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ABSTRACT

A density matrix formulation for optical absorption is
developed within the framework of the Xa scattered wave
theory. In this approach, the transition state orbitals are
used as an approximation to the natural orbitals of the
system. It is shown that this concept enters in a natural
way into the formalism. Through the use of commutation
relations, we show that the three oscillator strength
forms, f(x). £(V), and f (VV) are equivalent in the X, theory,
in contrast to the Hartree-Fock method. In the present
work, the £ (VV) form is used exclusively for computation
since in the scattered wave method this form may be evaluated
without integrating over the intersphere region. The method
is first applied to intensities in the simple diatomic
molecules H +, Hy and cot, with results generally accurate
to 5% (at the egqliilibrium nuclear separation) in Hot, and
of order of magnitude accuracy for the weak transitions
in cot. In H,, the lrgalay transition is very accurately
described, but the lrgstg intensity_is not satisfactory

: 1
due to the diffuse character of the —I, state. We then
computed intensities in the transition metal complexes
MnO4~1, FeCly~1, CoClg~2, and Cr (CO)g. Relative intensities
of the dipgle allowed charge transfer transitions in FeCl,~1
and CoCl,© are reasonably accurate. The crystal field in-
tensity in CoCl,~2 is unsatisfactory due to the low exci-
tation energy, AE&lt;lev. Intensity considerations in Cr (CO)g4
yield a new spectral assignment. In MnO, ~1, the scale factor
between the theoretical and the experimental intensities is
17, which is quite large. We postulate that this is due
to an incorrect boundary condition for the cluster. The
discrepancies in the absolute intensities between theory
and experiment in transition metal complexes are discussed
in terms of correlation effects, local field effects, and
boundary conditions.
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CHAPTER I

INTRODUCTION

In the history of modern ohysics, the complexities of

optical spectra in atoms and molecules have played a major

role. The appearance of discrete spectral lines in atoms

contradicted classical radiation theory and led to the

development of quantum mechanics.’ The first major success

of the theory was then in understanding atomic multiplet

structure. The fields of atomic and molecular spectroscopy

have expanded enormously since this time, but many problems

still persist. In particular, the calculation from first

principles of excitation energies in molecules is still a

difficult task. Even more difficult is the accurate deter-

mination of theoretical absorption intensities.”

On the other hand, reliable calculations of spectral

intensities in molecules would be very valuable. Such ‘calcu-

lations would establish spectral assignments which were

uncertain due to overlapping bands, or due to errors in

calculated excitation energies. These spectral assignments,

in turn, can vield valuable information about the bonding
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and reactivity of different states (ground and excited) of the
zl

molecule.

We are also interested in such issues as the comparative

intensities of dipole allowed and vibrationally induced

(vibronic) transitions, and the effects of the molecular

environment on spectral intensities. In addition, since

experimental measurements of absolute intensities are often

difficult, further theoretical progress may stimulate new

experimental efforts in this area.’

To solve these problems, a new theoretical framework

for determining optical absorption intensities in molecules

was developed based on the X, scattered wave method. &gt;" ®

This new approach was applied to a series of systems from

simple diatomic molecules like i," and H, to transition metal

complexes, with emphasis on the latter. We will calculate

the intensities of electric dipole allowed transitions in

these molecules. We will also discuss transitions which

become dipole allowed via molecular vibrations.’ We will

not treat higher order multipole transitions and spin for-

bidden transitions which generally have much lower intensities.”

A theory of spectra based on a molecular orbital approach

has a wide range of applicability.°’? Localized states in

solids (for example, impurity states and exciton states in

semiconductors) or localized states at surfaces (in the

neighborhood of a chemisorptive bond) may be represented in

a molecular orbital framework through the use of a small
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cluster of atoms. Many important systems of this type contain

transition metal atoms coordinated at least in part by non-

metallic ligands. In addition, the active centers of many

biological macromolecules (hemoglobin, myoglobin, and cyto-

chromes) also contain transition metal atoms coordinated by

non-metallic ligands. For example, the biological molecules

just mentioned all contain a heme complex in which an iron

atom is coordinated by a planar array of four nitrogen atoms,

with a fifth ligand which attaches the heme complex to a

protein polypeptide chain below this plane, via an amino

acid. In the case of hemoglobin, any one of a number of

ligands (0, CO, NO, and so on) may be attached to the complex.

Many of the systems cited above have interesting optical

properties. For example, metallic impurities such as Cu,

Ag, Au, and Mu may be introduced substitutionally into a host

lattice of ZnS and CdS to produce specific luminescence bands

(Cu impurities in ZnS produce green and blue emission bands,

for instance). In myoglobin, CO chemisorbed on the heme

complex may be photo-desorbed with ultraviolet tight. 1? An

analysis of spectral assignments and intensities in such

systems would be valuable, and will be the subject of future

work. For the present, we note that these systems are closely

related to the transition metal complexes we will study.

One further topic for future work should be mentioned --

photoemission. Once a reasonable model for the final

(continuum) states is obtained, the methods developed here



A
“

are applicable to determining photo-emission intensities in

molecules and clusters. The author's preliminary attempts to

avaluate photo-emission intensities in CH, are described in

Appendix D. Suggestions for future approaches in this area

are presented in Chapter 9.

The organization of the work is as follows. A summary of

the previous experimental and theoretical work on optical

intensities is given in Chapters II and III. In Chapter IV,

we discuss the conventional theoretical methods for treating

intensities, and the problems these methods encounter especially

in complex systems. In Chapter V, the Xg scattered wave theory

of electronic structure is presented. This theory was developed

by Slater and Johnson as an alternative to the conventional

configuration interaction (CI) and Hartree-Fock LCAO (linear

combination of atomic orbitals) theories for electronic

structure.37&gt;76/11 We present our new approach for calculating

intensities in Chapter VI, and we apply this method to simple

molecules and to transition metal complexes in Chapter VII.

Chapters VIII, IX, and X contain our conclusions, suggestions

for future work, and appendices respectively.

We can gain perspective on the comparative accuracies

of the various theories of electronic structure by considering

the problem of evaluating excitation energies in molecules.

The results will be suggestive of the value of the different

theories for determining optical intensities.

The conventional Hartree-Fock theory uses a single
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determinantal wave function to find the many electron eigen-

states and energies of a system.&gt; The spin orbitals of a

single determinant are varied to obtain the minimum total

energy for a particular state. Therefore, as applied rigorous-

ly, separate variational calculations are required for initial

and final state wave functions bo, and bo, Yet even in

rigorous form the Hartree-Fock theory predicts total energies

in molecules to about 2ev. accuracy, which is often in-

sufficient for problems of chemical interest. In complex

molecules, such as those containing transition metal atoms,

various approximations are required, and excited states are

evaluated using the inaccurate virtual orbital theory. tt A

further analysis of Hartree-Fock theory and the approximations

made to implement it is given in Chapter IV.

The method of configuration interaction (CI) utilizes

a linear combination of determinants to describe the many

electron wave functions and energies of the initial and

final states.&gt; This more accurate method yields excitation

energies accurate to within less than lev. in simple molecules

like CN, but the method is intractable in complex systems

(see Chapter IV).

More recently, the Xo scattered wave method has been

developed to calculate electronic properties in both simple

and complex molecules.” ’® The ¥, method is based on a

statistical expression for the total energy of a system.

As a consequence, it is not necessary to assume a particular
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form for the many electron wave functions in the theory.

In addition, a local exchange term is used in the expression

for the molecular total energy, unlike the more complex

non-local exchange of Hartree-Fock theory. The bo theory

vields accurate excitation energies (to less than lev.) and

accurate molecular potential energy curves in most cases.”

In view of these successes, the X, theory provides a

good basis for a theory of optical intensities. A comparative

study of intensities over the range of systems we have chosen

should reveal which errors are intrinsic to the approximation

methods used, and which arise only in the more complex

systems.

Progress in evaluating intensities in transition metal

complexes is particularly desivable. tr? The current

theoretical situation in this area is very unsatisfactory.

Of the various approximate Hartree-Fock calculations on transi-

tion metal complexes, only the intensity results of Van der

Avoird and Ros on cucl,”? are in relative agreement with

the experimental values (that is, the theoretical and ex-

perimental intensities are related by a single proportionality

constant) 3.14 © Since this calculation does not predict

axcitation energies accurately, its validity for evaluating

intensities is doubtful. In no case do the experimental and

theoretical intensities agree in absolute value. For many

cases, theoretical intensities in relative agreement with

sxperiment would be sufficient to clarify spectral assignments,



 -—

and to determine the various types of optical absorption

nccurring in a system.

We now consider briefly the theory of optical intensities.

Absorption intensities in molecules are generally given in

terms of the absorption oscillator strength f which is

defined ast
N

1.1) £ = hia levn | 3&amp;1 5, [9p &gt; = HE

In this equation, d, is the initial state degeneracy, Vm, and

In, the initial and final state many particle wave functions,

AE is the excitation energy for the transition, and the sum

over i, k goes over all degenerate partners of the initial

and final states. The matrix element is expressed in Dirac

notation, with the integration being over the nuclear as well

as the electronic coordinates. The vector Xs is the position

vector of electron j. N is the total number of electrons

in the system. ff is a measure of the amount of energy

absorbed per unit energy input to the molecule. S is called

the absolute line strength,Itisa more symmetrical quantity

than f, and is easily related to the spontaneous emission

probability from the upper state vy to the lower state Yor

to the corresponding radiative lifetime of the excited state,

as well as to the stimulated emission oscillator strength.

These relations were formulated by Zinstein.lt’1? Since all

these quantities are interrelated, the measurement of any

one of them is sufficient to obtain the absorption oscillator

strength.
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Although f is generally defined in terms of a matrix

element of the position operator X, equivalent definitions

for exact wave functions may be formulated in terms of the

momentum operator ~ihV, or the gradient of the one electron

potential —v.3 In the scattered wave method, £(VV) assumes

a particularly simple structure, and we have therefore used

this form exclusively for our calculations. The £ (VV) form,

however, is generally thought to be unreliable for use with

approximate wave functions. 'S An additional purpose of the

present study is then to evaluate the accuracy of £ (VV)

compared with the other forms of f.

The many particle wave functions L and by include a

factor dependent on the respective vibrational sublevels

v' and v". In the Born Oppenheimer approximation’?

1.2) b= la, JN, Ry.- Ry) Uy (Ry. ..Ry)
Uo is factored into an electronic part which depends para- -

metrically on the nuclear positions Ry..-Rys and into a second

part which is simply the vibrational wave function for sublevel

v'. The electronic coordinates 1,2,...N include the spin co-

ordinates, and the previous integration therefore includes sums

over spin coordinates. In principle, then, it is necessary to

know both the vibrational and electronic wave functions to

evaluate the oscillator strength £m between specific

vibrational sublevels. As we shall see in Chapter IV, an

approximate value for f summed over v" sublevels and averaged

over v' sublevels may be found by evaluating vo and Uv at
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the equilibrium nuclear positions, and integrating only over

electronic coordinates in equation 1.1. Only the electronic

parts of the wave functions are used in this case. The result

is a measure of the total area under an absorption curve (for

absorption versus frequency) for a single electronic transi-

tion. 15 The £ rym appears as the vibrational superstructure

of the peak. 20 In the present work, we will concentrate on

obtaining the total f values for electronic transitions. For

some molecules, we will evaluate f at different internuclear

distances, but not at a sufficient number of points to directly

evaluate Eo ryne This would be an especially difficult task in

polyatomic molecules, since the number of data points required

goes up as the power of the number of normal mode coordinates.

In diatomic molecules, the vibrational wave functions may

be evaluated using the experimental Rydberg-Klein-Rees po-

tential curves.” In polyatomic molecules, one similarly

attempts to match force constants to the observed vibrational

frequencies, and then compute the vibrational wave functions.

This is again more difficult than in the diatomic case.?l

In diatomic Ao leoules, it is often the practice to

obtain the "experimental" f value at equilibrium nuclear

separation Rg from a set of measured radiative lifetimes

between vibrational sublevels torre (An example of this is

found in the Popkie and Henneker "experimental" f values

for some simple diatomics discussed in Chapter 2.322 The

present discussion of diatomics forms a basis for the more
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general discussion of vibrational effects on spectra developed

in Chapter IV. Let the internuclear distance for the diatomic

be R. Then?

A1.3) £(Ry) = 200E EBs)
m

1.4)
[ y x.|, ¢S(R) = I | &lt;v ° (1...N,R) |._ ivik Mx a ny

- 2

Z MR)

(1...5,R) |

1.5) £, , =20 AF &gt;vv 3h? ad. 2 &lt;h (R) |M, (R) [Wm (R))
7

The integration in equation 1.4 is only over electronic

coordinates; in equation 1.5, only the internuclear distance

R is integrated over. M(R) is the transition moment. Equations

1.3 and 1.4 are definitions. Equation 1.5 then follows from

equation 1.1. LR is directly related to the measured

lifetime between vibrational sublevels tome To invert

the data and obtain £(R,), the functional form for M(R) must

be found. It is perfectly general to expand M(R) as a Taylor

. 71,22
series

1.6) M(R) = IM.P

One must then assume a specific polynomial form for M(R) (for

example, a quadratic form) to determine f£(Re). Accurate

vibrational wave functions for the states are also required.

From a theoretical point of view, the evaluation of the

electronic oscillator strength at fixed nuclear position

f(R) in the case of a diatomic molecule requires a knowledge

only of the electronic parts Yo and vo of the total wave
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function. The conventional theories of electronic structure

outlined at the beginning of the chapter are used to obtain

approximate forms for the electronic wave functions. However,

a theory of optical properties using many electron wave

functions is inappropriate for the X scattered wave theory. 3

A new density matrix approach to optical absorption was there-

fore developed by the author which is better adapted to the

concepts of the X, scattered wave theory (Chapter VI).

A final problem of interest is the dependence of optical

absorption in molecules on the surrounding environment.

The environment effects optical absorption in two ways. 120,23

1) Specific molecular interactions alter the states (both ground

and excited) of the absorbing molecule. A detailed knowledge

of the boundary conditions appropriate to a given environment

is therefore necessary to determine the molecular eigenstates

and the associated oscillator strengths. 2) The electromagnetic

wave incident on a material is modified by the medium surround-

ing an absorbing molecule (local field effects). This implies

hat equation 1.1 for the absorption intensity is not correct.

These effects are most significant in solution spectra,

where the absorbing molecule is embedded in a fairly dense

medium.’’23 In the case of ions in solution (or ionic

crystals), the additional problem of how the oppositely

charged ions interact, and how these ions interact with the

salectromagnetic field is introduced. In vapor spectra, where

the density of the medium is low, these problems are not
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important. We will discuss boundary conditions and local

field effects in detail in Chapter IV, though many problems

remain unsolved.

In conclusion, the difficulties in obtaining reliable

absorption oscillator strengths are formidable. In view of

its previous success, the X, scattered wave theory is a good

prospect for further advances on this problem.
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CHAPTER II

EXPERIMENTAL BACKGROUND

First we consider experimental intensities for atoms.

For light atoms and ions, oscillator strengths may be ob-

tained by the accurate beam foil method developed by Bashkin

and co-workers. 22 In this method, ions are sent through a

thin foil of carbon. In the process, the ions may be excited,

ionized further, or neutralized. A measurement of the result-

ing radiative lifetime U of the excited state then yields an

oscillator strength generally accurate to 3-11%, better than

any other method used. 2&gt; A number of authors have applied

this technique to the ions ct, NT, Fr, and Net (see Table

1) 26-28 There is good agreement among the various experimen-

tal results.

Experimental f£ values have also been obtained by several

workers for s&gt;p transitions in the alkali atoms Li, Na, and

k.30 For lithium, Anderson and co-workers have used the beam

foil technique. &gt;t Link has used an accurate flourescence

method to obtain the Li 2s+2p, Na 3s+&gt;3p, and K 4s~4p oscillator

stfengths. 32 Other less reliable methods have also been used
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to obtain f values in these atoms. Ellis and Goscinski have

summarized the different experimental intensities for alkali

atoms, including the estimated uncertainties in the experimen-

tal values (see Table 2) .30 Some of the uncertainties are

guite large (for example, Na 4s-+4p.and K 5s-+5p).

We now consider experimental intensities in some simple

molecules. The intensities for the two lowest bands in H, are

not available from experiment, since the lowest lying Lyman

band (x'Lg-B I) overlaps the higher Werner band (x zgrctiy) 3

The experimental f value for the sum of the two bands is rough-

ly 0.65 as determined by Mulliken and Rieke from dispersion

measurements for hydrogen gan. 34 This is only a rough

estimate of the true £ value.

Extensive measurements have been made of radiative

lifetimes in the 13 electron systems C, wt, CN, and cot

"Experimental" oscillator strengths are obtained by an analy-

sis of the radiative lifetimes between vibrational sublevels

LE rgne Popkie and Henneker's "experimental" f values (at

the ground shave equilibrium nuclear separation R,) are given

in Table 3,22 As discussed in Chapter I, the try data may

be inverted to obtain f (experiment) only if a specific

functional form for the transition moment M(R) is assumed.

There are, in addition, substantial problems in measuring the

radiative lifetimes in these SYSEETE Since the lifetimes

are in the 10 microsecond region, there is sufficient time

for de-excitation by collisions with other molecules. For



25

example, wt may de-excite when colliding with neutral Ny.»

either by a change of the vibrational state of nN," or by

electron transfer. As a result, measured lifetimes often

differ by a factor of two or nore. 2136 The experimental

inaccuracies are indicated by the two different f values for

NF in Table 3.2%

Johnson, Capelle, and Broida have measured the radiative

lifetimes to yn of A10 by flourescence with a pulsed tunable

dye Laser.’ An foo value of 0.021 was obtained, which will

be compared with the theoretical value in Chapter 3. These

workers have found that the radiative lifetimes of ALO using

this method are independent of the vapor pressure of the

gases (including the AlO vapor pressure) in the observation

chamber. This indicates that collisional quenching (the

collisional de-excitation of a molecule, such as in the wt

case) is negligible. Since this is the source of much of the

arror in measuring radiative lifetimes, we may conclude that

the AIO lifetimes are reasonably accurate.

In contrast to many of the previous examples, oscillator

strengths in transition metal complexes are generally measured

directly via the absorption intensities rather than by means

of radiative lifetimes. There are still problems in measuring

absolute spectral intensities, and, in addition, these intensi-

ties are often dependent on the surrounding medium. We will,

therefore, find it necessary to specify the medium in discus-

sing optical intensities in these systems.
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Mno, is a tetrahedrally coordinated molecule which may

appear either as a component of an ionic crystal or as an

anion in solution.’ The molecule has a characteristic purple

color which is associated with an absorption band of oscil-

lator strength f=0.03 occurring in the green part of the

spectrum AE=2.3 ev. 9,11 Permanganate also has a weak Van

Vleck type paramagnetism indicating a closed shell electronic

structure for the ground state. Crystalline KMnO, has an

orthorhombic structure, with each unit cell consisting of

four K' and four Mno, jons.33 X-ray diffraction measure-

ments on this structure have established that the manganese-

oxygen distance is between 1.542 and 1.63%.3240 For most

of our calculations (Chapter VII), the intermediate value

found by Mooney of 1.5924 will be aged, 8

Holt and Ballhausenhave measured the optical absorption

of a dilute solid solution of KMnO , in kc10,. 4! They found

three bands at 2.3, 4.0, and 5.5ev., and a weaker shoulder at

3.5ev. However, they did not report absolute band intensities,

so we have used the earlier experimental intensities of Tetlow

(1938-1939) on the same solid solution in Table 10.42 The

bands at 3.5ev. and 4.0ev. are unresolved in Tetlow's measure-

ments, so the intensities have been assigned in the proportions

found from the Holt and Ballhausen spectrum. The resulting

spectral intensities are necessarily approximate. Den Boef

and co-workers (1958) have measured the intensity of the 2.3ev.

band for KMnO, in agueous solution, and have found substantial



2°

agreement with Tetlow's value. ?&gt; This would indicate, on a

preliminary basis, that permanganate absorption is not strongly

dependent on the surrounding environment. However, this

proposition should be checked by measuring absorption spectra

in various crystalline environments and solutions. This is

particularly important since both the den Boef and Tetlow

measurements are quite old. In the isoelectronic chromate

ion cro, 2, the oscillator strength for the lowest energy

dipole allowed transition is £=0.08 compared with £=0.03 for

the same transition in Mno, "1.44 This suggests that the

Mno, ~t intensities are very sensitive to the precise form

of the wave functions. This will be an important point in

our later discussion of the Mno, ~t spectrum.

FeCl,” is a tetrahedrally coordinated complex with high

net spin (s=22) . 4 The Fe~Cl bond length is 2.196R8.%° Bird

and Day have measured the absorption spectrum of this system,

and found four peaks of moderate intensity (£f=0.07-0.28, see

Table 14) A For these experiments, samples of Fecl, anions

were prepared as tetramethylammonium w(CH) ,* and tetraethylam-

monium N(CH)" salts which were then dissolved in ethanol.

Spectra were measured at 77°%. At this temperature, a rigid

glass was obtained containing a dilute solution of Fecl,

anions. An excess of chlorine ions is required to suppress

the reaction of the OG with the solvent (solvolysis).

The glass often cracks, which introduces errors into the

spectrum. In addition, the effects of the medium on the
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spectral intensities in this rather complex system remain

anresolved.

The electronic structure of cocl, is similar to the

FeCl, structure, except for the addition of 2 electrons to

d orbitals which are unoccupied in rect, t.* The chlorine

tetrahedron in the coc”? compex is known to be distorted, 2?

The experimental Co-Cl bond distance is 2.28.47 The net

spin in this system is s=*3. Three spectral peaks have been

found at low energy AE=0.4, 0.7, and l.8ev. due to d+d crystal

field transitions.38"&gt;0 The peak intensities for the last two

are extremely small f=7.2 x 107% and 5.1 x 107° (see Table

16) 48.49 The peak intensity at A4E=0.4ev. has not been

measured, but is thought to be small and dependent on the

amount of tetragonal distortion of the coct complex. &gt;

The spectral measurements discussed above are due to Cotton

and co-workers, Ferguson, and Quinn and Smith. Day and Jorgen-

sen have found a transition of moderate intensity at higher

energy, £=0.065 at AE=5.3 ev.’ Most of these workers

made measurements on tetra-alkylammonium salts either in pure

crystalline form or in ethanol solution. In these cases, the

coc,” environment is similar to the rect, environment in

the experiments of Bird and Day. The experimental errors

encountered in cocl ,”* are therefore similar to those found

in pecl , +

Beach and Gray have measured the spectral intensities of

the octahedral complex Cr (CO) in both vapor form and in
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solution (see Table 18) .°1 The Cr-C and C-0 internuclear

distances are 1.922 and 1.132 respectively.” There are

five major spectral peaks at 3.91, 4.44, 4.83, 5.48, and

6.3lev., with a smaller intensity peak at 3.69ev.&gt;t Transi-

tions at 3.59 and 3.9lev. cause the photo-dissociation of

neutral CO from cr(Co) 2° Where comparisons are available,

solution spectra of Cr (CO) . in EPA (a mixture of ethanol,

isopentane, and ethyl ether) yield intensitios which are

lower than the vapor spectra values by 40-50% (with both

sets of measurements being made at 300°K) . This 1s a clear

case where the molecular environment strongly affects

spectral intensities.
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CHAPTER III

PREVIOUS THEORETICAL WORK ON OPTICAL INTENSITIES

ATOMS

In Table 1, we give the comparative results of Hartree-

Fock theory, Sinanoglu's many electron theory (a type of

CI theory), and experiment for the oscillator strengths of

the ions ct, NT, Fr, and Net. 23-29 While there is good

agreement between many electron theory and experiment,

about a 10% discrepancy, the Hartree-Fock results are too

high by a factor of 2-3. This shows that the Hartree-Fock

theory does not give accurate absolute intensities even in

simple systems.

Ellis and Goscinski have reported oscillator strengths

for Li, Na, and K by the X, method. 30 These have been

compared with a summary of experimental f£ values and with the

Hartree-Fock values. The X, calculated intensities are in

good absolute agreement with experiment, the average error

being 5.12% (with the Latter correction potential), versus

14.7% for the Hartree-Fock method. The transition state

was used to find the Xx orbitals for the calculation, and

the oscillator strength was evaluated using the length form.
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(See Chapters 5 and 6 for a thorough discussion of these

concepts.) The X, oscillator strengths are presented in

Table 2.

The oscillator strengths labeled £(X,) in Table 2 are

calculated using the standard X, orbitals. The orbitals

E(X, Latter), however, were computed using the Latter

correction for the potential, which is defined as follows. 0

At small and intermediate distances the standard X, potential

is used. At large distances F220 v(r)=22ZL) where Z

is the nuclear charge, and N the number of electrons in the

atom. When an electron is far away from the nucleus, its

potential is assumed to be purely electrostatic as given

in the formula above. The distance rs is fixed by requiring

the continuity of V(r). It is known that many important

consequences of the X, theory no longer hold when the Latter

correction potential is used.&gt;&gt; In particular, the virial

theorem which is satisfied both in the X, theory and in an

exact theoretical framework, fails upon application of the

Latter correction potential. For these reasons, we will

use the standard X, theory without the Latter correction in

our own calculations. From Table 2, the accuracy of the

two theoretical approaches is comparable, except that F(X)

seems to display alarger error for very small intensities

f&lt;0.01l. The evaluation of xX oscillator strengths for atoms

is elementary when compared with the general formulation for

determining intensities in polyatomic molecules which is
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developed in Chapter VI.

[t would also be valuable to widen the range of atomic

systems for which X, oscillator strengths are available.

Alkali atoms, having only a single electron outside a

closed shell, are very simple systems from a quantum

theoretical point of view. (This is evident if one com-

pares the accuracy of the Hartree-Fock intensities for the

alkali atoms with the accuracy of the Hartree-Fock values

2 + + + + 2 : .

for the ions ¢C', N', F , and Ne . By this criterion, the

light ions are more complicated in structure than the

alkali atoms.) There are, therefore, far more critical

tests of the xX, intensities for atoms than those which

have been considered so far
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Table 1

Oscillator Strengths in Several Light Ions®

Transitions f (Hartree-Fock) £(MET) f (experiment)

CII 2p 2p&gt;2p2 ’p

NII 2p° 3p+2p3 3p

NIT 202 3p+2p3 3p

FII 20% 3psap? 3p

NeITI 5 255950 24

0 21/3

0.236

0.170

0.322

0.1 76

0.128

0.160

0.137

0.140

0.073

G

0.

Ld

0.101, 0.109

 21

0.035, 0.055

(MET is Sinanoglu's many electron theory.)

3
Reference 25
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a Table 2

Oscillator Strengths in Alkali Atoms?

Transition f (xq) f(xy, Latter) Experimental f£

Li 2s*2p 0.7529 0.7629 0.75 + 0.01

0.00125 0.0055 + 0.0002

0.2612 0.345 + 0.035

1.1019 1.23 + 0.12

0.975 + 0.04

0.0140 + 0.002

0.489 + 0.12

1.35 + 0.34

0.99 + 0.04

0.0089 + 0.0001

5s*&gt;4p

5s*+5p

0.5044

1.4742

0.5492

1.5093

0.55 + 0.14

1.5 + 0.75

(f(x) is the oscillator strength using the standard x,

approximation. f(x, Latter) uses the X, approximation at

small and intermediate distances, and the Latter correction

at large distances. V(r) = —2 LB Hil) rZry, with Z the

nuclear charge, and N the number of electrons.)

q
Reference 30.
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SIMPLE MOLECULES

The simplest molecule is 1", which has only one electron.

Bates and co-workers have calculated the exact electronic

wave functions of the 10, 10, and in, states in this system

as a function of internuclear distance R yas well as the

resultant £ values.&gt;4’35 Lamb, Young, and La Paglia have

compared these f values with approximate linear combination

of atomic orbitals (LCAO) and Gaussian lobe basis calcula-

tions.&gt;° The basis set of six Gaussians at each nucleus and

one at the molecular midpoint allow for an accurate description

of both excitation energies (with an error of less than 0.27ev.)

and oscillator strengths. The simple LCAO results are dis-

tinctly inferior. In Table 6, the f values for the Gaussian

basis are listed for three different forms £(X%), £(V), and

£ (x,V) (the dipole length, momentum, and mixed forms of

the oscillator strength -- the last being the geometrical

mean of the first two forms). The exact f values of Bates

and co-workers are also given in Table 6. Since there are

no electron-electron interactions in H,", this example allows

one to evaluate the accuracy with which a known Schrodinger

equation is solved by a given method. For the Gaussian

basis method, the discrepancies between the different oscil-

lator strength: forms result from the truncation of the basis

set (see Chapter IV). These discrepancies are significant for

R&gt;3.0 bohr radii. Similar truncation problems are encountered
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in the X, scattered wave intensities (see Chapter 7, Section

A). Although the Gaussian basis method yields a generally

good description of intensities in mv, it is still an

LCAO method. Such methods have serious deficiencies in com-

plicated systems. \

The H, molecule is a more complex system than mH,"

since there is a single electron-electron interaction in this

molecule. The appropriate configurations for the x'z_ ground

state, and the Bz and cl, excited states are (10) %,

(loglo,) , and (10110, 33 Kolos and Wolniewicz have done

very accurate CI calculations for these three states as well

as the ’r, (Logtla, t) state, and f£ values for the bands were

obtained.?” Previously, Ehrenson and Phillipson used a

simple CI wave function for the ground state and a self-

consistent wave function for the lo,10, configuration to

calculate the (10)? (lo 10) oscillator strength.33 The

oscillator strength values from these calculations may be

found in Table 7. The Kolos-Wolniewicz approach of calculating

wave functions as explicit functions of the electron-electron

distance has not been applied to systems with more than two

electrons. Nonetheless, their calculations on H, are among

the most accurate to have been done on atomic and molecular

systems. &gt; The total theoretical f value for the two bands

biaty and from is 0.656, in good agreement with the less

accurate experimental value £=0.65
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Popkie and Henneker have made an extensive study of di-

atomic molecules with 13 electrons (c,”, 7, CN, and co”). 22

Optical intensities were obtained from the Hartree-Fock wave

functions of Cade and co-workers. o These wave functions

were obtained by separate determinental calculations for the

ground and excited states with an extensive basis set (rigorous

Hartree-Fock method). The resulting Hartree-Fock oscillator

strengths of Table 3 are about 3-5 times the experimental

values. However, we have found that the formula in Popkie

and Henneker's paper for f (Hartree-Fock) is too large by

a factor of 2 for 25257 type transitions. (We discuss a

general method for calculating the necessary degeneracy factor

in Chapter VI.) Utilizing this correction, the Hartree-Fock

f values are 1.5-5 times the experimental values. The largest

discrepancy is in the 8% Fox’r * transition in wt with

f (Hartree-Fock)=0.193, f(experiment)=0.038. The theoretical

oscillator strengths of Table 3 were evaluated using the

mixed form £(x,V) which yields better results than f(X) or

£(V) for these systems within the Hartree-Fock method;

vet significant discrepancies exist between theory and

experiment. In the current state of the problem, it is not

clear whether the theoretical or the experimental f£f values

have the larger error.

Very recently, Messmer and Salahub have calculated the

intensities of the 1lII+50 (x2zt-a%m) and 50-21 x?z*&gt;2n)

transitions in co’ using the Xx, method with overlapping
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spheres (see especially Chapter V y 2? The dipole length

form of f was used in the calculation. The atomic wave

functions were matched to approximate single center forms

(Hankel functions) in the interatomic region. The integrations

were then done explicitly over all regions of space to obtain

the matrix elements (see Chapter VI C). These oscillator

strengths f (x) are given in Table 8. (We should emphasize

that in all atomic and molecular cases we report absorption

oscillator strengths independent of whether measurements

were made of emission processes .or of absorption.) For the

1II+50 transition, the X, theory £ (x) value of 0.0088 may be

compared with the Hartree-Fock f value of 0.0177 (uncorrected)

and 0.0089 (corrected) as well as with the experimental f£

value 0.0056.22739 The xX scattered wave theory f£ value

is very close to the rigorous Hartree-Fock result (corrected),

the latter being evaluated with the mixed form of f£f. These

theoretical results are in very good agreement with the experi-

mental f value, especially in view of the uncertainty in the

experimental value. For the 50+2Il transition, the respective

intensities are f (Hartree-Fock)=0.105 (uncorrected), 0.053

(corrected), and X, theory f(x)=0.048. Experimental intensities

are not available for this transition. Messmer and Salahub

found that the oscillator strength was very sensitive to the

type of matching functions used, and that Hankel functions

are superior to Bessel functions in. the calculations.” The

£ (x) form in the X, theory has not as yet been applied to
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more complex systems, so its overall value is still to be

determined. These preliminary results are very encouraging.

Later, we will compare these f values with the author's f£ VV)

values on cot (Chapter VII A).

Michels has done a limited CI calculation for the B%rt,

x2rt transition in a10.%9 Using accurate vibrational wave

functions, he has found an foo value of 0.012. Johnson,

Capelle, and Broida obtained an experimental foo value of

0.021, or about 2 times the theoretical value. &gt;? Several

CI calculations of intensities have been made on diatomic

and triatomic molecules. Comparison with experimental

intensities, where these are available, generally yields

values of comparable accuracy to the AlO results.’ 82

We may conclude that for diatomic molecules of moderate

complexity, the accuracies of limited CI theory, the rigorous

Hartree-Fock method, and the X, scattered wave method seem

comparable. For very simple molecules like H,, an extensive

CI calculation is the best method, but this type of

calculation is not easily generalizable to more complex

systems. Further theoretical and experimental work is again

necessary to clarify the situation.



40

Table 3

Hartree-Fock Electronic Oscillator Strengths for
Some 13 Electron Systems.

Theoretical and experimental values given at ground state
cq : . a

equilibrium separation R_.

Transition ~HT f (experiment)

(2° _+x*1g™)
-~

)

Ns

0.0166

0.252 0.0029, 0.0064

(B21 +x%5q™)
~

~

+
AA

0.224

0.193 U )38

(a’n, »x?zt)

a

a

1
RS

Reference 22.

0.0168

0.0177

0.0058

0.0056
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Table 3

(continued)

Configurations for these systems : ©

7 Yo + 2 2 2 2
log lo, 20g 20.

log? 10 2 20G° 20° lag?AT
2

20g 20,

102 202 302 405° 50

i 162 202 302 462 502

30g°

b
Reference 3.
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TRANSITION METAL COMPLEXES

Permanganate has been studied theoretically by many

workers, but the spectrum in this system (apart from the

X, scattered wave results) is still not understood. Different

spectral assignments have been made by Wolfsberg and Helmholz,

Ballhausen and Liehr, Viste and Gray, and Mortola and co-

workers, 93766 All of these calculations were of the semi-

empirical Hartree-Fock LCAO type. Fenske and Sweeney have

computed f values based on the calculations of Ballhausen

and Liehr (1958) and Wolfsberg and Helmholz (1952) 12 The

results are highly unsatisfactory. For example, for the

lt,=&gt;2e (oxygen 2p-manganese 3d) transition, the Ballhausen

and Liehr intensity is 34 times the experimental value. The

Ballhausen and Liehr calculation also indicates that the first

band is more intense than the second and third bands combined,

while the reverse is true. The Wolfsberg and Helmholz spectral

assignment has the 7t, (manganese 3d) level as the lowest

unoccupied state, lying below the 2e. This contradicts both

the prediction of crystal field theory for tetrahedral complexes,

and the results of electron spin resonance. measurements on

no,” 2. 67,68 The latter establish that the extra electron is

in the 2e level.

