of the semi-

workers.
empirical Hartree-Fock LCAO type. Fenske and Sweeney have
computed f values based on the calculations of Ballhausen
and Liehr (1958) and Wolfsberg and Helmholz (1952). 2 The
results are highly unsatisfactory. For example, for the
lt1+2e (oxygen 2p-+manganese 3d) transition, the Ballhausen
and Liehr intensity is 34 times the experimental value. The
Ballhausen and Liehr calculation also indicates that the first
band is more intense than the second and third bands combined,
while the reverse is true. The Wolfsberg and Helmholz spectral
assignment has the 7t2 (mapganese 3d) level as the lowest
unoccupied state, lying beiow the 2e. This contradicts both
the prediction of crystal field theory for tetrahedral complexes,
and the results of electron spin resonance. measurements on
Mn04-2. &7+ B8 The latter establish that the extra electron is
in the 2e level.

Recently, Mortolaand co-workers (1973) have completed
a self-consistent approximate Hartree-Fock calculation using

1 66

a Gaussian basis set for Mn04~ . A comparison of their
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theoretical intensities with experiment is given in Table 11.
The Gaussian wave functions do not yield correct relative
intensities for the various bands. 1In particular, the
ltl—>~7t2 transition has a smaller intensity than either the
lt1+2e or ‘the 6t2+2e in contradiction to the experimental
band intensities. The commonly used dipole length oscillator
strengths are much larger than the experimental f values,

and the three different oscillator strength forms differ
substantially. The disagreement of the different oscillator
strength forms is a consequence of the non-local nature of
the Hartree-Fock exchange potential (we will discuss this
problem in Chapter VI), as well as of the limited basis set
used in the calculations (this was discussed earlier in
regard to the H2+ intensities). The Mortola spectral

assignments were obtained by using the formula

AE; 5 =Suy|V, |u 5

(e Twlas>

J

to find the excitation energy for the corresponding transition
(excitation énergies by virtual orbital theory are in error by
2.0-4.5ev., and are therefore unreliable). Such a procedure
is not justified with a non-local exchange potential (see
Chapter VI C).

In conclusion, the previous intensity calculations for
Mno4_1 have not clarified the spectral assignments, and these
intensities bear no relation to the experimental spectral

intensities.
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Ellis and Averill have calculated excitation energies and

intensities for FeCl4 1 using the spin restricted Xa method
and the dipole length form of the oscillator strength.69 As
shown in Table 14, both the calculated intensities and the
calculated excitation energies are in poor agreement with
experiment. Their methods may be criticized on several
grounds. 1) Their oscillator strength formula is wrong, and
should be multiplied by the orbital degeneracy of the initial
(lower) level d79° This is why their intensities are too
small as shown by the corrected values. 2) The spin restricted
formalism is unreliable for FeCl4-l. The excitation energies
have large errors, and the orbitals are highly spin dependent.
Spin unrestricted calculations are required for high spin
complexes like FeCl4"l. 3) An incorrect ground state configura-
tion was used in the calculation. 4) Ground state orbitals and
one electron energies rather than transition state orbitals and
energies were used in the calculation. 5) The muffin tin
approximation for the potential was used rather than the
overlapping sphere approach. These issues will be discussed in
Chapters V and VI. In view of these assumptions, the resulting
inaccurate intensities and excitation energies should be
expected. These errors are not intrinsic to Xa scattered
wave calculations on FeC14— (see Chapter VII).

Jaeger and Englman have calculated d+d intensities in
tetrahedral complexes using a crystal field model and including

the temperature dependence of the intensity.70
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CoCl4-'2 was among the complexes considered. However, these
authors conclude that the crystal field model is unreliable
for determining intensities in these systems.
There have been no previous intensity calculations on
the complex Cr(CO)G. Beach and Gray have made a semi-empiri-
cal LCAO calculation on Cr(CO)6 using the assumption that
the lowest energy band is due to the tzg—*eg (Cr 3d-Cr 3d)
transition.51 We will analyze this assumption, and present
our intensity calculations for this complex in Chapter VITI.
Overall, little work has been done in evaluating spectral
intensities in transition metal complexes. With the exception
of the CuCl4_2 calculation discussed in Chapter I, no useful
information on electronic structure can be deduced from the
previous oscillator strength values. As can be seen from the
FeCl4—l results, a clear understanding of the XOL method
concepts is required to properly treat the problem with the
X, approach. Because of the.approximations required to
implement the Hartree-Fock method on transition metal com-

plexes, future progress on intensities with this method

should be difficult (Chapter IV).
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CHAPTER IV

A CRITICAL DISCUSSION OF CONVENTIONAL THEORETICAL APPROACHES
TO INTENSITIES

CONFIGURATION INTERACTION THEORY

The configuration interaction theory is an approximate
method for finding the many electron wave functions w?l
of a system.

The many electron wave function of a molecule is a

solution of the Schrodinger equation19 \

-

- - - =
JRy---R)W(L,2,.. .N,Rl...RM)=E(§1.. )
'?(lJz,_..A/;‘Q—:,...?M)

4.1) H(%l...§N

with H(§l...§N,ﬁl...§M) the full many electron Hamiltonian
at fixed nuclear position. (We suppress the superscript
indicating an electronic wave function). As a consequence
of equation 4.1 the total energy {¥|H|{ (integration only
over electronic coordinates) is a minimum when the true

many electron wave function is used in the expression. This
is true for both ground and excited states. Given:a complete,
orthonormal set of spin orbitals Wyr Woreeeee oW, a linear

combination of determinants with coefficients Ci’zi c,D; may
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be formed to represent the wave function ¢’? One may vary
the c; to obtain the minimum total energy, and in the limit
of an infinite number of terms, the true wave function
results. In practice, expansions are limited to a few
hundred configurations; each configuration is a linear com-
bination of determinants satisfying the symmetry requirements
of the many electron wave functions. In the most general
form of the CI method, both the orthonormal basis set and the
coefficients of the determinants are varied to obtain an
approximate total energy and wave function. Various tech-
nigques, such as Sinanoglu's many electron theory, allow one
to classify which configurations will be most important in the
expansion, and thus to limit the number of configurations

which must be considered.25

CI methods are quite powerful
for obtaining accurate wave functions, but the range of
systems that can be treated is very limited. CI calculations
are computationally prohibitive on molecules much larger than

0. and A10.3,60

2
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HARTREE-FOCK LCAO THEORY

The Hartree-Fock theory is based on approximating the N
electron wave function of an atomic or molecular system by a
single determinant7l

£.2) F(1,2,....0) = 0D Awy (1w, (2) ...y (1)

with A the antisymmetrizing operator. The one electron spin
orbitals w, are chosen to be orthonormal, and are factorizable

as a space part times a spin part

4.3) w (1) = ¢, (%)X, (o))

with Xi(cl) = 4 or ¥ spinor function and 0, the two valued
spin variable o, = +1, -1. By minimizing the expectation
value of the total energy (¥|H|y) (in Dirac notation) with
respect to a variation of the ¢i’ an optimum set of spin

orbitals is obtained. The resultant spin orbitals Wy satisfy

the Hartree-Fock equations

4.4) H (Dw. (1) = e.w, (1)
eff * ot occupied
* =
Hoge = ~Y1% = § 229 ot + fdv, LW (2) 2(1-py ) e 12
1l g [xl—izi k

in Rydberg units. The integration is over both space and

spin coordinates. (In these units, energies are in Rydbergs,

2
distances in bohr radii, and - . 1). The index g denotes

2m
the various nuclei of the system. The operator P12 permutes
the coordinates of electrons 1 and 2.

In the LCAO (linear combination of atomic orbitals)

approach to solving molecular problems, the orbitals ¢i are
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approximated by a linear combination of orthonormal basis
functions72

-> M > .
4.5) ¢i(x) = ZC.dsx) i=1l1,2,...N

j=1jl J ] )
ji=1,2,...M (M=size of the basis set)

Here the aj (§) constitute a fixed atomic orbital basis set.

This leads to a set of self-consistent equations for the Cji

which must be solved iteratively. These are matrix equations

of the general formll
M = _
4-6) .E (Frj _eisrj)cji - 0 r—l,....M
j=1
Non-trivial solutions for the Cji exist when |F—eiS| = 0. The

solutions of this equation are a set of £y from which the C.y
are then obtained. There are two difficulties: one is that
the matrix elements Frj depend on the charge distribution

and consequently on the C. This is what necessitates an

jis
iterative solution. The more serious difficulty is that

the Frj contain three and four center Coulomb and exchange
integrals when a multi-center atomic basis set (with atomic
orbitals centered on each nuclear site) is used. The most

general of these is the four-center integral (£

* > -+ * -
4.7) (aB|CcD = fal(XAl)a2(xBl) " l+ aa(xcz)a4(xD2)dvldv2
ESE :

In this equation X is the vector distance of electron 1

Al
from the origin at nucleus A. The orbitals a;, a,, az, 3,
are atomic orbitals centered at sites A, B, C, and D.

Although various analytic basis sets have been used

for the aj(§), the most reliable has proved to be the exponential
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Slater basis

4.8) a = Nngmrn“le— Erng(9,¢)

with N the normalization constant, ng(6,¢) a real spherical
harmonic, and r the radial distance from a given atomic
center. Calculations of this type are very complex and
require large amounts of computer time. Optimal minimal
Slater basis calculations using a few functions at each
center have been performed on HZO' CH4, PH4 and other sys-

73 Calculations on larger systems

tems of similar complexity.
become feasible only if the multi-center integrals are
approximated semi-empirically as in ﬁhe extended Huckel
method, or as in the CNDO (complete neglect of differential

L1

overlap) method. Another approach is to abandon the

multicenter basis set, and instead use a single center basis
as in Ellis's calculations on KNiF3.73
The source of much of the difficulty is the non-local
exchange term in the effective Hamiltonian
0O8, 2

4.9) Jav, % w (2) =2Pq15 w, (2)

k ]xl—le

As we shall see later, when this term is replaced by a local
exchange term, an approximate numerical solution of Schrodin-
ger's equation becomes feasible. The use of analytic basis
sets in solving the Hartree-Fock equations further compounds
the problem, since such basis sets are characterized by

slow convergence and complicated mathematical properties.

This problem is especially serious in complicated systems
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such as transition metal complexes.74 A further consequence

lies in the treatment of excited states. When unoccupied
(virtual) orbitals are calculated via the Hartree-Fock
equations, the exchange term displays unphysical features.
Specifically, the excited state electron moves in the field

of all N electrons, and thus behaves as if it were an additional
test charge added to the N electron system. The resulting
virtual orbitals are not good excited state orbitals, and

the excitation energies of the system are far too high.ll
Since dipole matrix elements (¢i|§|¢?‘ of the orbitals must
be evaluated to obtain absorption intensities, these will not
be reliable either. The alternative of solving a separate
determinantal problem for each excited state configuration --
the rigorous Hartree-Fock method -- is intractable in complex
systems because of the computer time required.

We will also show in Chapter VI C that the different
forms of the oscillator strength are theoretically equivalent
only for the case of local potentials. As previously
described, this condition is not met by the Hartree-Fock
method.

In this section, we have seen that a method using a
local exchaﬁge term, if this term is well founded in terms
of basic theory, offers several advantages over Hartree-Fock

theory.
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THE EFFECTS OF MOLECULAR VIBRATIONS ON SPECTRA

We present in this section a discussion of molecular
vibrations based on a paper by Mulliken and Rieke.7 The
derivations in this section are more general than theirs
in that we allow the equilibrium nuclear positions for the
excited states of a system to be different from those of
the ground state. It was well known at the time of the
Mulliken and Rieke paper that the same theorems hold in
this case as hold in the case of no change in the nuclear
configuration. From the standard theory of molecular
vibrations, we derive one new result, that the mean excitation
energy for a vibronic transition lies below the value determined
by the Franck-Condon principle (the vertical excitation
energy) .

In the Introduction, we discussed the distinction between
the oscillator strength as a function of internuclear separation
f(R), and the oscillator strength between specific vibrational

w for a diatomic molecule. To find the total

sublevels fv'v

absorption from a specific vibrational sublevel of the

ground state, we must take Z fv'v“'7 Similarly, for a
vll
thermal ensemble of initial vibrational sublevels v', we

- ]
find (average v') infv'v"

are attempting to evaluate and compare with experiment.

. This is the guantity which we

In general, the electronic oscillator strength is a function

of the normal mode displacements Ay f(ql,...qm,...), as is
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the electron transition moment we have previously defined
M (ql,...qm,...). The appropriate generalization of the

formula for fv'v" is then7’22

_ 2m >
4.10) £ = FprgAE e D ](tpv,i(ql...qm..)le (dyeeeQye-)

i k,% X
N/v”j ( 21--'1’»:))}2

Here wv'i and wv"j are the total vibrational wave functions
for the initial and final electronic states i and j, with
sublevels v' and v" and AEV.v“ is the corresponding excitation
energy. The sum over k, 1 is over all degenerate initial and
final state partners, as before.

In the harmonic approximation, the total initial state
vibrationgl wave_functign is given by

i i i
Y

i = ¢1 (nl)d)2 (n2)¢3 (n3)..., with the final state given

by by = 037 G ot @ped@y ... TP

Here ng,Ny,.s-
are the excitation numbers of the normal modes 1,2,... for
the initial state , and 51,52,53... have the same meaning
for the final state. The functions ¢ri (nr) are harmonic
oscillator wave functions for the n_ excitation of normal
mode r. Because the potential energy curves are different
for the electronic states i and j, the harmonic oscillator
wave functions are also different, as are the normal mode
displacements, q. for state i, &r for state j. (Since the
normal mode displacements are measured with respect to the

equilibrium nuclear configuration, g + £ .. Here

r - 9

B is the change in normal mode coordinate d, which results
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from the change in the equilibrium nuclear configuration of
states i and j).
From the preceding considerations, the evaluation of

£ « should prove difficult. However, the approximate

v'v

evaluation of (average v') I fv'v“ is quite feasible. We.
v'll
first expand the transition moment M (ql,...qm,...) as a

- Taylor series in the normal mode displacements about the

equilibrium point ap = 0 (for all m)7

mn
g

4.11) M M

g .+ ...

n
+ ZMl q, + I M n9n

n m,n

0 2

The coefficients Mln, Mzmn

M

0g
n 0
terms. M, is just the transition moment at equilibrium for

may be found by evaﬂuating.Mln =

and we can proceed similarly for the higher order

the ground state nuclear configuration, M0 =M (Rie""'Rke)'
If MO # 0, as is the case for a dipole allowed transition,

My constitutes a first approximation to M. This approximation
is reasonable if M is a slowly varying function near equilibri-
um, and if the initial vibrational states for the transition
are of low order, especially v' = 0 (nr = 0 for all modes).

In practice, this condition often holds at room temperature

and below as we shall see later.7 An indication of the
reliability of this approximation is given by the temperature
dependence of the measured absorption for an allowed transition.
The guantity (average v') gufv'v" is temperature independent

if M = MO' but is temperature dependent when higher order

terms are included.



55

We consider the quantity X f w With M = M We then

sl v'v 0°

obtain

2
4.12) 5"fv,vn = §ﬁfﬂE 5 |M0’k£|25"|<¢v}i(ql... ..)[ f?z fm)#

AE is an average excitation energy, which will be defined more
precisely later. Since wv"j(ql....qm...) constitute a complete
set of states over the space of the normal mode displacements
Qs We find

4.13) I f =20 Ak z |B

" v'v" 3h2 k, 8

| 2

D,.ER

The sum over v" reduces to <@v,i(ql...qm..)|¢V.i(ql...qm7.£>=.l.
As a further consequence, since equation 4.13 holds for any
state v', it is also true for a thermal ensemble of such

states

4.14) (average v')

=
L E ign = 3h2AE oM

2 =
2 E | E(Rygr Rygre--R

0,k4 2e ke)

The measured absorption f value is, therefore, approximately
the oscillator strength at equilibrium, f(Rie' R2e"" ke).
This is the mathematical statement of the Franck-Condon
principle. The physical idea is that the electronic transition
takes place very quickly with respect to the nuclear motions.
The transitions occur primarily from the v' = 0 sublevel

(a symmetric state with maximum amplitude at equilibrium)

to v" sublevels which have a large amplitude near Rie’ R, ,...R

2e

Classically, the nuclear positions do not change during the

ke*
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excitation, and the important v" sublevels have a turning

point near this nuclear configuration. The excitation

energy AE is given by the total energy difference at equilibrium,
representing a weighted average of vibrational sublevel

excitation energies

4.15) AE ZAEV.V.,|<tpv,i(ql...qm..)|1pv..j(ql...qm..)>[2

"

v
AE(RIE ;Rze) e Rke)

e

(By defining AE as a weighted average of AEV.V, we may Jjustify
the factorization of AE out of the sum over v" in equation
4.12. To see this, simply substitute the weighted average
' over AEV,v" into equation 4.12, which then becomes an identity).

The statement AE=AE (Rie' R2 ,...Rke) is not precisely true.

e
However, it is a consequence of the behavior of typical

excited state potential energy curves when v' = 0.20

(See
Figure 4). Transitions of the type just described are called
vertical transitions since AE (Rie’ R2e""Rke) is a wvertical
energy difference between the potential energy surfaces in
configuration space. We should note that alternative
definitions of AE are possible; for example, AE could be
defined as the value of AEV.v" for which fv'v" is a maximum.
This definition ﬁﬁﬁld sﬁill'satisfy AﬁéaE (Rygr RZe’;"Rke)’
and would differ from the previous definition by only about
0.1 ev. We may, therefore, use the alternative definitions
interchangeably.

Now we consider a dipole forbidden transition, MO = 0.7
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A concrete example would be a g»g type transition (even
parity»even parity) in a molecule with an inversion center.
The most important example in the present work is the
2t2§*9alg excitation in Cr(CO)G. The transition will remain
forbidden, M = 0, unless the inversion center of the molecule
ié destroved. This can be done only by an odd normal mode
displacement. The resul&ing transition is called a vibronic

transition. The Taylor expansion to second order is then

M = EMi rqr. We are interested in
r=odd
2mAE jﬁ”
4.16) I £, n = Fooo— Vv @y eeea o2 Moo qr
S e T 3mray § o el SYeraldeeedne N Pk

¥ (g1 gon-

Y E =2, 2 2
o ;tz‘:{‘_aiodw | VZ”’(‘]bv,‘-(f;-..fmnirhe;,{.(?,...j.,,_,»/

1,k

The last expression in this equation is not obvious, but follows
from using the completeness of the wv“j wave functions, and
the fact that wv'i has definite parity with respect to each
normal mode Dy Now consider a particular odd normal
mode coordinate q - To find the intensity via q;s wWe Firad
evaluate
4.17) J¥g a0 y8d; - - -dgy = J'cbli(nl)qlq*glj(ﬁl)dql

fopt ) 65T ng) o T 0,7 (B850 () 0T (R aay. - aqy
with a total of p normal modes in the molecule. One then must
take the sum after squaring over final states v", of the

expression in equation 4.17 and substitute into equation 4.16,
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To simplify, let Y .; = ¢zi(n2)¢3i(n3).--¢Pi(nﬁ) and

mv"j = ¢2j(52)¢3j(ﬁ3)...¢pj(ﬁp), resulting in

1.18) = [rotmpa,0,7 @pda ST, T u.d il
. 17 (1) ay ;7 (0)day [0y ¥yugddy- - -da,

h (2nl+l)

2my 9y

The derivation of 4.18 is fairly simple. Each v" is a set

of labels {51,52,...5P}. From the properties of harmonic

oscillator wave functions75

4.19) ¢l (n )ql (2m = ) (fV’ ¢ (n -1)+ Tn ng+ i ¢1i(nl+1J

Wy is the harmonic oscillator frequency for the normal mode
qq with my the corresponding reduced mass of the nuclei.
We sum first over {52...5P} and then over 51 using the complete-

ness of ¥ _,. and ¢ 3(5 ) to obtain eguation 4.18. The matrix
v"'] 1 L

elements for the other odd modes are found in the same manner

yielding

meAE 5 ¥ (2n +1)I

4.20) L £ Veottl — [ETF -
g v Bﬁdi k,% r=odd mrwr

1 kﬁ}

The electron mass is denoted by m,, to distinguish it from
the reduced nuclear mass m,.. This is the total vibronic
intensity from an initial vibrational state v', with normal
mode quantumlnumber n,.. It would also be the first order
correction to the Franck-Condon result, equation 4.14.

To obtain the thermal average of this equation, we recall
that the average excitation of a normal mode is given by

n = i P , which is the Bose factor.75

T HAw
r/kT
Py
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-

Hiw
2 :
Since 2(n) +1 = %ET_"_—_'+1 = coth(if%), we find
r/KT. ~1.
4.21) (average v') (hwr) ;- \
o _ meAE . coth Eﬁ ,Ml,kll
" v'v" Bhdi k% r=odd m W,

Qualitatively, the temperature dependence of f goes as
coth( 2KT) for a typical mode, which is a slowly increasing

70 The same condition

function of temperature for hwr>KT.
implies that the system is mostly in the ground vibrational
state v' = 0.

We now show that the average excitation energy for a vi-
bronic  transition lies below the value determined by
applying the Franck-Condon principle. Although this idea
is a direct conseguence of the theory of vibronic excitations
as presented by Mulliken and Rieke, we have not found any
discussion of this issue in the literature.7

In our derivation for vibronic transitions, we have
again replaced the true vibrational excitation energies
AEV'V" by an average AE. By analogy with our previous
definition, AE has a different structure for vibronic

transitions

2
4.22) AE_, = C Zaf ABuynl 5 K., (- --”f,-/‘;l:,y/f,..,f,"__b/

vibronic X, 2 r-odd
al

with C a normalization constant. Before, 4E . was weighted

v'v

simply by the square of the overlap of the initial and final

vibrational wave functions, |<wv'i(ql"'qm")lwv"j(ql"'qm"b |2,



In the present case, if v' = 0,

-
wv?’

Therefore, AE

a, - c'¢ll(0)¢21(0)...¢rl(1)...¢1P(0) , with C' a constant.
o —— is determined by v" states having a

large overlap with the first order harmonic oscillator
function ¢ri(l), which has odd parity, as well as with the
zeroth order oscillators for the other modes. The primary
overlap will then come from lower v" sublevels than was the
case for an allowed transition. (See Figure 4). The net
result is a shift of the spectrum to lower excitation energies,
AE <AE (R

reesR The value of the shift depends

e’RZe ke)'

on which mode g, makes the primary contribution to the vibronic

vibronic

intensity. These are simply the respective terms for the
various modes in equation 4.21.  For such a mode, the energy
shift is approximately equal to the vibrational energy
separation between oscillators hw (typically about 0.1 -

0.3 eV). 1In addition, we notice that the calculation of
vibronic intensities via equation 4.21 is gquite feasible

by our methods, though none have been attempted in the
present work.

We should also comment on the validity of the approxi-
mations made in this section. We have used the harmonic
oscillator wave functions for the initial and final vibrational
states. This approximation is physically reasonable for the
initial electronic state i, but is not reasonable for the
electronic state j which may undergo molecular dissociation

or have other anharmonic properties. However, the proofs
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in this section rely only onlthe completeness of the %ﬁ"j
functions, on a harmonic oscillator type behavior near the
classical excited state turning points, and on an absence

of coupling between normal modes. Any physically reasonable
vibrational wave function should obey the first two conditions.
In particular, anharmonic effects at large distances from
equilibrium should not affect our results. The assumption

of no coupling between the normal modes is, however, un-
satisfactory for many molecules. We should therefore consider
the results of this section as characteristic of a reasonable
physical model for molecular vibrations. The behavior of real
physical systems may be more complex than we have portrayed
here.

Summarizing, for a dipole allowed transition, the

measured absorption intensity is given by (average v')

ius'V" = f(Rle’ R2e""Rke) at an average excitation energy
AE = AE(R;.., Ry _....R, ). For a dipole forbidden transition,
ie 2e ke

vibronic coupling causes absorption (at lower intensity)
which is a slowly increasing function of temperature. The
average excitation energy shifts to lower energies,

AE<AE(Rie, R ,...Rke) by about 0.1 - 0.3 eV.

2e
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BOUNDARY CONDITIONS AND LOCAL FIELD EFFECTS

We are concerned here with the effects on the absorbing
molecule of the surrounding medium. Much of the original
work in this area was done by Chako, with later contributions
by Onsager, Person, and others.76-79 As we indicated earlier,
the issue is not important in the case of vapor spectra
where the diffuseness of the medium (other absorbing molecules)
renders the various molecules independent with respect to
absorption (except for molecular collisions).7 The issue
arises in the case of absorbing molecules dissolved in a
medium of a different type, or of absorption by a homogeneous
material (for example, in a crystal such as sioz). The
later instance forms an important limiting case and shows
the value of including boundary conditions as well as local
field effects in our considerations.

We begin by considering a dilute solution of absorbing
molecules of type A in a medium B, which is transparent
at the absorption frequéncies of A. Each molecule A lies
in an assumed sphefical cavity in medium B. Let an applied
electric field EO cause a uniform polarization of B with
polarization vector 3. (Since the molecule A is treated as
an object which responds as a whole to the effective field
E', the field B may not include a direct contribution
from the polarization of A). The effective field at A is

that of a spherical cavity cut in a uniform polarized
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medium.80 The field in the cavity is the macroscopic field
EO minus the field due to the polarization of the dielectric

which we have removed. The electric field inside a uniformly

polarized sphere is constant and is given by Es = :%E B.
Then, the field in the cavity is
411 4Tl
A i = — = S ———- — —_—
1.23) EB' = Eg-E_ = Eg+al b = (145L ¢ ) B,
with Xa = % the dielectric susceptibility. However, we also

0
know that the electric displacement vector D is given by

-

4.24) B = B = E +41F = (1+4my )P
with € the dielectric constant. Then we find

- £-1
Xe 41

B = (l+%ﬂ(%ﬁ%v By = {gggéﬁo

Since the medium is transparent, e = nO2 with n, the index of

4.25)

refraction in B, and

2
4.26) E' = (no +2)E0

3

. . . ; 80,81
The absorption coefficient is given by
t ) . 1 +*
4.27) n = %Se(j g %

e *

g Re (EgxBg™)
The effective field E' induces a current J = gE'. The rate of

‘energy flow, however, is determined by the macroscopic field

amplitude E0 (since this is the true average field over the

material). From Maxwell's equations, the magnetic field ampli-
; § _ > = ; _ .

tude is given by go = N0e3xE0, with NO = n0+1K0 the complex

index of refraction for the entire material, KO the extinction
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-
coefficient, and e3 the unit vector in the direction of wave

propagation. We then find

cng SCnO "
The absorption coefficient is )
Re( = o
4. 58) Al (ny*+2) * eg 133 Iy _ 41 "o *2 Re(% 0..)
: N= 335 9n 2 " 3c 9n j=1 JJ
0 |E0X| 0

(The electric field amplitude on(l) is a function of pene-

tration 2 into the material, but this does not affect 1.

; L fnow wK,. 2
gyslwt ) = E 1(_2_ —‘J .
(Lye , where EOX( ) E)x© o brwt] o=—

3 4 Ox

and EOx is a constant vector). n and similarly f differ from
2 ¢
n 2
the previous result by the factor *2“%5——7 which is greater

76 . 0

than 1 for n0>l. Since the value of f for a vapor of A

molecules has no local field effects7

2
_ (n02+ﬂ
9n

4.30) fsolution |

vapor

<1

0

The previous value of f should be multiplied by %—when compared
with the integrated molar extinction coefficient for a
solution. The field E' of equation 4.26 is known as the

-2

cavity field, and the correction factor (nO +2) is
9n
0

called the Lorentz-Lorenz factor. (The Lorentz-Lorenz
equation for the index of refraction of the medium B, in the

absence of A, may be derived with the same assumptions we
80

have used. P = ﬁaBE‘, with N the molecular density of B,
and KB the molecular polarizability of B. E' = EO+§HP. %, =
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154 _ Je = No. Therefore
E t4llp  1+41x B" 4
= e
; 3 3 )
3 el _3 Mot .
T T n,%+2 og -
The last equation, when expressed in terms of Dgr 18 the
’ n,?%-1
Lorentz-Lorenz formula. We may also say 5—317-% = A =

constant. A is the molar refractivity which should be
constant for a given substance in both the vapor and liquid
states. The relation A, = constant has been confirmed for
several substances, and provides some verification of the
cavity field concept. However, the Lorentz-Lorenz factor

is not a generally valid result for the correction factor
l 7’23.)

Y
In the preceding derivation, we have assumed that the

electromagnetic properties of the absorbing molecule, in
particular its internal index of refraction ny (the index
of refraction in molecule A), does not modify the polarization

of the induced dipoles in medium B. If such an interaction

is allowed, the result is the Onsager equation T3 y78
nA2+2
4,31) E' = —E~7—~—-E0
A
0

Here E' consists of the cavity field of equation 4.26, plus
a reaction field from the effect of A on the polarization of

B. We then find

2 2
4.32) fsolution 11 & s
fvapor Y T (E§)2+2
n

0
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This‘formﬁla, however, is open to serious objections. N
may be a rapidly varying function near an absorption peak,
and one does not know how,nA should then be evaluated.

The derivation of the Lorentz-Lorenz equation we have
presented, and Onsager's derivation of equation 4.31, depend
solely on electrostatic concepts. However, it is well known
that a radiation field differs fundamentally from an electro-
static field. The Onsager and Lorentz-Lorenz results cannot,
therefore, be accepted without proof via radiation theory.
The proof of the Lorentz-Lorenz equation for E' may be
found in Born's Optics, but no such proof has been given of
the Onsager equation.81

The theoretical drawbacks of the Lorentz-Lorenz and

Onsager results might be more acceptable if the predicted

fsolution agreed with experiment, but here again the theories
fvapor

encounter difficulties. While Lorentz-Lorenz theory predicts

a % value of 1.30 for cyclopentadiene and cyclohexadiene

23 This

in n-hexane, the measured wvalues are 0.83 and 1.04.
disagreement is typical for hydrocarbons. The Onsager theory

also predicts too high a value for in these systems. In

<[ =<

view of these results, we will let = 1 in our calculations.

So far we have dealt only with the problem of evaluating
the effective field E' at molecule A (local field effects).
However, we should also consider the possible dependence of
4. on specific molecular interactions (raising the issue of

Y

boundary conditions). (In this context, % may be defined by
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f (in medium) = % f (isolated molecule). This definition
is meaningful even when fsolution is not measurable, as is
fvapor

the cage for many molecular anions). The molecular interactions
to be considered are 1) electrostatic stabilization of ions
in solutions or crystals, 2) permanent or fluctuating multiple
fields and London dispersion forces, and 3) covalency between
molecules.7

In the scattered wave method, electrostatic stabilization
of an ion is achieved by surrounding the molecule with a
neutralizing charged sphere of the opposite sign, generally
at the outer sphere radius, simulating the external environ-
ment.9 Neither the energy levels (aside from a constant
shift) nor the wave functions are sensitive to the exact
location of the charged sphere. (See Chapter 7.) Higher
order multiple fields from other ions (in solution, the ions
move and the fields fluctuate) will lower the degeneracies
of the electronic wave functions, and cause additional
splittings of the spectral peaks.46

In neutral molecules, solvent effects are governed by
the polarity of the solute and solvent molecules.23 An
energy shift to lower wave numbers generally occurs for
absorption bands of non-polar molecules in both polar and
non-polar solvents. For polar molecules, the energy shift

is to lower wave numbers if the dipole moment of the solute

molecule increases on excitation, and generally to higher
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wave numbers if the dipole moment decreases. These results
follow simple energetic considerations of the relative
stabilities of the ground and excited states for the
absorbing molecule.

The preceding effects lead to energy shifts of about
0.0 - 0.2 ev., and would not be expected to cause significant
changes in spectral peak intensities, at least for dipole

allowed transitions.23

Some dipole forbidden transitions
may become weakly allowed via the electrostatic perturbations.
However, covalent interactions between molecules can change
intensities quite drastically.

Consider a system with strong covalent interactions
between molecules. The electrons are no longer localized to

individual molecules, but rather move throughout the system.

The appropriate electromagnetic field is, therefore, not the
82

0.