Recently, Mortolaand co-workers (1973) have completed

a self-consistent approximate Hartree-Fock calculation using

Gaussian basis set for Mno, 2 Ge A comparison of theira
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theoretical intensities with experiment is given in Table 11.

The Gaussian wave functions do not yield correct relative

intensities for the various bands. In particular, the

lt, &gt;7¢t, transition has a smaller intensity than either the

1t,&gt;2e or ‘the 6t,&gt;2e in contradiction to the experimental

band intensities. The commonly used dipole length oscillator

strengths are much larger than the experimental f values,

and the three different oscillator strength forms differ

substantially. The disagreement of the different oscillator

strength forms is a consequence of the non-local nature of

the Hartree-Fock exchange potential (we will discuss this

problem in Chapter VI), as well as of the limited basis set

used in the calculations (this was discussed earlier in

regard to the BH," intensities). The Mortola spectral

assignments were obtained by using the formula

AE; 4 =u | V lu
CHEIE™

to find the excitation energy for the corresponding transition

(excitation energies by virtual orbital theory are in error by

2.0-4.5ev., and are therefore unreliable). Such a procedure

is not justified with a non-local exchange potential (see

Chapter VI C).

In conclusion, the previous intensity calculations for

uno, ~* have not clarified the spectral assignments, and these

intensities bear no relation to the experimental spectral

intensities.
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Ellis and Averill have calculated excitation energies and

intensities for FeCl, using the spin restricted Xx method

and the dipole length form of the oscillator strength. ®? As

shown in Table 14, both the calculated intensities and the

calculated excitation energies are in poor agreement with

experiment. Their methods may be criticized on several

grounds. 1) Their oscillator strength formula is wrong, and

should be multiplied by the orbital degeneracy of the initial

(lower) level dq0° This is why their intensities are too

small as shown by the corrected values. 2) The spin restricted

formalism is unreliable for Fecl, T. The excitation energies

have large errors, and the orbitals are highly spin dependent.

Spin unrestricted calculations are required for high spin

complexes like Fecl, ". 3) An incorrect ground state configura-

tion was used in the calculation. 4) Ground state orbitals and

one electron energies rather than transition state orbitals and

energies were used in the calculation. 5) The muffin tin

approximation for the potential was used rather than the

overlapping sphere approach. These issues will be discussed in

Chapters V and VI. In view of these assumptions, the resulting

inaccurate intensities and excitation energies should be

expected. These errors are not intrinsic to X, scattered

wave calculations on Fec1, t (see Chapter VII).

Jaeger and Englman have calculated d+d intensities in

tetrahedral complexes using a crystal field model and including

the temperature dependence of the intensity 70
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coc1,”? was among the complexes considered. However, these

authors conclude that the crystal field model is unreliable

for determining intensities in these systems.

There have been no previous intensity calculations on

the complex Cr (CO) Beach and Gray have made a semi-empiri-

cal LCAO calculation on Cr (CO) using the assumption that

the lowest energy band is due to the tag Cy (Cr 3d-Cr 3d)

cransicion. 3! We will analyze this assumption, and present

our intensity calculations for this complex in Chapter VII.

Overall, little work has been done in evaluating spectral

intensities in transition metal complexes. With the exception

of the cuc1,~? calculation discussed in Chapter I, no useful

information on electronic structure can be deduced from the

previous oscillator strength values. As can be seen from the

Fecl, © results, a clear understanding of the X, method

concepts is required to properly treat the problem with the

Xs, approach. Because of the approximations required to

implement the Hartree-Fock method on transition metal com-

plexes, future progress on intensities with this method

should be difficult (Chapter IV).
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CHAPTER IV

A CRITICAL DISCUSSION OF CONVENTIONAL THEORETICAL APPROACHES
TO INTENSITIES

SONF LGURATION INTERACTION THEORY

The configuration interaction theory is an approximate

method for finding the many electron wave functions pel

of a system.

The many electron wave function of a molecule is

solution of the Schrodinger equation’’
-&gt; &gt; =&gt; &gt; = &gt; _ -&gt; =

4.1) H(Xq+o Xr Ryee RI V(L,2,... NR. -Ry)=E(R;.. - Ry)
5 &gt;

Hi, NER

a

with (Xp. XgrRyeo Ry) the full many electron Hamiltonian

at fixed nuclear position. (We suppress the superscript

indicating an electronic wave function). As a consequence

of equation 4.1 the total energy {Y|H|W (integration only

over electronic coordinates) is a minimum when the true

many electron wave function is used in the expression. This

is true for both ground and excited states. Givensa complete,

orthonormal set of spin orbitals Wr Woresooe WW, a linear

combination of determinants with coefficients C.,X. c,D. may
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4°

-

. 3
be formed to represent the wave function ¥'. One may vary

the cy to obtain the minimum total energy, and in the limit

of an infinite number of terms, the true wave function

results. In practice, expansions are limited to a few

hundred configurations; each configuration is a linear com-

bination of determinants satisfying the symmetry requirements

of the many electron wave functions. In the most general

form of the CI method, both the orthonormal basis set and the

coefficients of the determinants are varied to obtain an

approximate total energy and wave function. Various tech-

niques, such as Sinanoglu's many electron theory, allow one

to classify which configurations will be most important in the

expansion, and thus to limit the number of configurations

which must be considered.?&gt; CI methods are quite powerful

for obtaining accurate wave functions, but the range of

systems that can be treated is very limited. CI calculations

are computationally prohibitive on molecules much larger than

0, and Al0.3,60
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HARTREE-FOCK LCAO THEORY

The Hartree-Fock theory is based on approximating the N

electron wave function of an atomic or molecular system by a

: ' 71

single determinant

1.2) F(1,2,....0) = (0)77Aw(1)w, (2)... wy (N)

with A the antisymmetrizing operator. The one electron spin

orbitals w, are chosen to be orthonormal, and are factorizable

as a space part times a spin part

4.3) w (1) = 9,(xX, (07)

with X, (oq) = 4 or ¥ spinor function and 0q the two valued

spin variable 6, = +1, -1. By minimizing the expectation

value of the total energy (¥| H| (in Dirac notation) with

respect to a variation of the Ps an optimum set of spin

orbitals is obtained. The resultant spin orbitals Ww, satisfy

the Hartree-Fock equations

4.4) Hogg (1)w; (1) = ew. (1)
coupled (1p

Hogg = -v,* - z TET + fav, ; wy (2) mT w, (2)

in Rydberg units. The integration is over both space and

spin coordinates. (In these units, energies are in Rydbergs,

distances in bohr radii, and 3x = 1). The index g denotes

the various nuclei of the system. The operator P., permutes

the coordinates of electrons 1 and 2.

In the LCAO (linear combination of atomic orbitals)

approach to solving molecular problems, the orbitals bs are
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approximated by a linear combination of orthonormal basis

funciione 2
M

&gt;. &gt;

4.5)  ¢. (x) = i312 (x) i=1,2,...N
j=1,2,...M (M=size of the basis set)

Here the By (X) constitute a fixed atomic orbital basis set.

This leads to a set of self-consistent equations for the Ci

which must be solved iteratively. These are matrix equations

of the general form’!

4.6) x (Fyy =€48p3)Cag = 0 z=1,...
1=1

Non-trivial solutions for the Cys exist when |F-e,S| = 0. The

solutions of this equation are a set of £5 from which the Cai

are then obtained. There are two difficulties: one is that

the matrix elements Fs depend on the charge distribution

and consequently on the Cii- This is what necessitates an

iterative solution. The more serious difficulty is that

the Fors contain three and four center Coulomb and exchange

integrals when a multi-center atomic basis set (with atomic

orbitals centered on each nuclear site) is used. The most

general of these is the four-center integral 73

4.7) (aBlCD) = fay (%,q) a, (kg) 1 a (Xap)ay(kp)dv,dv,
|, -%,]

In this equation X11 is the vector distance of electron 1

from the origin at nucleus A. The orbitals ajs ays agr a,

are atomic orbitals centered at sites A, B, C, and D.

Although various analytic basis sets have been used

for the a. (x) , the most reliable has proved to be the exponential
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Slater basis

1. = n-1,- £xY8) a om N_gmE e ExY gp (040)

with N the normalization constant, Yo (6:9) a real spherical

harmonic, and r the radial distance from a given atomic

center. Calculations of this type are very complex and

require large amounts of computer time. Optimal minimal

Slater basis calculations using a few functions at each

center have been performed on H,0, CH,» PH, and other sys-

tems of similar complexity. &gt; Calculations on larger systems

become feasible only if the multi-center integrals are

approximated semi-empirically as in the extended Huckel

method, or as in the CNDO (complete neglect of differential

overlap) method. !?! Another approach is to abandon the

multicenter basis set, and instead use a single center basis

as in Ellis's calculations on KNiF,. &gt;

The source of much of the difficulty is the non-local

exchange term in the effective Hamiltonian
OCC, 4 _op

4.9) Jdav, x wy (2) 12 wy (2)
k [x],]

As we shall see later, when this term is replaced by a local

exchange term, an approximate numerical solution of Schrodin-

ger's equation becomes feasible. The use of analytic basis

sets in solving the Hartree-Fock equations further compounds

the problem, since such basis sets are characterized by

slow convergence and complicated mathematical properties.

This problem is especially serious in complicated systems



such as transition metal complexes. A further consequence

lies in the treatment of excited states. When unoccupied

(virtual) orbitals are calculated via the Hartree-Fock

aquations, the exchange term displays unphysical features.

Specifically, the excited state electron moves in the field

of all N electrons, and thus behaves as if it were an additional

test charge added to the N electron system. The resulting

virtual orbitals are not good excited state orbitals, and

the excitation energies of the system are far too nigh.t?

Since dipole matrix elements (ox 6 of the orbitals must

be evaluated to obtain absorption intensities, these will not

be reliable either. The alternative of solving a separate

determinantal problem for each excited state configuration --

the rigorous Hartree-Fock method -- is intractable in complex

systems because of the computer time required.

We will also show in Chapter VI C that the different

forms of the oscillator strength are theoretically equivalent

only for the case of local potentials. As previously

jescribed, this condition is not met by the Hartree-Fock

method.

In this section, we have seen that a method using a

local exchange term, if this term is well founded in terms

of basic theory, offers several advantages over Hartree-Fock

theorv
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THE EFFECTS OF MOLECULAR VIBRATIONS ON SPECTRA

We present in this section a discussion of molecular

vibrations based en a paper by Mulliken and Rieke.’ The

derivations in this section are more general than theirs

in that we allow the equilibrium nuclear positions for the

excited states of a system to be different from those of

the ground state. It was well known at the time of the

Mulliken and Rieke paper that the same theorems hold in

this case as hold in the case of no change in the nuclear

configuration. From the standard theory of molecular

vibrations, we derive one new result, that the mean excitation

energy for a vibronic transition lies below the value determined

by the Franck-Condon principle (the vertical excitation

energy).

In the Introduction, we discussed the distinction between

the oscillator strength as a function of internuclear separation

f(R), and the oscillator strength between specific vibrational

sublevels Erm for a diatomic molecule. To find the total

absorption from a specific vibrational sublevel of the

ground state, we must take EE gue Similarly, for a

thermal ensemble of initial vibrational sublevels v', we

find (average v') LE ign This is the guantity which we
x7

are attempting to evaluate and compare with experiment.

In general, the electronic oscillator strength is a function

of the normal mode displacements qs E(qy reed ree) as is
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the electron transition moment we have previously defined

M (Qyree-Gpree-) . The appropriate generalization of the

formula for £ toon 1S then’ "22
v'v

_ 2m =&gt;

1.10) £m = SpEghEageElggtayede)1 (qqee-qy--)
: Hs (gga)?or (greg)

Here Le and Vyns are the total vibrational wave functions

for the initial and final electronic states i and j, with

sublevels v' and v" and AE 1m is the corresponding excitation

energy. The sum over k, 1 is over all degenerate initial and

final state partners, as before.

In the harmonic approximation, the total initial state

vibrational wave function is given by
i i i

Yong = 94 (ny) ¢, (n,) 4 (n;) ..., with the final state given

_ Jz j= j= 7,75
by Vong $4 (ny) ¢, (ny) ¢5 (ns) cee Here nj,Ny, «.-

are the excitation numbers of the normal modes 1,2,... for

the initial state , and Ny Ny,Dg..- have the same meaning

for the final state. The functions 6" (n) are harmonic

oscillator wave functions for the n. excitation of normal

mode r. Because the potential energy curves are different

for the electronic states i and j, the harmonic oscillator

wave functions are also different, as are the normal mode

displacements, dq. for state i, a, for state j. (Since the

normal mode displacements are measured with respect to the

equilibrium nuclear configuration, a, = gq, + g_.. Here

£ is the change in normal mode coordinate gq_ which results
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from the change in the equilibrium nuclear configuration of

states i and j).

From the preceding considerations, the evaluation of

Eryn should prove difficult. However, the approximate

evaluation of (average v') Lo Eryn is quite feasible. We
first expand the transition MOTTE M (aq, cee Q re ) as a

Taylor series in the normal mode displacements about the

equilibrium point q, = 0 (for all m) ’

_ n mn

4.11) M = My + LM, dq, + I M, 9.9, +.
n m,n

The coefficients M7, Mm," may be found by evaluating my" -

Sa ) and we can proceed similarly for the higher order

terms. M, is just the transition moment at equilibrium for

the ground state nuclear configuration, My = M (Rggre-- rR) .

If Mj # 0, as is the case for a dipole allowed transition,

Mg constitutes a first approximation to M. This approximation

is reasonable if M is a slowly varying function near equilibri-

um, and if the initial vibrational states for the transition

are of low order, especially v' = 0 (n_ = 0 for all modes).

In practice, this condition often holds at room temperature

and below as we shall see later.’ An indication of the

reliability of this approximation is given by the temperature

dependence of the measured absorption for an allowed transition

The quantity (average v') LE ign is temperature independent

if M = Mg but is COIGETR LIS dependent when higher order

terms are included.
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We consider the quantity &amp; £m with M = LP We then
vi

obtain

4.12) L Egret =
x7

2 &gt; 25
RAI LY z | borg (q,- a (4 .. 9)

AE is an average excitation energy, which will be defined more

precisely later. Since Yong (Aq eee dpe) constitute a complete

set of states over the space of the normal mode displacements

qr WE find

4.13) I fo, = ZL AE 3 |My pl”
7 k.9

The sum over v" reduces to Chyrg (Ayes ay.) [Wong (Agee edy--0=1.

As a further consequence, since equation 4.13 holds for any

state v', it is also true for a thermal ensemble of such

states

4.14) (average v')
o _ 2m o&gt; 2 ~~ .

Eyre © R208 2 [Mg x = ERs Rpgre Rye)

The measured absorption f value is, therefore, approximately

the oscillator strength at equilibrium, £E(Ryor Rogre-Rp).

This is the mathematical statement of the Franck-Condon

principle. The physical idea is that the electronic transition

takes place very quickly with respect to the nuclear motions.

The transitions occur primarily from the v' = 0 sublevel

(a symmetric state with maximum amplitude at equilibrium)

to v" sublevels which have a large amplitude near Rear Roar Rpg

Classically, the nuclear positions do not change during the
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oxcitation, and the important v" sublevels have a turning

point near this nuclear configuration. The excitation

energy AE is given by the total energy difference at equilibrium,

representing a weighted average of vibrational sublevel

excitation energies

4.15) AE = % AE yon [Ugg (Qq eo dpe) [gms (Agee -Gpe | 2
wv"

= AE(Rye Rae) Rye)

(By defining AE as a weighted average of AE ym we may justify

the factorization of AE out of the sum over v" in equation

4.12. To see this, simply substitute the weighted average

over AE vn into equation 4.12, which then becomes an identity).

The statement AE=AE (Ryo Ryree-Ryg) is not precisely true.

However, it is a consequence of the behavior of typical

excited state potential energy curves when v' = 0.20 (See

Figure 4). Transitions of the type just described are called

vertical transitions since AE (Ryo Rygree+Rp) is a vertical

energy difference between the potential energy surfaces in

configuration space. We should note that alternative

definitions of AE are possible; for example, AE could be

defined as the value of AE 1 gm for which fo ign is a maximum.

This definition would still satisfy AE=AE (Ryo Rogre-Rya) ;

and would differ from the previous definition by only about

0.1 ev. We may, therefore, use the alternative definitions

interchangeably.

Now we consider a dipole forbidden transition, Mn = 0
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A concrete example would be a g»g type transition (even

parity-even parity) in a molecule with an inversion center.

The most important example in the present work is the

2t,55° 32 excitation in Cr (CO) 6 The transition will remain

forbidden, M = 0, unless the inversion center of the molecule

is destroyed. This can be done only by an odd normal mode

displacement. The resulting transition is called a vibronic

transition. The Taylor expansion to second order is then

M = 2M, q,. We are interested in
r—ndd

Lf = mE | &lt;¥_ (a q .)|Z My 0 9rI =~ v= ooo .

wn V'v 3had, k,,v" v'iit*l m . reodd

IY. (9.3m. W
2mAE 2p, (2 2

Fd ar Mal 2 [CE (g... gud9 4... Pa)

The last expression in this equation is not obvious, but follows

from using the completeness of the Vn wave functions, and

the fact that borg has definite parity with respect to each

normal mode dp, Now consider a particular odd normal

mode coordinate dy- To find the intensity via qq, we first

evaluate

_ i ve 3m

4.17) Shr ¥gn 39d; - - day, Jo," (ng)aq9"(ny)day
i i i 3 = ve 3(a j (=

[05,7 (ny) 04 (n3)...0, (n,)¢, (ny), (ng) ...0, (np)day...dqp
with a total of p normal modes in the molecule. One then must

take the sum after squaring over final states v", of the

axpression in equation 4.17 and substitute into equation 4.16,
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To simplify, Let Yyey = 03" (ng) #37 (13). .0p7 (ny) and
bons = 6,7 (Ay) 057 (M3)...7(0),resultingin

i j = = =

e189) 2 [rot np ayo (Ry) day SB; Pyuyddy.--da,]
h (2n,+1)
2m; Wy

The derivation of 4.18 is fairly simple. Each v" is a set

of labels {n;,n,,...n.}. From the properties of harmonic

oscillator wave functions’&gt;
; 5 : - :

4.19) ¢;" (n))ay = Ex (1, 6,7 (ng -1)+ Tn +1 0.1 (n +1)

wy is the harmonic oscillator frequency for the normal mode

qq with my the corresponding reduced mass of the nuclei.

We sum first over {n,...n,} and then over ng using the complete-

ness of ap and ¢,7 (n]) to obtain equation 4.18. The matrix

elements for the other odd modes are found in the same manner

yielding 5 2

too) 1 f mE pg (20,41) [My 1 |
: a" v'v" 3hd. k.,%&amp; r=odd mw

The electron mass is denoted by nm, to distinguish it from

the reduced nuclear mass m. This is the total vibronic

intensity from an initial vibrational state v', with normal

mode quantum number n,. It would also be the first order

correction to the Franck-Condon result, equation 4.14.

To obtain the thermal average of this equation, we recall

that the average excitation of a normal mode is given by

— which is the Bose factor 75
- r/kT 1
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Hw
Since 2(n +1 = on +1 = cotn|mx), we find

e r/KT.q

4.21) (average v') (he Yi r x 2

sf _ MAE coth{ zzz) [My 1,
woviv" 3hd. k,% r=odd m_Ww

7 i rr

Qualitatively, the temperature dependence of f goes as

coth (ox) for a typical mode, which is a slowly increasing

function of temperature for hw_&gt;KT.’” The same condition

implies that the system is mostly in the ground vibrational

state v' = 0.

We now show that the average excitation energy for a vi-

bronic’ transition lies below the value determined by

applying the Franck-Condon principle. Although this idea

is a direct consequence of the theory of vibronic excitations

as presented by Mulliken and Rieke, we have not found any

discussion of this issue in the literature.’

In our derivation for vibronic transitions, we have

again replaced the true vibrational excitation energies

AE yn by an average AE. By analogy with our previous

definition, AE has a different structure for vibronic

transitions 2

tm aE a Gu4.22) AE .p io = C ol Egg Mead ) gn! vj f- 2m DM
roA, 7]

with C a normalization constant. Before, AE yn was weighted

simply by the square of the overlap of the initial and final

vibrational wave functions, | bs cdg eeeq .) Rr (qq...qp-- D7
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In the present case, if v' = 0,

yp sq =C'0 L0)e 10) } iy...0%0) with C' a constant
vi Fr 1 2 ctr pro’ :

Therefore, AE. pbronic is determined by v" states having a

large overlap with the first order harmonic oscillator

function 6 "(1 which has odd parity, as well as with the

zeroth order oscillators for the other modes. The primary

overlap will then come from lower v" sublevels than was the

case for an allowed transition. (See Figure 4). The net

result is a shift of the spectrum to lower excitation energies,

" :

AE i bronic AE (Ry rRoygree Rpg) The value of the shift depends

on which mode qd. makes the primary contribution to the vibronic

intensity. These are simply the respective terms for the

various modes in equation 4.21. For such a mode, the energy

shift is approximately equal to the vibrational energy

separation between oscillators ho (typically about 0.1 -

0.3 eV). In addition, we notice that the calculation of

vibronic intensities via equation 4.21 is quite feasible

by our methods, though none have been attemptedinthe

present work.

We should also comment on the validity of the approxi-

mations made in this section. We have used the harmonic

oscillator wave functions for the initial and final vibrational

states. This approximation is physically reasonable for the

initial electronic state i, but is not reasonable for the

~lectronic state j which may undergo molecular dissociation

or have other anharmonic properties. However, the proofs
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in this section rely only on the completeness of the Pons

functions, on a harmonic oscillator type behavior near the

classical excited state turning points, and on an absence

of coupling between normal modes. Any physically reasonable

vibrational wave function should obey the first two conditions.

In particular, anharmonic effects at large distances from

equilibrium should not affect our results. The assumption

of no coupling between the normal modes is, however, un-

satisfactory for many molecules. We should therefore consider

the results of this section as characteristic of a reasonable

physical model for molecular vibrations. The behavior of real

physical systems may be more complex than we have portrayed

here.

Summarizing, for a dipole allowed transition, the

measured absorption intensity is given by (average v')

2 Foren = F(R Rogre+-Ryg) at an average excitation energy

AE = AE (Ry ov Roos -Ry go) . For a dipole forbidden transition,

vibronic coupling causes absorption (at lower intensity)

which is a slowly increasing function of temperature. The

average excitation energy shifts to lower energies,

&lt; - 0. .AE AE (Ry + Rygre Rp) by about 0.1 0.3 ev
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BOUNDARY CONDITIONS AND LOCAL FIELD EFFECTS

We are concerned here with the effects on the absorbing

molecule of the surrounding medium. Much of the original

work in this area was done by Chako, with later contributions

by Onsager, Person, and others.’ ®~ 7? As we indicated earlier,

the issue is not important in the case of vapor spectra

where the diffuseness of the medium (other absorbing molecules)

renders the various molecules independent with respect to

absorption (except for molecular collisions). ’ The issue

arises in the case of absorbing molecules dissolved in a

medium of a different type, or of absorption by a homogeneous

material (for example, in a crystal such as 5i0,) . The

later instance forms an important limiting case and shows

the value of including boundary conditions as well as local

field effects in our considerations.

We begin by considering a dilute solution of absorbing

molecules of type A in a medium B, which is transparent

at the absorption frequencies of A. Each molecule A lies

in an assumed spherical cavity in medium B. Let an applied

electric field E, cause a uniform polarization of B with

polarization vector BP. (Since the molecule A is treated as

an object which responds as a whole to the effective field

E', the field E' may not include a direct contribution

from the polarization of A). The effective field at A is

that of a spherical cavity cut in a uniform polarized
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medium.3" The field in the cavity is the macroscopic field

Ej, minus the field due to the polarization of the dielectric

which we have removed. The electric field inside a uniformly

polarized sphere is constant and is given by F = —2n B.

Then, the field in the cavity is

4.23) E' = By-E_ = Egtal p= (1430 x |B,

with Xa = &gt; the dielectric susceptibility.
0

know that the electric displacement vector D is given by

4.24) B = eB, = E +41P = (1+4my )P

However, we also

with ¢ the dielectric constant. Then we

_e—-1
4.25) Xo T IW

find

E' = (+L(==Y) BE, = (E92,

Since the medium is transparent, e€ = n,° with ng, the index of

refraction in B, and
2

4.26) E' = (20 2s—3 0

The absorption coefficient is given py°0s81

x

1.27) qn = smell): -
ay Re (EgxBy*)

The effective field E' induces a current J = oE'. The rate of

energy flow, however, is determined by the macroscopic field

amplitude E, (since this is the true average field over the

material). From Maxwell's equations, the magnetic field ampli-

. . &gt; &gt; &gt; . _ :

tude is given by Bg = Nye XEq, with Nj = ny+tik, the complex

index of refraction for the entire material, Ki, the extinction
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coefficient, and es the unit vector in the direction of wave

propagation. We then find

cn 3cn
c zx, _ 0 =&gt; 2 _ 0

The absorption coefficient is
2 2 re( 2 5.) |E | 2 2 2 3

 gq (ng ?+2) j=1 33 0x up ng *2 Cpe (5g, )
4.722) n = 3c on. ,TTT S36 Ton. j=1 J3J

0 |E,. | 0

(The electric field amplitude Eq, (4) is a function of pene-

tration £ into the material, but this does not affect n.
. fn Ww wKA 2

B (%,t) Box (Xe , where Egy ) Eye = L=wt eC

and Rox is a constant vector). n and ginilavly f differ from
the previous result by the factor (0"2)" which is greater

than 1 for ng&gt;1.’° Since the value re for a vapor of A

molecules has no local field affects’

4.30)
f (n,?2 2)solution — 1 = Do

Evavor Y 9m

The previous value of f should bemultiplied by z when compared

with the integrated molar extinction coefficient for a

solution. The field E' of equation 4.26 is known as the

: . : (n, 242) 2
cavity field, and the correction factor 0 is

9n
0

called the Lorentz-Lorenz factor. (The Lorentz-Lorenz

equation for the index of refraction of the medium B, in the

absence of A, may be derived with the same assumptions we

have used. 2? P = No E' , with N the molecular density of B,

and &lt; the molecular polarizability of B. E' = BE +2lp. 2 =
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B,+ANP  L+4Ix Op- Srercre,=o Z—Re
3 3

2_
3 el _ 3 Pot =
AT €e+2 4 ny2+2 — "Op

The last equation, when expressed in terms of Ng» is the
n,2-1

Lorentz-Lorenz formula. We may also say rie = A_ =
ng +2 oN m

constant. A is the molar refractivity which should be

constant for a given substance in both the vapor and liquid

states. The relation AL = constant has been confirmed for

several substances, and provides some verification of the

cavity field concept. However, the Lorentz-Lorenz factor

is not a generally valid result for the correction factor

1 7,23 )
iN

In the preceding derivation, we have assumed that the

electromagnetic properties of the absorbing molecule, in

particular its internal index of refraction ny (the index

of refraction in molecule A), does not modify the polarization

of the induced dipoles in medium B. If such an interaction

is allowed, the result is the Onsager equation 77,78

ny #+2
4.31) E' = ———]En 0

A
2 +2

Here E' consists of the cavity field of equation 4.26, plus

a reaction field from the effect of A on the polarization of

B. We then find

f :

solution _ 1 _ 1

fro Y ng

2 2In, +2
n 2

(2a) +2
i na



66

This formula, however, is open to serious objections. na

may be a rapidly varying function near an absorption peak,

and one does not know how ny should then be evaluated.

The derivation of the Lorentz-Lorenz equation we have

presented, and Onsager's derivation of equation 4.31, depend

solely on electrostatic concepts. However, it is well known

that a radiation field differs fundamentally from an electro-

static field. The Onsager and Lorentz-Lorenz results cannot,

therefore, be accepted without proof via radiation theory.

The proof of the Lorentz-Lorenz equation for E' may be

found in Born's Optics, but no such proof has been given of

the Onsager equation. Sl

The theoretical drawbacks of the Lorentz-Lorenz and

Onsager results might be more acceptable if the predicted

fsolution agreed with experiment, but here again the theories

fvapor
encounter difficulties. While Lorentz-Lorenz theory predicts

a z value of 1.30 for cyclopentadiene and cyclohexadiene

in n-hexane, the measured values are 0.83 and 1.04.23 This

disagreement is typical for hydrocarbons. The Onsager theory

also predicts too high a value for : in these systems. In

view of these results, we will let L = 1 in our calculations.

So far we have dealt only with the problem of evaluating

the effective field E' at molecule A (local field effects).

However, we should also consider the possible dependence of

on specific molecular interactions (raising the issue of

boundary conditions). (In this context, 1 may be defined by
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f (in medium) = 3 f (isolated molecule). This definition

is meaningful even when fsolution is not measurable, as is

f sapor
the cage for many molecular anions). The molecular interactions

to be considered are 1) electrostatic stabilization of ions

in solutions or crystals, 2) permanent or fluctuating multiple

fields and London dispersion forces, and 3) covalency between

molecules.’
In the scattered wave method, electrostatic stabilization

of an ion is achieved by surrounding the molecule with a

neutralizing charged sphere of the opposite sign, generally

at the outer sphere radius, simulating the external environ-

ment. ? Neither the energy levels (aside from a constant

shift) nor the wave functions are sensitive to the exact

location of the charged sphere. (See Chapter 7.) Higher

order multiple fields from other ions (in solution, the ions

move and the fields fluctuate) will lower the degeneracies

of the electronic wave functions, and cause additional

splittings of the spectral peaks. ©

In neutral molecules, solvent effects are governed by

the polarity of the solute and solvent molecules.?&gt; An

energy shift to lower wave numbers generally occurs for

absorption bands of non-polar molecules in both polar and

non-polar solvents. For polar molecules, the energy shift

is to lower wave numbers if the dipole moment of the solute

molecule increases on excitation, and generally to higher
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wave numbers if the dipole moment decreases. These results

follow simple energetic considerations of the relative

stabilities of the ground and excited states for the

absorbing molecule.

The preceding effects lead to energy shifts of about

0.0 - 0.2 ev., and would not be expected to cause significant

changes in spectral peak intensities, at least for dipole

allowed transitions. &gt; Some dipole forbidden transitions

may become weakly allowed via the electrostatic perturbations.

However, covalent interactions between molecules can change

intensities quite drastically.

Consider a system with strong covalent interactions

between molecules. The electrons are no longer localized to

individual molecules, but rather move throughout the system.

The appropriate electromagnetic field is, therefore, not the

cavity field E', but instead the average field Ey.o°

The localized wave functions become more diffuse, and with

strong interactions the discrete molecular energy levels

are replaced by bands (if some localization remains, the

bands are narrow). For a homogeneous material (for example,

510,), we have
1 1

4.33) Y = a,

with ng, the index of refraction of the material. The absorption

coefficient is
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Re &amp; os)
4.34) n = an '3=1“7

cn 3

3

re [2 0.)
where j=1 JJ =~ Oy (average)

To put this in a more familiar form, Ew = 2n Kyu = lio,,

with the complex dielectric constant € defined as &amp; =e, +ie.. 83
1 2

Alloy E,W 2K jw
0 0

This is the standard form for n in terms of the extinction

coefficient Ky for a homogeneous material. As covalency

increases, f is initially reduced due to the increasing

diffuseness of the orbital wave functions, and due to the

lower value of 5 (1a) . The limiting case where bands are

formed should probably be solved separately.

We conclude that : may be either greater than or less

than 1 depending on the comparative importance of local field

and covalency effects (the results we quoted for hydrocarbons

are probably indicative of the compensating tendencies),

but that a more comprehensive theory for intensity corrections

is seriously needed.
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CHAPTER V

THE X
ol

SCATTERED WAVE METHOD

THE x THEC, &lt;Y

The Xy method arose from the attempt to find a local

form for the exchange term which would be common to all the

orbitals of an atom or molecule. In 1951, Slater suggested

the use for an approximate exchange potential proportional

to 0” with p the local electronic charge density, to replace

the Hartree-Fock exchange potential of equation 4.9.84

Later, this work was put on a more rigorous basis by Hohenberg,

Kohn, Sham, and Slater.&gt;’8°:86 Our discussion of the X

theory will follow fairly closely the treatment of Slater.”

We begin by defining the charge densities of spin-up

and spin-down electrons in a molecule by”

5.1) pot = : nuit = z nul Res p=p++0¥

where the ng are the occupation numbers for the spin-up and

spin—-down orbitals 2 In general, the spin-up orbitals

are different from the spin-down orbitals. A charge density

having the simple form of equation 5.1 correspondstothemore

general diagonal first-order density matrix defined
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5.2) p(x xX") = IZ n aX (x) us (R) +I nLu¥ (Rul (RX)
r x J J J cy JJ JJt JY

Therefore, p(x) = p(x,x). In general, the density matrix would

also include terms of the form Yi4%4 (x) uj (x). 87. As we will

show in Chapter VI, a unitary transformation will reduce this

expression to the form of equation 5.2. The resulting

orbitals of the exact density matrix, when reduced to diagonal

form, are called the natural orbitals, with occupation numbers

n, . The expression for the total energy of the molecule

then&gt;’87
is

5.3) E = Zng Jug (1) £10; (1) dv +506 (1) p (2) 9) ,av Av, +E,
Here, £4 is the one electron operator for electron 1,

= = ~v, 2+, the sum of its kinetic energy and potential

energy in the field of all the nuclei. The second term is

the classical Coulomb interaction of a charge density with

itself, with Jy = 2 the Coulomb operator. The

exchange-correlation term Eo is a consequence of the anti-

symmetry of the many electron wave functions, and of the

more general tendency of the electrons to stay away from one

another (the electron motions are correlated). (Again,

we are working in Rydberg units. Subsequently, all integra-

tions are over space and spin coordinates). Although |

equation 5.3 is exact when the u, are natural orbitals and

the exact Be is used, it may also appear in approximate

theories. For example, the Hartree-Fock total energy

expression results when we subatituce®”
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N.  N,, 5
- = =% remem smmat——5.4) Ec (Hartree-Fock) : L fw; (L)w, (2) — Wy (1)

i=1 j=1 |x, -x,|

Ws (2)dv,dv,

(w are the spin orbitals defined in the last chapter. The

charge density in Hartree-Fock theory has the same form as equa-

tion 5.1.) What we are seeking is a simpler form of

exchange to use in equation 5.3.

Hohenberg and Kohn have shown that for a many electron

system in an external potential, (here the potential of the

nuclei), the ground state total energy is a unique functional

of the electron charge density p neglecting spin. 33 If

we postulate that excited states obey the same condition,

we find Eo = E (pt,p0¥) including the possible spin de-

pendence. In order to understand the functional dependence

of E or we consider the electrostatic interaction energy

of a system of N electrons. If the exact many electron wave

function is y, the electrostatic interaction energy of the

electrons is given by 5

5.5) XN (N-1)fy*(1,2,.. = N)gq,0(L,2,. ...N) dv, - " - Avy

The integral represents the electrostatic interaction of the

pair of electrons 1 and 2, there being %N(N-1) such pairwise

interactions. In many electron language, the charge density

0 (1) and the joint probability density po (1,2) (which represents

the probability for finding an electron at 1, and another simul-

taneously at 2) are



73

5.6) p(l) = NJP*(1,....N)9(1,....N)dv,y,....dvy

5.7) (1,2) = N(N-1) S*(1,2,....0)¢(1,2,.....N)dv,....dvy

Equation 5.5 is the same as the last two terms of equation

5.3. When the definition 5.7 is used, we find the electronic

interaction energy

1 = 15.8) Sp, (1,2)9q, dv, dv, :/p(1)p(2)gy, Av dv,+E_ (pt, pV)

Solving for Eo (pts0¥)
+ = L —5.9) E__(pt,p¥) = %/(0,(1,2) = p(l)p(2)gy, dv dv,

cure | (22pm P13) 9120V,) AY

= %[p(1)W(l)dv,

W(l) (the expression in brackets) is the electrostatic poten-

tial of interaction of the charge density p(l) with the Fermi

hole. The total charge associated with this potential is

(Pare a) dv,. From definitions 5.6 and 5.7
p(1)

Jo, (1,2)dvy = (N-1)p(l). The charge is then (N-1)-N=-1
| , P

electron unit. The charge density Pp (2) = ~2(1,2) -p (2)h p (1)

is that of the Fermi hole density at position 2 acting on

an electron at position 1. We can then evaluate the Fermi

hole density at the electron position 1. (This means that

the Fermi hole and the electron must have the same spin

coordinates Gyr as well as the same position Xq) - pp, (1) =

po (1,1)
= -p(1l). Since p,(1,1) = 0, as a consequence of the

anti-symmetry of the wave function, we find py, (x4) = -p (x1



—

74

for electrons spin-up. (The statement Py (1,1) = 0 means

that there is 0 probability for 2 electrons to be simultaneous-

ly at the same location with the same spin).

Now, let us assume a uniform Fermi hole density of

ppt (x5) = ~p(x) (this is the density at the center of the

hole) throughout a sphere of radius R, and Py (x,) = 0

outside R. Remembering that the total Fermi hole charge is

-1 electron unit, we obtain 1
4__3 _ A5.10) 31R 0+ (x4) = -1, R = —x7)

The electrostatic potential at the center of a uniformly

charged sphere in Rydberg units is z. The potential at Xq

is then L

5.11) =3 [A%) 04]
for spin-up electrons. A slightly more general potential is

_ 3 73

5.12) Vor? (x4) = &lt;=9q [3 4]

Which is just proportional to expression 5.11. The exchange

correlation energy is given by

= 45.13) E, = 4 [et (x) U4 (x) +o¥ (x)U__¥(x)] av,

The X total energy expression E results when E is
o XO, XC

substituted into the total energy expression, with p defined.

by equation 5.1. The parameter o is normally selected so that

the X, total energy for an atom agrees with the corresponding

Hartree-Fock total energy. The exchange-correlation energy

of equation 5.13 is not exact, but it should be closely
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related to the correct form.

To determine the orbitals u,, we again require the total

anergy Bos to be stationary with respect to a variation of

the spin orbitals for the eigenstates of the system.

= * = * =

5.14) SE_ 0,/u; (Lu, (1)dv, 1 or Ju; (Du, (L)dv, 0

where we include the constraint that all the orbitals be

normalized. We fix the occupation numbers n.. and apply the

variational principle resulting in the one electron equations

5.15) [-v, +V_(L)+v_(1)] uM (1) = e tu, t(D)

The first term is the kinetic energy, Vv. (1) is the Coulomb

potential acting on electron 1 as a result of both the

nuclear and the total electronic charge density (including

that of orbital u,) , and Vi, (1) is the one electron exchange

correlation term with Vd (1) = Z Uo (1). Therefore,

5.16) V (1) = Vy (1)+fg),p(2)dv,V,+(1)=:U4(1)
1/3

= -6a | pt (1)

The €, are the Lagrange multipliers introduced into the

constraint equations Ju; (1) 6u,;*(1)dvy = 0. Further details

are provided in Slater's Quantum Theory of Molecules and

Solids, Vol. 0.74 The solutions of equation 5.15 are an

orthonormal set of spin orbitals uty, u,v in a local potential

which 1s common to all electrons of a given spin. The set

of equations must be solved self -consistently since the

Coulomb and exchange-correlation potentials involve the



Lo

716

orbitals uy and the uy in turn are solutions for these po-

tentials. The scattered wave method used to solve these

aquations is described in a later section.

The occupation numbers n. in the x, theory are determined

by requiring that they satisfy Fermi statistics.’ The occu-

pation number of an orbital is

5.17) n; = a——, t
e i F/kgT+1

with Ep the Fermi energy, T the temperature, and kn Boltz-

mann's constant. We are interested in the ground state at

T = 0, where n, = 1 for €;&lt;Epy n, = 0 for €;&gt;€Epy and n, = ny

for e, = 2; =Epv the case of degenerate one electron energies

at the Fermi level. Such degenerate orbitals occur, for

axample, when the nl guantum numbers are the same in an

atom, or when electrons belong to the same irreducible

representation in a molecule. The occupation numbers dq; of

individual shells are integral for the eigenstates of the

system, but in the case of a partially filled shell of de-

generacy dq.gs this leads to fractional orbital occupation

numbers n, = 9; for all orbitals in the shell.

gio
An important advantage of the use of Fermi statistics in

x theory is that the molecular total energy goes to the sum

of the free atom total energies in the limit of infinite

internuclear separation.’ This is in contrast to the Hartree-

Fock determinantal wave function which in this limit goes to

3 linear combination of free atom and ionic wave functions.
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This leads to an incorrect value for the total energy. We

consider the lithium (Li,) molecule as a typical example of

a homonuclear system. The X, theory leads to the proper theoretical

separated atom limit (which is very close to the true separated

atom total energy) because the electron-electron interactions

may be expressed in the form of a density functional. The

choice of a to agree with the Hartree-Fock atomic total energy

then automatically results in the proper separated atom limit.

The Hartree-Fock method leads to an equal probability for

free atom LiLi and ionic Litni” configurations, and a total

energy significantly above the true value. As we might

expect, the Xx, theory vields potential energy curves which

are generally better than the results of Hartree-Fock

theory. In the Li, case, the total energy at equilibrium

separation is -29.81 Rydbergs (exact), -29.79 Rydbergs

(xX, theory), and -29.74 Rydbergs (Hartree-Fock) .o The Hartree-

Fock method in this case predicts a dissociation energy only

15% of the experimental value, as opposed to about 75% for

the xX method.
In addition to giving accurate ground state properties,

we are, of course, interested in the description of excitations.

Ideally, we would want a theory which describes the details

of the multiplet structure found in atomic and molecular

spectra. However, the nature of the multiplets depends on

the explicit coupling of spins and electronic motions in

partially filled shells. This is beyond the range of any one
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electron theory like X_, or Hartree-Fock.&gt; The spin polarized

Xy theory (spin unrestricted) we have described in this

section does give some information about the spin multiplets.

The net spin occupancy qt - q;¥ of a shell is related to M_
(the 7Z component of the total spin 9 by M, = oii ,

since each electron has spin %. The state is then a mixture

of spin multiplets with S values, SZM, - In the high spin

case (all electron spins parallel), the state has a unique

spin S = M_ but in general the spin state is not unique.

We should then expect that excitation energies in the X,

method represent a weighted average of multiplet excitations.
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THE TRANSITION STATE CONCEPT

Our next problem is to understand the relationship between

axcitation energies in the theory and the one electron

energies e; we have defined.” An excitation energy is simply

the total energy difference between a ground and an excited

eigenstate, so we may begin by relating the €4 to the total

energy. The change in the total energy SE, resulting from

a small change in occupation number Sn, of orbital us is

a)acMe,(Oh
i i i / Implicit

The first term is the explicit change in Ey found by taking

2 and holding the orbitals u. fixed. However, the orbitals
on

1

u. implicitly depend on the occupation numbers n. since these

determine the self-consistent field. Straight-forward

differentiation of the first term yields

5.19) xa
on, i

For the second term one obtains

5.20) (45 ) _ 1 &gt; Era dugtc.c. = + SE, = 0
dn; Implicit do, j=1 q0. 1 &gt;

(with c.c. meaning complex conjugate). Here Eo is the same

variation of the total energy which is 0 as a consequence of

the minimum principle. We therefore conclude that
SE

5.2L) sn. gir SB £400,

The lowest total energy is then obtained when levels of
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minimum e, are occupied subject to the exclusion principle

05n,=1. This is consistent with Fermi statistics. Also,

the meaning of the one electron energies £4 in X, theory is

that of a differential ionization potential, or of a differen-

tial electron affinity.&gt; The true ionization potential from

orbitals u, is not given by ~€: since ionization corresponds

to the removal of one electron from orbital. ur not a small

fraction of an electron as described in equation 5.21.

From equation 5.21 it can be shown that the ionization po-

tential from orbital: uy is given by z , where =) is the

eigenvalue of orbital i not for the ground state configuration

but rather for a configuration having % an electron removed

from shell i. Similarly, optical excitation energies are

given to a good approximation by e; ~ Br Here e3 and e;

are one electron eigenvalues for a configuration having

an electron removed from shell i and 3 an electron added

to shell j. (These states are called the transition states

of the system.)

To prove this, we compute the excitation energy by making

a Taylor series expansion of the total energy as a function of

occupation number. &gt; The total energy is uniquely defined

if for any set of occupation numbers the variational principle

is assumed to hold. The derivatives in the expansion Ero

include the implicit dependence of uy on q,. Let 93

ay = q5=d4y where 991 is the set of shell (level) occupation

numbers taken as a reference point for the total energy.
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5.22) E_ (qy-..q) = Eyroalot :
dE 2

XO 1 id5] Aq.t+mT (oq. er) Edq. 2! . aq. ol 0

AL
3! (20gJ id=95 Ux ol ot

with the subscripts 0 referring to the reference state. Let

the transition be from an initial level i to a final level j.

Let dq; (initial), a, (initial), dq; (final), ay (final) be the
level occupation numbers for the initial and final eigenstates.

Then using the transition state configuration as our reference

state

5.23) dq (final) = q; (initial) -1

a5 (final) = qa (initial) +1
= initi 1dq q, (initial) 5

.. = g.(initial)+%151 dq ( ) +3
Since only two levels are effected all other Ag. = 0. The

resultant excitation energy is

dE_ dE_,
5.24) E a (£inal) “Eu (initial) = aq, | 0" da, | 0 =

£3 £ + 3rd order terms

from the definition of the reference state we gave previously.

The reference state of equation 5.23 is called the transition

state of the system. In the next chapter we will find that

in addition to giving the approximate excitation energies of

the molecule el - 3 the transition state orbitals uj

provide a useful basis set for the calculation of optical

intensities.
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THE SCATTERED WAVE METHOD

In order to solve the self-consistent equations 5.15

for the spin orbitals n. and one electron energies Ev it

is necessary to make further approximations. In the scattered

wave method, developed by Johnson, we partition the molecule

into three adjacent regions I) atomic, II) interatomic, and

ITI) extramolecular. The potential V = Va ss Veo is approxi-

mated by its spherical average in each of the atomic regions

(I), by a volume averaged potential (a constant) in the

interatomic region (II), and by a spherical average about

the center of the molecule in the extramolecular region (III).

The initial potential for the self-consistent field

(SCF) calculation is found from the superposition

5.25) V(X) = zvo(|%-R_|)
e g

of free atom or free ion SCF-X potentials centered at posi-

tions Rye These potentials and the related charge densities

are generated by a program by Herman and Skillman, modified

for the use of selected X, paraneters. &gt;? The o parameter is

determined in the manner discussed in the X theory section.

The appropriate parameters have been calculated by Schwarz

using Mann's Hartree-Fock values.

This form of potential is called the muffin tin approxi-

mation when the atomic regions do not overlap each other or

the extramolecular region. The use of overlapping spheres

has been found to yield a generally superior description of
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molecular properties for a modest degree of overlap, although
 Oo

the mathematical formulation of this theory is less clearcut. ?

The muffin tin approximation appears as well in the augmented-

plane-wave (APW) and Korringa-Kohn-Rostoker (KKR) methods of

crystal band theory, where it has proven quite suovessfal Pt 92

The spherically symmetric potentials in the atomic and

extramolecular regions imply that the spin orbitals may be

written as linear combinations of real spherical harmonics

times radial functions RS (e,xr) with the appropriate coeffi-

cients ctf to be determined by the boundary conditions.® The

index g designates each atomic region of radius Dg The

orbital inside each atomic sphere is then

5.26) uj (Fy) = pd RY (e,r)¥p(Fy) (0srsb)
where L = (&amp;,m) is the partial-wave (angular momentum) index.

The position I, is measured with respect to the origin of

the atomic region 9,7 = 0. Similarly, the extramolecular

region is designated by g = 0 and the corresponding orbital

is :

5.27) wIIT FZ) = vc ORO(e,r)Y. (2) (b_Sr&lt;ew)
3 0 ZC “Ry 0) ¥1, (¥g A

with the origin at the center of the molecule. The functions

RY (e,r) satisfy the radial Schrodinger equation

5.28) (1 &amp; p2d 4 EHD Ir) oe) RY(er) = 0
+2 r dr v2 2.

for the spherically averaged potential va (x). The radial

functions are finite at the origin of each atomic sphere and
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are generated by outward numerical integration for trial

values of ¢ for each given &amp;. The orbital in the extramolecular

region decays exponentially at large distances from the molecule,

and is obtained by numerically integrating the radial equation

inward for given values of € and 2,

In the interatomic region, the potential Vig is constant,

and the wave function satisfies the ordinary wave equation

gi 2 ou IT &gt; _
5.29) ( Vo+e Vig) u. (r) = 0

The solution may be written as a sum of "outgoing" spherical

waves scattered by the spherically averaged potentials in

the atomic regions and an "incoming" wave scattered by the

spherically averaged potential in the extramolecular region.
(1)

5.30) u.tt(x) = 3 za9 Kk, (®r)Y (x.)+2ali, ®r.)Y. (¥,) for
L g "Lg LL 0" L'70

g L L T.

T

where

5.31) i, (r) = i"Vj, (ir)

is a modified spherical Bessel function,
—4L

5.32) %, M(x) = -i hn, (ir)

is a modified spherical Hankel function of the first kind,
~ *

5.33) K = (Vii—€)

. =&gt; &gt; &gt;

is the wave vector, and r, = BR

For e&gt;Vyg , the solution is

IT ,», _ g -&gt; 0. =&gt;
5.34) u. (x) = z ZAR, Kr )Y, (ry) YIALdg (Key) Yo (ry)

where

K (e-V__)
+

1
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and ng, (Kr) and Jog (Rr) are ordinary spherical Neumann and
Bessel functions.

Physically, we see that the wave functions for the

levels lying lower in energy than the constant interatomic

potential should decay exponentially in the interatomic

region. This explains the imaginary argument of the spherical

Bessel and Hankel functions of equations 5.31 and 5.32. The

wave functions for the higher lying levels (e&gt;V 1) should

appear as standing waves in the intersphere region, decaying

only when they reach the extramolecular region.

Because the model potential has only finite jump dis-

continuities at the sphere boundaries and is continuous

elsewhere, both the wave functions and their first derivatives

must be continuous everywhere. In particular, the wave functions

and their first derivatives must be continuous across the

sphere boundaries. This condition is only satisfied for

certainvalues of e, the one electron eigenvalues 5 which

then leads to unique values of the eigenvectors {ci, cy} and

(a7, a3, and of the radial functions {Rr}, R)} for each

orbital u;. Degenerate orbitals have the same radial functions

(RY, R)3, with the eigenvectors, cz, cp} and (a7, Al}
related by symmetry. The calculations are done via the

scattered wave formalism described by Johnson. °

The use of group theory further simplifies the problem,

and allows a solution for the eigenstates and eigenvalues

of the model potential in a moderate amount of computer time.
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The occupied eigenstates are then used to construct a new

potential, and the calculation is carried to self-consistency.

For excitations, a separate self-consistent calculation

is done for each transition state (one calculation per transi-

tion). However, in complex systems the scattered wave procedure

is sufficiently quick so that this does not become a serious

hindrance, unlike a separate determinantal calculation in

Hartree-Fock theory. In addition, a one electron energy

difference e =} will yield a far better excitation energy

than a direct total energy difference in a complex system,

since one is talking about excitation energies of a few

electron volts out of total energies of typically a thousand

Rydbergs.

Although the muffin tin approximation yields a fairly

accurate description of electronic structure in many systems,

a further improvement of the physical realism of the model

may be obtained by using overlapping atomic spheres. In this

way, one obtains a more realistic representation of the po-

tential in the interatomic region.



~~

87

THE USE OF OVERLAPPING ATOMIC SPHERES

In the last section, we showed that the use of non-

overlapping spheres led to a well defined mathematical

formulation of the scattered wave theory. The overlapping

sphere method may be looked at in two ways: 1) as a

truncation at the 2=0 potential term (about each nuclear

center) of a precise cellular multiple scattering theory,

plus some additional approximations, or 2) as an approximate

method for solving Schrodinger's equation in spherical over-

lapping regions with central field potentials in each

region.20s93 Following a recent discussion by Herman and

co-workers, we will adopt the second approach. 2°

There are two separate problems involved in the scattered

wave method. First, we must find the electrostatic and ex-

change-correlation potentials, VotVe Second, we must

solve Schrodinger's equation for this potential. To obtain

the electrostatic potential, we must solve Poisson's equation

5.35) V*v_, = -4llp

which we may convert to integral form

5.36) Vo (xq) = Jo (x,) 2 dv,
|x, -%, |

where we now include the nuclear charge densities in p. We

may expand this result in spherical harmonics about a par-

ticular nuclear center for any charge distribution?

ZY = (r)

5.37) p(x) = = Yam (002) 0g
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Q m rr 1 ) 3 ( )

| 0 mm

The first term is the potential from the charge inside radius

r; the second term arises from the charge outside r. The

charge distribution within an atom, even when it is part of

a molecule, is still basically spherically symmetric. The

surrounding atoms are neutral and also have approximately

spherical charge distributions. One should then expect that

the primary term in V(r) would be the 2=0 potential Vigo (1)

with some correction from the higher order harmonics.

Before proceding to a discussion of Schrodinger's equa-

tion, it is necessary to consider the form of p used in the

actual computational procedure, which differs from the precise

0 we have just defined." The exact electronic charge density

Pg (x) is defined by

5.39) p_(¥) = I lu, (X) 1°

However, before solving Poisson's equation: Pp (x) is approxi-

mated by

3% 5 &gt; Fe = &lt; Fy) = 2 %

5.40) p_(F) = ify (rg) ; 13 Rol = ry&lt;by.e_(®) = (ry) ;r,5b,
This expression is in overlapping spherical form which must

be explained further. Consider an arbitrary function F (x)

which is approximated by another function f(x)
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Mo.
= EY) -&gt; J - =&gt; _

5.41) F(x) = £(x) = Br I Egg) ¥-Ky| = r,&lt;,

S

£5 (rg) To &gt;b

where M is the number of atoms in the system. Ff is a con-

stant, and f(xy), which is spherically symmetric, is assumed

to vanish for rob (the atomic sphere radius b, in general

overlaps other atomic spheres). The spherical average of

the exact function F(X) about center g is given by

S =1( 2 =&gt;
5.42 f r = (41 dr F(x).r &lt;b) £5) = (am farF(R) x db
with dr denoting the element of solid angle. The prescription

. . ~ . ' 4 S -

for finding f£ (rx 1s simply f£ (r = f r - f. We c eeg g g ply g' ” g ( g an s

that in the region of overlap of atoms g and g', £° is counted

twice in the sense that

&gt; Ss —
5.43 f(x) = £ r )+£ r ,)-f In the) EG) = £T(r)HE(rg) -E

of g and g')

This is clearly an undesirable feature. However, let us define

f so that at least the average value of f(X) is the same as

the average value of F(X) inside the outer sphere’

.44 3 "
SA) aTkR(R) = J atxE(%)

wg Wao

where Sw indicates rodr tar saz, integrating over the interior
g —

of the atomic or outer sphere. The resulting value of f is

then

- M .
F-w I 3 x)= 1 ase (3)5.45) EE =W [rs  a’xF(%) Zl
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where
M

_ AT

5.46) WW = 3= (by°- x b,?)
a=1

Now we may simply identify £(%X) with the approximated form of

Pas The quantity conserved by the definition of o is the

total number of electrons N.

-1_ M

5.47) 5 = W [v1 0]

where

5.48) Q = an 09, 2dr _p S(r.)
g 0 "g gg ‘Tg

put ee 2 S
Dg = Jy, To drgeg (rg)
woos 41 fio, *- Tb |3 g=1 g

Qq is the total number of electrons inside atomic sphere g,

and Qq is the total number of electrons in the extramolecular

region. The various p quantities simply correspond to the

definitions we made for f(x). The definitions for p we have

made are equivalent to the way p is used in the computer program

for either overlapping or non-overlapping spheres. In par-

ticular, for zero overlap, these formulae reduce to the

muffin tin approximation.

From the overlapping spherical form of Pe (x) and the dis-

tribution of nuclear charge, we may evaluate the potentials

Vo (Fg) and Vig by a straight-forward procedure. 0 Since

the evaluation of the exchange potential Viro, is no problem,

let Vio (Fy) = Yoo (£,) + Yoo (t,) , the latter being the

spherically averaged exchange potential. The potentials



a|

Yao (ry) are defined out to the respective sphere boundaries

by which exceed the muffin tin radii.

We may solve the Schrodinger equation on atom g in the

potential Vio (£g) as a single center problem out to the radius

B ,- We then match the solutions across the sphere boundaries

to those in the intersphere region. The mathematical formu-

lation is the same as in the muffin tin case, and leads to

a solution which is continuous (with continuous first deriva-

tive) everywhere except in the overlap region of atoms g and

g'. Beyond the muffin tin radius, Voo (Fy ) replaces the

constant potential pa of the non-overlapping sphere case

as the model potential. Since Te samples a much larger

region of space (which is also less characteristic of the

true potential) than Voo (£,) , the use of oo (Fg) results in

a significant increase in the physical realism of the model.

This is particularly apparent in open structures, where the

fraction of intersphere volume is very large for zero overlap.

The remaining difficulty is that the wave function is

not single valued in the overlap region of atoms g and g' $4

We would particularly want to require continuity across a

plane through the intersection of the atomic sphere boundaries.

Johnson has found empirically that the wave function is

approximately continuous and single value for modest overlap

LA = 1.0 - 1.3 x the muffin tin radius) .”? This is under-

standable, since for the wave function to be approximately

single valued, Vio (r.) and Van (r_, ) must be similar in the
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overlap region. For excessive overlap, this condition and

the resultant continuity of the wave function do not hold.

Occasionally, the approximations involved in the over-

lapping sphere method result in a negative intersphere charge

oi. 20 This is not a serious problem if the charge is small,

but it should be set to zero if the amount of charge becomes

significant.

The overlapping sphere method has been applied to several

systems with uniformly good results. Ionization potentials in

good agreement with experiment have been obtained for H,0,

CO, and w,”° as well as in larger systems like Cr (CO) &gt;

and Teng. 2° The method also yields substantial improvement

in molecular total energies and potential curves.’ t

Another indication that the solution is close to the

solution for the true X, potential v(x) + V(X) comes from

the virial theorem. The virial theorem says that the total

potential energy of a molecule Viet (inoiuding nuclear-nuclear

repulsion) is equal to the negative of twice the total kinetic

energy Trt ; Vet = =2 T, . Alternatively, the molecular total

energy Et is given by Ext = "Ip The theorem is satisfied

exactly in atoms, molecules, and solids. Slater has also

proved that the theorem is satisfied in x, theory if all

regions of space are assigned the same o value, which is

. . : 4 : :

approximately true in most celoulations.” The introduction

of the muffin tin approximation causes the virial coefficient

to differ from the exact value of -2. However, with
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overlapping spheres, the theorem may be satisfied exactly

for the proper choice of b+ generally about 1.3 x the

muffin tin radius. 0 This is another sign that a modest

amount of overlap yields an optimal solution to the

Schrodinger equation.

A
on

As we have previously mentioned, a precise solution of

the Xo equations 5.15 is in principle possible. One can

divide the molecular volume into a set of polyhedral cells

(for example, of the Wigner-Seitz type), expand the potential

in each cell in spherical harmonics about the nearest nucleus

as is done in equation 5.38, solve the resulting Schrodinger

equation in the various cells, and then match the solution

across the boundaries.’&gt; In practice, one must truncate the

angular momentum expansions of the potential and of the

radial functions at a certain point, usually at about § =4

for both. (In the 2=0 potential case, the radial functions

are also generally truncated at no more than 2=4 on any

center. The 2=2 term is generally sufficient for atoms with

no d electrons). In the cellular method, one finds that the

radial equations are coupled, in contrast to the separability

found for spherically averaged potentials. The solutions

are then more difficult to obtain, and require significantly

more computer time. Williams and Morgan have completed such

a calculation for the TI point (k=0) of the Brillouin zone

of crystalline silicon.?? Their results indicate that about

two-thirds of the error in the muffin tin method may be
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eliminated by employing overlapping spheres with modifications

to eliminate double counting of charge in the overlap region.

Even in its present form, however, the overlapping sphere

approximation yields a fairly accurate solution of Schrodinger's

equation without unnecessary complications.”?
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CHAPTER VI

THE DEVELOPMENT OF A NEW APPROACH TO CALCULATING

OPTICAL INTENSITIES BASED ON THE X, SCATTERED WAVE METHOD

APPLICATION OF DENSITY MATRICES TO OPTICAL ABSORPTION

We approach the optical absorptionproblem through the

use of density matrices, employing the single particle

Louiville equation as the equation of motion for the density

.. 98,99 _ . &gt; &gt;
matrix. Transitions between states arise from the A°p

term of the perturbing electromagnetic field of vector poten-
3

tial A. Density matrix language allows us to discuss optical

absorption within the context of the X, method, without

invoking determinants which have no foundation within the

theory, and without using many particle wave functions which

imply a more comprehensive solution of the problem than is

accessible. Such an approach does require us to make several

plausible, though unproven, assumptions. After obtaining

the theoretical optical coefficient, the real part of the

conductivity tensor RET;4 , we relate this to the more

phenomenological constants. Finally, in the next section

on degeneracy and symmetry, we derive the general optical
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constants for open shell and spin unrestricted systems as well

as the more restricted cases.

Let ¥ = ¥(1,2,...N) be the many particle wave function

for an N electron system. In general, (1) = (X07) the com-

plete coordinate includes the two valued spin coordinate oq»

as well as the space coordinate X, . Then we define the first

order density matrix by

6.1) p(l,1'") = NSyY*(1' r2,..-N)Y(1,2,...N)dv,...dv,

which includes sums over spin coordinates as well as integra-

tions over the space coovdinnten. + 3? As in equations 5.1

and 5.2 the charge density is defined as p(l) = p(1,1) so

when 0, = +1, p(l) = pt (xq) and 0, = -1, p(l) = pt (xq) . If

the set of us is any complete orthonormal set of spin orbitals,

then neglecting spin

6.2) p(x,,%x,') = . LY. au, (x. Ju.*(x,")
: 1/71 i,j ij 171° 73 1

(In the following treatment of optical intensities, spin up

and spin down excitations may be treated separately, each

exactly along the lines we will follow). We can see that

aquation 6.2 differs from the diagonal density matrix of

equation 5.2 by the presence of off-diagonal terms. However,
*

Y:. in equation 6.2 is Hermitean vy,. = y..; this follows from
ij ij ji

the fact that the charge density p(xq,%q) must be real. There-

fore, pxy,xq") may be diagonalized by a unitary transformation,

by standard methods. o’ Let Uy 5 be a unitary matrix, and Vy

ce Vo be a complete orthonormal set of orbitals related to7 5
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the original orbitals uj bY

=x6.3) u. ViVi

Then

6.4) p(xqy,xy") = 2 LY. VLo . (xjk,0 30K 1) Vki Vy" (2) U327

+
L (ZU .v.:.U. )v, (x) Vv *(x,")

K,% 1,3 ki'ij 3 k'717 "e 1

z Y. v(x.) v,* (x. ) where Y
k, 8 kg k717 "2 1 kK%

+
I.2 UriYi3Usg

Ly,

Since ij is Hermitean, U,; may be chosen so that Yi1 is

diagonal
1

6.5) Vie g= ny 8g

with the resulting diagonal density matrix

") = 2% * '6.6) p (x2y,%q ) Tv (x )v, (x; ")

For a given state of the many electron system, the Vv, are

called the natural spin orbitals of the system, and equation

6.6 is called the natural orbital expansion. Unfortunately,

the natural orbital expansion is prohibitively difficult to

find in all but the simplest systems. o&gt;’ r100 In addition,

the sets of natural orbitals for the various states of a

system are in general different, which again complicates the

problem of evaluating properties.

We approach the problem by assuming that the diagonal

Ji density matrix of equation 5.2 representing a self-consistent

set of orbitals, is a good approximate solution to the true
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density matrix of equation 6.2. It is important to remember

that the n, of the natural orbitals are, in general, fractional

even for closed shell systems in contrast to the xX, rules

for shell filling. The reasons for this are discussed in

Dahl's ariicle.? We should expect, therefore, that the

appropriate n; for the self-consistent orbitals at the Fermi

energy or below should be smaller than those dictated by

Fermi statistics at T = 0. In the absence of explicit formu-

lae for the occupation numbers of such a pseudo-natural

orbital expansion, we will employ X, occupation numbers in

our calculations. The X, occupation numbers will later be

seen asresulting from ensemble averaging over states with

integral occupation numbers.

The use of self-consistent field (SCF) orbitals and

occupation numbers from Fermi statistics has been employed

previously by Ehrenreich and Cohen in their paper on the

many electron problem. ”® In this paper, they show that their

approach is equivalent to the random phase approximation

{RPA) of many body theory.

The Ehrenreich and Cohen paper dealt specifically with

the electromagnetic properties of crystals. We are dealing

with molecules which makes the problem quite different. They

considered an extended system with lattice periodicity, in

which the orbitals are Block waves. When electrons make

transitions between Block type states, the orbitals are

sufficiently diffuse not to perturb the self-consistent field.
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In the case of electronic transitions in atoms and molecules,

however, the initial and final state self-consistent fields

are different.

In the case of optical absorption, we may write

single particle Louiville equation®®:??

6.7) ih 20 (x,%'E) = [1,0] = H(x,t)p(x,x,7 t)-p(x,x, t)H(x,' 't)

where

e 3.2 -iwt

A(t) = Bt" is the vector potential of the electromagnetic

field which induces the perturbation. The term in x3 appears

because of the modification of the kinetic energy term in the

Hamiltonian due to the presence of the electromagnetic field
2

oF &gt; ef
o__ - C . Equation 6.7 is the equation of motion for the
2m 2m-

density matrix, with [2,0] being the expression which determines

how p (x,x',t) evolves in time. As we have already pointed out

Hoop is ambiguous, since we do not know at what stage of the

excitation process to evaluate Hoop- Similarly, for a given

transition, it is advantageous to use a single set of ortho-

normal basis orbitals. For Hoops we shall use the transition

state Hamiltonian Hp, for the given transition. This is

aquivalent to putting into the driving term of the Louiville

equation a knowledge of both the initial and final states

for the transition. This is plausible if we remember that

the transition probability for a system depends on both its

initial and final states. We let the system be initially in
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its ground state, so we are describing absorption. We

expand the ground state density operator in transition state

orbitals ut, and make the assumption that the density operator

is still approximately diagonal. Essentially, we have chosen

a basis set which is a compromise between the basis sets of

the ground state and excited state self-consistent fields.

The ground state density operator is then

= IT T5.9) (Pg) o ¥ ui) n, uy|

in Dirac notation. The density operator p of equation 6.7

is given by the ground state operator Po’ plus a first order

correction Pq due to the perturbing electromagnetic field

6.10) 0= PotPy

Letting Ho be the zeroth order Hamiltonian, with Hy

= R, Be tut the first order correction, we find a zero and

a first order equation’?
.. 9Pg

6.11) 1h~r— = Hopo=PoHp
 IP Co

ihgp— = Hypg=ogHy +Hyoy-pHsehep,

The zeroth order equation just says the matrix element (05) x1

is constant as we expect with (po) 1k = n, and (pg) i1 = 0

for k # 1. The equation for Py contains the additional term

-ihBpyg, which was added to take into account the dissipative

forces which cause de-excitation of the excited state. The

lifetime of the excited state is then t=z and the width

of the absorption line is 2hg. The finite lifetime of an

excited state in a molecule is due to the spontaneous emission
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probability, and to molecular collisions and interactions which

cause changes in the vibrational sublevels of the excited

state. Also contributing to the width of spectral lines is

Doppler broadening. 2° While the latter effects are far more

important than the spontaneous emission mechanism in accounting

for the observed width of spectral lines, they are not simply

describable by the additional term -ihgp, - This term is

characteristic of the spontaneous emission mechanism and will

yield a Lorentzian line shape. The other mechanisms will

yield a superposition of such Lorentzians resulting in a

broader band having a Voigt shape. 01 A further discussion

of vibrational effects will be given later.

For simplicity, however, we will retain the form of

equation 6.11, and take matrix elements of the first order

equation

6.12) 13000) kg = (Hy py kg (00H) kot (Bop1) yk q™ (01Hp) kg,

i080)=(ngs we [Bg Fey (1) meg (01) 1g
-ihg (py),

a T 7 -ipt

Since H; = = Ag pe rpg will have the same time dependence

leading to Nn -n

k 72 ( Te x .3 TY_ mmm (U4, |=5 Ay Pu’ /€

6-13) lopdyy = ef-eTomy-ing XTC 0 TT

mE

Since the expectation value of an observable (for a one

particle operator) may be written as”?

— \5.14) KO» = 2 Oy py = Tr(Op}
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and the current density operator is = £30 (to lowest order

in the vector potential), with { the volume containing M

absorbing molecules, we obtain

5.15) (3) = 5 n kt SRCHE te)
—ia2#h?2 n, =n

Zo a Eo -inp Cl?)
(aTFal)ByeHE

where E is the electric field vector E = Be ut and

E = +. so that E, = +lufo We notice that is simply

the molecular density N, and that the entire expression to

the left of Boe tt constitutes the conductivity tensor

as a function of angular frequency uw, 054 (w)- As we shall

show later, the real part of i357 Reo ; 4 leads to absorption.

The conductivity may be converted from the matrix

element ofV form to a matrix element of the dipole moment

operator form by noting the commutator relation
1 35 I. =&gt;

6.16) L[x,u] = =, P = -ifxV, ar I, HJ = v

with Hi, again the one electron Hamiltonian for the states

in question. The local character of the X, potential allows

this identity, which is only approximate with a non-local

Hartree-Fock potential. A detailed discussion of this

issue will be given in Chapter VI Section C. Substituting

into equation 6.15 we derive the formula for the conductivity

. = 2, N _ T T T6.17) Re O33 Ne“ wN x2 (By ny) (uy X.| ur) CREAT
} TT T§(el-eT-tw)
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taking the spectral line width to be small for convenience.