The localized wave functions become more diffuse, and with

cavity field E', but instead the average field E

strong interactions the discrete molecular energy levels
are replaced by bands (if some localization remains, the
bands are narrow). For a homdgeneous material (for example,
Sioz), we have

4.33) -1

Y L)

with n, the index of refraction of the material. The absorption

coefficient is
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3
Re ('Z Ujj)
411 j=1
4.34) n = eng 3
Re / r o, )
where l 33 - 93 (average)
To put this in a more familiar form, € W = ZnGKO = 4H01,
with the complex dielectric constant € defined as & =g +is¢ .83
1 2
41lo E W 2K w
1 2 0
4.33) n = n.c  n.c ¢
0 0

This is the standard form for n in terms of the extinction
coefficient Kg for a homogeneous material. As covalency
increases, f is initially reduced due to the increasing
diffuseness of the orbital wave functions, and due to the
lower value of % (%41). The limiting case where bands are
formed should probably be solved separately.

We conclude that % may be either greater than or less
than 1 depending on the comparative importance of local field
and covalency effects (the results we quoted for hydrocarbons
are probably indicative of the compensating tendencies),
but that a more comprehensive theory for intensity corrections

is seriously needed.
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CHAPTER V
THE Xa SCATTERED WAVE METHOD
THE Xa THEORY

The X method arose from the attempt to find a local
form for the exchange term which would be common to all the
orbitals of an atom or molecule. In 1951, Slater suggested
the use for an approximate exchange potential proportional

Y ; ; <
to p f with p the local electronic charge density, to replace

the Hartree-~Fock exchange potential of equation 4.9.84

Later, this work was put on a more rigorous basis by Hohenberg,

5,85,86

Kohn, Sham, and Slater. Our discussion of the X

theory will follow fairly closely the treatment of Slater.5

We begin by defining the charge densities of spin-up

and spin-down electrons in a molecule by5

*
5.1) pt = ¥ n.,u.u.,py =L n.u

o, =p4+pt
j+33] j4,j jrpp+p

Lde

where the nj are the occupation numbers for the spin-up and
spin-down orbitals uj. In general, the spin-up orbitals

are different from the spin-down orbitals. A charge density
having the simple form of equation 5.1 corresponds to the more

general diagonal first-order density matrix defined by
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5.2) px x") = I n.u® () u. (X)+2 nLu¥ (X)) us(X)
v : J | A J
AT 1%
Therefore, p(x) = p(x,x). In general, the density matrix would
87

-"As we will

also include terms of the form yijui(x)u;(x').
show in Chapter VI, a unitary transformation will reduce this
expression to the form of equation 5.2. The resulting
orbipals of the exact density matrix, when reduced to diagonal

form, are called the natural orbitals, with occupation numbers

n.. The expression for the total energy of the molecule is

55
thens’87
* .
5.3) E = ;nifui(l)flui(l)dvl+%fp(l)p(2)glzdvldV2+Exc

1

Here, fl is the one electron operator for electron 1,

fl = ~V12+V , the sum of its kinetic energy and potential
energy in the field of all the nuclei. The second term is
the classical Coulomb interaction of a charge density with

itself, with 910 = 2 the Coulomb operator. The

exchange-correlation term EXc is a consequence of the anti-
symmetry of the many electron wave functions, and of the
more geﬁeral tendency of the electrons to stay away from one
another (the electron motions are correlated). (Again,

we are working in Rydberg units. Subsequently, all integra-
tions are over space and spin coordinates). Although
equation 5.3 is exact when the u; are natural orbitals and
the exact Exc is used, it may also appear in approximate
theories. For example, the Hartree-Fock total energy

expression results when we substitute87
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5 N . NS * * 2
5.4) EXC(Hartree—Fock) = =% E L wi(l)wj(Z)—:—__m_

i=1 j=1 |, -x

w. (1
175 J( )

-Wi(Z)dvldv2

(Wi are the spin orbitals defined in the last chapter. The
charge density in Hartree-Fock theory has the same form as equa-
tion 5.1.) What we are seeking is a simpler form of
exchange to use in equation 5.3.

Hohenberg and Kohn have shown that for a many electron
system in an external potential, (here the potential of the
nuclei), the ground state total energy is a unique functional

of the electron charge density p neglecting spin,85

LE

we postulate that excited states obey the same condition,
we find Eoe = E.c (pt,p¥) including the possible spin de-
pendence. 1In order to understand the functional dependence

of EX , we consider the electrostatic interaction energy

o
of a system of N electrons. If the exact many electron wave
function is Y, the electrostatic interaction energy of the

electrons is given by 5

5:5) %N‘(N—l)f¢*(l,2,....N)glzw(l,z,....N) Avy ... .dvy

The integral represents the electrostatic interaction of the
pair of electrons 1 and 2, there being %N (N-1) such pairwise
interactions. In many electron language, the charge density
p(l) and the joint probability density p2(1,2) (which represents
the probability for finding an electron at 1, and another simul-

taneously at 2) are
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5.6) p(1) = N/Y*(L,....N)¥(1,....N)dv,,....dvy
5.7)  py(1,2) = N(N-1) f$* (1,2, ... M) 9(L,2,.....N)dvg....dvy

Equation 5.5 is the same as the last two terms of equation

5.3. When the definition 5.7 is used, we find the electronic

interaction energy

5.8) %fpz'(l,Z)glz d/vldv2 = %J‘p(l)p(2)glz dvldv2+Exc(p+,p+)

Solving for Exc(p+,p+)

5.9) E__(pt,p¥) = 5/ (p,(1,2) - p(l)p(2ﬂglz dv,dv,

(1 2)
Lo (1) [( p(]_) = 9(2)) glzdvz] dVl

%fp(l)W(l)dv1

W(1l) (the expression in brackets) is the electrostatic poten-
tial of interaction of the charge density p(l) with the Fermi
hole. The total charge associated with this potential is

f( 2(1:2) 9(29 dv,. From definitions 5.6 and 5.7
p(l)
fpz(l 2)dv = (N-1)p(l). The charge is then (N-1)-N=-1

_P2(1,2)
— p(1)

is that of the Fermi hole density at position 2 acting on

electron unit. The charge density Ph(z) -p(2)
an electron at position 1. We can then evaluate the Fermi
hole density at the electron position 1. (This means that

the Fermi hole and the electron must have the same spin

coordinates oyr as well as the same position xl). ph(l) =
02(1,1)
—5717-"'—9(1)' Since pz(l,l) = 0, as a consequence of the

anti-symmetry of the wave function, we find ph+(xl) = —p(xl)
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for electrons spin-up. (The statement pz(l,l) = 0 means
that there is 0 probability for 2 electrons to be simultaneous-
ly at the same location with the same spin).

Now, let us assume a uniform Fermi hole density of
ph+(x2) = —p(xl) (this is the density at the center of the
hole) throughout a sphere of radius R, and o (Xz) =0
outside R. Remembering that the total Fermi hole charge is

-1 electron unit, we obtain 1/,
4__ 3 _ _ /3
5.10) "§]-[R p’l‘ (Xl) = lr R = (4]-[p+ X]_)

The electrostatic potential at the center of a uniformly

charged sphere in Rydberg units is %. The potential at Xy

is then .
/3
5.11) =3 [%—@) p{l

for spin-up electrons. A slightly more general potential is

5.12) U__t(x;) = 90 [(ﬁ:’-ﬁ) M]l,:a

Which is just proportional to expression 5.11. The exchange
correlation energy is given by

5.13) B, = B/ [ot(x))U, 4 () 404 (x7) U, ¥ (x)] dv,

The X, total energy expression E o results when E is
substituted into the total energy expression, with p defined..
by equation 5.1. The parameter o is normally selected so that
the Xa total energy for an atom agrees with the corresponding
Hartree-Fock total energy. The exchange-correlation energy

of equation 5.13 is not exact, but it should be closely
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related to the correct form.

To determine the orbitals u;, we again require the total
energy Exa to be stationary with respect to a variation of
the spin orbitals for the eigenstates of the system.

— * - * _
5.14) GEXQ = O,Iui(l)ui(l)dv1 =1 or fui(l)ui(l)dv1 =0

where we include the constraint that all the orbitals be
normalized. We fix the occupation numbers n. ., and apply the
variational principle resulting in the one electron equations

5.15)  [-v, +v_(D)+vg (1] uh (1) = e 4u 4 (1)

The first term is the kinetic energy, Vc(l) is the Coulomb
potential acting on electron 1 as a result of both the
nuclear and the total electronic charge density (including

that of orbital ui), and Vﬁa (1) is the one electron exchange

correlation term with V_4(1) = 2 U (1). Therefore,
X ':-3-' X0
_ (1) = 2
5.16) Vc(l) = VN(l)+fg12p(2)dvzrvxa+(l)— 3 Uxa(l)

1/ 3
= -60 [FL§p+(lJ
411
The e; are the Lagrange multipliers introduced into the

constraint equations J'ui(l)Gui*(l)dvl = 0. Further details
are provided in Slater's Quantum Theory of Molecules and
Solids, Vol. 4.74 The solutions of equation 5.15 are an
orthonormal set of spin orbitals u; b, ug v in a local potential
which is common to all electrons of a given spin. The set

of equations must be solved self -consistently since the

Coulomb and exchange-correlation potentials involve the



76

orbitals u, and the uy in turn are solutions for these po-
tentials. The scattered wave method used to solve these
equations is described in a later section.

The occupation numbers n, in the Xa theory are determined
by requiring that they satisfy Fermi statistics.5 The occu-
pation number of an orbital is

5.17) n, = é s
el F/kBT'+ 1

with €p the Fermi energy, T the temperature, and kB Boltz-
mann's constant. We are interested in the ground state at

T = 0, where n, = 1 for ei<e and n. = n

n, = 0 for € >Epy i 3

FI

for e. = ¢

i 3 =€ns the case of degenerate one electron energies

at the Fermi level. Such degenerate orbitals occur, for
example, when the nl guantum numbers are the same in an
atom, or when electrons belong to the same irreducible
representation in a molecule. The occupation numbers q; of
individual shells are integral for the eigenstates of the
system, but in the case of a partially filled shell of de-
generacy d. g« this leads to fractional orbital occupation

numbers n, = 9i for all orbitals in the shell.

q i
An import;gt advantage of the use of Fermi statistics in
Xa theory is that the molecular total energy goes to the sum
of the free atom total energies in the limit of infinite
internuclear separation.8 This is in contrast to the Hartree-

Fock determinantal wave function which in this limit goes to

a linear combination of free atom and ionic wave functions.
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This leads to an incorrect value for the total energy. We
consider the lithium (Liz) molecule as a typical example of

a homonuclear system. The X, theory leads to the proper theoretical
separated atom limit (which is very close to the true separated
atom total energy) because the electron-electron interactions
may be expressed in the form of a density functional. The
choice of a to agree with the Hartree-Fock atomic total energy
then automatically results in the proper separated atom limit.
The Hartree-Fock method leads to an equal probability for

free atom LiLi and ionic Litri” configurations, and a total
energy significantly above the tfue value. As we might
expect, the X, theory vields potential energy curves which

are generally better than the results of Hartree-Fock

theory. In the L12 case, the total energy at equilibrium
separation is -29.81 Rydbergs (exact), -29.79 Rydbergs S
(Xa theory), and -29.74 Rydbergs (Hartree—Fock).8 Qhe Hartree-
Fock method in this case predicts a dissociation energy only
15% of the experimental value, és opposed to about 75% for

the Xa method.

In addition to giving accurate ground state properties,
we are; of course, interested in the description of excitations.
Ideally, we would want a theory which describes the details
of the multiplet structure found in atomic and molecular
spectra. However, the nature of the multiplets depends on
the explicit coupling of spins and electronic motions in

partially filled shells. This is beyond the range of any one
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electron theory like X, or Hartree—Fock.5 The spin polarized
X, theory (spin unrestricted) we have described in this

section does give some information about the spin multiplets.
The net spin occupancy qi+ - qi+ of a shell is related to M

g.t= q.¥
(the Z component of the total spin 9 by MS = —5—5——5—— ;

S

since each electron has spin %. The state is then a mixture
of spin multiplets with S wvalues, SzMS. In the high spin
case (all electron spins parallel), the state has a unique
spin S = M_, but in general the spin state is not unique.

We should then expect that excitation energies in the X,

method represent a weighted average of multiplet excitations.
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THE TRANSITION STATE CONCEPT

Our next problem is to understand the relationship between
excitation energies in the theory and the one electron
energies g; we have defined.5 An excitation energy is simply
the total energy difference between a ground and an excited
eigenstate, so we may begin by relating the € to the total
energy. The change in the total energy 6EXOL resulting from
a small change in occupationnumberﬁni of orbital u. is

5.18) SFx _ %P ( dE,,
dn.

Gni ani i ' Implicit

The first term is the explicit change in Exu found by taking

2 and holding the orbitals u fixed. However, the orbitals
Bni
uy implicitly depend on the occupation numbers n, since these
determine the self-consistent field. Straight-forward

differentiation of the first term yields

5.19) Pxe _,
?ni i

For the second term one obtains

5.20) [4Ex 1 NAB, gu.tc.c. =1 — 6E. =0
I, = &, .2, du, ° dnj "o

i/ Implicit i j=1 3

(with c.c. meaning complex conjugate). Here Exa is the same

variation of the total energy which is 0 as a consequence of

the minimum principle. We therefore conclude that
SE

5.21) i = g5, SE, = e;6ny
1

The lowest total energy is then obtained when levels of
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minimum e, are occupied subject to the exclusion principle
Ofniil. This is consistent with Fermi statistics. Also,

the meaning of the one electran energies €5 in Xa theory is
that of a differential ionization potential, or of a differen-
tial electron affinity.5 The true ionization potential from
orbitals u; is not given by —€ since ionization corresponds
to the removal of one electron from orbital . u; not a small
fraction of an electron as described in equation 5.21.

From equation 5.21 it can be shown that the ionization po-
tential from orbital’ u, is given by —Ef , Where ET is the
eigenvalﬁe of orbital i not for the ground state configuration
but rather for a configuration having % an electron removed
from Shéll i., Similarly, optical excitation energies are

given to a good approximation by s? - ET. Here e? and s?

] 1 * J
are one electron eigenvalues for a configuration having %

an electron removed from shell i and 5 an electron added
to shell j. (These states are called the transition states
of the system.)

To prove this, we compute the excitation energy by making

a Taylor series expansion of the total energy as a function of

5

occupation number. The total energy is uniquely defined

if for any set of occupation numbers the variational principle

is assumed to hold. The derivatives in the expansion dExa

dg.
include the implicit dependence of u. *

J
q4 = 937947 where qy1 is the set of shell (level) occupation

on qj - Let

numbers taken as a reference point for the total energy.
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5.22 E_( ) = R + E ?Egg‘ A +l—-(EA ‘g——z E
-22) X0 Qp---9) = xalo . dg. qj 2 .'qud‘d xulO
3| J 0 J 5
L1 d )3 E Fo o
+37 (%qu a5 xa'O
J J
with the subscripts 0 referring to the reference state. Let
the transition be from an initial level i to a final level jJ.
Let a; (initial), qj (initial), q; (final), qj (final) be the
level occupation numbers for the initial and final eigenstates.
Then using the transition state configuration as our reference

state

5.23) aqjy (final)

q; (initial) -1

qj (£inal) = qj (initial) +1

Il

d;4 qi(lnltlal)-%
.. = g.(initial)+
a3 = 94 )+%
Since only two levels are effected all other qu = 0. The

resultant excitation energy is

5.24) Exa(flnal)-Exa(lnltlal) = |0

g?—gg + 3rd order terms
from the definition of the reference state we gave previously.
The reference state of equation 5.23 is called the transition
state of the system. In the next chapter we will find that
in addition to giving the approximate excitation energies of
the molecule Eg - sf, the transition state orbitals ﬁg

provide a useful basis set for the calculation of optical

intensities.
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THE SCATTERED WAVE METHOD

In order to solve the self-consistent equations 5.15
for the spin orbitals n, and one electron energies € it
is necessary to make further approximations. In the scattered
wave method, developed by Johnson, we partition the molecule
into three adjacent regions I) atomic, II) interatomic, and
TITI) extramolecular. The potential V = v, + an is approxi-
mated by its spherical average in each of the atomic regions
(I), by a volume averaged potential (a constant) in the
interatomic region (II), and by a spherical average about
the center of the molecule in the extramolecular region (III).
The initial potential for the self-consistent field
(SCF) calculation is found from the superposition

5.25) V(%) = zvI(|x-R_|)
g g

of free atom or free ion SCF-Xa potentials centered at posi-
tions Rg‘ These potentials and the related charge densities
are generated by a program by Herman and Skillman, modified
for the use of selected Xa parameters.88 The o parameter is
determined in the manner discussed in the X theory section.
The appropriate parameters have been calculated by Schwarz
using Mann's Hartree-Fock values.89
This form of potential is called the muffin tin approxi-
mation when the atomic regions do not overlap each other or

the extramolecular region. The use of overlapping spheres

has been found to yield a generally superior description of



83

molecular properties for a modest degree of overlap, although
the mathematical formulation of this theory is less clearcut.90
The muffin tin approximation appears as well in the augmented-
plane-wave (APW) and Korringa-Kohn-Rostoker (KKR) methods of
crystal band theory, where it has proven quite successful:{l’gl'92
The spherically symmetric potentials in the atomic and

extramolecular regions imply that the spin orbitals may be

written as linear combinations of real spherical harmonics

g

times radial functions RR (e,xr) with the appropriate coeffi-
cients C% to be determined by the boundary conditions.6 The
index 3designates each atomic region of radius bg' The
orbital inside each atomic sphere is then

£ 2 - g g - .
5.26) ui(rg) ECL RQ (e,rg)YL(rg) (OSrsbg)
where L = (%£,m) is the partial-wave (angular momentum) index.

The position ?g is measured with respect to the origin of
the atomic region g,fg = 0. Similarly, the extramolecular
region is designated by g = 0 and the corresponding orbital
is

ITT > 0_0

- = -
5.27) uy (ro) = iCL Rﬁ(e,ro)YL(ro) (bo_r< )

with the origin at the center of the molecule. The functions

R% (e,r) satisfy the radial Schrodinger equation

(_l d rzg_ L (2+1)
i

5.28) = dF - p
r

+ + v (r)-¢) R‘j{(e,r) =0

for the spherically averaged potential vI(r). The radial

functions are finite at the origin of each atomic sphere and
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are generated by outward numerical integration for trial
values of € for each given %. The orbital in the extramolecular
region decays exponentially at large distances from the molecule,
and is obtained by numerically integrating the radial equation
inward for given wvalues of & and i,

In the interatomic region, the potential GII is constant,

and the wave function satisfies the ordinary wave equation

IT

5.29)  Vi4e-V. Yu.TT(¥) = 0

e

The solution may be written as a sum of "outgoing" spherical
waves scattered by the spherically averaged potentials in
the atomic regions and an "incoming" wave scattered by the

spherically averaged potential in the extramolecular region.

(1)
IX -+ _ g > 0. i
5.30) u; (x) = g i AL K, (Krg)YL(rg)+iALl£(KrO)YL{IO) for

E<VII

where
5.31) i, (r) = i~¥j, (ir)

is a modified spherical Bessel function,
' —2 .
5.32) K, ) (r) = -1 n, P (ir)

is a modified spherical Hankel function of the first kind,

5.33) K = (*a'rII—e);i

. > > >
is the wave vector, and rg = x—Rg.

For &>V

IT * the solution is
I ,», _ g > 0. -
5.34) u, (x) = 2 ZALnQ(Krg)YL(rg)+ZAL3£(KrO)YL(rO)
g L L
where
s 5
K = (e-Vqq)



85

and ng (Krg) and jz (Krg) are ordinary spherical Neumann and
Bessel functions.

Physically, we see that the wave functions for the
levels lying lower in energy than the constant interatomic
potential should decay exponentially in the interatomic
region. This explains the imaginary argument of the spherical
Bessel and Hankel functions of equations 5.31 and 5.32. The
wave functions for the higher lying levels (g>§II) should
appear as standing waves in the intersphere region, decaying
only when they reach‘the extramolecular region.

Because the model potential has only finite jump dis-
continuities at the sphere boundaries and is continuous
elsewhere, both the wave functions and their first derivatives
must be continuous everywhere. In particular, the wave functions
and their first derivatives must be continuous across the
sphere boundaries. This condition is only satisfied for
certainvalues of e, the one electron eigenvalues €57 which
then leads to unique values of the eigenvectors {Cg, Cg} and
ad, 2%}, and of the radial functions (R, R)} for each
orbital u;. Degenerate orbitals have the same radial functions
{rY, Rg}, with the eigenvectors, {Cg, Cg} and {a9Y, AE}
related by symmetry. The calculations are done via the
scattered wave formalism described by Johnson.6

The use of group theory further simplifies the problem,
and allows a solution for the eigenstates and eigenvalues

of the model potential in a moderate amount of computer time.
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The occupied eigenstates are then used to construct a new
potential, and the calculation is carried to self-consistency.

For excitations, a separate self-consistent calculation
is done for each transition state (one calculation per transi-
tion). However, in complex systems the scattered wave procedure
is sufficiently quick so that this does not become a serious
hindrance, unlike a separate determinantal calculation in
Hartree—Fock theory. In addition, a one electron energy
difference Eg—eg will yield a far better excitation energy
than a direct total energy difference in a complex system,
since one is talking about excitation energies of a few
electron volts out of total energies of typically a thousand
Rydbergs.

Although the muffin tin approximation yields a fairly
accurate description of electronic structure in many systems,
a further improvement of the physical realism of the model
may be obtained by using overlapping atomic spheres. In this
way, one obtains a more realistic representation of the po-

tential in the interatomic region.
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THE USE OF OVERLAPPING ATOMIC SPHERES

In the last section, we showed that the use of non-
overlapping spheres led to a well defined mathematical
formulation of the scattered wave theory. The overlapping
sphere method may be looked at in two ways: 1) as a
truncation at the 2=0 potential term (about each nuclear
center) of a precise cellular multiple scattering theory,
plus some additional approximations, or 2) as an approximate
method for solving Schrodinger's equation in spherical over-
lapping regions with central field potentials in each

90,93

region. Following a recent discussion by Herman and

co-workers, we will adopt the second approach.90

There are Fwo separate problems involved in the scattered
wave method. First, we must find the electrostatic and ex-
change-correlation potentials, Vc+vxa' Second, we must
solve Schrodinger's equation for this potential. To obtain
the electrostatic poténtial, we must solve Poisson's equation
5+35) vzvc = -4Iip
which we may convert to integral form
5.36) V_(xq) = Jo(x,) 2—— dv

- R 2 2

where we now include the nuclear charge densities in p. ﬁe
may expand this result in spherical harmonics about a par-

ticular nuclear center for any charge distribution94

e = (r)
5.37) op(r) = X ng(a,é)pgm

L,m
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_ a1 1 r 2
5.38) V_(¥) = & Y_ (8,¢) )N, (Bt )ae
c g.m qm* ! 29+1 r2+1 0 T m
L o ¢ § =EFL 1 I]
+
T fr(r ) p._(r')dr

The first term is the potential from the charge inside radius
r; the secﬁnd term arises from the charge outside r. The
charge distribution within an atom, even when it is part of
a molecule, is still basically spherically symmetric. The
surrounding atoms are neutral and also have approximately
-spherical charge distributions. One should then expect that
the primary term in Vc(r) would be the =0 potential Vgo(r),
with some correction from the higher order harmonics.

Before proceding to a discussion of Schrodinger's equa-
tion, it is necessary to consider the form of p used in the

actual computational procedure, which differs from the precise

p we have just defined.90 The exact electronic charge density
pe(x) is defined by
5.39) o (%) = 3 |u;R)|2

i=1

However, before solving Poisson's equation, De(x) is approxi-
mated by

%) ¥ S4rp %- = r,< = 5 :
5.40) p_(#) p+§pg(rg)slx Ryl = rg<by,e () = o7 () 5T05by
This expression is in overlapping spherical form which must

be explained further. Consider an arbitrary function F (x)

which is approximated by another function £ (x)
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5.41) F(x) = £(¥) = F+

= fos(r0)5r0>b0
where M is the numberiof atoms in the system. f is a con-
stant, and E;(rg), which is spherically symmetric, is assumed
to vanish for rg‘>bg (the atomic sphere radius bg in general
overlaps other atomic spheres). The spherical average of
the exact function F (%) about center g is given by

s _ (. >
5.42) £.5(r)) = (4m fdrgF(x)Srg<bg

with dfg denoting the element of solid angle. The prescription
; ; e : ; = s =
f find £ ly £ = f - f. W
or finding g(rg) is simply g(rg) g (rg) e can see
that in the region of overlap of atoms g and g', £° is counted
twice in the sense that
5.43) f£(X) = f s(r )+f_,(r_,)-f (In the region of overlap
g g g g
of g and g')
This is clearly an undesirable feature. However, let us define
f so that at least the average value of f(X) is the same as
the average value of F(X) inside the outer sphere’
3 ‘
A4 kPR = S axE)
w WA
0 0
where [ indicates fggrgzdrgfdfg, integrating over the interior
g -
of the atomic or outer sphere. The resulting value of f is
then

- -1 M ,
5.45) f =W [}W A3xF (X)- ¥ [ dsxy(iﬂ
0 g=1 g
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where

i
5.46) W = 2% (b,°- % b_?)
3 0 . g

g=1

Now we may simply identify f(g) with the approximated form of

p The quantity conserved by the definition of p is the

e’

total number of electrons N.
=y M
5.47) 5 =W [N- % Q]
g=0 9

where

5.48) Q

4Hfbgr 2dr_p S(r )
0 g 9 g g
o 2 s

4Hfb ry drop0 (ro)

a2 vy

3 19

g=

0
o
Hi

=
i

Qg is the total number of electrons inside atomic sphere g,
and QO is the total number of electrons in the extramolecular
region. The various p quantities simply correspond to the
definitions we made for f(x). The definitions for p we have
made are eqguivalent to the way p is used in the computer program
for either overlapping or non-overlapping spheres. In par-
ticular, for zero overlap, these formulae reduce to the
muffin tin approximation.

From the overlapping spherical form of pe(x) and the dis-
tribution of nuclear charge, we may evaluate the potentials
VOO(;g) and vII by a straight-forward procedure.90 Since
the evaluation of the exchange potential qu is no problem,

o Kot

- = = )
let Voo(rg) = V00 (rg) + VOO (rg), the latter being the

spherically averaged exchange potential. The potentials
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VOD(rg) are defined out to the respective sphere boundaries
bg, which exceed the muffin tin radii.

We may solve the Schrodinger equation on atom g in the
potential VOO(;Q) as a single center problem out to the radius
bg' We then match the solutions across the sphere boundaries
to those in the intersphere region. The mathematical formu-
létion is the same as in the muffin tin case, and leads to
a solution which is continuous (with continuous first deriva-
tive) everywhere except in the overlap region of atoms g and
g'. Beyond the muffin tin radius, Voo(fg ) replaces the
constant potential ﬁ?? of the non-overlapping sphere case
as the model potential. Since 6?? samples a much larger
region of space  (which is also less characteristic of the

true potential) than Voo(fg), the use of V (?g) results in

00
a significant increase in the physical realism of the model.
This is particularly apparent in open structures, where the
fraction of intersphere volume is very large for zero overlap.
The remaining difficulty is that the wave function is
not single valued in the overlap region of atoms g and g'.94
We would particularly want to require continuity across a
plane through the intersection of the atomic sphere boundaries.
Johnson has found: empirically that the wave function is
approximately continuous and single value for modest overlap
(bg = 1.0 - 1.3 x the muffin tin radius).95 This is under-
standable, since for the wave function to be approximately

single valued, VOO(rg) and V00

(rg,) must be similar in the
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overlap region. For excessive overlap, this condition and
the resultant continuity of the wave function do not hold.

Occasionally, the approximations involved in the over-
lapping sphere method result in a negative intersphere charge
Bﬁ.go This is not a serious problem if the charge is small,
but it should be set to zero if the amount of charge becomes
significant.

The overlapping sphere method has been applied to several
systems with uniformly good results. Ionization potentials in
good agreement with experiment have been obtained for H20,

96 97

CO, and N, as well as in larger systems like Cr(CO)6~

and TCNQ.go

The method also yields substantial improvement
in molecular total energies and potential curves.96

Another indication that the solution is close to the
solution for the true X, potential VC(§) + an(§) comes from
the virial theorem. The virial theorem says that the total
potential energy of a molecule Vﬁﬁ (includiné nuclear-nuclear
repulsion) is equal to the negative of twice the total kinetic
energy T, , Vp = —27;f. Alternatively, the molecular total
energy Eﬂ# is given by Ert = “Trt - The theorem is satisfied
exactly in atoms, molecules, and solids. Slater has also
proved that the theorem is satisfied in Xu theory if all
regions of space are assigned the same o value, which is
approximately true in most calculations.74 The introduction

of the muffin tin approximation causes the virial coefficient

to differ from the exact value of -2. However, with
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overlapping spheres, the theorem may be satisfied exactly
for the proper choice of bg, generally about 1.3 x the

muffin tin radius.90

This is another sign that a modest
amount of overlap yields an optimal solution to the Xa
Schrodinger equation.

As we have previously mentioned, a precise solution of
the X equations 5.15 is in principle possible. One can
divide the molecular volume into a set of polyhedral cells
(for example, of the Wigner-Seitz type), expand the potential
in each cell in spherical harmonics about the nearest nucleus
as is done in equation 5.38, solve the resulting Schrodinger
equation in the various cells, and then match the solution
across the boundaries.93 In practice, one must truncate the
angular momentum expansions of the potential and of the
radial functions at a certain point, usually at about § =4
for both. (In the %=0 potential case, the radial functions
are also generally truncated at no more than 2=4 on any
center. The %=2 term is generally sufficient for atoms with
no d electrons). In the cellular method, one finds that the
radial equations are coupled, in contrast to the separability
found for spherically averaged potentials. The solutions
are then more difficult to obtain, and require significantly
more computer time. Williams and Morgan have completed such
a calculation for the T point (k=0) of the Brillouin zone
of crystalline silicon.93 Their results indicate that about

two-thirds of the error in the muffin tin method may be
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eliminated by employing overlapping spheres with modifications
to eliminate double counting of charge in the overlap region.
Even in its present form, however, the overlapping sphere
approximation yields a fairly accurate solution of Schrodinger's

equation without unnecessary complications.94
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CHAPTER VI

THE DEVELOPMENT OF A NEW APPROACH TO CALCULATING

OPTICAL INTENSITIES BASED ON THE X, SCATTERED WAVE METHOD

APPLICATION OF DENSITY MATRICES TO OPTICAL ABSORPTION

We approach the optical absorptionproblem through the
use of density matrices, employing the single particle
Louiville equation as the equation of motion for the density

98,99 P

matrix. Transitions between states arise from the A-°p

term of the perturbing electromagnetic field of vector poten-
tial.z. Density matrix language allows us to discuss optical
absorption within the context of the X, method, without
invoking determinants which have no foundation within the
theory, and without using many particle wave functions which
imply a more comprehensive solution of the problem than is
accessible. Such an approach QOes require us to make several
plausible, though unproven, assumptions. After obtaining

the theoretical optical coefficient, the real part of the
conductivity tensor Redij, we relate this to the more

phenomenological constants. Finally, in the next section

on degeneracy and symmetry, we derive the general optical
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constants for open shell and spin unrestricted systems as well
as the more restricted cases.

Let ¥ = ¥(1,2,...N) be the many particle wave function
for an N electron system. In general, (1) = (El,gl) the com-
plete coordinate includes the two valued spin coordinate oy

as well as the space coordinate % Then we define the first

1-
order density matrix by

6.1) p(l,1') = wa*(l',2,...N)w(l,z,...N)dvz...va

which includes sums over spin coordinates as well as integra-

5,87

tions over the space coordinates. As in equations 5.1

and 5.2 the charge density is defined as p(l) = p(l,1) so
when oy = +1, p(1) = pt(xq) and o, = -1, p(1) = p+(xl). If
the set of uy is any complete orthonormal set of spin orbitals,

then neglecting spin

Y u.