Notice that our assumptions have led to an excitation energy

of AE = hw = ere, in accordance with the results of Chapter

VR

Now, if we consider the light to be unpolarized, only the

diagonal matrix elements of Reo; ; will contribute to the

transition rate for absorption. The true time dependent elec-

tric field in the :X direction is given by BE, (t) = Re Boe Wt

=Ej,Coowt. Similarly, the physically meaningful current is

I(t) = Re Fe tut . Since the fields in the x, y, and z

directions have equal magnitude, [Egy = | Egy!” = Eg, 2-

The time averaged rate of energy absorption per unit volume

is Re (J. Eg*) , and the time averaged energy flux or

Poynting's vector is Re (BE xHy*) = Re (E xB *) for non-magnetic

materials. 2? The ratio of these two quantities is the

absorption coefficient, 23101

ure (3, 4% 4 Re (2 053) [Bgl?
6.18) n= —0o 0° Al _J=lCT

a7 Re (BE xB)*) 3|E,, |?

The numerator %Re (J,.Eg*) must then be integrated over wave

number to eliminate the § function of equation 6.17.

Before going further, we notice that two assumptions

were made in obtaining the last expression of equation 6.18.

The assumptions are: 1) that the effective electric field at

the absorbing molecule which produces the current 3, is the

same as the average macroscopic electric field Eg and 2) that

the Poynting's vector is given in terms of the average
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}

macroscopic electric field E, by the free space expression,

2 Eg, | 2 (where the factor of 3 arises from the random polari-

zation of the Poynting's vector). Neither of these assumptions

is fundamentally correct. These points were previously dis-

cussed in the section on local field corrections (Chapter IV D).

In Appendix C, we will demonstrate that equation 6.18 co-

incides with the phenomenological definition of the absorption

~onstant. 191

6.19) I(v) = I, (v) ~ni

giving the attenuation of the intensity I(v) (v is the ordinary

frequency), with penetration depth % in the material. I, 0)

is the intensity at zero penetration (the reflected intensity

is not counted in Iy(v)). We shall relate pn to the integrated

molar extinction coefficient Sead (3), which (aside from local

field effects) depends only on the intrinsic properties of

the absorbing molecules, and to the oscillator strength f£ of

a transition. The results are?3,101

6.20) fed(3) = 22Me’AB z
10°¢nl0 3h2c? k=degenerate g=degenerate

(n,-n,) | (ug % [uly | 2

6.21) Ff = 2mAR x x (n -n,) [Cog l£lu) &gt; | 2
3h? k=deg. f=deg.

6.22) f= 20°an@0)me® gL) _ 4 319.9079, acd
Alle? "a mo

Here = = wave number, AE = er€y

Avogadro's number = 6.02 x 1023. The label "degenerate" means

that all initial state orbitals u; (with occupation numbers
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ng) summed over have a single one electron transition energy,
T T No . T T

all ey = el and similarly for final states, all Er = €5-

Then AE = eT-€; In practice, measurements are made of o

which is then converted to f, which has the simple theoretical

form of equation 6.21. f is also dimensionless. These

equations are, in fact, correct as they stand if one assigns

the orbital occupation numbers Nor Dy the X values for

the initial state of the molecule. However, this point

could stand further elaboration which is provided in the

next section.
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SYMMETRY AND DEGENERACY

The generally fractional occupation numbers of equation

6.21 are difficult to interpret physically. It is easy to

understand that if orbital uj is occupied, n, = 1, and orbital

as is unoccupied, ny = 0, then a transition may occur with a

probability governed by equation 6.21. We, therefore, take

the Xo occupation numbers to represent an ensemble average of

the initial configurations possible with different sets of

integral occupation numbers ing}, {n, J.

Specifically, let each orbital be labeled by (Ty, Py Sq)

and (Ty, Py S5) for initial and final state orbitals respective-

ly, with (I', p, s) = (irreducible representation, partner,

spin). As vefore, by an initial state orbital we mean any

orbital with a transition energy el final state orbitals

have energy esr and the excitation energy AE = em€] - Then

for a given configuration, n = n (I, p, s) and n = 0 or 1.

We take the ensemble average in the following manner. A

transition from partner py to partner Ps with a specified

spin Ss; = 8, = 1 (for example), will occur if n(ly, Pq 1) =

and n (Ty, Pos 1) = 0. We must count the number of times

T this occurs in K possible initial state configurations

1

and then divide by K. Let qq electrons occupy the d1 0 initial

state orbitals, and let there be d, electrons in the 950

final state orbitals (with spin index s).
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23) K = (420) . [fac o [2 : [220 )
I T2079), a1 A077 »

5

i ay _ a.

with(})= (a=Db) ToT

Tg (3) : (1-22)K 910 q20

d10 and d,p aS defined here are simply the orbital degenracies

of the levels. Since this analysis applies to each set of

partners, Ps Py, and both spin indices s = 1,2, we find

_ 2mAE xz : _

6.24) f= FT 5 = 1,2 n, (s) (I-n,(s))

x T &gt; T

By :Py | &lt;u (T1,PyrS) |x] u (TP, SV | 2

Here n, (s) = 9 (ss), n, (s) = 92 (s), so n, (s) and n, (s) are
910 920

simply the appropriate Xx, occupation numbers for each initial

and final state orbital respectively. For the ground state

of a system, there are two possibilities. Either 1) n, (s) = 0,

or 2) n, (s) # 0 and n, (s) = 1. In either case, n, (s) (1-n,(s) )

n. (s)-n,(s) -. Consequently,

_ 2mAE z _

5.25) f = IHZ s=1,2 (nq (s) n, (s))

T 2
 I ut (T,,p.,8) |X| u (T 1PyrS)) |Pq 0,1 ¢ 1°71 2

which is identical to equation 6.21. Either equation 6.24 or

6.25 may be used subsequently since we will always deal with

the ground state as the initial state of the system. The use
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of the spin index preserves the selection rule that the net

spin remain unchanged during the transition. This is required

~

for an electric dipole transition since the perturbation A-p,

producing the excitation, is spin independent and orbitals

having different spin indices are orthogonal.

It will be useful to consider some particular cases.

For example, consider a system treated within the spin re-

stricted framework. Such a system is assumed to have no

net spin. Then ur is spin independent as are n, and n.,

yielding

6.26) f =

3h 2 PP,

The case of a system with net spin (spin unrestricted)

brings out other features. Here the transition state orbitals

and energies are spin dependent (remember that the one electron

equations for the orbitals and energies are spin dependent --

see equation 5.15, as are the occupation numbers n, (s) and

n,(s), with the lowest energy levels being filled first. In

this case, the f value of equation 6.25 becomes two different

oscillator strengths with some separation between the spectral

peaks. This spin dependence of the line positions and in-

tensities furnishes the rough equivalent of a multiplet

theory in Xe

Going back to equation 6.25, notice that it is necessary

to evaluate 397 4°95 matrix elements to find £. For any

molecular point group, these matrix elements are related by
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symmetry, and the respective ratios of the amplitudes

(ut (Iq Pq) | x |ut (I, , pV (and similarly with y and z) are

called vector coupling coefficients. Tables of vector coupling

coefficients for several point groups, including the tetra-

hedral . group (Ty) are available in Koster's "Properties of the

32 Crystallographic Point Groups. "102 We list the squares

of the vector coupling coefficients for the tetrahedral Ty,

group in Table 1. This table is based on Koster's book and

our own calculations. (Our computer programs are set up so

that the vector coupling coefficients may be easily generated.

The Op, group values may be obtained in this way. See

Appendix A).

Finally, it is important to connect the definition of

an ‘oscillator strength, such as equation 6.25 with definitions

based on the full many electron wave functions for initial

and final states bo and vo (following Herzberg's notation) J1e15

If the full many electron wave function Vi has degeneracy

d, with the individual degenerate wave functions labeled as

Yin,’ and similarly with n, being the partners of Vv , then

2mAE No 2

°-2h £2 3n2q_ x my | joa *3 Yn |
SE

Simply, one averages over initial state many electron wave

functions and sums over final state many electron wave

functions. Such a method represents a generalization of

aquation 6.24. For example, if one takes an ensemble of

determinants for bo and a set of final state determinants for
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by the numerical factors ny (s) and n,(s) appear exactly as

in equation 6.24. If one considers a singlet to singlet

transition (the final state must be a linear combination of

2 determinants to yield total spin S = 0 and M_ = 0), the

numberical factor 2(n;-n,) of equation 6.26 results.
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COMMUTATION RELATIONS, LOCAL FIELDS, AND THE VV FORMALISM

We have previously mentioned the desirability of

converting between the different oscillator strength

forms £ (x), £(V), £(x,V) and £(VV) . The different oscil-

lator strength forms are equivalent in the framework of

an exact theory. 2” We will prove in this section that

the oscillator strength forms are also equivalent in any

theory having a local one electron potential (Vogg) which

is common to the orbitals involved in the transition, a

criterion which is met by the X, theory. Conversely, the

oscillator strength forms are not equivalent in the Har-

tree-Fock theory which has a non-local effective poten-

tial Vers: From these results, we will give the equation

for £ (VV) in the X, scattered wave method, and discuss

the physical implications of this equation.

First we consider the commutator relations’

3  a 2) An pim XrHeeel = 4

1 - =&gt;

HIP H ££] = “VV gs

We now show that these relations are not true for the

Hartree-Fock effective Hamiltonian Hoff defined previously

(equation 4.4). First, the Hartree-Fock exchange term
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defined in equation 4.9 is

occupied —2 wi (2)wy (1)
3 ® * mini ———— r——nsSerie:23) Sav, x w¥ (1) wx (2) — TD wr)

K x=,| i i

This has the form of a non-local potential, -

different for each orbital w, (1), acting on w, (1) . Now
: lL. &gt; _

consider the matrix element &lt;w, | Hx H pg] [w, &gt;=
1 &gt; &gt; : .

&lt;w. TF (xH pp = H_ px) |v &gt; Using the adjoint property

&gt;f the Hermitean operator Ho egr we obtain

a 3 })
4 -&gt;

&lt;w. — IX w—i | ih [x Her Here

“&lt;A. Ie WwW.

&gt; 1

xX) |v 5&gt; = Rie57e;)

£4; 1s the Hartree-Fock energy difference between the

occupied orbital i and the virtual orbital j. But Hoggr

as applied to the left, is different from H eg as applied

to the right since the exchange potentials of equation

6.29 are different for orbitals w. (1) and wy (1). Let
al. = E+ vv, H. = E- + v,. Then we find

6.31)
: 7 2

1 243 _ gt 2-1 3p - (k= %y —
TE (X Hoge = Hope ¥) = gE + Vy) - Gp + Vy)x) =

2 &gt; +2
 lI =&gt; p~ &gt; _ (—ihp,_ zp” _ 3) =
TH (X oT + x Vy ( — y= x om v, xX) =

+ +&gt; &gt;
1 +ihp |, = _ =P 4 2X -
mim tx (VV) = = + = (V-V,)
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Here V,-V, is the difference in Hartree-Fock potentials

for the orbitals 3 and i, which is just the difference

in the respective exchange terms of equation 6.29. It

is evident that, if the effective Hamiltonian were the

same for both orbitals, only the first term of equation

6.31 would remain and the first commutator relation in

equation 6.28 would hold. Similar considerations yield

the second commutator relation of equation 6.28 in this

case. The resulting equations would be

3 a 3.7)
1, =&gt; I CT

—&lt;w, |p|w.&gt; = 75 (e ey) wy |x fw,

5 33) &lt;w | — VW_eglw.&gt; =
1 2 7

Lc me;)%&lt; wy [B]w.

a -“

&gt; v) 0 (e.g) Saw, |B22 £47€; &lt;wy [x [we

In the X, theory, we may take Hoes = Hoo the transition

state Hamiltonian for an excitation between orbitals

at and us This Hamiltonian is the same for the two

transition state orbitals ut and u,” involved in the

axcitation so

3 &lt; | Vv)
T=

, P= == € i&lt;u; [-¥vg|u, — (ej
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where Vofe™ Vine the transition state potential for the

excitation. From the oscillator strength formula 6.24,

we

o

find

£ 2mAE  y  h(s) (1-n,(s)) = [@T(T,,p.,s)
2 = 1 2 1 1

he s=1,2 Py /D,

=

X
T

(Tr, Pors)”

3) ff =
2

2F ;

2 z n, (s) (1-n,(s)) x [Gh (r py ss)
3m (AE) s=1,2 PrP,

T W.vv fu (T,/P,r8)&gt;
tom

72
In Rydberg units, 5m = (1 Rydberg) (1 bohr radius) 2 = 1.

We, therefore, obtain

5 37) £=%2 3 ni (s)(l-n,(s) © [Ku (T;,py,s)
3 1 2 1'P1

s=1.,2 PrP,

&gt;ot ul (T 1D i8) &gt;|?

J} 2) f Siz ns) (ens) zo [@T(T ups)
3 (AE) s=1,2 P-/P,

T
-V,., | u (T,rP5r8) &gt;|

2
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The advantage of the second form lies in the particular

character of —Vv in the scattered wave method. V is

radially symmetric in the atomic and outer sphere re-

gions, and constant in the intersphere region. Thus,
&gt;

=VV, = 0 in region II, resulting in a matrix element

which is a simple sum of terms over the atomic and extra-

molecular regions. The gradient takes the simple form

=~
9) .3¢)

&gt;

VV = [i sin 8 cos¢+3 sin © sin ¢ + k cos 81] ov
or

g

in each atomic region g, including the extramolecular

region.

Here i, j, and k are unit vectors in the x, y, and z

directions, with (8,¢) the cone and polar angles respec-

tively referred to the atomic origin g. The VV matrix

clement is (suppressing the superscript py 103

3. i U) &lt;u J -  N= 9s9 [nd -g

aD or PIE [JRy (ge, x IRyZ (erry)

IV 2 g 2 i . »

&lt;u; |V _V]u.&gt;= [

 Zz JV Va &gt;=

1-I,_,

] o J

{L..L.°)

oI 7)
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It is necessary to describe this result more completely.

The unprimed quantities refer to orbitals u, the primed

quantities to a. (The forms of the orbitals u. and U

are specified in Chapter V C.) The open brackets | ]

mean that the same expressions precede Ii, (LL! ), I,_q(LLY),

and Iio(@iLt) . The range of integration is r29 for atomic

spheres, and [eo for the extramolecular region. The quantity

AV is Vig - V (inside sphere g on surface) for the atomic

spheres g 7 0, and V (outside on surface) - Vig for the

outer sphere, g = 0. The quantities I(L;L”) are the

Gaunt integrals

-

oy C11) Iq (IL; LL”) = JY, (x) Y. Lx) Yo -(r)dQ

I, (WL?) = Jy, ;(0)¥(r)¥Y.(r)4Q

Lo (LiL7) = JY, 0 (x) Y. (r)¥Y. .(r) an

where df denotes integration over solid angle, Y. r Yo

are the normalized real spherical harmonics, and

Yq (x) ; Yq (x) , and Yi (r) are unnormalized 2 = 1

harmonics defined by

3  ac“) Yq (x) = sin 9 cos ¢

Yq (x) = sin 6 sin ¢

Y10 (r) = cos 8
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(Our Gaunt integrals, therefore, differ in normalization

from those conventionally defined). The I(L;L”) may

be expressed as products of Clebsch-Gordon coefficients,

and this is how they are generated within our computer

program??? . The detailed derivation of the VV matrix

elements, as well as the construction of the I(L;L”) are

described in Appendix B. The computer program for

calculating intensities is listed and described in Ap-

pendix A.

As previously mentioned, the VV matrix elements do

not explicitly dependent on the intersphere wave functions,

a, tt and ust This is in contrast with the matrix

elements of =; which require an explicit integration over

this region. These integrations may either be done by

putting the wave function in numerical form and carrying

out a numerical 3-dimensional integration, or by putting

the wave function in approximate one-~center form in the

 56,69 &gt;
intersphere region. The VV method, on the other hand,

requires only one dimensional, numerical integrations,

the angular integrations being performed combinatorially

via the Clebsch-Gordon coefficients.

The equation 6.40 may be given an interesting

physical interpretation. The total transition amplitude

&lt;u. | | u.&gt; is a sum of transition amplitudes for the
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various atomic regions and for the extramolecular region.

On each center, a non-zero amplitude results only if

I(L;L”) # 0 for the respective partial waves involved in

coupling the initial to the final state. By the pro-

perties of the Gaunt integrals, Ly, (LiL7) # 0 only if

A=]2"= &amp;|= 1%. But this is just the dipole selection

rule for atomic transitions in a central field.’ The

total transition amplitude is, therefore, a sum of

atomlike transitions. The atomic amplitudes may have

either sign, and so they can add either constructively

or destructively. The transformation properties of the

v operator are the same as for X, so the complete cluster

obeys dipole selection rules. One can then tell from the

symmetry of the irreducible representations when a zero

total amplitude will result from the calculation.

Another important issue is the appearance of surface

terms Ry (5b) RI (e, by Ib? Avi, (L,L7) in the amplitude
equation. These arise from the finite jump in potential

at each sphere boundary. Gv becomes a delta function

at each sphere boundary, which then yields a finite sur-

face term on integration. The terms, in effect, compensate

for the absence of an integration over the intersphere

region. The finite jump in potential may be regarded as

an idealization of the more gradual rise in potential
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expected as the electron moves away from the central

field of a particular nucleus.

Finally, we should mention the issue of the intrin-

sic accuracy of the £ (VV) form for the oscillator

strength. £ (VV) contains a factor which becomes

very large for small excitation —— To obtain a

reasonable oscillator strength in this case, the total

transition amplitude &lt;ug [VV]u,&gt; must be small. But

since the transition amplitude is generally a small

difference of atomic amplitudes, errors in these ampli-

tudes can produce a large error in the final result'®.

In practice, one should expect failure of the VV form

of £ for sufficiently small excitation energies, and we

will explore this issue further in Chapter 7B.
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CHAPTER VII

APPLICATIONS OF THE VV FORM OF THE

OSCILLATOR STRENGTH IN THE x, SCATTERED WAVE METHOD

TEST CASES

Hydrogen Molecular Ion

As an initial test of the optical intensities

program, we have calculated intensities for the 19, +10,

and 16&gt; 1m, transitions in mt at interatomic spacings

R from 1.0 to 5.0a, (Bohr radii). The oscillator strengths

and energy eigenvalues are presented in Tables 4, 5, and

6, and compared with the exact results of Bates and co-

workers as well as with the approximate Gaussian basis

set results of Lamb, Young, and LaPaglia®? °°.

At R &lt; 2.0a_, the equilibrium nuclear separation,

the scattered wave intensities are in good agreement with

the exact values. The typical error is about 10% for

the 1616, transition, and 1% to 2% for the 106 ~10,

transition. However, when the outer sphere is allowed

to overlap the atomic spheres, the error in the calculated

intensity increases to 22% for the 14 &gt; 16. transition,

and to 11% for the lo ~&gt;10; (R&lt; 2.0a_, Case 1). This

should not be surprising since the spherical averaging

of the potential in the outer sphere region is probably



12°

not much better than volume averaging in the vicinity

of the atomic spheres. When combined with the approxi-

mations inherent in overlapping regions, a less reliable

model results. At R = 2.0a, we may also compare the

energy eigenvalues for the muffin tin model and the

two overlapping sphere models (overlapping outer sphere

and tangent outer sphere, respectively) in Table 5.

While both overlapping sphere models yield better energy

eigenvalues than the muffin tin models, overlapping the

outer sphere produces only a very small change in energy

compared with the tangent sphere.

For R = 3.0a,, calculations were done with the

atomic sphere radius by = 1.35 and 1.5 x bg (by is the

non-overlapping radius). For the larger overlap, the

16 ~10, intensity is much worse, while the 16 ~1T, in-

tensity improves a little. Our viewpoint is that by =

1.5by constitutes excessive overlap, which 1s supported

by the computed intensities. The scattered wave inten-

sities are too low with either model, the most important

discrepancy being in the cL 16, transition. By R = 5.0a_,

the scattered wave intensity is practically zero for

16 p . J

tered wave intensity for the 16 10, excitation is in
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good agreement with the exact value, scattered wave

f = 0.398 and exact £ = 0.430.

These results are intelligible in terms of the

atomic orbital compositions of the states. The 16g

and lo, states consist mostly of s and Pp, functions

on the atomic sites, while the im, state is primarily

composed of Py atomic functions. In the large separation

limit, 16 4 and 16, become H(ls) + proton, so for Rw,

£f=0 (lo, &gt; 10,), as we have found for R = 5.0a. The

trouble is that at intermediate distances the proton

polarizes the H(ls) state producing H(ls)+H(p,) and our

spherical averaging at the atomic sites eliminates this

polarization. For the 1m, state, the polarization does

not affect the intensity (asymptotically, the transition

is s&gt;p.) and the scattered wave f value remains accurate.

Subsequent to these calculations, the optical in-

tensities program was incorporated into the scattered

wave computer programs. Certain variables, especially

the energy eigenvalues and radial functions, were trans-

ferred more accurately to the optical intensity subroutine.

We then recalculated the two transition intensities for

R = 2.0a, by = 1.35by and a tangent outer sphere,

ini oO = 5 =obtaining £(1o,+1 a) 0.284 and £(16 &gt; 11) 0.438.
These results are about as accurate as before, but the



12&lt;

intensities are smaller by 21% and 5.5%. Our conclusions

on the accuracy of the overlapping sphere f values should

remain valid, though the muffin tin results may be less

satisfactory with the improved computer program. (The

last conclusion is based on the assumption that the

muffin tin f£ values will decrease with the modified com-

puter program, as we found for the overlapping sphere f

values) .

Finally, we should mention the issue of partial wave

convergence, which is important in all the systems we shall

treat. The truncation of the partial wave expansion in the

scattered wave method will induce errors, and cause dis-

crepancies between the different oscillator strength forms.

For this reason, convergence of the f values must be in-

sured by including a sufficient number of partial waves.

For 1," we include through 2 = 2 on the hydrogen atoms,

and 2 = 4 on the outer sphere. Generally, it is necessary

to include d functions on atoms where s and p functions are

chemically important, and f£ functions on transition metal

atoms. Sometimes convergence problems still persist, as

we will describe further in the section on co’
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BD! Table 4

BH," Optical Properties —-—- Oscillator Strengths

op (R = internuclear distance, by = atomic sphere radius, by

non-overlapping atomic sphere radius, b = outer sphere

radius, may be either tangent to or overlapping the atomic

spheres, a_ - Bohr radius).

1
bo ’ Scatteres Wave£ (VV)

Exact garb

lo »&gt;1lo
ag u

1.0 a
 Oo

2.0 a
oO

3.40 a
O

5.0 ag

lo =&gt;110
g u

1.0 a
 Oo

2.0 a
0

3.0 a,

3  JU a
0

1 35

1.35

1.35

L.5

1.35

1.35

1.0

1.35

1.35

1.35

1.5

1.358

overlapping
(by = 2.0 ag)

tangent

tangent

tangent

tangent

tangent

tangent

overlapping
’ —_

bg = 2.0 ag)

tangent

tangent

tangent

tangent

0.247

0.358

0.175

0.108

3.5 x 10-4

0.385

0.452

0.410

0.464

0.412

0.430

0.398

0.319 Case 1

0.319 Case 2

0.289 Case 3

0.289 Case 4

0.175

0.392

0.460

0.460 Case 1

0.460 Case 2

0.479 Case 3

0.479 Case 4

0.430
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Table 4
(continued)

(The various cases designate the different overlapping sphere

models (1), (2), (3), and (4) at R= 2.0 a and R = 3.0 a).

In all the calculations, partial waves through 1 = 2 were

nsed on each atomic center, and through 1 = 4 on the outer

sphere.

2 Reference 54.

b Reference 55.
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Table 5

1, Energy Eigenvalues

(All Energies Measured in Rydbergs)

R =1.0a
0

State

10
g

lo
1

1 IL,

R= 2.0 a
 Oo

State

lo
g

Muffin-Tin

-2.072

Lo, -1.288

LT, -0.889

R= 3.0 a
 oO

State

lo
a

1 a,

1m

R = 5.0a
oO

State

1Og
L 04;

Li

~ Reference 55.

Overlapping Spheres
-2.8366

-1.1043

-0.9668

Overlapping
Spheres (1) &amp; (2)

-2.157 -2.,155

-1.360 -1.366

-0.865 -0.860

Overlapping
Spheres (3) &amp; (4)

-1.7939 -1.8689

~1.4312 -1.4476

-0.7651 -0.7539

Overlapping Spheres
-1 4427

-1.3619

-0.6134

Exact®
-2.9036

-1.1296

-0.9482

Exact

-1.105

-1.335

—-0.858

Exact

-1.8218

-1.4028

-0.7729

Exact

~1.4488

-1.3546

-0.6428
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Table 6

Hy" Optical Properties -- Comparison of Oscillator
Strengths by Scattered Wave Method with Gaussian results

(Overlapping sphere results with b, = 1.35b,,)

R Gaussian® f(x,V) £ (x) £(V) Scattered Wave Exact gPrC
ff (VV)

lo »10
g u

1.0 a
 Oo

2.0 a
 Oo

3.0 a
oO

5.0 a
0

lo »&gt;11I
g u

1.0 a
oO

2.0 a
oO

3.0 a
oO

5.0 a
oO

0.283 0.290

0.318 0.328

0.273 0.305

0.116 0.191

0.359

0.433

0.425

0.368

0.426

0.390

0.338 0.270

0.276

0.309

0.245

0.071

0.350

0.440

0.463

0.423

0.251

0.358

0.175

3.5 x 10”%

0.385

0.464

0.412

0.3908

0.269

0.319

0.289

0.175

0.392

0.460

0.479

0.430

B. Reference 56.

b Reference 54.

~~
~~

Reference 55.
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HYDROGEN MOLECULE

The scattered wave results for the’ 12,2 + 8,
and tr +n excitations are given in Table 7. The

results are compared with the experimental excitation

energies and with the CI oscillator strengths of Wolnie-

wicz&gt;’. (The less accurate CI oscillator strength of

Ehrenson and Phillipson is also included) 33. The EEN

excitation is spin forbidden, and, therefore, the oN

energy eigenvalue was originally obtained by measuring

the H, emission spectrum from a higher lying &gt; state.t&gt;

All theoretical f values are given at the equilibrium

nuclear separation R = 1.4 as in accordance with the

Franck-Condon principle.

The experimental singlet-triplet splitting of the
3 1 . . _

2. and Z states is fairly large, AE gm = 1.6 - 1.7 ev.,

so spin effects must be taken into account in the scat-

tered wave calculations.l?® There are two possible ap-

proaches to this. As we have discussed before, in the

spin unrestricted X, method, the M (z component of total

spin) value for a shell is (MJ); = ahha , with total

M = 2M);- Therefore, a state with M, = 0 is a
1

simple mixture of a singlet and a triplet state, and a

state with M_ = 1 is a pure triplet for a two-electron
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system. For excitation from a ground state singlet bg the

excited state may have the same spin M, = 0, or a flipped

spin M, = 1, with corresponding excitation energies AEN

and AE. The singlet excitation energy AE is then de-

AE_+AE, (1)
termined by Eun = ——s which implies AE = 2AE ~ En

Alternatively, the spin restricted excited state may be con-

sidered as a mixture of a singlet with all three possible

triplet states. The spin restricted excitation energy is

AE +3AE,,
AEpmg = —g resulting in a singlet excitation energy

(2) _ _ :

AE = 4 AErEs SAE. Bagus and Bennett have derived

these results by analogy with averages over spin states in

Hartree-Fock theory. 0” They conclude that the singlet-

triplet splitting AE gm = A - AE, by either method is an

upper bound to the true value. Since pe _ # sx?) , one

should use the least upper bound for AE.

1 1 1 3 ¢ od
For the "XI _ + “IZ _ and “X_ + “I _ transitions, both the

g u g u

excitation energies and the oscillator strength are given

quite accurately by the spin unrestricted formalism. This

holds for both overlapping and non-overlapping spheres.

The most accurate results are from the overlapping sphere

calculations, AE_ = 10.88 ev., AE (1) = 13.1 ev., AE (1) =
T S ST

2.33 ev.,,, and f = 0.296 compared with the experimental values

AE = 10.6 - 10.7 ev, AE = 12.27 ev, AEgnm = 1.6 - 1.7
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eV., and £ = 0.300 (the Kolos-Wolniewicz value).

By contrast, the spin restricted formalism (with

overlapping spheres) yields inaccurate values for AEg

and MEg ps but the f value is of reasonable accuracy. The

results are rEg (2) = 19.5 ev, AE 2) = 8.6 eV, and

f = 0.335. The result rEg, 1 &lt;a Eqn 2) was previously

found for X, calculations in large molecules by Bagus

and Sennett. 00 In addition, AEG, 1) does form the

least upper bound to the experimental AE gm

The calculated oscillator strength and excitation

energy for the bro, transition is in much poorer

agreement with the experimental results, as shown in

Table 7. The calculation was done only in the spin re-

stricted form with overlapping spheres (no triplet was

computed). Since agg (2) &gt; AEpgg the excitation energy

error in spin restricted form is larger than 1.3 eV. result

in the table. The state is particularly high lying in

energy and diffuse (98% of the 11, charge is in the extra-

molecular region), and is probably not well represented

by the model. We notice, however, that use of the experi-

mental AE value in the intensity formula yields an

improved value of f = 0.296. The bn wave function may,

therefore, be of fair accuracy. The total spin restricted

intensity for the Lyman and Werner bands of £ = 0.555 is
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A

in reasonable agreement with the experimental value

f = 0.65.

It is clear that the spin unrestricted results in

H, are superior to the spin restricted results for both

intensities and excitation energies. In this regard,

the self-consistent fields for the X, states are multiplet

averaged fields. We may therefore postulate that the

best states are achieved by averaging over the least

number of multiplets, a condition satisfied in this case

by the spin unrestricted formalism. Before accepting

this conclusion, however, further comparisons with ex-

periment in other systems are necessary.
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Table 7

H, Optical Properties

. ‘ : A = i i A =

(Excitation Energles are Eun spin unrestricted, Engg

spin restricted, A En = triplet, A Eg = singlet from the

(L)= (2) _ :
formulae AEG =2AE —AE,, AEg =4AEpng=3AEy,. Overlapping sphere
radius by = 1.35 X the muffin tin radius. The singlet-triplet

splitting is ABom = AEq - AE.) .

ly Lly ana 1x 535
a “Tu g “u

Non-overlapping Spheres, Spin Unrestricted

AE = 11.75 ev.

AE = 10.44 ev.

pe, 1) = 13.07 ev.

(1) _
AE m = 2.63 ev.

Oscillator Strength = 0.290

Overlapping Spheres, Spin Unrestricted

AEuN = 11.99 ev.

AE, = 10.88 ev.

pe, = 13.10 ev.

(1) _
AE." = 2.33 ev.

Oscillator Strength = 0.2956
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Table 7
(continued)

1_ +1 1_ 3
Ly Za and Ly Za

Overlap Spheres, Spin restricted

AEpgpg = 12.98 ev.

AE, = 10.88 ev.

rE. (2) = 19.5 ev.

(2) _
ABom = 8.6 ev.

Oscillator Strength = 0.335

g a

Experimental. Results

AE = 10.6 ev. (based on indirect measurements)

AEq = 12.27 ev.

AEqm = 1.6 - 1.7 ev

dscillator Strength = 0.27 (based on CI calculation of Ehrenson

and Phillipson)’

Nscillator Strength = 0.300 (based on CI calculation of Kolos

and Wolniewicz)®

L
y- dL

1

Overlapping Spheres, Spin Restricted

AE a = 14.18 ev.

Oscillator Strength = 0.222

Experimental Results

AE, = 12.9 ev.
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Table 7
continued)

Oscillator Strength = 0.356

and Wolniewicz) ©

by Ground State Energy

(based on CI calculation of Kolos

Non-Overlapplng Spheres
E = 2.137 Rydbergs

Overlapping Spheres

E = 2.235 Rydbergs

Experimental Results”
FE = 2.349 Rydbergs

a Reference 15.

b Reference 33.

ie
Reference 57.
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 1)

CARBON MONOXIDE POSITIVE ION

=

J The X, theory £ (VW) values for the 17T.»56 and

50+27T]" transitions in cot were computed by the author.

In Table 8, we compare these results with the corres-

ponding Hartree-Fock f values (uncorrected), with the

X, theory f£ (x) values (from the work of Messmer andd

Salahub), and with the experimental f value for the

LTT +50 transition (there are no experimental intensities

for the 50 + 2] transition) 22,39 The important point

here is that the f£(VV) values differ significantly from

the f(¥) values, although both sets of values were

determined using the Xx, theory. Also, in the 17 » 50

case, the £ (Vv) intensity is about 5.4 times the experi-

mental intensity, versus about 1.6 times the experimental

intensity for the f (X) form.

The discrepancy may be understood in terms of basic

theory. In the x scattered wave theory, the f£ (X) and

£ (VV) intensities are identical only if the model one

electron Schrodinger equation is solved precisely. In

practice, however, it is necessary to truncate the partial

wave expansions in the various regions for a given

orbital u; to obtain a tractable secular problem. It is

this basis sét truncation that leads to the discrepancy
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between the £(VV) and f (x) forms. The two oscillator

strength forms become identical only in the limit of

a large number of partial waves on all centers. An

indication of this relationship is given by the 1HI+F50

intensities in Table 8. f£(V¥V) is slowly converging to

a lower value as we increase the number of partial waves

on the different centers. The f(V¥V) value is therefore

=&gt;

approaching both the f(X) value and the experimental
-=

f value. The f(VV) value (at 2 = 4 on all centers) is

not of quantitative accuracy, but this value does

clearly indicate that the 1 +» 50 transition has a low

intensity. In Chapter VI, we proved that the total

transition amplitude for a molecule in the ff (VV) method

is a sum of atomiclike amplitudes. Generally, there is

a great deal of cancellation between these atomic ampli-

tudes, so that the total amplitude is a small difference

of much larger amplitudes. Under these circumstances,

the slow convergence of f VV) particularly in the case

of low intensity transitions is not surprising.

In conclusion, it seems that f (3) has better partial

wave convergence properties than does f@V) in the x,
&gt;

scattered wave theory. The f(x) intensity for the 1II 5 50

transition is very good considering the problems involved
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in evaluating both the theoretical and the experimental

intensities. A general conclusion on whether the £ (%)

form is to be preferred to the £ (VV) form can only be

obtained after more extensive comparisons of the two

methods.
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Table 8

co’ Oscillator Strengths

Transition Hartree-Fock £°

1-50 0.0177

50-&gt;21I 0.105

X Theory
EXP £(Vw)

0.0088 0.030

0.0476 0.081

Experimental f

0.0056

Convergence of £ (VV)

LIT — beTy

 ul with 2=

J.064

2 9, 4 On all centers

0 030

3 Reference 22.

b
Reference 59.
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TRANSITION METAL COMPLEXES

The transition metal complexes treated in this

work were chosen to exemplify the wide variety of pos-

sible excitations in complex molecules. no, has a

closed shell electronic structure; transitions in this

complex are dipole allowed ligand to metal charge

transfer in nature.’ Fecl, was chosen as an example

of an open shell system in which spin effects would be

important (total spin S = 2) A The electronic struc-

ture of this system is sufficiently close to that in

MnO,” so that comparisons of analogous transitions in

the two systems would be meaningful. In both cases, the

molecular structure is tetrahedral. coc1,”?, also with

a tetrahedral structure, has an e &gt;t, (metal 3d-»metal 3d)

crystal field transition in addition to ligand to metal

charge transfer transitions closely analogous to those

in Fec1, T.4r 47 We are interested in the ability of

the X, theory to predict the average over multiplets

of the e = t, crystal field transition energy. We are also

interested in the usefulness of the VV method in

predicting the intensity of the ext, transition which

occurs at low energy, about 0.5 ov. 2850 The VV method
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becomes less reliable for low excitation energies, as

we have discussed previously. Cr (CO) 6 is the largest

cluster we will consider. The primary dipole allowed

transitions in this system have a metal to ligand charge

transfer character in contrast to the previous cases.” t

Cr (CO) ¢ has an octahedral structure. Vibronic transi-

tions can therefore occur in this complex when an odd

normal mode vibration destroys the molecular inversion

center.’ 3 Although we will not predict vibronic in-

tensities, we will compare the corresponding excitation

energies with our theory for vibronic coupling. We

have predicted that vibronic excitation energies lie

pelow the Franck-Condon value. Finally, we will see

to what extent the theoretical line intensities determine

spectral assignments which are ambiguous from energetic

considerations alone. Through the examples above, we

will have considered most types of spin allowed excitations

found in transition metal complexes.
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PERMANGANATE

As previously mentioned MnO, is a tethahedrally

coordinated molecule, which may appear either as

a component of an ionic crystal or as an anion in solu-

tion. The complex has been extensively studied with

previous theoretical methods, but the experimental

data is less adequaue , k2 4143, 63-66

The X, ground state orbital energies from the

work of Johnson and Smith for no, are presented

in Table 9, and a diagram of the levels is given in

Figure 1.7 These calculations were done with non-over-

lapping spheres, as were most of the intensity calcula-

tions we shall present. Calculations on several

systems indicate that the non-overlapping sphere approx-

imation yields accurate results in most metal oxide

systems. 06/107 (Although we have found it necessary

to include partial waves through £ = 2 on O and

through 2 = 4 on Mn and the outer sphere for the intensity

calculations, the energy eigenvalues are basically un-

changed from the earlier results).

Mno, "+ has a closed shell electronic structure.’

As indicated in Table 9, the lowest lying levels are

chemically shifted Mn(ls) 2 (2s) 2 (2p) 6 (3s) 2 (3p) ® ana
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0(1s)? (2s)? free atom levels. The occupied valence

orbitals may be classified as follows. The 5t, and

Ye states are 0 and II bonding combinations of 0 2p

and Mn 3d orbitals. The 6a, and 6t, orbitals are

composed mostly of 0 2p orbitals, with some hybridi-

zation to the Mn 4s and Mn 3d orbitals respectively.

The highest occupied orbital, the 1ty level, is

primarily a non-bonding 0 2p state.

The unoccupied 2e and Tt, levels constitute the

final states for the optical transitions. These are

primarily Mn 3d states in the tetrahedral crystal field

of the surrounding oxygen atoms. The higher lying gt,

{Mn 4p) and 7a, (Mn 4s) states are not involved in

absorption at optical or near ultraviolet (u.v.) fre-

quencies.

The (non-overlapping sphere) X, scattered wave

results for the optical properties of Mno, are

presented in Table 10. Our analysis of the permanganate

spectrum indicates that all transitions are dipole

allowed ligand to metal charge transfer in type. Table

10 shows excellent agreement between the theoretical

and experimental excitation energies in uno, *. The

relative theoretical intensities for the various transi-
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tions are in agreement with the corresponding experimen-

tal values, but the absolute intensities differ between

theory and experiment by about a factor of 17. A similar

scale factor will appear in many of our results, and

reflects a combination of local field and correlation

effects. In particular, correlation causes a decrease

in the occupation numbers of the transition state orbitals

for the initial level. (This is a consequence of the

fact that the natural orbital occupation numbers are

smaller than the Xq theory occupation numbers for those

levels lying at or below the Fermi energy. See Chapter 6A

for a further discussion of this subject.) As a result,

the theoretical intensities are often uniformly too large,

though the scale factor is generally much smaller than

the no, value. The experimental no,” intensities

are also unusually small compared with analogous transi-

tions in similar tetrahedral complexes. In the isoelec-

tronic chromate ion cro,”?, the oscillator strength for

the 1t,= 2e transition is f£ = 0.08 compared with £ = 0.03

for the same transition in uno,” t. The other optical

intensities in cro, ? are similarly larger than the cor-

responding no, intensities. Since cro,” ? has a very

similar electronic structure to Mno,”t, these results
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indicate that the permanganate intensities must be

very sensitive to the form of the wave functions. In

the following section, we will also compare the inten-

sities in Mno, with those in FeCl4 1.

Our spectral assignments are: first band 1t;&gt;2e(2.3 ev.)

second band (weak shoulder) 6t,&gt;2e(3.5 eV.), third band

le, =7t, (4.0 ev.), and fourth band 5t,&gt;2e and 6a,~&gt;7t,

(5.5 eV.). This assignment coincides with that of Johnson

and Smith except for the 6a,&gt;7t, contribution to the

fourth band system which they did not consider.”

In Chapter III C, we discussed in detail the many

spectral assignments and intensity results that have been

Jiven for Mo," t. In Table 11, we compare the best of

these earlier calculations (the results of Mortola and co-

workers) with the X, results for uno, ~". In contrast to

the intensities of Mortola and co-workers, the X, values

are in relative agreement with the corresponding experimen-

tal intensities. Nonetheless, the large scale factor

found between the xX, theory oscillator strengths and the

experimental values is very unsatisfactory. It is therfore

necessary to establish the cause of this problem.

In Table 12, we show the respective atomic amplitude

contributions to the total intensity for the lt,+2e

excitation in Mno,t. The overall intensity is a consequence
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of destructive interference between the various atomic

amplitudes. This is a general characteristic of elec-

tronic transitions in molecules. This feature suggests

that the theoretical intensities could be sensitive to

changes in various computational parameters.

We have examined this in several ways. First,

we varied the manganese-oxygen distance from 1.54 A to

1.63 A. These are the limiting values of the experimental

Mn-0 distance from X-ray diffraction measurements. oc 20

The excitation energy increases with decreasing manganese-

oxygen distance, with the intensity slowly decreasing.

The behavior of the excitation energy is expected. As

the ligands are brought closer to the central manganese,

the anti-bonding 2e state is pushed up by the increased

interaction with the crystal field. The non-bonding lt,

state is relatively stable in energy. The intensity effects

are small and unimportant, except for supporting the vali-

dity of the Franck-Condon principle in this system.

Second, a test was made of the effect of changing

the position of the stabilizing electrostatic sphere

(total charge + le). Changing the sphere radius from

4.3 a_ to 6.5 a_ was found to have a negligible effect

on the intensity and to contribute only a constant shift

to the energy eigenvalues.
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Third, a calculation was done of the lty+2e in-

tensity with a sphere overlap of 30% (og = 1.30 for

all atoms). The oscillator strength donreased to £ =

0.252. However, this decrease is caused almost entirely

by the new excitation energy AE = 3.0 eV, which contains

a large error. We do not, therefore, regard this result

as significant.

Despite the inconclusive results of the preceding test

cases for Mno, there is strong evidence that a change in

the boundary condition on the cluster could yield substan-

tially different intensities. (A new boundary condition on

the cluster must, of course, be justified from phvsical

considerations.) This view is substantiated by Table 12.

In this table,the outer sphere amplitudes, while small

compared with the individual atomic amplitudes, are still

very significant with respect to the total amplitude An

because the various atomic contributions cancel almost

precisely. In fact, if the outer sphere contribution were

ignored, the resulting intensity of the lt,” 2e transition

would be £ = 0.0028, less than the experimental intensity.

There is no justification for this procedure, but an

alternate outer sphere boundary condition could reduce

the outer sphere amplitudes resulting in a much smaller

theoretical intensity. Of all the transition metal

complexes we shall treat, only no,” t displays this extreme
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sensitivity to the outer sphere transition amplitude. This

arises through the larger outer sphere contribution to the

molecular orbitals, about 3-6%. (In FeCl, ", for example,

omitting the outer sphere amplitude for the 2t,3e transition

decreases the intensity by a factor of 1.54, compared with a

reduction factor of 142 for the lt,~&gt;2e transition in Mno, 1.)

It is then no coincidence that Mno, has the largest scale

factor of the transition metal systems we shall study.

We postulate that Mno, interacts covalently via the

oxygen ligands with the surrounding aqueous or crystalline

environment. It is likely that an interaction of this type

would substantially reduce the outer sphere amplitudes, and

would also reduce the atomic amplitudes as well. This hypo-

thesis will have to be tested by further calculations on the

MnO, * cluster.
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Table 9

MnO," Energy Levels by the X, Scattered Wave Method
with Non-Overlapping Spheres

Level

la, (Mnls)

2a, (Mn2s)
lt, (Mn2p)

3a; (01s)
2t, (01s)
da, (Mn3p)

3t, (Mn3s)

5a, (02s)
it (02s)

&gt;t,
Le

6a

bt,

Ltq

2e

t,
8t,
7a,

A
Reference 9.

One Electron Energy (Rydbergs)

-468.584

54.105

46.513

37.738

37.738

6.435

4.259

1.813

1.785

0.915

0.901

0.775

0.761

0.682

0.526

0.350

0.020

0.006
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Table 10

no, Optical Properties

Transition Intensity Excitation Energy
Experiment?’ P Theory Experiment?

2.29 ev. 2.3 ev.

3.25 ev.

4.75 ev.

5.37 ev.

Theory

1t,22e 0.5406 0.032

6t,&gt;2e
lt, »7t,
6a,&gt;7t,
5t,&gt;2e
6t.,~&gt;7t,

5.19 ev.

5.72 ev.

a
Reference 41.

b
Reference 42.
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Table 11
&gt;

Comparison of X, Theory £(VV) Intensities with the f Values
of Mortola and Co-Workers for MnO, 1

Transition

lt, ~2e

ot,&gt;2e
1t,&gt;7t,
ba, &gt;7t,

X Theory
Intensities of Mortola® ® In- Experiment b,c

tensities
£(V) £f(x,V) £ (VV)

0.426

0.199

0.128 0.233

0.097 0.139

0.541 0.032

0.262 0.025

0.101 0.083 0.079 0.600 0.045

0.668 1.213 0.04-0.07

a Reference 66.

b
Reference 41.

D
Reference 42.
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Table 12

Amplitude for lt, *2e (col. lscol. 2) in Mno, ~t (Internuclear

Distance R = 1.59 A, Non-Overlapping Spheres).

Amplitudes for transitions between partial wave components:

Outer Sphere

A(f+d) = 0.011237

A(f-&gt;g) = 0.005200

Manganese

A(f&gt;d) = -0.142030

A(f+g) = 0.002478

oxygen

A(p+d) = 0.131458

A(d-p) = 0.009593

The initial state partial waves are given first).

Total Amplitude

YA; = 0.001499
i=atoms

YA; = 0.016437
i= outer sphere

J

Aq = Total Amplitude = 0.017936

Sag?
(AE)3 | T ' G = degeneracy factor = 6 =

L
3 2

(for spin) x 3 (orbital)

AE = (0.168216), (AE)? = (0.004760), Oscillator Strength

ff = 0.540672
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TRON TETRACHOLORIDE

The tetrahedral complex Fecl, ' has an open shell elec-

tronic structure with high net spin S = =: Fecl, has a

greater ionicity than Mno, due to the greater electronega-

tivity of the chlorine ligands as opposed to the oxygens.

This is borne out by the larger band gap in Fec1,”t, 3.2 ev.

versus 2.3 ev. in Mno, and by a smaller separation between

the bonding (beginning with the 8a, 1 level) and non-bonding

(ending with the 24 level) states in Feci, ". The valence

level ordering in the two complexes is similar, except that

the 8a, state appears at the bottom of the valence band in

Fecl, while the analogous 6a, state in Mno, ~t occurs

near the top of the valence band (only weakly bonding). A

summary of the energy level structure in Fecl, t from our

¥y calculations 1s give in Table 13 and Figure 2. A 20%

overlap factor 5, = 1.20, for all atoms) was used in the

calculation because the atomic radius of chlorine is known

to be large. The high spin S = ha makes it imperative that

the X, calculation on this system be spin unrestricted.

This is the high spin case mentioned earlier in which the

spin unrestricted formalism yields a pure S = 3 multiplet.

The levels through the 2t, state are completely filled, with

the higher Fe 3d crystal field states assuming the configuration

(3e4t)? (10,1) &gt;. All transitions below 4.6ev. are from

bonding or non-bonding states concentrated mostly on the

chlorines to the unoccupied 3e¥ and 10t,¥ levels concentrated
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on the iron atom. At higher energies (above 5.0 ev., experi-

mentally) transitions to the unoccupied 9a state occur as well.

The latter is a diffuse hybrid s state with most of its

charge in the intersphere and extramolecular regions. The

atomic orbital compositions:oftheoccupiedstatesinFeCl,

are indicated in Table 13.

In Table 14, we present a comparison of the theoretical

and experimental optical properties for rec1 “1. Both theo-

retical excitation energies and relative intensities are in

excellent agreement with the experimental values. The scale

factor between the X, intensities and the experimental

intensities is a very reasonable 1.7, which is fairly constant

(x 0.2) throughout the different transitions. The advantages

of carrying out the calculation in spin unrestricted form are

apparent from our spin restricted results in Table 14. While

the intensities are surprisingly stable (especially in view

of the large changes in AE), the excitation energies are

too low by 1.1-1.5 ev. In a system having the complexity

of Fec1, t, spectral assignments then become particularly

treacherous. The use of the spin restricted form of the

X , method was also a major source of error in the work of

Ellis and Averill discussed earlier.%’

Returning to the spin unrestricted results for Fecl, ,

there is a close connection between the calculated spectral

intensities in this system and the calculated no, intensities.

Consider the first three bands for the two systems . In each case,
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the calculated Mno, intensity is just about 2 times the

analogous theoretical intensity in FeCl, This would follow

as a consequence of the Pauli exclusion principle if Mno, "1

and Fecl, have similar wave functions for those states

involved in the transitions. Transitions to the filled 3et

and 10t,t levels are prohibited by the Pauli principle in

FeCl, ™, but the analogous 2e?t and Tt, levels in Mno,

are unoccupied making transitions to the latter states allowed.

The valence states in Mno, and Fecl, are for the most part

guite similar using the present scattered wave cluster model.

This model is based, however, on a purely electrostatic boundary

condition (that is, on a purely ionic interaction between the

molecule and the surrounding medium). The experimental inten-

sities for the two systems suggest that an ionic boundary

condition is fairly accurate for FeCl, , but that a

mixed ionic and covalent boundary condition is required to

represent the bonding of Mno, to the surrounding medium.

The agreement of the Fecl, calculated intensities with

the experimental results must be considered very good,

especially in view of the uncertainties in the experimental

values.
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Table 13

Energy Levels in rec1,”

Valence Levels

5a,
5t,

Ta,
t,

3a,

3t,
Je

ot,
2t4
3e

10t,

Jaq

Fe is

Fels

Fe 2p

Cl 1s

Cl 2s

Cl 2p

One Electron Energy (Rydbergs)
Spin-Up Spin-Down
-6.679 -6.467Fe3s)

(Fe3p) -4.327 ~4.120

(Cl3s)

(Cl3s)

-1.442 -1.423

-1.419 -1.400

(Cl3p + Feiss)

(Cl3p + Fe3d)

(Cl3p + Fe3d)

(Cl3p + F 34)

(C1l3p)

(Fe3d)

-0.682 -0.656

-0.600-0.661

-0.603 -0.540

-0.558 -0.529

-0.483 -0.467

-0.436 unoccupied

(Fe3d) ~-0.386 unoccupied

(diffuse Feds) unoccupied unoccupied

Core Levels (Chemically Shifted)

-509.20

59.10

51.10

-201.11

18.41

14.10
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Table 14

FeCl, Optical Properties -- Spin Unrestricted --

net Spin Up + &gt;

Transition Excitation Energy

Theory Experiment Theory Experiment?

3.2 ev. _1 3.4 ev, _1
25,800 cm 27,480 cm

3.7 ev. _1 3.9 ev. _1
29,800 cm 31,520 cm

Intensity

2t, *&gt;3e 0.194 0.11

2t, +10t,

9t,&gt;3e 0.123 0.07 4.0 ev. -1
32,200 cm

4.6 ev. -1
37,000 cm

It,&gt;10t, 0.009 4.3 ev. 1
34,700 cm

2e &gt;10t, 0.077 4.62 ev.
37,200 cm

8t.&gt;3e 0.009 4.78 ev. -1
38,600 cm

10t.4+9a,4 0.126 4.94 ev. 4
39,800 cm

8t,&gt;10t, 0.201 0.28 5.25 ev. _1
42,250 cm

5.1 ev. _1
44,250 cm

Ot. Vv-&gt;%a._ 0.268 6.1 ev. 4
49,700 cm

6.7 ev. -1
54,000 cm

9+. a *9a, ¥ 0.117
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Table 14
(continued)

Spin Restricted

Transition Intensity Excitation Energy

Theory Experiment? Theory Experiment?

2t,&gt;3e 0.189 0.11 2.3 ev. _1 3.4 ev. ~1
18,550 cm 27,480 cm

3.9 ev. ~1
32,520 cm

4.6 ev. -1
37,000 cm

Aalaa

2t. &gt;10t,

Ot. 3.09 ev. -1
25,000 cm

Ot. *10t, 0.023 3.66 ev. -1
29,500 cm

A peference 4
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Table 15

Optical Properties of FeCl, from the Work
of Averill and Ellis.

The Spin Restricted X, method was used, and the Dipole Length

form for f.

Transition Intensity Excitation Energy
a Corrected b " b

Theory Value Experiment Theory Experiment

17400cm™* 27480cm™+
26800cm + 31520cm™t

28400cm * 37000cm™t

37900cm™+
41100cm™t
33200cm™T

42600cm™1
48900cmYt

2t,73e 0.05 0.15

2t,710t, 0.06

It, 3e 0.05

ot, ~10t,
2e ~10t,

8t,~3e

8t,&gt;10t,
8a, &gt;10t,
10t,&gt;9%a, 0.003 0.009 33200cm~

(The spectral assignments in this Table are our own, not

Averill and Ellis's).

2 Reference 69.

o Reference 4.
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Figure 2. FeCl! energy levels.
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COBALT TETRACHLORIDE

The electronic structure of coc1,”? is quite similar to

the FeCl, structure, except for the additional filling of

the 3e J orbitals producing a net configuration (3e+t) 2 (10t,4) 3

(3e+) 2. 48 The chlorine tetrahedron in the coc,” case is

distorted although we will use a regular tetrahedron for our

calculations. The details of the calculation are as found in

the Fecl, ' work. There are two transitions to be considered,

the crystal field 3et&gt;10t,¢ excitation at low energy AE=0.37-0.74ev.,

and the first charge transfer transition 2t,v&gt;10t,¥ at AE=5.3ev.

In addition, there is another crystal field multiplet transition
48,49

at AE = 1.8 ev. The results are summarized in Table 16.

We will treat the crystal field transition first. As

indicated in the table, the first two multiplet transitions

‘a,x, “a+r (F) correspond to the allowed one electron

transition (3e+)?&gt;(3e+)1(10t,4)T in the strong field limit.2?

However, only the ‘a tr (@) excitation is dipole allowed in

multiplet language. Our calculated excitation energy AE=0.408

ev. should be an average of the two multiplet excitation energies,

and this is roughly the case, although we are closer to the lower

multiplet. The ‘ar (@) transition is multiplet allowed,

but corresponds to the forbidden (3e4) 2» (10t,4) 2 transition

in the strong field Limit. The transition is allowed because

the r.(@) state is really a mixture of two configurations,

approximately 65% (10t,+)% + 35% (3e4)1(10t,4)1. (The lower

lying levels in this discussion are unchanged for all the multiplets
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considered.) Because the primary configuration of *r_(p)

is (10t,4) 2, this state should not be included in our multi-

plet average to obtain AE(X, theory). This idea is in

agreement with the energies we have found.

The theoretical intensity for the 3et&gt;10t," transition

is completely wrong, and provides the first example of the
=&gt;

failure of the VV method. The calculated excitation energy

AE = 0.408 ev. is so small that errors in the transition

amplitude entirely dominate the result. The computer

program was then put into double precision form, but the

intensity did not change significantly. To relate this

error to our previous results, let us consider that in the

present case the total transition amplitude should be 0

to obtain the experimental intensity. This is very nearly

true. Let this amplitude error be AA. We would like to

find the fractional error induced in a similar system by

the amplitude error AA. As an example, we will take the

2t,”3e transition in FeCl,” . Let. the FeCl, amplitude
be A. Then there are two different ways to find the error.

-2 2 2
Random error = 1l- A =) = ia

A3

Systematic error = 1l- Bin, 2
A

The random error formula means that the phase of the amplitude

error AA is arbitrary. This would be the case with computational
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inaccuracies, and probably applies to errors developed by

truncating the partial wave expansions as well. The systematic

error means that one is consistently underestimating or over-

estimating certain atomic amplitudes or the outer sphere ampli-

tude. Consequently, the predicted error can take on different

values depending on our assumptions as to the source of the

problem. The two results in Fecl, for the 2t-+3e transition

are random error = 4.3%, systematic error = 37%. This is a

crude estimate of the error limits in Fecl, t. For higher

energy transitions, both errors decrease roughly as ETT .

For the charge transfer transition in coc1,” 2, the

results are very reasonable, with the scale factor equal to

2.8, somewhat larger than in the Fecl, © case. Both the

theoretical and the experimental results predictasubstantial

decrease in the 2t,¥v&gt;10t,¥ intensity in going from Fecl, to

coc1,”?. The larger scale in coc1, may simply reflect the

larger error in the computed excitation energy in this

case as contrasted with FeCl, |
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Table 16

coc1,™? Optical Properties

Transition Excitation Energy Intensities

Theory Experiment Theory Experiment

3edv&gt;10tAY 0.408ev. 0.370-0.435ev. 5.6
a

4 4
A,~&gt; T,

0.62-0.745ev.

4, 4 B.C
Ay T, (F)

1.75-1.85ev.
b,c

4 4 !

Ay T, (P)
5. 3av.2

b
72x10" 2

b
5 09x103

2, v&gt;10t,¥ 4 .54ev. . 134 0.0652

Observed d-d transitions

ate, forbidden
atr (F) allowed
votre) allowed

Strong Field Limit Configurations

A, (3ev)
4
T, (3et) (10t,¥)

4
T, (F) (3eVt) (10t,¥)

4
T, (P) (10t,*}

In all cases above the levels are filled through (3e4)% (Lot, 4) &gt;

as well.

2 Reference 47.

b Reference 48.

Cc
Reference 49.

Reference 50.
ad
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CHROMIUM HEXACARBONYL

hp

The electronic structure of Cr (CO) 6 is summarized in

Table 17 and Figure 3. These results were obtained from the

unpublished work of Klemperer and co-workers using the over-

lapping sphere Xu model spin restricted including an over-

lapping outer sphere. 22 (Early X, work on Cr (CO) with the

muffin tin potential was carried out by the author and Dr. K. H.

Johnson.) 198 For consistency, we will adopt Klemperer's

model including the overlapping outer sphere, since we have

found fromadditional calculations that the optical properties

of the complex are not substantially different witha tangent

outer sphere. A sphere overlap of 18% was used.

Since Cr (CO) 6 is an octahedral complex, vibronic as well

as dipole allowed transitions may appear. in the spectrum. Table

18 gives a summary of the calculated optical properties in

Cr (CO) The 2t, 79, and 2E557 280, are dipole allowed
metal (3d) to ligand (CO 21 anti-bonding) charge transfer

transitionsof large intensity, both in our model and in the

experimental values. The 2ty 472, is particularly strong,

the final state being a pure CO 2II level. This corresponds

to the view that a pure dipole allowed charge transfer exci-

tation has a very large intensity. The 2t,4710t,, transition

is also dipole allowed, but is less intense due to the diffuse

Cr 4p character of the final state. The transition has an atomic

character, Cr 3d2Cr 4p. Finally, we have assigned the two weak
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transitions at 3.91 ev. and 4.83 ev. to the vibronically allowed

transitions 2tyg7%8 4 (Cr 3d»diffuse Cr 4s), and 2t557"3t0g

‘Cr 3d-Cr 34 + CO 2II, anti-bonding). The transition at 3.91

ev. shows a gradual increase in intensity with higher tempera-

ture, which is characteristic of a vibronic transition. The

very weak spectral peak at 3.59 ev. is probably another vi-

brational component of the 2tyo 98 excitation.

From Table 18, it is clear that the spectral assignments

in this complex cannot be made from the calculated excitation

energies alone, which are generally too low by about 1l.1-1.2 ev.

However, the calculated spectral intensities bear a sufficiently

close correlation to the experimental intensities that an

assignment can be made on this basis. The agreement between

the experimental and theoretical intensities is not quanti-

tative, but both sets of values predict £2, &gt;2t, )-

£(2ty&gt;9t,,) &gt; (28, ~10t, J.
We must understand 1) why the calculated excitation

energies are generally too low by 1.1-1.2 ev., 2) why the

experimental 2ty479214 excitation energy lies below the

287579%14 energy, while the calculated 2E547%28, 4 energy 1s

higher than the 2ty579t, energy, and 3) why the 2553,

calculated energy is too low by 0.7 ev., as compared with

1.1-1.2 ev. for the dipole allowed transitions. We will

consider problem 1 first. It is known that the carbonyl

complexes of Mo and W (both Group 6B elements like Cr),

Mo (CO) and Ww(CO) . have significant singlet-triplet splittings,

about 0.4 py
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Cr (CO) should also have large singlet-triplet splittings,

although the triplet states are difficult to find experimental-

ly. A singlet-triplet splitting of 0.4 ev. in Cr (CO) ¢ would

mean that the singlet-singlet excitation energy would lie

0.3 ev. above our computed spin restricted value. Since the

computed X, singlet-triplet splittings may be much larger

than this (see, for example, our H, singlet—-triplet splittings

in the spin restricted formulation), the X, singlet-singlet

excitation energies may be much closer to the experimental

values. For this purpose, additional spin unrestricted cal-

culations are necessary on Cr (CO) ..

Let us now simply translate up the theoretical spectrum

by 1.1 ev. The dipole allowed transitions are in good

agreement with experiment, but the vibronically allowed

2T,57928y and 285973% 4 are too high by 1.0 ev. and 0.4 ev.,

respectively. In the section on molecular vibrations, we

showed that the excitation energy for a vibronic transition

lies below the Franck-Condon principle value by an average

of one vibrational quantum fis with g the odd normal mode

responsible for the vibronic coupling. Applying this result

to a typical odd vibrational mode in Cr (CO) we would obtain

an energy lowering of 0.1-0.3 ev. for the vibronic levels,

bringing them into better agreement with experiment. Although

quantitative results must await spin unrestricted calculations

on Cr (CO) ., the preceding arguments on spin effects and

vibronic coupling rules produce correct qualitative shifts

in the spectrum.
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Further evidence for the 2C9g*90 assignment at 3.91

ev., comes from the experimentally observed photo-dissociation

of neutral CO from Cr (CO) at this energy. &gt;? This effect

implies that the final state lies mostly on the metal atom.

By contrast, a metal to ligand charge transfer transition

would yield CO on photo-dissociation, ruling out the

2479, transition. Beach and Gray have made the assignment

2t, be, for the 3.91 ev. excitation.&gt;t This also meets the

criteria of being a metal to metal transition. However, since

this assignment was used to parametrize their semi-empirical

calculations on Cr (CO) ¢ it cannot be considered to have

predictive value. At present, it is not possible to

experimentally distinguish between the two assignments

LELW (Cr 3d»Cr 4s) and 22,4760, (Cr 3d+Cr 3d). In the

Xs calculations, however, the be, level lies very high in

enerqy.

The experimental results in Table 18 are the measured

spectral intensities of Beach and Gray on Cr (CO) g vapor at

300%.°1 Solution spectra of Cr (CO) ¢ in EPA (a mixture of

ethanol, isopentane, and ethyl ether) yields intensities

which are lower by 40-50% at the same temperature. This

contrasts with the Lorentz-Lorenz correction factor

Evolution = 1 &gt;1. It is likely that the carbonyl molecules

E vapor Y
interact covalently with the solvent producing a lower inten-

sity. In this case, the experimental boundary condition on

the carbonyl molecule has a large effect on the intensities
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paralleling the sensitivity to boundary conditions we found

theoretically in Mno, 1
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Table 17

Energy Levels in Cr (CO)

Valence Levels

Sty, (CO 30)
One Electron Energy (Rydbergs)

-2.022

ba; 4 (CO 30)

(CO 30)

-2.022

3a, -2.021

18, (Cr-C, 0 bonding)

(CO 40)

(CO 40)

(CO 40)

(Cr-C, o bonding)

(Cr-C, 0 bonding)

-1.141

6t14 -1.060

le
J

-1.054

8819
Se,

-0.962

-0.886

[A= -0.854

1tyg (CO 11)

(Co 11)

(CO 1I)

-0.770

lt, -0.735

8t, -0.729

1ty4
2854
Unoccupied

(CO 1) -0.721

(Cr 4) -0.417

Iti4
9a, 4

254

(co 21, Cr p)

(Cr s diffuse)

{pure CO 2I)

(co 211 + Cr 34,
antibonding)

(CO 21 + Cr p,

-0.199

-0.157

-0.119

3t,, -0.116

10t, , -0.061
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Table 17
(continued)

Valence Levels One Electron Energy (Rydbergs)
be (Cr d_2,d_2 _2) -0.042

g Zz X =Vy

(pure CO 211) -0.034281g

“ore Levels (Chemically Shifted)

Cr 1s

Cr 2s

Cr 2p

-428.744

- 48.624

41.456

O 1s 37.526

C 1s 20.186
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Cr (CO) A

Table 18

Optical Properties

Overlapping Spheres ~-- Including Outer Sphere

Transition Excitation Energy Intensity

Theory Experiment? . Theory . Experiment”

2t, 9a, 4 3.83ev. 3.5%ev.
3.91lev.
4. 44ev.,

vibronically 0.008
allowed 0.037

0.78 0.252t oo” ot,, 3.26ev.

to” 3thg 4,1l4ev. 4.83ev. vibronically
allowed

0.037

2t, 7 2t, 4 3dev. 5.48ev. 1.87 2.20

2t, 710t, 5.18ev. 6.3]lav. - a7 0.035

3  Oo
Beach and Gray, Vapor Spectra at 300 K, see Reference 51.



=
Bad”

Oc

—..

or
x Da

£ 4 &amp; %

i pp gq N 1H
Ww’ © R =r a fn

_~2hg
3t2g— Tio,
2tp5 ————— 90
 TT Tut fu

LI13

a Fo

4s

~~)4

n —0.6
%

2 —0.8
Xr

 o

£ ~i0
LL
 Zz
118

¢

=a 2.0

ry

3d_ NEA FP

tig
By
to —— tog

Tt,
Seg— ——
4e
I~_
a

6%;

8a,

CREAT a——— fay,

6a, , 3e, , Sty,

afo

{7m

40

— DP 0D

Cr s:

Crp:
Cr d:
CO o:

CO 7:

a Ig
Hu
Tog: €q

iylg&gt; lu’ 2g’ "24

Figure 3. Cr(CQO); energy levels.



174

Figure Caption for Figure 4

The transition goes from 1+2' rather than 1+3' as

indicated by the Franck-Condon principle and our calcula-

tions (see Figure 4a). The lowering of the excitation

energy is AE'. The overlap amplitudes for different

vibrational transitions are determined by the overlap of

state 2 with 1',2',3"',...which follows from

%
D (0) gq = (— . oT(1). The overlap of state 2

1 1 2 1
811 cvy

with 4' is small due to destructive interference. The

latter is a consequence of the large kinetic energy of 4'

away from the classical turning point. Schematically, the

resulting spectrum is given by Figure 4b.
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Table 19

Symmetry Information for Tq Group

Irreducible representations:

a, one dimensional

t, (col. 1) x

t, (col. 2) y

t, (col. 3) =z

t; (col. 1) x (z2-y2)

ty (col. 2) ~y (22-x%)

t; (col. 3) 2 (x%-y?)

e (col. 1) - (2x°%-y2-22)

e (col. 2) 72-2

Squares of Vector coupling coefficients for Tq Group

tl
 1 “col. 2 col. 3

3/4 3,4
e

col. 2

col. 1

2 col. 2

col. 3

col. 1
jo 1
=

~ol. pi

1/4 1/4

£2
col. 1 col. 2 col. 3

1/2 1/2

/~

¥ } 2

L.
 fz

q1) )

“2
1 col. 2
1/2

col  col. 3
1/4

.

3.7 1  il ; 1
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Table 19
(continued)

col. 1

Ey col. 2
col. 3

1 col. i

£2
“col. 2 col. 3

2 1/2
col ou

1/2 »
i, 1/2

1/2 1/7 )

t)
_ col. 1 col. 2 col. 3

: 1
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CHAPTER VIII

CONCLUSIONS

We have found that the VV form of the oscillator strength

is a very convenient form for evaluating intensities in the

Xo scattered wave method. The principle disadvantages of the

VV form of f lie in the relatively slow partial wave convergence

of £ (see the f£ (VV) results for co) and in the failure of

the ¥V method at low excitation energies AE&lt;1l ev. (and per-

haps somewhat higher.) The £ (x) form seems to display better

partial wave convergence. This is indicated by the results of

Messmer and Salahub on co’ using the x form.&gt;? However, the

£ (%) method has not as yet been applied to transition metal

complexes, so its full value cannot be assessed. It would

be desirable to have the comparative results of the £(X),

£(V), £(x,V), and £ (VV) forms for transition metal complexes

to see if substantial improvements over the £ (VV) intensities

are possible within the X, scattered wave framework.

Nonetheless, the £ (VV) method adopted in the present

work has proven very valuable in understanding the optical

properties of transition metal complexes. The relative

intensities in FeCl, are in excellent agreement with the
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experimental results. ? The scale factor between the theoretical

and the experimental intensities in this system is 1.7. These

results must be considered very satisfactory in view of the

possible errors in the experimental spectrum, and in view of the

absence of an accurate theoretical treatment of local field

and correlation effects. In addition, the good agreement

between the theoretical and experimental intensities leads us

to believe that an ionic boundary condition on the Fecl,t

cluster is physically accurate.

The calculated intensity of the charge transfer 2t,&gt;10t,

transition in coc1,”? is 2.8 times the experimental value,

which is also quite reasonable.’ While this charge transfer

intensity is fairly well described by the £ (VV) form, the

crystal field 3ev&gt;10t ¢ intensity is completely unreliable.