1 - * '
6.2) plxy,xq") i,5 &5 4 (xq)u*(xg )

J

(In the following treatment of optical intensities, spin up
and spin down excitations may be treated separately, each
exactly along the lines we will follow). We can see that
equation 6.2 differs from the diagonal density matrix of
equation 5.2 by the presence of off-diagonal terms. However,

i3 in equation 6.2 is Hermitean Yij = sz; this follows from
the fact that the charge density p(xlﬂxl) must be real. There-

Y

fore, p(xl,xl') may be diagonalized by a unitary transformation,

by standard methods.87 Let Uij be a unitary matrix, and vy

Voot sVy be a complete orthonormal set of orbitals related to
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the original orbitals uj by

6.3) u; = v U,
Then
i = * t *
6.4) plxy,x") R Yijvk(xl)ukivg (xq )Ugj
i,j k, 8
+
= L (ZU_.v::U. )v, (x,)V *(x.")
K, % i3 ki'ij~ 3 k717 7. 1
1 ' '
= L Y ,V{X,) V,*(x, ) where vy
K, % kL KLY 4 1 k&
_|.
= k Wew¥sal,
i3 ki'ij“je

. . . ! .
Since Yij 1s Hermitean, Uki may be chosen so that Y1 1S
diagonal

6.+.5) J

Y™ PkCke
with the resulting diagonal density matrix

6.6) p(xl1xl') = 3ﬂlv.(xl)vi*(xl')

For a given state of the many electron system, the v, are
called the natural spin orbitals of the system, and equation
6.6 is called the natural orbital expansion. Unfortunately,
the natural orbital expansion is prohibitively difficult to

find in all but the simplest systems.87'loo

In addition,
the sets of natural orbitals for the various states of a
system are in general different, which again complicates the
problem of evaluating properties.

We approach the problem by assuming that the diagonal

density matrix of equation 5.2 representing a self-consistent

set of orbitals, is a good approximate solution to the true
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density matrix of egquation 6.2. It is important to remembér
that the n, of the natural orbitals are, in general, fractional
even for closed shell systems in contrast to the Xa rules

for shell filling. The reasons for this are discussed in
Dahl's article.87 We should expect, therefore, that the
appropriate n; for the self-consistent orbitals at the Fermi
energy or below should be smaller than those dictated by
Fermi statistics at T = 0. 1In the absence of explicit formu-
lae for the occupation numbers of such a pseudo-natural
orbital expansion, we will employ Xa occupation numbers in
our calculations. The Xa occupation numbers will later be
seen asresulting from ensemble averaging over states with
integral occupation numbers.

The use of self-consistent field (SCF) orbitals and
occupation numbers from Fermi statistics has been employed
previously by Ehrenreich and Cohen in their paper on the
many electron problem.98 In this paper, they show that their
approach is equivalent to the random phase approximation
(RPA) of many body theory.

The Ehrenreich and Cohen paper dealt specifically with
the electromagnetic properties of crystals. We are dealing
with molecules which makes the problem quite different. They
considered an extended system with lattice periodicity, in
which the orbitals are Block waves. When electrons make

transitions between Block type states, the orbitals are

sufficiently diffuse not to perturb the self-consistent field.
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In the case of electronic transitions in atoms and molecules,
however, the initial and final state self-consistent fields
are different.

In the case of optical absorption, we may write the

single particle Louiville ec;{ur:z.tiongg"99
"
6.7) ih gg(x,x £ = [ﬁ,é] = H(x,t)p(x,x) t)-p(x,x; t)H(x, 't)
where
-iwt

— e _ -
6.8) H = HSCF + 5 KO pe
K(t) = X 1%t js the vector potential of the electromagnetic

0

field which induces the perturbation. The term in K-E appears
because of the modification of the kinetic energy term in the

Hamiltonian due to the presence of the electromagnetic field
2
2 ++£
P . Equation 6.7 is the equation of motion for the
2m - :

4

-9

o
]

density matrix, with [ﬁ,ﬂ] being the expression which determines
how p(x,x',t) evolves in time. As we have already pointed out

Hyop is ambiguous, since we do not know at what stage of the

excitation process to evaluate Hee Similarly, for a given

Fe
transition, it is advantageous to use a single set of ortho-
normal basis orbitals. For Hg.,, we shall use the transition

state Hamiltonian HT for the given transition. This is
equivalent to putting into the driving term of the Louiville
equation a knowledge of both the initial and final states
for the transition. This is plausible if we remember that

the transition probability for a system depends on both its

initial and final states. We let the system be initially in
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its ground state, so we are describing absorption. We

expand the ground state density operator in transition state
orbitals uiT, and make the assumption that the density operator
is still approximately diagonal. Essentially, we have chosen
a basis set which is a compromise between the basis sets of

the groundlstate and excited state self-consistent fields.

The ground state density operator is then

_ T T
6.9)  (pg)g = Flug) n, Cuy |

in Dirac notation. The density operator p of equation 6.7
is given by the ground state operator Py plus a first order

correction P due to the perturbing electromagnetic field

6.10) o= p0+pl
Letting H, be the zeroth order Hamiltonian, with Hy =
%E-KO'Ee“lwt the first order correction, we find a zero and
a first order equation99
., 9P
6.11) lh_ﬁt_ = HOQO*QOHO
pIXY

ihge= = HypgeoH  vHoe;-pHeihap

The zeroth order equation just says the matrix element (po)kl
is constant as we expect with (po)kk = n, and (po)kl =0

for k # 1. The equation for P contains the additional term
—ihepi,which was added to take into account the dissipative
forces which cause de-excitation of the excited state. The
lifetime of the excited state is then t=% and the width

of the absorption line is 2hg. The finite lifetime of an

excited state in a molecule is due to the spontaneous emission
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probability, and to molecular collisions and interactions which
cause changes in the vibrational sublevels of the excited
state. Also contributing to the width of spectral lines is
Doppler broadening.20 While the latter effects are far more
important than the spontaneous emission mechanism in accounting
for the observed width of spectral lines, they are not simply
describable by the additional term -iﬁBpl. This term is
characteristic of the spontaneous emission mechanism and will
yield a Lorentzian line shape. The other mechanisms will

yvield a superposition of such Lorentzians resulting in a

101 A further discussion

broader band having a Voigt shape.
of vibrational effects will be given later.
For simplicity, however, we will retain the form of

equation 6.11, and take matrix elements of the first order

eguation
. Z‘)(Dl
6.12) ih—r— ko = (H;p) kE_(DoHﬂjkg+(Hopl)kg_(le&Zkg

s _ _ T T T _ T
BB (py )y ,= (my—np< wy [Hqupytey (py) g o=ep (pg) gy

a 7 + =it )
Since Hl = Ao'pe r Py will have the same time dependence
leading to .
n, =n —-igt
T
6.13) (p,),. = 5 : <ﬁkl§6'io'§|u§>e
. Pllke — 5 =% -hu-inhg

Since the expectation value of an observable (for a one
particle operator) may be written as99

6.14) Oy =% O

= Tr (Op)
k

ko Pok
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and the current density operator is _%,Eﬁ% (to lowest order

in the vector potential), with § the volume containing M

absorbing molecules, we obtain

i <22
6.15) (3> = Q ngpkl uy
_ -ie?nz M 5 Tk T
T mZy  Q ko T_T : <ukl§|“9,>

ek“eg—ﬁw =,

> _.
<ﬁ§I$|uE> ‘Eje L

where E is the electric field vector E = Eoe-lmt and
_ -1 23 _ +iw&p : Y
E = S "3yg So that EO = —( - We notice that o is simply

the molecular density N, and that the entire expression to

the left of Eoe—iwt constitutes the conductivity tensor

as a function of angular frequency u, oij(w). As we shall

show later, the real part of Ulj Recij leads to absorption.
The conductivity may be converted from the matrix

element of ¥ form to a matrix element of the dipole moment

operator form by noting the commutator relation

6.16) %[&,}IT] = :%, P = -ifv, = ey HT] =%

with HT again the one electron Hamiltonian for the states

in question. The local character of the Xu potential allows

this identity, which is only approximate with a non-local

Hartree-Fock ﬁotential. A detailed discussion of this

issue will be given in Chapter VI Section C. Substituting

into equation 6.15 we derive the formula for the conductivity
. T T T
6.17) Re Uij Te?wN kzﬂ( nk) <ﬁk [ xi| ug> <ﬁ£|xj]uk>

'S(eg—eg—ﬁm)
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taking the spectral line width to be small for convenience.
Notice that our assumptions have led to an excitation energy

of AE = hw = EE—EE in accordance with the results of Chapter

VB.
Now, if we consider the light to be unpolarized, only the
diagonal matrix elements of Redij will contribute to the

transition rate for absorption. The true time dependent elec-
tric field in the X direction is given by ﬁx(t) = Re ﬁoxe—lwt
=E0xcoowt. Similarly, the physically meaningful current is

3(t) = Re 30e—1wt . Since the fields in the x, y, and z

: : 2 2 e 2 2
directions have equal magnitude, |E0X[ = lEOyl = |EOZ| i
The time averaged rate of energy absorption per unit volume
is %Re(jo.ﬁo*), and the time averaged energy flux or

Poynting's vector is Re(ﬁoxﬁo*) = Re(onﬁo*) for non-magnetic

80

materials. The ratio of these two quantities is the

absorption coefficient.83’101

LRe (30 ¢ ﬁo*)

6.18) n = "g"% RE(on_ﬁo*) - c 3|E
The numerator %Re(J,.Eg*) must then be integrated over wave
number to eliminate the § function of equation 6.17.

Before going further, we notice that two assumptions
were made in obtaining the last expression of equation 6.18.
The assumptions are: 1) that the effective electric field at
the absorbing molecule which produces the current 30 is the
same as the average macroscopic electric field EO’ and 2) that

the Poynting's vector is given in terms of the average
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macroscopic electric field E, by the free space expression,

%% lEOxlz (where the factor of 3 arises from the random polari-

zation of the Poynting's vector). Neither of these assumptions

is fundamentally correct. These points were previously dis-

cussed in the sectidn on local field corrections (Chapter IV D).
In Appendix C, we will demonstrate that equation 6.18 co-

incides with the phenomenological definition of the absorption

constant.lOl

6.19) I(V) = I,(v) ~nk

giving the attenuation of the intensity I(v) (v is the ordinary
frequency), with penetration depth % in the material. IO(U)

is the intensity at zero penetration (the reflected intensity
is not counted in Io(v)). We shall relate p to the integrated
molar extinction coefficient fgmd(%), which (aside from local
field effects) depends only on the intrinsic properties of

the absorbing molecules, and to the oscillator strength f of

a transition. The results are23'lOl

2
6.20) fe d(3) = 2 2o LB 5 3
10%4nl0 3h%c? k=degenerate g=degenerate

Ti=> T

(n,-n.) | (uK[x[u£> | 2
6.21) £ < 2mAE 5 (n,-ny) [CuglZlul) |2

3h? k=deg. g=deg.
10°4n(10)mc?
Alle?

1 N L _
Here 3 = wave number, AE = g -e¢, = excitation energy, A =

A
Avogadro's number = 6.02 x 1023. The label "degenerate" means

6.22) £ =

1, _ -9 1
fs:md (X) = 4.319x10 fz-:md (7\-)

that all initial state orbitals ui (with occupation numbers
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nﬂ) summed over have a single one electron transition energy,

all eg = EE, and similarly for final states, all ET = eg.

k
T & :
57 Ey- In practice, measurements are made of .

which is then converted to £, which has the simple theoretical

Then AE = €

form of equation 6.21. f is also dimensionless. These
equations are, in fact, correct as they stand if one assigns
the orbital occupation numbers Ny, Ny the Xa values for
the initial state of the molecule. However, this point
could stand further elaboration which is provided in the

next section.
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SYMMETRY AND DEGENERACY

The generally fractional occupation numbers of equation
6.21 are difficult to interpret physically. It is easy to
understand that if orbital ug is occupied, n, = 1, and orbital

uE is unoccupied,n 0, then a transition may occur with a

K =
probability governed by equation 6.21. We, therefore, take

the Xu occupation numbers to represent an ensemble average of

the initial configurations possible with different sets of
'integral occupation numbers {nz}, {nk}.

Specifically, let each orbital be labeled by (Fl, Py sl)
and (Fz, Py 52) for initial and final state orbitals respective-
ly, with (I', p, s) = (irreducible representation, partner,
spin). As before, by an initial state orbital we mean any
final state orbitals
T T

2-81. Then

for a given configuration, n = n (I, p, 8) and n = 0 or 1.

orbital with a transition energy ei;

have energy eg, and the excitation energy AE = €

We take the ensemble average in the following manner. A
transition from partner p;, to partner P, with a specified

spin sy = s, = 1l (for example), will occur if n(Fl, Py 1) = 1
and n (F2, Py 1) = 0. We must count the number of times

T this occurs in K possible initial state configurations

and then divide by K. Let q4 electrons occupy the 979 initial
state orbitals, and let there be d, electrons in the 950

final state orbitals (with spin index s).
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Sl K= (qlo) . (qzo \ . =(q10"1) : (qzo'l )
qQ 920792), e dp0 9271/

with(5)= TpyTeT

q q
T (s) ( ) - 1221
910 920

970 and 4,0 @8 defined here are simply the orbital degenracies
of the levels. Since this analysis applies toeach set of
partners, Py pzﬁand both spin indices s = 1,2, we find

2mAE b

6.24) f = W s

l,2nl(s) (1_n2(S))
: E T > P 5
by P, | @ (T /Py 8) |%] u (TyrPp, 8N |

Here n,(s) = 9 (s), n,(s) = 92
950 920

simply the appropriate Xa occupation numbers for each initial

(s), so n, (s) and n,(s) are

and final state orbital respectively. For the ground state
of a system, there are two possibilities. Either 1) nz(s) = 0,
or 2) nz(s) # 0 and nl(s) = 1. In either case, nl(s)(l—nz(s))
= nl(s)—n2(5)~. Consequently,

_ 2mAE b _
6.25) f = 37— 41,2 (nq (s)-n,(s))

I T El wr

Py le<u (Tyrppr8)  |X] 0 (Tpipyes) |2
which is identical to equation 6.21. Either equation 6.24 or

6.25 may be used subsequently since we will always deal with

the ground state as the initial state of the system. The use
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of the spin index preserves the selection rule that the net
spin remain unchanged during the transition. This is required
for an electric dipole transition since the perturbation A-p,
producing the excitation, 1s spin independent and orbitals
having different spin indices are orthogonal.

It will be useful to consider some particular cases.
For example, consider a system treated within the spin re-
stricted framework. Such a system is assumed to have no
net spin. Then uT is spin independent as are n, and n,

yvielding
2mAE .

6.26) £ =
3h?

T + T ‘ 2
per2

The case of a system with net spin (spin unrestricted)
brings out other features. Here the transition state orbitals
and energies are spin dependent (remember that the one electron
equations for the orbitals and energies are spin dependent --
see equation 5.15, as are the occupation numbers n, (s) and
nz(s), with the lowest energy levels being filled first. In
this case, the f value of equation 6.25 becomes two different
oscillator strengths with some separation between the spectral
peaks. This spin dependence of the line positions and in-
tensities furnishes the rough equivalent of a multiplet
theory in X,-

Going back to equation 6.25, notice that it is necessary
to evaluate 3q10-q20 matrix elements to find £. For any

molecular point group, these matrix elements are related by
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symmetry, and the respective ratios of the amplitudes

(uT(Fl, pl)|x|uT(F2, p29 (and similarly with y and z) are
called vector coupling coefficients. Tables of vector coupling
coefficients for several point groups, including the tetra-
hedral.group(qi) are available in Koster's "Properties of the

32 Crystallographic Point Groups."102

We list the squares

of the vector coupling coefficients for the tetrahedral Ty,
group in Table 1. This table is based on Koster's book and
our own calculations. (Our computer programs are set up so
that the vector coupling coefficients may be easily generated.
The Oh group values may be obtained in this way. See
Appendix A).

Finally, it is important to connect the definition of
an-'oscillator stﬁength, such as equation 6.25 with definitions
based on the full many electron wave functions for initial
and final states wm and wn (following Herzberg's notation).7'15
If the ful; many electron wave function wm has degeneracy
dm with the individual degenerate wave functions labeled as
, and similarly with wn. being the partners of wn, then

k i
N

2
6.27) £ =5 54y T Xy
2a_ ikl mplsZy 51¥np |
m
Simply, one averages over initial state many electron wave
functions and sums over final state many electron wave
functions. Such a method represents a generalization of

equation 6.24. For example, if one takes an ensemble of

determinants for Vo and a set of final state determinants for
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wﬁ, the numerical factors nl(s) and n2(s) appear exactly as
in equation 6.24. If one considers a singlet to singlet
transition (the final state must be a linear combination of
2 determinants to yield total spin S = 0 and MS = 0), the

numberical factor 2(n1—n2) of equation 6.26 results.
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COMMUTATION RELATIONS, LOCAL FIELDS, AND THE 3V FORMALISM

We have previously mentioned the desirability of
converting between the different oscillator strength
forms £(x), £(V), £(%,V) and £(Vv). The different oscil-
lator strength forms are equivalent in the framework of
an exact theory.25 We will prove in this section that
the oscillator strength forms are also equivalent in any
theory having a local one electron potential (veff) which
is common to the orbitals involved in the transition, a
criterion which is met by the‘XOt theory. Conversely, the
oscillator strength forms are not equivalent in the Har-
tree-Fock theory which has a non-local effective poten-
tial Vegge From these results, we will give the equation

for f(ﬁV) in the Xa scattered wave method, and discuss

the physical implications of this equation.

First we consider the commutator relations75
-5
1 -~
6.28) il ] = £
1
P Hage] = ~W e

We now show that these relations are not true for the
Hartree-Fock effective Hamiltonian Heff defined previously

(equation 4.4). First, the Hartree-Fock exchange term
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defined in equation 4.9 is

occupied -2 w, (2)wy (1)
6.29) Sdv X w¥ (1)w* (2)
2y i k §1_§2| w, (L)w¥ (1)

This has the form of a non-local potential,
different for each orbital Wi(l), acting on wi(l). Now
. . 1. = _
consider the matrix element <wi |Tﬁ[X'Heff]|Wj>_
1 % > ; Ly
<wy yﬁF(XHeff - Heffx)le>. Using the adjoint property

of the Hermitean operator Heff' we obtain

= I (eyme;)

6.30) <w, |t [XH .o - H .o %) |ws>
. Wy L IR Y™ Vefr eff ¥/ 1V5 375

ox
-<Wi]x|wj>

ejﬂei is the Hartree-Fock energy difference between the

occupied orbital i and the virtual orbital j. But Heff'
as applied to the left, is different from Heff as applied
to the right since the exchange potentials of equation

6.29 are different for orbitals wi(l) and wj(l). Let

. 2 . 2
J = 1 = B :
Heff o + Vl' Heff ST + V2. Then we f£ind
6:31) (R ml.. - E: *)—1—(§(L2+V)—(E—2-+V)?c)—
. ih\* Heff eff ¥ T @RV 'm 1 2m 2 =
2 o >2
]__-)-& - _ ‘1ﬁE-‘*E_.. - _
mXsg T xVy - () x5 - Vy X) =

>

L HUB L % (yoov.)) = B+ £ (y.-



113

Here Vl—V2 is the difference in Hartree-Fock potentials
for the orbitals j and i, which is just the difference
in the respective exchange terms of equation 6.29. It
is evident that, if the effective Hamiltonian were the
same for both orbitals, only the first term of equation
6.31 would remain and the first commutator relation in
equation 6.28 would hold. Similar considerations yield
the second commutator relation of equation 6.28 in this

case. The resulting equations would be

1. A _ 1 _ P
6.32) E<Wilp|wj> = Iﬁ(ej Ei)<wi|x]wj>
3 2 -
5..33) <w, |- ﬁveff|wj> = Tﬁ(ej e;) < Wi|p|Wj>
-m 2 <

ol

In the X, theory, we may take H,¢e = H the transition

Tf
state Hamiltonian for an excitation between orbitals

uiT and uan This Hamiltonian is the same for the two

transition state orbitals uiT and ujT involved in the

excitation so

T T
6.35) <u; ]_v*vT|uj >= 5 (e ey ) < u
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where Ve =V the transition state potential for the

£ff

excitation. From the oscillator strength formula 6.24,

Tl

we find

£=228 3 n(s) (I-ny(s)) I [T(T,,p;.s)
—112 pl'pz

% |u® (T, p,y.s)>|?

2
6.3 £= Z—— I n(s)0myle) r  [&@T(rypy,e)

3m(AR)® s=1,2 By 1By

| - Vv T, p,.8)>|°

2
In Rydberg units, %ﬁ = (1 Rydberg) (1 bohr radius)2 = 1.

We,therefore, obtain

6.37) £=2E > n., (s) (1-n,(s)) = Kot (r, ,p.8)
1 2 17P1
S=112 pl!PZ

b o (v, p,,08)>] 2

6.38) £ = —3 I ng(s)(l-ny(s)) I [@" (T ,py.s)

3(AE)°  s=1,2 pL/P,

I—ﬁleuT(F21p2f3)>|2
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The advantage of the second form lies in the particular
character of —$V in the scattered wave method. V is
radially symmetric in the atomic and outer sphere re-

gions, and constant in the intersphere region. Thus,
-

-VVT = 0 in region II, resulting in a matrix element

which is a simple sum of terms over the atomic and extra-
molecular regions. The gradient takes the simple form

6.39) PV = [i sin @ cos ¢ + § sin @ sin¢ + k cos 9] -g—}_f—

9

in each atomic region g, including the extramolecular

region.
”~ ~ ”~

Here i, j, and k are unit vectors in the X, y, and z
directions, with (6,¢) the cone and polar angles respec-—
tively referred to the atomic origin g. The VYV matrix

element is (suppressing the superscript 'I‘)lo3

Vi S = 9.-9 g -9
6.40)  <u, | +V] fuj> 2 cer? URJ(es r IR;T (ey,xy)
gLL
Vv 2 g 2 ‘ -
§f; tg drg + Ry (ei,bg)bg (AV)]-Ill(L ;L7)
<ui|VyV|uj>= [ ]'Il—l(L{L’)

<ui|VZV|uj>= [ 1+1,4(L, L7)
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It is necessary to describe this result more completely.

The unprimed quantities refer to orbitals u. s the primed
guantities to uj. (The forms of the orbitals u, and Uy

are specified in Chapter V C.) The open brackets [ ]

mean that the same expressions precede Il+l(L:L'), Il—l(L;L')'
and IlO(L;L’). The range of integration is fgg for atomic
spheres, and fbo for the extramolecular region. The quantity
AV is vII = V (inside sphere g on surface) for the atomic
spheres gh# 0, and V (outside on surface) - vII for the

outer sphere, g = 0. The quantities I(L;L”) are the

Gaunt integrals

6.41) I, (LiL7) = SY . (r) Y Ar) Y .(r)dR
I, (@WL7) = JY, 4 (0)Y, (0)Y, - (r) 40
Lio(@in?) = JY, (r) Y (r)¥ .(r) 4@

where dfi denotes integration over solid angle, YL 'YL’

are the normalized real spherical harmonics, and

~ ~ ~ ~

Yll(r), Yl_l(r), and Ylo(r) are unnormalized £ = 1

harmonics defined by

6.42) ll(r) = sin 9 cos ¢

l_l(r) = sin 6 sin ¢

KK K

lO(r) = cos §
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(Our Gaunt integrals, therefore, differ in normalization
from those conventionally defined). The I(L;L”) may

be expressed as products of Clebsch-Gordon coefficients,
and this is how they are generated within our computer
program104. The detailed derivation of the YV matrix
elements, as well as the construction of the I(L;L”) are
described in Appendix B. The computer program for
calculating intensities is listed and described in Ap-
pendix A.

As previously mentioned, the VV matrix elements do
not explicitly dependent on the intersphere wave functions,
uiII and ujII. This is in contrast with the matrix
elements of;;} which require an explicit integration over
this region. These integrations may either be done by
putting the wave function in numerical form and carrying
out a numerical 3-dimensional integration, or by putting
the wave function in approximate one~center form in the
intersphere regio&%6'%%e ﬁv method, on the other hand,
requires only one dimensional, numerical integrations,
the angular integrations being performed combinatorially
via the Clebsch-Gordon coefficients.

The equation 6.40 may be given an interesting

physical interpretation. The total transition amplitude

<ui|$v|uj> is a sum of transition amplitudes for the
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various atomic regions and for the extramolecular region.
On each center, a non-zero amplitude results only if
I(L;L”) # 0 for the respective partial waves involved in
coupling the initial to the final state. By the pro-
perties of the Gaunt integrals, Ilm(L;L‘) # 0 only if

AM=|2"- 2= 1®. But this is just the dipole selection

rule for atomic transitions in a central field.2 The
total transition amplitude is, therefore, a sum of
atomlike transitions. The atomic amplitudes may have
either sign, and so they can add either constructively
or destructively. The transformation properties of the
3 operator are the same as for §, so the complete cluster
obeys dipole selection rules. One can then tell from the
symmetry of the irreducible representations when a zero
total amplitude will result from the calculation.

Another important issue is the appearance of surface

2

g ‘g Yo :
terms Rz(ei’bg)Rg’(ej’bg)bg AVIlm(L;L ) in the amplitude

equation. These arise from the finite jump in potential

at each sphere boundary. %¥ becomes a delta function

at each sphere boundary, which then yields a finite sur-
face term on integration. The terms, in effect, compensate
for the absence of an integration over the intersphere

region. The finite jump in potential may be regarded as

an idealization of the more gradual rise in potential
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expected as the electron moves away from the central
field of a particular nucleus.
Finally, we should mention the issue of the intrin-

sic accuracf of the f(ﬁV) form for the oscillator

L 3 which becomes
(AE)
very large for small excitation energies. To obtain a

strength. f(%v) contains a factor

reasonable oscillator strength in this case, the total
transition amplitude <ui|$V|uj> must be small. But
since the transition amplitude is generally a small
difference of atomic amplitudes, errors in these ampli-
tudes can produce a large error in the final resultlB.
In practice, one should expect failure of the Vv form

of £ for sufficiently small excitation energies, and we

will explore this issue further in Chapter 7B.
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CHAPTER VII
APPLICATIONS OF THE 3V FORM OF THE
OSCILLATOR STRENGTH IN THE Xa SCATTERED WAVE METHOD
TEST CASES

Hydrogen Molecular Ion

As an initial test of the optical intensities
program, we have calculated intensities for the ldé +16u
and 16g+ lT[u transitions in H2+ at interatomic spacings
R from 1.0 to 5.an (Bohr radii). The oscillator strengths
and energy eigenvalues are presented in Tables 4, 5, and
6, and compared with the exact results of Bates and co-
workers as well as with the approximate Gaussian basis
set results of Lamb, Young, and LaPaglia54—56L

At R < 2.0a0, the equilibrium nuclear separation,
the scattered wave intensities are in good agreement with
the exact values. The typical error is about 10% for
the ldg+16u transition, and 1% to 2% for the 16g+lHu
transition. However, when the outer sphere is allowed
to overlap fhe atomic spheres, the error in the calculated
intensity increases to 22% for the lﬁg+ ldu transition,
and to 11% for the 16g+lﬂa'(R£ 2.0a,, Case 1). This
should not be surprising since the spherical averaging

of the potential in the outer sphere region is probably
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not much better than volume averaging in the vicinity
of the atomic spheres. When combined with the approxi-
mations inherent in overlapping regions, a less reliable
model results. At R = 2.0a0, we may also compare the
energy eigenvalues for the muffin tin model and the

two overlapping sphere models (overlapping outer sphere
and tangent outer sphere, respectively) in Table 5.
While both overlapping sphere models yield better energy
eigenvalues than the muffin tin models, overlapping the
outer sphere produces only a very small change in energy
compared with the tangent sphere.

For R = 3.0ao, calculations were done with the
atomic sphere radius by = 1.35 and 1.5 % bN(bN is the
non-overlapping radius). For the larger overlap, the
lﬁé+16u intensity is much worse, while the 16g+lHu in-
tensity improves a little. Our viewpoint is that bl =
1.5bN constitutes excessive overlap, which is supported
by the computed intensities. The scattered wave inten-
sities are too low with either model, the most important
discrepancy being in the 16g+ lOﬁ transition. By R = 5.0a,,
the scattered wave intensity is practically zero for
ldg+ldu compared with the exact £ = 0.175, while the scat-

tered wave intensity for the ldg+lﬂu excitation is in
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good agreement with the exact value, scattered wave
f = 0.398 and exact £ = 0.430.
These results are intelligible in terms of the
atomic orbital compositions of the states. The ldg
and lmu states consist mostly of s and P, functions
on the atomic sites, while the 11'[u state is primarily
composed of Py atomic functions. In the large separation
limit, 1&g and ldu become H(ls) + proton, so for R»w,
£f=0 (lag+l@u), as we have found for R = 5.0a0. The
trouble is that at intermediate distances the proton
polarizes the H(ls) state producing H(ls)+H(pz), and our
spherical averaging at the atomic sites eliminates this
polarization. For the l]’[u state, the polarization does
not affect the intensity (asymptotically, the transition
is s+px), and the scattered wave f value remains accurate.
Subsequent to these calculations, the optical in-
tensities program was incorporated into the scattered
wave computer programs. Certain variables, especially
the energy eigenvalues and radial functions, were trans-
ferred more accurately to the optical intensity subroutine.
We then recalculated the two transition intensities for
R = 2.0ao, bl = l.BSbN, and a tangent outer sphere,
obtaining f(ldg—+ldu) = 0.284 and f(lﬁg+ lHu) = 0.438.

These results are about as accurate as before, but the
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intensities are smaller by 21% and 5.5%. Our conclusions
on the accuracy of the overlapping sphere f values should
remain valid, though the muffin tin results may be less
satisfactory with the improved computer program. (The
last conclusion is based on the assumption that the
muffin tin £ values will decrease with the modified com-
puter program, as we found for the overlapping sphere £
values) .

Finally, we should mention the issue of partial wave
convergence, which is important in all the systems we shall
treat. The truncation of the partial wave expansion in the
scattered wave method will induce errors, and cause dis-
crepancies between the different oscillator strength forms.
For this reason, convergence of the f values must be in-
sured by including a sufficient number of partial waves.
For H2+, we include through % = 2 on the hydrogen atoms,
and % = 4 on the outer sphere. Generally, it is necessary
to include d functions on atoms where s and p functions are
chemically important, and £ functions on transition metal
atoms. Sometimes convergence problems still persist, as

we will describe further in the section on CO+.



124

Table 4

H2+ Optical Properties —-— Oscillator Strengths

(R = internuclear distance, bl = atomic sphere radius, bN =
non-overlapping atomic sphere radius, bO = outer sphere
radius, may be either tangent to or overlapping the atomic

spheres, ag - Bohr radius).

b

R Bi 'bé ' Scattered Wave Exact £2'P
N - £ (VV)
10g+lcu
1.0 ag
2.0 a
o
1.35 overlapping 0.247 0.319 Case
(bO = 2.0 ao)
1.35 tangent 0.358 0.319 Case 2
30 ag 1.35 tangent 0.175 0.289 Case 3
1.5 tangent 0.108 0.289 Case 4
5.0 a 1.35 tangent | 3,5 ¥ 10" 0.175
lc 11
u
1.0 ag 1.35 tangent 0.385 0.392
2.0 aq 1.0 tangent 0,452 0.460
1.35 overlapping 0.410 0.460 Case 1
(b. = 2.0 a)
o} o
L35 tangent 0.464 0.460 Case 2
3.0 a, 1.35 tangent 0.412 0.479 Case 3
1.5 tangent 0.430 0.479 Case 4
5.0 a 1. 35 tangent 0.398 0.430
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Table 4
(continued)
(The various cases designate the different overlapping sphere

models (1), (2), (3), and (4) at R = 2.0 a, and R = 3.0 ao).

In all the calculations, partial waves through 1 = 2 were

used on each atomic center, and through 1 = 4 on the outer

sphere.

Reference 54.

b Reference 55.
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Table 5
H2+ Energy Eigenvalues
(A1l Energies Measured in Rydbergs)

R=1.0 a

o
State Overlapping Spheres Exact®
10g -2.8366 -2.9036
lq} -1.1043 -1.1296
lﬂh ~0.9668 -0.9482
R= 2.0 a,
Overlapping
State Muffin-Tin Spheres (1) & (2) Exact
log -2.072 -2.157 =2.155 -1+ 105
10u -1.288 -1.360 -1.366 -1.335
lﬂu -0.889 -0.865 -0.860 -0.858
R = 3.0 a,
Overlapping

State Spheres (3) & (4) Exact
log -1.7939 -1.8689 -1.8218
lqu =1.4312 -1.4476 -1.4028
lnu -0.7651 -0.7539 -0.7729
R =5.0 a

o
State Overlapping Spheres Exact
lgg -1.4427 ~1.4488
lou -1.3619 ~-1.3546
lHu -0.6134 -0.6428
a

Reference 55.
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Table 6
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Strengths by Scattered Wave Method with Gaussian results

(Overlapping sphere results with bl = 1.35bN)
R Gaussian® f(x,V) £ (x) f(V) Scattered Wave Exact fb’
£ (Vv)

lo =10

g u
1.0 a, 0.283 0.290 0.276 0.251 0.269
2.0 a, 0.318 0.328 0.309 0.358 0.319
3.0 a, 0.273 0.305 0.245 0.175 0.289
5.0 ag 0.116 0.191 0.071 3.5 X 10~ 0.175
1o =11

u

1.0 a, 0.359 0.368 0.350 0.385 0.392
2.0 a, 0.433 0.426 0.440 0.464 0.460
3.0 a, 0.425 0.390 0.463 0.412 0.479
5.0 a, 0.338 0.270 0.423 0.398 0.430
a

Reference 56.
b Reference 54.
c

Reference 55.