The source of this error lies inthe extreme sensitivity of

the £0) result at low excitation energies AE&lt;1l ev. Conversely,

we should expect that the f(X) form of the oscillator strength

should be most accurate at low excitation energies following

the line of argument presented in Chapter VI C. The £ (%)

form would consequently be very useful in obtaining accurate

intensities for crystal field transitions which generally occur

at low energies.

In Cr (CO) the calculated intensities provide a reasonable

basis for making spectral assignments. The assignments are

consistent both with our predicted intensities and with the

calculated excitation energies. In addition, the assignments
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are consistent with the photo-dissociation of neutral CO from

Cr (CO) ¢ at ultraviolet frequencies.&gt;&gt; The most unsatisfactory

features of the Cr (CO) ¢ calculations are the inaccuracies
-

in the calculated excitation energies. To obtain better

quantitative results for this complex, spin unrestricted

calculations on the system will be necessary.

In no,” t, the results are not as satisfactory as in the

preceding examples. Although the relative intensities of the

various spectral peaks are properly portrayed, a large-scale

factor of 17 was found between the theoretical and the experi-

mental intensicies, 13 On examination, we found that the

Mno,~t intensities were highly dependent on the outer sphere

amplitudes. This suggests that an alternate outer sphere

boundary condition including covalent bonding between the MnO,

and the surrounding environment could produce more reasonable

intensities. Here two approaches are required. First, the

zx form of the oscillator strength should be calculated to

insure that the results we have found are not a peculiarity

of the Vv method. Second, a proper boundary condition must

be found for the molecule to represent its interaction with

the surrounding aqueous or crystalline environment. An

understanding of the latter problem should have implications

for other metal oxide systems as well (for example, in under-

standing the proper boundary conditions to use in clusters

representing metal-oxide compounds).

The results on H," and H, are also very interesting.
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In m,", we found that non-spherical components of the potential

did alter the spectral intensities. This effect should be

axpected as well in tetrahedral and octahedral complexes,

although the effect should be less pronounced than in the case

of diatomic systems. The H, results suggest that multiplets

are best calculated through the use of the spin unrestricted

method above, rather than the combination of spin restricted

and spin unrestricted methods currently in ase. 19&gt; This

idea requires further study from both empirical (computational)

and theoretical viewpoints.

Although we have not been able to calculate spectral

intensities in transition metal complexes with quantitative

accuracy, the calculated intensities are sufficiently accurate

to obtain valuable information on spectral assignments and

chemical bonding in these systems. In addition, the use of

alternative forms of the oscillator strength (the £ (%) and

£ (V) forms) should further improve the agreement between theory

and experiment. We will then be better able to assess the

importance of correlation, local field effects, and molecule-

anvironment interactions in molecular spectra.
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CHAPTER IX

SUGGESTIONS FOR FURTHER WORK

The methods developed in the present work may be applied

to understanding spectral assignments and to evaluating

spectral intensities in a wide variety of systems. Some

examples are given below. In all cases, the f (VV) form of

the oscillator strength should be checked against the f(x)

form to insure the validity of one's conclusions.

We have already mentioned that further spin unrestricted

X, theory calculations should be done on Cr (CO) ¢ to obtain

improved excitation energies and spectral intensities. A

clear understanding of the character of the lowest excited

state in Cr(CO) ¢ (the 9a, in our assignment versus the be

in Beach and Gray's assignment) is particularly valuable for

understanding various photochemical reactions. 122 For

example, Cr (CO) 6 is known to catalyze the hydrogenation of

1,3 dienes in the presence of u.v. light and H,. Wrighton

and Schroeder have found that the function of the u.v. light

is to generate a thermally active catalyst through photo-

dissociation of cr(co) .&gt;2 The subsequent hydrogenation
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reaction then depends on the type of bonding between the

Cr (CO) 5 excited state and the diene molecule.

The hydrogenation of ethylene on a metallic platinum

surface is another important catalytic process. 0? It is

known that the rate of this process is significantly reduced

when the platinum surface is exposed to u.v. light of

photon energy 4.2 ev.110 It has been proposed that the

reduction of catalytic activity is caused by platinum-to-

ethylene charge transfer transitions which weaken the Pt-C,H,

bonds and therefore lead to photodesorption of C,H, from the

platinum surface. xX. scattered wave calculations for the

excitation energies of the various transitions in this

system are in progress. 102 Intensity calculations would be

useful in fixing spectral assignments for the platinum-

ethylene cluster. In addition, one could compare the calcu-

lated oscillator strengths to the observed reduction in the

rate of catalytic activity to see if the oscillator strength

values are of the correct magnitude.

In many transition metal compounds, localized excita-

tions having large oscillator strengths can occur. ttt The

optical properties (excitation energies and photoemission

spectra) of NiO, for example, have been found to be well

represented by X, scattered wave calculations on an nio, tO

cluster in a stabilizing electrostatic field. It would be
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interesting to see to what extent the experimental oscillator

strengths in NiO agree with the calculated intensities for

the io +0 cluster. By analogy with our previous arguments,

the scale factor between the theoretical and experimental f

values should be related to the relative localization of the

cluster model states versus the localization of the true

states in bulk NiO.

Following the general philosophy of the example above,

one may inquire to what extent the optical properties of other

transition metal compounds such as Nis, and Fes, are determined

by local molecular orbital-like states. Again, excitation

energies and photoelectron spectra, calculated by the X,

scattered wave method are in good agreement with experiment,

but the theoretical oscillator strengths constitute a more

critical test of the physical accuracy of the cluster models.

One type of system we have not treated are clusters con-

taining metal-metal bonds. Many of the systems have optical

spectra involving metal-metal charge transfer transitions.

Dr. J. Norman is presently working on evaluating spectral in-

tensities for this type of transition in the complex Mol,

using the author's optical properties computer program (see

Appendix a). 112 Spectral assignments in this system are very

controversial.
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The theoretical evaluation of photoelectron emission

intensities from molecules and clusters (the latter may be

associated, for example, with the chemisorptive bond at a

surface or with localized states in a semiconductor) would

be an important addition to the field of photoelectron spectro-

scopy. Accurate theoretical intensities would lead to a better

understanding of the character of the occupied states of the

molecule or cluster.1?3 However, previous theoretical methods

for determining photoelectron emission intensities in these

systems have been limited to simple cases. 13,114 Recently,

Dill and Dehmer have developed a theoretical method (which

has now been programmed for a computer) to evaluate photo-

electron emission intensities based on the scattered wave

method. 113 Preliminary applications of this method to diatomic

molecules have already been completed, with work on complex

systems in progress. 11° The approach of Dill and Dehmer is

based on explicitly solving for the continuum eigenstates

using the proper plane wave plus incoming wave boundary condi-

tion.

A less sophisticated approach to the photoemission

problem has been developed by the author following a suggestion

by Dr. K. H. Johnson. In this method, the continuum wave

functions are confined to a large spherical box (one requires

that the wave functions have a node at the sphere radius of the
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box). A discrete set of positive energy eigenstates is

then found which models the true continuum eigenstates.

The photoelectron emission probabilities are then deter-

mined using the Vv method as in the optical absorption

case. We have attempted to calculate photoemission in-

tensities from CH, using this method. The results of

this work were unsatisfactory. A further description of

the method and results is given in Appendix D.

Johnson and Messmer have suggested that in solving

the photoemission problem the potential of all the molecular

eigenstates be lowered in a fairly uniform way. 117 The

positive energy eigenstates would then be bound for a

sufficient change in the potential without the additional

spherical box boundary conditions. This method has the

advantage that the density of final states is small, so

that less computer time is required than with the spherical

box solutions.

The central problem in all these methods is to obtain

a physically meaningful boundary condition for the continuum

eigenstates which at the same time is computationally con-

venient. In this regard, the method of Dehmer and Dill is

probably the most promising. Work on all three methods is

continuing to resolve these issues.



—

18”

Finally, further work is necessary on some basic

theoretical issues. The relation of the spin restricted

and spin unrestricted X, theory excitation energies and

oscillator strengths to the multiplet structure of a

system must be clarified. We must also obtain a better

understanding of the significance of the transition state

wave functions used in the intensity calculations.
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CHAPTER X

APPENDIX A

OPTICAL PROPERTIES PROGRAM

Input Description for Self Consistent Field Program

On the energy card,3 new variables appear,

NXGP (N), NWR (N), and SYMQR(N). For each state, EIGEN

is called by MAIN to compute the state, then NRMLIZ

(normalize routine) to normalize the state. Immediately

after statement 4014, we set NXGO=NXGP(N), with N = state.

If NXGO = 1, we compute the initial state for optical

properties, NXGO = 2 = final state for optical proper-

ties, NXGO = O = passive state. SYMQR(N) is only used

when NXGO = 2. When NXGO = 1, OPTIK is called, and

the variables for the initial state are set up.. For

NXGO = 2, OPTIK is called, variables for the final state

are set up, and optical intensities computed. For

NXGO = O, OPTIK is skipped. INPUT - ENERGY CARD - NXGP =

1 for initial state, 2 for final state, 0 otherwise.

NWRIT = 1 means only the most important variables are

output, SYMQR=XSYMF in OPTIK program; this variable takes

spin and orbital degeneracy into accouht. The columns

used are 50, 55 and 56-65 respectively.
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Input Description for Non-Self Consistent Program

On the energy card, use the same variables as above.

In addition, NIRREP appears in column 70. NIRREP =

orbital degeneracy of the state if the program is used

to compute the vector coupling coefficients. Follow

this card by the other partners of the irreducible

representation. The subsequent cards appear as usual.

All partners of the irreducible representations appear

for the initial state NXGP(N) = 1 of the transition,

and the final state NXGP(N) = 2 of the transition. The

program operates exactly analogous to the SCF program,

except that additional temporary storage must be specified.

Optik Subroutine

The program may be divided into Sections. Section 1,

extending through statement 2, initializes various

quantities. NXGO = 1 initial state, 2 final state.

CI(KIT,MVNT,LNT,NUE)= initial state coefficients, and

CF (KIT,MVNT,LNT,NUE)= final state coefficients of partial

waves on various atomic centers.

NUE= unique atom label, KIT =1label of one of a set of

aquivalent atoms, LNT = total angular momentum + 1,

MVNT = component of angular momentum label,
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MVNT = 1 if MN = 0 and IN = 1.

MVNT = 2*MN if MN # 0 and IN = =1.

MVNT = 2*MN + 1 if MN # 0 and IN = 1

CI and CF are initialized to 0 at the beginning of

the program.

EI and EF are initial and final state energies, and

NUATOM = number of unique atoms.

Section 2, beginning with DO 504, computes all the

radial functions and radial integrals used in the program.

This section extends through statement 30. Since such

radial integrals require that both initial and final

states be known, this section is skipped when NXGO = 1,

the first time through the program. This is the pur-

pose of IF (NXGO.EQ.l) GO TO 603. In section 2, the

procedure is

1) Compute radial functions RI (LS, LVAL, NN), RF (LS,

LLVAL, NN) for the initial and final states, LS = mesh

point, LVAL = angular momentum + 1, NN = unique atom

label.

2) Compute radial integrals S(X,J,I) = 52 Rr (x, 1) RE (3,1)

2 a dr where I = unique atom label

K,J = angular momenta of initial and final radial

functions

= radius of atom I
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3) Compute surface terms SUR(K,J,I) = RI (K,I)# RE (3, T)| *
I

b2* (VC-v (by)) = (product of radial functions at sphere

boundaries)*(discontinuityofpotentialatsphere

dary)*(radiusofsphere)2

boun-—

4) Sum radial integrals and surface terms

ST(K,J,I) = S(K,J,I) + SUR(X,J,I)

Section 3-- starts with statement 603.

1) Structural information on the molecule is set up

from statement 603 to 601. For each atom N = 1, NAT,

a unique atom label NU(N), an equivalent atom label

KI(N), and a label for the total number of atoms of

type I, KB(I) are set up.

2) From 93 to statement 606, symmetry information for

initial and final states KK=NXGO= 1,2 is set up. The par-

tial wave coefficients as described on the first page

of this Appendix are constructed as products of CN(K,N)*

XC (N), where K = component and N = basis function.

CN(K,N) are the coefficients of the symmetry adapted

basis functions as appearing in the symmetry input.

XC (N) are the symmetry coefficients resulting from the

solution of the secular problem. CN(K,N)*XC(N) are the

coefficients for total angular momentum LNT, mn compon-

ent MVNT, unique atom NU (KTA), and atom out of a set of
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equivalent atoms KI (KTA).

Section 4-- begins with statement 94 and ends with

statement 20. This section does the symmetry calcula-

tions for the program. These include angular integra-

tions as well as sums over sets of equivalent atoms

and sums over angular jomentum indices.
B or 8 8 8 ov 2Ct oY Y= 7, CC [PR (en) RE 57 16 a +

(when B=0, [
R z 2

Re(E: bo)Ry(Eby : (i - Y + tie | I, (L iL)
aur face

I when B=0o radius bh (V
- ) 0)

p——

~W)]outside on

surface

(¥ 7 VT) = (Same expression)- I (LL)

Arve) = (Same expression)-], (L: 1)

In these expressions, C. ,C'y, are coefficients for

initial and final states, R, and R' or are radial functions
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for initial and final states, B is simply the atom

number, and L=(%,m). The expression in brackets is

the same for all equivalent atoms of type a. Let the

{ i = Agr (BE Eg).
Let the equivalent atom label

k(a). Then

A «
RA ) = EE,( Auf 24 ur Ee

A

for an atom of type a be

ki) r Kt) I; (lon Am)
[Za GC. Cy (Tutte

Tyo (Lost; 470s?)

Agog (E EB.) corresponds exactly to ST(K,J,I) discussed

previously. Since Iq (2m; 2'm') are independent of
1-1
10

k(a), one does the sum over k (a) first. we aefine al

variable B, , (p) by

5 Ly (mn; Lor) /; ki) or _p%wy? Li loiLn) Btn Con | =Hlh

[+4

8, ,(P) corresponds exactly to ZUM(JP,J,I,IX) with p =
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electric field polarization = IX. As previously

defined, J, JP are the total angular momentum indices

for the initial and final states,

J = +1, JP = ¢t+1.,

Finally, we obtain

§ d
3

7V A £4 «I)"2gEEte J,
N

his is done in the loop DO 23.

The oscillator strength f=X0OSC is computed via

Fd ey (1 ov) eg)
 reel (ei)f

The absolute transition probability (which is the

important observable for photo-emission) is P=PABS

Bel. &gt; [= me (KR BV,

Therefore, we have a simple relation between the oscil-

lator strength and the absolute transition probability

f=P¥(E.-E,) . Physically, this says that f =

amount of energy absorbed _ (probability of transition i-=f)
unit energy input unit energy input
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(amount of energy absorbed: ; : .
if transition occurs) , XU is simply 2 multd

plicative factor in the equation for X0S¢ = oscillator

strength. It is an input parameter to the program

used to take the spin degeneracy factor (or the orbital

degeneracy factor as well) into account. The orbital

degeneracy factor must either be known from vector

coupling coefficient tables or computed from the

ENERGY PROGRAM (the non-self consistent version) + the

associated Optik routine which follows the NSCF ENERGY

program in the preceding listing. We also compute

the variables Q(I) and QAM(I,J) which are respectively

the orbital charge in sphere I, and the orbital charge

in sphere I with angular momentum index J = 2+1l. The

output variable JAKE = £
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DPTICAL PROPERTIES EROGRAMNS
SCATTERED WAVE SELF CONSISTENT FIELD PROGRAH

SCATTERED-HAVE MODEL FOR POLYATCMIC MOLECULES AND CLUSTERS.
PROGRAM WRITTEN BY F. C. SMITH, JR. AND K. H. JOHNSON, M.I.T.
SELF-CONSISTENT SPIN-UNRESTRICTED MAIN PROGRAM.
CALCULATES SCF-XALPHA ONE-ELECTRON ENERGIES, STATISTICAL TOTAL
ENERGY, AND TOTAL KINETIC ENERGY -- ALL ELECTRONS OR FROZEN CORES.

THIS VERSION DIMENSIONED FOR 18 CENTERS (INCLUDING ATOMS, OUTER OR
JATSON SPHERE, AND INTERATOMIC SPHEPES), PARTIAL-WAVE LMAX=6 PER
ATR OF ATOMS, 10 DIFFERENT ATOMS (WITH A TOTAL OF 26 DIFFERENT IL
JALOTS), 2 DIFFERENT INTERATOMIC POTENTIALS, A 28X28 SECULAR
4ATRIX, AND A MAXIMUM OF 24 COMPONENTS PER BASIS FUNCTION.
TQUIVALENCE (RINTEG(1),B(1,1),{VN(1,1),P(1,2))
SOMMON/STATE/CN (24,28) ,MN (24,28) ,IN (24,28), NATCHM (24,28) ,LN (28),

1 HMMS (28) ,IMIN(28,18) ,IMAX(28,18) ,NLE0 (18) ,KTAU(18),NNS,ICORE,
) NUATOM,NDG,NLS (18) ,N0L (18) ,N0(18),NTERMS (18) ,LMAXN (18), NDIH
COMMON/PARAM/VCON,XF,EV,IO00T,KONSW, NOUT, NAT, NDAT, NSPINS,

1 NACORE,RADION,QION,FAC1,EXFACO,RS(18),XV(18),YV(18),2V(18),%(18)
&gt; ,EXFACT (18) ,LMAXX (18) ,5%7 (18), ¥SYMBL (18) ,NFEOQ {18) ,LCORE {18) ,KTON
CCHMON/FCNR/H{10),VCONS(2),R(200,10),Y(200,20),ICHG(10,10),

| KPLACE(18),KMAY(18)
SCMMON/SECULR/RHEO (208,11)
COMMON/CORE /ROCORE {200, 10)
~CMMON/CE/NSPINA,NSPINB
YIMENSION P (200,26) ,PS (26) ,DPS (26) ,%C (28) ,XA (28) ,RANT (28)
DIMENSION Q(18),RHOTOT{200,20),V¥(200,20),0ITOT(2),VCN(2),

QF (18) ,0TIOLD (2) ,EINTEG (200) ,STR (700) ,ISTR (5000)
DIMENSION RSTATE(55) ,0CUP(55),NSYH(55),DEST(55),NSFIX(55),NSFL(55)

i ,NSPIN (55) ,ISACOR {55),SYMOR {55)
INTEGER NXGP (55) ,NHRIT{55)
CALL ERRSET (208, 256,-1,1)
CALL ERRSET {209,256,-1,1)
KCNSH=1
CALL INPUT

QNuC=0.
30 141 N=1, NAT

SC® 0001
SCF 0002
SCF 00C3
SC? 0004
SCF 0005
SCF 0006
SCF 0007
SCF 0008
SCF? 0009
SCF 0010
SCF 0011
SCF 0012
SCF 0013
SCF 0014
SCF 6015
SCF 0016
SCF 0017
SCF 0018
SCF 2019
SCF 0020
SCT 0021
SCP 0022
SCF 0023
SCF 0024
SC? 0025
SCF 0026
SCF 0027
SCF 0028
SCF (029
SCF D030
SCF 0031
SCF 0032
SCF 0033
SCF (0034
SCF 0035
SCF 0036

—_
O
N
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IND

100

J

Mn

111
304
303

QNUC=QNUC+Z(¥)
ONTUC=2, 0%ONTC
NSAT=NDAT*NSPINS
IF {I0UT.EQ.D) GO TO 302
IPR=3
I PY=0

IF (IOUT 8Q.2) IPU=3
CALL QUTPYT(XC,IPR,IPU,PS,DPS,P,E,EY)
READ (5,100,END=302) NSTS,NITER,IPR,IPU,NTHR,NTOL,NAV,

NCORES,ALPHI
FORMAT {915,5%,F10. 5)
TCSTM=D
IT (NCORES.T0.0) GO TO 303
ARITE (6,112)
FCRMAT(//35X, *CORE ENERGIES READ IN?! /40%X,!' TFNERGY
70 304 N=1,NCORES
READ{5, 110) ECORE,OCORE
FORMAT(2F10.0)
IRITE {6,111) FCORE,OCORE
FORMAT (B0X,2F15.7)
FCSU#=ECSUM+ECORE*QCORE
IF (NTYP.EQ.0) NTYP=1
[F{ALPH1.50.0) ALPH1=.5
\LPH2=1.-2LPH]
IPR=3*IPR
[EU1=0
IP1I2=0
[F(IPU.GT.D) IPy2=3
IF (IPU.GT.1)TIPU1=3
TCL=10.0%*(-NTOTL)
[FP (NTOL.EQ.0)TOL=1,7-2
THRESH=10,%*{-NTHR)
TF(NTHR.FQ.0) THRESH=1.T-5
WRIT® (6,100) NSTS,NITER,IPR,IPU,NTHR,NTOL,NAY,

NCORES, ALP HI
IT L=1

TT Yi:

NTYP,
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IFX=1
DCR1=0,
DC 311 N=1,NSTS
READ {5,102) OCUP (¥) ,ESTATZE (N) ,DEST (MN), NSYH (N), NSPIN(W),

ISACOR (N) , NYGP (¥) ,VHRIT{N) , SYHOR (N)
FORMAT(3710.0,515,F10.6)
[F (NSPIN(M¥).EQ.0) NSPIN(N)=1
YCEL=0CEL+0CUP{N)
DEST (N) = ABS (DEST(N))
#RITE (6,200) N,0CUP(N),ESTATE (¥),DEST(N),NSYM(N),NSPIN(N),

ISACOR {H)
FORMAT(I5,F10.2,2F10.5,315)
TP {NSYM (¥). NE. EK) 80 TO 3M
NSFIX (N) =IFY
JSF(XN)=IFL
TALL SYMH

ISTR {IFX)=NDIM
IFX=TFY+1
[STR{IFY)=NDG
[FY=TIFX#]
[STR (TFX) =NUATOH
IPX=IFX+1
53C 1 ¥N=1,NDIHN
NM=NMS (NN)
ISTR {IFX)=LN(NN)
[FX=TFX+
ISTR {IFY) =NM
[FY=TFY+
no 1 I=1,NHM
ISTR{IFY)=HUN{T, NN)
IFX=TFX+
ISTR (IFX)=IN(I,NY)
IFX=TFY+1

[STR {IFX)=NATOH(I,NN)
IFX=TIFY+]
STR (IFLY=CR{I,NN)

J
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2

318

IPL=IFL+1
30 2 I=1,NAT
[STR(IFX)=NLEQ(T)
IPY=IFX+1
[STR {IFX) =NLS (TI)
IFX=TF¥+

ISTR (IFX)=NO0L(I)
[FX=TF¥+1

ISTR(IFX)=N0(I)
TFX=IFY+1

ISTR {IFX)=NTERHMS(I)
[FX=IFX+1
[STR {TF X)=LMAXN{T)
ITY=TFY+1
DO 2 NN=1,NDTH
ISTR {IFX)=INMIN(NN,T)
TF{=TPY+1

[STR {IFY)=IMAX(NN,I)
[FX=IFX+1

[F {(IFX. 68T.5000) WRITT (6,104) IFX
IF(IFL.GT. 700) WRITF{6,104) IPL
CONTINUR

FCRMAT( TEMPORARY STORAGE EXCEEDED - SUBSCRIPT=',Ii)
CALI, STRUCT
DO 312 ITER=1,NITETR
NSC=1
§3=1
30 324 ISEIN=1,NSPINS
2ITOT (ISPIN)=0
DC 317 I=1, NDAT
RE=KMAX{I)
IF (LCORF{I) .E0.0) GD TO 319
DO 318 ¥K=1,KX
RHOTOT (K, NS) =ROCORE{K,NSC)
NSC=NSC+
30 TO 317
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219 DC 323 K=1,KX
3123 RHOTOT (K,NS)=0
317 HS=NS+1
324 CONTINUE

IMxX=1
DC 374 N=1,N5TS
CALL TIMING {ICPU,IRICH)
YRITE{6, 1001) ICPU,N
FORMAT {18D ,1I8,' STATE! ,I3)
YNS=NSEIN{N)
TCON=VCONS (NNS)
TFX=NSFIX {NSYH (N))
IFL=NSFL {NSYH (M))
NDIM=ISTR (IFX)
IF =I7PX+1
NDG=I5TR (IFY)
[FX=IFX+1
NSUATOM=ISTIR {IF X)
ITX=TFX#1
DO 3 NN=1,NDIM
LN {(NW)=ISTR {IFX)
IFX=IFX+1
IM=TSTR {IFX)
IFX{=TFX+1
NMS (NN) =8HN
DC 3 I=1,NH
MN {T,NNY=1ISTR (IFX)
IFX=TFX+1
IN(T,NN)=ISTR (IFX)
IFPX=TFY{+1
NATOW (I,NN)=ISTR {(IFX)
[FX=IFY+1
CR{I,NN)=STR{IFL)
IFL=IFL+1
DC 4 I=1,NAT
NLEQ [(I)=ISTR (IX)

O01
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IFY=TFY+1
NLS(I)=ISTR {IFX)
TFX=TFX+1
YOL (I) =ISTR {IFX)
[FYX=TIFY+1
¥0 (I) =ISTR(IFX)
[FYX=TPX+1

NTERNS {I)=ISTR (I FX)
[FX=TIFX+1

LEAYN(I)=ISTR(IFY)
[FX=TFY+1
DO 4 NE=1,NDIH
TBIN{NN,I})=ISTR{IFX)
[FX=IFX+1
[MAX {NN,I)=ISTR(IFX)
I[FX=TFX+t

EMIN=ESTATE(¥)
IMAX=0.0

ICORE=ISACOR(N)
CALL EIGEN{0 ,%,DEST (N),%MAX,EMIN,THR®SH,P,XA,PS,DPS,ESTATE(N),RAN

F)
3C TO 132

CALL BIGEN(0 ,7,DEST(N),SMAX,EHIN,THRESH,P,XA,PS,DPS,ESTATE(N),RAN
predF)

TF {E¥AX.20.0,0.AND.ENIN.EQ.0.0) GO TO 6
[F{¥N.T50.1) GO TO 134
Ti=N~-1
DC 13C NP=1,¥1
IF (NS5YH (NP). NE.NSYX (N) .GR.NSPIN {NP) . NE. NSPIN(})) GO TO 130
IF (ESTATE(N).GT.ENIN)GCTo133
IF (ESTATE (N) LLE, ESTATE (NP). AND. ESTATE (NP) . LE. ESTATE (N) #DEST (¥)) ©O

70 131
GC TO 130

133 IF (ESTATE (N).GE.ESTATF(NP).AND.ESTATE(NP).GE.ESTATE({N)-DEST(N))GO
1 TC 131

130 CONTINUE
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134 CALL EIGEN (15,8,DEST(N),EMAX,EMIN,THRESH,P,XA,PS,DPS,ESTATE(N),KAN
17)
IF {ESTATE{¥).GE.ESTATE{NMX))NMY=N
IF {TOUT.GE.0)WRITE (6,101) N,ITER,OCUP(N), ESTATE (N)
PORMAT (/23X,12,70 ITER=,T2,84 OCCUP=,F6.2,9H ENERGY=,1PE16.7/)
RC{1) =XA (1) /RAKP (1)
KCMAX=XC{1)
DO #013 I=2,NDIH
$C {I)=XA {I} /RA MF (I)
[F{ ABS (XC (I)) .LF. ABS{XCHAY
XCM AX=XC {I)
CONTINUE
DO 4014 I=1,NDIH
YA {I)=XA(I)/XCHAY
XC{I)=XC{I) /XCHAX
CALL NRMITIZ {P,XC,XA,0,0QINT,PS,DPS,RANT)
NYG O=NXGE{N)
IF {(NXGO.EQ.0) GO TO 700
SRIT=NWRIT(¥)
{SYMP=1,0
IF (NXGO.EQ.2) XSYMP=SYHCR{N)
TF (NXGO.EQ.1)NSPINA=NSEIN(N)
IF (NXG0.EQ.2) NSPINB=NSPIN(N)
CALL OPTIK(XC,BSTATE(N),N¥XG0,NRIT,X0SC,XPROB,1,XSYHF)
IF {(NY¥G0.EQ.2) MLOC=¥
ARITE(8) ((RHO{K,TI),¥=1,200),I=1,NDAT), (O(I),I=1,NAT),QINT
[F {I0UT.GE.0) WRITE (6,106) (I,0(I),I=1,NAT)
SORMAT(6{' O{',I2,%)="',1PE14.7))
IF (IDUT.GE.D) WRITE (6,107) QINT
FCRMAT(!  INTTIRSPHRRE CHARGE=',1P2E14.7)
“ONTINUE

IF (NTYP,.2C.2) GO TO 27
STATES=0.
ICTR (WMX) =0.
0 25 N=1,NSTS
IFX=NSFIY (NSYH(N))

4N13
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IFX=IFi+1
NDG=IST2 (IFX)
NCC P=CCUE{N)
IF (NOCP. NE. NDG. AND. ¥.NE.NHX) OCUP{N)=NDG
STAT ES=STATES+0CUP(N)
CONTINUE
OCUP {NMX) =0CEL~STATES
REWIND 8
ATOT=ECSUY
IF(N¥AV.EQ.0.0R.ITER.FQ.1) GO TO 18
READ (8) {(RHO({K,I),%=1,200),I=1,NS2T)
DC 315 N=1,NSTS
TTOT=ETOT+OCUP{N)*ESTATE{N)
IF (ICUT.EQ.-2) WRITE (6,101) N,ITER,OCUP (N),ESTATE (II)
READ {8) { (RHO (X¥,I),K=1,200),I=1,NDAT), (O(I),I=1,NAT),QINT
NNS=NSPIV(N)
OI TOT (UNS) =QITOT (N¥S) +Q INT*OCUP (WV)
D0 315 I=1,NDAT
KX=KMAYX (I)
IF (IOUT.EQ.~-2) WRITE (6,116) (X1, (R{K1+{K2-1),I),RHO

LI) ,K2=1,4) ,K1=1,KX,4)
FORMAT {1¥,I3,8515.7)
NS=T +NDAT* (NNS-1)
70 316 ‘X=1,KX
RBOTOT {K, NS) =RHOTOT (XK, NS) +RHO(X, I) *0CUP {(N)
CONTINTE
IF{IOUT.NE.-2) &amp;0 TO 119
DC 11B NNS=1,NSPINS
ARITE (6,117)
FORMAT (1H)
30 118 I=1,NDAT
XX=KMAX {I}
NS=I+NDAT* (NNS-1)
WRITE (6,116) (K1, (R{K1+(K2-1),I),RHOTOT(K1+{K2-1),NS),K2=1,4),

1 K1=1,K¥,4)
119 REWIND 8

{(K1+ (¥2-1)

¥
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IF{NAV.EG.0.OR.ITER,.EQ.1)GOTO220
READ (B) ({RHO(X,I),B=1,200),I=1,NSAT)
[=0
20 222 ISPIN=1,NSPINS
DC 227 IAT=1,NDAT
{X=KMAX (IAT)
I=T4+19
DC 223 K=1,KX
RHOTOT (XK, I) =ALPHI%RHOTCT(K,T)+ALPH2%RHO(K,I)
CCNTINUE

OITOT {ISPIN)=ALPH1%QITOT {ISPIN)+ALPH2%0QIOLD{(ISPIV)
CALL VGE¥(Q,QITOT,RHOTOI, VN,VCN,VT,ETOT)
[=0
EPS=0.
DC 321 ISTIN=1,NSPINS
IPS=AMAX1 (EPS, ABS{(VCN{ISPIN)-VCONS{ISPIN)) /VCONS(ISPIN)))
IF{NAV.EC.0.0R,ITER.50.1)GOTO225
30 TO 224

YCN (ISPIN) =ALPH1%VCY {ISPIN) +ALPH2*VCONS{ISPIN)
DO 321 IAT=1,NDAT
I=T+1
{X=KMAX (IAT)
XPL=KPLACT {IAT)
30 320 K=1,KX
[F (TAT.EQ.1.AND.NOUT.NE.0.AND.K.GT.KPL)GOTO229
INTC=9,
30 70 230
C ¥UC= QNUC
2PS=AMAX1 (EPS, ABS ((VN{K,T)-V{XK,I))/(VN(R,I)+CNUC/R{K,IAT))))
[F(NAV.EC.0.0R2.ITER.FQ.1)GOTO32?
30 TO 320

322 UN (K,I)=ALPH1#VN(K,I)+ALPH2%V(XK,I)
320 CONTINUE
321 CONTINUE

ARTTE{6, 103) ITER, FPS
103 FORMAT (/,//30%,'ITERATICK !,T12,°
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17 WRITE (6,107) (NITOT(ISPIN),ISPIN=1,NSPINS)
ARITE (6,106) (I,0(I),I=1,N2T)
TSE 1ST ORDER PERTURBATION THEORY TO FIND TRIAL ENERGY FOR NEXT
TTERATION.
DO 120 N=1,NSTS
READ (8) {{RHO{K,I),%=1,200),I=1,NDAT), {(Q{I),I=1,"A
YNS=NSPIV{N)
NE=(
yID=2
IF {NOUT.®C.0) NID=1

¥S= MNDAT¥ (NNS-1)
DO 125 I=1,NDAT
NS=N5+1
KX=KMAY (I)
DC 121 K=1,KX
RHO (K,I)=RHO{K,I)*(VN[K,’S)-V(K,NS))
CALL INTEGR{RHO{1,I),R{1,I),K¥X,ICHG(1,I),EINTEG,NID)
NID=1
CALL INTERP(R(KPLACE{I)-3,I),FINTEG (KPLACE{I)-3),7,RS(I),0F (1),

7ILCH,. FALSE.)
DE=DE+0F{I)
SDAT1=NDAT+1
IF (NDAT1.6T.NAT) GO TO 123
DO 122 I=NDAT1,NAT
DE=DE+QE (NEO (I))
DF=DE+CINT*(VCN(NNS)-VCCNS{NNS))
EP=ESTATE(N)DE
{RITE (6,105) N,OCOP(N),ESTATE(N),ED,NNS,NSYHN(}N)
TSTATE(N)=EP
FORMAT {/6X,?STATE!,I3,' OCCUP=?',F6.2,! E=!',1PE15.7,' NEXT R=',1
PE15.,7,' SPIN=?,I2,' SYMMETRY?!,I3)

IF {MLOC.EQ.N) WRITE(6,701) YPROB,X0SC
PORMAT (1¥,32HABSOLUTE TRANSITION PROBABILITY=,F12.6,20H0SCILLATOR

ISTRENGTH=,F12.56)
ARITE (6,106) {I,0{I),T=1,NAT)
 RITE (6,107) QINT

y 2
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10:9
WRITE (6,109) ETOT,VT
FORMAT {/6X,? XALPHA STATISTICAL TOTAL ENERGY=',1PE15.7,7 TOTAL XK