C
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HYDROGEN MOLECULE

The scattered wave results for thelEg+lZu,lZg+3Eu,

and lZg +1Hu excitations are given in Table 7. The
results are compared with the experimental excitation

energies and with the CI oscillator strengths of Wolnie-

wiczS7. (The less accurate CI oscillator strength of

Ehrenson and Phillipson is also included)33. The lEg+3Eﬁ

excitation is spin forbidden, and, therefore, the 3Eu

energy eigenvalue was originally obtained by measuring

the H, emission spectrum from a higher lying 3Zg state.15
All theoretical f values are given at the equilibrium
nuclear separation R = 1.4 agr in accordance with the
Franck-Condon principle. ‘

The experimental singlet-triplet splitting of the
3Eu and lZu states is fairly large, AEST =1.6 - 1.7 ev.,
so spin effects must be taken into account in the scat-
tered wave calculations.lé‘ There are two possible ap-
proaches to this. As we have discussed before, in the

spin unrestricted XOL method, the Ms (z component of total

spin) value for a shell is (MS)i = 9&1%9&& , with total
MS = Z(Ms)i. Therefore, a state w?th Ms =0 is a

i
simple mixture of a singlet and a triplet state, and a

state with M, = 1 is a pure triplet for a two-electron
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system. For excitation from a ground state singlet 12 , the
excited state may have the same spin M, = 0, or a flipped
spin Ms = 1, with corresponding excitation energies AEUN

and AET. The singlet excitation energy AES is then de-

AES+AET
termined by EUN = which implies AES = 2AEUN - ET.

Alternatively, the spin restricted excited state may be con-

(1)

sidered as a mixture of a singlet with all three possible

triplet states. The spin restricted excitation energy is
AES+3AET
ERES = —g resulting in a singlet excitation energy

(2) _
AE = 4 AE_.

A
g - 3AET. Bagus and Bennett have derived

these results by analogy with averages over spin states in

105

Hartree-Fock theory. They conclude that the singlet-

triplet splitting AEST = AES

upper bound to the true value. Since AES

- AET by either method is an

(1) # AES(Z), one

should use the least upper bound for AEST.

For the 1E -+ lZ and 1

g u
excitation energies and the oscillator strength are given

Zg - BZu transitions, both the

quite accurately by the spin unrestricted formalism. This
holds for both overlapping and non-overlapping spheres.

The most accurate results are from the overlapping sphere
calculations, AET = 10.88 ev., AES(I) = 13.1 ev., AEST(I) =
2.33 ev.,,, and f = 0.296 compared with the experimental values

AET = 10.6 - 10.7 ev, AES = 12.27 ev"AEST =1.6 - 1.7
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ev., and £ = 0.300 (the Kolos-Wolniewicz value) .

By contrast, the spin restricted formalism (with
overlapping spheres) yields inaccurate values for AES
and AEST; but the f value is of reasonable accuracy. The

(2) (2) _ 8.6 eV, and

(2)
ST -

found for X, calculations in large molecules by Bagus

results are AES = 19.5 eV, AEST

(1)

<A E was previously

f = 0.335. The result AEST
and Bennett.105 In addition, AEST(l) does form the
least upper bound to the experimental AEST.

The calculated oscillator strength and excitation

energy for the 12g+l

Hu transition is in much poorer
agreement with the experimental results, as shown in
Table 7. The calculation was done only in the spin re-
stricted form with overlapping spheres (no triplet was
computed) . Since AES(z) > AEgpg the excitation energy
error in spin restricted form is larger than 1.3 ev. result
in the table. The state is particularly high lying in
energy and diffuse (98% of the 1l charge is in the extra-
molecular region), and is probably not well represented
by the model. We notice, however, that use of the experi-
mental AES value in the intensity formula yields an
improved value of £ = 0.296. The lﬂu wave function may,

therefore, be of fair accuracy. The total spin restricted

intensity for the Lyman and Werner bands of £ = 0.555 is
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in reasonable agreement with the experimental value
f = 0.65.

It is clear that the spin unrestricted results in
H2 are superior to the spin restricted results for both
intensities and excitation energies. In this regard,
the self-consistent fields for the XOL states are multiplet
averaged fields. We may therefore postulate that the
best states are achieved by averaging over the least
number of multiplets, a condition satisfied in this case
by the spin unrestricted formalism. Before accepting
this conclusion, however, further comparisons with ex-

periment in other systems are necessary.
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Table 7

\H2 Optical Properties

i i ' A = i i A =
(Excitation Energies are EUN spin unrestricted, ERES
spin restricted,AET = triplet,lXEs‘ = singlet from the
1)_ 2 .
formulae AES( )—ZAEUN—AET, AES( )=4AERES—3AET.~Overlapplng sphere
radius bl = 1.35 X the muffin tin radius. The singlet-triplet

splitting is AEST = AES - AET).

L +lZ and 18 +32
g u g u

1

Non-overlapping Spheres, Spin Unrestricted

AEUN = 11.75 ev.

AET = 10.44 ev.

AES(1)= 13.07 ev.
(1) _

AEST = 2.63 ev.

Oscillator Strength = 0.290

Overlapping Spheres, Spin Unrestricted

AEUN = 11.99 ev.

AET = 10.88 ev.

AES(I) = 13.10 ev.
(4

Oscillator Strength = 0.2956
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Table 7
(continued)

1 -1 1. 3
Zg ., and zg Iy

Overlap Spheres, Spin restricted

AERES = 12.98 ev.

AET = 10.88’ev.

AES(z) - 19.5 ev.
(2) _

AEST = 8.6 ev.

Oscillator Strength = 0.335

Experimental . Resultsa

AET = 10.6 ev. (based on indirect measurements)
AES = 12.27 ev.
AEST = 1.6 - 1.7 ev.

Oscillator Strength

Il

0.27 (based on CI calculation of Ehrenson

and Phillipson)®

Oscillator Strength

0.300 (based on CI calculation of Kolos

and Wolniewicz)c

Overlapping Spheres, Spin Restricted

A =
ERES 14.18 ev.

Oscillator Strength = 0.222
Experimental Results

A =
ES 12.9 ev.
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Table 7

(continued)
Oscillator Strength = 0.356 (based on CI calculation of Kolos
and Wolniewicz)c

lZg Ground State Energy

Non-Overlapping Sphefes
E = 2.137 Rydbergs
Overlapping Spheres

E = 2.235 Rydbergs
Experimental Results®

E = 2.349 Rydbergs

& Reference 15.
Reference 33.

c Reference 57.
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CARBON MONOXIDE POSITIVE ION

The X, theory f£(VV) values for the 1T.»56 and
56+2T]" transitions in CO+ were computed by the author.
In Table 8, we compare these results with the corres-
ponding Hartree-Fock f values (uncorrected), with the
X, theory f(ﬁ) values (from the work of Messmexrrandd
Salahub), and with the experimental f value for the
177 +50 transition (there are no experimental intensities

for the 50 =+ 2T transition).zz'59

The important point
here is that the f(VV) values differ significantly from
the f(¥) values, although both sets of values were
détermined using the X theory. Also, in the 17 - 50
case, the f(?V) intensity is about 5.4 times the experi-
mental intensity, versus about 1.6 times the experimental
intensity for the f£(¥) form.

The discrepancy may be understood in terms of basic
theory. In the xa scattered wave theory, the f(§) and
f(ﬁv) intensities are identical only if the model one
electron Schrodinger equation is solved precisely. In
practice, however, it is necessary to truncate the partial
wave expansions in the various regions for a given

orbital u; to obtain a tractable secular problem.. It is

this basis set truncation that leads to the discrepancy
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between the f(VV) and f(§1 forms. The two oscillator
strength forms become identical only in the limit of
a large number of partial waves on all centers. An
indication of this relationship is given by the 1HI-+F50
intensities in Table 8. £(VV) is slowly converging to
a lower value as we increase the number of partial waves
on the different centers. The f(V¥V) value is therefore
approaching both the f(%) value and the experimental
f value. The f(gv) value (at £ = 4 on all centers) is
not of quantitative accuracy, but this value does
clearly indicate that the 15 -~ 50 transition has a low
intensity. In Chapter VI, we proved that the total
transition amplitude for a molecule in the f(¥V) method
is a sum of atomiclike amplitudes. Generally, there is
a great deal of cancellation between these atomic ampli-
tudes, so that the total amplitude is a small difference
of much larger amplitudes. Under these circumstances,
the slow convergence of £WVV) particularly in the case
of low intensity transitions is not surprising.

In conclusion, it seems thatf(§9 has better partial
wave convergence properties than does £V V) ip the X,
scattered wave theory. The f(%) intensity for the 1l » 50

transition is very good considering the problems involved
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in evaluating both the theoretical and the experimental
intensities. A general conclusion on whether the f(})
form is to be preferred to the f(ﬁv) form can only be

obtained after more extensive comparisons of the two

methods.
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Table 8

CO+ Oscillator Strengths

Transition Hartree-Fock f£2 XuTheory Experimental £
@Y £V

10+50 0.0177 0.0088 0.030 0.0056

50+211 0.105 0.0476 0.081

Convergence of f(ﬁV)

f with 2= 2 £ = 4 on all centers
1I-+5¢ 0.064 0.030

o Reference 22.

b Reference 59.
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TRANSITION METAL COMPLEXES

The transition metal complexes treated in this
work were chosen to exemplify the wide variety of pos-
sible excitations in complex molecules. Mn04_1 has a
closed shell electronic structure; transitions in this
complex are dipole allowed ligand to metal charge
transfer in nature.9 FeCl‘I—l was chosen as an example
of an open shell system in which spin effects would be
important (total spin S = +%).4 The electronic struc-
ture of this system is sufficiently close to that in
Mn04_l so that comparisons of analogous transitions in
the two systems would be meaningful. In both cases, the
molecular structure is tetrahedral. CoCl4-2, also with
a tetrahedral structure, has an e +t,(metal 3d-metal 3d)
crystal field transition in addition to ligand to metal
charge transfer transitions closely analogous to those
in FeCl4dl.4'47 We are interested in the ability of
the X& theory to predict the average over multiplets
of thé e+t, crystal field transition energy. We are also
interested in the usefulness of the VV method in
predicting the intensity of the e+t2 transition which

occurs at low energy, about 0.5 ev. 8730 mpe FV method
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becomes less reliable for low excitation energies, as

we have discussed previously. Cr(CO)6 is the largest
cluster we will consider. The primary dipole allowed
transitions in this system have a metal to ligand charge
transfer character in contrast to the previous cases.51
Cr(CO)6 has an octahedral structure. Vibronic transi-
tions can therefore occur in this complex when an odd
normal mode vibration destroys the molecular inversion

center.7'51

Although we will not predict vibronic in-
tensities, we will compare the corresponding excitation
energies with our theory foé vibronic coupling. We

have predicted that vibronic excitation energies lie
below the Franck-Ccndon value. Finally, we will see

to what extent the theoretical line intensities determine
spectral assignments which are ambiguous from energetic
considerations alone. Through the examples above, we

will have considered most types of spin allowed excitations

found in transition metal complexes.



 PERMANGANATE

As previously mentioned MnO, is a tethahedrally

coordinated molecule, which may appear either as

a

a component of an ionic crystal or as an anion in solu-
tion. The complex has been extensively studied with

previous theoretical methods, but the experimental

data is less adequate.lz’4]'-4'3'63-66

The X, ground state orbital energies from the

work of Johnson and Smith for MnO , are presented
in Table 9, and a diagram of the levels is given in

9 These calculations were done with non-over-

Figure 1.
lapping spheres, as were most of the intensity calcula-

tions we shall present. Calculations on several
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systems indicate that the non-overlapping sphere approx-

imation yields accurate results in most metal oxide

106,107

systems. (Although we have found it necessary

to include partial waves through £ = 2 on O and

through % = 4 on Mn and the outer sphere for the intensity

‘calculations, the energy eigenvalues are basically un-
changed from the earlier results).

1Vino4_l has a closed shell electronic structure.’
As indicated in Table 9, the lowest lying levels are

chemically shifted Mn(ls)2(2s)2(2p)®(35)2(3p)® ana
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0(13)2(25)2 free atom levels. The occupied valence
orbitals may be classified as follows. The 51:2 and
Ye states are 0 and I bonding combinations of 0 2p
1 and 6t2 orbitals are

composed mostly of 0 2p orbitals, with some hybridi-

and Mn 3d orbitals. The 6a

zation to the Mn 4s and Mn 3d orbitals respectively.
The highest occupied orbital, the lt1 level, is
primarily a non-bonding 0 2p state.

The unoccupied 2e and 7t2 levels constitute the
final states for the optical transitions. These are
primarily Mn 3d states in the tetrahedral crystal field
of the surrounding oxygen atoms. The higher lying 8t2
(Mn 4p) and 7al (Mn 4s) states are not involved in
absorption at optical or near ultraviolet (u.v.) fre-
quencies.

The (non-overlapping sphere) X, scattered wave
results for the optical properties of MnO4-'l are
presented in Table 10. Our analysis of the permanganate:
spectrum indicates that all transitions are dipole
allowed ligand to metal charge transfer in type. Table
10 shows excellent agreement between the theoretical

and experimental excitation energies in MnO, ~. The

relative theoretical intensities for the various transi-
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tions are in agreement with the corresponding experimen-
tal values, but the absolute intensities differ between
theory and experiment by about a factor of 17. A similar
scale factor will appear in many of our results, and
reflects a combination of local field and correlation
effects. In particular, correlation causes a decrease

in the occupation numbers of the transition state orbitals
for the initial level. (This is a consequence of the
fact that the natural orbital occupation numbers are
smaller than the Xy theory occupation numbers for those
levels lying at or below the Fermi energy. See Chapter 6A
for a further discussion of this subject.) As a result,
the theoretical intensities are often uniformly too large,
though the scale factor is generally much smaller than

the Mno4_l value. The experimental Mn04_l intensities
are also unusually small compared with analogous transi-
tions in similar tetrahedral complexes. In the isoelec-
tronic chromate ion Cr04-2, the oscillator strength for
the ltle 2e transition is f = 0.08 compared with £ = 0.03
for the same transition in Mn04-1. The other optical
intensities in Cro4_2 are similarly larger than the cor-

responding Mr104_1 intensities. Since CrO4 £ has a very

.. , -1
similar electronic structure to MnO4 , these results
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indicate that the permanganate intensities must be
very sensitive to the form of the wave functions. 1In

the following section, we will also compare the inten-

1 1

sities in Mn04_ with those in FeCl4 .

Our spectral assignments are: first band 1lt,=+2e(2.3 ev.)

1
second band (weak shoulder) 6t2+2e(3.5 eV.), third band

1t +2e and 6a,=>7t

1 2 1 2
(5.5 eV.). This assignment coincides with that of Johnson

->7t2 (4.0 evV.), and fourth band 5t

and Smith except for the 6a1+7t2 contribution to the
fourth band system which they did not consider.9

In Chapter III C, we discussed in detail the many
spectral assignments and intensity results that have been
giveﬁ for Mn04_l. In Table 11, we compare the best of
these earlier calculations (the results of Mortola and co-
workers) with the Xa results for Mn04_l. In contrast to
the intensities of Mortola and co-workers, the Xy values
are in relative agreement with the corresponding experimen-
tal intensities. Nonetheless, the large scale factor
found between the Xy theory oscillator strengths and the
experimental values is very unsatisfactory. It is therfore
necessary to establish the cause of this problem.

In Table 12, we show the respective atomic amplitude
contributions to the total intensity for the ltI+2e

excitation in MnO4 . The overall intensity is a conseguence
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of destructive interference between the various atomic
amplitudes. This is a general characteristic of elec-
tronic transitions in molecules. This feature suggests
that the theoretical intensities could be sensitive to
changes in various computational parameters.

We have examined this in several ways. First,
we varied the manganese-oxygen distance from 1.54 i to
1.63 5. These are the limiting values of the experimental
Mn-0 distance from X-ray diffraction measurements.38-40
The excitation energy increases with decreasing manganese-
oxygen distance, with the intensity slowly decreasing.
The behavior of the excitation energy is expected. As
the ligands are brought closer to the central manganese,
the anti-bonding 2e state is pushed up by the increased
interaction with the crystal field. The non-bonding ltl
state is relatively stable in energy. The intensity effects
are small and unimportant, except for supporting the vali-
dity of the Franck-Condon principle in this system.

Second, a test was made of the effect of changing
the position of the stabilizing electrostatic sphere
(total charge + le). Changing the sphere radius from
4.3 a, to 6.5 a_ was found to have a negligible effect
on the intensity and to contribute only a constant shift

to the energy eigenvalues.
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Third, a calculation was done of the lt.-~2e in-

i |
b
tensity with a sphere overlap of 30% (Sﬂ = 1.30 for
N
all atoms). The oscillator strength decreased to f =

0.252. However, this decrease is caused almost entirely
by the new excitation energy AE = 3.0 eV, which contains
a large error. We do not, therefore, regard this result
as significant.

Despite the inconclusive results of the preceding test
cases for Mn04_l, there is strong evidence that a change in
the boundary condition on the cluster could yield substan-
tially different intensities. (A new boundary condition on
the cluster must, of course, be justified from phvsical
considerations.) This view is substantiated by Table 12.
In this table,the outer sphere amplitudes, while small
compared with the individual atomic amplitudes, are still
very significant with respect to the total amplitude AT
because the various atomic contributions cancel almost
precisely. In fact, if the outer sphere contribution were
ignored, the resulting intensity of the 1ti*2e transition
would be £ = 0.0028, less than the experimental intensity.
There is no justification for this procedure, but an
alternate outer sphere boundary condition could reduce
the outer sphere amplitudes resulting in a much smaller

theoretical intensity. Of all the transition metal

complexes we shall treat, only Mnod_l displays this extreme
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sensitivity to the outer sphere transition amplitude. This
arises through the larger outer sphere contribution to the
molecular orbitals, about 3-6%. (In FeCl4_l, for example,
omitting the outer sphere amplitude for the 2tl+3e transition
decreases the intensity by a factor of 1.54, compared with a
reduction factor of 142 for the 1tl+2e transition in Mn04_l.)
It is then no coincidence that Mnoa'_l has the largest scale
factor of the transition metal systems we shall study.

We postulate that Mno4"1 interacts covalently via the
oxygen ligands with the surrounding aqueous or crystalline
environment. It is likely that an interaction of this type
would substantially reduce the outer sphere amplitudes, and
would also reduce the atomic amplitudes as well. This hypo-
thesis will have to be tested by further calculations on the

=]

MnO4 cluster.
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Table 9
Mn04"l Energy Levels by the X, Scattered Wave Method
with Non-Overlapping Spheres
Level One Electron Energy (Rydbergs)
lal(Mnls) -468.584
2al(Mn25) - 54.105
ltz(MnZP) | - 46.513
3al(Ols) = 3. 738
2t2(015) - 37.738
4al(Mn3p) - 6.435
3t2(Mn35) - 4.259
5al(025) - 1.813
4ts(025) = 1785
5t, - 0915
le - 0.901
6a, = Pulto
6t, - 0.761
ltl - 0.682
2e - 0.526
7t, —  0.350
8t, - 0.020
7a - 0.006

a Reference 9.
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Table 10
~1 optical Properties

4
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A Reference 41.

Reference 42.

- Transition Intensity Excitation Energy
Theory Experimenta'b Theory Experimenta
ltl+2e 0.5406 0.032 2.29 ev. 2.3 ev.
6t2+2e 0.2620 0.025 3.25 ev. 3.5 ev.
lt1+7t2 0.5988 0.045 4.75 ev. 4.0 ev.
6a1+7t2 1.2132 0.04-0.07 5.37 ev. 5.45 ev.
5t2+2e 0.2970 5.19 ev.
6t2+7t2 0.6336 5.72 ev.
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Comparison of X, Theory f(ﬁV) Intensities with the £ Values

of Mortola and Co-Workers for MnO

—

4
" XaTheory b.c

Transition . Intensities of Mortola In- Experiment '

' tensities

£ (%) £(V) f(x,V) £(vv)
ltl+2e '0.426 0.128 0.233 0.541 0.032
6t2+2e 0.199 0.097 0.139 0.262 0.025
ltl~+7t2 0.101 0.083 . 8079 0.600 0.045
6a1—>7t2 0.668 1.213 0.04-0.07

& Reference 66.

Reference 41.

¢ Reference 42.
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Table 12

Amplitude for ltl+2e (col. lscol. 2) in MnO4 1 (Internuclear

Distance R = 1.59 R, Non-Overlapping Spheres).

Amplitudes for transitions between partial wave components:

Outer Sphere

A(f-+d) = 0.011237

A(f+g) = 0.005200
Manganese

A(f>d) = -0.142030

A(f+g) = 0.002478
Oxygen

A(p+d) = 0.131458

A(d+»p) = 0.009593

(The initial state partial waves are given first).

Total Amplitude

TA; = 0.001499
i=atoms

IA; = 0.016437
i= outer sphere

An = Total Amplitude = 0.017936

e
[ Bl *
(AE) 3 x

_ 4
L= ' G = degeneracy factor = 6 = 2

(for spin) x 3 (orbital)

AE = (0.168216), (AE)?® = (0.004760), Oscillator Strength

Hh
il

0.540672
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IRON TETRACHOLORIDE

The tetrahedral complex FeCl4 - has an open shell elec-

+5 4 et
5 FeCl4 has a

greater ionicity than MnO4 % due to the greater electronega-

tronic structure with high net spin § =

tivity of the chlorine ligands as opposed to the oxygens.

This is borne out by the larger band gap in FeCl4_l, 3.2 ev..

versus 2.3 ev. in Mn04-l, and by a smaller separation between

the bonding (beginning with the 8a, * level) and non-bonding

1
(ending with the th' level) states in Fecl4—l. The valence

level ordering in the two complexes is similar, except that

the 8al state appears at the bottom of the valence band in

FeCl4_l while the analogous Ga:L state in Mn04_l occurs

near the top of the valence band (only weakly bonding). A

summary of the energy level structure in FeCl4 i from our

X

, calculations is give in Table 13 and Figure 2. A 20%

overlap factor (;% = 1.20, for all atoms) was used in the

calculation because the atomic radius of chlorine is known

to be large. The high spin S = i% makes it imperative that

the X, calculation on this system be spin unrestricted.

This is the high spin case mentioned earlier in which the
+5

spin unrestricted formalism yields a pure S = ~> multiplet.

The levels through the 2t., state are completely filled, with

|
the higher Fe 3d crystal field states assuming the configuration
(3e+)2 (10t2+)3. All transitions below 4.6ev. are from
bonding or non-bonding states concentrated mostly on the

chlorines to the unoccupied 3et and 10t,¥ levels concentrated

2
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on the iron atom. At higher energies (above 5.0 ev., experi-

mentally) transitions to the unoccupied 9a. state occur as well.

i |
The latter is a diffuse hybrid s state with most of its
charge in the intersphere and extramolecular regions. The
atomic orbital compositions: of:the occupied states in }E‘ecl4_l
are indicated in Table 13.

In Table 14, we present a comparison of the theoretical
and experimental optical properties for FeC14_l.4 Botﬁ theo-
retical excitation energies and relative intensities are in
excellent agreement with the experimental values. The scale
factor between the X, intensities and the experimental
intensities is a very reasonable 1.7, which is fairly constant
(£ 0.2) throughout the different transitions. The advantages
of carrying out the calculation in spin unrestricted form are
apparent from our spin restricted results in Table 14. While
the intensities are surprisingly stable (especially in view
of the large changes in AE), the excitation energies are
too low by 1.1-1.5 ev. In a system having the complexity
of FeC14-l, spectral assignments then become particularly
treacherous. The use of the spin restricted form of the
X method was also a major source of error in the work of

6
Ellis and Averill discussed earlier.69

Returning to the spin unrestricted results for FeCl4_l,

there is a close connection between the calculated spectral

intensities in this system and the calculated MnO4 intensities.

Consider the first three bands for the two systems; In each case,
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the calculated MnO4 intensity is just about 2 times the

analogous theoretical intensity in FeClé_l. This would follow

as a consequence of the Pauli exclusion principle if Mn04"l

4

involved in the transitions. Transitions to the filled 3et

and FeCl have similar wave functions for those states
and 10t

2
FeCl4—l, but the analogous 2et and 7t2+ levels in MnO4

+levels are prohibited by the Pauli principle in

-1

are unoccupied making transitions to the latter states allowed.
The valence states in Mn04_l and FeCl4-l are for the most part
guite similar using the present scattered wave cluster model.
This model is based, however, on a purely electrostatic boundary
condition (that is, on a purely ionic interaction between the
molecule and the surrounding medium). The experimental inten-
sities for the two systems suggest that an ionic boundary
condition is fairly accurate for FeCl4_l, but that a

mixed ionic and covalent boundary condition is required to

-1

represent the bonding of MnO4 to the surrounding medium.

The agreement of the FeCl4_ calculated intensities with
the experimental results must be considered very good,

especially in view of the uncertainties in the experimental

values.
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Table 13

Energy Levels in FeCl4“l

Valence Levels One Electron Energy (Rydbergs)
Spin~Up Spin-Down
6al (Fe3s) ~6: 672 -6.467
6t, (Fe3p) -4.327 -4.120
7aq (C13s) -1.442 -1.423
7t, (C1l3s) -1.419 -1.400
Sal (Cl3p + Feis) -0.682 -0.656
8t, (Cl3p + Fe3d) -0.661 -0.600
2e (C13p + Fe3d) -0.603 -0.540
9t, (Cl3p + F 34) ~0+558 ~0.529
2tq (C13p) -0.483 -0.467
3e (Fe3d) -0.436 unoccupied
lOt2 (Fe3d) -0.386 unoccupied
9al (diffuse Feds) unoccupied unoccupied
Core Levels (Chemically Shifted)

Fe is =509.20
Fels - 59.10
Fe 2p = 5k, 10
Cl 1s ~201.11
Cl 2s - 18.41

cl 2p - 14.10
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Table 14
FeCl4_ Optical Properties -- Spin Unrestricted --
. 5
net Spin Up + 5
Transition Intensity Excitation Energy
Theory Experimenta Theory Experimenta
2tl+3e 0.194 0.11 3.2 ev. -1 3.4 ev. -1
25,800 cm 27,480 cm
2tl+10t2 0.276 0.16 3.7 ev. _1 3.9 ev. -1
29,800 cm 31,520 cm
9t2+3e 0.123 0.07 4.0 ev. -1 4.6 ev. -1
32,200 cm 37,000 cm
9t,+10% 0.009 4.3 ev.
s e 34,700 cm™ !
2e +10t2 0.077 4.62 ev. -1
37,200 cm
8t2+3e 0.009 4.78 ev. -1
38,600 cm
10t2h+9a1+ 0.126 4.94 ev. -1
39,800 cm
8t,~>10t, 0.201 0.28 5.25 ev. -1 5.1 ev. -1
42,250 cm 44,250 cm
9t,¥>%a. ¥ 0.268 6.1 ev. _
= 49,700 em~t
9t2++9al+ 0.117 6.7 ev. 1

54,000 cm™
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Table 14
(continued)

Spin Restricted

Transition Intensity Excitation Energy
Theory Experimenta Theory Experimenta
2t,>3e 0.189 0.11 2.3 ev. -1 3.4 ev. _1
18,550 cm 27,480 cm
2tl—>-10t2 0.276 0.16 2.74 ev. -1 3.9 ev. -1
22,100 cm 32,520 cm
9t,>3e 0.116 0.07 3.09 ev. -1 4.6 ev. -1
25,000 cm 37,000 cm
9t2—>10t2 0.023 3.66 ev. -1
29,500 cm

aReference 4.



Table 15

Optical Properties of FeCl -1
of Averill and Ellis.

from the Work
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The Spin Restricted X, method was used, and the Dipole Length

form for f£.

Transition Intensity Excitation Energy
a Corrected . I & ) b
Theory Value Experiment Theory Experiment
2t,>3e 0.05 0.15 0.11 17400cm™* 27480cm L
2t,>10t, 0.06 0.18 0.16 26800cm ™+ 31520cm
9t,>3e 0.05 0.15 0.07 28400cm T 37000cm ™t
9t,+10t, 0.06 0.18 37900cm™ 1
2e +10t, 0.04 0.08 41100cm™ T
8t,>3e 0.01 0.03 33200em™ T
8t,>10t, 0.09 0.27 0.28 42600cm™t 41250cm™t
8a,+10t, 0.44 0.44 48900cm™*
10t,79a, 0.003  0.009 33200cm™t

{(The spectral assignments in

Averill and Ellis's).

o Reference 69.

Reference 4.

this Table are our own,

not
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COBALT TETRACHLORIDE

The electronic structure of CoCl4_2 is quite similar to

the FeCl4 1 structure, except for the additional filling of

the 3e{ orbitals producing a net configuration (3e+)2(10t2+)3

49 -2

(3e¢)2; The chlorine tetrahedron in the CoCl4 case is

distorted although we will use a regular tetrahedron for our
calculations. The details of the calculation are as found in

the }E‘<3C14"l work. There are two transitions to be considered,

the crystal field 3e++10t2Lexcitation at low energy AE=0.37-0.74ev.,

and the first charge transfer transition 2tl++10t2+ at AE=5.3ev.

In addition, there is another crystal field multiplet transition
48,49
at AE = 1.8 ev. The results are summarized in Table 16.

We will treat the crystal field transition first. As

indicated in the table, the first two multiplet transitions

4A244T2; 4A2+4T1(F) correspond to the allowed one electron
transition (3e+)2+(3e+)l(10t2+)l in the strong field limit.

However, only the 4A2+4T1(F) excitation is dipole allowed in

49

multiplet language. Our calculated excitation energy AE=0.408

ev. should be an average of the two multiplet excitation energies,
and this is roughly the case, although we are closer to the lower
2 The 4A2+4T1(P) transition is multiplet allowed,

but corresponds to the forbidden (3e+)2+(10t2+)2 transition
49

multiplet.

in the strong field limit. The transition is allowed because

the 4Tl(P) state is really a mixture of two configurations,

2

approximately 65% (10t2¢) + 35% (3e+)l(10t2+)l. (The lower

lying levels in this discussion are unchanged for all the multiplets



162

considered.) Because the primary configuration of 4

T, (P)

is (10t2+)2, this state should not be included in our multi-
plet average to obtain AE(X, theory). This idea is in
agreement with the energies we have found.

The theoretical intensity for the 3et->10t. ¥ transition

2
is completely wrong, and provides the first example of the
failure of the IGV method. The calculated excitation energy
AE = 0.408 ev. is so small that errors in the transition
amplitude entirely dominate the result. The computer
program was then put into double precision form, but the
intensity did not change significantly. To relate this
error to our previous results, let us consider that in the
present case the total transition amplitude should be 0
to obtain the experimental intensity. This is very nearly
true. Let this amplitude error be AA. We would like to
find the fractional error induced in a similar system by
the amplitude error AA. As an example, we will take the

1

2t1+3e transition in FeCl4_ . Let. the FeC14_1 amplitude

be A. Then there are two different ways to find the error.

-

-2 2
Random error = l- Gﬁ_:l%él_)_ - (A§;
A A

A

Systematic error = l—(é:%é) 2

A
The random error formula means that the phase of the amplitude

error AA is arbitrary. This would be the case with computational
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inaccuracies, and probably applies to errors developed by
truncating the partial wave expansions as well. The systematic
error means that one is consistently underestimating or over-
estimating certain atomic amplitudes or the outer sphere ampli-
tude. Consequently, the predicted error can take on different

values depending on our assumptions as to the source of the

-1

problem. The two results in FeCl4 for the 2t+3e transition

are random error = 4.3%, systematic error = 37%. This is a

=1

crude estimate of the error limits in FeCl4 For higher

energy transitions, both errors decrease roughly as T%ETE .
For the charge transfer transition in C0C14-2, the

results are very reasonable, with the scale factor equal to

2.8, somewhat larger than in the FeCl4 case. Both the

theoretical and the experimental results predict a substantial

decrease in the 2tl++10t2+ intensity in going from FeCl4_l to

-2
4
larger error in the computed excitation energy in this

case as contrasted with FeCl4-l.

CoCl The larger scale in C0C14-2 may simply reflect the
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Table 16
CoCl4-2 Optical Properties
Transition Excitation Energy Intensities
Theory Experiment Theory Experiment

3e++10t2+ 0.408ev. 0.370-0.435ev. 5.6

d
4A +4T
2 2 b
0.62-0.745ev. 7.2x10" %
b,c
a4 (F)
2 1 b
1.75-1.85ev. 5.09x107 3
b,c
4 4 !
A2+ Tl (P)
2£,4>10t,4  4.54ev. 5.3ev.? 0.184 0.0652
Observed d+d transitions
4A2—>4T2 forbidden
4A2+4T1(F) allowed
4A +4T (P) allowed
2 1
Strong Field Limit Configurations
4
A2 {3ed)
4
T, (3e¥) (10t2+)
4

T, (F) (3e¥) (10t,¥)

4
Tl(P} (10t2+)

In all cases above the levels are filled through (3e+)2(10t2+)3
as well.

8 Reference 47.

b Reference 48.

€ Reference 49.

Reference 50.
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CHROMIUM HEXACARBONYL

The electronic structure of Cr(CO)6 is summarized in
Table 17 and Figure 3. These results were obtained from the
unpublished work of Klemperer and co-workers using the over-
lapping sphere Xg model spin restricted including an over-
lapping outer sphere.92 (Early X, work on Cr(CO)6 with the
muffin tin potential was carried out by the author and Dr. K. H.

Johnson.)108

For consistency, we will adopt Klemperer's
model including the overlapping outer sphere, since we have
found fromadditional calculations that the optical properties
of the complex are not substantially different with-a tangent
outer sphere. A sphere overlap of 18% was used.

Since Cr(CO)6 is an octahedral complex, vibronic as well
as dipole allowed transitions may appear.in the spectrum.” Table
18 gives a summary of the calcéulated optical properties in.
Cr(CO)G. The 2t2g->9tlu and 2t29'+2t2u are dipole allowed ‘
metal (3d) to ligand (CO 21l anti-bonding) charge transfer
transitionsof large intensity, both in our model and in the
experimental values. The 2t2g—>2t2u is particularly strong,
the final state being a pure CO 2l level. This corresponds
to the view that a pure dipole allowed charge transfer exci-
1u transition

is also dipole allowed, but is less intense due to the diffuse

tation has a very large intensity. The 2t2g+10t

Cr 4p character of the final state. The transition has an atomic

character, Cr 3d+Cr 4p. Finally, we have assigned the two weak
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transitions at 3.91 ev. and 4.83 ev. to the vibronically allowed
transitions 2t2g+9alg (Cr 3d»diffuse Cr 4s), and 2t2g+3t2g
(Cr 3d-Cr 34 + CO 2II, anti-bonding). The transition at 3.91
ev. shows a gradual increase in intensity with higher tempera-
ture, which is characteristic of a vibronic transition. The
very weak spectral peak at 3.59 ev. is probably another vi-
brational component of the 2t2g+9alg excitation.

From Table 18, it is clear that the spectral assignments
in this complex cannot be made from the calculated excitation
energies alone, which are generally too low by about 1.1-1.2 ev.
However, Lhe calculated spectral intensities bear a sufficiently
close correlation to the experimental intensities that an
assignment can be made on this basis. The agreement between
the experimental and theoretical intensities is not quanti-
tative, but both sets of values predict f(2t2g+2t2u)>

£ (2t2g—>9tlu) >f (2tzg-+10t ) .

lu
We must understand 1) why the calculated excitation
energies are generally too low by 1.1-1.2 ev., 2) why the
experimental 2t2g+9a1g excitation energy lies below the
2t2g—>9tlu energy, while the calculated 2t2g+9alg energy is

higher than the 2tzg+9tlu energy, and 3) why the 2tzg—>3t2

g
calculated energy is too low by 0.7 ev., as compared with
1.1-1.2 ev. for the dipole allowed transitions. We will
consider problem 1 first. It is known that the carbonyl
complexes of Mo and W (both Group 6B elements like Cr),

MO(CO)6 and W(CO)6 have significant singlet-triplet splittings,

about 0.4 ev:Sl
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Cr(CO)6 should also have large singlet-triplet splittings,

although the triplet states are difficult to find experimental-
ly. A singlet-triplet splitting of 0.4 ev. in Cr(CO)6 would
mean that the singlet-singlet excitation energy would lie
0.3 ev. above our computed spin restricted value. Since the
computed Xa singlet~triplet splittings may be much larger
than this (see, for example, our H2 singlet-triplet splittings
in the spin restricted formulation), thé Xa singlet-singlet
excitation energies may be much closer to the experimental
values. For this purpose, additional spin unrestricted cal-
culations are necessary on Cr(CO)G.

Let us now simply translate up the theoretical spectrum
by 1.1 ev. The dipole allowed transitions are in good
agreement with experiment, but the vibronically allowed
2t, -+9a

29 "T1lg
respectively. In the section on molecular vibrations, we

and 2t2g+3t2g are too high by 1.0 ev. and 0.4 ev.,

showed that the excitation energy for a vibronic transition
lies below the Franck-Condon principle value by an average

of one vibrational quantum h&q, with g the odd normal mode
responsible for the vibronic coupling. Applying this result
to a typical odd vibrational mode in Cr(CO)G, we would obtain
an energy lowering of 0.1-0.3 ev. for the vibronic levels,
bringing them into better agreement with experiment. Although
quantitative results must await spin unrestricted calculations
on Cr(CO)ﬁ, the preceding arguments on spin effects and
vibronic coupling rules produce correct qualitative shifts

in the spectrum.
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Further evidence for the 2t2g+9a assignment at 3.91

lg
ev., comes frbm the experimentally observed photo-dissociation
of neutral CO from Cr(CO)6 at this energy.52 This effect
implies that the final state lies mostly on the metal atom.

By contrast, a metal to ligand charge transfer transition
would yield CO on photo-dissociation, ruling out the

2t 9tlu transition. Beach and Gray have made the assignment

51

2g+

2tzg+6eg for the 3.91 ev. excitation.

criteria of being a metal to metal transition. However, since

This also meets the

this assignment was used to parametrize their semi-empirical
calculations on Cr(CO)G, it cannot be considered to have
predictive value. At present, it is not possible to
experimentally distinguish between the two assignments

2t, +%a

29 " 1lg 29
X calculations, however, the 6eg level lies very high in

(Cr 34-+Cr 4s) and 2t +6eg(Cr 3d+Cr 3d). In the

o
energy.

The experimental results in Table 18 are the measured
spectral intensities of Beach and Gray on Cr(CO)6 vapor at
BOOO'K.51 Solution spectra of Cr(CO)6 in EPA (a mixture of
ethanol, isopentane, and ethyl ether) yields intensities
which are lower by 40-50% at the same temperature. This

contrasts with the lLorentz-Lorenz correction factor

fsolution = 1>1. It is likely that the carbonyl molecules

fvapor ¥
interact covalently with the solvent producing a lower inten-

sity. In this case, the experimental boundary condition on

the carbonyl molecule has a large effect on the intensities
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paralleling the sensitivity to boundary conditions we found

-]

theoretically in MnO4 5
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Table 17

Energy Levels in Cr(CO)6

One

Electron Energy (Rydbergs)

5tlu
Galg
3e

g
7alg

thu

de
g
8alg
S5e
g

7tlu

lt2g

lt2u

8t1u

ltlg

2t2g

Unoccupied

gtlu

9alg.
2t2u

3t2g

10t1u

(CO 30)
(co 30)
(Co 30)
(Cr-C, o bonding)
(co 40)
(CO 40)
(CO 40)
(Cr-C, o bonding)
(Cr-C, o bonding)
(Co 1m)
(Co 1I)
(Co 1)
(Co 1)

(Cr 4a)

(CoO 2, Cr p)
(Cr s diffuse)
(pure CO 2II)

(CO 2II + cr 34,
antibonding)

(CO 21 + Cr p,
diffuse)

-2.022
~2-022
-=2.021
-1.141
-1.060
-1.054
-0.962
-0.886
-0.854
-0.770
-0.735
=0.729
-0.721

-0.417

~0.129
-0.157
-0.119

-0.116

-0.061
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Table 17

(continued)
Valence Levels One Electron Energy (Rydbergs)
Geg (Cr dzz,dxz_yz) -0.042
2tlg (pure CO 21I) -0.034

Core Levels (Chemically Shifted)

Cr 1s -428.744
Cr 2s - 48.624
Cr 2p - 41.456
0 1s = 37:5286
C 1s - 20.186
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Table 18
Cr(CO)6 Optical Properties

Overlapping Spheres -- Including Outer Sphere
Transition Excitation Energy Intensity
< Theory "..,Exper—imenta .. Theory . Experimenta
2t2c_:,;+9alg 3.83ev. 3.5%ev. vibronically 0.008
3.91lev. allowed 0.037
2t2 ot 3.26ev. 4.44ev. 0.78 0.25
g 1lu
2t2-+3t2 4.14ev. 4.83ev. vibronically 0.037
g g allowed
2t2g+2t2u 4.34ev. 5.48ev. 1.87 2.30
2t #10% 5.18ev. 6.3lev. 0.27 0.035
2g lu

2 Beach and Gray, Vapor Spectra at 3000 K, see Reference 51.



ENERGY (RYDBERGS)

=0.2

- 0.4

l
o
)

|
o
@

i
(e}

(
N
A\

1
o
o

-2.2

Figure 3. Cr(CO)g energy levels.

Cr

By
w

3

Cr s: Qg

Crp: tyy

Crd: fzg,eg

CO o: ulg,eg,flu

CO w: tlg'tlu’tZQ"le

Y73

o
5

g

b



174

Figure Caption for Figure 4

The transition goes from 1+2' rather than 1+3' as
indicated by the Franck-Condon principle and our calcula-
tions (see Figure 4a). The lowering of the excitation
energy is AE'. The overlap amplitudes for different
vibrational transitions are determined by the overlap of

state 2 with 1',2',3',...which follows from

i h
¢.1(0)gq, = (—5—
1 1 8H2cvl

) B @1(1). The overlap of state 2
with 4' is small due to destructive interference. The
latter is a consequence of the large kinetic energy of 4!

‘away from the classical turning point. Schematically, the

resulting spectrum is given by Figure 4b.
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-Y(zz-xz)

Z(XJ?._y2)
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Table 19
Symmetry Information for T

Group

Squares of Vector coupling coefficients for Td Group

|@

A%

| @

t1
col. 1 “col. 2 col. 3
col. 1 0 374 3/4
col. 2 1 1/4 1/4
ts
col. 1 rcol. 2 col. 3
col. 1 0 1/2 172
col. 2 1/2 0 1/2
col. 3 1/2 1/2 0
£2
col. 1 col. 2 col. 3
col. 1 1 1/4 1/4
col. 2 0 3/4 3/4

176
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Table 19
(continued)
']
col. 1 col. 2 col. 3
col. 0 1/2 1/2
col. 1/2 0 1/2
col. 1/2 1/2 0
2
col. 1 col. 2 col. 3
col. 1 1 1

177
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CHAPTER VIII
CONCLUSIONS

We have found that the VV form of the oscillator strength
is a very convenient form for evaluating intensities in the
Xy scattered wave method. The principle disadvantages of the
Vv form of f lie in the relatively slow pargial wave convergence
of f (see the f(VV) results for CO+) and in the failure of
the ¥V method at low excitation energies AE<l ev. (and per-
haps somewhat higher.) The f(§) form seems to display better
partial wave convergence. This is indicated by the results of
Messmer and Salahub on CO+ using the X form.59 However, the
f(g) method has not as yet been applied to transition metal
complexes, so its full value cannot be assessed. It would
be desirable to have the comparative results of the f(;),
f(%), f(§,$), and f(%V) forms for transition metal complexes
ﬁo see if substantial improvements over the £(VV) intensities
are possible within the X, scattered wave framework.

Nonetheless, the £ (VV) method adopted in the present
work has proven very valuable in understanding the optical
properties of transition metal complexes. The relativé

intensities in FeCl4 are in excellent agreement with the
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experimental results.4 The scale factor between the theoretical
and the experimental intensities in this system is 1.7. These
results must be considered very satisfactory in view of the
possible errors in the experimental spectrum, and in view of the
absence of an accurate theoretical treatment of local field

and correlation effects. In addition, the good agreement

. between the theoretical and experimental intensities leads us

to believe that an ionic boundary condition on the FeCZI.4_1
clustér is physically accurate.

The calculated intensity of the charge transfer 2tl—>10t2
transition in CoCl4_ is 2.8 times the experimental wvalue,
which is also quite reasonable.47 While this charge transfer
intensity is fairly well described by the f(%V) form, the
cr&stal field 3e++10tzkintensity is completely unreliaple.

The source of this error lies inthe extreme sensitivity of
the:ﬂﬁv)result at low excitation energies AE<l ev. Conversely,
we should expect that the f(§) form of the oscillator strength
should be most accurate at low excitation energies following
the line of argument presented in Chapter VI C. The f(§)

form would consequently be very useful in obtaining accurate
intensities for crystal field transitions which generally occur
at low energies.

In Cr(CO)6 the calculated intensities provide a reasonable
basis for making spectral assignments. The assignments are

consistent both with our predicted intensities and with the

calculated excitation energies. 1In addition, the assignments
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are consistent with the photo-dissociation of neutral CO from
Cr(CO)6 at ultraviolet frequencies.52 The most unsatisfactory
features of the Cr(CO)6 calculations are the inaccuracies

in the calculated excitation energies. To obtain better
quantitative results for this complex, spin unrestricted
calculations on the system will be necessary.

In Mn04—l, the results are not as satisfactory as in the
preceding examples. Although the relative intensities of the
various spectral peaks are properly portrayed, a large-scale
factor of 17 was found between the theoretical and the experi-

mental intensities.41—43

Mn04_1 intensities were highly dependent on the outer sphere

amplitudes. This suggests that an alternate outer sphere

On examination, we found that the

boundary condition including covalent bonding between the Mn®4_l

and the surrounding environment could produce more reasonable
intensities. Here two approaches are required. First, the
x form of the oscillator strength should be calculated to
insure that the results we have found are not a peculiarity
of the ﬁv method. Second, a proper boundary condition must
be found for the molecule to represent its interaction with
the surrounding aqueous or crystalline environment. An
understanding of the latter problem should have implications
for other metal oxide systems as well (for example, in under-
standing the proper boundary conditions to use in clusters
representing metal-oxide compounds).

The results on H * and H

5 , are also very interesting.
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In H2+, we found that non-spherical components of the potential
did alter the spectral intensities. This effect should be
expected as well in tetrahedral and octahedral complexes,
although the effect should be less pronounced than in the case
of diatomic systems. The H2 results suggest that multiplets
are best calculated through the use of the spin unrestricted
method above, rather than the combination of spin restricted
and spin unrestricted methods currently in use.105 This

idea requires further study from both empirical (computational)
and theoretical viewpoints.

Although we have not been able to calculate spectral
intensities in transition metal complexes with quantitative
accuracy, the calculated intensities are sufficiently accurate
to obtain valuable information on spectral assignments and
chemical bonding in these systems. In addition, the use of
alternative forms of the oscillator strength (the f(z) and
f(ﬁ) forms) should further improve the agreementbetween theory
and experiment. We will then be better able to assess the
importance of correlation, local field effects, and molecule-

environment interactions in molecular spectra.
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CHAPTER IX
SUGGESTIONS FOR FURTHER WORK

The methods developed in the present work may be applied
to understanding spectral assignments and to evaluating
spectral intensities in a wide variety of systems. Some
examples are given below. 1In all cases, the £(VV) form of
the oscillator strength should be checked against the f(x)
form to insure the validity of one's conclusions.

We have already mentioned that further spin unrestricted
X theory calculations should be done on Cr(CO)6 to obtain
improved excitation energies and spectral intensities. A
clear understanding of the character of the lowest excited
state in Cr(CO)6 (the 9a1g in our assignment versus the 6eg
in Beach and Gray's assignment) is particularly valuable for

understanding various photochemical reactions.5l'52

For
example, Cr(CO)6 is known to catalyze the hydrogenation of
1,3 dienes in the presence of u.v. light and H2. Wrighton
and Schroeder have found that the function of the u.v. light
is to generate a thermally active catalyst through photo-

dissociation of Cr(co)6.52 The subsequent hydrogenation
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reaction then depends on the type of bonding between the
Cr(CO)5 excited state and the diene molecule.

The hydrogenation of ethylene on a metallic platinum

surface is another important catalytic process.lo9 It is

known that the rate of this process is significantly reduced

when the platinum surface is exposed to u.v. light of

photon energy 4.2 ev.l10 It has been proposed that the

reduction of catalytic activity is caused by platinum-to-

ethylene charge transfer transitions which weaken the Pt-C,H,

bonds and therefore lead to photodesorption of C2H4 from the

platinum surface. Xa scattered wave calculations for the
excitation energies of the various transitions in this

system are in progress.109

Intensity calculations would be
useful in fixing spectral assignments for the platinum-
ethylene cluster. In addition, one could compare the calcu-
lated oscillator strengths to the observed reduction in the
rate of catalytic activity to see if the oscillator strength
values are of the correct magnitude.

In many transition metal compounds, localized excita-
tions having large oscillator strengths can occur.lll The
optical properties (excitation energies and photoemission
spectra) of NiO, for example, have been found to be well
10

represented by Xa scattered wave calculations on an NiOG_

cluster in a stabilizing electrostatic field. It would be
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interesting to see to what extent the experimental oscillator
strengths in NiO agree with the calculated intensities for
the Nios-lo cluster. ’By analogy with our previous arguments,
the scale factor between the theoretical and experimental f£
values should be related to the relative localization of the
cluster model states versus the localization of the true
states in bulk NiO.

Following the general philosophy of the example above,
one may inguire to what extent thé optical properties of other
transition metal compounds such as NiS2 and FeS, are determinedJ
by local molecular orbital-like states. Again, excitation
energies and photoelectron spectra, calculated by the Xa
scattered wave method are in good agreement with experiment,
but the theoretical oscillator strengths constitute a more
critical test of the physical accuracy of the cluster models.

One type of system we have not treated are clusters con-
taining metal-metal bonds. Many of the systems have optical
spectra involving metal-metal charge transfer transitions.

Dr. J. Norman is presently working on evaluating spectral in-
4

2C1g

using the author's optical properties computer program (see
12

tensities for this type of transition in the complex Mo

Appendix A).l Spectral assignments in this system are very

controversial.
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The theoretical evaluation of photoelectron emission
intensities from molecules and clusters (the latter may be
associated, for example, with the chemisorptive bond at a
surface or with localized states in a semiconductor) would
be an important addition to the field of photoelectron spectro-
scopy. Accurate theoretical intensities would lead to a better
understanding of the character of the occupied states of the

113

molecule or cluster. However, previous theoretical methods

for determining photoelectron emission intensities in these

systems have been limited to simple cases, 113,114

Recently,
Dill and Dehmer have developed a theoretical method (which
has now been programmed for a computer) to evaluate photo-
electron emission intensities based on the scattered wave

113

method. Preliminary applications of this method to diatomic

molecules have already been completed, with work on complex

systems in progress.116

The approach of Dill and Dehmer is
based on explicitly solving for the continuum eigenstates
using the proper plane wave plus incoming wave boundary condi-
tion.

A less sophisticated approach to the photoemission
problem has been developed by the author following a suggestion
by Dr. K. H. Johnson. In this method, the continuum wave

functions are confined to a large spherical box (one requires

that the wave functions have a node at the sphere radius of the
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box). A discrete set of positivé energy eigenstates is
then found which models £he true continuum eigenstates.
The photoelectron emission probabilities are then deter-
mined using the Vv method as in the optical absorption
case. We have attempted to calculate photoemission in-
tensities from CH4 using this method. The results of
this work were unsatisfactory. A further description of
the method and results is given in Appendix D.

Johnson and Messmer have suggested that in solwving
the photoemission problem the potential of all the molecular
eigenstates be lowered in a fairly uniform way.117 The
positive energy eigenstates would then be bound for a
sufficient change in the potential without the additional
spherical box boundary conditions. This method has the
advantage that the density of final states is small, so
that less computer time is required than with the spherical
box solutions.

The central problem in all these methods is to obtain
a physically meaningful boundary condition for the continuum
eigenstates which at the same time is computationally con-
venient. In this regard, the method of Dehmer and Dill is
probably the most promising. Work on all three methods is

continuing to resolve these issues.
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Finally, further work is necessary on some basic
theoretical issues. The relation of the spin restricted
and spin unrestricted Xu theory excitation energies and
oscillator strengths to the multiplet structure of a
system must be clarified. We must also obtain a better
understanding of the significance of the transition state

wave functions used in the intensity calculations.
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CHAPTER X

APPENDIX A

OPTICAL PROPERTIES PROGRAM

Input Description for Self Consistent Field Program

On the energy card, 3 new variables appear,
NXGP (N), NWR (N), and SYMOR(N). For each state, EIGEN
is called by MAIN to compute the state, then NRMLIZ
(normalize routine) to normalize the state. Immediately
after statement 4014, we set NXGO=NXGP(N), with N = state.
If NXGO = 1, we compute the initial state for optical
properties, NXGO = 2 = final state for optical proper-
ties, NXGO = O = passive state. SYMOR(N) is only used
when NXGO = 2. When NXGO = 1, OPTIK is called, and
the variables for the initial state are set up.. For
NXGO = 2, OPTIK is called, variables for the final state
are set up, and optical intensities computed. For
NXGO = O, OPTIK is skipped. INPUT - ENERGY CARD - NXGP =
1 for initial state, 2 for final state, 0 otherwise.
NWRIT =1 means only the most important variables are
output, SYMQR=XSYMF in OPTIK program; this variable takes
spin and orbital degeneracy into accouht. The columns

used are 50, 55 and 56-65 respectively.
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Input Description for Non-Self Consistent Program

On the energy card, use the same variables as above.
In addition, NIRREP appears in column 70. NIRREP =
orbital degeneracy of the state if the program is used
to compute the vector coupling coefficients. Follow
this card by the other partners of the irreducible
representation. The subsequent cards appear as usual.
All partners of the irreducible representations appear
for the initial state NXGP(N) = 1 of the transition,
and the final state NXGP(N) = 2 of the transition. The
program operates exactly analogous to the SCF program,

except that additional temporary storage must be specified.

Optik Subroutine
The program may be divided into Sections. Section 1,
extending through statement 2, initializes various
gquantities. NXGO = 1 initial state, 2 final state.
CI({(KIT,MVNT,LNT,NUE)= initial. state coefficients, and
CF (KIT,MVNT,LNT,NUE)= final state ¢oeffi¢ients of partial
waves on various atomic centers.
NUE= unique atom label, KIT =label of one of a set of
equivalent atoms, LNT = total angular momentum + 1,

MVNT = component of angular momentum label,
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1 if MN = 0 and IN = 1.

Il

MVNT
MVNT = 2*MN if MN # 0 and IN = -1.

MVNT = 2*MN + 1 if MN # 0 and IN = 1.

CI and CF are initialized to 0 at the beginning of

the program.

EI and EF are initial and final state energies, and
NUATOM = number of unique atoms.

Section 2, beginning with DO 504, computes all the

radial functions and radial integrals used in the program.
This section extends through statement 30. Since such
radial integrals require that both initial and final
states be known, this section is skipped when NXGO = 1,
the first time through the program. This is the pur-

pose of IF(NXGO.EQ.l) GO TO 603. In section 2, the
procedure is

1) Compute radial functions RI (LS, LVAL, NN), RF(LS,

LVAL, NN) for the initial and final states, LS = mesh

point, LVAL = angular momentum + 1, NN = unigque atom

label.

bl
2) Compute radial integrals S(X,J,I) = & RI(K,I)RF(J,I)
r2 %%(I) dr where I = unique atom label

K,J = angular momenta of initial and final radial
functions

radius of atom T

o
i
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3) Compute surface terms SUR(K,J,I) = RI(K,I)*RF(J,I)&*
I
bi*(VC—V (bI)) = (product of radial functions at sphere
boundaries) * (discontinuity of potential at sphere boun-

dary) * (radius of sphere)2

4) Sum radial integrals and surface terms

ST(K,J,I) = S(K,J,I) + SUR(K,J,I)
Section 3-- starts with statement 603.
1) Structural information on the molecule is set up
from statement 603 to 601l. For each atom N = 1, NAT,
a unigue atom label NU(N), an equivalent atom label
KI(N), and a label for the total number of atoms of
type I, KB(I) are set up.
2) From 93 to statement 606, symmetry information for
initial and final states KK=NXGO= 1,2 is set up. The par-
tial wave coefficients as described on the first page
of this Appendix are constructed as products of CN(K,N)*
XC(N), where K = component and N = basis function.
CN(K,N) are the coefficients of the symmetry adapted
basis functions as appearing in the symmetry input.
XC(N) are the symmetry coefficients resulting from the
solution of the secular problem. CN(K,N)#*XC(N) are the
coefficients for total angular momentum LNT, mn compon-

ent MVNT, unique atom NU(KTA), and atom out of a set of



equivalent atoms KI (KTA).

Section 4-- begins with statement 94 and ends with
statement 20. This section does the symmetry calcula-
tions for the program. These include angular integra-
tions as well as sums over sets of equivalent atoms

and sums over angular momentum indices.

(VE,‘Z‘V‘/;) L L’ [f R[F)B P/( )aa)/ r oA +

(when ,8:0,{” )

RIB(E;)LB) FIB LZ(V V -Z_” (L.'\Lf)

inside on)
surface

when 8= O radius i) V - V )]
£- ) ©) ( outside on c

surface

V;,VV;:S = (Same expression)-f_,([#’)

('klgvi\/‘/;c) = (Same expression)-l?o (L‘, Ll)

C'_, are coefficients for

In these expressions, CL 1Cry
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initial and final states, R, and R' are radial functions

L 2"
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for initial and final states, B is simply the atom
number, and L=(%,m). The expression in brackets is
the same for all equivalent atoms cf type a. Let the

Let the equivalent atom label for an atom of type o be

k(a). Then

%V «
(‘F}j?\\d‘f;) i ;zfA”'(%EF) “

z

P ”"“C 1 k) [T (o, )
[:", 4 ki) f‘n ‘! I (jm;é”‘”')
I}o (‘ém}—(/m‘)

A!Lﬁ‘ (Ei;Ef) corresponds exactly to ST(K,J,I) discussed
previously. Since Ill (m; 2'm"') are independent of
1-1
10

k(0), one does the sum over k(o) first. We define a
o
variable %if(P) Ly

Z' L (4 L) ki) 7 K<)
(B ) -

BO(

Iﬁ'(p) corresponds exactly to ZUM(JP,J,I,IX) with p =
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electric field polarization = IX. As previously
defined, J, JP are the total angular momentum indices
for the initial and final states,

J = 8+1, JP = g'+1.

Finally, we obtain

v ‘ «
(Va{g€j3¢>=‘§}§fﬁﬂ’ézjgk)@wdﬁ)
z

This is done in the loop DO 23.

The oscillator strength f=X0SC is computed via
T 3 .
f=d ey (4, 3VH)[ ()

3
RGO AR TN

The absolute transition probability (which is the

important observable for photo-emission) is P=PABS

P=3’¥"'@{":EF)‘#}(’J‘{J &’V‘{;J/z

Therefore, we have a simple relation between the oscil-
lator strength and the absolute transition probability

f=P-!s(Ef—Ei).= Physically, this says that f =

amount of energy absorbed _ (probability of transition i-+f)
unit energy input unit energy input
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#(amount of energy absorbed:

if transition occurs) - XEXME 1a simply a multi-

plicative factor in the equation for X0s¢c = oscillator
strength. It is an input parameter to the program
used to take the spin degeneracy factor (or the orbital
degeneracy factor as well) into account. The orbital
degeneracy factor must either be known from vector
coupling coefficient tables or computed from the
ENERGY PROGRAM (the non-self consistent version) + the
associated Optik routine which follows the NSCF ENERGY
program in the preceding listing. We also compute

the variables Q(I) and QAM(I,J) which are respectively
the orbital charge in sphere I, and the orbital charge
in sphere I with angular momentum index J = 2+1. The

output variable JAKE = %.
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OPTICAL PROPERTIES EROGRAMNS sC® Q001

SCATTERED WAVE SELF CONSISTENT FIELD PREOGRAM SCF 0002

SCATTERED-HAVE MODEL FOR POLYATCHMIC MOLECULES AND CLUSTERS, . SCF 0003
PROGRAM WRITTEN BY F. C. SMITH, JR. AND K. H. JOHNSON, M.I.T. - SCF 0004
SELF-CONSTISTENT SPIN-UNRESTRICTED MATIN PROGRAM. SCF 0005
CALCULATES SCF-XALPHA ONE-ZLECTRON ENERGIES, STATISTICAL TOTAL SCF 0006
ENERGY, AND TOTAL KINETIC ENERGY -- ALL ELECTRCNS OR FROZEW CORES. . SCF 0007
THIS VERSION DIMENSICNED FOR 18 CEUNTERS ({(INCLUDING ATOMS3, OUTER OR SCF 0008
HATSON SFHERE, AND INTERATOMIC SPHEPES), PARTIAL-YAVE LMAX=6 PER SCP 0009
PATR OF ATOMS, 10 DIFFERENT ATCMS (WITH A TOTAL OF 26 DIFFERENT L SCF 0010
YALUTS), 2 DIFFERENT INTERATOMIC POTENTIALS, A 28¥28 SECUIAR SCF 0011
MATRIYX, AND A MAXIMDM CF 24 COMPONENTS PER BASIS FUNCTION. SCF 0012
FOUTVALENCE (BINTEG (N ,E(1,1) ,{vN{1,1),P(1,2)) SCF 0013
COMMON/STATE/CN {(24,28) ,UN {24,28) ,IN (24,28}, NATCH(24,28) ,LN(28), SCF 0014
1 HMS (28) ,TMIV(28,18) ,IMAX(28,18) ,NLEO(18) ,KTAU(18),NN5,ICORE, SCF G015
2 NUATOM,NDS,NLS{18),H80L (18) ,N0{18) ,NTERMS(18) ,LMAXN(18),NDIH SCF 0016
COMMON/PARAM/VCON,X%,EV,I0QUT,XCQNSH, NOUT,NAT,NDAT, NSPINS, SCF 0017
1 NACORZ,RADION,QION,FACT,EXFACO,RS(18) ,XV{18),YV({18),27(18),%2(18) 3CF 0018
2 LEXPACT (18) ,LMAXX (18) ,8Z(18),W3YMBL {18) ,NEQ {18) ,LCORE {18),KTON SCF {019
CCHMMON/FCNR/H{1D) ,VCONS (2} ,R{200,10),V{200,20) ,TCHG {10,110}, SCF 0029
1 XPLACE (18) ,KMAY [18) ( SCcF 0021
CCMHON/SECULR/RHEO{(208,11) SCF 0022
COMMON/CORR /JBECCORE (200, 10) SCF 0023
CCMMON/CE/NSPINA,NSPINB - SCF 0024
DIMENSION P {200,26),PS (26),DPS(26) ,XC{28),XA(28) ,RAMNT [28) SCF 0025
DIMENSION Q(18) ,BHOTOT({200,20),VN (200,20) ,Q0ITOT (2),VCN (2), SCF (026
1 QF{18) ,0I0LD{2),EINTEG {200) ,STR (700) ,ISTR(H000) SCF 00627
DIMENSION ESTATE(55) ,0CUP({55) ,NSYY (55),DEST (55) ,NSFIX (55) ,NSFL{55) SCF 0028
1 ,NSPIN {55),I35ACOR (55),SYHQR [B9) SCF (0029
INTFGER NXGP (55) ,NHRIT{55) SCF 003D
CALL ERIRSET (208, 256,-1,1) SCF 0031
CALL ERRSET{209,256,-1,1) SCF 0032
KeNSy=1 SCF 0033
140 CALL INPUT ; SCF 0034
142 QRUC=0. SCF 0035
DO 141 N=1,NAT SCF 0036
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302 READ (5,100,END=302) NSTS,NITER,IPR,IPU,NTHR,NTOL,NAV,