"INETTIC ENERGY=?, 1PE15.7)
IF {EPS.IT.TOL) GO TO 5
REWIND 8
IF (NAV. EQ.0) G60 TO 514
YRITE (8) ({BHOTOT(X,I),k=1,200),I=1,N3AT)
I=0
CO 924 ISPIN=1,NSPINS
JIOLD (ISPIN)=QITOT (ISPIN)
JCONS (ISPIN) =YCN{ISPIN)
DO 124 IAT=1,NDAT
[=1+1
KX=KHUAX (IAT)
70 124 K=1,KX
V(XK,I)=V¥(K,I)
IF (ITER.EQ.NITER)GOTC5
~ALL OUTEUT(%¥C,IPR,IFU1,PS,DPS,P,E,EV,0.0)
CONTINUE
 RITE (6,900) N
FORMAT('ERROR,ENERGY IEVEL',I#,' NOT FOUND?
~ALL OUTE®T (XC,3 ,IPD2,PS,DPS,P,E,EV,0.0 )
0 298 N=1,NSTS
ARITE (7,299) OCU®(N),ESTATE(N),DEST(N),NSYH(N),NSPIN(NV),

1 ISACOR {N)
FORMAT {3710.3,31I5)
STOP
END
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OPTICAL PROPERTIES SUBROUTINE (FOR USF IN SCF PROGRAM)
SUBROUTINE OPTIX (XC,®,¥¥G0,NRIT,X0SC,PABS ,JCONTR,XSYHT)

C OPTIK ROUTINE WRITTEN BY LOUIS NOODLEMAN

TOMMON/STATE/CN(24,28),MN(24,28),IN(24,28),NATCH(24,28),LN(28),
i NMS (28) ,IMIN{28,18),TPrAX{28,18),NLEQ(18),KTAU({18),NNS,ICORE,
2NUAT , HDG, NLS (18) ,N0L (18) ,N0 (18) ,NTERMS{18),LMAXA{18),NDIM
CCMMON/PARAM/VCON,XE,EV,I0UA,XONSH, NOUT, NAT, NDAT, NSPINS,

}] NACORE,RADIOWN,QION,FAC1,FXFACO,RS(18),XV{18),YV{(18),ZV{18),2P{(18)
2 ,EXFACT{18),LMAYX{18),XZ{18),NSY#BL{18),NEQ(18),L.CORE{18),KTION
CCHMON/PCNR/H(10),VCONS{2),R(200,10),V{200,20),ICHG(10,10),
KPLACE{18),KM2aX(18)

CCMMON/BESSEL/SBFC{9),DSBFC(9),SNFC(9),DSNFC{9)
COMMON/OP/NSPINA,NSPINB
RF¥AL CI (6,9,5,10),CF{6,9,5,10) ,RI {200,5,5),RP{200,5,5) ,SUMAF (9),

ISUMBF {9) , ZUM {5,5,10,3) ,7208P (3) ,RV (200,10) ,RSVP{200) ,BVP(200,10),
2Y (200) ,5(5,5,10) ,SUR{5,5,10) ,5T(5,5,10) ,2{200),VP (200,10),
3VS (200,10) ,11P,C (10) ,0AM (10,5) ,XC (28)
INTEGER LMAYXN{18),KB (10) ,MVYN{24,28),KI(18),N0(18),JAKE(5),
LMAYN1{18)

DO 609 J¥r=1,9
SBFC (JKR) =1.0
DSBFC (JKR) =1.0
SNFC (JER) =1.0
DSNFC {(JER)=1.0
IT (NRIT.20.0)
IP(NXGO. EQ. 1)
IF (NYGD.T0.2)
NJATOM=NDAT

IF (NXG0.EQ.2) VC=VCONS {¥SPINPR)
DC 2 N¥=1,NAT
IF (NXGO.EQ,1)LMAXNT(NN)=LHUAXA(NN)
IF {NXGO.EC.2) LMAXIN{NN)=MAYXO(LMAXNT (N¥),LMAXA (NN))
DO 4 K=1,10
2 4 KL=7,5
DO 4 ¥=1,9
DO U4 ML=1,6

1
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IF (¥¥60.ECQ.1)CI(ML,H,RK1,K)=0.0
IF (NXG0.EQ.2) CF (ML,¥,KL,K)=0.0
IF (NXGO.FQ.1) GO TO 603
DO 504 NN=1,NUATOWN
DO 504 JK=1,2
TF(JK.FQ.1) NS=NN+(NSPTNA-1)*NUATCH
IF (JK.EQ.2)NS=NN+{NSEINB-1)*NUATCH
ICUT=1
IF (NN. TQ. 1) TOUT=2
KX=KMAX (NN)
NLMAP=TMAXN(NW)+1
DO 503 LVAL=1,NLMAP
L=LVAL-1
Z=FLOAT{NZ{NN))
IF(JK.EQ.1) CALL TMAT(L,FI,RS(NN),EMAX(NN),Z,H(NN),R{1,NN),

1v{1,¥s),ICHG (1,8) ,I0UT,KPLACE {NN),RI{1,LVAL,NN),STMAT,PS,DPS,
2RA MF)
IF (JK.EQ.2) CALL TMAT {L,EF,RS (NN) ,KMAX (NN) ,Z,H (NN) ,R(1,NN),

1¥ (1,88) ,ICHG {1, 8) ,T00T,KPLACE (NY) ,RF {1,LYAL,NN) ,STMAT,PS,DPS,
JRAMF)

SCNTINUE
[F (NRIT.EQ.1 GO TO 504

4RITE (6,506) NN,JK
FORMAT (1X, 7HCENTER=,T4,EHSTATE=,14)
DO 510 15=1,KY
I¥ (JK. EQ. 1) WPITE(6,505) LS,K{LS,NN),(RT{LS,LVAL,NY)

| ,LVAL=1,NLMAP)
IF {(JK.EQ.2) WRITE{6,505) LS,R(LS,NN),{RF(LS,LVAL,NN)

1 ,LVAL=1,NLMAP)
505 FORMAT (1X,I4,6 (4%,B14.,7))
510 CONTINUR
508 CONTINUE

DC 13 I=2,NUATHM
NS=T+ (NSPINB-1) *NUATCH

LMAF=LMAXN(I)+1
LY=KHMAYX (1)

I
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OPT10058
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oyShan

LP=KMAX {I} ~1
LD=KPLACE{I)
DC 8 KM=1,1Y
RY (KM, T)= R{KM,T)*V{KHM,NS)
D0 9 1=1,1P
IF{L.LE.2) CALL INTEFP{R{L,T),%V{L,T),4,R(L,I),DUMNY,RVP(L,I),

TRUE.)
IT{L.GT.2)

CALL INTERP {® {L-2,I),RV{1L-2,I),4,R{L,I),DUHNY,RYP(L,T),.TRUE.)
RSYP{L)=R{L,I)*RYP(L,I) -RV(L,I)
IF (¥RIT.ED.1) GO TO 9
RITE (6,500) I,L,R{L,I),RV(L,I),RVP(L,I),V(L,NS),RSVP(L)
FORMAT { 1%, 7HNUATOM=,15,2HL=,I5,2HR=,F10.5,3HRV=,F10.5,4HRYD=,
F10.5,3H V=,%14.7,6H RSVP=,E14.7)

CONTINUE
DO 13 J=1,LMAF
DC 13 K=1,LHAF
IF (IABS {J-F).GT.1) GO T0 12
IF ((XK+J+1)/2 .LT. FLOAT(K+J+1)/2.0) GO TO 12
50 5 L=1,LD
Y {L)=RT {L,K,I)%RF(L,J,T)*RSVP(1)
CALL INTEGR(Y,R(1,T) ,KHMAX(I)-1,ICHG(1,I),3,1)
“ALL INTERP{R(LD-3,I),A{1D-3),6,RS5(I),ASA,DUNHY,.FALSE.)
S{K,J,I)=1SA
SUR {K,J,TI)=RTI{LD,K,I)*RF(LD,J,I)*{RS(I)*%2)*(VC-V(LD,NS))
 3ST (K,J,I)=S(K,J,I) +SUR(R,J, I)
30 TO 13

ST {X,J,I)=0.0
CONTINUE

LEAF=LHAYN(1)+
LP=KMAY(1)-1
LD=KPLACE(1)
¥S=1+ {NSEINB-1) *NUATOM
30 28 I=1,LP
IF{L.LE.2) CALL INTBEP(F(L,1),V{(L,NS),4,R(1,1),¥S{L,"),VP({L,1),

.TRUT.)

2

3

3

2
3

OPT10073
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SO
28

29

36
30

AY

AN

12
34

AOD

TF (L.GT.2) CALL INTERP(E{1-2,1),V(L-2,NS),4,B(L,N),VS(L,1),VP(L,1)
,» TRUT.)

IF {(NRIT.EQ.1) GO TN 28
WRITE (6,501) L,R(L,1),7V{L,0S),VP{L,1)
FORMAT (1X ,B8HNUATON=1,3H L=,I5,3H R=,F10.5,3H ¥=,814,.7,3HVP=,F10.5)
RSVP (LY = (R{L, 1) *%2.0)*YP(L,1)
50 30 J=1,LMAF
BC 30 K=1,LMAF
IF (IABS (J-K).GT.1) GO IC 36
IF ((K+J+1)/2LT.{FLOAT(K+J+1)/2.0)) GO TO 35
00 29 1=1,LP
 (L)=RI {L,K,1) *BF(%,J,1)*RSYP(IL)
CALL TNTEGR (Y,R{1,1) ,KMAX (1)-1,ICHG(1,1),3,3)
cALL INTERP(R{1,7) ,2,7,8S(1),AS,DUNMY,.PALSE.)
ATRT=A (KMAY {1) -1) -2S
5{K,J,1) =AINT
SUR (K,J, 1) =RT{LD,K, 1) *RF (LD, J, 1) % (RS (1) **2.) * (V (LD, NS) -¥C)
5T (K,J,1)=S (K,J,1)+SUR{K, J, 1
5C TQ 30
ST (K,J,1)=0.0
CONTINUE
IF (NYGO.EQ.2) GO TO 93
Dg 90 N=1,NAT
JU (N) =NEQ(N)
IF (NEQ(N).EQ.0)NU{N)=N
pC 91 N=1,NAT
IP (NO (N).EQ.N) KI{N)=1
[F(NU{N) .EQ.N) KB(N)=1
IF (N.LE,NUATGM) GO TC 91
DO 92 I=1,NUATOM
IF {NU (N).EQ.TI) XB (I}=KB(I)+1
IF {NU (MN) .50.I) KI (N)=KB(I)
CONTINUE
IRITF {£,602)
"ORMAT (1X, SHNATOM, 3X, 2HNU, 2X, 3HNEQ,3%,2HKT)
JRITE (6,601) (J, N0{J),NEC(J) ,KI(J),J=1,NAT)

0OPT10109
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0PT10111
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0PT10114
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0PT10128
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601 FCRMAT (1X,41I5)
93 KE=NXGO

IF (NRIT.EQ.1) 50 TO 607
ARITE (6,53) NDIM,NDG
FORMAT {1X,5HNDIN=,15,5H NDG=,I5)
ARITE(6,54) (XC(N),N=1,8DIM)
FORMAT (1¥X,10HSY HY COEF=,10F10.5)
DC 600 N=1,NDIN
[F{NRIT.EQ.1) GO TO 608
IRITE(6,52) LN(N),NMNS(N)
PORMAT(1X,3HLN=,I5,58NES=,I5)
NMO=NMS (N)
DO 600 I=1,NHQ
IF (NRIT.EQ.1) GO TO 505
YRITE (6,55) HN (I,N),IN{I,N),NATCM{I,N),CN(I,N)
FORMAT (1X ,3HMN=,15,4H I¥=,I5,7H NATOH=,I5,4H CN=,F10.5)
IF (BN(I,N).EQ.0 AND. IN(TI,N),EQ.1) MVN(I,WN)=1
IF (MN (I,N).NE.O .AND.IBS(I,N) .EQ.-1) MVN(I,N)=2%HN(I,N)
[F (MN(I,N).¥E.0.AND.IN{I,N).EQ.1) MVN(I,N)=2%UN(I,N)+]
“ONT INUE
DC 606 N=1, NDIN
IMO=NMS {N)
LET=LN (N) +1
20 606 XK=1,NMQ

TTA=NATQU(RK,N)
TIT=KI (KTR)
qY NT =MVN(KX,N)
NUE=NU {KTA)
I? {KK.EQ.1) CI(XIT,MVNT,LNT,NUE)=CI{KIT,MVNT,LNT,NUE)+CN(K,N)
*XC (N)

IF (KK. TQ. 2) CF {KIT,MYNT,LNT,NUE)=CF(KIT,MVNT,LNT,NUE)+ClN(X,V)
1 *YC (NM)
CONTINUE
[F (N¥GO.E0Q.2) GO TO 94
RI TURN

%,Y,7 POLARIZATION OF 7 FILLD
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DC 20 IX=1,3
DO 20 TI=1,NUATOM
LMAP=LMAXY(I)+1

DO 20 J=1,LMAF
DO 20 JP=1,LMAF
IF (IABS{J-JP}.GT.1) GO TO 19
[F ((J+JIP+1)/2 LLT.FLOAT{J+JP+1)/2.0)GOTO19
SUNC=0,0
MF= (2%) = 1
DC 17 M=1, HF
30MB=0.0
MPF= (2%JP) -1
DO 16 #P=1,MDF
SUMA=0.0
KBF=KB (I)
J0 15 KJ=1,KBF

SUNA=SUNA+CF(KJ,MP,JP,I)*CTI(KJ,H,J,I)
SUMAF {(MP}=SUMA*I1P (MP,¥,JIP-1,3-1,IX)
RIPT=I1E(MP,¥,IP-1,3-1,TX)
SUMB=SUMB4+SUMAT(UP)
SHMBF{M)=SUMB
SUMC=SDMC+SUMBF(M)
ZUM {IP ,J,I,IX) =SUNC
30 TO 20

ZUM (IP, J,T,IX)=0.0
“CNTINUE
DO 23 I¥=1,3
ZUB1=0.0
YO 22 TI=1,NUATOH

LMAP=LMAXN(I)+1
DO 22 JI=1,LHUAF
DC 22 JP=1,LMAF

 RITE (6,50) JP,J,I,IX,20M(IP,J,I,IX),JP,J,1,5%(J,Jp,T)
&gt;0 FORMAT {(1X,4PZ0M ,41I3,2H =,710.5,3HST ,3I3,2H =,F10.5)
22 ZUM1=ZUM14201{JIP,J,I,IX)*ST(J,JP,I)
23 ZUMP {IX) =20 Nj

a4

3
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ZUMPS=0.0
DO #0 IM=1,3

70 MPS=ZUMPS+ZIED(TH)%*%2
WRITE (6,528) XSYNF
FORMAT (1X, 'XSYMF !,T8.14)
SREL=ZUMPS/ (EI-EF)** 4
PABS=(#4.0/3.0) *PREL¥XSY KF
¥ CSC=PABSH* (EF-ET)
DO B22 KC=1,2
TC 815 I=1, NUATOM
LMAP=LMAXN (I)+1
LY=KHAY {I)
LP=KMAX {I)-1
“D=KDPLACT(I)
0 (1) =0.0
DO 815 J=1,LMAF
pC 810 Ry=1,1%
IF (KC.EQ.1) Y (KM)= (RI {KM,J,T)*R(KM,I))**2
IF (KC.FQ.2) Y(KM)= (RF (KM,J,I)*R(KN,T))%*2
CONTINDE
IF (I.GT.1) GO TO 813
CALL INTEGR {Y,R (1,1) JKMAX {1)-1,ICHG(1,1),A,3)
"ALL INTERP{R{(%{,1),A,7,BS{1),AS,DUNMY,.FALSE.)
IADFS=A(KMAX(1)=1)=AS
30 TO 814
CALL INTEGRIY,R(1,T),LP,ICHG(1,I),2,1)
CALL INTERP{R(LD-3,I),2{(LD-3),6,RS(I),RADFS,DUMNY,.FALSE.,)
MFP=2%J-1
CRT=0.0
oC 811 M=1,MF
IF (KC.EQ.1)CRT=CRT+CI(1,M,J,T)*%2
IF (RC.TF0.2) CBT=CRT+CF (4,M,J,I) #2
CONTINUE
YAM {T,J) =CRT*RAD FS

815 G(I)=0(I) +CRT*RADFS
308 WRITE (6,820) XC. (I,0(I)»I=1,NUATOM)

ERS

0

oPT10217
NPT10218
0PT10219
0PT10220
0PT10221
0PT10222
OPT10223
0PT10224
0PT10225
DPTI10226
OPT10227
0PT10228
DPT10223
OPT10230
OPTI10231
OPT10232
0PT10233
OPT10234
0PT10235
OPT10236
DPTI10237
OPT12238
oPT10239
OPT10240
OPTI 0241
OPTI0242
OPT10243
OPT10244
OPT10245
DPT10245
OPT10247
oPTI0248
OPTI0249
OPT1025D
OPT 10251
OPP410252 N

(5)



320

R23
822
821

1

32
43
ni

46
15

[177

18

49
N27

FORMAT (1X, 6HSTATE=,I4,4(140,I2,1H=,F8.4))
DC 822 I=1,NUATON
LYAF=LMAXN{I)+1
DO 823 J=1,LHAF
JAKE (J) =J-1
WRITE(6,821) KC,I, (JAKE (J),QA¥ (I,J) ,d=1, L¥ATF)
FCRMAT (1X ,6HSTATE=,I4 ,58ATON=,T4,5(2H0L,I2,18=,F8.4))
ARITE(6,41) BI,EF
FORMAT (1X, 15SHTRANSITION FROMY,F10.5,11HRYDBERGS TO,F10.5,

S8HRYDBEFGS)
DO #45 T¥=1,3
IF (IX.FC.1) HRITE(6,U42)
IF (IX. EQ.2) WRITE (6,43)
[F (IX.EQ.3) WRITE(6,44)
FORMAT(1X,32HTRANSITTON
FORMAT (1X ,32HTRANSITICN
TORMAT{1X,32HTRANSITTON
IRITE (6,46) ZUMP (IX)
PORMAT(4¥,E14.6)
CONTINUE
FRITE{6, 47) PREL
FORMAT {1X,32HRELATIVE TRANSITION PROBABILITY=,E14.6)
IRITE (6,48) EABS

FORMAT {1X,33HABSOLUTE TRANSITION PROBABILITY= ,F12.56)
ARITE (6,49) XOSC
FORMAT(1%,2030SCILLATORSTRENGTH=,F12.5)
CONTINUE
AETURN
IND
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I1P SUBPROGRAM FOR GAUNT INTEGRALS
REAL FUNCTION I1P{M3V,M1V,J3,31,IX)
ROUTINE WRITTEN BY LOUIS NOODLEMAN
DATA PI/3.1415927/,PI4/12.566371/
~CMPLEX XSIN,XSTNC,CMBLX,CONJG,TINT1,TINT3,A1(3)
XSIN= (0.,1.)
{SINC=CONJG (SIN)
DO 7 K=1,2
IF {K.E0.1) MV=M1V
IF(K. EQ. 2) MV=M3V
IF { {MV~ (MYV/2)*2) .EQ.1) GO TO 2
IN=MT/2
IN=-1
30 TO 6
IN=1

MN =(MV=1)/2
IF (K. EQ. 1) MN1=MN
IF (K.E0.1) IN1=IN
[F{K.E0.2) HN3=uN
IF {K.T0.2) IN3=IN
CCNTINUE
0 15 K¥=1,3
4Y=KX~2

A1T(EX)= (0.0,0.0)
DC 14 J=1,2
DC 14 JJ=1,2
IF {J.EQ.1) GO TO 10
ART 1==HN1
IF (IN1.EQ.1) TINT1=CMPLX{ (-1.0) **uN1,0.0)
[F(IN1.EQ.=1) TINTI={(=1)%%MN1)*xXSIN
TF (MET. ®0.0) TINTI={0.0,0.0)
30 TO 11
INT 1=MN 1
IF (IN1.EG.-1) TINT1=XSINC
[F{IN1.EC.1)TINTI={1.0,2.9)
IF (MN1.70.0) TINTI={(2.%%0.5)%({1.0,0.0)

/

1

i

I1P 0001
11? 0002
I1p 0003
I1P 0CO4&amp;
I1P 0005
I1p (G06
1p 3007
Iip 0008
I12 0009
112 0010
Ii? 0011
I1P 0012
Tip 0013
I1p 0014
I1P 0015
I1P 0016
I1p 0017
I1® 0018
I1? 0019
Ip 0020
I1p 0021
It? 0022
I12 0023
I1P 0024
12 0025
I1P 0026
Ip 0027
T1Pp 0028
I1r 0029
I1p 0030
I1p 0031
I1P 0032
I1p $033
1p 0034
1p 0035
I9p (00386

A
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TF (JJ.F0.1) GO TO 12
MNT 3==YN 3

IF (IN3.50.7) TINT3=CHMPLY{(-1.0)%%NN3,0.0)
[F(IN3,E0.-1) TINT3= ((-1)%%HMN3)*XS INC
IF (MN3.20.0) TINT3=(0.0,0.0)
3C TO 13
MNT 3= MN 3

[F(IN3.80.1) TINT3=(1.7,0.0)
TF (TN3.7Q.-1) TINT3=XSIN
IF (UN3.EL.D) TINT3={2.%%90.5)% (1.0,0,0)
CONTINUE
LR=MNT1+¥%
IF (MNT3.NE,LK) GO TO 14
AT (XX) =21 (XX)+({PT/3.)30.50)*TINTI*TINT3*CGC(JT,1,I3,M71,HX)

 CGC (T1,1,32,9,0) SORT ({2.%I1+1)%3,/(PT4% (2,%J3+1)))
CONTINUE
CCNTINDE

[F{TX. 20. 1) T1P=(2.%%0,5)%REAL(A1{3))%(-1.)
IF(IX. 50.2) I1P=(2.%%0,5)2ATHAG (AT1{(3))%(-1.)
IF{IX.®0.2) T1P= REAL (311{2))
IETIRYN
TED

112 0037
T1P 0038
I1p 0039
I1p 00490
119 40d
I1p C0042
I1P 4043
Tip 0044
I1p 0045
I1P 0045
I1P 0047
I1P 0048
112 0049
I1» 0050
1p 0051
Iie 0052
I12 5053
I1p 0054
I1P 0055
I1Dp 0056
112 0657
I1p 0058
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SCATTERED WAVE NON-SELF CONSISTENT FPIRLD PROGRAM

SCATTERED-HAVE MODEL FCF POLYATOMIC MOLECULES AND CLUSTERS
PROGRAM WRITTEN BY F. C. SMITH, JR. AND RK. H. JCH¥SON, M.I.T.
NON-SELF-CONSISTENT SPIN-UNRESTRICIED MAIN PROGRAHN
CALCULATES ONE-ELECTRON ENFRGIES FOR GIVEN NUMERICAL POTENTIAL
ISED TO START SCF CAICUIATICN
A1I ELECTRONS OR FROZEN CORES
THIS VERSION DIMENSICNED FOR 18 CENTERS (INCLUDING ATOMS, OUTER OR
YATSON SEHERE, AND INTERATOMIC SPHER®S), PARTIAL-WAVE LMAX=6 PER
PATR OF ATOMS, 10 DIFFERENT ATOMS (WITH A TOTAL OF 26 DIFFERENT L
YALUES) , 2 DIFFERENT INTERATOMIC POTENTIALS, A 28X28 SECULAR
MATRIX, AND A MAXIMUM OF 24 COMPCNENTS PER BASIS FUNCTION.

CCMMON/STATE/CN (24,28), HN (24,28) ,IN (24,28) ,NATON (24,28) ,1LN (28),
1 NMS{28),IMIN(28,18),IMAY(28,18),NLEQ{18),KTATI{18),NNS,ICORE,

&gt; NUATOM,NDG,NLS{18),N0L(18) ,N0 (18) ,NTERUS(18),LMAXN(18),NDIH
COMMON /PARAM/VCON, XE, EV, IOUT, KONSH, NOUT, NAT, NDA T, NSPINS,

| WACORE,RADICN,QION, FAC1,PXFACO,RS(18),%XV(18),YV(18),2Y{18),2{18)
2 ,EYFACT{18) ,LMAXX{18),NZ(18),NSYMBL(18),HEQ(18),LCORE(18),KION
COMMON/FCNR/H (10) ,VCONS (2) ,R{200, 10) ,V (200,20) ,ICHG (10,10),

| KPLACTZ(18),KNAY(18)
COMMON JOP /NSPINA,NSPINB,NLP1,NLP2,NREP1,NREP2,NIRREP
DIMENSION P{200,26),PS{26),DPS(26),%C(28),%A{28),RANF(28),0{18)
DIMENSION XCT (28), XCF (28)
IPR=1
IPU=0
NEMAX=12
'HRESH=1.E-5
I0DT0=0
RCNSH=1
CALL INPHT
IF{IOUT.EQ.C) GO TO 302
IPR1=3
IPU1=0

TF (IOUT.EQ.2)TIPU1=3
CALL OUTPHT (XC,IPR1,IPU1,PS,DPS,P,E,RANT)

NSCF0O01
NSCPDOQ02
NSCF(O003
NSCFOGO4
NSCFOGO5
NSCFC0086
NSCTFGO007
NSCFOGOSB
NSCFO009
NSCPO010
NSCFO011
NSCFOD12
NSCF0013
NSCFPLO014
NSCFO015
NSCFO0016
NSCFO017
NSCF(0018
NSCF0019
NSCF00295
NSCF0021
NSCF(022
NSCF0023
NSCFL024
NSCFL025
NSCF{0028
NSCF0027
NSCF(028
NSCF0029
NSCFO0530
NSCFOC31
NSCFO032
NSCFCO033
NSCF0034
NSCF0035
NSCPRO035 No
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TOUT=TOUTO
NIP1=0
NLE2=0
“ALL SETUP

FCRMAT (1615)
READ [5,103) ID,NNS,DF,FEAX,3IMIN,ICORE,NXGO,NRIT,XSYM?P,NIRRED
PCRMAT (2I5,3F10.2,2I5,510.5,1I5)
TF{ID.GT.0) GO TO 5
IF (NNS.EQ.0) GO TO 4
IF{NNS.EC.1)GO TO 202
[F(NNS.FQ.2) GO TO 140
2FAD (5,100) IOUT,IPR,IPU,NEMAX,VTHR
IO UTA=T0UT

TARESH=10.,%% {-NTHR)
TF (NTHR. 20.0) THRESH=1.F-5
IF (NEMAYLED.0) NEMAX=12
30 7) 127

IF (NYGO.FC.7) NSPINA=NNS
IF (NXG0.5Q.2) NSPINB=NYVS
IF (NXGC.FQ.0) GO TO 128
TF (NIRREI.EQ.Q) GO TO 128
[F (NXGO.T0.2) GO TO 8
SRET1=NT FRED
DO 6 M=1,NIRRED
 RITE {9) NDIK,NDG
WRITE {9) {LN (¥),NHS (N),8=1,NDIM)
DC 7 N¥=1,8DTW
NUN=NMS (¥)
4RITT(S) {CN {I,N),8N{T,N),IN(I,N),HNAICH(I,N),I=1,NNH)
IF (M. EQ. NTRPFP) GO TO 1283
CALL SETUP
3C TO 128
NREP2=NIRBEP
DC 9 ¥=1,NTREED
RITE (10) NDIN,NDG
WEITE (10) {(LN{N),NMS(¥),N=1,NDIM)

102
160
127
103

7
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NSCFO064
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NSCFO066
NSCF0067
NSCFONAS
NSCPOO069
NSCFOOT0
NSCPO0T1 no
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A015
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DO 10 N=1,NDIM
NHN=NMS (NV)
FRITE(10) (CN({I,N),MN(I,N),IN(I,N),NATOM(I,N),I=1,NEN)
IF (M.EQ.NIRREP) GO TC 128
CALL SETUE
IF (NNS.EQ.0) N¥S=1
JCON=VCCNS (NNS)
CALL TIMING {ICPU,IEXCP)
WRITE (6,100) ICPU,IEXCP
~ALL EIGEN {NEMAX,ID,DE,PMAX,EMIN,THRE¥SH,P,XA,PS,DPS,E,RANF)
IF (ENAX.5Q.0.0.AND,ENIN.EQ.O0.0) GO TO 304
IRITE(6, 101) E
FCRMAT {/30X,' FINAL ENERGY=',1PE16.7)
IF{IPR.EQ.0,AND.TIPU.EQ.C)GOTC304
LC {1)=XA{1) /RAMF (1)
{CMAY=XC{1)
DO 4013 N=2,NDIN
YC (N) =X3 (¥) /BAMF{N)
IF{ ABS {XC (N)).L®., ABS (XCHAX
XCMAX=XC (N)
CONTINUE
IF (XCMAX.EQ.0.D) GC TO 4015
DO 4014 N=1,NDIM
XA {N)=X2a {N) /XCMAX
XC (N)=XC(N) /XCHAYX
FY=E-YCCN

CALL NRMLIZ(P,XC,¥A,Q,0INT,PS,DPS5,RANF)
CALL DUTPUT(XC,1,0, £ES,DPS,P,E,¥XA,0.D)
ZALI, TIMING (ICPU,IEXCE)
ARITE (6,100) ICPU,IEXCP
CALL OUTPUT (XC,IPR,IPU,¥S,DPS,P,E,¥%3,0.0)
[F (NXGD.EQ.0) 60 TO 304
JC 14 N=1,MNDIH
[P{NXGO.ED.1)XCI (N)=XC(NV)
IF (VYG0.FQ.2) XCF (N)=XT (N)
[IF (NXG0.EQ.2) REWIND 10

NSCFOO073
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IT {NXGO0.F0.2) GO TO 17
TF{NIRREE.EQ.0) GO TO 12
REFRIND 9
N1Lp2=0
NLP 1=NLP 1+
NY¥GO=1
READ {9) NDIM,NDG
READ {9) {IN (¥), NMS (N),N=1,NDIM)
DC 13 N=1,N¥DIN
NMN=NMS {N)
READ (9) {CN(T,N),MN(I,N),IN{I,N),NATOM(I,N),I=1,NHN)
DO 15 N=1,NDIN
XC {¥)=XCI (IM)
G0 TO 12
NYG 0=2
VLP2=NLPZ+1
READ (1G) NDBIM,NDG
READ (10) {LN (N),NHS (N),5=1,NDIHM)
DC 16 N=1,NDIW
NMN=NHS (NV)
READ (10) {CW (I,N),¥N(I,E),IN{I,N),NATOM(I,N),I=1,NHN)
DC 19 N=1,NDIH
XC (N)=XCF{N)
CALL OPTIK(XC,¥,NXGO,NRIT,X0SC,YPROB,2,XSYMF)
IF {NTRREP.EQ.0) GO TO 304
IF (NLP2,E0.0.AND. NLP1.F0.1) GO TO
IF {NLP2.1T.NREP2) GO TC 17
IF {NLP1.EC.NREP1) GO TO 304
[F{NLP2.EQ.NREP2) REWINT 10
IF {NLP2.EQ.NREP2) GO TC 18
3C TO 127
STOP
END

nN
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OPTICAL PROPERTIES SUBROUTINE{FOR USE IN NSCF PROGRAN)
SUBROUTINE OPTIXK (XC, E,NZGO,NRIT,XOSC,PABS ,JCONTR,XSYHF)

=~ OPTIK ROUTINE YRITTEN BY LOUIS NOODLEMAN

CCHMMON/STATE/CN (284,28) ,MN (24,28) ,IN (24,28) ,NATON (24,28) ,LN (28),
1 NMS (28) ,IMIN{28,18) ,IMAX (28,18) ,NLEQ(18) ,KTAU (18) ,NNS,ICORE,
2NBAT , NDG,NLS(18) ,NOL (18) ,NO (18) ,NTERMS (18) ,LMAXA {18) ,NDI¥
COMMON/PARAM/YCOW,XE,EV,I0UA ,KOUSW,NCUT,NAT,NDAT, NSPINS,

1 NACORE,RADION,QION,FAC?T,EXPACO,RS{18),XV{18),YV{18),2V(18),ZP{18}
2 ,EXFACT{18) ,LMAXX (18) ,NZ (18) ,NSYMBL (18) ,NEQ (18) ,LCORE (18) ,KTION
COMMON/FCNR/H (10) ,VCO¥S (2) ,R{200,10) ,V{200,20) ,ICHG(10,10),

1 XPLACE{18) ,KMAX {18)
COMMON/BTSSEL/SBFC{7),DSBFC{7),SNFC{7),DSNFC(T)
JOMMON/0P /NSPINA,NSPINB,NLP1,NLP2,NREPT,NREP2,NIRREP
RFAL CI{6,9,5,10),C*(6,9,5,190),RI (200,5,5),RF(200,5,5) ,SUMAF (9),

1SUMBF (9) , ZUM (5,5, 10,3) ,2UMP {3) ,RV (200,10) ,RSVP (200) ,BVP (200,10),
2Y {260),5 (5,5,10) ,SUR{5,5,10),ST{5,5,10),A{200),VP(200,10),
3¥5{290, 10) ,I1P,0(10),QAM{10,5),XC(28)

INTEGER LMAXN(18),KB (10) ,MVW {24,28) ,KI (18) ,NU(18) ,JRKE{(DS),
' TMAXNT (158)
DO 4 ¥=1,10
po 4 KL=1,5
DO 4 M=1,9
DO 4 ML=1,56
TF(NXG0.EC.1) CI{(ML,M,XL,K)=0.0
IF (NXG0.EQ0.2) CF {ML,¥,¥1,X)=0.0
[F{NLP1.6T.1 .OR.NLP2.GT.1) GO TO 93
I5STM=0.0
nC 609 JKP=1,7
SBFC (JKR)=1.0
DSBFC (JKR) =1.7
SHFC (JER) =1.0
DSNFC (JKR) =1.0
IF{NRIT.EC.0)NRIT=1
I? (NXG0.EDQ.1) EBI=E
IF (¥XG0.EC.2) EP=E
NUATOM=NDAT
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IF (NXG0D.F0.2) UC=VCONS(NSPINB)
DO 2 NN=1,NAT
IF (NXGO0.EQ.1)LMAYNT(NN)=LMAXA(NN)
TF {NXGO.EC.2) LMAXN (NN)=MAXC(LMAXNT (N¥N),LNMAXA (NN))
IF (NXGO.EQ.1) GO TO 603
LC 504 NN=1, NUATOM
DO 504 JE=1,2
IF (JK.50.1) NS=NH+ (NSPINA-1)*NUATOM
IF {JK. TQ. 2) NS=1N+ (NSPINE-1)*NUATCH
TOUT=1
IF (EN.EC.1)I0UT=2
KY=KMAY (NN)
NL MA D=LHAXN{NN)+1
DO 503 1VAL=1,NLMAP
L=LVAL-1

7=FLOAT{NZ{NN})
IF (JK.EQ.1) CALL THAT({L,EI,RS(NN),KMAX(NN),Z,H(NN),R{1,¥N),

1v{1,NS) , ICHG {1,NN) ,I0UT ,KPLACE (NN) ,RI{1,LVAL, NN), STMAT, PS,DPS,
2RAMF)
IT (JK. E0.2) CALL THMAT(L,EF,RS(NN),KMAX(NN),Z,H{NN),R{1,N0),