1
100

10
m

304
303

1

QNUC=0NUC+Z (X)
ONUC=2, 0%QNTC

NSAT=NDAT*NSPINS

IF (I0YT.EQ.D) GO TO 3202

IPR=3

1PU=0

IF (IOUT8Q.2) IPU=3

CALL QUTPYT{XC,IPR,IPU,PS,DPS,P,E, V)

NCORES,ALPH
FGRMAT {915,5%,F10. 5)
ECSUM=D
IT (NCORES.T0.0) GO TO 303
HRIT? (6,112)

FCRMAT(//35X,YCORE ENERGIES READ IN'/40X,' FNERGY

DO 304 ¥=1,NCORES

READ(5, 110) ECORE,DCORE
FORMAT (2F10.0)

WEITE {§,111) ECORE,OCORE
FORMAT (40%,2F15.7)
ECSUN=ECSUMN+ECORE*CCORE
IF {(NTYP.70.0) NTYP=1

IF (ALPH1.5Q.0) AL®H1=.5
ALPH2=1.-2LPH1

IPR=3*IPR

IEU1=0

IPU2=0

IF(IPU.GT.D) IPu2=3

IF (IPU.GT. 1) IPU1=3
TCL=10, 0%* (-NTOT,)

IF (NTOL. EQ.0) TOL=1,%-2
THRESH=10, %* (-NTHR)

TP (NTHR.FQ.0) THRESH=1.T-5

WRITE (6,7100) NSTS,NITER,IPR,IPU,NTHR,NTDL,NAY,

NCORES, ALPHY
IF L=1

NTYP,

SCF
SCP
SCF
SCF
SCF
SCF
SCF
SCF
scF
SCF
SCF
scr
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
scF
SCF
SCT
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF

0037
0038
0039
0040
0Nt
0042
o043
0Cuy
4045
0046
0ou7
0048
0049
0050
0051
0052
0053
0054
0055
0055
0057
0058
0059
00660
0061
0062
0063
005t
0085
0066
00867
0068
0069
2070
0071
0072
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IFX=1 SCF 0073

OCri=0. SCF 0074
DC 311 N=1,NSTS SCF 0075
READ {5,102) OCUP (¥) ,ESTATE (N) ,DEST(N) ,NSYHM {N), NSPIN (W}, SCF 0076
1 ISACOR (N) ,NXGP(N),¥URIT(N) , SYHOR (N) SCF 0077
102 FORMAT (3710.0,51I5,F10.6) SCF (078
TF (NSPIN(N).EQ.0) NSPIN(N)=1 SCF 0079
OCEL=0CEL+0CUP (M) SC? 0080
DFST (N) = 2BS (DEST(N)) SCF 0081
4RITE (6,200) ¥,0CUP(N),ESTATE (N),DEST (N),NSYM{N),NSPIN(¥), SCF 0082
1 ISACOR (W) SCF 0083
200 FPORMAT(IS5,F10.2,2F10.5,315) SCF 0084
IP(NSYM (N). NE.K) 60 TC 3N SCF 0085
NSFIX (N) =IFX SCcF 0086
NSFL (N) =IFL 3CF 0087
CALL SYEN , SCF 0088
ISTR{IFX)=¥DIN . SCF 0089
IFY=TFY+1 SCF¥ 0090
ISTR(IFY)=NDG SCF 0091
IFX=IFX+1 SCF 0092
ISTR(IFY)=NUATOH SCF 0093
IFX=TFX+1 SCF 0094
DC 1 3N=1, NDIN SCF 095
~ NM=NAS (EW) SCF 0096
ISTR {(IFX)=LN {NN) SCF 0097
IFX=TFX+1 SCF 0098
ISTR {IFY) =NM SCF 0099
IFX=IFPX+1] Sc? 0100
Do 1 I=1,8™ SCFP 0101
ISTR{IFX)=UN(I,NN) SCF 0102
IFX=TFX+1 SCF $103
ISTR (IFX)=IN(I,NV) S5CF 0104
IFX=IFX+1 ' SCF 0105
ISTR {IFY)=NATOH (I,NN) SCF 0106
IFX=TFY+1 SCF 0107
STR (IFL)=CE{I,NN) SC® 0108
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1

311
124

318

IFL=IFL+

DO 2 I=1,NAT
ISTR(IFX)=NLEQ{I)

IPY=IFX+1T

ISTR (IFX) =NLS (T)

IFY=TFX+1

ISTR (IFX)=NOL(T)

IFYX=ITFY+1

ISTR (IFX)=N0 (1)

IFX=IFY+1

ISTR (IFX)=NTERHNS (I)
IFY=IFX+1

ISTR {TFX)=L¥AXN{T)
IFX=TFY +1

DO 2 NN=1,NDIM

ISTR {IFX)=IMIN(NY,I)
IFRY=TP¥*1

ISTR {IFY)=IMAX (NN, I)
IFX=IFX#1

IP (IFX.68T.5000) WRIT®(6,104) IFX
IF(IFL.GT. 700) ®WRITE(6,104) IFL
CONTINUR

FCRMAT ( ! TEMPORARY STORAGE EXCEEDED - SUBSCRIPT=1',If#)
CALL STRUCT

DO 312 ITER=1,NITER

NSC=1

NS=1

DG 324 ISEIN=1,NSPINS

QITOT (ISPIN)=0

DC 317 I=1,NDAT

KX=KMAX {I)
IF{LCORE({I).TQ0.0) GD TO 319
DO 318 ¥X=1,KX

REOTOT (K, NS)=ROCORE {K,NSC)
NSC=NSC+1

G0 70 317

SCF
SCF
SCF
SCF
SCF
SCF
SCF
Ser
SCPF
SCF
SCF
SCF
SCP
5CF
5CF
SCF
SCF
SCF
SCF
SCF
SCF
SCR
SCF
SCF
SCF
SCF
SCPF
SC?
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SEE

0109
0110
0111
n112
0113
0114
0115
01186
0117
0118
6119
0120
0121
0122
0123
0124
2125
0126
0127
0128
0129
0130
3131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
D143
0144
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319
323
317
324

1001

DO 323 K=1,K¥
RHOTOT (K, NS) =0
NS=NS+1

CONTINTE

NHX=1

DG 374 N=1,¥%¥STS
CALL TIMIEG (ICPU,IEXCP)
WRITE(6, 1001) ICPU,N
FORMAT {180 ,I8,' STATE',I3)
NNS=NSEIN {N)
VCON=VCONS (NNS)
TEX=NSFIX (NSYH (N))
IFL=NSFL (NSY¥ (1))
NDIM=ISTR (IFX)
IFX=TPX+

NDG=ISTR (IFY)
IFX=TFX+1
NUATON=TISTR {IFX)
IFX=IFX#1

DO 3 NN=1,NDIN

LN (NN) =ISTB {IFX)
IFX=I1FX+1

NH=TISTR {TFX)
IFX=IFX+1

NHS (NN) =NH

DC 3 I=1, NN

MN (T,NN)=ISTR (IFX)
IFX=TFY+1
IN(I,NN)=ISTR (IFX)
IFY=IFX+1

NATOH (I,NN) =ISTR (IFX)
IRX=TFY+1
CN(I,NN)=STR{IFL)
IFL=TFL+1

DC 4 I=1,NAT

NLEQ (I)=ISTR (IFX)

SCF
SCF
SCF
SCF
SCF
SCF
SCF
5CF
SEE
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
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SCF
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0174
0175
0176
0177
0178
0179
0180 8



TEYX=TFY+1
NLS{I)=ISTR {IFD)
IFX=TFY +1
NOL (I)=ISTR{IFX) ;
IFY=TIF¥+1
NO({I)=ISTR(IFY)
IFX=IFP¥+1
RTEBMS {I)=ISTR{ITFX)
IFX=I7X+1
LEAYN (I)=ISTR(IPFX)
IFX=IF¥+1
DO 4 NHN=1,NDIHM
IHIN(NN,Iy=ISTR{IFX)
IFX=I7X+1
THAX {¥N,I)=ISTR(IFX)
4 TFY=IPY+ 1
EYIN=ESTATE(N)
TMAY=0.0 )
ICORE=ISACOR (1)
CALL EIGEN {0 ,6,DEST(N),EHAX,EMIN,THBESH,P,XA,PS,DPS,ESTATEiN),RAH

1 F)
GC TO 132
131 CALL BIGEN({0 ,7,DEST(N),EMRX,EﬂIH,THRESﬂ,P,XQ,PS,DPS,ESTATE[N),Eﬁﬂ
1T 7

132 IF(EMAX.EQ.0,0.AND.ENIN.E0.0.0) GO T0O 6
IF(¥.00.1) GO TO 134
N1=N-1
e 13C mp=1,M
IF(ESYH (¥P}.NE.NSYH (N) .CR.NSPIN (NP) . NE.NSPIN(X)) GO TC 130
IF (ESTATE (V) LGT.FMIN) GC TO 133
IF (ESTATE (N) JLE,ESTATE {NP) . AND. ESTATE (NP) . LE. ESTATE (N) #DEST(N)) GO
i To 131
GC TO 130
133 IF (ESTATE (N).GE.ESTATF (NP).AND.ESTATE (NP) .GE. ESTATE (N) -DEST (¥)) 50
1 TC 131
130 CONTINUZ

SCF
SCF
SCF
S5CF
SCF
SCF
SCF
SCF
SCF?
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5CF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
5CF
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S5CF
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SCF
SCF
SCF
SCF
SCF
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0189
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0191
0192
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0194
0195
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0200
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0206
0207
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0210
0211
6212
0213
02144
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134

4013

5014

700
106

197
314

CALL EIGEN(15,8,DEST(N),EMAX,EMIN,THRESH,P,XA,PS,DPS,ESTATE (N) , kAN
1 )

IF (ESTATE (M) .GE.ESTATE{¥HK)) NMX=N

IF {IOUT.GE.Q) WRITE (6,101) N,ITER,OCUP(N),ESTATE(N)

FORWAT {/23%,12,7H ITER=,I12,84 OCCUP=,F6.2,9H ENERGY=,1PE16.7/)
XC{1)=XA (1) /RAKF (1)

XCHAX=XC {1)

DO 4013 I=2,H8DIN

XC {I)=XA {I) /RA NP (I)

TF{ ABS (XC (I)).LF. ABS{XCMAY )) GO TO 4013

KCMAX=XC {I)

CONTINUE

DO 4014 I=1,NDIN

XA (I)=XA {I) /XCHAX

XC{I)=XC(I) /XCHMAX

CALL NRMLIZ (P,XC,XA,Q,QINT,PS,DPS,RANF)

NXG 0= NXG E {¥)

IP (NXG0.EQ.0) GO TO 700

NRIT=NWRIT (N)

XSYMF=1,4

IF (NXG0.FQ.2) XSYMF=SYMCR{N)

TF[NXGO.EQ. 1) NSPINA=NSPIN (N)

IF (NX60.EQ.2) NSPINB=NSEIN (N)

CALL OPTIK(XC,TSTATRE(N),NX60,NRIT,X0SC,XPROB,1,XSYHF)

IF (NY¥G0.EQ.2) HLOC=N

HRITEZ(8) ((RHO{(K,T),¥=1,200),I=1,NDAT), (Q(I),I=1,NAT), QL NT
IF {I0UT.GE.0) WRITE (6,106) {I,0(I),I=1,NAT)

PORMAT(6{' O(',I2,%')=',1PE14.7))

IF (IDUT.GE.0) WRITF ({6,107) OINT

FCRMAT ('  INTIRSPHERE CHARGE=',1P2E14.7)
CONTINUE

IF (NTYP.3G.2) GD TO 27

STATES=0.

ocH® (NMX) =0,
DO 25 ¥=1,NSTS
IFX=NSFIY {NSYH (N))

SCF
SCFP
SCF
SCF
sC?
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SCTF
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0220
0221
06222
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0224
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27

18

116

316

315

117

118

115

IFX=I7%+1

NDG=IST? (IPX)

NCCP=0CUE {N)

IF (NOCP. NE.NDG. AND. N, NE.NMX) OCUP (¥) =NDG
STATES=STATES+0CUP (V)

CONTINUE

OCUP (NMX) =0CEL-STATES

REWIND 8

ETOT=ECSYUN

IF(NAV.EQ.0.OR.ITER.FQ.1) GO TO 18
READ (8) ((RHO({K,I),R=1,200),I=1,NSAT)
DC 315 N¥=1,NSTS
ETOT=ETOT+0CUP (N) *ESTATE {N)

IF (I0UT.EQ.-2) WRITE (6,101) N,ITER,OCUP (N),ESTATE (N)

READ (8) {(RHO (K,I),K=1,200),I=1,NDAT), (O(I),I=1,NAT), QINT
NNS=NSPIV (¥)

QI TOT (NNS)=QITOT (NNS) +QINT#0CUP ()

DO 315 I=1,NDAT

KX=KMAX {I)

IF (TOUT.EQ.~-2) WRITE {6,116) (XK1, {R{K1+{K2-1),I),RHO  (K1+{X2-1)

1 ,I),K2=1,4),K1=1,KX,4)

FORMAT (1%,I3,8E15.7)

NS=I +NDAT* (NNS-1)

DO 316 'X=1,KX

RHEOTOT {K,NS) =RHOTOT (K,NS) +RHO (X, I)*0CUP {N)
CONTINTE

IF{IOUT.NE.-2) 60 TO 119

DC 118 NNS=1,NSPINS

WRITE (6,117)

FCRUAT (1H)

DO 118 I=1,NDAT

KX=KMAX (I)

NS=T+NDAT* {NNS-1)

WRITE (6,116) (XK1, (R{K1+(K2-1),I),RHOTOT (K1+ (K2-1) ,85) ,K2=1,4),
1 K1=1,KX,4)

RERIND 3

SCF
S5CF
SCF
SCF
S5CF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
SCF
5CF
SCF
SCF
SCF
SC¥
SCF
SCF
SCF
SCF
SCF
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SCF
5CF
SEF
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SCF
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SCF
SCF
SCF

I
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0261
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0267
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0272
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0274
0275
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0278
0279
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223
221
222
220

225
224

229
230

322
320
321

IF{NAV.EGQ.0.0R.ITER.EQ. 1) GO TO 220

READ (8) ({RHO(X,I),B=1,200),I=1,NSAT)

I=0

DO 222 ISPIN=1,NSPINS

DG 227 IAT=1,NDAT

KX=KMAX (IAT)

I=T+19

DC 223 K=1,KX

RAOTOT (X,I)=ALPH1*RHOTCT (K, T) +AL PH2%RHO {K,T)
CCNTINUE

OITOT {ISPIN)=ALPH1*QITOT {ISPIN)+ALPH2%0IOLD {ISPIV)
CALL VGEN(Q,QITOT,RUOTO1,VN,VCN,VT,ETOT)

T=0

EPS=0.

DC 321 ISTIN=1,NSPINS

EPS=AMAX1 (EPS, ABS({(VCN({ISPIN)-VCONS({ISPIN))/VCONS(ISPIN)))
IF(NAV.EC.0.0R.ITER, £Q. 1) GO TO 225

G0 TO 224

VYCN (ISPIN) =ALPH1%*VCN (ISPIN) +ALPH2%VCONS {ISPIN)
DO 321 IAT=1,NDAT

T=I+1

KX=KMAX (TAT)

KPL=KPLACE {IAT)

B0 320 K=1,KX

IF (IAT.5Q.1.AND. NOUT.NE.0.AND.K.GT.KPL) GO TO 229
cNgc=9.

60 TO 230

€ NUC=0NUC

EPS=AMAX1 (EPS, ABS ((VN(K,T)-V{K,I))/(VN(K,I)+CNUC/R{K,IAT)}))
IF (NAV.EC.0.0R.ITER. FQ. 1) GO TO 322

G0 TO 320 ‘

YN (K,I)=ALPHT%VN (K,T) +ALPH2*V (K, I)

CONTINUE

CONTINUF

WRITE(6, 103) ITER,FPS

FORHMAT (///30%,"ITERATICK ',I2,? EPS=?,1PE16.7)

SCF
SCF
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17 WPITE(6,107) (NITOT(ISPIN),ISPIN=1,NSPINS)
HRITZ {6,106) (I,0(I),I=1,NAT)
USE 1ST ORDER PERTURBATION THFEORY TO FIND TRIAL ENERGY FOR NEXT
TTERATION.
DO 120 N=1,NSTS
READ(8) {(RHO(K,I),k=1,200),I=1,NDAT), {(Q{I),I=1,NAT),OINT
NNS=NSPIW {N)
DE=0C
NID=2
IF (NOUT.EC.0) NID=1
NS= NDAT¥ (NNS-1)
DO 125 I=1,NDAT
NS=N5+1
KX=KMAY (I)
DC 121 K=1,KX
121 RHO (K, I)=RHO {K,T)*(V¥{K,ES)-V(X,NS))
CALL INTEGR(RHO({1,I),R{(1,I),KX,ICHG(1,I),EINTEG,NID)
NID=1
CALL INTERP(R(KPLACE{I)-3,I),FINTEG (KPLACE (I)-3),7,RS(I),0F (1),
1 ZILCH,«FALSE.)
125 DE=DE+0E (I)
NDAT1=NDAT+1
IF (NDAT1.GT.NAT) GO TO 123
DO 122 I=NDAT1,NAT
122 DE=DE+QE (NEQ (I))
123 DE=DI+CINT* (VCN (NNS) ~VCCNS {NNS))
EP=ESTATE (N) ¢DE
WRITE (6,105) N,0CUP(N),ESTATE(N),EP,NNS,NSYH(N)
ESTATE (N) =EP

105 FPORMAT{s6X,'STATE',I3,' OCCUP=",F6.2,' E=!',1PE15.7,' NEXT E=',1

1 PE15.7,' SPIN=',TI2,' SYMMETRY',I3)
IF (MLOC.EQ.N) WRITE({6,701) XPROB,X0SC

701 TORMAT (1X,32HABSOLUTE TRANSITION PROBABILITY=,F12.6,20HOSCILLATOR

1STRENGTH=,F12.56)
WRITE (6,106) (I,0(I),T=1,NAT)
120 9RITE(6,107) QINT

SCF
SCP
pit 8
SC¥?
SCF
SCF
SCF
SCF
SCF
5CF
SCF
SCTF
SCF
SCF
SCT
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SCF
SCP
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SCF
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SCF
SCF
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0358
0357

0358

0359
0360

s0¢



¥RITE (6,109) ETCT,VT
109 FORMAT {/6X,'XALPHA STATISTICAL TOTAL ENERGY=',1PE15.7,?
1INETIC ENERGY=?,1PE15.7)
IF {EPS.IT.T01) GO TO 5
REWIND 8
IF (¥AV. EQ.0) GO TO 514
WEITE (8) ({EHOTOT{K,I),g=1,200},1=1,N5AT)
514 I=0
Lo 4284 ISPIN=1,NSPIRS
QIOLD (ISPIN)=QITOT (ISPIN)
VCONS (ISPIN) =VCN({ISPIN)
DO 124 IaT=1,NDAT
I=1I+1
KX=KHUAX (IAT)
DO 124 EK=1,KX
124 V(K,I)=V¥{K,I)
IF {ITER. EQ. NITER) GO TC 5
CALL OUTFHT(XC,IPB,IEU1,PS,DPS,P,E,E?,G,O}
312 CONTINUE
6 WRITE(6,900) ¥
900 FORMAT(' ERROR,ENZBRGY IEVELY, T8, WNOT FQUND?Y)
5 CALL OUTE®T(XC,3 ,IPD2,PS,DPS,P,E,EV,0.0 )
DO 298 N=1,NSTS
298 FRITE (7,299) OCUP(N),ESTATE(N),DEST(¥),NSYH (N),NSPIN (),
1 TISACOR (W)
299 FORMAT {3F10.3,315)
STOE
END

TOTAL X

BCH
SCE
SC¥
SCF
SC?
SCE
SCF
SCF
5C7F
SCF
SCF
ST
SCF
scr
SCF
SCF
SCF
SC?
st
SC¥
3CT
SCF
SCF
SCF
SCF
SCF
SCF
SCF

D381
0362
03563
0364
0365
0366
0367
D368
0369
0370
037
0372
0373
0374
0375
0378
0377
0378
0379
0380
0381
0382
0383
0384
0385
03856
0387
0388
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C OPT

6G9

OPTICAL PROPERTIES SUBROUTINE (FOR USF IN SCF PROGRAM)

SUBROUTINE OPTIK {XC,E,NXG0,NRIT,X0SC,PARS ,JCONTR,XSYHTF)
1K ROUTINE FRITTEN BY LOUTS NOODLEMAN

COMMON/STATE/CN (24,28) ,MN (24,28) ,IN(24,28) , NATGHK {24,28) ,LN(28),
1 NMS (28) ,IMIN{28,18),IFAX(28,18),5LEQ(18),KTAU(18),NNS,ICORE,
2NUAT L, NDG,NLS(18) ,NOL (18) ,N0(18),NTERMS {18) ,LMAXA {18) , NDIN
CCMMON/DPARAM/VCON,XE,EV,TOUA,KONSH, NOUT, NAT, NDAT, NSPINS,
1 NACORE, RADION,QION,FAC1,EFXFACO,RS (18),XV(18),YV(18),ZV(18),2P({18)
2 ,EXFACT (18) ,LMAYX {18) , %% (18), NSYHBL {18) ,NEQ (18) ,LCORE{18) ,KION
CCMMON/FCNR/H(10) , VCONS (2) , R (200,10) ,V {200,20) ,ICHG {10,10),

1 KPLACE {18) ,KMAX {18)
CCMMON/BESSEL /SBFC {9) , DSBFC (9) , SNFC (9) ,DSNFC (9)
COMMON/0P/NSPINA ,NSPTINB

REAL CI(6,9,5,10),CF(6,9,5,10),RI {200,5,5) ,RF(200,5,5) ,SUMAF (9),
1SUNBF {9) , 20K (5,5,10,3) ,ZU4P (3) ,RV (200,10) ,RSYP({200) , 3VP(200,10),
2Y (200) ,S (555,30) »SUR(5,5,10) ,ST(5,5,10) » 2{200), VP (200,10),
3VS(200,10),11P,0(10) ,QA% (10,5) ,XC (28)

INTEGER LMAXHN{18),XB (10) ,MVN(24,28) ,KI(18),NU{18) ,JAKE {5},

1 LEAYN1(18) :

DO 609 JXR=1,9

SBFC (JKB) =1.0

DSBFC (JKR) =1.0

SNFC (JKR) =1.0

DSNFC {(JER)=1.0

IF (NRIT.FQ.0) NRIT=1

IF (NXG0.EQ. 1) EI=E

IF (NYXG0.F0.2) EF=E

NUATOM=NDAT

IF (NXGO.%Q.2) VC=VCONS {(FSPINB)

DC 2 NN=1,NAT

IF (NXG0.EQ. 1) LEAXNT (NN) =LUAXA (NN)

IF {NXGO.EG.2) LMAXN (NN)=NAYXO(LMAXNT (NN),LMAXA (NN))

DO 4 K=1,10

DC & RL=%,5

DO 4 M=1,9

DO L ML=1,6

OPT10001
OPT10002
0PT10003
OPT10C04
OPT10005
0PT100086
OFT10027
OPT10008
oPT10009
0PT16010
CPTI0071
OPT10012
0PT10013
oOPT10014
OPT10015
0PT10016
OPT10017
OPT10018
OPT 10019
oPT10020
0PT 10021
OPT10022
0PT10023
OPT10024
0PT10025
0PT1002%6
0PT10027
0PT10028
0OPT10029
OPT10030
0PT10031
OPT10032
0PT10033
0OPT10034
0PT10C35
OPT10038
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IF (¥¥60.EC. 1) CI{ML,M,K1,K)=0.0
4 IF (NXG0.EQ.2) CF (ML,H,KL,K)=0.0

IF (NXGO.FQ.1) GO TO 603

DO 504 NN=1,NUATOM

DO 504 Jk=1,2
TF(JK.EQ.1) NS=NN+(NSPTKA-1)*NUATCH

IF (JK.BQ.2) NS=NN+ (NSEINB-1) *NUATCH

ICUT=1

IF (NN.EQ. 1) TOUT=2

KX=KHMAX (NN)

NLMAP=I MAXN (NN)+1

DO 503 LVAL=1,NLMAP

L=LVAL-1

Z=FLOAT {NZ {NN))

IF(JK.EQ.1) CALL TMAT(L,FI,RS(NN),KMAX(NN),Z,H (NN),R{1,NN),
1v {1,%s) , ICHG (1,NN) ,TOUT,KPLACE {NN) ,RI (1,LVAL,NN),STMAT,PS,DPS,
2RANF)

IF (JK.EQ.2) CALL TMAT (L,EF,RS (NN) ,KMAX (NW),Z,H(NN),R(1,NN),
1v (1,8S) ,ICHG (1, NN) ,I00UT,KPLACE (§N) ,RF {1,LYAL,NN) ,STMAT,PS,DPS,
2RAMT)

503 CCNTINUE
IF {NRIT.EQ.1 GO TO 504
YRITE (6,506) NN,JK
506 FORMAT{1X, 7HCENTER=, T4, EHSTATE=, I4)

pDC 510 15=1,KX

I¥ (JK.E5Q.1) WPITE(6,505) LS,E{LS,NN), (R {1S,LVAL,NN)
1 ,LVAL=1,NLMAP)

IF (JK.EQ.2) WRITE{6,505) LS,R(LS,NN), {RF (LS,LVAL,NN)
1 ,LVAL=1,NLMAP)

505 FORMAT (1X,I4,6 (4X,%14.7))
510 CONTINUR
504 CONTINUE

DC 13 I=2,NUATONM

NS=T+ (NSPINB-1) *NUATCH

LMAF=LHMAYN (I) +1

LY=KMAX (1)

0PT10037
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OPT10045
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OPT10058
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500

9

12
13

LP=KMAX {I) -1

LD=KPLACE {I)

DC 8 KM=1,1Y

RV (KH,I)= B(KM,TI)*V{KH,NS)
DO 9 1=1,1P

IF{L.LE.2) CALL INTERP{R{L,I),RV{(L,T),4,R{L,I),DUMNY,RVP(L,I),
1 .TRUE.

IF{L.GT.2)

1CALL INTERP (R {L-2,I),RV (1-2,I),4,R(L,I),DUNNY,RYP(L,I),.TRUE.)
RSYE (L) =R (L,T) *RYP{L,I) -RV(L,I)

IF (NRIT.EQ.1) GO TO 9

WRITE (6,500) I,L,R(L,I),RV(L,I),RVP(L,I),V(L,NS5),RSVP (L)
FORMAT( 1¥, 7ENUATCM=,15,2HL=,15,2HR=, F10.5,3HRYV=, F10.5,4HRYDP=,
1 F10.5,3H ¥=,814.7,6H RSVP=,E14.7)

CONTINUE

DO 13 J=1,LMAF

DG 13 K=1,LMAF

IF (IABS {J-F).GT.1) GO0 10 12

IF ((K+J+1)/2 .LT. FLOAT(K+J+1)/2.0) GO TO 12

DO 5 L=1,LP

¥ {L)=RI (L,K,T) *RF(L,J,I) *RSYP (L)

CALL INTEGR({Y,R(1,I),KMAX(I)-1,ICHG(1,I),A,1)

CALL INTERP(R(LD-3,TI),A{(1D-3),6,RS(I),ASA,DUNNY,.PFALSE.)
S{XK,J,I)=ASA

SUR (K, J,I)=RI(LD,K,I)*RF{LD,J,I)*{RS(I)*%2)* (VC-V(LD,NS))

ST (K,J,I)=S(¥,J,I) +SUR(E,d,T)

GG TO 13

ST (K,J3,I)=0.0

CONTINUE

TEAF=LMAYN (1) +1

LP=KMAX (1) -1

LD=KPLACE (1)

NS=1+ {NSEINB-1) *NUATOM

DO 28 I=1,LP

IF(L.LE.2) CALL TNTERP{F(L,1),V(L,NS),4,R(L,1),YS(L,1),VP(L,1),
1 .TRUZ.)

OPT10073
OPT16074
0PT10075
OPT10076
OPT10077
CPT10078
OPT10079
0OPT10080
0PT10081
OPT10082
OPT10083
OPT10084
OPT16085
OPT100856
0PT10087
OPT10C88
OPT16089
0PT10090
oPT10051
0PT10092
0PT10093
OPT10094
OPT10095
0PT10096
oPT10097
oPT10098
OPT10099
oPT10100
OPT10101
OPT10102
OPT10103
0PT10108
OPT10105
OPT10106
0PT10107
OPT10108
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501
28

24

36
30

803

G0

D
-2

602

IF (L.G7.2) CALL INTERP(EF(L-2,1),V{L-2,NS),4,R(L,"),VS{L,1),VP(L,1)
‘} '.Tau-ﬁ“l')

IF (NRIT.FQ.1) GO TO 28

WRITE (6,501) L,R(L,1),7{L,85),VP(L,1)

FORMAT (1% ,8HNUATON=1,3H L=,I5,3H R=,F10.5,3H V=,E14.7,3HVP=,F10.5)
RSVP (L) = (R {L,1)**%2, 0) %P (1, 1)

£O 30 J=1,L¥AF

DC 30 K=1,LMAF

17 (IABS(J K).GT.1) GO 1IC 36

IF ((K+3+1) /2 .LT.{(FLOAT{(K+J+1)/2.0)) GO TO 3%

po 29 1=1,LP

Y (1) RI(L,ﬁ,?)*BF{L T, 1)#asvp(L)

CALL TNTEGR (Y,R {1, 1) ,EMAY (1) -1, ICHG (1,1) ,4,3)
CALL INTERP(R(1,1) ,2,7,8S(1), AS DUMMY, .FALSE.)
ATRNT=A (KMAX (1) - 1y -5
S {K,J,1)=AINT
SUR (K,d,1) =RT{LD,K, 1) *EF (LD, J, 1) * (RS (1) **2.) % (V (LD, NS) =¥C)
ST (K,d,71)=S (K,J,1)+SUR{K,J, 1)

GC TG 30

ST (KyJ,1)=0.0

CCRTINUE

IF (NYGO.EQ.2) G0 TO 93

DG 90 ¥=1,NAT

NU(N) =NEQ (N)

TF (NEQ (N) - BEQ.0) NU{N)=N

DC 91 N=1,NAT

TF (N (N) .EQ.N) KI{N) =1

IF(NU{¥).FQ.N) KB(N)=

I7 (N.LE.NUATCH) GO TC 91

DO 92 I=1,NUATOM

IF {(NU(N).EQ.TI) XB (I)=KB(I)+1

IF (N0 (D) .50.I) KI(N)=KB(I)

CONTINUR

WRITT {6 ,602)

PORMAT (1%, SHNATOM, 3¥, 2HNG, 2X,3HNEQ,3%,2HKT)
4RITE (6,601) (J,N0{J),NEC(J) ,KI(J),I=1,NAT)

0PT10109
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0PT10111
oPT10112
OPT10113
0PT10114
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0PT10117
0PT10118
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0PT10122
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oPT10124
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0PT10126
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0PT10131
OPT10132
OPT10133
02T 10 134
0PT10135
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OPT10142
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53

54
607

505

600

606

FCRMAT (1X,41I5)

KR=HXGO

IF (NRIT.EQ.1) 50 TO 607

FRITZ(6,53) NDINM,NDG

FORMAT (1X,5HNDIN=,15,5H NDG=,I5)

HRITE(H,5U) {(XC(N),N=1,8DIM)

FORMAT (1X,10HSYHY COEF=,10F10.5)

DC 600 N=1,NDIH

IF {NRIT.ED.1) GO TO 608

WRITE(6,52) LN(N),NNS(N)

FORMAT (1X,3HLN=,I5,5H NFS=,I5)

NMO=NHS (¥)

DO 600 I=1,N¥Q

IF (YRIT.EQ.1) GO TO 505

WRITE (6,55) HN(I,N),IN{I,N),NATCH{I,N),CN(I,N)
FORMAT (1X ,3HMN=,I5,4H IN=,I5,70 NATOM=,I5,4H CN=,F10.5)
IF(EN(I,N) .EQ.0 .AND. IN{(I,N).EQ.1) HVN{I,N)=1

IF (MY (I,¥).NE.O .AND.IN({I,N).EQ.-1) MVN(I,N)=2%NN(I,N)
IF (MN(I,N).¥E.0.AND.IN{I,N).EQ.1) MVN(I,N)=2%UN(I,N)+1
CONTINUTE

DC 606 KE=1, NDIM

NHQ=NMS (N)

LET=LN (N) +1

DO 606 XK=1,NHQ

KTA=NATOU (K, )

RIT=KI(KTA)

MUNT=MNVE (X, N)

NUE=ND (XTA) :

I? {KK.EQ.1) CI (KIT,MVNT,LNT,NUE)=CI{KIT,NVNT,LNT,NUE)+CN (K,N)
1 %*XC (M)
1F {KK.®0.2) CF {KIT,NVNT,LNT,NUE)=CF(KIT,MVNT,LNT,NUE) +CN {K,N)

1 *YC {N)

CONTINUE

IF (N¥G0.FQ.2) GO TO 94
RTTURE

¢ %,Y,Z POLARIZATIOW OF ® FILLD

OPTI10 145
0PT101456
0PT10147
OPT1C 148
0PT10149
0PT10150
OPT10151
OPT10152
OPT1D153
oPT10154
0PT30155
GPT10156
OPT10157
o0PT10158
OPT10159
OPT10160
cpPT101861
0PT10162
DPT10163
0PT10164
0PT10165
CPT101766
OPT10167
OPT10168
OPT10169
0PT10170
OPTI1L171
0PTI10172
OPT10173
0PT10174
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QPTI2177
0PT10178
0PT10179
oPT10180

ITC



94

15

16

17
18

19
20

50
22
23

DC 20 IX=1,3
DO 20 TI=1,NUATOWM
LMAFT=LHMAXN {I) +1
DO 20 J=1,LMAF
DO 20 JpP=1,LHMAF
IF (IABS {J-JP}.GT.1) GO TO 19
IF{(3+ar+1) /2 » LT, FLOAT {J+JB+1) /2.0) GO TO 19
SUNC=0,0
MF= {2%J) -1
DC 17 W¥=1,HMF
SUuB=0.0
MDPF= {2%JP) -1
DO 16 MP=1,MPF
SUMA=0,0
KBF=KB (I)
DC 15 ¥J=1,KRBF
SUMA=SUMNA+CF (KJ, NP,JP,I)*CI (KJ,H,J,I)
SUHAFEMP}$SHMA*I1P{MP,M,JP-1,J—1,IX)
XIPT=I1E(MP,N,J2-1,3-1,IX)
SUMB=SUNB+SUNAF {UP)
SUMB® (M) =SUMB
SﬁﬁC=SEMC*SHﬁBF(H}
ZOMYIP ,J,T,IX)=SUNC
GO T0 20
ZUM{JP,J,1,IX)=0.0
CCNTINUE
Do 23 I1¥=1,3
ZUMY=0,0
DO 22 TI=1,NUATOHM
LMAP=LMAXE (I) +1
DO 22 J=1,LHAF
DC 22 Jp=1,LMAF

WRITE (6,50) J4P,J,I,I%,208(IP,J,I,IX),JP,d,I,57(J,3p,T)
FORMAT (1X,4W20M ,413,20 =,710.5,3HST ,313,2H =,F10.5)

ZUM1=2UM 14201 (J?,J, T, IX)*ST (J, IP, )
ZUMP (IX) =20 M1i

0PT10181
OPT10182
0PT10183
OPT10184
OPT10185
OPT1018%
0PT10187
cPTI10188
0PT10189
0PT10 190
OPT10191
0PT10192
OPT10193
0PT10194
OPT10195
OPT10796
0PT10197
OPT10%98
OPT10199
DPT10200
0PT10201
OPT10202
0PT10203
0PT10204
0PT10205
NPT10206
0PTi 0207
OPT10208
0PT10209
0PT10210
OPT10211
OPT10212
opPTI0213
OPT16214
OPT10215
OPT10216
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R0

528

810

813

R14

815
808

7UMPS=0.C

DO 40 IM=1,3
7UMDS=Z0 MPS+Z NP (TH) %*%2
WRITE (6,528) XSYHF
FORMAT (1X,'XSYMF ',F8.14)
PREL=ZUMPS/ (EI-EF)%% Y
PABS=(#.0/3.0) *PREL*XSYKF
X CSC=PABSH (EF-ET)

DO 822 KC=1,2

oC 815 I=1, NUATOM
LMAFP=LMAXN (T)+1
LY=KHAY {I)

LP=KMAX {I)-1
LD=KPLACFE (I)

0 (T)=0.0

DO 815 J=1,LMAT

DC 810 KM=1,1Y

IF (KC.E0.1) Y (KH)=(RI (RM,J,T) %R (KM,I))*%2

IF (KC.EQ.2) Y (XM)=(RF(KM,J,I)*R (KM,I))**2

CONTINUE

iF (1.GT.1) GO TO 813

CALL INTEGR {T,R{1,1) ,KMAX{1)-1,ICHG(1,1),A,3)

CALL INTERP{R(1,1),A,7,55(1),AS,DUNMY,.FALSE.)
RADTS=A (KMAX (1) = 1) —AS

GO TO B14

CALL INTEGR{Y,R{1,I),LP,ICHG(1,I),3,1)

CALL INTERP{R{LD-3,I),A{LD-3),6,RS(I),RADFS,DUNNY,.FALSE.)
MF=2%J~1

CRT=0.0

DC 811 H=1,MF

IF (EC. Q. 1) CRT=CRT+CI(1,M,J,T)**2

IF (XC.F0.2) CRT=CRT+CF{1,M,J,TI) %2

CONTINUE

QAN {I,J)=CRT*RAD FS

G (I)=0(I) +CRT*RADFS

WRITE(6,820) XC, (I,0(I),I=1,NUATCH)

0PT 10217
nPT10218
0PT10219
OPT10220
0oPT10221
0PT10222
OPT10223
CPT10224
OPT10225
0PT10226
OPT10227
0PT10228
DPT10229
0PT10230
0PT10231
0PT10232
oPT10233
OPT10234
0PT10235
OPT10236
0PT10237
OPT102238
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OPTI0242
OPT10243
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820

823
822
821

41

42

-
-~

La

4g
45

uny
ag

49
527

FORMAT {1X,6HSTATE=,T4, 4 (140,12, 1H=,F8.4))
DC 822 1I=1,NUATOH

LMAT=LHMAXN (I) +1

DO 823 J=1,LUAF

JAKE (J) =J-1

WRITE{6,821) KC,I,{J3KE(J),QAN{I,J),d=1,LMAF)

FCRMAT (1X,6HSTATE=,I4,5BATON=,T4,5(2H0QL, 12, 16=,F8.4))
WRITE(6,41) EBI,EF

PORMAT (1X,15HTRANSITION FROM,F10.5,711HRYDBERGS TO,F10.5,
1 S8HFYDBEFGS)

DO 45 IXx=1,3

IF (IX.EC.1) HRITE(6,42)

IF (IX.EQ.2) WRITE (6,43)

IF (TX.FQ.3) WRITE{6,44)

FORMAT (1X, 32HTRANSTITION AMPLITUDE X CCHPONENT)

FORMAT (1X,32HTRANSITION ANPLITUDE Y COMPONENT)
FORMAT( 1X, 32HTRANSITTON AMPLITUDE 7 COMPONENT)
ARITE (6 ,46) ZUWP (IX)

FORMAT (LY, E14. 6)

CONTINUE

WRITE{6,47) PREL

FORMAT (1%,32HRELATIVE TRANSITION PROBABILITY=,E14.6)
WRITE (6,48) PABS

FORMAT (1X,33HABSOLUTE TRANSITION PROBABILITY= ,F12.6)
WRITF {(6,49) XOSC

FORMAT (1%, 20H0SCILLATOR STRENGTH=,F12.5)

CONTINUE

RETURN

WD

OPT10253
OPT10254
CPT10255
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£ I1P

10

T1p SUBPROGRAM FOR GRUNT INTEGRALS
REAT FUNCTION I1P{M3V,u1V,J3,J1,IX)
ROUTINE WRITTEN BY LOUIS NOODLEMAN
DATA PI/3.1415927/,PI4/12.566371/
CCHPLEX XSIN,XSINC,CMPLX,CONJG,TINT1,TINT3,A1(3)
XSIN=(0.,1.)

XSINC=CONJIG (YSIN)

D0 7 K=1,2

IF (K.EQ.1) MV=H1V

IF (K. EQ.2) MV=M3V _

IF { (MV- (HV/2)%2) .BQ.1) GO TO 2
ME=MY /2

IiN=-1

GO TO 6

IN=1

MN=(MV-1) /2

IF (K. EQ. 1) MN1=MN

IF (K.EQ.1) IN1=IN

IF(K.EQ.2) HN3=MN

IF (K.%0.2) IN3=IN

CCNTINUE

Do 15 K¥=1,3

KX =KX -2

A1{KX)= (0.0,0.0)

DC 14 J=1,2

DC 14 JJ=1,2

IF (J.EQ.1) GO TO 10

MET1==HN 1

TP (T¥1.EQ. 1) TINTI1=CHPLY { (-1.0) **MN1,0.0)
TF (IN1.EQ.=1) TINTI=((=1)%%MN1)*XSIN
TP (MN1.%0.0) TINT1=(0.0,0.0)

G0 TO 11

MNT1=HN 1

IF (IN1.EQ.=-1) TINTI=XSINC
IF{IN1.EC.1) TINTI=({1.0,9.0)

TP (MN1.70.0) TINTI=(2.%%0.5)%({1.0,0.0)

1ip
11P
11p
I1p
I1P
I1p
1P
Iip
I1®
Ii?
Iip
I1pP
ile
I1p
Iip
Itp
I1p
I1e
I1?
I1P
ilp
I1p
Ilp
I1p
1P
i1e
Iip
IipP
11P
I1?
I1p
I1p
Ilp
iip
Iip
Iip

0001
0002
0003
0Cok
0005
0G06
0007
0008
0009
0010
0011
0012
0013
0014
0015
0018
0017
ge1s
0019
00620
0021
0022
6023
co24
0025
0026
0027
0028
0029
0n3n
0031
¢032
0033
0034
0035
0036

STC



11 IF(J3.EFQ.1) GO TO 12
MNT3=-4N23
IF (IN3.5Q.7) TINT3I=CHPLX{(-1.0)%%MN3,0.0)
IF{IN3.80.-1) TINT3=((-1)*%MN3)*YSINC
TF (MN3.20.0) TINT3=(0.0,0.0)
Gc TO 13
12 MNT3=HN3
IF(IN3.EQ.1) TINT3=(1.7,0.0)
IF {TN3.8Q.-1) TINT3=XSIK
IF (MN3.EQ.0) TINT3=(2.%%*0,5)%(1,0,0,0)
13 CONTINUT
LR=NNT1+MY
TP (MNT3,NE, LK) GO TO 14
A1 (XX)=A1 (KX)+ ({PT/3.) **0.50) * TINTI*TINT 3*CGC (J1, 1, T3, NNT1, HX)
HCGC (T, 1,32,9,0) ¥SORT({2.%31+1) %3,/ (PT4% (2.%J3+1)))
14 CONTINUE
15 CCNTINUE
IF(IX.20. 1) T1P=(2.%%0,5}%REAL(A1(3)) % (-1.)
IF(IX.5Q.2) I1P={2.%%0,5)=ATHAG(A1(3))%*(~1.)
IF(IX.20.3) I71P= REAL (31{2))
RETIRL
BXD

I1®
I1p
I1p
1ip
I1p
I1p
Iip
Iip
Iip
I1p
I1p
Ip
I1p
I1»
iie
ER
I1p
Ilp
Iip
Iire
Iz
I1p

0037
0038
0039
o0un
Gou
couz
0043
004y
0045
00456
0047
0048
gous
0050
Des1
0052
2053
0054
0¢55
0056
0057
0058

9TZ



aaaoaaoaaonaan

SCATTERED WAVE NON-SELF COVNSISTENT FIELD PROGRAN

SCATTERED-WAVE MODEL FCF POLYATOHIC MOLRCDLES AND CLUSTERS
PROGRAM WRITTEN BY F. C. SHITH, JR. AND K. H. JCHNSON, M.I.T.
NON-SELF-CONSTISTENT SFIN-UNRESTRICTIED MAIN PROGRAN

CALCULATES ONF-ELECTRON FNFRGIES FOR GIVEN NUKERICAL POTENTIAL
USED TO START SCF CAICUIATICN

ALL ELECTRONS OR FROZEN CORES

THIS VERSION DIMENSICNED FOR 18 CENTERS (INCLUDING ATOMS, OUTER OR
WATSON SEHERE, AND INTERATOMIC SPHER®S), PARTIAL-WAVE LMAX=6 PER
PATR OF ATOMS, 10 DIFFERENT ATOMS (WITH A TOTAL OF 26 DIFFERENT L
VALUES) , 2 DIFFERINT INTERATOMIC POTENTTALS, A 28X28 SECULAR
MATRIX, AND A MAXIMUN OF 24 COMPCNENTS PER BASIS FUNCTION.
CCMMON/STATE/CN (24,28) , HN (24, 28) ,IN (24,28) ,NATOHU (24,28) , LN (28),
1 NMS{(28),IMIN{28,18) ,IMAY (28,18),NLEQ({18) ,KTAU{18),NNS,ICORE,

2 NUATOM,NDG,NLS (18) ,N0L (18) , N0 (18) ,NTERNS(18),LMAXN (18) ,NDTH
COMMON /PARAM/VCON, XE,EV, TOUT, KONSH, NOUT, NAT, NDAT, NSPINS,
1 NACODRE,RADICN,QION,FACYT,BXFACO,RS(18),XV(18),YV(18),%Y(18),2Z{18)
2 ,EXFACT(18) ,LMAXX {18),N7(18),NSYMBL (18) ,NEQ(18) ,LCORE {18) ,KION
COMMON/FCNR/H (10) ,VCONS (2) , R (200, 10) , V(200,20) ,ICHG (10,10),

1 KPLACE (18) ,KNAX (18)

COMMON /OP/NSPINA,NSPINB,NLP1,NLP2, NREP1, NREP2,NIRREP

DINENSION P{200,26),PS(26),DPS (26), XC(ZS),XR(ZS),R&MF(283,0{18)
DIMENSION XCT (28), XCF (28)

IPR=1

IPU=0

NEMAX=12

THRESH= 1, E~5

I0UT0=0

RONSH=1

CALL INPHT

IF{IOUT.EQ.C) GO TO 302

IPR1=3

IPU1=0

IF (IDUT.EQ.2) IPU1=3

CALL OUTPOT (XC,IPR1,1PU1,PS,DPS,P,E,RAMF)

NSCF0001
NSCF0002
NSCF0003
NSCFOGo4L
¥SCFOO05
NSCFC0086
NSCFCO007
NSCF0008
NSCF0009
NSCF0010
NSCF0011
NSCF0012
NSCF0013
NSCFL014
NSCF0015
NSCF0016
NSCF0017
NSCF{018
NSCF0019
NSCF00210
NSCF0021
NSCF0022
NSCF0023
NSCF2024
NSCF0025
NSCF0026
NSCF0027
NSCF0028
NSCF0029
NSCF0030
NSCFOL31
NSCF0032
NSCFCO33
NSCFO0034
NSCF(035

NSCF0036
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302
168
127
103

[9)]

IQUT=I0UID
NiP1=9
NLEZ2=D

CALL SETOP
FCRMAT {1€I5)

READ (5,103 ID,NNS,DE,FEAY,=MIN,ICORE,NXGO,NRIT,XSYM7,NIRREP

PCRMAT (2I5,3F10.2,3I5,510.5,1I5)
TF{ID.GT.0) GO TO 5

IF (§NS.EQ.0) GO TO 4
IF{NNS.EC.1) GO T0 202
IF(NNS.FQ.2) GO TO 140

2EAD (5,100) IOUT,IPR,IPU,NEMAY,NTHR
I0UTI=I0UT

THRESH=10.%% {-NTHR)

TF (NTHR. 70.0) THRESH=1.F-5

ITF (NEMAY.ED.0) NEHAY=12

Go T 127

IF (F¥GO.F0.1) NSPINA=NNS

TF (NXG0.5Q.2) NSPINB=N¥S

IF (NYGC.F0.0) GO TO 128

IF (NIRREF.EQ.Q) GO T0 128

IF (NXGO.T0.2) GO TO B
KREF1=NTSRED

DO 6 M=1,NIRRED

WRITE{9) NDIK,NDG

WRITE {9) {LN (¥),¥8S (N),5=1,NDIM)
DC 7 §=1,5DTH

NMN=NHUS (¥)

YRITE(S) (CN({T,N),NN{T,N),IN(I,N),NAICH(I,N),I=1,NNH).

IF (M. EQ.NIRPFP) GO TO 12

CALL SETUP

GC TO 128

NREP2=NIREEP

DC 9 K=1,NTREEP

KRITE (10) NDIN,NDG

WRITE(10) {L¥{¥),NMS(Y),N=1,NDIH)

NSCF0037
¥SCPO038
NSCF(239
NSC?O0u0
NSCFO041
NSCFO242
NSCFO043
NSCFOOUL
NSCF(O45
NSCFOQU6
NSCFOCH7
NSCFrO048
NSCFOO0U9
NSCFI050
NSCPGO51
NSCF0052
NSCF{053
NSCFO054
NSCFC055
NSCTFO056
NSCFOGS57
NSCPO058
NSCFCO59
NSCF(0060
HSCF0G061
RSCF0062
NSCFG063
NSCFO064
NSCFCO065
NSCF0066
NSCFCO67
NSCFO0AB
NSCF0069
NSCFO070
NSCPG071
NSCP0072
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1

1

10

28

01

4914

4

0

35

14

DO 10 ¥=1,NDIY

EHN=NNS (V)

WRITE(10) (CN({I,N),MN(I,N),IN(I,N),NATON(I,H),I=1,NHY)

IF (M.EQ.NIRREP) GO TC 128

CALL SETUE

IF (NNS.BEQ.0) N¥S=1

YCON=VCCNS (HNS)

CALL TIMING {ICPU,IEBXCP)

WRITE{6,100) ICPU,IEXCP

CALL RTGEN (NFMAX,ID,DE,EMAX,EHIN,THRESH,P,XA,PS,DPS, T , RANF)
IF (EMAX.F0.0.0.AND.ENIN.EQ.0.0) GO TO 308

WRITE(6, 101) E

FCRMAT {/30X,' FINAL ENERGY=',1PE16.7)
I¥(IPR.EQ.0.AND.IPU.EQ.C) 6O TC 304

XC (1) =XA {1) /RAUF (1)
TCMAX=XC (1)

DO 4013 N=2,EDIN

TC (N) =XA (¥) /RAMTF {N)

IF { ABS {XC (N)).1E=. ABS (XCHAX
XCMAX=XC {N)

CONTINUZ

IF (XCMAX.EQ.0.0) GO TO 4015
DO 4014 N=1,NDIM

XA {N) =XA {N) /XCMAX

XC (N) =XC(N) /XCHAX

FY=E-VCCN

CALL NRMLIZ(P,¥XC,XA,0Q,0INT,PS,DPS,RANF)
CALL DUTPUT (XC,1,0, ES,DPS,P,E,XA,0.0)
CALL TIMING (ICPU,IEXCE)

WRITE (6,100) ICPU,IEXCP

CALL OUTEUT (XC,IPR,IPU,ES,DPS,P,E,%3,0.0)
IF (§X60.70.0) 580 TO 304

DC 14 N=1,NDINM

IF{NXG0.E0. 1) XCI (N)=XC (N)

IF (VX60.EQ.2) XCF(N)=XC (M)

IF (NXG0.LEQ.2) REWIND 10

)) GO TO #4013

NSCFCO73
NSCFLD74
¥SCFC075
NSCF0076
NSCFOO077
NSCF(Q78
NSCFG079
N5CF0080
NSCFG081
NSCF0082
NSCF0O083
NSCFOO084
NSCFO085
NSCF)086
NSCFOO087
NSCFGC88
NSCTF(089
NSCF0090
NSCF0091
NSCF0092
NSCF0093
NSCF0094
NSCF(095
NSCFD096
NSCF0097
NSC¥0098
NSCFQ099
NSCTFO100
¥SCF0101
NSCFQ102
NSCF0103
NSCF0104
NSCF0105
NSCF0106
NSCF0107
NSCF(0108

6TC



18

13
15

17

186

19
12

IT {NXGO0.EQ.2) GO TO 17

TP{FIRREE.EQ.0) GO TO 12

REWIND 9

NLP2=0

NLP1=NLP1+1 .

N¥GO=1

READ(9) NDIM,NDG

READ {9) {IN (M), NHS(N),N=1, NDIM)

DG 13 N=1,NDIM

NMN=NHS (N)

READ (9) {(CN(T,N),MN(I,N),IN{I,N),NATOM(I,N),T=1,NNN)
PO 15 F=1,NDIN

XC {(¥) =XCI (M s
50 TO 12

NXGO=2

NLP2=NLPZ+1

READ (1C) NBIM,NDG

READ({10) (LN {N),NHS (N),N=1,NDIM)

DC 16 N=1,NDIH

NMN=NHS (V)

READ (10) (CN(I,N),¥N{I,8),IN(I,N),NATOM(I,¥N),I=1, NNY)
DC 19 N=1,NDIH

XC (N)=XCF {N)

CALL OPTIK(XC,E,NXGO,NRIT,X0SC,YPROB,2,XSYNF)
IF {NTRREP. EQ.0) GO TO 304

IF {NLP2,EQ.0.AND. NLP1.EQ.7) GO TC 384
IF (NLP2.17.NREP2) GO TC 17

IF (YLP1.EC.NREP1) GO TO 304

IF {NLP2.EQ.NREP2) REWINT 10

IF (NLP2.EQ.NREP2) GO TC 18

GG TO 127

STOP

END

NSCF2103
NSCFO110
NSCFO111
NSCFO112
NSC?0113
NSCF0114
NSCF0115
NSCF0116
NSCFO 117
NSCroi118
NSCFG 119
NSCF0120
NSCF0 121
WECEDAZE2
NSCF0 123
NSCF(124
NSCF0125
NSCFD126
NSCF0127
NSCF0 128
NSCFO0129
NSCFG 130
NSCP0131
NSCF(132
NSCF0133
NSCF0134
NSCF0135
NSCF0 136
NSCF0137
NSCF0138
NSCF0 139
NSCFO140
NSCF{O 141
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C oP7

609

OPTICAI PROPERTIES SUBRQUTINE{FOR USE IN NSCF PROGRAHN)
SUBROUTINE OPTIK(XC,E,N%GO,NRIT,X0SC,PABS ,JCONTR,XSYAF)

IK ROUTINE WRITTEN BY LOUIS NOODLEMAN
CCMMON/STATE,/CN(24,28) 8N (24,28) ,IN(24,28) ,NATOM (24,28) ,LK (28),
1 NMS (28),IMIN(28,18) ,IMAX (28,18),NLEQ(18) ,KTAU{18),NNS,ICORE,
2NUAT  ,NDG,NLS(18) ,NOL (18) ,NO(18) ,NTERMS {18) ,LMAXA {18) ,NDIN
COMHON/PARAM/VCOW,XE,EV,I0UA ,KONSH,NQUT,NAT,NDAT, NSPINS,
1 NACORE,RADION,QION,FAC1,EXFACO,RS{18),XV{18),YV{18),2V (18),ZP{18)

,EXFACT {18) ,LMAXX (18) ,N% (18) ,NSYMBL {18) ,NEQ (18) ,LCORE (18) ,KTION

COMMON/FCNR/H {10) ,VCONS{2),R{200,10) ,V({200,20) ,ICHG (10,10},

1 XPLACE {18) ,KMAX {18)
COMMON/B¥SSEL/SB¥C (7) ,DSBFC{7) , SNFC(7) ,DSNFC({T)

COMNMON /0D /NSPINA,NSPINB,NLP1,NLP2,NREPT, NREP2, NIRREP

RFAL CI(6,9,5,10),C7{6,9,5,10),RI (200,5,5),RF (200,5,5) ,SUMAF (9),
1SUMBF (9) ,2UM {5, 5,10, 3) ,ZUMP (3) ,RV (200,10) ,RSVP (200) ,RVP (200,10),
2Y (2€0),5 (5,5,10) ,SUR(5,5,10) ,ST(5,5,10) , A {200) , VP {200,10),
3v5(220,10),11P,0(10) ,0AM ({10,5) ,XC (28)

INTEGER LMAXN(18),KB (10) ,MVN {24, 28) ,KI(18),NU(18) ,JRKE{(5),

1 LMAXNT (18)

DO 4 K=1,10

oo 4 KL=1,5

DO 4 ¥=1,9

DO 4 ML=1,6

TF(NXG0.%5C.1) CI{ML,M,XKL,K)=0.9

IF (NXG0.EQ.2) CF{ML,M,X1,X)=0.0

IF({NLP1.6T.1 .OR.NLP2.6T.1) GO TO 93

0SsoN=0.0

LC 609 JK?=1,7

SBFC (JKR)=1.0

DSBFC {JKR) =1.0

SNPC{JKR)=1.0

DSNPC (JKR) =1.0

IF{NRIT.EC.0) NRIT=1

I7 {NXG0.EQ.1) EI=E

IF(NXGO.EC.2) EF=E

NUATOM=WDAT

OPT20001
OPT20002
OPT20003
OPT20004
0PT20005
0PT20006
OPT20007
OFT20608
0PT20009

0PT20010.

OPT20011
0PT20012
0PT20013
CPT200174
OPT20015
OPT2008186
OPT20017
opT20018
0PT20019
0PT20020
0PT20021
0PT20022
OPT20023
OPT20024
0PT20025
OPT200 26
OPT20027
QPT200628
0PT20029
0rT20030
0PT23031
OPT20032
OPT20G033
oPT20034
0PT2C035
oPT20036

12¢



IF (NXG0D.FQ.2) VC=VCONS(NSPINB)

DO 2 NN=1,NAT

IF (NXG0.EQ.7) LMAXNT (WN) =LHAXA (NN)

IF(NXGO.EC.2) LMAXN (NN)=MAXO(LMAXNT (NN),LMAXA (NN))

IF {(NXG0.EQ.1) GO TO 603

LC 504 NN=1, NUATOM

DO 504 JK=1,2

IF (JK.20.1) NS=N N+ (NSDIHA~1)*NUATOM

IF(JK.E0. 2) NS=HN+ (NSPINE~1) *NUATCH

T0UT=1

IF(EN.EQ. 1) I0UT=2

RX=KMAY {NN)

NLMAP=LHMAXN{NN) +1

DO 503 1VAL=1,NLFAP

L=LVAL-1

7Z=FLOAT (NZ (NN))

IF (JK.E0.1) CALL THAT{L,EI,RS{NN),KHAX{NN),Z,H(NN),R{1,NN),
1v({1,85) , ICHG {1,NN) ,I0UT ,KPLACE {N¥) ,RI {1, LVAL, NN) , STMAT, PS,DPS,
2RAHUF)

I¥(JK.EQ.2) CALL THAT(L,EF,RS (NN),KMAX (NN),Z,H (NN),R{1,NN),
1v (1, ¥S) , ICHG (1,N¥N) ,ICUT,XPLACE {NN) , RF {1, LVAL, N¥) , STMAT,PS,DPS,
2RAMF) :

502 CONTINUE

IF (NRIT.EQ.1) 60 TO 504
KRITE (6,506) NN,JK

506 FCRMAT (1X,7HCENTER=,I4,6HSTATE=, 1)

DO 510 LS=1,KX

IF (JK.EQ.1) WRITE(6,505) LS,R(LS,NN), {(RI{LS,LVAL,NN)
1 ,LVAL=1,NLNAP)

TF (JK.EQ.2) WRITE(6,505) LS,R{LS,NN), (RF(LS,LVAL,NY)
1 ,LVAL=1, NLMAP)

FORMAT (1X,I4,6 (4¥,E14.7))

510 CCNTINUE

CONTINUE
5C 13 I=2,NUATON
NS=T+ (NSPINB-1)*NUATCH

0PT20037
OPT20038
0PT20039
OPT20C4D
OPT20041
OPT20042

0PT20043,

OPT20044
OPT20045
0PT20046
oPT20047
OPT20048
DPT20049
0OPT20050
0PT20051
OPT20052
OPT20053
0PT20054
OPT20055
0PT20056
0PT20057
opT20058
OPT20059
OPT20060
OPT20061
0PT20062
OPT20063
OPT20064
OPT20065
OPT20066
0PT200A7
OPT20068
0PT20069
o0PT20070
0BPT200M
OPT20072
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500

LUAF=LMAXN (I)+1

1LY=KMAX (T)

LP=KHAY (I)~-1

ID=KPLACE (I)

DO 8 KM=1,LY

RV (KM,T) = R(KM,T)*V (KM, NS)

DO 9 L=1,LP ,

IF (L.LE.2) CALL INTERP(F(L,I),BV(L,I),4%,R(L,I),DUNMY,RVP(L,I),
1 .TRUE.)

T8 {14072}

1CALL INTERP{®{L-2,I),RV{L-2,T),4,R(L,I),DUMNY,RVP(L,I),.TRUE.)
RSVP {L)=R {L,I)*RVP{L,T)-RV (L,T)

IF (NRIT.XQ0.1) GO TO 9

%RIT® (6,500) I,L,R(L,I),RV(L,I),RVP(L,I),V(L,NS),RSVP{L)
FOFMAT(1X, 7THNUATOM=,I5,2HL=,1I5,2HR=,F10.5,38RV=,F10,5,4HRYP=,
1 ¥10.5,34 vV=,E14.7,6H RSYP=,E14.7)

C CCNTINUE

; [

13

DO 13 J=1,LHAF

D0 13 K=1,LHMAF

IF (IABS{J-K).GT.1) GO TO 12

IF {(k+J+1)/2 .LT. FICAT(K+J+1)/2.0) GO TO 12

DO 5 L=1,LP

Y {1)=RI (L,K,I) *RF(L,J,I) *RSVP{L)

CALL INTEGR(Y,R(1,I),KHAX(I)-1,ICHG(1,I),A,1)

CALL INTERP (R (LD-3,I),A (LD-3),6,RS(I),ASA,DUMNY,.FALSE.)
S{¥,J,I)=ASA

SUR (K,J,I)=RT (LD,K,I)*RF (LD ,J,I)* (RS (I)*%2) * (YC-V (LD, NS))
ST {X,J,I)=S(K,J,I) +SUR (X,J,T)

G0 TO 13

ST (K,J,I)=0.0

CONTINUE

LMAF=LHMAXN (1) +1

LE=KMAX (1) -1

ID=KPLACE (1)

NS=1+ {NSEINB-1) *NUATOM

DO 28 1=1,LP

0PT20073
0PT20074
oPT20075
OPT20076
OPT25077
0PT20078
OPT20079
0PT20080
0OPT20081
opPT20082
OPT20083
CPT2 0084
0PT 20085
oPT20086
0PT20087
OPT20088
0PT20089
OPT20090
07720091
OPT20092
0opT20093
OPT20094
0PT20095
OPT220946
0PT20097
pPT20098
CPT20099
OPT 20100
OPT20101
opPT20102
OPT20103
OPT20104
0PT20105
OPT20106
OPT20107
oPT20108
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501
28

29

92
91

IF (L.LE.2) CALL INTERP(®(L,1),V(L,NS),4,%(L,1),YS(L,1),YP{L, 1),
1 . TRUE.)

IF {L.GT.2) CALL INTERE({F(L-2,1),V{(L-2,H8S),4,R{L,N,95(L,1),¥P(L,1)
1 ¢+ TRUE.)