1v (1, NS) , ICHG (1,N¥) ,ICOT,XPLACE (NM) , RF (1, LVAL, NN) , STMAT,PS, DPS,
IRA MF)
CONTINUE
IF {(NRIT.EQ.1) GO TO 504
WRITE (6,506) NN,JK
FORMAT (1X ,7HCENTER=,I4,6HSTATE=,IU)
DO 510 1S=1,KY
IF {JK.2Q0.1) WRITE (6,505) LS,R{LS,NN), (RI(LS,LVAL,NN)

1 ,LVAL=1,NLNAP)
TF (JK.EQ.2) WRITE (6,505) LS,RI{LS,NN), (RF{LS,LVAL,NY)

1 ,LVAL=1, NLMAD)
505 FORFAT {1X,I8,6 (4%,E14.7))
510 CCNTINDE
50% CONTINUE

53C 13 I=2,NUATON
NS=T+ (NSPINB-1) *NUATCH

/
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LMAT=LNAXN {I)+1
LY=KMAX (I)
LP=KMAYX (I) -1
ID=KPLACE(I)
DO 8 KM=1,1Y
RV (KM,TI)= R{(KM,T)*V(KM,NS)
DO 9 L=1,LP
IF (L.LE.2) CALL INTERP(5(L,I),RV{(L,I),4%,R(L,I),DURNY,RVP(L,I),

1 TRUE.)
IF {L.GT.2)

1CALL INTERP{®{L-2,I),RV{L-2,T),4,R(L,I),DUMMY,RYP(L,I),.TRUE.)
RSVP (L)=R (L,I) *RVYP{L,I)-RV(L,I)
IF (NRTIT.% 0.1) GO TO 9
FRIT® (6,500) I,L,R(L,I),RV(L,I),RVP{L,I),V{L,NS),RSVYP(L)
FOFMAT (1X, 7THNUATOM=,I5,2HL=,1I5,2HR=,F10.5,3HRV=,F10,5,4HRYP=,

| ¥10.5,39 v=,E14.7,6H RSYP=,F14.7)
CCNTINUE
DO 13 J=1,LHUAF
pO 13 ¥=1,LHMATF
IF (IABS {J-X).GT.1) GO TO 12
IF {{R+J+1)/2 .1T. FICAT(K+J#+1)/2.0) GO TO 12
DO 5 L=1,LP
Y (Ly=RI{L,X,I)*RF(L,J,I)*RSVP{L)
CALL INTEGR(Y,R(1,I),XMAX(I)-1,ICHG(1,I),A,1)
CALL INTERP (R{LD-3,T),2{LD-3),6,RS{I),ASA,DUMNY,.FALSE.)
S{X,J,I)=ASA
SUR {K,J,I)=RI{LD,K,T)*RF{LD,J,I)*(RS{I)**2)*{VC-V(LD,NS))
ST{K,J,I)=S{K,J,I)+SURI{(X,J,T)
30 TO 13
ST (K,J,I)=0.0
CONTINUE

LMAF=TMAXN(1)+1
LP=K¥AY(1)=1
ID=KPLACE(1)
NS=1+ {NSEINB-1) #NUATON
nn 28 T=1.LD

2

500

~
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501
28

29

36
30

603

a0

92
91

IF {(L.LE.2) CALL INTEERP(®(L,1),Y(L,NS),4,%R(L,1),YS(L,1),YP{L,1),
| «TRTUE.)
IF{L.GT.2) CALL INTEREB{5{L-2,1),V{(L-2,N8),4,R{L,N,YS(L,1),YP(L,7)

1 ,.TRUE.)
IF (NRIT.EQ.1) GO TO 28
SRITE(6,501) L,2{L,1,V{L,NS),VP(L,1)
FORMAT (1X,8HNGATON=1,3H L=,15,38 R=,F10.5,3H V=
RSYP(L)= (RB{L,1)*¥2,0)%*VP(L,1)
30 30 J=1,LMAF
BC 30 K=1,LMAF
IT (IABS (J-¥).GT.1) 60 TO 36
IF {{(X+J+1)/2 .LT. (FLOAT {K+J+1),2.0)) GO TO 36
DO 29 1=1,LP
Y (L)=RI(L,%,1) *R¥(L,J,1) *RSYP(L)
CALL INTEGR{Y,R(1,1),XMAX(1)-1,ICHG{1,1),4,3)
CALL INTERP{(R{1,1) ,3,7,RS{1),AS,DUMHY,.FALSE.)
AINT=A(XMAX(1)-1)-AS
S(K,J,1)=ATINT
SUP {K,J,1)=RT {LD,K, 1) *RF{LD,J, 1) * (BS (1) £%2,)* (V (LD, NS)-VC)
ST {K,J,1)=S (K,J,1)+SUR {8,J, 1)
30 TO 30

ST{K,J,1)=0.0
CONTINUE
I® (NXGO.FC.2) GO TO 93
DC 90 N=1,NAT
NU {N) =NEQ(N)
IF (NEO (NM). EQ.0) NU (N)=N
DO 91 N¥=1,NAT
TF(NT(¥).EQ.N) KI (N)=1
TF (NU {N).50.%) KB(N)=1
IF (N.LE.NUATON) GO TO 91
DC 92 I=1,NUATOH
IF {NU(N).EQ.I) KB(I)=KE(T)+1
IF {NT (¥) .EQ.TI) KI (N)=KB(I)
CCNTINUT

KRITZ (6,602)
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FORMAT {1¥,5HNATON,3X,20ND,2X,3HNEQ,3X,2HKI)
ARITE (6,601) (J,NU (J) ,NFQ{J),KI(J),T=1,NAT)
FORMAT(1X,415)
{X=NXGO
IF {NRIT.®0Q.1) GO TO 607
JRITE(H,53) NDIM,NDG
FORMAT {1X,5HNDIN=,T5,5H NDG=,I5)
ARITE(6,54) (XC{N),N=1,NLIN)
FORMAT(1X,10HSYMMCOEF=,10F10.5)
DC 600 E=1, NDIN
IF {NRIT.EQ.1)GOTO608
9EITE (6,52) LN(N), NMS (N)
FORMAT{1X,3HLN=,1I5,58NMS=,15)
NMQ=NMS {M)
nO £00 I=1,NHMQ
IF (NRIT.EQ.1) GO TO 605
ARITE(H,55) MN{I,N),IN({I,N),NATCH{T,N),CN{I,N)
PORMAT (1X,3HMN=,T5,4H IX=,T5,7H NATOM=,I5,4H CN=,F10.5)
[P({MN(I,N).E20.0 AND. IN{I,N).EQ0.1) HMYN(I,N)=1
IF {(M¥{I,N).NE.0 AND.IN(I,N).RBQ.-1) HVYN(I,N)=2%MN(I,N)
IF (UN{(I,N) .NE.O.AND.IN (I,N).E0.1) MVN{I,N)=2%MN({I,N)+1
CONTINUE
NC 606 N=1, NDIN

YMO=NMS {¥)
LNT=LN {N) +1
DO £0F K=1,880
KTA=NATCH{K,N)
XIT=RKI{KT2)
MYNT=MVN(RK,N)
NUE=NT{KTA)
IP (KK.EQ.1) CTI {KIT,MYNT,LNT,NUE)=CI(KIT,MVNT,LET,NUF)+CH(K,N)

“XC (N)
IF (KK.EQ.2) CF{KIT,4VNT,LNT,NUFE)=CF(XIT,MVNT,LNT,NUE)+CN{X,N)

*YC {N)
CONTINGE
TF (NXGO.F0.2) GO Tn

i
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RETURN
X,Y,7% POLARIZATION OF ® FIELD
58 £O 20 IX=1,3

DC 20 TI=1,NUATOH
LHAF=LHMAYN(I)+1

DO 20 J=1,LHMAF
NO 20 JP=1,LHAT
IF (TABS{J-JP).GT.1) GO TO 19
TF{(J+JIP+1)/2 .L7.FLOAT (J+JP+1)/2.0) GO TO 19
STMC=0.0
1F= (2%J)- 1
0C 17 #=1,MF
SOMB=0.0
MPF= (2%JP) -1
DC 16 ME=1, NPT
SUKLA=0.0
{BF=KB (I)
30 15 ¥J=1,KBF

SUMA=SUMA4CT(KJ,MP,JP,I)*CI(RI,M,J,T)
SHUMAF (MP) =SUMA%XI1P (MP,M,JP-1,3-1,IX)
{IPT=I1DP (MP,M,IP-1,J-%,IX)
S5UMB=SUME+SUHAF(MP)
SUMBF(M)=STMB
SUMC=SUMC+SUMBT(M)
701 (JP ,J,I,IX)=SUNC
3C TO 20

ZU (J?,d3,I,I7)=0.0
CCNTINUE
no 23 I%=1,3
7UM1=0.0
DO 22 I=1,NUATOH
LEAF=INAXN(I)+1
90 22 J=1,LHUAF
DO 22 Jp=1,LMAF
IF{NRIT.EC.1) GO TQ 22
gRITF (6,50) J0,J3,I,IX,2umM(JP?,J,I,IX),JP,J,I,ST(J,JP,I)

a
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50 FORMAT(1X,4HZUY,4I3,2H=,F10.5,3HST,313,2H=,F10.5)
22 ZOM1=ZOH1+20M (3P,J,T,IX)*ST (J,JP,1)
23 20MP {IX)=ZUM1

Z0MPS=0.0
DO 40 IN=1,3
JUNTS=Z UMES+ZUNMD {IM) *%2
WRITE (6,528) XSYNT
FCRMAT (1X, "XSYHF ',F8.4)
PREL=ZUHPS/ {EI-EF) kl
PABS={4.,0,3.0) *PREL*XSYNF
X0SC=PABS* {(EF-EI)
IF (JCONTE.ED.1) GO TO 527
IF {NTRREP.EQ.0) GO TO 522
[F (NLP1.NE.NREPY .OR. NLP2.NE.NREP2) GO TO 51
D0 822 KC=1,2
DO 875 I=1,NOUATOH
LMAF=LMAXN(I)+1
LY=KMAX (I)
LE=KMAX{T)=
TLD=KPLACE{I)
 (TY) =5.0
DO 815 J=1,LHAF
°C 810 XM=1,LY
IF {(KC.EQ.1) Y{(KM)=(RI{KM,J,I)*R(KH,I))**2
IF (KC. EQ.2) Y (KM)={RF(KM,J,I)*R{KH,I))*%2
CONTINUE
IF {I.GT.71) GO TO 813
CALL INTEGR(Y,R(1,1) ,EMAX(1)-1,ICHG(1,1),2,3)
CALL INTZRP{R{1,1) ,2,7,FS(1),AS,DUKNY,.FALSY.)
2ADFS=A (KNAX{1) -1) -AS
30 TO 814
CALL INTEGR{Y,R(1,I),LP,ICHG(1,I),2,1)
“ALL TNTERP {R {LD-3,I),A {LD-3),6,RS(I),RADFS, DUMMNY,.FALSE.)
IF =2 %J-1
TRT=0.0
oC 849 M=1, MT
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IF(KC.EQ.1) CRT=CRT+CTI{1,8,J,T)*%2
IF {KC.FQ.2) CRT=CRT+CF (1,M,J,I) **2
CCNTINUE
YAY {T,J)=CRT*RADFS
nN {I)=01{I)+CRT*RADFS
WRITE (6,820) KC, (I,0(I),I=1,NUATCH)
FORMAT (1X,6HSTATE=,I4,4 {1H0,I2,1H=,F8.4))
50 822 I=1,NUATOM
LMAF=THAXN(I)+1
nC 823 J=1, LMAF
JAKE (J) =J~1
WRITE (6,821) KC,I, (JAKE{J),QAN(I,J),J=1,LHAT)
*ORMAT {1X,6HSTATE=,I4,5HATON=,14,5(2HOL,T12,1H=,F8.4))
ARITE (6,7C0) NLP1,NLE2
FORMAT(1X,"INITIALSTATEPARTNER=',I5,'FINALSTATEPARTNER=',I5)
IRITE (6,41) EI,EF
FORMAT (1X, 15SHTRANSITION FROM,F10.5, 11HRYDBERGS TO,¥10.5,

S§IRYDBERGS)
30 45 IX=1,3
IF (IX.EQ.1) WRITE(6,42)
IF (IX. EQ. 2) WRITE(6, #3)
IF {IX.TQ.3) WRITE (6,144)
FCRMAT(1X,32HTRANSITION
FORMAT (1%,32HTRANSITION
TORMAT(1%,32HTRANSITION
ARTTE (6,46) 7ZUMP (IX)
FCRMAT (4X, E14.6)
CONTINTER
WRITE (6,47) PREL
FORMAT{1%,32HRELATIVETRANSITIONPROBABILITY=,E14.6)
iRITE (6,48) PABS
TCRMAT(1%,33HABSOLUTETRANSITIONPROBABILITY=,F12.6)
IRITE (6,49) YOSC
PCRMAT(1%,20HOSCILLATORSTRENGTH=,F12.6)
[F (NIRREP.FQ.0) GO TO 527
TF(NLP1.EC.1 LAND. NLP2.T0.1) OSTEM=X0SC

211

315
308
B20

323
222
321

51
700

 Ii
4

42
43
au

46
N5

177

11

10

0PT20253
0PT2025%
0PT20255
0PT20255
OPT20257
OPT20258
0PT20259
OPT20260
0PT2 0261
OPT20262
OPT20263
OPT20264
OPT20265
OPT202566
OPT202867
OPT20268
OPT20269
OPT20270
QPT20271
0PT20272
pPT20273
OPT20274
OPT20275
OPT20276
OPT20277
oPT20278
0PT20279
0pT20280
QPT20281
OPT20282
0PT20283
OPT20284%4
0PT20285
OPT202856
OPT20287
DPT20288

No
N
00



520

521

527

0SSUM=0SSUM+X0OSC
TF {NLP1.NE,NREP1 .OR. NLE2,NE.NREP2) 60 TO 527
 RITE (6,520) 0S5UM
FORMAT (1X,'SUM OF OSCILLATOR STRENGTHS =',F12.6)
TF(0STEM.LT. 0.0001 ©0 T0 527
FACTOR=0SSUM/OSTEN
FRTTE(6, 521) FACTOR
FORMAT {1X,'TOTAL OSCILLATOR STRENGTH/FIRST OSCILLATOR STRENGTH =!

"P12.6)
TONTINDE
RETY RY
IND

0PT20289
OPT20290
OPT20291
OPT20292
0PT20293
OPTZ2 0294
OPT28295
OPT202956
OPT20297
0PT20298
0pT20299
OPT20300

NJ
N
\™



TMAT SUBROUTINE WITH PHOTO-EMISSION OPTION
SUBROUTINF TMAT(L,E,RS,KMAX,Z,DELH,R,V,ICHG,IOUT,KPLACE,P,STHAT,

1 PS,LPS, RAMT)
C PHOIO-EMISSICN OPTION ADDED BY LOUIS NOODLEMAN

REAL*8 EKM, PX1, PX, DKM,LK1,DK,GK,GK1,GKHN
COMMON /PARAM/VCON,XE,RV,N0UT
REAL NEUO(7) ,DNEUO{7) ,BESO (7) ,DBESO (7) ,NER {7),BER (7),

1 DEER (7) ,DBER (7) ,NEMO,NERR
T-MATRIX CALCULATION FOF MULTIPLE~-SCATTERING MODEL FOR POLYATOMIC
MOLECULES. INTEGRATES RADIAL SCHRODINGER EQUATION USING NUMERQY
DOES OUTHARD INTEGRATICK FOR ATCMIC SPHERES, INWARD FOR QUTE®D
SPHERES, GIVES INVERSE CF T-MATRIX AND LOG DERIVATIVE AT SPHERF
SURFACE.

DINENSICN V({KMAX),P(KMAX),R (KMAX),ICHG (10)
CCHMMON/BESSEL/SBFC {9) ,DSBFC (9) , SNFC{9),DSNFC (9)
I1CGICAL IGCTP,ALLOW
ALLO®B=,FA1ISE,
KSTOP=1
A=T1% (L+ 1)
IGCTP=I0UT.NZ,3.,AND.NOUT.EQ.D
IF({I0UT,. 20.2) GO TO 6&amp;0
OUTWARD INTEGRATION FCR ATOMIC SPHERES

CALL PSTART{DELH,Z,L,E,¥,P(1),P(2))
ASQ=DELH**2
PKM=F (1)
PEK1=P {2)
DRU=={E=V {1) =A /R{1) *%2) *HSQO*PKH/12.
DR1== {E=V (2) -2/R (2) %%2) *SQ0*P (2) / 12.
N=1
DO 34 ®K=2,KMAX
GK={E-V {R) -A/R (K) *=%2) *HSC¢/12.
PK ={2.*%(PK1 +5,%DK1)- {(PKM-DEHM))/ (1.+GK)
PB {K) =PK
IF(IGCZT®) GO TO 50
IP (ALLOY) GO TO 51
IF{(GK.LT.0) GO TO 53

C
c
c
_
Ae

TMATO001
TMATO002
TMATO00 3
THMATCOO4
THMATO005
TMATOO00b
TMATOOO?
TMATO0OS8
TMATO009
TMATO010
THMATOC11
TMATO012
THMATOO013
TMATOO 14
THATO0T5
TMATO0 16
TMATO0Y7
THMATOO18
TMATGO19
TMATO020
TMATOC21
TMATO022
TRATO023
THMAT C024
THATOD 25
THATO026
THATON27
TMAT(CO028
TMATOO029
TMATC030
TMATOO31
TMATCO032
THATCO33
THATOD 34
THATOO035
TMATO0 36 te

Le
 Oo
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ALLOW=, TRUE.
30 TO 53
IF (GK.GE.Q) GO TO 53
IGCTP=.TRUE.
IP (IOUT.EQ.3) GO TO 54
30 TO 53
RSTOP=K+3
IF (KSTOP.EQ.ICHG(N)-1)KSTOP=ICHG(¥)
3C TO 53
[FT (K.EQ.KSTOP) GO TO 52
IF (XK. 1LT.ICHG{N))60TO30
T=N+1
9S0=4,*HSQ
DK M=U.%DKY
IK1=—4,¥GR*P¥X
EK 1=PK
30 TO 34

PKM=PK1
J¥M=DX1
DK1=—GK*PK
PK 1=PK
CONTINUE
r¥(I0UT.NE.3) GO TO 78
4RITE (6,104) B
*ORMAT(/' ERROR - LEVEL F=',B14,7,' SHOULD NCT BE A CORE LEVEL /)

STOP
DC 40 K=1,KSTOP
2 {K)=P (X) /R {(X)
ZSPOP=KSTCP-6
~ALI, INTERD (BR {XSTOP) ,P {KSTOP),7,R{KST0P+3),PS,DPS,.TRUE.)
PS=P {KSTOP+3)
INWARD TNTEGRATION POR OUTER SPHERE
ACDITIONAI SEQUENCE ECR FHOTOEMISSION OPTION
v=11
[F (E.GT.0.0) GO TO 181
N=N-1

31

513

30
33

2 0

24

1D

52
10

~ 0

51

THATOC37
THATCO38
THATO039
TMATOO4O
THATOOU
THATOO42
TMATOCH3
TMATOO4Y
THMATONUS
TMATOOH46
TMATOO4T
TMATOOHUS
TMATOO49
TYATCO50
TMATO051
TMATOO0D2
TMATOO053
TMATOOSY
TMATO055
TMATOO5S6
TMATCG57
TMATOOC58
TMATGO059
THATO060
TMATOCE
THMATO0H2
TMATODA3
TMATOO64
TMATO065
THAT(C066
THATOO0RT
THATO068
THATO069
TMATO0T7D
TMATOO071  nN

 Ww
[TY



KN=ICHG {N)
IF {KN.GE.KMAX) GO TO 61
TF (KEN.LF.0) GO TO 61
IF (N.EQ.0) GO TO 66
KN=KMAX
30 TO 62
TN=ICHG {M)
N=N-1
IF{N.%0.0) GO TO 66
IF { (V{KN)-F)*R(KN)#*2+A-2400.)63,63,64
[F(KN.GT.3) GO TO 63
=1
RN=ICHG (2)
HSQ=DELH**2k4%XY
PRM= EXP {= SORT ({V (KN) -TF) *R (KN) *%*2+2))
DKH=- (B-V (KN) -A/R (KN) *%2  )*PKM*HSQ/12.
P (KN) =PRH
PK 1= EXP (- SORT {V(XN-1)-%)*R(KN-1)%*2+1))
EP {XKN-1) =PK1
IK 1=- (E-V {EN-1) ~4/R {KN=-1) *%2) *HSO*PK1/12.
R=KN+1
ITF (K.GT.XMAX) GO TO 79
0 76 I=K,KHAX

 BP {I)=0.
K=KN~-1
K=K—-1
3K= (E-V {K)-A/R {K) *%2) ¥HSQ,/ 12.
2K  ={(2.% (PK1  +5.%DK1)- PKN+DKH) /(1.+GK)
P (RK) =PK
IF (IGCTP) GO TO 71
IT (ALLOW) GO TO 56
IF (GK.1T.0) 80 TO 71
[F{L.FQ0.0) GO TO 59
ALLO=.TRUE.
5C TO 71

IF (GK. GE.() G0 TO 71

34

52
3

2

76
79
73
74

 =

Sh

THATOQT3
TMATOO74
TMATO0T5
THMATOCT76
TMATO0T77
THATOL78
THATOO079
THMATOOBD
TMATOOB1
TMATO082
THATOD83
THMATOCBY
THMATOO8S
TMATOC86
TMATOO87
THATOOBS
THATCO89
THATC09D
TMAT O09]
TMATCO092
TMAT 3093
TMATONO94
TMATOO095
TMATO098
TMATO097
TMATDOSR
THATC099
THATC100
THATO101
TMATOY02
TMATO103
TMAT O04
TMATO 105
TMATO106
TUATO 107
THMATO1I08

d
»

 |
3



59 IGCTP=.TRYUE.
IF(E.GT.0.0) GO TO 77
co TO 71
[F{K.EQ3.KSTOF) GO TO 78
IF (N.EQ.0) GO TO 65
IF (K.GT.ICHG(N))GOTO65
IF{K.1E.2) GO TO 75
y=N-1
DE=~-PK *GK
SK1= (E-V (R-2) -A/R {R-2) ¥%2) *HSQ/12.
PK1={2.% (EK #5.%DK)- PK1  +DE1)/(1.+GK1)
1K1=-PR1*¥GK1/4.
HSQ=HSC/4.
3KM= {B-V {K=1)=-A/R(K-1)*32)*¥HS50/12,
DK=DK/4.
DK =0.5%{{PK-DK)+(PK1-DK1))/{1.~5.%GKHN)
DKM=-PRKN*GKHN
R=K-3
P(K+2)=PKH
IF {(X+1 .LT. X3TOP) GO TO 78

 Bp {K+1)=PK1
TE{K+1 .EBC. KSTOP) GO TOC 78
30 TO 78 \

PEM=PKT
DEKM=DK1
DK1=-PK *GX
PK1=PK
GO TO 73

FRITE(6, 103)
STOP
FORMAT (18H ERROR STOP - THAT)

N=N-1
IMAY=50
ZN=TCHG (X)
IF (KN. LT. FMHAY) GO TO 105
J=M-1

 yy 1

38

75

{C3
1IR1

1_]N

THATO109
THATO 110
THATOT191
TMATO 112
THMATO113
TMATO114
TMATO 115
THATO116
THATO 117
TMATO118
TMATD 119
TMATO0120
TMATO 121
TMAT0122
TUATO123
TMATH 124
TMATO125
THMATO 126
THATO127
TMAT( 128
TMATO129
TMATC130
THMATO131
THATO132
TMAT0133
TMAT(C13%
THATO 135
TMATO135h
THAT 137
THATO138
TMATO139
TMATO140
THATO 14
THATOI42
THATOI43
TMATO 144
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 Ww
ww)



105

D6

18

77
(77

)

30 TO 180

YEP=SQRT(E~-V{MHAY))
ARG 1=XEP#R {MMAX)
LP=1+"1
LV=MAX0 (LE, 3)
CALL OSNF {2RG1,¥XEP,LVY,XEIC,DNETO)
~ALlL OSBF(ARG1,X®P,LY,BES0,DRBESO)
NENMQO=YNEUC {LP)
BFMO=BESO (LD)
YDMAX=MMRAX-2
DC 106 I=MDMAX,KHAX
IF (T.GE.MMAX) P{I)=0.0
IF (T.GE.BEMAY) GO TO 106
ARGZ2=XEP*R {I)
CALT OSNF(ARGZ,XEP,LY,NEEL,DNER)
CALL OSBF{ARG2,XEP,LV,BIR,DBER)
NERR=NER (LP)
3ERR=BER (LP)
3 (I) =R {I) * (NEMO%*BEZRR-BEMC*NEIRR)
CONTINUE

HSO=DELH*#2%{%x}
PEKM=P {MMAX-1)
PK 1=D (MMAX-2)
KN=MMAY-1
DKB=- (E-V {(KN)=-A/R(RN)*%2 )*PKM*HSQ/12.
CK1=-{2-Y (KN-1)-A/R (KN-1) **%2) *HSQ*PK1/12.
30 TO 79
IF {IOUT.EQ.3) GO TO 57
DC 77 K=1,KMAX
2 {K)=P (X) /R (¥)
"ALL INTER? {R{XPLACF-3),P{XPLACE-3) s7+85,PS,DPS,,.TRIE.)
¥=DPS/PS
STHAT= {DSNFC {L+1) -X* SNFC (L+1)) / {DSBFC {L+1) -X*SBFC {L+1))
IF (I0UT.EQ.2) STMAT=1./STHMAT
STHAT=STUMAT*XE
IF (INUT,. BQ. 2) RAMF=Y*SNEC (L+1)-DSNFC {1+1)

THATQ 145
THATC 146
THATO47T
THATD148
TMATO 149
TMATO150
TMATO 151
THAT(O152
TMAT( 153
THATO154
THATO 155
TMAT(155
TMATO157
TMATO 158
TMATNI59
TMAT0 160
THMATO161
TMATO 162
THMAT(163
THATS 164
TMATO165
TMATD166
THAT 167
THAT(168
THMATD169
TMATO170
TMATO 171
THATO172
TMATO173
TMATO1 74
TMATO 175
THMATO176
TMATO 177
TMATO178
TMATO179
TMATO1I80 No

 Ww
a



57

38

{7 (TOUT. NE.2) BAMF=DSBFC(L+1)-X*SBFC(L+1)
AANF=-RAMPEPSXRk2%YT
IF (MOD (L,2) «NE.0 JOR.EV.GT.N.00) RETURN
STMAT=-STHAT
IETURN
RATIO=PS%* R{KSTCP+3)/P{(KSTOP+3)
70 58 K=KSTOP,XMAX
D(X) =F (K) *3ATIO/R(K)
~ALL TNTERP (5 (RSTOP) ,P (KSTOP),7,R(KSTOP+3),PS,DPST,.TRUE.)
RANF=1.
STMAT=DPS1-DPS
RETURN
SND

THAT 81
THAT 182
THATO133
HATO 184
THAT 0185
THATS 185
TMATO187
THATO0188
TMATC189
THATO190
THAT0191
TMATO192
TMATD 193
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(

-
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APPENDIX B

DETAILED DERIVATION OF MATRIX ELEMENT

FORMULA IN THE VV FORMALISM

By definition

Xx =r sin 6 cos ¢, vy = r sin Osinp,z=r cos 8

£,9,R are unit vectors in the x,y,z directions

a, ug uy are unit vectors in the r, 8, ¢ directions

Y, (rp) = normalized spherical harmonic about origin at

r. = 0
rp =

L = (2,m) = angular momentum indices

dg = angular integration = sin 6 4d ©

origin at center B(of atom RB)

¥qq (x) = sin &amp; cos ¢, Y;_,(r) = sin 8 sin ¢,

cos a

Vv, = V,- = constant potential

~ - 8 ,qR YT bp 7:

(%, 3) = 727 Cf / R, (Erni)Ry(Er)
VE a A

ry f () ri) ALL ig d+ (0, Y, Joss
where (Vv 31 = Bp 8 )

 AVE) = ZELCCTLT a (R)da,,
IY /8 sr

RCE, 4) RE, be) br -v, vide om)
Surface
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(For the outer sphere, B = 0, we have (V(outside on

surface) “Vig = AV in the surface term. Also, we have

Moo for the limits of integration. See the text

for the final answer. The matrix elements (Fr v, Vv to
&gt; :

and fr VV) are derived analogously.

Derivation of Surface Terms

(tw VF (HT WE
Vola, Vx A Fl fees wb OR) dnd,

LinSpy

—  &gt; 22 c8cl8t pegL Lf Lol Lo5 RICE, nA, hi oY peCoto re 7, C 41,

 Tar ane 14)

The important surface integral is
bd8 83 8 Woo.Le k, (Erny 1) Rye (&amp;, 1) 37 ti dry

P

Li In
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b b ro
Integrate by parts {ud = al -f vu

‘8Let w=R°R, SN
- VY

Av = 57. 4%

V= ! Vinside p&lt; bo

The preceding expression becomes

/B . batd bgtd 3 /B 4

[RF 8 Ls pg J Vir RK; wld,
I So

Since Ry and R,- are continuous across the boundary

they go to a single limit as J=s

B B
R, =r (Epy by) as I&gt;o

+B (8
Ry ~&gt;R (Enh) as 6a

The first derivatives are also continuous at the boundary

and V is always finite so the second term is 0.

. bts /B 9

AILAL A A
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Therefore the surface integral is

B mill bots /

[R22 r, Hg = Ry (En by) REE be) 02 i
Zo. J=0 We stniieg

A similar derivation gives the outer sphere surface

term. Let

LLL) = [fr (AFF, (4) dan

I (GLY = [FV @ 0) (7) da

TLL) = [Y (2) KAY AA

Then we obtain directly the result given in the text

of the thesis.

From Rose (page 62, equation 4.34) we obtain 194

fda vF _ [ Ghoiiate)fs a. sd | CUAL, 5 mmm,
C44, 4, 600)
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The spherical harmonics are complex, the C's are Cle-

bsch Gordon coefficients calculated via equiation 3.18

of Rose in the CGC routine of the scattered wave program.

Relation of complex to real spherical harmonics: for

m # 0, both real and complex harmonics are normalized

cos 4 a \0 BAUR NETTAC 48
se Lk . " \

0. TZ ( (kh: fom) = (1, C1 fer)
for m=0

eos=lo ft © -

This is the method of formulation used in subprogram

I1lP to obtain real Gaunt integrals from the complex

Gaunt integrals.

Also:
¥

Re Ay Nf hn
2

1 _\¥

for m # 0

Ven) =7z Rel (7)fm ha

(UR) = VE Tn i, (7)
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form=0

FE) =)
Products of 3 real spherical harmonics:

Real {Loom (LyiL,)=§Y (4) {eos yrRea!Mmz=0 3 3 yr : Ad 1)
ty 10 L,

Y..

For real harmonics, each L means (%,|m|, cos ¢or sing)

or for m = 0, L = (%£,0, no ¢ dependence). Therefore,

in the preceding equation, there are many possible

matrix elements. The terms in brackets will correspond
cos

to the (#2) terms respectively.
Sing

wey,

) _ [YT] 25) / # / mi, | #Loss (L33L,) = (4) Zz da Vz Y +(e -1) sp )m=p tC Lym, ~ Lym,
$i

ing 2Yio (( | [‘((=|Y +8) a
/

ILL) (FV faa (Ry 2) fe A
T(E) f)ermy
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 itd Raa (a) (em
EE) ery

The integrals over complex spherical harmonics are

evaluated via Rose, equation 4.34.

In the integrals oon the Re and Im parts
1sin

of +he

Re

entire integral yield the same answer as taking (;p¥i1)

before integrating. This 1s the way we evaluate the

terms of Ii cos (L3iLy) in the function subprogram IlP.
sin

Function Subroutine I1P

In I1P, (MNI,INl) = initial state (MN,IN); (MN3, IN3)

final state (MN,IN) where MN = |m| , IN = +1 for cos,

-1 for sin, and for MN = 0, IN = +1. TINT1l and TINT3

are coefficients preceding Y, n and Y, -m. for TINTL,
171 171

and preceding Y and Y for TINT3. IX is againLm £ =m
373 3°73

the x,y,z electric field polarization direction. The

algorithm follows from the preceding description.
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APPENDIX C

RELATION OF THE MOLAR EXTINCTION COEFFICIENT

£m AND THE OSCILLATOR STRENGTH f£ TO THE AB-

SORPTION COEFFICIENT n.

In the preceding discussion, nwas defined in terms of

theoretically obtained quantities. In an absorption ex-

periment, the intensity I (which is the same as the

Poynting's vector previously defined) is attenuated

according to the equation.

cl) Tv) = 1 (me

I(v) = intensity per unit frequency range at

frequencyV

I(v) = intensity per unit frequency at zero pene-

tration into the material. This is the

incident intensity minus the reflected

intensity at the material surface, since

it is this energy flux which penetrates

the material and is attenuated by absorp-

tion,

2 Penetration distance into the material at

which I(v) is measured.
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Equation Cl (identical to equation(.!? in the text)

arises from a differential absorption law

C2) —odI=Indl or 7(-4L)o,

Since - a is the rate of energy absorption per unit

volume we can see that the phenomenological definition

of equation C2 coincides with the previous definition

of equation ¢./&amp;

=&gt; % :

4 Re (J.-E) a Re(Z co) ElC3) N= 2 &gt; um

grhe(ExBY) © Srp

By definition,

Chnio

Where C is the molecular density, in moles/liter. £

is then defined in terms of e 23 This relation is

given by equation¢.22 (The molecular density N is in

molecules/cm&gt;) .
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APPENDIX D

PHOTOEMISSION USING THE VV FORMALISM

As part of the present work, we have attempted to cal-

culate photoemission intensities from CH, using the VV method.

The positive energy eigenstates were confined to a large

spherical box (radius of about 15a.) - This produced a dis-

crete set of final states. The density of final states was

sufficiently low so that the intensity for each transition

may be evaluated, and a profile of photoemission intensity

versus the kinetic energy of the final state electron may be

constructed. The radial functions for the final state are

required to go to O at the box radius. The inward integra-

tion to obtain the positive energy radial functions for the

outer sphere region is begun by assuming the radial functions

take the form

D1) Ry (xr) = AJ, (Rr) + Bn, (Ko)

where 2 = Pe (KB)
B~ J, (Rb)

D2) R, (b_) = 0 with b_ = box radius

Equation D1 is only used for the first few points inside b,.

Then the inward integration is performed in the standard manner
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The additional photoemission sequence may be found in the

TMAT routine of Appendix A from statement 181 to 106.

(It is also necessary to override the statement in EIGEN

which prohibits searching for positive energy eigenstates.)

The photoemission program should be run using the new NSCF

MAIN program. A set of transitions from a single initial

state may be calculated at one time by letting NXGP(N) = 1

for the initial state and NXGP(N) = 2 for each final state.

The photoemission intensities for CH, calculated by

the author were completely unreliable. However, only ££ =O

and 2 = 1 partial waves were used in the calculation, and

it is now clear that 2 = 2 must be included as well to

obtain accurate intensities. Once this defect is corrected,

we will be better able to evaluate the accuracy of this

approach for determining photoemission intensities.
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