IF (NRIT.EQ.1) GO TO 28

#RITE(6,581) L,®(L,1),V(L,NS),YP(L,1)

FORMAT (1X,8HNUATON=1,3H L=,15,38 R=,P10.5,3H V=,E14.7,3HVP=,F10.5)
RSVP{L)= (R{L,1)*%2.0)%VP(L,1)

DO 30 J=1,LMAF

DC 30 K=1,LMAF

IT (IABS (J-%).GT.1) G0 T0 35

IF ((¥+J+1)/2 .LT.(FLOAT (K+J+1) s2.0)) GO TO 3%

DO 29 1=1,LP

Y (L)=RI(1,%,1) *R¥(L,J,1) *RSYP(L)

CALL INTEGR(Y,R(1,1),XKMAX(1)-1,ICHG{1,1),4,3)

CALL INTERP(R{1,1) ,3,7,%S{1),AS,DUMNY,.FALSE.)
AINT=A (KMAX (1) -1)-2S

S(K,Jd,1)=ATINT

SUP (K,J,1)=RT{LD,K, 1) %RF (LD,J,1)* (RS (1) *%2.) % (¥ (LD,NS)-VC)
ST{K,Jd,1)=S (K,J,1)+SUR {k,J,1)

GO TO 30

ST({K,J3,1)=0.0

CONTINUE

I¥ (NXGO0.FC.2) GO 7O 93

BC 90 ¥=1,NAT

NU{N) =NEQ (N)

IF (NEQ (1), FEQ.0) NU (N)=¥

DO 91 H=1,NAT

IF(NUN).EQ.N) KI(N)=1

IF (NU{N).EQ.N) KB(N) =1

I (N.LE.NUATOH) GO TO 91

DG 92 T=1,NUATOH

IF {(NU(N) .EQ.I) KB(I)=KE(T)+1

IF (NU (§) .BQ.I) KI(N)=KB{I)

CCNTINUZ

WRITZ {6,602)

oPT20109
0PT20110
0PT20111
0PT20112
OPT20113
0PT20114
DPT20115
OPT20116
orT20117
0PT20118
0PT20119
0PT20120
opT20121
0PT20122
OPT20123
0PT20124
oPT20 125
OpPT20126
opT20127
0PT20128
0PT20129
OPT20130
0PT20131
CPT20132
0PT20133
0PT20134
0PT20135
oPT20136
OPT20137
OPT212138
OPT20139
oPT201%4D
OPT20141
CPT20142
0PT20143
OPT20744

Fee



53
54
507

52
608

i 1<
605

600

606

FPORMAT (1%,5HNATON,3X, 2HNT, 2%, 3HNEQ, 3X, 2HKI)

9RITZ (6,601) (J,NU(J),NFQ(J),KI(J),I=1,NAT)

FORNAT (1X,41I5)

KE=NXGO

IF (NRIT.®0.1) GO TO 607

WRITE(A,53) NDIN,NDG

FORMAT {1X,5HNDIN=,T5,5H NDG=,I5)

WRITE(6,54) (XC{(N),N=1,NLIHN)

FORMAT (1X,10HSYMH COEF=,10F 10. 5)

DC 600 N=1, NDIN

IF (NRIT. EQ.1) GO TO 608

WEITE (6,52) LN{N),NMS(N)

FORMAT {1X, 3HLN=,I5,58 NKS=,I5)

NMO=NHS {N)

DO 600 I=1,NHMQ

IF (NRIT.EQ.1) GO TO 605

WRITE(6,55) MN{I,N),IN(I,N),NATCH(I,N),CN(I,n)

PORMAT (1¥,3H8N=,T5,4H IX=,I5,7H4 NATOM=,I5,4H CN=,F10.5)
IFP(MN(I,N) -EQ.0 .AND. IN(I,N).E0.1) HMYN(I,N)=1

IF (MN(I,N).NE.O0 ,AND.IN(I,N).RQ.=-1) HUN(I,¥N)=2%MN(T,N)
IF (HN(I,N) .NE.O.ANDLIN(I,N).EQ.1) MVN({I,N)=2%EN(I,N)+1
CONTINUE

DC 606 N=1, NDIH

NMQ=NNS {N)

LET=LN {N) +1

DO £05 K=1,NHQ

XKTA=NATCH (X, N)

KIT=KTI (KTA)

MYNT=MY N {K, )

NUE=NU (K TA)

T® {KK.EQ.1) CI (XIT,HYNT,LNT,NUE)=CI(KIT,MVNT,LNT,NUF)+CN (K,N)
1 %X (V)

I7 (KK.EQ.2) CF(KIT,H4VNT,LNT,NUE)=CF(KIT,HVNT,LNT,NUE)+CN {£,N)
1 *¥C {N)

CONTINGE

IF {NXGO.EQ.2) GG TO 94

OPT20145
OPT20146
OPT20147
OPT20148
QPT20149
oPT 20150
0PT20151
OPT20152
OPT20153
0pPT20 154
OPT20155
0PT20156
OPT20157
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"OPT20159

0PT20160
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OPT20166
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G

RETURN

s ¥, 2 POLARIZATION OF E FIELD

5S4

To 20 IX=1,3

DC 20 I=1,NUATOH

IMAF=LHAXN (I)+1
DO 20 J=1,LHAT
DO 20 Jp=1,LUAF

. IF (IABS{J-JP).GT.1) GC TO 1%

15

16

17
18

T8
20

TP [ (3+IP+1) /2 .LT.FLOAT (J+JP+1)/2.0) GO TO 19
SUMC=0.0

ME= (2%J) -1

LG 17 #=1,MF

SOMB=0.0

MPF= (2%JP) -1

DC 16 ME=1,MEF

SUNA=0.0

KBF=KB (I)

DO 15 XKJ=1,XBF

SUMA=SUNA+CF (KJ,MP,JP,I)*CI (RJI,M,J,T)
STUMAF (MP)=SU¥A%*I1P (MP,M,IP-1,J-1,IX)
XIPT=I4P (¥P,4,JIP-1,J-1,1IX)
SUMB=SUME+SUNAF {MP)

SUMBF (M) =STMB

SUMC=STMC+STOMBF (M)

79® (JP,J,T,IX)=SUNC

GC TO 20

U8 (J2,3,1,IF)=0.0

CCNTINUE

D0 23 I¥=1,3

ZuM1=0.0

DO 22 I=1,NUATOH

LMAF=IMAXE (I) +1

Do 22 J=1,LWAF

DO 22 JP=1,LMAF

IF(NRIT.EC.1) GO TO 22

BRIT® {6,50} J°,3,1,IX,2UM(JP,4,I,1IX),JP,J,I,ST(J,JP,I)

oPT20181
0PT20182
OPT20183
OPT20 184
0PT20185
OPT20 188
oPT20187
QPT20188
OPT20189
0PT20190
oPT20191
oPT20192
0PT20193
OPT207194
OPT20195
OPT20196
CPT20197
0PT20198
0PT20199
OPT20200
OPT20201
0PT20202
0PT20203
OPT20204
0PT20205
OPT20206
OPT20207
0PT20208
OPT20209
0PT20210
0PT20211
oPT20212
CPT20213
0PT20214
0PT20215
OPT20216
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50
22
23

490

528

522

81C

813

814

FCRMAT (1X,4HZU® ,413,2H =,F10.5,38sT ,3I3,2H =,F10.5)

70N 1=Z0M 1+ 274 (JP,J,I,IX)*ST (J,JP,1)

ZUMP {IX)=ZUMT

ZUMPs5=0.0

DC 40 1IM=1,3

ZUMES=ZUMES+ZUND {IN) *%2

WRITE (6,528) XSYHNT

FCRMAT (1Y, "XSYHF *,F8.4)

PREL=ZIUHPS/ (EI-EF) *xy

PABS=(4,0/3.0) *PREL*XSYNF

X0SC=PABS* {EF-EI)

IF (JCONTE.EQ.1) GO TO 527

IF {(VIRREP.®0.0) GO TO 522

IF (NLP1.¥E.NREPT .0OB. NLP2,NE.NREP2) GO TO 51
DO 822 KC=1,2

D0 815 I=1,NUATON

LMAFP=LMARN(I)+1

LY=KMAX {I) |

LT=KHMAX {T) -1 "

LD=KPLACE {I)

Q{I)=0.0

DO 815 J=1,LHAF

°C 810 XM=1,LY

IF {KC.EQ.1) Y{KM)=(RI(KN,J,I)*R(KM,I))**2
IF {(RC.EQ.2) Y (KM)={RF(KH,J,T)*R{KM,TI))*%x2
CONTINUE

IF {I.GT.1) GO TO 8123

CALL INTEGR(Y,R(1,1) ,KMAX(1)-1,ICHG{1,1),4,3)
CALL INT=RP{R{(1,1) ,2,7,55(1),AS,DUHNY,.FALST.)
PADFS=A (RBMAX{1)-1)-AS

GO TO 814

CALL INTEGFR{Y,R(1,I),LP,ICHG (1,I),3,1)

CALL INTERP{R(LD-3,1),2{LD-3),6,RS(I),RADFS,DUMMNY,.FALSE.)

MF=2%J-1
CET=0.0
LC 811 M=1,M¥F

0PT206217
0PT20218
0PT20219
CPT20220
0PT20221

0PT20222
0PT20223
OPT20224
0PT20225
OPT20226
0PT20227
0PT20228
OPT20229
0PT20230
0PT20231
OPT20232
OPT20233
OPT20234
OPT20235
OPT20236
OPT20237
OPTZ0238
OPT20239
0PT20240
0PT20241
OPT20242
oPT20243
OPT20244
OPT20245
OPT20246
OPT20247
0PT20248
OPT20249
0PT20250
OPT20251

0PT20252
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811

815
808
820

823
B22
821

51
7C0

1

42
43
an

46
45

47
48

49

IF(KC.EQ.1) CRT=CRT4+CT(1,M,J,T)**2

IF {RC.EQ.2) CRT=CRT+CF{1,H,d,T) %*2

CCNTINUR

QA (T,J)=CRT*RADFS

0 (I)=0{T)+CRT*RADFS

WRITE (6,820) KC, (I,0(I),I=1,NUATOR)

FORMAT {1X,6HSTATE=,I4,4 (1H0,I2,1H=,F8.4))

DO 822 I=1,NUATO¥

LEAF=LUAYN (I)+1

DC 823 J=1,LMAF

JAKE {J) =J-1 _

WRITE (6,821) KC,I,{JAKE(J),0AM(I,J),J=1,LHAT)

FORMAT {(1X,6HSTATE=, I4,5HATON=,I4,5 (2HQL, T2, 1H=,F8.14))
WRITE (6,7C0) NLP1,NLB2

FORMAT (1%, *INITIAL STATE PARTNER=',I5,'FINAL STATE PARTNER=',I5)
WRITE {6 ,41) EI,EF

FORMAT (1X, 15HTRANSITION FROM,F10.5,11HRYDBERGS TO,F10.5,
1 SHRYDRERGS)

DO 45 IxX=1,3

IF (IX.TQ.1) WRITE(6,42)

TF(IX.EQ.2) WRITE(6,43)

1F {IX.EQ.3) WRITE(6,44)

FCRMAT(1X, 32HTRANSITION ANPLITGDE X COMPONENT)

FORMAT (1%,32HTRANSITION ANPLITUDE Y COMPONENT)
FORMAT (1Y, 32HTRANSITION LMPLITUDE % COMPONENT)

WRTTE (6,46) ZUMP (IX)

FORMAT (4X,E14.6)

CONTINUE

WRITE (6,47) PREL

FORMAT (1%, 32HRELATIVE TRANSITION PROBABILITY=,E14.6)
9RITE (6,48) PABS

FCRMAT{1X, 33HABSOLUTE TRANSITION PROBABILITY= ,F12.6)
WRITE (6,49) ¥OSC

PCRMAT (1%, 20H0SCILLATOR STRENGTH=,F12.6)

IF (NIRREP.FQ.0) GO TO 527

TF(NLP1.EG.1 LAND. NLB2.T0.1) OSTEM=X0SC

0PT20253
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OPT20257
0pPT20258
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0PT20261
OPT20262
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OPT202566
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OPT20268
0PT2024A9
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0SSUM=05SUM+X0SC “ DPT20289

IF (NLP1.NE,HREP1 .OR., NLEZ2.NE.NREP2) 6C TO 527 OPT20290
WRITE{6,520) OS3UM 0PT20291

520 FORMAT (1X,'SUM OF OSCILIATOR STRENGTHS =',F12.6) 0PT20292
IF(OSTEM.1T.0.0001 GO T0O 527 OPT20293
FACTOR=0SSUN/05TEN OPT2029%
WRITE(6,521) FACTOR OPT20295

521 FORMAT{1X,?TOTAL OSCILLATOR STRENGTH/FIRST OSCILLATOR STRENGTH =1 OPT20296
1,F712,6) OPT20297
527 CONTINUE 0PT20298
RETURN 0PT20299

END OPT20300

6C¢



TMAT SUBROUTINE WITH PHOTO-EMISSION OPTICR
SUBROUTINF TMAT(L,E,RS,KMAX,Z,DELH,R,V,ICHG,IOUT,KPLACE,P,STHMAT,
1 PS,DPS,RAMF)

C PHOTO-EMISSICN OPTION ADDED BY LOUIS NOCDLEMAN

RSN RO RE]

REAL*8 EKM, PK1, PK, DKM, TK1,DK,GK,GK1,GKHM

COMMON /PARAM /VCON,XE,EV , NOUT g
REAL NEUO({7) ,DNEUO{7) ,BESO(7) ,DBESD (7) ,NER{7) ,BER (7),

1 DEER (7) ,DBER (7) ,NEMO,NERR

T-MATRIX CALCULATION FOF MULTIPLE-SCATTERING MODEL FOR POLYATOMIC
MOLECULES. INTEGRATES RANDIAL SCHRODINGER EQUATICON USING NUMEROV
DOES OUTWARD INTEGRATICN FOR ATCMIC SPHER®W ¢ INWARD FOR OQUTER
SPHERES. GIVES INVERSE CF T-MATRIX AND LOG DERIVATIVE AT SPHERFE
SURFACE .

DINENSICHN V(KMAX), P (KMAX), R (KHMAX) ,ICHG (10)
CCMMON/EESSEL/SBFC{9),DSBFC{9)'SN?CIQ),DSNFC{Q)

LCGICAL IGCTPR,ALLOW

ALLO®=.FAISE,

KSTOP=1

A=L% (L+ 1)

IGCTP=I0UT.NE,3.AND.NOUT.EQ.O

IF{I0UT.E2Q0.2) GO TO &0

OUTHARD INTEGRATION FCR ATOMIC SPHERES

CALL PSTART (DELH,Z,L,E,¥V,P (1),P (2))

HSQ=DELH*%2

PRKE=F (1)

PR1=P (2)

DEK¥=={E-V{1) -A /R {1) *%2) *PSQ*PKH/12.

DE1== {E=V (2) -2 /R (2) #*%2) *HSQ*P (2) / 12.

N=1

DO 34 ¥=3,KMAX

GK={E-V (X) A /R (K) *%2) *HS5¢/12.

PE ={2.*%(PK1 +5,%DK1) - (PKM-DEHM) )/ (1.+GK)

P (K) =PK

IF (IGCZTE) GO TO 50

IF (ALLCY) GO TO 51

IF{GK.LT.0) GO TO 53

TMAT0001
TMATO002
TMATOO03
TMATCO0Y
THATOO0S
TMATQO06
TMATOO0O7
THMATO0GS
THATO009
TMATO012
TMATOC11
TMATO012
THMATOC13
THATOO 14
THATOO015
TEATOO0 16
TMAT0017
THAT0018
TMATGO19
THATO020
TMATOC21
TMATO022
THAT0023
TMAT(CO24
T™MATO025
THAT0026
THATON27
TMATCO28
TMATOO02D
TMATCO30
TMATOO3
TMATO032
THATO033
TMATOO 34
THMATOO035
THATOC 36

0€c



51

54

50
53

61

ALLO¥=.TRIE.

Go TO 53

IF(GK.GE.Q) GO TO 53
IGCTP=,TRUE.
IF{IOUT.EQ.3) 0 TO 54

GO TO 53

KSTOP=K+3

IF (KSTOP.EQ. ICHG (N)-1) RSTOP=ICHG (N)
ac TO 53

IF (K.EQ.XKSTOP) G0 TO 52
IF (K. 1T.ICHG{N)) 6O TO 30
N=§+1

ASO=4 .%HSQ

DENM=4.%DEH

DK1=—4 ,%GE*PK

FE1=TK

G0 TCo 34

PEKM=PK1

DEM=DK 1

DE1=—GK*PK

PK1=PK

CONTINUE

TFP(IOUT.NE.3) GO TO 78
WRITE(6,104) B

FORMAT (/' ERRCR - LEVEFL F=',RB14.7,°
5702

DC #0 K=1,KSTOP

P {¥) =P (K) /R (¥)
KSTOP=KSTLP-6

CALL INTERP(B(KSTOP),P{KSTOP),T,R(KSTOP+3),PS,DPS,.TBUE,)

PS=P (KSTOP+3)
TNYARD INTEGRATION FCR OUTER SPHERE

ADDITIONAI SEQUENCE ECR EHOTOEMISSION OPTIGH

N=11
IF (E.GT.0.0) GO TO 181
N=§N=-1

SHOULD NOT BE A CORE LEVEL'/)

TMATOC37
THATOO38
TMATO039
TMATOO4 O
THATCOU
THATOO42
TMATOCH3
TMATOO4Y
THATO045
TMATOO46
TMATOOU47
THATOOH4B
TMATOO49
TMATCCS50
THMATO0051
THATO052
TMATOO053
TMATOOSY
THATO055
TMATO056
THATCO57
TMATO058
TMATOO059
TMATO060
TMATO0E
TUATO0H2
TMAT0063
TMATOOGY
TMATOD065
THATCO66
TMATOOART
THATO068
THMATO069
THATOC7D
TMATO071

N

TYATO0T2 &



g4

62
€6

63

76
49
73
T4

KN=TICHE {¥)

IF {KN.GE.KNAX) GO TO 61

TF (EN.LF.0) GO TO 61

IF (N.EQ.0) GO TO 66

KN=KMAX

GO TO 62

K N=TCHG {¥)

N=N-1

IF(N.EQ.0) GO TO 66

IF { (V (KN)-F) ¥R (KN) **2+A-2400.) 63,63,C4
IF(KN.GT.3) GO TO 63

N=1

KN=ICHE (2)

HSQ=DELH#%* ik kY

PRM= EXP {- SORT ({V (KN) -F) *R (KN) ¥*2+1))
DKM=- (%-V (RN)-A/R (KN) *%2  )*PKM¥HSQ/12.
P (KN) =PRE

PK 1= FXP (- SOQRT({(V(XW-1)-T) *R (KN-1) ¥%2+1))
P (KN-1) =P :
DK1=— (E-V {KN-1) =4 /R (KN=1) **2) *HSO*PK1/12,
K=KN+1

IF({K.GT.KMAX) GO TO 79

D0 76 I=RK,KMAX

P {I)=0.

K=K -1

K=K~-1

GE= (E~V (K) -A/R {K) ¥%2) ¥HSQ/12.

DR =(2.% (PK1  +5.%DK1) - PKMN+DKM) /(1.+GK)
P (K) =PK

IF {IGCTP) GO TO 71

I (ALLOW) GO TO 56

IF (6K.1T.0) G0 TO 71

TF{L.E0.0) GO TO 59

ALLOB=. TRUF.

GC TO 71

IF (GK.GE.C) 60 TO 71

THATOQT73
TMATOO 74
TMATO0TS
THMATO0T6
TMATO077
THATOCT8
THATOO79
THMATOO08D
TMATOOR 1
TMAT(GO082
THATOD83
TMATOCBY
THMATOO085
TMATOC86
TMATOO87
THATOOBS
THATC0B9
THATC090
TMATO091
TMATCO0922
THMATO093
TMATO09Y
TMATOO95
TMATO096
TMATH097
TMATD0O8
THATC099
THATO100
THATO101
TMATO102
TMAT0103
TMATO108
TMATO 105
TMATO106
THATG 107
THATO108

(AT A



71

1C3
181

180

1¢CTP=.TRUE.

IF(E.GT.0.N) GO T0 71

6o TO 71

IF(K.EQ.KSTOF) GO To 78
IF (§.EQ.0) GO TO 65

IF (K.GT.ICHG (¥)) GO TO 65
TF (K.1E.2Z) GO T0 75

N=N-1

DK=-PK %GK

GR1= (E-V (R-2) -A/R{K-2) *%2) ¥*HSQ/12.
PK1={2.% (EK +5.%DK) - PK1  +DE1)/(1.+GK1)

DR1=-DK1%¥GK1/4.
HSQ=HSC /4.

GKMN= {E-V (K-1)-A/R (K-1) *32) *1050Q/12,

DK=DK/U .

PEH =0.5*% { (PK -DK) + (PK1-DK1)) / {1. =5, %GKH)

DKM=-PKN*CKM

K=K~-3

P (K+2)=PKH

IF (K+% .LT. KSTOP) GO TO 78
P (K+1)=PK1

TF(K+1 .EC. XKSTOP) GO 10 78
GO0 TO 7b

y PKM=PK1

DEM=DK 1

DK1=-PK *GK

TK1=PK

G0 TO 73

WRITE(6, 103)

STOP

FCRMAT (18H ERROR STOP - TAAT)
1=N-1

MMAY=50

EN=TICHG (N)

IF (KN.LT.FHAY) GO TO 105
N=N-1

THATOT109
THATO 110
THATO191
TMATO 112
THMATO113
THMATO114
TMATO 115
TEAT0116
THATO 117
TMATO118
TMATD 118
TMATO0120
TMATO 121
TMAT0122
TMATO0123
TMATOH 124
TMAT(C125
THMATO126
THAT0127
TMAT( 128
TMATO0129
TMATO130
THATO131
THATO132
THATO133
TMATO134
THATO 135
TMATO136
THATO 137
THATO138
THMATO139
TMATO40
THATO 141
THATO142
THATOT43
THATO 144

. EEC



105

106

78

77
107

21

50 TO 180

XEP=SQRT (E~V {MHAY))

ARG 1=XEP*R {MMAX)

LP=1+7

LV=MAXC (LE, 3)

CALL OSNF {ARG1,XEP,LV,KEUC,DNEUO)
CALL OSEF (ARG1,YEP,LY,BESO, DEESO)
NEHO=NEUC {1P)

BEMO=BISO (LD)

MDHAX=MHBAE-2

oC 106 I=MDMAX,KHAX

IF (T.GE. MHAX) P (I)=0.0

IF (I.GE.KNAY) GO TO 106
ARG2=YEP*R (I)

CALI OSNF (ARG2,XEP,LY,NER,DNER)
CALL OSBF{ARG2,XEP,LV,BIR,DBER)
NIRR=NER (LP)

BEER=BER (LP)

P (T) =R {I)* (NEMO*BERR-BEMCHNERR)
CONTINUE

HSO=DELH%#2% %%y

PR M=P (HHAX-1)

PK1=D (MMAX-2)

KN=MMAY~-1

DKH=- (E-V (KN)-A/R (KN} **Z ) *PEKM*HSQ/12.

G0 TO 79

IF {IOUT.E0.3) GO TO 57
DC 77 K=1,KNAX

B {K) =P (X) /R {K)

CALL INTERP (R (XPLACE-3),P{XPLACE-3),7,RS,PS,DPS,.TRIE.)

X=DPS/PS5

STHMAT={DSHNFC {L+1) -X¥ SNFC (L+1)) /(DSBFC (L+1) -X*SBFC {L+1))

IF (I0UT.EQ.2) STHAT=1,/STHMAT
STHAT=STHAT*XE

IF (I0UT.RQ.2) RAMF=Y*SNFC (L+1)-DSNFPC(1+1)

TMATO145
TMATO146
TMATO47
THMATOT48
TMATO 149
TMAT0150
TMATO 151
THMATO152
TMATO 153
THATO15%
THATO 155
TMAT( 155
TMATO157
TMATO 158
THATO159
THATO 160
TEATO161
TMATO 162
TMAT(163
TMATO 164
THATO165
THATO166
TMATC 167
THAT(C168
TMATD169
TMATO170
TMATO 171
THMATO172
TMATO17 3
THATO174
TMATO 175
THMATO176
TMATO 177
THMATO178
TMATO179
TMAT0180

vee



58

17 (TOUT.NE.2) BAWF=DSBFC (L+1) -X* SBFC (L+1)
RANF=-RAMPXPSXRSH« QXX

IF (MOD (L,2) .NE.0 .OR.EV.GT.N.00) RETURN
STHAT=-STHAT

RETURN

BATIO=PS* R{KSTCP+3) /P {KSTOP+3)

DO 58 K=KSTOP,XN%AX

P {RK)=E (K) *RATIO/R ()

cAaLL INTERP (5 (KSTOP) ,P (KSTOP) ,7,R(XSTOP+3),Ps,DPS1, . TRUE.
RANF=1.

STMAT=DPS1-DPS

RETURN

TAD

THATO181
THATO 182
THAT(133
THAT 184
THAT(0185
THATO 185
TMATO187
TMAT0188
TMATO189
TMATO190
THATO191
TMATO192
TMATO193

GEc
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APPENDIX B
DETAILED DERIVATICN OF MATRIX ELEMENT

FORMULA IN THE ?v FORMALISM

By definition

X = r sin 8 cos ¢, v = r sin 8Os, z=r cos 6

£,9,kR are unit vectors in the x,y,z directions

Er' EQ' E¢ are unit vectors in the r, 9, ¢ directions
YL(rB) = normalized spherical harmonic about origin at
r, = 0
ry =
L = (2,m) = angular momentum indices
dQB = angular integration = sin 6 d 6 d ¢ referred to
origin at center B (of atom B)
~ A o ~ ~ A
¥,,(r) = sin & cos ¢, ¥, ,{r) = sin 8 sin ¢, Ylo(r) =
cos @
Vc = VII = constant potential

Matrix Elements

R 5.8 '1‘776 ‘
(‘PmJWV’iﬁJ*‘ng\?gCL [’f [8&8[%*%)@'0/5 2)

‘1)3

W o ,\
7 O L dngride (v, 21y )

Sorface
_ B z@ v
et T 5 S LI R ANRY 3d2,]

Y ‘8 /T2
@E /E,,H)A&J @r /Em [93) ég ﬂ/j‘%m{e an)

SU"?&&Q

Wéerq (5’:’” ﬁ;v
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(For the outer sphere, B = 0, we have (V(outside on

surface)—ViI) = AV in the surface term. Also, we have
f;o for the limits of integration. See the text

for the final answer. The matrix elements (Yﬁy ﬁy V‘?n)

and (fm ,ﬁZV‘fn) are derived analogously.

Derivation of Surface Terms

(¥, %V ¥

Sw‘ﬁu.e fy’[* BD—*E-,' /%JK(%)J-%%IJV
lhndao

The important surface integral is
b+d
8" p8 4 )V 2
A CRAT AL 1A
,a.;u;\'%o
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b b b
Integrate by parts f/a4v==aV/-:fvd4
@, Qq a

LE'f'“ R R/B 2
WV
o{v—ﬁisa(%

V { !HSIJQ V‘

8>4

The preceding expression becomes

/ LB +f *F
ljR ﬁyﬁﬁ Vj J-& V%r[:P P; @_}f

Lg.r -
fw«é’éo

-~

Since RE and Rgg are continuous across the boundary

they go to a single limit as J=¢p
B B
R£ —’Rx {Em)ég) as cr—%-o

(B 8
R.Q’ "'3@;, EMJAR) as 5‘—3.5

The first derivatives are also continuous at the boundary

and V is always finite so the second term is 0.

d"éof VM‘[. RIIB * dr,=0

8



239

Therefore the surface integral is

BpiB o 7% g 73
[RARGVIL o = o) R el

Lo f>0 iy

A similar derivation gives the outer sphere surface

term. Let

LGL) = [ [ GV, (2 da,
LUy = [F DAY () da
T (L) = Y 2 A Y A

LI

Then we obtain directly the result given in the text

of the thesis.

Gaunt Integrals

From Rose (page 62, equation 4.34) we obtain104

fda y* _ [ A1) L)
-?3”13 };zh;a E,m! 477‘:(2134_!) ' C@-@-é)m,mamaj

(44,4, 000)
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The spherical harmonics are complex, the C's are Cle-
bsch Gordon coefficients calculated via equiation 3.18
of Rose in the CGC routine of the scattered wave program.
Relation of complex to real spherical harmonics: for

m # 0, both real and complex harmonics are normalized

"l )= Erey,)

b =) =5 -0 )

Ly

'FOV‘ m=0

This is the method of formulation used in subprogram
I1lP to obtain real Gaunt integrals from the complex
Gaunt integrals.

Also:

Ak*’: k;n E%

for m # 0

YQOS }/‘Pe }/ )
\g:"(r) =¥z i mj
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for m = 0

)=

Lo Lo

Products of 3 real spherical harmonics:

Rea
l—lr’:’?fo({-sil-[)=ft3 (%_77—)% ;@.os .YReqf

4 L
4 Ylsin

AL}

10 1

For real harmonics, each L means (&,|m|, cos ¢or sing)
or for m = 0, L = (£,0, no ¢ dependence). Therefore,
in the preceding equation, there are many possible

matrix elements. The terms in brackets will correspond

to the (Sf»’.?;) terms respectively.
icoscp(Li’lL 47) (—L fﬂ(ﬂ/(ﬁ) */'(;)(‘!) 3}/* )
Sm¢ K“S My = 3

(Y e

[ !

//Z’i‘)’j;: (_é)/vl”'a};:%)



bt = - ”ﬁm((ﬁ)y e, )
m)(ﬁﬁ +()F m, m)

The integrals over complex spherical harmonics are
evaluated via Rose, equation 4.34.

In the integrals I the Re and Im parts of the

lcos

1sin
Re

entire integral yield the same answer as taking (ImYll)

before integrating. This is the way we evaluate the

terms of I, (L3;Ll) in the function subprogram I1P.

cos
sin

Function Subroutine I1P

In I1P, (MNI,INl) = initial state (MN,IN); (MN3, IN3) =
final state (MN,IN) where MN = |m| , IN = +1 for cos,
-1 for sin, and for MN = 0, IN = +1. TINTl and TINT3

are coefficients preceding Y,  and Y, __
11 171

for TINT3. IX is again

for TINT1,

and preceding Y and Y, _
sy by=ig

the x,vy,z electric field polarization direction. The

algorithm follows from the preceding description.
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APPENDIX C
RELATION OF THE MOLAR EXTINCTION COEFFICIENT
€n AND THE OSCILLATOR STRENGTH £ TO THE AB-

SORPTION COEFFICIENT 7.

In the preceding discussion, nwas defined in terms of
theoretically obtained quantities. In an absorption ex-
periment, the intensity I (which is the same as the
Poynting's vector previously defined) is attenuated

according to the equation.

cl) I =1 (ve
I(v) = intensity per unit frequency range at
frequency V
I(v) = intensity per unit frequency at zero pene-

tration into the material. This is the
incident intensity minus the reflected
intensity at the material surface, since
it is this energy flux which penetrates
the material and is attenuated by absorp-
tion,

% = Penetration distance into the material at

which I(v) is measured.



Equation Cl (identical to equation(.|f in the text)

arises from a differential absorption law

C2) -dI=Indl or %(—é%-)-:n

Since - %% is the rate of energy absorption per unit
volume we can see that the phenomenological definition
of equation C2 coincides with the previous definition

of equation ¢./8

E‘-"*
C3) éCRE (J:* 9") _ gﬁﬁ(Z@})lon{l
sk (ExE) € S

By definition,

Chl g =d

" Chnio
Where C is the molecular density, in moles/liter. £
is then defined in terms of Em'23 This relation is
given by equation¢.22 (The molecular density N is in

molecules/cm3),

244
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APPENDIX D
PHOTOEMISSION USING THE VV FORMALISM

As part of the present work, we have attempted to cal-
culate photoemission intensities from CH, using the VV method.
The positive energy eigenstates were confined to a large
spherical box (radius of about 15a0). This produced a dis-
crete set of final states. The density of final states was
sufficiently low so that the intensity for each transition
may be evaluated, and a profile of photoemission intensity
versus the kinetic energy of the final state electron may be
constructed. The radial functions for the final state are
required to go to O at the box radius. The inward integra-
tion to obtain the positive energy radial functions for the
outer sphere region is begun by assuming the radial functions

take the form

D1) Rg(ro) = Ajg(Kro) + BnQ(KrO)

-n, (Kb_)
where A - : .

B jQ(KbX)
D2) Rﬂ(bx) = 0 with bx = box radius

Equation D1 is only used for the first few points inside bx'
Then the inward integration is performed in the standard manner

using the outer sphere potential from the scattered wave program.
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The additional photoemission sequence may be found in the
TMAT routine of Appendix A from statement 181 to 106.
(It is also necessary to override the statement in EIGEN
which prohibits searching for positive energy eigenstates.)
The photoemission program should be run using the new NSCF
MAIN program. A set of transitions from a single initial
state may be calculated at one time by letting NXGP(N) = 1
for the initial state and NXGP(N) = 2 for each final state.
The photoemission intensities for CH, calculated by
the author were completely unreliable. However, only 2 = O
and % = 1 partial waves were used in the calculation, and
it is now clear that £ = 2 must be included as well to
obtain accurate intensities. Once this defect is corrected,
we will be better able to evaluate the accuracy of this

approach for determining photoemission intensities.
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